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Overview
• Motivation

• Introduction to the SDK

• SDK Functionality Overview 

• Conclusion
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Why Do We Need a Plug-in SDK?
• Developers like having control in their hands 

– They want the ability to improve any program 
themselves – when and as they need it

• But it’s more than that: the pluggable 
architecture works for us as well

– The entire application is developed as plug-ins
– Makes it easy to create new components without re-

writing the application 
– We are using the SDK for development of features 
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Plug-in Architecture Philosophy

• Having a pluggable architecture allows 
you to solve problems you have not 
anticipated

– Especially by developers themselves
• Specific to their projects 

– Allows us to create new tools in the future as 
the need arises
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RenderMonkey Application Design
• Single document application: only one 

workspace edited at a time
• All data necessary to render effect is stored in a 

run-time database
– Effect database node overview can be found in “Beginner 

Shader Programming with RenderMonkey” presentation from 
GDC 2003 on www.ati.com/developer

• All real-time changes to the database are managed 
by the application and propagated to the plug-ins

– Application sends out Windows-style messages to plug-
ins’ message handler 

• All rendering resources exist in the viewer plug-ins: 
other plug-ins have no access to that data

http://www.ati.com/developer
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Supported API and Compatibility

• The SDK is written in pure C++

• RenderMonkey version 1.5 and SDK 1.0 
support plug-in development in both 
Visual Studio 6.0 and Visual Studio .NET

• Developers can create plug-ins using only  
Win32 API or MFC as they please
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Application and SDK Layout
Installed application directories

Stores RenderMonkey data files: 
- Shader editor initialization files
- Default workspace definition
- DTD
- RmInclude.h for HLSL includes
- Definition for supported rendering 
and texture states
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Application and SDK Layout
Installed application directories

Stores all example workspaces 
shipped with the application
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Application and SDK Layout
Installed application directories

Plug-ins depository. The application loads 
all DLLs from this directory on startup and
parses them for plug-ins. New plug-ins 
should be placed there.
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Application and SDK Layout
Installed application directories

SDK Documentation
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Application and SDK Layout
Installed application directories

SDK Example Plug-ins
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Application and SDK Layout
Installed application directories

RenderMonkey SDK Include files
and libraries
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Application and SDK Layout
Installed application directories

This is where wizard-generated 
project files will be placed
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Application and SDK Layout
Installed application directories

Contains code samples
used by the plug-in wizard
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SDK Includes and Libraries

• Libraries shipped with the SDK
– RmCore

• Main RenderMonkey SDK library: contains the node 
database definition, plug-in interfaces, application interface 
and various manages interfaces, as well as custom classes

– RmUtilities
• Support for double-buffering UI windows, and Win32 hooks 

utilities

– RmMFCUtilities
• RenderMonkey MFC widgets and utilities

– RmGfxUtil
• Texture image management and creation
• Image conversion
• Device retrieval
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Plug-in Project Setup
• Use RenderMonkey project wizard 

– Run from Utilities / Plug-In Wizard… menu option
– Select plug-in type that you wish to create from 

available plug-in list
– Type your project name and click “Ok”
– The wizard will create all necessary code to create a 

new plug-in of that type in SDK/Projects directory –
including project files for Visual Studio 6.0 and .NET 
with all the necessary project settings

• Do it by hand: Instructions are in SDK/Doc SDK 
Documentation.doc file

– Tedious and prone to mistakes! 
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Plug-in DLL Organization
• A plug-in DLL can contain multiple plug-ins in a 

single DLL
• A single DLL must implement these entry 

points:
– RmInitPlugInDLL

• Initialization and setup particular for the actual DLL – a good place to 
instantiate all plug-in instances

– RmGetNumPlugIns
• The number of plug-ins implemented in a particular DLL

– RmGetPlugIn
• Retrieve a particular plug-in from the DLL by index

– RmFreePlugIn
• Free a particular plug-in from memory

– RmUninitializePlugInDLL
• This entry point gets called before the DLL is unloaded by the app
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Node Database Overview
• All data necessary to render an effect is 

stored in nodes
– Effect node, pass node, model node, etc.

• RenderMonkey maintains node rules to 
ensure valid node contents

– Ex: Only one active vertex shader is allowed 
in a pass

– Only one model reference is allowed in a 
pass

– Multiple texture objects are allowed in a 
pass – but none in effect
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Node Database (cont.)
• Custom nodes can be added by adding 

child nodes to existing nodes in the db
– As long as it doesn’t violate current node 

rules
– If it does, new data can always be added as 

“annotation data” via adding a string node
• Currently no support for the ideal custom 

node solution in the workspace window
– Cannot extend the database by 

creating new node classes at the 
moment 

– Will be added in the future releases
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Application Access
• IRmApplication interface – accessible from 

any plug-ins from a singleton instance
– IRmApplication* pApp = getRmApp();

• Main entry point for window creation and 
management

• Allows users to clear output window text and 
specify new text

• Contains an instance of edited workspace and 
provides plug-ins with access to it as well as 
new node creation and editing functionality

• Stores access to various manager interfaces:
– Application registry manager
– Predefined variable manager
– More…



21

Game
Developers
Conference

March 2004

XML Management
• IRmXMLManager interface

– Accessable from the main application by 
IRmApplication::GetXMLManager()

• Hides the implementation details of 
dealing with an XML file through MSXML

• All data from .rfx can be conveniently 
queried through this interface

– Use this interface for loading data and 
saving to XML for custom nodes

• Node rules are described in the DTD 
shipped with the application 

– Allows automatic XML validation 
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Node Transactions 
• All application events (non-Windows) and all changes to the 

node database are propagated to the plug-ins by 
RenderMonkey messages

– All plug-ins must support a message handler:

– Additional data is passed as message parameters
• Can pass node information, data structures, etc.

• Any plug-in can send out any of these messages at any 
point by notifying the application

– IRmApplication::BroadcastMessage(..) entry 
point

• All message definitions are delineated in RmDefines.h

virtual int MessageHandler( int nMessageID, int nMessageData,
int nMessageParameter = 0,

RmPlugInID plugInID = RM_PLUGIN_ID_NULL ) = 0;
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Supported Transactions and 
Messages
• Run-time database related messages

– Node Update / Value change / Name 
change

– Node Added / Node Deleted
• Application notification messages

– File New / File Opening / File Close
– File Open Complete / File Close Complete
– Application Closing
– Query to save data: 

• Notification to the plug-in that a workspace is about to be 
saved – it should propagate any information about its 
nodes to the run-time database now 
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Additional Messages
• Effect-specific messages

– Shader compilation messages – Pre-compilation / 
Compile / Post-compile

• Received by all plug-ins

• A number of viewer-specific messages
– Change active effect 

• Sent out to plug-ins prior the viewer receiving it

– View management messages
• Update all rendering / Update textures / Update models
• Reset current view
• View camera mode notification

• Viewer messages can be triggered by any plug-
in that wishes to update the rendering
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Plug-in Management
• Application loads all plug-ins from the \plugins directory

– Sorts them by supported plug-in type 

• Automatically manages all plug-ins according to their type
– If you create a new editor, the application will 

automatically associate it with the node and add it to the 
context menu for that node

– Application organizes the menus for all plug-in types 
automatically

• Application remembers the last plug-in used for editing a 
node

– For node types that have multiple editor plug-ins 
associated with it, the user just has to select a plug-in 
from “Edit with..” menu and the next time they double-click 
on a node of that type, that plug-in will be executed
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Supported Plug-in Types

IRmGenericPlugIn

IRmEditorPlugIn

IRmImporterPlugIn

IRmExporterPlugIn

IRmViewerPlugIn

IRmTextureLoaderPlugIn

IRmGeneratorPlugIn

IRmGeometryLoaderPlugIn
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Plug-in Description Structure
• Each plug-in is identified by the interface it 

implements and a plug-in description 
structure

• Description structure contains
– Plug-in type (see RmTypes.h for enumeration)

• Must match plug-in interface

– A list of node types supported by plug-in
• Used by the application to associate and manage plug-ins

– SDK version (major and minor)
– Supported rendering API

• Plug-ins can only be DX or GL plug-ins, or API-agnostic

– Plug-in name
• Used by the application to display in the context menus
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Generic Plug-in Interface
• Base class for all plug-ins 
• Designed to receive communication messages 

from the application 
• Can create a property page dialog for main 

application preferences dialog for this plug-in –
application automatically manages that dialog

• Entry points:
– Init(..)
– Uninitialize(..)
– GetPlugInDescription()
– MessageHandler(..)
– HasPropertyDlg()
– AddPropertyDlg(..)
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Importer Plug-in Interface
• Allows developers to bring in data from 

other formats into RenderMonkey
– Custom engine scripts

• Flexible import association
– Users can select to import data to an entire 

workspace (through File / Import) 
– Or into a particular node 

• That can be used to import textures or some other data 
directly into nodes

• Single entry point:
– ImportNode( RmNode *pNodeToImportInto ) 
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Exporter Plug-in Interface
• Developers can export contents of a 

single node or the entire open workspace 
(through File / Export menu option) into 
their custom data format

– Our own FX exporter is written as this plug-
in type

• Entry point:
– ExportNode(RmNode *pNodeToExport)
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Editor Plug-in Interface
• All editor widgets shipped with 

RenderMonkey are editor plug-ins
• Developers can use this plug-in type to 

create custom widgets
• Entry point:

HWND EditNode(HWND hParentWindow, 
RmNode *pNode)

– Invoked by the main application whether a 
user double-clicked on a node supported by 
the plug-in or selected the plug-in through 
“Edit with..” menu or by direct EditNode() call
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Window Creation and 
Management in RenderMonkey
• Application supports creation of Win32 and 

MFC windows in plug-ins
• RenderMonkey allows plug-in developers to 

create dialog windows, docking windows, MDI 
child windows

– The latter two are created through entry points in the 
application interface to ensure Visual Studio 6.0 and 
.NET compatibility

• CreateDockingWindow(..)
• CreateMDIChildFrame(..)

– The actual contents of docking and MDI windows 
can be added to the respective frame windows

– All main plug-in windows must be registered with the 
application

• RegisterWindow()
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Generator Plug-in Interface

• Used to create contents for particular 
nodes or to create new nodes based on 
the selected node information

– Procedural geometry generation
– Procedural texture generation

• Entry point:
– GenerateData(..)
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Geometry Loader Plug-in Interface
• Used to load contents of geometry objects by 

the application 
– 3DS Loader / X / OBJ Loader plug-ins

• Invoked whenever a user selects a file to load 
geometry for a model node

• Entry points:
– GetSupportedExtensions(..)

• The application uses this method to determine which model file 
extensions it can support based on all of the geometry loader plug-
ins

– CanLoadGeometry(..)
• Tests whether this plug-in can load geometry data from a given file

– LoadGeometry(..)
• Actually load geometry data into the specified model node
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Texture Loader Plug-in Interface
• Used to load contents of textures by the 

application 
• Invoked whenever a user selects a file to 

load a texture 
• Entry points:

– GetSupportedExtensions(..)
• The application uses this method to determine which 

texture file extensions it can support based on all of the 
texture loader plug-ins

– CanLoadTexture(..)
• Tests whether this plug-in can load texture data from a 

given file

– LoadTexture(..)
• Actually load texture data into the specified model node
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Support for Undoable Operations
• RenderMonkey allows developers create their 

own complex undoable operations – it will 
manage execution / redo of those

• Supports nested undoable operation
– Start making an undo op by calling 
StartUndoMaking() with the op name

– If you wish to nest additional undos, call 
StartUndoMaking() with a pointer to the parent 
undo operation

• No limit on the number of nested undo ops

– EndUndoMaking() finishes compositing current undo 
op – needs to be called as many times as 
StartUndoMaking()

• Add the undoable operation and the app will 
manage it
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Application Preferences Management

• RenderMonkey has a number of 
application preferences

– Editable by the user from the Edit / 
Preferences menu

• Each plug-in can have its own property 
page in that dialog

• Each plug-in can save that data in the 
application registry file

– Use IRmRegistryManager interface from the 
application via GetRegistryManager() call
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SDK Utilities
• RenderMonkey SDK provides a number 

of convenient classes:
– Custom array, linked list, stl-like vector, 

string (with Unicode support) classes
– Math helper functions, math vector and 

matrix classes and support
– Scene graph mesh definition with 

hierarchical meshes
– Image loading and an integrated image 

management library
– Automatic Windows hooks utilities
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MFC Utilities

• To encourage a consistent look for all 
plug-ins, RenderMonkey SDK provides a 
number of MFC widgets:

– Numeric edit control with a popup slider 
– Color buttons / sliders / color wheel
– Color picker widget
– Iconic menu
– And more…
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Custom Plug-ins in the Making 
and Future Ideas
• Engine interface plug-in:

– A plug-in connecting RenderMonkey and a running 
game engine – it can receive node database 
messages and reload and reapply shader in the 
running engine to see the finale look

• Importer / Exporter plug-in
– Allows many developers to support their own data 

format
• Custom editor widgets 

– Create the look and feel consistent with your tools!
• Your imagination is the limit!



41

Game
Developers
Conference

March 2004

Future Work and Limitations

• Current version of the SDK doesn’t 
provide support for full custom node 
creation – we will be adding that in the 
future

• Plug-ins toolbar menus (future versions)
• If you want a new feature – send us a 

request! 
rendermonkey@ati.com

mailto:rendermonkey@ati.com
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Conclusion

• RenderMonkey SDK is a flexible, 
powerful API for creating custom 
components for a great shader 
development IDE

• Puts the power into the hands of 
developers

• We hope to see many new tools on the 
base of this SDK!
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Questions?
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