
CLE User Application Placement Guide
S-2496-5204

Contents
About CLE User Application Placement in CLE..4

Run Applications Using the aprun Command..6

Additional aprun Information..13

ALPS Environment Variables...14

How Application Placement Works..16

System Interconnnect Features Impacting Application Placement ..16

Display Application Status and Cray System Information using apstat...18

Display Job and Node Status using xtnodestat..20

Manual Node Selection Using the cnselect Command..22

How much Memory is Available to Applications?..24

Core Specialization..25

Launch an MPMD Application...26

Manage Compute Node Processors from an MPI Program..27

Batch Systems and Program Execution..28

Dynamic Shared Objects and Libraries (DSLs)...29

Configure Dynamic Shared Libraries (DSL) on CLE...29

Build, Launch, and Workload Management Using Dynamic Objects..30

Troubleshooting DSLs...33

Cluster Compatibility Mode in CLE..35

Cluster Compatibility Mode Commands..36

Start a CCM Batch Job..37

ISV Application Acceleration (IAA) ..38

Individual Software Vendor (ISV) Example...38

Troubleshooting IAA..39

Troubleshooting Cluster Compatibility Mode Issues..40

Disable CSA Accounting for the cnos Class View...42

Caveats and Limitations for CCM..42

The aprun Memory Affinity Options...44

The aprun CPU Affinity Option..44

Exclusive Access to a Node's Processing and Memory Resources..45

Optimize Process Placement on Multicore Nodes..45

Run a Basic Application...46

Run an MPI Application...47

Use the Cray shmem_put Function...49

Use the Cray shmem_get Function...51

()

 2
--

Run Partitioned Global Address Space (PGAS) Applications...53

Run an Accelerated Cray LibSci Routine..55

Run a PETSc Application..57

Run an OpenMP Application...65

Run an Interactive Batch Job...69

Use aprun Memory Affinity Options...71

Use aprun CPU Affinity Options...73

()

 3
--

About CLE User Application Placement in CLE
CLE User Application Placement in CLE is the replacement publication for Workload Management and
Application Placement for the Cray Linux Environment. The title was changed to more accurately reflect the
content, which no longer includes WLM specific information. Also, it has a new format that allows it to be easily
published as a PDF and also on the new Cray Publication Portal: http://pubs.cray.com.

Scope and Audience

This publication is intended for Cray system programmers and users.

Release Information

This publication includes user application placement information for Cray software release CLE5.2.UP04 and
supports Cray XE, Cray XK, and Cray XC Series systems. Changes included in this document include:

Added Information

▪ Added the error message "Fatal error detected by libibgni.so" and explanation to the Troubleshooting IAA on
page 39 section.

Revised Information

▪ ISV Application Acceleration (IAA) now supports up to 4096 processing elements per application.

▪ Modified the suggestions for running Intel-compiled code in the Run an OpenMP Application on page 65
example.

▪ An updated example was placed in Optimize Process Placement on Multicore Nodes on page 45.

▪ The example in Run an Accelerated Cray LibSci Routine on page 55 was corrected to call
libsci_acc_HostFree().

Deleted Information

▪ Specific details on creating a job script for any particular workload manager have been deleted.

▪ Removed -cp as an aprun CPU affinity option.

▪ Removed all references to the PathScale compiler, which is no longer supported.

Typographic Conventions

Monospace Monospaced text indicates program code, reserved words, library functions,
command-line prompts, screen output, file names, path names, and other software
constructs.

Monospaced Bold Bold monospaced text indicates commands that must be entered on a command
line or in response to an interactive prompt.

()

 4
--

http://pubs.cray.com

Oblique or Italics Oblique or italicized text indicates user-supplied values in commands or syntax
definitions.

Proportional Bold Proportional bold text indicates a graphical user interface window or element.

\ (backslash) A backslash at the end of a command line is the Linux® shell line continuation
character; the shell parses lines joined by a backslash as though they were a single
line. Do not type anything after the backslash or the continuation feature will not
work correctly.

Alt-Ctrl-f Monospaced hyphenated text typically indicates a keyboard combination.

Feedback

Please provide feedback by visiting http://pubs.cray.com and clicking the Contact Us button in the upper-right
corner, or by sending email to pubs@cray.com.

()

 5
--

http://pubs.cray.com
mailto:pubs@cray.com
mailto:pubs@cray.com

Run Applications Using the aprun Command
The aprun utility launches applications on compute nodes. The utility submits applications to the Application Level
Placement Scheduler (ALPS) for placement and execution, forwards the user's login node environment to the
assigned compute nodes, forwards signals, and manages the stdin, stdout, and stderr streams.

Use the aprun command to specify required resources, request application placement, and initiate application
launch. The basic format of the aprun command is as follows:

aprun [global_options] [command_options] cmd1 [: [command_options] cmd2
[: ...]] [--help] [--version]

Use the colon character (:) to separate the different options for separate binaries when running in MPMD
(Multiple Program Multiple Data) mode. Use the --help option to display detailed aprun command line usage
information. Use the --version option to display the ALPS version information.

The aprun command supports two general sets of arguments: global options and command options. The global
options apply to the execution command line as a whole and are as follows:

-b | --bypass-app-transfer Bypass application transfer to compute node

-B | --batch-args Get values from Batch reservation for -n, -N, -d, and -m

-C | --reconnect Reconnect fanout control tree around failed nodes

-D | --debug level Debug level bitmask (0-7)

-e | --environment-override env Set an environment variable on the compute nodes

Must use format VARNAME=value

Set multiple environment variables using multiple -e arguments

-m | --memory-per-pe size Per PE memory limit in megabytes (default node memory/number of
processors)

K|M|G suffix supported (16 == 16M == 16 megabytes)

Add an 'h' suffix to request per PE huge page memory

Add an 's' to the 'h' suffix to make the per PE huge page memory size strict
(required)

-P | --pipes pipes Write[,read] pipes (not applicable for general use)

-p | --protection-domain pdi Protection domain identifier

-q, --quiet Quiet mode; suppress aprun non-fatal messages

-R | --relaunch max_shrink Relaunch application; max_shrink is zero or more maximum PEs to shrink
for a relaunch

-T, --sync-output Use synchronous TTY

()

 6
--

-t, --cpu-time-limit sec Per PE CPU time limit in seconds (default unlimited)

The command options apply to individual binaries and can be set differently for each binary when operating in
MPMD mode. The command options are as follows:

-a | --architecture arch Architecture type

--cc | --cpu-binding cpu_list CPU binding list or keyword

([cpu#[,cpu# | cpu1-cpu2] | x]...] | keyword)

--cp | --cpu-binding-file file CPU binding placement filename

-d | --cpus-per-pe depth Number of CPUs allocated per PE (number of threads)

-E | --exclude-node-list node_list List of nodes to exclude from placement

--exclude-node-list-file node_list_file File with a list of nodes to exclude from placement

-F | --access-mode flag Exclusive or share node resources flag

-j | --cpus-per-cu CPUs CPUs to use per Compute Unit (CU)

-k | --knc-autonomous Place application for execution on Xeon Phi (KNC - Cray XC Series
only)

-L | --node-list node_list Manual placement list (node[,node | node1-node2]...)

-l | --node-list-file node_list_file File with manual placement list

-N | --pes-per-node pes PEs per node

-n | --pes width Number of PEs requested

--p-governor governor_name Specify application performance governor

--p-state pstate Specify application p-state in kHz

-r | --specialized-cpus CPUs Restrict this many CPUs per node to specialization

-S | --pes-per-numa-node pes PEs per NUMA node

--sl | --numa-node-list numa_node_list List of NUMA nodes to use (numa_node[,numa_node |
numa_node1-numa_node2]...)

--sn | --numa-nodes-per-node numa_nodes Maximum number of NUMA nodes used on compute node

--ss | --strict-memory-containment Strict memory containment per NUMA node

In more detail, the aprun options are as follows:
-a arch

Specifies the architecture type of the compute node on which the application will run; arch is
xt. If using aprun to launch a compiled and linked executable, do not include the -a option;
ALPS can determine the compute node architecture type from the ELF header (see the
elf(5) man page).

-b

Bypasses the transfer of the executable program to the compute nodes. By default, the
executable is transferred to the compute nodes during the aprun process of launching an
application.

-B

()

 7
--

Reuses the width, depth, nppn, and memory request options that were specified with the
batch reservation. This option obviates the need to specify aprun options -n, -d, -N, and -m.
aprun will exit with errors if these options are specified with the -B option.

-C

Attempts to reconnect the application-control fan-out tree around failed nodes and complete
application execution. To use this option, the application must use a programming model
that supports reconnect. Options -C and -R are mutually exclusive.

-cc cpu_list|keyword

Binds processing elements (PEs) to CPUs. CNL does not migrate processes that are bound
to a CPU. This option applies to all multicore compute nodes. The cpu_list is not used for
placement decisions, but is used only by CNL during application execution. For further
information about binding (CPU affinity), see The aprun CPU Affinity Option on page 44.

The cpu_list is a comma-separated list of logical CPU numbers and/or hyphen-separated
CPU ranges. It controls the cpu affinity of each PE task, and each descendent thread or
task of each PE, as they are created. (Collectively, "app tasks".) Upon the creation of each
app task, it is bound to the CPU in cpu_list corresponding to the number of app tasks that
have been created at that point. For example, the first PE created is bound to the first CPU
in cpu_list. The second PE created is bound to the second CPU in cpu_list (assuming the
first PE has not created any children or threads first). If more app tasks are created than
given in cpu_list, binding starts over at the beginning of cpu_list.

Instead of a CPU number, an x may be specified in any position or positions in
cpu_list. The app task that corresponds to this position will not be bound to any CPU.

The above behavior can result in undesireable and/or unpredictable behavior when more
than one PE on a node creates children or threads without synchronizing between
themselves. Because the app tasks are bound to CPUs in cpu_list in the order in which
they are created, unpredictable creation order will lead to unpredictable binding. To prevent
this, the user may specify a cpu_list per PE. Multiple cpu_lists are separated by colons
(:).

% aprun -n 2 -d 3 -cc 0,1,2:4,5,6 ./a.out
The example above contains two cpu_lists. The first (0,1,2) is applied to the first PE created
and any threads or child processes that result. The second (4,5,6) is applied to the second
PE created and any threads or child processes that result.

Out-of-range cpu_list values are ignored unless all CPU values are out of range, in which
case an error message is issued. For example, to bind PEs starting with the highest CPU on
a compute node and work down from there, use this -cc option:

% aprun -n 8 -cc 10-4 ./a.out
If the PEs were placed on Cray XE6 24-core compute nodes, the specified -cc range would
be valid. However, if the PEs were placed on Cray XK6 eight-core compute nodes, CPUs
10-8 would be out of range and therefore not used.

Instead of a cpu_list, the argument to the -cc option may be one of the following keywords:

▪ The cpu keyword (the default) binds each PE to a CPU within the assigned NUMA
node. Indicating a specific CPU is not necessary.

()

 8
--

▪ If a depth per PE (aprun -d depth) is specified, the PEs are constrained to CPUs with a
distance of depth between them to each PE's threads to the CPUs closest to the PE's
CPU.

▪ The -cc cpu option is the typical use case for an MPI application.

TIP: If CPUs are oversubscribed for an OpenMP application, Cray
recommends not using the -cc cpu default. Test the -cc none and -cc
numa_node options and compare results to determine which option
produces the better performance.

▪ The depth keyword can improve MPI rank and thread placement on Cray XC30 nodes
by assigning to a PE and its children a cpumask with -d (depth) bits set. If the -j option
is also used, only -j PEs will be assigned per compute unit.

▪ The numa_node keyword constrains PEs to the CPUs within the assigned NUMA node.
CNL can migrate a PE among the CPUs in the assigned NUMA node but not off the
assigned NUMA node.

▪ If PEs create threads, the threads are constrained to the same NUMA-node CPUs as
the PEs. There is one exception. If depth is greater than the number of CPUs per
NUMA node, when the number of threads created by the PE has exceeded the number
of CPUs per NUMA node, the remaining threads are constrained to CPUs within the
next NUMA node on the compute node. For example, on an 8-core XK node where
CPUs 0-3 are on NUMA node 0 and CPUs 4-7 are on NUMA node 1, if depth is 5,
threads 0-3 are constrained to CPUs 0-3 and thread 4 is constrained to CPUs 4-7.

▪ The none keyword allows PE migration within the assigned NUMA nodes.

-D value

The -D option value is an integer bitmask setting that controls debug verbosity, where:

▪ A value of 1 provides a small level of debug messages

▪ A value of 2 provides a medium level of debug messages

▪ A value of 4 provides a high level of debug messages

Because this option is a bitmask setting, value can be set to get any or all of the above
levels of debug messages. Therefore, valid values are 0 through 7. For example, -D 3
provides all small and medium level debug messages.

-d depth

Specifies the number of CPUs for each PE and its threads. ALPS allocates the number of
CPUs equal to depth times pes. The -cc cpu_list option can restrict the placement of
threads, resulting in more than one thread per CPU.

The default depth is 1.

For OpenMP applications, use both the OMP_NUM_THREADS environment variable to
specify the number of threads and the aprun -d option to specify the number of CPUs
hosting the threads. ALPS creates -n pes instances of the executable, and the executable
spawns OMP_NUM_THREADS-1 additional threads per PE. For an OpenMP example, see
Run an OpenMP Application on page 65.

The maximum permissible depth value depends on the types of CPUs installed on the Cray
system.

-e env

()

 9
--

Sets an environment variable on the compute nodes. The form of the assignment should be
of the form VARNAME=value. Multiple arguments with multiple, space-separated flag and
assignment pairings can be used, e.g., -e VARNAME1=value1 -e VARNAME2=value2, etc.

-F exclusive|share

exclusive mode provides a program with exclusive access to all the processing and
memory resources on a node. Using this option with the cc option binds processes to those
mentioned in the affinity string. share mode access restricts the application specific cpuset
contents to only the application reserved cores and memory on NUMA node boundaries,
meaning the application will not have access to cores and memory on other NUMA nodes
on that compute node. The exclusive option does not need to be specified because
exclusive access mode is enabled by default. However, if nodeShare is set to share in
alps.conf then use the -F exclusive to override the policy set in this file. Check the value
of nodeShare by executing apstat -svv | grep access.

-j num_cpus

Specifies how many CPUs to use per compute unit for an ALPS job. For more information
on compute unit affinity, see Using Compute Unit Affinity on Cray Systems (S-0030).

-k

(Cray XC Series only) Indicates that the application should be placed for execution on an
Intel Xeon Phi co-processor.

Note that executable programs must be built specially for execution on a Xeon Phi.
Otherwise, the following message will occur when attempting to run a program that was not
built specially for Xeon Phi: aprun: Binary not built for Xeon Phi. Cross-
compile your application or use -b to run a command. Commands which
are already present on the Xeon Phi may be run by adding the -b switch to bypass copying
the binary to the compute node.

Attempting to place an Xeon Phi application on a node that does not have a Xeon Phi
coprocessor will cause the following message: apsched: in user NIDs request
exceeds max resources

-L node_list

Specifies the candidate nodes to constrain application placement. The syntax allows a
comma-separated list of nodes (such as -L 32,33,40), a hyphen-separated range of nodes
(such as -L 41-87), or a combination of both formats. Node values can be expressed in
decimal, octal (preceded by 0), or hexadecimal (preceded by 0x). The first number in a
range must be less than the second number (8-6, for example, is invalid), but the nodes in
a list can be in any order.

If the placement node list contains fewer nodes than the number required, a fatal error is
produced. If resources are not currently available, aprun continues to retry.

The cnselect command is a common source of node lists. See the cnselect(1) man page
for details.

-m size[h|hs]

Specifies the per-PE required Resident Set Size (RSS) memory size in megabytes. K, M,
and G suffixes (case insensitive) are supported (16M = 16m = 16 megabytes, for example).
If the -m option is not included, the default amount of memory available to each PE equals
(compute node memory size) / (number of PEs) calculated for each compute node.

Use the h or hs suffix to allocate huge pages (2 MB) for an application.

()

 10
--

The use of the -m option is not required on Cray systems because the kernel allows the
dynamic creation of huge pages. However, it is advisable to specify this option and
preallocate an appropriate number of huge pages, when memory requirements are known,
to reduce operating system overhead.

-m sizeh Requests memory to be allocated to each PE, where memory is preferentially
allocated out of the huge page pool. All nodes use as much memory as they
are able to allocate and 4 KB base pages thereafter.

-m sizehs Requests memory to be allocated to each PE, where memory is allocated out
of the huge page pool. If the request cannot be satisfied, an error message is
issued and the application launch is terminated.

To use huge pages, first link the application with hugetlbfs:

% cc -c my_hugepages_app.c
% cc -o my_hugepages_app my_hugepages_app.o -lhugetlbfs
Set the huge pages environment variable at run time:

% setenv HUGETLB_MORECORE yes
Or

% export HUGETLB_MORECORE=yes
See the intro_hugepages(1) man page for further details.

-n pes

Specifies the number of processing elements (PEs) that the application requires. A PE is an
instance of an ALPS-launched executable. Express the number of PEs in decimal, octal, or
hexadecimal form. If pes has a leading 0, it is interpreted as octal (-n 16 specifies 16 PEs,
but -n 016 is interpreted as 14 PEs). If pes has a leading 0x, it is interpreted as
hexadecimal (-n 16 specifies 16 PEs, but -n 0x16 is interpreted as 22 PEs). The default
value is 1.

-N pes_per_node

Specifies the number of PEs to place per node. For Cray systems, the default is the number
of cores on the node.

-p protection domain identifier

Requests use of a protection domain using the user pre-allocated protection identifier. If
protection domains are already allocated by system services, this option cannot be used.
Any cooperating set of applications must specify this same aprun -p option to have access
to the shared protection domain. aprun will return an error if either the protection domain
identifier is not recognized or if the user is not the owner of the specified protection domain
identifier.

--p-governor governor_name
--p-governor sets a performance governor on compute nodes used by the application.
Choices are performance, powersave, userspace, ondemand, conservative.
See /usr/src/linux/Documentation/cpu-freq/governors.txt for details. --p-governor
cannot by used with --p-state.

()

 11
--

--p-state pstate
Specifies the CPU frequency used by the compute node kernel while running the
application. --p-state cannot be used with --p-governor.

-q

Specifies quiet mode and suppresses all aprun-generated non-fatal messages. Do not use
this option with the -D (debug) option; aprun terminates the application if both options are
specified. Even with the -q option, aprun writes its help message and any ALPS fatal
messages when exiting. Normally, this option should not be used.

-r cores

When cores > 0, core specialization is enabled. On each compute node, cores CPUs will be
dedicated to system tasks, and system tasks will not run on the CPUs on which the the
application is placed.

Whenever core specialization is enabled, the highest-numbered CPU will be used as one of
these system CPUs. When cores > 1, the additional system CPUs will be chosen from the
CPUs not selected for the application by the usual affinity options.

It is an error to specify cores > 0 and to include the highest-numbered CPU in the -cc
cpu_list option. It is an error to specify cores and a -cc cpu_list where the number of
CPUs in the cpu_list plus cores is greater than the number of CPUs on the node.

-R pe_dec

Enables application relaunch so that should the application experience certain system
failures, ALPS will attempt to relaunch and complete in a degraded manner. pe_dec is the
processing element (PE) decrement tolerance. If pe_dec is non-zero, aprun attempts to
relaunch with a maximum of pe_dec fewer PEs. If pe_dec is 0, aprun attempts relaunch with
the same number of PEs specified with original launch. Relaunch is supported per aprun
instance. A decrement count value greater than zero will fail for MPMD launches with more
than one element. aprun attempts relaunch with ec_node_failed and ec_node_halt
hardware supervisory system events only. Options -C and -R are mutually exclusive.

-S pes_per_numa_node

Specifies the number of PEs to allocate per NUMA node. Use this option to reduce the
number of PEs per NUMA node, thereby making more resources (such as memory)
available per PE.

The allowable values for this option vary depending on the types of CPUs installed on the
system. A zero value is not allowed and causes a fatal error. For further information, see
The aprun Memory Affinity Options on page 44.

-sl list_of_numa_nodes

Specifies the NUMA node or nodes (comma- or hyphen-separated list) to use for application
placement. A space is required between -sl and list_of_numa_nodes.

List NUMA nodes in ascending order; -sl 1-0 and -sl 1,0 are invalid.

-sn numa_nodes_per_node

Specifies the number of NUMA nodes per node to be allocated. A space is required
between -sn and numa_nodes_per_node.

A zero value is not allowed and is a fatal error.

-ss

()

 12
--

Specifies strict memory containment per NUMA node. When -ss is specified, a PE can
allocate only the memory that is local to its assigned NUMA node.

The default is to allow remote-NUMA-node memory allocation to all assigned NUMA nodes.
Use this option to find out if restricting each PE's memory access to local-NUMA-node
memory affects performance.

-T

Synchronizes the application's stdout and stderr to prevent interleaving of its output.

-t sec

Specifies the per-PE CPU time limit in seconds. The sec time limit is constrained by the
CPU time limit on the login node. For example, if the time limit on the login node is 3600
seconds but a -t value of 5000 is specified, the application is constrained to 3600 seconds
per PE. If the time limit on the login node is unlimited, the sec value is used (or, if not
specified, the time per-PE is unlimited). Determine the CPU time limit by using the limit
command (csh) or the ulimit -a command (bash).

For OpenMP or multithreaded applications where processes may have child tasks, the time
used in the child tasks accumulates against the parent process. Thus, it may be necessary
to multiply the sec value by the depth value in order to get a real-time value approximately
equivalent to the same value for the PE of a non-threaded application.

: (colon)

Separates the names of executables and their associated options for Multiple Program,
Multiple Data (MPMD) mode. A space is required before and after the colon.

Additional aprun Information
Usage Output String

utime, stime, maxrss, inblocks and outblocks are printed to stdout upon application exit. The values
given are approximate as they are a rounded aggregate scaled by the number of resources used. For more
information on these values, see the getrusage(2) man page.

aprun Input and Output Modes

The aprun utility handles standard input (stdin) on behalf of the user and handles standard output (stdout)
and standard error messages (stderr) for user applications.

aprun Resource Limits

The aprun utility does not forward its user resource limits to each compute node (except for RLIMIT_CORE and
RLIMIT_CPU, which are always forwarded).

To enable the forwarding of user resource limits, set the APRUN_XFER_LIMITS environment variable to 1 (export
APRUN_XFER_LIMITS=1 or setenv APRUN_XFER_LIMITS 1) . For more information, see the getrlimit(P)
man page.

()

Additional aprun Information 13
--

aprun Signal Processing

The aprun utility forwards the following signals to an application:

▪ SIGHUP
▪ SIGINT
▪ SIGQUIT
▪ SIGTERM
▪ SIGABRT
▪ SIGUSR1
▪ SIGUSR2
▪ SIGURG
▪ SIGWINCH
The aprun utility ignores SIGPIPE and SIGTTIN signals. All other signals remain at default and are not forwarded
to an application. The default behaviors that terminate aprun also cause ALPS to terminate the application with a
SIGKILL signal.

Reserved File Descriptors

The following file descriptors are used by ALPS and should not be closed by applications: 100, 102, 108, 110.

ALPS Environment Variables
The following environment variables modify the behavior of aprun:

APRUN_DEFAULT_MEMORY Specifies the default per PE memory size. An explicit aprun -m value overrides this
setting.

APRUN_XFER_LIMITS Sets the rlimit() transfer limits for aprun. If this is set to a non-zero string, aprun
will transfer the {get,set}rlimit() limits to apinit, which will use those limits
on the compute nodes. If it is not set or set to 0, none of the limits will be transferred
other than RLIMIT_CORE, RLIMIT_CPU, and possibly RLIMIT_RSS.

APRUN_SYNC_TTY Sets synchronous tty for stdout and stderr output. Any non-zero value enables
synchronous tty output. An explicit aprun -T value overrides this value.

PGAS_ERROR_FILE Redirects error messages issued by the PGAS library (libpgas) to standard output
stream when set to stdout. The default is stderr.

CRAY_CUDA_MPS Overrides the site default for execution in simultaneous contexts on GPU-equipped
nodes. Setting CRAY_CUDA_MPS to 1 or on will explicitly enable the CUDA proxy. To
explicitly disable CUDA proxy, set to 0 or off. Debugging and use of performance
tools to collect GPU statistics is only supported with the CUDA proxy disabled.

()

ALPS Environment Variables 14
--

APRUN_PRINT_APID When this variable is set and output is not suppressed with the -q option, the APID
will be displayed upon launch and/or relaunch.

ALPS will pass values to the following application environment variable:

ALPS_APP_DEPTH Reflects the aprun -d value as determined by apshepherd. The default is 1. The value can
be different between compute nodes or sets of compute nodes when executing a MPMD
job. In that case, an instance of apshepherd will determine the appropriate value locally for
an executable.

()

ALPS Environment Variables 15
--

How Application Placement Works
The aprun placement options are -n, -N, -d, and -m. ALPS attempts to use the smallest number of nodes to fulfill
the placement requirements specified by the -n, -N, -d, -S, -sl, -sn, and/or -m values. For example, the
command:

% aprun -n 16 ./a.out
places 16 PEs on:

▪ one Cray XC30 compute node

▪ one Cray XE6 dual-socket, 16-core compute node

▪ two Cray XK7 single-socket, 12-core compute nodes

Note that Cray XK nodes are populated with single-socket host processors. There is still a one-to-one
relationship between PEs and host processor cores.

The memory and CPU affinity options are optimization options, not placement options. Use memory affinity
options if there is a concern that remote-NUMA-node memory references are reducing performance. Use CPU
affinity options if there is a concern that process migration is reducing performance.

For examples showing how to use memory affinity options, see Use aprun Memory Affinity Options on page 71.
For examples showing how to use CPU affinity options, see Use aprun CPU Affinity Options on page 73.

System Interconnnect Features Impacting Application Placement
ALPS uses interconnect software to make reservations available to workload managers through the BASIL API.
The following interconnect features are used through ALPS to allocate system resources and ensure application
resiliency using protection and communication domains:

▪ (Cray XE/XK systems) Node Translation Table (NTT) - assists in addressing remote nodes within the
application and enables software to address other NICs within the resource space of the application. NTTs
have a value assigned to them called the granularity value. There are 8192 entries per NTT, which represents
a granularity value of 1. For applications that use more than 8192 compute nodes, the granularity value will be
greater than 1.

▪ (Cray XE/XK systems) Protection Tag (pTag) - an 8-bit identifier that provides for memory protection and
validation of incoming remote memory references. ALPS assigns a pTag-cookie pair to an application. This
prevents application interference when sharing NTT entries. This is the default behavior of a private protection
domain model. A flexible protection domain model allows users to share memory resources amongst their
applications. For more information, see Run Applications Using the aprun Command on page 6.

▪ (Cray XC Series systems) Two 16-bit Protection Keys (pKeys) are allocated instead of one pTag, and the
pKey values are part of the cookie.

()

System Interconnnect Features Impacting Application Placement 16
--

▪ Cookies - an application-specific identifier that helps sort network traffic meant for different layers in the
software stack.

▪ Programmable Network Performance Counters - memory mapped registers in the interconnect ASIC that
ALPS manages for use with CrayPat (Cray performance analysis tool). Applications can share a one
interconnect ASIC, but only one application can have reserved access to performance counters (2 nodes in
Gemini, 4 nodes in Aries). Other applications may run on the ASIC if they do not need performance counters.

(Cray XC Series systems) The Aries ASIC network performance counters operate as described in Using the
Aries Hardware Counters (S-0045) and the nwpc(5) man page.

()

System Interconnnect Features Impacting Application Placement 17
--

Display Application Status and Cray System
Information using apstat

The apstat utility produces tables of status information about the Cray system, the computing resources on it, and
pending and placed applications. The apstat utility does not report dynamic run time information about any given
application, so the display does not imply anything about the running state of an application. The apstat display
merely shows that an application has been placed, and that the aprun claim against the reserved resources has
not yet been released.

The apstat command syntax is as follows.

apstat [OPTION...]

The apstat command supports the following options.

Table 1. Table Output

Option Action

-a, --applications Displays applications

-C, --cleanup Displays cleanup information

-G, --accelerators Displays GPU accelerators

-K, --co-processors Displays Xeon Phi co-processors

-n, --nodes Displays nodes

-p, --pending-applications Displays pending applications

-P, --protection-domains Displays protection domains

-r, --reservations Displays reservations

Table 2. Node Table Options (with -n)

Option Action

-c, --cpus-per-node In Compute Node Summary, break down architecture
column by CPUs per node

--no-summary Do not print the node summary table

-o, --placement-order Do not force sorted NIDs in output

-z, --zeros Replace '-' with '0' in cells

()

 18
--

Table 3. Common Options

Option Action

-A, --apid-list apid_list Filter all table rows unrelated to the given space-
separated list of apids. Must be the final argument
provided.

-f, --format format Specifies columns to output in a table as a comma
separated list. For example, 'apstat -n -f 'NID,HW,PEs'

--no-headers Don't print table headers

-N, --node-list node_list Filter all table rows unrelated to the given space-
separated list of nodes. Must be the final argument
provided.

-R, --resid-list resid_list Filter all table rows unrelated to the given space-
separated list of resids. Must be the final argument
provided.

--tab-delimit Output tab delimiter separated values. Use --no-
headers to omit column headers.

-v, --verbose Provide more detailed output (on a global basis).
Repeated usage may result in even more verbose
output.

-X, --allow-stale-appinfo Do not try to detect stale data.

Table 4. Other Options

Option Action

-s, --statistics Displays scheduler statistics

--help Shows this help message

--version Displays version information

The apstat utility only reports information about the current state of the system and does not change anything.
Therefore, it is safe to experiment with the options. For example, enter these commands:

apstat -a To see who is currently running what applications on the system and what resources the applications
are using.

apstat -n To see the current status of every compute node on the system.

apstat -p To see all pending applications.

apstat -r To see the current node reservations.

apstat -G To see the current status of every node on the system that is equipped with a GPU accelerator, and
to see which accelerator GPUs are installed.

apstat -K To see the current status of every node on the system that is equipped with an Intel Xeon Phi
Coprocessor.

()

 19
--

The contents of the reports produced by the apstat utility vary, depending on the report selected and the
hardware features of the Cray system. For more information about the information reported and the definitions of
report column headers, see the apstat(1) man page.

Display Job and Node Status using xtnodestat
The xtnodestat utility is another way to display current job and node status. The output is a simple two-
dimensional text grid representing each node and its current status. Each character in the display represents a
single node. For systems running a large number of jobs, multiple characters may be used to designate a job. The
following was executed on a Cray XE system. Output on a Cray XC series system is slightly different; in particular,
the s (slot) numbers along the bottom are hexadecimal.

% xtnodestat
Current Allocation Status at Tue Jul 21 13:30:16 2015

 C0-0 C1-0 C2-0 C3-0
 n3 -------- ------X- -------- ------A-
 n2 -------- -------- --a----- --------
 n1 -------- -------A -----X-- --------
c2n0 -------- -------- -------- --------
 n3 X------- -------- -------- --------
 n2 -------- -------- -------- --------
 n1 -------- -------- -------- --------
c1n0 -------- ----X--- -------- --------
 n3 S-S-S-S- -e------ --X----X bb-b----
 n2 S-S-S-S- cd------ -------- bb-b----
 n1 S-S-S-SX -g------ -------- bb------
c0n0 S-S-S-S- -f------ -------- bb------
 s01234567 01234567 01234567 01234567

Legend:
 nonexistent node S service node
; free interactive compute node - free batch compute node
A allocated interactive or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 343 batch

Job ID User Size Age State command line
--- ------ -------- ----- --------- -------- -------------------
a 762544 user1 1 0h00m run test_zgetrf
b 760520 user2 10 1h28m run gs_count_gpu
c 761842 user3 1 0h40m run userTest
d 761792 user3 1 0h45m run userTest
e 761807 user3 1 0h43m run userTest
f 755149 user4 1 5h13m run lsms
g 761770 user3 1 0h47m run userTest
The xtnodestat utility reports the allocation grid, a legend, and a job listing. The column and row headings of the
grid show the physical location of jobs: C represents a cabinet, c represents a chassis, s represents a slot, and n
represents a node.

()

Display Job and Node Status using xtnodestat 20
--

The xtnodestat command line supports three options. The -d and -m options suppress the listing of current jobs.
The xtnodestat -j command is equivalent to the apstat -a command. For more information, see the
xtnodestat(1) man page.

()

Display Job and Node Status using xtnodestat 21
--

Manual Node Selection Using the cnselect Command
The aprun utility supports manual and automatic node selection. For manual node selection, first use the cnselect
command to get a candidate list of compute nodes that meet the specified criteria. Then, for interactive jobs use
the aprun -L node_list option.

The format of the cnselect command is:

cnselect [-l] [-L fieldname] [-U] [-D] [-c] [-V] [[-e] expression]

Where:

▪ -l lists the names of fields in the compute nodes attributes database.

The cnselect utility displays NIDs either sorted in ascending order or unsorted. For some sites, node IDs are
presented to ALPS in non-sequential order for application placement. Site administrators can specify non-
sequential node ordering to reduce system interconnect transfer times.

▪ -L fieldname lists the current possible values for a given field.

▪ -U causes the user-supplied expression to not be enclosed in parentheses but combined with other built-in
conditions. This option may be needed if other SQL qualifiers (such as ORDER BY) are added to the
expression.

▪ -V prints the version number and exits.

▪ -c gives a count of the number of nodes rather than a list of the nodes themselves.

▪ [-e] expression queries the compute node attributes database.

Example 1

cnselect can get a list of nodes selected by such characteristics as the number of cores per node
(numcores), the amount of memory on the node (in megabytes), and the processor speed (in
megahertz). For example, to run an application on Cray XK6 16-core nodes with 32 GB of
memory or more, use:

% cnselect numcores.eq.16 .and. availmem.gt.32000
268-269,274-275,80-81,78-79
% aprun -n 32 -L 268-269 ./app1

The cnselect utility returns -1 to stdout if the numcores criteria cannot be met; for example
numcores.eq.16 on a system that has no 16-core compute nodes.

Example 2

cnselect can also get a list of nodes if a site-defined label exists. For example, to run an
application on six-core nodes:

()

 22
--

% cnselect -L label1
HEX-CORE
DODEC-CORE
16-Core
% cnselect -e "label1.eq.'HEX-CORE'"
60-63,76,82
% aprun -n 6 -L 60-63,76,82 ./app1

If the -L option is not included on the aprun command, ALPS automatically places the application
using available resources.

()

 23
--

How much Memory is Available to Applications?
When running large applications, it is important to understand how much memory will be available per node. Cray
Linux Environment (CLE) uses memory on each node for CNL and other functions such as I/O buffering, core
specialization, and compute node resiliency. The remaining memory is available for user executables, user data
arrays, stacks, libraries and buffers, and the SHMEM symmetric stack heap.

The amount of memory CNL uses depends on the number of cores, memory size, and whether optional software
has been configured on the compute nodes. For a 24-core node with 32 GB of memory, roughly 28.8 to 30 GB of
memory is available for applications.

The default stack size is 16 MB. The maximum stack size is determined using the limit command (csh) or the
ulimit -a command (bash). Note that the actual amount of memory CNL uses varies depending on the total
amount of memory on the node and the OS services configured for the node.

Use the aprun -m size option to specify the per-PE memory limit. For example, the following command launches
xthi on cores 0 and 1 of compute nodes 472 and 473. Each node has 8 GB of available memory, allowing 4 GB
per PE.

% aprun -n 4 -N 2 -m4000 ./xthi | sort
Application 225108 resources: utime ~0s, stime ~0s
PE 0 nid00472 Core affinity = 0,1
PE 1 nid00472 Core affinity = 0,1
PE 2 nid00473 Core affinity = 0,1
PE 3 nid00473 Core affinity = 0,1
% aprun -n 4 -N 2 -m4001 ./xthi | sort
Claim exceeds reservation's memory
The MPI buffer sizes and stack space defaults are changed by setting certain environment variables. For more
details, see the intro_mpi(3) man page.

()

 24
--

Core Specialization
CLE (Cray Linux Enviornment) offers core-specialization functionality. Core specialization binds sets of Linux
kernel-space processes and daemons to one or more cores within a Cray compute node. This enables the
software application to fully utilize the remaining cores within its cpuset. All possible overhead processing is
resticted to the specialized cores within the reservation. This may improve application performance.

To calculate the new "scaled-up" width for a batch reservation using core specialization, use the apcount tool.
apcount only works if the system has uniform compute node types. See the apcount(1) man page for further
information.

()

 25
--

Launch an MPMD Application
The aprun utility supports multiple-program, multiple-data (MPMD) launch mode. To run an application in MPMD
mode under aprun, use the colon-separated -n pes executable1 : -n pes executable2 : ... format. In the first
executable segment other aprun options such as -cc, -cp, -d, -L, -n, -N, -S, -sl, -sn, and -ss are valid. The -m
option (if used) must be specified in the first executable segment and the value is used for all subsequent
executables. If -m is specified more than once while launching multiple applications in MPMD mode, aprun will
return an error. For MPI applications, all of the executables share the same MPI_COMM_WORLD process
communicator.

For example, this command launches 128 instances of program1 and 256 instances of program2. Note that a
space is required before and after the colon.

% aprun -n 128 ./program1 : -n 256 ./program2
(Cray XE/XK systems) MPMD applications that use the SHMEM parallel programming model, either standalone
or nested within an MPI program, are not supported.

()

 26
--

Manage Compute Node Processors from an MPI
Program

MPI programs should call the MPI_Finalize() routine at the conclusion of the program. This call waits for all
processing elements to complete before exiting. If one of the programs fails to call MPI_Finalize(), the
program never completes and aprun stops responding. There are two ways to prevent this behavior:

▪ Use the workload manager's elapsed (wall clock) time limit to terminate the job after a specified time limit
(such as -l walltime=HH:MM:SS for PBS).

▪ Use the aprun -t sec option to terminate the program. This option specifies the per-PE CPU time limit in
seconds. A process will terminate only if it reaches the specified amount of CPU time (not wallclock time).

For example, if the application is run using:

% aprun -n 8 -t 120 ./myprog1
and a PE uses more than two minutes of CPU time, the application terminates.

()

 27
--

Batch Systems and Program Execution
At most sites, access to the compute node resources is managed by a batch control system, typically PBS Pro,
Moab HPC Suite, TORQUE Resource Manager, Platform LSF, or Slurm. Users run jobs either by using the qsub
command to submit a job script (or the equivalent command for their batch control system), or else by using the
qsub command (or its equivalent) to request an interactive session within the context of the batch system, and
then using the aprun command to run the application within the interactive session. Details for creating and
submitting jobs through a specific workload manager are available through the vendor.

User applications are always launched on compute nodes using the application launcher, aprun, which submits
applications to the Application Level Placement Scheduler (ALPS) for placement and execution. The ALPS
service is both very powerful and highly flexible, and a thorough discussion of it is beyond the scope of this
manual. For more detailed information about ALPS and aprun, see the intro_alps(1) and aprun(1) man pages,
and Application Placement for the Cray Linux Environment.

Running an application typically involves these steps.

1. Determine what system resources are needed. Generally, this means deciding how many cores and/or
compute nodes are needed for the job.

2. Use the apstat command to determine whether the resources needed are available. This is very important
when planning to run in an interactive session. This is not as important if submitting a job script, as the batch
system will keep the job script in the queue until the resources become available to run it.

3. Translate the resource request into the appropriate batch system and aprun command options, which are not
necessarily the same. If running a batch job, modify the script accordingly.

4. For batch job submission, use the batch command (e.g., qsub) to submit the job script that launches the job.

5. For interactive job submission, there are two ways to reserve the needed resources and launch an
application:

▪ First, use the appropriate batch command with interactive option (e.g., qsub -I) to explicitly reserve
resources. Then, enter the aprun command to launch your application.

▪ Omit explicit reservation through qsub -I. Using aprun assumes interactive session and resources are
implicitly reserved based on aprun options.

()

 28
--

Dynamic Shared Objects and Libraries (DSLs)
Cray supports dynamically linking applications with shared objects and libraries. Dynamic shared objects allow for
use of multiple programs that require the same segment of memory address space to be used during linking and
compiling. Also, when shared libraries are changed or upgraded, users do not need to recompile dependent
applications. Cray Linux Environment (CLE) uses Cray Data Virtualization Service (Cray DVS) to project the
shared root onto the compute nodes. Thus, each compute node, using its DVS-projected file system
transparently, calls shared libraries located at a central location.

About the Compute Node Root Run Time Environment

CLE facilitates compute node access to the Cray system shared root by projecting it through Cray DVS. DVS is
an I/O forwarding mechanism that provides transparent access to remote file systems, while reducing client load.
DVS allows users and applications running on compute nodes access to remote POSIX-compliant file systems.

ALPS runs with applications that use read-only shared objects. When a user runs an application, ALPS launches
the application to the compute node root. After installation, the compute node root is enabled by default. However,
an administrator can define the default case (DSO support enabled or disabled) per site policy. Users can override
the default setup by setting an environment variable, CRAY_ROOTFS.

DSL Support

CLE supports DSLs for the following cases:

▪ Linking and loading against programming environments supported by Cray

▪ Use of standard Linux services usually found on service nodes.

Launching terminal shells and other programming language interpreters by using the compute node root are
not currently supported by Cray.

▪ Allowing sites to install DSLs provided by ISVs, or others, into the shared root in order to project them to the
compute nodes for users

Configure Dynamic Shared Libraries (DSL) on CLE
The shared root /etc/opt/cray/cnrte/roots.conf file contains site-specific values for custom root file systems.
To specify a different pathname for roots.conf, edit the configuration file /etc/sysconfig/xt and change the
value for the variable, CRAY_ROOTFS_CONF. In the roots.conf file, the system default compute node root used is
specified by the symbolic name DEFAULT. If no default value is specified, / will be assumed. In the following

()

Configure Dynamic Shared Libraries (DSL) on CLE 29
--

example segment of roots.conf, the default case uses the root mounted at on the compute nodes dynamic
shared libraries, /dsl:

DEFAULT=/dsl
INITRAMFS=/
DSL=/dsl

A user can override the system default compute node root value by setting the environment variable,
CRAY_ROOTFS, to a value from the roots.conf file. This setting effectively changes the compute node root used
for launching jobs. For example, to override the use of /dsl, enter something similar to the following example at
the command line on the login node:

% export CRAY_ROOTFS=INITRAMFS
If the system default is using initramfs, enter the following command on the login node to switch to using the
compute node root path specified by DSL:

% export CRAY_ROOTFS=DSL
An administrator can modify the contents of this file to restrict user access. For example, if the administrator
wants to allow applications to launch only by using the compute node root, the roots.conf file would read as
follows:

% cat /etc/opt/cray/cnrte/roots.conf
DEFAULT=/dsl
For more information, see CLE System Administration Guide.

Build, Launch, and Workload Management Using Dynamic
Objects

Search order is an important detail to consider when compiling and linking executables. The dynamic linker uses
the following search order when loading a shared object:

1. Value of LD_LIBRARY_PATH environment variable.

2. Value of RPATH in the header of the executable, which is set using the ld -rpath command. A user can add a
directory to the run time library search path using the ld command. However, when a supported Cray
programming environment is used, the library search path is set automatically. For more information please
see the ld(1) man page.

3. The contents of the human non-readable cache file /etc/ld.so.cache. The /etc/ld.so.conf contains a list of
colon, space, tab, newline, or comma-separated path names to which the user can append custom paths. For
complete details, see the ldconfig(8) man page.

4. The paths /lib and /usr/lib.

When there are entries in LD_LIBRARY_PATH and RPATH, those directory paths are searched first for each
library that is referenced by the run time application. This affects the run time for applications, particularly at
higher node counts. For this reason, the default programming environment does not use LD_LIBRARY_PATH.

Other useful environment variables are listed in the ld.so(8) man page. If a programming environment module is
loaded when an executable that uses dynamic shared objects is running, it should be the same programming

()

Build, Launch, and Workload Management Using Dynamic Objects 30
--

environment used to build the executable. For example, if a program is built using the Cray compiler, the user
should load the module, PrgEnv-cray, when setting the environment to launch the application.

Example 1: Compile an application

Dynamically compile the following program, reduce_dyn.c, by including the compiler option dynamic.

The C version of the program, reduce_dyn.c, looks like:

/* program reduce_dyn.c */
#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argv[])
{
 int i, sum, mype, npes, nres, ret;
 ret = MPI_Init (&argc, &argv);
 ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);
 ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);
 nres = 0;
 sum = 0;

 for (i = mype; i <=100; i += npes)
 {
 sum = sum + i;
 }
 (void) printf ("My PE:%d My part:%d\n",mype, sum);
 ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);

 if (mype == 0)
 {
 (void) printf ("PE:%d Total is:%d\n",mype, nres);
 }
 ret = MPI_Finalize ();
}

Invoke the C compiler using cc and the dynamic option:

% cc -dynamic reduce_dyn.c -o reduce_dyn
Alternatively, use the environment variable, XTPE_LINK_TYPE, without any extra compiler options:

% export XTPE_LINK_TYPE=dynamic
% cc reduce_dyn.c -o reduce_dyn

To determine if an executable uses a shared library, execute the ldd command:

% ldd reduce_dyn
libsci.so => /opt/xt-libsci/10.3.7/pgi/lib/libsci.so (0x00002b1135e02000)
libfftw3.so.3 => /opt/fftw/3.2.1/lib/libfftw3.so.3 (0x00002b1146e92000)
libfftw3f.so.3 => /opt/fftw/3.2.1/lib/libfftw3f.so.3 (0x00002b114710a000)
libsma.so => /opt/mpt/3.4.0.1/xt/sma/lib/libsma.so (0x00002b1147377000)
libmpich.so.1.1 => /opt/mpt/3.4.0.1/xt/mpich2-pgi/lib/libmpich.so.1.1
(0x00002b11474a0000)
librt.so.1 => /lib64/librt.so.1 (0x00002b114777a000)
libpmi.so => /opt/mpt/3.4.0.1/xt/pmi/lib/libpmi.so (0x00002b1147883000)
libalpslli.so.0 => /opt/mpt/3.4.0.1/xt/util/lib/libalpslli.so.0
(0x00002b1147996000)
libalpsutil.so.0 => /opt/mpt/3.4.0.1/xt/util/lib/libalpsutil.so.0

()

Build, Launch, and Workload Management Using Dynamic Objects 31
--

(0x00002b1147a99000)
libportals.so.1 => /opt/xt-pe/2.2.32DSL/lib/libportals.so.1 (0x00002b1147b9c000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00002b1147ca8000)
libm.so.6 => /lib64/libm.so.6 (0x00002b1147dc0000)
libc.so.6 => /lib64/libc.so.6 (0x00002b1147f15000)
/lib64/ld-linux-x86-64.so.2 (0x00002b1135ce6000)

There are shared object dependencies listed for this executable. Fore more information, consult the ldd(1) man
page.

Example 2: Run an application in interactive mode

If the system administrator has set up the compute node root run time environment for the default case, then the
user executes aprun without any further argument:

% aprun -n 6 ./reduce_dyn
However, if the administrator sets up the system to use initramfs, then the user must set the environment
variable appropriately:

% export CRAY_ROOTFS=DSL
% aprun -n 6 ./reduce_dyn | sort
Application 1555880 resources: utime 0, stime 8
 My PE:0 My part:816
 My PE:1 My part:833
 My PE:2 My part:850
 My PE:3 My part:867
 My PE:4 My part:884
 My PE:5 My part:800
 PE:0 Total is:5050

Example 3: Run an application using a workload management system

Running a program interactively using a workload management system such as PBS or Moab and TORQUE with
the compute node root is essentially the same as running with the default environment. One exception is that if
the compute node root is not the default execution option, the user must set the environment variable after
running the batch scheduler command, qsub:

% qsub -I -lmppwidth=4
% export CRAY_ROOTFS=DSL

Alternatively, use -V option to pass environment variables to the PBS or Moab and TORQUE job:

% export CRAY_ROOTFS=DSL
% qsub -V -I -lmppwidth=4

Example 4: Running a program using a batch script

Create the following batch script, reduce_script, to launch the reduce_dyn executable:

#!/bin/bash
#reduce_script
Define the destination of this job
as the queue named "workq":
#PBS -q workq
#PBS -l mppwidth=6
Tell WMS to keep both standard output and

()

Build, Launch, and Workload Management Using Dynamic Objects 32
--

standard error on the execution host:
#PBS -k eo
cd /lus/nid00008/crayusername
module load PrgEnv-pgi
aprun -n 6 ./reduce_dyn
exit 0

Then launch the script using the qsub command:

% export CRAY_ROOTFS=DSL
% qsub -V reduce_script
1674984.sdb
% cat reduce_script.o1674984
Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.
My PE:5 My part:800
My PE:4 My part:884
My PE:1 My part:833
My PE:3 My part:867
My PE:2 My part:850
My PE:0 My part:816
PE:0 Total is:5050
Application 1747058 resources: utime ~0s, stime ~0s

Troubleshooting DSLs
Some of the more common issues are described here.

Error While Launching with aprun: "error while loading shared libraries"

If an error similar to the following occurs, the environment may not be configured to launch applications using
shared objects. Set the environment variable CRAY_ROOTFS to the appropriate value as prescribed in Example 2:
Run an application in interactive mode on page 32.

error while loading shared libraries: libsci.so: cannot open shared object file:
No such file or directory

Running an Application Using a Non-existent Root

If CRAY_ROOTFS is erroneously set to a file system not specified in roots.conf, aprun will exit with the following
error:

% set CRAY_ROOTFS=WRONG_FS
% aprun -n 4 -N 1 ./reduce_dyn
aprun: Error from DSL library: Could not find shared root symbol WRONG_FS,
specified by env variable CRAY_ROOTFS, in config file: /etc/opt/cray/cnrte/
roots.conf

aprun: Exiting due to errors. Application aborted

()

Troubleshooting DSLs 33
--

Performance Implications of Using Dynamic Shared Objects

Using dynamic libraries may introduce delays in application launch times because of shared object loading and
remote page faults. Such delays are an inevitable result of the linking process taking place at execution and the
relative inefficiency of symbol lookup in DSOs. Likewise, binaries that are linked dynamically may cause a small
but measurable performance degradation during execution. If this delay is unacceptable, link the application with
static libraries.

()

Troubleshooting DSLs 34
--

Cluster Compatibility Mode in CLE
A Cray system is not a cluster but a massively parallel processing (MPP) computer. An MPP is one computer with
many networked processors used for distributed computation, and, in the case of Cray system architectures, a
high-speed communications interface that facilitates optimal bandwidth and memory operations between those
processors. When operating as an MPP machine, the Cray compute node kernel (Cray CNL) typically does not
have a full set of the Linux services available that are used in cluster ISV applications.

Cluster Compatibility Mode (CCM) is a software solution that provides the services needed to run most cluster-
based independent software vendor (ISV) applications out-of-the-box with some configuration adjustments. It is
built on top of the compute node root runtime environment (CNRTE), the infrastructure that provides dynamic
library support in Cray systems.

CCM Implementation

CCM may be coupled to the workload management system. It enables users to execute cluster applications
together with workload-managed jobs that are running in a traditional MPP batch or interactive queue. Essentially,
CCM uses the batch system to logically designate part of the Cray system as an emulated cluster for the duration
of the job.

Figure 1. Cray System Job Distribution Cross-section

ccm_queue workq

Service Nodes
Free Compute Nodes
Traditional Batch Job
Cluster Compatibility Mode
Application

Cluster Compatibility Mode
batch queue

MPP job batch queue

Users provision the emulated cluster by launching a batch or interactive job in LSF, PBS, Moab and TORQUE, or
Slurm using a CCM-specific queue. The user-specified nodes in the batch reservation are no longer available for
MPP jobs for the duration of the CCM job. These nodes can be found in the user directory:
$HOME/.crayccm/ccm_nodelist.$PBS_JOBID or $HOME/.crayccm/ccm_nodelist.$LSF_JOBID where the file name
suffix is the unique job identification created by the batch reservation. The user launches the application using

()

 35
--

ccmrun. When the job terminates, the applications clean up and the nodes are then returned to the free pool of
compute nodes.

Figure 2. CCM Job Flow Diagram

Nodes are provisioned and
placed in ccm_queue using
qsub or bsub

MPP/workq

MPP/workq

Free MPP compute nodes

Cluster job nodes are
returned as free MPP
compute nodes

User runs application using
ccmrun with batch
script or interactively

Application terminates
and CCM processes
cleanup

qsub -v -I -q ccm_queue -lmppwidth=1 bsub -v -Is -nl -q ccm_queue

ccmrun -nl-appl

“Application 119003 2 resources: utime ~985s,stime ~13s”

Installation and Configuration of Applications for CCM

Users are encouraged to install programs using their local scratch directory and set paths accordingly to use
CCM. However, if an ISV application requires root privileges, the site administrator must install the application on
the boot node's shared root in xtopview. Compute nodes will then be able to mount the shared root using the
compute node root runtime environment and use services necessary for the ISV application.

Cluster Compatibility Mode Commands
After loading the ccm module the user can issue the following two commands: ccmrun and ccmlogin.

The ccmrun Command

The ccmrun command, as the name implies, starts the cluster application. The head node is the first node in the
emulated cluster where ccmrun sets up the CCM infrastructure and propagates the rest of the application. The
following shows the syntax for ccmrun:

ccmrun [--help] [--nscd] [--nonscd] [--norsh] [--norsip] [--nosshd] [--rsh] [--
rsip] [--ssh] executable [executable arg1] ... [executable argn]

Where:

--help Displays ccmrun usage statement.

--ncsd Launches a CCM job with the name service caching daemon on the CCM compute nodes. This is the
default behavior.

--noncsd Launches a CCM job without the name service caching daemon.

()

Cluster Compatibility Mode Commands 36
--

--norsh Launches a CCM job without the portmap and xinetd daemons. It's possible this option may
improve performance if rsh is not required by the current job.

--norsip Disables RSIP for the CCM application. When this option is specified, bind (INADDR_ANY) requests
from non-RSIP port ranges. This pool is not generally recommended in most configurations. Since the
number of RSIP ports per host is extremely limited, specifying this option could cause an application
to run out of ports. However, this option may be helpful if an application fails in a default environment.

--nosshd Launches a CCM job without an SSH daemon.

--rsh Launches a CCM job with portmap and xinetd daemons on all compute nodes within the CCM
reservation. This is the default behavior.

--rsip Turns on CCM RSIP (Realm Specific Internet Protocol) Small Port allocation behavior. When
selected, RSIP allocates bind (INADDR_ANY) requests from non-RSIP port ranges. This functionality
serves to prevent a CCM application from consuming ports from in the limited RSIP pool. This is the
default behavior.

--ssh Launches a CCM job with the SSH daemon listening on port 203. This is the default in absence of
custom configuration or environment.

The ccmlogin Command

The ccmlogin command supports a -n host option. If -n option is specified, services are not initiated at startup
time, and the user does not need to be in a batch session. ccmlogin also supports the -V option, which
propagates the environment to compute nodes in the same manner as ssh -V.

If -n host is not specified, ccmlogin will ssh to the first node in /var/run/crayccm/ccm_nodelist.$CCM_JOBID.

Start a CCM Batch Job
Use either PBS, Moab and TORQUE, Platform LSF or Slurm to reserve the nodes for the cluster by using the
qsub or bsub commands; then launch the application using ccmrun. All standard workload management
reservation options are supported with ccmrun. An example using the application isv_app appears below:

Launch a CCM application using qsub

% qsub -I -l mmpwidth=32 -q ccm_queue
qsub: waiting for job 434781.sdb to start
qsub: job 434781.sdb ready
Initializing CCM Environment, please wait

After the user prompt reappears, run the application using ccmrun:

% ccmrun isv_app job=e5 cpus=32

()

Start a CCM Batch Job 37
--

X11 Forwarding in CCM

Applications that require X11 forwarding (or tunneling) can use the qsub -V option to pass the DISPLAY variable to
the emulated cluster. Users can then forward X traffic by using ccmlogin, as in the following example:

% ssh -X login
% qsub -V -q=ccm_queue -lmppwidth=1
% ccmlogin -V

ISV Application Acceleration (IAA)
IAA is a feature that potentially improves application performance by enabling the MPI implementation to directly
use the high speed interconnect rather than requiring an additional TCP/IP layer. To MPI, the Aries or Gemini
network looks as if it is an Infiniband network that supports the standard OFED (OpenFabrics Enterprise
Distribution) API. By default, loading the ccm module automatically loads the cray-isvaccel module, which
sets the general environment options for IAA. However, there are some settings that are specific to
implementations of MPI. The method of passing these settings to CCM is highly application-specific. The following
serves as a general guide to configuring an application's MPI and setting up the necessary CCM environment for
application acceleration with Infiniband over the high speed network. Platform MPI, Open MPI, Intel MPI, and
MVAPICH2 are supported.

Configure Platform MPI (HP-MPI) and Launch mpirun

Cray recommends passing the -IBV option to mpirun to ensure that Platform MPI takes advantage of application
acceleration. Without this option, any unexpected problem in application acceleration will cause Platform MPI to
fall back to using TCP/IP, resulting in poor performance without explanation.

Caveats and Limitations for IAA

The following are known caveats or limitations when using IAA:

▪ IAA supports up to 4096 processing elements per application.

▪ IAA does not yet support 32-bit applications.

▪ Use batch reservation resources efficiently as IAA allocates resources based on the reservation made for
CCM. It is possible that an unnecessarily large job reservation will result in memory registration errors
application failures.

Individual Software Vendor (ISV) Example

Launching the UMT/pyMPI benchmark using CCM

The UMT/pyMPI benchmark tests MPI and OpenMP parallel scaling efficiency, thread compiling, single CPU
performance, and Python functionality.

The following example runs through the UMT/pyMPI benchmark; it can use CCM and presupposes that it is
installed it a user's scratch directory. The runSuOlson.py Python script runs the benchmark. The -V option passes
environment variables to the cluster job:

()

ISV Application Acceleration (IAA) 38
--

% module load ccm
% qsub -V -q ccm_queue -I -lmppwidth=2 -l mppnodes=471
% cd top_of_directory_where_extrated
% a=`pwd`
% export LD_LIBRARY_PATH=${a}/Teton:${a}/cmg2Kull/sources:${a}/CMG_CLEAN/src:$
{LD_LIBRARY_PATH}
% ccmrun -n2 ${a}/Install/pyMPI-2.4b4/pyMPI python/runSuOlson.py
The following runs the UMT test contained in the package:

$ module load ccm
$ qsub -V -q ccm_queue -I -lmppwidth=2 -l mppnodes=471
qsub: waiting for job 394846.sdb to start
qsub: job 394846.sdb ready

Initializing CCM environment, Please Wait
waiting for jid....
waiting for jid....
CCM Start success, 1 of 1 responses
machine=> cd UMT_TEST
machine=> a=`pwd`
machine=> ccmrun -n2 ${a}/Install/pyMPI-2.4b4/pyMPI python/runSuOlson.py
writing grid file: grid_2_13x13x13.cmg
Constructing mesh.
Mesh construction complete, next building region, opacity, material, etc.
mesh and data setup complete, building Teton object.
Setup complete, beginning time steps.
CYCLE 1 timerad = 3e-06
TempIters = 3 FluxIters = 3 GTAIters = 0
TrMax = 0.0031622776601684 in Zone 47 on Node 1
TeMax = 0.0031622776601684 in Zone 1239 on Node 1
Recommended time step for next rad cycle = 6e-05

********** Run Time Statistics **********
 Cycle Advance Accumulated
 Time (sec) Angle Loop Time (sec)
RADTR = 47.432 39.991999864578

CYCLE 2 timerad = 6.3e-05

...
The benchmark continues for several iterations before completing.

Troubleshooting IAA
▪ "Error detected by IBGNI. Subsequent operation may be unreliable."

This message indicates that IAA has reported an error to the MPI implementation. Under most conditions, the
MPI will properly handle the error and continue. If the job completes successfully, Cray recommends
disregarding the warning messages of this nature. However, if the job aborts, this message can provide
important clues about what went wrong.

▪ "libibgni: Could not open /tmp/ccm_alps_info (No such file or directory)."

This means that CCM is improperly configured. Contact the system administrator if receiving the message.

▪ "Fatal error detected by libibgni.so"

()

ISV Application Acceleration (IAA) 39
--

This indicates that IAA encountered a condition that causes it to abort. Further information is provided in the
message.

▪ "lsmod test for MPI_ICMOD_IBV__IBV_MAIN could not find module in list ib_core."

This error indicates that Platform MPI is not correctly configured to use Infiniband.

▪ "libibverbs: Fatal: Couldn't read uverbs ABI version."

It is likely that the incorrect version of libibverbs is being linked with the application, indicating a CLE
installation issue. Contact the system administrator when this error occurs.

▪ "FLEXlm error: -15,570. System Error: 19 "Cannot assign requested address."

This error can occur on systems that use Platform MPI and rely on RSIP for external connectivity. If MPI
applications are run in quick succession, the number of ports available to RSIP become exhausted. The
solution is to leave more time between MPI runs.

▪ "libhugetlbfs [nid000545:5652]: WARNING: Layout problem with segments 0 and 1.
Segments would overlap."

This is a warning from the huge pages library and will not interrupt execution of the application.

▪ "mpid: IBV requested on node localhost, but not available."

This happens when running Platform MPI in close succession after a ccmlogin. The solution is to allow
enough time between executions of mpirun and ccmlogin.

▪ "Fatal error detected by IBGNI: Network error is unrecoverable:
SOURCE_SSID_SRSP:MDD_INV"

This is a secondary error caused by one or more PEs aborting with subsequent network messages arriving
for them. Check earlier in the program output for the primary issue.

▪ "mpid: IBV requested on node localhost, but not available."

If a user reruns Platform MPI jobs too close together, one will fail before the IBGNI packet wait timer
completes:

user@nid00002:~/osu_benchmarks_for_platform> mpirun -np 2 -IBV ./osu_bw
mpid: IBV requested on node localhost, but not available.

▪ "PAM configuration can cause IAA to fail"

The problem results in permission denied errors when IAA tries to access the HSN from compute nodes other
than the CCM head node. That happens because the app process is running in a different job container than
the one that has permission to the HSN.

The second job container is created by PAM, specifically the following line in /etc/pam.d/common-session:

session optional /opt/cray/job/default/lib64/security/pam_job.so

▪ "bind: Invalid argument"

Applications using older versions of MVAPICH may abort with this message due to a bug in the MPI
implementation. This bug is present in, at least, MVAPICH version 1.2a1. It is fixed in MVAPICH2-1.8a2.

()

Troubleshooting Cluster Compatibility Mode Issues 40
--

Troubleshooting Cluster Compatibility Mode Issues
CCM Initialization Fails

Immediately after the user enters the qsub command line, output appears as in the following example:

Initializing CCM environment, Please Wait
 Cluster Compatibility Mode Start failed, 1 of 4 responses

This error usually results when /etc files (e.g., nsswitch.conf, resolv.conf, passwd, shadow) are not specialized
to the cnos class view. If this error occurs, the system administrator must migrate these files from the login
class view to the cnos class view. For more information, see CLE System Management Guide.

PMGR_COLLECTIVE ERROR
The error "PMGR_COLLECTIVE ERROR: uninitialized MPI task: Missing required environment
variable: MPIRUN_RANK," typically means that the user is trying to run an application compiled with a
mismatched version of MPI.

pam_job.so Is Incompatible with CCM

The pam_job.so module is incompatible with CCM. This can cause symptoms such as failed job cleanup and
slow login. PAM jobs should be enabled only for login class views, not for the cnos class view.

Follow the procedure Disable CSA Accounting for the cnos Class View on page 42.

Job Hangs When "sa" Parameter Is Passed to Platform MPI

The sa parameter is provided by Platform MPI to enable MPI messages to continue flowing even when an
application is consuming CPU time for long periods. Platform MPI enables a timer that generates signals at
regular intervals. The signals interrupt the application and allow Platform MPI to use some necessary CPU cycles.

MP-MPI and Platform MPI 7.x have a bug that may cause intermittent hangs when this option is enabled. This
issue does not exist with Platform MPI 8.0.

"MPI_Init: dlopen" Error(s)

The error message, "MPI_Init: dlopen /opt/platform_mpi/lib/linux_amd64/plugins/
default.so: undefined symbol " is likely caused by a library search path that includes an MPI
implementation that is different from the implementation being used by the application.

Bus Errors In an Application, MPI, or libibgni

Sometimes bus errors are due to bugs in the application software. However, the Linux kernel will also generate a
bus error if it encounters various errors while handling a page fault. The most likely of those errors is running out
of RAM or being unable to allocate a huge page due to memory fragmentation.

glibc.so Errors at Start of Application Launch

This error may occur immediately after submission. In certain applications, like FLUENT, glibc errors and a stack
trace appear in stderr. This problem typically involves the license server. Be sure to include a line return at the
end of the ~/.flexlmrc file.

()

Troubleshooting Cluster Compatibility Mode Issues 41
--

"orted: command not found"

This message can appear when using an Open MPI build that is not in the default PATH. To avoid the problem,
using the --prefix command argument to mpirun to specify the location of Open MPI.

Disable CSA Accounting for the cnos Class View
The pam_job.so module is incompatible with CCM. This can cause symptoms such as failed job cleanup and slow
login. PAM jobs should be enabled only for login class views, not for the cnos class view.

1. Start xtopview in the default view and edit /etc/opt/cray/ccm/ccm_mounts.local in the following manner:

boot# xtopview
default/:/# vi /etc/opt/cray/ccm/ccm_mounts.local
/etc/pam.d/common-session-pc.ccm /etc/pam.d/common-session bind 0
default/:/# exit

2. Start xtopview in the cnos view:

 boot# xtopview -c cnos -x /etc/opt/cray/sdb/node_classes

3. Edit the /etc/pam.d/common-auth-pc file:

class/cnos:/ # vi /etc/pam.d/common-auth-pc
and remove or comment out the following line:

 # session optional /opt/cray/job/default/lib64/security/pam_job.so

4. Edit the /etc/pam.d/common-session file to include:

session optional pam_mkhomedir.so skel=/software/skel
session required pam_limits.so
session required pam_unix2.so
session optional pam_ldap.so
session optional pam_umask.s
session optional /opt/cray/job/default/lib64/security/pam_job.so

5. Edit /etc/pam.d/common-session-pc.ccm to remove or comment all of the following:

session optional pam_mkhomedir.so skel=/software/skel
session required pam_limits.so
session required pam_unix2.so
session optional pam_ldap.so

()

Caveats and Limitations for CCM 42
--

Caveats and Limitations for CCM
ALPS Does Not Accurately Reflect CCM Job Resources

Because CCM is transparent to the user application, ALPS utilities such as apstat do not accurately reflect
resources used by a CCM job.

Open MPI and Moab and TORQUE Integration Not Supported

Open MPI provides native Moab and TORQUE integration. However, CCM does not support this mode or
applications that use a shrink-wrapped MPI with this mode. Checking ompi_info will reveal if it was built with this
integration. It will look like the following:

% ompi_info | grep tm
MCA memory: ptmalloc2 (MCA v2.0, API v2.0, Component v1.3.3)
MCA ras: tm (MCA v2.0, API v2.0, Component v1.3.3)
MCA plm: tm (MCA v2.0, API v2.0, Component v1.3.3)

Rebuild Open MPI to disable Moab and TORQUE integration using the following options to the configure script:

./configure --enable-mca-no-build=plm-tm,ras-tm --disable-mpi-f77 --disable-mpi-
f90 --prefix=path_to_install

This should result in no TM API being displayed by ompi_info:

% ompi_info | grep tm
MCA memory: ptmalloc2 (MCA v2.0, API v2.0, Component v1.3.3)

Miscellaneous Limitations

The following limitations apply to supporting cluster queues with CLE 5.2 on Cray systems:

▪ Applications must fit in the physical node memory because swap space is not supported in CCM.

▪ Core specialization is not supported with CCM.

▪ CCM does not support applications that are built in Cray Compiling Environment (CCE) with Fortran 2008 with
coarrays or Unified Parallel C (UPC) compiling options, nor any Cray built libraries built with these
implementations. Applications built using the Cray SHMEM or Cray MPI libraries are also not compatible with
CCM.

()

Caveats and Limitations for CCM 43
--

The aprun Memory Affinity Options
A compute node's memory and CPUs are divided into one or more NUMA nodes. References from a CPU on one
NUMA node to memory on another NUMA node can adversely affect performance. Cray has added aprun
memory affinity options to give the user run time controls that may optimize memory references. Most nodes with
an NVIDIA GPU or a KNC co-processor have only a single NUMA node; Cray XK compute nodes with a GPU can
have more than one NUMA node.

Applications can use one or all NUMA nodes of a Cray system compute node. If an application is placed using
one NUMA node, other NUMA nodes are not used and the application processes are restricted to using NUMA-
node memory on the node on which the application is placed. This memory usage policy is enforced by running
the application processes within a cpuset. A cpuset consists of cores and local memory on a compute node.

When an application is placed using all NUMA nodes, the cpuset includes all node memory and all CPUs. In this
case, each application process allocates memory from the NUMA node on which it is running. If insufficient free
NUMA-node memory is available on the process node, the allocation may be satisfied by using NUMA-node
memory from another node. In other words, if there is not enough NUMA node n memory, the allocation may be
satisfied by using NUMA node n+1 memory. An exception is the -ss (strict memory containment) option. For this
option, memory allocations are restricted to local-NUMA-node memory even if all remote-NUMA-node memory is
available to the application. Therefore, -ss requests fail if there is insufficient memory on the local NUMA node
regardless of how much memory is available elsewhere on the compute node.

The aprun memory affinity options are:

▪ -S pes_per_numa_node
▪ -sn numa_nodes_per_node
▪ -sl list_of_numa_nodes
▪ -ss
Use these aprun options for each element of an MPMD application and vary them with each MPMD element as
required. For complete details, see Run Applications Using the aprun Command on page 6.

Use cnselect numcores.eq.number_of_cores to get a list the Cray system compute nodes.

Use the aprun -L or qsub -lmppnodes options to specify those lists or a subset of those lists. For additional
information, see the aprun(1), cnselect(1), and qsub(1) man pages.

The aprun CPU Affinity Option
CNL can dynamically distribute work by allowing PEs and threads to migrate from one CPU to another within a
node. In some cases, moving processes from CPU to CPU increases cache misses and translation lookaside
buffer (TLB) misses and therefore reduces performance. Also, there may be cases where an application runs
faster by avoiding or targeting a particular CPU. The aprun CPU affinity options enables a user to bind a process
to a particular CPU or the CPUs on a NUMA node. These options apply to all Cray multicore compute nodes.

()

The aprun CPU Affinity Option 44
--

Applications are assigned to a cpuset and can run only on the CPUs specified by the cpuset. Also, applications
can allocate memory only on memory defined by the cpuset. A cpuset can be a compute node (default) or a
NUMA node.

The CPU affinity option is:

-cc cpu-list | keyword

This option can be used for each element of an MPMD application and can vary with each MPMD element.

For details, see Run Applications Using the aprun Command on page 6.

Exclusive Access to a Node's Processing and Memory Resources
The -F affinity option for aprun provides a program with exclusive access to all the processing and memory
resources on a node.

This option assigns all compute node cores and compute node memory to the application's cpuset. Used with
the -cc option, it enables an application programmer to bind processes to those mentioned in the affinity string.

There are two modes: exclusive and share. The share mode restricts the application specific cpuset contents to
only the application reserved cores and memory on NUMA node boundaries. For example, if an application
requests and is assigned cores and memory on NUMA node 0, then only NUMA node 0 cores and memory are
contained within the application cpuset. The application cannot access the cores and memory of the other
NUMA nodes on that compute node.

Administrators can modify /etc/opt/cray/alps/alps.conf to set a policy for access modes. If nodeShare is not
specified in this file, the default mode remains exclusive; setting to share makes the default share access mode.
Users can override the system-wide policy by specifying aprun -F exclusive at the command line or within their
respective batch scripts. For additional information, see the aprun(1) man page.

Optimize Process Placement on Multicore Nodes
Multicore systems can run more tasks simultaneously, which increases overall system performance. The trade-
offs are that each core has less local memory (because it is shared by the cores) and less system interconnection
bandwidth (which is also shared).

Processes are placed in packed rank-sequential order, starting with the first node. For a 100-core, 5-node job
running on dual-core nodes, the layout of ranks on cores is:

Node 1 Node 2 Node 3 Node 4 Node 5

Core 0 - 23 0 - 23 0 - 23 0 - 23 0 - 4
Rank 0 - 23 24 - 47 48 - 71 72 - 95 96 - 99

MPI supports multiple interconnect device drivers for a single MPI job. This allows each process (rank) of an MPI
job to create the most optimal messaging path to every other process in the job, based on the topology of the
given ranks. The SMP device driver is based on shared memory and is used for communication between ranks
that share a node. The GNI device driver is used for communication between ranks that span nodes.

()

Exclusive Access to a Node's Processing and Memory Resources 45
--

Run a Basic Application
This example shows how to compile program simple.c and launch the executable.

One of the following modules is required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

Create a C program, simple.c:

#include "mpi.h"

int main(int argc, char *argv[])
{
 int rank;
 int numprocs;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 printf("hello from pe %d of %d\n",rank,numprocs);
 MPI_Finalize();
}

Compile the program:

% cc -o simple simple.c
Run the program:

% aprun -n 6 ./simple
hello from pe 0 of 6
hello from pe 5 of 6
hello from pe 4 of 6
hello from pe 3 of 6
hello from pe 2 of 6
hello from pe 1 of 6
Application 135891 resources: utime ~0s, stime ~0s

()

 46
--

Run an MPI Application
This example shows how to compile, link, and run an MPI program. The MPI program distributes the work
represented in a reduction loop, prints the subtotal for each PE, combines the results from the PEs, and prints the
total.

One of the following modules is required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

Create a Fortran program, mpi.f90:

program reduce
include "mpif.h"

integer n, nres, ierr

call MPI_INIT (ierr)
call MPI_COMM_RANK (MPI_COMM_WORLD,mype,ierr)
call MPI_COMM_SIZE (MPI_COMM_WORLD,npes,ierr)

nres = 0
n = 0

do i=mype,100,npes
 n = n + i
enddo

print *, 'My PE:', mype, ' My part:',n

call MPI_REDUCE (n,nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (mype == 0) print *,' PE:',mype,'Total is:',nres

call MPI_FINALIZE (ierr)

end

Compile mpi.f90:

% ftn -o mpi mpi.f90
Rum program mpi:

% aprun -n 6 ./mpi | sort
PE: 0 Total is: 5050
My PE: 0 My part: 816

()

 47
--

My PE: 1 My part: 833
My PE: 2 My part: 850
My PE: 3 My part: 867
My PE: 4 My part: 884
My PE: 5 My part: 800
Application 3016865 resources: utime ~0s, stime ~0s
Here is a C version of the program:

/* program reduce */

#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argv[])
{
 int i, sum, mype, npes, nres, ret;
 ret = MPI_Init (&argc, &argv);
 ret = MPI_Comm_size (MPI_COMM_WORLD, &npes);
 ret = MPI_Comm_rank (MPI_COMM_WORLD, &mype);
 nres = 0;
 sum = 0;
 for (i = mype; i <=100; i += npes) {
 sum = sum + i;
 }

 (void) printf ("My PE:%d My part:%d\n",mype, sum);
 ret = MPI_Reduce (&sum,&nres,1,MPI_INTEGER,MPI_SUM,0,MPI_COMM_WORLD);
 if (mype == 0)
 {
 (void) printf ("PE:%d Total is:%d\n",mype, nres);
 }
 ret = MPI_Finalize ();
}

()

 48
--

Use the Cray shmem_put Function
This example shows how to use the shmem_put64() function to copy a contiguous data object from the local PE
to a contiguous data object on a different PE.

One of the following modules is required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

Source code of C program (shmem_put.c):

/*
 * simple put test
 */

#include <stdio.h>
#include <stdlib.h>
#include <shmem.h>

/* Dimension of source and target of put operations */
#define DIM 1000000

long target[DIM];
long local[DIM];

main(int argc,char **argv)
{
 register int i;
 int my_partner, my_pe;

 /* Prepare resources required for correct functionality
 of SHMEM. */
 shmem_init();

 for (i=0; i<DIM; i++) {
 target[i] = 0L;
 local[i] = shmem_my_pe() + (i * 10);
 }

 my_pe = shmem_my_pe();

 if(shmem_n_pes()%2) {
 if(my_pe == 0) printf("Test needs even number of processes\n");
 /* Clean up resources before exit. */
 shmem_finalize();
 exit(0);
 }

()

 49
--

 shmem_barrier_all();

 /* Test has to be run on two procs. */
 my_partner = my_pe % 2 ? my_pe - 1 : my_pe + 1;

 shmem_put64(target,local,DIM,my_partner);

 /* Synchronize before verifying results. */
 shmem_barrier_all();

 /* Check results of put */
 for(i=0; i<DIM; i++) {
 if(target[i] != (my_partner + (i * 10))) {
 fprintf(stderr,"FAIL (1) on PE %d target[%d] = %d (%d)\n",
 shmem_my_pe(), i, target[i],my_partner+(i*10));
 exit(-1);
 }
 }

 printf(" PE %d: Test passed.\n",my_pe);

 /* Clean up resources. */
 shmem_finalize();
}

Compile shmem_put.c and create executable shmem_put:

% cc -o shmem_put shmem_put.c
Run shmem_put:

% aprun -n 12 -L 56 ./shmem_put
 PE 5: Test passed.
 PE 6: Test passed.
 PE 3: Test passed.
 PE 1: Test passed.
 PE 4: Test passed.
 PE 2: Test passed.
 PE 7: Test passed.
 PE 11: Test passed.
 PE 10: Test passed.
 PE 9: Test passed.
 PE 8: Test passed.
 PE 0: Test passed.

Application 57916 exit codes: 255
Application 57916 resources: utime ~1s, stime ~2s

()

 50
--

Use the Cray shmem_get Function
This example shows how to use the shmem_get() function to copy a contiguous data object from a different PE
to a contiguous data object on the local PE.

One of the following modules is required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

The cray-shmem module is also required.

IMPORTANT: The Fortran module for Cray SHMEM is not supported. Use the INCLUDE 'shmem.fh'
statement instead.

Source code of Fortran program (shmem_get.f90):

program reduction
include 'shmem.fh'

real values, sum
common /c/ values
real work

call shmem_init()
values=my_pe()
call shmem_barrier_all! Synchronize all PEs
sum = 0.0
do i = 0,num_pes()-1
 call shmem_get(work, values, 1, i) ! Get next value
 sum = sum + work ! Sum it
enddo

print*, 'PE',my_pe(),' computedsum=',sum

call shmem_barrier_all
call shmem_finalize

end

Compile shmem_get.f90 and create executable shmem_get:

% ftn -o shmem_get shmem_get.f90
Run shmem_get:

% aprun -n 6 ./shmem_get
 PE 0 computedsum= 15.00000

()

 51
--

 PE 5 computedsum= 15.00000
 PE 4 computedsum= 15.00000
 PE 3 computedsum= 15.00000
 PE 2 computedsum= 15.00000
 PE 1 computedsum= 15.00000
Application 137031 resources: utime ~0s, stime ~0s

()

 52
--

Run Partitioned Global Address Space (PGAS)
Applications

To run Unified Parallel C (UPC) or Fortran 2008 coarrays applications, use the Cray C compiler. These are not
supported for PGI, GCC, or Intel C compilers.

Run a Unified Parallel C (UPC) Application

This example shows how to compile and run a Cray C program that includes Unified Parallel C (UPC) functions.

Modules required:

PrgEnv-cray

Check that these additional modules are loaded. These are part of the default modules on the login node loaded
with the module Base-opts, but an error will occur with PGAS applications if these modules are not loaded:

udreg
ugni
dmapp

The following is the source code of program upc_cray.c:

#include <upc.h>
#include <stdio.h>
int main (int argc, char *argv[])
{
 int i;
 for (i = 0; i < THREADS; ++i)
 {
 upc_barrier;
 if (i == MYTHREAD)
 printf ("Hello world from thread: %d\n", MYTHREAD);
 }
 return 0;
}

Compile upc_cray.c and run executable cray_upc. Note that it is necessary to include the -h upc option on the cc
command line.

% cc -h upc -o upc_cray upc_cray.c
% aprun -n 2 ./upc_cray
Hello world from thread: 0
Hello world from thread: 1
Application 251523 resources: utime ~0s, stime ~0s

()

 53
--

Run a Fortran 2008 Application Using Coarrays

The following is the source code of program simple_caf.f90:

program simple_caf
implicit none

integer :: npes,mype,i
real :: local_array(1000),total
real :: coarray[*]

mype = this_image()
npes = num_images()

if (npes < 2) then
 print *, "Need at least 2 images to run"
 stop
end if

do i=1,1000
 local_array(i) = sin(real(mype*i))
end do

coarray = sum(local_array)
sync all

if (mype == 1) then
 total = coarray + coarray[2]
 print *, "Total from images 1 and 2 is ",total
end if

end program simple_caf

Compile simple_caf.f90 and run the executable:

% ftn -hcaf -o simple_caf simple_caf.f90
/opt/cray/xt-asyncpe/3.9.39/bin/ftn: INFO: linux target is being used
% aprun -n2 simple_caf
 Total from images 1 and 2 is 1.71800661
 Application 39512 resources: utime ~0s, stime ~0s

()

 54
--

Run an Accelerated Cray LibSci Routine
The following sample program displays usage of the libsci_acc accelerated libraries to perform LAPACK
routines. The program solves a linear system of equations (AX = B) by computing the LU factorization of matrix A
in DGETRF and completing the solution in DGETRS. For more information on auto-tuned LibSci GPU routines, see
the intro_libsci_acc(3s) man page.

Modules required:

PrgEnv-cray
craype-accel-nvidia35
cray-libsci

Source of the program:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <libsci_acc.h>

int main (int argc, char **argv) {
 double *A, *B; int *ipiv;
 int n, nrhs, lda, ldb, info;
 int i, j;

 n = lda = ldb = 5;
 nrhs = 1;
 ipiv = (int *)malloc(sizeof(int)*n);
 B = (double *)malloc(sizeof(double)*n*nrhs);

 libsci_acc_init();
 libsci_acc_HostAlloc((void **)&A, sizeof(double)*n*n);

 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 A[i*lda+j] = drand48();
 }
 }

 for (i = 0; i < nrhs; i++) {
 for (j = 0; j < n; j++) {
 B[i*ldb+j] = drand48();
 }
 }

 printf("\n\nMatrix A\n");
 for (i = 0; i < n ; i++) {
 if (i > 0)
 printf("\n");
 for (j = 0; j < n; j++) {
 printf("\t%f",A[i*lda+j]);

()

 55
--

 }
 }

 printf("\n\nRHS/B\n");
 for (i=0; i < nrhs; i++) {
 if (i > 0)
 printf("\n");
 for (j = 0; j < n; j++) {
 if (i==0)
 printf("| %f\n",B[i*ldb+j]);
 else
 printf(" %f\n",B[i*ldb+j]);
 }
 }

 printf("\n\nSolution/X\n");
 dgetrf(n, n, A, lda, ipiv, &info);
 dgetrs('N', n, nrhs, A, lda, ipiv, B, ldb, &info);

 for (i = 0; i < nrhs; i++) {
 printf("\n");
 for (j = 0; j < n; j++) {
 printf("%f\n",B[i*ldb+j]);
 }
 }
 printf("\n");

 libsci_acc_HostFree (A);
 free(ipiv);
 free(B);
 libsci_acc_finalize();

}

% aprun -n1 ./a.out

Matrix A
0.000000 0.000985 0.041631 0.176643 0.364602
0.091331 0.092298 0.487217 0.526750 0.454433
0.233178 0.831292 0.931731 0.568060 0.556094
0.050832 0.767051 0.018915 0.252360 0.298197
0.875981 0.531557 0.920261 0.515431 0.810429

RHS/B
| 0.188420
| 0.886314
| 0.570614
| 0.076775
| 0.815274

Solution/X

3.105866
-2.649034
1.836310
-0.543425
0.034012

()

 56
--

Run a PETSc Application
This example shows how to use PETSc functions to solve a linear system of partial differential equations.

There are many ways to use the PETSc solvers. This example is intended to show the basics of compiling and
running a PETSc program on a Cray system. It presents one simple approach and may not be the best template
to use in writing user code. For issues that are not specific to Cray systems,technical support is available through
petsc-users@mcs.anl.gov.

The source code for this example includes a comment about the use of the mpiexec command to launch the
executable. Use aprun instead.

Modules required - cray-petsc and one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

Source code of program ex2f.F:

!
! Description: Solves a linear system in parallel with KSP (Fortran code).
! Also shows how to set a user-defined monitoring routine.
!
!
!/*T
! Concepts: KSP^basic parallel example
! Concepts: KSP^setting a user-defined monitoring routine
! Processors: n
!T*/
!
! ---

 program main
 implicit none

! -
! Include files
! -
!
! This program uses CPP for preprocessing, as indicated by the use of
! PETSc include files in the directory petsc/include/petsc/finclude. This
! convention enables use of the CPP preprocessor, which allows the use
! of the #include statements that define PETSc objects and variables.
!
! Use of the conventional Fortran include statements is also supported
! In this case, the PETsc include files are located in the directory
! petsc/include/foldinclude.
!
! Since one must be very careful to include each file no more than once

()

 57
--

! in a Fortran routine, application programmers must exlicitly list
! each file needed for the various PETSc components within their
! program (unlike the C/C++ interface).
!
! See the Fortran section of the PETSc users manual for details.
!
! The following include statements are required for KSP Fortran programs:
! petscsys.h - base PETSc routines
! petscvec.h - vectors
! petscmat.h - matrices
! petscpc.h - preconditioners
! petscksp.h - Krylov subspace methods
! Additional include statements may be needed if using additional
! PETSc routines in a Fortran program, e.g.,
! petscviewer.h - viewers
! petscis.h - index sets
!
#include <petsc/finclude/petscsys.h>
#include <petsc/finclude/petscvec.h>
#include <petsc/finclude/petscmat.h>
#include <petsc/finclude/petscpc.h>
#include <petsc/finclude/petscksp.h>
!
! -
! Variable declarations
! -
!
! Variables:
! ksp - linear solver context
! ksp - Krylov subspace method context
! pc - preconditioner context
! x, b, u - approx solution, right-hand-side, exact solution vectors
! A - matrix that defines linear system
! its - iterations for convergence
! norm - norm of error in solution
! rctx - random number generator context
!
! Note that vectors are declared as PETSc "Vec" objects. These vectors
! are mathematical objects that contain more than just an array of
! double precision numbers. I.e., vectors in PETSc are not just
! double precision x(*).
! However, local vector data can be easily accessed via VecGetArray().
! See the Fortran section of the PETSc users manual for details.
!
 PetscReal norm
 PetscInt i,j,II,JJ,m,n,its
 PetscInt Istart,Iend,ione
 PetscErrorCode ierr
 PetscMPIInt rank,size
 PetscBool flg
 PetscScalar v,one,neg_one
 Vec x,b,u
 Mat A
 KSP ksp
 PetscRandom rctx

! These variables are not currently used.
! PC pc
! PCType ptype
! PetscReal tol

()

 58
--

! Note: Any user-defined Fortran routines (such as MyKSPMonitor)
! MUST be declared as external.

 external MyKSPMonitor,MyKSPConverged

! -
! Beginning of program
! -

 call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
 m = 3
 n = 3
 one = 1.0
 neg_one = -1.0
 ione = 1
 call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-m',m,flg,ierr)
 call PetscOptionsGetInt(PETSC_NULL_CHARACTER,'-n',n,flg,ierr)
 call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
 call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)

! -
! Compute the matrix and right-hand-side vector that define
! the linear system, Ax = b.
! -

! Create parallel matrix, specifying only its global dimensions.
! When using MatCreate(), the matrix format can be specified at
! runtime. Also, the parallel partitioning of the matrix is
! determined by PETSc at runtime.

 call MatCreate(PETSC_COMM_WORLD,A,ierr)
 call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,ierr)
 call MatSetFromOptions(A,ierr)
 call MatSetUp(A,ierr)

! Currently, all PETSc parallel matrix formats are partitioned by
! contiguous chunks of rows across the processors. Determine which
! rows of the matrix are locally owned.

 call MatGetOwnershipRange(A,Istart,Iend,ierr)

! Set matrix elements for the 2-D, five-point stencil in parallel.
! - Each processor needs to insert only elements that it owns
! locally (but any non-local elements will be sent to the
! appropriate processor during matrix assembly).
! - Always specify global row and columns of matrix entries.
! - Note that MatSetValues() uses 0-based row and column numbers
! in Fortran as well as in C.

! Note: this uses the less common natural ordering that orders first
! all the unknowns for x = h then for x = 2h etc; Hence you see JH = II +- n
! instead of JJ = II +- m as you might expect. The more standard ordering
! would first do all variables for y = h, then y = 2h etc.

 do 10, II=Istart,Iend-1
 v = -1.0
 i = II/n
 j = II - i*n
 if (i.gt.0) then
 JJ = II - n

()

 59
--

 call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)
 endif
 if (i.lt.m-1) then
 JJ = II + n
 call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)
 endif
 if (j.gt.0) then
 JJ = II - 1
 call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)
 endif
 if (j.lt.n-1) then
 JJ = II + 1
 call MatSetValues(A,ione,II,ione,JJ,v,INSERT_VALUES,ierr)
 endif
 v = 4.0
 call MatSetValues(A,ione,II,ione,II,v,INSERT_VALUES,ierr)
 10 continue

! Assemble matrix, using the 2-step process:
! MatAssemblyBegin(), MatAssemblyEnd()
! Computations can be done while messages are in transition,
! by placing code between these two statements.

 call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
 call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)

! Create parallel vectors.
! - Here, the parallel partitioning of the vector is determined by
! PETSc at runtime. We could also specify the local dimensions
! if desired -- or use the more general routine VecCreate().
! - When solving a linear system, the vectors and matrices MUST
! be partitioned accordingly. PETSc automatically generates
! appropriately partitioned matrices and vectors when MatCreate()
! and VecCreate() are used with the same communicator.
! - Note: We form 1 vector from scratch and then duplicate as needed.

 call VecCreateMPI(PETSC_COMM_WORLD,PETSC_DECIDE,m*n,u,ierr)
 call VecSetFromOptions(u,ierr)
 call VecDuplicate(u,b,ierr)
 call VecDuplicate(b,x,ierr)

! Set exact solution; then compute right-hand-side vector.
! By default we use an exact solution of a vector with all
! elements of 1.0; Alternatively, using the runtime option
! -random_sol forms a solution vector with random components.

 call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
 & "-random_exact_sol",flg,ierr)
 if (flg) then
 call PetscRandomCreate(PETSC_COMM_WORLD,rctx,ierr)
 call PetscRandomSetFromOptions(rctx,ierr)
 call VecSetRandom(u,rctx,ierr)
 call PetscRandomDestroy(rctx,ierr)
 else
 call VecSet(u,one,ierr)
 endif
 call MatMult(A,u,b,ierr)

! View the exact solution vector if desired

 call PetscOptionsHasName(PETSC_NULL_CHARACTER, &

()

 60
--

 & "-view_exact_sol",flg,ierr)
 if (flg) then
 call VecView(u,PETSC_VIEWER_STDOUT_WORLD,ierr)
 endif

! -
! Create the linear solver and set various options
! -

! Create linear solver context

 call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)

! Set operators. Here the matrix that defines the linear system
! also serves as the preconditioning matrix.

 call KSPSetOperators(ksp,A,A,ierr)

! Set linear solver defaults for this problem (optional).
! - By extracting the KSP and PC contexts from the KSP context,
! we can then directly directly call any KSP and PC routines
! to set various options.
! - The following four statements are optional; all of these
! parameters could alternatively be specified at runtime via
! KSPSetFromOptions(). All of these defaults can be
! overridden at runtime, as indicated below.

! We comment out this section of code since the Jacobi
! preconditioner is not a good general default.

! call KSPGetPC(ksp,pc,ierr)
! ptype = PCJACOBI
! call PCSetType(pc,ptype,ierr)
! tol = 1.e-7
! call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_REAL,
! & PETSC_DEFAULT_REAL,PETSC_DEFAULT_INTEGER,ierr)

! Set user-defined monitoring routine if desired

 call PetscOptionsHasName(PETSC_NULL_CHARACTER,'-my_ksp_monitor', &
 & flg,ierr)
 if (flg) then
 call KSPMonitorSet(ksp,MyKSPMonitor,PETSC_NULL_OBJECT, &
 & PETSC_NULL_FUNCTION,ierr)
 endif

! Set runtime options, e.g.,
! -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
! These options will override those specified above as long as
! KSPSetFromOptions() is called _after_ any other customization
! routines.

 call KSPSetFromOptions(ksp,ierr)

! Set convergence test routine if desired

 call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
 & '-my_ksp_convergence',flg,ierr)
 if (flg) then
 call KSPSetConvergenceTest(ksp,MyKSPConverged, &

()

 61
--

 & PETSC_NULL_OBJECT,PETSC_NULL_FUNCTION,ierr)
 endif
!
! -
! Solve the linear system
! -

 call KSPSolve(ksp,b,x,ierr)

! -
! Check solution and clean up
! -

! Check the error
 call VecAXPY(x,neg_one,u,ierr)
 call VecNorm(x,NORM_2,norm,ierr)
 call KSPGetIterationNumber(ksp,its,ierr)
 if (rank .eq. 0) then
 if (norm .gt. 1.e-12) then
 write(6,100) norm,its
 else
 write(6,110) its
 endif
 endif
 100 format('Norm of error ',e11.4,' iterations ',i5)
 110 format('Norm of error < 1.e-12,iterations ',i5)

! Free work space. All PETSc objects should be destroyed when they
! are no longer needed.

 call KSPDestroy(ksp,ierr)
 call VecDestroy(u,ierr)
 call VecDestroy(x,ierr)
 call VecDestroy(b,ierr)
 call MatDestroy(A,ierr)

! Always call PetscFinalize() before exiting a program. This routine
! - finalizes the PETSc libraries as well as MPI
! - provides summary and diagnostic information if certain runtime
! options are chosen (e.g., -log_summary). See PetscFinalize()
! manpage for more information.

 call PetscFinalize(ierr)
 end

! --
!
! MyKSPMonitor - This is a user-defined routine for monitoring
! the KSP iterative solvers.
!
! Input Parameters:
! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!
 subroutine MyKSPMonitor(ksp,n,rnorm,dummy,ierr)

 implicit none

#include <petsc/finclude/petscsys.h>

()

 62
--

#include <petsc/finclude/petscvec.h>
#include <petsc/finclude/petscksp.h>

 KSP ksp
 Vec x
 PetscErrorCode ierr
 PetscInt n,dummy
 PetscMPIInt rank
 PetscReal rnorm

! Build the solution vector

 call KSPBuildSolution(ksp,PETSC_NULL_OBJECT,x,ierr)

! Write the solution vector and residual norm to stdout
! - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD
! handles data from multiple processors so that the
! output is not jumbled.

 call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
 if (rank .eq. 0) write(6,100) n
 call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
 if (rank .eq. 0) write(6,200) n,rnorm

 100 format('iteration ',i5,' solution vector:')
 200 format('iteration ',i5,' residual norm ',e11.4)
 ierr = 0
 end

! --
!
! MyKSPConverged - This is a user-defined routine for testing
! convergence of the KSP iterative solvers.
!
! Input Parameters:
! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!
 subroutine MyKSPConverged(ksp,n,rnorm,flag,dummy,ierr)

 implicit none

#include <petsc/finclude/petscsys.h>
#include <petsc/finclude/petscvec.h>
#include <petsc/finclude/petscksp.h>

 KSP ksp
 PetscErrorCode ierr
 PetscInt n,dummy
 KSPConvergedReason flag
 PetscReal rnorm

 if (rnorm .le. .05) then
 flag = 1
 else
 flag = 0
 endif
 ierr = 0

()

 63
--

 end

Create and run executable ex2f, including the PETSc run time option -mat_view to display the nonzero values of
the 9x9 matrix A:

% aprun -n 2 ./ex2f -mat_view
row 0: (0, 4) (1, -1) (3, -1)
row 1: (0, -1) (1, 4) (2, -1) (4, -1)
row 2: (1, -1) (2, 4) (5, -1)
row 3: (0, -1) (3, 4) (4, -1) (6, -1)
row 4: (1, -1) (3, -1) (4, 4) (5, -1) (7, -1)
row 5: (2, -1) (4, -1) (5, 4) (8, -1)
row 6: (3, -1) (6, 4) (7, -1)
row 7: (4, -1) (6, -1) (7, 4) (8, -1)
row 8: (5, -1) (7, -1) (8, 4)
row 0: (0, 0.25) (3, -1)
row 1: (1, 0.25) (2, -1)
row 2: (1, -0.25) (2, 0.266667) (3, -1)
row 3: (0, -0.25) (2, -0.266667) (3, 0.287081)
row 0: (0, 0.25) (1, -1) (3, -1)
row 1: (0, -0.25) (1, 0.266667) (2, -1) (4, -1)
row 2: (1, -0.266667) (2, 0.267857)
row 3: (0, -0.25) (3, 0.266667) (4, -1)
row 4: (1, -0.266667) (3, -0.266667) (4, 0.288462)
Norm of error < 1.e-12,iterations 7
Application 155514 resources: utime 0, stime 12

()

 64
--

Run an OpenMP Application
This example shows how to compile and run an OpenMP/MPI application.

One of the following modules is required:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

To compile an OpenMP program using the PGI compiler, include -mp on the compiler driver command line. For a
GCC compiler, include -fopenmp. For in Intel compiler, include -openmp. No option is required for the Cray
compilers; -h omp is the default.

Source code of C program xthi.c:

#define _GNU_SOURCE

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sched.h>
#include <mpi.h>
#include <omp.h>

/* Borrowed from util-linux-2.13-pre7/schedutils/taskset.c */
static char *cpuset_to_cstr(cpu_set_t *mask, char *str)
{
 char *ptr = str;
 int i, j, entry_made = 0;
 for (i = 0; i < CPU_SETSIZE; i++) {
 if (CPU_ISSET(i, mask)) {
 int run = 0;
 entry_made = 1;
 for (j = i + 1; j < CPU_SETSIZE; j++) {
 if (CPU_ISSET(j, mask)) run++;
 else break;
 }
 if (!run)
 sprintf(ptr, "%d,", i);
 else if (run == 1) {
 sprintf(ptr, "%d,%d,", i, i + 1);
 i++;
 } else {
 sprintf(ptr, "%d-%d,", i, i + run);
 i += run;
 }
 while (*ptr != 0) ptr++;
 }
 }

()

 65
--

 ptr -= entry_made;
 *ptr = 0;
 return(str);
}

int main(int argc, char *argv[])
{
 int rank, thread;
 cpu_set_t coremask;
 char clbuf[7 * CPU_SETSIZE], hnbuf[64];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 memset(clbuf, 0, sizeof(clbuf));
 memset(hnbuf, 0, sizeof(hnbuf));
 (void)gethostname(hnbuf, sizeof(hnbuf));
 #pragma omp parallel private(thread, coremask, clbuf)
 {
 thread = omp_get_thread_num();
 (void)sched_getaffinity(0, sizeof(coremask), &coremask);
 cpuset_to_cstr(&coremask, clbuf);
 #pragma omp barrier
 printf("Hello from rank %d, thread %d, on %s. (core affinity = %s)\n",
 rank, thread, hnbuf, clbuf);
 }
 MPI_Finalize();
 return(0);
}

Load the PrgEnv-cray module:

% module swap PrgEnv-pgi PrgEnv-cray
Set the PSC_OMP_AFFINITY environment variable to FALSE:

% setenv PSC_OMP_AFFINITY FALSE
Or:

% export PSC_OMP_AFFINITY=FALSE
Compile and link xthi.c:

% cc -mp -o xthi xthi.c
Set the OpenMP environment variable equal to the number of threads in the team:

% setenv OMP_NUM_THREADS 2
Or:

% export OMP_NUM_THREADS=2
If running Intel-compiled code, use one of the alternate methods when setting OMP_NUM_THREADS:

▪ Increase the aprun -d depth value by one. This will reserve one extra CPU per process, increasing the total
number of CPUs required to run the job.

()

 66
--

▪ Use the aprun -cc depth affinity option. Setting the environment variable KMP_AFFINITY=compact may
increase performance (see “User and Reference Guide for the Intel® C++ Compiler” for more information).

Run program xthi:

% export OMP_NUM_THREADS=24
% aprun -n 1 -d 24 -L 56 xthi | sort
Application 57937 resources: utime ~1s, stime ~0s
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 0, thread 10, on nid00056. (core affinity = 10)
Hello from rank 0, thread 11, on nid00056. (core affinity = 11)
Hello from rank 0, thread 12, on nid00056. (core affinity = 12)
Hello from rank 0, thread 13, on nid00056. (core affinity = 13)
Hello from rank 0, thread 14, on nid00056. (core affinity = 14)
Hello from rank 0, thread 15, on nid00056. (core affinity = 15)
Hello from rank 0, thread 16, on nid00056. (core affinity = 16)
Hello from rank 0, thread 17, on nid00056. (core affinity = 17)
Hello from rank 0, thread 18, on nid00056. (core affinity = 18)
Hello from rank 0, thread 19, on nid00056. (core affinity = 19)
Hello from rank 0, thread 1, on nid00056. (core affinity = 1)
Hello from rank 0, thread 20, on nid00056. (core affinity = 20)
Hello from rank 0, thread 21, on nid00056. (core affinity = 21)
Hello from rank 0, thread 22, on nid00056. (core affinity = 22)
Hello from rank 0, thread 23, on nid00056. (core affinity = 23)
Hello from rank 0, thread 2, on nid00056. (core affinity = 2)
Hello from rank 0, thread 3, on nid00056. (core affinity = 3)
Hello from rank 0, thread 4, on nid00056. (core affinity = 4)
Hello from rank 0, thread 5, on nid00056. (core affinity = 5)
Hello from rank 0, thread 6, on nid00056. (core affinity = 6)
Hello from rank 0, thread 7, on nid00056. (core affinity = 7)
Hello from rank 0, thread 8, on nid00056. (core affinity = 8)
Hello from rank 0, thread 9, on nid00056. (core affinity = 9)
The aprun command created one instance of xthi, which spawned 23 additional threads running on separate
cores.

Here is another run of xthi:

% export OMP_NUM_THREADS=6
% aprun -n 4 -d 6 -L 56 xthi | sort
Application 57948 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 0, thread 1, on nid00056. (core affinity = 1)
Hello from rank 0, thread 2, on nid00056. (core affinity = 2)
Hello from rank 0, thread 3, on nid00056. (core affinity = 3)
Hello from rank 0, thread 4, on nid00056. (core affinity = 4)
Hello from rank 0, thread 5, on nid00056. (core affinity = 5)
Hello from rank 1, thread 0, on nid00056. (core affinity = 6)
Hello from rank 1, thread 1, on nid00056. (core affinity = 7)
Hello from rank 1, thread 2, on nid00056. (core affinity = 8)
Hello from rank 1, thread 3, on nid00056. (core affinity = 9)
Hello from rank 1, thread 4, on nid00056. (core affinity = 10)
Hello from rank 1, thread 5, on nid00056. (core affinity = 11)
Hello from rank 2, thread 0, on nid00056. (core affinity = 12)
Hello from rank 2, thread 1, on nid00056. (core affinity = 13)
Hello from rank 2, thread 2, on nid00056. (core affinity = 14)
Hello from rank 2, thread 3, on nid00056. (core affinity = 15)
Hello from rank 2, thread 4, on nid00056. (core affinity = 16)
Hello from rank 2, thread 5, on nid00056. (core affinity = 17)
Hello from rank 3, thread 0, on nid00056. (core affinity = 18)

()

 67
--

https://software.intel.com/en-us/compiler_15.0_ug_c

Hello from rank 3, thread 1, on nid00056. (core affinity = 19)
Hello from rank 3, thread 2, on nid00056. (core affinity = 20)
Hello from rank 3, thread 3, on nid00056. (core affinity = 21)
Hello from rank 3, thread 4, on nid00056. (core affinity = 22)
Hello from rank 3, thread 5, on nid00056. (core affinity = 23)
The aprun command created four instances of xthi which spawned five additional threads per instance. All
PEs are running on separate cores and each instance is confined to NUMA node domains on one compute
node.

()

 68
--

Run an Interactive Batch Job
This example shows how to compile and run an OpenMP/MPI application (see Run an OpenMP Application on
page 65) on 16-core Cray X6 compute nodes using an interactive batch job.

Modules required: pbs or moaband one of the following:

PrgEnv-cray
PrgEnv-pgi
PrgEnv-gnu
PrgEnv-intel

Use the cnselect command to get a list of eight-core, dual-socket compute nodes:

% cnselect coremask.eq.65535
14-17,128-223,256-351,384-479,512-607,640-715
Initiate an interactive batch session:

% qsub -I -l mppwidth=8 -l mppdepth=4 -l mppnodes=\"14-15\"
Set the OpenMP environment variable equal to the number of threads in the team:

% setenv OMP_NUM_THREADS 4Or
% export OMP_NUM_THREADS=4
Run program omp:

% aprun -n 8 -d 4 -L14-15 ./xthi | sort
Application 57953 resources: utime ~2s, stime ~2s
Hello from rank 0, thread 0, on nid00014. (core affinity = 0)
Hello from rank 0, thread 1, on nid00014. (core affinity = 1)
Hello from rank 0, thread 2, on nid00014. (core affinity = 2)
Hello from rank 0, thread 3, on nid00014. (core affinity = 3)
Hello from rank 1, thread 0, on nid00014. (core affinity = 4)
Hello from rank 1, thread 1, on nid00014. (core affinity = 5)
Hello from rank 1, thread 2, on nid00014. (core affinity = 6)
Hello from rank 1, thread 3, on nid00014. (core affinity = 7)
Hello from rank 2, thread 0, on nid00014. (core affinity = 8)
Hello from rank 2, thread 1, on nid00014. (core affinity = 9)
Hello from rank 2, thread 2, on nid00014. (core affinity = 10)
Hello from rank 2, thread 3, on nid00014. (core affinity = 11)
Hello from rank 3, thread 0, on nid00014. (core affinity = 12)
Hello from rank 3, thread 1, on nid00014. (core affinity = 13)
Hello from rank 3, thread 2, on nid00014. (core affinity = 14)
Hello from rank 3, thread 3, on nid00014. (core affinity = 15)
Hello from rank 4, thread 0, on nid00015. (core affinity = 0)
Hello from rank 4, thread 1, on nid00015. (core affinity = 1)
Hello from rank 4, thread 2, on nid00015. (core affinity = 2)
Hello from rank 4, thread 3, on nid00015. (core affinity = 3)
Hello from rank 5, thread 0, on nid00015. (core affinity = 4)

()

 69
--

Hello from rank 5, thread 1, on nid00015. (core affinity = 5)
Hello from rank 5, thread 2, on nid00015. (core affinity = 6)
Hello from rank 5, thread 3, on nid00015. (core affinity = 7)
Hello from rank 6, thread 0, on nid00015. (core affinity = 8)
Hello from rank 6, thread 1, on nid00015. (core affinity = 9)
Hello from rank 6, thread 2, on nid00015. (core affinity = 10)
Hello from rank 6, thread 3, on nid00015. (core affinity = 11)
Hello from rank 7, thread 0, on nid00015. (core affinity = 12)
Hello from rank 7, thread 1, on nid00015. (core affinity = 13)
Hello from rank 7, thread 2, on nid00015. (core affinity = 14)
Hello from rank 7, thread 3, on nid00015. (core affinity = 15)

()

 70
--

Use aprun Memory Affinity Options
In some cases, remote-NUMA-node memory references can reduce the performance of applications. Use the
aprun memory affinity options to control remote-NUMA-node memory references. For the -S, -sl, and -sn options,
memory allocation is satisfied using local-NUMA-node memory. If there is not enough NUMA node 0 memory,
NUMA node 1 memory may be used. For the -ss, only local-NUMA-node memory can be allocated.

Use the aprun -S Option

This example runs each PE on a specific NUMA node 0 CPU:

% aprun -n 4 ./xthi | sort
Application 225110 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
This example runs one PE on each NUMA node of nodes 45 and 70:

% aprun -n 4 -S 1 ./xthi | sort
Application 225111 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 4
PE 2 nid00070 Core affinity = 0
PE 3 nid00070 Core affinity = 4

Use the aprun -sl Option

This example runs all PEs on NUMA node 1:

% aprun -n 4 -sl 1 ./xthi | sort
Application 57967 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00014. (core affinity = 4)
Hello from rank 1, thread 0, on nid00014. (core affinity = 5)
Hello from rank 2, thread 0, on nid00014. (core affinity = 6)
Hello from rank 3, thread 0, on nid00014. (core affinity = 7)
This example runs all PEs on NUMA node 2:

% aprun -n 4 -sl 2 ./xthi | sort
Application 57968 resources: utime ~1s, stime ~1s
Hello from rank 0, thread 0, on nid00014. (core affinity = 8)
Hello from rank 1, thread 0, on nid00014. (core affinity = 9)
Hello from rank 2, thread 0, on nid00014. (core affinity = 10)
Hello from rank 3, thread 0, on nid00014. (core affinity = 11)

()

 71
--

Use the aprun -sn Option

This example runs four PEs on NUMA node 0 of node 45 and four PEs on NUMA node 0 of node 70:

% aprun -n 8 -sn 1 ./xthi | sort
Application 2251114 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00070 Core affinity = 0
PE 5 nid00070 Core affinity = 1
PE 6 nid00070 Core affinity = 2
PE 7 nid00070 Core affinity = 3

Use the aprun -ss Option

When -ss is specified, a PE can allocate only the memory that is local to its assigned NUMA node. The default is
to allow remote-NUMA-node memory allocation. For example, by default any PE running on NUMA node 0 can
allocate NUMA node 1 memory (if NUMA node 1 has been reserved for the application).

This example runs PEs 0-3 on NUMA node 0, PEs 4-7 on NUMA node 1, PEs 8-11 on NUMA node 2, and PEs
12-15 on NUMA node 3. PEs 0-3 cannot allocate NUMA node 1, 2, or 3 memories, PEs 4-7 cannot allocate
NUMA node 0, 2, 3 memories, etc.

% aprun -n 16 -sl 0,1,2,3 -ss ./xthi | sort

Application 57970 resources: utime ~9s, stime ~2s
PE 0 nid00014. (core affinity = 0-3)
PE 10 nid00014. (core affinity = 8-11)
PE 11 nid00014. (core affinity = 8-11)
PE 12 nid00014. (core affinity = 12-15)
PE 13 nid00014. (core affinity = 12-15)
PE 14 nid00014. (core affinity = 12-15)
PE 15 nid00014. (core affinity = 12-15)
PE 1 nid00014. (core affinity = 0-3)
PE 2 nid00014. (core affinity = 0-3)
PE 3 nid00014. (core affinity = 0-3)
PE 4 nid00014. (core affinity = 4-7)
PE 5 nid00014. (core affinity = 4-7)
PE 6 nid00014. (core affinity = 4-7)
PE 7 nid00014. (core affinity = 4-7)
PE 8 nid00014. (core affinity = 8-11)
PE 9 nid00014. (core affinity = 8-11)

()

 72
--

Use aprun CPU Affinity Options
The following examples show how to use aprun CPU affinity options to bind a process to a particular CPU or the
CPUs on a NUMA node.

Use the aprun -cc cpu_list Option

This example binds PEs to CPUs 0-4 and 7 on an 8-core node:

% aprun -n 6 -cc 0-4,7 ./xthi | sort
Application 225116 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00045 Core affinity = 4
PE 5 nid00045 Core affinity = 7

Use the aprun -cc keyword Options

Processes can migrate from one CPU to another on a node. Use the -cc option to bind PEs to CPUs. This
example uses the -cc cpu (default) option to bind each PE to a CPU:

% aprun -n 8 -cc cpu ./xthi | sort
Application 225117 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0
PE 1 nid00045 Core affinity = 1
PE 2 nid00045 Core affinity = 2
PE 3 nid00045 Core affinity = 3
PE 4 nid00045 Core affinity = 4
PE 5 nid00045 Core affinity = 5
PE 6 nid00045 Core affinity = 6
PE 7 nid00045 Core affinity = 7

This example uses the -cc numa_node option to bind each PE to the CPUs within a NUMA node:

% aprun -n 8 -cc numa_node ./xthi | sort
Application 225118 resources: utime ~0s, stime ~0s
PE 0 nid00045 Core affinity = 0-3
PE 1 nid00045 Core affinity = 0-3
PE 2 nid00045 Core affinity = 0-3
PE 3 nid00045 Core affinity = 0-3
PE 4 nid00045 Core affinity = 4-7
PE 5 nid00045 Core affinity = 4-7
PE 6 nid00045 Core affinity = 4-7
PE 7 nid00045 Core affinity = 4-7

()

 73
--

	Contents
	About CLE User Application Placement in CLE
	Run Applications Using the aprun Command
	Additional aprun Information
	ALPS Environment Variables

	How Application Placement Works
	System Interconnnect Features Impacting Application Placement

	Display Application Status and Cray System Information using apstat
	Display Job and Node Status using xtnodestat

	Manual Node Selection Using the cnselect Command
	How much Memory is Available to Applications?
	Core Specialization
	Launch an MPMD Application
	Manage Compute Node Processors from an MPI Program
	Batch Systems and Program Execution
	Dynamic Shared Objects and Libraries (DSLs)
	Configure Dynamic Shared Libraries (DSL) on CLE
	Build, Launch, and Workload Management Using Dynamic Objects
	Troubleshooting DSLs

	Cluster Compatibility Mode in CLE
	Cluster Compatibility Mode Commands
	Start a CCM Batch Job
	ISV Application Acceleration (IAA)
	Individual Software Vendor (ISV) Example
	Troubleshooting IAA

	Troubleshooting Cluster Compatibility Mode Issues
	Disable CSA Accounting for the cnos Class View

	Caveats and Limitations for CCM

	The aprun Memory Affinity Options
	The aprun CPU Affinity Option
	Exclusive Access to a Node's Processing and Memory Resources
	Optimize Process Placement on Multicore Nodes

	Run a Basic Application
	Run an MPI Application
	Use the Cray shmem_put Function
	Use the Cray shmem_get Function
	Run Partitioned Global Address Space (PGAS) Applications
	Run an Accelerated Cray LibSci Routine
	Run a PETSc Application
	Run an OpenMP Application
	Run an Interactive Batch Job
	Use aprun Memory Affinity Options
	Use aprun CPU Affinity Options

