
Real-Time Synthesis and Rendering of Ocean Water

Jason L. Mitchell

ATI Research Technical Report, April 2005

(a) Low band of wave frequencies (b) Broad band of wave frequencies (c) Shallow water damping

Figure 1: Polygonal water surface displaced and shaded with GPU-synthesized height and normal maps. (a) Low frequencies used for
displacement and shading. (b) Low frequencies used for displacement and all frequencies used for shading. (c) Damping of high frequencies
closer to the camera due to shallow water and presence of vegetation.

Abstract

We present a multi-band Fourier domain approach to synthesiz-
ing and rendering deep-water ocean waves entirely on the graphics
processor. Our technique begins by using graphics hardware to gen-
erate and animate a Fourier domain spectrum of ocean water. We
subsequently use the graphics hardware to apply an IFFT to trans-
form the spectrum into a realistic height map of ocean water in the
spatial domain. As a result, this technique can be used to efficiently
synthesize and render height maps and normal maps which are spa-
tially periodic. GPU-synthesized low frequency height maps are
used to displace geometry while broad spectrum GPU-synthesized
waveforms are used to generate a normal map for shading. The
model also allows for compositing of other waveforms such as
wakes or eddies caused by objects interacting with the water. The
primary contributions of this work are the use of the GPU to per-
form all synthesis and rendering steps as well as the multi-band
approach which enables efficient simulation of the natural filtering
of high frequencies at different points on the water surface due to
depth variation or the presence of plant matter.

1 Introduction

Here we will present a multi-band Fourier domain approach to syn-
thesizing and rendering deep-water ocean waves entirely on the
graphics processor. This technique can be used to efficiently syn-
thesize height maps and normal maps which are spatially periodic.
Low-frequency height maps can be used to displace geometry while
the full spectrum of the synthesized height maps can be used as a
normal map for shading. This allows us to generate realistic water
surfaces on demand rather than store precomputed maps or simply
scroll repeating noise maps.

Our primary contributions are the use of the GPU to perform all
synthesis and rendering and a multi-band approach which can be

used to generate a low-frequency geometry displacement map and
high frequency normal map for shading as well as approximating
depth effects.

Even at low resolutions where the CPU, using SIMD extensions,
could theoretically outperform the GPU, the migration of this al-
gorithm is still a win for hardware accelerated rendering because
the system-to-video memory transfer bottleneck is removed and the
CPU cycles are freed up for other computations such as game logic.

We will begin by reviewing previous work in the field. After we
have reviewed both spatial and Fourier domain techniques, we will
describe the theory and practice of our synthesis algorithm in detail
in section 3. We will describe our rendering algorithm in section
4. In section 5, we will discuss a technique for incorporating other
waveforms such as ripples or wakes as well as a technique for syn-
thesizing plausible waves for small bodies of water such as ponds
which have shallow regions and plant matter that may damp out
high frequency waves. In order to place this work in the context
of the computing system as a whole, we will describe the perfor-
mance of our technique in section 6. We will then conclude with a
summary and a look at future work.

2 Previous work

Previous work in ocean water synthesis for computer graphics can
be broken into two classes:spatial domainand Fourier domain
approaches.

2.1 Spatial Domain

Max computed a height field composed of the superposition of sev-
eral low amplitude sinusoids [Max81]. The frequencies of these
waveforms were chosen so that they would repeat at a common
point in time so that their motion could be looped and reused
throughout an animation. For rendering, the waves were ray-traced

on a Cray 1 using up to two ray bounces.
Perlin applied noise to a finite set of spherical wave fronts and

used the result to perturb the normals of a plane without displacing
the surface in space [Perlin85]. This gave a reasonably convincing
result at certain scales and has the advantage that it can be applied
seamlessly to arbitrary surfaces.

Fournier and Reeves applied a large number of modifications to
the Gerstner model to incorporate shore interactions such as wave
refraction and breaking [Fournier86]. This model does modify the
positions of the surface and even allows for overhangs in the case
of wave breaking.

Peachy generates a height field by computing the superposi-
tion of several long-crested waveforms [Peachey86]. In addition to
depth-dependent blending of a quadratic function with the underly-
ing sinusoids to give a more realistic cycloidal choppy appearance,
Peachy also accounted for other depth effects such as wave refrac-
tion and emission of particles to simulate spray.

Ts’o and Barsky generate a Beta-spline surface by wave tracing a
small number of wave fronts to simulate wave refraction in shallow
water [Ts’o87]. For illumination, reflective and refractive terms are
blended based upon a Fresnel term computed at each pixel.

Thon views the height field as being composed of a main struc-
ture modeled as the superposition of 2D trochoids and a detail
level modeled as perturbations caused by a 3D turbulence func-
tion [Thon00]. This technique begins by selecting a set of high-
amplitude trochoids from the Pierson-Moskowitz spectrum and di-
rectly calculating their superposition in the spatial domain. This
surface is further perturbed using a 3D turbulence function. Both
the main structure and fine details can be animated to produce real-
istic motion and shading of ocean water height fields.

There have been several recent attempts to generate plausible
real-time water surface animation on graphics hardware in the spa-
tial domain. Schneider and Westermann use OpenGL evaluators
and vertex shaders to combine two octaves of gradient noise to
perturb a height field at interactive rates [Schneider01]. Isidoro
et al compute geometry displacement as the superposition of four
low-frequency sinusoids using hardware vertex shaders [Isidoro02].
Corresponding analytical normals are also computed in the vertex
shader and tangent space normal maps are scrolled across the dis-
placed surface to provide high frequency components. While both
of these techniques produce water that may be useful in some inter-
active applications, they do not model real ocean water accurately
enough to rival offline techniques.

Hinsinger et al have developed a technique which adaptively
tessellates a grid of points and appropriately bandlimits a set of
up to 60 spatial domain Gerstner waves for real-time rendering
[Hinsinger02]. This tessellation and waveform superposition is per-
formed on the CPU, which is the bottleneck of this approach. The
mesh is uploaded to the GPU each frame. This technique supports
the inclusion of arbitrary waveforms such as wakes, which is also
supported by our technique.

While spatial domain approaches can have the advantages that
only visible regions and frequencies of the ocean surface are eval-
uated for each rendered frame, it is not clear that these algorithms
are readily adapted for hardware acceleration. In fact, it has been
argued that agitated ocean water surfaces require too many spatial
domain terms for acceptable performance [Thon00]. Fourier do-
main techniques seek to overcome this limitation by performing
synthesis in the Fourier domain, thus avoiding the cost of explicitly
computing the superposition of spatial domain sinusoids.

2.2 Fourier Domain

Fourier domain approaches, first introduced to the computer graph-
ics community by Mastin et al, seek to synthesize ocean wa-

ter by utilizing measured spectral properties of real ocean water
[Mastin87]. Typically, some type of noise is transformed to the
Fourier domain and then filtered according to known statistical
models of ocean water. This Fourier domain description of the
ocean water is then transformed to the spatial domain and treated
as a height map which can be tiled seamlessly over a larger do-
main for offline or real-time rendering. One disadvantage of this
approach relative to more costly spatial domain approaches is that,
for high-altitude flyovers, it is obvious that the synthesized ocean
water surface is composed of repeating tiles. For many scales of in-
teractive application, however, this repetition is not apparent to the
user.

Mastin transformed white noise from the spatial to the Fourier
domain and filtered it with a Pierson-Moskowitz spectrum. The
IFFT of this spectrum resulted in a realistic ocean water height map,
which could be animated by appropriately shifting the phase in the
Fourier domain each frame.

In a series of SIGGRAPH course notes on natural phenomena,
Tessendorf describes a similar approach which has been applied
to production rendering in films such asWaterworld, Titanic and
others [Tessendorf99]. Tessendorf starts in the frequency domain
and uses the Phillips spectrum rather than the Pierson-Moskowitz
spectrum. Tessendorf also proposes a variety of enhancements, al-
lowing him to tune the Phillips spectrum to influence the direction,
speed and parallel nature of the resulting wave field. Tessendorf
also proposes post-processing of the synthesized height map to in-
crease choppiness since the IFFT, by definition, does not directly
result in trochoidal shapes.

Jensen and Goliá̌s describe results of adapting many of
Tessendorf’s techniques to real-time, including wave generation,
choppiness, foam, spray, caustics and even godrays [Jensen01].
Additionally, Jensen and Goliá̌s use a CPU implementation of the
Navier-Stokes Equations to compute a normal map to represent tur-
bulent flow around objects in the water. This work is the most simi-
lar to ours, except that all computations are performed on the CPU,
significantly limiting the water height map and normal map reso-
lutions. Although Jensen and Goliá̌s use separate CPU-generated
frequency bands for geometry and normal maps, they do not imple-
ment a multi-band approach to controllably simulate the damping
of high frequencies due to depth variation and plant matter as we
will describe in Section 5 of this paper.

Most recently, Lanza implemented a similar scheme in which
the IFFT is computed on the CPU and used to generate a dynam-
ically displaced mesh with corresponding tangent space basis vec-
tors [Lanza04]. Geometric complexity is managed with a quad-tree
scheme. As in [Isidoro02], a tangent space normal map is used
when shading this surface. Unlike our technique, however, this nor-
mal map does not contain the underlying water signal and must be
rotated into world space per pixel.

3 Wave Generation and Animation

It is desirable to be able to generate ocean water height fields on the
fly in order to conserve memory on low-memory systems such as
game consoles. With Fourier domain techniques, it is possible to
synthesize an ocean water height field at an arbitrary point in time
and on current graphics processors it is possible to do this quickly
enough to be useful in an interactive application. The technique
described here is built upon models of deep ocean water with no
shore interactions but our experiments indicate that it is possible to
composite our synthesized deep-water waveforms with other sim-
ulated or pre-computed waveforms to generate plausible shore in-
teractions in many cases. In Section 3.4, we will demonstrate the
ability to composite arbitrary waveforms such as boat wake with
the synthesized waves.

3.1 Synthesis Theory

We will now present a brief review the theory of Fourier domain
ocean wave synthesis and animation. For consistency, we will use
Tessendorf’s notation, which will make use of the following math-
ematical symbols:

Symbol Description
k wave number
k wave vector(kx,ky)
T Period of wave
λ wavelength
h Height of water
x Spatial position of simulation point
t time
g gravitational constant
Pk Phillips spectrum
ξ Ordinary independent draw from a Gaussian

random number generator with mean a mean
of zero and standard deviation of one

L Largest possible wave arising from a given
wind speed

ω angular frequency
w wind direction

Fundamentally, we wish to model the ocean surface as a height
field h(x, t) which is a sum of sinusoids with time-dependent am-
plitudes. The height of the water at locationx at timet is:

h(x, t) =
∑

k

h̃(k, t)eikx (1)

wherek is a 2D vector with components(kx,ky), kx = 2πn/Lx,
ky = 2πm/Ly andn andm are integers with bounds−N/2 ≤
n < N/2 and−M/2 ≤ m < M/2. The IFFT, which is the
workhorse of this algorithm will generate a height field at discrete
points x = (nLx/N,mLy/M) which we will use to construct
ocean water.

Since we wish to construct a repeatable tile of displaced ocean
water, it is convenient to construct a frequency-domain represen-
tation and take its inverse Fourier transform since, by definition,
this produces an appropriate spatially periodic signal (height field).
With the addition of floating-point pixel pipelines and floating-point
textures to commodity graphics cards, it is possible to implement
classic image processing operations such as the FFT on the GPU
[Moreland03] [Mitchell03]. With this fundamental building block,
we can apply Fourier synthesis techniques to hardware accelerated
ocean wave synthesis and animation.

We proceed directly from Tessendorf’s work and define a set of
complex Fourier domain amplitudes and their initial phase values
for our wave height field at time zero:

h̃0(k) =
1√
2
(ξr + iξi)

√
Ph(k) (2)

The Phillips Spectrum,Ph, is a popular model used for wind-
driven ocean waves:

Ph(k) = A
exp(−1/(kL)2)

k4
|k̂ ·w|2 (3)

whereL = V2/g is the largest possible wave arising from a con-
tinuous wind speedV and A is a numeric constant which glob-
ally affects the wave heights. It is possible to tune this model for
the desired look of a given rendering application and we have en-
abled interactive tweaking of many of the terms in this equation
in our real-time application. The exponent in the denominator can

be changed, for example, to decrease the spread of wave propa-
gation directions and make the waves appear more parallel in the
spatial domain. Additionally, the|k̂ ·w|2 term is responsible for
eliminating waves moving perpendicular to the wind direction. As
Tessendorf points out, it is also helpful to suppress waves smaller
than a small wavelengthl � L and modify the Phillips spectrum
by multiplying byexp(−k2l2). Tessendorf also points out that it is
possible to change the exponent in the denominator to other powers
such as 6 to increase the apparent directionality of the synthesized
ocean waves. This is especially useful when one wishes to synthe-
size waves that appear to be approaching a shoreline.

Unlike sound waves in air, water waves aredispersive, which
means that their velocity depends on their wavelength. In deep
ocean water, ignoring small-scale capillary waves, for a wave of
pulsationω = 2π/T and wave numberk = 2π/λ, the relation be-
tweenω andk is ω =

√
gk. Given this dispersion relationω(k),

the Fourier domain amplitudes of our wave field at timet can be
expressed as:

h̃(k, t) = h̃0(k)eiω(k)t + h̃∗0(−k)e−iω(k)t (4)

This relation preserves the complex conjugation property
h̃∗(k, t) = h̃(−k, t) and is convenient because it will allow us to
computeh̃(k, t) and henceh(x, t) via the IFFT on demand at any
time t without having to compute it at any other time.

Now that we have reviewed some of the theory of Fourier domain
ocean water synthesis, we will describe our implementation which
enables us to migrate all of the synthesis to the graphics processor.

3.2 GPU Implementation

While it is important to be familiar with the theoretical underpin-
nings of this technique, very little of the above math must be ap-
plied on the GPU during synthesis. The initial complex Fourier
domain amplitudes̃h0(k), for example, are generated one time on
the CPU and loaded into a static floating-point texture map using
the expression in Equation 2. A separate floating-point texture stor-
ing the dispersion relationω(k) is also loaded once at initialization
time. All floating-point textures are stored at 32 bits per channel.
As illustrated in the block diagram in Figure 2, theh̃0(k) andω(k)
texture maps can be processed using graphics hardware by render-
ing into another floating-point texture map using a 1:1 texel to pixel
mapping as is typical in GPU-based image processing. The result
of this step is a texture containing the Fourier domain amplitudes
of our wave field at timet, computed by using a shader which eval-
uates the expression in Equation 4. The resulting texture is then
transformed to the spatial domain using an IFFT, resulting in a re-
alistic ocean water height fieldh(x, t).

Frequency Domain Spatial Domain

0
~h

Normal
Map

Normals

()th ,x

ω

()th ,~
ktime IFFT

Displacements

Figure 2: Ocean water synthesis process. Blue blocks represent
texture maps and orange blocks represent kernels implemented with
floating point pixel shaders.

Once we have the water height fieldh(x, t) in the spatial domain,

we use it to generate a world space normal map for shading. A
simple cross product ofx andy Sobel filters is used to compute the
normal map in the spatial domain. Tessendorf describes a higher
quality method for generating a normal map via an additional IFFT,
but we have chosen to filter the spatial domain height map since it
was straightforward to implement and because it fits naturally with
the waveform compositing technique which will be described in
Section 3.4.

In addition to computing a normal map for shading, we also use
the spatial domain height map to vertically displace an underlying
polygonal mesh. This is achieved by means of an experimental
API extension which enables the hardware to interpret the output
of the rasterizer as vertices which can be read in as an additional
vertex stream, similar to techniques described in [Losasso02] and
[Kipfer04]. An example of a highly agitated synthesized ocean sur-
face is shown in Figure 3 with and without wireframe.

Figure 3: Real-time synthesized ocean water and corresponding
wireframe

Since the synthesized height map pixels have a 1:1 correspon-
dence to vertices in our tileable ocean water mesh, the height map
does not create any sampling issues and does not need to be mip-
mapped or filtered in any way. It is desirable to generate a mip-map
for the resulting normal map in order to reduce aliasing, however.
We use the GPU to downsample our computed normal map to fill
out its mip-map each frame.

3.3 Multi-band Synthesis

In order to improve rendering speed or simulate depth effects, it is
possible to synthesize multiple overlapping frequency bands of the
ocean water height signal. As indicated in the block diagram in
Figure 4, it is possible to synthesize two water surface height maps:
abroadband mapand alow band map.

The low band map is a low resolution texture which contains
low frequency waveforms. This map is used to displace the wa-
ter surface geometry. The broadband map is a higher resolution
texture which contains the same low frequency information as the

Frequency Domain Spatial Domain

0
~h

()th ,x

Displacements

ω

()th ,~
ktime

()th ,x

0
~h

ω

time ()th ,~
k

Normal
Map

IFFT

IFFT

Low
 B

and
B

road band

High
Frequency

Normals

Normal
Map

Low
Frequency

Normals

Figure 4: Dual band ocean water synthesis process. Blue and green
blocks represent texture maps and orange blocks represent kernels
implemented with floating point pixel shaders.

low band map plus higher frequencies. This height map is filtered
to produce a normal map for shading, giving the appearance of a
highly detailed ocean surface while maintaining a reasonable poly-
gon count [Jensen01]. Figures 1a and 1b show the low band and
broadband signals under the same viewing and lighting conditions.
In these two images, the wind speed and hence the wave amplitude
are low in order to simulate calm water. This same wind speed and
viewpoint will be used in the shallow water rendering technique
discussed in section 5 and shown in Figure 1c.

If an appropriate down-sampling filter were used, it would be
possible to perform only the high-frequency IFFT and compute the
low-frequency map in the spatial domain via downsampling. We
have left this as a future optimization, however, and have chosen to
perform two IFFTs each frame for our wave synthesis. In Section
5, we will describe a technique which blends between the broad-
band and low band maps to simulate depth effects and damping due
to plant matter on the surface of the water. In the following sec-
tion, we will discuss compositing of arbitrary waveforms with our
synthesized height fields.

3.4 Compositing other waveforms

In the real world, water surface waves undergo constructive and de-
structive interference as shown in the image of wakes caused by real
ducks on a pond in Figure 5a. The wakes from the multiple ducks
in the pond interfere with each other and with other waveforms
such as the low amplitude wind waves. In the graphics community,
it has been demonstrated that it is possible to composite arbitrary
waveforms such as wakes with real-time synthesized ocean waves
[Hinsinger02],[Loviscach03]. In the offline domain, simply com-
positing simulated and authored height map animations was shown
to be an intuitive method for designing controllable waves and rip-
ples in small scale scenarios such as the mud jacuzzi scene inShrek
2 [Kofsky04]. We have implemented a similar scheme, which al-
lows us to composite pre-authored height maps with our synthe-
sized low band and broadband maps in the spatial domain prior to
computation of the normal map. A typical synthesized height map
has been composited with a pre-authored wake map as shown in
Figure 5c. The wind speed is set fairly low in this case, so that
the wake map’s contribution to the resulting height field is read-
ily apparent. This composite height field is filtered to compute the
normal map shown in Figure 5d. Together, the displacement and

normal maps are used in the rendering of virtual wake as shown in
Figure 5b.

(a) Real wake from ducks (b) Real-time virtual wake

(c) Height map with wake (d) Normal map of c

Figure 5: Compositing wake with synthesized water

Now that we have described a number of ways to generate and
animate ocean water height maps—including multiple frequency
bands and optional compositing of arbitrary waveforms—we will
briefly describe a shading algorithm which can be used to realisti-
cally visualize the results in real time.

4 Rendering
While we have chosen to focus on GPU-based ocean water synthe-
sis in this paper, it is certainly possible to use arbitrarily complex
shading on the resulting mesh such as the algorithms described in
[Nishita94] or [Premǒze00]. For visualizing our GPU-synthesized
ocean waves, we assume we are above the water surface and render
it using a fairly typical shading algorithm which includes reflective,
refractive, Fresnel and fog terms:

fog(s ∗ (1 − r) + r ∗ (env + sun)) (5)

wheres is the amount of light scattered from within the water,env
is a reflective term from a cubic environment map representing the
sky, sun is an optional Phong highlight corresponding to the sun
contribution,r is a Fresnel term and the functionfog() applies a
distance based fog color.

Examples of real-time renderings using this shading model are
illustrated in Figures 1, 3 and 5b.

This particular shading model does assume, however, that there
are no local reflections or refractions due to a boat on the water or
a shallow bottom visible beneath the water surface. In order to use
this technique in a shoreline or pond setting, it would be straight-
forward to implement such local reflections and refractions using
reflection and refraction mapping techniques as in [Vlachos02].

Since we can easily handle local reflections and refractions and
because we would like to render small bodies of water in games, it
is desirable to use this wave synthesis technique for shallow water.

The next section will discuss the issue of applying our synthesis
technique to shallow water as found in ponds or shorelines.

5 Shallow Water
Throughout this paper, we have specifically made simplifying as-
sumptions by ignoring depth and hence shore interactions. As such,
our model is technically applicable primarily to deep water render-
ing. Nevertheless, for the purposes of plausible wave rendering
in interactive applications such as games, we expect that it will
be straightforward to apply precomputed shore refraction to our
waveforms to produce the basis of plausible waves approaching
shore [Ts’o87] [Gamito02]. This could be done by simply warp-
ing the polygonal mesh representing the water surface inx andy
(not height) such that it conforms to the contours of the shoreline.

Even without addressing the wave refraction that one would ex-
pect to see on a rough coastline, we can simulate the appearance
of the interaction of our synthesized waves with shallow regions or
with plant matter found on the surface of ponds by exploiting our
multi-band synthesis process. We can do this by using the low band
map to displace the water surface geometry while blending between
the low band and broadband normal maps as a means of filtering or
damping out the high frequencies. In the real world, lily pads near
the edge of a pond act as a filter which damps out the high fre-
quency wind waves approaching shore as shown in Figure 6a. We
can approximate this effect in our virtual pond, as shown in Figure
1c, by blending between the broadband and low band maps in our
pixel shader according to a mask like the one shown in Figure 6c.
In Figures 6b and 6c, we assume that the pond depth decreases from
the upper left to the lower right. Figure 6c is a scalar factor which
is used to transition between the broadband map and low band map
so that high frequencies are gradually damped out by the lily pads,
allowing only the low frequencies to pass through to the shore.

Shallow regions in the pond and variations in the wind above the
pond can cause other regions of the water surface to undergo similar
damping. This can be approximated in the same way, by damping
out the high frequencies with an appropriate pre-authored texture
map.

6 Performance
We have implemented this algorithm on a 2GHz Intel Pentium 4
CPU with 512MB of system RAM and an ATI RADEON X800
with 256 MB of video memory. For the dual-band synthesis,
we have used a 64×64 low band grid and a 256×256 broad-
band grid. The GPU-based IFFT is a hand-tuned implementation
based upon the Cooley and Tukey ”Decimation in Time” algorithm
[Cooley65][Mitchell03].

The overall performance is dependent upon the performance of
both synthesis and scene rendering steps. On the ATI RADEON
X800, with the scene rendering turned off, we are able to perform
Inverse Fast Fourier Transforms for both the 64×64 and 256×256
floating-point images at 170 Hz. Turning on the GPU-based Fourier
spectrum synthesis, followed by the IFFT and normal map filter-
ing steps, we drop to 145 Hz. With wake compositing, this falls
to 140 Hz. With scene rendering also turned on, we were able to
achieve 65 Hz for typical viewpoints when rendering a 3×3 grid of
instances of our tileable 64×64 water mesh (over 70,000 polygons)
at a resolution of 768×768 pixels using the shading algorithm de-
scribed in section 4. Naturally, one of the appealing properties of
this approach is that the synthesis step has a fixed cost which is in-
dependent of the number of water surface tiles used in scene render-
ing. To further increase performance, one could imagine spreading
the synthesis across multiple frames or only performing synthesis
everyn frames, interpolating between synthesized height fields for
in-between frames.

(a) Real pond with damping from lily pads

(b) Lily Pad Texture (c) High frequency damping map

Figure 6: Filtering of high frequencies by lily pads

As a means of verifying the correctness of our GPU-based ocean
water synthesis and to provide context for performance analysis, we
have also implemented this algorithm on the CPU using the FFTW
library [Frigo98]. We compiled the FFTW library to use single-
precision floating-point operations with version 8.1 of the Intel C++
compiler as was done on the BrookGPU project [Buck04]. With-
out doing the Fourier spectrum synthesis or normal filtering steps,
we can compute the IFFT on 64×64 and 256×256 images on the
CPU using the FFTW library at 165 Hz. This is consistent with
other recent findings which show that current GPUs and CPUs per-
form roughly equivalently on the FFT [Buck04]. To come close
to matching the GPU performance for the overall algorithm, how-
ever, we would also have to write highly optimized SSE code for
the Fourier spectrum synthesis, wake compositing, normal map fil-
tering and normal map mip-mapping steps. Even then, the data
would be on the wrong side of the bus for the GPU to use it for
scene rendering. We believe that these results make a strong case
for performing ocean water synthesis on the GPU since the raw per-
formance is compelling and because the resulting data is already in
the right format and memory pool to be used by rendering algo-
rithms

According to Tessendorf, the offline rendering community uses
repeatable ocean water patches measuring 10 meters to 2 kilome-
ters on a side, with the simulation resolution as high as 2048×2048
sample points, though significantly lower resolution simulations are

often used. We believe that the performance of our algorithm is
more than adequate to be considered seriously by the gaming com-
munity and we expect to see it adopted in future game titles.

7 Summary and Future Work
We have presented a Fourier domain approach to synthesizing and
rendering deep-water ocean waves entirely on the graphics proces-
sor. Our technique is capable of generating and animating a Fourier
domain spectrum of ocean water, which is then transformed to the
spatial domain to obtain a realistic height map of ocean water. Low
frequency height maps are used to displace geometry while broad
spectrum waveforms are used to generate a normal map for shading.
The model also allows for compositing of other waveforms caused
by objects interacting with the water. We have also described a
straightforward but realistic rendering equation which contains re-
flective, refractive, Fresnel and fog terms. We have also illustrated
how a multi-band approach, which was initially conceived as a per-
formance optimization, can be exploited to simulate shallow wa-
ter effects found along shorelines or in small bodies of water. We
concluded by demonstrating the performance of our algorithm on
modern consumer graphics hardware.

We have concentrated our efforts on the synthesis of a repeatable
tile of ocean water, which is inherently decoupled from level of
detail (LOD) techniques which would be necessary when using this
technique in a commercial game. We expect that straightforward
LOD schemes like a quad-tree as applied in [Lanza04] or a set of
nested grids as described in [Losasso04] will work well and we
intend to explore this area.

An interesting related phenomenon which could be added to our
algorithm would be the generation of repeatable caustic textures as
described by Stam [Stam96][Stam]. This is interesting for games
because spatially repeatable textures for refractive and reflective
caustics could be generated on demand and hence have a small
memory footprint. The fact that the caustics are correlated with
the GPU-synthesized water surface may also be a desirable effect,
depending on the specifics of the scene being rendered.

A number of papers using graphics hardware to perform fluid
simulation or solve 2D wave equations have been published in the
last few years [Harris03][Kr̈uger03]. These simulations can be used
to compute height maps which can be composited with our synthe-
sized height maps in the same way that we have already demon-
strated with precomputed wakes. We expect that this integration
can be used to portray plausible real-time animations of dynamic
ripples, eddies and general turbulence in our synthesized water.

Another extension which has been discussed in the CPU-based
papers published earlier is post-processing of the synthesized height
maps to increase choppiness and to spawn foam and spray. Specif-
ically, Tessendorf suggests methods for processing the height field
to cause the wave forms to resemble the superposition of trochoids
rather than the sinusoids which are produced by the IFFT. The
model presented here can easily be extended in this way.

Finally, it would be interesting to migrate the entire synthesis
step to a stream processing model like Brook as a means of com-
parison with our hand-tuned model and to illustrate an additional
application domain of the generic Brook system [Buck04].

8 Acknowledgements
Thanks to Evan Hart of ATI Research for help with the GPU-based
FFT implementation.

References
[Buck04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,

Kayvon Fatahalian, Mike Houston and Pat Hanrahan, ”Brook

for GPUs,” SIGGRAPH 2004.

[Cooley65] James W. Cooley and John W. Tukey, ”An Algorithm
for the Machine Calculation of Complex Fourier Series.”
Math. Comput. 19, 297-301, 1965.

[Fournier86] Alain Fournier and William T. Reeves, ”A Simple
Model of Ocean Waves”, Computer Graphics, Vol. 20, No.
4, 1986, p 75-84.

[Frigo98] Matteo Frigo and Steven G. Johnson, ”FFTW: An Adap-
tive Software Architecture for the FFT,”Proc. ICASSP3,
1381 (1998).

[Gamito02] Manuel Gamito and F. Kenton Musgrave, ”An Accu-
rate Model of Wave Refraction over Shallow Water,”Comput-
ers & Graphics26(2): 291-307, 2002.

[Harris03] Mark Harris, ”Real-time cloud simulation and ren-
dering,” Ph.D. dissertation. University of North Carolina at
Chapel Hill, 2003.

[Hinsinger02] Damien Hinsinger, Fabrice Neyret and Marie-Paule
Cani, ”Interactive Animation of Ocean Waves,” Proceedings
of the 2002 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2002.

[Isidoro02] John Isidoro, Alex Vlachos and Chris Brennan, ”Ren-
dering Ocean Water,”ShaderX: Vertex and Pixel Shader Tips
and Tricks, Wordware, 2002.

[Jensen01] Lasse Staff Jensen and Robert Goliá̌s, ”Deep-Water
Animation and Rendering,”Game Developers Conference
Europe, 2001.

[Kipfer04] Peter Kipfer, Mark Segal and Rüdiger Westermann,
”UberFlow: A GPU-Based Particle Engine,”Proceedings Eu-
rographics Conference on Graphics Hardware, 2004.

[Kofsky04] Lewis Kofsky, ”Image Based Fluids,” SIGGRAPH
Technical Sketch 2004.

[Kr üger03] Jens Kr̈uger and R̈udiger Westermann, ”Linear Alge-
bra Operators for GPU Implementation of Numerical Algo-
rithms,” SIGGRAPH 2003.

[Lanza04] Stefano Lanza, ”Animation and Display of Water,” in
ShaderX3: Advanced Rendering with DirectX and OpenGL,
Wolfgang Engel editor, Charles River Media, 2004.

[Losasso02] Frank Losasso, Hugues Hoppe, Scott Schaefer and
Joe Warren, ”Smooth Geometry Images,”Eurographics Sym-
posium on Graphics Processing2003, pages 138-145

[Losasso04] Frank Losasso and Hugues Hoppe, ”Geometry
Clipmaps Terrain Rendering Using Nested Regular Grids,”
SIGGRAPH 2004.

[Loviscach03] J̈orn Loviscach, ”Complex Water Effects at Interac-
tive Frame Rates,” Journal of WSCG 11, pp. 298305 (2003),

[Mastin87] Gary A. Mastin, Peter A. Watterger, and John F.
Mareda, ”Fourier Synthesis of Ocean Scenes,”IEEE Com-
puter Graphics and Applications, March 1987, p. 16-23.

[Max81] Nelson L. Max, ”Vectorized procedural models for nat-
ural terrain: Waves and islands in the sunset,”Proceedings of
the 8th annual conference on Computer graphics and interac-
tive techniques, p.317-324, August 03-07, 1981, Dallas.

[Mitchell03] Jason L. Mitchell, Marwan Y. Ansari and Evan Hart,
”Advanced Image Processing with DirectX 9 Pixel Shaders”
in ShaderX2 - Shader Tips and Tricks, Wolfgang Engel editor,
Wordware, Sept. 2003.

[Moreland03] Kenneth Moreland and Edward Angel, ”The FFT
on a GPU,” SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware 2003 Proceedings, pp. 112-119, July 2003.

[Nishita94] Tomoyuki Nishita and Eihachiro Nakamae, ”Method
of Displaying Optical Effects within Water using Accumula-
tion Buffer,” SIGGRAPH 1994.

[Peachey86] Darwyn Peachey, ”Modeling Waves and Surf,” Com-
puter Graphics (SIGGRAPH ’86 Proceedings), volume 20, p.
65-74, Aug. 1986

[Perlin85] Ken Perlin, ”An Image Synthesizer,” SIGGRAPH 1985.

[Premǒze00] Simon Premǒze and Michael Ashikhmin, ”Render-
ing Natural Waters,” Eighth Pacific Conference on Computer
Graphics and Applications, October 2000.

[Schneider01] Jens Schneider and Rüdiger Westermann, ”Towards
Real-Time Visual Simulation of Water Surfaces,” Vision,
Modeling and Visualization 2001.

[Stam96] Jos Stam, ”Random Caustics: Natural Textures and
Wave Theory Revisited” , Technical Sketch SIGGRAPH’96.
In ACM SIGGRAPH Visual Proceedings, 1996, p. 151.

[Stam] Jos Stam, ”Periodic Caustic Textures,” online article
www.dgp.toronto.edu/people/stam/reality/Research/PeriodicCaustics/

[Tessendorf99] Jerry Tessendorf, ”Simulating Ocean Water,”Sim-
ulating Nature: Realistic and Interactive Techniques Course
Notes, SIGGRAPH 1999.

[Thon00] Sebastien Thon, Jean-Michel Dischler and Djamchid
Ghazanfarpour ”Ocean Waves Synthesis Using a Spectrum-
Based Turbulence Function,”Proceedings of the International
Conference on Computer Graphics, 2000.

[Ts’o87] Pauline Y. Ts’o and Brian Barsky, ”Modeling and Ren-
dering Waves: Wave-Tracing Using Beta-Splines and Reflec-
tive and Refractive Texture Mapping,” SIGGRAPH 1987. pp.
191-214.

[Vlachos02] Alex Vlachos, John Isidoro and Christopher Oat,
”Rippling Reflective and Refractive Water,”ShaderX: Vertex
and Pixel Shader Tips and Tricks, Wordware, 2002.

