
PDF Creation Date:

June 27, 2008

bbc

Font Embedding Guidelines for
Adobe® Third-party Developers

Adobe® Acrobat® SDK
June 2008 Version 9.0

© 2008 Adobe Systems Incorporated. All rights reserved.

Adobe® Acrobat® 9.0 SDK Font Embedding Guidelines for Adobe Third-party Developers for Microsoft® Windows® and Mac OS®

Edition 2.0, June 2008

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names, company logos, and user names in sample material or sample forms included in this documentation
and/or software are for demonstration purposes only and are not intended to refer to any actual organization or persons.

Adobe, the Adobe logo, Acrobat, Distiller, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Apple, Macintosh, and Mac OS are trademarks of Apple Inc., registered in the United States and other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

SVG is a trademark of the World Wide Web Consortium; marks of the W3C are registered and held by its host institutions MIT, INRIA and Keio.

UNIX is a trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

 3

Contents

List of Examples ... 1

Preface .. 2
Who should read this guide? ... 2
Related documentation ... 3

1 General Guidelines .. 4
When to check embedding information ... 5
Preserving information in embedded fonts ... 6

2 Specific Guidelines .. 7
Embedding fonts in electronic files creation ... 7
Embedding fonts in PDF forms and free-text annotations ... 8
Use of embedded fonts for editing..10
Distiller example ...10

3 Using fsType/FSType ... 11
Description of the fsType entry...11
Fonts that use FSType instead of fsType..12
How Adobe applications interpret the fsType/FSType entry...13

4 Embedded Font Operations Using the Acrobat SDK .. 14
Embedded font-related operations...14

5 Glossary .. 17

Index ... 19

 1

List of Examples

Example 4.1 ..14
Example 4.2 ..15

 2

Preface

The goal of this document is to provide font usage guidelines—along with examples—that are followed
by Adobe® application developers. With this information, Adobe third-party developers can understand
how Adobe applications handle font embedding issues. Adobe recommends that third-party developers
follow these guidelines when writing software that works in conjunction with Adobe software products.

The following topics are covered in this guide:

l General Guidelines

l Specific Guidelines

l Using fsType/FSType

l Embedded Font Operations Using the Acrobat SDK

The glossary on page 17 clarifies the terminology used in this guide.

Who should read this guide?
This document provides guidelines for Adobe third-party application developers who are writing
applications capable of embedding fonts in a PDF or EPS file or accessing embedded fonts within a PDF or
EPS file. Most of the information is geared toward either plug-in developers working with the
Adobe Acrobat® SDK, or Adobe PDF Library developers using the Adobe PDF Library SDK. Examples are
based on Distiller® for Acrobat and the Acrobat SDK APIs.

To use this document, you must be familiar with basic font formats and the PostScript® printing process.
Most importantly, you must understand which formats are used to represent fonts when used on the host,
when sent to a printer, and when embedded in a PDF file.

Note: The policies presented in this document do not guarantee that font usage will be in legal
compliance with font vendor license agreements. For example, although the embedding
information within a font’s fsType entry indicates that the font may be embedded to a certain
level, a license with the font vendor may be separately required to use the font in this way. Third
parties should seek the advice of their own legal counsel in all matters relating to font usage and
embedding, regardless of what the policies presented in this document may imply.

Adobe Acrobat SDK Preface
Font Embedding Guidelines for Adobe Third-party Developers Related documentation 3

Related documentation
The following documents are available on the Adobe Developer Connection Web site at
www.adobe.com/devnet/

For information about See

The definitive programmer’s reference for the syntax and
semantics of the PostScript language, the imaging model, and
the effects of the graphics operators.

PostScript Language Reference, third
edition

How developers of CID fonts can specify whether their fonts can
be embedded via the FSType entry in the FontInfo dictionary.

Enabling PDF Font Embedding for
CID-Keyed Fonts (Technical Note #5641)

The full specification for the fsType entry in the OS/2 table. OpenType Specification, version 1.4

The specification of a font format that is suitable for compactly
representing one or more Type 1 or CID-keyed fonts.

The Compact Font Format Specification
(Technical Note #5176)

The specification for EPS, a PostScript language program that
describes the appearance of a single page.

Encapsulated PostScript File Format
Specification, Version 3.0

The PostScript Type 42 font format, which can be used to
download TrueType fonts to PostScript printers (or PostScript
compatible printers) that contain a TrueType rasterizer.

The Type 42 Font Format Specification
(Technical Note #5012)

A detailed description of the PDF file format. PDF Reference

Detailed descriptions for the APIs that can be used to develop
plug-ins for Acrobat and Adobe Reader®, as well as PDF Library
applications.

Acrobat and PDF Library API Reference

The organization of the Adobe Type 1 font format and how to
create a Type 1 font program.

Adobe Type 1 Font Format

http://www.adobe.com/devnet/

 4

1 General Guidelines

This chapter provides guidelines that relate to embedding any font into a file. These guidelines are
followed whenever Adobe software considers whether to embed fonts in PDF or EPS files, whether
through initial creation or transformation of existing files. Adobe may not co-market third-party software
that does not meet these guidelines.

Multiple levels of embedding are associated with font usage. For OpenType® and TrueType® fonts, usage
for embedding in documents is specified by fsType information in the font. The PostScript Type 1 font
format does not provide for this type of explicit information, so it is especially important to follow clear
guidelines with regard to these fonts to ensure that you respect the license agreements established by
their vendors. Note, however, that it is possible to add fsType information to Type 1 fonts. (See “Fonts
that use FSType instead of fsType” on page 12 for more information.)

Fonts, of course, are used to create and view documents, or print and modify them. Fonts can be subsetted
when embedded to use only those glyphs required for display and printing, reducing overall file size. In
general, the TrueType and OpenType specifications define the following types of embedding associated
with a font:

No embedding allowed: The font may not be embedded into an electronic document for any
purpose.

Embedding for preview and print only: Fonts can be embedded for preview and print, either the full
character set or only a subset of characters can be embedded in an electronic document solely for the
purpose of viewing that document on-screen or printing. Although a font that can be embedded for
preview and print may be embedded in an electronic document, the embedded font may not be used
to further edit the document in which it is contained, to edit or create other documents, or to fill forms
fields.

Editable embedding: Fonts that are available for editable embedding can be embedded in electronic
documents. The recipient of the electronic document can then use the fonts to view, print, and modify
the text and structure of the document in which it is embedded. These changes can then be saved in
the original document. Editable embedding is the type of embedding done for filling forms and editing
free-text annotations. This type of embedding is different from using embedded fonts for editing,
which provides full text editing capabilities using an embedded font. Adobe products currently
support editable embedding fonts for filling forms and editing free-text annotations but does not
support their use for general purpose full text editing.

Installable embedding: The font may be provided with an electronic document and installed on the
recipient’s computer for use in creating new documents. Note, however, that currently no Adobe
software installs an embedded font onto a user's system, regardless of the information specified in the
font by the vendor.

Adobe Acrobat SDK General Guidelines
Font Embedding Guidelines for Adobe Third-party Developers When to check embedding information 5

When to check embedding information
When Adobe software embeds a whole file within another file (such as embedding an EPS within a
multi-page PostScript document) in such a fashion that the file is included without modification, Adobe
software does not look for fonts that may exist in the embedded file to determine embedding-level
information.

PostScript streams to be sent to a printer may include fonts that cannot otherwise be embedded in other
files, including those fonts whose fsType information is set to no embedding allowed, because this is
necessary for printing. Creation of all other files (including EPS) must follow all the guidelines. EPS files
should be handled like PDF and SVG files (not like PostScript streams).

Note: Original Composite Fonts (OCFs) are never embedded, even for PostScript streams sent to a printer.
To print using OCFs, the fonts must be resident on the printer.

Adobe software does not allow a font to be embedded in PDF and EPS files whose fsType embedding
information does not allow embedding except for PostScript print streams. When a font is embedded for
use in filling forms or editing free-text annotations in PDF, Adobe software ensures that only fonts having
fsType information set to editable embedding are used. Despite the definition of editable embedding in
the True Type and OpenType specifications, for actual editing or for adding comments in notes to the
document, Adobe software uses only the fonts currently installed on the user’s system.

In Adobe Acrobat, for example, fonts installed on a user’s system are required if the font is to be used with
the TouchUp Text Tool and the Note Tool. If the user attempts to perform editing operations in a PDF
document with the TouchUp Text Tool or the Note Tool by using an embedded font that is not installed on
the user’s system, the operation fails (the user is unable to enter text from his keyboard at the cursor
insertion point). The operation is successful only if the font is already installed on the user’s system. For an
example of how to check for the existence of fonts on a user’s system, see “Embedded Font Operations
Using the Acrobat SDK” on page 14.

Note: Adobe does not object to products that use embedded fonts for full editing, assuming that the
fsType information is set to editable embedding. Adobe simply chooses not to do so in its
products at this time.

Adobe Acrobat SDK General Guidelines
Font Embedding Guidelines for Adobe Third-party Developers Preserving information in embedded fonts 6

Preserving information in embedded fonts
Always embed (retain) copyright and trademark information, if it exists, when embedding a font. In Type 1
and derivative formats, this is most commonly a /Notice key in the FontInfo dictionary. Sometimes a
/Copyright key exists in addition to the /Notice key, in which case both should be retained. For
TrueType and OpenType fonts, the copyright and trademark information is stored in the name table
(copyright is nameID 0 and trademark is nameID 7).

Whenever fonts are embedded in any file, including PostScript streams, the following logic should be
followed to preserve embedding information in the embedded fonts if the information exists or can be
known at the time the font is embedded. In general, fsType/FSType information should not be
estimated and added to a font if it did not previously and explicitly exist.

If fsType/FSType exists
embed fsType/FSType

Else
embed OrigFontType
embed WasEmbedded (if font came from an EPS, PDF, or SVG file)
embed XUID

General descriptions of the terms used can be found in the glossary on page 17, but additional comments
are included below.

fsType/FSType: If there is an existing fsType/FSType entry, there must also be one in the
embedded font. However, if the format of the font is changed during the embedding process, it may
become necessary to store fsType in a different way. See “Using fsType/FSType” on page 11 for
details.

WasEmbedded: A new key written out in a PostScript stream to indicate that a font in it was already
embedded and thus can be re-embedded if necessary. This key is found in the FontInfo dictionary in
the embedded font. The value for WasEmbedded is a boolean type (true or false). If WasEmbedded
is true, it is assumed that the font can be embedded. This key is found only in a font embedded in a
PostScript print stream. It is never found in host fonts.

OrigFontType: A new key written out in a PostScript stream that identifies the original font type in
the case where a font is converted from any other font type into an embedded PostScript font, and no
fsType/FSType information is present in the original font. The intent is to let developers follow the
guidelines that apply to the original font regardless of the transformations it has undergone. This key is
found in the FontInfo dictionary. The value for OrigFontType is a name (/Type1, /TrueType,
/OCF, or /CID). If OrigFontType is /Type1 or /TrueType, it is assumed that the font can be
embedded. This key is found only in a font embedded in a PostScript print stream. It is never found in
host fonts.

XUID: The extended unique identifier for each font. XUIDs are an optional font element. The font
vendor identifier portion of each XUID number is provided by Adobe. XUIDs are optional for Type 1
fonts, but font developers must put them in CID-keyed and PostScript OpenType fonts.

 7

2 Specific Guidelines

This chapter provides guidelines that relate to the embedding of a specific font into a file, and then
presents an example of how an Adobe application (Distiller for Adobe Acrobat) implements the
guidelines. The guidelines cover embedding fonts when creating files for preview and print, filling forms,
and editing free-text annotations. Adobe does not embed fonts for the purpose of editing PDF
documents. If editing is required, Adobe software uses fonts already installed on the system.

Note: References to approved lists of fonts are lists maintained by Adobe for use in Adobe software. For
example, Adobe maintains a list of non-Adobe Type 1 fonts that Adobe has permission to use for
editable embedding even though the fonts themselves carry no embedding level information (no
fsType/FSType information). Third parties should compile their own lists for use in their software.

Embedding fonts in electronic files creation
The following guidelines should be followed when an application is creating an electronic file for preview
and print.

Font Minimum required Highly recommended

PostScript/Type 1
(Western)/CEF/CFF

If embedding in PostScript stream, you
can embed this font.

Else if fsType/FSType exists, respect
fsType/FSType settings.

Else if the font WasEmbedded, you can
embed this font.

Else if OrigFontType exists, follow the
rules in this document for the font as
identified by OrigFontType.

Else, allow the font to be embedded.

Default should be to subset font when
the author is using less than 100% of the
characters in the font. (Author can
change this preference.)

OpenType (Western
& CJK)/TrueType
(Western & CJK)

If embedding in PostScript stream, you
can embed this font.

Else if fsType/FSType exists, respect
fsType/FSType settings.

Else if the font WasEmbedded, you can
embed this font.

Else if OrigFontType exists, follow the
rules in this document for the font as
identified by OrigFontType.

Else, allow the font to be embedded.

Default should be to subset font when
the author is using less than 100% of the
characters in the font. (Author can
change this preference.)

Adobe Acrobat SDK Specific Guidelines
Font Embedding Guidelines for Adobe Third-party Developers Embedding fonts in PDF forms and free-text annotations 8

Embedding fonts in PDF forms and free-text annotations
The following guidelines should be followed for the type of embedding done for filling PDF forms and
editing free-text annotations. This type of embedding is different from using embedded fonts for editing,
which provides full text editing capabilities using an embedded font, something that Adobe does not
currently support.

Only fonts whose fsType or related information indicates that they are editable can be used for forms
text and free-text annotations.

CID (CJK)/CID-CFF If embedding in PostScript stream, you
can embed this font.

Else if fsType/FSType exists, respect
fsType/FSType settings.

Else if the font WasEmbedded, you can
embed this font.

Else if OrigFontType exists, follow the
rules in this document for the font as
identified by OrigFontType.

Else if XUID exists and is on the
approved list, you can embed this font.

Else if XUID exists and is not on the
approved list, do not embed.

Else, do not embed this font.

Default should be to subset font when
the author is using less than 100% of the
characters in the font. (Author can
change this preference.)

OCF (CJK) This font is never embedded. N/A

Font Minimum required Highly recommended

Adobe Acrobat SDK Specific Guidelines
Font Embedding Guidelines for Adobe Third-party Developers Embedding fonts in PDF forms and free-text annotations 9

Font Minimum required Highly recommended

PostScript/Type 1
(Western)/CEF/CFF

If fsType/FSType exists, respect
fsType/FSType settings.

Else if OrigFontType exists, follow the
rules in this document for the font as
identified by OrigFontType.

Else if Type 1 font meets the following
criteria, the font can be treated as
editable:

If the string: ”…trademark of Adobe” is
identifiable in the font, treat the font as
editable.

Otherwise if “Adobe” is in the notice
string and the PostScript font name is on
the approved list, treat the font as
editable.

Else (no fsType/FSType), assume the
embedded font is preview and print
only.

If the user types a character unavailable
in the current font, an application should
follow one of two options: 1) Use a
fallback font to display the missing
characters (selection of fallback font may
be determined by the form creator, the
OS, the application, or the user); 2)
Display blanks or notdef symbols.

If a fallback font is used and embedded
in a form field, it is subject to the same
restrictions as any other font being
embedded for use in a form field.

OpenType (Western
& CJK)/TrueType
(Western & CJK)

If fsType/FSType exists, respect
fsType/FSType settings.

Else if OrigFontType exists, follow the
rules elsewhere in this document for the
font as identified by OrigFontType.

Else (no fsType/FSType), assume the
embedded font is preview and print
only.

If the user types a character unavailable
in the current font, an application should
follow one of two options: 1) Use a
fallback font to display the missing
characters (selection of fallback font may
be determined by the form creator, the
OS, the application, or the user); 2)
Display blanks or notdef symbols.

If a fallback font is used and embedded
in a form field, it is subject to the same
restrictions as any other font being
embedded for use in a form field.

CID (CJK)/CID-CFF If fsType/FSType exists, respect
fsType/FSType settings.

Else if OrigFontType exists, follow the
rules in this document for the font as
identified by OrigFontType.

Else (no fsType/FSType), assume the
embedded font is preview and print
only.

If the user types a character unavailable
in the current font, an application should
follow one of two options: 1) Use a
fallback font to display the missing
characters (selection of fallback font may
be determined by the form creator, the
OS, the application, or the user); 2)
Display blanks or notdef symbols.

If a fallback font is used and embedded
in a form field, it is subject to the same
restrictions as any other font being
embedded for use in a form field.

OCF (CJK) Not supported for forms. N/A

Adobe Acrobat SDK Specific Guidelines
Font Embedding Guidelines for Adobe Third-party Developers Use of embedded fonts for editing 10

Use of embedded fonts for editing
If the font is resident on a user's system, and may be embedded, allow editing using that font. Currently, no
Adobe application allows use of embedded fonts for editing. If the author tries to use the application for
full editing capabilities and the font is not resident on the user’s system, no text appears at the cursor
insertion point when the user types . The user must select another font.

Even if a font is already fully embedded in a file and its fsType/FSType indicates editable embedding,
current Adobe software still checks to ensure that the font is installed on the user’s system before allowing
full editing capabilities (such as for the Acrobat TouchUp Text Tool or Acrobat Note Tool). For an example of
how to check whether a font is installed on a user’s system or is embedded only, see “Embedded Font
Operations Using the Acrobat SDK” on page 14.

Distiller example
An application of the previously stated guidelines is demonstated in the following table about converting
fonts from PS to PDF in Distiller. Using numbers to indicate relative priority, the table shows the search
order used to determine whether and how fonts are embedded in a PDF file. This is the algorithm currently
used in Distiller. Note that for OpenType and TrueType fonts, Distiller does not check any entry other than
the OS/2 fsType entry, which is why there are no numbers greater than 1 for these fonts in columns one
and four of the table below.
Dil

OpenType
with PostScript
outlines

Type1 and
CIDFontType0

Type42 and
CIDFontType2a

a. Distiller looks at FSType before fsType in OS/2 table for Type42 fonts for historical reasons: There were
some faulty OS/2 tables in Mac OS9 system TrueType fonts, so this was a special workaround.

The method Distiller uses to embed fonts depends on the font type:

Type 1, PostScript-flavored OpenType, and CIDFonts in Compact Font Format (CFF): The
embedding information, if present, is preserved as embedded PostScript language code: /FSType
value def in CFFs (see The Compact Font Format Specification—Technical Note #5176, Appendix F)
where value is the decimal representation of the embedding flags (for example, /FSType 8 def).

TrueType and TrueType-flavored OpenType fonts in TrueType format: The embedding information,
if FSType or OS/2 is found, is preserved in the OS/2 table.

TrueType and
OpenType with
TrueType outlines

FSType in
FontInfo

N/A 1 1 N/A

FSType in Font
dictionary

N/A 2 2 N/A

OS/2 fsType 1 N/A 3 1

WasEmbedded N/A 3 4 N/A

OrigFontType N/A 4 5 N/A

 11

3 Using fsType/FSType

This chapter describes the fsType entry and makes the distinction between the fsType and FSType
designations. It describes where the fsType/FSType entry can be found in different fonts. Finally, it
provides Adobe’s guidelines for how the fsType/FSType entry is to be interpreted and handled in
Adobe applications.

The fsType entry in a TrueType or OpenType font is the primary mechanism used by font developers to
specify what type of embedding is allowed. The fsType specification was first developed for TrueType
fonts and later used in the OpenType specification. In the absence of fsType information, such as with
most PostScript Type 1 fonts, other mechanisms for determining embedding levels must be employed.
This chapter discusses how Adobe uses fsType information when deciding whether and how to embed
fonts. It also discusses how Adobe handles cases where fsType information is not available. (See the
tables in “Specific Guidelines” on page 7.)

The fsType/FSType entry provides information regarding whether you can edit using the font,
distribute the font freely, and so on. Adobe does not allow the user to perform operations using Adobe
software that are not allowed by the font embedding information. In addition, Adobe software end users
are also directed in Adobe EULAs to separately confer with font vendors regarding any additional licensing
considerations that might apply to font usage. For some fonts, Adobe has agreements with vendors that
allow customers to embed and use certain fonts. When people license font software from Adobe, or an
Adobe application that includes font software, they are allowed to use the fonts and embed those fonts
into documents for the purposes specified in the license. Specific information about Adobe’s agreements
with font vendors is provided on the Adobe web site (see
http://www.adobe.com/type/browser/legal/embeddingeula.html). It is recommended that third parties
provide the same information to their customers.

Description of the fsType entry
In TrueType and OpenType fonts, embedding information is included in the fsType entry of the OS/2
table. This field contains a number of bits that specify the levels of embedding that are available. The bits
are described in the table below. The formal definition can be found at:

http://partners.adobe.com/asn/tech/type/opentype/index.jsp

Any file other than a print stream (including EPS, PDF, and SVG) should follow the guidelines provided in
this embedding information.

Bit BitMask Description

No bit is
set.

0x0000 Installable embedding: No fsType bit is set. Thus fsType is zero. Fonts with
this setting indicate that they may be embedded and permanently installed
on the remote system by an application. The user of the remote system
acquires the identical rights, obligations and licenses for that font as the
original purchaser of the font, and is subject to the same end-user license
agreement, copyright, design patent, and/or trademark as was the original
purchaser.

0 0x0001 Reserved, must be zero.

http://partners.adobe.com/asn/tech/type/opentype/index.jsp
http://www.adobe.com/type/browser/legal/embeddingeula.html

Adobe Acrobat SDK Using fsType/FSType
Font Embedding Guidelines for Adobe Third-party Developers Fonts that use FSType instead of fsType 12

Note: If multiple embedding bits are set, the least restrictive combination takes precedence. For example,
if bits 1 and 3 are set, bit 3 takes precedence over bit 1 and the font may be embedded as editable.
For compatibility purposes, most vendors that allow editable embedding also set the preview and
print bit (0x000C). This permits an application that supports only preview and print embedding to
detect that font embedding is allowed.

Fonts that use FSType instead of fsType
When TrueType and OpenType fonts are sent to Distiller, they are usually converted into one of the
following PostScript representations: Type 1, Type 42, or CIDFont. For this reason, fsType values must be
represented in formats that did not originally support them. The FSType entry (note different
capitalization) uses the same values as the fsType entry, except that FSType is found in font types other
than TrueType and OpenType. FSType is now recognized in Type 1, Type 42, and CIDFonts.

To store an fsType value in a CIDFont, store it in the FontInfo dictionary under the key /FSType. See
Enabling PDF Font Embedding for CID-Keyed Fonts (Technical Note #5641). The Type 1 specification provides
no mechanism for representing FSType, but it can be added anyway. This is done by adding a key/value
pair to either the font’s FontInfo dictionary or to the top-level font dictionary. The key/value pair is of the
form /FSType value def.

1 0x0002 Restricted License embedding: Fonts that have only this bit set must not be
modified, embedded or exchanged in any manner without first obtaining
permission of the font software copyright owner.

Note: For Restricted License embedding to take effect, it must be the only
level of embedding selected.

2 0x0004 Preview and print embedding: When this bit is set, the font may be
embedded, and temporarily loaded on the remote system. Documents
containing preview and print fonts must be opened “read-only”; no edits can
be applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may be embedded but
must only be installed temporarily on other systems. In contrast to preview
and print fonts, documents containing editable fonts may be opened for
reading, editing is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100 No subsetting: When this bit is set, the font may not be subsetted prior to
embedding. Other embedding restrictions specified in bits 0 - 3 and 9 also
apply.

9 0x0200 Bitmap embedding only: When this bit is set, only bitmaps contained in the
font may be embedded. No outline data may be embedded. If there are no
bitmaps available in the font, then the font is considered unembeddable and
the embedding services will fail. Other embedding restrictions specified in
bits 0 - 3 and 8 also apply.

10 - 15 Reserved, must be zero.

Bit BitMask Description

Adobe Acrobat SDK Using fsType/FSType
Font Embedding Guidelines for Adobe Third-party Developers How Adobe applications interpret the fsType/FSType entry 13

The Type 42 specification provides a way to include FSType, by inclusion of the font's OS/2 table, but the
OS/2 table is not required in Type 42 fonts.

It is thus possible to look for an FSType value in both Type 1 and Type 42 fonts. As an example of
implementation, for both Type 1 and Type 42 fonts, Distiller 6.0 looks for the /FSType key in the font's
FontInfo dictionary and in the top-level font dictionary. If FSType is present in both dictionaries,
Distiller uses the one in FontInfo. For Type 42 fonts, if FSType is not present in either dictionary, the
fsType in an included OS/2 table is used. (See the discussion following the table on page 10.)

How Adobe applications interpret the fsType/FSType entry
The following algorithm defines how Adobe applications interpret the fsType specification outlined in
Description of the fsType entry. Presented are the pseudocode rules that define the phrase respect
fsType/FSType setting that is used in the tables in “Specific Guidelines” on page 7.

Note: In the following algorithm, x represents a bit that may be ignored.

1. If fsType/FSType equals 0000 0000 0000 0010 (fsType/FSType = 2 in decimal) then no
embedding allowed,

2. Else if fsType/FSType bit 9 is 1 [xxxx xx1x xxxx xxxx], no embedding allowed (this setting
explicitly allows for bitmap embedding, but Adobe applications do not currently support bitmap
embedding),

3. Else if fsType/FSType bit 3 is 1 [xxxx xx0x xxxx 1xxx], editable embedding is allowed,

4. Else if fsType/FSType bit 2 is 1 [xxxx xx0x xxxx 01xx], preview and print embedding is allowed,

5. Else editable embedding is allowed. The font includes no bit setting or a combination of fsType bits
not defined in the specification; for these cases, the specification indicates that the font should be
treated as installable. Because Adobe products do not provide for installable embedding, the next
least restrictive bit interpretation is used—editable embedding.

 14

4 Embedded Font Operations Using the Acrobat SDK

This chapter discusses embedded font-related operations using the Acrobat SDK. Examples of common
operations are provided. Distiller and the PDF Library add font embedding information to fonts that are
embedded in PDF files. With the inclusion of this information, your code can determine how an embedded
font can be used. The operations discussed in this chapter also apply, for the most part, to code used with
the PDF Library SDK.

Embedded font-related operations
Adobe Acrobat plug-in developers can remove and embed fonts within an existing PDF document. They
can also use fonts that are already embedded in a PDF document for preview and printing, as well as for
editing. However, allowing editing using embedded fonts is not recommended by Adobe, and in some
cases it is impractical. Specifically, CJK fonts potentially include thousands of glyphs, so it is necessary for
applications to subset these fonts when embedding them in a PDF file. This precludes embedded CJK
fonts from being used for editing by a plug-in.

PDF Library users can perform all the above operations using an existing PDF document, as well as create a
PDF document from scratch that includes embedded fonts. Creating a document from scratch cannot be
performed by a plug-in, but this can be done by using PDF Library calls from within a compiled application
that includes the PDF Library.

Many embedded font-related operations using the Acrobat SDK require use of the PDEFontGetSysFont
method. This method first checks whether a font (provided as the sole argument to the method) is
installed on the system. If it is not, the method checks whether the font is embedded in the current PDF
file. When using PDEFontGetSysFont to determine what font operations should be allowed, you must
check whether the returned font is a system font. If it is, full editing can be allowed. If it is not, the font is
embedded only and the restrictions discussed in this document should be observed.

When checking embedded information, use an if-else if structure that checks first for the least
restrictive use of the font, and then checks progressively for greater and greater restrictions.

Plug-ins should subset fonts when they are used for preview and print operations, or when the font is too
large to add to a PDF file. Embed the entire font when editable embedding is used, unless the font is too
large.

Example 4.1

This example demonstrates how to check the embedding information of a system font and then embed as
appropriate. The key APIs demonstrated are PDFindSysFont, PDSysFontGetAttrs, and
PDEFontCreateFromSysFont.

Note: Do not use PDEFontGetAttrs to check the protection field bit in the PDEFontAttrs structure.
The protection field is valid only when using PDSysFontGetAttrs.

// Initialize the font descriptor then create the font reference.
PDEFont pdeFont = NULL;
PDEFontAttrs pdeFontAttrs;
PDESysFont sysFont;
ASUns32 fontCreateFlags;

Adobe Acrobat SDK Embedded Font Operations Using the Acrobat SDK
Font Embedding Guidelines for Adobe Third-party Developers Embedded font-related operations 15

memset(&pdeFontAttrs, 0, sizeof(pdeFontAttrs));

// Find the matching system font.
pdeFontAttrs.name = ASAtomFromString("Verdana");
sysFont = PDFindSysFont(&pdeFontAttrs,sizeof(pdeFontAttrs),0);

// Get the font attributes.
PDSysFontGetAttrs(sysFont, &pdeFontAttrs, sizeof(pdeFontAttrs));

// Create the PDE font from the system font.
// Check the font embedding bits for preview and print, or editing.
// Based on the font embedding bits, decide whether to embed or subset
// the font.

if ((pdeFontAttrs.protection & kPDEFontNoEditableEmbedding) == 0) {
// Editing OK. Embed the entire font.
fontCreateFlags = kPDEFontCreateEmbedded;
}
else if ((pdeFontAttrs.protection & kPDEFontNoEmbedding) == 0) {
// Preview and print embedding OK, editing is NOT OK.
// Subset the embedded font.
fontCreateFlags = kPDEFontCreateEmbedded|kPDEFontWillSubset;
}
else {
// Embedding not allowed.
fontCreateFlags = kPDEFontDoNotEmbed;
}

// Create the PDE font. Embed if embedding information allows.
pdeFont = PDEFontCreateFromSysFont(sysFont, fontCreateFlags);

Example 4.2

The following example shows how to find a font that may be either installed on the system or embedded
in a document, and then investigate the embedding information in the font. The key APIs demonstrated
are PDEFontGetSysFont and PDSysFontGetAttr. To determine whether the font is installed on the
system (as opposed to embedded in the document), use the PDFindSysFont method as shown in
Example 4.1 on page 14.

Note: Do not use PDEFontGetAttrs to check the protection field bit in the PDEFontAttrs structure.
The protection field is valid only when using PDSysFontGetAttrs.

ASBool EditingEmbeddedFontOK(PDFont fontP)
{
CosObj fontObj = PDFontGetCosObj(fontP);
PDEFont pdeFont = PDEFontCreateFromCosObj(&fontObj);
PDESysFont pdSysFont = PDEFontGetSysFont(pdeFont);
PDEFontAttrs attrs;
if (pdSysFont)
{
PDSysFontGetAttrs(pdSysFont, &attrs, sizeof(attrs));
if ((attrs.protection & kPDEFontNoEditableEmbedding) == 0)
// Editing OK.
else if ((attrs.protection & kPDEFontNoEmbedding) == 0)
// Preview and print embedding OK.

Adobe Acrobat SDK Embedded Font Operations Using the Acrobat SDK
Font Embedding Guidelines for Adobe Third-party Developers Embedded font-related operations 16

//Editing is NOT OK.
else
/* Embedding not allowed... */
}

 17

Glossary

C

CEF (Compact Embedded Font)

A font format used by SVG.

CFF (Compact Font Format)

A format suitable for compactly representing one or more
Type 1 or CID-keyed fonts. Raw (unwrapped) CFF fonts are
not generally used on host systems. The main uses of raw
CFF fonts are:

l by Distiller for embedding fonts in PDF files,

l as a format for internal use in PostScript output
devices.

Additionally, a table containing a CFF font is the means for
supporting Type 1 structures within the OpenType format.
See The Compact Font Format Specification (Technical Note
#5176).

CID (Character IDentifier)

Fonts based on CID (CID-keyed fonts) provide a
convenient way for defining multiple-byte character
encodings. See PostScript Language Reference, third
edition, for details.

CJK

An acronym used to identify the Chinese, Japanese, and
Korean languages (the main Asian multi-byte languages).

E

EPS (Encapsulated PostScript)

A standard format for importing and exporting PostScript
language graphics among applications in a variety of
heterogeneous environments. An EPS is basically a
“single-page graphic,” as opposed to a multi-page
PostScript document.

F

fsType/FSType

A reference to the fsType/FSType entry in a TrueType,
OpenType, CFF, or CID-keyed font. See “Using
fsType/FSType” on page 11 for details.

O

OCFs (Original Composite Fonts)

An older type of CJK PostScript font, pre-dating CID-keyed
Type 1 fonts.

OpenType

A cross-platform font format developed jointly by Adobe
and Microsoft®. It is an extension to the TrueType font
format, adding support for PostScript font data in CFF
format. The two main benefits of the OpenType format are
its cross-platform compatibility (the same font file works
on Macintosh® and Windows® computers), and its ability
to support expanded character sets and layout features.
See
http://partners.adobe.com/asn/tech/type/opentype/inde
x.jsp.

http://partners.adobe.com/asn/tech/type/opentype/index.jsp
http://partners.adobe.com/asn/tech/type/opentype/index.jsp

Adobe Acrobat SDK
Font Embedding Guidelines for Adobe Third-party Developers 18

OrigFontType

A reference to a new key written out into the PostScript
stream that identifies the original font type in the case
where a font is converted from one font type to another.
The intent is to enable developers to follow the guidelines
that apply to the original font regardless of the
transformations it has undergone. This key is found only
in the FontInfo dictionary of a font embedded in a
PostScript print stream. It is never found in host fonts.

S

SVG (Scalable Vector Graphics)

A language for describing two-dimensional vector and
mixed vector/raster graphics in XML. SVG is an industry
standard defined by the World Wide Web Consortium
(W3C). See http://www.w3.org.

T

TrueType

A digital font technology designed by Apple® Computer.
It is now used by both Apple and Microsoft in their
operating systems. See
http://www.microsoft.com/typography/users.htm.

Type 1

A font format originally designed for single-byte fonts for
use on host systems and with PostScript printers. The
Type 1 format is specified in Adobe Type 1 Font Format.

Type 42 fonts

Consist of a PostScript language “wrapper” around a
TrueType font. A Type 42 font is usually generated by a

printer driver to download TrueType fonts to a PostScript
printer that includes a TrueType rasterizer. See The Type 42
Font Format Specification (Technical Note #5012) for details.

W

WasEmbedded

A refererence to a new key written out in a PostScript
stream to indicate that a font in the PostScript stream/file
was already embedded and thus can be re-embedded if
necessary. This key is added to the FontInfo dictionary
of an embedded font by the application or printer driver.
This key is found only in the FontInfo dictionary of a
font embedded in a PostScript print stream. It is never
found in host fonts. See “General Guidelines” on page 4.

X

XUID

A reference to the extended unique identifier for each
font. An XUID is an optional font element in a
name-keyed Type 1 or PostScript OpenType font, but is
required in a CID-keyed Type 1 font. The font vendor
identifier portion of each XUID number is provided by
Adobe. Third-party font developers submit a request to
Adobe for an XUID font vendor identifier. Adobe simply
provides the identifier; it does not associate the identifier
with a specific font. The XUID approved list (see “Specific
Guidelines” on page 7) refers to a list compiled by Adobe
(for internal use) of fonts that vendors allow to be
embedded. Fonts on this list were, in general, published
before the fsType specification was developed. See
PostScript Language Reference, third edition, for details.

http://www.w3.org
http://www.microsoft.com/typography/users.htm

 19

Index

A
approved lists of fonts 7

C
Copyright key 6

D
distiller

conversion of TrueType and OpenType 12
embedding guidelines for PS to PDF 10

E
editable embedding 4, 12
embedding

free-text annotations 8
fsType Bits 11
OCFs never embedded 5
PDF forms 8
using PDF Library 14
whole files 5

embedding types
editable embedding 4, 12
installable embedding 4, 11
no embedding allowed 4, 12
preview and print 4, 7, 12

F
font guidelines for embedding

electronic file creation 7
exceptions 5
forms fill-in/free-text annotations 8
vendor license compliance 2
whole file within another 5

font policies, See font guidelines
FontInfo dictionary 6, 12
fonts for editing 10
fsType

algorithm for interpreting specification 13

value in a CIDFont, 12
FSType key 12
fsType/FSType 6, 10, 11

I
installable embedding 4, 11

N
no embedding allowed 4, 12
no subsetting 12
Notice key 6

O
OrigFontType 6, 7, 9, 10, 18
Original Composite Fonts (OCFs) 5

P
preserving embedding information logic 6
preview and print 4, 7, 12

R
related documentation 3

T
Type 42 specification 13

V
vendor license compliance 2

W
WasEmbedded 6, 7, 10, 18

X
XUID 6, 8, 18

	Contents
	List of Examples
	Preface
	Who should read this guide?
	Related documentation

	General Guidelines
	When to check embedding information
	Preserving information in embedded fonts

	Specific Guidelines
	Embedding fonts in electronic files creation
	Embedding fonts in PDF forms and free-text annotations
	Use of embedded fonts for editing
	Distiller example

	Using fsType/FSType
	Description of the fsType entry
	Fonts that use FSType instead of fsType
	How Adobe applications interpret the fsType/FSType entry

	Embedded Font Operations Using the Acrobat SDK
	Embedded font-related operations

	Glossary
	Index

