CRANY

x“l“]ﬁ.llnlll"i""- l"‘ I:

l'l“l : lﬁ‘" P

v U el W

Chapel Come‘s
Productive Parallelism at Scale EHAEL
CuUG 2018 =

‘f ge:

T

\

, C

Brad Chamberlain, Chapel Team

¥ o S -

HIH“T; ||n||||| nialn

AT B

Or What’s Chabelbeen up to

since CUG 20137 @::‘;I
CUG 2018 =

Brad Chamberlain, Chapel Team, Cray Inc.

What is Chapel? cRas

Chapel: A productive parallel programming language
e portable & scalable \
e open-source & collaborative

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”

e Make parallel programming at scale far more productive

2

C/ (3)

=/ CUG 2018 Copyright 2018 Cray Inc. N

Chapel and Productivity

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

=

C

—
= opyrig ray Inc.
=~ CUG 2018 Copyright 2018 Cray |

Y

//777\\
f ‘x

CLBG Cross-Language Summary
(Oct 2017 standings)

100

Perl ,,
. . \

\

Lua Q‘ o

. ,,,,,,,, - Python

Execution Time
(normalized to fastest entry)

SmaIItaI\R‘\

20 [T Ocaml . RacketPHR L I N ,,,,,,, R o ,,,,,,,]

Javaseript Dart =

Typescrl pt

1.0 1.5 2.0 2.5

Compressed Code Size (normalized to smallest entry)

I csharpcore
Bl dart
Il erlang
I fpascal
Bl fsharp
I gcc
BN chc
Il gnat
g0
. gpp
hack
ifc

Em java

BN jruby
I lua
node
B ocaml
I perl
s php
python3
Il racket

' Il rust

shcl
Bl scala

swift
W typescript
LY
Il yarv
[] gmean-smallest
(O egmean-fastest

CLBG Cross-Language Summary o AN

(Oct 2017 standings, zoomed in)

10 —

Il csharpcore
B dart

Il erlang
Il fpascal
I fsharp
I gcc

N |

Typescript m-g® " "

| Javaseript ©
o — — NN g m

“Scala
Haskell ® “F#

: ~
2 \ 2 A
O \ B \ : A
H H ~
5 \ N i \\\
. \

o

php
python3
racket
P
rust
shcl

Execution Time
(normalized to fastest entry)

/7
/
=
m
=
—

: scala
N ~ \\ SN swift
\Q \‘::Rust Il typescript
Se.. HE ow
N LN \\ T yarv
W ”\'Q(E gmean-smallest

~ (O egmean-fasfest

1.0 1.5 2.0 2.5 3.0

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary e A

(Oct 2017 standings, zoomed in)

[—
B chapel
Il csharpcore
B dart

Il erlang
fpascal
fsharp

gcc

ghc

gnat

g0

gpp

hack

ifc

java

jruby

lua

\-\
Typescrlpt H-o \
Java@(@ﬁ’ﬂpﬁ o ;N

Scala
Haskell Q “F#

node
ocaml
perl
php
python3
racket
rist
shcl

Execution Time
(normalized to fastest entry)

/

scala
swift

Chapal . \\Q Rust Il typescript
: : C\)\\ |7
: : : : S yarv
2 \C++ E gmean- el R

O gmean-fastest
C o

1.0 1.5 2.0 2.5 30

Compressed Code Size (normalized to smallest entry)

CLBG Cross-Language Summary e A
(Oct 2017 standings) .

100 — : _ _ \

B chapel
I csharpcore
Bl dart
. Il erlang
S I fpascal
: o i : Bl fsh
o 8O beobee e .*\ .. SN UNSRRUNUUUNUNURA SRR share
>\ g . B S : : . ccc
b \\\\] ; B chc
C > B gnat
) go
O o ;] . ‘ , m gpp
E 7)) g P o g hack
- — GJ - \\: ifc
I_ 4(7) 60 [h@m] Perl) ! } B (| s o ,,,,,,, ———
: ~ : : I jruby
S O : m a s : =
(@) \ node
: - Lua :\ . . e ocaml
3 9 : . BN N Il perl
o o . % N st S [T R W php
% N : | : \\\\ python3
-_ : : S Bl racket
Ww © . m \\\5 Sma"talk \~' B rust
E DTSN BN : i sbcl
,6 ; ~—\>\\\) 5 B scala
2 : i ift
c . PHP st
~ 20 TR Ocaml e Racket\ S ,,,,,, R R ,,,,,,, R T ,,,,,,, : ::pescnpt

Dart . o & 7 . O B yarv
J@V@@@ﬁ’ﬂl@ﬁ: . t _____ D Lngp D gmean-smallest
TypesCrI pt I—QI 'U» Er% - . T ‘ :‘;:"E“:‘“-‘_\—“_-: - (O egmean-fastest
Chapel " @ : -

Compressed Code Size (normalized to smallest entry)

2.0 2.5 3.0 3.5

-
)
C=RAY |

(Y b
e \

CLBG: Qualitative Code Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set t* affinity2)

printColorEquations(); {
cpu_set_t active_cpus;
const groupl = [i in l1..popSizel] new Chameneos(i, ((i-1)%3):Color); FILE* £; -
const group2 = [i in l..popSize2] new Chameneos(i, colorsl0[i]); char buf [2048]; \
. char const* pos;
cobegin { int cpu_idx;
holdMeetings(groupl, n); int phygical id;
holdMeetings(group2, n); int core id;_
} int cpu_cores;
X int apic_id;
print(groupl); size t cpu_count;
print(group2); size:t i; -
for c in groupl do delete c; char const* processor_str = "processor";
for c in group2 do delete c; size_t processor_str_len = strlen(processor_str);
} char const* physical_id_ str = "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str = "core id";
/7) size_t core_id str len = strlen(core_id str);
// Print the results of getNewColor() for all color pairs. char const* cpu cores str = "cpu cores"? -
/7 size_t cpu_cores_str_len = strlen(cpu_cores_str);

proc printColorEquations() {
for cl in Color do
for c2 in Color do
writeln(ecl, " + ", c2, " -> ", getNewColor(cl, c2));
writeln();

//
// Hold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall c in population do // create a task per chameneos
c.haveMeetings(place, population);

delete place;

}

excerpt from 1210 gz Chapel entry

CUG 2018

CPU_ZERO(&active_cpus);

sched_getaffinity(0, sizeof(active_cpus), &active_cpus);

cpu_count = 0;
for (i = 0; i != CPU_SETSIZE; i += 1)

if (CPU_ISSET(i, &active cpus))

{
cpu_count += 1;

}

}

if (cpu_count == 1)
is_smp[0] = 0;
return;

}

is_smp[0] = 1;
CPU_ZERO(affinityl);

Copyright 2018 Cray Inc.

excerpt from 2863 gz C gcc entry

CLBG: Qualitative Code Comparisons o

(Y b
)

Can also browse program source code (but this requires actual thought!):

proc main() { VW, cpu_set_t* affinityl, cpu_set t* affinity2)

printColorEquations();

active_cpus;

................. l .
const groupl = [1 in, l.- POPS&&e‘l] new Chamenec,s(l’ CObegln { f;

_______ buf [2048]);

cobegin { hOldMeetingS (groupl I n) ; g::iidx;

holdMeetings(groupl, n); physical_id;

| nodestings(group2, n); holdMeetings(group2, n); core_id;

cpu_cores;

-y apic_id;
pr:?.it'{ml“h.. } cpu_count;
print(group2); *ftress..,,, i

...........

for c in groupl do delete c; T TTSsaaa,,..
for ¢ in group2 do delete c;

processor_str "processor";

size_t processor_str_len = strlen(processor_str);
} char const* physical_id_ str = "physical id";
size_t physical_id str_len = strlen(physical_id_str);
char const* core_id_str = "core id";
;; Print th 1ts of getNewColor() £ 11 col n(core_id_str);
rin e resu S O ge ewColor or a co ‘CL.J p " " . ";
/1 e proc holdMeetings(population, numMeetings) { kxﬁmms“m
proc printColorEquations() { _*° . . - -
for cl in Color do . const place = new MeetingPlace(numMeetings);
for c2 in Color do Pt
writeln(cl, " + ", c2, " ‘v)' getNewColor(cl, (
writeln(); o*°
coforall c in population do // creat

//

P
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

c.haveMeetings(place, population);

// PL&ée and then creating per-chameneos tasks to ha

A

proc holdMeetings (population, numMeetings) { delete place B
r

const place = new MeetingPlace(numMeetings);

coforall c in population do // creatg a t4g }
c.haveMeetings(place, population);

delete place; ----------------------------
) ------------------------------- CPU ZERO(afflnltyl)3

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

CLBG: Qualitative Code Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() {
-

CPU_ZERO(&active_cpus);
sched getaffinity(0, sizeof(active cpus), &active cpus);
cpu_count = 0;
for (i = 0; i != CPU_SETSIZE; i += 1)
{
if (CPU _ISSET(i, &active cpus))
{

}

cpu_count += 1;

}

if (cpu_count == 1)
{
is smp[0] =
return;

0;

excerpt from 1210 gz Chapel entry

&

= cuG 2018

.
.

char const* core_id str "core id"}L
size_t core_id str len = strlen(co]}:
char const* cpu_cores_str = "cpu core
size_t cpu_cores_str len = strlen(cp

.®

-
)
C=RAY |

(Y b
e \

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set t* affinity2)

strlen(processor_str);
"physical id";
strlen(physical_id_str);

strlen(dore_id_str);

strlen(¢pu_cores_str);

Copyright 2018 Cray Inc.

CPU_ZERO(affinityl);

{
cpu_set_t active_cpus;
FILE* £;
char buf [2048]);
. char const* pos;
. int cpu_idx;
. int physical_id;
. int core_id;
. int cpu_cores;
% int apic_id;
‘, size_t cpu_count;
A size_t i;
.
.
K char const* processor_str = "processor";
'-‘ size_t processor_str_len =
» char const* physical_id_ str =
* size_t physical_id str_len =
[CHar consctr Core_1d _Btr = core 14";
size_t core_id_str_len =
char const* cpu_cores_str = "cpu cofes";
size_t cpu_cores_str_len =
CPU_ZERO(&active_cpus);
sched_getaffinity(0, sizeof(active_cpus), &active_cpus);
cpu_count = 0;
for (i = 0; i != CPU_SETSIZE; i += 1)
if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
}
}
if (cpu_count == 1)
is_smp[0] = 0;
return;
}
_,‘-"‘ is_smp[0] = 1;
.

excerpt from 2863 gz C gcc entry

The Chapel Team at Cray (May 201 8) =R

. /.v.V.V S Vo< . AVAVEY | v

13 full-time employees + ~2 summer interns

Chapel Community Partners

i sansssney 1 B 7 THE GEORGE /\
- - L © WASHINGTON /_/\
HAVERFORD S onvers™ \WESTERN
COLLEGE AMD '\/}'\\‘ WASHINGTON, DC WASHINGTON UNIVERSITY

swikr B mece B

C ’ THE UNIVERSITY OF TOKYO UNIVERSITY OF

MARYLAND

THE UNIVERSITY
OF ARIZONA

-~

)
reEeeeer |

LLg Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)

https://chapel-lang.org/collaborations.html

https://chapel-lang.org/collaborations.html

Outline

v
» Chapel Overview
e Chapel: Then vs. Now

e Chapel User Profiles
e What’s Next?

(@

CUG 2018

Copyright 2018 Cray Inc.

Chapel language feature areas

Chapel language concepts

Task Parallelism

Base Language
ity Control

Base Language

Domain Maps

Data Parallelism
Task Parallelism

Lower-level Chapel

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f) ;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

}

Base Language Features, by example

iter fib (n)

var current = 0,
next = 1; for £ in fib(n) do

writeln (f) ;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

}

{ onfig const n = 10;

Base Language Features, by example

Static type inference for:
e arguments
* return types
* variables

iter fib (n) \ ‘\\\ config congt n = 10;
var current = 0,
next = 1; for £ in fib(n) do
writeln (f) ;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

‘ Explicit types also
permitted

iter fib(n :\int): int {

var current: int =
next: int = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

0,

)yr £: int in fib (n)

writeln (f)

onfig congt n:

’

int

10;

do

Base Language Features, by example

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f) ;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

}

Base Language Features, by example

Zippered iteration

iter fib(n) | \

var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

config const n =]10;

for (i,f) in zip(0..#n,

writeln("fib #", 1,

"

fib(n)) do
is ", f);

Base Language Features, by example

Range types and

operators

iter fib(n) {
var current =
next = 1;

for 1 in 1..n {
yield current;
current += next;
current <=> next;

config const n = ﬁg;

for (i,f) in zip(0..#n,

writeln("fib #",

1,

"

is

fib(n)) do

1A

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;

current <=> next;

config const n = 10;
for (i,f) in zip(0..#n,
writeln (Y

Base Language Features, by example

iter fib(n) {
var current = 0,
next = 1;

for 1 in 1..n {
yield current;
current += next;

current <=> next;

config const n = 10;
for (i,f) in zip(0..#n,
writeln (, 1,

Other Base Language Features anvf |

e Object-oriented features

e Generic programming / polymorphism !
e Procedure overloading / filtering

e Default args, arg intents, keyword-based arg passing

e Argument type queries / pattern-matching

e Compile-time meta-programming

e Modules (namespaces)

e Error-handling

e and more...

=

@

=~ CuUG 2018 Copyright 2018 Cray Inc.

Task Parallelism and Locality Control

C Domain Maps D
Data Parallelism
 mmmd Task Parallelism

Base Language
rmmmd Locality Control

Locales, briefly

Locales can run tasks and store variables
Think “compute node”

Locales:
Iocale\ locale locale locale

0 1 2 3
User’s main() executes on locale #0

Task Parallelism and Locality, by example

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n
"running on %s\n",

tid, numTasks, here.name);

H_I_

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

const numTasks =

here.numPUs () ;

coforall tid in 1. .numTasks do

itef ("Hello from task %$n of %n
"r ' on %s\n",

tid, numTasks, here.name);

'|+

prompt> chpl taskParallel.chpl

prompt> ./taskParallel

Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

High-Level

Task Parallelism

taskParallel.chpl

const numTasks = here.numPUs () ;
\\\\‘coforall tid in 1..numTasks do
writef ("Hello from task %n of %n
"running on %s\n",

tid, numTasks, here.name);

'|+

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

This is a shared memory program

Nothing has referred to remote
locales, explicitly or implicitly

taskParaIIeI.chpI]

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n
"running on %s\n",

tid, numTasks, here.name);

'|+

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

taskParallel.chpl

coforall loc in Locales do

on loc {

const numTasks = here.nu

mPUs () ;

coforall tid in 1. .numTasks do

writef ("Hello from task %n of %n

"running on %s\

tid, numTasks,

LA
n 14

here.name) ;

H_I_

prompt> chpl taskParallel.chpl
t> ./taskParallel —--numLocal

promp
Hello
Hello
Hello
Hello

from task 1
from task 2
from task 2
from task 1

of 2 running on
of 2 running on

of 2 running on

of 2 running on

es=2
nl033
nl1032
nl033
nl1032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do
writef ("Hello from task %n of %n

"running on %s\n",

tid, numTasks, here.name);

H_I_

prompt> chpl taskParallel.chpl

prompt> ./taskParallel —--numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n

"running on %s\n",

tid, numTasks, here.name);

H_I_

prompt> chpl taskParallel.chpl

prompt> ./taskParallel —--numLocales=2
Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

taskParallel.chpl

coforall loc in Locales do

on loc {

const numTasks = here.nu

mPUs () ;

coforall tid in 1. .numTasks do

writef ("Hello from task %n of %n

"running on %s\

tid, numTasks,

LA
n 14

here.name) ;

H_I_

prompt> chpl taskParallel.chpl
t> ./taskParallel —--numLocal

promp
Hello
Hello
Hello
Hello

from task 1
from task 2
from task 2
from task 1

of 2 running on
of 2 running on

of 2 running on

of 2 running on

es=2
nl033
nl1032
nl033
nl1032

Data Parallelism in Chapel —— Y

Chapel language concepts

C Domain Maps
" Deta Paraliclism_|© pigher-ievel
Chapel

Base Language

LLocality Control

Data Parallelism, by example

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,3] =1 + (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

@ .

Data Parallelism, by example

Domains (Index Sets)

prompt> chpl dataParallel.chpl

da

co

va

va
fo

WX

taParallel.chpl

nfig const n = 1000;
r D= {1l..n, 1..n};

r A: [D] real;
rall (i,j) in D do

Afi,j]l =1 + (3 - 0.5)/n;

iteln (2) ;

prompt> ./dataParallel --n=5

1.

1

1.

3

.5 1.7 1.9

.
7
.
.

Data Parallelism, by example

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,3] =1 + (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

g
.7
.7

g

@ .

@ .

Data Parallelism, by example

Data-Parallel Forall Loops

prompt> chpl dataParallel.chpl

da

co

va

va
fo

WX

taParallel.chpl

nfig const n = 1000;
r D= {1l..n, 1..n};

r A: [D] real;
rall (i,j) in D do

Afi,j]l =1 + (3 - 0.5)/n;

iteln (2) ;

prompt> ./dataParallel --n=5

1.

1

1.

3

.5 1.7 1.9

.
7
.
.

Data Parallelism, by example

This is a shared memory program

Nothing has referred to remote
locales, explicitly or implicitly

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5

1.

2.
3.
4
5

1

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Afi,j]l =1 + (3 - 0.5)/n;

writeln (2) ;

1

.3 1.5 1.7 1.9

g
.7
.7

g

Distributed Data Parallelism, by example

Domain Maps

(Map Data Parallelism to the System)

dataParallel.chpl

use CyclicDist;
config const n = 1000;

{1..n, 1..n}
dmapped Cyclic (startIdx =

;z§;/ﬁf/1D] real;

forall (i,]) in D do
Ali,J] =

writeln (2) ;

var D =

i+ (3 - 0.5)/n;

(1,1))7

prompt> chpl dataParallel.chpl
./dataParallel --n=5 --numlocales=4
1.1 1.3 1.5 1.7 1.9

prompt>

2.
3.
4
5

g
.7
.7

g

Distributed Data Parallelism, by example =Rac

dataParallel.chpl

use CyclicDist;
config const n = 1000;
var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

Ali,3] =1 + (3 - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

g
.7
.7

g

@ .

A Brief History of Chapel

A Brief History of Chapel: Infancy

Chapel’s Infancy: DARPA HPCS (2003-2012)
e ~6—7 FTEs
e Research focus:
e distinguish locality from parallelism

e seamlessly mix data- and task-parallelism
e support user-defined distributed arrays, parallel iterators

e CUG 2013 paper captured post-HPCS project status:

The State of the Chapel Union
Chamberlain, Choi, Dumler, Hildebrandt, Iten, Litvinov, Titus

2

@

=~ CcUG 2018 Copyright 2018 Cray Inc.

N

Crossing the Stream of Adoption CRANY

Research Prototype [Ebatis SF 2 IR /\ciopted in Production

= ‘\.‘“ 1 S : -:-_ " 3 R : 3 ;- 7 ‘ e s y N _”~ 7,':,—..

s

[your production
app here]

image credit: http://feelgrafix.com/813578-free-stream-wallpaper.html

http://feelgrafix.com/813578-free-stream-wallpaper.html

Crossing the Stream of Adoption: cRAY
_Post-HPCS Barrlers - e — _

N ;::._)'e' Insuff|C|ent lerarles ' Memory Leaks i

[your pi'oductlon
app here]

image credit: http://feelgrafix.com/813578-free-stream-wallpaper.html

http://feelgrafix.com/813578-free-stream-wallpaper.html

A Brief History of Chapel: Adolescence AN

(Y b
e \
\

Chapel’s Adolescence: “the five-year push”|(201342018)

o Motivated by user enthusiasm for Chapel Then Now \

e Development focus:
e address weak points in HPCS prototype
e support and grow the Chapel community

e ~13-14 FTEs
e This CUG 2018 talk & paper reports on progress during this time

=

@

= CuG 2018 Copyright 2018 Cray Inc.

Chapel Performance: Then vs. Now vs. Reference

Performance Focus Areas (during 5-year push) ==»A‘Yf |

b \
\

Array Optimizations:

e shifted data optimization (eliminates arbitrary indexing overhead)

e loop-invariant code motion (eliminates meta-data overhead)

e eliminated multiply in indexing for 1D (and innermost dim of 2D+) arrays
Runtime Library Improvements:

e scalable parallel memory allocator

o tasks mapped to affinity aware user-level threads

e native/optimized comm with RDMA and limited software overhead
Optimized Communication:

e compiler locality analysis improvements

e bulk array assignments

e remote-value-forwarding, new distributions, fast-ons, ...

C 7N
. L 95)
\~

=
=/ Copyright 2018 Cray Inc.

Experimental Methodology

Methodology for the next several slides:
e Resurrected a copy of Chapel 1.7
e uUpdated it to build with current versions of gcc/g++
e Compared it to Chapel 1.17, released April 2018
e Used today’s Cray systems

e Used today’s benchmark codes
e with modest edits for 1.7 in response to language changes

=

@

= CuG 2018 Copyright 2018 Cray Inc.

LCALS Serial Kernel

e Chapel source:

for i in 0..#len do

bvc[i] = cls * (compression/[1]

+ 1.0);

LCALS Serial Kernel: Chapel Then vs. Now

LCALS Serial Time (seconds)
180

Chapel |.17 IR

160
140
120
100

Time (sec)

| Locale (x 28 cores)

LCALS Serial Kernels: Chapel Now vs. Ref oy

e \
b \
LCALS Serial Kernels (Normalized to Ref) \

14 B Chapel |.17 ~ www———= Reference

' \

1.2
cu
£ 1
|_
9 038
N
<
: 0.6
o 04
Z

0.2

0
(}(’ o\o \\,Q\e \Q\'C’ 0\?@6 . >2> Q{ob & oS @&é' 8\& .
/L
O&/Q’b/ 9O \Y% \\& Q’(/-'b\’b% Q\S{ 7\\(6 Q
& ¥ DRSS &

\

| Locale (x 28 cores)

LCALS Parallel Kernel: Chapel Then vs. Now =l=tA:Yf |

))

LCALS Parallel Time (seconds)

Chapel |.17 IR

Time (sec)

LCALS Parallel Kernels: Chapel Now vs. Ref

LCALS Parallel Kernels (Normalized to Ref)

s Chapel |.|7 - Reference

N
N U

Normalized Time
[N
(@a]

1
0.5
0
C C ¢ > 2 < o) © S &
& & & (,} K Dy s F S Y
@’ & [R\ o \’bb L7 d& Q{J
6)90 Q(4(}' O'Q / &0
N &
< D7

| Locale (x 28 cores)

HPCC STREAM Triad: Chapel Then

)

()

K

GB/s

STREAM Performance (GB/s)

Locales (x 28 cores / locale)

Copyright 2018 Cray Inc.

b
CRAY |
(Y b
b \
\

|
HPCC STREAM Triad: Chapel Then vs. Now <Ras,
) \
STREAM Performance (GB/s) \
3000 ""--_-.; —————————————————————————————————————
e \
w€0k----- - - - - - " -"-"-"-"-“"-“"“"“"“"“"“"""""“"“" "
E\‘(; 1500 f*~ "~ """ """ T T T T T T T T T o AT - - o - s - oo s oo oo - oo -
T 0] el P <ttt
] e i i e i
0 —— |

Locales (x 28 cores / locale)

HPCC STREAM Triad: Chapel Now vs.

STREAM Performance (GB/s)

Reference —¢—

16 32 64 128

Locales (x 36 cores / locale)

("\\
@
=/ Copyright 2018 Cray Inc.

b
CRAY |
(Y b
b \
\

256

PRK Stencil: Chapel Then

PRK Stencil Performance (Gflop/s)

Locales (x 28 cores / locale)

Q /\

Copyright 2018 Cray Inc.

b
CRAY |
(Y b
b \
\

|
PRK Stencil: Chapel Then vs. Now CRANyY
\‘ \
PRK Stencil Performance (Gflop/s) \
1600 *~ -~~~ ‘_‘.; ““““““““““““““““““““““
b= . \

1200

1000

800

Gflop/s

600
400

200

| 2 4 8 16 32

Locales (x 28 cores / locale)

=/ Copyright 2018 Cray Inc.

PRK Stencil: Chapel Now vs. Ref

PRK Stencil Performance (Gflop/s)

12000 -~~~ ———— "~ """ """ “—=“= === —“———————-—- - - -
Reference —¢—
Chapel 1.17 —&—
000 PP- - -~ - -~ " "~ mmm - mm e mm e m—m——— - — - - -
soooP----"---"-"-"-"-"-"-"-"-"-"-"-"-"---"-“"“"“"“"“"-----

16 32 64 128

Locales (x 36 cores / locale)

("\\
@
=/ Copyright 2018 Cray Inc.

b
CRAY |
(Y b
b \
\
\

256

\ \
LCALS: Chapel 1.17 vs. Reference cRas L(;ALS H P‘ :(: RA HPCC RA: Chapel 1.17 vs. Reference cRas
L) . \
LCALS Serial Kernels (Normalized to Ref) \ RA Performance (GUPS) \ \
L4 e 7 = e \
1.2 \
E 0.8
s 06 9
0.2
0
F NFFLLS NP PSSP
X s \\9‘\{5(":@(3(\@,/\ Q\S@bk\ﬁ’ q"‘/*\cf'i&ji*@’
& & @ S & €&
| Locale (x 28 cores)
» » Locales (x 36 cores / locale)
C Triad ISx Stencil [c
e X ® \ $ \
STREAM Triad: Chapel 1.17 vs. Reference SRt ISx: Chapel Now vs. Reference S SR PRK Stencil: Chapel Now vs. Reference SRae
. \ s \ L) \
STREAM Performance (GB/s) S ISx Time (seconds) Y PRK Stencil Performance (Gflopls) X
30000 - - - - === ---e-m--sem—-ee—ooooooooooo 12000 == = - - === ===--------=-m-eeee———ooooooooooo-
Reference —— Reference ——
Chapel 1.17 —8— \ \ Chapel 1.17 —8— \
PV ptatiiii e [LOL0[0[V i
20000 - - - - --m- oot _ 8000 - T
§ el ﬁ g g"f L R e
[3
LY S 4000 - - e
] 2000 - A
L Il Il Il J 4 'l 'l 'l 'l J M I I I 1
6 32 64 128 256 6 3 64 128 256 ’ 16 32 64 128 256

Locales (x 36 cores / locale)

Locales (x 36 cores / locale)

@

Locales (x 36 cores / locale)

C

Nightly performance tickers online at:
https://chapel-lang.org/perf-nightly.html

https://chapel-lang.org/perf-nightly.html

HPC Patterns: Chapel Now vs. reference

Local loop kernels

LCALS

STREAM

Triad

|Sx

HPCC RA

PRK
Stencil

Global Random
Updates

Embarrassing/Pleasing |

Parallelism

Bucket-Exchange

Pattern

Stencil Boundary
Exchanges

Nightly performance tickers online at:
https://chapel-lang.org/perf-nightly.html

https://chapel-lang.org/perf-nightly.html

HPC Patterns: Chapel Now vs. reference

Local loop kernels

LCALS

STREAM

Triad

|Sx

HPCC RA

PRK
Stencil

Global Random
Updates

Embarrassing/Pleasing |

Parallelism

Bucket-Exchange

Pattern

Stencil Boundary
Exchanges

Nightly performance tickers online at:
https://chapel-lang.org/perf-nightly.html

https://chapel-lang.org/perf-nightly.html

HPCC Random Access Kernel: MPI

/* Perform updates to main table. The scalar equivalent is: } else {
* HPCC_InsertUpdate (Ran, WhichPe, Buckets);
* for (i=0; i<NUPDATE; i++) { pendingUpdates++; MPI_Test (&outreq, &have done, MPI_STATUS_ IGNORE) ;
* Ran=(Ran << 1) " (((s64Int) Ran < 0) ? POLY : 0); } if (have_done) {
* Table[Ran & (TABSIZE-1)] *= Ran; it+; outreq = MPI_REQUEST_ NULL;
* } } pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
Y else { speUpdates) ;
MPI_ Test (&outreq, &have_done, MPI_STATUS_IGNORE) ; MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
MPI Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64, if (have_done) { UPDATE_TAG, MPI_COMM WORLD, &outreq);
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); outreq = MPI_REQUEST_ NULL; pendingUpdates -= peUpdates;
while (i < SendCnt) { pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize, }
/* receive messages */ speUpdates) ; }
do { MPI Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, /* send our done messages */
MPI_Test(&inreq, &have_done, &status); UPDATE_TAG, MPI_COMM WORLD, &outreq); for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {

if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {

MPI_Get_ count (&status, tparams.dtype64, &recvUpdates);

bufferBase = 0;

for (3j=0; J < recvUpdates; J ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -

tparams.GlobalStartMyProc;

HPCC_Table[LocalOffset] "= inmsg;

}

pendingUpdates -= peUpdates;

}
}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {

if (proc_count == tparams.MyProc)
MPI_REQUEST_NULL; continue;
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype6d4, proc_count, FINISHED_TAG,
MPI_COMM WORLD, tparams.finish_req + proc_count);

}

/* Finish everyone else up... */

while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {

} else if (status.MPI_TAG == FINISHED TAG) ({ if (status.MPI_TAG == UPDATE_TAG) { MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
NumberReceiving--; MPI_Get_ count (&status, tparams.dtype64, &recvUpdates); bufferBase = 0;
} else bufferBase = 0; for (j=0; J < recvUpdates; j ++) {

MPI_Abort(MPI_COMM WORLD, -1);
MPI_Irecv (&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);

for (3j=0; J < recvUpdates; J ++) {
inmsg = LocalRecvBuffer [bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;

inmsg = LocalRecvBuffer [bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
}

if (pendingUpdates < maxPendingUpdates) { } } else if (status.MPI_TAG == FINISHED TAG) ({
Ran = (Ran << 1) ”~ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B); } else if (status.MPI_TAG == FINISHED TAG) { /* we got a done message. Thanks for playing... */
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing... */ NumberReceiving--;
if (GlobalOffset < tparams.Top) NumberReceiving--; } else {
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1)); } else { MPI_Abort (MPI_COMM WORLD, -1);
else MPI Abort (MPI COMM WORLD, -1); }
WhichPe = ((GlobalOffset - tparams.Remainder) / } MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64
tparams.MinLocalTableSize); MPI_Irecv (&LocalRecvBuffer, localBufferSize, tparams.dtype64, MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, é&inreq);
if (WhichPe == tparams.MyProc) { MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq) ; }
LocalOffset = (Ran & (tparams.TableSize - 1)) - }

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ”= Ran;

} while (have_done && NumberReceiving > 0);

MPI_Waitall(tparams.NumProcs, tparams.finish req, tparams.finish_

{ tparams.finish_req[tparams.MyProc] =

}

statuses);

D

@

=/

HPCC Random Access Kernel

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rnel

* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0); g

* Table[Ran & (TABSIZE-1)] = Ran; f ora 1 1 (/ r) iln zZ
- —

7 Tlr & indexMask]

b
- MPI el — PN

ip (Updates, RAStream()) do

AN

= r;

MPI Comment

Perform updates to main table.

for (1=0; 1<NUPDATE; 1i++) {
Ran = (Ran << 1) ©~ (((so04
Table[Ran & (TABSIZE-1)]

S T T

The scalar equivalent 1is:

Int) Ran < 0) ? POLY : 0);

N

= Ran;

HPCC RA: Chapel Now vs. Ref AN

RA Performance (GUPS)

Reference (bucketing) ==X -*
|.6 Reference (no bucketing) = — — — — — — — — — — — — — — — — — — - — - — - — - - - - — - \
Chapel 1.17 ——

GUPS

|6 32 64 128 256

Locales (x 36 cores / locale)
D

—

=/ Copyright 2018 Cray Inc.

()

Memory Leaks: Then vs. Now

(skipped at CUG due to time constraints)

Memory Leaks: Chapel Then vs. Now

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Number of Tests

Total Number of Nightly Tests

4410

Chapel 1.7

8478

Chapel 1.17

Memory Leaks: Chapel Then vs. Now

Fraction of Tests Leaking Memory

10000
9000 8478
«» 8000
@ 7000
= 6000
Y
> 5000 4410
L 4000
€ 3000
-
Z 2000
1000 302
O |

Chapel 1.7 Chapel 1.17

Memory Leaks: Chapel Then vs. Now

2500

2000

RN
@)
o
o

1000

500

MB of memory leaked

Total Memory Leaked in Nightly Testing

Chapel 1.7

0.237
Chapel 1.17

Memory Leaks: Remaining Leaks

45000

40000

35000

30000

25000

Bytes Leaked
N
o
o
o
(@)

15000

10000

5000

21

41

Size of Remaining Leaks by Test Number

~1/3 of memory leaked

by one test (SSCA#2)

~2/3 of leaking tests
leak < 256 bytes

61

81

~1/3 of leaking tests
leak < 64 bytes

101

121

141 161
Leaking Test #

181

201

221

241

261

281

301

()

Chapel Language: Then vs. Now

Language: Then

Parallelism and Locality: Generally in good shape
e not many changes here since HPCS

Base Language: Left much to be desired
e |ots of focus here since HPCS

=
@ CUG 2018

Copyright 2018 Cray Inc.

)
Language: Now CRANY |

Parallelism and Locality
e introduced task intents to reduce chances of race conditions \
o and user-defined locale models to support new node architectures

Base Language

o fixed a number of problems with object-oriented programming
e records: poor memory management discipline
e classes: problems with generic classes, class hierarchies

e made strings usable

o added error-handling features

» made namespace improvements (and much more...)

=

@

= CuG 2018 Copyright 2018 Cray Inc.

()

Chapel Ecosystem: Then vs. Now

Documentation: Then

After HPCS:

a PDF language specification

=
=

= CUG 2018

a Quick Reference sheet

a number of READMEs
~22 primer examples

Version 0.93

Seattle, WA 98164

April 18,2013

bradc — ssh bradc@troll.cray.com — bash I

Chapel doc README

This directory contains the following documentation:

Chapel Language Specification

Chapel Quick Reference

Page 1

Quick Start i and

Hew to write @ ane-line “Dells, world" progros

he il b

*chy hew

Cxprecanaion
‘edhuction, scan, apply domain

2 Compile and run it

Pl npl

// Task Parallel Primer

// This primer illustrates Chapel's parallel tasking features,
// namely the begin, cobegin, and coforall statements.

config const n = 10;

writeln()i

// The begin statement spawns a thread of execution that is independent
// of the current (main) thread of execution.

begin writeln(i

// The main thread of execution continues on to the next statement,

// There is no guarantee as to which statment will execute first.
writeln(I

README : this file

README . bugs : how to report bugs or suggestions to the Chapel team
README.building 1 information about building the Chapel compiler

README. chplenv i setting up your environment to use Chapel

README. compiling 1 how to use the Chapel compiler to compile code

README . executing 1 execution options for Chapel programs
README.multilocale : how to execute Chapel on multiple locales

README. threads 1 explains how Chapel tasks are implemented using threads
README. xt-cnl + notes for Cray XT (UNICOS/lc) users

README. cygwin : notes for Cygwin users

README.extern : technical note on interfacing with external C routines
README. format : technical note on controlling value-to-string formatting
README.preregs i prerequisites for using Chapel

chapelLanguageSpec.pdf : the current draft of the Chapel language
specification

hpccOverview.pdf : a high-level overview of our implementations of
the HPC Challenge benchmarks for STREAM Triad,
Random Access, and FFT in Chapel

hpccTutorial.pdf : a companion paper to the previous that provides a
detailed walkthrough of our implementations of
the HPCC benchmarks to serve as a tutorial to
Chapel and the codes themselves

quickReference.pdf : a one-sheet, tri-fold overview of Chapel syntax
for quick reference

For more Information

For additional information about Chapel, please refer to:

* "Parallel Programmability and the Chapel Language" by Bradford
L. Chamberlain, David Callahan, and Hans P. Zima, published in the
International Journal of High Performance Computing Applications,
August 2007, 21(3): 291-312.

=uu-:===F1 README Top L1 (F)

Copyright 2018 Cray Inc.

writeln()i

// For more structured behavior, the cobegin statement can be used to
// spawn a block of tasks, one for each statement. Control continues
// after the cobegin block, but only after all the tasks within the
// cobegin block have completed.

cobegin {
writeln(i
writeln(|H

// The output from within the cobegin statement will always precede the
// following output from the main thread of execution.
writeln(5

writeln(|H

// 1f any begin statements are used within a cobegin statement,
// the thread of execution does not a wait for those begin statements
/1 to complete.

cobegin {
begin writeln(N
begin writeln(i

uu-:---F1 taskParallel.chpl Top L1 (Chapel/1 Abbrev)
Loading /users/bradc/chapel/highlight/emacs/22/chpl-mode.el (source)...done

T0f pavscd by eckerenee

by valuue or reference, but with kocal

s deabiod

e B, st Snge,

otherwise like const

Documentation: Now

ow: 200+ modern, hyperlinked, web-based documentation pages

Chapel Documentation 1.16

art Instructions
g Chapel
Platform-Specific Notes
Technica

Tools

Hello World Variants

Prin

Docs » Chapel Documentation

Chapel Documentation
Compiling and Running Chapel

o Quickstart Instructions
e Using Chapel

Chapel Documentation 1.16

¢ Platform-Specific Notes

* Technical Notes
* Tools

Writing Chapel Progra

B Using Chapel

" Chapel Prerequisites
* Quick Reference

e Hello World Variants

e Primers

o Language Specification

e Built-in Types and Functions

o Standard Modules

o Package Modules

« Standard Layouts and Distributions
o Chapel Users Guide (WIP)

Chapel
Building Chapel

Chapel Man Page

Chapel Launchers

- Chapel Tasks
Language History

e Chapel Evolution

m-Specific No

« Archived Language Specifications

(no subject) -
i il.com - Gmail

Setting up Your Environment for

Compiling Chapel Programs
Executing Chapel Programs

Multilocale Chapel Execution

Debugging Chapel Programs

Reporting Chapel Issues

View pa

D

Using Chapel

Contents:

ge source

ocs » Using Chapel

Chapel Documentation 1.16

Chapel Prerequisites

Setting up Your Environment fa
Building Chapel

Compiling Chapel Programs

Chapel Man Page

© Primers.

Executing Chapel Programs

Multilocale Chapel Execution
Chapel Launchers

Chapel Tasks

Debugging Chapel Programs
Reporting Chapel Issues

© Task Parallelism
© Task Parallelism
Begin Statements
Cobegin Statements

Coforall Statements

Sync/ Singles

Atoenics

@ Previous

Data Parallelism

View page source

Docs » Primers » Task Parallelism View page source

Task Parallelism
View taskParallel.chpl on GitHub

This primer illustrates Chapel's parallel tasking features, namely the begin , cobegin ,and coforall
statements.

config const n = 10;

Begin Statements

The begin statement spawns a thread of execution that is independent of the current (main) thread
of execution.

weiteln(*1: #ae The

begin weiteln("1

The main thread of execution continues on to the next statement. There is no guarantee as to which
statement will execute first.

weiteln(*1: output from main task™);

Cobegin Statements

CUG 2018

Libraries: Then

After HPCS: ~25 library modules

e documented via source comments, if at all:

// Random Module

// This standard module contains a random number generator based on
// the one used in the NPB benchmarks. Tailoring the NPB comments to

// this code, we can say the following:

/7 This generator returns uniform pseudorandom real values in the
// range (@, 1) by using the linear congruential generator

// x_{k+1} = a x_k (mod 2x=46)

/7 where @ < x_k < 2%x46 and @ < a < 2%%46,

// This generator should produce the same results on any computer
// with at least 48 mantissa bits for real(64) data.

// Open Issues

// 1. We would like to support general serial and parallel iterators
// on the RandomStream class, but this is not possible with our

// current parallel iterator framework.

// 2. The random number generation functionality in this module is
imag, and 128-bit
other primitive types
are insufficient.

// currently restricted to 64-bit real, 64-bit
// complex values. This should be extended to
// for which this would make sense. Coercions

// 3. Can the multiplier 'arand' be moved into
// so that it can be changed by a user of this

// 4. By default, the random stream seed is initialized based on the
// current time in microseconds, allowing for some degree of

// randomness. The intent of the SeedGenerator enumerated type is to
// provide a menu of options for initializing the random stream seed,

// but only one option is implemented to date.

// Note on Private

// It is the intent that once Chapel supports the notion of
// everything prefixed with RandomPrivate_ will be made private to
-uu-:---F1 Random.chpl Top L1 (Chapel/1 Abbrev)

Mark set

bradc — ssh bradc@troll.cray.com — bash

(See LICENSE file for more details)

This scheme generates
// 2%x44 numbers before repeating. The seed value must be an odd
1/ 64-bit integer in the range (1, 2746). The generated values are
// normalized to be between @ and 1, i.e., 2*%(-46) * x_k.

the RandomStream class

bradc — ssh bradc@troll.cray.com

extern type gqio_regexp_t;

extern record qio_regexp_options_t {
var utf8:bool;
var posix:bool;
var literal:bool;
var nocapture:bool;
// These ones can be set inside the regexp
var ignorecase:bool; // (?71i)
var multiline:bool; // (7m)
var dotnl:bool; // (?s)
var nongreedy:bool; // (?U)

}

extern proc qio_regexp_null():qio_regexp_t;
extern proc qio_regexp_init_default_options(ref options:gqio_regexp_options_t);

extern proc qio_regexp_create_compile(stristring, strlen:int(64), ref options:q\

io_regexp_options_t, ref compiled:qio_regexp_t);
extern proc qio_regexp_create_compile_flags(str
tring, flagslen:int(64), isUtf8:bool, ref compiled:qio_regexp_t);

extern proc qio_regexp_create_compile_flags_2(str:c_ptr, strlen:int(64), flags:\

c_ptr, flagslen:int(64), isUtfB8:bool, ref compiled:qio_regexp_t);
extern proc gio_regexp_retain(ref compiled:qio_regexp_t);
extern proc qio_regexp_release(ref compiled:qio_regexp_t);

extern proc qio_regexp_get_options(ref regexp:gio_regexp_t, ref options: gio_re\

gexp_options_t);

extern proc qio_regexp_get_pattern(ref regexp:qio_regexp_t, ref pattern: string\

)i

extern proc qio_regexp_get_ncaptures(ref regexp:qio_regexp_t):int(64);
extern proc gio_regexp_ok(ref regexp:qio_regexp_t):bool;

extern proc qio_regexp_error(ref regexp:qio_regexp_t):string;

extern const QIO_REGEXP_ANCHOR_UNANCHORED:c_int;
extern const QIO_REGEXP_ANCHOR_START:c_int;
extern const QIO_REGEXP_ANCHOR_BOTH:c_int;

extern record qio_regexp_string_piece_t {
var offset:int(64); // counting from @, -1 means "NULL"
var len:int(64);

extern proc qio_regexp_string_piece_isnull(ref sp:qio_regexp_string_piece_t):bo\

tring, strlen:int(64), flags:s\

ol;
-uu-:---F1 Regexp.chpl Top L1 (Chapel/1 Abbrev)

Copyright 2018 Cray Inc.

0
Libraries: Now el — PG

ow: ~60 library modules
e web-documented, many user-contributed

Chapel Documentation 1.16

Docs » Standard Modules
Chapel Documentation 1.16
Docs » Package Modules View page source

Standard Modules

Standard modules are those which describe features that are considered part!
Standard Library.

Package Modules

Package modules are libraries that currently live outside of the Chapel Standard Library, either
because they are not considered to be fundamental enough or because they are not yet mature
enough for inclusion there.

All Chapel programs automatically use the modules assert , 10 , Matn ,and

Assert

Barrier

BLAS
« Barriers O)
« Biginteger » Collection
* BitOps * Crypto
¢ Curl

Buffers
CommDiagnostics
DateTime

* DistributedBag
* DistributedDeque
¢ Distributediters

B Standard Modules

Dynamiclters

Assert o FileSystem « FFTW
Barrier « GMP o FFTW MT
Barriers * Help * Futures
L] e
Biginteger :-0 Package Modules « HDFS
* List o
BitOps « Math BLAS » HDFSiterator
Collecti * LAPACK
Buffers Memory ollection)
* LinearAlgebra
CommDiagnostics * Path Crypto . MPI
DateTime * Random Curl o Norm
* Reflection 1
Dynamiclters DistributedBag * OwnedObject
* Regexp
FileSystem o Spawn DistributedDeque * RangeChunk
GMP * Sys Distributediters * RecordParser
Help * SysBasic Search
o « SysCTypes FFTW * SharedObject
I
« SysError FFTW_MT * Sort
Time Futures « VisualDebug
Types « ZMQ
HDF.
« UtilReplicatedVar S
J

0
Libraries: Now =l=!AYf |

Math: FFTW, BLAS, LAPACK, LinearAlgebra, Math
Inter-Process Communication: MPI, ZMQ (ZeroMQ) !
Parallelism: Futures, Barrier, Dynamiclters

Distributed Computing: DistributedlIters, DistributedBag,
DistributedDeque, Block, Cyclic, Block-Cyclic, ...

File Systems: FileSystem, Path, HDFS

Others: Biginteger, BitOps, Crypto, Curl, DateTime, Random,
Reflection, Regexp, Search, Sort, Spawn, ...

Tools: Then

After HPCS:

e highlighting modes for emacs and vim
e chpldoc: documentation tool (early draft)

r

C

—
=~ CcUG 2018 Copyright 2018 Cray Inc.

Y

i
Tools: Now CRANY |

\
Now:
e highlighting modes for emacs, vim, atom, ... § _ - '
e chpldoc: documentation tool i e
e mason: package manager -
e c2chapel: interoperability aid e =1
o bash tab completion: command-line help [Err. [
1t

e chplvis: performance visualizer / debugger

en compilerError("write on read-only channel");

o 31

(Get from 4 at modules/standard/I0.chpl:4508
GocTe) LE S e T T Ty e WIS TE T Ty peS > T
var tuple o
wees | forpara 1.numTypes do
Sassl tupleVval(i) = this.read(t(i));
| return tupleval;
}
T I
T |1 docu or= version
pra c*
inli nnel.write(args ...?k, out error:syserr):bool {
= '

error = _write_one_internal(_channel_internal, kind, args(i));

}
this.unlock();
}

return lerror;
}

// documented in style= error= version
pragma "no doc"

inline proc channel.write(args ...7k):bool {
/ar &-cucarr = ENOERR-

=

@

= cuG2018 Copyright 2018 Cray Inc. \Z/

0
Then vs. Now: And so much more... cRAaY |

Interoperability:
e passing arrays & functions to C, working with C pointers, ... \

Development process:
e GitHub, Jenkins, Travis, interactive nightly performance graphs...

Social media: Twitter, Facebook, YouTube

User support: GitHub issues, StackOverflow, Gitter, email
Web presence: CLBG, Try It Online, CyberDojo, ...
Memory Leaks: significantly reduced

CHIUW: annual community workshop

(@

CUG 2018 Copyright 2018 Cray Inc.

Chapel User Profiles

Chapel User Profiles —— Yy

Time-to-science Commercial Al |

Current Users: Cosmologist Scientist
Potential Users: Genomic DOE Scientist
Researcher

=/ CUG 2018 Copyright 2018 Cray Inc.

Chapel User Profiles

Time-to-science

Current Users: Cosmologist

skipped at CUG due to time constraints

J
. ’
- . .
y /'
-
B
’
b
e vy
-

:
|

Commercial Al
Scientist

\

User Profile: Time-to-Science Cosmologist =R<S
* \
\

b
AW

. i Name: Nikhil Padmanabhan

= Title: Associate Professor of Physics and Astronomy,
Yale University

Computations: Surveys of galaxies to constrain
cosmological models, n-body simulations of gravity

Why Chapel? "My interests in Chapel developed from a desire to have a lower
barrier to writing parallel codes. In particular, | often find myself writing prototype
codes (often serial), but then need to scale these codes to run on large numbers of
simulations/datasets. Chapel allows me to smoothly transition from serial to
parallel codes with a minimal humber of changes.

“Another important issue for me is "my time to solution” (some measure of
productivity vs performance). Raw performance is rarely the only consideration.”

CUG 2018 Copyright 2018 Cray Inc.

User Profile: Commercial Al Scientist anvf *

)
) \

Name: Brian Dolan D==P6 A \
Title: Co-Founder and Chief Scientist of Deep 6 Al

Computations: Natural language processing, Al and ML
applications, network analysis, community detection,

| reinforcement learning in the form of Deep Q-Networks
Why Chapel’? “| have used Fortran, R, Java and Python extensively. If | had to give up

Chapel, | would probably move to C++. | prefer Chapel due to the extreme legibility and
performance. \We have abandoned Python on large problems for performance reasons.

“‘We’ve now developed thousands of lines of Chapel code and a half dozen open
source libraries for things like database connectivity, numerical libraries, graph
processing, and even a REST framework. We've done this because Al is about to face an
HPC crisis, and the folks at Chapel understand the intersection of usability and scalability.”

(J CUG 2018

Copyright 2018 Cray Inc.

https://github.com/Deep6AI

Potential User Profile: Genomic Researcher <RAaNY

e b
e \
\

b
AW

Name: Jonathan Dursi

Title: Senior Research Associate, The Hospital for Sick
Children, Toronto

Computations: Human genomics, bioinformatics, and
medical informatics

Why Chapel? "My interest in Chapel lies in its potential for bioinformatics tools that
are currently either written in elaborately crafted, threaded but single node, C++
code, or in Python. Either has advantages and disadvantages (performance vs
rapid development cycles), but neither has a clear path to cross-node computation,
for performance as well as larger memory and memory bandwidth. Chapel has
the potential to have some of the best of both worlds in terms of C++ and
Python, as well as having a path to distributed memory.”

=

@

=~ CuUG 2018 Copyright 2018 Cray Inc.

Potential User Profile: DOE Scientist —— Yy

' Name: Anshu Dubey
Title: Computer Scientist, Argonne National Laboratory

Computations: Design and development of
Multiphysics software that can serve multiple science
Wl . domains; solvers for PDEs and ODEs

Why Chapel? “In Multiphysics applications separation of concerns and use of high level
abstractions is critical for sustainable software. Chapel combines language features that
would enable this for clean implementation.

“HPC Scientific software is made more complex than it needs to be because the only
language designed for scientific work, Fortran, is losing ground for various reasons. Its object
oriented features are clunky and make it nearly as unsuitable as other languages for scientific
work. Chapel appears to be parallel and modern Fortran done better, therefore has the
potential to become a more suitable language.”

CUG 2018 Copyright 2018 Cray Inc.

Chapel and Productivity

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite language]

=

@

=/ CUG 2018 Copyright 2018 Cray Inc.

What’s Next?

Crossing the Stream of Adoption an:Yf |

J [your production
app here]

image credit: http://feelgrafix.com/813578-free-stream-wallpaper.html

http://feelgrafix.com/813578-free-stream-wallpaper.html

Crossing the Stream of Adoption — P

@

»«?‘s’*-a,-

[your production
app here]

' Memory Leaks

image credit: http://feelgrafix.com/813578-free-stream-wallpaper.html

http://feelgrafix.com/813578-free-stream-wallpaper.html

Crossing the Stream of Adoption an:Yf |

»* What are the next @ [your production

e il COGS from B stepping stones? |
RA‘ LULESH § startups e s S here]

Where can Chapel help your
workflow’s productivity ?

Tlme-to-SC|ence ‘
academlc codes

RT 7 o O,

image credit: http://feelgrafix.com/813578-free-stream-wallpaper.html

http://feelgrafix.com/813578-free-stream-wallpaper.html

.)
Discovery Roadblocks cRAY |
Data Science Pain Points .

SELECTING MODEL

FEATURES ENSEMBLES

Which features should be used Which ensemble of AI/ML models will
for accurate predictions? be more performant?

DATA HYPER MODEL
EXPLORATION PARAMETERS RATIONALE
Do | fully understand my data? Does it What are the correct values to set the Do | trust my model? Why
need to be cleaned? variables to before training? does it predict that way?

=

C

—
= CuG 2018 Copyright 2018 Cray Inc.

Chapel Al Ecosystem

-

-
™ y N B ——
@, python) .\pyt/]
-

@Xnet PYTHRCH 0 4 Keras

BY=F%

ERIIRENT]

syJomawiel

alempleH

Sample Chapel Al Workflow an‘Yf‘ *
s_ : O
o User works from within a Jupyter notebook 2=

o Uses Chapel to ingest large HDF5 data files FHOF |

e read in parallel
e transformed / analyzed during ingestion
e stored in a distributed Dataframe

e Starts working on model locally on laptop)

e As confidence in model grows, tunes it at scale
o feature selection AT
e hyperparameter optimization . 5\5.____- ;

=

@

= CuG 2018 Copyright 2018 Cray Inc.

What’s Next?

Chapel’s college years: plans for 2018-2021
e Language Core
e Interoperability / Usability
o Portability
e Data Ingestion
e Chapel Al

2

@

=~ CcUG 2018 Copyright 2018 Cray Inc.

What’s Next? anY@g |

Chapel’s college years: plans for 2018-2021

» Language Core
e Language stabilization: avoid backward-breaking changes
e Sparse array improvements, partial reductions, delete-free features, ...
o Additional performance and scalability improvements

e Interoperability / Usability
o Portability

e Data Ingestion

e Chapel Al

(@

CUG 2018 Copyright 2018 Cray Inc.

What’s Next?

Chapel’s college years: plans for 2018-2021
e Language Core

o Interoperability / Usability
e Python / C++ interoperability
e Support for Jupyter notebooks / REPL

e Portability
e Data Ingestion
e Chapel Al

=
@ CUG 2018

Copyright 2018 Cray Inc.

What’s Next?

Chapel’s college years: plans for 2018-2021
e Language Core
e Interoperability / Usability
o Portability
e LLVM back-end
e Target Libfabric/OFI
o Target GPUs
e Cloud computing support
e Data Ingestion
e Chapel Al

=

@

= CuG 2018 Copyright 2018 Cray Inc.

What’s Next?

Chapel’s college years: plans for 2018-2021
e Language Core
e Interoperability / Usability
e Portability

o Data Ingestion
e Support HDF5, NetCDF, CSV, ...
e Transform-on-ingest
e Distributed DataFrames support

e Chapel Al

=

@

=~ CuUG 2018 Copyright 2018 Cray Inc.

What’s Next?

Chapel’s college years: plans for 2018-2021
e Language Core
e Interoperability / Usability
e Portability
e Data Ingestion

o Chapel Al
e Hyperparameter optimization
e Deep Learning

=

@

= CuG 2018 Copyright 2018 Cray Inc.

Summary

-
CRANY

b
AV

(Y b

\

\

Chapel has made huge strides over the past five years

We’ve addressed many historical barriers to using Chapel

HPCC RA: Chapel Now vs. Ref

\
cRAY
o

C

Memory Leaks: Chapel Then vs. Now

00000
00000
)
OOOOO

=
00000
5}

00000

¢

\
cRAY
o

Documentation: Now

\
ccRAaY
0

c

Tools: Now

C

\
cRAaNY
o

We’re continuing our work to support and improve Chapel

We’re looking for the next generation of Chapel users,

as well as concrete use cases for Al / ML

CHIUW 2017 Keynote — Y-y

Chapel’s Home in the Landscape of

New Scientific Computing Languages ~
(and what it can learn from the neighbours)

Jonathan Dursi, The Hospital for Sick Children, Toronto

Quote from CHIUW 2017 keynote — Yo

e b
) \
\

“My opinion as an outsider...is that Chapel is important,
Chapel is mature, and Chapel is just getting started.

“If the scientific community is going to have frameworks...that
are actually designed for our problems, they’re going to
come from a project like Chapel.

“And the thing about Chapel is that the set of all things that
are ‘projects like Chapel’ is ‘Chapel.’”
—Jonathan Dursi

Chapel’s Home in the New Landscape of Scientific Frameworks
(and what it can learn from the neighbours)
CHIUW 2017 keynote

https://lidursi.github.io/CHIUW2017 / https://www.youtube.com/watch?v=xj0rwdLOR4U

=
@ CUG 2018

Copyright 2018 Cray Inc.

https://ljdursi.github.io/CHIUW2017/
https://www.youtube.com/watch?v=xj0rwdLOR4U

Dedicated to the Memory of Burton Smith

Where do Languages Come From?

®
\
ANy
(Y b
e \
\

=Racyr

C

= CUG 2018 Copyright 2018 Cray Inc.

Lone Hardware Vendors Hardware Vendor Consortiums \
SHMEM CAF ;:nl_'ay aaking|— OPenMP
Java APL Icrotasking
CMFortran F66 —1— F77 — F90/95
Nx,m
..~ C ™ HPF
<V
Perl
B ource gy Independent
Fa?natics Python 4 Software Vendors
Ruby
Smalltalk MPI FortranD Matlab Mathematica
SISAL | Vienna Fortran laple
PVM " ™ SAC NESL
POOMA | o PL Titanium da
UPC <+ Split-C . KelP
Government Labs Academia |
~ slide contents 'r'atedjéintlywit-li Burton Smitt _ M
COMPUTE | STORE | ANALYZE

Chapel Resources

Chapel Central cRas

(Y b
e \

‘
https://chapel-lang.org o

. d Own | Oa d S Py Chapel is a modern programming language that is... \
What is Chapel?

« parallel: contains first-class concepts for concurrent and parallel computation
What's New? productive: designed with programmability and performance in mind
Upcoming Events portable: runs on laptops, clusters, the cloud, and HPC systems

u .
. d O C u I I I e n tatl O n Job Opportunities « scalable: supports locality-oriented features for distributed memory systems

How Can | Learn Chapel? open-source: hosted on GitHub, permissively licensed
Contributing to Chapel

Documentation New to Chapel?

e Eesources ——

Try It Now As an introduction to Chapel, you may want to...
Release Notes

e presentations o

read a blog_article or book chapter

watch an overview talk or browse its slides

download the release

browse sample programs

view other resources to learn how to trivially write distributed programs like this:

r Presentations £ AP et o . . " . .
. pa pe S Tutorials use CyclicDist; // use the Cyclic distribution Library

Social Media / Blog Posts
Press

Publications and Papers config const n = 16@; // use --n=<val> when executing to override this default
CHIUW forall i in {1..n} dmapped Cyclic(startIdx=1) do
CHUG writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);

Contributors / Credits
Research / Collaborations

What's Hot?

chapel-lang.org A7 0 i —downlioad its release notes
oo s « Chapel 1.17 is now available—download a copy or browse its release notes

+ The advance program for CHIUW 2018 is now available—hope to see you there!

O m E « Chapel is proud to be a Rails Girls Summer of Code 2018 organization
6y D « Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube

« Browse slides from SIAM PP18, NWCPP, SealLang, SC17, and other recent talks

+ Also see: What's New?

https://chapel-lang.org/

Chapel Social Media (no account required) AN

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/lUCHMmM27bYjhknKSmU7Z2zPGsQ/

W Home 9’ Moments Search Twitter

§] chapel Programming Language Q

Page Messages Notifications) Insights Publishing Tools

= [EYouTube l Search I Q
\ e Liked v 3\ Following v Share .
ff Home XD .
. ' Chapel Parallel Programming Language
@<\ Chapel Programming Language & Trending — 72 subscribers
L A A =5/
Rgsy April 21 at 5:47p €
Tweets Following Followers Likes Lists We're pleased to note that Chapel is currently ra i Subscriptions HOME VIDEOS PLAYLISTS CHANNELS ABOUT Q
/ Computer Language Benchmarks Game's “fast-
576 48 278 200 1 That said, we're even prouder of how clear and co
—_— programs are relative to other entries that perfo LIBRARY Chapel videos PLAY ALL
— . . Chapel hitp://benchmarksgame.alioth.debian.org/.. whidlll [History A playlist of featured Chapel presentations
Tweets Tweets & replies Media P 0 o .
Chapel Language Programming @ How many times slo
5 s gl © Watchister CHIUW 2017 keynote: Chapel's Home in the New Landscape of
@ChapelLanguage ¥ Pinned Tweet Language 230 3 g eynote: Chapt P
oy J il (1 i
/<> Chapel Language @Chapellanguage - Feb 12 @ChapeiLanguage & 100 i SUBSCRIPTIONS §c|er‘11|ﬁc" I;'t;ameworks, Jonath;r; Ours! 10 month
i i | TS . - i m hapel Parallel Programming Language + 348 views - 10 months ago
Chapel is a productive parallel k(&// Unfamiliar with Chapel? Read a new interview with Brad Cha e g 50 s _? . . e R ‘ ,
r il I; i . B o T Jonathan Dursi's keynote t, v CHIUW 20 the 4th Annual C plementers an
it o HIgUEg igned for = productive parallel language on the "This is Not a Monad Tuto 30 ¥ O Popular on YouTu... T e s .‘m, v S
Iarge~scale puiing whos: Posts Y Users Workshop. The slides are available at: htps: si.github.io/CHIUWZ2([Due to technical d.
cor S| 5
. < 10 - ;
development is being led by @cray_inc notamonadtutorial.com/interview-with Videos g 5 I o Music
-] y i) .
& chapel-lang.org e mote Rhenad bl o Photos £ 3 = i %éé @ spons ;?:d»\;::::g z; (r:'h[:%eéu S;;:a;]le Parallel Programming Done Right -
- i
. . . 1 = 1 1
Joined March 2016 Interview with Brad Chamberlain abouf] About E benchmarks game @ Gaming ACCU Conference + 1.1K views * 1 year ago
roductive arallel ro: rammin |an Likes Programming language designers have to date largely falled the large-scale parallel
[d 256 Photos and videos salled Chap2| progl g lang ORE FROM YOUTUBE community, and arguably even parallel programmers targeting desktops or mod
—— - - - av—— 270 people reached
:m Lk:m almost ;mlhlng .ﬂxvu’l high [x'r::rm.\m*('li.‘nmpuling(::;‘m Like ¥ Comment A Share PYCON UK 2017: On Big Computation and Python
ecided to get out from my comfort area. This time I've interviewed B) G UK - 590 siewrs - & monthe
Chamberlain about Chapel, a productive parallel programming lang © Russel Winder, Mykola Rabchevskiy and 2 others i Movies & Shows yoon montis 890
Ru der | Thi y 17:00 | Assembly Room Python is a programming language
W Write 8 comment execution but fast of program opment - ex »me sorts of bug that a statically compiled
S £ settings
Viadimir Fuka It measeres how many programmers
I about shat Eguican time 2 M Report history

N
=/ CUG 2018 Copyright 2018 Cray Inc.

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community cRas

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel
chapel-announce@lists.sourceforge.net

4

S\ Questions Developer Jobs Tags Users [chapel] - =
Pull requests Issues Marketplace Gist
Tagged Questions nfo newest frequent voles aciil

o Ll chapel-lang /[chapel @Watch~ a5
h GITTER hapel Chapel programming language | Peak developer hours are 0600-1700 PT

Chapel is a portable, open-source parallel programming language. Use this tag to ask questions about the [r—
language or its implementation. Code @ Issues 292 Pull requests 26 Projects 0 Settings Insights ~

Brian Dolan @buddha314

Learn more... Improve tag info Top users Synonyms what is the syntax for making a copy (not a reference) to an array?
E Filters ~ is:issue is:open Labels Milestones e re
e Michael Ferguson @mppf
6 Tuple Concatenation in Chapel CO m U n |t| eS like in a new variable?
@ 2920pen v 77 Closed Author ~ Labels ~ Projects ~ Milestones o
votes Let's say I'm generating tuples and | want to concatenate them as they come. How do | do th rl Ve
I - jon: if ts = ", "cat"), t = ("bar”, "dog") ts += =.. D Impl hounded-cof .
does element-wise addition: if ts = (*foo", "cat"), t = ("bar”, "dog") ts +=t gives ts ® " all’ for coforalls area: Compller
tuples concatenation addition hpc chapel asked Jan 26 &l type: Performance
. Tsmm.:. #6357 opened 13 hours ago by ronawho FREE FOR COMMUNITIES Ty T
385 « . . . ;
79 views ® C der using pr for remote coforalls EndCount area: Compiler JOIN OVER 800K+ PEOPLE oh, got it, thanks!
4 type: Performance JOIN OVER 90K+ COMMUNITIES ——)
. . . ~ - n . (ONSY ichael Ferguson @mppf
6 Is there a way to use non-scalar values in functions with where clauses in #6356 opened 13 haurs ago by ronwho £ 0 of 6 e R O
votes I've been trying out Chapel off and on over the past year or so. | have used C and C++ () make uninstall area: BTR [type: Feature Request
most of my experience is with dynamic languages such as Python, Ruby, and Edang more #6353 opened 14 hours ago by mppf EXPLORE MORE COMMUNITIES
chapel asked Apr 23 all @ make check doesn't work with ./configure area: BTR
‘3:} anglus #6352 opened 16 hours ago by mppf
47 views 333 . . . Lo ~ i ha31/
@ Passing variable via in intent to a forall loop seems to create an iteration-private variable, .) o @budcus 1S
R not a task-private one area: Compiler [{jpeiBig isn'ttherea proc f(ref arr) {} aswell?
6 Is there any writef() format specifier for a bool? #6351 opened a day ago by cassella Michael Ferguson @mppf
votes | looked at the writef() documentation for any bool specifier and there didn't seem to be a (@ Remove chpl_comm_make_progress area: Runtime easy |type:Design "% yes. The default intent for array is 'ref’ or 'const ref* depending on if the function body modifies
n program | have: ... config const verify = false; /* that works but | want to use writef() ... #6349 opened a day ago by sungeunchoi it. So that's effectively the default.
nswers chepss 'i’ﬂd Novi (D Runtime error after make on Linux Mint area: BTR user issue - Brian Dolan @buddha314
thanks!

I #6348 opened a day ago by danindiana

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading (healthy attention spans) =I=A:Yf |

b \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is also available online

PROGBANMMING
MODELS
Ijﬁ%PﬁHﬁ_Wm

COMPUTING

epiTEn BY PAVAN BALAJ

Other Chapel papers/publications available at https://chapel-lang.org/papers.html

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/papers.html

Suggested Reading (short attention spans) e

(Y b

b \
\

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events (as of 2017)
Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |IEEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

=

@

= CuG 2018 Copyright 2018 Cray Inc.

http://www.cray.com/blog/chiuw-2017-surveying-chapel-landscape/
http://blog.cray.com/
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-2/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-3/
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
https://www.ieeetcsc.org/activities/blog
http://chapel-lang.org/media.html

Where to.. CRANY

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel _bugs@cray.com: for reporting non-public bugs
Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
Gitter (chapel-lang/chapel): community chat with archives
chapel-users@lists.sourceforge.net: user discussions
Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
GitHub issues for chapel-lang/chapel: for feature requests, design discussions
Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel info@cray.com

D)

(18
=/ CUG 2018 Copyright 2018 Cray Inc. N3/

)
Legal Disclaimer el — V-G Vil

(Y b
e \
\
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice. \

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

=

@

= CuG 2018 Copyright 2018 Cray Inc.

w lﬁ?ﬁ_ﬂuh

T 0
LTI AR

] i :
o '_ F 0]
(R N T A TR R

-~
.
-
T
<
3
i

. TV v

