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PROGRAMMING MODELS TRACK IS HERE

GPU architectures are available as we speak

x86 APU architectures are available as we speak

Next generation GPU architectures will be covered at this summit!

Next generation x86 APU architectures will be covered at this summit!  

For those people in the audience who want to develop for such devices:
– How should we view these architectures?
– What programming models exist or can we expect?
– What are the new tricks and tips needed to program these architectures?

The answers to these questions and many more is what this track is all about
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PROGRAMMING MODELS TRACK | Tuesday and Wednesday

Time Tuesday Wednesday

Sessions 9:45 - 10:30 The Future of the APU – Braided Parallelism Developing Scalable Applications with Microsoft’s 
C++ Concurrency Runtime

Sessions 10:45 - 11:30 Cilk Plus: Multi-core Extensions for C and C++ The Future of Parallel and Asynchronous 
Programming with the .NET Framework

Lunch & 
Keynote 12:45 - 1:30

Sessions 2:00 - 2:45
Diderot: A Parallel Domain-Specific Language for 
Image Analysis and Visualization // Pixel Bender // 

Domain Specific Tools to Expand the Code Synthesis 
Design Space 

Heterogeneous Computing 
with Multi-core Processors, 

GPUs and FPGAs // Braided 
Parallelism for Heterogeneou
Systems // Making OpenCL™ 

Simple with Haskell

s 

Blazing-fast code 
using GPUs and 

more, with Microsoft 
Visual C++

N/ASessions 3:00 - 3:45

Sessions 4:00 - 5:00 AMD Graphics Core Next Advanced Graphics Functionality on Windows Using 
DirectX

Sessions 5:15 - 6:00 Automatic Intra-Application Load Balancing
for Heterogeneous Systems

Towards High-Productivity on Heterogeneous 
Systems
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PROGRAMMING MODELS TRACK | Thursday

Time Thursday

Sessions 8:30 - 9:15 Real-Time Concurrent Linked List Construction
on the GPU

Sessions 9:30 - 10:15 Physics Simulation on Fusion Architectures
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FUSION IS HERE

x86 + Radeon APU architectures are available as we speak

For those people in the audience who want to develop for such devices:
– How should we view these architectures?
– What programming models exist or can we expect?
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TAKING A REALISTIC LOOK AT THE APU

GPUs are not magic
– We’ve often heard about 100x performance improvements
– These are usually the result of poor CPU code

The APU offers a balance
– GPU cores optimized for arithmetic workloads and latency hiding
– CPU cores to deal with the branchy code for which branch prediction and 

out of order execution are so valuable
– A tight integration such that shorter, more tightly bound, sections of 

code targeted at the different styles of device can be linked together
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CPUS AND GPUS

Different design goals:
– CPU design is based on maximizing performance of a single thread
– GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:
– Transistors are dedicated to branch prediction, out of order logic and

caching to reduce latency to memory

GPU use of area:
– Transistors concentrated on ALUs and registers
– Registers store thread state and allow fast switching between threads 

to cover (rather than reduce) latency
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HIDING OR REDUCING LATENCY

Any instruction issued might stall waiting on memory or at least in the computation pipeline

Stall

SIMD Operation
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HIDING OR REDUCING LATENCY

Any instruction issued might stall waiting on memory or at least in the computation pipeline
Out of order logic attempts to issue as many instructions as possible as tightly as possible, filling small 
stalls with other instructions from the same thread

Stall

SIMD Operation
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REDUCING MEMORY LATENCY ON THE CPU

Larger memory stalls are harder to cover

Memory can be some way from the ALU
– Many cycles to access

Instruction 0

Instruction 1

Stall

Lanes 0-3

Memory
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REDUCING MEMORY LATENCY ON THE CPU

Larger memory stalls are harder to cover

Memory can be some way from the ALU
– Many cycles to access

CPU solution is to introduce an 
intermediate cache memory

– Minimizes the latency of most 
accesses

– Reduces stalls

Instruction 0

Instruction 1

Stall

Lanes 0-3

Cache

Memory
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HIDING LATENCY ON THE GPU

AMD’s GPU designs do two things:
– Issue an instruction over 

multiple cycles
– Interleave instructions from 

multiple threads

Multi-cycle a large vector on a 
smaller vector unit

– Reduces instruction decode overhead
– Improves throughput

Multiple threads fill gaps in 
instruction stream

Single thread latency can actually 
INCREASE

Wave Lanes 0-15
SIMD Lanes 0-15

Wave Lanes 16-31
SIMD Lanes 0-15

Wave Lanes 32-47
SIMD Lanes 0-15

Wave Lanes 48-63
SIMD Lanes 0-15

AMD Radeon HD6970
64-wide wavefronts interleaved on 16-wide vector unit

Wave 1 instruction 1

Wave 2 instruction 0

Wave 1 instruction 0
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GPU CACHES

GPUs also have caches
– The goal is generally to improve spatial locality rather than temporal

– Different parts of a wide SIMD thread and different threads may require similar locations and 
share through the cache

CacheMemory
Wave 2 instruction 0

Wave 1 instruction 0
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COSTS

The CPU approach:
– Requires large caches to maximize the number of memory operations caught
– Requires considerable transistor logic to support the out of order control

The GPU approach:
– Requires wide hardware vectors, not all code is easily vectorized
– Requires considerable state storage to support active threads

These two approaches suit different algorithm designs

We cannot, unfortunately, have both in a single core
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THE TRADEOFFS IN PICTURES

AMD Phenom™ II X6:
– 6 cores, 4-way SIMD (ALUs) 
– A single set of registers
– Registers are backed out to memory on a thread switch, and this 

is performed by the OS

AMD Radeon™ HD6970:
– 24 cores, 16-way SIMD (plus VLIW issue, but the Phenom

processor does multi-issue too), 64-wide SIMD state
– Multiple register sets (somewhat dynamic)
– 8, 16 threads per core

Instruction decode

Register state

ALUs
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AREA EFFICIENCY TRADEOFFS

So what did we see?
– Diagrams were vague, but…
– Large amount of orange! Lots of register state
– Also more green on the GPU cores

The APU combines the two styles of core:
– The E350 has two “Bobcat” cores and two “Cedar”-like cores, for example
– 2- and 8-wide physical SIMD
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?
– Take an input array
– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize

float sum( 0 )
for( i = n to n + b ) 

sum += input[i]

float reductionValue( 0 )
for( t in threadCount )

reductionValue += t.sum

float4 sum( 0, 0, 0, 0 )
for( i = n/4 to (n + b)/4 ) 

sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?
– Take an input array
– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize (this bit may be a different kernel dispatch given current models)

float sum( 0 )
for( i = n to n + b ) 

sum += input[i]

float reductionValue( 0 )
for( t in threadCount )

reductionValue += t.sum

float64 sum( 0, …, 0 )
for( i = n/64 to (n + b)/64 ) 

sum += input[i]
float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars 
ALUs, apparently though not really independent, with varying degree of 
hardware assistance (and hence overhead):
float sum( 0 )
for( i = n/64 to (n + b)/64; i +=  64) 

sum += input[i]
float scalarSum = waveReduceViaLocalMemory(sum)
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THEY DON’T SEEM SO DIFFERENT!

More blocks of data
– More cores
– More threads

Wider threads
– 64 on high end AMD GPUs
– 4/8 on current CPUs

Hard to develop efficiently for wide threads
Lots of state, makes context switching and stacks 
problematic

float64 sum( 0, …, 0 )
for( i = n/64 to (n + b)/64 ) 

sum += input[i]
float scalarSum = waveReduce(sum)

float4 sum( 0, 0, 0, 0 )
for( i = n/4 to (n + b)/4 ) 

sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w
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THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On GPU cores:
– We need a lot of data parallelism
– Algorithms that can be mapped to multiple cores and multiple threads per core 
– Approaches that map efficiently to wide SIMD units
– So a nice simple functional “map” operation is great!

– This is basically the OpenCLTM model

Array
O
p

O
p

O
p …

Array.map(Op)
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WHAT WORKS WELL?

On CPU cores:
– Some data parallelism for multiple cores
– Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters

Does AVX change this?

– High clock rates and caches make serial execution efficient
– So in addition to the simple map (which boils down to a for loop on the CPU), we can do complex

task graphs

O
p

O
p

O
p

O
p

O
p

O
p
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SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array 
representing
very large 

dataset

Loop 1M 
times for 

1M pieces 
of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data 
parallelism. Benefits from closer 

coupling between 
CPU & GPU

Discrete GPU configurations suffer from 
communication latency.

Nested data parallel/braided parallel code 
benefits from close coupling.

Discrete GPUs don’t provide it well.

But each individual core isn’t great at certain 
types of algorithm…
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SO WHAT APPLICATIONS BENEFIT?

Tight integration of narrow and wide vector kernels

Combination of high and low degrees of threading

Fast Turnaround
– Communication between kernels
– Shared buffers

For example:
– Generating a tree structure on the CPU cores, 

processing the scene on the GPU cores
– Mixed scale particle simulations (see a later talk)

CPU 
kernel

GPU 
kernel

Data
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SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…
…

…
…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array 
representing
very large 

dataset

Loop 1M 
times for 

1M pieces 
of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…
…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data 
parallelism. Benefits from closer 

coupling between 
CPU & GPU



28 |  Programming Models  |  June 2011

HOW DO WE USE THESE DEVICES?

Heterogeneous programming isn’t easy
– Particularly if you want performance

To date:
– CPUs with visible vector ISAs
– GPUs mostly lane-wise (implicit vector) ISAs
– Clunky separate programming models with explicit data movement

How can we target both?
– With a fair degree of efficiency
– True shared memory with passable pointers

Let’s talk about the future of programming models…



PROGRAMMING MODELS
For Heterogeneous Computing
Benedict Gaster
AMD
Programming models architect
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TODAY
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INDUSTRY STANDARD API STRATEGY

OpenCL™
Open development platform for multi-vendor 
heterogeneous architectures
The power of  AMD Fusion: Leverages CPUs and 
GPUs for balanced system approach
Broad industry support: Created by architects from 
AMD, Apple, IBM, Intel, Nvidia, Sony, etc. 
AMD is the first company to provide a complete 
OpenCL solution
Momentum: Enthusiasm from mainstream 
developers and application software partners

DirectX® 11 DirectCompute
Microsoft distribution
Easiest path to add compute capabilities to 
existing DirectX applications

INDUSTRY STANDARD API STRATEGY

OpenCL™
Open development platform for multi-vendor 
heterogeneous architectures
The power of  AMD Fusion: Leverages CPUs and 
GPUs for balanced system approach
Broad industry support: Created by architects from 
AMD, Apple, IBM, Intel, NVIDIA, Sony, etc. 
AMD is the first company to provide a complete 
OpenCL solution
Momentum: Enthusiasm from mainstream 
developers and application software partners

DirectX® 11 DirectCompute
Microsoft distribution
Easiest path to add compute capabilities to 
existing DirectX applications



32 |  Programming Models  |  June 2011

Moving Past Proprietary Solutions for Ease of 
Cross-Platform Programming

Open and Custom Tools

High Level Language 
Compilers

High Level Tools

Application Specific 
Libraries

Industry Standard Interfaces

OpenCL™DirectX® OpenGL®

AMD 
GPUs

Other 
CPUs/GPUs

AMD 
CPUs

OpenCL -
Cross-platform development
Interoperability with OpenGL and DX
CPU/GPU backends enable balanced platform approach
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HETEROGENEOUS COMPUTING | Software Ecosystem 

Encourages contributions from established companies, new 
companies, and universities

Overarching goal is to enable widespread and highly productive 
Software development

Hardware & Drivers: AMD Fusion,
Discrete CPUs/GPUs

OpenCL & DirectCompute Runtimes

Tools: HLL
compilers,
Debuggers,

ProfilersMiddleware/Libraries: Video, 
Imaging, Math/Sciences, Physics

High Level
Frameworks

End-user Applications

A
dv

an
ce

d 
O

pt
im

iz
at

io
ns

&
 L

oa
d 

B
al

an
ci

ng
Load balance 

across CPUs and 
GPUs; leverage 

AMD Fusion 
performance 
advantages

Drive new 
features into 

industry
standards

Increase ease of 
application 

development
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TODAY’S EXECUTION MODEL

SPMD
– Same kernel runs on:

All compute units

All processing elements

– Purely “data parallel” mode
– Device model: 

Device runs a single kernel simultaneously

Separation between compute units is relevant for memory model only.

Modern CPUs & GPUs can support more!

…

… …

WG

WI

WI WI

WI…
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TOMORROW
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MODERN GPU (& CPU) CAPABILITIES

Modern GPUs can execute a different instruction stream per core 
– Some even have a few HW threads per core (each runs separated streams)

This is still a highly parallelized machine!
– HW thread executes N-wide 

vector instructions (8-64 wide)  
– Scheduler switches HW threads 

on the fly to hide memory misses
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System
Integration

GPU compute 
context switch

GPU graphics
pre-emption

Quality of Service

Coherent PCIe®

Architectural
Integration

Unified Address Space 
for CPU and GPU

Fully coherent memory 
on both CPU and GPU

User mode scheduling

GPU uses pageable 
system memory via CPU 

pointers

Optimized
Platforms

Bi-Directional Power 
Mgmt between CPU 

and GPU

GPU Compute C++ 
support

AMD Fusion 
Interconnect

Physical 
Integration

Integrate CPU & 
GPU 

in silicon

Unified Memory 
Controller

Common 
Manufacturing 

Technology

FUSION SYSTEM ARCHITECTURE ROADMAP
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TOMORROW’S EXECUTION MODEL

MPMD
– Same kernel runs on:

1 or more compute units

– Still “data parallel”
– Device model: 

Device can runs multiple kernels simultaneously

…… …

WG
WI

WI WI

WI

…
…… …

WG
WI

WI WI

WI
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TOMORROW’S EXECUTION MODEL

Nested data parallelism
– Kernels can enqueue work

spawn

…… …

WG
WI

WI WI

WI

…… …

WG
WI

WI WI

WI

…… …

WG
WI

WI WI

WI

spawn

…… …

WG
WI

WI WI

WI
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

enqueue()

queue
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue
Return queue to host

queue
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

queue

Process returned queue for enqueue to devices
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

queue
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TOMORROW’S EXECUTION MODEL | Visual Example

Host

Device

enqueue()

queue

enqueue()

Device self schedules 
groups

queue
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TOMORROW'S EXECUTION MODEL 
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TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

High-level programming model
– Braided parallelism (task + data-parallel)
– Hardware independent access to the memory model
– Based on C++0x (Lambda, auto, decltype, and rvalue references)

Will support all C++ capabilities
– GPU kernels/functions can be written in C++
– Not an implication that everything should be used on all devices
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TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

Leverage host language (C++) concepts and capabilities
– Separately authored functions, types and files
– Libraries reuse (link-time code-gen required)
– Binaries contain compiled device-independent IL and x86 code

Dynamic online compilation still an option
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TOMORROW'S HIGH LEVEL BRAIDED PARALLEL MODEL

Multi dimensional: Range and Index, Partition, and IndexRange

Data Parallel Algorithms
– Examples: parallelFor, parallelForWithReduce

Task Parallel Algorithms
– Examples: Task<T>, Future<T>

Task + Data Parallelism = Braided Parallelism

Low-level concepts are still available for performance
– Work-groups, Work-items, shared memory, shared memory barriers
– A layered programming model with ease-of-use and performance tradeoffs
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HELLO WORLD OF THE GPGPU WORLD (I.E. VECTOR ADD)

int main(void) 
{

float A[SIZE]; float B[SIZE]; float C[SIZE];

srand ( time(NULL) );
for (int i = 0; i < SIZE; i++) { 

A[i] = rand(); B[i] = rand();
}

parallelFor(Range<1>(size),  [A,B,C] (Index<1> index) [[device]] 
{

C[index.getX()] =  A[index.getX()] + B[index.getX()];
});

for (float i: C) {
cout << i << endl;

}
}
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TASKS AND FUTURES

int parallelFib(int n)
{

if (n < 2) {
return n;

}

Future<int> x([n] () 
[[device]] { 

return parallelFib(n-1) 
});

int y = parallelFib(n-2);

return x.get() + y;
}

#include <opp.hpp>
#include <iostream>
int main(void)
{

Future<vector<Int>> fibs(
Range<1>(100),
[] (Index<1> index) 

[[device]] {
return 

parallelFib(index.getX());
});
for(auto f = fibs.begin(); 
f != fibs.end();
f++) {
cout << f << endl;

}
}
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TASKS AND REDUCTION

float myArray[…];

Task<float, ReductionBin> sum([myArray](IndexRange<1> index) [[device]] {
float sum = 0.;
for (size_t I = index.begin(); I != index.end(); i++) {

sum += foo(myArray[i]);
}

return float;
});

float sum = task.enqueueWithReduce(Range<1>(1920), sums, plus<float>());



QUESTIONS
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Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and 
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to 
product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no obligation to 
update or otherwise correct or revise this information. However, we reserve the right to revise this information and to make changes 
from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO 
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS 
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY 
DISCLAIMED.  IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL 
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF 
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, AMD Phenom, AMD Radeon, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.  
All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners.

OpenCL is a trademark of Apple Inc. used with permission by Khronos. 

DirectX is a registered trademark of Microsoft Corporation.

© 2011 Advanced Micro Devices, Inc. All rights reserved.


