

THE FUTURE OF THE APU –
BRAIDED PARALLELISM
Session 2901
Benedict R. Gaster
AMD
Programming Models Architect

Lee Howes
AMD
MTS Fusion System Software

PROGRAMMING MODELS
A Track Introduction
Benedict Gaster
AMD
Programming Models Architect

4 | Programming Models | June 2011

PROGRAMMING MODELS TRACK IS HERE

GPU architectures are available as we speak

x86 APU architectures are available as we speak

Next generation GPU architectures will be covered at this summit!

Next generation x86 APU architectures will be covered at this summit!

For those people in the audience who want to develop for such devices:
– How should we view these architectures?
– What programming models exist or can we expect?
– What are the new tricks and tips needed to program these architectures?

The answers to these questions and many more is what this track is all about

5 | Programming Models | June 2011

PROGRAMMING MODELS TRACK | Tuesday and Wednesday

Time Tuesday Wednesday

Sessions 9:45 - 10:30 The Future of the APU – Braided Parallelism Developing Scalable Applications with Microsoft’s
C++ Concurrency Runtime

Sessions 10:45 - 11:30 Cilk Plus: Multi-core Extensions for C and C++ The Future of Parallel and Asynchronous
Programming with the .NET Framework

Lunch &
Keynote 12:45 - 1:30

Sessions 2:00 - 2:45
Diderot: A Parallel Domain-Specific Language for
Image Analysis and Visualization // Pixel Bender //

Domain Specific Tools to Expand the Code Synthesis
Design Space

Heterogeneous Computing
with Multi-core Processors,

GPUs and FPGAs // Braided
Parallelism for Heterogeneou
Systems // Making OpenCL™

Simple with Haskell

s

Blazing-fast code
using GPUs and

more, with Microsoft
Visual C++

N/ASessions 3:00 - 3:45

Sessions 4:00 - 5:00 AMD Graphics Core Next Advanced Graphics Functionality on Windows Using
DirectX

Sessions 5:15 - 6:00 Automatic Intra-Application Load Balancing
for Heterogeneous Systems

Towards High-Productivity on Heterogeneous
Systems

6 | Programming Models | June 2011

PROGRAMMING MODELS TRACK | Thursday

Time Thursday

Sessions 8:30 - 9:15 Real-Time Concurrent Linked List Construction
on the GPU

Sessions 9:30 - 10:15 Physics Simulation on Fusion Architectures

THE FUSION APU ARCHITECTURE
A Programmer’s Perspective
Lee Howes
AMD
MTS Fusion System Software

8 | Programming Models | June 2011

FUSION IS HERE

x86 + Radeon APU architectures are available as we speak

For those people in the audience who want to develop for such devices:
– How should we view these architectures?
– What programming models exist or can we expect?

9 | Programming Models | June 2011

TAKING A REALISTIC LOOK AT THE APU

GPUs are not magic
– We’ve often heard about 100x performance improvements
– These are usually the result of poor CPU code

The APU offers a balance
– GPU cores optimized for arithmetic workloads and latency hiding
– CPU cores to deal with the branchy code for which branch prediction and

out of order execution are so valuable
– A tight integration such that shorter, more tightly bound, sections of

code targeted at the different styles of device can be linked together

10 | Programming Models | June 2011

CPUS AND GPUS

Different design goals:
– CPU design is based on maximizing performance of a single thread
– GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:
– Transistors are dedicated to branch prediction, out of order logic and

caching to reduce latency to memory

GPU use of area:
– Transistors concentrated on ALUs and registers
– Registers store thread state and allow fast switching between threads

to cover (rather than reduce) latency

11 | Programming Models | June 2011

HIDING OR REDUCING LATENCY

Any instruction issued might stall waiting on memory or at least in the computation pipeline

Stall

SIMD Operation

12 | Programming Models | June 2011

HIDING OR REDUCING LATENCY

Any instruction issued might stall waiting on memory or at least in the computation pipeline
Out of order logic attempts to issue as many instructions as possible as tightly as possible, filling small
stalls with other instructions from the same thread

Stall

SIMD Operation

13 | Programming Models | June 2011

REDUCING MEMORY LATENCY ON THE CPU

Larger memory stalls are harder to cover

Memory can be some way from the ALU
– Many cycles to access

Instruction 0

Instruction 1

Stall

Lanes 0-3

Memory

14 | Programming Models | June 2011

REDUCING MEMORY LATENCY ON THE CPU

Larger memory stalls are harder to cover

Memory can be some way from the ALU
– Many cycles to access

CPU solution is to introduce an
intermediate cache memory

– Minimizes the latency of most
accesses

– Reduces stalls

Instruction 0

Instruction 1

Stall

Lanes 0-3

Cache

Memory

15 | Programming Models | June 2011

HIDING LATENCY ON THE GPU

AMD’s GPU designs do two things:
– Issue an instruction over

multiple cycles
– Interleave instructions from

multiple threads

Multi-cycle a large vector on a
smaller vector unit

– Reduces instruction decode overhead
– Improves throughput

Multiple threads fill gaps in
instruction stream

Single thread latency can actually
INCREASE

Wave Lanes 0-15
SIMD Lanes 0-15

Wave Lanes 16-31
SIMD Lanes 0-15

Wave Lanes 32-47
SIMD Lanes 0-15

Wave Lanes 48-63
SIMD Lanes 0-15

AMD Radeon HD6970
64-wide wavefronts interleaved on 16-wide vector unit

Wave 1 instruction 1

Wave 2 instruction 0

Wave 1 instruction 0

16 | Programming Models | June 2011

GPU CACHES

GPUs also have caches
– The goal is generally to improve spatial locality rather than temporal

– Different parts of a wide SIMD thread and different threads may require similar locations and
share through the cache

CacheMemory
Wave 2 instruction 0

Wave 1 instruction 0

17 | Programming Models | June 2011

COSTS

The CPU approach:
– Requires large caches to maximize the number of memory operations caught
– Requires considerable transistor logic to support the out of order control

The GPU approach:
– Requires wide hardware vectors, not all code is easily vectorized
– Requires considerable state storage to support active threads

These two approaches suit different algorithm designs

We cannot, unfortunately, have both in a single core

18 | Programming Models | June 2011

THE TRADEOFFS IN PICTURES

AMD Phenom™ II X6:
– 6 cores, 4-way SIMD (ALUs)
– A single set of registers
– Registers are backed out to memory on a thread switch, and this

is performed by the OS

AMD Radeon™ HD6970:
– 24 cores, 16-way SIMD (plus VLIW issue, but the Phenom

processor does multi-issue too), 64-wide SIMD state
– Multiple register sets (somewhat dynamic)
– 8, 16 threads per core

Instruction decode

Register state

ALUs

19 | Programming Models | June 2011

AREA EFFICIENCY TRADEOFFS

So what did we see?
– Diagrams were vague, but…
– Large amount of orange! Lots of register state
– Also more green on the GPU cores

The APU combines the two styles of core:
– The E350 has two “Bobcat” cores and two “Cedar”-like cores, for example
– 2- and 8-wide physical SIMD

20 | Programming Models | June 2011

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?
– Take an input array
– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize

float sum(0)
for(i = n to n + b)

sum += input[i]

float reductionValue(0)
for(t in threadCount)

reductionValue += t.sum

float4 sum(0, 0, 0, 0)
for(i = n/4 to (n + b)/4)

sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w

21 | Programming Models | June 2011

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?
– Take an input array
– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize (this bit may be a different kernel dispatch given current models)

float sum(0)
for(i = n to n + b)

sum += input[i]

float reductionValue(0)
for(t in threadCount)

reductionValue += t.sum

float64 sum(0, …, 0)
for(i = n/64 to (n + b)/64)

sum += input[i]
float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars
ALUs, apparently though not really independent, with varying degree of
hardware assistance (and hence overhead):
float sum(0)
for(i = n/64 to (n + b)/64; i += 64)

sum += input[i]
float scalarSum = waveReduceViaLocalMemory(sum)

22 | Programming Models | June 2011

THEY DON’T SEEM SO DIFFERENT!

More blocks of data
– More cores
– More threads

Wider threads
– 64 on high end AMD GPUs
– 4/8 on current CPUs

Hard to develop efficiently for wide threads
Lots of state, makes context switching and stacks
problematic

float64 sum(0, …, 0)
for(i = n/64 to (n + b)/64)

sum += input[i]
float scalarSum = waveReduce(sum)

float4 sum(0, 0, 0, 0)
for(i = n/4 to (n + b)/4)

sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w

23 | Programming Models | June 2011

THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On GPU cores:
– We need a lot of data parallelism
– Algorithms that can be mapped to multiple cores and multiple threads per core
– Approaches that map efficiently to wide SIMD units
– So a nice simple functional “map” operation is great!

– This is basically the OpenCLTM model

Array
O
p

O
p

O
p …

Array.map(Op)

24 | Programming Models | June 2011

WHAT WORKS WELL?

On CPU cores:
– Some data parallelism for multiple cores
– Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters

Does AVX change this?

– High clock rates and caches make serial execution efficient
– So in addition to the simple map (which boils down to a for loop on the CPU), we can do complex

task graphs

O
p

O
p

O
p

O
p

O
p

O
p

25 | Programming Models | June 2011

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for

1M pieces
of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from closer

coupling between
CPU & GPU

Discrete GPU configurations suffer from
communication latency.

Nested data parallel/braided parallel code
benefits from close coupling.

Discrete GPUs don’t provide it well.

But each individual core isn’t great at certain
types of algorithm…

26 | Programming Models | June 2011

SO WHAT APPLICATIONS BENEFIT?

Tight integration of narrow and wide vector kernels

Combination of high and low degrees of threading

Fast Turnaround
– Communication between kernels
– Shared buffers

For example:
– Generating a tree structure on the CPU cores,

processing the scene on the GPU cores
– Mixed scale particle simulations (see a later talk)

CPU
kernel

GPU
kernel

Data

27 | Programming Models | June 2011

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for

1M pieces
of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from closer

coupling between
CPU & GPU

28 | Programming Models | June 2011

HOW DO WE USE THESE DEVICES?

Heterogeneous programming isn’t easy
– Particularly if you want performance

To date:
– CPUs with visible vector ISAs
– GPUs mostly lane-wise (implicit vector) ISAs
– Clunky separate programming models with explicit data movement

How can we target both?
– With a fair degree of efficiency
– True shared memory with passable pointers

Let’s talk about the future of programming models…

PROGRAMMING MODELS
For Heterogeneous Computing
Benedict Gaster
AMD
Programming models architect

30 | Programming Models | June 2011

TODAY

31 | Programming Models | June 2011

INDUSTRY STANDARD API STRATEGY

OpenCL™
Open development platform for multi-vendor
heterogeneous architectures
The power of AMD Fusion: Leverages CPUs and
GPUs for balanced system approach
Broad industry support: Created by architects from
AMD, Apple, IBM, Intel, Nvidia, Sony, etc.
AMD is the first company to provide a complete
OpenCL solution
Momentum: Enthusiasm from mainstream
developers and application software partners

DirectX® 11 DirectCompute
Microsoft distribution
Easiest path to add compute capabilities to
existing DirectX applications

INDUSTRY STANDARD API STRATEGY

OpenCL™
Open development platform for multi-vendor
heterogeneous architectures
The power of AMD Fusion: Leverages CPUs and
GPUs for balanced system approach
Broad industry support: Created by architects from
AMD, Apple, IBM, Intel, NVIDIA, Sony, etc.
AMD is the first company to provide a complete
OpenCL solution
Momentum: Enthusiasm from mainstream
developers and application software partners

DirectX® 11 DirectCompute
Microsoft distribution
Easiest path to add compute capabilities to
existing DirectX applications

32 | Programming Models | June 2011

Moving Past Proprietary Solutions for Ease of
Cross-Platform Programming

Open and Custom Tools

High Level Language
Compilers

High Level Tools

Application Specific
Libraries

Industry Standard Interfaces

OpenCL™DirectX® OpenGL®

AMD
GPUs

Other
CPUs/GPUs

AMD
CPUs

OpenCL -
Cross-platform development
Interoperability with OpenGL and DX
CPU/GPU backends enable balanced platform approach

33 | Programming Models | June 2011

HETEROGENEOUS COMPUTING | Software Ecosystem

Encourages contributions from established companies, new
companies, and universities

Overarching goal is to enable widespread and highly productive
Software development

Hardware & Drivers: AMD Fusion,
Discrete CPUs/GPUs

OpenCL & DirectCompute Runtimes

Tools: HLL
compilers,
Debuggers,

ProfilersMiddleware/Libraries: Video,
Imaging, Math/Sciences, Physics

High Level
Frameworks

End-user Applications

A
dv

an
ce

d
O

pt
im

iz
at

io
ns

&
 L

oa
d

B
al

an
ci

ng
Load balance

across CPUs and
GPUs; leverage

AMD Fusion
performance
advantages

Drive new
features into

industry
standards

Increase ease of
application

development

34 | Programming Models | June 2011

TODAY’S EXECUTION MODEL

SPMD
– Same kernel runs on:

All compute units

All processing elements

– Purely “data parallel” mode
– Device model:

Device runs a single kernel simultaneously

Separation between compute units is relevant for memory model only.

Modern CPUs & GPUs can support more!

…

… …

WG

WI

WI WI

WI…

35 | Programming Models | June 2011

TOMORROW

36 | Programming Models | June 2011

MODERN GPU (& CPU) CAPABILITIES

Modern GPUs can execute a different instruction stream per core
– Some even have a few HW threads per core (each runs separated streams)

This is still a highly parallelized machine!
– HW thread executes N-wide

vector instructions (8-64 wide)
– Scheduler switches HW threads

on the fly to hide memory misses

37 | Programming Models | June 2011

System
Integration

GPU compute
context switch

GPU graphics
pre-emption

Quality of Service

Coherent PCIe®

Architectural
Integration

Unified Address Space
for CPU and GPU

Fully coherent memory
on both CPU and GPU

User mode scheduling

GPU uses pageable
system memory via CPU

pointers

Optimized
Platforms

Bi-Directional Power
Mgmt between CPU

and GPU

GPU Compute C++
support

AMD Fusion
Interconnect

Physical
Integration

Integrate CPU &
GPU

in silicon

Unified Memory
Controller

Common
Manufacturing

Technology

FUSION SYSTEM ARCHITECTURE ROADMAP

38 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL

MPMD
– Same kernel runs on:

1 or more compute units

– Still “data parallel”
– Device model:

Device can runs multiple kernels simultaneously

…… …

WG
WI

WI WI

WI

…
…… …

WG
WI

WI WI

WI

39 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL

Nested data parallelism
– Kernels can enqueue work

spawn

…… …

WG
WI

WI WI

WI

…… …

WG
WI

WI WI

WI

…… …

WG
WI

WI WI

WI

spawn

…… …

WG
WI

WI WI

WI

40 | Programming Models | June 14, 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

41 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

enqueue()

queue

42 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue
Return queue to host

queue

43 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue

44 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue

Process returned queue for enqueue to devices

45 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

queue

46 | Programming Models | June 2011

TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

enqueue()

Device self schedules
groups

queue

47 | Programming Models | June 2011

TOMORROW'S EXECUTION MODEL

48 | Programming Models | June 2011

TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

High-level programming model
– Braided parallelism (task + data-parallel)
– Hardware independent access to the memory model
– Based on C++0x (Lambda, auto, decltype, and rvalue references)

Will support all C++ capabilities
– GPU kernels/functions can be written in C++
– Not an implication that everything should be used on all devices

49 | Programming Models | June 2011

TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

Leverage host language (C++) concepts and capabilities
– Separately authored functions, types and files
– Libraries reuse (link-time code-gen required)
– Binaries contain compiled device-independent IL and x86 code

Dynamic online compilation still an option

50 | Programming Models | June 2011

TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

Multi dimensional: Range and Index, Partition, and IndexRange

Data Parallel Algorithms
– Examples: parallelFor, parallelForWithReduce

Task Parallel Algorithms
– Examples: Task<T>, Future<T>

Task + Data Parallelism = Braided Parallelism

Low-level concepts are still available for performance
– Work-groups, Work-items, shared memory, shared memory barriers
– A layered programming model with ease-of-use and performance tradeoffs

51 | Programming Models | June 2011

HELLO WORLD OF THE GPGPU WORLD (I.E. VECTOR ADD)

int main(void)
{

float A[SIZE]; float B[SIZE]; float C[SIZE];

srand (time(NULL));
for (int i = 0; i < SIZE; i++) {

A[i] = rand(); B[i] = rand();
}

parallelFor(Range<1>(size), [A,B,C] (Index<1> index) [[device]]
{

C[index.getX()] = A[index.getX()] + B[index.getX()];
});

for (float i: C) {
cout << i << endl;

}
}

52 | Programming Models | June 2011

TASKS AND FUTURES

int parallelFib(int n)
{

if (n < 2) {
return n;

}

Future<int> x([n] ()
[[device]] {

return parallelFib(n-1)
});

int y = parallelFib(n-2);

return x.get() + y;
}

#include <opp.hpp>
#include <iostream>
int main(void)
{

Future<vector<Int>> fibs(
Range<1>(100),
[] (Index<1> index)

[[device]] {
return

parallelFib(index.getX());
});
for(auto f = fibs.begin();
f != fibs.end();
f++) {
cout << f << endl;

}
}

53 | Programming Models | June 2011

TASKS AND REDUCTION

float myArray[…];

Task<float, ReductionBin> sum([myArray](IndexRange<1> index) [[device]] {
float sum = 0.;
for (size_t I = index.begin(); I != index.end(); i++) {

sum += foo(myArray[i]);
}

return float;
});

float sum = task.enqueueWithReduce(Range<1>(1920), sums, plus<float>());

QUESTIONS

55 | Programming Models | June 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no obligation to
update or otherwise correct or revise this information. However, we reserve the right to revise this information and to make changes
from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, AMD Phenom, AMD Radeon, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used with permission by Khronos.

DirectX is a registered trademark of Microsoft Corporation.

© 2011 Advanced Micro Devices, Inc. All rights reserved.

