
2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

ADVANCED GRAPHICS
FUNCTIONALITY ON WINDOWS
USING DIRECTX

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

AGENDA

Direct2D Recap
Direct2D Performance
Interoperability
Development Recommendations
DirectWrite
What’s new in Windows 7 SP1

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

WHAT IS DIRECT2D?

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D

GPU-Accelerated 2D Rendering Library
Better quality and performance
Supports server side rendering – good SW performance
Provides interoperability with GDI/GDI+ code bases
Works well with sister DirectX APIs like D3D

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D API

Win32, interface-based API
–Consistent with Direct3D
–Primarily used via C++

Immediate mode
–Create resources up front
–Re-use resources frame over frame
–Manage resources per graphics adapter

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D API
SAMPLE USAGE

Create top-level objects
– D2D1CreateFactory() ID2D1Factory

– Factory ID2D1HwndRenderTarget

– Also bitmap, interop, and intermediate RTs

Create resources
– Factory ID2D1Geometry

– Also bitmaps, layers

Draw primitives using render target
– BeginDraw()
– FillGeometry()
– EndDraw()

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D API
DRAWING RESOURCES
Resolution-independent coordinate system
– Floating point values
– Affine transforms

Device-independent resources
– Geometries
– Created via ID2D1Factory

Device-dependent resources
– Brushes, bitmaps, intermediate render targets
– Created via ID2D1RenderTarget
– Become invalid if the target becomes invalid

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

WHAT’S POSSIBLE

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

WHAT’S POSSIBLE

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

2D PERFORMANCE

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

PERFORMANCE AND DIRECTX

Direct2D built atop Direct3D 10
Allocation overhead in Direct3D 10 is high

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

PERFORMANCE AND DIRECTX

A8 resources and
grayscale caching
Mesh & mesh
caching Reuse:

Caching intermediate
data to reduce GPU
work

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

A8 RESOURCES

Great way to cache text, opacity maps, or otherwise grayscale
content
Use CreateCompatibleRenderTarget with
DXGI_PIXEL_FORMAT_A8_UNORM
Use FillOpacityMask to draw any A8 surface to a render target

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

CACHING MESHES

ID2D1Mesh represents (aliased) triangles
– Direct2D can render these very quickly

ID2D1Mesh::Open returns an ID2D1TessellationSink
Pass this to the ID2DGeometry::Tessellate function to fill the mesh.
Use FillMesh to draw it
Manually implement the ID2D1TessellationSink if you want to see the triangles
– Best way to transfer geometry to Direct3D.

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

PERFORMANCE AND DIRECTX

Fill-rate bound vs.
scene complexity-
bound
Improving fill-rate
bound cases
Improving
complexity-bound
cases

Reduce:
Controlling
scene complexity

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

MANAGING SCENE COMPLEXITY

•How do you know?
•Smaller render target
improves performance?
• Fill rate bound

Scene
Complexity

Fill Rate

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

IMPROVING FILL-RATE BOUND CASES

Reduce render target size
–Find the exact number of pixels you need to render to

Pay attention to over-draw
–Rendering elements that aren’t visible
–Occlusion
–Clipping

Complex brushes & effects

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

QUALITY VS. PERFORMANCE

Scene complexity is increased by:
–Anti-aliasing
–Re-rendering of elements
–Sophisticated geometries

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

PERFORMANCE AND DIRECTX

Surface size and
performance
Using tiling or an
“atlas”

Recycle:
Repurposing already
created resources

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

BIGGER SURFACES

Seems counter-intuitive
–Favor multi-purpose, larger textures over single use, smaller

textures
–Still only allocate what you need

Minimum size 64Kb
–For 24 bpp bitmaps, this is about 150x150
–Recommended making 256x256 your global minimum

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

SURFACE SIZE

Maximum size
–Varies per card
–Reasonable to assume 2048x2048, many modern cards support

4096x4096
Find out using ID2D1RenderTarget::GetMaximumBitmapSize()
–Size is in pixels

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

ATLASING

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

USING AN ATLAS

You should create an “AtlasBitmap” class or struct
Contains:
–Reference to bitmap (pointer in C++)
–Offset in X,Y
–Size

Provides you everything you need to use the DrawBitmap function
Update atlas contents using the CopyFromBitmap function

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D
INTEROPERABILITY

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

RESOURCE SHARING

D3D 9
Ex

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

RENDER TARGET TYPES

HWND Render Target
–“Basic” render target
–Can be software or hardware
DXGI Render Target
–Draws to a application-supplied DXGI surface (i.e.

swapchain)
WIC Bitmap Render Target
–Draws to a WIC bitmap for saving the image to a file.

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DXGI RENDER TARGETS

Use these whenever possible
Best way to get Direct2D and DirectWrite
services into your 3D application

// Direct3D 10.1 Device and Swapchain creation //get the back buffer of the
swap chain

//D2D Factory and RenderTarget creation

//Present the swap chain contents

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

GOING THE OTHER WAY

Use CreateSharedBitmap() to create ID2D1Bitmaps
from DXGI surfaces
–Must use the same underlying Direct3D device

• Must pass an IDXGISurface into data
• bitmapProperties has to match the format of the DXGI surface

• Alpha is not included in this check

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D/DIRECT3D RECOMMENDATIONS

Device must support BGRA, D3D10.1
–Falling back to Direct3D10Level9 can mitigate this
–Special flag for device creation:

D3D10_CREATE_DEVICE_BGRA_SUPPORT
Render static content once and cache
Minimize transitions between Direct3D and Direct2D by batching
as much as possible

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

ADVANCED USE: MULTIPLE DEVICES

What if your application needs to share resources across
multiple devices?
Answer: Synchronized Shared Surfaces

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DXGI 1.1 SYNCHRONIZED SHARED SURFACES

IDXGIKEYEDMUTEX INTERFACE
D3D10_RESOURCE_MISC_SHARED_KEYEDMUTEX

APIs supporting keyed mutex flag
–ID3D10Device1::CreateTexture1D/2D/3D
–ID3D10Device1::CreateBuffer

MSDN Article: http://msdn.microsoft.com/en-
us/library/ee913554(VS.85).aspx

http://msdn.microsoft.com/en-us/library/ee913554(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee913554(VS.85).aspx

//Specifying the keyed mutex flag

D3D10_RESOURCE_MISC_SHARED_KEYEDMUTEX = 0x10L,

//Creating the synchronized shared surface with keyed
mutex flag

//Use these methods for gaining access and relinquishing
device later

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DEVELOPMENT
RECOMMENDATIONS

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

ERROR HANDLING

Dealing with device loss
– Hybrid GPUs, USB Monitors and other “non standard” GPU configurations
– Handling Terminal Server scenarios
– Unplugging video hardware
– Etc…

Handle re-creation of resources on device loss
– Handle the output of HRESULT to deal with runtime failures
– D2DERR_RECREATE_TARGET: Discard all resources and re-create the target

and resources

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECT2D DEBUG LAYER

Intercepts calls from Direct2D
Provides critical usage information as well as handy performance
information
Something failed? The debug layer will tell you.
Leaves operation of Direct2D completely unchanged
–May be a minor performance difference

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

LAYERS VS. CLIPS

Layers (ID2D1Layer) let you manipulate a group of drawing
operations.
–Use a layer by "pushing" it onto a render target.
–Subsequent operations by are directed to the layer.
–“Pop" the layer to compose it to the render target.

Only use layers when alpha-blending or non-rectangular content is
needed.

http://msdn.microsoft.com/en-us/library/dd371483(v=VS.85).aspx

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

LAYERS VS. CLIPS

Similar concept called “Clips”
–Faster when you don’t need alpha blending or you have rectangular

content
–PushAxisAlignedClip/PopAxisAlignedClip

Debug layer helps you know when to use one or the other:
–D1111: Using Layer When Clip Is Sufficient

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECTWRITE

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECTWRITE

DirectWrite – layered text layout & font processing system
–OpenType
–ClearTypeTM

–E2E, easy to use rich Text Layout API
–Script Processing System
–Hardware accelerated text rendering using Direct2D

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECTWRITE RENDERING
PRECISE GLYPH SHAPES

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

CLEAR TYPE

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

DIRECTWRITE - MULTIPLE LAYERS OF FUNCTIONALITY

Flexibility to adopt individual layers

DirectWrite

Font
System

Graphics API Text Layout

Application or UI Framework

Font RasterizerScript Processor

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

USING DIFFERENT LAYERS OF DIRECTWRITE

Using DirectWrite’s Layout
– Examples: Windows Live Applications
– Developer uses IDWriteTextLayout and Direct2D’s DrawTextLayout()
– Minimal work, but less control
– Great for UI scenarios (Control Labels, List boxes, etc.)

Custom Layouts
– Examples: IE9, Firefox
– Developer uses DirectWrite‘s Text Analysis & Font System along with

Direct2D’s DrawGlyphRun() to layout and render text
– Generally for Document Rendering scenarios

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

NEW IN WINDOWS 7 SP1

Even Faster Text Rendering

Improved Quality – light text on dark background

Faster software fallback

Also available on Windows Vista!

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

REFERENCES AND CONTACT INFORMATION

References
– Find more information about Direct2D, DirectWrite and all other DirectX APIs

on MSDN: http://msdn.microsoft.com/en-us/directx/default.aspx
– DirectX Developer Blog: http://blogs.msdn.com/b/directx/

Get in touch!
– dgtsig@microsoft.com

http://msdn.microsoft.com/en-us/directx/default.aspx
http://blogs.msdn.com/b/directx/
mailto:dgtsig@microsoft.com

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

THANKS!

2610 | Advanced Graphics Functionality on Windows Using DirectX | June 15th, 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.
The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like.
There is no obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to make changes from time to time to the
content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES,
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO
ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED
HEREIN, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in this presentation are for informational purposes only and
may be trademarks of their respective owners.

The contents of this presentation were provided by individual(s) and/or company listed on the title page. The information and opinions presented in this presentation may not represent
AMD’s positions, strategies or opinions. Unless explicitly stated, AMD is not responsible for the content herein and no endorsements are implied.

