
Custom Component Custom Component
Development Using Development Using
RenderMonkey SDKRenderMonkey SDK

Natalya Tatarchuk
3D Application Research Group
ATI Research, Inc

2

Game
Developers
Conference

March 2004

Overview
• Motivation

• Introduction to the SDK

• SDK Functionality Overview

• Conclusion

3

Game
Developers
Conference

March 2004

Why Do We Need a Plug-in SDK?
• Developers like having control in their hands

– They want the ability to improve any program
themselves – when and as they need it

• But it’s more than that: the pluggable
architecture works for us as well

– The entire application is developed as plug-ins
– Makes it easy to create new components without re-

writing the application
– We are using the SDK for development of features

4

Game
Developers
Conference

March 2004

Plug-in Architecture Philosophy

• Having a pluggable architecture allows
you to solve problems you have not
anticipated

– Especially by developers themselves
• Specific to their projects

– Allows us to create new tools in the future as
the need arises

5

Game
Developers
Conference

March 2004

RenderMonkey Application Design
• Single document application: only one

workspace edited at a time
• All data necessary to render effect is stored in a

run-time database
– Effect database node overview can be found in “Beginner

Shader Programming with RenderMonkey” presentation from
GDC 2003 on www.ati.com/developer

• All real-time changes to the database are managed
by the application and propagated to the plug-ins

– Application sends out Windows-style messages to plug-
ins’ message handler

• All rendering resources exist in the viewer plug-ins:
other plug-ins have no access to that data

http://www.ati.com/developer

6

Game
Developers
Conference

March 2004

Supported API and Compatibility

• The SDK is written in pure C++

• RenderMonkey version 1.5 and SDK 1.0
support plug-in development in both
Visual Studio 6.0 and Visual Studio .NET

• Developers can create plug-ins using only
Win32 API or MFC as they please

7

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

Stores RenderMonkey data files:
- Shader editor initialization files
- Default workspace definition
- DTD
- RmInclude.h for HLSL includes
- Definition for supported rendering
and texture states

8

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

Stores all example workspaces
shipped with the application

9

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

Plug-ins depository. The application loads
all DLLs from this directory on startup and
parses them for plug-ins. New plug-ins
should be placed there.

10

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

SDK Documentation

11

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

SDK Example Plug-ins

12

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

RenderMonkey SDK Include files
and libraries

13

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

This is where wizard-generated
project files will be placed

14

Game
Developers
Conference

March 2004

Application and SDK Layout
Installed application directories

Contains code samples
used by the plug-in wizard

15

Game
Developers
Conference

March 2004

SDK Includes and Libraries

• Libraries shipped with the SDK
– RmCore

• Main RenderMonkey SDK library: contains the node
database definition, plug-in interfaces, application interface
and various manages interfaces, as well as custom classes

– RmUtilities
• Support for double-buffering UI windows, and Win32 hooks

utilities

– RmMFCUtilities
• RenderMonkey MFC widgets and utilities

– RmGfxUtil
• Texture image management and creation
• Image conversion
• Device retrieval

16

Game
Developers
Conference

March 2004

Plug-in Project Setup
• Use RenderMonkey project wizard

– Run from Utilities / Plug-In Wizard… menu option
– Select plug-in type that you wish to create from

available plug-in list
– Type your project name and click “Ok”
– The wizard will create all necessary code to create a

new plug-in of that type in SDK/Projects directory –
including project files for Visual Studio 6.0 and .NET
with all the necessary project settings

• Do it by hand: Instructions are in SDK/Doc SDK
Documentation.doc file

– Tedious and prone to mistakes!

17

Game
Developers
Conference

March 2004

Plug-in DLL Organization
• A plug-in DLL can contain multiple plug-ins in a

single DLL
• A single DLL must implement these entry

points:
– RmInitPlugInDLL

• Initialization and setup particular for the actual DLL – a good place to
instantiate all plug-in instances

– RmGetNumPlugIns
• The number of plug-ins implemented in a particular DLL

– RmGetPlugIn
• Retrieve a particular plug-in from the DLL by index

– RmFreePlugIn
• Free a particular plug-in from memory

– RmUninitializePlugInDLL
• This entry point gets called before the DLL is unloaded by the app

18

Game
Developers
Conference

March 2004

Node Database Overview
• All data necessary to render an effect is

stored in nodes
– Effect node, pass node, model node, etc.

• RenderMonkey maintains node rules to
ensure valid node contents

– Ex: Only one active vertex shader is allowed
in a pass

– Only one model reference is allowed in a
pass

– Multiple texture objects are allowed in a
pass – but none in effect

19

Game
Developers
Conference

March 2004

Node Database (cont.)
• Custom nodes can be added by adding

child nodes to existing nodes in the db
– As long as it doesn’t violate current node

rules
– If it does, new data can always be added as

“annotation data” via adding a string node
• Currently no support for the ideal custom

node solution in the workspace window
– Cannot extend the database by

creating new node classes at the
moment

– Will be added in the future releases

20

Game
Developers
Conference

March 2004

Application Access
• IRmApplication interface – accessible from

any plug-ins from a singleton instance
– IRmApplication* pApp = getRmApp();

• Main entry point for window creation and
management

• Allows users to clear output window text and
specify new text

• Contains an instance of edited workspace and
provides plug-ins with access to it as well as
new node creation and editing functionality

• Stores access to various manager interfaces:
– Application registry manager
– Predefined variable manager
– More…

21

Game
Developers
Conference

March 2004

XML Management
• IRmXMLManager interface

– Accessable from the main application by
IRmApplication::GetXMLManager()

• Hides the implementation details of
dealing with an XML file through MSXML

• All data from .rfx can be conveniently
queried through this interface

– Use this interface for loading data and
saving to XML for custom nodes

• Node rules are described in the DTD
shipped with the application

– Allows automatic XML validation

22

Game
Developers
Conference

March 2004

Node Transactions
• All application events (non-Windows) and all changes to the

node database are propagated to the plug-ins by
RenderMonkey messages

– All plug-ins must support a message handler:

– Additional data is passed as message parameters
• Can pass node information, data structures, etc.

• Any plug-in can send out any of these messages at any
point by notifying the application

– IRmApplication::BroadcastMessage(..) entry
point

• All message definitions are delineated in RmDefines.h

virtual int MessageHandler(int nMessageID, int nMessageData,
int nMessageParameter = 0,

RmPlugInID plugInID = RM_PLUGIN_ID_NULL) = 0;

23

Game
Developers
Conference

March 2004

Supported Transactions and
Messages
• Run-time database related messages

– Node Update / Value change / Name
change

– Node Added / Node Deleted
• Application notification messages

– File New / File Opening / File Close
– File Open Complete / File Close Complete
– Application Closing
– Query to save data:

• Notification to the plug-in that a workspace is about to be
saved – it should propagate any information about its
nodes to the run-time database now

24

Game
Developers
Conference

March 2004

Additional Messages
• Effect-specific messages

– Shader compilation messages – Pre-compilation /
Compile / Post-compile

• Received by all plug-ins

• A number of viewer-specific messages
– Change active effect

• Sent out to plug-ins prior the viewer receiving it

– View management messages
• Update all rendering / Update textures / Update models
• Reset current view
• View camera mode notification

• Viewer messages can be triggered by any plug-
in that wishes to update the rendering

25

Game
Developers
Conference

March 2004

Plug-in Management
• Application loads all plug-ins from the \plugins directory

– Sorts them by supported plug-in type

• Automatically manages all plug-ins according to their type
– If you create a new editor, the application will

automatically associate it with the node and add it to the
context menu for that node

– Application organizes the menus for all plug-in types
automatically

• Application remembers the last plug-in used for editing a
node

– For node types that have multiple editor plug-ins
associated with it, the user just has to select a plug-in
from “Edit with..” menu and the next time they double-click
on a node of that type, that plug-in will be executed

26

Game
Developers
Conference

March 2004

Supported Plug-in Types

IRmGenericPlugIn

IRmEditorPlugIn

IRmImporterPlugIn

IRmExporterPlugIn

IRmViewerPlugIn

IRmTextureLoaderPlugIn

IRmGeneratorPlugIn

IRmGeometryLoaderPlugIn

27

Game
Developers
Conference

March 2004

Plug-in Description Structure
• Each plug-in is identified by the interface it

implements and a plug-in description
structure

• Description structure contains
– Plug-in type (see RmTypes.h for enumeration)

• Must match plug-in interface

– A list of node types supported by plug-in
• Used by the application to associate and manage plug-ins

– SDK version (major and minor)
– Supported rendering API

• Plug-ins can only be DX or GL plug-ins, or API-agnostic

– Plug-in name
• Used by the application to display in the context menus

28

Game
Developers
Conference

March 2004

Generic Plug-in Interface
• Base class for all plug-ins
• Designed to receive communication messages

from the application
• Can create a property page dialog for main

application preferences dialog for this plug-in –
application automatically manages that dialog

• Entry points:
– Init(..)
– Uninitialize(..)
– GetPlugInDescription()
– MessageHandler(..)
– HasPropertyDlg()
– AddPropertyDlg(..)

29

Game
Developers
Conference

March 2004

Importer Plug-in Interface
• Allows developers to bring in data from

other formats into RenderMonkey
– Custom engine scripts

• Flexible import association
– Users can select to import data to an entire

workspace (through File / Import)
– Or into a particular node

• That can be used to import textures or some other data
directly into nodes

• Single entry point:
– ImportNode(RmNode *pNodeToImportInto)

30

Game
Developers
Conference

March 2004

Exporter Plug-in Interface
• Developers can export contents of a

single node or the entire open workspace
(through File / Export menu option) into
their custom data format

– Our own FX exporter is written as this plug-
in type

• Entry point:
– ExportNode(RmNode *pNodeToExport)

31

Game
Developers
Conference

March 2004

Editor Plug-in Interface
• All editor widgets shipped with

RenderMonkey are editor plug-ins
• Developers can use this plug-in type to

create custom widgets
• Entry point:

HWND EditNode(HWND hParentWindow,
RmNode *pNode)

– Invoked by the main application whether a
user double-clicked on a node supported by
the plug-in or selected the plug-in through
“Edit with..” menu or by direct EditNode() call

32

Game
Developers
Conference

March 2004

Window Creation and
Management in RenderMonkey
• Application supports creation of Win32 and

MFC windows in plug-ins
• RenderMonkey allows plug-in developers to

create dialog windows, docking windows, MDI
child windows

– The latter two are created through entry points in the
application interface to ensure Visual Studio 6.0 and
.NET compatibility

• CreateDockingWindow(..)
• CreateMDIChildFrame(..)

– The actual contents of docking and MDI windows
can be added to the respective frame windows

– All main plug-in windows must be registered with the
application

• RegisterWindow()

33

Game
Developers
Conference

March 2004

Generator Plug-in Interface

• Used to create contents for particular
nodes or to create new nodes based on
the selected node information

– Procedural geometry generation
– Procedural texture generation

• Entry point:
– GenerateData(..)

34

Game
Developers
Conference

March 2004

Geometry Loader Plug-in Interface
• Used to load contents of geometry objects by

the application
– 3DS Loader / X / OBJ Loader plug-ins

• Invoked whenever a user selects a file to load
geometry for a model node

• Entry points:
– GetSupportedExtensions(..)

• The application uses this method to determine which model file
extensions it can support based on all of the geometry loader plug-
ins

– CanLoadGeometry(..)
• Tests whether this plug-in can load geometry data from a given file

– LoadGeometry(..)
• Actually load geometry data into the specified model node

35

Game
Developers
Conference

March 2004

Texture Loader Plug-in Interface
• Used to load contents of textures by the

application
• Invoked whenever a user selects a file to

load a texture
• Entry points:

– GetSupportedExtensions(..)
• The application uses this method to determine which

texture file extensions it can support based on all of the
texture loader plug-ins

– CanLoadTexture(..)
• Tests whether this plug-in can load texture data from a

given file

– LoadTexture(..)
• Actually load texture data into the specified model node

36

Game
Developers
Conference

March 2004

Support for Undoable Operations
• RenderMonkey allows developers create their

own complex undoable operations – it will
manage execution / redo of those

• Supports nested undoable operation
– Start making an undo op by calling
StartUndoMaking() with the op name

– If you wish to nest additional undos, call
StartUndoMaking() with a pointer to the parent
undo operation

• No limit on the number of nested undo ops

– EndUndoMaking() finishes compositing current undo
op – needs to be called as many times as
StartUndoMaking()

• Add the undoable operation and the app will
manage it

37

Game
Developers
Conference

March 2004

Application Preferences Management

• RenderMonkey has a number of
application preferences

– Editable by the user from the Edit /
Preferences menu

• Each plug-in can have its own property
page in that dialog

• Each plug-in can save that data in the
application registry file

– Use IRmRegistryManager interface from the
application via GetRegistryManager() call

38

Game
Developers
Conference

March 2004

SDK Utilities
• RenderMonkey SDK provides a number

of convenient classes:
– Custom array, linked list, stl-like vector,

string (with Unicode support) classes
– Math helper functions, math vector and

matrix classes and support
– Scene graph mesh definition with

hierarchical meshes
– Image loading and an integrated image

management library
– Automatic Windows hooks utilities

39

Game
Developers
Conference

March 2004

MFC Utilities

• To encourage a consistent look for all
plug-ins, RenderMonkey SDK provides a
number of MFC widgets:

– Numeric edit control with a popup slider
– Color buttons / sliders / color wheel
– Color picker widget
– Iconic menu
– And more…

40

Game
Developers
Conference

March 2004

Custom Plug-ins in the Making
and Future Ideas
• Engine interface plug-in:

– A plug-in connecting RenderMonkey and a running
game engine – it can receive node database
messages and reload and reapply shader in the
running engine to see the finale look

• Importer / Exporter plug-in
– Allows many developers to support their own data

format
• Custom editor widgets

– Create the look and feel consistent with your tools!
• Your imagination is the limit!

41

Game
Developers
Conference

March 2004

Future Work and Limitations

• Current version of the SDK doesn’t
provide support for full custom node
creation – we will be adding that in the
future

• Plug-ins toolbar menus (future versions)
• If you want a new feature – send us a

request!
rendermonkey@ati.com

mailto:rendermonkey@ati.com

42

Game
Developers
Conference

March 2004

Conclusion

• RenderMonkey SDK is a flexible,
powerful API for creating custom
components for a great shader
development IDE

• Puts the power into the hands of
developers

• We hope to see many new tools on the
base of this SDK!

43

Game
Developers
Conference

March 2004

Questions?

	Custom Component Development Using RenderMonkey SDK
	Overview
	Why Do We Need a Plug-in SDK?
	Plug-in Architecture Philosophy
	RenderMonkey Application Design
	Supported API and Compatibility
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	Application and SDK Layout
	SDK Includes and Libraries
	Plug-in Project Setup
	Plug-in DLL Organization
	Node Database Overview
	Node Database (cont.)
	Application Access
	XML Management
	Node Transactions
	Supported Transactions and Messages
	Additional Messages
	Plug-in Management
	Supported Plug-in Types
	Plug-in Description Structure
	Generic Plug-in Interface
	Importer Plug-in Interface
	Exporter Plug-in Interface
	Editor Plug-in Interface
	Window Creation and Management in RenderMonkey
	Generator Plug-in Interface
	Geometry Loader Plug-in Interface
	Texture Loader Plug-in Interface
	Support for Undoable Operations
	Application Preferences Management
	SDK Utilities
	MFC Utilities
	Custom Plug-ins in the Making and Future Ideas
	Future Work and Limitations
	Conclusion
	Questions?

