
Revision 0.37

R600-Family Instruction Set Architecture

User Guide

J a n u a r y  2 0 0 9



ii
 

© 2009 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, 
ATI, the ATI logo, Radeon, FireStream, FireGL, Catalyst, and combinations thereof are 
trademarks of Advanced Micro Devices, Inc. Microsoft, Windows, and Windows Vista are 
registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdictions. Other 
names are for informational purposes only and may be trademarks of their respective 
owners.

The contents of this document are provided in connection with Advanced Micro Devices, 
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the 
accuracy or completeness of the contents of this publication and reserves the right to 
make changes to specifications and product descriptions at any time without notice. The 
information contained herein may be of a preliminary or advance nature and is subject to 
change without notice. No license, whether express, implied, arising by estoppel or 
otherwise, to any intellectual property rights is granted by this publication. Except as set 
forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability 
whatsoever, and disclaims any express or implied warranty, relating to its products 
including, but not limited to, the implied warranty of merchantability, fitness for a particular 
purpose, or infringement of any intellectual property right. 

AMD’s products are not designed, intended, authorized or warranted for use as 
components in systems intended for surgical implant into the body, or in other applications 
intended to support or sustain life, or in any other application in which the failure of AMD’s 
product could create a situation where personal injury, death, or severe property or 
environmental damage may occur. AMD reserves the right to discontinue or make 
changes to its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

http://www.amd.com/


AT I  R 6 0 0  Te c h n o l o g y

iii
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved. 

Contents

Contents

Preface

Chapter 1  Introduction

Chapter 2  Program Organization and State
2.1 Program Types ................................................................................................................................. 2-1

2.1.1 Data Flows ........................................................................................................................2-2
2.1.2 Geometry Program Absent .............................................................................................2-2
2.1.3 Geometry Shader Present...............................................................................................2-3

2.2 Instruction Terminology .................................................................................................................. 2-4
2.3 Control Flow and Clauses .............................................................................................................. 2-5
2.4 Instruction Types and Grouping .................................................................................................... 2-7
2.5 Program State................................................................................................................................... 2-8

Chapter 3  Control Flow (CF) Programs
3.1 CF Microcode Encoding.................................................................................................................. 3-2
3.2 Summary of Fields in CF Microcode Formats ............................................................................. 3-3
3.3 Clause-Initiation Instructions.......................................................................................................... 3-5

3.3.1 ALU Clause Initiation.......................................................................................................3-6
3.3.2 Vertex-Fetch Clause Initiation and Execution...............................................................3-6
3.3.3 Texture-Fetch Clause Initiation and Execution.............................................................3-6

3.4 Import and Export Instructions ...................................................................................................... 3-7
3.4.1 Normal Exports (Pixel, Position, Parameter Cache) ....................................................3-7
3.4.2 Memory Reads and Writes..............................................................................................3-8

3.5 Synchronization with Other Blocks ............................................................................................... 3-9
3.6 Conditional Execution ................................................................................................................... 3-10

3.6.1 Valid and Active Masks .................................................................................................3-10
3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE........................................................3-11
3.6.3 The Condition (COND) Field ..........................................................................................3-12
3.6.4 Computation of Condition Tests ..................................................................................3-13
3.6.5 Stack Allocation .............................................................................................................3-14

3.7 Branch and Loop Instructions ..................................................................................................... 3-15
3.7.1 ADDR Field......................................................................................................................3-17
3.7.2 Stack Operations and Jumps .......................................................................................3-17



AT I  R 6 0 0  Te c h n o l o g y

iv
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

3.7.3 DirectX9 Loops ...............................................................................................................3-18
3.7.4 DirectX10 Loops .............................................................................................................3-19
3.7.5 Repeat Loops..................................................................................................................3-19
3.7.6 Subroutines.....................................................................................................................3-19
3.7.7 ALU Branch-Loop Instructions.....................................................................................3-20

Chapter 4  ALU Clauses
4.1 ALU Microcode Formats ................................................................................................................. 4-1
4.2 Overview of ALU Features.............................................................................................................. 4-1
4.3 ALU Instruction Slots and Instruction Groups ............................................................................ 4-3
4.4 Assignment to ALU.[X,Y,Z,W] and ALU.Trans Units.................................................................... 4-4
4.5 OP2 and OP3 Microcode Formats ................................................................................................. 4-5
4.6 GPRs and Constants ....................................................................................................................... 4-5

4.6.1 Relative Addressing.........................................................................................................4-6
4.6.2 Previous Vector (PV) and Previous Scalar (PS) Registers .........................................4-7
4.6.3 Out-of-Bounds Addresses...............................................................................................4-7
4.6.4 ALU Constants .................................................................................................................4-8

4.7 Scalar Operands............................................................................................................................... 4-9
4.7.1 Source Addresses............................................................................................................4-9
4.7.2 Input Modifiers................................................................................................................4-10
4.7.3 Data Flow ........................................................................................................................4-10
4.7.4 GPR Read Port Restrictions .........................................................................................4-11
4.7.5 Constant Register Read Port Restrictions..................................................................4-11
4.7.6 Literal Constant Restrictions........................................................................................4-12
4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units.................................................................4-12
4.7.8 Cycle Restrictions for ALU.Trans.................................................................................4-14
4.7.9 Read-Port Mapping Algorithm ......................................................................................4-16

4.8 ALU Instructions ............................................................................................................................ 4-19
4.8.1 Instructions for All ALU Units ......................................................................................4-19
4.8.2 KILL and PRED_SET* Instruction Restrictions ..........................................................4-22
4.8.3 Instructions for ALU.[X,Y,Z,W] Units Only ..................................................................4-22
4.8.4 Instructions for ALU.Trans Units Only ........................................................................4-23

4.9 ALU Outputs ................................................................................................................................... 4-25
4.9.1 Output Modifiers.............................................................................................................4-25
4.9.2 Destination Registers ....................................................................................................4-25
4.9.3 Predicate Output ............................................................................................................4-26
4.9.4 NOP Instruction ..............................................................................................................4-26
4.9.5 MOVA Instructions .........................................................................................................4-26

4.10 Predication and Branch Counters ............................................................................................... 4-27
4.11 Adjacent-Instruction Dependencies............................................................................................. 4-27
4.12 Double-Precision Floating-Point Operations .............................................................................. 4-29



AT I  R 6 0 0  Te c h n o l o g y

v
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved. 

Chapter 5  Vertex-Fetch Clauses
5.1 Clause Construction ........................................................................................................................ 5-1
5.2 Vertex-Fetch Microcode Formats ................................................................................................... 5-2

Chapter 6  Texture-Fetch Clauses
6.1 Texture-Fetch Microcode Formats ................................................................................................. 6-1
6.2 Constant-Fetch Operations............................................................................................................. 6-2
6.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE.......................................................................... 6-2

Chapter 7  Instruction Set
7.1 Control Flow (CF) Instructions....................................................................................................... 7-1
7.2 ALU Instructions ............................................................................................................................ 7-41
7.3 Vertex-Fetch Instructions ............................................................................................................ 7-181
7.4 Texture-Fetch Instructions .......................................................................................................... 7-183

Chapter 8  Microcode Formats
8.1 Control Flow (CF) Instructions....................................................................................................... 8-2
8.2 ALU Instructions ............................................................................................................................ 8-15
8.3 Vertex-Fetch Instructions .............................................................................................................. 8-25
8.4 Texture-Fetch Instructions ............................................................................................................ 8-33

Appendix A  Instruction Table

Glossary of Terms

Index



AT I  R 6 0 0  Te c h n o l o g y

vi
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

vii
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved. 

Figures

1.1 R600-Family Block Diagram....................................................................................................1-1
1.2 Programmer’s View of R600 Dataflow ....................................................................................1-3
4.1 ALU Microcode Format Pair ....................................................................................................4-1
4.2 Organization of ALU Vector Elements in GPRs......................................................................4-1
4.3 ALU Data Flow.......................................................................................................................4-11
5.1 Vertex-Fetch Microcode-Format 4-Tuple .................................................................................5-2
6.1 Texture-Fetch Microcode-Format 4-Tuple ...............................................................................6-2



AT I  R 6 0 0  Te c h n o l o g y

viii
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

ix
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved. 

Tables

2.1 Order of Program Execution (Geometry Program Absent).....................................................2-2
2.2 Order of Program Execution (Geometry Program Present) ...................................................2-3
2.3 Basic Instruction-Related Terms..............................................................................................2-4
2.4 Flow of a Typical Program.......................................................................................................2-6
2.5 Control-Flow State ...................................................................................................................2-9
2.6 ALU State...............................................................................................................................2-10
2.7 Vertex-Fetch State .................................................................................................................2-11
2.8 Texture-Fetch and Constant-Fetch State...............................................................................2-11
3.1 CF Microcode Field Summary.................................................................................................3-4
3.2 Types of Clause-Initiation Instructions.....................................................................................3-5
3.3 Possible ARRAY_BASE Values...............................................................................................3-8
3.4 Condition Tests ......................................................................................................................3-13
3.5 Stack Subentries ....................................................................................................................3-14
3.6 Stack Space Required for Flow-Control Instructions ............................................................3-15
3.7 Branch-Loop Instructions .......................................................................................................3-15
4.1 Instruction Slots in an Instruction Group.................................................................................4-3
4.2 Index for Relative Addressing .................................................................................................4-6
4.3 Example Function’s Loading Cycle .......................................................................................4-17
4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) .......................................................4-19
4.5 ALU Instructions (ALU.[X,Y,Z,W] Units Only) ........................................................................4-22
4.6 ALU Instructions (ALU.Trans Units Only)..............................................................................4-24
7.1 Result of ADD_64 Instruction ................................................................................................7-42
7.2 Result of FLT32_TO_FLT64 Instruction ................................................................................7-62
7.3 Result of FLT64_TO_FLT32 Instruction ................................................................................7-64
7.4 Result of FRACT_64 Instruction............................................................................................7-67
7.5 Result of FREXP_64 Instruction............................................................................................7-69
7.6 Result of LDEXP_64 Instruction............................................................................................7-76
7.7 Result of MUL_64 Instruction ................................................................................................7-96
7.8 Result of MULADD_64 Instruction (IEEE Single-Precision Multiply)..................................7-104
7.9 Result of MULADD_64 Instruction (IEEE Add)...................................................................7-105
7.10 Result of PRED_SETE_64 Instruction ................................................................................7-126
7.11 Result of PRED_SETGE_64 Instruction .............................................................................7-132
7.12 Result of PRED_SETGT_64 Instruction..............................................................................7-139
8.1 Summary of Microcode Formats .............................................................................................8-1
A.1 Summary of Instruction........................................................................................................... A-1



AT I  R 6 0 0  Te c h n o l o g y

x
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

xi
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Preface

About This Document
This document describes the instruction set architecture (ISA) native to the R600 
family of processors. It defines the instructions and formats accessible to 
programmers and compilers. 

The document serves two purposes. 

• It specifies the microcode (including the format of each type of microcode 
instruction) and the relevant program state (including how the program state 
interacts with the microcode). Some microcode fields are mutually 
dependent; not all possible settings for all fields are legal. This document 
specifies the valid combinations. 

• It provides the programming guidelines for compiler writers to maximize 
processor performance. 

For an understanding of the software environment in which the R600 family of 
processors operate, see the ATI CTM Guide, Technical Reference Manual, which 
describes the interface by which a host controls an R600-family processor. In this 
document, the term “R600” refers the entire family of R600 processors. 

Audience
This document is intended for programmers writing application and system 
software, including operating systems, compilers, loaders, linkers, device drivers, 
and system utilities. It assumes that programmers are writing compute-intensive 
parallel applications (streaming applications) and assumes an understanding of 
requisite programming practices.

Organization
This document begins with an overview of the R600 family of processors’ 
hardware and programming environment (Chapter 1). Chapter 2 describes the 
organization of an R600-family program and the program state that is maintained. 
Chapter 3 describes the control flow (CF) programs. Chapter 4 the ALU clauses. 
Chapter 5 describes the vertex-fetch clauses. Chapter 6 describes the texture-
fetch clauses. Chapter 7 describes instruction details, first by broad categories, 
and following this, in alphabetic order by mnemonic. Finally, Chapter 8 provides 
a detailed specification of each microcode format. 



AT I  R 6 0 0  Te c h n o l o g y

xii
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Registers
The following list shows the names are used to refer either to a register or to the 
contents of that register. 

Endian Order
The R600-family architecture addresses memory and registers using little-endian 
byte-ordering and bit-ordering. Multi-byte values are stored with their least-
significant (low-order) byte (LSB) at the lowest byte address, and they are 
illustrated with their LSB at the right side. Byte values are stored with their least-
significant (low-order) bit (lsb) at the lowest bit address, and they are illustrated 
with their lsb at the right side. 

Conventions
The following conventions are used in this document. 

Related Documents 
• CTM HAL Programming Guide. Published by AMD.

• Intermediate Language (IL) Reference Manual. Published by AMD. 

• OpenGL Programming Guide, at http://www.glprogramming.com/red/

GPRs General-purpose registers. There are 128 GPRs, each one 128 bits wide, 
organized as four 32-bit values. 

CRs Constant registers. There are 512 CRs, each one 128 bits wide, orga-
nized as four 32-bit values. 

AR Address register.

loop index A register initialized by software and incremented by hardware on each 
iteration of a loop.

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter, 
or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing. 



AT I  R 6 0 0  Te c h n o l o g y

xiii
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved. 

• Microsoft DirectX Reference Website, at 
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/
directx9_c_Summer_04/directx/graphics/reference/reference.asp

• GPGPU: http://www.gpgpu.org

Contact Information
To submit questions or comments concerning this document, contact our 
technical documentation staff at: streamcomputing@amd.com.

For questions concerning ATI Stream products, please email: 
streamcomputing@amd.com.

For questions about developing with ATI Stream, please email: 
streamdeveloper@amd.com.

You can learn more about ATI Stream at: http://www.amd.com/stream.

We also have a growing community of ATI Stream users. Come visit us at the 
ATI Stream Developer Forum (http://www.amd.com/streamdevforum) to find out 
what applications other users are trying on their ATI Stream products.



AT I  R 6 0 0  Te c h n o l o g y

xiv
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 1-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 1
Introduction

The R600-family of processors implements a parallel microarchitecture that 
provides an excellent platform not only for computer graphics applications but 
also for general-purpose streaming applications. Any data-intensive application 
that can be mapped to a 2D matrix is a candidate for running on an R600-family 
processor. 

Figure 1.1 shows a block diagram of the R600-family processors. 

Figure 1.1 R600-Family Block Diagram

It includes a data-parallel processor (DPP) array, a command processor, a 
memory controller, and other logic (not shown). The R600 command processor 
reads commands that the host has written to memory-mapped R600 registers in 
the system-memory address space. The command processor sends hardware-
generated interrupts to the host when the command is completed. The R600 
memory controller has direct access to all of R600 local memory and the host-



AT I  R 6 0 0  Te c h n o l o g y

1-2
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

specified areas of system memory. To satisfy read and write requests, the 
memory controller performs the functions of a direct-memory access (DMA) 
controller, including computing memory-address offsets based on the format of 
the requested data in memory.

A host application cannot write to R600 local memory directly, but it can 
command the R600 to copy programs and data between system memory and 
R600 memory. A complete application for the R600 includes two parts: 

• a program running on the host processor, and 

• programs, called kernels, running on the R600 processor. 

The R600 programs are controlled by host commands, which 

• set R600-internal base-address and other configuration registers, 

• specify the data domain on which the R600 is to operate, 

• invalidate and flush caches on the R600, and 

• cause the R600 to begin execution of a program. 

The R600 driver program runs on the host. 

The DPP array is the heart of the R600 processor. The array is organized as a 
set of SIMD pipelines, each independent from the others, that operate in parallel 
on streams of floating-point or integer data. The SIMD pipelines can process data 
or, through the memory controller, transfer data to, or from, memory. Computation 
in a SIMD pipeline can be made conditional. Outputs written to memory can also 
be made conditional. R600 software stores data to memory by first allocating 
space in a memory buffer, then exporting data from GPRs to that buffer. The 
R600 export facility is also used to import (read) data from memory. 

Host commands request a SIMD pipeline to execute a kernel by passing it:

• an identifier pair (x, y), 

• a conditional value, and 

• the location in memory of the kernel code. 

When it receives a request, the SIMD pipeline loads instructions and data from 
memory, begins execution, and continues until the end of the kernel. As kernels 
are running, the R600 hardware automatically fetches instructions and data from 
memory into on-chip caches; R600 software plays no role in this. R600 software 
also can load data from off-chip memory into on-chip GPRs and caches. 

Conceptually, each SIMD pipeline maintains a separate interface to memory, 
consisting of index pairs and a field identifying the type of request (program 
instruction, floating-point constant, integer constant, boolean constant, input read, 
or output write). The index pairs for inputs, outputs, and constants are specified 
by the requesting R600 instructions from the hardware-maintained program state 
in the pipelines. 



AT I  R 6 0 0  Te c h n o l o g y

1-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

R600 programs do not support exceptions, interrupts, errors, or any other events 
that can interrupt its pipeline operation. In particular, it does not support IEEE 
floating-point exceptions. The interrupts shown in Figure 1.1 from the command 
processor to the host represent hardware-generated interrupts for signalling 
command-completion and related management functions. 

Figure 1.2 shows a programmer’s view of the dataflow for three versions of an 
R600 application. The top version (a) is a graphics application that includes a 
geometry shader program and a DMA copy program. The middle version (b) is 
a graphics application without a geometry shader and DMA copy program. The 
bottom version (c) is a general-purpose application. The square blocks represent 
programs running on the DPP array. The circles and clouds represent non-
programmable hardware functions. For graphics applications, each block in the 
chain processes a particular kind of data and passes its result on to the next 
block. For general-purpose applications, only one processing block performs all 
computation. 

Figure 1.2 Programmer’s View of R600 Dataflow

The dataflow sequence starts by reading 2D vertices, 2D textures, or other 2D 
data from local R600 memory or system memory; it ends by writing 2D pixels or 



AT I  R 6 0 0  Te c h n o l o g y

1-4
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

other 2D data results to local R600 memory. The R600 processor hides memory 
latency by keeping track of potentially hundreds of threads in different stages of 
execution, and by overlapping compute operations with memory-access 
operations. 



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 2-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 2
Program Organization and State

R600 programs consist of control-flow (CF), ALU, texture-fetch, and vertex-fetch 
instructions, which are described in this manual. ALU instructions can have up 
to three source operands and one destination operand. The instructions operate 
on 32-bit IEEE floating-point values and signed or unsigned integers. The 
execution of some instructions cause predicate bits to be written that affect 
subsequent instructions. Graphics programs typically use vertex-fetch and 
texture-fetch instructions for data loads, whereas general-computing applications 
typically use texture-fetch instructions for data loads. 

2.1 Program Types
The following program types are commonly run on the R600 (see Figure 1.2, on 
page 1-3,):

• Vertex Shader (VS)—Reads vertices, processes them. Depending on 
whether a geometry shader (GS) is active, it outputs the results to either a 
VS ring buffer, or the parameter cache and position buffer. It does not 
introduce new primitives. When a GS is active, a vertex shader is a type of 
Export Shader (ES). A vertex shader can invoke a Fetch Subroutine (FS), 
which is a special global program for fetching vertex data that is treated, for 
execution purposes, as part of the vertex program. The FS provides driver 
independence between the process of fetching data required by a VS, and 
the VS itself. 

• Geometry Shader (GS)—Reads primitives from the VS ring buffer, and, for 
each input primitive, writes one or more primitives as output to the GS ring 
buffer. This program type is optional; when active, it requires a DMA copy 
(DC) program to be active. The GS simultaneously reads up to six vertices 
from an off-chip memory buffer created by the VS; it outputs a variable 
number of primitives to a second memory buffer.

• DMA Copy (DC)—Transfers data from the GS ring buffer into the parameter 
cache and position buffer. It is required for systems running a geometry 
shader. 

• Pixel Shader (PS) or Fragment Shader—This type of program:

– reads data from the position buffer, parameter cache, and vertex 
geometry translator (VGT), 

– processes individual pixel quads (four pixel-data elements arranged in a 
2-by-2 array), and 



AT I  R 6 0 0  Te c h n o l o g y

2-2 Program Types
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

– writes output to up to eight local-memory buffers, called multiple render 
targets (MRTs), which can include one or more frame buffers.

All program types accept the same instruction types, and all of the program types 
can run on any of the available DPP-array pipelines that support these programs; 
however, each kernel type has certain restrictions, which are described with that 
type.

2.1.1 Data Flows

The host can initialize the R600 to run in one of two configurations—with or 
without a geometry shader program and a DMA copy program. Figure 1.2, on 
page 1-3, illustrates the processing order. Each type of flow is described in the 
following subsections. 

2.1.2 Geometry Program Absent

Table 2.1 shows the order in which programs run when a geometry program is 
absent. 

This processing configuration consists of the following steps. 

1. The VS program sends a pointer to a buffer in local memory containing up 
to 64 vertex indices. 

2. The R600 hardware groups the vectors for these vertices in its input buffers 
(remote memory). 

3. When all vertices are ready to be processed, the R600 allocates GPRs and 
thread space for the processing of each of the 64 vertices, based on 
compiler-provided sizes. 

4. The VS program calls the fetch subroutine (FS) program, which fetches 
vertex data into GPRs and returns control to the VS program. 

5. The transform, lighting, and other parts of the VS program run. 

6. The VS program allocates space in the position buffer and exports the vertex 
positions (XYZW). 

7. The VS program allocates parameter-cache and position-buffer space and 
exports parameters and positions for each vertex. 

8. The VS program exits, and the R600 deallocates its GPR space. 

9. When the VS program completes, the pixel shader (PS) program begins. 

Table 2.1 Order of Program Execution (Geometry Program Absent)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. Parameter cache and 
position buffer.

PS Pixel Shader Pixels Positions cache, parameter 
cache, and vertex geometry 
translator (VGT).

Local or system 
memory.



AT I  R 6 0 0  Te c h n o l o g y

Program Types 2-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

10. The R600 hardware assembles primitives from data in the position buffer and 
the vertex geometry translator (VGT), performs scan conversion and final 
pixel interpolation, and loads these values into GPRs. 

11. The PS program then runs for each pixel. 

12. The program exports data to a frame buffer, and the R600 deallocates its 
GPR space. 

2.1.3 Geometry Shader Present

Table 2.2 shows the order in which programs run when a geometry program is 
present. 

This processing configuration consists of the following steps.

1. The R600 hardware loads input indices or primitive and vertex IDs from the 
vertex geometry translator (VGT) into GPRs. 

2. The VS program fetches the vertex or vertices needed

3. The transform, lighting, and other parts of the VS program run. 

4. The VS program ends by writing vertices out to the VS ring buffer. 

5. The GS program reads multiple vertices from the VS ring buffer, executes its 
geometry functions, and outputs one or more vertices per input vertex to the 
GS ring buffer. The VS program can only write a single vertex per single 
input; the GS program can write a large number of vertices per single input. 
Every time a GS program outputs a vertex, it indicates to the vertex VGT that 
a new vertex has been output (using EMIT_* instructions1). The VGT counts 
the total number of vertices created by each GS program. The GS program 
divides primitive strips by issuing CUT_VERTEX instructions. 

6. The GS program ends when all vertices have been output. No position or 
parameters is exported. 

7. The DC program reads the vertex data from the GS ring buffer and transfers 
this data to the parameter cache and position buffer using one of the MEM* 
memory export instructions. 

Table 2.2 Order of Program Execution (Geometry Program Present)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

VS Vertex Shader Vertices Vertex memory. VS ring buffer. 

GS Geometry Shader Primitives VS ring buffer. GS ring buffer.

DC DMA Copy Any Data GS ring buffer. Parameter cache or posi-
tion buffer.

PS Pixel Shader Pixels Positions cache, parameter 
cache, and vertex geometry 
translator (VGT).

Local or system memory.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that 
define variants. 



AT I  R 6 0 0  Te c h n o l o g y

2-4 Instruction Terminology
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

8. The DC program exits, and the R600 deallocates the GPR space. 

9. The PS program runs. 

10. The R600 assembles primitives from data in the position buffer, parameter 
cache, and VGT. 

11. The hardware performs scan conversion and final pixel interpolation, and 
hardware loads these values into GPRs. 

12. The PS program runs. 

13. When the PS program reaches the end of the data, it exports the data to a 
frame buffer or other render target (up to eight) using EXPORT instructions.

14. The program exits upon execution of an EXPORT_DONE instruction, and the 
processor deallocates GPR space. 

2.2 Instruction Terminology
Table 2.3 summarizes some of the instruction-related terms used in this 
document. The instructions themselves are described in the remaining chapters. 
Details on each instruction are given in Chapter 7. The register types are 
described in “Registers,” on page xii. 

Table 2.3 Basic Instruction-Related Terms

Term Size (bits) Description

Microcode format 32 One of several encoding formats for all instructions. They are described in 
Section 3.1, “CF Microcode Encoding,” page 3-2, Section 4.1, “ALU Micro-
code Formats,” page 4-1, Section 6.1, “Texture-Fetch Microcode Formats,” 
page 6-1, Section 5.2, “Vertex-Fetch Microcode Formats,” page 5-2, and 
Chapter 8, “Microcode Formats.”

Instruction 64 or 128 Two to four microcode formats that specify:
• Control flow (CF) instructions (64 bits). These include:

general control flow instructions (such as branches and loops), 
instructions that allocate buffer space and import or export data, and
instructions that initiate the execution of ALU, texture-fetch, or 

vertex-fetch clauses.
• ALU instructions (64 bits).
• Texture-fetch instructions (128 bits).
• Vertex-fetch instructions (128 bits).
Instructions are identified in microcode formats by the _INST_ string in 
their field names and mnemonics. The functions of the instructions are 
described in Chapter 7, “Instruction Set.” 

ALU Instruction 
Group

64 to 448 Variable-sized groups of instructions and constants that consist of:
• One to five 64-bit ALU instructions.
• Zero to two 64-bit literal constants.
ALU instruction groups are described in Section 4.3, “ALU Instruction Slots 
and Instruction Groups,” page 4-3. 

Literal Constant 64 Literal constants specify two 32-bit values, which can represent values 
associated with two elements of a 128-bit vector. These constants option-
ally can be included in ALU instruction groups. 
Literal constants are described in Section 4.3, “ALU Instruction Slots and 
Instruction Groups,” page 4-3. 



AT I  R 6 0 0  Te c h n o l o g y

Control Flow and Clauses 2-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

2.3 Control Flow and Clauses
Each program consists of two sections: 

• Control Flow—Control flow instructions can:

Slot 64 An ordered position within an ALU instruction group. Each ALU instruction 
group has one to seven slots, corresponding to the number of ALU instruc-
tions and literal constants in the instruction group. 
Slots are described in Section 4.3, “ALU Instruction Slots and Instruction 
Groups,” page 4-3. 

Clause 64 to unlimited A set of instructions of the same type. The types of clauses are:
• ALU clauses (which contain ALU instruction groups). 
• Texture-fetch clauses.
• Vertex-fetch clauses.
Clauses are initiated by control flow (CF) instructions and are described in 
Section 2.3, “Control Flow and Clauses,” page 2-5, and Section 3.3, 
“Clause-Initiation Instructions,” page 3-5. 

Allocate n/a Reserves storage space for data in an output buffer (a “scratch buffer,” 
“ring buffer,” “stream buffer,” or “reduction buffer”) or for data in an input 
buffer (a “scratch buffer” or “ring buffer”) prior to exporting (writing or read-
ing) data or addresses to, or from, that buffer. Space is allocated only for 
data, not for addresses. After allocating space in a buffer, an export (write 
or read) operation can be performed.

Export n/a To do any of the following:
• Write data from GPRs to an output buffer (a “scratch buffer,” “frame 

buffer,” “ring buffer,” “stream buffer,” or “reduction buffer”).
• Write an address for data inputs to the memory controller.
• Read data from an input buffer (a “scratch buffer,” or “ring buffer”) to 

GPRs. 
The term export is a partial misnomer because it performs both input and 
output functions. Prior to exporting, an “allocate” operation must be per-
formed to reserve space in the associated buffer. 

Fetch n/a Load data, using a vertex-fetch or texture-fetch instruction clause. Loads 
are not necessarily to general-purpose registers (GPRs); specific types of 
loads may be confined to specific types of storage destinations.

Vertex n/a A set of x,y (2D) coordinates.

Quad n/a Four (x,y) data elements arranged in a 2-by-2 array. 

Primitive n/a A point, line segment, or polygon before rasterization. It has vertices spec-
ified by geometric coordinates. Additional data can be associated with 
vertices by means of linear interpolation across the primitive. 

Fragment n/a For graphics programming:
• The result of rasterizing a primitive. A fragment has no vertices; 

instead, it is represented by (x,y) coordinates.
For general-purpose programming:
• A set of (x,y) data elements. 

Pixel n/a For graphics programming:
• The result of placing a fragment in an (x,y) frame buffer.
For general-purpose programming:
• A set of (x,y) data elements. 

Table 2.3 Basic Instruction-Related Terms (Cont.) 

Term Size (bits) Description



AT I  R 6 0 0  Te c h n o l o g y

2-6 Control Flow and Clauses
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

– Initiate execution of ALU, texture-fetch, or vertex-fetch instructions.

– Allocate space in an input or output buffer.

– Export data to, or import data from, a buffer.

– Control branching, looping, and stack operations.

• Clause—A homogeneous group of instructions; each clause comprises ALU, 
texture-fetch, or vertex-fetch instructions exclusively. A control flow 
instruction that initiates an ALU, texture-fetch, or vertex-fetch clause does so 
by referring to an appropriate clause.

Table 2.4 provides a typical program flow example. 

Control flow instructions:

• constitute the main program. Jump statements, loops, and subroutine calls 
are expressed directly in the control flow part of the program. 

• include mechanisms to synchronize operations.

• indicate when a clause has completed. 

• are required for buffer allocation in, and writing to, a program block’s output 
buffer. 

Some program types (VS, GS, DC, PS) have specific control flow instructions for 
synchronizing with other blocks.

Table 2.4 Flow of a Typical Program

Function

Microcode Formats

Control Flow (CF) Code Clause Code

Start loop. CF_DWORD[0,1]

Initiate texture-fetch clause. CF_DWORD[0,1]

Texture-fetch or vertex-fetch clause to load 
data from memory to GPRs.

TEX_DWORD[0,1,2]

Initiate ALU clause. CF_ALU_DWORD[0,1]

ALU clause to compute on loaded data and lit-
eral constants. This example shows a single 
clause consisting of a single ALU instruction 
group containing five ALU instructions (two 
quadwords each) and two quadwords of literal 
constants.

ALU_DWORD[0,1]
ALU_DWORD[0,1]
ALU_DWORD[0,1]
ALU_DWORD[0,1]
ALU_DWORD[0,1] LAST bit set
Literal[X,Y]
Literal[Z,W]

End loop. CF_DWORD[0,1]

Allocate space in an output buffer. CF_ALLOC_EXPORT_DWORD0
CF_ALLOC_EXPORT_DWORD1_BU
F

Export (write) results from GPRs to output 
buffer.

CF_ALLOC_EXPORT_DWORD0
CF_ALLOC_EXPORT_DWORD1_BU
F



AT I  R 6 0 0  Te c h n o l o g y

Instruction Types and Grouping 2-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Each clause, invoked by a control flow instruction, is a sequential list of 
instructions of limited length (for the maximum length, see sections on individual 
clauses). Clauses contain no flow control statements, but ALU clause instructions 
can apply a predicate on a per-instruction basis. Instructions within a single 
clause execute serially. Multiple clauses of a program can execute in parallel if 
they contain instructions of different types and the clauses are independent of 
one another. (Such parallel execution is invisible to the programmer except for 
increased performance.)

ALU clauses contain instructions for performing operations in each of the five 
ALUs (ALU.[X,Y,Z,W] and ALU.Trans) including setting and using predicates, and 
pixel kill operations (see Section 4.8.1, “Instructions for All ALU Units,” page 4-
19). Texture-fetch clauses contain instructions for performing texture and 
constant-fetch reads from memory. Vertex-fetch clauses are devoted to obtaining 
vertex data from memory. Systems lacking a vertex cache can perform vertex-
fetch operations in a texture clause instead.

A predicate is a bit that is set or cleared as the result of evaluating some 
condition; subsequently, it is used either to mask writing an ALU result or as a 
condition itself. There are two kinds of predicates, both of which are set in an 
ALU clause.

• The first is a single predicate local to the ALU clause itself. Once computed, 
the predicate can be referred to in a subsequent instruction to conditionally 
write an ALU result to the indicated general-purpose register(s). 

• The second type is a bit in a predicate stack. An ALU clause computes the 
predicate bits in the stack and manipulates the stack. A predicate bit in the 
stack can be referred to in a control-flow instruction to induce conditional 
branching. 

2.4 Instruction Types and Grouping
There are four types of instructions: 

• control flow instructions

• three clause types: control flow (CF), ALU, texture fetch, and vertex fetch.

There are separate instruction caches in the processor for each instruction type.

A CF program has no maximum size; however, each clause has a maximum 
size. When a program is organized in memory, the instructions must be ordered 
as follows:

• All CF instructions.

• All ALU clauses.

• All texture-fetch and vertex-fetch clauses.

The CPU host configures the base address of each program type before 
executing a program.



AT I  R 6 0 0  Te c h n o l o g y

2-8 Program State
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

2.5 Program State
Table 2.5 through Table 2.8 summarize a programmer’s view of the R600 
program state that is accessible by a single thread in an R600 program. The 
tables do not include:

• states that are maintained exclusively by R600 hardware, such as the 
internal loop-control registers, 

• states that are accessible only to host software, such as configuration 
registers, or

• the duplication of states for many execution threads. 

The column headings in Table 2.5 through Table 2.8 have the following 
meanings:

• Access by R600 Software—Readable (R), writable (W), or both (R/W) by 
software executing on the R600 processor. 

• Access by Host Software—Readable, writable, or both by software executing 
on the host processor. The tables do not include state objects, such as R600 
configuration registers, that accessible only to host software. 

• Number per Thread—The maximum number of such state objects available 
to each thread. In some cases, the maximum number is shared by all 
executing threads. 

• Width—The width, in bits, of the state object. 



AT I  R 6 0 0  Te c h n o l o g y

Program State 2-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Table 2.5 Control-Flow State

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description

Integer Constant 
Register (I)

R W 1 96
(3 x 32)

The loop-variable constant specified in the 
CF_CONST field of the CF_DWORD1 microcode for-
mat for the current LOOP* instruction. 

Loop Index (aL) R No 1 13 A register that is initialized by LOOP* instructions 
and incremented by hardware on each iteration 
of a loop, based on values provided in the LOOP* 
instruction’s CF_CONST field of the CF_DWORD1 
microcode format. It can be used for relative 
addressing of GPRs by any clause. Loops can 
be nested, so the counter and index are stored 
in the stack.
ALU instructions can read the current aL index 
value by specifying it in the INDEX_MODE field of 
the ALU_DWORD0 microcode format, or in the 
ELEM_LOOP field of CF_ALLOC_EXPORT_DWORD1_* 
microcode formats. 
The register is 13 bits wide, but some instruc-
tions use only the low 9 bits.

Stack No No Chip-
Specific

Chip-
Specific

The hardware maintains a single, multi-entry 
stack for saving and restoring the state of nested 
loops, pixels (valid mask and active mask, pred-
icates, and other execution details. The total 
number of stack entries is divided among all 
executing threads. 



AT I  R 6 0 0  Te c h n o l o g y

2-10 Program State
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Table 2.6 ALU State

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description

General-Purpose 
Registers (GPRs)

R/W No 127 minus 
2 times 
Clause-

Temporary 
GPRs

128
(4 x 32 bit)

Each thread has access to up to 127 
GPRs, minus two times the number of 
Clause-Temporary GPRs. Four GPRs are 
reserved as Clause-Temporary GPRs that 
persist only for one ALU clause (and thus 
are not accessible to fetch and export 
units). 
GPRs can hold data in one of several for-
mats: the ALU can work with 32-bit IEEE 
floats (S23E8 format with special values), 
32-bit unsigned integers, and 32-bit signed 
integers.

Clause-Tempo-
rary GPRs

No Yes 4 128
(4 x 32 bit)

GPRs containing clause-temporary vari-
ables. The number of clause-temporary 
GPRs used by each thread reduces the 
total number of GPRs available to the 
thread, as described immediately above. 

Address Regis-
ter (AR)

W No 1 36
(4 x 9 bit)

A register containing a four-element vector 
of indices that are written by MOVA instruc-
tions. Hardware reads this register. The 
indices are used for relative addressing of 
a constant file (called constant waterfall-
ing). This state only persists for one ALU 
clause. When used for relative addressing, 
a specific vector element must be selected.

Constant Regis-
ters (CRs)

R W 512 128
(4 x 32 bit)

Registers that contain constants. Each reg-
ister is organized as four 32-bit elements of 
a vector. Software can use either the CRs 
or the off-chip constant cache, but not both.
DirectX calls these the Floating-Point Con-
stant (F) Registers.

Previous Vector 
(PV)

R No 1 128
(4 x 32 bit)

Registers that contain the results of the 
previous ALU.[X,Y,Z,W] operations. This 
state only persists for one ALU clause.

Previous Scalar 
(PS)

R No 1 32 A register that contains the results of the 
previous ALU.Trans operations. This state 
only persists for one ALU clause.

Predicate 
Register

R/W No 1 1 A register containing predicate bits. The 
bits are set or cleared by ALU instructions 
as the result of evaluating some condition; 
the bits are subsequently used either to 
mask writing an ALU result or as a condi-
tion itself. 
An ALU clause computes the predicate bits 
in this register. A predicate bit in this regis-
ter can be referred to in a control-flow 
instruction to induce conditional branching.
This state only persists for one ALU clause.



AT I  R 6 0 0  Te c h n o l o g y

Program State 2-11
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Pixel State No No 1 192
(64 x 2 

bits)

State bits that reflect each pixel’s active 
status as conditional instructions are exe-
cuted. The state can be Active, Inactive-
branch, Inactive-continue, or Inactive-
break. 

Valid Mask No No 1 64 A mask indicating which pixels have been 
killed by a pixel-kill operation. The mask is 
updated when a CF_INST_KILL instruction 
is executed.

Active Mask W
(indirect)

No 1 1 bit per 
pixel

A mask indicating which pixels are cur-
rently executing and which are not 
(1 = execute, 0 = skip). This can be 
updated by PRED_SET* ALU instructions1, 
but the updates do not take effect until the 
end of the ALU clause.
CF_ALU instructions can update this mask 
with the result of the last PRED_SET* 
instruction in the clause. 

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that define 
variants. 

Table 2.7 Vertex-Fetch State

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description

Vertex-Fetch Constants R W 128 84 These describe the buffer format, etc.

Table 2.8 Texture-Fetch and Constant-Fetch State

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description

Texture Samplers No W 18 96 There are 18 samplers (16 for DirectX plus 2 
spares) available for each of the VS, GS, PS 
program types, two of which are spares. A tex-
ture sampler constant is used to specify how a 
texture is to be accessed. It contains informa-
tion such as filtering and clamping modes. 

Texture 
Resources

No W 160 160 There are 160 resources available for each of 
the VS, GS, PS program types, and 16 for FS 
program types. 

Table 2.6 ALU State (Cont.) 

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description



AT I  R 6 0 0  Te c h n o l o g y

2-12 Program State
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Border Color No W 1 128
(4 x 32 

bits)

This is stored in the texture pipeline, but is ref-
erenced in texture-fetch instructions.

Bicubic Weights No W 2 176 These define the weights, one horizontal and 
one vertical, for bicubic interpolation. The state 
is stored in the texture pipeline, but referenced 
in texture-fetch instructions.

Kernel Size for 
Cleartype 
Filtering

No W 2 3 These define the kernel sizes, one horizontal 
and one vertical, for filtering with Microsoft's 
Cleartype™ subpixel rendering display tech-
nology. The state is stored in the texture 
pipeline, but referenced in texture-fetch 
instructions.

Table 2.8 Texture-Fetch and Constant-Fetch State (Cont.) 

State
Access by
R600 S/W

Access by
Host S/W

# per 
Thread

Width 
(bits) Description



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 3-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 3
Control Flow (CF) Programs

A control flow (CF) program is a main program. It directs the flow of program 
clauses by using control-flow instructions (conditional jumps, loops, and 
subroutines), and it can include memory-allocation instructions and other 
instructions that specify when vertex and geometry programs have completed 
their operations. The R600 hardware maintains a single, multi-entry stack for 
saving and restoring active mask counters, returning addresses for subroutines.

CF instructions can: 

• Execute an ALU, texture-fetch, or vertex-fetch clause. These operations take 
the address of the clause to execute, and a count indicating the size of the 
clause. A program can specify that a clause must wait until previously 
executed clauses complete, or that a clause must execute conditionally (only 
active pixels execute the clause, and the clause is skipped entirely if no 
pixels are active).

• Execute a DirectX9-style loop. There are two instructions marking the 
beginning and end of the loop. Each instruction takes the address of its 
paired LOOP_START and LOOP_END instructions. A loop reads from one of 32 
constants to get the loop count, initial index value, and index increment 
value. Loops can be nested.

• Execute a DirectX10-style loop. There are two instructions marking the 
beginning and end of the loop. Each instruction takes an address of its paired 
LOOP_START and LOOP_END instructions. Loops can be nested.

• Execute a repeat loop (one that does not maintain a loop index). Repeat 
loops are implemented with the LOOP_START_NO_AL and LOOP_END 
instructions. These loops can be nested. 

• Break out of the innermost loop. LOOP_BREAK instructions take an address to 
the corresponding LOOP_END instruction. LOOP_BREAK instructions can be 
conditional (executing only for pixels that satisfy a break condition).

• Continue a loop, starting with the next iteration of the innermost loop. 
LOOP_CONTINUE instructions take an address to the corresponding LOOP_END 
instruction. LOOP_CONTINUE instructions can be conditional.

• Execute a subroutine CALL or RETURN. A CALL takes a jump address. A 
RETURN never takes an address; it returns to the address at the top of the 
stack. Calls can be conditional (only pixels satisfying a condition perform the 
instruction). Calls can be nested.

• Call the vertex-fetch-shader (FS) clause. The address field in a VTX or 
VTX_TC control-flow instruction is unused; the address of the vertex-fetch 



AT I  R 6 0 0  Te c h n o l o g y

3-2 CF Microcode Encoding
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

clause is global and written by the host. Thus, it makes no sense to nest 
these calls. 

• Jump to a specified address in the control-flow program. A JUMP instruction 
can be conditional or unconditional.

• Perform manipulations on the current active mask for flow control (for 
example: executing an ELSE instruction, saving and restoring the active mask 
on the stack).

• Allocate data-storage space in a buffer and import (read) or export (write) 
addresses or data.

• Signal that the geometry shader (GS) has finished exporting a vertex, and 
optionally the end of a primitive strip.

The end of the CF program is marked by setting the END_OF_PROGRAM bit in the 
last CF instruction in the program. The CF program terminates after the end of 
this instruction, regardless of whether the instruction is conditionally executed.

3.1 CF Microcode Encoding
The microcode formats and all of their fields are described in Chapter 8, 
“Microcode Formats.”. An overview of the encoding is given below. The following 
instruction-related terms are used throughout the remainder of this document:

• Microcode Format—An encoding format whose fields specify instructions and 
associated parameters. Microcode formats are used in sets of two or four 32-
bit doublewords (dwords). For example, the two mnemonics, CF_DWORD[0,1] 
indicate a microcode-format pair, CF_DWORD0 and CF_DWORD1, described in 
Section 8.1, “Control Flow (CF) Instructions,” page 8-2. 

• Instruction—A computing function specified by the CF_INST field of a 
microcode format. For example, the mnemonic CF_INST_JUMP is an 
instruction specified by the CF_DWORD[0,1] microcode-format pair. All 
instructions have the _INST_ string in their mnemonic; for example, CF 
instructions have a CF_INST_ prefix. The instructions are listed in the 
Description columns of the microcode-format field tables in Chapter 8, 
“Microcode Formats.”. In the remainder of this document, the CF_INST_ prefix 
is omitted when referring to instructions, except in passages for which the 
prefix adds clarity. 

• Opcode—The numeric value of the CF_INST field of an instruction. For 
example, the opcode for the JUMP instruction is decimal 16 (0x10). 

• Parameter—An address, index value, operand size, condition, or other 
attribute required by an instruction and specified as part of it. For example, 
CF_COND_ACTIVE (condition test passes for active pixels) is a field of the JUMP 
instruction. 

The doubleword layouts in memory for CF microcode encodings are shown 
below, where +0 and +4 indicate the relative byte offset of the doublewords in 
memory, {BUF, SWIZ} indicates a choice between the strings BUF and SWIZ, and 
LSB indicates the least-significant (low-order) byte.



AT I  R 6 0 0  Te c h n o l o g y

Summary of Fields in CF Microcode Formats 3-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

• CF microcode instructions that initiate ALU clauses use the following memory 
layout.

• CF microcode instructions that reserve storage space in an input or output 
buffer, write data from GPRs into an output buffer, or read data from an input 
buffer into GPRs use the following memory layout.

• All other CF microcode encodings use the following memory layout.

3.2 Summary of Fields in CF Microcode Formats
Table 3.1 summarizes the fields in various CF microcode formats and indicate 
which fields are used by the different instruction types. Each column represents 
a type of CF instruction. The fields in this table have the following meanings.

• Yes—The field is present in the microcode format and required by the 
instruction. 

• No—The field is present in the microcode format but ignored by the 
instruction. 

• Blank—The field is not present in the microcode format for that instruction. 

For descriptions of the CF fields listed in Table 3.1, see Section 8.1, “Control 
Flow (CF) Instructions,” page 8-2.

31 24 23 16 15 8 7 0

CF_ALU_DWORD1 +4

CF_ALU_DWORD0 +0

<------------ LSB ------------>

31 24 23 16 15 8 7 0

CF_ALLOC_EXPORT_DWORD1_{BUF, SWIZ} +4

CF_ALLOC_EXPORT_DWORD0 +0

<------------ LSB ------------>

31 24 23 16 15 8 7 0

CF_DWORD1 +4

CF_DWORD0 +0

<------------ LSB ------------>



AT I  R 6 0 0  Te c h n o l o g y

3-4 Summary of Fields in CF Microcode Formats
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

The following fields are available in most of the CF microcode formats.

• END_OF_PROGRAM — A program terminates after executing an instruction with 
the this bit set, even if the instruction is conditional and no pixels are active 

Table 3.1 CF Microcode Field Summary

CF Microcode Field

CF Instruction Type

ALU1 Texture Fetch2 Vertex Fetch3 Memory4 Branch or Loop5 Other6

CF_INST Yes Yes Yes Yes Yes Yes

ADDR Yes Yes Yes Note7 No

CF_CONST No No Note8  Yes

POP_COUNT No No Note9 No

COND No No Yes No

COUNT Yes Yes Yes No No

CALL_COUNT No No Note10 No

KCACHE_BANK[0,1] Yes

KCACHE_ADDR[0,1] Yes

KCACHE_MODE[0,1] Yes

USES_WATERFALL Yes

VALID_PIXEL_MODE Yes Yes Yes Yes Yes

WHOLE_QUAD_MODE Yes Yes Yes Yes Yes Yes

BARRIER Yes Yes Yes Yes Yes Yes

END_OF_PROGRAM Yes Yes Yes Yes Yes

TYPE Yes

INDEX_GPR Note11

ELEM_SIZE Yes

ARRAY_BASE Yes

ARRAY_SIZE Yes

SEL_[X,Y,Z,W]

COMP_MASK Note12

BURST_COUNT Yes

RW_GPR Yes

RW_REL Yes

1. CF ALU instructions contain the string CF_INST_ALU_.
2. CF texture-fetch instructions contain the string CF_INST_TEX.
3. CF vertex-fetch instructions contain the string CF_INST_VTX_.
4. CF memory instructions contain the string CF_INST_MEM_.
5. CF branch or loop instructions include LOOP*, PUSH*, POP*, CALL*, RETURN*, JUMP, and ELSE.
6. CF other instructions include NOP, EMIT_VERTEX, EMIT_CUT_VERTEX, CUT_VERTEX, and KILL. 
7. Some flow control instructions accept an address for another CF instruction.
8. Required if COND refers to the boolean constant, and for loop instructions that use DirectX9-style loop 

indexes.
9. Used by CF instructions that pop the stack. Not available to ALU clause instructions that pop the stack (see 

the ALU instructions for similar control). 
10. CALL_COUNT is only used for CALL instructions.
11. INDEX_GPR is used if the TYPE field indicates an indexed read or write.
12. COMP_MASK is used if the TYPE field indicates a write operation; reads are never masked.



AT I  R 6 0 0  Te c h n o l o g y

Clause-Initiation Instructions 3-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

during the execution of the instruction. The stack must be empty when the 
program encounters this bit; otherwise, results are undefined when the 
program restarts on new data or a new program starts. Thus, instructions 
inside of loops or subroutines must not be marked with END_OF_PROGRAM.

• BARRIER — This expresses dependencies between instructions and allows 
parallel execution. If the this bit is set, all prior instructions complete before 
the current instruction begins. If this bit is cleared, the current instruction can 
co-issue with other instructions. Instructions of the same clause type never 
co-issue; however, instructions in a texture-fetch clause and an ALU clause 
can co-issue if this bit is cleared. If in doubt, set this bit; results are identical 
whether it is set or not, but using it only when required can increase program 
performance.

• VALID_PIXEL_MODE — If set, instructions in the clause are executed as if 
invalid pixels were inactive. This field is the complement to the 
WHOLE_QUAD_MODE field. Set only WHOLE_QUAD_MODE or VALID_PIXEL_MODE at 
any one time. 

• WHOLE_QUAD_MODE — If set, instructions in the clause are executed as if all 
pixels were active and valid. This field is the complement to the 
VALID_PIXEL_MODE field. Set only WHOLE_QUAD_MODE or VALID_PIXEL_MODE 
at any one time. 

3.3 Clause-Initiation Instructions
Table 3.2 shows the clause-initiation instructions for the three types of clauses 
that can be used in a program. Every clause-initiation instruction contains in its 
microcode format an address field, ADDR (ignored for vertex clauses), that 
specifies the beginning of the clause in memory. ADDR specifies a quadword (64-
bit) aligned address. Table 3.2 describes the alignment restrictions for clause-
initiation instructions. ADDR is relative to the program base (configured in the 
PGM_START_* register by the host). There is also a COUNT field in the CF_DWORD1 
microcode format that indicates the size of the clause. The interpretation of COUNT 
is specific to the type of clause being executed, as shown in Table 3.2. The actual 
value stored in the COUNT field is the number of slots or instructions to execute, 
minus one. Any clause type can be executed by any thread type.

Table 3.2 Types of Clause-Initiation Instructions

Clause Type CF Instructions COUNT Meaning COUNT Range ADDR Alignment Restriction

ALU ALU*1

1. These instructions use the CF_ALU_DWORD[0,1] microcode formats, described in Section 8.1 on page 8-2. 

Number of ALU slots2

2. See Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-3, for a description of ALU slots. 

[1, 128] Varies (64-bit alignment is sufficient)

Texture Fetch TEX3

3. These instructions use the CF_DWORD[0,1] microcode formats, described in Section 8.1 on page 8-2. 

Number of instructions [1, 8] Double quadword (128-bit)

Vertex Fetch VTX*4

4. These instructions use the CF_DWORD[0,1] microcode formats, described in Section 8.1 on page 8-2. 

Number of instructions [1, 8] Double quadword (128-bit)



AT I  R 6 0 0  Te c h n o l o g y

3-6 Clause-Initiation Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

3.3.1 ALU Clause Initiation

ALU* control-flow instructions1 (such as ALU, ALU_BREAK, ALU_POP_AFTER, etc.) 
initiate an ALU clause. ALU clauses can contain OP2_INST_PRED_SET* 
instructions (abbreviated PRED_SET* instructions in this manual) that set new 
predicate bits for the processor’s control logic. The ALU control-flow instructions 
control how the predicates are applied for subsequent flow control.

ALU* control-flow instructions are encoded using the ALU_DWORD[0,1] microcode 
formats, described in Section 8.1 on page 8-2. The ALU instructions within an 
ALU clause are described in Chapter 4, “ALU Clauses,” and Section 7.2, “ALU 
Instructions,” page 7-41. 

The USES_WATERFALL bit in an ALU* control-flow instruction is used to mark 
clauses that can use constant waterfalling. This bit allows the processor to take 
scheduling restrictions into account. This bit must be set for clauses containing 
an instruction that writes to the address register (AR), which include all MOVA* 
instructions. Setting this option on a clause that does not use the AR register 
results in decreased performance. The contents of the AR register are not valid 
past the end of the clause; the register must be written in every clause before it 
is read.

ALU* control-flow instructions support locking up to four pages in the constant 
registers. The KCACHE_* fields control constant-cache locking for this ALU clause; 
the clause does not begin execution until all pages are locked, and the locks are 
held until the clause completes. There are two banks of 16 constants available 
for KCACHE locking; once locked, the constants are available within the ALU 
clause using special selects. See Section 4.6.4, “ALU Constants,” page 4-8, for 
more about ALU constants. 

3.3.2 Vertex-Fetch Clause Initiation and Execution

The VTX and VTX_TC control-flow instructions initiate a vertex-fetch clause, 
starting at the double-quadword-aligned (128-bit) offset in the ADDR field and 
containing COUNT + 1 instructions. The VTX_TC instruction issues the vertex fetch 
through the texture cache (TC) and is useful for systems that lack a vertex cache 
(VC). 

The VTX and VTX_TC control-flow instructions are encoded using the 
CF_DWORD[0,1] microcode formats, which are described in Section 8.1 on page 
8-2. The vertex-fetch instructions within a vertex-fetch clause are described in 
Chapter 5, “Vertex-Fetch Clauses,” and Section 7.3, “Vertex-Fetch Instructions,” 
page 7-181. 

3.3.3 Texture-Fetch Clause Initiation and Execution

The TEX control-flow instruction initiates a texture-fetch or constant-fetch clause, 
starting at the double-quadword-aligned (128-bit) offset in the ADDR field and 

1. An asterisk (*) after a mnemonic string indicates that there are additional characters
in the string that define variants. 



AT I  R 6 0 0  Te c h n o l o g y

Import and Export Instructions 3-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

containing COUNT + 1 instructions. There is only one instruction for texture fetch, 
and there are no special fields in the instruction for texture clause execution. 

The TEX control-flow instruction is encoded using the CF_DWORD[0,1] microcode 
formats, which are described in Section 8.1 on page 8-2. The texture-fetch 
instructions within a texture-fetch clause are described in Chapter 6, “Texture-
Fetch Clauses,” and Section 7.4, “Texture-Fetch Instructions,” page 7-183. 

3.4 Import and Export Instructions
Importing means reading data from an input buffer (a scratch buffer, ring buffer, 
or reduction buffer) to GPRs. Exporting means writing data from GPRs to an 
output buffer (a scratch buffer, ring buffer, stream buffer, or reduction buffer), or 
writing an address for data inputs from a scratch or reduction buffer. 

Importing and exporting is done using the CF_ALLOC_EXPORT_DWORD0 and 
CF_ALLOC_EXPORT_DWORD1_{BUF, SWIZ} microcode formats. Two instructions, 
EXPORT and EXPORT_DONE, are used for normal pixel, position, and parameter-
cache imports and exports. The remaining instructions, MEM*, are used for 
memory operations to all buffer types.

3.4.1 Normal Exports (Pixel, Position, Parameter Cache)

Most exports from a vertex shader (VS) and a pixel shader (PS) use the EXPORT 
and EXPORT_DONE instructions. The last export of a particular type (pixel, position, 
or parameter) uses the EXPORT_DONE instruction to signal hardware that the 
thread is finished with output for that type. These import and export instructions 
can use the CF_ALLOC_EXPORT_DWORD1_SWIZ microcode format, which provides 
optional swizzles for the outputs. These instructions can be used only by VS and 
PS threads; GS and DC threads must use one of the memory export instructions, 
MEM*. 

Software indicates the type of export to perform by setting the TYPE field of the 
CF_ALLOC_EXPORT_DWORD0 microcode format equal to one of the following values:

• EXPORT_PIXEL — Pixel value output (from PS shaders). Send the output to 
the pixel cache.

• EXPORT_POS — Position output (from VS shaders). Send the output to the 
position buffer.

• EXPORT_PARAM — Parameter cache output (from VS shaders). Send the 
output to the parameter cache.

The RW_GPR and RW_REL fields indicate the GPR address (first_gpr) from which 
to read the first value or to which to write the first value (the GPR address can 
be relative to the loop index (aL). The value BURST_COUNT + 1 is the number of 
GPR outputs being written (the BURST_COUNT field stores the actual number 
minus one). The Nth export value is read from GPR (first_gpr + N). The 
ARRAY_BASE field specifies the export destination of the first export and can take 
on one of the values shown in Table 3.3, depending on the TYPE field. The value 
increments by one for each successive export.



AT I  R 6 0 0  Te c h n o l o g y

3-8 Import and Export Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Each memory write may be swizzled with the fields SEL_[X,Y,Z,W]. To disable 
writing an element, write SEL_[X,Y,Z,W] = SEL_MASK. 

3.4.2 Memory Reads and Writes

All imports from, and exports to, memory use one of the following instructions:

• MEM_SCRATCH — Scratch buffer (read and write).

• MEM_REDUCTION — Reduction buffer (read and write). 

• MEM_STREAM[0,3] — Stream buffer (write-only), for DirectX10 compliance, 
used by VS output for up to four streams. 

• MEM_RING — Ring buffer (write-only), used for DC and GS output.

• MEM_EXPORT — Scatter reads and writes. 

These instructions always use the CF_ALLOC_EXPORT_DWORD1_BUF microcode 
format, which provides an array size for indexed operations and an element mask 
for writes (there is no element mask for reads from memory). No arbitrary swizzle 
is available; any swizzling must be done in an ALU clause. These instructions 
can be used by any program type.

There is one scratch buffer available for imports or exports per program type 
(four scratch buffers in total). There is only one reduction buffer available; any 
program type can use it, but only one program can use it at a time. Stream 
buffers are available only to VS programs; ring buffers are available to GS, DC, 
and PS programs, and to VS programs when no GS and DC are present. Pixel-
shader frame buffers use the ring buffer (MEM_RING).

The operation performed by these instructions is modified by the TYPE field, 
which can be one of the following:

• EXPORT_WRITE — Write to buffer.

• EXPORT_WRITE_IND — Write to buffer, using offset supplied by INDEX_GPR.

• IMPORT_READ — Read from buffer (scratch and reduction buffers only).

• IMPORT_READ_IND — Read from buffer using offset supplied by INDEX_GPR 
(scratch and reduction only).

Table 3.3 Possible ARRAY_BASE Values

TYPE

ARRAY_BASE

InterpretationField Mnemonic

EXPORT_PIXEL 7:0 CF_PIXEL_MRT[7,0] Frame Buffer multiple render target (MRT), no fog.

23:16 CF_PIXEL_MRT[7,0]_FOG Frame Buffer multiple render target (MRT), with fog.

61 CF_PIXEL_Z Computed Z.

EXPORT_POS 63:60 CF_POS_[3,0] Position index of first export.

EXPORT_PARAM 31:0 Parameter index of first export.



AT I  R 6 0 0  Te c h n o l o g y

Synchronization with Other Blocks 3-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

The RW_GPR and RW_REL fields indicate the GPR address (first_gpr) to read the 
first value from, or write the first value to (the GPR address can be relative to the 
loop register). The value (BURST_COUNT + 1) * (ELEM_SIZE + 1) is the 
number of outputs, in doublewords, being written. The BURST_COUNT and 
ELEM_SIZE fields store the actual number minus one. ELEM_SIZE must be three 
(representing four doublewords) for scratch and reduction buffers, and 
ELEM_SIZE = 0 (doubleword) is intended for stream-out and ring buffers.

The memory address is based on the value in the ARRAY_BASE field (see 
Table 3.3, on page 3-8). If the TYPE field is set to EXPORT_*_IND 
(use_index == 1), the value contained in the register specified by the INDEX_GPR 
field, multiplied by (ELEM_SIZE + 1), is added to this base. The final equation for 
the first address in memory to read or write from (in doublewords) is:

first_mem = (ARRAY_BASE + use_index * GPR[INDEX_GPR]) * (ELEM_SIZE + 1)

The ARRAY_SIZE field specifies a point at which the burst is clamped; no memory 
is read or written past (ARRAY_BASE + ARRAY_SIZE) * (ELEM_SIZE + 1) 
doublewords. The exact units of ARRAY_BASE and ARRAY_SIZE differ depending 
on the memory type; for scratch and reduction buffers, both are in units of four 
doublewords (128 bits); for stream and ring buffers, both are in units of one 
doubleword (32 bits).

Indexed GPRs can stray out of bounds. If the index takes a GPR address out of 
bounds, then the rules specified for ALU GPR reads and writes apply, except for 
a memory read in which the result is written to GPR0. See Section 4.6.3, “Out-
of-Bounds Addresses,” page 4-7.

The R670 supports a general memory export (read and write) in which shader 
threads can read from, and write to, arbitrary addresses within a specified 
memory range. This allows array-based and scatter access to memory. All 
threads share a common memory buffer, and there is no synchronization or 
ordering of writes between threads. A thread can read data that it has written and 
be guaranteed that previous writes from this thread have completed; however, a 
flush must take place before reading data from the memory-export area that 
another thread has written. Exports can only be written to a linear memory buffer 
(no tiling).

Each thread is responsible for determining the addresses it accesses.

The MEM_EXPORT instruction outputs data along with a unique dword address per 
pixel from a GPR, plus the global export-memory base address. Data is from one 
to four DWORDs. 

3.5 Synchronization with Other Blocks
Three instructions, EMIT_VERTEX, EMIT_CUT_VERTEX, and CUT_VERTEX, notify the 
processor’s primitive-handling blocks that new vertices are complete or primitives 
finished. These instructions typically follow the corresponding export operation 
that produces a new vertex:



AT I  R 6 0 0  Te c h n o l o g y

3-10 Conditional Execution
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

• EMIT_VERTEX indicates that a vertex has been exported.

• EMIT_CUT_VERTEX indicates that a vertex has been exported and that the 
primitive has been cut after the vertex.

• CUT_VERTEX indicates that the primitive has been cut, but does not indicate 
a vertex has been exported by itself. 

These instructions use the CF_DWORD[0,1] microcode formats and can be 
executed only by a GS program; they are invalid in other programs. 

3.6 Conditional Execution
The remaining CF instructions include conditional execution and manipulation of 
the branch-loop states. The following subsections describes how conditional 
executions operate and describe the specific instructions.

3.6.1 Valid and Active Masks

Every element in the three bits that specify its state can be manipulated by a 
program.

• a one-bit valid mask and a 2-bit per-pixel state. The valid mask is set for any 
pixel that is covered by the original primitive and has not been killed by an 
ALU KILL operation. 

• a two-bit per-pixel state that reflects the pixel’s active status as conditional 
instructions are executed; it can take on the following states:

– Active: The pixel is currently executing.

– Inactive-branch: The pixel is inactive due to a branch (ALU PRED_SET*) 
instruction.

– Inactive-continue: The pixel is inactive due to a ALU_CONTINUE instruction 
inside a loop.

– Inactive-break: The pixel is inactive due to a ALU_BREAK instruction inside 
a loop.

Once the valid mask is cleared, it can not be restored. The per-pixel state can 
change during the lifetime of the program in response to conditional-execution 
instructions. Pixels that are invalid at the beginning of the program are put in one 
of the inactive states and do not normally execute (but they can be explicitly 
enabled, see below). Pixels that are killed during the program maintain their 
current active state (but they can be explicitly disabled, see below).

Branch-loop instructions can push the current pixel state onto the stack. This 
information is used to restore the pixel state when leaving a loop or conditional 
instruction block. CF instructions allow conditional execution in one of the 
following ways:



AT I  R 6 0 0  Te c h n o l o g y

Conditional Execution 3-11
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

• Perform a condition test for each pixel based on current processor state: 

– The condition test determines which pixels execute the current 
instruction, and per-pixel state is unmodified, or

– The per-pixel state is modified; pixels that pass the condition test are put 
into the active state, and pixels that fail the condition test are put into one 
of the inactive states, or

– If at least one pixel passes, push the current per-pixel state onto the 
stack, then modify the per-pixel state based on the results of the test. If 
all pixels fail the test, jump to a new location. Some instructions can also 
pop the stack multiple times and change the per-pixel state to the result 
of the last pop; otherwise, the per-pixel state is left unmodified.

• Pop per-pixel state from the stack, replacing the current per-pixel state with 
the result of the last pop. Then, perform a condition test for each pixel based 
on the new state. Update the per-pixel state again based on the results of 
the test.

The condition test is computed on each pixel based on the current per-pixel state 
and, optionally, the valid mask. Instructions can execute in whole quad mode or 
valid pixel mode, which include the current valid mask in the condition test. This 
is controlled with the WHOLE_QUAD_MODE and VALID_PIXEL_MODE bits in the CF 
microcode formats, as described in the section immediately below. The condition 
test can also include the per-pixel state and a boolean constant, controlled by the 
COND field.

3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE

A quad is a set of four pixels arranged in a 2-by-2 array, such as the pixels 
representing the four vertices of a quadrilateral. The whole quad mode 
accommodates instructions in which the result can be used by a gradient 
operation. Any instruction with the WHOLE_QUAD_MODE bit set begins execution as 
if all pixels were active. This takes effect before a condition specified in the COND 
field is applied (if available). For most CF instructions, it does not affect the active 
mask; inactive pixels return to their inactive state at the end of the instruction. 
Some branch-loop instructions that update the active mask reactivate pixels that 
were previously disabled by flow control or invalidation. These parameters assert 
whole quad mode for multiple CF instructions without setting the 
WHOLE_QUAD_MODE bit every time. Details for the relevant branch-loop instructions 
are described in Section 3.7, “Branch and Loop Instructions,” page 3-15. In 
general, instructions that can compute a value used in a gradient computation 
are executed in whole quad mode. All CF instructions support this mode.

In certain cases during whole quad mode, it can be useful to deactivate invalid 
pixels. This can occur in two cases:

• The program is in whole quad mode, computing a gradient. Related 
information not involved in the gradient calculation must be computed. As an 
optimization, the related information can be calculated without completely 
leaving whole quad mode by deactivating the invalid pixels.



AT I  R 6 0 0  Te c h n o l o g y

3-12 Conditional Execution
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

• The ALU executes a KILL instruction. Killed pixels remain active because the 
processor does not know if the pixels are currently being used to compute a 
result that is used in a gradient calculation. If the recently invalidated pixels 
are not used in a gradient calculation, they can be deactivated.

Invalid pixels can be deactivated by entering valid pixel mode. Any instruction 
with the VALID_PIXEL_MODE bit set begins execution as if all invalid pixels were 
inactive. This takes effect before a condition specified in the COND field is 
applied (if available). For most CF instructions, it does not affect the active mask; 
however, as in whole quad mode, it influences the active mask for branch-loop 
instructions that update the active mask. These instructions can be used to 
permanently disable pixels that were recently activated. Valid pixel mode 
normally is not used to exit whole quad mode; whole quad mode is exited 
automatically when reaching the end of scope for the branch-loop instruction that 
began in whole quad mode.

Instructions using the CF_DWORD[0,1] or the CF_ALLOC_EXPORT_DWORD[0,1] 
microcode formats have VALID_PIXEL_MODE fields. ALU clause instructions 
behave as if the VALID_PIXEL_MODE bit were cleared. Valid pixel mode is not the 
default mode; normal programs that do not contain gradient operations clear the 
VALID_PIXEL_MODE bit. The valid pixel mode is used only to deactivate pixels 
invalidated by a KILL instruction and to temporarily inhibit the effects of whole 
quad mode. Do not set both the WHOLE_QUAD_MODE bit and VALID_PIXEL_MODE 
bit.

Branch-loop instructions that pop from the stack interpret the valid pixel mode 
differently. If the mode is set on an instruction that pops the stack, invalid pixels 
are deactivated after the active mask is restored from the stack. This can make 
the effect of the valid pixel mode permanent for a killed pixel that is executed 
inside a conditional branch. By default, the per-pixel active state is overwritten 
with the stack contents on each pop, without regard for the current active state; 
however, when VALID_PIXEL_MODE is set, the invalid pixels are deactivated even 
though they were active going into the conditional scope.

3.6.3 The Condition (COND) Field

Instructions that use the CF_DWORD[0,1] microcode formats have a COND field 
that lets them be conditionally executed. The COND field can have one of the 
following values:

• CF_COND_ACTIVE — Pixel currently active. Non-branch-loop instructions can 
use only this setting.

• CF_COND_BOOL — Pixel currently active, and the boolean referenced by 
CF_CONST is one.

• CF_COND_NOT_BOOL — Pixel currently active, and the boolean referenced by 
CF_CONST is zero.

For most CF instructions, COND is used only to determine which pixels are 
executing that particular instruction; the result of the test is discarded after the 
instruction completes. Branch-loop instructions that manipulate the active state 



AT I  R 6 0 0  Te c h n o l o g y

Conditional Execution 3-13
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

can use the result of the test to update the new active mask; these cases are 
described below. Non-branch-loop instructions can use only the CF_COND_ACTIVE 
setting. Generally, branch-loop instructions that push pixel state onto the stack 
push the original pixel state before beginning the instruction, and use the result 
of COND to write the new active state. Some instructions that pop from the stack 
can pop the stack first, then evaluate the condition code, and update the per-
pixel state based on the result of the pop and the condition code.

Instructions that do not have a COND field behave as if CF_COND_ACTIVE were 
used. ALU clauses do not have a COND field; they execute pixels based on the 
current active mask. ALU clauses can update the active mask using PRED_SET* 
instructions, but changes to the active mask are not observed for the remainder 
of the ALU clause (however, the clause can use the predicate bits to observe the 
effect). Changes to the active mask from the ALU take effect at the beginning of 
the next CF instruction.

3.6.4 Computation of Condition Tests

The COND, WHOLE_QUAD_MODE, and VALID_PIXEL_MODE fields combine to form the 
condition test results shown in Table 3.4. 

The following steps indicate how the per-pixel state can be updated during a CF 
instruction that does not unconditionally pop the stack:

1. Evaluate the condition test for each pixel using current state, COND, 
WHOLE_QUAD_MODE, and VALID_PIXEL_MODE.

2. Execute the CF instruction for pixels passing the condition test.

3. If the CF instruction is a PUSH, push the per-pixel active state onto the stack 
before updating the state.

4. If the CF instruction updates the per-pixel state, update the per-pixel state 
using the results of condition test.

ALU clauses that contain multiple PRED_SET* instructions can perform some of 
these operations more than once. Such clause instructions push the stack once 
per PRED_SET* operation.

Table 3.4 Condition Tests

COND Default WHOLE_QUAD_MODE VALID_PIXEL_MODE

CF_COND_ACTIVE True if and only if pixel is 
active.

True if and only if quad con-
tains active pixel.

True if and only if pixel is 
both active and valid.

CF_COND_BOOL True if and only if pixel is 
active and boolean refer-
enced by CF_CONST is one.

True if quad contains active 
pixel and boolean referenced 
by CF_CONST is one.

True if and only if pixel is 
both active and valid, and 
boolean referenced by 
CF_CONST is one.

CF_COND_NOT_BOOL True if and only if pixel is 
active and boolean refer-
enced by CF_CONST is one.

True if quad contains active 
pixel and boolean referenced 
by CF_CONST is one.

True if and only if pixel is 
both active and valid, and 
boolean referenced by 
CF_CONST is one.



AT I  R 6 0 0  Te c h n o l o g y

3-14 Conditional Execution
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

The following steps loosely illustrate how the active mask (per-pixel state) can 
be updated during a CF instruction that pops the stack. These steps only apply 
to instructions that unconditionally pop the stack; instructions that can jump or 
pop if all pixels fail the condition test do not use these steps:

1. Pop the per-pixel state from the stack (can pop zero or more times). Change 
the per-pixel state to the result of the last POP.

2. Evaluate the condition test for each pixel using new state, COND, 
WHOLE_QUAD_MODE, and VALID_PIXEL_MODE.

3. Update the per-pixel state again using results of condition test.

3.6.5 Stack Allocation

Each program type has a stack for maintaining branch and other program states. 
The maximum number of available stack entries is controlled by a host-written 
register or by the hardware implementation of the processor. The minimum 
number of stack entries required to correctly execute a program is determined by 
the deepest control-flow instruction. 

Each stack entry contains a number of subentries. The number of subentries per 
stack entry varies, based the number of thread groups (simultaneously executing 
threads on a SIMD pipeline) per program type that are supported by the target 
processor. If a processor that supports 64 thread groups per program type is 
configured logically to use only 48 thread groups per program type, the stack 
requirement for a 64-item processor still applies. Table 3.5 shows the number of 
subentries per stack entry, based on the physical thread-group width of the 
processor.

The CALL*, LOOP_START*, and PUSH* instructions each consume a certain 
number of stack entries or subentries. These entries are released when the 
corresponding POP, LOOP_END, or RETURN instruction is executed. The additional 
stack space required by each of these flow-control instructions is described in 
Table 3.6. 

Table 3.5 Stack Subentries

Physical Thread-Group Width of Processor

16 32 48 64

Subentries per Entry 8 8 4 4



AT I  R 6 0 0  Te c h n o l o g y

Branch and Loop Instructions 3-15
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

At any point during the execution of a program, if A is the total number of full 
entries in use, and B is the total number of subentries in use, then STACK_SIZE 
is calculated by:

A + B / (# of subentries per entry) <= STACK_SIZE

3.7 Branch and Loop Instructions
Several CF instructions handle conditional execution (branching), looping, and 
subroutine calls. These instructions use the CF_DWORD[0,1] microcode formats 
and are available to all thread types. The branch-loop instructions are listed in 
Table 3.7, along with a summary of their operations. The instructions listed in this 
table implicitly begin with CF_INST_. 

Table 3.6 Stack Space Required for Flow-Control Instructions

Instruction

Stack Size per Physical Thread-Group 
Width

Comments16 32 48 64

PUSH, PUSH_ELSE when 
whole quad mode is not 
set, and ALU_PUSH_BEFORE

one 
subentry

one 
subentry

one 
subentry

one 
subentry

If a PUSH instruction is invoked, two 
subentries on the stack must be 
reserved to hold the current active 
(valid) masks.

PUSH, PUSH_ELSE when 
whole quad mode is set

one entry one entry one entry one entry

LOOP_START* one entry one entry one entry one entry

CALL, CALL_FS two 
subentries

one 
subentry

one 
subentry

one 
subentry

A 16-bit-wide processor needs two 
subentries because the program 
counter has more than 16 bits.

Table 3.7 Branch-Loop Instructions

Instruction

Condition 
Test 

Computed Push Pop Jump Description

PUSH Yes, before 
push.

Yes, if a 
pixel 
passes 
test.

Yes, if all 
pixels fail 
test.

Yes, if all 
pixels fail 
test.

If all pixels fail the condition test, pop 
POP_COUNT entries from the stack, and 
jump to the jump address; otherwise, 
push per-pixel state (active mask) onto 
stack. After the push, active pixels that 
failed the condition test transition to the 
inactive-branch state.

PUSH_ELSE Yes, before 
push.

Yes, 
always.

No. Yes, if all 
pixels fail 
test.

Push current per-pixel state (active 
mask) onto the stack, and compute new 
active mask. The instruction implement 
the ELSE part of a higher-level IF 
statement. 

POP Yes, before 
pop.

No. Yes. Yes Pop POP_COUNT entries from the stack. 
Also, jump if condition test fails for all 
pixels.



AT I  R 6 0 0  Te c h n o l o g y

3-16 Branch and Loop Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

LOOP_START
LOOP_START_NO_AL
LOOP_START_DX10

At beginning. 
All pixels fail if 
loop count is 
zero.

Yes, if a 
pixel 
passes 
test. 
Pushes 
loop state.

Yes, if all 
pixels fail 
test.

Yes, if all 
pixels fail 
test.

Begin a loop. Failing pixels go to inac-
tive-break.

LOOP_END At beginning. 
All pixels fail if 
loop count is 
one.

No. Yes, if all 
pixels fail 
test. Pops 
loop 
state.

Yes, if 
any pixel 
passes 
test.

End a loop. Pixels that have not explic-
itly broken out of the loop are 
reactivated. Exits loop if all pixels fail 
condition test.

LOOP_CONTINUE At beginning. No. Yes, if all 
pixels 
done with 
iteration.

Yes, if all 
pixels 
done with 
iteration.

Pixels passing test go to inactive-con-
tinue. In the event of a jump, the stack 
is popped back to the original level at 
the beginning of the loop; the POP_COUNT 
field is ignored.

LOOP_BREAK At beginning. No. Yes, if all 
pixels 
done with 
iteration.

Yes, if all 
pixels 
done with 
iteration.

Pixels passing test go to inactive-break. 
In the event of a jump, the stack is 
popped back to the original level at the 
beginning of the loop; the POP_COUNT 
field is ignored.

JUMP At beginning. No. Yes, if all 
pixels fail 
test.

Yes, if all 
pixels fail 
test.

Jump to ADDR if all pixels fail the condi-
tion test. 

ELSE After last pop. No. Yes. Yes, if all 
pixels are 
inactive 
after 
ELSE.

Pop the stack, then invert status of 
active or inactive-branch pixels that pass 
conditional test and were active on last 
PUSH.

CALL
CALL_FS

After last pop. Yes, if a 
pixel 
passes 
test. 
Pushes 
address.

Yes. Yes, if 
any pixel 
passes 
test.

Call a subroutine if any pixel passes the 
condition test and the maximum call 
depth limit is not exceeded. POP_COUNT 
must be zero.

RETURN
RETURN_FS

No. No. Yes. Pops 
address 
from 
stack if 
jump 
taken.

Yes, if all 
active 
pixels 
pass test.

Return from a subroutine.

ALU No. No. No. N/A PRED_SET* with exec mask update puts 
active pixels in to the inactive-branch 
state.

ALU_PUSH_BEFORE No. Before 
ALU 
clause.

No. N/A Equivalent to PUSH; ALU clause.

ALU_POP_AFTER No. No. Yes. N/A Equivalent to ALU, POP,

ALU_POP2_AFTER POP, POP

Table 3.7 Branch-Loop Instructions (Cont.) 

Instruction

Condition 
Test 

Computed Push Pop Jump Description



AT I  R 6 0 0  Te c h n o l o g y

Branch and Loop Instructions 3-17
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

3.7.1 ADDR Field

The address specified in the ADDR field of a CF instruction is a quadword-aligned 
(64 bit) offset from the base of the program (host-specified PGM_START_* 
register). The execution continues from this offset. Branch-loop instructions 
typically implement conditional jumps, so execution continues either at the next 
CF instruction, or at the CF instruction located at the ADDR address.

3.7.2 Stack Operations and Jumps

Several stack operations are available in the CF instruction set: PUSH, POP, and 
ELSE. There also is a JUMP instruction that jumps if all pixels fail a condition test.

• PUSH - pushes the current per-pixel state from hardware-maintained registers 
onto the stack, then updates the per-pixel state based on the condition test. 
If all pixels fail the test, PUSH does not push anything onto the stack; instead, 
it performs POP_COUNT number of pops (may be zero), then jumps to a 
specified address if all pixels fail the test.

• POP - pops per-pixel state from the stack to hardware-maintained registers; it 
pops the POP_COUNT number of entries (can be zero). POP can apply the 
condition test to the result of the POP, this is useful for disabling pixels that 
are killed within a conditional block. To disable such pixels, set the POP 
instruction’s VALID_PIXEL_MODE bit, and set the condition to 
CF_COND_ACTIVE. If POP_COUNT is zero, the POP instruction simply modifies 
the current per-pixel state based on the result of the condition test. Pop 
instructions never jump.

• ELSE - performs a conceptual else operation. It starts by popping 
POP_COUNT entries (can be zero) from the stack. Then, it inverts the sense 
of active and branch-inactive pixels for pixels that are both active (as of the 
last surviving PUSH operation) and pass the condition test. The ELSE 
operation will then jump to the specified address if all pixels are inactive.

• JUMP - is used to jump over blocks of code that no pixel wants to execute. 
JUMP first pops POP_COUNT entries (may be zero) from the stack. It then 
applies the condition test to all pixels. If all pixels fail the test, it jumps to the 
specified address; otherwise, it continues execution on the next instruction.

ALU_CONTINUE No. No. No. N/A Change active pixels masked by ALU to 
inactive-continue. Equivalent to PUSH, 
ALU, ELSE, CONTINUE, POP.

ALU_BREAK No. No. No. N/A Change active pixels masked by ALU to 
inactive-break. Equivalent to PUSH, 
ALU, ELSE, CONTINUE, POP.

ALU_ELSE_AFTER No. No. Yes. N/A Equivalent to ALU; POP.

Table 3.7 Branch-Loop Instructions (Cont.) 

Instruction

Condition 
Test 

Computed Push Pop Jump Description



AT I  R 6 0 0  Te c h n o l o g y

3-18 Branch and Loop Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

3.7.3 DirectX9 Loops

DirectX9-style loops are implemented with the LOOP_START and LOOP_END 
instructions. Both instructions specify the DirectX9 integer constant using the 
CF_CONST microcode field. This field specifies the integer constant to use for the 
loop’s trip count (maximum number of loops), beginning value (loop index 
initializer), and increment (step). The constant is a host-written vector, and the 
three loop parameters are stored as three elements of the vector. The COND field 
also can refer to the CF_CONST field for its boolean value. It is not be possible to 
conditionally enter a loop based on a boolean constant unless the boolean 
constant and integer constant have the same numerical address.

The LOOP_START instruction jumps to the address specified in the instruction’s 
ADDR field if the initial loop count is zero. Software normally sets the ADDR field to 
the CF instruction following the matching LOOP_END instruction. If LOOP_START 
does not jump, hardware sets up the internal loop state. Loop-index-relative 
addressing (as specified by the INDEX_MODE field of the ALU_DWORD0 microcode 
format) is well-defined only within the loop. If multiple loops are nested, relative 
addressing refers to the loop register of the innermost loop. The loop register of 
the next-outer loop is automatically restored when the innermost loop exits.

The LOOP_END instruction jumps to the address specified in the instruction’s ADDR 
field if the loop count is nonzero after it is decremented, and at least one pixel 
has not been deactivated by a LOOP_BREAK instruction. Normally, software sets 
the ADDR field to the CF instruction following the matching LOOP_START. The 
LOOP_END instruction continues to the next CF instruction when the processor 
exits the loop.

DirectX9-style break and continue instructions are supported. The LOOP_BREAK 
instruction disables all pixels for which the condition test is true. The pixels 
remain disabled until the innermost loop exits. LOOP_BREAK jumps to the end of 
the loop if all pixels have been disabled by this (or a prior) LOOP_BREAK or 
LOOP_CONTINUE instruction. Software normally sets the ADDR field to the address 
of the matching LOOP_END instruction. If at least one pixel has not been disabled 
by LOOP_BREAK or LOOP_CONTINUE, execution continues to the next CF 
instruction.

The LOOP_CONTINUE instruction disables all pixels for which the condition test is 
true. The pixels remain disabled until the end of the current iteration of the loop, 
and are re-activated by the innermost LOOP_END instruction. The LOOP_CONTINUE 
instruction jumps to the end of the loop if all pixels have been disabled by this 
(or a prior) LOOP_BREAK or LOOP_CONTINUE instruction. The ADDR field points to 
the address of the matching LOOP_END instruction. If at least one pixel has not 
been disabled by LOOP_BREAK or LOOP_CONTINUE, the program continues to the 
next CF instruction.

Each instruction can manipulate the stack. LOOP_START pushes the current per-
pixel state and the prior loop state onto the stack. If LOOP_START does not enter 
the loop, it pops POP_COUNT entries (may be zero) from the stack, similar to the 
PUSH instruction when all pixels fail. The LOOP_END instruction evaluates the 
condition test at the beginning of the instruction. If all pixels fail the test, the 



AT I  R 6 0 0  Te c h n o l o g y

Branch and Loop Instructions 3-19
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

instruction exits the loop. LOOP_END pops the loop state and one set of the per-
pixel state from the stack when it exits the loop. It ignores POP_COUNT. The 
LOOP_BREAK and LOOP_CONTINUE instructions pop the POP_COUNT entries (may be 
zero) from the stack if the jump is taken. 

3.7.4 DirectX10 Loops

DirectX10 loops are implemented with the LOOP_START_DX10 and LOOP_END 
instructions. The LOOP_START_DX10 instruction enters the loop by pushing the 
stack. The LOOP_END instruction jumps to the address specified in the ADDR field 
if at least one pixel has not yet executed a LOOP_BREAK instruction. The ADDR field 
points to the CF instruction following the matching LOOP_START_DX10 instruction. 
The LOOP_END instruction continues to the next CF instruction, at which the 
processor exits the loop. The LOOP_BREAK and LOOP_CONTINUE instructions are 
allowed in DirectX10-style loops.

Manipulations of the stack are the same for LOOP_{START_DX10,END} instructions 
and LOOP_{START,END} instructions.

3.7.5 Repeat Loops

Repeat loops are implemented with the LOOP_START_NO_AL and LOOP_END 
instructions. These loops do not push the loop index (aL) onto the stack, nor do 
they update aL; otherwise, they are identical to LOOP_{START,END} instructions.

3.7.6 Subroutines

The CALL and RETURN instructions implement subroutine calls and the 
corresponding returns. For CALL, the ADDR field specifies the address of the first 
CF instruction in the subroutine. The ADDR field is ignored by the RETURN 
instruction (the return address is read from the stack). Calls have a nesting depth 
associated with them that is incremented on each CALL instruction by the 
CALL_COUNT field. The nesting depth is restored on a RETURN instruction. If the 
program exceeds the maximum nesting depth (32) on the subroutine call (current 
nesting depth + CALL_COUNT > 32), the call is ignored. Setting CALL_COUNT to 
zero prevents the nesting depth from being updated on a subroutine call. 
Execution of a RETURN instruction when the program is not in a subroutine is 
illegal. 

The CALL_FS instruction calls a fetch subroutine (FS) whose address is relative 
to the address specified in a host-configured register. The instruction also 
activates the fetch-program mode, which affects other operations until the 
corresponding RETURN instruction is reached. Only a vector shader (VS) program 
can call an FS subroutine, as described in Section 2.1, “Program Types,” page 2-
1. 

The CALL and CALL_FS instructions can be conditional. The subroutine is skipped 
if and only if all pixels fail the condition test or the nesting depth exceeds 32 after 
the call. The POP_COUNT field typically is zero for CALL and CALL_FS. 



AT I  R 6 0 0  Te c h n o l o g y

3-20 Branch and Loop Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

3.7.7 ALU Branch-Loop Instructions

Several instructions execute ALU clauses:

• ALU

• ALU_PUSH_BEFORE

• ALU_POP_AFTER

• ALU_POP2_AFTER

• ALU_CONTINUE

• ALU_BREAK

• ALU_ELSE_AFTER

The ALU instruction performs no stack operations. It is the most common method 
of initiating an ALU clause. Each PRED_SET* operation in the ALU clause 
manipulates the per-pixel state directly, but no changes to the per-pixel state are 
visible until the clause completes execution.

The other ALU* instructions correspond to their CF-instruction counterparts. The 
ALU_PUSH_BEFORE instruction performs a PUSH operation before each PRED_SET* 
in the clause. The ALU_POP{,2}_AFTER instructions pop the stack (once or twice) 
at the end of the ALU clause. The ALU_ELSE_AFTER instruction pops the stack, 
then performs an ELSE operation at the end of the ALU clause. And the 
ALU_{CONTINUE,BREAK} instructions behave similarly to their CF-instruction 
counterparts. The major limitation is that none of the ALU* instructions can jump 
to a new location in the CF program. They can only modify the per-pixel state 
and the stack.



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 4-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 4
ALU Clauses

Software initiates an ALU clause with one of the CF_INST_ALU* control-flow 
instructions, all of which use the CF_ALU_DWORD[0,1] microcode formats. 
Instructions within an ALU clause, called ALU instructions, perform operations 
using the scalar ALU.[X,Y,Z,W] and ALU.Trans units, which are described in this 
chapter. 

4.1 ALU Microcode Formats
ALU instructions are implemented with ALU microcode formats that are 
organized in pairs of two 32-bit doublewords. The doubleword layouts in memory 
are shown in Figure 4.1.

• +0 and +4 indicate the relative byte offset of the doublewords in memory. 

• {OP2, OP3} indicates a choice between the strings OP2 and OP3 (which 
specify two or three source operands).

• LSB indicates the least-significant (low-order) byte.

Figure 4.1 ALU Microcode Format Pair

4.2 Overview of ALU Features
An ALU vector is 128 bits wide and consists of four 32-bit elements. The data 
elements need not be related. The elements are organized in GPRs in little-
endian order, as shown in Figure 4.2. Element ALU.X is the least-significant (low-
order) element; element ALU.W is the most-significant (high-order) element. 

Figure 4.2 Organization of ALU Vector Elements in GPRs

31 24 23 16 15 8 7 0

ALU_DWORD1_{OP2, OP3} +4

ALU_DWORD0 +0

<------------ LSB ------------>

127 96 95 64 63 32 31 0

ALU.W ALU.Z ALU.Y ALU.X



AT I  R 6 0 0  Te c h n o l o g y

4-2 Overview of ALU Features
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

The processor contains multiple sets of five scalar ALUs. Four in each set can 
perform scalar operations on up to three 32-bit data elements each, with one 
32-bit result. The ALUs are called ALU.X, ALU.Y, ALU.Z, and ALU.W (or simply 
ALU.[X,Y,Z,W]). A fifth unit, called ALU.Trans, performs one scalar operation and 
additional operations for transcendental and advanced integer functions; it can 
replicate the result across all four elements of a destination vector. Although the 
processor has multiple sets of these five scalar ALUs, R600 software can 
assume that, within a given ALU clause, all instructions are processed by a single 
set of five ALUs. 

Software issues ALU instructions in variable-length groups called instruction 
groups. These perform parallel operations on different elements of a vector, as 
described in Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-
3. The ALU.[X,Y,Z,W] units are nearly identical in their functions. They differ only 
in the vector elements to which they write their result at the end of the instruction 
and in certain reduction operations (see Section 4.8.3, “Instructions for 
ALU.[X,Y,Z,W] Units Only,” page 4-22). The ALU.Trans unit can write to any 
vector element and can evaluate additional functions. 

ALU instructions can access 256 constants (from the constant registers) and 128 
GPRs (each thread accesses its own set of 128 GPRs). Constant-register 
addresses and GPR addresses can be absolute, relative to the loop index (aL), 
or relative to an index GPR. In addition to reading constants from the constant 
registers, an ALU instruction can refer to elements of a literal constant that is 
embedded in the instruction group. Instructions also have access to two 
temporary registers that contain the results of the previous instruction groups. 
The previous vector (PV) register contains a four-element vector that is the 
previous result from the ALU.[X,Y,Z,W] units; the previous scalar (PS) register 
contains a scalar that is the previous result from the ALU.Trans unit. 

Each instruction has its own set of source operands:

• SRC0 and SRC1 for instructions using the ALU_DWORD1_OP2 microcode 
format, and SRC0, SRC1,

• SRC2 for instructions using the ALU_DWORD1_OP3 microcode format. 

An instruction group that operates on a four-element vector is specified as at 
least four independent scalar instructions, one for each vector element. As a 
result, vector operations can perform a complex mix of vector-element and 
constant swizzles, and even swizzles across GPR addresses (subject to read-
port restrictions described in the next paragraph). Traditional floating-point and 
integer constants for common values (for example, 0, -1, 0.0, 0.5, and 1.0) can 
be specified for any source operand. 

Each ALU.[X,Y,Z,W] unit writes to an instruction-specified GPR at the end of the 
instruction. The GPR address can be absolute, relative to the loop index, or 
relative to an index GPR. The ALU.[X,Y,Z,W] units always write to their 
corresponding vector element, but each unit can write to a different GPR 
address. The ALU.Trans unit can write to any vector element of any GPR 
address. The outputs of each ALU unit can be clamped to the range [0.0, 1.0] 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instruction Slots and Instruction Groups 4-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

prior to being written, and some operations can multiply the output by a factor of 
2.0 or 4.0.

4.3 ALU Instruction Slots and Instruction Groups
An ALU instruction group is listed in Table 2.4 on page 2-6. Each group consists 
of one to five ALU instructions, optionally followed by one or two literal constants, 
each of which can hold two vector elements. Each instruction is 64 bits wide 
(composed of two 32-bit microcode formats). Two elements of a literal constant 
are also 64 bits wide. Thus, the basic memory unit for an ALU instruction group 
is a 64-bit slot, which is a position for an ALU instruction or an associated literal 
constant. An instruction group consists of one to seven slots, depending on the 
number of instructions and literal constants. All ALU instructions occupy one slot, 
except double-precision floating-point instructions, which occupy either two or 
four slots (see Section 4.12, “Double-Precision Floating-Point Operations,” 
page 4-29). The ALU clause size in the CF program is specified as the total 
number of slots occupied by the ALU clause. 

Each instruction in a group has a LAST bit that is set only for the last instruction 
in the group. The LAST bit delimits instruction groups from one another, allowing 
the R600 hardware to implement parallel processing for each instruction group. 
Each instruction is distinguished by the destination vector element to which it 
writes. An instruction is assigned to the ALU.Trans unit if a prior instruction in the 
group writes to the same vector element of a GPR, or if the instruction is a 
transcendental operation.

The instructions in an instruction group must be in instruction slots 0 through 4, 
in the order shown in Table 4.1. Up to four of the five instruction slots can be 
omitted. Also, if any instructions refer to a literal constant by specifying the 
ALU_SRC_LITERAL value for a source operand, the first, or both, of the two-
element literal constant slots (slots 5 and 6) must be provided; the second of 
these two slots cannot be specified alone. There is no LAST bit for literal 
constants. The number of the literal constants is known from the operations 
specified in the instruction. 

Given the options described above, the size of an ALU instruction group can 
range from 64 bits to 448 bits, in increments of 64 bits.

Table 4.1 Instruction Slots in an Instruction Group

Slot Entry Bits Type

0 Scalar instruction for ALU.X unit 64 src.X and dst.X vector-element slot

1 Scalar instruction for ALU.Y unit 64 src.Y and dst.Y vector-element slot

2 Scalar instruction for ALU.Z unit 64 src.Z and dst.Z vector-element slot

3 Scalar instruction for ALU.W unit 64 src.W and dst.W vector-element slot

4 Scalar instruction for ALU.Trans unit 64 Transcendental slot

5 X, Y elements of literal constant (X is the first dword) 64 Constant slot

6 Z, W elements of literal constant (Z is the first dword) 64 Constant slot



AT I  R 6 0 0  Te c h n o l o g y

4-4 Assignment to ALU.[X,Y,Z,W] and ALU.Trans Units
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

4.4 Assignment to ALU.[X,Y,Z,W] and ALU.Trans Units
Assignment of instructions to the ALU.[X,Y,Z,W] and ALU.Trans units is 
observable by software, since it determines the values PV and PS registers hold 
at the end of an instruction group. In some cases, there is an unambiguous 
assignment to ALUs based on the instructions and destination operands. In other 
cases, the last slot in an instruction group is ambiguous. It can be assigned to 
either the ALU.[X,Y,Z,W] unit or the ALU.Trans unit.1 

The following algorithm illustrates the assignment of instruction-group slots to 
ALUs. The instruction order described in Section 4.3, “ALU Instruction Slots and 
Instruction Groups,” page 4-3, must be observed. As a consequence, if the 
ALU.Trans unit is specified, it must be done with an instruction that has its LAST 
bit set.

begin
ALU_[X,Y,Z,W] := undef;
ALU_TRANS := undef;
for $i = 0 to number of instructions – 1

$elem := vector element written by instruction $i;
if instruction $i is transcendental only instruction

$trans := true;
elsif instruction $i is vector-only instruction

$trans := false;
elsif defined(ALU_$elem) or (not 

CONFIG.ALU_INST_PREFER_VECTOR and 
instruction $i is LAST)
$trans := true;

else
$trans := false;

if $trans
if defined(ALU_TRANS)

assert “ALU.Trans has already been allocated, 
cannot give to instruction $i.”;

ALU_TRANS := $i;
else

if defined(ALU_$elem)
assert “ALU.$elem has already been allocated, 

cannot give to instruction $i.”;
ALU_$elem := $i;

end

After all instructions in the instruction group are processed, any ALU.[X,Y,Z,W] or 
ALU.Trans operation that is unspecified implicitly executes a NOP instruction, 
thus invalidating the values in the corresponding elements of the PV and PS 
registers.

1. This ambiguity is resolved by a bit in the processor state, CONFIG.ALU_INST_PREFER_VECTOR, that 
is programmable only by the host. When the bit is set, ambiguous slots are assigned to 
ALU.Trans. When cleared (default), ambiguous slots are assigned to one of ALU.[X,Y,Z,W]. This 
setting applies to all thread types.



AT I  R 6 0 0  Te c h n o l o g y

OP2 and OP3 Microcode Formats 4-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.5 OP2 and OP3 Microcode Formats
To keep the ALU slot size at 64 bits while not sacrificing features, the microcode 
formats for ALU instructions have two versions: ALU_DWORD1_OP2 (page 8-18) and 
ALU_DWORD1_OP3 (page 8-23). The OP2 format is used for instructions that 
require zero, one, or two source operands plus destination operand. The OP3 
format is used for the smaller set of instructions requiring three source operands 
plus destination operand.

Both versions have an ALU_INST field, which specifies the instruction opcode. 
The ALU_DWORD1_OP2 format has a 10-bit instruction field; ALU_DWORD1_OP3 
format has a five-bit instruction field. The fields are aligned so that their MSBs 
overlap. In the OP2 version, the ALU_INST field uses a seven-bit opcode, and the 
high three bits are always 000b. In the OP3 version, at least one of the high three 
bits of the ALU_INST field is nonzero.

4.6 GPRs and Constants
Within an ALU clause, instructions can access to up to 127 GPRs and 256 
constants from the constant registers. Some GPR addresses can be reserved for 
clause temporaries. These are temporary values typically stored at 
GPR[124,127]1 that do not need to be preserved past the end of a clause. This 
gives a program access to temporary registers that do not count against its GPR 
count (the number of GPRs that a program can use), thus allowing more 
programs to run simultaneously.

For example, if the result of an instruction is required for another instruction 
within a clause, but not needed after the clause executes, a clause temporary 
can be used to hold the result. The first instruction specifies GPR[124, 127] as 
its destination, while the second instruction specifies GPR[124, 127] as its 
source. After the clause executes, GPR[124, 127] can be used by another 
clause.

Any constant-register address can be absolute, relative to the loop index, or 
relative to one of four elements in the address register (AR) that is loaded by a 
prior MOVA* instruction in the same clause. Any GPR (source or destination) 
address can be absolute, relative to the loop index, or relative to the X element 
in the address register (AR) that is loaded by a prior MOVA* instruction in the 
same clause. A clause using AR must be initiated by a CF instruction with the 
USES_WATERFALL bit set.

In addition to reading constants from the constant registers, any operand can 
refer to an element in a literal constant, as described in Section 4.3, “ALU 
Instruction Slots and Instruction Groups,” page 4-3. 

1. The number of clause temporaries can be programed only by the host processor using the configu-
ration-register field GPR_RESOURCE_MGMT_1.NUM_CLAUSE_TEMP_GPRS. A typical setting for this field is 
4. If the field has N > 0, then GPR[127 – N + 1, 127] are set aside as clause temporaries.



AT I  R 6 0 0  Te c h n o l o g y

4-6 GPRs and Constants
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Constants also can come from one of two banks of kcache constants that are 
read from memory before the clause executes. Each bank is a set of 16 
constants locked into the cache for the duration of the clause by the CF 
instruction that started it.

4.6.1 Relative Addressing

Each instruction can use only one index for relative addressing. Relative 
addressing is controlled by the SRC_REL and DST_REL fields of the instruction’s 
microcode format. The index used is controlled by the INDEX_MODE field of the 
instruction’s microcode format. Each source operand in the instruction then 
declares whether it is absolute or relative to the common index. The index used 
depends on the operand type and the setting of INDEX_MODE, as shown in Table 
4.2. 

The term flow-control loop index refers to the DirectX9-style loop index. Each 
instruction has its own INDEX_MODE control, so a single instruction group can refer 
to more than one type of index.

When using an AR index, the index must be initialized by a MOVA* operation that 
is present in a prior instruction group of the same clause. Thus, AR indexing is 
never valid on the first instruction of a clause.

An AR index cannot be used in an instruction group that executes a MOVA* 
instruction in any slot. Any slot in an instruction group with a MOVA* instruction 
using relative constant addressing can use only an INDEX_MODE of INDEX_LOOP. 
To issue a MOVA* from an AR-relative source, the source must be split into two 
separate instruction groups, the first performing a MOV from the relative source 
into a temporary GPR, and the second performing a MOVA* on the temporary 
GPR.

Only one AR element can be used per instruction group. For example, it is not 
legal for one slot in an instruction group to use INDEX_AR_X, and another slot in 
the same instruction group to use INDEX_AR_Y. Also, AR cannot be used to 
provide relative indexing for a kcache constant; kcache constants can use only 
the INDEX_LOOP mode for relative indexing.

GPR clause temporaries cannot be indexed.

Table 4.2 Index for Relative Addressing

INDEX_MODE GPR Operand Constant Register Operand Kcache Operand

INDEX_AR_X AR.X AR.X not valid

INDEX_AR_Y AR.X AR.Y not valid

INDEX_AR_Z AR.X AR.Z not valid

INDEX_AR_W AR.X AR.W not valid

INDEX_LOOP Loop Index (aL) Loop Index (aL) Loop Index (aL)



AT I  R 6 0 0  Te c h n o l o g y

GPRs and Constants 4-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.6.2 Previous Vector (PV) and Previous Scalar (PS) Registers

Instructions can read from two additional temporary registers: previous vector 
(PV) and previous scalar (PS). These contain the results from the ALU.[X,Y,Z,W] 
and ALU.Trans units, respectively, of the previous instruction group. Together, 
these registers provide five 32-bit elements; PV contains a four-element vector 
originating from the ALU.[X,Y,Z,W] output, and PS contains a single scalar value 
from the ALU.Trans output. The registers can be used freely in an ALU 
instruction group (although using one in the first instruction group of the clause 
makes no sense). NOP instructions do not preserve PV and PS values, nor are 
PV and PS values preserved past the end of the ALU clause.

4.6.3 Out-of-Bounds Addresses

GPR and constant-register addresses can stray out of bounds after relative 
addressing is applied. In some cases, an address that strays out of bounds has 
a well-defined behavior, as described below.

Assume N GPRs are declared per thread, and K clause temporaries are also 
declared. The GPR base address specified in SRC*_SEL must be in either the 
interval [0, N – 1] (normal clause GPR) or [128 – K, 127] (clause temporary), 
before any relative index is applied. If SRC*_SEL is a GPR address and does not 
fall into either of these intervals, the resulting behavior is undefined. For example, 
you cannot write code that generates GPRN[-1] to read from the last GPR in a 
program.

If a GPR read with base address in [0, N – 1] is indexed relatively, and the base 
plus the index is outside the interval [0, N – 1], the read value is always GPR0 
(including for texture- and vertex-fetch instructions and imports and exports). If a 
GPR write with base address in [0, N – 1] is indexed relatively, and the base plus 
the index is outside the interval [0, N – 1], the write is inhibited (including for 
texture- and vertex-fetch instructions), unless the instruction is a memory read. If 
the instruction is a memory read, the result are written to GPR0. Relative 
addressing on GPR clause temporaries is illegal. Thus, the behavior is undefined 
if a GPR with a base address in the [128 – K, 127] range is used with a relative 
index.

A constant-register base address is always be in-bounds. If a constant-register 
read is indexed relatively, and the base plus the index is outside the interval [0, 
255], the value read is NaN (0x7FFFFFFF).

If a kcache base address refers to a cache line that is not locked, the result is 
undefined. You cannot refer to kcache constants [0, 15] if the mode (as set by 
the CF instruction initiating the ALU clause) is KCACHE_NOP, and you cannot refer 
to kcache constants [16, 31] if the mode is KCACHE_NOP or KCACHE_LOCK_1. If a 
kcache read is indexed relatively, one cache line is locked with KCACHE_LOCK_1, 
and the base plus the index is outside the interval [0, 15], the value read is NaN 
(0x7FFFFFFF). If a kcache read is indexed relatively, two cache lines are locked, 
and the base plus the index is outside the interval [0, 31], the value read is NaN 
(0x7FFFFFFF).



AT I  R 6 0 0  Te c h n o l o g y

4-8 GPRs and Constants
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

4.6.4 ALU Constants

Each ALU instruction in the X,Y,Z or W slots can reference up to three constants; 
an instruction in the T slot can reference up to two constants. All ALU constants 
are 32 bits. There are four types of constants:

• DX9 ALU constants (constant file)

• DX10 ALU constants (constant cache)

• Literal constants

• Inline constants

All kernels operate exclusively in one of two modes: DX9 or DX10.

When in DX9 mode, ALU instructions have access to a constant file of 256 
128-bit constants; each instruction group can reference up to four of these. 
These constants exist only for PS and VS kernels.

In DX10 mode, each kernel can use up to 16 constant buffers. A constant buffer 
is a collection of constants in memory anywhere from 1 to 4096 128-bit 
constants. Each ALU clause can use only two windows of 32 constants. The can 
be windows into the same or different constant buffers.

4.6.4.1  Constant Cache

Each ALU clause can lock up to four sets of constants into the constant cache. 
Each set (one cache line) is 16 128-bit constants. These are split into two groups. 
Each group can be from a different constant buffer (out of 16 buffers). Each 
group of two constants consists of either [Line] and [Line+1], or [line + loop_ctr] 
and [line + loop_ctr +1].

4.6.4.2  Literal (in-line) Constants

Literal constants count against the total number of instructions that a clause can 
have. Up to four DWORD constants can be supplied and swizzled arbitrarily. 

4.6.4.3  Statically-Indexed Constant Access

The constant-file entries can be accessed either with absolute addresses, or 
addresses relative to the current loop index (aL, static indirect access). In both 
cases, all pixels in the vector pick the same constant to use, and there is no 
performance penalty. Swizzling is allowed.

4.6.4.4  Dynamically-Indexed Constant Access (AR-relative, Constant Waterfalling)

To support DX9 vertex shaders, we provide dynamic indexing of constant-file 
constants. This means that a GPR value is used as the index into the constant 
file. Since the value comes from a GPR, it can be unique for each pixel. In the 
worst case, it may take 64 times as long to execute this instruction, since up to 
64 constant-file reads can be required.



AT I  R 6 0 0  Te c h n o l o g y

Scalar Operands 4-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Dynamic indexing requires two instructions:

• MOVA: Move the four elements of a GPR into the Address Register (AR) to 
be used as the index value.

• <any ALU instruction>: Use the indices from the MOVA and perform 
the indirect lookup.

There is a two-instruction delay slot between loading and using the GPR index 
value. The processor sends the four elements at different times, so that it can 
optimize for receiving the X element three cycles before the W element. The 
GPR indices loaded by a MOVA instruction only persist for one clause; at the end 
of the clause they are invalidated. 

4.7 Scalar Operands
For each instruction, the operands src0, src1, and src2 are specified in the 
instruction’s SRC*_SEL and SRC*_ELEM fields. GPR and constant-register 
addresses can be relative-addressed, as specified in the SRC*_REL and 
INDEX_MODE fields. In the OP2 microcode format, src2 is undefined.

4.7.1 Source Addresses

The data source address is specified in the SRC*_SEL field. This can refer to one 
of the following.

• A GPR address, GPR[0, 127], with values [0, 127].

• A kcache constant in bank 0, kcache0[0, 31], with values [128, 159]; 
kcache0[16, 31] are accessible only if two cache lines have been locked.

• A kcache constant in bank 1, kcache1[0, 31], with values [160, 191]; 
kcache1[16, 31] are accessible only if two cache lines are locked.

• A constant-register address, c[0, 255], with values [256, 511].

• The previous vector (PV) or scalar (PS) result.

• A literal constant (two constants are present if any operand uses a Z or W 
constant).

• A floating-point inline constant (0.0, 0.5, 1.0).

• An integer inline constant (-1, 0, 1).

If the SRC*_SEL field specifies a GPR or constant-register address, then the 
relative index specified by the INDEX_MODE field is added to the address if the 
SRC*_REL bit is set.

The definitions of the selects for PV, PS, literal constant, and the special inline 
constant values are given in the microcode specification. Also, the following 
constant values are defined to assist in encoding and decoding the SRC*_SEL 
field:

• ALU_SRC_GPR_BASE = 0 — Base value for GPR selects.



AT I  R 6 0 0  Te c h n o l o g y

4-10 Scalar Operands
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

• ALU_SRC_KCACHE0_BASE = 128 — Base value for kcache bank 0 selects.

• ALU_SRC_KCACHE1_BASE = 144 — Base value for kcache bank 1 selects.

• ALU_SRC_CFILE_BASE = 256 — Base value for constant-register address 
selects.

The SRC*_ELEM field specifies from which vector element of the source address 
to read. It is ignored when PS is specified. If a literal constant is selected, and 
SRC*_ELEM specifies the Z or W element; then, both slots of the literal constant 
must be specified at the end of the instruction group. 

4.7.2 Input Modifiers

Each input operand can be modified. The modifiers available are negate, 
absolute value, and absolute-then-negate; they are specified using the SRC*_NEG 
and SRC*_ABS fields. The modifiers are meaningful only for floating-point inputs. 
Integer inputs must leave these fields cleared (zero), which is the pass-through 
value. If the SRC*_NEG and SRC*_ABS bits are set, the absolute value is performed 
first. Instructions with three source operands have only the negation modifier, 
SRC*_NEG; absolute value, if desired, must be performed by a separate instruction 
with two source operands.

4.7.3 Data Flow

A simplified data flow for the ALU operands is given in Figure 4.3. The data flow 
is discussed in more detail in the following sections.



AT I  R 6 0 0  Te c h n o l o g y

Scalar Operands 4-11
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Figure 4.3 ALU Data Flow

4.7.4 GPR Read Port Restrictions

In hardware, the X, Y, Z, and W elements are stored in separate memories. Each 
element memory has three read ports per instruction. As a result, an instruction 
can refer to at most three distinct GPR addresses (after relative addressing is 
applied) per element. The processor automatically shares a read port for multiple 
operands that use the same GPR address or element. For example, all scalar 
src0 operands can refer to GPR2.X with only one read port. Thus, there are only 
12 GPR source elements available per instruction (three for each element). 
Additional GPR read restrictions are imposed for both ALU.[X,Y,Z,W] and 
ALU.Trans, as described below.

4.7.5 Constant Register Read Port Restrictions

Software can read any four distinct elements from the constant registers in one 
instruction group, after relative addressing is applied. They can be from four 
different addresses, and can all come from the same element. For example, an 
instruction group can access C0.X, C1.X, C2.X, and C3.X. No more than four 
distinct elements can be read from the constant file in one instruction group.



AT I  R 6 0 0  Te c h n o l o g y

4-12 Scalar Operands
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Each ALU.Trans operation can reference at most two constants of any type. For 
example, all of the following are legal, and the four slots shown can occur as a 
single instruction group:

GPR0.X <= C0.X + GPR0.X
GPR0.Y <= 1.0 + C1.Y // Can mix cfile and non-cfile in one 
instruction group.
GPR0.Z <= C2.X + GPR0.Z // Multiple reads from cfile X bank are OK.
GPR0.W <= C3.Z + C0.X // Reads from four distinct cfile addresses 
are OK.

4.7.6 Literal Constant Restrictions

A literal constant is fetched if any source operand refers to the literal constant, 
regardless of whether the operand is used by the instruction group; so, be sure 
to clear unused operands in instruction fields. If all operands referencing the 
literal refer only to the X and Y vector elements, a two-element literal (one slot) 
is fetched. If any operand referencing the literal refers to the Z or W vector 
elements, a four-element literal (two slots) is fetched. An ALU.Trans operation 
can reference at most two constants of any type.

4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units

For ALU.[X,Y,Z,W] operations, source operands src0, src1, and src2 are loaded 
during three cycles. At most one GPR.X, one GPR.Y, one GPR.Z and one 
GPR.W can be read per cycle. The GPR values requested on cycle N are 
assembled into a four-element vector, CYCLEN_GPR. In addition, four constant 
elements are sent to the pipeline from a combination of sources: the constant-
register constant, a literal constant, and the special inline constants. The constant 
elements sent on cycle N are assembled into a four-element vector, CYCLEN_K. 
Collectively, these two vectors are referred to as CYCLEN_DATA.

The values in CYCLEN_DATA populate the logical operands src[0, 2]. The mapping 
of CYCLE[0, 2]_DATA to src[0, 2] must be specified in the microcode, using the 
BANK_SWIZZLE field. Read port restrictions must be respected across the 
instructions in an instruction group, described below. Each slot has its own 
BANK_SWIZZLE field, and these fields can be coordinated to avoid the read port 
restrictions.

For ALU.[X,Y,Z,W] operations, BANK_SWIZZLE specifies from which cycle each 
operand data comes from, if the operand’s source is GPR data. Constant data 
for srcN is always from CYCLEN_K. The setting, ALU_VEC_012, is the identity 
setting that loads operand N using data in CYCLEN_GPR.

BANK_SWIZZLE src0 src1 src2

ALU_VEC_012 CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

ALU_VEC_021 CYCLE0_GPR CYCLE2_GPR CYCLE1_GPR

ALU_VEC_120 CYCLE1_GPR CYCLE2_GPR CYCLE0_GPR



AT I  R 6 0 0  Te c h n o l o g y

Scalar Operands 4-13
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

In this configuration, if an operand is referenced more than once in a scalar 
operation, it must be loaded in two different cycles, sacrificing two read ports. For 
example:

However, as a special case, if src0 and src1 in an instruction refer to the same 
GPR element, only one read port is used, on the cycle corresponding to src0 in 
the bank swizzle. This optimization exists to facilitate squaring operations (MUL* 
x, x, and DOT* v, v). The following example illustrates the use of this optimization 
to perform square operations that do not consume more than one read port per 
GPR element. 

In the above example, the swizzle selects for src0 determine on which cycle to 
load the shared operand. The swizzle selects for src1 are ignored. The following 
programming is legal, even though at first glance the bank swizzles might 
suggest it is not. 

This optimization only applies when src0 and src1 share the same GPR element 
in an instruction. It does not apply when src0 and src2, nor when src1 and src2, 
share a GPR element.

Software cannot read two or more values from the same GPR vector element on 
a single cycle. For example, software cannot read GPR1.X and GPR2.X on cycle 
0. This restriction does not apply to constant registers or literal constants. For 
example, the following programming is illegal.

ALU_VEC_102 CYCLE1_GPR CYCLE0_GPR CYCLE2_GPR

ALU_VEC_201 CYCLE2_GPR CYCLE0_GPR CYCLE1_GPR

ALU_VEC_210 CYCLE2_GPR CYCLE1_GPR CYCLE0_GPR

BANK_SWIZZLE src0 src1 src2

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X + GPR1.X ALU_VEC_012 GPR1.X GPR2.X GPR1.X

GPR0.Y <= GPR1.Y * GPR2.Y + GPR1.Y ALU_VEC_012 GPR1.Y GPR2.Y GPR1.Y

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X —1 —

GPR0.Y <= GPR1.Y * GPR1.Y ALU_VEC_120 —1 GPR1.Y —

1. src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used in the 
marked cycles.

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X —1 —

GPR0.Y <= GPR1.Y * GPR1.Y ALU_VEC_102 —1 GPR1.Y —

GPR0.Z <= GPR2.Y * GPR2.X ALU_VEC_012 GPR2.Y GPR2.X —

1. src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used up in 
the marked cycles.



AT I  R 6 0 0  Te c h n o l o g y

4-14 Scalar Operands
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Software can use BANK_SWIZZLE to work around this limitation, as shown below. 

The temporary registers PV and PS have no cycle restrictions. Any element in 
these registers can be accessed on any cycle. Constant operands can be 
accessed on any cycle.

4.7.8 Cycle Restrictions for ALU.Trans

The ALU.Trans unit is not subject to the close tie between srcN and cycle N that 
the ALU.[X,Y,Z,W] units have. It can opportunistically load GPR-based operands 
on any cycle. However, the ALU.Trans unit must share the GPR read ports used 
by the ALU.[X,Y,Z,W] units. If one of the ALU.[X,Y,Z,W] units loads an operand 
that an ALU.Trans operand needs, it is possible to load the ALU.Trans operand 
on the same cycle. If not, the ALU.Trans hardware must find a cycle with an 
unused read port to load its operand. 

The ALU.Trans slot also has a BANK_SWIZZLE field, but it interprets the field 
differently from ALU.[X,Y,Z,W]. The BANK_SWIZZLE field is used to determine from 
which of CYCLE[0, 2]_GPR each src[0, 2] operand gets its data. It can have one 
of the following values:

Multiple operands in ALU.Trans can read from the same cycle (this differs from 
the ALU.[X,Y,Z,W] case). Not all possible permutations are available. If needed, 
the unspecified permutations can be obtained by applying an appropriate inverse 
mapping on the ALU.[X,Y,Z,W] slots.

Here is an example illustrating how ALU.Trans operations can use free read ports 
from GPR instructions (in all of the following examples, the last instruction in an 
instruction group is always an ALU.Trans operation):

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_012 invalid GPR2.X —

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y —

GPR0.Z <= GPR2.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y** —

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_012 GPR1.X GPR2.X —

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_201 GPR1.Y — GPR3.X

GPR0.Z <= GPR2.X * GPR1.Y ALU_VEC_102 GPR1.Y1 GPR2.X** —

1. The above examples illustrate that once a value is read into CYCLEN_DATA, multiple instructions can ref-
erence that value.

BANK_SWIZZLE src0 src1 src2

ALU_SCL_210 CYCLE0_DATA CYCLE1_DATA CYCLE2_DATA

ALU_SCL_122 CYCLE1_DATA CYCLE2_DATA CYCLE2_DATA

ALU_SCL_212 CYCLE2_DATA CYCLE1_DATA CYCLE2_DATA

ALU_SCL_221 CYCLE2_DATA CYCLE2_DATA CYCLE1_DATA



AT I  R 6 0 0  Te c h n o l o g y

Scalar Operands 4-15
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

When an operand is used by one of the ALU.[X,Y,Z,W] units, it also can be used 
to load an operand into the ALU.Trans unit:

Any element in PV or PS registers can be accessed by ALU.Trans; generally, it 
is loaded as soon as possible. PV or PS register values can be loaded on any 
cycle, but when constant operands are present, the available bank swizzles can 
be constrained (see Section 4.7.8.1, “Bank Swizzle with Constant Operands”).

4.7.8.1  Bank Swizzle with Constant Operands

If the transcendental operation uses a single constant operand (any type of 
constant), the remaining GPR operands must not be loaded on cycle 0. The 
instruction group:

GPR0.X <= GPR1.X * GPR2.Y + CFILE0.Z

can use any of the following bank swizzles.

• ALU_SCL_210 — no operand loaded on cycle 0

• ALU_SCL_122

• ALU_SCL_212 — synonymous with 210 swizzle in this case

• ALU_SCL_221

However, the instruction group

GPR0.X <= CFILE0.Z * GPR1.X + GPR2.Y

can use only the following swizzles.

• ALU_SCL_122

• ALU_SCL_212

• ALU_SCL_221

Similarly, when a single constant operand is used, no PV or PS operand can be 
loaded on cycle 0. The instruction group

GPR0.X <= CFILE0.Z * PV.X + PS

can use only one of the following swizzles.

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_012 GPR1.X GPR2.X —

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_210 — GPR1.Y GPR3.X

GPR1.X <= GPR3.Z * GPR3.W ALU_SCL_221 — — GPR3.[ZW]

Instruction BANK_SWIZZLE CYCLE0_GPR CYCLE1_GPR CYCLE2_GPR

GPR0.X <= GPR1.X * GPR2.X ALU_VEC_210 — GPR2.X GPR1.X

GPR0.Y <= GPR3.X * GPR1.Y ALU_VEC_012 GPR3.X GPR1.Y —

GPR1.X <= GPR1.X * GPR1.Y ALU_SCL_210 — GPR1.Y GPR1.X



AT I  R 6 0 0  Te c h n o l o g y

4-16 Scalar Operands
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

• ALU_SCL_122

• ALU_SCL_212

• ALU_SCL_221

If the transcendental operation uses two constant operands (any types of 
constants), then the remaining GPR operand must be loaded on cycle 2. The 
instruction group

GPR0.X <= CFILE0.X * CFILE0.Y + GPR1.Z

can use only one of the following bank swizzles.

• ALU_SCL_122

• ALU_SCL_212 — synonymous with 122 swizzle in this case

Similarly, when two constant operands are used, any PV or PS operand must be 
loaded on cycle 2. The instruction group

GPR0.X <= CFILE0.X * CFILE0.Y + PV.Z

can use only one of the following bank swizzles:

• ALU_SCL_122

• ALU_SCL_212 — synonymous with 122 swizzle in this case

The transcendental operation cannot reference constants in all three of its 
operands.

4.7.9 Read-Port Mapping Algorithm

This section describes the algorithm that determines what combinations of 
source operands are permitted in a single instruction. For this algorithm, let

• HW_GPR[0,1,2]_[X,Y,Z,W] store addresses for the [0, 2] GPR read port 
reservations

• HW_CFILE[0,1,2,3]_ADDR represent a constant-register address, and

• HW_CFILE[0,1,2,3]_ELEM represent an element (X, Y, Z, W) for the [0, 3] 
constant-register read port reservation. 

For simplicity, this algorithm ignores relative addressing; if relative addressing is 
used, address references below are after the relative index is applied.

The function, cycle_for_bank_swizzle($swiz, $sel), returns the cycle 
number that the operand $sel must be loaded on, according to the bank swizzle 
$swiz. The return value is shown in Table 4.3.



AT I  R 6 0 0  Te c h n o l o g y

Scalar Operands 4-17
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.7.9.1  Initialization Execution

The following procedure is executed on initialization.

procedure initialize
begin

HW_GPR[0,1,2]_[X,Y,Z,W] := undef;
HW_CFILE[0,1,2,3]_ADDR := undef;
HW_CFILE[0,1,2,3]_ELEM := undef;

end

4.7.9.2  Reserving GPR Read

The following procedure reserves the GPR read for address $sel and vector 
element $elem on cycle number $cycle.

procedure reserve_gpr($sel, $elem, $cycle)
if !defined(HW_GPR$cycle _$elem)

HW_GPR$cycle_$elem := $sel;
elsif HW_GPR$cycle_$elem != $sel

assert “Another instruction has already used GPR read port 
$cycle 

for vector element $elem”;
end

4.7.9.3  Reserving Constant File Read

The following procedure reserves the constant file read for address $sel and 
vector element $elem.

procedure reserve_cfile($sel, $elem)
begin

$resmatch := undef;
$resempty := undef;
for $res in {3, 2, 1, 0}

if !defined(HW_CFILE$res_ADDR)
$resempty := $res;

elsif HW_CFILE$res_ADDR == $sel and HW_CFILE$res_ELEM == 

Table 4.3 Example Function’s Loading Cycle

$swiz $sel == 0 $sel == 1 $sel == 2

ALU_VEC_012 0 1 2

ALU_VEC_021 0 2 1

ALU_VEC_120 1 2 0

ALU_VEC_102 1 0 2

ALU_VEC_201 2 0 1

ALU_VEC_210 2 1 0

ALU_SCL_210 2 1 0

ALU_SCL_122 1 2 2

ALU_SCL_212 2 1 2

ALU_SCL_221 2 2 1



AT I  R 6 0 0  Te c h n o l o g y

4-18 Scalar Operands
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

$elem
$resmatch := $res;

if defined($resmatch)
// Read for this scalar element already reserved, nothing to 

do here.
elsif defined($resempty)

HW_CFILE$resempty_ADDR := $sel;
HW_CFILE$resempty_ELEM := $elem;

else
assert “All cfile read ports are used, cannot reference 

C$sel, 
vector element $elem.”;

end

4.7.9.4  Execution for Each ALU.[X,Y,Z,W] Operation

The following procedure is executed for each ALU.[X,Y,Z,W] operation specified 
in the instruction group.

procedure check_vector
begin

for $src in {0, ..., number_of_operands(ALU_INST)}
$sel := SRC$src_SEL;
$elem := SRC$src_ELEM;
if isgpr($sel)

$cycle := cycle_for_bank_swizzle(BANK_SWIZZLE, $src);
if $src == 1 and $sel == SRC0_SEL and $elem == SRC0_ELEM

// Nothing to do; special-case optimization, 
second source uses first source’s reservation

else
reserve_gpr($sel, $elem, $cycle);

elsif isconst($sel)
// Any constant, including literal and inline constants
if iscfile($sel)

reserve_cfile($sel, $elem);
else

// No restrictions on PV, PS
end

4.7.9.5  Execution of ALU.Trans Operation

The following procedure is executed for an ALU.Trans operation, if it is specified 
in the instruction group. The ALU.Trans unit tries to reuse an existing reservation 
whenever possible. The constant unit cannot use cycle 0 for GPR loads if one 
constant operand is specified; it must use cycle 2 for GPR load if two constant 
operands are specified.

procedure check_scalar
begin

$const_count := 0;
for $src in {0, ..., number_of_operands(ALU_INST)}

$sel := SRC$src_SEL;
$elem := SRC$src_ELEM;
if isconst($sel)

// Any constant, including literal and inline constants
if $const_count >= 2



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 4-19
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

assert “More than two references to a constant in 
transcendental operation.”;

$const_count++;
if iscfile($sel)

reserve_cfile($sel, $elem);
for $src in {0, ..., number_of_operands(ALU_INST)}

$sel := SRC$src_SEL;
$elem := SRC$src_ELEM;
if isgpr($sel)

$cycle := cycle_for_bank_swizzle(BANK_SWIZZLE, $src);
if $cycle < $const_count

assert “Cycle $cycle for GPR load conflicts with 
constant

load in transcendental operation.”;
reserve_gpr($sel, $elem, $cycle);

elsif isconst($sel)
// Constants already processed

else
// No restrictions on PV, PS

end

4.8 ALU Instructions
This section gives a brief summary of ALU instructions. See Section 7.2, “ALU 
Instructions,” page 7-41, for details about the instructions. 

4.8.1 Instructions for All ALU Units

The instructions shown in Table 4.4 are valid for all ALU units: ALU.[X,Y,Z,W] 
units and ALU.Trans units. All of the instruction mnemonics in this table have an 
OP2_INST_ or OP3_INST_ prefix that is not shown here.

Table 4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units)

Mnemonic Description

Integer Operations
ADD_64 Floating-point 64-bit add.

ADD_INT Integer add based on signed or unsigned integer elements.

AND_INT Logical bit-wise AND.

CMOVE_INT Integer conditional move equal based on integer (either signed or unsigned).

CMOVGE_INT Integer conditional move greater than or equal based on signed integer values.

CMOVGT_INT Integer conditional move greater than based on signed integer values.

FLT32_TO_FLT64 Floating-point 32-bit convert to 64-bit floating-point.

FLT64_TO_FLT32 Floating-point 64-bit convert to 32-bit floating-point. 

FRACT_64 Positive fractional part of a 64-bit floating-point value.

FREXP_64 Split double-precision floating-point into fraction and exponent.

LDEXP_64 Combine separate fraction and exponent into double-precision.

MAX_INT Integer maximum based on signed integer elements.

MAX_UINT Integer maximum based on unsigned integer elements.



AT I  R 6 0 0  Te c h n o l o g y

4-20 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

MIN_INT Integer minimum based on signed integer elements.

MIN_UINT Integer minimum based on signed unsigned integer elements.

MOV Single-operand move.

MUL_64 Floating-point multiply, 64-bit.

MULADD_64 Floating-point multiply-add, 64-bit.

NOP No operation.

NOT_INT Logical bit-wise NOT.

OR_INT Logical bit-wise OR.

PRED_SETE_64 Floating-point predicate set if equal, 64-bit.

PRED_SETE_INT Integer predicate set equal. Update predicate register.

PRED_SETE_PUSH_INT Integer predicate counter increment equal. Update predicate register.

PRED_SETGE_64 Floating-point predicate set if greater than or equal, 64-bit.

PRED_SETGE_INT Integer predicate set greater than or equal. Update predicate register.

PRED_SETGE_PUSH_INT Integer predicate counter increment greater than or equal. Update predicate 
register.

PRED_SETGT_64 Floating-point predicate set, if greater than, 64-bit.

PRED_SETGT_INT Integer predicate set greater than. Updates predicate register.

PRED_SETGT_PUSH_INT Integer predicate counter increment greater than. Update predicate register.

PRED_SETLE_INT Integer predicate set if less than or equal. Updates predicate register.

PRED_SETLE_PUSH_INT Predicate counter increment less than or equal. Update predicate register.

PRED_SETLT_INT Integer predicate set if less than. Updates predicate register.

PRED_SETLT_PUSH_INT Predicate counter increment less than. Update predicate register.

PRED_SETNE_INT Scalar predicate set not equal. Update predicate register.

PRED_SETNE_PUSH_INT Predicate counter increment not equal. Update predicate register.

SETE_INT Integer set equal based on signed or unsigned integers.

SETGE_INT Integer set greater than or equal based on signed integers.

SETGE_UINT Integer set greater than or equal based on unsigned integers.

SETGT_INT Integer set greater than based on signed integers.

SETGT_UINT Integer set greater than based on unsigned integers.

SETNE_INT Integer set not equal based on signed or unsigned integers.

SUB_INT Integer subtract based on signed or unsigned integer elements.

XOR_INT Logical bit-wise XOR.

Floating-Point Operations
ADD Floating-point add.

CEIL Floating-point ceiling function.

CMOVE Floating-point conditional move equal.

CMOVGE Floating-point conditional move greater than equal.

CMOVGT Floating-point conditional move greater than.

FLOOR Floating-point floor function.

FRACT Floating-point fractional part of src1.

Table 4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) (Cont.) 

Mnemonic Description



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 4-21
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

KILLE Floating-point kill equal. Set kill bit.

KILLGE Floating-point pixel kill greater than equal. Set kill bit.

KILLGT Floating-point pixel kill greater than. Set kill bit.

KILLNE Floating-point pixel kill not equal. Set kill bit.

MAX Floating-point maximum.

MAX_DX10 Floating-point maximum. DX10 implies slightly different handling of NaNs. 

MIN Floating-point minimum.

MIN_DX10 Floating-point minimum. DX10 implies slightly different handling of NaNs. 

MUL Floating-point multiply. 0*anything = 0.

MUL_IEEE IEEE Floating-point multiply. Uses IEEE rules for 0*anything.

MULADD Floating-point multiply-add (MAD).

MULADD_D2 Floating-point multiply-add (MAD), followed by divide by 2. 

MULADD_M2 Floating-point multiply-add (MAD), followed by multiply by 2. 

MULADD_M4 Floating-point multiply-add (MAD), followed by multiply by 4. 

MULADD_IEEE Floating-point multiply-add (MAD). Uses IEEE rules for 0*anything.

MULADD_IEEE_D2 IEEE Floating-point multiply-add (MAD), followed by divide by 2. Uses IEEE rules 
for 0*anything.

MULADD_IEEE_M2 IEEE Floating-point multiply-add (MAD), followed by multiply by 2. Uses IEEE rules 
for 0*anything.

MULADD_IEEE_M4 IEEE Floating-point multiply-add (MAD), followed by multiply by 4. Uses IEEE rules 
for 0*anything.

PRED_SET_CLR Predicate counter clear. Update predicate register.

PRED_SET_INV Predicate counter invert. Update predicate register.

PRED_SET_POP Predicate counter pop. Updates predicate register.

PRED_SET_RESTORE Predicate counter restore. Update predicate register.

PRED_SETE Floating-point predicate set equal. Update predicate register.

PRED_SETE_PUSH Predicate counter increment equal. Update predicate register.

PRED_SETGE Floating-point predicate set greater than equal. Update predicate register.

PRED_SETGE_PUSH Predicate counter increment greater than equal. Update predicate register.

PRED_SETGT Floating-point predicate set greater than. Update predicate register.

PRED_SETGT_PUSH Predicate counter increment greater than. Update predicate register.

PRED_SETNE Floating-point predicate set not equal. Update predicate register.

PRED_SETNE_PUSH Predicate counter increment not equal. Update predicate register.

RNDNE Floating-point Round-to-Nearest-Even Integer.

SETE Floating-point set equal.

SETE_DX10 Floating-point equal based on floating-point arguments. The result, however, is 
integer.

SETGE Floating-point set greater than equal.

SETGE_DX10 Floating-point greater than or equal based on floating-point arguments. The result, 
however, is integer.

SETGT Floating-point set greater than.

Table 4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) (Cont.) 

Mnemonic Description



AT I  R 6 0 0  Te c h n o l o g y

4-22 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

4.8.2 KILL and PRED_SET* Instruction Restrictions

Only a pixel shader (PS) program can execute a pixel kill (KILL) instruction. This 
instruction is illegal in other program types. A KILL instruction is the last 
instruction in an ALU clause, because the remaining instructions executed in the 
clause do not reflect the updated valid state after the kill operation. Two KILL 
instructions cannot be co-issued.

The term PRED_SET* is any instruction that computes a new predicate value that 
can update the local predicate or active mask. Two PRED_SET* instructions 
cannot be co-issued. Also, PRED_SET* and KILL instructions cannot be co-
issued. Behavior is undefined if any of these co-issue restrictions are violated.

4.8.3 Instructions for ALU.[X,Y,Z,W] Units Only

The instructions shown in Table 4.5 can be used only in a slot in the instruction 
group that is destined for one of the ALU.[X,Y,Z,W] units. None of these 
instructions are legal in an ALU.Trans unit. All of the instruction names in Table 
4.5 are preceded by OP2_INST_.

SETGT_DX10 Floating-point greater than based on floating-point arguments. The result, however, 
is integer.

SETNE Floating-point set not equal.

SETNE_DX10 Floating-point not equal based on floating-point arguments. The result, however, is 
integer.

TRUNC Floating-point integer part of src0.

Table 4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) (Cont.) 

Mnemonic Description

Table 4.5 ALU Instructions (ALU.[X,Y,Z,W] Units Only)

Mnemonic Description

Reduction Operations

CUBE Cubemap instruction. It takes two source operands (SrcA = Rn.zzxy, 
SrcB = Rn.yxzz). All four vector elements must share this instruction. Output clamp 
and modifier do not affect FaceID in the resulting W vector element.

DOT4 Four-element dot product. The result is replicated in all four vector elements. All four 
vector elements must share this instruction. Only the PV.X register element holds 
the result; the processor is responsible for selecting this swizzle code in the bypass 
operation.

DOT4_IEEE Four-element dot product.The result is replicated in all four vector elements. Uses 
IEEE rules for 0*anything. All four ALU.[X,Y,Z,W] instructions must share this instruc-
tion. Only the PV.X register element holds the result; the processor is responsible 
for selecting this swizzle code in the bypass operation.

MAX4 Four-element maximum.The result is replicated in all four vector elements.
All four vector elements must share this instruction. Only the PV.X register element 
holds the result, and the processor is responsible for selecting this swizzle code in 
the bypass operation.



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 4-23
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.8.3.1  Reduction Instruction Restrictions

When any of the reduction instructions (DOT4, DOT4_IEEE, CUBE, and MAX4) 
is used, it must be executed on all four elements of a single vector. Reduction 
operations compute only one output; so, ensure that the values in the OMOD and 
CLAMP fields are the same for all four instructions. 

4.8.3.2  MOVA* Restrictions

All MOVA* instructions shown in Table 4.5 write vector elements of the address 
register (AR). They do not need to execute on all of the ALU.[X,Y,Z,W] operands 
at the same time. One ALU.[X,Y,Z,W] unit can execute a MOVA* operation while 
other ALU.[X,Y,Z,W] units execute other operations. Software can issue up to 
four MOVA instructions in a single instruction group to change all four elements of 
the AR register. A MOVA* instruction issued in ALU.X writes AR.X, regardless of 
any GPR write mask used.

Predication is allowed on any MOVA* instruction.

MOVA* instructions must not be used in an instruction group that uses AR 
indexing in any slot (even slots that are not executing MOVA*, and even for an 
index not being changed by MOVA*). To perform this operation, split it into two 
separate instruction groups: the first performing a MOV with GPR-indexed source 
into a temporary GPR, and the second performing the MOVA* on the temporary 
GPR. 

MOVA* instructions produce undefined output values. To inhibit the GPR 
destination write, clear the WRITE_MASK field for any MOVA* instruction. Do not use 
the corresponding PV vector element(s) in the following ALU instruction group.

4.8.4 Instructions for ALU.Trans Units Only

The instructions in Table 4.6 are legal only in an instruction-group slot destined 
for the ALU.Trans unit. If any of these instructions is executed, the instruction-
group slot is allocated to the ALU.Trans unit immediately. An ALU.Trans 
operation must be specified as the last instruction slot in an instruction group; so, 
using one of these instructions effectively marks the end of the instruction group. 

Non-Reduction Operations

MOVA Round floating-point to the nearest integer in the range [-256, +255], and copy to 
address register (AR) and to a GPR.

MOVA_FLOOR Truncate floating-point to the nearest integer in the range [-256, +255], and copy to 
address register (AR) and to a GPR.

MOVA_INT Clamp signed integer to the range [-256, +255], and copy to address register (AR) 
and to a GPR. 

Table 4.5 ALU Instructions (ALU.[X,Y,Z,W] Units Only) (Cont.) 

Mnemonic Description



AT I  R 6 0 0  Te c h n o l o g y

4-24 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Table 4.6 ALU Instructions (ALU.Trans Units Only)

Mnemonic Description

Integer Operations

ASHR_INT Scalar arithmetic shift right. The sign bit is shifted into the vacated locations. src1 is 
interpreted as an unsigned integer. If src1 is > 31, the result is either 0x0 or -0x1, 
depending on the sign of src0. 
Note: For the R670 and later devices, the component-wise shift right of each 32-bit 
value in src0 by an unsigned integer bit count is provided by the LSB 5 bits (0-31 
range) in src1.selected_component, inserting 0.

FLT_TO_INT Floating-point input is converted to a signed integer value using truncation. If the value 
does fit in 32 bits, the low-order bits are used.

INT_TO_FLT The input is interpreted as a signed integer value and converted to a floating-point 
value. 

LSHL_INT Scalar logical shift left. Zero is shifted into the vacated locations. src1 is interpreted as 
an unsigned integer. If src1 is > 31, the result is 0x0.

LSHR_INT Scalar logical shift right. Zero is shifted into the vacated locations. src1 is interpreted 
as an unsigned integer. If src1 is > 31, the result is 0x0.

MULHI_INT Scalar multiplication. The arguments are interpreted as signed integers. The result rep-
resents the high-order 32 bits of the multiply result.

MULHI_UINT Scalar multiplication. The arguments are interpreted as unsigned integers. The result 
represents the high-order 32 bits of the multiply result.

MULLO_INT Scalar multiplication. The arguments are interpreted as signed integers. The result rep-
resents the low-order 32 bits of the multiply result.

MULLO_UINT Scalar multiplication. The arguments are interpreted as unsigned integers. The result 
represents the low-order 32 bits of the multiply result.

RECIP_INT Scalar integer reciprocal. The argument is interpreted as a signed integer. The result 
is interpreted as a fractional signed integer. The result for 0x0 is undefined.

RECIP_UINT Scalar unsigned integer reciprocal. The argument is interpreted as an unsigned integer. 
The result is interpreted as a fractional unsigned integer. The result for 0x0 is 
undefined.

UINT_TO_FLT The input is interpreted as an unsigned integer value and converted to a float. 

Floating-Point Operations

COS Scalar cosine function. Valid input domain [-PI, +PI]. 

EXP_IEEE Scalar Base2 exponent function.

LOG_CLAMPED Scalar Base2 log function.

LOG_IEEE Scalar Base2 log function.

MUL_LIT Scalar multiply. The result is replicated in all four vector elements. It is used primarily 
when emulating a LIT operation (Blinn's lighting equation). Zero times anything is zero. 
Instruction takes three inputs.

MUL_LIT_D2 MUL_LIT operation, followed by divide by 2. 

MUL_LIT_M2 MUL_LIT operation, followed by multiply by 2. 

MUL_LIT_M4 MUL_LIT operation, followed by multiply by 4. 

RECIP_CLAMPED Scalar reciprocal.

RECIP_FF Scalar reciprocal.

RECIP_IEEE Scalar reciprocal.

RECIPSQRT_CLAMPED Scalar reciprocal square root.

RECIPSQRT_FF Scalar reciprocal square root.



AT I  R 6 0 0  Te c h n o l o g y

ALU Outputs 4-25
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.8.4.1  ALU.Trans Instruction Restrictions

At most one of the transcendental and integer instructions shown in Table 4.6 
can be specified in a given instruction group, and it must be specified in the last 
instruction slot. 

4.9 ALU Outputs
The following subsections describe the output modifiers, destination registers, 
predicate output, NOP instruction, and MOVA instructions.

4.9.1 Output Modifiers

Each ALU output passes through an output modifier before being written to the 
PV and PS registers and the destination GPRs. This output modifier works for 
floating-point outputs only.

The first part of the output modifier is to scale the result by a factor of 2.0 (either 
multiply or divide) or 4.0 (multiply only). For instructions with two source 
operands, this output modifier is specified in the instruction’s OMOD field. For 
instructions with three source operands, the modifier is specified as part of the 
opcode. As a result, it is available only for certain instructions. The modifier works 
with floating-point values only; it is not valid for integer operations. For non-
reduction operations, each instruction can specify a different value for OMOD. 
Reduction operations compute only one output. Each instruction for a reduction 
operation must use the same OMOD value (for instructions with two source 
operands).

The second part of the output modification is to clamp the result to [0.0, 1.0]. This 
is controlled by the instruction’s CLAMP field. The clamp modifier works only with 
floating-point values; it is not valid, and should be disabled, for integer 
operations. For non-reduction operations, each instruction can specify a different 
value for CLAMP. Reduction operations only compute one output. Each instruction 
for a reduction operation must use the same CLAMP value.

4.9.2 Destination Registers

The results are written to PV or PS registers and to the destination GPR specified 
in the DST_GPR field of the instruction. The destination GPR can be relative to an 
index. To enable this, set the DST_REL bit, and specify an appropriate 
INDEX_MODE. The INDEX_MODE parameter is shared with the input operands for 
the instruction. If the resulting GPR address is not in [0, GPR_COUNT – 1], 

RECIPSQRT_IEEE Scalar reciprocal square root.

SIN Scalar sin function. Valid input domain [-PI, +PI].

SQRT_IEEE Scalar square root. Useful for normal compression.

Table 4.6 ALU Instructions (ALU.Trans Units Only) (Cont.) 

Mnemonic Description



AT I  R 6 0 0  Te c h n o l o g y

4-26 ALU Outputs
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

which are the declared GPRs for this thread, and are not in [127 – N + 1, 127], 
which are the N temporary GPRs, then no GPR write is performed; only PV and 
PS registers are updated.

Instructions with two source operands have a write mask, WRITE_MASK, that 
determines if the result is written to a GPR. The PV or PS registers result is 
updated even if WRITE_MASK is 0. Instructions with three source operands have 
no write mask; however, you can specify an out-of-bounds GPR destination to 
inhibit their write. For example, if the thread is using four clause temporaries and 
less than 124 GPRs, it is safe to use DST_GPR = 123 to ignore the result. 
Otherwise, you must sacrifice one of the temporary GPRs for instructions with 
three source operands. The PV or PS registers result is updated for instructions 
with three source operands even if the destination GPR address is invalid.

Two instructions running on the ALU.[X,Y,Z,W] units cannot write to the same 
GPR element. However, it is possible for ALU.Trans to write to the same GPR 
element as one of the operations running in ALU.[X,Y,Z,W]. This can be done 
either explicitly, as in:

GPR0.X <= GPR1.X
...
GPR0.X <= GPR2.X

or implicitly via relative addressing. If the ALU.Trans unit and one of the 
ALU.[X,Y,Z,W] units try to write to the same GPR element, the transcendental 
operation dominates, and the ALU.Trans result is written to the GPR element. 
This affects the GPR write only; the PV register reflects only the vector result.

4.9.3 Predicate Output

Instructions with two source operands that affect the internal predicate have two 
additional bits: UPDATE_PRED and UPDATE_EXECUTE_MASK. The UPDATE_PRED bit 
determines whether to write the updated predicate results internally (only valid 
until the end of the clause). If UPDATE_PRED is set, the new predicate takes effect 
on the next ALU instruction group. The UPDATE_EXECUTE_MASK bit determines 
whether to send the new predicate result back to the CF program. The active 
mask persists across clauses and is used by the CF program, but does not take 
affect until the end of the current ALU clause. UPDATE_PRED and 
UPDATE_EXECUTE_MASK must be cleared for instructions that do not compute a 
new predicate result.

4.9.4 NOP Instruction

NOP instructions perform no writes to GPRs, and they invalidate PV and PS 
registers.

4.9.5 MOVA Instructions

MOVA* instructions update the constant register and AR. They are not designed 
to write values into the GPR registers. The write to PV and PS registers and any 
write to a GPR has undefined results. It is strongly recommended that software 



AT I  R 6 0 0  Te c h n o l o g y

Predication and Branch Counters 4-27
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

clear the WRITE_MASK bit for any MOVA* instruction, and does not attempt to use 
the corresponding PV or PS register value in the following instruction.

4.10 Predication and Branch Counters
The processor maintains one predicate bit per pixel within an ALU clause. This 
predicate initially reflects the active Mask from the processor. The predicate can 
be updated during the ALU clause using various PRED_SET* and stack 
operations. The predicate bit does not persist past the end of an ALU clause. To 
carry a predicate across clauses, an ALU instruction group can update the active 
Mask that is used for subsequent clauses, as described in Section 4.9.3.

Each instruction can be conditioned on the predicate, using the instruction’s 
PRED_SEL field. Different instructions in the same instruction group can be 
predicated differently. The predicate condition can be one of three values:

• PRED_SEL_OFF — Always execute the instruction.

• PRED_SEL_ZERO — Execute the instruction if the pixel’s predicate bit is 
currently zero.

• PRED_ZEL_ONE — Execute the instruction if the pixel’s predicate bit is 
currently one.

If an instruction is disabled by the predicate bit, then no GPR value is written, 
the PV and PS registers are not updated. Also, the PRED_SET*, MOVA, and KILL 
instructions, which have an effect on non-register state, have no effect for that 
pixel. An instruction that modifies the ALU predicate (for example: PRED_SET*) 
can choose to update the predicate bit using UPDATE_PRED, and it can separately 
choose to send a new active Mask based on the computed predicate using 
UPDATE_EXECUTE_MASK. An instruction can compute a new predicate and choose 
to update only the processor’s active Mask. In this case, the processor sees the 
computed predicate, not the old predicate that persists.

Instruction groups that do not compute a new predicate result must clear the 
UPDATE_PRED and UPDATE_EXECUTE_MASK fields of their instructions. At most one 
instruction in an instruction group can be a PRED_SET* instruction; thus, at most 
one instruction can have either of these bits set.

In addition to predicates, flow control relies on maintenance of branch counters. 
Branch counters are maintained in normal GPRs and are manipulated by the 
various predicate operations. Software can inhibit branch-counter updating by 
simply disabling the GPR write for the operation, using the instruction’s 
WRITE_MASK field. 

4.11 Adjacent-Instruction Dependencies
Register write or read dependencies can exist between two adjacent ALU 
instruction groups. When an ALU instruction group writes to a GPR, the value is 
not immediately available for reading by the next instruction group. In most 
cases, the processor avoids stalling by detecting when the second instruction 



AT I  R 6 0 0  Te c h n o l o g y

4-28 Adjacent-Instruction Dependencies
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

group references a GPR written by the first instruction group, then substituting 
the dependent register read with a reference to the previous ALU.[X,Y,Z,W] or 
ALU.Trans result (in the PV or PS registers). If the write is predicated, a special 
override is used to ensure the value is read from the original register or PV or 
PS depending on the previous predication. A compiler does not need to do 
anything special to enable this behavior. However, there are cases where this 
optimization is not available, and the compiler must either insert a NOP or 
otherwise defer the dependent register read for one instruction group.

Application software does not need to do anything special in any of the following 
cases. These are cases in which the processor explicitly detects a dependency 
and optimizes the instruction-group pair to avoid a stall.

• Write to RN or RN[LOOP_INDEX], followed by read from RM or 
RM[LOOP_INDEX]; N may or may not equal M.

• Write to RN[GPR_INDEX], followed by read from RM[gpr_index]; N may 
or may not equal M.

Application software also does not need to do anything special in the following 
cases. In these cases, the processor does nothing special, but the pairing is legal 
because there is no aliasing or dependency.

• Write to RN, followed by read from RM[GPR_INDEX]. The compiler ensures 
N != M + GPR_INDEX.

• Write to RN[LOOP_INDEX], followed by read from RM[GPR_INDEX]. The 
compiler ensures N + loop_index != M + GPR_INDEX.

• Write to RN[GPR_INDEX], followed by read from RM. The compiler ensures 
N + GPR_INDEX != M.

• Write to RN[GPR_INDEX], followed by read from RM[LOOP_INDEX]. The 
compiler ensures N + GPR_INDEX != M + LOOP_INDEX.

To illustrate, the following example instruction-group pairs are legal.

R1 = R0;
R2 = R1;// rewritten to R2 = PV/PS.
R2 = R0;
R2 = R1 predicated;
R3 = R2;// rewritten to R3 = PV/PS, override for R2.
R1[gpr_index] = R0;
R2 = R1[gpr_index];// rewritten to R2 = PV/PS.
R2[gpr_index] = R0;
R2[gpr_index] = R1 predicated;
R3 = R2[gpr_index];// rewritten to R3 = PV/PS, override for 

R2[GPR_INDEX].
R1[gpr_index] = R0;// compiler guarantees GPR_INDEX != 0.
R2 = R1;// never a dependent read.
R1[loop_index] = R0;// LOOP_INDEX might be 0.
R2 = R1;// can be dependent, the processor will detect if it is.

The following example instruction-group pairs are illegal.

R1[gpr_index] = R0;// GPR_INDEX might be zero.
R2 = R1;// can be dependent, the processor doesn’t catch this.
R1[gpr_index] = R0;// GPR_INDEX can equal loop_index.
R2 = R1[loop_index];// can be dependent, the processor doesn’t catch 

this.



AT I  R 6 0 0  Te c h n o l o g y

Double-Precision Floating-Point Operations 4-29
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

4.12 Double-Precision Floating-Point Operations
Unless otherwise stated in this document, floating-point operations and operands 
are single-precision. There are, however, some double-precision floating-point 
instructions. These double-precision instructions support higher precision 
calculations and conversion between single- and double-precision formats. Basic 
add, multiply, and multiply-add operations are implemented using the IEEE 754 
round-to-nearest mode. 

The mnemonics and 64-bit operands of double-precision instructions contain the 
suffix _64. The instructions occupy either two or four slots in an instruction group 
(Section 4.3, “ALU Instruction Slots and Instruction Groups,” page 4-3), as 
specified in their descriptions in Section 7.2, “ALU Instructions,” page 7-41. All 
source operands are double-precision numbers, except 32-bit operands in 
format-conversion operations. Source operands are stored in GPRs as a 32-bit 
high (most-significant) doubleword and a 32-bit low (least-significant) 
doubleword, in elements ALU.[X,Y] and/or elements ALU.[Z,W]. The result of a 
double-precision operation is also stored similarly, but the order of doublewords 
is usually inverted with respect to the source operands.



AT I  R 6 0 0  Te c h n o l o g y

4-30 Double-Precision Floating-Point Operations
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 5-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 5
Vertex-Fetch Clauses

Software initiates a vertex-fetch clause with the VTX or VTX_TC control-flow 
instructions, both of which use the CF_DWORD[0,1] microcode formats. Vertex-
fetch instructions within the clause use the VTX_DWORD0, 
VTX_DWORD1_{SEM, GPR}, and VTX_DWORD2 microcode formats, with a fourth 
(high-order) doubleword of zeros. 

5.1 Clause Construction
A vertex-fetch clause consists of instructions that fetch vertices from the vertex 
buffer based on a GPR address. A vertex-fetch clause can be at most eight 
instructions long. Vertex fetches using a semantic table use the VTX_DWORD1_SEM 
microcode format to specify the nine-bit semantic ID. The semantic table 
indicates the ID of the GPR to which the data is written. All other vertex fetches 
use the VTX_DWORD1_GPR microcode format, which specifies the destination GPR 
directly.

Each vertex-fetch instruction within the vertex-fetch clause has a BUFFER_ID field 
that specifies the buffer containing the vertex-fetch constants, and an OFFSET 
field for the offset at which reading of the value in the buffer is to begin. The 
instruction uses the SRC_REL bit to determine whether to use the SRC_GPR 
specified in the instruction (bit is cleared), or (if the bit is set) to use SRC_GPL + 
the loop index (aL). The result of non-semantic fetches is written to DST_GPR. The 
DST_REL bit determines if the address is absolute or relative to the loop index 
(aL). Semantic fetches determine the destination GPR by reading the entry in the 
semantic table that is specified by the instruction’s SEMANTIC_ID field. The source 
index and the four-element result from memory can be swizzled.

The source value can be fetched from any element of the source GPR using the 
instruction’s SRC_SEL_X field. Unlike texture instructions, the SRC_SEL_X field 
cannot be a constant; it must refer to a vector element of a GPR. The destination 
swizzle is specified in the DST_SEL_[X,Y,Z,W] fields; the swizzle can write any 
of the fetched elements, the value 0.0, or the value 1.0. To disable an element 
write, set the DST_SEL_[X,Y,Z,W] fields to the SEL_MASK value

Individual vertex-fetch instructions cannot be predicated; predicated vertex 
fetches must be done at the CF level by making the vertex-fetch clause 
instruction conditional. All vertex instructions in the clause are executed with the 
conditional constraint specified by the CF instruction.



AT I  R 6 0 0  Te c h n o l o g y

5-2 Vertex-Fetch Microcode Formats
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

5.2 Vertex-Fetch Microcode Formats
Vertex-fetch microcode formats are organized in 4-tuples of 32-bit doublewords. 
Figure 5.1 shows the doubleword layouts in memory. The +0, +4, +8, and +12 
indicate the relative byte offset of the doublewords in memory; {SEM, GPR} 
indicates a choice between the strings SEM and GPR; LSB indicates the least-
significant (low-order) byte; and the high-order doubleword is padded with zeros.

Figure 5.1 Vertex-Fetch Microcode-Format 4-Tuple

31 24 23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

VTX_DWORD2 +8

VTX_DWORD1_{SEM, GPR} +4

VTX_DWORD0 +0

<------------ LSB ------------>



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 6-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 6
Texture-Fetch Clauses

Software initiates a texture-fetch clause with the TEX control-flow instruction, 
which uses the CF_DWORD[0 1] microcode formats. Texture-fetch instructions 
within the clause use the TEX_DWORD[0,1,2] microcode formats, with a fourth 
(high-order) doubleword of zeros. 

A texture-fetch clause consists of instructions that lookup texture elements, called 
texels, based on a GPR address. Texture instructions are used for both texture-
fetch and constant-fetch operations. A texture clause can be at most eight 
instructions long. 

Each texture instruction has a RESOURCE_ID field, which specifies an ID for the 
buffer address, size, and format to read, and a SAMPLER_ID field, which specifies 
an ID for filter and other options. The instruction reads the texture coordinate 
from the SRC_GPR. The SRC_REL bit determines if the address is absolute or 
relative to the loop index (aL). The result is written to the DST_GPR. The DST_REL 
bit determines if the address is absolute or relative to the loop index (aL). Both 
the fetch coordinate and the resulting four-element data from memory can be 
swizzled. The source elements for the swizzle are specified with the 
SRC_SEL_[X,Y,Z,W] fields; a source element also can use the swizzle constants 
0.0 and 1.0. The destination elements for the swizzle are specified with the 
DST_SEL_[X,Y,Z,W] fields; it can write any of the fetched elements, the value 
0.0, or the value 1.0. To disable an element write, set the DST_SEL_[X,Y,Z,W] 
fields to the SEL_MASK value.

Individual texture instructions cannot be predicated; predicated texture fetches 
must be done at the CF level, by making the texture-clause instruction 
conditional. All texture instructions in the clause are executed with the conditional 
constraint specified by the CF instruction.

6.1 Texture-Fetch Microcode Formats
Texture-fetch microcode formats are organized in 4-tuples of 32-bit doublewords. 
Figure 6.1 shows the doubleword layouts in memory, in which +0, +4, +8, and 
+12 indicate the relative byte offset of the doublewords in memory; LSB indicates 
the least-significant (low-order) byte; and the high-order doubleword is padded 
with zeros.



AT I  R 6 0 0  Te c h n o l o g y

6-2 Constant-Fetch Operations
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Figure 6.1 Texture-Fetch Microcode-Format 4-Tuple

6.2 Constant-Fetch Operations
The buffer ID space, specified in the RESOURCE_ID field of the TEX_DWORD0 
microcode format, is eight bits wide, allowing constant and texture fetch to 
coexist in the same ID space. The two types of fetches differ according to the 
manner in which their resources are organized. 

6.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE 
The processor executes pixel threads in groups of four, called quads. Sometimes 
the edge of a primitive (such as a triangle) cuts through a quad so that some 
pixels in the quad are outside the primitive. The threads executing these pixels 
are placed in the invalid state. 

The following two features are sometimes helpful when computing the inputs to 
gradient operations:

• Texture-fetch instructions contain a bit (FETCH_WHOLE_QUAD) if this bit is set 
the fetches from invalid pixels are still executed. 

• Within a quad, some pixels may have the active Mask set to execute while 
others may be set to skip. Normally the pixels which are set to skip, to do 
NOT execute instructions, however if the WHOLE_QUAD_MODE bit is set, the all 
four thread in the quad execute if at least one pipeline is set to execute.

31 24 23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

TEX_DWORD2 +8

TEX_DWORD1 +4

TEX_DWORD0 +0

<------------ LSB ------------>



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 7-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 7
Instruction Set

This section describes the instruction set used by assemblers. The instructions 
grouped by the clauses in which they are used. Within each grouping, they are 
listed alphabetically, by mnemonic. All of the instructions have mnemonic 
prefixes, such as CF_INST_, OP2_INST_, or OP3_INST_. In this section’s 
instruction list, only the portion of the mnemonic following the prefix is shown, 
although the full prefix is described in the text. The opcode and microcode 
formats for each instruction are also given. The microcode formats are described 
in Chapter 8, where the instructions are ordered by their microcode formats, 
rather than alphabetically by mnemonic. That chapter also defines the microcode 
field-name acronyms. 

7.1 Control Flow (CF) Instructions
The CF instructions mnemonics begin with CF_INST_ in the CF_INST field of their 
microcode formats. 



AT I  R 6 0 0  Te c h n o l o g y

7-2 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate ALU Clause

Instruction ALU

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET* 
instruction updates the active state but does not perform a stack operation. 

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU, opcode 8 (0x8).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0 ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Initiate ALU Clause, Loop Break

Instruction ALU_BREAK

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET* 
instruction causes a break operation on the unmasked pixels. The instruction takes the 
address to the corresponding LOOP_END instruction.

ALU_BREAK is equivalent to PUSH, ALU, ELSE, CONTINUE, and POP. 

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_BREAK, opcode 14 (0xE).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-4 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate ALU Clause, Continue Unmasked Pixels

Instruction ALU_CONTINUE

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET* 
instruction causes a continue operation on the unmasked pixels. The instruction takes an 
address to the corresponding LOOP_END instruction. 

ALU_CONTINUE is equivalent to PUSH, ALU, ELSE, CONTINUE, and POP. 

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_CONTINUE, opcode 13 (0xD).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0 ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Initiate ALU Clause, Stack Push and Else After

Instruction ALU_ELSE_AFTER

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, each PRED_SET* 
instruction causes a stack push first, then updates the hardware-maintained active state, 
then performs an ELSE operation to invert the pixel state after the clause completes 
execution. 

The instruction can be used to implement the ELSE part of a higher-level IF statement. 

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_ELSE_AFTER, opcode 15 (0xF).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-6 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate ALU Clause, Pop Stack After

Instruction ALU_POP_AFTER

Description Initiates an ALU clause, and pops the stack after the clause completes execution.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_POP_AFTER, opcode 10 (0xA).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Initiate ALU Clause, Pop Stack Twice After

Instruction ALU_POP2_AFTER

Description Initiates an ALU clause, and pops the stack twice after the clause completes execution. 

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_POP2_AFTER, opcode 11 (0xB).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-8 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate ALU Clause, Stack Push Before

Instruction ALU_PUSH_BEFORE

Description Initiates an ALU clause. If the clause issues PRED_SET* instructions, the first PRED_SET* 
instruction causes a stack push and an update of the hardware-maintained active execution 
state. Subsequent PRED_SET* instructions only update the execution state.

The ALU instructions within an ALU clause are described in Section Chapter 4, “ALU 
Clauses,” page 4-1 and Section 7.2, “ALU Instructions,” page 7-41. 

Microcode

Format CF_ALU_DWORD0 (page 8-7) and CF_ALU_DWORD1 (page 8-8).

Instruction Field CF_INST == CF_INST_ALU_PUSH_BEFORE, opcode 9 (0x9).

B
W
Q
M

CF_INST U
W COUNT KCACHE_ADDR1 KCACHE_ADDR0

K
M
1

+4

K
M
0

K
B
1

K
B
0

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Call Subroutine

Instruction CALL

Description Execute a subroutine call (push call variables onto stack). The ADDR field specifies the 
address of the first CF instruction in the subroutine. 

Calls can be conditional (only pixels satisfying a condition perform the instruction). A 
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This 
field is interpreted in the range [0,31]. The instruction is skipped if the current nesting depth 
+ CALL_COUNT > 32. CALLs can be nested. Setting CALL_COUNT to zero prevents the nesting 
depth from being updated on a subroutine call. 

The POP_COUNT field must be zero for CALL.

Microcode

Format  CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_CALL, opcode 13 (0xD).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-10 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Call Fetch Subroutine

Instruction CALL_FS

Description Execute a fetch subroutine (FS) with an address relative to the address specified in a host-
configured register. The instruction also activates the fetch-program mode, which affects 
other operations until the corresponding RETURN instruction is reached. Only a vector shader 
(VS) program can call an FS subroutine, as described in Section 2.1, “Program Types,” 
page 2-1.

Calls can be conditional (only pixels satisfying a condition perform the instruction). A 
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This 
field is interpreted in the range [0,31]. The instruction is skipped if the current nesting depth 
+ CALL_COUNT > 32. The subroutine is skipped if and only if all pixels fail the condition test 
or the nesting depth exceeds 32 after the call. 

The POP_COUNT field must be zero for CALL_FS. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_CALL_FS, opcode 15 (0xF).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-11
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

End Primitive Strip, Start New Primitve Strip

Instruction CUT_VERTEX

Description Emit an end-of-primitive strip marker. The next emitted vertex starts a new primitive strip. 
Indicates that the primitive strip has been cut, but does not indicate that a vertex has been 
exported by itself. 

Available only to the Geometry Shader (GS). 

Microcode

Format  CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_CUT_VERTEX, opcode 20 (0x14).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-12 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Else

Instruction ELSE

Description Pop POP_COUNT entries (can be zero) from the stack, then invert the status of active and 
branch-inactive pixels for pixels that are both active (as of the last surviving PUSH operation) 
and pass the condition test. Control then jumps to the specified address if all pixels are 
inactive.

The operation can be conditional. 

Microcode

Format  CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_ELSE, opcode 17 (0x11).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-13
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Emit Vertex, End Primitive Strip

Instruction EMIT_CUT_VERTEX

Description Emit a vertex and an end-of-primitive strip marker. The next emitted vertex starts a new 
primitive strip. Indicates that a vertex has been exported and that the primitive strip has been 
cut after the vertex. The instruction must follow the corresponding export operation that 
produces a new vertex. 

Available only to the Geometry Shader (GS). 

Microcode

Format  CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_EMIT_CUT_VERTEX, opcode 19 (0x13).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-14 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Vertex Exported to Memory

Instruction EMIT_VERTEX

Description Signal that a geometry shader (GS) has finished exporting a vertex to memory. Indicates that 
a vertex has been exported. The instruction must follow the corresponding export operation 
that produces a new vertex.

Available only to the Geometry Shader (GS). 

Microcode

Format  CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_EMIT_VERTEX, opcode 18 (0x12).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-15
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Export from VS or PS

Instruction EXPORT

Description Export from a vertex shader (VS) or a pixel shader (PS). Used for normal pixel, position, and 
parameter-cache exports. The instruction supports optional swizzles for the outputs. The 
instruction can be used only by VS and PS programs; GS and DC programs must use one 
of the CF memory-export instructions, MEM*. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_EXPORT, opcode 39 (0x27).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L Reserved SEL_W SEL_Z SEL_Y SEL_X +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

7-16 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Export Last Data

Instruction EXPORT_DONE

Description Export the last of a particular data type from a vertex shader (VS) or a pixel shader (PS). 
Used for normal pixel, position, and parameter-cache exports. The instruction supports 
optional swizzles for the outputs. The instruction can be used only by VS and PS programs; 
GS and DC programs must use one of the CF memory-export instructions, MEM*. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_EXPORT_DONE, opcode 40 (0x28).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L Reserved SEL_W SEL_Z SEL_Y SEL_X +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-17
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Jump to Address

Instruction JUMP

Description Jump to a specified address, subject to an optional condition test for pixels. It first pops 
POP_COUNT entries (can be zero) from the stack to. Then it applies the condition test to all 
pixels. If all pixels fail the test, then it jumps to the specified address. Otherwise, it continues 
execution on the next instruction. The instruction cannot be used to leave an if/else, 
subroutine, or loop operation. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_JUMP, opcode 16 (0x10).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-18 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Kill Pixels Conditional

Instruction KILL

Description Kill (prevent rendering of) pixels that pass a condition test. Jump if all pixels are killed. Only 
a pixel shader (PS) can execute this instruction; the instruction is illegal in other program 
types. Ensure that the KILL instruction is the last instruction in an ALU clause, because the 
remaining instructions executed in the clause do not reflect the updated valid state after the 
kill operation. Two KILL instructions cannot be co-issued. 

Killed pixels remain active because the processor does not know if the pixels are currently 
involved in computing a result that is used in a gradient calculation. If the recently invalidated 
pixels are not involved in a gradient calculation they can be deactivated. The valid pixel 
mode (VALID_PIXEL_MODE bit) is used to deactivate pixels invalidated by a KILL instruction. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_KILL, opcode 21 (0x15).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-19
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Break Out Of Innermost Loop

Instruction LOOP_BREAK

Description Break out of an innermost loop. The instructions disables all pixels for which a condition test 
is true. The pixels remain disabled until the innermost loop exits. The instruction takes an 
address to the corresponding LOOP_END instruction. In the event of a jump, the stack is 
popped back to the original level at the beginning of the loop; the POP_COUNT field is ignored.

If all pixels have been disabled by this (or a prior) LOOP_BREAK or LOOP_CONTINUE instruction, 
LOOP_BREAK jumps to the end of the loop and pops POP_COUNT entries (can be zero) from 
the stack. If at least one pixel has not been disabled by LOOP_BREAK or LOOP_CONTINUE yet, 
execution continues to the next instruction. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_BREAK, opcode 9 (0x9).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-20 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Continue Loop

Instruction LOOP_CONTINUE

Description Continue a loop, starting with the next iteration of the innermost loop. Disables all pixels for 
which a condition test is true. The pixels remain disabled until the end of the current iteration 
of the loop, and they are re-activated by the innermost LOOP_END. 

Control jumps to the end of the loop if all pixels have been disabled by this (or a prior) 
LOOP_BREAK or LOOP_CONTINUE instruction. In the event of a jump, the stack is popped back 
to the original level at the beginning of the loop; the POP_COUNT field is ignored. The ADDR 
field points to the address of the matching LOOP_END instruction. If at least one pixel hasn’t 
been disabled by LOOP_BREAK or LOOP_CONTINUE instruction, the program continues to the 
next instruction. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_CONTINUE, opcode 8 (0x8).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-21
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

End Loop

Instruction LOOP_END

Description Ends a loop if all pixels fail a condition test. Execution jumps to the specified address if the 
loop counter is non-zero after it is decremented, and at least one pixel ha not been 
deactivated by a LOOP_BREAK instruction. Software normally sets the ADDR field to the CF 
instruction following the matching LOOP_START instruction. Execution continues to the next 
CF instruction if the loop is exited. 

LOOP_END pops loop state and one set of per-pixel state from the stack when it exits the loop. 
It ignores POP_COUNT. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_END, opcode 5 (0x5).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-22 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Start Loop

Instruction LOOP_START

Description Begin a loop. The instruction pushes the internal loop state onto the stack. A condition test 
is computed. All pixels fail the test if the loop count is zero. Pixels that fail the test become 
inactive. If all pixels fail the test, the instruction does not enter the loop, and it pops 
POP_COUNT entries (can be zero) from the stack.

The instruction reads one of 32 constants, specified by the CF_CONST field, to get the loop’s 
trip count (maximum number of loop iterations), beginning value (loop index initializer), and 
increment (step), which are maintained by hardware. The instruction jumps to the address 
specified in the instruction’s ADDR field if the initial loop index value is zero. Software normally 
sets the ADDR field to the instruction following the matching LOOP_END instruction. Control 
jumps to the specified address if the initial loop count is zero. If LOOP_START does not jump, 
it sets up the hardware-maintained loop state. 

Loop register-relative addressing is well-defined only within the loop. If multiple loops are 
nested, relative addressing refers to the state of the innermost loop. The state of the next-
outer loop is automatically restored when the innermost loop exits. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_START, opcode 4 (0x4).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-23
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Start Loop (DirectX 10)

Instruction LOOP_START_DX10

Description Enters a DirectX10 loop by pushing control-flow state onto the stack. Hardware maintains 
the current break count and depth-of-loop nesting. Stack manipulations are the same as 
those for LOOP_START. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_START_DX10, opcode 4 (0x4).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-24 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Enter Loop If Zero, No Push

Instruction LOOP_START_NO_AL

Description Same as LOOP_START but does not push the loop index (aL) onto the stack or update the 
aL. Repeat loops are implemented with LOOP_START_NO_AL and LOOP_END. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_LOOP_START_NO_AL, opcode 7 (0x7).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-25
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Access Scatter Buffer

Instruction MEM_EXPORT

Description Used only by the RV670.

Performs a memory read or write on the scatter buffer. This instruction is legal with a TYPE 
of: read, read-indexed, write, write-indexed. Indexed is the expected common use. 

The 13-bit ARRAY_BASE field is valid and is added to the base address for each pixel (units 
of DWORD).

The ARRAY_SIZE field is unused. Set it to zero.

The ES field is supported, allowing 1,2,3,4 DWORDs written per export. Burst read/write is 
allowed and in this case, the address is incremented by “elemsize” DWORDs.

The address in the INDEX_GPR is a DWORD address, no matter how much data is exported.

Address 
Calculation & 
Clamping

SP supplies a 32-bit integer address offset per pixel (assume zero if no EA export).

Per pixel DWORD address = 
{BASE_reg,6’h0} + clamp({ARRAY_SIZE,6’h0}, (BC increment counter *elemsize + 
INDEX_GPR + ARRAY_BASE))

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_EXPORT, opcode 58 (0x3A).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

7-26 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Access Reduction Buffer

Instruction MEM_REDUCTION

Description Perform a memory read or write on a reduction buffer. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_REDUCTION, opcode 37 (0x25).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-27
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Write Ring Buffer

Instruction MEM_RING

Description Perform a memory write on a ring buffer. Used for DC and GS output. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_RING, opcode 38 (0x26).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

7-28 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Access Scratch Buffer

Instruction MEM_SCRATCH

Description Perform a memory read or write on the scratch buffer.

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_SCRATCH, opcode 36 (0x24).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-29
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Write Steam Buffer 0

Instruction MEM_STREAM0

Description Write vertex or pixel data to stream buffer 0 in memory (write-only). Used by vertex shader 
(VS) output for DirectX10 compliance. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_STREAM0, opcode 32 (0x20).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

7-30 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Write Steam Buffer 1

Instruction MEM_STREAM1

Description Write vertex or pixel data to stream buffer 1 in memory (write-only). Used by vertex shader 
(VS) output for DirectX10 compliance. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_STREAM1, opcode 33 (0x21).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-31
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Write Steam Buffer 2

Instruction MEM_STREAM2

Description Write vertex or pixel data to stream buffer 2 in memory (write-only). Used by vertex shader 
(VS) output for DirectX10 compliance. 

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_STREAM2, opcode 34 (0x22). 

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

7-32 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Write Steam Buffer 3

Instruction MEM_STREAM3

Description Write vertex or pixel data to stream buffer 3 in memory (write-only). Used by vertex shader 
(VS) output for DirectX10 compliance.

Microcode

Format CF_ALLOC_EXPORT_DWORD0 (page 8-10) and either CF_ALLOC_EXPORT_DWORD1_BUF (page 8-
12) or CF_ALLOC_EXPORT_DWORD1_SWIZ (page 8-15).

Instruction Field CF_INST == CF_INST_MEM_STREAM3, opcode 35 (0x32).

B
W
Q
M

CF_INST
V
P
M

E
O
P

B
C

E
L COMP_MASK ARRAY_SIZE +4

E
S INDEX_GPR R

R RW_GPR TYPE ARRAY_BASE +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-33
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

No Operation

Instruction NOP

Description No operation. It ignores all fields in the CF_DWORD[0,1] microcode formats, except the 
CF_INST, BARRIER, and END_OF_PROGRAM fields. The instruction does not preserve the current 
PV or PS value in the slot in which it executes. Instruction slots that are omitted implicitly 
execute NOPs in the corresponding ALU. As a consequence, slots that are unspecified do not 
preserve PV or PS for the next instruction. To preserve PV or PS and perform no other 
operation in an ALU clause, use a MOV instruction with a disabled write mask. 

See the ALU version of NOP on page 7-118. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_NOP, opcode 0 (0x0).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-34 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Pop From Stack

Instruction POP

Description Pops POP_COUNT number of entries (can be zero) from the stack. POP can apply a condition 
test to the result of the pop. This is useful for disabling pixels that are killed within a 
conditional block. To disable such pixels, set the POP instruction’s VALID_PIXEL_MODE bit and 
set the condition to CF_COND_ACTIVE. If POP_COUNT is zero, POP simply modifies the current 
per-pixel state based on the result of the condition test. 

POP instructions never jump. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_POP, opcode 12 (0xC).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-35
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Push State To Stack

Instruction PUSH

Description If all pixels fail a condition test, pop POP_COUNT entries from the stack and jump to the 
specified address. Otherwise, push the current per-pixel state (active mask) onto the stack. 
After the push, active pixels that failed the condition test transition to the inactive-branch 
state in the new active mask. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_PUSH, opcode 10 (0xA).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-36 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Push State To Stack and Invert State

Instruction PUSH_ELSE

Description Push current per-pixel state (active Mask) onto the stack and compute new active Mask. The 
instruction can be used to implement the ELSE part of a higher-level IF statement. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_PUSH_ELSE, opcode 11 (0xB).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-37
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Return From Subroutine

Instruction RETURN

Description Return from subroutine. Pops the return address from the stack to program counter. Paired 
only with the CALL instruction. The ADDR field is ignored; the return address is read from the 
stack. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_RETURN, opcode 14 (0xE).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-38 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate Texture-Fetch Clause

Instruction TEX

Description Initiates a texture-fetch or constant-fetch clause, starting at the double-quadword-aligned 
(128-bit) offset in the ADDR field and containing COUNT + 1 instructions. There is only one 
instruction for texture fetch, and there are no special fields in the instruction for texture clause 
execution. The texture-fetch instructions within a texture-fetch clause are described in 
Section Chapter 6, “Texture-Fetch Clauses,” page 6-1 and Section 7.4, “Texture-Fetch 
Instructions,” page 7-183. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_TEX, opcode 1 (0x1).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 7-39
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Initiate Vertex-Fetch Clause

Instruction VTX

Description Initiate a vertex-fetch clause, starting at the double-quadword-aligned (128-bit) offset in the 
ADDR field and containing COUNT + 1 instructions. The VTX_TC instruction issues the vertex 
fetch through the texture cache (TC) and is useful for systems that lack a vertex cache (VC). 
The vertex-fetch instructions within a vertex-fetch clause are described in Section Chapter 5, 
“Vertex-Fetch Clauses,” page 5-1 and Section 7.3, “Vertex-Fetch Instructions,” page 7-181. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_VTX, opcode 2 (0x2).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

7-40 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Initiate Vertex-Fetch Clause Through Texture Cache

Instruction VTX_TC

Description Initiate a vertex-fetch clause, starting at the double-quadword-aligned (128-bit) offset in the 
ADDR field and containing COUNT + 1 instructions. It is used for systems lacking a vertex 
cache (VC). The VTX_TC instruction issues the vertex fetch through the texture cache (TC) 
and is useful for systems that do not have a vertex cache (VC). The vertex-fetch instructions 
within a vertex-fetch clause are described in Section Chapter 5, “Vertex-Fetch Clauses,” 
page 5-1 and Section 7.3, “Vertex-Fetch Instructions,” page 7-181. 

Microcode

Format CF_DWORD0 (page 8-3) and CF_DWORD1 (page 8-4).

Instruction Field CF_INST == CF_INST_VTX_TC, opcode 3 (0x3).

B
W
Q
M

CF_INST
V
P
M

E
O
P

Rsvd CALL_COUNT COUNT COND CF_CONST P
C +4

ADDR +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-41
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

7.2 ALU Instructions
All of the instructions in this section have a mnemonic that begins with OP2_INST_ or 
OP3_INST_ in the ALU_INST field of their microcode formats.

Add Floating-Point

Instruction ADD

Description Floating-point add.

dst = src0 + src1;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_ADD, opcode 0 (0x0).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-42 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Add Floating-Point, 64-Bit

Instruction ADD_64

Description Floating-point 64-bit add. Adds two double-precision numbers in the YX or WZ   elements of the 
source operands, src0 and src1, and outputs a double-precision value to the same elements of 
the destination operand. No carry or borrow beyond the 64-bit values is performed. The 
operation occupies two slots in an instruction group. 

dst = src0 + src1;

These properties hold true for this instruction:

(A + B) == (B + A)
(A – B) == (A + -B)
A + -A = +zero

Table 7.1 Result of ADD_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-denorm -0 +0 +denorm +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf -inf -inf -inf -inf -inf -inf -inf NaN64 src1
(NaN64)

-F1 -inf -F src0 src0 src0 src0 +-F or +0 +inf src1
(NaN64)

-denorm -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

-0 -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

+0 -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+denorm -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+F1 -inf +-F or +0 src0 src0 src0 src0 +F +inf src1
(NaN64)

+inf NaN64 +inf +inf +inf +inf +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-43
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Coissue ADD_64 is a two-slot instruction. The following coissues are possible.

• A single ADD_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and 4.
• A single ADD_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and 4.
• Two ADD_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_ADD_64, opcode 23 (0x17).

Add Floating-Point, 64-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-44 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Example The following example coissues two ADD_64 instructions in slots 0 and 1, and 2 and 3.

Input data:

Input data  3.0 (0x4008000000000000)
Input data  6.0 (0x4018000000000000)
Input data 12.0 (0x4028000000000000)

mov ra.h, l(0x40080000)   //high dword (Input 1)
mov rb.l, l(0x00000000)   //low  dword

mov rc.h, l(0x40180000)   //high dword (Input 2)
mov rd.l, l(0x00000000)   //low  dword

mov rg.h, l(0x40180000)   //high dword (Input 3)
mov rh.l, l(0x00000000)   //low  dword

mov ri.h, l(0x40280000)   //high dword (Input 4)
mov rj.l, l(0x00000000)   //low  dword

Issue instructions:

ADD_64  re.x ra.h rc.h; //can be any vector element
ADD_64  rf.y rb.l rd.l; //can be any vector element 
ADD_64  rk.z rg.h ri.h; //can be any vector element 
ADD_64  rl.w rh.l rj.l; //can be any vector element 

Result:
       
Input 1 + Input 2  = 3.0 +  6.0 = 9.0  (0x4022000000000000)
Input 3 + Input 4  = 6.0 + 12.0 = 18.0 (0x4032000000000000)

re.x = 0x00000000    (LSB of Input1 and Input2 add result)
rf.y = 0x40220000    (MSB of Input1 and Input2 add result)
rk.z = 0x00000000    (LSB of Input3 and Input4 add result)
rl.w = 0x40320000    (MSB of Input3 and Input4 add result)

Input Modifiers Input modifiers (Section 4.7.2, “Input Modifiers,” page 4-10) can be applied to the source 
operands during the destination X element (slot 0) or Z element (slot 2). These slots contain the 
sign bits of the sources. 

Output Modifiers Output modifiers (Section 4.9.1, “Output Modifiers,” page 4-25) can be applied to the destination 
during the destination X element (slot 0) or Z element (slot 2).

Add Floating-Point, 64-Bit (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-45
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Add Integer

Instruction ADD_INT

Description Integer add, based on signed or unsigned integer operands.

dst = src0 + src1;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_ADD_INT, opcode 52 (0x34).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-46 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

AND Bitwise

Instruction AND_INT

Description Logical bit-wise AND.

dst = src0 & src1;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_AND_INT, opcode 48 (0x30).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-47
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Arithmetic Shift Right

Instruction ASHR_INT

Description Scalar arithmetic shift right. The sign bit is shifted into the vacated locations. src1 is 
interpreted as an unsigned integer. If src1 is > 31, the result is either 0 or -1, depending on 
the sign of src0.

dst = src0 >> src1

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_ASHR_INT, opcode 112 (0x70).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-48 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Ceiling

Instruction CEIL

Description Floating-point ceiling.

dst = TRUNC(src0);
If ( (src0 > 0.0f) && (src0 != dst) ) {

dst += 1.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_CEIL, opcode 18 (0x12).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-49
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Conditional Move If Equal

Instruction CMOVE

Description Floating-point conditional move if equal.

If (src0 == 0.0f) {
dst = src1; 

}
Else {

dst = src2;
}

Compares the first source operand with floating-point zero, and copies either the second or 
third source operand to the destination operand based on the result. Execution can be 
conditioned on a predicate set by the previous ALU instruction group. If the condition is not 
satisfied, the instruction has no effect, and control is passed to the next instruction. 

The instruction specifies which one of four data elements in a four-element vector is operated 
on, and the result can be stored in any of the four elements of the destination GPR. 
Operands can be accessed using absolute addresses, or an index in a GPR or the address 
register (AR). 

A fog value can be exported by merging a transcendental ALU result into the low-order bits 
of the vector destination. The active Mask and predicate bit can be updated by the result. 

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVE, opcode 24 (0x18).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-50 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Conditional Move If Equal

Instruction CMOVE_INT

Description Integer conditional move if equal, based on signed or unsigned integer operand. Compare 
CMOVE on page 7-49. 

If (src0 == 0x0) {
dst = src1; 

} 
Else {

dst = src2;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVE_INT, opcode 28 (0x1C).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-51
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Conditional Move If Greater Than Or Equal

Instruction CMOVGE

Description Floating-point conditional move if greater than or equal. Compare CMOVE on page 7-49. 

If (src0 >= 0.0f) {
dst = src1; 

}
Else {

dst = src2;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVGE, opcode 26 (0x1A).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-52 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Conditional Move If Greater Than Or Equal

Instruction CMOVGE_INT

Description Integer conditional move if greater than or equal, based on signed integer operand. Compare 
CMOVE on page 7-49. 

If (src0 >= 0x0) {
dst = src1; 

} 
Else {

dst = src2;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVGE_INT, opcode 30 (0x1E).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-53
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Conditional Move If Greater Than

Instruction CMOVGT

Description Floating-point conditional move if greater than. Compare CMOVE on page 7-49. 

If (src0 > 0.0f) {
dst = src1; 

}
Else {

dst = src2;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVGT, opcode 25 (0x19).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-54 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Conditional Move If Greater Than

Instruction CMOVGT_INT

Description Integer conditional move if greater than, based on signed integer operand. Compare CMOVE 
on page 7-49. 

If (src0 > 0x0) {
dst = src1; 

} 
Else {

dst = src2;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_CMOVGT_INT, opcode 29 (0x1D). 

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-55
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Cosine

Instruction COS

Description Scalar cosine. Valid input domain [-PI, +PI]. 

dst = ApproximateCos(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_COS, opcode 111 (0x6F).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-56 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Cube Map

Instruction CUBE

Description Cubemap, using two operands (src0 = Rn.zzxy, src1 = Rn.yxzz). This reduction instruction 
must be executed on all four elements of a single vector. Reduction operations compute only 
one output, so the values in the output modifier (OMOD) and output clamp (CLAMP) fields must 
be the same for all four instructions. OMOD and CLAMP do not affect the Direct3D FaceID in 
the resulting W vector element. 

This instruction is not available in the ALU.Trans unit. 

dst.W = FaceID;
dst.Z = 2.0f * MajorAxis;
dst.Y = S cube coordinate;
dst.X = T cube coordinate;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_CUBE, opcode 82 (0x52).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-57
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Four-Element Dot Product

Instruction DOT4

Description Four-element dot product. This reduction instruction must be executed on all four elements 
of a single vector. Reduction operations compute only one output, so the values in the output 
modifier (OMOD) and output clamp (CLAMP) fields must be the same for all four instructions. 

Only the PV.X register element holds the result of this operation, and the processor selects 
this swizzle code in the bypass operation. 

This instruction is not available in the ALU.Trans unit. 

dst = srcA.W * srcB.W +
srcA.Z * srcB.Z +
srcA.Y * srcB.Y +
srcA.X * srcB.X;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_DOT4, opcode 80 (0x50).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-58 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Four-Element Dot Product, IEEE

Instruction DOT4_IEEE

Description Four-element dot product that uses IEEE rules for zero times anything. This reduction 
instruction must be executed on all four elements of a single vector. Reduction operations 
compute only one output, so the values in the output modifier (OMOD) and output clamp 
(CLAMP) fields must be the same for all four instructions. 

Only the PV.X register element holds the result of this operation, and the processor selects 
this swizzle code in the bypass operation. 

This instruction is not available in the ALU.Trans unit. 

dst = srcA.W * srcB.W +
srcA.Z * srcB.Z +
srcA.Y * srcB.Y +
srcA.X * srcB.X;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_DOT4_IEEE, opcode 81 (0x51).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-59
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Base-2 Exponent, IEEE

Instruction EXP_IEEE

Description Scalar base-2 exponent.

If (src0 == 0.0f) {
dst = 1.0f;

}
Else {

dst = Approximate2ToX(src0);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_EXP_IEEE, opcode 97 (0x61).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-60 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Floor

Instruction FLOOR

Description Floating-point floor. 

dst = TRUNC(src0);
If ( (src0 < 0.0f) && (src0 != dst) ) {

dst += -1.0f;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FLOOR, opcode 20 (0x14).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-61
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point To Integer

Instruction FLT_TO_INT

Description Floating-point input is converted to a signed integer value using truncation. If the value does 
fit in 32 bits, the low-order bits are used.

dst = (int)src0

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FLT_TO_INT, opcode 107 (0x6B).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-62 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point 32-Bit To Floating-Point 64-Bit

Instruction FLT32_TO_FLT64

Description Floating-point 32-bit convert to 64-bit floating-point. The instruction converts src0.X or 
src0.Z to a 64-bit double-precision floating-point value and places the result in dst.YX or 
dst.ZW, respectively. If the source value does fit in 32 bits, the low-order bits are used. 
Using values outside the specified range produces undefined results. 

A 32-bit NaN source is handled specially. The sign is copied, the mantissa is copied into bits 
[52:30], and the exponent is forced to 0x7FF. The result for a NaN source is a NaN with the 
same sign, and the single-precision mantissa is the MSB of the double-precision mantissa. 

dst = src0;

mant  = mantissa(src0)
exp   = exponent(src0)
sign  = sign(src0)

e = exp + (1023-127);

if (exp==0xFF)       //src0 is inf or a NaN
{

If (mant!=0x0)    //src0 is a NaN
{

dst = {sign, 0x7FF, {mant,29’b0}};   //29 low-order bits are zero
}
else             //src0 is inf
{

dst = (sign) ? 0xFFF0000000000000 : 0x7FF0000000000000;
}

}
else if (exp==0x0)    //src0 is zero or a denorm
{

dst = (sign) ? 0x8000000000000000 : 0x0;
}
else           //src0 is a valid floating-point value
{

m = mant<<29;
m |= (e << 52);
m |= (sign << 63);

dst = m;

}

Coissue FLT32_TO_FLT64 is a two-slot instruction. The following coissue scenarios are possible:.

• A single FLT32_TO_FLT64 instruction in slots 0 and 1, and any valid instructions in slots 
2, 3, and 4.

• A single FLT32_TO_FLT64 instruction in slots 2 and 3, and any valid instructions in slots 
0, 1, and 4.

• Two FLT32_TO_FLT64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 7.2 Result of FLT32_TO_FLT64 Instruction

src0

-inf -F1

1. F is a finite floating-point value. 

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf  NaN

-inf -F -1.0 -0.0 -0.0 +0.0 +0.0 +1.0 +F +inf  NaN2

2. The hardware propagates a 32-bit input NaN to the output. So if the input is a 32-bit -/+ signaling 
NaN, the output is a 64-bit -/+ signaling NaN. A 32-bit -/+ quiet NaN returns a 64 bit -/+ quiet NaN. 
A 32-bit 0xFFC00000 NaN returns a 64 bit NaN64 (0xFFF8000000000000).



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-63
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FLT32_TO_FLT64, opcode 29 (0x1D).

Example The following example coissues two FLT32_TO_FLT64 instructions in slots 0 and 1, and 2 and 
3:

Input data:

Input data  0.5f (0x3F000000)
Input data  1.0f (0x3F800000)

mov ra.h, l (0x3F000000)    //Input 1
mov rb.l   //Don’t care

mov rc.h, l(0x3F800000)     //Input 2
mov rd.l   //Don’t care

Issue instructions:

FLT32_TO_FLT64 re.x ra.h   //can be any vector element
FLT32_TO_FLT64 rf.y rb.l   //Don’t care
FLT32_TO_FLT64 rg.z rc.h   //can be any vector element
FLT32_TO_FLT64 rh.w rd.l   //Don’t care

Result:

flt32_to_flt64(0.5f) = 0.5 (0x3FE0000000000000)
flt32_to_flt64(1.0f) = 1.0 (0x3FF0000000000000)

re.x = 0x00000000 (LSB of output)
rf.y = 0x3FE00000 (MSB of output)
rg.z = 0x00000000 (LSB of output)
rh.w = 0x3ff00000 (MSB of output)

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) or Z element (slot 2). These slots contain the sign bits of 
the sources. 

Output Modifiers Output modifiers (Section 4.9.1, on page 4-25) can be applied to the destination during the 
destination X element (slot 0) or Z element (slot 2).

Floating-Point 32-Bit To Floating-Point 64-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-64 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point 64-Bit To Floating-Point 32-Bit

Instruction FLT64_TO_FLT32

Description Floating-point 64-bit convert to 32-bit floating-point. The instruction converts src0.YX or 
src0.WZ to a 32-bit single-precision floating-point value in dst.X or dst.Z, respectively. If 
the result does fit in 32 bits, the low-order bits are used. 

dst = src0;

mant  = mantissa(src0)
exp   = exponent(src0)
sign  = sign(src0)

if (exp==0x7FF)     //src0 is inf or a NaN
{

if (mant==0x0)   //src0 is a NaN
{

dst = (sign) ? 0xFFC00000 : 0x7FC00000;
}
else            //src0 is inf
{

dst = (sign) ? 0xFF800000 : 0x7F800000;
}

}
else if (exp==0x0)  //src0 is zero or a denorm
{

dst = (sign) ? 0x80000000 : 0x0;
}
else           //src0 is a valid floating-point value
{

dst = src0;

}

Coissue FLT64_TO_FLT32 is a two-slot instruction. The following coissues are possible.

• A single FLT64_TO_FLT32 instruction in slots 0 and 1, and any valid instructions in slots 
2, 3, and 4.

• A single FLT64_TO_FLT32 instruction in slots 2 and 3, and any valid instructions in slots 
0, 1, and 4.

• Two FLT64_TO_FLT32 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 7.3 Result of FLT64_TO_FLT32 Instruction

src0

-NaN -inf -F1

1. F is a finite floating-point value. 

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf  +NaN

0xFFC00000 -inf -F -1.0 -0.0 -0.0 +0.0 +0.0 +1.0 +F +inf 0x7FC00000



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-65
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FLT64_TO_FLT32, opcode 28 (0x1C).

Example The following example coissues two FLT64_TO_FLT32 instructions in slots 0 and 1, and 2 and 
3:.

Input data:

Input data  1.0 (0x3FF0000000000000)
Input data  2.0 (0x4000000000000000)

mov ra.h, l(0x3FF00000)   //high dword (Input 1)
mov rb.l, l(0x00000000)   //low  dword

mov rc.h, l(0x40000000)   //high dword (Input 2)
mov rd.l, l(0x00000000)   //low  dword

Issue instructions:

FLT64_TO_FLT32  re.x  ra.h //can be any vector element
FLT64_TO_FLT32  rf.y  rb.l //can be any vector element
FLT64_TO_FLT32  rg.z  rc.h //can be any vector element
FLT64_TO_FLT32  rh.w  rd.l //can be any vector element

Result:

flt64_to_flt32(1.0) = 1.0f (0x3F800000)
flt64_to_flt32(2.0) = 2.0f (0x40000000)

re.x  = 0x3F800000 (1.0f)
rf.y  = 0                  //Always 0
rg.z  = 0x40000000 (2.0f)
rh.w  = 0                 //Always 0

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) or Z element (slot 2). These slots contain the sign bits of 
the sources. 

Output Modifiers Output modifiers (Section 4.9.1, on page 4-25) can be applied to the destination during the 
destination X element (slot 0) or Z element (slot 2).

Floating-Point 64-Bit To Floating-Point 32-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-66 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Fractional

Instruction FRACT

Description Floating-point fractional part of source operand.

dst = src0 - FLOOR(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FRACT, opcode 16 (0x10).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-67
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

 

Floating-Point Fractional, 64-Bit

Instruction FRACT_64

Description Gets the positive fractional part of a 64-bit floating-point value located in src0.YX or 
src0.WZ, and places the result in dst.YX or dst.WZ, respectively.

dst = src0;

mant  = mantissa(src0)
exp   = exponent(src0)
sign  = sign(src0)

if (exp==0x7FF)      //src0 is an inf or a NaN
{

If (mant==0x0)    //src0 is NaN
{

dst = src0;
}
else              //src0 is inf
{

dst = NaN64;
}

}
else if (exp==0x0)  //src0 is zero or a denorm
{

dst = 0x0;
}
else         //src0 is a float
{

dst = src0 – floor(src0);
}

Coissue FRACT_64 is a two-slot instruction. The following coissues are possible:.

• A single FRACT_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and 
4.

• A single FRACT_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and 
4.

• Two FRACT_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Table 7.4 Result of FRACT_64 Instruction

src0

-inf -F1

1. F is a finite floating-point value. 

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN

NaN64 [+0.0,+1.0) +0 +0 +0 +0 +0 +0 [+0.0,+1.0)* NaN64 NaN64

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-68 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Instruction Field ALU_INST == OP2_INST_FRACT_64, opcode 123 (0x7B).

Example The following example coissues two FRACT_64 instructions in slots 0 and 1, and 2 and 3.

Input data:

Input data 8.814369 (0x4021A0F4F077BCA7)
Input data 13.113172 (0x402A39F1A0AC1721)

mov ra.h, l(0x4021A0F4) //high dword (Input 1)
mov rb.l, l(0xF077BCA7) //low dword

mov rc.h, l(0x402A39F1) //high dword (Input 2)
mov rd.l, l(0xA0AC1721) // low dword

Issue instructions:

FRACT_64 re.x ra.h //can be any vector element
FRACT_64 rf.y rb.l //can be any vector element
FRACT_64 rg.z rc.h //can be any vector element
FRACT_64 rh.w rd.l //can be any vector element

Result:

fract64(0x4021A0F4F077BCA7) = fract64(8.814369)  = 0x3FEA0F4F077BCA70 
(0.814369)
fract64(0x402A39F1A0AC1721) = fract64(13.113172) = 0x3FBCF8D0560B9080 
(0.113172)

re.x = 0x077BCA70 (LSB of output)
rf.y = 0x3FEA0F4F (MSB of output)
rg.z = 0x560B9080 (LSB of output)
rh.w = 0x3FBCF8D0 (MSB of output)

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) or Z element (slot 2). These slots contain the sign bits of 
the sources. 

Output Modifiers Output modifiers (Section 4.9.1, on page 4-25) can be applied to the destination during the 
destination X element (slot 0) or Z element (slot 2).

Floating-Point Fractional, 64-Bit (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-69
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

 

Split Double-Precision Floating_Point Into Fraction and Exponent

Instruction FREXP_64

Description Splits the double-precision floating-point value in src0.YX into separate fraction (mantissa) 
and exponent values. The exponent is output as a signed integer to dst.YX. The fraction, in 
the range (-1.0f, -0.5f] or [0.5f, 1.0f), is output as a sign-extended double-precision value to 
dst.WZ. 

dst = src0;

frac_src0  = fraction(src0)
exp_src0   = exponent(src0)
sign_src0  = sign(src0)
frac_dst   = fraction(dst)
exp_dst    = exponent(dst)

if (exp_src0==0x7FF)                //src0 is inf or NaN
{

exp_dst = 0xFFFFFFFF;
if (frac_src0==0x0)              //src0 is inf
{

frac_dst = 0xFFF8000000000000;
}
else                            //src0 is a NaN
{

frac_dst = src0;
}

}
else if (exp_dst==0x0)             //src0 is zero or denorm
{

exp_dst = 0x0;
frac_dst = {sign_src0,0x0};

}
else                        //src0 is a float
{

frac_dst = {sign_src0, 0x3fe, frac_src0}; // double from (-1, -0.5] to 
[0.5, 1)

exp_dst  = exp_src0 – 1023 + 1;           // convert to 2’s complement

}

Coissue The instruction uses four slots in an instruction group. A single FREXP_64 instruction must be 
issued in slots 0, 1, 2, or 3. Slot 4 can contain any other valid instruction. 

Table 7.5 Result of FREXP_64 Instruction

dst

src0

-inf or +inf -0 or +0 -denorm or +denorm NaN

frac_dst NaN641 {sign_src0,0} {sign_src0,0} src0

exp_dst 0xFFFFFFFF 0 0 0xFFFFFFFF

1. NaN64 = 0xFFF8000000000000.



AT I  R 6 0 0  Te c h n o l o g y

7-70 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Microcode

Format  ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_FREXP_64, opcode 7 (0x7).

Example The following example issues one FREXP_64 instruction in each of slots 0, 1, 2, and 3.

For src0 = 3.0 (0x4008000000000000):

mov ra.h , l(0x40080000)  //high dword (Input)
mov rb.l , l(0x00000000)  //low  dword

Issue instructions:

FREXP_64  rc.x ra.h;   //Can be any vector element in any GPR
FREXP_64  rd.y rb.l;   //Can be any vector element in any GPR
FREXP_64  re.z         //Don’t care about source operand (not used)
FREXP_64  rf.w         //Don’t care about source operand (not used)

Result:

rc.x = 0x0         (All bits are always zero)
rd.y = 2           (Exponent 0.75*2^2 = 3.0)
re.z = 0x0         (LSB of mantissa)
rf.w = 0x3FE80000  {s,0x3FE, MSB of mantissa}

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operand during 
the destination X element (slot 0). This slot contains the sign bit of the source. 

Output Modifiers The instruction does not take output modifiers. 

Split Double-Precision Floating_Point Into Fraction and Exponent (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-71
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer To Floating-Point

Instruction INT_TO_FLT

Description Integer to floating-point. The input is interpreted as a signed integer value and converted to 
a floating-point value. 

dst = (float) src0

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_INT_TO_FLT, opcode 108 (0x6C).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-72 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Pixel Kill If Equal

Instruction KILLE

Description Floating-point pixel kill if equal. Set kill bit. Ensure that the KILL* instruction is the last 
instruction in an ALU clause, because the remaining instructions executed in the clause do 
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can 
execute this instruction; the instruction is ignored in other program types. 

If (src0 == src1) {
dst = 1.0f; 
Killed = TRUE; 

} 
Else {

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_KILLE, opcode 44 (0x2C).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-73
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Pixel Kill If Greater Than Or Equal

Instruction KILLGE

Description Floating-point pixel kill if greater than or equal. Set kill bit. Ensure that the KILL* instruction 
is the last instruction in an ALU clause, because the remaining instructions executed in the 
clause do not reflect the updated valid state after the kill operation. Only a pixel shader (PS) 
can execute this instruction; the instruction is ignored in other program types. 

If (src0 >= src1) {
dst = 1.0f; 
Killed = TRUE; 

} 
Else { 

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_KILLGE, opcode 46 (0x2E).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-74 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Pixel Kill If Greater Than

Instruction KILLGT

Description Floating-point pixel kill if greater than. Set kill bit. Ensure that the KILL* instruction is the last 
instruction in an ALU clause, because the remaining instructions executed in the clause do 
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can 
execute this instruction; the instruction is ignored in other program types. 

If (src0 > src1) {
dst = 1.0f;
Killed = TRUE; 

} 
Else { 

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_KILLGT, opcode 45 (0x2D).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-75
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Pixel Kill If Not Equal

Instruction KILLNE

Description Floating-point pixel kill if not equal. Set kill bit. Ensure that the KILL* instruction is the last 
instruction in an ALU clause, because the remaining instructions executed in the clause do 
not reflect the updated valid state after the kill operation. Only a pixel shader (PS) can 
execute this instruction; the instruction is ignored in other program types. 

If (src0 != src1) { 
dst = 1.0f; 
Killed = TRUE; 

} 
Else { 

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_KILLNE, opcode 47 (0x2F).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-76 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

 

Combine Separate Fraction and Exponent into Double-precision

Instruction LDEXP_64

Description The LDEXP_64 instruction gets a 52-bit mantissa from the double-precision floating-point 
value in src1.YX and a 32-bit integer exponent in src0.X, and multiplies the mantissa by 
2exponent. The double-precision floating-point result is stored in dst.YX. 

dst = src1 * 2^src0

mant  = mantissa(src1)
exp   = exponent(src1)
sign  = sign(src1)

if (exp==0x7FF)              //src1 is inf or a NaN
{

dst = src1;
}

else if (exp==0x0)        //src1 is zero or a denorm
{

dst = (sign) ? 0x8000000000000000 : 0x0;
}
else                     //src1 is a float
{

exp+= src0;
   if (exp>=0x7FF)  //overflow

{
dst = {sign,inf};

}
if (src0<=0)              //underflow
{

dst = {sign,0};
}

mant |= (exp<<52);
mant |= (sign<<63);

dst = mant;
}

Coissue LDEXP_64 is a two-slot instruction. The following coissues are possible:

A single LDEXP_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 3, and 4.

A single LDEXP_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 1, and 4.

Two LDEXP_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4.

Table 7.6 Result of LDEXP_64 Instruction

src1

src0

-/+inf -/+denorm -/+0 -/+F1

1. F is a finite floating-point value. 

NaN

-/+I2 -/+inf -/+0 -/+0  src1 * (2^src0) src0

Not -/+I -/+inf -/+0 -/+0 invalid result src0

2. I is a valid 32-bit integer value.



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-77
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_LDEXP_64, opcode 122 (0x7A).

Example The following example coissues two LDEXP_64 instructions in slots 0 and 1, and 2 and 3.

Input data:

Input data (x1) 0x47F000006FC6A731
Input data (e1) 0x2C6
Input data (x2) 0xC7EFFFFEE072B19F
Input data (e2) 0x15E

mov ra.h, l(0x47F00000)    //high dword x1(Input 1)
mov rb.l, l(0x6FC6A731)    //low  dword

mov rc.h, l(0xC7EFFFFE)    //high dword x2(Input 2)
mov rd.l, l(0xE072B19F)    //low  dword

mov rj.h, l(0x2C6)         //e1 
mov rk.l, l(0x15E)         //e2

Issue instructions:

LDEXP_64  re.x ra.h rj.h   //can be any vector element
LDEXP_64  rf.y rb.l rj.h   //can be any vector element 
LDEXP_64  rg.z rc.h rk.l   //can be any vector element 
LDEXP_64  rh.w rd.l rk.l   //can be any vector element

Result:

re.x  = 0x6FC6A731 (output LSB)
rf.y  = 0x74500000 (output MSB)
rg.z  = 0xE072B19F (output LSB)
rh.w  = 0xDDCFFFFE (output MSB)

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the src0 operand during the 
destination X element (slot 0) or Z element (slot 2). These slots contain the sign bits of the 
sources. The src1 operand is an integer and does not accept modifiers. 

Output Modifiers Output modifiers (Section 4.9.1, on page 4-25) can be applied to the destination during the 
destination X element (slot 0) or Z element (slot 2). 

Combine Separate Fraction and Exponent into Double-precision (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-78 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Base-2 Log

Instruction LOG_CLAMPED

Description Scalar base-2 log.

If (src0 == 1.0f) {
dst = 0.0f;

}
Else {

dst = LOG_IEEE(src0)
// clamp dst
if (dst == -INFINITY) {

dst = -MAX_FLOAT;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_LOG_CLAMPED, opcode 98 (0x62).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-79
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Base-2 IEEE Log

Instruction LOG_IEEE

Description Scalar Base-2 IEEE log.

If (src0 == 1.0f) {
dst = 0.0f;

}
Else {

dst = ApproximateLog2(src0);
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_LOG_IEEE, opcode 99 (0x63).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-80 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Logical Shift Left

Instruction LSHL_INT

Description Scalar logical shift left. Zero is shifted into the vacated locations. src1 is interpreted as an 
unsigned integer. If src1 is > 31, then the result is 0.

dst = src0 << src1

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_LSHL_INT, opcode 114 (0x72).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-81
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Logical Shift Right

Instruction LSHR_INT

Description Scalar logical shift right. Zero is shifted into the vacated locations. src1 is interpreted as an 
unsigned integer. If src1 is > 31, then the result is 0.

dst = src0 << src1

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_LSHR_INT, opcode 113 (0x71).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-82 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Maximum

Instruction MAX

Description Floating-point maximum.

If (src0 >= src1) {
dst = src0; 

}
Else {

dst = src1;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MAX, opcode 3 (0x3).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-83
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Maximum, DirectX 10

Instruction MAX_DX10

Description Floating-point maximum. This instruction uses the DirectX 10 method of handling of NaNs.

If (src0 >= src1) {
dst = src0; 

}
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MAX_DX10, opcode 5 (0x5).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-84 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Maximum

Instruction MAX_INT

Description Integer maximum, based on signed integer operands.

If (src0 >= src1) {
dst = src0; 

} 
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MAX_INT, opcode 54 (0x36).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-85
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Integer Maximum

Instruction MAX_UINT

Description Integer maximum, based on unsigned integer operands.

If (src0 >= src1) {
dst = src0; 

} 
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MAX_UINT, opcode 56 (0x38).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-86 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Four-Element Maximum

Instruction MAX4

Description Four-element maximum. The result is replicated in all four vector elements. This reduction 
instruction must be executed on all four elements of a single vector. Reduction operations 
compute only one output, so the values in the output modifier (OMOD) and output clamp 
(CLAMP) fields must be the same for all four instructions. 

Only the PV.X register element holds the result of this operation, and the processor selects 
this swizzle code in the bypass operation. 

This instruction is not available in the ALU.Trans unit. 

dst = max(srcA.W, srcA.Z, srcA,Y, srcA.X);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MAX4, opcode 83 (0x53).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-87
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Minimum

Instruction MIN

Description Floating-point minimum.

If (src0 < src1) {
dst = src0; 

}
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MIN, opcode 4 (0x4).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-88 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Minimum, DirectX 10

Instruction MIN_DX10

Description Floating-point minimum. This instruction uses the DirectX 10 method of handling of NaNs.

If (src0 < src1) {
dst = src0; 

}
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MIN_DX10, opcode 6 (0x6).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-89
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Signed Integer Minimum

Instruction MIN_INT

Description Integer minimum, based on signed integer operands.

If (src0 < src1) {
dst = src0; 

} 
Else {

dst = src1;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MIN_INT, opcode 55 (0x37).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-90 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Unsigned Integer Minimum

Instruction MIN_UINT

Description Integer minimum, based on unsigned integer operands.

If (src0 < src1) {
dst = src0; 

} 
Else {

dst = src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MIN_UINT, opcode 57 (0x39).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-91
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Copy To GPR

Instruction MOV

Description Copy a single operand from a GPR, constant, or previous result to a GPR. 

MOV can be used as an alternative to the NOP instruction. Unlike NOP, which does not preserve 
the current PV or PS register value in the slot in which it executes, a MOV can be made to 
preserve PV and PS register values if the it is performed with a disabled write mask.

dst = src0

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MOV, opcode 25 (0x19).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-92 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Copy Rounded Floating-Point To Integer in AR and GPR

Instruction MOVA

Description Round floating-point to the nearest integer in the range [-256, +255], and copy the result to 
the address register (AR) and to a GPR. 

When the destination is a GPR, the destination contains a 1-element scalar address 
that is used for GPR-relative addressing in the ALU. This GPR-index state only persists for 
one ALU clause, and it is only available for relative addressing within the ALU (it is not 
available for relative texture-fetch, vertex-fetch, or export addressing). 

When the destination is the AR register, the instruction copies the four elements of a source 
GPR into the AR register; they are used as the index value for constant-file relative 
addressing (constant waterfalling). The MOVA* instructions write vector elements of the AR 
register. They do not need to execute on all of the ALU.[X,Y,Z,W] operands at the same 
time. One ALU.[X,Y,Z,W] unit can execute a MOVA* operation while other ALU.[X,Y,Z,W] 
units execute other operations. Software can issue up to four MOVA* instructions in a single 
instruction group to change all four elements of the AR register. MOVA* issued in ALU.X writes 
AR.X regardless of any GPR write mask used. Predication is supported.

MOVA* instructions must not be used in an instruction group that uses GPR or AR indexing 
in any slot (even slots that are not executing MOVA*, and even for an index not being changed 
by MOVA*). To perform this operation, split it into two separate instruction groups: the first 
performing a MOV with GPR-indexed source into a temporary GPR, and the second 
performing the MOVA* on the temporary GPR. 

MOVA* instructions produce undefined output values. To inhibit a GPR destination write, clear 
the WRITE_MASK field for the MOVA* instruction. Do not use the corresponding PV vector 
element(s) in the following ALU instruction group.

dst = Undefined
dstF = FLOOR(src0 + 0.5f);
If (dstF >= -256.0f) {

dstF = dstF;
}
Else {

dstF = -256.0f;
}
If (dstF > 255.0f) {

dstF = -256.0f;
}
dstI = truncate_to_int(dstF);

Export(dstI); // signed 9-bit integer

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MOVA, opcode 21 (0x15).

D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-93
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Copy Truncated Floating-Point To Integer in AR and GPR

Instruction MOVA_FLOOR

Description Truncate the floating-point to the nearest integer in the range [-256, +255], and copy the 
result to the address register (AR) and to a GPR. See MOVA on page 7-92 for additional 
details. 

dst = Undefined
dstF = FLOOR(src0);
If (dstF >= -256.0f) {

dstF = dstF;
}
Else {

dstF = -256.0f;
}
If (dstF > 255.0f) {

dstF = -256.0f;
}
dstI = truncate_to_int(dstF);
Export(dstI); // signed 9-bit integer

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MOVA_FLOOR, opcode 22 (0x16).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-94 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Copy Signed Integer To Integer in AR and GPR

Instruction MOVA_INT

Description Clamp the signed integer to the range [-256, +255], and copy the result to the address 
register (AR) and to a GPR. See MOVA on page 7-92 for additional details. 

dst = Undefined;
dstI = src0;
If (dstI < -256) {

dstI = 0x800; //-256
}
If (dstI > 0xFF) {

dstI = 0x800 //-256
}
Export(dstI); // signed 9-bit integer

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MOVA_INT, opcode 24 (0x18).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-95
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Multiply

Instruction MUL

Description Floating-point multiply. Zero times anything equals zero.

dst = src0 * src1;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MUL, opcode 1 (0x1).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-96 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

 

Floating-Point Multiply, 64-Bit

Instruction MUL_64

Description Floating-point 64-bit multiply. Multiplies a double-precision value in src0.YX by a double-
precision value in src1.YX, and places the lower 64 bits of the result in dst.YX. 

dst = src0 * src1;

(A * B) == (B * A)

Coissue The MUL_64 instruction is a four-slot instruction. Therefore, a single MUL_64 instruction can 
be issued in slots 0, 1, 2, and 3. Slot 4 can contain any other valid instruction. 

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Table 7.7 Result of MUL_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf +inf +inf +inf NaN64 NaN64 NaN64 NaN64 -inf -inf -inf src1
(NaN64)

-F +inf +F -src0 +0 +0 -0 -0 src0 -F -inf src1
(NaN64)

-1.0 +inf -src1 +1.0 +0 +0 -0 -0 -1.0 -src1 -inf src1
(NaN64)

-denorm NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

-0 NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

+0 NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+denorm NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+1.0 -inf src1 -1.0 -0 -0 +0 +0 +1.0 src1 +inf src1
(NaN64)

+F -inf -F -src0 -0 -0 +0 +0 src0 +F +inf src1
(NaN64)

+inf -inf -inf -inf NaN64 NaN64 NaN64 NaN64 +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-97
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Instruction Field ALU_INST == OP2_INST_MUL_64, opcode 27 (0x1B).

Example The following example coissues one MUL_64 instruction in slots 0, 1, 2, and 3:

Input data:

Input data  3.0 (0x4008000000000000)
Input data  6.0 (0x4018000000000000)

mov ra.h, l(0x40080000)   //high dword (Input 1)
mov rb.l, l(0x00000000)   //low  dword

mov rc.h, l(0x40180000)   //high dword (Input 2)
mov rd.l, l(0x00000000)   //low  dword

Issue instruction:

MUL_64  re.x ra.h rc.h; //can be any vector element
MUL_64  rf.y ra.h rc.h; //can be any vector element 
MUL_64  rg.z ra.h rc.h; //can be any vector element
MUL_64  rh.w rb.l rd.l; //can be any vector element

Result:

3.0 * 6.0 = 18.0 (0x4032000000000000)

re.x = 0x00000000    (LSB of Input 1 and Input 2 mul64 result)
rf.y = 0x40320000    (MSB of Input 1 and Input 2 mul64 result)
rg.z = 0x00000000    (LSB of Input 1 and Input 2 mul64 result)
rh.w = 0x40320000    (MSB of Input 1 and Input 2 mul64 result)

The hardware puts the result in two different slot pairs, as shown above.

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0), Y element (slot 1), or Z element (slot 2). These slots 
contain the sign bits of the sources. 

Output Modifiers Output modifiers (Section 4.9.1, on page 4-25) can be applied to the destination during the 
destination X element (slot 0) or Z element (slot 2).

Floating-Point Multiply, 64-Bit (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

7-98 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Multiply, IEEE

Instruction MUL_IEEE

Description Floating-point multiply. Uses IEEE rules for zero times anything.

dst = src0 * src1;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MUL_IEEE, opcode 2 (0x2).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-99
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Multiply Emulating LIT Operation

Instruction MUL_LIT

Description Scalar multiply with result replicated in all four vector elements. It is used primarily when 
emulating a LIT operation. Zero times anything is zero. 

A LIT operation takes an input vector containing information about shininess and normals to 
the light, and it computes the diffuse and specular light components using Blinn's lighting 
equation, which is implemented as follows.

t1.y = max (src.x, 0)
t1.x_w -= 1
t1.z = log_clamp( src.y)
t1.w = mul_lit( src.z, t1.z, src.x)
t1.z = exp(t1.z)
dst = t1

The pseudocode for the MUL_LIT instruction is:

If ((src1 == -MAX_FLOAT) ||
(src1 == -INFINITY) ||
(src1 is NaN) ||
(src2 <= 0.0f) ||
(src2 is NaN)) {
dst = -MAX_FLOAT;

}
Else {

dst = src0 * src1;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP3_INST_MUL_LIT, opcode 12 (0xC).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-100 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Multiply Emulating LIT, Divide By 2

Instruction MUL_LIT_D2

Description A MUL_LIT operation, followed by divide by 2.

The pseudocode for the MUL_LIT instruction is:

If ((src1 == -MAX_FLOAT) ||
(src1 == -INFINITY) ||
(src1 is NaN) ||
(src2 <= 0.0f) ||
(src2 is NaN)) {
dst = -MAX_FLOAT * .5;

}
Else {

dst = (src0 * src1) * .5;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MUL_LIT_D2, opcode 15 (0xF).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-101
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Multiply Emulating LIT, Multiply By 2

Instruction MUL_LIT_M2

Description A MUL_LIT operation, followed by multiply by 2.

The pseudocode for the MUL_LIT instruction is:

If ((src1 == -MAX_FLOAT) ||
(src1 == -INFINITY) ||
(src1 is NaN) ||
(src2 <= 0.0f) ||
(src2 is NaN)) {
dst = -MAX_FLOAT * 2;

}
Else {

dst = (src0 * src1) * 2;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MUL_LIT_M2, opcode 13 (0xD).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-102 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Multiply Emulating LIT, Multiply By 4

Instruction MUL_LIT_M4

Description A MUL_LIT operation, followed by multiply by 4.

The pseudocode for the MUL_LIT instruction is:

If ((src1 == -MAX_FLOAT) ||
(src1 == -INFINITY) ||
(src1 is NaN) ||
(src2 <= 0.0f) ||
(src2 is NaN)) {
dst = -MAX_FLOAT * 4;

}
Else {

dst = (src0 * src1) * 4;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MUL_LIT_M4, opcode 14 (0xE).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-103
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Multiply-Add

Instruction MULADD

Description Floating-point multiply-add (MAD).

dst = src0 * src1 + src2;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD, opcode 16 (0x10).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-104 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Multiply-Add, 64-Bit

Instruction MULADD_64

Description Floating-point 64-bit multiply-add. Multiplies the double-precision value in src0.YX by the 
double-precision value in src1.YX, adds the lower 64 bits of the result to a double-precision 
value in src2.YX, and places this result in dst.YX and dst.WZ. 

dst = src0 * src1 + src2;

Table 7.8 Result of MULADD_64 Instruction (IEEE Single-Precision Multiply)

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-1.0 -denorm -0 +0 +denorm +1.0 +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf +inf +inf +inf NaN64 NaN64 NaN64 NaN64 -inf -inf -inf src1
(NaN64)

-F +inf +F -src0 +0 +0 -0 -0 src0 -F -inf src1
(NaN64)

-1.0 +inf -src1 +1.0 +0 +0 -0 -0 -1.0 -src1 -inf src1
(NaN64)

-denorm NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

-0 NaN64 +0 +0 +0 +0 -0 -0 -0 -0 NaN64 src1
(NaN64)

+0 NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+denorm NaN64 -0 -0 -0 -0 +0 +0 +0 +0 NaN64 src1
(NaN64)

+1.0 -inf src1 -1.0 -0 -0 +0 +0 +1.0 src1 +inf src1
(NaN64)

+F -inf -F -src0 -0 -0 +0 +0 src0 +F +inf src1
(NaN64)

+inf -inf -inf -inf NaN64 NaN64 NaN64 NaN64 +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-105
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Coissue The MULADD_64 instruction is a four-slot instruction. Therefore, a single MULADD_64 instruction 
can be issued in slots 0, 1, 2, and 3. Slot 4 can contain any other valid instruction. 

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Fields ALU_INST == OP3_INST_MULADD_64, opcode 8 (0x8).
ALU_INST == OP3_INST_MULADD_64_M2, opcode 9 (0x9).
ALU_INST == OP3_INST_MULADD_64_M4, opcode 10 (0xA).
ALU_INST == OP3_INST_MULADD_64_D2, opcode 11 (0xB).

Floating-Point Multiply-Add, 64-Bit (Cont.) 

Table 7.9 Result of MULADD_64 Instruction (IEEE Add)

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-denorm -0 +0 +denorm +F1 +inf NaN2

2. NaN64 = 0xFFF8000000000000. An NaN64 is a propagated NaN value from the input listed.

-inf -inf -inf -inf -inf -inf -inf -inf NaN64 src1
(NaN64)

-F -inf -F src0 src0 src0 Src0 +-F or +0 +inf src1(NaN64)

-denorm -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

-0 -inf src1 -0 -0 +0 +0 src1 +inf src1
(NaN64)

+0 -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+denorm -inf src1 +0 +0 +0 +0 src1 +inf src1
(NaN64)

+F -inf +-F or +0 src0 src0 src0 Src0 +F +inf src1
(NaN64)

+inf NaN64 +inf +inf +inf +inf +inf +inf +inf src1
(NaN64)

NaN src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

Src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

src0
(NaN64)

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-106 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Example  The following example coissues one MULADD_64 instruction in slots 0, 1, 2, and 3:

Input data:

Input data  3.0 (0x4008000000000000)
Input data  6.0 (0x4018000000000000)
Input data 12.0 (0x4028000000000000)

mov ra.h, l(0x40080000)   //high dword (Input 1)
mov rb.l, l(0x00000000)   //low  dword

mov rc.h, l(0x40180000)   //high dword (Input 2)
mov rd.l, l(0x00000000)   //low  dword

mov re.h, l(0x40280000)   //high dword (Input 3)
mov rf.l, l(0x00000000)   //low  dword

Issue instruction:

MULADD_64  rg.x ra.h rc.h re.h; //can be any vector element
MULADD_64  rh.y ra.h rc.h re.h; //can be any vector element 
MULADD_64  ri.z ra.h rc.h re.h; //can be any vector element
MULADD_64  rj.w rb.l rd.l rf.l; //can be any vector element

Result:
(3.0 * 6.0) + 12.0 = 30.0 (0x403e000000000000)

rg.x  = 0x00000000 (LSB of muladd64 result)
rh.y  = 0x403e0000 (MSB of muladd64 result)
ri.z  = 0x00000000 (LSB of muladd64 result)
rj.w  = 0x403e0000 (MSB of muladd64 result)

The hardware puts the result on two different slot pairs, as shown above.

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0), Y element (slot 1), or Z element (slot 2). These slots 
contain the sign bits of the sources. 

Output Modifiers The OMOD output modifier (Section 4.9.1, on page 4-25) is not needed, because the 
MULADD_64 instruction has different opcodes for each of the OMOD values. The CLAMP output 
modifier can be applied to the destination during the destination X element (slot 0) or Z 
element (slot 2).

Floating-Point Multiply-Add, 64-Bit (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-107
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Multiply-Add, Divide by 2

Instruction MULADD_D2

Description Floating-point multiply-add (MAD), followed by divide by 2.

dst = (src0 * src1 + src2) *.5;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_D2, opcode 19 (0x13).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-108 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Multiply-Add, Multiply by 2

Instruction MULADD_M2

Description Floating-point multiply-add (MAD), followed by multiply by 2.

dst = (src0 * src1 + src2) * 2;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_M2, opcode 17 (0x11).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-109
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Multiply-Add, Multiply by 4

Instruction MULADD_M4

Description Floating-point multiply-add (MAD), followed by multiply by 4.

dst = (src0 * src1 + src2) * 4;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_M4, opcode 18 (0x12).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-110 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

IEEE Floating-Point Multiply-Add

Instruction MULADD_IEEE

Description Floating-point multiply-add (MAD). Uses IEEE rules for zero times anything.

dst = src0 * src1 + src2;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_IEEE, opcode 20 (0x14).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-111
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

IEEE Floating-Point Multiply-Add, Divide by 2 

Instruction MULADD_IEEE_D2

Description Floating-point multiply-add (MAD), followed by divide by 2. Uses IEEE rules for zero times 
anything.

dst = (src0 * src1 + src2) * .5;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_IEEE_D2, opcode 23 (0x17).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-112 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

IEEE Floating-Point Multiply-Add, Multiply by 2

Instruction MULADD_IEEE_M2

Description Floating-point multiply-add (MAD), followed by multiply by 2. Uses IEEE rules for zero times 
anything.

dst = (src0 * src1 + src2) * 2;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_IEEE_M2, opcode 21 (0x15).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-113
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

IEEE Floating-Point Multiply-Add, Multiply by 4

Instruction MULADD_IEEE_M4

Description Floating-point multiply-add (MAD), followed by multiply by 4. Uses IEEE rules for zero times 
anything.

dst = (src0 * src1 + src2) * 4;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP3 (page 8-23). 

Instruction Field ALU_INST == OP3_INST_MULADD_IEEE_M4, opcode 22 (0x16).

C D
E

D
R DST_GPR B

S
ALU_INST

(11000)

S
2
N

S
2
E

S
2
R

SRC2_SEL +4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-114 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Signed Scalar Multiply, High-Order 32 Bits

Instruction MULHI_INT

Description Scalar multiplication. The arguments are interpreted as signed integers. The result 
represents the high-order 32 bits of the multiply result.

dst = src0 * src1 // high-order bits

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MULHI_INT, opcode 116 (0x74).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-115
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Scalar Multiply, High-Order 32 Bits

Instruction MULHI_UINT

Description Scalar multiplication. The arguments are interpreted as unsigned integers. The result 
represents the high-order 32 bits of the multiply result.

dst = src0 * src1 // high-order bits

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MULHI_UINT, opcode 118 (0x76).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-116 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Signed Scalar Multiply, Low-Order 32-Bits

Instruction MULLO_INT

Description Scalar multiplication. The arguments are interpreted as signed integers. The result 
represents the low-order 32 bits of the multiply result.

dst = src0 * src1 // low-order bits

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MULLO_INT, opcode 115 (0x73).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-117
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Scalar Multiply, Low-Order 32-Bits

Instruction MULLO_UINT

Description Scalar multiplication. The arguments are interpreted as unsigned integers. The result 
represents the low-order 32 bits of the multiply result.

dst = src0 * src1 // low-order bits

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_MULLO_UINT, opcode 117 (0x75).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-118 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

No Operation

Instruction NOP

Description No operation. The instruction slot is not used. NOP instructions perform no writes to GPRs, 
and they invalidate the PV and PS register values. 

After all instructions in an instruction group are processed, any ALU.[X,Y,Z,W] or ALU.Trans 
operation that is unspecified implicitly executes a NOP instruction, thus invalidating the 
values in the corresponding elements of the PV and PS registers. 

See the CF version of NOP on page 7-33. 

dst is Undefined.

Previous dst is preserved

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_NOP, opcode 26 (0x1A).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-119
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Bit-Wise NOT

Instruction NOT_INT

Description Logical bit-wise NOT.

dst = ~src0

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_NOT_INT, opcode 51 (0x33).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-120 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Bit-Wise OR

Instruction OR_INT

Description Logical bit-wise OR.

dst = src0 | src1

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_OR_INT, opcode 49 (0x31).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-121
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Predicate Counter Clear

Instruction PRED_SET_CLR

Description Predicate counter clear. Updates predicate register.

dst = +MAX_FLOAT;
predicate_result = skip;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SET_CLR, opcode 38 (0x26).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-122 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Predicate Counter Invert

Instruction PRED_SET_INV

Description Predicate counter invert. Updates predicate register.

If (src0 == 1.0f) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

If (src0 == 0.0f) {
dst = 1.0f;

} 
Else {

dst = src0;
}
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SET_INV, opcode 36 (0x24).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-123
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Predicate Counter Pop

Instruction PRED_SET_POP

Description Pop predicate counter. This updates the predicate register.

If (src0 <= src1) {
dst = 0.0f;
predicate_result = execute;

}
Else {

dst = src0 - src1;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SET_POP, opcode 37 (0x25).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-124 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Predicate Counter Restore

Instruction PRED_SET_RESTORE

Description Predicate counter restore. Updates predicate register.

If (src0 == 0.0f) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SET_RESTORE, opcode 39 (0x27).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-125
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Predicate Set If Equal

Instruction PRED_SETE

Description Floating-point predicate set if equal. Updates predicate register.

If (src0 == src1) {
dst = 0.0f;
predicate_result = execute;

} Else {
dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETE, opcode 32 (0x20).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-126 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Predicate Set If Equal, 64-Bit

Instruction PRED_SETE_64

Description Floating-point 64-bit predicate set if equal. Updates the predicate register. Compares two 
double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ and src1.WZ, 
and returns 0x0 if src0==src1 or 0xFFFFFFFF; otherwise, it returns the unsigned integer 
result in dst.YX or dst.WZ. 

The instruction can also establish a predicate result (execute or skip) for subsequent 
predicated instruction execution. This additional control allows a compiler to support one-
instruction issue for if-elseif operations, or an integer result for nested flow-control, by using 
single-precision operations to manipulate a predicate counter. 

if (src0 == src1)
{

dst = 0x0;
predicate_result = execute;

}
else
{

dst = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETE_64 is a two-slot instruction. The following coissues are possible:

• A single PRED_SETE_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 
3, and 4, except other predicate-set instructions.

• A single PRED_SETE_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 
1, and 4, except other predicate-set instructions.

• Two PRED_SETE_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4, 
except other predicate-set instructions.

Table 7.10 Result of PRED_SETE_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 FALSE TRUE or 
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

-0 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+0 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+denorm2 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+F1 FALSE FALSE FALSE FALSE FALSE FALSE TRUE or 
FALSE

FALSE FALSE

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-127
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_64, opcode 125 (0x7D).

Example The following examples issue a single PRED_SETE_64 instruction in two slots.

Input data:

Input data 6.0 (0x4018000000000000)
Input data 3.0 (0x4008000000000000)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue a single PRED_SETE_64 instruction in slots 3 and 2:

PRED_SETE_64 re.x ra.h ra.h //can be any vector element
PRED_SETE_64 rf.y rb.l rb.l //can be any vector element

Result:

PRED_SETE_64 (0x4018000000000000,0x4018000000000000) = 
PRED_SETE_64 (6.0,6.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETE_64 instruction in slots 1 and 0:

PRED_SETE_64 re.z rc.h ra.h //can be any vector element
PRED_SETE_64 rf.w rd.l rb.l //can be any vector element

Result:

PRED_SETE_64 (0x4008000000000000,0x4018000000000000) = 
PRED_SETE_64 (3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) and Z element (slot 2). These slots contain the sign bits 
of the sources. 

Output Modifiers The instruction does not take output modifiers. 

Floating-Point Predicate Set If Equal, 64-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-128 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Predicate Set If Equal

Instruction PRED_SETE_INT

Description Integer predicate set if equal. Updates predicate register.

If (src0 == src1) {
dst = 0.0f;
SetPredicateKillReg(Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_INT, opcode 66 (0x42).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-129
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Predicate Counter Increment If Equal

Instruction PRED_SETE_PUSH

Description Floating-point predicate counter increment if equal. Updates predicate register.

If ( (src1 == 0.0f) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_PUSH, opcode 40 (0x28).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-130 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Predicate Counter Increment If Equal

Instruction PRED_SETE_PUSH_INT

Description Integer predicate counter increment if equal. Updates predicate register.

If ( (src1 == 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETE_PUSH_INT, opcode 74 (0x4A).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-131
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Predicate Set If Greater Than Or Equal

Instruction PRED_SETGE

Description Floating-point predicate set if greater than or equal. Updates predicate register.

If (src0 >= src1) {
dst = 0.0f;
predicate_result = execute;

} Else {
dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE, opcode 34 (0x22).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-132 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit

Instruction PRED_SETGE_64

Description Floating-point 64-bit predicate set if greater than or equal. Updates the predicate register. 
Compares two double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ 
and src1.WZ, and returns 0x0 if src0>=src1 or 0xFFFFFFFF; otherwise, it returns the 
unsigned integer result in dst.YX or dst.WZ. 

The instruction can also establish a predicate result (execute or skip) for subsequent 
predicated instruction execution. This additional control allows a compiler to support one-
instruction issue for if/elseif operations or an integer result for nested flow-control by using 
single-precision operations to manipulate a predicate counter. 

if (src0>=src1)
{

result = 0x0;
predicate_result = execute;

}
else
{

result = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETGE_64 is a two-slot instruction. The following coissues are possible:

• A single PRED_SETGE_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 
3, and 4, except other predicate-set instructions.

• A single PRED_SETGE_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 
1, and 4, except other predicate-set instructions.

• Two PRED_SETGE_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4, 
except other predicate-set instructions.

Table 7.11 Result of PRED_SETGE_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 TRUE TRUE or
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

-0 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+0 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+denorm2 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

+F1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE or
FALSE

FALSE FALSE

+inf TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-133
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_64, opcode 126 (0x7E).

Example The following examples issue a single PRED_SETGE_64 instruction in two slots:

Input data:

Input data => 0x4018000000000000 (6.0)
Input data => 0x4008000000000000 (3.0)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) //low dword

Issue a single PRED_SETGE_64 instruction in slots 3 and 2:

PRED_SETGE_64 re.x ra.h ra.h //can be any vector element
PRED_SETGE_64 rf.y rb.l rb.l //can be any vector element

Result:

pred_setge64(0x4018000000000000,0x4018000000000000) = 
pred_setge64(6.0,6.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-134 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Or, issue a single PRED_SETGE_64 instruction in slots 3 and 2.

PRED_SETGE_64 re.x ra.h rc.h //can be any vector element
PRED_SETGE_64 rf.y rb.l rd.l //can be any vector element

Result:

pred_setge64(0x4018000000000000,0x4008000000000000) = 
pred_setge64(6.0,3.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETGE_64 instruction in slots 1 and 0:

PRED_SETGE_64 re.z rc.h ra.h //can be any vector element
PRED_SETGE_64 rf.w rd.l rb.l //can be any vector element

Result:

pred_setge64(0x4008000000000000,0x4018000000000000) = 
pred_setge64(3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) and Z element (slot 2). These slots contain the sign bits 
of the sources. 

Output Modifiers The instruction does not take output modifiers. 

Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-135
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Predicate Set If Greater Than Or Equal

Instruction PRED_SETGE_INT

Description Integer predicate set if greater than or equal. Updates predicate register.

If (src0 >= src1) {
dst = 0.0f;
SetPredicateKillReg (Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_INT, opcode 68 (0x44).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-136 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Predicate Counter Increment If Greater Than Or Equal

Instruction PRED_SETGE_PUSH

Description Predicate counter increment if greater than or equal. Updates predicate register.

If ( (src1 >= 0.0f) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_PUSH, opcode 42 (0x2A).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-137
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Predicate Counter Increment If Greater Than Or Equal

Instruction PRED_SETGE_PUSH_INT

Description Integer predicate counter increment if greater than or equal. Updates predicate register.

If ( (src1 >= 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGE_PUSH_INT, opcode 76 (0x4C).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-138 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Predicate Set If Greater Than

Instruction PRED_SETGT

Description Floating-point predicate set if greater than. Updates predicate register.

If (src0 > src1) {
dst = 0.0f;
predicate_result = execute;

}
Else {

dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT, opcode 33 (0x21).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-139
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Predicate Set If Greater Than, 64-Bit

Instruction PRED_SETGT_64

Description Floating-point 64-bit predicate set if greater than. Updates the predicate register. Compares 
two double-precision floating-point numbers in src0.YX and src1.YX, or src0.WZ and 
src1.WZ, and returns 0x0 if src0>src1 or 0xFFFFFFFF; otherwise, it returns the unsigned 
integer result in dst.YX or dst.WZ. 

The instruction can also optionally establish a predicate result (execute or skip) for 
subsequent predicated instruction execution. This additional control allows a compiler to 
support one-instruction issue for if/elseif operations, or an integer result for nested flow-
control, by using single-precision operations to manipulate a predicate counter. 

if (src0>src1)
{

result = 0x0;
predicate_result = execute;

}
else
{

result = 0xFFFFFFFF;
predicate_result = skip;

}

Coissue PRED_SETGT_64 is a two-slot instruction. The following coissues are possible:

• A single PRED_SETGT_64 instruction in slots 0 and 1, and any valid instructions in slots 2, 
3, and 4, except other predicate-set instructions.

• A single PRED_SETGT_64 instruction in slots 2 and 3, and any valid instructions in slots 0, 
1, and 4, except other predicate-set instructions.

• Two PRED_SETGT_64 instructions in slots 0, 1, 2, and 3,and any valid instruction in slot 4, 
except other predicate-set instructions.

Table 7.12 Result of PRED_SETGT_64 Instruction

src0

src1

-inf -F1

1. F is a finite floating-point value. 

-denorm2

2. Denorms are treated arithmetically and obey rules of appropriate zero.

-0 +0 +denorm2 +F1 +inf NaN

-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-F1 TRUE TRUE or
FALSE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-denorm2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

-0 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+0 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+denorm2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

+F1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE or
FALSE

FALSE FALSE

+inf TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



AT I  R 6 0 0  Te c h n o l o g y

7-140 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_64, opcode 124 (0x7C).

Example The following examples issue a single PRED_SETGT_64 instruction in two slots:

Input data:

Input data 6.0 (0x4018000000000000)
Input data 3.0 (0x4008000000000000)

mov ra.h, l(0x40180000) //high dword (Input 1)
mov rb.l, l(0x00000000) //low dword

mov rc.h, l(0x40080000) //high dword (Input 2)
mov rd.l, l(0x00000000) // low dword

Issue a single PRED_SETGT_64 instruction in slots 3 and 2:

PRED_SETGT_64 re.x ra.h rc.h //can be any vector element
PRED_SETGT_64 rf.y rb.l rd.l //can be any vector element

Result:

pred_setgt64(0x4018000000000000,0x4008000000000000) = 
pred_setgt64(6.0,3.0) => result = 0x0, predicate_result = execute

re.x = 0x0
rf.y = 0x0

predicate = execute

Or, issue a single PRED_SETGT_64 instruction in slots 1 and 0:

PRED_SETGT_64 re.z rc.h ra.h //can be any vector element
PRED_SETGT_64 rf.w rd.l rb.l //can be any vector element

Result:

pred_setgt64(0x4008000000000000,0x4018000000000000) = 
pred_setgt64(3.0,6.0) => result = 0xFFFFFFFF, predicate_result = skip

re.z = 0xFFFFFFFF
rf.w = 0xFFFFFFFF

predicate = skip

Input Modifiers Input modifiers (Section 4.7.2, on page 4-10) can be applied to the source operands during 
the destination X element (slot 0) and Z element (slot 2). These slots contain the sign bits 
of the sources. 

Output Modifiers The instruction does not take output modifiers. 

Floating-Point Predicate Set If Greater Than, 64-Bit (Cont.) 

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-141
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Predicate Set If Greater Than

Instruction PRED_SETGT_INT

Description Integer predicate set if greater than. Updates predicate register.

If (src0 > src1) {
dst = 0.0f;
SetPredicateKillReg (Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_INT, opcode 67 (0x43).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-142 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Predicate Counter Increment If Greater Than

Instruction PRED_SETGT_PUSH

Description Predicate counter increment if greater than. Updates predicate register.

If ( (src1 > 0.0f) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0.W + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_PUSH, opcode 41 (0x29).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-143
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Predicate Counter Increment If Greater Than

Instruction PRED_SETGT_PUSH_INT

Description Integer predicate counter increment if greater than. Updates predicate register.

If ( (src1 > 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETGT_PUSH_INT, opcode 75 (0x4B).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-144 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Predicate Set If Less Than Or Equal

Instruction PRED_SETLE_INT

Description Integer predicate set if less than or equal. Updates predicate register.

If (src0 <= src1) {
dst = 0.0f;
SetPredicateKillReg (Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETLE_INT, opcode 71 (0x47).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-145
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Predicate Counter Increment If Less Than Or Equal

Instruction PRED_SETLE_PUSH_INT

Description Predicate counter increment if less than or equal. Updates predicate register.

If ( (src1 <= 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETLE_PUSH_INT, opcode 79 (0x4F).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-146 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Predicate Set If Less Than Or Equal

Instruction PRED_SETLT_INT

Description Integer predicate set if less than. Updates predicate register.

If (src0 < src1) {
dst = 0.0f;
SetPredicateKillReg (Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETLT_INT, opcode 70 (0x46).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-147
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Predicate Counter Increment If Less Than

Instruction PRED_SETLT_PUSH_INT

Description Predicate counter increment if less than. Updates predicate register.

If ( (src1 < 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETLT_PUSH_INT, opcode 78 (0x4E).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-148 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Predicate Set If Not Equal

Instruction PRED_SETNE

Description Floating-point predicate set if not equal. Updates predicate register.

If (src0 != src1) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = 1.0f;
predicate_result = skip;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE, opcode 35 (0x23).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-149
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Predicate Set If Not Equal

Instruction PRED_SETNE_INT

Description Scalar predicate set if not equal. Updates predicate register.

If (src0 != src1) {
dst = 0.0f;
SetPredicateKillReg (Execute);

} 
Else {

dst = 1.0f;
SetPredicateKillReg (Skip);

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_INT, opcode 69 (0x45).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-150 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Predicate Counter Increment If Not Equal

Instruction PRED_SETNE_PUSH

Description Predicate counter increment if not equal. Updates predicate register.

If ( (src1 != 0.0f) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_PUSH, opcode 43 (0x2B).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-151
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Predicate Counter Increment If Not Equal

Instruction PRED_SETNE_PUSH_INT

Description Predicate counter increment if not equal. Updates predicate register.

If ( (src1 != 0x0) && (src0 == 0.0f) ) {
dst = 0.0f;
predicate_result = execute;

} 
Else {

dst = src0 + 1.0f;
predicate_result = skip; 

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_PRED_SETNE_PUSH_INT, opcode 77 (0x4D).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-152 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Reciprocal, Clamp to Maximum

Instruction RECIP_CLAMPED

Description Scalar reciprocal. 

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = RECIP_IEEE(src0);
}
// clamp dst
If (dst == -INFINITY) {

dst = -MAX_FLOAT;
}
If (dst == +INFINITY) {

dst = +MAX_FLOAT;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIP_CLAMPED, opcode 100 (0x64).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-153
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Reciprocal, Clamp to Zero

Instruction RECIP_FF

Description Scalar reciprocal.

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = RECIP_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -ZERO;
}
if (dst == +INFINITY) {

dst = +ZERO;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIP_FF, opcode 101 (0x65).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-154 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Reciprocal, IEEE Approximation

Instruction RECIP_IEEE

Description Scalar reciprocal.

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = ApproximateRecip(src0);
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIP_IEEE, opcode 102 (0x66).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-155
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Signed Integer Scalar Reciprocal

Instruction RECIP_INT

Description Scalar integer reciprocal. The source is a signed integer. The result is a fractional signed 
integer. The result for 0 is undefined.

dst = ApproximateRecip(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIP_INT, opcode 119 (0x77).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-156 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Unsigned Integer Scalar Reciprocal

Instruction RECIP_UINT

Description Scalar unsigned integer reciprocal. The source is an unsigned integer. The result is a 
fractional unsigned integer. The result for 0 is undefined.

dst = ApproximateRecip(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIP_UINT, opcode 120 (0x78).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-157
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Reciprocal Square Root, Clamp to Maximum

Instruction RECIPSQRT_CLAMPED

Description Scalar reciprocal square root.

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = RECIPSQRT_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -MAX_FLOAT;
}
if (dst == +INFINITY) {

dst = +MAX_FLOAT;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_CLAMPED, opcode 103 (0x67).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-158 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Reciprocal Square Root, Clamp to Zero

Instruction RECIPSQRT_FF

Description Scalar reciprocal square root. 

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = RECIPSQRT_IEEE(src0);
}
// clamp dst
if (dst == -INFINITY) {

dst = -ZERO;
}
if (dst == +INFINITY) {

dst = +ZERO;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_FF, opcode 104 (0x68).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-159
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Reciprocal Square Root, IEEE Approximation

Instruction RECIPSQRT_IEEE

Description Scalar reciprocal square root.

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = ApproximateRecipSqrt(srcC);
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RECIPSQRT_IEEE, opcode 105 (0x69).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-160 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Round To Nearest Even Integer

Instruction RNDNE

Description Floating-point round to nearest even integer.

dst = FLOOR(src0 + 0.5f);
If ( (FLOOR(src0)) == Even) && (FRACT(src0 == 0.5f)){

dst -= 1.0f

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_RNDNE, opcode 19 (0x13).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-161
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Set If Equal

Instruction SETE

Description Floating-point set if equal.

If (src0 = src1) {
dst = 1.0f; 

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETE, opcode 8 (0x8).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-162 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Set If Equal DirectX 10

Instruction SETE_DX10

Description Floating-point set if equal, based on floating-point source operands. The result, however, is 
an integer.

If (src0 == src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETE_DX10, opcode 12 (0xC).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-163
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Set If Equal

Instruction SETE_INT

Description Integer set if equal, based on signed or unsigned integer source operands.

If (src0 = src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETE_INT, opcode 58 (0x3A).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-164 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Set If Greater Than Or Equal

Instruction SETGE

Description Floating-point set if greater than or equal.

If (src0 >= src1) {
dst = 1.0f; 

}
Else {

dst = 0.0f;

}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGE, opcode 10 (0xA).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-165
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Set If Greater Than Or Equal, DirectX 10

Instruction SETGE_DX10

Description Floating-point set if greater than or equal, based on floating-point source operands. The 
result, however, is an integer.

If (src0 >= src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGE_DX10, opcode 14 (0xE).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-166 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Signed Integer Set If Greater Than Or Equal

Instruction SETGE_INT

Description Integer set if greater than or equal, based on signed integer source operands.

If (src0 >= src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGE_INT, opcode 60 (0x3C).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-167
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Integer Set If Greater Than Or Equal

Instruction SETGE_UINT

Description Integer set if greater than or equal, based on unsigned integer source operands.

If (src0 >= src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGE_UINT, opcode 63 (0x3F).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-168 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Set If Greater Than

Instruction SETGT

Description Floating-point set if greater than.

If (src0 > src1) {
dst = 1.0f; 

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGT, opcode 9 (0x9).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-169
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Set If Greater Than, DirectX 10

Instruction SETGT_DX10

Description Floating-point set if greater than, based on floating-point source operands. The result, 
however, is an integer.

If (src0 > src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGT_DX10, opcode 13 (0xD).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-170 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Signed Integer Set If Greater Than

Instruction SETGT_INT

Description Integer set if greater than, based on signed integer source operands.

If (src0 > src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGT_INT, opcode 59 (0x3B).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-171
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Integer Set If Greater Than

Instruction SETGT_UINT

Description Integer set if greater than, based on unsigned integer source operands.

If (src0 > src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETGT_UINT, opcode 62 (0x3E).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-172 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Set If Not Equal

Instruction SETNE

Description Floating-point set if not equal.

If (src0 != src1) {
dst = 1.0f; 

}
Else {

dst = 0.0f;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETNE, opcode 11 (0xB).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-173
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Floating-Point Set If Not Equal, DirectX 10

Instruction SETNE_DX10

Description Floating-point set if not equal, based on floating-point source operands. The result, however, 
is an integer.

If (src0 != src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETNE_DX10, opcode 15 (0xF).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-174 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Integer Set If Not Equal

Instruction SETNE_INT

Description Integer set if not equal, based on signed or unsigned integer source operands.

If (src0 != src1) {
dst = 0xFFFFFFFF; 

}
Else {

dst = 0x0;
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SETNE_INT, opcode 61 (0x3D).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-175
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Scalar Sine

Instruction SIN

Description Scalar sine. Valid input domain [-PI, +PI].

dst = ApproximateSin(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SIN, opcode 110 (0x6E).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-176 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Scalar Square Root, IEEE Approximation

Instruction SQRT_IEEE

Description Scalar square root. Useful for normal compression.

If (src0 == 1.0f) {
dst = 1.0f;

}
Else {

dst = ApproximateRecipSqrt(srcC);
}

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SQRT_IEEE, opcode 106 (0x6A).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-177
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Integer Subtract

Instruction SUB_INT

Description Integer subtract, based on signed or unsigned integer source operands.

dst = src1 – src0;

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_SUB_INT, opcode 53 (0x35).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-178 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Floating-Point Truncate

Instruction TRUNC

Description Floating-point integer part of source operand.

dst = trunc(src0);

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_TRUNC, opcode 17 (0x11).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 7-179
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Unsigned Integer To Floating-point

Instruction UINT_TO_FLT

Description Unsigned integer to floating-point. The source is interpreted as an unsigned integer value, 
and it is converted to a floating-point result. 

dst = (float) src0

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_UINT_TO_FLT, opcode 109 (0x6D).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

7-180 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Bit-Wise XOR

Instruction XOR_INT

Description Logical bit-wise XOR.

dst = src0 ^ src1

Microcode

Format ALU_DWORD0 (page 8-16) and ALU_DWORD1_OP2 (page 8-18).

Instruction Field ALU_INST == OP2_INST_XOR_INT, opcode 50 (0x32).

C D
E

D
R DST_GPR B

S ALU_INST OMO
D

F
M

W
M

U
P

U
E
M

S
1
A

S
0
A

+4

L P
S

I
M

S
1
N

S
1
E

S
1
R

SRC1_SEL
S
0
N

S
0
E

S
0
R

SRC0_SEL +0



AT I  R 6 0 0  Te c h n o l o g y

Vertex-Fetch Instructions 7-181
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

7.3 Vertex-Fetch Instructions
All of the instructions in this section have a mnemonic that begins with 
VTX_INST_ in the VTX_INST field of their microcode formats. 

Vertex Fetch

Instruction FETCH

Description Vertex fetch (X = unsigned integer index). These fetches specify the destination GPR directly. 

Microcode

Format VTX_DWORD0 (page 8-25), VTX_DWORD1_GPR (page 8-29), and VTX_DWORD2 (page 8-33). 

Instruction Field VTX_INST == VTX_INST_FETCH, opcode 0 (0x0).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

Reserved M
F

C
B
N
S

E
S OFFSET +8

S
M
A

F
C
A

N
F
A

DATA_FORMAT
U
C
F

D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

M
F
C

S
S
X

S
R SRC_GPR BUFFER_ID

F
W
Q

F
T VTX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-182 Vertex-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Semantic Vertex Fetch

Instruction SEMANTIC

Description Semantic vertex fetch. These fetches specify the 8-bit semantic ID that is looked up in a 
table to determine the GPR to which the data is written.

Microcode

Format VTX_DWORD0 (page 8-25), VTX_DWORD1_SEM (page 8-27), and VTX_DWORD2 (page 8-33). 

Instruction Field VTX_INST == VTX_INST_SEMANTIC, opcode 1 (0x1). 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

Reserved M
F

C
B
N
S

E
S OFFSET +8

S
M
A

F
C
A

N
F
A

DATA_FORMAT
U
C
F

D
S
W

D
S
Z

D
S
Y

D
S
X

SEMANTIC_ID +4

M
F
C

S
S
X

S
R SRC_GPR BUFFER_ID

F
W
Q

F
T VTX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-183
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

7.4 Texture-Fetch Instructions
All of the instructions in this section have a mnemonic that begins with 
TEX_INST_ in the TEX_INST field of their microcode formats. 

Get Computed Level of Detail For Pixels

Instruction GET_COMP_TEX_LOD

Description Computed level of detail (LOD) for all pixels in quad. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_COMP_TEX_LOD, opcode 6 (0x6).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-184 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Get Slopes Relative To Horizontal

Instruction GET_GRADIENTS_H

Description Retrieve lopes relative to horizontal: X = dx/dh, Y = dy/dh, Z = dz/dh, W = dw/dh. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_GRADIENTS_H, opcode 7 (0x7).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-185
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Get Slopes Relative To Vertical

Instruction GET_GRADIENTS_V

Description Retrieve slopes relative to vertical: X = dx/dv, Y = dy/dv, Z = dz/dv, W = dw/dv.

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_GRADIENTS_V, opcode 8 (0x8).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-186 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Get Linear-Interpolation Weights

Instruction GET_LERP_FACTORS

Description Retrieve linear interpolation (LERP) weights used for bilinear fetch, X = horizontal LERP, 
Y = vertical LERP. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_LERP_FACTORS, opcode 9 (0x9).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-187
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Get Number of Samples

Instruction GET_NUMBER_OF_SAMPLES

Description Gets and returns the number of samples. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_LERP_FACTORS, opcode 5 (0x5).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-188 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Get Texture Resolution

Instruction GET_TEXTURE_RESINFO

Description Retrieve width, height, depth, and number of mipmap levels. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_GET_TEXTURE_RESINFO, opcode 4 (0x4).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-189
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Load Texture Elements

Instruction LD

Description Load texture element (texel). The elements X, Y, Z, W are unsigned integers. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_LD, opcode 3 (0x3).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-190 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Return Memory Address 

Instruction PASS

Description Returns the address read in memory. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_PASS, opcode 13 (0xD).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-191
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture

Instruction SAMPLE

Description Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture 
sample. The SAMPLER_ID field specifies the arithmetic. The horizontal and vertical gradients 
for the source address are calculated by the hardware. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE, opcode 16 (0x10).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-192 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with Comparison

Instruction SAMPLE_C

Description Fetch a texture sample and process it. The RESOURCE_ID field specifies the texture sample. 
The SAMPLER_ID field specifies the arithmetic. The horizontal and vertical gradients for the 
source address are calculated by the hardware.

This instruction compares the reference value in src0.W with the sampled value from 
memory. The reference value is converted to the source format before the compare. NANs 
are honored in the comparisons for formats supporting them, otherwise, they are converted 
to 0 or +/-MAX. A passing compare puts a 1.0 in the src0.X element. A failing compare puts 
a 0.0 in the src0.X element.

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C, opcode 24 (0x18).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-193
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with Comparison and Gradient

Instruction SAMPLE_C_G

Description This instruction behaves exactly like the SAMPLE_C instruction, except that instead of using 
the hardware-calculated horizontal and vertical gradients for the source address, the 
gradients are provided by software in the most recently executed set gradients H and set 
gradients V. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G, opcode 28 (0x1C).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-194 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with Comparison, Gradient, and LOD

Instruction SAMPLE_C_G_L

Description This instruction behaves exactly like the SAMPLE_C_G instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture 
coordinate in src0.W. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G_L, opcode 29 (0x1D).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-195
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with Comparison, Gradient, and LOD Bias

Instruction SAMPLE_C_G_LB

Description This instruction behaves exactly like the SAMPLE_C_G instruction, except that a constant bias 
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed 
LOD for the source address. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G_LB, opcode 30 (0x1E).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-196 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with Comparison, Gradient, and LOD Zero

Instruction SAMPLE_C_G_LZ

Description This instruction behaves exactly like the SAMPLE_C_G instruction, except that the mipmap 
level of detail (LOD) and fraction are forced to zero before level-clamping. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_G_LZ, opcode 31 (0x1F).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-197
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with LOD

Instruction SAMPLE_C_L

Description This instruction behaves exactly like the SAMPLE_C instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture 
coordinate in src0.W. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_L, opcode 25 (0x19).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-198 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with LOD Bias

Instruction SAMPLE_C_LB

Description This instruction behaves exactly like the SAMPLE_C instruction, except that a constant bias 
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed 
LOD for the source address. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_LB, opcode 26 (0x1A).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-199
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with LOD Zero

Instruction SAMPLE_C_LZ

Description This instruction behaves exactly like the SAMPLE_C instruction, except that the mipmap level 
of detail (LOD) and fraction are forced to zero before level-clamping. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_C_LZ, opcode 27 (0x1B).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-200 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with Gradient

Instruction SAMPLE_G

Description This instruction behaves exactly like the SAMPLE instruction, except that instead of using the 
hardware-calculated horizontal and vertical gradients for the source address, the gradients 
are provided by software in the last-executed SET_GRADIENTS_H and SET_GRADIENTS_V 
instructions. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G, opcode 20 (0x14).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-201
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with Gradient and LOD

Instruction SAMPLE_G_L

Description This instruction behaves exactly like the SAMPLE_G instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture 
coordinate in src0.W. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G_L, opcode 21 (0x15).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-202 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with Gradient and LOD Bias

Instruction SAMPLE_G_LB

Description This instruction behaves exactly like the SAMPLE_G instruction, except that a constant bias 
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed 
LOD for the source address. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G_LB, opcode 22 (0x16).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-203
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with Gradient and LOD Zero

Instruction SAMPLE_G_LZ

Description This instruction behaves exactly like the SAMPLE_G instruction, except that the mipmap level 
of detail (LOD) and fraction are forced to zero before level-clamping. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_G_LZ, opcode 23 (0x17).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-204 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with LOD

Instruction SAMPLE_L

Description This instruction behaves exactly like the SAMPLE instruction, except that the hardware-
computed mipmap level of detail (LOD) is replaced with the LOD determined by the texture 
coordinate in src0.W. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_L, opcode 17 (0x11).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-205
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Sample Texture with LOD Bias

Instruction SAMPLE_LB

Description This instruction behaves exactly like the SAMPLE instruction, except that a constant bias 
value, placed in the instruction’s LOD_BIAS field by the compiler, is added to the computed 
LOD for the source address. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_LB, opcode 18 (0x12).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-206 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Sample Texture with LOD Zero

Instruction SAMPLE_LZ

Description This instruction behaves exactly like the SAMPLE instruction, except that the mipmap level of 
detail (LOD) and fraction are forced to zero before level-clamping. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SAMPLE_LZ, opcode 19 (0x13).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-207
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Set Cubemap Index

Instruction SET_CUBEMAP_INDEX

Description Sets the index of the cubemap. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SET_CUBEMAP_INDEX, opcode 14 (0xE).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-208 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Set Horizontal Gradients

Instruction SET_GRADIENTS_H

Description Set horizontal gradients specified by X, Y, Z coordinates. 

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SET_GRADIENTS_H, opcode 11 (0xB).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 7-209
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Set Vertical Gradients

Instruction SET_GRADIENTS_V

Description Set vertical gradients specified by X, Y, Z coordinates.

Microcode

Format TEX_DWORD0 (page 8-34), TEX_DWORD1 (page 8-36), and TEX_DWORD2 (page 8-37).

Instruction Field TEX_INST == TEX_INST_SET_GRADIENTS_V, opcode 12 (0xC).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +12

S
S
W

S
S
Z

S
S
Y

S
S
X

SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8

C
T
W

C
T
Z

C
T
Y

C
T
X

LOD_BIAS
D
S
W

D
S
Z

D
S
Y

D
S
X

D
R DST_GPR +4

Reserved S
R SRC_GPR RESOURCE_ID

F
W
Q

B
F
M

TEX_INST +0



AT I  R 6 0 0  Te c h n o l o g y

7-210 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture 8-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 8
Microcode Formats

This section specifies the microcode formats. The definitions can be used to 
simplify compilation by providing standard templates and enumeration names for 
the various instruction formats. Table 8.1 summarizes the microcode formats and 
their widths. The sections that follow provide details. 

The field-definition tables that accompany the descriptions in the sections below 
use the following notation.

• int(2) — A two-bit field that specifies an integer value. 

• enum(7) — A seven-bit field that specifies an enumerated set of values (in 
this case, a set of up to 27 values). The number of valid values can be less 
than the maximum.

Table 8.1 Summary of Microcode Formats

Microcode Formats Reference
Width 
(bits) Function

Control Flow (CF) Instructions

CF_DWORD0 and 
CF_DWORD1

page 8-3
page 8-4

64 Implements general con-
trol-flow instructions.

CF_ALU_DWORD0 and 
CF_ALU_DWORD1

page 8-7
page 8-8

64 Initiates ALU clauses.

CF_ALLOC_EXPORT_DWORD0 and 
CF_ALLOC_EXPORT_DWORD1_
{BUF, SWIZ}

page 8-10
page 8-12, 

page 8-14, page 8-15

64 Initiates and implements 
allocation, import, and 
export instructions.

ALU Clause Instructions

ALU_DWORD0 and
ALU_DWORD1_OP2 or ALU_DWORD1_OP3

page 8-16
page 8-18, page 8-23

64 Implements ALU 
instructions.

Vertex-Fetch Clause Instructions

VTX_DWORD0 and
VTX_DWORD1_{GPR, SEM} and
VTX_DWORD2

page 8-25
page 8-27, page 8-29

page 8-33

96, 
padded to 

128

Implements vertex-fetch 
instructions.

Texture-Fetch Clause Instructions

TEX_DWORD0 and
TEX_DWORD1 and
TEX_DWORD2

page 8-34
page 8-36
page 8-37

96, 
padded to 

128

Implements texture-fetch 
instructions.



AT I  R 6 0 0  Te c h n o l o g y

8-2 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

• VALID_PIXEL_MODE (VPM) — Refers to the VALID_PIXEL_MODE field that 
is indicated in the accompanying format diagram by the abbreviated symbol 
VPM. 

Unless otherwise stated, all fields are readable and writable (the CF_INST fields 
of the CF_ALLOC_EXPORT_DWORD1_BUF or the CF_ALLOC_EXPORT_DWORD1_SWIZ 
formats are the only exceptions). The default value of all fields is zero. 

8.1 Control Flow (CF) Instructions
Control flow (CF) instructions include:

• General control flow instructions (conditional jumps, loops, subroutines).

• Allocate, import, or export instructions.

• Clause-initiation instructions for ALU, texture-fetch, vertex-fetch clauses.

All CF microcode formats are 64 bits wide. 



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Control Flow Doubleword 0

Instructions CF_DWORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by 
CF_DWORD[0,1]. This format pair is the default format for CF instructions.

Access Read-write

Opcode Field Name Bits Format
ADDR [31:0] int(32)

• (producing a quadword-aligned value) of the beginning of the clause in 
memory. 

• For control flow instructions: Bits [34:3] of the byte offset (producing a 
quadword-aligned value) of the control flow address to jump to (instructions 
that can jump). 

Offsets are relative to the byte address specified in the host-written PGM_START_* 
register. Texture and Vertex clauses must start on 16-byte aligned addresses. 

Related CF_DWORD1



AT I  R 6 0 0  Te c h n o l o g y

8-4 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Control Flow Doubleword 1

Instructions CF_DWORD1

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by 
CF_DWORD[0,1]. This format pair is the default format for CF instructions.

Access Read-write

Opcode Field Name Bits Format
POP_COUNT (PC) [2:0] int(3)

Specifies the number of entries to pop from the stack, in the range [0, 7]. 
Only used by certain CF instructions that pop the stack. Can be zero to 
indicate no pop operation.

CF_CONST [7:3] int(5)

Specifies the CF constant to use for flow control statements. 
For LOOP_START_* and LOOP_END, this specifies the integer constant to use 
for the loop’s trip count (maximum number of loops), beginning value (loop 
index initializer), and increment (step). The constant is a host-written vector, 
and the three loop parameters are stored as three elements of the vector. 
The loop index (aL) is maintained by hardware in the aL register. 
For instructions using the COND field, this specifies the index of the boolean 
constant.
See Section 3.7.3, on page 3-18 for details. 

COND [9:8] enum(2)

Specifies how to evaluate the condition test for each pixel. Not used by all 
instructions. Can reference CF_CONST.
0 CF_COND_ACTIVE: condition test passes for active pixels. (Non-branch-

loop instructions can use only this setting.)
1 CF_COND_FALSE: condition test fails for all pixels.
2 CF_COND_BOOL: condition test passes iff pixel is active and boolean ref-

erenced by CF_CONST is true.
3 CF_COND_NOT_BOOL: condition test passes iff pixel is active and boolean 

referenced by CF_CONST is false.

COUNT [12:10] int(3)

Number of instruction slots in the range [1,8] to execute in the clause, 
minus one (clause instructions only). 

CALL_COUNT [18:13] int(6)

Amount to increment call nesting counter by when executing a CALL 
statement; a CALL is skipped if the current nesting depth + CALL_COUNT > 
32. This field is interpreted in the range [0,31], and has no effect for other 
instruction types.

RSVD [19:20] Reserved

END_OF_PROGRAM 
(EOP)

21 int(1)

0 This instruction is not the last instruction of the CF program. 
1 This instruction is the last instruction of the CF program. Execution ends 

after this instruction is issued.



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

VALID_PIXEL_MODE 
(VPM)

22 int(1)

0 Execute the instructions in this clause as if invalid pixels are active. 
1 Execute the instructions in this clause as if invalid pixels are inactive. 

This is the antonym of WHOLE_QUAD_MODE. Caution: VALID_PIXEL_MODE 
is not the default mode; this bit is cleared by default.

CF_INST [29:23] enum(7)

0 CF_INST_NOP: perform no operation.
1 CF_INST_TEX: execute texture-fetch or constant-fetch clause.
2 CF_INST_VTX: execute vertex-fetch clause
3 CF_INST_VTX_TC: execute vertex-fetch clause through the texture 

cache (for systems lacking VC).
4 CF_INST_LOOP_START: execute DirectX9 loop start instruction (push 

onto stack if loop body executes).
5 CF_INST_LOOP_END: execute DirectX9 loop end instruction (pop stack if 

loop is finished).
6 CF_INST_LOOP_START_DX10: execute DirectX10 loop start instruction 

(push onto stack if loop body executes).
7 CF_INST_LOOP_START_NO_AL: same as LOOP_START but don't push the 

loop index (aL) onto the stack or update aL.
8 CF_INST_LOOP_CONTINUE: execute continue statement (jump to end of 

loop if all pixels ready to continue).
9 CF_INST_LOOP_BREAK: execute a break statement (pop stack if all pixels 

ready to break).
10 CF_INST_JUMP: execute jump statement (can be conditional).
11 CF_INST_PUSH: push current per-pixel active state onto the stack.
12 CF_INST_PUSH_ELSE: execute push/else statement. Always pushes 

per-pixel state onto the stack.
13 CF_INST_ELSE: execute else statement (can be conditional).
14 CF_INST_POP: pop current per-pixel state from the stack.
15 CF_INST_POP_JUMP: pop current per-pixel state from the stack; then, 

execute CF_INST_JUMP with pop count = 0.
16 CF_INST_POP_PUSH: pop current per-pixel state from the stack; then, 

execute CF_INST_PUSH with pop count = 0.
17 CF_INST_POP_PUSH_ELSE: pop current per-pixel state from the stack; 

then, execute CF_INST_PUSH_ELSE.
18 CF_INST_CALL: execute subroutine call instruction (push onto stack).
19 CF_INST_CALL_FS: call fetch kernel. The address to call is stored in a 

state register.
20 CF_INST_RETURN: execute subroutine return instruction (pop stack). 

Pair with CF_INST_CALL only.
21 CF_INST_EMIT_VERTEX: signal that GS has finished exporting a vertex 

to memory. CF_COND=ACTIVE is required.
22 CF_INST_EMIT_CUT_VERTEX: emit a vertex and an end of primitive strip 

marker. The next emitted vertex starts a new primitive strip. 
CF_COND=ACTIVE is required.

23 CF_INST_CUT_VERTEX: emit an end of primitive strip marker. The next 
emitted vertex starts a new primitive strip.

24 CF_INST_KILL: kill pixels that pass the condition test (can be condi-
tional). jump if all pixels are killed. CF_COND=ACTIVE is required.

Control Flow Doubleword 1 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-6 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

WHOLE_QUAD_MODE 
(WQM)

30 int(1)

Active pixels:
0 Do not execute this instruction as if all pixels are active and valid.
1 Execute this instruction as if all pixels are active and valid. 
This is the antonym of the VALID_PIXEL_MODE field. Set only one of these 
bits (WHOLE_QUAD_MODE or VALID_PIXEL_MODE) at a time; they are mutually 
exclusive. 

BARRIER (B) 31 int(1)

Synchronization barrier:
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes. 

Related CF_DWORD0

Control Flow Doubleword 1 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Control Flow ALU Doubleword 0

Instructions CF_ALU_DWORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by 
CF_ALU_DWORD[0,1]. The instructions specified with this format are used to initiate ALU clauses. 
The ALU instructions that execute within an ALU clause are described in Section 8.2, on page 
8-15. 

Access Read-write

Opcode Field Name Bits Format
ADDR 21:0 int(22)

Bits [24:3] of the byte offset (producing a quadword-aligned value) of the 
clause to execute. The offset is relative to the byte address specified by 
PGM_START_* register.

KCACHE_BANK0 
(KB0)

25:22 int(4)

Bank (constant buffer number) for first set of locked cache lines.

KCACHE_BANK1 
(KB1)

29:26 int(4)

Bank (constant buffer number) for second set of locked cache lines.

KCACHE_MODE0 
(KM0)

31:30 enum(2)

Mode for first set of locked cache lines.
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache line KCACHE_BANK[0.1], ADDR. 
2 CF_KCACHE_LOCK_2: lock cache lines KCACHE_BANK[0.1], ADDR and 

KCACHE_BANK[0.1], ADDR+1.
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines KCACHE_BANK[0.1], 

LOOP/16+ADDR and KCACHE_BANK[0.1], LOOP/16+ADDR+1, where 
LOOP is the current loop index (aL).

Related CF_ALU_DWORD1



AT I  R 6 0 0  Te c h n o l o g y

8-8 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Control Flow ALU Doubleword 1

Instructions CF_ALU_DWORD1

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by 
CF_ALU_DWORD[0,1]. The instructions specified with this format are used to initiate ALU clauses. The 
instructions that execute within an ALU clause are described in Section 8.2, on page 8-15. 

Access Read-write

Opcode Field Name Bits Format
KCACHE_MODE1 
(KM1)

[1:0] enum(2)

Mode for second set of locked cache lines:
0 CF_KCACHE_NOP: do not lock any cache lines.
1 CF_KCACHE_LOCK_1: lock cache line KCACHE_BANK[0.1], ADDR. 
2 CF_KCACHE_LOCK_2: lock cache lines KCACHE_BANK[0.1], ADDR+1.
3 CF_KCACHE_LOCK_LOOP_INDEX: lock cache lines KCACHE_BANK[0.1], 

LOOP/16+ADDR and KCACHE_BANK[0.1], LOOP/16+ADDR+1, where LOOP 
is current loop index (aL).

KCACHE_ADDR0 [9:2] int(8)

Constant buffer address for first set of locked cache lines. In units of cache lines 
where a line holds 16 128-bit constants (byte addr[15:8]).

KCACHE_ADDR1 [17:10] int(8)

Constant buffer address for second set of locked cache lines.

COUNT [24:18] int(7)

Number of instruction slots (64-bit slots) in the range [1,128] to execute in the 
clause, minus one. 

USES_WATERFALL 
(UW)

25 int(1)

0 This ALU clause does not use waterfall constants.
1 This ALU clause uses waterfall constants (GPR-based indexing).

CF_INST [29:26] enum(4)

Instruction.
8 CF_INST_ALU: each PRED_SET* instruction updates the active state but does 

not update the stack.
9 CF_INST_ALU_PUSH_BEFORE: each PRED_SET* causes a stack push first; then 

updates the active state.
10 CF_INST_ALU_POP_AFTER: pop the stack after the clause completes execution.
11 CF_INST_ALU_POP2_AFTER: pop the stack twice after the clause completes 

execution.
12 Reserved
13 CF_INST_ALU_CONTINUE: each PRED_SET* causes a continue operation on the 

unmasked pixels.
14 CF_INST_ALU_BREAK: each PRED_SET* causes a break operation on the 

unmasked pixels.
15 CF_INST_ALU_ELSE_AFTER: behaves like PUSH_BEFORE, but also performs an 

ELSE operation after the clause completes execution, which inverts the pixel 
state.



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

WHOLE_QUAD_MODE 
(WQM)

30 int(1)

Active pixels.
0 Do not execute this clause as if all pixels are active and valid.
1 Execute this clause as if all pixels are active and valid. 
This is the antonym of the VALID_PIXEL_MODE field. Set only one of these bits 
(WHOLE_QUAD_MODE or VALID_PIXEL_MODE) at a time; they are mutually exclusive.

BARRIER (B) 31 int(1)

Synchronization barrier.
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes. 

Related CF_ALU_DWORD0

Control Flow ALU Doubleword 1 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-10 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Control Flow Allocate, Import, or Export Doubleword 0

Instructions CF_ALLOC_EXPORT_DWORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by 
CF_ALLOC_EXPORT_DWORD0 and CF_ALLOC_EXPORT_DWORD1_{BUF, SWIZ}. It is used to reserve 
storage space in an input or output buffer, write data from GPRs into an output buffer, or read 
data from an input buffer into GPRs. Each instruction using this format pair can use either the 
BUF or the SWIZ version of the second doubleword—all instructions have both BUF and SWIZ 
versions. The instructions specified with this format pair are used to initiate allocation, import, or 
export clauses.

Access Read-write

Opcode Field Name Bits Format
ARRAY_BASE [12:0] int(13)

• For scratch or reduction input or output, this is the base address of the array 
in multiples of four doublewords [0,32764].

• For stream or ring output, this is the base address of the array in multiples of 
one doubleword [0,8191].

• For pixel or Z output, this is the index of the first export (frame buffer, no fog: 
[0, 7]; frame buffer, with fog: [16, 23]; computed Z: 61).

• For parameter output, this is the parameter index of the first export [0,31].
• For position output, this is the position index of the first export [60,63].

TYPE [14:13] enum(2)

Type of allocation, import, or export. In the types below, the first value (PIXEL, 
POS, PARAM) is used with CF_INST_EXPORT* instruction, and the second value 
(WRITE, WRITE_IND, READ, and READ_IND) is used with CF_INST_MEM* instruction: 
0 EXPORT_PIXEL: write pixel. Available only for Pixel Shader (PS). 

EXPORT_WRITE: write to memory buffer.
1 EXPORT_POS: write position. Available only to Vertex Shader (VS). 

EXPORT_WRITE_IND: write to memory buffer, use offset in INDEX_GPR.
2 EXPORT_PARAM: write parameter cache. Available only to Vertex Shader (VS).

IMPORT_READ: read from memory buffer (scratch and reduction buffers only).
3 Unused. 

IMPORT_READ_IND: read from memory buffer, use offset in INDEX_GPR (scratch 
and reduction buffers only).

RW_GPR [21:15] int(7)

GPR register to read data from or write data to.

RW_REL (RR) 22 enum(1)

Indicates whether GPR is an absolute address, or relative to the loop index (aL).
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to this address.

INDEX_GPR [29:23] int(7)

For any indexed import or export, this GPR contains an index that is used in the 
computation for determining the address of the first import or export. The index is 
multiplied by (ELEM_SIZE + 1). Only the X element is used (other elements 
ignored, no swizzle allowed).



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-11
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

ELEM_SIZE 
(ES)

[31:30] int(2)

Number of doublewords per array element, minus one. This field is interpreted as 
a value in [1,4]. The value from INDEX_GPR and the loop index (aL) are multiplied 
by this factor, if applicable. Also, BURST_COUNT is multiplied by this factor for 
CF_INST_MEM*. This field is ignored for CF_INST_EXPORT*. Normally, ELEMSIZE = 
four doublewords for scratch and reduction, one doubleword for other types.

Related CF_ALLOC_EXPORT_DWORD1_BUF

CF_ALLOC_EXPORT_DWORD1_SWIZ

Control Flow Allocate, Import, or Export Doubleword 0 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-12 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Control Flow Allocate, Import, or Export Doubleword 1  

Instructions CF_ALLOC_EXPORT_DWORD1

Description Word 1 of the control flow instruction for allocation/export is the bitwise OR of Word1 | 
Word1_BUF,SWIZ. This part contains fields that are always defined.

Access Read-write, except for the CF_INST field, in which some values are write-only.

Opcode Field Name Bits Format
[16:0]

Reserved.

BURST_COUNT [20:17] int(4)

Number of MRTs, positions, parameters, or logical export values to allocate and/or 
export, minus one. This field is interpreted as a value in [16:1].

END_OF_PROGR
AM

21 int(1)

0 This is not the last instruction in the CF program.
1 This instruction is the last one of the CF program. Execution ends after this 

instruction is issued.

VALID_PIXEL_
MODE

22 int(1)

Antonym of WHOLE_QUAD_MODE. 
0 Execute this instruction/clause as if invalid pixels are active.
1 Execute this instruction/clause as if invalid pixels are inactive.
Set the default of this field to 0.

CF_INST [29:23] int(7)

32 CF_INST_MEM_STREAM0: perform a memory operation on stream buffer 0 
(write-only).

33 CF_INST_MEM_STREAM1: perform a memory operation on stream buffer 1 
(write-only).

34 CF_INST_MEM_STREAM2: perform a memory operation on stream buffer 2 
(write-only).

35 CF_INST_MEM_STREAM3: perform a memory operation on stream buffer 3 
(write-only).

36 CF_INST_MEM_SCRATCH: perform a memory operation on the scratch buffer 
(read-write).

37 CF_INST_MEM_REDUCTION: perform a memory operation on the reduction 
buffer (read-write).

38 CF_INST_MEM_RING: perform a memory operation on the ring buffer (write-
only). 

39 CF_INST_EXPORT: export only (not last). Used for PIXEL, POS, PARAM 
exports.

40 CF_INST_EXPORT_DONE: export only (last export). Used for PIXEL, POS, 
PARAM exports. 

41 CF_INST_MEM_EXPORT: perform a memory operation on the shard buffer 
(read-write).

WHOLE_QUAD_M
ODE (WQM)

30 int(1)

0 Do not execute this clause as if all pixels are active and valid.
1 Execute this clause as if all pixels are active and valid. 
This is the antonym of the VALID_PIXEL_MODE field. Set at most one of these bits.



AT I  R 6 0 0  Te c h n o l o g y

Control Flow (CF) Instructions 8-13
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

BARRIER (B) 31 int(1)

Synchronization barrier.
0 This instruction can run in parallel with prior instructions.
1 All prior instructions must complete before this instruction executes. 

Related CF_ALLOC_EXPORT_DWORD0

CF_ALLOC_EXPORT_DWORD1_SWIZ

Control Flow Allocate, Import, or Export Doubleword 1 (Cont.)  



AT I  R 6 0 0  Te c h n o l o g y

8-14 Control Flow (CF) Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Control Flow Allocate, Import, or Export Doubleword 1 Buffer  

Instructions CF_ALLOC_EXPORT_DWORD1_BUF

Description Word 1 of the control flow instruction. This subencoding is used by allocations/exports for all 
input/outputs to scratch, ring, stream, and reduction buffers. 

Access Read-write.

Opcode Field Name Bits Format
[11:0]

Array size (elem-size units). Represents values [1:4096] when ELEMSIZE=0, 
[4:16384] when ELEMSIZE=3.

COMP_MASK [15:12] int(4)

XYZW component mask (X is the LSB). Write the component iff the corresponding 
bit is 1. Applies only to writes, not reads in the RV600, RV610, and RV630. In the 
RV670 and beyond, component mask is used for SMX reads and writes.

16

Unused. Must be set to 0.

[31:17]

Described in CF_ALLOC_EXPORT_DWORD1. 

Related CF_ALLOC_EXPORT_DWORD1
CF_ALLOC_EXPORT_DWORD1_SWIZ



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 8-15
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

8.2 ALU Instructions
ALU clauses are initiated using the CF_ALU_DWORD[0,1] format pair, described 
in Section 8.1, on page 8-2. After the clause is initiated, the instructions below 
can be issued. ALU instructions are used to build ALU instruction groups, as 
described in Section 4.3, on page 4-3. All ALU microcode formats are 64 bits 
wide. 

Control Flow Allocate, Import, or Export Doubleword 1 Swizzle

Instructions CF_ALLOC_EXPORT_DWORD1_SWIZ

Description Word 1 of the control flow instruction. This subencoding is used by allocations/exports for PIXEL, 
POS, and PARAM. 

Access Read-write

Opcode Field Name Bits Format
SEL_X
SEL_Y

SEL_Z

SEL_W

[2:0]
[5:3]
[8:6]
[11:9]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies the source for each element of the import or export.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

[16:12]

Unused. Must be set to 0.

[31:17]

Described in CF_ALLOC_EXPORT_DWORD1. 

Related CF_ALLOC_EXPORT_DWORD0

CF_ALLOC_EXPORT_DWORD1_BUF



AT I  R 6 0 0  Te c h n o l o g y

8-16 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

ALU Doubleword 0

Instructions ALU_DWORD0

Description This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by 
ALU_DWORD0 and ALU_DWORD1_{OP2, OP3}. Each instruction using this format pair has either an 
OP2 or an OP3 version (not both). 

Access Read-write

Opcode Field Name Bits Format
SRC0_SEL

SRC1_SEL

[8:0]
[21:13]

enum(9)
enum(9)

Location or value of this source operand.
[127:0] Value in GPR[127,0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1. 
[511:256] cfile constants c[255:0].
Other special values are shown in the list below.
244 ALU_SRC_1_DBL_L: special constant 1.0 

double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 

double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: the constant 0.0.
249 ALU_SRC_1: the constant 1.0 float.
250 ALU_SRC_1_INT: the constant 1 integer.
251 ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant.
254 ALU_SRC_PV: the previous ALU.[X,Y,Z,W] result.
255 ALU_SRC_PS: the previous ALU.Trans (scalar) result.

SRC0_REL (S0R)

SRC1_REL (S1R)

9
22

enum(1)
enum(1)

Addressing mode for this source operand.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

SRC0_CHAN (S0C)
SRC1_CHAN (S1C)

[11:10]
[24:23]

enum(2)
enum(2)

Source channel to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

SRC0_NEG (S0N)

SRC1_NEG (S1N)

12
25

int(1)
int(1)

Negation.
0 Do not negate input for this operand.
1 Negate input for this operand. Use only for floating-point inputs.



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 8-17
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

INDEX_MODE (IM) [28:26] enum(3)

Relative addressing mode, using the address register (AR) or the loop 
index (aL), for operands that have the SRC_REL or DST_REL bit set.
0 INDEX_AR_X - For constants: add AR.X. 
1 INDEX_AR_Y - For constants: add AR.Y. 
2 INDEX_AR_Z - For constants: add AR.Z. 
3 INDEX_AR_W - For constants: add AR.W. 
4 INDEX_LOOP - add loop index (aL).

PRED_SEL (PS) [30:29] enum(2)

Predicate to apply to this instruction.
0 PRED_SEL_OFF: execute all pixels.
1 Reserved
2 PRED_SEL_ZERO: execute if predicate = 0.
3 PRED_SEL_ONE: execute if predicate = 1.

LAST (L) 31 int(1)

Last instruction in an instruction group.
0 This is not the last instruction (64-bit word) in the current instruction 

group.
1 This is the last instruction (64-bit word) in the current instruction 

group.

Related ALU_DWORD1_OP2

ALU_DWORD1_OP3

ALU Doubleword 0 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-18 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

ALU Doubleword 1 Zero to Two Source Operands

Instructions ALU_DWORD1_OP2

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by 
ALU_DWORD0 and ALU_DWORD1_{OP2, OP3}. Each instruction using this format pair has either an 
OP2 or an OP3 version (not both). The OP2 version specifies ALU instructions that take zero to 
two source operands, plus a destination operand. 
Bits [31:18] of this format are identical to those in the ALU_DWORD1_OP3 format. 

Access Read-write

Opcode Field Name Bits Format
SRC0_ABS (S0A)
SRC1_ABS (S1A)

0
1

int(1)
int(1)

Absolute value.
0 Use the actual value of the input for this operand. 
1 Use the absolute value of the input for this operand. Use only for floating-

point inputs. This function is performed before negation.

UPDATE_EXECUTE
_MASK (UEM)

2 int(1)

Update active mask.
0 Do not update the active mask after executing this instruction. 
1 Update the active mask after executing this instruction, based on the cur-

rent predicate.

UPDATE_PRED 
(UP)

3 int(1)

Update predicate.
0 Do not update the stored predicate. 
1 Update the stored predicate based on the predicate operation computed 

here.

WRITE_MASK 
(WM)

4 int(1)

Write result to destination vector element.
0 Do not write this scalar result to the destination GPR vector element. 
1 Write this scalar result to the destination GPR vector element.

FOG_MERGE (FM) 5 int(1)

Export fog value.
0 Do not export fog value. 
1 Export fog value by merging the transcendental ALU result into the low-

order bits of the vector destination. The vector results lose some precision.

OMOD [7:6] enum(2)

Output modifier.
0 ALU_OMOD_OFF: identity. This value must be used for operations that pro-

duce an integer result. 
1 ALU_OMOD_M2: multiply by 2.0.
2 ALU_OMOD_M4: multiply by 4.0.
3 ALU_OMOD_D2: divide by 2.0.



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 8-19
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

ALU_INST [17:8] enum(10)

Instruction. The top three bits of this field must be zero. Gaps in opcode values 
are not marked in the list below. See Chapter 7 for descriptions of each 
instruction.
0 OP2_INST_ADD
1 OP2_INST_MUL
2 OP2_INST_MUL_IEEE
3 OP2_INST_MAX
4 OP2_INST_MIN
5 OP2_INST_MAX_DX10
6 OP2_INST_MIN_DX10
7 OP2_INST_FREXP_64
8 OP2_INST_SETE
9 OP2_INST_SETGT
10 OP2_INST_SETGE
11 OP2_INST_SETNE
12 OP2_INST_SETE_DX10
13 OP2_INST_SETGT_DX10
14 OP2_INST_SETGE_DX10
15 OP2_INST_SETNE_DX10
16 OP2_INST_FRACT
17 OP2_INST_TRUNC
18 OP2_INST_CEIL
19 OP2_INST_RNDNE
20 OP2_INST_FLOOR
21 OP2_INST_MOVA
22 OP2_INST_MOVA_FLOOR
23 OP2_INST_ADD_64
24 OP2_INST_MOVA_INT
25 OP2_INST_MOV
26 OP2_INST_NOP
27 OP2_INST_MUL_64
28 OP2_INST_FLT64_TO_FLT32
29 OP2_INST_FLT32_TO_FLT64
30 OP2_INST_PRED_SETGT_UINT
31 OP2_INST_PRED_SETGE_UINT
32 OP2_INST_PRED_SETE
33 OP2_INST_PRED_SETGT
34 OP2_INST_PRED_SETGE
35 OP2_INST_PRED_SETNE
36 OP2_INST_PRED_SET_INV
37 OP2_INST_PRED_SET_POP
38 OP2_INST_PRED_SET_CLR
39 OP2_INST_PRED_SET_RESTORE
40 OP2_INST_PRED_SETE_PUSH
41 OP2_INST_PRED_SETGT_PUSH
42 OP2_INST_PRED_SETGE_PUSH
43 OP2_INST_PRED_SETNE_PUSH

ALU Doubleword 1 Zero to Two Source Operands (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-20 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

ALU_INST [17:8] enum(10)

44 OP2_INST_KILLE
45 OP2_INST_KILLGT
46 OP2_INST_KILLGE
47 OP2_INST_KILLNE
48 OP2_INST_AND_INT
49 OP2_INST_OR_INT
50 OP2_INST_XOR_INT
51 OP2_INST_NOT_INT
52 OP2_INST_ADD_INT
53 OP2_INST_SUB_INT
54 OP2_INST_MAX_INT
55 OP2_INST_MIN_INT
56 OP2_INST_MAX_UINT
57 OP2_INST_MIN_UINT
58 OP2_INST_SETE_INT
59 OP2_INST_SETGT_INT
60 OP2_INST_SETGE_INT
61 OP2_INST_SETNE_INT
62 OP2_INST_SETGT_UINT
63 OP2_INST_SETGE_UINT
64 OP2_INST_KILLGT_UINT
65 OP2_INST_KILLGE_UINT
66 OP2_INST_PRED_SETE_INT
67 OP2_INST_PRED_SETGT_INT
68 OP2_INST_PRED_SETGE_INT
69 OP2_INST_PRED_SETNE_INT
70 OP2_INST_KILLE_INT
71 OP2_INST_KILLGT_INT
72 OP2_INST_KILLGE_INT
73 OP2_INST_KILLNE_INT
74 OP2_INST_PRED_SETE_PUSH_INT
75 OP2_INST_PRED_SETGT_PUSH_INT
76 OP2_INST_PRED_SETGE_PUSH_INT
77 OP2_INST_PRED_SETNE_PUSH_INT
78 OP2_INST_PRED_SETLT_PUSH_INT
79 OP2_INST_PRED_SETLE_PUSH_INT
80 OP2_INST_DOT4
81 OP2_INST_DOT4_IEEE
82 OP2_INST_CUBE
83 OP2_INST_MAX4
95:84reserved
96 OP2_INST_MOVA_GPR_INT
97 OP2_INST_EXP_IEEE
98 OP2_INST_LOG_CLAMPED
99 OP2_INST_LOG_IEEE
100 OP2_INST_RECIP_CLAMPED
101 OP2_INST_RECIP_FF
102 OP2_INST_RECIP_IEEE
103 OP2_INST_RECIPSQRT_CLAMPED
104 OP2_INST_RECIPSQRT_FF

ALU Doubleword 1 Zero to Two Source Operands (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 8-21
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

ALU_INST [17:8] enum(10)

105 OP2_INST_RECIPSQRT_IEEE
106 OP2_INST_SQRT_IEEE
107 OP2_INST_FLT_TO_INT
108 OP2_INST_INT_TO_FLT
109 OP2_INST_UINT_TO_FLT
110 OP2_INST_SIN
111 OP2_INST_COS
112 OP2_INST_ASHR_INT
113 OP2_INST_LSHR_INT
114 OP2_INST_LSHL_INT
115 OP2_INST_MULLO_INT
116 OP2_INST_MULHI_INT
117 OP2_INST_MULLO_UINT
118 OP2_INST_MULHI_UINT
119 OP2_INST_RECIP_INT
120 OP2_INST_RECIP_UINT
121 OP2_INST_FLT_TO_UINT
122 OP2_INST_LDEXP_64
123 OP2_INST_FRACT_64
124 OP2_INST_PRED_SETGT_64
125 OP2_INST_PRED_SETE_64
126 OP2_INST_PRED_SETGE_64

BANK_SWIZZLE 
(BS)

[20:18] enum(3)

Specifies how to load source operands.
Vector Instruction Slot Scalar Instruction Slot

0 ALU_VEC_012 ALU_SCL_210.
1 ALU_VEC_021 ALU_SCL_122.
2 ALU_VEC_120 ALU_SCL_212.
3 ALU_VEC_102 ALU_SCL_221.
4 ALU_VEC_201.
5 ALU_VEC_210.
See Section 4.7.7, on page 4-12 for details. 

DST_GPR [27:21] int(7)

Destination GPR address to which result is written. 

DST_REL (DR) 28 enum(1)

Addressing mode for the destination GPR address.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address.

DST_ELEM (DE) [30:29] enum(2)

Vector element of DST_GPR to which the result is written.
0 ELEM_X: write to X element.
1 ELEM_Y: write to Y element.
2 ELEM_Z: write to Z element.
3 ELEM_W: write to W element.

ALU Doubleword 1 Zero to Two Source Operands (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

8-22 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

CLAMP (C) 31 int(1)

Clamp result.
0 Do not clamp the result. 
1 Clamp the result to [0.0, 1.0]. Not mathematically defined for instructions 

that produce integer results. 

Related ALU_DWORD0
ALU_DWORD1_OP3

ALU Doubleword 1 Zero to Two Source Operands (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

ALU Instructions 8-23
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

ALU Doubleword 1 Three Source Operands

Instructions ALU_DWORD1_OP3

Description This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed 
by ALU_DWORD0 and ALU_DWORD1_{OP2, OP3}. Each instruction using this format pair has either 
an OP2 or an OP3 version (not both). The OP3 version specifies ALU instructions that take three 
source operands, plus a destination operand. 
Bits [31:18] of this format are identical to those in the ALU_DWORD1_OP2 format. 

Access Read-write

Opcode Field Name Bits Format
SRC2_SEL [8:0] enum(9)

Location or value of this source operand.
[127:0] Value in GPR[127,0].
[159:128] Kcache constants in bank 0.
[191:160] Kcache constants in bank 1. 
[511:256] cfile constants c[255:0]. 
Other special values are shown below.
244 ALU_SRC_1_DBL_L: special constant 1.0 

double-float, LSW.
245 ALU_SRC_1_DBL_M: special constant 1.0 

double-float, MSW.
246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW.
247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW.
248 ALU_SRC_0: the constant 0.0.
249 ALU_SRC_1: the constant 1.0 float.
250 ALU_SRC_1_INT: the constant 1 integer.
251 ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.
253 ALU_SRC_LITERAL: literal constant. 
254 ALU_SRC_PV: previous ALU.[X,Y,Z,W] result.
255 ALU_SRC_PS: previous ALU.Trans result.

SRC2_REL 9 enum(1)

Addressing mode for this source operand.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address. See ALU_DWORD0, on 

page 8-16, for the specification of INDEX_MODE. 

SRC2_CHAN 
(S2C)

[11:10] enum(2)

Source channel to use for this operand.
0 CHAN_X: Use X element.
1 CHAN_Y: Use Y element.
2 CHAN_Z: Use Z element.
3 CHAN_W: Use W element.

SRC2_NEG 12 int(1)

Negation.
0 Do not negate input for this operand.
1 Negate input for this operand. Use only for floating-point inputs.



AT I  R 6 0 0  Te c h n o l o g y

8-24 ALU Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

ALU_INST [17:13] enum(5)

Instruction. Gaps in opcode values are not marked in the list below. See Chapter 7 
for descriptions of each instruction. Note: opcode values do not begin at zero.
8 OP3_INST_MULADD_64
9 OP3_INST_MULADD_64_M2
10 OP3_INST_MULADD_64_M4
11 OP3_INST_MULADD_64_D2
12 OP3_INST_MUL_LIT
13 OP3_INST_MUL_LIT_M2
14 OP3_INST_MUL_LIT_M4
15 OP3_INST_MUL_LIT_D2
16 OP3_INST_MULADD
17 OP3_INST_MULADD_M2
18 OP3_INST_MULADD_M4
19 OP3_INST_MULADD_D2
20 OP3_INST_MULADD_IEEE
21 OP3_INST_MULADD_IEEE_M2
22 OP3_INST_MULADD_IEEE_M4
23 OP3_INST_MULADD_IEEE_D2
24 OP3_INST_CNDE
25 OP3_INST_CNDGT
26 OP3_INST_CNDGE
27 Reserved
28 OP3_INST_CNDE_INT
29 OP3_INST_CMNDGT_INT
30 OP3_INST_CNDGE_INT
31 Reserved

BANK_SWIZZLE 
(BS)

[20:18] enum(3)

Specifies how to load source operands.
Vector Instruction Slot Scalar Instruction Slot

0 ALU_VEC_012 ALU_SCL_210.
1 ALU_VEC_021 ALU_SCL_122.
2 ALU_VEC_120 ALU_SCL_212.
3 ALU_VEC_102 ALU_SCL_221.
4 ALU_VEC_201.
5 ALU_VEC_210.
See Section 4.7.7, on page 4-12.

DST_GPR [27:21] int(7)

Destination GPR address to which result is written. 

DST_REL (DR)28 enum(1)

Addressing mode for the destination GPR address.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to this address. See ALU_DWORD0, on 

page 8-16, for the specification of INDEX_MODE. 

ALU Doubleword 1 Three Source Operands (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

Vertex-Fetch Instructions 8-25
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

8.3 Vertex-Fetch Instructions
Vertex-fetch clauses are specified in the CF_DWORD0 and CF_DWORD1 formats, 
described in Section 8.1, on page 8-2. After the clause is specified, the 
instructions below can be issued. Graphics programs typically use these 
instructions to load vertex data from off-chip memory into GPRs. General-
computing programs typically do not use these instructions; instead, they use 
texture-fetch instructions to load all data. 

All vertex-fetch microcode formats are 64 bits wide. 

DST_ELEM 
(DE)

[30:29] enum(2)

Vector element of DST_GPR to which the result is written.
0 ELEM_X: write to X element.
1 ELEM_Y: write to Y element.
2 ELEM_Z: write to Z element.
3 ELEM_W: write to W element.

CLAMP (C) 31 int(1)

Clamp result.
0 Do not clamp the result. 
1 Clamp the result to [0.0, 1.0]. Not mathematically defined for instructions that 

produce integer results. 

Related ALU_DWORD0

ALU_DWORD1_OP2

ALU Doubleword 1 Three Source Operands (Cont.) 

Vertex Fetch Doubleword 0

Instructions VTX_DWORD0

Description This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by VTX_DWORD0, 
VTX_DWORD1_{SEM, GPR}, VTX_DWORD2, plus a doubleword filled with zeros, as described in 
Chapter 5. Each instruction using this format 4-tuple has either an SEM or an GPR version (not 
both) for its second doubleword. The instructions are specified in the VTX_DWORD0 doubleword. 

Access Read-write

Opcode Field Name Bits Format
VTX_INST [4:0] enum(5)

Instruction.
0 VTX_INST_FETCH: vertex fetch (X = uint32 index). Use VTX_DWORD1_GPR 

(page 8-29).
1 VTX_INST_SEMANTIC: semantic vertex fetch. Use VTX_DWORD1_SEM 

(page 8-27).

FETCH_TYPE (FT) [6:5] enum(2)

Specifies which index offset to send to the vertex cache.
0 VTX_FETCH_VERTEX_DATA
1 VTX_FETCH_INSTANCE_DATA
2 VTX_FETCH_NO_INDEX_OFFSET



AT I  R 6 0 0  Te c h n o l o g y

8-26 Vertex-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

FETCH_WHOLE_QUAD 
(FWQ)

7 int(1)

0 Texture instruction can ignore invalid pixels.
1 Texture instruction must fetch data for all pixels (result can be used as 

source coordinate of a dependent read). 

BUFFER_ID [15:8] int(8)

Constant ID to use for this vertex fetch (indicates the buffer address, size, 
and format).

SRC_GPR [22:16] int(7)

Source GPR address to get fetch address from.

SRC_REL (SR) 23 enum(1)

Specifies whether source address is absolute or relative to an index.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to this address.

SRC_SEL_X (SSX) [25:24] enum(2)

Specifies which element of SRC to use for the fetch address.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.

MEGA_FETCH_COUNT 
(MFC)

[31:26] int(6)

For a mega-fetch, specifies the number of bytes to fetch at once. For mini-
fetch, number of bytes to fetch if the processor converts this instruction into 
a mega-fetch. This value's range is [1,64].

Related VTX_DWORD1_GPR

VTX_DWORD1_SEM

VTX_DWORD2

Vertex Fetch Doubleword 0



AT I  R 6 0 0  Te c h n o l o g y

Vertex-Fetch Instructions 8-27
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Vertex Fetch Doubleword 1

Instructions VTX_DWORD1

Description This doubleword is part of the 128-bit 4-tuple formed by VTX_DWORD0, VTX_DWORD1_{SEM, GPR}, 
VTX_DWORD2, plus a doubleword filled with zeros (DWORD3), as described in Chapter 5. Each 
instruction using this format 4-tuple has either a SEM or GPR format (not both) for its second 
doubleword. The instructions are specified in the VTX_DWORD0 doubleword. This SEM format is 
used by SEMANTIC instructions that specify a destination using a semantic table. 

Access Read-write

Opcode Field Name Bits Format
SEMANTIC_ID [7:0] int(8)

Specifies an eight-bit semantic ID used to look up the destination GPR in the 
semantic table. The semantic table is written by the host and maintained by 
hardware. 

Reserved 8

Reserved. Set to 0.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)
DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used to 
mask elements when writing to the destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

USE_CONST_FIELDS 
(UCF)

21 int(1)

0 Use format given in this instruction.
1 Use format given in the fetch constant instead of in this instruction.

DATA_FORMAT [27:22] int(6)

Specifies vertex data format (ignored if USE_CONST_FIELDS is set).

NUM_FORMAT_ALL 
(NFA)

[29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT 
and gamma) (ignored if USE_CONST_FIELDS is set).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0,1] if 

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2^N] if unsigned, or 

[-2^M, 2^M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point 

representation (1 == 0x3F800000).

FORMAT_COMP_ALL 
(FCA)

30 enum(1)

Specifies sign of source elements (ignored if USE_CONST_FIELDS = 1).
0 FORMAT_COMP_UNSIGNED
1 FORMAT_COMP_SIGNED



AT I  R 6 0 0  Te c h n o l o g y

8-28 Vertex-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

SRF_MODE_ALL 
(SMA)

31 enum(1)

Mapping to use when converting from signed RF to float (ignored if 
USE_CONST_FIELDS is set).
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: representation with two -1 represen-

tations (one is slightly past -1 but clamped).
1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero.

Related VTX_DWORD0

VTX_DWORD1_GPR

VTX_DWORD2

Vertex Fetch Doubleword 1 (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

Vertex-Fetch Instructions 8-29
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Vertex Fetch Doubleword 1 GPR Specification

Instructions VTX_DWORD1_GPR

Description This doubleword is part of the 128-bit 4-tuple formed by VTX_DWORD0, VTX_DWORD1_{SEM, GPR}, 
VTX_DWORD2, plus a doubleword filled with zeros (DWROD3), as described in Chapter 5. Each 
instruction using this format 4-tuple has either a SEM or GPR format (not both) for its second 
doubleword. The instructions are specified in the VTX_DWORD0 doubleword. This GPR format is 
used by FETCH instructions that specify a destination GPR directly. See the next format for the 
semantic-table option.

Access Read-write

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

Destination GPR address to which result is written.

DST_REL (DR) 7 enum(1)

Specifies whether destination address is absolute or relative to an index.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to this address.

Reserved 8

Reserved. Set to 0.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)
DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used to 
mask elements when writing to the destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

USE_CONST_FIELDS 
(UCF)

21 int(1)

0 Use format given in this instruction.
1 Use format given in the fetch constant instead of in this instruction.

DATA_FORMAT [27:22] int(6)

Specifies vertex data format (ignored if USE_CONST_FIELDS is set).

NUM_FORMAT_ALL 
(NFA)

[29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT 
and gamma) (ignored if USE_CONST_FIELDS is set).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0,1] if 

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2^N] if unsigned, or 

[-2^M, 2^M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point 

representation (1 == 0x3F800000).



AT I  R 6 0 0  Te c h n o l o g y

8-30 Vertex-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

FORMAT_COMP_ALL 
(FCA)

30 enum(1)

Specifies sign of source elements (ignored if USE_CONST_FIELDS = 1).
0 FORMAT_COMP_UNSIGNED
1 FORMAT_COMP_SIGNED

SRF_MODE_ALL 
(SMA)

31 enum(1)

Mapping to use when converting from signed RF to float (ignored if 
USE_CONST_FIELDS is set).
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: representation with two -1 represen-

tations (one is slightly past -1 but clamped).
1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero.

Related VTX_DWORD0

VTX_DWORD1_SEM
VTX_DWORD2

Vertex Fetch Doubleword 1 GPR Specification (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

Vertex-Fetch Instructions 8-31
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Vertex Fetch Doubleword 1 Semantic-Table Specification

Instructions VTX_DWORD1_SEM

Description This doubleword is part of the 128-bit 4-tuple formed by VTX_DWORD0, VTX_DWORD1_{SEM, GPR}, 
VTX_DWORD2, plus a doubleword filled with zeros, as described in Chapter 5. Each instruction using 
this format 4-tuple has either a SEM or GPR format (not both) for its second doubleword. The 
instructions are specified in the VTX_DWORD0 doubleword. This SEM format is used by SEMANTIC 
instructions that specify a destination using a semantic table. 

Access Read-write

Opcode Field Name Bits Format
SEMANTIC_ID [7:0] int(8)

Specifies an eight-bit semantic ID used to look up the destination GPR in the 
semantic table. The semantic table is written by the host and maintained by 
hardware. 

Reserved 8

Reserved. Set to 0.

DST_SEL_X (DSX)

DST_SEL_Y (DSY)
DST_SEL_Z (DSZ)

DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used to 
mask elements when writing to the destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

USE_CONST_FIELDS 
(UCF)

21 int(1)

0 Use format given in this instruction.
1 Use format given in the fetch constant instead of in this instruction.

DATA_FORMAT [27:22] int(6)

Specifies vertex data format (ignored if USE_CONST_FIELDS is set).

NUM_FORMAT_ALL 
(NFA)

[29:28] enum(2)

Format of returning data (N is the number of bits derived from DATA_FORMAT 
and gamma) (ignored if USE_CONST_FIELDS is set).
0 NUM_FORMAT_NORM: repeating fraction number (0.N) with range [0,1] if 

unsigned, or [-1, 1] if signed.
1 NUM_FORMAT_INT: integer number (N.0) with range [0, 2^N] if unsigned, or 

[-2^M, 2^M] if signed (M = N - 1).
2 NUM_FORMAT_SCALED: integer number stored as a S23E8 floating-point 

representation (1 == 0x3F800000).

FORMAT_COMP_ALL 
(FCA)

30 enum(1)

Specifies sign of source elements (ignored if USE_CONST_FIELDS = 1).
0 FORMAT_COMP_UNSIGNED
1 FORMAT_COMP_SIGNED



AT I  R 6 0 0  Te c h n o l o g y

8-32 Vertex-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

SRF_MODE_ALL 
(SMA)

31 enum(1)

Mapping to use when converting from signed RF to float (ignored if 
USE_CONST_FIELDS is set).
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE: representation with two -1 represen-

tations (one is slightly past -1 but clamped).
1 SRF_MODE_NO_ZERO: OpenGL format lacking representation for zero.

Related VTX_DWORD0

VTX_DWORD1

VTX_DWORD1_GPR
VTX_DWORD2

Vertex Fetch Doubleword 1 Semantic-Table Specification (Cont.) 



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 8-33
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

8.4 Texture-Fetch Instructions
Texture-fetch clauses are initiated using the CF_DWORD[0,1] formats, described in 
Section 8.1, on page 8-2. After the clause is initiated, the instructions below can 
be issued. Graphics programs typically use texture fetches to load texture data 
from memory into GPRs. General-computing programs typically use texture 
fetches as conventional data loads from memory into GPRs that are unrelated to 
textures. 

All texture-fetch microcode formats are 96 bits wide, formed by three 
doublewords, and padded with zeros to 128 bits. 

Vertex Fetch Doubleword 2

Instructions VTX_DWORD2

Description This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by VTX_DWORD0, 
VTX_DWORD1_{SEM, GPR}, VTX_DWORD2, plus a doubleword filled with zeros, as described in 
Chapter 5. 

Access Read-write

Opcode Field Name Bits Format
OFFSET [15:0] int(16)

Offset to begin reading from. Byte-aligned. 

ENDIAN_SWAP (ES) [17:16] enum(2)

Endian control (ignored if USE_CONST_FIELDS is set).
0 ENDIAN_NONE: no endian swap (XOR by 0).
1 ENDIAN_8IN16: 8-bit swap in 16 bit word (XOR by 1): AABBCCDD -

> BBAADDCC.
2 ENDIAN_8IN32: 8-bit swap in a 32-bit word (XOR by 3): AABBCCDD 

-> DDCCBBAA.

CONST_BUF_NO_STRIDE 
(CBNS)

18 int(1)

0 Do not force stride to zero for constant buffer fetches that use abso-
lute addresses.

1 Force stride to zero for constant buffer fetches that use absolute 
addresses.

MEGA_FETCH (MF) 19 int(1)

0 This instruction is a mini-fetch.
1 This instruction is a mega-fetch. 

Reserved [31:20]

Reserved

Related VTX_DWORD0

VTX_DWORD1_GPR

VTX_DWORD1_SEM



AT I  R 6 0 0  Te c h n o l o g y

8-34 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Texture Fetch Doubleword 0

Instructions TEX_DWORD0

Description This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by 
TEX_DWORD[0,1,2] plus a doubleword filled with zeros, as described in Chapter 6. 

Access Read-write

Opcode Field Name Bits Format
TEX_INST [4:0] enum(5)

Instruction.
0 TEX_INST_VTX_FETCH: vertex fetch (X = uint32index).
1 TEX_INST_VTX_SEMANTIC: semantic vertex fetch.
2 Reserved.
3 TEX_INST_LD: fetch texel, XYZL are uint32.
4 TEX_INST_GET_TEXTURE_RESINFO: retrieve width, height, depth, number of 

mipmap levels.
5 TEX_INST_GET_NUMBER_OF_SAMPLES: retrieve width, height, depth, number of 

samples of an MSAA surface.
6 TEX_INST_GET_COMP_TEX_LOD: X = computed LOD for all pixels in quad.
7 TEX_INST_GET_GRADIENTS_H: slopes relative to horizontal: X = dx/dh, Y = 

dy/dh, Z = dz/dh, W = dw/dh.
8 TEX_INST_GET_GRADIENTS_V: slopes relative to vertical: X = dx/dv, Y = dy/dv, 

Z = dz/dv, W = dw/dv.
9 TEX_INST_GET_LERP: retrieve weights used for bilinear fetch, X = horizontal 

lerp, Y = vertical lerp Z = volume slice, W = mipmap lerp.
10 TEX_INST_RESERVED_10: Reserved.
11 TEX_INST_SET_GRADIENTS_H: XYZ set horizontal gradients.
12 TEX_INST_SET_GRADIENTS_V: XYZ set vertical gradients.
13 TEX_INST_PASS: returns the address read in memory.
14 Z set index for array of cubemaps.
15 Fetch4/Load4 Instruction for DX 10.1.

NOTE for the following (16 to 31): If the LOD is computed by the hardware, 
then these instructions are available only to the Pixel Shader (PS). 

16 TEX_INST_SAMPLE
17 TEX_INST_SAMPLE_L
18 TEX_INST_SAMPLE_LB
19 TEX_INST_SAMPLE_LZ
20 TEX_INST_SAMPLE_G.
21 TEX_INST_SAMPLE_G_L
22 TEX_INST_SAMPLE_G_LB
23 TEX_INST_SAMPLE_G_LZ
24 TEX_INST_SAMPLE_C
25 TEX_INST_SAMPLE_C_L
26 TEX_INST_SAMPLE_C_LB
27 TEX_INST_SAMPLE_C_LZ
28 TEX_INST_SAMPLE_C_G
29 TEX_INST_SAMPLE_C_G_L
30 TEX_INST_SAMPLE_C_G_LB
31 TEX_INST_SAMPLE_C_G_LZ



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 8-35
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

BC_FRAC_MODE 
(BFM)

5 int(1)

0 Do not force black texture data and white border to retrieve fraction of pixel 
that hits the border.

1 Force black texture data and white border to retrieve fraction of pixel that hits 
the border.

Reserved 6

Reserved

FETCH_WHOLE_
QUAD (FWQ)

7 int(1)

0 Texture instruction can ignore invalid pixels.
1 Texture instruction must fetch data for all pixels (result can be used as source 

coordinate of a dependent read). 

RESOURCE_ID [15:8] int(8)

Surface ID to read from (specifies the buffer address, size, and format). 160 
available for GS and PS programs; 176 shared across FS and VS.

SRC_GPR [22:16] int(7)

Source GPR address to get the texture lookup address from.

SRC_REL (SR)23 enum(1)

Indicate whether source address is absolute or relative to an index.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to this address.

Reserved [31:24]

Reserved

Related TEX_DWORD1

TEX_DWORD2

Texture Fetch Doubleword 0



AT I  R 6 0 0  Te c h n o l o g y

8-36 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Texture Fetch Doubleword 1

Instructions TEX_DWORD1

Description This is the middle doubleword in the 128-bit 4-tuple formed by TEX_DWORD[0,1,2] plus a 
doubleword filled with zeros, as described in Chapter 6. 

Access Read-write

Opcode Field Name Bits Format
DST_GPR [6:0] int(7)

Destination GPR address to which result is written. 

DST_REL (DR) 7 enum(1)

Specifies whether destination address is absolute or relative to an index.
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to this address.

Reserved 8

Reserved

DST_SEL_X (DSX)

DST_SEL_Y (DSY)

DST_SEL_Z (DSZ)
DST_SEL_W (DSW)

[11:9]
[14:12]
[17:15]
[20:18]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies which element of the result to write to DST.XYZW. Can be used 
to mask elements when writing to destination GPR.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

LOD_BIAS [27:21] int(7)

Constant level-of-detail (LOD) bias to add to the computed bias for this 
lookup. Twos-complement S3.4 fixed-point value with range [-4, 4).

COORD_TYPE_X (CTX)

COORD_TYPE_Y (CTY)

COORD_TYPE_Z (CTZ)
COORD_TYPE_W (CTW)

28
29
30
31

enum(1)
enum(1)
enum(1)
enum(1)

Specifies the type of source element.
0 TEX_UNNORMALIZED: Element is in [0, dim); repeat and mirror modes 

unavailable.
1 TEX_NORMALIZED: Element is in [0,1]; repeat and mirror modes avail-

able.

Related TEX_DWORD0

TEX_DWORD2



AT I  R 6 0 0  Te c h n o l o g y

Texture-Fetch Instructions 8-37
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

Texture Fetch Doubleword 2

Instructions TEX_DWORD2

Description This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by 
TEX_DWORD[0,1,2] plus a doubleword filled with zeros, as described in Chapter 6. 

Access Read-write

Opcode Field Name Bits Format
OFFSET_X [4:0] int(5)

Value added to X element of texel address before sampling (in texel space). 
S3.1 fixed-point value ranging from [-8, 8).

OFFSET_Y [9:5] int(5)

Value added to Y element of texel address before sampling (in texel space). 
S3.1 fixed-point value ranging from [-8, 8).

OFFSET_Z [14:10] int(5)

Value added to Z element of texel address before sampling (in texel space). 
S3.1 fixed-point value ranging from [-8, 8).

SAMPLER_ID [19:15] int(5)

Sampler ID to use (specifies filter options, etc.). Value in the range [0, 17].

SRC_SEL_X (SSX)
SRC_SEL_Y (SSY)

SRC_SEL_Z (SSZ)

SRC_SEL_W (SSW)

[22:20]
[25:23]
[28:26]
[31:29]

enum(3)
enum(3)
enum(3)
enum(3)

Specifies the element source for SRC.XYZW.
0 SEL_X: use X element.
1 SEL_Y: use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.

Related TEX_DWORD0

TEX_DWORD1



AT I  R 6 0 0  Te c h n o l o g y

8-38 Texture-Fetch Instructions
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  Te c h n o l o g y

ATI R600-Family Instruction Set Architecture A-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Appendix A
Instruction Table

Table A.1 Summary of Instruction

Instruction Description Page

Control Flow (CF) Instructions

ALU Initiate ALU Clause 7-2

ALU_BREAK Initiate ALU Clause, Loop Break 7-3

ALU_CONTINUE Initiate ALU Clause, Continue Unmasked Pixels 7-4

ALU_ELSE_AFTER Initiate ALU Clause, Stack Push and Else After 7-5

ALU_POP_AFTER Initiate ALU Clause, Pop Stack After 7-6

ALU_POP2_AFTER Initiate ALU Clause, Pop Stack Twice After 7-7

ALU_PUSH_BEFORE Initiate ALU Clause, Stack Push Before 7-8

CALL Call Subroutine 7-9

CALL_FS Call Fetch Subroutine 7-10

CUT_VERTEX End Primitive Strip, Start New Primitve Strip 7-11

ELSE Else 7-12

EMIT_CUT_VERTEX Emit Vertex, End Primitive Strip 7-13

EMIT_VERTEX Vertex Exported to Memory 7-14

EXPORT Export from VS or PS 7-15

EXPORT_DONE Export Last Data 7-16

JUMP Jump to Address 7-17

KILL Kill Pixels Conditional 7-18

LOOP_BREAK Break Out Of Innermost Loop 7-19

LOOP_CONTINUE Continue Loop 7-20

LOOP_END End Loop 7-21

LOOP_START Start Loop 7-22

LOOP_START_DX10 Start Loop (DirectX 10) 7-23

LOOP_START_NO_AL Enter Loop If Zero, No Push 7-24

MEM_EXPORT Access Scatter Buffer 7-25

MEM_REDUCTION Access Reduction Buffer 7-26



AT I  R 6 0 0  Te c h n o l o g y

A-2
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

MEM_RING Write Ring Buffer 7-27

MEM_SCRATCH Access Scratch Buffer 7-28

MEM_STREAM0 Write Steam Buffer 0 7-29

MEM_STREAM1 Write Steam Buffer 1 7-30

MEM_STREAM2 Write Steam Buffer 2 7-31

MEM_STREAM3 Write Steam Buffer 3 7-32

NOP No Operation 7-33

POP Pop From Stack 7-34

PUSH Push State To Stack 7-35

PUSH_ELSE Push State To Stack and Invert State 7-36

RETURN Return From Subroutine 7-37

TEX Initiate Texture-Fetch Clause 7-38

VTX Initiate Vertex-Fetch Clause 7-39

VTX_TC Initiate Vertex-Fetch Clause Through Texture Cache 7-40

ALU Instructions

ADD Add Floating-Point 7-41

ADD_64 Add Floating-Point, 64-Bit 7-42

ADD_INT Add Integer 7-45

AND_INT AND Bitwise 7-46

ASHR_INT Scalar Arithmetic Shift Right 7-47

CEIL Floating-Point Ceiling 7-48

CMOVE Floating-Point Conditional Move If Equal 7-49

CMOVE_INT Integer Conditional Move If Equal 7-50

CMOVGE Floating-Point Conditional Move If Greater Than Or Equal 7-51

CMOVGE_INT Integer Conditional Move If Greater Than Or Equal 7-52

CMOVGT Floating-Point Conditional Move If Greater Than 7-53

CMOVGT_INT Integer Conditional Move If Greater Than 7-54

COS Scalar Cosine 7-55

CUBE Cube Map 7-56

DOT4 Four-Element Dot Product 7-57

DOT4_IEEE Four-Element Dot Product, IEEE 7-58

EXP_IEEE Scalar Base-2 Exponent, IEEE 7-59

FLOOR Floating-Point Floor 7-60

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

FLT_TO_INT Floating-Point To Integer 7-61

FLT32_TO_FLT64 Floating-Point 32-Bit To Floating-Point 64-Bit 7-62

FLT64_TO_FLT32 Floating-Point 64-Bit To Floating-Point 32-Bit 7-64

FRACT Floating-Point Fractional 7-66

FRACT_64 Floating-Point Fractional, 64-Bit 7-67

FREXP_64 Split Double-Precision Floating_Point Into Fraction and Exponent 7-69

INT_TO_FLT Integer To Floating-Point 7-71

KILLE Floating-Point Pixel Kill If Equal 7-72

KILLGE Floating-Point Pixel Kill If Greater Than Or Equal 7-73

KILLGT Floating-Point Pixel Kill If Greater Than 7-74

KILLNE Floating-Point Pixel Kill If Not Equal 7-75

LDEXP_64 Combine Separate Fraction and Exponent into Double-precision 7-76

LOG_CLAMPED Scalar Base-2 Log 7-78

LOG_IEEE Scalar Base-2 IEEE Log 7-79

LSHL_INT Scalar Logical Shift Left 7-80

LSHR_INT Scalar Logical Shift Right 7-81

MAX Floating-Point Maximum 7-82

MAX_DX10 Floating-Point Maximum, DirectX 10 7-83

MAX_INT Integer Maximum 7-84

MAX_UINT Unsigned Integer Maximum 7-85

MAX4 Four-Element Maximum 7-86

MIN Floating-Point Minimum 7-87

MIN_DX10 Floating-Point Minimum, DirectX 10 7-88

MIN_INT Signed Integer Minimum 7-89

MIN_UINT Unsigned Integer Minimum 7-90

MOV Copy To GPR 7-91

MOVA Copy Rounded Floating-Point To Integer in AR and GPR 7-92

MOVA_FLOOR Copy Truncated Floating-Point To Integer in AR and GPR 7-93

MOVA_INT Copy Signed Integer To Integer in AR and GPR 7-94

MUL Floating-Point Multiply 7-95

MUL_64 Floating-Point Multiply, 64-Bit 7-96

MUL_IEEE Floating-Point Multiply, IEEE 7-98

MUL_LIT Scalar Multiply Emulating LIT Operation 7-99

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-4
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

MUL_LIT_D2 Scalar Multiply Emulating LIT, Divide By 2 7-100

MUL_LIT_M2 Scalar Multiply Emulating LIT, Multiply By 2 7-101

MUL_LIT_M4 Scalar Multiply Emulating LIT, Multiply By 4 7-102

MULADD Floating-Point Multiply-Add 7-103

MULADD_64 Floating-Point Multiply-Add, 64-Bit 7-104

MULADD_D2 Floating-Point Multiply-Add, Divide by 2 7-107

MULADD_M2 Floating-Point Multiply-Add, Multiply by 2 7-108

MULADD_M4 Floating-Point Multiply-Add, Multiply by 4 7-109

MULADD_IEEE IEEE Floating-Point Multiply-Add 7-110

MULADD_IEEE_D2 IEEE Floating-Point Multiply-Add, Divide by 2 7-111

MULADD_IEEE_M2 IEEE Floating-Point Multiply-Add, Multiply by 2 7-112

MULADD_IEEE_M4 IEEE Floating-Point Multiply-Add, Multiply by 4 7-113

MULHI_INT Signed Scalar Multiply, High-Order 32 Bits 7-114

MULHI_UINT Unsigned Scalar Multiply, High-Order 32 Bits 7-115

MULLO_INT Signed Scalar Multiply, Low-Order 32-Bits 7-116

MULLO_UINT Unsigned Scalar Multiply, Low-Order 32-Bits 7-117

NOP No Operation 7-118

NOT_INT Bit-Wise NOT 7-119

OR_INT Bit-Wise OR 7-120

PRED_SET_CLR Predicate Counter Clear 7-121

PRED_SET_INV Predicate Counter Invert 7-122

PRED_SET_POP Predicate Counter Pop 7-123

PRED_SET_RESTORE Predicate Counter Restore 7-124

PRED_SETE Floating-Point Predicate Set If Equal 7-125

PRED_SETE_64 Floating-Point Predicate Set If Equal, 64-Bit 7-126

PRED_SETE_INT Integer Predicate Set If Equal 7-128

PRED_SETE_PUSH Floating-Point Predicate Counter Increment If Equal 7-129

PRED_SETE_PUSH_INT Integer Predicate Counter Increment If Equal 7-130

PRED_SETGE Floating-Point Predicate Set If Greater Than Or Equal 7-131

PRED_SETGE_64 Floating-Point Predicate Set If Greater Than Or Equal, 64-Bit 7-132

PRED_SETGE_INT Integer Predicate Set If Greater Than Or Equal 7-135

PRED_SETGE_PUSH Predicate Counter Increment If Greater Than Or Equal 7-136

PRED_SETGE_PUSH_INT Integer Predicate Counter Increment If Greater Than Or Equal 7-137

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

PRED_SETGT Floating-Point Predicate Set If Greater Than 7-138

PRED_SETGT_64 Floating-Point Predicate Set If Greater Than, 64-Bit 7-139

PRED_SETGT_INT Integer Predicate Set If Greater Than 7-141

PRED_SETGT_PUSH Predicate Counter Increment If Greater Than 7-142

PRED_SETGT_PUSH_INT Integer Predicate Counter Increment If Greater Than 7-143

PRED_SETLE_INT Integer Predicate Set If Less Than Or Equal 7-144

PRED_SETLE_PUSH_INT Predicate Counter Increment If Less Than Or Equal 7-145

PRED_SETLT_INT Integer Predicate Set If Less Than Or Equal 7-146

PRED_SETLT_PUSH_INT Predicate Counter Increment If Less Than 7-147

PRED_SETNE Floating-Point Predicate Set If Not Equal 7-148

PRED_SETNE_INT Scalar Predicate Set If Not Equal 7-149

PRED_SETNE_PUSH Predicate Counter Increment If Not Equal 7-150

PRED_SETNE_PUSH_INT Predicate Counter Increment If Not Equal 7-151

RECIP_CLAMPED Scalar Reciprocal, Clamp to Maximum 7-152

RECIP_FF Scalar Reciprocal, Clamp to Zero 7-153

RECIP_IEEE Scalar Reciprocal, IEEE Approximation 7-154

RECIP_INT Signed Integer Scalar Reciprocal 7-155

RECIP_UINT Unsigned Integer Scalar Reciprocal 7-156

RECIPSQRT_CLAMPED Scalar Reciprocal Square Root, Clamp to Maximum 7-157

RECIPSQRT_FF Scalar Reciprocal Square Root, Clamp to Zero 7-158

RECIPSQRT_IEEE Scalar Reciprocal Square Root, IEEE Approximation 7-159

RNDNE Floating-Point Round To Nearest Even Integer 7-160

SETE Floating-Point Set If Equal 7-161

SETE_DX10 Floating-Point Set If Equal DirectX 10 7-162

SETE_INT Integer Set If Equal 7-163

SETGE Floating-Point Set If Greater Than Or Equal 7-164

SETGE_DX10 Floating-Point Set If Greater Than Or Equal, DirectX 10 7-165

SETGE_INT Signed Integer Set If Greater Than Or Equal 7-166

SETGE_UINT Unsigned Integer Set If Greater Than Or Equal 7-167

SETGT Floating-Point Set If Greater Than 7-168

SETGT_DX10 Floating-Point Set If Greater Than, DirectX 10 7-169

SETGT_INT Signed Integer Set If Greater Than 7-170

SETGT_UINT Unsigned Integer Set If Greater Than 7-171

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-6
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

SETNE Floating-Point Set If Not Equal 7-172

SETNE_DX10 Floating-Point Set If Not Equal, DirectX 10 7-173

SETNE_INT Integer Set If Not Equal 7-174

SIN Scalar Sine 7-175

SQRT_IEEE Scalar Square Root, IEEE Approximation 7-176

SUB_INT Integer Subtract 7-177

TRUNC Floating-Point Truncate 7-178

UINT_TO_FLT Unsigned Integer To Floating-point 7-179

XOR_INT Bit-Wise XOR 7-180

Vertex-Fetch Instructions

FETCH Vertex Fetch 7-181

SEMANTIC Semantic Vertex Fetch 7-182

Texture-Fetch Instructions

GET_COMP_TEX_LOD Get Computed Level of Detail For Pixels 7-183

GET_GRADIENTS_H Get Slopes Relative To Horizontal 7-184

GET_GRADIENTS_V Get Slopes Relative To Vertical 7-185

GET_LERP_FACTORS Get Linear-Interpolation Weights 7-186

GET_NUMBER_OF_SAMPLES Get Number of Samples 7-187

GET_TEXTURE_RESINFO Get Texture Resolution 7-188

LD Load Texture Elements 7-189

PASS Return Memory Address 7-190

SAMPLE Sample Texture 7-191

SAMPLE_C Sample Texture with Comparison 7-192

SAMPLE_C_G Sample Texture with Comparison and Gradient 7-193

SAMPLE_C_G_L Sample Texture with Comparison, Gradient, and LOD 7-194

SAMPLE_C_G_LB Sample Texture with Comparison, Gradient, and LOD Bias 7-195

SAMPLE_C_G_LZ Sample Texture with Comparison, Gradient, and LOD Zero 7-196

SAMPLE_C_L Sample Texture with LOD 7-197

SAMPLE_C_LB Sample Texture with LOD Bias 7-198

SAMPLE_C_LZ Sample Texture with LOD Zero 7-199

SAMPLE_G Sample Texture with Gradient 7-200

SAMPLE_G_L Sample Texture with Gradient and LOD 7-201

SAMPLE_G_LB Sample Texture with Gradient and LOD Bias 7-202

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

SAMPLE_G_LZ Sample Texture with Gradient and LOD Zero 7-203

SAMPLE_L Sample Texture with LOD 7-204

SAMPLE_LB Sample Texture with LOD Bias 7-205

SAMPLE_LZ Sample Texture with LOD Zero 7-206

SET_CUBEMAP_INDEX Set Cubemap Index 7-207

SET_GRADIENTS_H Set Horizontal Gradients 7-208

SET_GRADIENTS_V Set Vertical Gradients 7-209

Table A.1 Summary of Instruction

Instruction Description Page



AT I  R 6 0 0  Te c h n o l o g y

A-8
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  S T R E A M  C O M P U T I N G

Glossary-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode 
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{BUF, SWIZ} One of the multiple options listed. In this case, the string BUF or the string SWIZ.

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

0x Indicates that the following is a hexadecimal number.

1011b A binary value, in this example a 4-bit value.

29’b0 29 bits with the value 0.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

absolute A displacement that references the base of a code segment, rather than an instruction 
pointer. See relative.

active mask A 1-bit-per-pixel mask that controls which pixels in a “quad” are really running. Some 
pixels may not be running if the current “primitive” does not cover the whole quad. A 
mask can be updated with a PRED_SET* ALU instruction, but updates do not take effect 
until the end of the ALU clause.

address stack A stack that contains only addresses (no other state). Used for flow control. Popping 
the address stack overrides the instruction address field of a flow control instruction. 
The address stack is only modified if the flow control instruction decides to jump. 

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream 
processing backend for load balancing of computations between the CPU and stream 
processor. 

aL (also AL) Loop register. A 3-element vector (x, y and z) used to count iterations of a loop.

allocate To reserve storage space for data in an output buffer (“scratch buffer,” “ring buffer,” 
“stream buffer,” or “reduction buffer”) or for data in an input buffer (“scratch buffer” or 
“ring buffer”) before exporting (writing) or importing (reading) data or addresses to, or 
from that buffer. Space is allocated only for data, not for addresses. After allocating 
space in a buffer, an “export” operation can be done.



AT I  S T R E A M  C O M P U T I N G

Glossary-2
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

ALU Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction, 
multiplication, division, and bit manipulation on integer and floating point values. In 
stream computing, these are known as stream cores.
ALU.[X,Y,Z,W] - an ALU that can perform four vector operations in which the four oper-

ands (integers or single-precision floating point values) do not have to be 
related. It performs “SIMD” operations. Thus, although the four operands need 
not be related, all four operations execute the same instruction.

ALU.Trans - An ALU unit that can perform one ALU.Trans (transcendental, scalar) oper-
ation, or advanced integer operation, on one integer or single-precision floating-
point value, and replicate the result. A single instruction can co-issue four 
ALU.Trans operations to an ALU.[X,Y,Z,W] unit and one (possibly complex) 
operation to an ALU.Trans unit, which can then replicate its result across all four 
elements being operated on in the associated ALU.[X,Y,Z,W] unit. 

ATI Stream™ SDK A complete software development suite from ATI for developing applications for ATI 
Stream Processors. Currently, the ATI Stream SDK includes Brook+ and CAL.

AR Address register.

aTid Absolute thread id. It is the ordinal count of all threads being executed (in a draw call).

b A bit, as in 1Mb for one megabit, or lsb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

border color Four 32-bit floating-point numbers (XYZW) specifying the border color.

branch granularity The number of threads executed during a branch. For ATI, branch granularity is equal 
to wavefront granularity.

brcc Source-to-source meta-compiler that translates Brook programs (.br files) into device-
dependent kernels embedded in valid C++ source code that includes CPU code and 
stream processor device code, which later are linked into the executable.

Brook+ A high-level language derived from C which allows developers to write their applications 
at an abstract level without having to worry about the exact details of the hardware. 
This enables the developer to focus on the algorithm and not the individual instructions 
run on the stream processor. Brook+ is an enhancement of Brook, which is an open 
source project out of Stanford. Brook+ adds additional features available on ATI Stream 
Processors and provides a CAL backend.

brt The Brook runtime library that executes pre-compiled kernel routines invoked from the 
CPU code in the application.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space. 

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible 
interface to ATI Stream processor devices. This lower-level API gives users direct con-
trol over the hardware: they can directly open devices, allocate memory resources, 
transfer data and initiate kernel execution. CAL also provides a JIT compiler for ATI IL.

CF Control Flow.

cfile Constant file or constant register.

channel An element in a vector.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

clamp To hold within a stated range. 

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the stream processor 
ISA. Executed without pre-emption.

clause size The total number of slots required for an stream core clause. 

clause temporaries Temporary values stored at GPR that do not need to be preserved past the end of a 
clause. 

clear To write a bit-value of 0. Compare “set”.

command A value written by the host processor directly to the stream processor. The commands 
contain information that is not typically part of an application program, such as setting 
configuration registers, specifying the data domain on which to operate, and initiating 
the start of data processing. 

command processor A logic block in the R700 that receives host commands (see Figure 1.4), interprets 
them, and performs the operations they indicate. 

component An element in a vector.

compute shader Similar to a pixel shader, but exposes data sharing and synchronization.

constant buffer Off-chip memory that contains constants. A constant buffer can hold up to 1024 4-ele-
ment vectors. There are fifteen constant buffers, referenced as cb0 to cb14. An 
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen 
immediate constant buffers, referenced as icb0 to icb14.

constant cache A constant cache is a hardware object (off-chip memory) used to hold data that remains 
unchanged for the duration of a kernel (constants). “Constant cache” is a general term 
used to describe constant registers, constant buffers or immediate constant buffers.

constant file Same as constant register.

constant index 
register

Same as “AR” register.

constant registers On-chip registers that contain constants. The registers are organized as four 32-bit ele-
ments of a vector. There are 256 such registers, each one 128-bits wide.

constant waterfalling Relative addressing of a constant file. See waterfalling.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the stream processor stream core runs.

CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to 
the stream processor.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

CS Compute shader. A shader type, analogous to VS/PS/GS/ES.

CTM Close-to-Metal. 
A thin, HW/SW interface layer. This was the predecessor of the ATI CAL.

DC Data Copy Shader.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-4
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

device A device is an entire ATI Stream processor. 

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the stream processor’s local memory. This allows other 
computations to occur in parallel, increasing overall system performance.

double word Dword. Two words, or four bytes, or 32 bits.

double quad word Eight words, or 16 bytes, or 128 bits. Also called “octword.”

domain of execution A specified rectangular region of the output buffer to which threads are mapped. 

DPP Data-Parallel Processor.

dst.X The X “slot” of an destination operand. 

dword Double word. Two words, or four bytes, or 32 bits.

element (1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One 
of four data items in a 4-component register.

engine clock The clock driving the stream core and memory fetch units on the stream processor 
stream processor core.

enum(7) A seven-bit field that specifies an enumerated set of decimal values (in this case, a set 
of up to 27 values). The valid values can begin at a value greater than, or equal to, 
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush 
caches, and report status back to the host application. 

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global 
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring 
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input 
and output functions. Prior to exporting, an allocation operation must be performed to 
reserve space in the associated buffer.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent 
operations.

FLOP Floating Point Operation.

flush To writeback and invalidate cache data. 

frame A single two-dimensional screenful of data, or the storage space required for it.

frame buffer Off-chip memory that stores a frame.

FS Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex 
shader” (VS), and it runs in the same thread context as the vertex program, and thus 
is treated for execution purposes as part of the vertex program. The FS provides driver 
independence between the process of fetching data required by a VS, and the VS itself. 
This includes having a semantic connection between the outputs of the fetch process 
and the inputs of the VS. 

function A subprogram called by the main program or another function within an ATI IL stream. 
Functions are delineated by FUNC and ENDFUNC.

gather Reading from arbitrary memory locations by a thread.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

gather stream Input streams are treated as a memory array, and data elements are 
addressed directly.

global buffer Memory space containing the arbitrary address locations to which uncached kernel out-
puts are written. Can be read either cached or uncached. When read in uncached 
mode, it is known as mem-import. Allows applications the flexibility to read from and 
write to arbitrary locations in input buffers and output buffers, respectively.

GPGPU General-purpose stream processor. A stream processor that performs general-purpose 
calculations.

GPR General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point, 
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision 
data elements (values). These registers can be indexed, and consist of an on-chip part 
and an off-chip part, called the “scratch buffer,” in memory.

GPU Graphics Processing Unit. An integrated circuit that renders and displays graphical 
images on a monitor. Also called Graphics Hardware, Stream Processor, and Data Par-
allel Processor.

GPU engine clock 
frequency

Also called 3D engine speed.

GS Geometry Shader.

HAL  Hardware Abstraction Layer.

host Also called CPU. 

iff If and only if.

IL Intermediate Language. In this manual, the ATI version: ATI IL. A pseudo-assembly lan-
guage that can be used to describe kernels for stream processors. ATI IL is designed 
for efficient generalization of stream processor instructions so that programs can run on 
a variety of platforms without having to be rewritten for each platform.

in flight A thread currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare 
“opcode”, “operation”, and “instruction packet”.

instruction packet A group of tokens starting with an IL_OpCode token that represent a single ATI IL 
instruction.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kcache A memory area containing “waterfall” (off-chip) constants. The cache lines of these con-
stants can be locked. The “constant registers” are the 256 on-chip constants.

kernel A small, user-developed program that is run repeatedly on a stream of data. A parallel 
function that operates on every element of input streams. A device program is one type 
of kernel. Unless otherwise specified, an ATI Stream processor program is a kernel 
composed of a main program and zero or more functions. Also called Shader Program. 
This is not to be confused with an OS kernel, which controls hardware.

LAPACK Linear Algebra Package.

LERP Linear Interpolation.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-6
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

local memory fetch 
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the 
memory controller, and c) loads registers with data returned from the cache. They are 
run at stream processor stream core or engine clock speeds. Formerly called texture 
units.

LOD Level Of Detail.

loop index A register initialized by software and incremented by hardware on each iteration of a 
loop.

lsb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control 
purpose.

MBZ Must be zero.

mem-export An ATI IL term random writes to the global buffer. 

mem-import Uncached reads from the global buffer.

memory clock The clock driving the memory chips on the stream processor.

microcode format An encoding format whose fields specify instructions and associated parameters. Micro-
code formats are used in sets of two or four. For example, the two mnemonics, 
CF_DWORD[0,1] indicate a microcode-format pair, CF_DWORD0 and CF_DWORD1.

MIMD Multiple Instruction Multiple Data.
– Multiple SIMD units operating in parallel (Multi-Processor System) 
– Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local stream processor memory, such 
as a “frame buffer”, to which a graphics pipeline writes data. 

MSAA  Multi-Sample Anti-Aliasing.

msb Most-significant bit.

MSB Most-significant byte.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0 
using the formula:   normalized value = value/ (b–a+ 1)

oct word Eight words, or 16 bytes, or 128 bits. Same as “double quad word”. 

opcode The numeric value of the code field of an “instruction”. For example, the opcode for the 
CMOV instruction is decimal 16 (0x10).

opcode token A 32-bit value that describes the operation of an instruction.

operation The function performed by an “instruction”.

PaC Parameter Cache.

page A program-controlled cache, backing up processor-accessible memory.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

PCI Express A high-speed computer expansion card interface used by modern graphics cards, 
stream processors and other peripherals needing high data transfer rates. Unlike pre-
vious expansion interfaces, PCI Express is structured around point-to-point links. Also 
called PCIe.

PoC Position Cache.

pop Write “stack” entries to their associated hardware-maintained control-flow state. The 
POP_COUNT field of the CF_DWORD1 microcode format specifies the number of stack 
entries to pop for instructions that pop the stack. Compare “push.” 

pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the ATI Stream Processor.

program Unless otherwise specified, a program is a set of instructions that can run on the ATI 
Stream Processor. A device program is a type of kernel. 

PS Pixel Shader.

push Read hardware-maintained control-flow state and write their contents onto the stack. 
Compare pop. 

PV Previous vector register. It contains the previous four-element vector result from a 
ALU.[X,Y,Z,W] unit within a given clause.

quad Group of 2x2 threads in the domain. Always processed together.

rasterization The process of mapping threads from the domain of execution to the SIMD engine. This 
term is a carryover from graphics, where it refers to the process of turning geometry, 
such as triangles, into pixels.

rasterization order The order of the thread mapping generated by rasterization.

RB Ring Buffer.

register A 128-bit address mapped memory space consisting of four 32-bit components.

relative Referencing with a displacement (also called offset) from an index register or the loop 
index, rather than from the base address of a program (the first control flow [CF] 
instruction).

render backend unit The hardware units in a stream processor stream processor core responsible for writing 
the results of a kernel to output streams by writing the results to an output cache and 
transferring the cache data to memory.

resource A block of memory used for input to, or output from, a kernel.

ring buffer An on-chip buffer that indexes itself automatically in a circle.

Rsvd Reserved.

sampler A structure that contains information necessary to access data in a resource. Also 
called Fetch Unit.

SC Shader Compiler.

scalar A single data element, unlike a vector which contains a set of two or more data 
elements.

scatter Writes (by uncached memory) to arbitrary locations.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-8
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

scatter write Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a 
memory space known as the global buffer. 

scratch buffer A variable-sized space in off-chip-memory that stores some of the “GPRs”.

set To write a bit-value of 1. Compare “clear”.

shader processor Also called thread processor.

shader program User developed program. Also called kernel.

SIMD Single instruction multiple data.
– Each SIMD receives independent stream core instructions.
– Each SIMD applies the instructions to multiple data elements.

SIMD Engine A collection of thread processors, each of which executes the same instruction per 
cycle.

SIMD pipeline A hardware block consisting of five stream cores, one stream core instruction decoder 
and issuer, one stream core constant fetcher, and support logic. All parts of a SIMD 
pipeline receive the same instruction and operate on different data elements. Also 
known as “slice.”

Simultaneous 
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

SKA Stream KernelAnalyzer. A performance profiling tool for developing, debugging, and 
profiling stream kernels using high-level stream computing languages.

slot A position, in an “istruction group,” for an “instruction” or an associated literal constant. 
An ALU instruction group consists of one to seven slots, each 64 bits wide. All ALU 
instructions occupy one slot, except double-precision floating-point instructions, which 
occupy either two or four slots. The size of an ALU clause is the total number of slots 
required for the clause. 

SPU Shader processing unit.

src0, src1, etc. In floating-point operation syntax,, a 32-bit source operand. Src0_64 is a 64-bit source 
operand.

stage A sampler and resource pair.

stream A collection of data elements of the same type that can be operated on in parallel.

stream buffer A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip 
memory to the processor.

stream core The fundamental, programmable computational units, responsible for performing inte-
ger, single, precision floating point, double precision floating point, and transcendental 
operations. They execute VLIW instructions for a particular thread. Each stream pro-
cessor stream core handles a single instruction within the VLIW instruction.

stream operator A node that can restructure data.

stream processor A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

swizzling To copy or move any element in a source vector to any element-position in a destination 
vector. Accessing elements in any combination.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.  

thread One invocation of a kernel corresponding to a single element in the domain of 
execution.

thread group It contains one or more thread blocks. Threads in the same thread-group but different 
thread-blocks might communicate to each through global per-stream processor shared 
memory. This is a concept mainly for global data share (GDS) which is not discussed 
in this note.

thread processor The hardware units in a SIMD engine responsible for executing the threads of a kernel. 
It executes the same instruction per cycle. Each thread processor contains multiple 
stream cores. Also called shader processor. 

thread-block A group of threads which might communicate to each other through local per SIMD 
shared memory. It can contain one or more wavefronts (the last wavefront can be a 
partial wavefront). A thread-block (i.e. all its wavefronts) can only run on one SIMD 
engine. However, multiple thread blocks can share a SIMD engine, if there are enough 
resources to fit them in. 

Tid Thread id within a thread block. An integer number from 0 to Num_threads_per_block-1

token A 32-bit value that represents an independent part of a stream or instruction.

uncached read/write 
unit

The hardware units in a stream processor responsible for handling uncached read or 
write requests from local memory on the stream processor.

vector (1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector 
with three elements is known as a “3-vector”. (2) See “AR”. (3) See ALU.[X,Y,Z,W].

VLIW design Very Long Instruction Word.
– Co-issued up to 6 operations (5 stream cores + 1 FC)
– 1.25 Machine Scalar operation per clock for each of 64 data elements
– Independent scalar source and destination addressing

waterfall To use the address register (AR) for indexing the GPRs. Waterfall behavior is deter-
mined by a “configuation registers.” 

wavefront Group of threads executed together on a single SIMD engine. Composed of quads. A 
full wavefront contains 64 threads; a wavefront with fewer than 64 threads is called a 
partial wavefront.

write combining Combining several smaller writes to memory into a single larger write to minimize any 
overhead associated with write commands.

Term Description



AT I  S T R E A M  C O M P U T I N G

Glossary-10
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   



AT I  R 6 0 0  TE C H N O L O G Y

ATI R600-Family Instruction Set Architecture Index-1
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

Index 

Symbols

(x, y) identifier pair . . . . . . . . . . . . . . . . . . . .  1-2
_64 suffix  . . . . . . . . . . . . . . . . . . . . . . . . . .  4-29

Numerics

2D matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1

A

access
AR-relative  . . . . . . . . . . . . . . . . . . . . . . . .  4-8
constant waterfall . . . . . . . . . . . . . . . . . . .  4-8

access constant  . . . . . . . . . . . . . . . . . . . . . .  4-5
ALU instruction . . . . . . . . . . . . . . . . . . . . .  4-2
dynamically-indexed . . . . . . . . . . . . . . . . .  4-8
statically-indexed  . . . . . . . . . . . . . . . . . . .  4-8

active mask. . . . . . . . . . . . . . . .  2-9, 2-11, 3-10
active pixel state . . . . . . . . . . . . . . . . . . . . .  3-10
ADDR . . . . . . . . . . . . . . . . . . . . . . . .  3-17, 3-18
address

constant-register . . . . . . . . . . . . . . . . . . . .  4-5
out-of-bounds . . . . . . . . . . . . . . . . . . . . . .  4-7
source . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-9

address register (AR) . . . . . 2-10, 3-6, 4-5, 8-17
adjacent-instruction dependency  . . . . . . . .  4-27
aL 2-9, 3-7, 3-19, 4-2, 7-24, 8-4, 8-5, 8-10, 8-17, 

8-26, 8-29, 8-35, 8-36
alignment restrictions

clause-initiation instructions . . . . . . . . . . .  3-5
allocate

data-storage space. . . . . . . . . . . . . . . . . .  3-2
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5

ALU
branch-loop instruction . . . . . . . . . . . . . .  3-16
data flow . . . . . . . . . . . . . . . . . . . . . . . . .  4-11
output modifier . . . . . . . . . . . . . . . . . . . .  4-25

ALU clause . . . . . . . . . . . . . . . . . . . . . .  2-7, 3-1
initiation. . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6
PRED_SET* instructions  . . . . . . . . . . . .  3-13
size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3

ALU instruction . . . . . . . . . . . . . . . . . . . . . . .  2-1
accessing constants . . . . . . . . . . . . . . . . .  4-2
list of . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-19

ALU instruction group. . . . . . . . . . . . . . . . . .  4-3
terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4

ALU microcode format . . . . . . . . . . . . . . . . .  4-1
ALU slot size  . . . . . . . . . . . . . . . . . . . . . . . .  4-5
ALU* control-flow instructions  . . . . . . . . . . .  3-6
ALU.[X,Y,Z,W]  . . . . . . . . . . . . . . . . . . .  4-2, 4-7

assignment . . . . . . . . . . . . . . . . . . . . . . . .  4-4
cycle restriction. . . . . . . . . . . . . . .  4-12, 4-14
execute each operation . . . . . . . . . . . . .  4-18
instruction only units  . . . . . . . . . . . . . . .  4-22

ALU.Trans. . . . . . . . . . . . . . . . . . .  4-2, 4-3, 4-7
assignment . . . . . . . . . . . . . . . . . . . . . . . .  4-4
cycle restriction. . . . . . . . . . . . . . . . . . . .  4-14
execute operation. . . . . . . . . . . . . . . . . .  4-18
instruction only units  . . . . . . . . . . . . . . .  4-23
instruction restrictions. . . . . . . . . . . . . . .  4-25

ALU.W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
ALU.X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
ALU.Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
ALU.Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
ALU_BREAK

branch-loop instruction . . . . . . . . . . . . . .  3-17
ALU_CONTINUE

branch-loop instruction . . . . . . . . . . . . . .  3-17
ALU_ELSE_AFTER

branch-loop instruction . . . . . . . . . . . . . .  3-17
instruction . . . . . . . . . . . . . . . . . . . . . . . .  3-20

ALU_INST. . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5
ALU_POP_AFTER

branch-loop instruction . . . . . . . . . . . . . .  3-16
ALU_POP2_AFTER

branch-loop instruction . . . . . . . . . . . . . .  3-16
ALU_PUSH_BEFORE

branch-loop instruction . . . . . . . . . . . . . .  3-16
instruction . . . . . . . . . . . . . . . . . . . . . . . .  3-20

ALU_SRC_LITERAL
source operand  . . . . . . . . . . . . . . . . . . . .  4-3

AR. . . . . . . . . . . . . . . . . . .  1-xii, 2-10, 4-5, 8-17
AR index . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6
arbitrary swizzle . . . . . . . . . . . . . . . . . .  3-8, 4-8



AT I  R 6 0 0  TE C H N O L O G Y

Index-2
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
data-parallel processor (DPP)  . . . . . . . . . 1-1

ARRAY_BASE. . . . . . . . . . . . . . . . . . . . . . . . 3-9
AR-relative access  . . . . . . . . . . . . . . . . . . . . 4-8
assignment

ALU.[X,Y,Z,W]  . . . . . . . . . . . . . . . . . . . . . 4-4
ALU.Trans . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

B

bank
swizzle. . . . . . . . . . . . . . . . . . . . . .  4-13, 4-16

constant operands  . . . . . . . . . . . . . . . 4-15
BARRIER. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
bicubic weights  . . . . . . . . . . . . . . . . . . . . . . 2-12
bit

LAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
USES_WATERFALL. . . . . . . . . . . . . . . . . 4-5

blocks
synchronization . . . . . . . . . . . . . . . . . . . . . 3-9

border color . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
branch counter  . . . . . . . . . . . . . . . . . . . . . . 4-27
branching

conditional execution  . . . . . . . . . . . . . . . 3-15
branch-loop instruction . . . . . . . . . . .  3-10, 3-15

ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
ALU_BREAK . . . . . . . . . . . . . . . . . . . . . . 3-17
ALU_CONTINUE  . . . . . . . . . . . . . . . . . . 3-17
ALU_ELSE_AFTER  . . . . . . . . . . . . . . . . 3-17
ALU_POP2_AFTER . . . . . . . . . . . . . . . . 3-16
ALU_PUSH_BEFORE  . . . . . . . . . . . . . . 3-16
CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
CALL_FS. . . . . . . . . . . . . . . . . . . . . . . . . 3-16
ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
JUMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
LOOP_BREAK  . . . . . . . . . . . . . . . . . . . . 3-16
LOOP_CONTINUE . . . . . . . . . . . . . . . . . 3-16
LOOP_END. . . . . . . . . . . . . . . . . . . . . . . 3-16
LOOP_START  . . . . . . . . . . . . . . . . . . . . 3-16
LOOP_START_DX10 . . . . . . . . . . . . . . . 3-16
LOOP_START_NO_AL. . . . . . . . . . . . . . 3-16
POP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
PUSH  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
PUSH_ELSE . . . . . . . . . . . . . . . . . . . . . . 3-15
RETURN . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
RETURN_FS. . . . . . . . . . . . . . . . . . . . . . 3-16

buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
ring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

BURST_COUNT . . . . . . . . . . . . . . . . . . . . . . 3-9

C

CALL
branch-loop instruction . . . . . . . . . . . . . . 3-16
subroutine instruction . . . . . . . . . . . . . . . 3-19

CALL* instruction  . . . . . . . . . . . . . . . . . . . . 3-14
CALL_COUNT. . . . . . . . . . . . . . . . . . . . . . . 3-19
CALL_FS instruction . . . . . . . . . . . . . . . . . . 3-19

branch-loop . . . . . . . . . . . . . . . . . . . . . . . 3-16
CF instruction

conditional execution  . . . . . . . . . . . . . . . 3-10
set jump  . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
set stack operations . . . . . . . . . . . . . . . . 3-17

CF microcode format fields. . . . . . . . . . . . . . 3-3
CF program ending . . . . . . . . . . . . . . . . . . . . 3-2
CF_COND_ACTIVE

condition test. . . . . . . . . . . . . . . . . . . . . . 3-13
pixel state . . . . . . . . . . . . . . . . . . . . . . . . 3-12

CF_COND_BOOL
condition test. . . . . . . . . . . . . . . . . . . . . . 3-13
pixel state . . . . . . . . . . . . . . . . . . . . . . . . 3-12

CF_COND_NOT_BOOL
condition test. . . . . . . . . . . . . . . . . . . . . . 3-13
pixel state . . . . . . . . . . . . . . . . . . . . . . . . 3-12

CF_CONST . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
cf_inst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
clause temporaries . . . . . . . . . . . . . . . . . . . . 4-5
clause-initiation instructions

alignment restrictions  . . . . . . . . . . . . . . . . 3-5
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

clauses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
ALU . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7, 3-1
construction. . . . . . . . . . . . . . . . . . . . . . . . 5-1
instructions  . . . . . . . . . . . . . . . . . . . . . . . . 2-6
multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
texture-fetch  . . . . . . . . . . . . . . .  2-7, 3-1, 6-1
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
vertex-fetch . . . . . . . . . . . . . . . .  2-7, 3-1, 5-1

clause-temporary GPRs . . . . . . . . . . . . . . . 2-10
cleared valid mask  . . . . . . . . . . . . . . . . . . . 3-10
command processor . . . . . . . . . . . . . . . . . . . 1-1
common memory buffer

thread share . . . . . . . . . . . . . . . . . . . . . . . 3-9
COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

condition test. . . . . . . . . . . . . . . . . . . . . . 3-13
field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

condition (COND) field  . . . . . . . . . . . . . . . . 3-12
condition test . . . . . . . . . . . . . . . . . . . . . . . . 3-11

CF_COND_ACTIVE . . . . . . . . . . . . . . . . 3-13
CF_COND_BOOL. . . . . . . . . . . . . . . . . . 3-13
CF_COND_NOT_BOOL . . . . . . . . . . . . . 3-13
COND . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13



AT I  R 6 0 0  TE C H N O L O G Y

Index-3
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

VALID_PIXEL_MODE  . . . . . . . . . . . . . .  3-13
WHOLE_QUAD_MODE . . . . . . . . . . . . .  3-13

conditional execution
branching  . . . . . . . . . . . . . . . . . . . . . . . .  3-15
looping  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
subroutine calls  . . . . . . . . . . . . . . . . . . .  3-15

conditional execution (branching). . . . . . . .  3-15
conditional jumps

control-flow instructions . . . . . . . . . . . . . .  3-1
constant

access. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5
dynamically-indexed. . . . . . . . . . . . . . .  4-8
statically-indexed . . . . . . . . . . . . . . . . .  4-8

file read reserve . . . . . . . . . . . . . . . . . . .  4-17
inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
operand

bank swizzle. . . . . . . . . . . . . . . . . . . .  4-15
single transcendental operation. . . . .  4-15

swizzles vector-element . . . . . . . . . . . . . .  4-2
transcendental operation  . . . . . . . . . . . .  4-16

constant cache . . . . . . . . . . . . . . . . . .  2-10, 4-8
constant file. . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
constant register read port restrictions. . . .  4-11
constant registers (CRs). . . . . . . . . . . . . . .  2-10
constant waterfall  . . . . . . . . . . . . . . . .  2-10, 3-6

access. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
constant-fetch operation . . . . . . . . . . . . . . . .  6-2
constant-register address . . . . . . . . . . . . . . .  4-5
constants. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6

access ALU instruction. . . . . . . . . . . . . . .  4-2
DX10 ALU  . . . . . . . . . . . . . . . . . . . . . . . .  4-8
DX9 ALU  . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
index pairs  . . . . . . . . . . . . . . . . . . . . . . . .  1-2
vertex-fetch . . . . . . . . . . . . . . . . . . . . . . . .  5-1

construction clause . . . . . . . . . . . . . . . . . . . .  5-1
continue loop  . . . . . . . . . . . . . . . . . . . . . . . .  3-1
control flow program. . . . . . . . . . . . . . . . . . .  3-1
control-flow instructions  . . . . . . . .  2-5, 2-6, 2-7

ALU* . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6
conditional jumps . . . . . . . . . . . . . . . . . . .  3-1
loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
subroutines . . . . . . . . . . . . . . . . . . . . . . . .  3-1
TEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6
VTX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6
VTX_TC  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6

counter
branch. . . . . . . . . . . . . . . . . . . . . . . . . . .  4-27
predicate . . . . . . . . . . . . . . . . . . . . . . . . .  4-27

CRs . . . . . . . . . . . . . . . . . . . . . . . . . .  1-xii, 2-10
CUT_VERTEX  . . . . . . . . . . . . . . . . . .  3-9, 3-10

cycle restriction . . . . . . . . . . . . . . . . . . . . . .  4-14
ALU.[X,Y,Z,W] . . . . . . . . . . . . . . .  4-12, 4-14
ALU.Trans. . . . . . . . . . . . . . . . . . . . . . . .  4-14

D

data flow
ALU. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-11

dataflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
programmer view . . . . . . . . . . . . . . . . . . .  1-3

data-parallel processor (DPP) array. . . . . . .  1-1
data-storage space allocation  . . . . . . . . . . .  3-2
DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
deactivated

invalid pixel . . . . . . . . . . . . . . . . . . . . . . .  3-12
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2

export . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7
import . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7
quad . . . . . . . . . . . . . . . . . . . . . . . .  3-11, 6-2

dependency adjacent-instruction  . . . . . . . .  4-27
dependency detection processor . . . . . . . .  4-28
destination register . . . . . . . . . . . . . . . . . . .  4-25
detects optimize processor. . . . . . . . . . . . .  4-28
DirectX10 loop  . . . . . . . . . . . . . . . . . . . . . .  3-19
DirectX10-style loop . . . . . . . . . . . . . . . . . . .  3-1
DirectX9

loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
loop index . . . . . . . . . . . . . . . . . . . . . . . . .  4-6
LOOP_END  . . . . . . . . . . . . . . . . . . . . . .  3-18
LOOP_START . . . . . . . . . . . . . . . . . . . .  3-18

DirectX9-style loop . . . . . . . . . . . . . . . . . . . .  3-1
DMA copy . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
DMA program . . . . . . . . . . . . . . . . . . . . . . . .  2-1
double-precision

floating-point operation. . . . . . . . . . . . . .  4-29
doubleword layouts, memory . . . . . . . . . . . .  3-2
DPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2

data-parallel processor. . . . . . . . . . . . . . .  1-1
dst.X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
DX10

ALU constants  . . . . . . . . . . . . . . . . . . . . .  4-8
constant cache . . . . . . . . . . . . . . . . . . . . .  4-8
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8

DX9
ALU constants  . . . . . . . . . . . . . . . . . . . . .  4-8
constant file  . . . . . . . . . . . . . . . . . . . . . . .  4-8
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
vertex shaders . . . . . . . . . . . . . . . . . . . . .  4-8

dynamic index. . . . . . . . . . . . . . . . . . . .  4-8, 4-9
dynamically-indexed

constant access . . . . . . . . . . . . . . . . . . . .  4-8



AT I  R 6 0 0  TE C H N O L O G Y

Index-4
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

E

ELEM_SIZE. . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

swizzle source. . . . . . . . . . . . . . . . . . . . . . 6-1
ELSE

branch-loop instruction . . . . . . . . . . . . . . 3-16
pixel state . . . . . . . . . . . . . . . . . . . . . . . . 3-17

EMIT_CUT_VERTEX  . . . . . . . . . . . . .  3-9, 3-10
EMIT_VERTEX . . . . . . . . . . . . . . . . . .  3-9, 3-10
end of CF program . . . . . . . . . . . . . . . . . . . . 3-2
END_OF_PROGRAM . . . . . . . . . . . . . . . . . . 3-4
endian order  . . . . . . . . . . . . . . . . . . . . . . . .  1-xii
enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
execute

ALU.Trans operation. . . . . . . . . . . . . . . . 4-18
CF instructions conditionally . . . . . . . . . . 3-10
each ALU.[X,Y,Z,W] operation . . . . . . . . 4-18
initialization . . . . . . . . . . . . . . . . . . . . . . . 4-17
texture-fetch clause. . . . . . . . . . . . . . . . . . 3-6

export. . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5, 3-9
definition . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
operation . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

export program . . . . . . . . . . . . . . . . . . . . . . . 2-1
export shader  . . . . . . . . . . . . . . . . . . . . . . . . 2-1
EXPORT_WRITE  . . . . . . . . . . . . . . . . . . . . . 3-8
EXPORT_WRITE_IND  . . . . . . . . . . . . . . . . . 3-8

F

F register . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
fetch program  . . . . . . . . . . . . . . . . . . . . . . . . 2-1
fetch shader  . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
fetch subroutine. . . . . . . . . . . . . . . . . . . . . . . 2-1
fetch term  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
FETCH_WHOLE_QUAD . . . . . . . . . . . . . . . . 6-2
field

ADDR  . . . . . . . . . . . . . . . . . . . . . .  3-17, 3-18
ARRAY_BASE  . . . . . . . . . . . . . . . . . . . . . 3-9
BURST_COUNT . . . . . . . . . . . . . . . . . . . . 3-9
CF microcode formats  . . . . . . . . . . . . . . . 3-3
COND . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
condition . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
ELEM_SIZE  . . . . . . . . . . . . . . . . . . . . . . . 3-9
INDEX_MODE  . . . . . . . . . . . . . . . . . . . . 3-18
RESOURCE_ID  . . . . . . . . . . . . . . . . . . . . 6-1
SAMPLER_ID . . . . . . . . . . . . . . . . . . . . . . 6-1
SRC*_ELEM . . . . . . . . . . . . . . . . . . . . . . 4-10
VALID_PIXEL_MODE. . . . . . . . . . . . . . . 3-12

file read
reserve constant . . . . . . . . . . . . . . . . . . . 4-17

floating-point constant register (F) . . . . . . . 2-10
floating-point operation . . . . . . . . . . . . . . . . 4-29

double-precision . . . . . . . . . . . . . . . . . . . 4-29
flow, typical program. . . . . . . . . . . . . . . . . . . 2-6
flow-control loop index  . . . . . . . . . . . . . . . . . 4-6
format

ALU microcode . . . . . . . . . . . . . . . . . . . . . 4-1
OP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
OP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
texture-fetch microcode  . . . . . . . . . . . . . . 6-1
vertex-fetch microcode . . . . . . . . . . . . . . . 5-2

fragment program . . . . . . . . . . . . . . . . . . . . . 2-1
fragment shader  . . . . . . . . . . . . . . . . . . . . . . 2-1
fragment term . . . . . . . . . . . . . . . . . . . . . . . . 2-5
frame buffers . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

G

general-purpose registers (GPRs)  . . . . . . . 2-10
geometry program. . . . . . . . . . . . . . . . . . . . . 2-1
geometry shader (GS)  . . . . . . . . . . . . .  2-1, 3-2
GPR

read port restrictions. . . . . . . . . . . . . . . . 4-11
swizzles across address. . . . . . . . . . . . . . 4-2

GPR read, reserve  . . . . . . . . . . . . . . . . . . . 4-17
GPRs. . . . . . . . . . . . . . . . . . . . . . . . .  1-xii, 2-10
GS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
GS program. . . . . . . . . . . . . . . . . . . . . . . . . 3-10

H

hardware-generated interrupts . . . . . . . . . . . 1-1
host commands. . . . . . . . . . . . . . . . . . . . . . . 1-2
host interface. . . . . . . . . . . . . . . . . . . . . . . . . 1-2

I

I register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
identifier pair (x, y)  . . . . . . . . . . . . . . . . . . . . 1-2
IEEE floating-point exceptions  . . . . . . . . . . . 1-3
import - definition  . . . . . . . . . . . . . . . . . . . . . 3-7
IMPORT_READ. . . . . . . . . . . . . . . . . . . . . . . 3-8
IMPORT_READ_IND  . . . . . . . . . . . . . . . . . . 3-8
inactive-branch - pixel state . . . . . . . . . . . . 3-10
inactive-break - pixel state . . . . . . . . . . . . . 3-10
inactive-continue - pixel state . . . . . . . . . . . 3-10
increment. . . . . . . . . . . . . . . . . .  3-18, 7-22, 8-4
index

AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
dynamic. . . . . . . . . . . . . . . . . . . . . . .  4-8, 4-9
flow-control loop . . . . . . . . . . . . . . . . . . . . 4-6
loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19



AT I  R 6 0 0  TE C H N O L O G Y

Index-5
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

index pairs  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
constants  . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
inputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2

index register  . . . . . . . . . . . . . . . . . . . . . . . .  4-2
INDEX_MODE field  . . . . . . . . . . . . . . . . . .  3-18
indirect lookup. . . . . . . . . . . . . . . . . . . . . . . .  4-9
initialization execution. . . . . . . . . . . . . . . . .  4-17
initiation

ALU clause . . . . . . . . . . . . . . . . . . . . . . . .  3-6
texture-fetch clause  . . . . . . . . . . . . . . . . .  3-6

inline constants . . . . . . . . . . . . . . . . . . . . . . .  4-8
innermost loop  . . . . . . . . . . . . . . . . . . . . . . .  3-1
input index pairs . . . . . . . . . . . . . . . . . . . . . .  1-2
input modifiers  . . . . . . . . . . . . . . . . . . . . . .  4-10
instruction . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2

ALU restriction  . . . . . . . . . . . . . . . . . . . .  4-25
ALU.[X,Y,Z,W] only units  . . . . . . . . . . . .  4-22
ALU.Trans only units . . . . . . . . . . . . . . .  4-23
ALU_ELSE_AFTER . . . . . . . . . . . . . . . .  3-20
ALU_PUSH_BEFORE  . . . . . . . . . . . . . .  3-20
branch-loop. . . . . . . . . . . . . . . . . . . . . . .  3-10
CALL* . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
CALL_FS  . . . . . . . . . . . . . . . . . . . . . . . .  3-19
KILL restriction . . . . . . . . . . . . . . . . . . . .  4-22
LOOP_BREAK . . . . . . . . . . . . . . .  3-18, 3-19
LOOP_CONTINUE . . . . . . . . . . . .  3-18, 3-19
LOOP_END  . . . . . . . . . . . .  3-14, 3-18, 3-19
LOOP_START  . . . . . . . . . . . . . . . . . . . .  3-18
LOOP_START*. . . . . . . . . . . . . . . . . . . .  3-14
LOOP_START_DX10 . . . . . . . . . . . . . . .  3-19
MOVA . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-26
MOVA* . . . . . . . . . . . . . . . . . . . . . . .  4-5, 4-6

predication . . . . . . . . . . . . . . . . . . . . .  4-23
NOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-26
POP  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
PRED_SET* restriction. . . . . . . . . . . . . .  4-22
PUSH*  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
restrictions reduction  . . . . . . . . . . . . . . .  4-23
RETURN. . . . . . . . . . . . . . . . . . . . . . . . .  3-14
texture predicate. . . . . . . . . . . . . . . . . . . .  6-1
two source operands . . . . . . . . . . . . . . .  4-26
vertex-fetch . . . . . . . . . . . . . . . . . . . . . . . .  5-1

predicated individually . . . . . . . . . . . . .  5-1
instruction group . . . . . . . . . . 2-6, 4-2, 4-3, 8-17

instruction slots. . . . . . . . . . . . . . . . . . . . .  4-3
instruction slot. . . . . . . . . . . . . . . . . . . . . . . .  4-3

instruction group. . . . . . . . . . . . . . . . . . . .  4-3
instruction term . . . . . . . . . . . . . . . . . . . . . . .  2-4
instruction-related terms . . . . . . . . . . . . . . . .  2-4
instructions

ALU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
clauses . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6

control flow . . . . . . . . . . . . . . . . . . . . . . . .  2-5
subsequent . . . . . . . . . . . . . . . . . . . . . . . .  2-1
texture-fetch . . . . . . . . . . . . . . . . . . . . . . .  2-1
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
vertex-fetch . . . . . . . . . . . . . . . . . . . . . . . .  2-1

int  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-1
integer constant  . . . . . . . . . . . . . . . . . . . . .  3-18
integer constant register (I)  . . . . . . . . . . . . .  2-9
interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3

hardware-generated . . . . . . . . . . . . . . . . .  1-1
pipeline operation . . . . . . . . . . . . . . . . . . .  1-3

invalid pixel - deactivated . . . . . . . . . . . . . .  3-12

J

JUMP
branch-loop instruction . . . . . . . . . . . . . .  3-16
pixel state . . . . . . . . . . . . . . . . . . . . . . . .  3-17

jump
CF instruction set . . . . . . . . . . . . . . . . . .  3-17
LOOP_BREAK . . . . . . . . . . . . . . . . . . . .  3-18
specified address . . . . . . . . . . . . . . . . . . .  3-2

K

kcache constants  . . . . . . . . . . . . . . . . . . . . .  4-6
kernel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
kernel size for cleartype filtering  . . . . . . . .  2-12
kernels operate . . . . . . . . . . . . . . . . . . . . . . .  4-8
KILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-22

instruction, restriction . . . . . . . . . . . . . . .  4-22
killed pixel . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10

L

LAST bit  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
list of ALU instruction . . . . . . . . . . . . . . . . .  4-19
LIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-99
literal constants. . . . . . . . . . . . . . . . . . .  4-3, 4-8

restriction  . . . . . . . . . . . . . . . . . . . . . . . .  4-12
terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4

locked pages. . . . . . . . . . . . . . . . . . . . . . . . .  3-6
lookup, indirect . . . . . . . . . . . . . . . . . . . . . . .  4-9
loop

conditional execution . . . . . . . . . . . . . . .  3-15
continue  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
control-flow instructions . . . . . . . . . . . . . .  3-1
DirectX10  . . . . . . . . . . . . . . . . . . . . . . . .  3-19
DirectX10-style . . . . . . . . . . . . . . . . . . . . .  3-1
DirectX9  . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
DirectX9-style . . . . . . . . . . . . . . . . . . . . . .  3-1
innermost  . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
repeat . . . . . . . . . . . . . . . . . . . . . . .  3-1, 3-19

loop counter  . . . . . . . . . . . . . . . . . . . . . . . . .  8-4
loop increment  . . . . . . . . . . . . .  3-18, 7-22, 8-4



AT I  R 6 0 0  TE C H N O L O G Y

Index-6
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

loop index .  1-xii, 3-7, 3-19, 4-2, 4-6, 6-1, 7-24, 
8-4, 8-5, 8-7, 8-8, 8-10, 8-26, 8-29, 8-35, 8-36
DirectX9  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

loop index (aL)  . . . . . . . . . . . . . . . . . .  2-9, 8-17
loop index initializer. . . . . . . . . .  3-18, 7-22, 8-4
LOOP_BREAK

branch-loop instruction . . . . . . . . . . . . . . 3-16
instruction . . . . . . . . . . . . . . . . . . .  3-18, 3-19
jump  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18

LOOP_CONTINUE
branch-loop instruction . . . . . . . . . . . . . . 3-16
instruction . . . . . . . . . . . . . . . . . . .  3-18, 3-19

LOOP_END
branch-loop instruction . . . . . . . . . . . . . . 3-16
DirectX9  . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
instruction . . . . . . . . . . . . . .  3-14, 3-18, 3-19

LOOP_START
branch-loop instruction . . . . . . . . . . . . . . 3-16
DirectX9  . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
instruction . . . . . . . . . . . . . . . . . . . . . . . . 3-18

LOOP_START*
instruction . . . . . . . . . . . . . . . . . . . . . . . . 3-14

LOOP_START_DX10
branch-loop instruction . . . . . . . . . . . . . . 3-16
instruction . . . . . . . . . . . . . . . . . . . . . . . . 3-19

LOOP_START_NO_AL
branch-loop instruction . . . . . . . . . . . . . . 3-16

M

manipulate performance . . . . . . . . . . . . . . . . 3-2
mask

active. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

matrix - 2D  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
MEM_EXPORT . . . . . . . . . . . . . . . . . . . . . . . 3-8
MEM_REDUCTION. . . . . . . . . . . . . . . . . . . . 3-8
MEM_RING . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
MEM_SCRATCH. . . . . . . . . . . . . . . . . . . . . . 3-8
MEM_STREAM . . . . . . . . . . . . . . . . . . . . . . . 3-8
memory controller . . . . . . . . . . . . . . . . . . . . . 1-1
memory doubleword layouts . . . . . . . . . . . . . 3-2
memory latency. . . . . . . . . . . . . . . . . . . . . . . 1-4
microcode

format texture-fetch. . . . . . . . . . . . . . . . . . 6-1
microcode format. . . . . . . . . . . . . . . . . . . . . . 3-2
microcode format term  . . . . . . . . . . . . . . . . . 2-4
modes

DX10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
DX9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

modifier
ALU output  . . . . . . . . . . . . . . . . . . . . . . . 4-25
input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

MOVA
instruction . . . . . . . . . . . . . . . . . . . . . . . . 4-26

MOVA*
instruction . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

predication  . . . . . . . . . . . . . . . . . . . . . 4-23
restriction. . . . . . . . . . . . . . . . . . . . . . . . . 4-23

MOVA* instruction. . . . . . . . . . . . . . . . . . . . . 4-5
MRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
multiple clauses. . . . . . . . . . . . . . . . . . . . . . . 2-7
multiple render targets  . . . . . . . . . . . . . . . . . 2-2

N

NOP instruction . . . . . . . . . . . . . . . . . . . . . . 4-26
normal export  . . . . . . . . . . . . . . . . . . . . . . . . 3-7

O

OP2 format . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
OP3 format . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
opcode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
operand scalar  . . . . . . . . . . . . . . . . . . . . . . . 4-9
operate kernels . . . . . . . . . . . . . . . . . . . . . . . 4-8
operation

constant-fetch . . . . . . . . . . . . . . . . . . . . . . 6-2
execute ALU.Trans . . . . . . . . . . . . . . . . . 4-18
export  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
floating-point double-precision  . . . . . . . . 4-29
square . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

optimize. . . . . . . . . . . . . . . . . . . . . . . . 4-13
operation uses a single constant operand . 4-15
optimize

detects processor . . . . . . . . . . . . . . . . . . 4-28
square operations . . . . . . . . . . . . . . . . . . 4-13

order program execution. . . . . . . . . . . . . . . . 2-3
out-of-bounds addresses  . . . . . . . . . . . . . . . 4-7
output modifier ALU  . . . . . . . . . . . . . . . . . . 4-25
output, index pairs. . . . . . . . . . . . . . . . . . . . . 1-2
output, predicate . . . . . . . . . . . . . . . . . . . . . 4-26

P

page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
locked . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

parallel microarchitecture  . . . . . . . . . . . . . . . 1-1
parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
perform manipulations. . . . . . . . . . . . . . . . . . 3-2
permanently disable pixels . . . . . . . . . . . . . 3-12
per-pixel state . . . . . . . . . . . . . . . . . . . . . . . 3-11
pipeline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

operation interrupts . . . . . . . . . . . . . . . . . . 1-3
pixel

condition test. . . . . . . . . . . . . . . . . . . . . . 3-11
invalid deactivated  . . . . . . . . . . . . . . . . . 3-12
killed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10



AT I  R 6 0 0  TE C H N O L O G Y

Index-7
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

masks . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9
permanently disable . . . . . . . . . . . . . . . .  3-12
program  . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5

pixel quads . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
pixel shader  . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
pixel shader (PS)  . . . . . . . . . . . . . . . . . . . . .  3-7
pixel state . . . . . . . . . . . . . . . . . . . . .  2-11, 3-10

active  . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
ELSE. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
inactive-branch . . . . . . . . . . . . . . . . . . . .  3-10
inactive-break . . . . . . . . . . . . . . . . . . . . .  3-10
inactive-continue. . . . . . . . . . . . . . . . . . .  3-10
JUMP  . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
POP  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
PUSH . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17

POP
branch-loop instruction . . . . . . . . . . . . . .  3-15
instruction . . . . . . . . . . . . . . . . . . . . . . . .  3-14
pixel state . . . . . . . . . . . . . . . . . . . . . . . .  3-17

PRED_SET* . . . . . . . . . . . . . . . . . . . .  3-6, 4-22
instruction restriction. . . . . . . . . . . . . . . .  4-22

PRED_SET* instructions
ALU clauses . . . . . . . . . . . . . . . . . . . . . .  3-13

predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
counter . . . . . . . . . . . . . . . . . . . . . . . . . .  4-27
individual vertex-fetch instruction . . . . . . .  5-1
MOVA* instruction  . . . . . . . . . . . . . . . . .  4-23
output . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-26
register . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
single  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
texture instruction . . . . . . . . . . . . . . . . . . .  6-1

previous scalar (PS) . . . . . . . . . . . . . . . . . .  2-10
register . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7

previous vector (PV) . . . . . . . . . . . . . .  2-10, 4-2
register . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7

primitive strip. . . . . . . . . . . . . . . . . . . . . . . . .  2-3
primitive term  . . . . . . . . . . . . . . . . . . . . . . . .  2-5
processor

detects a dependency  . . . . . . . . . . . . . .  4-28
program

control flow . . . . . . . . . . . . . . . . . . . . . . . .  3-1
program execution order  . . . . . . . . . . . . . . .  2-3
programmer view

dataflow  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
PS . . . . . . . . . . . . . . . . .  2-1, 2-10, 3-7, 4-2, 4-7

register . . . . . . . . . . . . . 4-4, 4-15, 4-25, 4-26
temporary . . . . . . . . . . . . . . . . . . . . . .  4-14

PUSH
branch-loop instruction . . . . . . . . . . . . . .  3-15
pixel state . . . . . . . . . . . . . . . . . . . . . . . .  3-17

PUSH*
instruction . . . . . . . . . . . . . . . . . . . . . . . .  3-14

PUSH_ELSE
branch-loop instruction . . . . . . . . . . . . . .  3-15

PV . . . . . . . . . . . . . . . . . . . . . . . .  2-10, 4-2, 4-7
register . . . . . . . . . . . . . 4-4, 4-15, 4-25, 4-26

temporary . . . . . . . . . . . . . . . . . . . . . .  4-14

Q

quad  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5

quad - definition . . . . . . . . . . . . . . . . . . . . .  3-11

R

read data thread . . . . . . . . . . . . . . . . . . . . . .  3-9
read port

constant register restriction  . . . . . . . . . .  4-11
GPR restriction . . . . . . . . . . . . . . . . . . . .  4-11

reads - scatter  . . . . . . . . . . . . . . . . . . . . . . .  3-8
reduction buffer. . . . . . . . . . . . . . . . . . . . . . .  3-8
reduction instruction restrictions. . . . . . . . .  4-23
register

destination  . . . . . . . . . . . . . . . . . . . . . . .  4-25
previous scalar . . . . . . . . . . . . . . . . . . . . .  4-7
previous vector . . . . . . . . . . . . . . . . . . . . .  4-7
PS. . . . . . . . . . . . . . . . . 4-4, 4-15, 4-25, 4-26
PV. . . . . . . . . . . . . . . . . 4-4, 4-15, 4-25, 4-26
temporary

PS. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-14
PV. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-14

repeat loop . . . . . . . . . . . . . . . . . . . . .  3-1, 3-19
reserve

constant file read . . . . . . . . . . . . . . . . . .  4-17
GPR read . . . . . . . . . . . . . . . . . . . . . . . .  4-17

RESOURCE_ID  . . . . . . . . . . . . . . . . . . . . . .  6-1
restriction

constant register read port . . . . . . . . . . .  4-11
cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-14

ALU.[X,Y,Z,W]  . . . . . . . . . . . . .  4-12, 4-14
ALU.Trans  . . . . . . . . . . . . . . . . . . . . .  4-14

GPR read port  . . . . . . . . . . . . . . . . . . . .  4-11
KILL instruction. . . . . . . . . . . . . . . . . . . .  4-22
literal constant  . . . . . . . . . . . . . . . . . . . .  4-12
MOVA* . . . . . . . . . . . . . . . . . . . . . . . . . .  4-23
PRED_SET*

instruction . . . . . . . . . . . . . . . . . . . . . .  4-22
restrictions alignment

clause-initiation instructions . . . . . . . . . . .  3-5
RETURN

branch-loop instruction . . . . . . . . . . . . . .  3-16
instruction . . . . . . . . . . . . . . . . . . . . . . . .  3-14
subroutine instruction . . . . . . . . . . . . . . .  3-19



AT I  R 6 0 0  TE C H N O L O G Y

Index-8
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

RETURN_FS
branch-loop instruction . . . . . . . . . . . . . . 3-16

ring buffer  . . . . . . . . . . . . . . . . . . . . . . .  3-8, 3-9

S

SAMPLER_ID . . . . . . . . . . . . . . . . . . . . . . . . 6-1
scalar operand  . . . . . . . . . . . . . . . . . . . . . . . 4-9
scatter

reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

scratch buffer  . . . . . . . . . . . . . . . . . . . . . . . . 3-8
SIMD pipeline . . . . . . . . . . . . . . . . . . . . . . . . 1-2
single constant operand

transcendental operation  . . . . . . . . . . . . 4-15
single predicate . . . . . . . . . . . . . . . . . . . . . . . 2-7
slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

T  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

source address . . . . . . . . . . . . . . . . . . . . . . . 4-9
source elements swizzle . . . . . . . . . . . . . . . . 6-1
source operand . . . . . . . . . . . . . . . . . . . . . . . 2-1

ALU_SRC_LITERAL . . . . . . . . . . . . . . . . . 4-3
specified address jump . . . . . . . . . . . . . . . . . 3-2
squaring operations. . . . . . . . . . . . . . . . . . . 4-13
SRC*_ELEM field  . . . . . . . . . . . . . . . . . . . . 4-10
src.X  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
SRC_REL  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
stack  . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9, 3-1

allocation . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
predicate . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

stack entry subentries . . . . . . . . . . . . . . . . . 3-14
stack operations

CF instruction set . . . . . . . . . . . . . . . . . . 3-17
statically-indexed

constant access  . . . . . . . . . . . . . . . . . . . . 4-8
stream buffer . . . . . . . . . . . . . . . . . . . . .  3-8, 3-9
subentries - stack entry. . . . . . . . . . . . . . . . 3-14
subroutine

CAL instruction . . . . . . . . . . . . . . . . . . . . 3-19
RETURN instruction . . . . . . . . . . . . . . . . 3-19

subroutine calls
conditional execution  . . . . . . . . . . . . . . . 3-15

subroutines
control-flow instructions  . . . . . . . . . . . . . . 3-1

subsequent instructions  . . . . . . . . . . . . . . . . 2-1
swizzle . . . . . . . . . . . . . . . . . . . . . . . . .  4-13, 5-1

across GPR address  . . . . . . . . . . . . . . . . 4-2
arbitrary . . . . . . . . . . . . . . . . . . . . . . .  3-8, 4-8
bank  . . . . . . . . . . . . . . . . . . . . . . .  4-13, 4-16

constant operand . . . . . . . . . . . . . . . . 4-15
constant vector-element . . . . . . . . . . . . . . 4-2
source elements . . . . . . . . . . . . . . . . . . . . 6-1

synchronization . . . . . . . . . . . . . . . . . . . . . . . 3-9

T

T slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
temporary register

PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

terms
allocate . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
ALU instruction group . . . . . . . . . . . . . . . . 2-4
clauses  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
export  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
fetch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
fragment  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
instruction-related . . . . . . . . . . . . . . . . . . . 2-4
instructions  . . . . . . . . . . . . . . . . . . . . . . . . 2-4
literal constant. . . . . . . . . . . . . . . . . . . . . . 2-4
microcode format  . . . . . . . . . . . . . . . . . . . 2-4
pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
primitive. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
quad  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
slot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
vertex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

TEX control-flow instruction  . . . . . . . . . . . . . 3-6
texel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
texture instruction predicate . . . . . . . . . . . . . 6-1
texture resources  . . . . . . . . . . . . . . . . . . . . 2-11
texture samplers . . . . . . . . . . . . . . . . . . . . . 2-11
texture-fetch

clauses  . . . . . . . . . . . . . . . . . . .  2-7, 3-1, 6-1
instructions  . . . . . . . . . . . . . . . . . . . . . . . . 2-1
microcode format  . . . . . . . . . . . . . . . . . . . 6-1

texture-fetch clause
execution. . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

thread
common memory buffer sharing. . . . . . . . 3-9
read data. . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

thread group . . . . . . . . . . . . . . . . . . . . . . . . 3-14
transcendental operation. . . . . . . . . . . .  4-2, 4-3

single constant operand . . . . . . . . . . . . . 4-15
two constant operands . . . . . . . . . . . . . . 4-16

trip count . . . . . . . . . . . . . . . . . .  3-18, 7-22, 8-4
two constant operands

transcendental operation  . . . . . . . . . . . . 4-16
two source operands instruction. . . . . . . . . 4-26
types

clause-initiation instructions  . . . . . . . . . . . 3-5
clauses  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
of instructions . . . . . . . . . . . . . . . . . . . . . . 2-7

typical program flow . . . . . . . . . . . . . . . . . . . 2-6



AT I  R 6 0 0  TE C H N O L O G Y

Index-9
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   

U

units
ALU.[X,Y,Z,W] instructions . . . . . . . . . . .  4-22
ALU.Trans instruction. . . . . . . . . . . . . . .  4-23

USES_WATERFALL bit . . . . . . . . . . . . . . . .  4-5

V

valid mask. . . . . . . . . . . . . . . . .  2-9, 2-11, 3-10
cleared  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10

valid pixel mode . . . . . . . . . . . . . . . . . . . . .  3-12
VALID_PIXEL_MODE. . . . . . . .  3-5, 3-11, 3-12

condition test  . . . . . . . . . . . . . . . . . . . . .  3-13
vector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
vector-element constant swizzles. . . . . . . . .  4-2
vertex geometry translator . . . . . . . . . . . . . .  2-2
vertex program . . . . . . . . . . . . . . . . . . . . . . .  2-1
vertex shader  . . . . . . . . . . . . . . . . . . . . . . . .  2-1
vertex shader (VS) . . . . . . . . . . . . . . . . . . . .  3-7
vertex shaders DX9 . . . . . . . . . . . . . . . . . . .  4-8
vertex term . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
vertex-fetch

clauses . . . . . . . . . . . . . . . . . . . . . . .  2-7, 5-1
constants  . . . . . . . . . . . . . . . . . . . .  2-11, 5-1
instruction . . . . . . . . . . . . . . . . . . . . .  2-1, 5-1

individually predicated . . . . . . . . . . . . .  5-1
microcode formats  . . . . . . . . . . . . . . . . . .  5-2

vertex-fetch clause . . . . . . . . . . . . . . . . . . . .  3-1
vertex-fetch-shader (FS). . . . . . . . . . . . . . . .  3-1
VGT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1

vertex shader . . . . . . . . . . . . . . . . . . . . . .  3-7
VTX control-flow instructions  . . . . . . . . . . . .  3-6
VTX_TC control-flow instructions . . . . . . . . .  3-6

W

waterfall. . . . . . . . . . . . . . . . . . . . 1-xii, 2-10, 3-6
whole quad mode . . . . . . . . . . . . . . . . . . . .  3-11
WHOLE_QUAD_MODE . . . . . . .  3-5, 3-11, 6-2

condition test  . . . . . . . . . . . . . . . . . . . . .  3-13
write export . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9
writes scatter. . . . . . . . . . . . . . . . . . . . . . . . .  3-8



AT I  R 6 0 0  TE C H N O L O G Y

Index-10
Copyright © 2009 Advanced Micro Devices, Inc. All rights reserved.   


	R600-Family Instruction Set Architecture
	Contents
	Preface
	About This Document
	Audience
	Organization
	Registers
	Endian Order
	Conventions
	Related Documents
	Contact Information

	Chapter 1 Introduction
	Figure 1.1 R600-Family Block Diagram
	Figure 1.2 Programmer’s View of R600 Dataflow

	Chapter 2 Program Organization and State
	2.1 Program Types
	2.1.1 Data Flows
	2.1.2 Geometry Program Absent
	Table 2.1 Order of Program Execution (Geometry Program Absent)

	2.1.3 Geometry Shader Present
	Table 2.2 Order of Program Execution (Geometry Program Present)


	2.2 Instruction Terminology
	Table 2.3 Basic Instruction-Related Terms

	2.3 Control Flow and Clauses
	Table 2.4 Flow of a Typical Program

	2.4 Instruction Types and Grouping
	2.5 Program State
	Table 2.5 Control-Flow State
	Table 2.6 ALU State
	Table 2.7 Vertex-Fetch State
	Table 2.8 Texture-Fetch and Constant-Fetch State


	Chapter 3 Control Flow (CF) Programs
	3.1 CF Microcode Encoding
	31
	24
	23
	16
	15
	8
	7
	0
	<------------ LSB ------------>
	31
	24
	23
	16
	15
	8
	7
	0
	<------------ LSB ------------>
	31
	24
	23
	16
	15
	8
	7
	0
	<------------ LSB ------------>

	3.2 Summary of Fields in CF Microcode Formats
	Table 3.1 CF Microcode Field Summary

	3.3 Clause-Initiation Instructions
	Table 3.2 Types of Clause-Initiation Instructions
	3.3.1 ALU Clause Initiation
	3.3.2 Vertex-Fetch Clause Initiation and Execution
	3.3.3 Texture-Fetch Clause Initiation and Execution

	3.4 Import and Export Instructions
	3.4.1 Normal Exports (Pixel, Position, Parameter Cache)
	Table 3.3 Possible ARRAY_BASE Values

	3.4.2 Memory Reads and Writes

	3.5 Synchronization with Other Blocks
	3.6 Conditional Execution
	3.6.1 Valid and Active Masks
	3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE
	3.6.3 The Condition (COND) Field
	3.6.4 Computation of Condition Tests
	Table 3.4 Condition Tests

	3.6.5 Stack Allocation
	Table 3.5 Stack Subentries
	Table 3.6 Stack Space Required for Flow-Control Instructions


	3.7 Branch and Loop Instructions
	Table 3.7 Branch-Loop Instructions
	3.7.1 ADDR Field
	3.7.2 Stack Operations and Jumps
	3.7.3 DirectX9 Loops
	3.7.4 DirectX10 Loops
	3.7.5 Repeat Loops
	3.7.6 Subroutines
	3.7.7 ALU Branch-Loop Instructions


	Chapter 4 ALU Clauses
	4.1 ALU Microcode Formats
	31
	24
	23
	16
	15
	8
	7
	0
	<------------ LSB ------------>
	Figure 4.1 ALU Microcode Format Pair

	4.2 Overview of ALU Features
	127
	96
	95
	64
	63
	32
	31
	0
	Figure 4.2 Organization of ALU Vector Elements in GPRs

	4.3 ALU Instruction Slots and Instruction Groups
	Table 4.1 Instruction Slots in an Instruction Group

	4.4 Assignment to ALU.[X,Y,Z,W] and ALU.Trans Units
	4.5 OP2 and OP3 Microcode Formats
	4.6 GPRs and Constants
	4.6.1 Relative Addressing
	Table 4.2 Index for Relative Addressing

	4.6.2 Previous Vector (PV) and Previous Scalar (PS) Registers
	4.6.3 Out-of-Bounds Addresses
	4.6.4 ALU Constants
	4.6.4.1 Constant Cache
	4.6.4.2 Literal (in-line) Constants
	4.6.4.3 Statically-Indexed Constant Access
	4.6.4.4 Dynamically-Indexed Constant Access (AR-relative, Constant Waterfalling)


	4.7 Scalar Operands
	4.7.1 Source Addresses
	4.7.2 Input Modifiers
	4.7.3 Data Flow
	Figure 4.3 ALU Data Flow

	4.7.4 GPR Read Port Restrictions
	4.7.5 Constant Register Read Port Restrictions
	4.7.6 Literal Constant Restrictions
	4.7.7 Cycle Restrictions for ALU.[X,Y,Z,W] Units
	4.7.8 Cycle Restrictions for ALU.Trans
	4.7.8.1 Bank Swizzle with Constant Operands

	4.7.9 Read-Port Mapping Algorithm
	Table 4.3 Example Function’s Loading Cycle
	4.7.9.1 Initialization Execution
	4.7.9.2 Reserving GPR Read
	4.7.9.3 Reserving Constant File Read
	4.7.9.4 Execution for Each ALU.[X,Y,Z,W] Operation
	4.7.9.5 Execution of ALU.Trans Operation


	4.8 ALU Instructions
	4.8.1 Instructions for All ALU Units
	Table 4.4 ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units)

	4.8.2 KILL and PRED_SET* Instruction Restrictions
	4.8.3 Instructions for ALU.[X,Y,Z,W] Units Only
	Table 4.5 ALU Instructions (ALU.[X,Y,Z,W] Units Only)
	4.8.3.1 Reduction Instruction Restrictions
	4.8.3.2 MOVA* Restrictions

	4.8.4 Instructions for ALU.Trans Units Only
	Table 4.6 ALU Instructions (ALU.Trans Units Only)
	4.8.4.1 ALU.Trans Instruction Restrictions


	4.9 ALU Outputs
	4.9.1 Output Modifiers
	4.9.2 Destination Registers
	4.9.3 Predicate Output
	4.9.4 NOP Instruction
	4.9.5 MOVA Instructions

	4.10 Predication and Branch Counters
	4.11 Adjacent-Instruction Dependencies
	4.12 Double-Precision Floating-Point Operations

	Chapter 5 Vertex-Fetch Clauses
	5.1 Clause Construction
	5.2 Vertex-Fetch Microcode Formats
	Figure 5.1 Vertex-Fetch Microcode-Format 4-Tuple


	Chapter 6 Texture-Fetch Clauses
	6.1 Texture-Fetch Microcode Formats
	31
	24
	23
	16
	15
	8
	7
	0
	Figure 6.1 Texture-Fetch Microcode-Format 4-Tuple

	6.2 Constant-Fetch Operations
	6.3 FETCH_WHOLE_QUAD and WHOLE_QUAD_MODE

	Chapter 7 Instruction Set
	7.1 Control Flow (CF) Instructions
	K B 0
	K B 0

	7.2 ALU Instructions
	Table 7.1 Result of ADD_64 Instruction
	Table 7.2 Result of FLT32_TO_FLT64 Instruction
	Table 7.3 Result of FLT64_TO_FLT32 Instruction
	Table 7.4 Result of FRACT_64 Instruction
	Table 7.5 Result of FREXP_64 Instruction
	Table 7.6 Result of LDEXP_64 Instruction
	Table 7.7 Result of MUL_64 Instruction
	Table 7.8 Result of MULADD_64 Instruction (IEEE Single-Precision Multiply)
	Table 7.9 Result of MULADD_64 Instruction (IEEE Add)
	Table 7.10 Result of PRED_SETE_64 Instruction
	Table 7.11 Result of PRED_SETGE_64 Instruction
	Table 7.12 Result of PRED_SETGT_64 Instruction

	7.3 Vertex-Fetch Instructions
	7.4 Texture-Fetch Instructions

	Chapter 8 Microcode Formats
	Table 8.1 Summary of Microcode Formats
	8.1 Control Flow (CF) Instructions
	8.2 ALU Instructions
	8.3 Vertex-Fetch Instructions
	8.4 Texture-Fetch Instructions

	Appendix A Instruction Table
	Table A.1 Summary of Instruction

	Glossary of Terms
	Index

