

INTRODUCTION TO OPENCLTM

A Beginner’s Tutorial

Udeepta Bordoloi
AMD

3 | Introduction to OpenCLTM | June 2011

IT’S A HETEROGENEOUS WORLD

Heterogeneous computing
– The new normal

Many CPU’s – 2, 4, 8, …

Very many GPU processing elements – 100’s

Different vendors, configurations, architectures

The multi-million dollar question
– How do you avoid developing and maintaining

different source code versions?

CPU

…Fusion GPU

…Discrete GPU

S
ystem

M
em

ory

GPU
Memory

4 | Introduction to OpenCLTM | June 2011

HETEROGENEOUS SYSTEM CONSIDERATIONS

CPU is great for serial tasks
– Lower throughput, lower latency

Discrete GPU excels at data parallel problems
– High ALU, high memory bandwidth, higher latency
– Bandwidth in the order or hundred of GB/s
– Transfer over PCIe®

Fusion GPU
– DX11 class, shares system memory with CPU
– Bandwidth in the order or tens of GB/s
– Zero Copy

Which parts of your code should run on which device?
Where do you keep your data?
When to communicate and synchronize between CPU and GPU?

CPU

…Fusion GPU

…Discrete GPU

S
ystem

M
em

ory

GPU
Memory

5 | Introduction to OpenCLTM | June 2011

WHAT IS OPENCLTM

Framework for programming on heterogeneous systems
– Multi-core CPUs
– Massively parallel GPUs
– Cell, FPGAs etc

Industry standard
Open specification
Cross-platform

– Windows®, Linux®, Mac OS
Multi-vendor

– AMD, Apple, Creative, IBM, Imagination, Intel, NVIDIA, Samsung

6 | Introduction to OpenCLTM | June 2011

OPENCL: OVERVIEW

How to execute a program on the device (GPU)?

Kernel
– Performs GPU calculations
– Reads from, and writes to memory

Based on C
– Restrictions

No recursion, etc.

– Additions
Vector data types (int 4)

Synchronization

Built in functions (sin, log)

How to control the device (GPU)

Host Program
– C API

Steps
1. Initialize the GPU
2. Allocate memory buffers on GPU
3. Send data to GPU
4. Run Kernel on GPU
5. Read data from GPU

Commands are queued

KERNEL

8 | Introduction to OpenCLTM | June 2011

EXPOSING PARALLELISM

C function

for (int i = 0; i < 24; i++)

{

Y[i] = a*X[i] + Y[i];

}

Serial execution, one iteration after the other

9 | Introduction to OpenCLTM | June 2011

EXPOSING PARALLELISM

C function

for (int i = 0; i < 24; i++)

{

Y[i] = a*X[i] + Y[i];

}

Serial execution, one iteration after the other

OpenCL kernel
__kernel void

saxpy(const __global float * X,

__global float * Y,

const float a)

{

uint i = get_global_id(0);

Y[i] = a* X[i] + Y[i];

}

Parallel execution, multiple iterations at the same
time

10 | Introduction to OpenCLTM | June 2011

WORK ITEM

Think of work item as a parallel “thread” of execution

Work items

Loaded
word!

for (int i = 0; i < 24; i++)

{

Y[i] = a*X[i] + Y[i];

}

{

uint i = get_global_id(0);

Y[i] = a* X[i] + Y[i];

}

0 1 2 … 23221110

1 saxpy operation per iteration
=

1 saxpy operation per work item

11 | Introduction to OpenCLTM | June 2011

{

uint j = 2 * get_global_id(0);

Y[j] = a*X[j] + Y[j];

Y[j+1] = a*X[j+1] + Y[j+1];

}

ITERATIONS WORK ITEMS

Iterations can become work items (if parallelizable)

Work items

for (int i = 0; i < 12; i++)

{

j = 2 * i;

Y[j] = a*X[j] + Y[j];

Y[j+1] = a*X[j+1] + Y[j+1];

}

0 1 2 … 1110

2 saxpy operations per iteration
=

2 saxpy operations per work item

12 | Introduction to OpenCLTM | June 2011

WORK GROUP

Divide the execution domain into groups Can exchange data and synchronize inside a group

Work items

Work groups

0 1 2 … 0 1 2 … 0 1 2 …

get_local_id(0)

13 | Introduction to OpenCLTM | June 2011

MEMORY SPACES

Global
(visible to all)

Local
(per work group)

Private
(per work item)

Memory
consistent only

at barriers!

14 | Introduction to OpenCLTM | June 2011

WORK GROUPS ON GPU
GPU

SIMD

Processor

15 | Introduction to OpenCLTM | June 2011

WORK GROUPS ON GPU

SIMD

Processor

GPU

16 | Introduction to OpenCLTM | June 2011

EXECUTION ON GPU

Can synchronize
within work group

Cannot synchronize
across work groups

17 | Introduction to OpenCLTM | June 2011

WORK GROUPS ON CPU
CPU

0

2

1

Core

18 | Introduction to OpenCLTM | June 2011

EXECUTION ON CPU

Cannot synchronize
across work groups

Can synchronize
within work group

REDUCTION
EXAMPLE

20 | Introduction to OpenCLTM | June 2011

Need barrier after writes to local memory

WITHIN EACH WORK GROUP

Global Memory
(visible to all)

Local Memory
(per work group)

21 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Need barrier after writes to local memory

Need barrier after reads from local memory

22 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Need barrier after writes to local memory

Need barrier after reads from local memory

23 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Global Memory
(visible to all)

24 | Introduction to OpenCLTM | June 2011

ACROSS WORK GROUPS

Global Memory
(visible to all)

25 | Introduction to OpenCLTM | June 2011

Need barrier after writes to local memory

WITHIN EACH WORK GROUP

Global Memory
(visible to all)

Local Memory
(per work group)

26 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Need barrier after writes to local memory

27 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Need barrier after writes to local memory

28 | Introduction to OpenCLTM | June 2011

WITHIN EACH WORK GROUP

Local Memory
(per work group)

Global Memory
(visible to all)

29 | Introduction to OpenCLTM | June 2011

ACROSS WORK GROUPS

Global Memory
(visible to all)

HOST PROGRAM

31 | Introduction to OpenCLTM | June 2011

COMMAND QUEUE

Enables asynchronous (non-blocking) exection of OpenCL commands
Look for OpenCL commands clEnqueue…()

Accepts:
Kernel execution commands

Memory commands

Synchronization commands

In-order queue
Commands complete before next command starts

Out-of-order queue
Programmer responsibility to synchronize command execution

32 | Introduction to OpenCLTM | June 2011

HOST PROGRAM: BASIC SEQUENCE FOR A GPU DEVICE

Initialization
Find the GPU

Initialize the GPU

Compile the program for GPU (kernel)

Memory
Create input, output buffers on the GPU

Copy data from CPU memory to GPU memory

Execution
Run kernel on the GPU

Run multiple kernels if needed

Wait till GPU is finished

Memory
Copy data from GPU memory to CPU memory

QUESTIONS

34 | Introduction to OpenCLTM | June 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions
and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited
to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no
obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to
make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in
this presentation are for informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used with permission by Khronos.

© 2011 Advanced Micro Devices, Inc. All rights reserved.

BACKUP

