
XC™ Series DataWarp™ Installation and
Administration Guide

(CLE 6.0.UP06)

S-2564

Contents
1 About the DataWarp Installation and Administration Guide..5

2 About DataWarp...8

2.1 DataWarp Use Cases..8

2.2 DataWarp Limitations..9

2.3 Overview of the DataWarp Process for Scratch Configurations..11

2.4 Overview of the DataWarp Process for Cache Configurations..13

2.5 Identify DataWarp Server Nodes...14

3 Initial DataWarp Service (DWS) Installation...16

3.1 Create a New Service Node Image for Fusion IO SSDs...17

3.2 Update cray_node_groups for DataWarp..19

3.3 Ensure that cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm are Enabled............................21

3.4 Set Up DataWarp Persistent Storage..23

3.5 Configure the cray_dws Worksheet...25

3.6 Enable and Configure Accounting...28

4 DataWarp Update Following CLE Update..30

4.1 Recover After a Backwards-incompatible Update...30

4.2 Verify DataWarp Service Update...32

4.3 Verify Settings of Required Services...34

5 DataWarp Concepts..36

5.1 Instances and Fragments - a Detailed Look..38

5.2 Storage Pools..39

5.2.1 Why Does the Free Capacity Displayed by dwstat pools not Match the Quantity
Capacity?..40

5.3 Registrations..41

6 Advanced DataWarp Concepts...43

6.1 DVS Client-side Caching can Improve DataWarp Performance..43

6.1.1 Client-side Caching Options...43

6.2 DataWarp Configuration Files and Advanced Settings..45

6.2.1 The dwsd Configuration File...46

6.2.2 The dwmd Configuration File...51

6.2.3 The dwrest Configuration File..53

6.2.4 The dwrestgun Configuration File..54

6.3 DataWarp Accounting..56

6.3.1 The dws Data Plugin..56

6.3.2 The dws_job_server Data Plugin...56

Contents

S2564 2

6.3.3 The dws_server Data Plugin..58

7 Post-boot Configuration..61

7.1 Over-provision an Intel P3608 SSD...61

7.2 Update Fusion ioMemory Firmware..64

7.3 Initialize an SSD..66

7.4 Configure and Create a Storage Pool...70

7.4.1 Storage Pool Configuration Guidelines..70

7.4.2 Create a Storage Pool..72

7.5 Assign Nodes to a Storage Pool..73

7.6 Verify the DataWarp Configuration..75

8 DataWarp Administrator Tasks...76

8.1 Check the Status of DataWarp Resources..76

8.2 Check SSD Health and Remaining Life...77

8.3 Remove Nodes From a Storage Pool..78

8.4 Change a Node's Pool...79

8.5 Create a Storage Pool Comprised of Non-homogeneous SSD Hardware..81

8.6 Replace a Blown Fuse...82

8.7 Drain Storage Nodes...83

8.8 Do Not Quiesce a DataWarp Node..85

8.9 Examples Using dwcli..85

8.10 Manage Access to DataWarp Nodes...90

8.11 Flash NVMe SSD Firmware..90

8.12 Modify DWS Advanced Settings..92

8.13 Configure SSD Protection Settings...96

8.14 Back Up and Restore DataWarp State Data...100

8.15 In the Event of DataWarp Database Corruption..102

8.16 Enable the Node Health Checker DataWarp Plugin (if Necessary)...103

8.17 Deconfigure DataWarp..107

8.18 Prepare to Replace a DataWarp SSD...109

8.19 Complete the Replacement of an SSD Node..111

8.20 The dwpoolhelp Command..113

9 Troubleshooting..116

9.1 Where are the Log Files?..116

9.2 What Does this Log Message Mean?..116

9.2.1 Low SSD Life Remaining...116

9.2.2 SSD Protection Limits Exceeded...117

9.2.3 dwmd Daemon Triggers a Crash..117

9.2.4 MUNGE Authentication Error...118

Contents

S2564 3

9.3 SEC Notification when 90% of SSD Life Expectancy is Reached...118

9.4 Why Do dwcli and dwstat Fail?..119

9.5 Dispatch Requests..120

9.6 Stage In or Out Fails When Transferring a Large Number of Files...121

9.7 Staging Failure Might be Caused by Insufficient Space..122

9.8 Memory Swapping Caveats...123

9.9 Old Nodes in dwstat Output...124

10 Supplemental Information...125

10.1 Terminology...125

10.2 Prefixes for Binary and Decimal Multiples...126

Contents

S2564 4

1 About the DataWarp Installation and Administration
Guide

Scope and Audience
XC™ Series DataWarp™ Installation and Administration Guide (S-2564) covers DataWarp installation,
configuration and administrative concepts and tasks for Cray XC™ series systems installed with DataWarp SSD
cards. It is intended for experienced system administrators.

IMPORTANT: Due to the deprecation of Static DataWarp and the introduction of the CLE 6.0
configuration management system (CMS), the DataWarp installation procedure is greatly simplified.
Therefore, this document supersedes the DataWarp Installation Guide (S-2547), which is no longer
published.

Release Information
Publication Title Date Release

XC™ Series DataWarp™ Installation and Administration Guide
(S-2564)

March 2018 CLE 6.0.UP06

Changes to this document since CLE 6.0.UP05 include the following new and updated topics:

● Significant changes to the transparent cache functionality of DataWarp are backwards incompatible with
previous releases. This is reflected in following software update procedures: DataWarp Update Following CLE
Update on page 30 and Recover After a Backwards-incompatible Update on page 30.

● The redesigned transparent cache functionality does not yet include some previously supported features.
Topics modified due to this are: SSD Protection Limits Exceeded on page 117, The dwsd Configuration File
on page 46

● Overview of the DataWarp Process for Cache Configurations on page 13 is added, providing a birdseye
view and explanation of a cache configuration.

● Changes to support architecture-specific node groups, in anticipation of ARM nodes, include: Update
cray_node_groups for DataWarp on page 19, Configure the cray_dws Worksheet on page 25, and Verify
DataWarp Service Update on page 32.

● The installation procedure Ensure that cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm are
Enabled on page 21 no longer includes an interactive Configurator procedure. Using the cfgset get
command and worksheets simplifies this task.

● The dwcli --no-wait option was deprecated a couple of releases prior to this; therefore, all examples
have been removed.

● DataWarp Blade was removed in order to separate hardware and software documentation.

About the DataWarp Installation and Administration Guide

S2564 5

Related Documents
Although this publication is all that is necessary for installing SMW and CLE software, the following publications
contain additional information that may be helpful.

1. XC™ Series DVS Administration Guide (S-0005)

2. XC™ Series System Administration Guide (S-2393)

3. XC™ Series DataWarp™ User Guide (S-2558)

4. XC™ Series Software Installation and Configuration Guide (S-2559)

5. XC™ Series Configurator User Guide (S-2560)

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

smaller font size Some screenshot and code examples require more characters than are able to fit
on a line of a PDF file, resulting in the code wrapping to a new line. To prevent
wrapping, some examples are displayed with a smaller font to preserve the file
formatting.

Command Prompt Conventions
Host name
and account in
command
prompts

The host name in a command prompt indicates where the command must be run. The account
that must run the command is also indicated in the prompt.

● The root or super-user account always has the # character at the end of the prompt.

● Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

smw# Run the command on the SMW as root.

cmc# Run the command on the CMC as root.

sdb# Run the command on the SDB node as root.

crayadm@boot> Run the command on the boot node as the crayadm user.

About the DataWarp Installation and Administration Guide

S2564 6

user@login> Run the command on any login node as any non-root user.

hostname# Run the command on the specified system as root.

user@hostname> Run the command on the specified system as any non-root user.

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

Command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Directory path
in command
prompt

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they appear in this publication:

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

About the DataWarp Installation and Administration Guide

S2564 7

2 About DataWarp
Cray DataWarp provides an intermediate layer of high bandwidth, file-based storage to applications running on
compute nodes. It is comprised of commercial SSD hardware and software, Linux community software, and Cray
system hardware and software. DataWarp storage is located on server nodes connected to the Cray system's
Aries high speed network (HSN). I/O operations to this storage complete faster than I/O to the attached parallel
file system (PFS), allowing the application to resume computation more quickly and resulting in improved
application performance. DataWarp storage is transparently available to applications via standard POSIX I/O
operations and can be configured in multiple ways for different purposes. DataWarp capacity and bandwidth are
dynamically allocated to jobs on request and can be scaled up by adding DataWarp server nodes to the system.

The following diagram is a high level view of how applications interact with DataWarp. SSDs on the Cray high-
speed network enable compute node applications to quickly read and write data to the SSDs, and the DataWarp
file system handles data transfer to and from a parallel file system.

Figure 1. DataWarp Overview

Aries HSN

Customer
Application

DataWarp
SSDs

Parallel
Filesystem

w
rit

e read

w
rit

e read

readw
ri
te

2.1 DataWarp Use Cases
There are four basic use cases for DataWarp:

Parallel File
System (PFS)
cache

DataWarp can be used to cache data between an application and the PFS. This allows PFS I/O
to be overlapped with an application's computation. In this release there are two ways to use
DataWarp to influence data movement between DataWarp and the PFS. The first requires a job
and/or application to explicitly make a request and have the DataWarp Service (DWS) carry out
the operation. In the second way, data movement occurs implicitly (i.e., read-ahead and write-
behind) and no explicit requests are required. Examples of PFS cache use cases include:

About DataWarp

S2564 8

● Checkpoint/Restart: Writing periodic checkpoint files is a common fault tolerance practice
for long running applications. Checkpoint files written to DataWarp benefit from the high
bandwidth. These checkpoints either reside in DataWarp for fast restart in the event of a
compute node failure or are copied to the PFS to support restart in the event of a system
failure.

● Periodic output: Output produced periodically by an application (e.g., time series data) is
written to DataWarp faster than to the PFS. Then as the application resumes computation,
the data is copied from DataWarp to the PFS asynchronously.

● Application libraries: Some applications reference a large number of libraries from every
rank (e.g., Python applications). Those libraries are copied from the PFS to DataWarp once
and then directly accessed by all ranks of the application.

Application
scratch

DataWarp can provide storage that functions like a /tmp file system for each compute node in a
job. This data typically does not touch the PFS, but it can also be configured as PFS cache.
Applications that use out-of-core algorithms, such as geographic information systems, can use
DataWarp scratch storage to improve performance.

Shared
storage

DataWarp storage can be shared by multiple jobs over a configurable period of time. The jobs
may or may not be related and may run concurrently or serially. The shared data may be
available before a job begins, extend after a job completes, and encompass multiple jobs.
Shared data use cases include:

● Shared input: A read-only file or database (e.g., a bioinformatics database) used as input
by multiple analysis jobs is copied from PFS to DataWarp and shared.

● Ensemble analysis: This is often a special case of the above shared input for a set of
similar runs with different parameters on the same inputs, but can also allow for some minor
modification of the input data across the runs in a set. Many simulation stategies use
ensembles.

● In-transit analysis: This is when the results of one job are passed as the input of a
subsequent job (typically using job dependencies). The data can reside only on DataWarp
storage and may never touch the PFS. This includes various types of workflows that go
through a sequence of processing steps, transforming the input data along the way for each
step. This can also be used for processing of intermediate results while an application is
running; for example, visualization or analysis of partial results.

Compute
node swap

When configured as swap space, DataWarp allows applications to over-commit compute node
memory. This is often needed by pre- and post-processing jobs with large memory requirements
that would otherwise be killed.

2.2 DataWarp Limitations
For optimal use, it is important to understand DataWarp's limitations, including bugs, clarification on functionality,
or warnings about the state of components.

General Limitations
1. The DataWarp service intentionally panics DataWarp server nodes to avoid returning corrupted data to a user.

2. SSD Write Protection

About DataWarp

S2564 9

a. I/O to swap files does not count against the SSD write protection policies.

b. Violation of the write window policy is calculated on a per server basis. This can result in some processes
seeing EROFS (read-only file system) errors while others see no errors when interacting with the
DataWarp file system.

Scratch
The currently known caveats for scratch DataWarp are:

1. Scratch file system recovery

● When a DataWarp server crashes, recovery is reliable (but not guaranteed) when all file system servers
are rebooted. If only the crashed DataWarp server is rebooted, the file system may not function properly.

2. Load balance

● Scratch load balance functionality is not yet implemented.

3. Staging

● Staging through the WLM interface is susceptible to timeouts. See Stage In or Out Fails When
Transferring a Large Number of Files on page 121 for information on extending the timeout.

● The explanations provided when stage failures occur are inadequate. Jobs with typos in the #DW
stage_in and #DW stage_out syntax fail in the stage in or stage out phases, respectively, with no
further explanation. Other staging failures may result in a message regarding namespaces offline.

4. Striping

● The libdatawarp dw_set_stripe_configuration() functionality is not implemented and returns
ENOSYS.

5. Limits

● Scratch file systems may have a directory depth up to 1000 directories deep. DataWarp service
management tasks are subject to various resource limits such as maximum open file descriptors. By
default, the maximum number of open file descriptors per process is 1024. If a user creates a directory
structure larger than 1000 directories deep, stage activity and tear down activity may fail. If deeper than
1000 directories deep is needed, the maximum number of open file descriptors per process limit can be
increased on the DataWarp servers.

Cache
The currently known caveats for cache DataWarp are:

1. No SSD write protection support

2. No support for influencing fsync() and close() behavior

a. Currently fsync() syncs to the SSDs

b. Currently close() does not sync to the SSDs

3. No resiliency/recovery support - data is lost if a DataWarp server crashes or reboots.

a. Impacted configurations display a blown fuse in dwstat output.

4. Transparent caching is only supported with Lustre at this time

About DataWarp

S2564 10

5. Scratch-specific libdatawarp APIs have undefined behavior when used with transparent caching functionality
and are not supported.

6. Only striped access mode is supported.

7. Users should not interact with a PFS file through multiple DataWarp cache instances.

a. Transparent caching instances are not cache coherent with each other.

b. Corruption may occur.

8. I/O to/from open unlinked files may fail. This is due to a Lustre behavior issue that our Lustre team is working
on.

a. Sometimes a server panics.

b. Sometimes the user receives an error.

9. Opening a file with O_DIRECT does not work and results in an -ENOTSUPP error.

a. It causes an –ENOTSUPP error during the first read/write.

10. Unexpected errors (e.g., -ENOSPC) when trying to write data back to the PFS may result in a panic to prevent
returning corrupted data to a user.

11. Each server only uses a hard-coded 90% of requested capacity for caching.

a. XFS performs poorly when free space is exhausted.

12. Only one cache configuration per instance lifetime is allowed.

a. Multiple concurrent cache configurations on a single instance do not work and may cause DataWarp
servers to crash.

b. Creating a cache configuration on an instance, removing the configuration, and then creating a new one,
fails. The configuration state displays a blown fuse.

13. The dwsd equalize_fragments option must be enabled. By default, equalize_fragments is enabled,
and Cray recommends keeping it enabled.

14. Performance

a. Transparent caching is not yet tuned for performance. Significant enhancements are forthcoming in
patches and future releases.

About DataWarp

S2564 11

2.3 Overview of the DataWarp Process for Scratch Configurations
Figure 2. DataWarp Component Interaction (Scratch) - bird's eye view

WLM Job

DataWarp
Service

App

DataWarp
Space

PFS
(client)

service node compute node DW server node

starts

ends

configures

stage out

stage in

aprun

requests
configures IO

 o
ve

r D
VS Compute node

The diagram above provides a high level visual representation of the DataWarp process for scratch
configurations, as described here.

1. A user submits a job to a workload manager (WLM). Within the job submission, the user must specify: the
amount of DataWarp storage required, how the storage is to be configured, and whether files are to be staged
from the parallel file system (PFS) to DataWarp or from DataWarp to the PFS.

2. The WLM provides queued access to DataWarp by first querying the DataWarp service for the total aggregate
capacity. The requested capacity is used as a job scheduling constraint. When sufficient DataWarp capacity is
available and other WLM requirements are satisfied, the WLM requests the needed capacity and passes
along other user-supplied configuration and staging requests.

3. The DataWarp service (DWS) dynamically assigns the storage and initiates the stage in process.

4. After this completes, the WLM acquires other resources needed for the batch job, such as compute nodes.

5. After the compute nodes are assigned, the WLM and DWS work together to make the configured DataWarp
accessible to the job's compute nodes. This occurs prior to execution of the batch job script.

6. The batch job runs and any subsequent applications can interact with DataWarp as needed (e.g., stage
additional files, read/write data).

7. When the batch job ends, the WLM stages out files, if requested, and performs cleanup. First, the WLM
releases the compute resources and requests that the DWS make the previously accessible DataWarp
configuration inaccessible to the compute nodes. Next, the WLM requests that additional files, if any, are
staged out. When this completes, the WLM tells the DWS that the DataWarp storage is no longer needed.

The following diagram includes extra details regarding the interaction between a WLM and the DWS as well as
the location of the various DWS daemons.

About DataWarp

S2564 12

Figure 3. DataWarp Component Interaction - detailed view

2.4 Overview of the DataWarp Process for Cache Configurations
Figure 4. DataWarp Component Interaction (Cache) - bird's eye view

The diagram above provides a high level visual representation of the DataWarp process for cache configurations,
as described here.

1. A user submits a job to a workload manager (WLM). Within the job submission, the user must specify the
amount of DataWarp storage required and how the storage is to be configured.

About DataWarp

S2564 13

2. The WLM provides queued access to DataWarp by first querying the DataWarp service for the total aggregate
capacity. The requested capacity is used as a job scheduling constraint. When sufficient DataWarp capacity is
available and other WLM requirements are satisfied, the WLM requests the needed capacity and passes
along other user-supplied configuration requests.

3. The DataWarp service (DWS) dynamically assigns the storage.

4. After this completes, the WLM acquires other resources needed for the batch job, such as compute nodes.

5. After the compute nodes are assigned, the WLM and DWS work together to make the configured DataWarp
accessible to the job's compute nodes. This occurs prior to execution of the batch job script.

6. The batch job runs and any subsequent applications can interact with DataWarp to read/write data as
needed. Data movement occurs implicitly (i.e., copy up and write back) and no explicit requests are required.

7. When the batch job ends, the WLM releases the compute resources and requests that the DWS make the
previously accessible DataWarp configuration inaccessible to the compute nodes. Dirty data is flushed to the
PFS, after which the WLM performs cleanup. Next, the WLM requests that additional files, if any, are staged
out. When this completes, the WLM tells the DWS that the DataWarp storage is no longer needed.

The following diagram includes extra details regarding the interaction between a WLM and the DWS as well as
the location of the various DWS daemons.

Figure 5. DataWarp Component Interaction - detailed view

2.5 Identify DataWarp Server Nodes
Identification of the DataWarp service nodes with SSD hardware is necessary to complete this installation. Use
the following command sequence if this information is not readily available.

smw# SSD_NODES=`/opt/cray/aries/sysdiag/bin/xtcheckhss --nocolor --detail=f --pci \
| grep SSD | cut -f1 -d ' ' | sort -u`

About DataWarp

S2564 14

smw# SERVICE_NODES=`cnode list -p p0 --filter type=service --fields name`
smw# node in $SSD_NODES; do if [[$SERVICE_NODES =~ $node]]; then echo $node; \
fi; done
c0-0c0s0n1
c0-0c0s0n2
c0-0c1s0n1
c0-0c1s0n2
c0-1c0s9n1
c0-1c0s9n2

About DataWarp

S2564 15

3 Initial DataWarp Service (DWS) Installation
Prerequisites
This DataWarp installation procedure assumes the following:

● A Cray XC series system running an initial installation (not upgrade) of CLE 6.0.UP06

● One or more nodes with SSD hardware

● Identification (cname) of the nodes with SSD hardware (see Identify DataWarp Server Nodes on page 14)

Additional Requirements
The following requirements can be implemented before or after the installation of DataWarp.

● A parallel file system (PFS) must be mounted in the same location on all compute nodes as well as all service
nodes included in managed_nodes_groups within this procedure. In other words, the mount points must
look the same on compute and SSD-endowed service nodes. More than one PFS is allowed.

Other Important Things to Know
The DataWarp installation procedure includes running cfgset update to modify the attributes or content of a
config set. Keep the following in mind while installing DataWarp.

CAUTION:

Boot failure possible if using cfgset under certain conditions. The cfgset create and cfgset
update commands always call pre- and post-configuration scripts. Some of these scripts require HSS
daemons and other CLE services to be running. This can cause problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that leads to system boot
failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the --no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

Use the following command to see which HSS daemons are running:

smw# /etc/init.d/rsms status

Installation Overview
DataWarp is one of many services that store service configuration content in CLE configuration sets (config sets)
on Cray systems. DataWarp can be configured when config sets are created during a fresh install or major

Initial DataWarp Service (DWS) Installation

S2564 16

upgrade, or it can be configured/reconfigured later by updating existing config sets during normal system
operation (bearing in mind that some of the DataWarp module parameters are best set during initial system
configuration). These procedures guide site administrators and staff in entering appropriate values for DataWarp
configuration settings using the configurator. Whether sites enter values in an interactive configurator session or
enter values in a configuration worksheet for bulk import, the configurator takes the supplied values and ensures
that they become part of the config set being created or updated.

The initial installation process modifies configuration worksheets and consists of the following tasks:

1. (Systems with Fusion IO SSD cards only) Integrate the driver software into the service node image; Create a
New Service Node Image for Fusion IO SSDs on page 17.

2. Update cray_node_groups; Update cray_node_groups for DataWarp on page 19.

3. Verify that required services are enabled; Ensure that cray_ipforward, cray_lnet, cray_munge, and
cray_dw_wlm are Enabled on page 21.

4. Update cray_persistent_storage; Set Up DataWarp Persistent Storage on page 23.

5. Configure cray_dws and validate the config set; Configure the cray_dws Worksheet on page 25.

6. System reboot.

7. (Optional) Enable and configure DataWarp accounting within the cray_rur service; Enable and Configure
Accounting on page 28.

8. Post-boot configuration tasks; Post-boot Configuration on page 61.

3.1 Create a New Service Node Image for Fusion IO SSDs

Prerequisites
● A Cray XC series system with one or more Fusion IO (Sandisk) SSD cards installed

● Identification (cname) of nodes with SSD hardware (see Identify DataWarp Server Nodes on page 14)

About this task
Sites with Fusion IO (Sandisk) SSD cards must integrate the driver software into the service node image.

For more information about installation third-party software with a custom image, see XC™ Series System
Administration Guide (S-2393).

Procedure

1. Create a new image recipe for FIO service nodes and add a subrecipe of a service node image to it.

Note that the font size is decreased in some examples below, because some line lengths are too wide for a
PDF page. Unfortunately, some lines are so incredibly long that they still need to be continued on another
line.

TIP: Use recipe list to display current recipe names.

smw# recipe create fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-recipe service_cle_6.0up06_sles_12sp3_x86-64_ari \
fio-service_cle_6.0up06_sles_12sp3_x86-64_ari

Initial DataWarp Service (DWS) Installation

S2564 17

smw# recipe update --add-coll datawarp-xtra_cle_6.0up06_sles_12sp3 fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo passthrough-common_cle_6.0up06_sles_12sp3_x86-64 \
fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo passthrough-common_cle_6.0up06_sles_12sp3_x86-64_updates \
fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo common_cle_6.0up06_sles_12sp3_x86-64_ari \
fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo common_cle_6.0up06_sles_12sp3_x86-64_ari_updates \
fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo sle-server_12sp3_x86-64 fio-service_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe update --add-repo sle-server_12sp3_x86-64_updates fio-service_cle_6.0up06_sles_12sp3_x86-64_ari

2. Edit the cray_image_groups.yaml file to add the image recipe and destination to the end of the default
group.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml
Add:

 - recipe: "fio-service_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "fio-service{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "fio-service"
 fio-service:
 - recipe: "fio-service_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "fio-service{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "fio-service"

For example:

cray_image_groups:
 default:
 - recipe: "compute_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "{compute{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "compute"
 - recipe: "login_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "login{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "login"
 - recipe: "service_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "service{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "service"
 - recipe: "fio-service_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "fio-service{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "fio-service"
 fio-service:
 - recipe: "fio-service_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "fio-service{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp3-created{date}.cpio"
 nims_group: "fio-service"

3. Create the new group, and add the nodes to the group.

smw# cnode update -G service -g fio-service cname1 cname2 ...

4. Build the updated image and update the node mappings.

smw# imgbuilder -g fio-service --map

5. Verify that the image is correctly assigned to the DataWarp nodes.

smw# cnode list cname1 cname2 ...
If the image is correctly assigned, continue with the DataWarp installation; otherwise, execute the following
command to instruct NIMS to use the new image.

smw# cnode update -p p0 --filter group=fio-service -i image_file
Where image_file is the full path to the image, including the cpio file extension.

Next, configure the node groups required by DataWarp; Update cray_node_groups for DataWarp on page 19.

Initial DataWarp Service (DWS) Installation

S2564 18

3.2 Update cray_node_groups for DataWarp

About this task
DataWarp requires:

● At least one node group containing only DataWarp service nodes

● At least one node group containing only DataWarp API gateway nodes

○ For most systems, the pre-defined node group containing all internal login nodes is acceptable, which
depending on the system’s architecture is typically login_nodes_x86_64 or login_nodes_aarch64,
but can be both.

These node groups are defined in cray_node_groups and referenced within the cray_dws service.

Procedure

1. Copy the cray_node_groups worksheet from the current config set to the CLE worksheet workarea.

This ensures that the worksheet being edited reflects current configuration values.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# cp -a /var/opt/cray/imps/config/sets/p0/worksheets/cray_node_groups_worksheet.yaml .

2. Determine if the datawarp_nodes node group is already defined within the cray_node_groups service.

smw# cfgset get cray_node_groups.settings.groups.data.datawarp_nodes.members p0
Results: the node group does not exist:

Error: could not get 'p0':
path=cray_node_groups.settings.groups.data.datawarp_nodes.members
Path entry 'datawarp_nodes' not found in schema.
Results: the node group exists:

c0-1c0s15n0
c0-1c0s15n1
c0-1c0s15n2

3. Display (based on the system's architecture) login_nodes_x86_64, login_nodes_aarch64, or both in
the cray_node_groups service.

● For login nodes with Intel or AMD processors:

smw# cfgset get cray_node_groups.settings.groups.data.login_nodes_x86_64.members p0
c0-1c0s8n0
c0-1c0s8n1

● For login nodes with ARM processors:

smw# cfgset get cray_node_groups.settings.groups.data.login_nodes_aarch64.members p0
c0-0c1s3n2

If the nodes listed in steps 2 on page 19 and 3 on page 19 accurately reflect the system configuration, exit
this procedure and continue with the DataWarp installation process.

Initial DataWarp Service (DWS) Installation

S2564 19

4. Edit cray_node_groups_worksheet.yaml.

smw# vi cray_node_groups_worksheet.yaml

5. Proceed based on the results of the previous steps.

● Go to step 6 on page 20 to add a datawarp_nodes node group.

● Go to step 7 on page 20 to update an existing datawarp_nodes node group.

● Go to step 8 on page 20 if no changes are needed for the datawarp_nodes node group.

6. Add the datawarp_nodes node group if it does not already exist.

To determine the list of DataWarp nodes, see Identify DataWarp Server Nodes on page 14.

a. Copy the three commented lines under

** EXAMPLE 'groups' VALUE (with current defaults) **
and paste them in this location:

NOTE: Place additional 'group' setting entries here, if desired.
#cray_node_groups.settings.groups.data.group_name.sample_key_a: null <--setting a multival key
#cray_node_groups.settings.groups.data.sample_key_a.description: ''
#cray_node_groups.settings.groups.data.sample_key_a.members: []

b. Uncomment the lines, and replace sample_key_a with datawarp_nodes in all lines.

c. Remove the <-- setting a multival key text at the end of the first line (note that the null value
is required; do not remove or change it).

d. Set the description value to DataWarp server nodes.

e. Add DataWarp node names to the members list field. Add each cnode name on a separate line prefixed
by a hyphen and space (-). For example:

NOTE: Place additional 'group' setting entries here, if desired.
cray_node_groups.settings.groups.data.group_name.datawarp_nodes: null
cray_node_groups.settings.groups.data.datawarp_nodes.description: DataWarp server nodes
cray_node_groups.settings.groups.data.datawarp_nodes.members:
- c1-0c2s7n2
- c1-0c2s7n1
- c1-0c2s0n2
#********** END Service Setting: groups **********

f. Proceed to step 8 on page 20.

7. Update pre-existing datawarp_nodes.members if not defined correctly.

Each cnode name must be on a separate line prefixed by a hyphen and space (-). For example:

cray_node_groups.settings.groups.data.datawarp_nodes.members:
- c1-0c2s7n2
- c1-0c2s7n1
- c1-0c2s0n2

8. Add an API gateway node group if not using login_nodes_x86_64 and/or login_nodes_aarch64. For
most systems, one of these node groups is used.

a. Copy the three commented lines under

Initial DataWarp Service (DWS) Installation

S2564 20

** EXAMPLE 'groups' VALUE (with current defaults) **
and paste them in this location:

NOTE: Place additional 'group' setting entries here, if desired.
#cray_node_groups.settings.groups.data.group_name.sample_key_a: null <--setting a multival key
#cray_node_groups.settings.groups.data.sample_key_a.description: ''
#cray_node_groups.settings.groups.data.sample_key_a.members: []

b. Uncomment the lines, and replace sample_key_a with dw_gateway_nodes in all lines.

c. Remove the <-- setting a multival key text at the end of the first line (note that the null value
is required; do not remove or change it).

d. Set the description field as DataWarp API gateway nodes.

e. Add DataWarp node names to the members list field. Add each cnode name on a separate line prefixed
by a hyphen and space (-). For example:

NOTE: Place additional 'group' setting entries here, if desired.
cray_node_groups.settings.groups.data.group_name.dw_gateway_nodes: null
cray_node_groups.settings.groups.data.dw_gateway_nodes.description: DataWarp API gateway nodes
cray_node_groups.settings.groups.data.dw_gateway_nodes.members:
- c0-1c0s8n0
#********** END Service Setting: groups **********

9. Save the changes, and upload the modified worksheet into the CLE config set.

smw# cfgset update --worksheet-path cray_node_groups_worksheet.yaml p0
INFO - Running pre-configuration scripts

INFO - Checking directory access

...

INFO - ConfigSet 'p0' has been updated.

INFO - Run 'cfgset search --level basic p0' to review the current settings.

Next: ensure that the cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm services are enabled.

3.3 Ensure that cray_ipforward, cray_lnet, cray_munge, and
cray_dw_wlm are Enabled

About this task
The following configuration services must be enabled for DataWarp to function in a CLE 6.0 / SMW 8.0 system.

● cray_lnet
● cray_munge
● cray_dw_wlm
● cray_ipforward

Initial DataWarp Service (DWS) Installation

S2564 21

Change notice: Prior to this iteration, this task included two methods to choose from, interactive configurator or
worksheets. The interactive method has been removed for simplification and to match the other configurator
procedures in the publication, which use worksheets. Also, with the introduction of the 'cfgset get' command the
procedure for cray_ipforward is greatly simplified.

Procedure

1. Determine whether the necessary services are enabled.

smw# cfgset get cray_lnet.enabled p0
true
smw# cfgset get cray_munge.enabled p0
true
smw# cfgset get cray_dw_wlm.enabled p0
true
smw# cfgset get cray_ipforward.enabled p0
true

2. If all of the necessary services are enabled, as in the example, exit this procedure and continue with the
installation.

3. Copy current CLE and global worksheets to the work areas.

smw# cp -a /var/opt/cray/imps/config/sets/p0/worksheets/* \
/var/adm/cray/release/p0_worksheet_workarea/*
smw# cp -a /var/opt/cray/imps/config/sets/global/worksheets/* \
/var/adm/cray/release/global_worksheet_workarea/*

4. If cray_lnet is disabled, enable it.

a. Edit the worksheet.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# vi cray_lnet_worksheet.yaml

b. Enable cray_lnet.

If cray_lnet.enabled is commented out, uncomment it and ensure that it is set to true.

c. Import the updated worksheet to the config set.

smw# cfgset update --worksheet-path cray_lnet_worksheet.yaml p0

5. If cray_munge is disabled, enable it.

a. Edit the worksheet.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# vi cray_munge_worksheet.yaml

b. Enable cray_munge.

If cray_munge.enabled is commented out, uncomment it and ensure that it is set to true.

c. Import the updated worksheet to the config set.

Initial DataWarp Service (DWS) Installation

S2564 22

smw# cfgset update --worksheet-path cray_munge_worksheet.yaml p0

6. If cray_dw_wlm is disabled, enable it.

a. Edit the worksheet.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# vi cray_dw_wlm_worksheet.yaml

b. Enable cray_dw_wlm.

If cray_dw_wlm.enabled is commented out, uncomment it and ensure that it is set to true.

c. Import the updated worksheet to the config set.

smw# cfgset update --worksheet-path cray_dw_wlm_worksheet.yaml p0

7. If cray_ipforward is disabled, determine whether it is inherited from the global settings.

smw# cfgset get cray_ipforward.inherit p0
true

8. If cray_ipforward.inherit is false, enable it in the CLE config set.

a. Edit the worksheet.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# vi cray_ipforward_worksheet.yaml

b. Enable cray_ipforward.

If cray_ipforward.enabled is commented out, uncomment it and ensure that it is set to true.

c. Import the updated worksheet to the config set.

smw# cfgset update --worksheet-path cray_dw_wlm_worksheet.yaml p0

9. If cray_ipforward.inherit is true, enable it in the global config set.

a. Edit the worksheet.

smw# cd /var/adm/cray/release/global_worksheet_workarea
smw# vi cray_ipforward_worksheet.yaml

b. Enable cray_ipforward.

If cray_ipforward.enabled is commented out, uncomment it and ensure that it is set to true.

c. Import the updated worksheet to the config set.

smw# cfgset update --worksheet-path cray_ipforward_worksheet.yaml global

Next, set up DataWarp persistent storage.

Initial DataWarp Service (DWS) Installation

S2564 23

3.4 Set Up DataWarp Persistent Storage

Procedure

1. Copy the cray_persistent_data worksheet from the current config set to the CLE worksheet workarea.

This ensures that the worksheet being edited reflects current configuration values.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# cp -a /var/opt/cray/imps/config/sets/p0/worksheets/\
cray_persistent_data_worksheet.yaml .

2. Edit cray_persistent_data_worksheet.yaml.

smw# vi cray_persistent_data_worksheet.yaml

3. Ensure that cray_persistent_data is enabled.

If cray_persistent_data.enabled is commented out, uncomment it and ensure that it is set to true.

4. Configure persistent storage for DataWarp.

In the worksheet, copy the five lines below

** EXAMPLE 'mounts' VALUE (with current defaults) **

and paste them below

NOTE: Place additional 'mounts' setting entries here, if desired.

** EXAMPLE 'mounts' VALUE (with current defaults) **
cray_persistent_data.settings.mounts.data.mount_point.sample_key_a: null <-- setting a multival key
cray_persistent_data.settings.mounts.data.sample_key_a.alt_storage_path: ''
cray_persistent_data.settings.mounts.data.sample_key_a.options: ''
cray_persistent_data.settings.mounts.data.sample_key_a.ancestor_def_perms: '0771'
cray_persistent_data.settings.mounts.data.sample_key_a.client_groups: []

Uncomment the lines, replace sample_key_a with /var/opt/cray/dws in all lines, and remove the <--
setting a multival key text at the end of the first line (note that the null value is required; do not
remove or change it). Change setting values as indicated in the example below.

NOTE: Place additional 'mounts' setting entries here, if desired.
cray_persistent_data.settings.mounts.data.mount_point./var/opt/cray/dws: null
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.alt_storage_path: ''
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.options: ''
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.ancestor_def_perms: '0755'
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.client_groups:
- service_nodes

#************************* END Service Setting: mounts *************************

5. Save the changes, and upload the modified worksheet into the CLE config set.

smw# cfgset update --worksheet-path cray_persistent_data_worksheet.yaml p0
INFO - Running pre-configuration scripts

INFO - Checking directory access

...

Initial DataWarp Service (DWS) Installation

S2564 24

INFO - ConfigSet 'p0' has been updated.

INFO - Run 'cfgset search --level basic p0' to review the current settings.

Next, configure the DataWarp service; Configure the cray_dws Worksheet on page 25.

3.5 Configure the cray_dws Worksheet

About this task
Several configuration parameters are required prior to booting and accessing the DataWarp nodes. The following
steps correspond to the configuration settings available in the cray_dws worksheet, and step numbering reflects
the order in which those settings appear there, unless noted otherwise.

CAUTION:

Configure DataWarp and all services only through the configurator or by placing/editing configuration files
in the Simple Sync directory structure within the config set. Do not configure DataWarp by manually
adding lines in any /etc files. In general, changes to those files are not persistent, and rebooting could
result in loss of data.

Procedure

1. Copy the cray_dws worksheet from the current config set to the CLE worksheet work area.

This ensures that the worksheet being edited reflects current configuration values.

smw# cd /var/adm/cray/release/p0_worksheet_workarea
smw# cp -a /var/opt/cray/imps/config/sets/p0/worksheets/cray_dws_worksheet.yaml .

2. Edit cray_dws_worksheet.yaml.

smw# vi cray_dws_worksheet.yaml

3. Uncomment cray_dws.enabled and ensure that it is set to true.

cray_dws.enabled: true

4. Set the managed nodes variable.

Uncomment #cray_dws.settings.service.data.managed_nodes_groups and set it to a list of node
groups that contain DataWarp nodes and have been defined in the cray_node_groups configuration.

This example uses the datawarp-nodes node group defined in Update cray_node_groups for DataWarp on
page 19.

cray_dws.settings.service.data.managed_nodes_groups:
- datawarp_nodes

5. Set the API gateway variable.

Initial DataWarp Service (DWS) Installation

S2564 25

Uncomment cray_dws.settings.service.data.api_gateway_nodes_groups and set it to a list of
node groups that contain the DataWarp gateway nodes that have been defined in the cray_node_groups
configuration. For most systems, the pre-defined node group containing all internal login nodes is acceptable,
which depending on the system’s architecture is typically login_nodes_x86_64 or
login_nodes_aarch64, but can be both. Sites can also define a node group in the cray_node_groups
configuration containing a subset of login nodes to be used as gateway nodes.

This example includes all nodes in login_nodes_x86_64 as API gateway nodes.

cray_dws.settings.service.data.api_gateway_nodes_groups:
- login_nodes_x86_64

6. (Optional) Set the external API gateway variable.

This is necessary to provide native access to DataWarp commands from eLogin nodes.

a. Uncomment #cray_dws.settings.service.data.external_api_gateway_hostnames and set
it to a list of the fully qualified domain names (FQDN), also known as DNS Authoritative name records, of
nodes specified in api_gateway_nodes_groups.

cray_dws.settings.service.data.external_api_gateway_hostnames:
- syslog1.us.cray.com
- syslog2.us.cray.com

b. Additionally, before executing DataWarp commands from eLogin nodes, the eLogin image config set must
be defined with the MUNGE credential omitted from the exclusion list located at /etc/opt/cray/elogin/
exclude_lists/elogin_cfgset_excludelist. This is accomplished by either deleting or commenting out the
MUNGE entry prior to pushing the config set to the eLogin nodes. For details, see XC™ Series eLogin
Installation Guide (S-2566), which is available at http://pubs.cray.com.

dwrest_cacheroot_whitelist and dwrest_cachemount_whitelist: the next two steps for
settings dwrest_cacheroot_whitelist and dwrest_cachemount_whitelist are switched.
Although dwrest_cacheroot_whitelist is sequentially next in the worksheet, it introduces a potential
security issue that does not exist if using dwrest_cachemount_whitelist. Therefore, Cray
recommends using dwrest_cachemount_whitelist.

7. Set dwrest_cachemount_whitelist, if desired.

dwrest_cachemount_whitelist is a list of PFS directories that users are allowed to use as mounted
cache file systems. The PFS paths must be set up on all DataWarp service nodes for cache configurations to
function.

Only the directories listed for dwrest_cachemount_whitelist are allowed for cache mount file systems
whereas, dwrest_cacheroot_whitelist contains paths on which users are allowed to mount cache file
systems. dwrest_cachemount_whitelist is more restrictive than dwrest_cacheroot_whitelist.

dwrest_cachemount_whitelist is not a required setting and can be defined with 0 entries. These two
settings can be used either jointly or separately, but at least one must be defined for DataWarp caching to
work.

If dwrest_cacheroot_whitelist and dwrest_cachemount_whitelist are both defined, the process
used for determining if a user-specified cache directory is valid is as follows:

1. Is it an acceptable path given the value for dwrest_cacheroot_whitelist? If yes, the request
succeeds; else,

Initial DataWarp Service (DWS) Installation

S2564 26

http://pubs.cray.com

2. Is it an acceptable path given the value for dwrest_cachemount_whitelist? If yes, the request
succeeds; else,

3. The request fails.

a. Uncomment #cray_dws.settings.service.data.dwrest_cachemount_whitelist and set it to
a list of PFS directories that users are allowed to use as mounted cache file systems.

cray_dws.settings.service.data.dwrest_cacheroot_whitelist:
- /pfs/path/user1
- /pfs/path/user2

8. Set dwrest_cacheroot_whitelist, if desired.

WARNING: Use of dwrest_cacheroot_whitelist introduces a potential security issue that
depends on the permissions of the parent directories used for DataWarp cache. This issue and
workarounds are described here.

dwrest_cacheroot_whitelist is a list of PFS path prefixes on which users are allowed to mount cache
file systems. For example, if dwrest_cacheroot_whitelist is set as /lus/users, a user can mount the
cache file system /lus/users/seymour. The PFS paths specified must be set up on all DataWarp service
nodes for cache configurations to function. Each file system path specified and any subdirectories are
considered valid.

dwrest_cacheroot_whitelist is not a required setting and can be defined with 0 entries. For a more
restrictive setting, sites can specify a list of specific directories as cache file systems by defining
dwrest_cachemount_whitelist in the next step. These two settings can be used either jointly or
separately, but at least one must be defined for DataWarp caching to work.

If dwrest_cacheroot_whitelist and dwrest_cachemount_whitelist are both defined, the process
used for determining if a user-specified cache directory is valid is as follows:

1. Is it an acceptable path given the value for dwrest_cacheroot_whitelist? If yes, the request
succeeds; else,

2. Is it an acceptable path given the value for dwrest_cachemount_whitelist? If yes, the request
succeeds; else,

3. The request fails.

With the DataWarp caching file system, users can specify which PFS directory to cache. For example, a user
may wish to cache /lus/users/seymour/data rather than all of /lus/users. When dwcfs is mounted
and made available to compute nodes via DVS, users can only interact with the files
in /lus/users/seymour/data or lower.

The security issue is possible when interacting with the cached version of /lus/users/seymour/data,
because dwcfs only honors the file system permissions at /lus/users/seymour/data and lower, and not
the permissions of the parent directories of the path being cached. Suppose a user does not have execute
access to /lus/users/seymour, but the directory /lus/users/seymour/data is world readable,
writeable, and executable. If interacting directly with the PFS, the user cannot
access /lus/users/seymour/data or any of its files because of the file permissions set on the parent
directory. But, if the same user requests type=cache access to /lus/users/seymour/data, the user can
now access and modify files at this level or lower.

The following conditions are necessary for a user to exploit this issue:

● The user has access to DataWarp

Initial DataWarp Service (DWS) Installation

S2564 27

● The user knows of the existence of /lus/users/seymour/data
● the dwrest_cacheroot_whitelist setting includes any of the following:

○ /lus/
○ /lus/users/
○ /lus/users/seymour/
○ /lus/users/seymour/data

To avoid this issue, use dwrest_cachemount_whitelist to define specific cache mount points.

a. Uncomment #cray_dws.settings.service.data.dwrest_cacheroot_whitelist and set it to a
list of PFS paths on which users are allowed to mount cache file systems.

cray_dws.settings.service.data.dwrest_cacheroot_whitelist:
- /pfs/path/free
- /pfs/path/scratch
- /pfs/path/notbackedup

9. Set allow_dws_cli_from_computes, if desired.

allow_dws_cli_from_computes determines whether commands such as dwstat and dwcli are
executable on compute nodes. This is a required setting and is false by default, because scaling problems
can occur if large numbers of compute nodes access the dwrest gateway simultaneously.

cray_dws.settings.service.data.allow_dws_cli_from_computes: false

10. Exit the editor, then import the complete DataWarp worksheet by updating the config set and specifying the
worksheet path.

smw# cfgset update --worksheet-path cray_dws_worksheet.yaml p0
When the config set is updated using the configurator, all of the pre-and post-configuration scripts are run.

11. Validate the global and CLE config sets. Correct any discrepancies before proceeding.

smw# cfgset validate global
...
INFO - ConfigSet 'global' is valid.
smw# cfgset validate p0
...
INFO - ConfigSet 'p0' is valid.

12. Reboot the system following the typical procedure in order to activate all DataWarp requirements.

DWS is now enabled as part of CLE.

Next, post boot configuration procedures are necessary to define a functional DWS state; see Post-boot
Configuration on page 61.

Initial DataWarp Service (DWS) Installation

S2564 28

3.6 Enable and Configure Accounting
DataWarp accounting is enabled and configured through Cray's Resource Utilization Reporting service
(cray_rur). RUR supports a plugin architecture, allowing many types of usage data to be collected while using
the same software infrastructure. Cray provides data plugins (dws, dws_job_server, dws_server) for
collecting DataWarp usage statistics. These plugins can be added to cray_rur at any time and does not require
a system reboot. For the complete procedure, see XC™ Series System Administration Guide.

Initial DataWarp Service (DWS) Installation

S2564 29

4 DataWarp Update Following CLE Update
Prerequisities
The DataWarp update procedures assume the following:

● The system was recently updated to CLE 6.0.UP06 (i.e., not an initial installation)

● SanDisk/Fusion ioMemory3/SX300 SSD cards require firmware version 8.9.5. See Update Fusion ioMemory
Firmware on page 64.

IMPORTANT: CLE 6.0.UP06 includes significant changes to the transparent cache functionality of
DataWarp that are backwards incompatible with previous releases. Because of this, DataWarp does not
come up correctly, the dwcli and dwstat commands fail, and error messages appear in the dwsd log
files on the SMW and sdb node.

Use the following procedures to update the necessary DataWarp files and to verify that everything is configured
as expected.

1. Recover After a Backward-incompatible Update or Upgrade

2. Verify DataWarp Service Update

3. Verify Settings of Required Services

Other Important Things to Know
The DataWarp installation procedure includes running cfgset update to modify the attributes or content of a
config set. Keep the following in mind while installing DataWarp.

CAUTION: Boot failure possible if using cfgset under certain conditions. The cfgset create and
cfgset update commands always call pre- and post-configuration scripts. Some of these scripts
require HSS daemons and other CLE services to be running. This can cause cfgset to fail if xtbounce
is in progress or if the SMW is not connected to XC hardware. If xtdiscover is running, cfgset may
hang or produce incorrect data that leads to system boot failure. In these situations, use cfgset
create or cfgset update with the --no-scripts option to prevent running the scripts. When those
situations are no longer in effect, run cfgset update without the --no-scripts option to ensure that
all pre- and post-configuration scripts are run. Use the following command to see which HSS daemons
are running:

smw# /etc/init.d/rsms status

DataWarp Update Following CLE Update

S2564 30

4.1 Recover After a Backwards-incompatible Update

Prerequisites
● DataWarp administrator privileges (e.g., root, crayadm)

About this task
The DataWarp scheduler daemon, dwsd, relies on specific node and pool information, stored in state files, for
correct operation. Occasionally, a DataWarp software update may modify these state files such that the DataWarp
service (DWS) is not backwards compatible with any state created by a previous DataWarp release. If this occurs,
DataWarp does not come up correctly, and:

● The dwcli and dwstat commands fail and report a connection error to the dwsd daemon

● Messages similar to the following appear in both:

○ sdb:/var/opt/cray/dws/log/dwsd.log
○ smw:/var/opt/cray/log/p#-timestamp/dws/dwsd-timestamp

2018-02-13 15:51:07 State file is at v2.0
2018-02-13 15:51:07 ADMIN ALERT -> This version of dwsd expects state file v2.0, you have v1.1.
2018-02-13 15:51:07 ADMIN ALERT -> This version of dwsd is incompatible with the existing state
 file located at /var/opt/cray/dws/dwsd.db. If you roll back to an
 older version of the DWS as well as underlying dependencies like DVS and kdwfs,
 you may be able to retrieve any existing data stored in your DataWarp instances.
 Otherwise, to get DWS working again, you can back up some DWS state (like pools)
 with the dwbackup tool and then later restore that state with the dwcli config restore
 tool. See the DataWarp man pages and other documentation for further details.
2018-02-13 15:51:07 src/dwsd/context.c:dwsd_context_init():356 -> Unable to initialize sqlite
2018-02-13 15:51:07 Daemon ran for 2 seconds
2018-02-13 15:51:07 src/dwsd/dwsd.c:main():66 -> Context initialization failed.
2018-02-13 15:51:07 Shutting down

This procedure describes the steps to back up some DataWarp state, remove the incompatible dwsd.db file, and
restore the backed up state to an updated state file.

Procedure

1. Display the DataWarp server node hostnames for use later in this procedure.

smw# cfgset get cray_node_groups.settings.groups.data.datawarp_nodes.members p0
c0-1c0s9n1
c0-1c0s9n2
c0-0c1s2n1
c0-0c1s2n2

2. Log in to the sdb node as root, and back up the DataWarp state if it was not backed up just prior to the CLE
software upgrade.

sdb# module load dws
sdb# dwbackup >/persistent-storage/my-dws-backup.json

3. Stop the dwsd service.

sdb# systemctl stop dwsd

DataWarp Update Following CLE Update

S2564 31

4. Move the existing DataWarp state file.

sdb# mv /var/opt/cray/dws/dwsd.db /var/opt/cray/dws/dwsd.db.old-$(date "+%Y%m%d%H%M%S")

5. Start the dwsd service.

sdb# systemctl start dwsd

6. Wait 600 seconds, or restart dwmd on all SSD-endowed nodes.

sdb# module load pdsh
sdb# pdsh -w dwnode1,dwnode2,... 'kill -USR1 $(</var/opt/cray/dws/dwmd.pid)'
Where dwnode# is the hostname of any DataWarp server node.

7. Restore the backed up state to the upgraded state file.

sdb# dwcli config restore </persistent-storage/my-dw-backup.json
Restored DataWarp state files are now compatible with current DataWarp software.

4.2 Verify DataWarp Service Update

Prerequisites
This procedure assumes:

● An XC series system with one or more nodes with SSD hardware

● CLE was updated to CLE 6.0.UP06 by following the instructions in XC™ Series Software Installation and
Configuration Guide

About this task
During the CLE update procedure, the cray_dws service template was updated and a new template for
cray_dw_wlm was added. This procedure verifies that all settings are as expected.

Procedure

1. Display the cray_dws settings.

smw# cfgset search -l advanced -s cray_dws p0
The configurator displays the basic settings, any advanced settings that have been modified, and some
advanced settings that are currently set to their default values.

smw# cfgset search -l advanced -s cray_dws p0

INFO - Checking services for valid YAML syntax
INFO - Checking services for schema compliance
11 matches for '.' from cray_dws_config.yaml
#---

DataWarp Update Following CLE Update

S2564 32

cray_dws.settings.service.data.managed_nodes_groups: datawarp_nodes
cray_dws.settings.service.data.api_gateway_nodes_groups: login_nodes_x86_64
cray_dws.settings.service.data.external_api_gateway_hostnames: [] # (empty)
cray_dws.settings.service.data.dwrest_cacheroot_whitelist: /lus/scratch
cray_dws.settings.service.data.dwrest_cachemount_whitelist: [] # (empty)
cray_dws.settings.service.data.allow_dws_cli_from_computes: false
cray_dws.settings.service.data.lvm_issue_discards: 0
cray_dws.settings.dwmd.data.dwmd_conf: iscsi_initiator_cred_path: /etc/opt/cray/
dws/iscsi_target_secret, iscsi_target_cred_path: /etc/opt/cray/dws/
iscsi_initiator_secret, capmc_os_cacert: /etc/pki/trust/anchors/
certificate_authority.pem
cray_dws.settings.dwsd.data.dwsd_conf: log_mask: 0x7,
instance_optimization_default: bandwidth, scratch_limit_action: 0x3,
equalize_fragments: yes
cray_dws.settings.dwrest.data.dwrest_conf: port: 2015
cray_dws.settings.dwrestgun.data.dwrestgun_conf: max_requests=1024

2. Verify that cray_dws configuration is as expected, and correct any discrepencies before proceeding.

a. Verify that managed_nodes_groups is defined as one or more node groups that contain the cnames of
the DataWarp service nodes to be managed by DWS.

Use the following command to list the members of a node group (in this case datawarp_nodes).

smw# cfgset get cray_node_groups.settings.groups.data.datawarp_nodes.members p0
c0-1c0s9n1
c0-1c0s9n2
c0-0c1s2n1
c0-0c1s2n2

b. Verify that api_gateway_nodes_groups is defined as at least one of the following.

● login_nodes - only valid on systems updated to CLE 6.0.UP06 (not initial installations) where
architecture-specific node groups (login_nodes_x86_64 and login_nodes_aarch64) were not
added during the CLE update.

● login_nodes_x86_64 - login nodes with Intel or AMD processors

● login_nodes_aarch64 - login nodes with ARM processors

● A site-specific node group consisting of a subset of login nodes

c. Verify that external_api_gateway_hostnames is a list of fully-qualified domain names (FQDN) of
internal login nodes with external connectivity selected to run the dwrest service.

d. Verify that dwrest_cacheroot_whitelist is defined as expected.

e. Verify dwrest_cachemount_whitelist is defined as expected.

f. Verify allow_dws_cli_from_computes is defined as expected.

3. Verify cray_dws advanced settings if any have been modified, and correct any discrepencies before
proceeding.

Some sites choose to modify certain DWS advanced settings in response to their workload specifics. Those
settings are displayed and Cray recommends verifying them.

TIP:

The configurator displays a handful of advanced settings, whether or not they have been modified,
when invoked with -l advanced. For convenience, these settings and their default values are listed
here for comparison.

DataWarp Update Following CLE Update

S2564 33

All other displayed advanced settings have been modified by the site.

iscsi_initiator_cred_path: /etc/opt/cray/dws/iscsi_target_secret
iscsi_target_cred_path: /etc/opt/cray/dws/iscsi_initiator_secret
capmc_os_cacert: /etc/pki/trust/anchors/certificate_authority.pem
log_mask: 0x7
instance_optimization_default: bandwidth
scratch_limit_action: 0x3
equalize_fragments: yes
port: 2015
max_requests=1024

Next, verify the settings of other DataWarp-required services.

4.3 Verify Settings of Required Services

Prerequisites
This procedure assumes:

● An XC series system with one or more nodes with SSD hardware

● CLE has been updated by following the instructions in XC™ Series Software Installation and Configuration
Guide

About this task
During the update of CLE, all service templates were updated. This procedure verifies that the services required
by DWS are enabled and configured correctly, if applicable.

Procedure

1. Verify that cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm are enabled.

smw# cfgset get cray_lnet.enabled p0
true
smw# cfgset get cray_munge.enabled p0
true
smw# cfgset get cray_dw_wlm.enabled p0
true
smw# cfgset get cray_ipforward.enabled p0
true
If any of the services are not enabled (returned value = false), follow the procedure Ensure that
cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm are Enabled on page 21 before continuing with this
procedure.

2. Verify that a persistent directory entry for DataWarp exists in the mounts setting of
cray_persistent_data.

DataWarp Update Following CLE Update

S2564 34

smw# cfgset search -s cray_persistent_data -l advanced p0 |grep dws
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.alt_storage_path: # (empty)
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.options: # ''
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.ancestor_def_perms: 0755
cray_persistent_data.settings.mounts.data./var/opt/cray/dws.client_groups: service_nodes

If a persistent directory entry for DataWarp doesn't exist, it's likely that it was not configured in the previous
version of CLE running on the system. Because of this, all storage pool information is lost. It is necessary to
add /var/opt/cray/dws (or site-specific persistent directory) to the mounts setting, as described in Set
Up DataWarp Persistent Storage on page 23.

3. Validate the global and CLE config sets. Correct any discrepancies before proceeding.

smw# cfgset validate global
...
INFO - ConfigSet 'global' is valid.
smw# cfgset validate p0
...
INFO - ConfigSet 'p0' is valid.

4. Reboot the system following the typical procedure in order to activate any changes to cray_dws,
cray_ipforward, cray_munge, cray_persistent_data, or cray_dw_wlm.

Reboot is only necessary if changes were made to the DWS service or any of the required services.

DataWarp is now enabled as part of CLE. Cray recommends verifying that the site's pool configurations are as
expected.

DataWarp Update Following CLE Update

S2564 35

5 DataWarp Concepts
For basic definitions, refer to Terminology on page 125.

Instances
DataWarp storage is assigned dynamically when requested, and that storage is referred to as an instance. The
space is allocated on one or more DataWarp server nodes and is dedicated to the instance for the lifetime of the
instance. A DataWarp instance has a lifetime and accessibility managed by whatever creates it. A job instance is
relevant to all previously described use cases except the shared data use case.

● Job instance: The lifetime of a job instance, as it sounds, is the lifetime of the job that created it, and is
accessible only by the job that created it.

● Persistent instance: The lifetime of a persistent instance is not tied to the lifetime of any single job and is
terminated by command. Access can be requested by any job, but file access is authenticated and authorized
based on the POSIX file permissions of the individual files. Jobs request access to an existing persistent
instance using a persistent instance name. A persistent instance is relevant only to the shared data use case.

IMPORTANT: New DataWarp software releases may require the re-creation of persistent instances.

When either type of instance is destroyed, DataWarp ensures that data needing to be written to the parallel file
system (PFS) is written before releasing the space for reuse. In the case of a job instance, this can delay the
completion of the job.

Application I/O
The DataWarp service (DWS) dynamically configures access to a DataWarp instance for all compute nodes
assigned to a job using the instance. Application I/O is forwarded from compute nodes to the instance's DataWarp
server nodes using the Cray Data Virtualization Service (DVS), which provides POSIX based file system access
to the DataWarp storage.

A DataWarp instance is configured as scratch, cache, or swap. For scratch instances, all data transfer between
the instance and the PFS is explicitly requested using the DataWarp job script staging commands or the
application C library API (libdatawarp). For cache instances, all data transfer between the cache instance and
the PFS occurs implicitly. For swap instances, each compute node has access to a unique swap file and swap
files are distributed across all server nodes.

Scratch Configuration I/O
A scratch configuration is accessed in one or more of the following ways:

● Striped: In striped access mode individual files are striped across multiple DataWarp server nodes
(aggregating both capacity and bandwidth per file) and are accessible by all compute nodes using the
instance.

DataWarp Concepts

S2564 36

● Private: In private access mode individual files are also striped across multiple DataWarp server nodes (also
aggregating both capacity and bandwidth per file), but the files are accessible only to the compute node that
created them (e.g., /tmp). Private access is not supported for persistent instances, because a persistent
instance is usable by multiple jobs with different numbers of compute nodes.

● Load balanced: (deferred implementation) In load balanced access mode individual files are replicated (read
only) on multiple DataWarp server nodes (aggregating bandwidth but not capacity per instance) and compute
nodes choose one of the replicas to use. Load balanced mode is useful when the files are not large enough to
stripe across a sufficient number of nodes.

There is a separate file namespace for every scratch instance (job and persistent) and access mode (striped,
private, loadbalanced) except persistent/private is not supported. The file path prefix for each is provided to the
job via environment variables; see the XC™ Series DataWarp™ User Guide.

TIP: The default settings for scratch configuration access modes changed beginning with the CLE
6.0.UP01 release. This affects users whose systems have recently been upgraded from CLE 5.2.UP04 or
CLE 6.0.UP00 to this release. The differences are pointed out in the following information and diagrams.

The following diagram shows a scratch private and scratch stripe mount point on each of three compute (client)
nodes in a DataWarp installation configured with default settings; where tree represents which node manages
metadata for the namespace, and data represents where file data may be stored. For scratch private, each
compute node reads and writes to its own namespace that spans all allocated DataWarp server nodes, giving any
one private namespace access to all space in an instance. For scratch stripe, each compute node reads and
writes to a common namespace, and that namespace spans all three DataWarp nodes.

Figure 6. Scratch Configuration Access Modes (with Default Settings)

DataWarp Server DataWarp Server DataWarp Server

namespacetree datadata data

client node
scratch
stripe
mount

client node
scratch
stripe
mount

client node
scratch
stripe
mount

scratch
private
mount

scratch
private
mount

scratch
private
mount

namespacetree datadata data

namespace tree datadata data

namespace treedatadata data

The following diagram shows a scratch private and scratch stripe mount point on each of three compute (client)
nodes in a DataWarp installation where the scratch private access type is configured to not behave in a striped
manner (scratch_private_stripe=no in the dwsd.yaml configuration file). That is, every client node that
activates a scratch private configuration has its own unique namespace on only one server, which is restricted to
one fragment's worth of space. This is the default for CLE 5.2.UP04 and CLE 6.0.UP00 DataWarp. For scratch
stripe, each compute node reads and writes to a common namespace, and that namespace spans all three
DataWarp nodes. As in the previous diagram, tree represents which node manages metadata for the
namespace, and data represents where file data may be stored.

DataWarp Concepts

S2564 37

Figure 7. Scratch Configuration Access Modes (with scratch_private_stripe=no)

DataWarp Server DataWarp Server DataWarp Server

namespacetree datadata data

namespace
tree data

namespace
tree data

namespace
tree data

client node
scratch
stripe
mount

client node
scratch
stripe
mount

client node
scratch
stripe
mount

scratch
private
mount

scratch
private
mount

scratch
private
mount

Cache Configuration I/O
A cache configuration is accessed in one or more of the following ways:

● Striped: in striped access mode all read/write activity performed by all compute nodes is striped over all
DataWarp server nodes.

● Load balanced (read only): (deferred implementation) In load balanced access mode, individual files are
replicated on multiple DataWarp server nodes (aggregating bandwidth but not capacity per instance), and
compute nodes choose one of the replicas to use. Load balanced mode is useful when the files are not large
enough to stripe across a sufficient number of nodes or when data is only read, not written.

There is only one namespace within a cache configuration; that namespace is essentially the user-provided PFS
path. Private access is not supported for cached instances because all files are visible in the PFS.

The following diagram shows a cache stripe and cache loadbalance mount point on each of three compute (client)
nodes.

Figure 8. Cache Configuration Access Modes

DataWarp Concepts

S2564 38

5.1 Instances and Fragments - a Detailed Look
The DataWarp Service (DWS) provides user access to subsets of storage space that exist between an arbitrary
file system path (typically that of a parallel file system (PFS)) and a client (typically a compute node in a batch
job). Storage space typically exists on multiple server nodes. On each server node, LVM combines block devices
and presents them to the DWS as a Logical Volume Manager (LVM) volume group. All of the LVM volume groups
on all of the server nodes compose the aggregate storage space. A specific subset of the storage space is called
a DataWarp instance, and typically spans multiple server nodes. Each piece of a DataWarp instance (as it exists
on each server node) is called a DataWarp instance fragment. A DataWarp instance fragment is implemented as
an LVM logical volume.

The following figure is an example of three DataWarp instances. DataWarp instance A consists of fragments that
map to LVM logical volumes A1, A2, and A3 on servers x, y, z, respectively. DataWarp Instance B consists of
fragments that map to LVM logical volumes y and z, respectively. DataWarp Instance C consists of a single
fragment that maps to LVM logical volume C1 on server x.

Figure 9. Instances-Fragments LVM Mapping

DW Instance B Fragments

DW Instance A Fragments

DW Instance C Fragments

XFS

LV A1

LVM Volume Group
server x server y server z

LVM Volume Group LVM Volume Group

LV C1 LV A2 LV B1 LV B2 LV A3

XFS XFS XFS XFS XFS

The following diagram uses Crow's foot notation to illustrate the relationship between an instance-fragment and a
configuration-namespace. One instance has one or more fragments; a fragment can belong to only one instance.
A configuration has 0 or more namespaces; a namespace can belong to only one configuration.

Figure 10. Instance-Fragment and Configuration-Namespace Relationships

instance configuration

fragment namespace

5.2 Storage Pools
A storage pool groups nodes with storage together such that requests for space made against the pool are
fulfilled from the nodes associated with the pool with a common allocation granularity. Pools have either byte or
node allocation granularity (pool_AG). This release of DataWarp only supports byte allocation granularity. There
are tradeoffs in picking allocation granularities too small or too large.

All pools must meet the following requirements:

DataWarp Concepts

S2564 39

● The byte-oriented allocation granularity for a pool must be at least 16MiB.

● Each node's volume group (dwcache, configured during SSD initialization) has a Physical Extent size
(PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is equal
to the number of Physical Volumes specified during volume group creation. The DataWarp service (DWS)
places the following restriction on nodes associated with a pool:

○ A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

The following diagram shows six different DataWarp nodes belonging to a storage pool wlm_pool with a 1TiB
allocation granularity. Each DataWarp node has 6.4TiB of space, which means that 0.4TiB are wasted per node
because only 6 allocation granularities fit on any one node.

Figure 11. Storage Pool Example

dwcache
6.4TiB

DW Server

dwcache
6.4TiB

DW Server

dwcache
6.4TiB

DW Server

dwcache
6.4TiB

DW Server

dwcache
6.4TiB

DW Server

dwcache
6.4TiB

DW Server

wlm_pool
bytes-oriented

1TiB granularity
36TiB free

For an in depth look at pools, see Storage Pool Configuration Guidelines on page 70.

5.2.1 Why Does the Free Capacity Displayed by dwstat pools not Match the Quantity
Capacity?

There are several reasons the free capacity displayed by dwstat pools may not match the quantity capacity:

● One or more nodes in the pool is offline

● One or more nodes in the pool is marked drain

● The dwsd.yaml equalize_fragments and equalize_fragments_guarantee settings are both enabled

In earlier versions, free capacity indicated how much storage capacity was available for use in that pool at that
moment in time. However, when the dwsd.yaml equalize_fragments and
equalize_fragments_guarantee settings are both enabled (default settings beginning in CLE 6.0.UP05),
free capacity takes on a new meaning, which is the largest capacity instance that can be requested using that
pool at that moment in time. This difference leads to the following non-intuitive behavior when both settings are
enabled.

● The free capacity may never equal the quantity capacity. For example, this happens if a pool has two nodes
but the contributing capacity of each node is unequal.

DataWarp Concepts

S2564 40

● When an instance is created, the free capacity is reduced by up to the instance capacity size. In other words,
after creating an instance, the free capacity may remain the same.

● When an instance is removed, the free capacity is increased by up to the instance capacity size. In other
words, after removing an instance, the free capacity may remain the same.

5.3 Registrations
A configuration represents a way to use the DataWarp space. Configurations are used in one of two ways:

● configurations are activated

● data is staged into or out of configurations

When either of these actions are performed, the action must supply a DataWarp session identifier in addition to
other action-specific data such as a mount point. The session identifier is required because the DataWarp Service
(DWS) keeps track of whether a configuration is used and which sessions used it. Then, when requested to
remove either the configuration or session, the DWS cleans things up correctly.

The first time a configuration is used by a session, the DWS automatically creates a registration entry that binds
together the session and configuration. The registration is automatically requested to be removed when either the
linked configuration or session is requested to be removed. The actions performed at registration removal time
depend on the type of configuration linked with the registration. By default, --wait is set, resulting in the
execution of some configuration-specific actions prior to the complete removal of the registration.

DWS carries out the following operations for a registration based on the type of configuration with which it is
linked:

● scratch

1. Files marked for stage out by a user application (using libdatawarp) in a batch job with the
DW_STAGE_AT_JOB_END stage type are transitioned to being immediately staged out.

2. All existing stage out activity, including the stage out from the previous step, is allowed to fully complete.

● cache:

1. All existing dirty data in the configuration is written out to the PFS.

● swap: no additional operations are carried out at registration removal time.

If the above processes are interrupted, e.g., a DataWarp server node crashes, the DWS attempts to restore
everything associated with the node and restart the process after the node reboots. This includes restoring any
logical volumes or mount points that are associated with the configuration.

There are times when the previous behavior is not desired. Consider either of the following:

● A DWS or underlying software bug exists that prevents the restoration of the DataWarp state on a crashed
server node

● Hardware fails such that data on the SSD is permanently lost

In situations like this, set --haste for the registration in order to tell the DWS to abort the normal cleanup
process. For example, the following registration is in the process of being destroyed but cannot finish because a
linked SSD has failed:

user@login> dwstat registrations
reg state sess conf wait
 2 D---- 5 11 wait

DataWarp Concepts

S2564 41

Instruct the DWS to abort the normal registration removal tasks by setting --haste with the following dwcli
command:

user@login> dwcli update registration --id 2 --haste
update request for registrations entity with id = 2 accepted, "dwstat
registrations" for status

WARNING: Use of --haste can lead to data loss because some data may not have been staged out to
the PFS.

Workload Manager (WLM) Interaction with Registrations
Registration removal blocks batch job removal because the registration belongs to a session, which in turn
belongs to a batch job. Each WLM provides its own way to force the removal of a batch job. Although the
DataWarp-integrated WLMs are exepected to automatically set --haste for registrations when the WLM-specific
job removal force option is used, not all have implemented this feature. Therefore, it is necessary to manually set
--haste using dwcli for registrations without a corresponding WLM batch job to force remove, and may also be
necessary for some WLMs. For example:

login# dwcli update registration --id 1 --haste
update request for registrations entity with id = 1 accepted, "dwstat
registrations" for status
The Slurm WLM's scancel --hurry command provides the functionality of dwcli --haste to abort the
normal registration cleanup process. See http://slurm.schedmd.com/ for more information.

DataWarp Concepts

S2564 42

http://slurm.schedmd.com/

6 Advanced DataWarp Concepts

6.1 DVS Client-side Caching can Improve DataWarp Performance
With the advent of DataWarp and faster backing storage, the overhead of network operations has become an
increasingly large portion of overall file system operation latency. DVS provides the ability to cache both read and
write data on a client node while preserving close-to-open coherency and without contributing to out-of-memory
issues on compute nodes. Instead of using network communication for all read/write operations, DVS can
aggregate those operations and reuse data already read by or written from a client. This can provide a substantial
performance benefit for these I/O patterns, which typically bear the additional cost of network latency:

● small reads and writes

● reads following writes

● multiple reads of the same data

Client-side Write-back Caching may not be Suitable for all Applications
CAUTION: Possible data corruption or performance penalty!

Using the page cache may not provide a benefit for all applications. Applications that require very large reads or
writes may find that introducing the overhead of managing the page cache slows down I/O handling. Benefit can
also depend on write access patterns: small, random writes may not perform as well as sequential writes. This is
due to pages being aggregated for write-back. If random writes do not access sequential pages, then less-than-
optimal-sized write-backs may have to be issued when a break in contiguous cache pages is encountered.

More important, successful use of write-back caching on client nodes requires a clear understanding and
acceptance of the limitations of close-to-open coherency. It is important for site system administrators to ensure
that users at their site understand how client-side write-back caching works before enabling it. Without that
understanding, users could experience data corruption issues.

For detailed information about DVS client-side caching, see XC™ Series DVS Administration Guide (S-0005).

6.1.1 Client-side Caching Options
Although many workloads can benefit from client-side caching because it can reduce the frequency and necessity
of network operations, others will be negatively affected due to the coherency characteristics of the
implementation. Therefore, DWS includes both administrator-controlled default configuration settings and
DataWarp job script command line options that enable users to opt in or opt out of client-side caching on a per-
activation basis.

Advanced DataWarp Concepts

S2564 43

System Configuration Options
Two dwsd system-level configuration options (considered advanced settings) control the default values for the
client-side caching attribute. They are:
activation_cache_default

Specifies the default for client-side caching on activation objects for activations that support
the feature. This includes scratch and cache but excludes swap. For now, this only applies
to stripe access modes. With client-side caching enabled, application performance can be
greatly improved but applications must take special care to avoid having application
processes on separate client nodes write to the same page.

Default: off
activation_private_cache_default

Specifies the default for client-side caching on activation objects of private access mode
configurations. With stripe access mode, multiple processes on separate nodes can write to
the same page, which can lead to what appears to be data corruption. With private access
mode, this is not possible since only one client node can ever access a particular file.
Consequently the default for client-side caching for private access mode is separately
configurable.

Default: on
CAUTION:

Advanced DataWarp settings must be modified with extreme care. The default values as released are
acceptable for most installations. Sites that modify advanced settings are at risk of degrading DataWarp
performance, decreasing SSD lifetime, and possibly other unknown outcomes. It is the administrator's
responsibility to understand the purpose of any advanced settings changed, the formatting required, and
the impact these changes may have.

Options incorrectly spelled or formatted are added but ignored, and the current value is not modified.

For further details on how to change these default settings, see Modify DWS Advanced Settings on page 92.

Client-side caching defaults are enumerated by activation type and access mode in the following table:

Table 1. Default Client-side Caching Configuration Settings

Activation Type Access Mode Default

scratch stripe activation_cache_default
scratch private activation_private_cache_default
cache stripe activation_cache_default
cache ldbalance always on

Note that read-only activations always have the client-side caching attribute enabled.

Advanced DataWarp Concepts

S2564 44

User-defined Options
Users opt in or out of client-side caching on a per-access mode basis via the #DW jobdw and #DW
persistentdw job script commands. For example, the following command requests a scratch striped instance
with client-side caching enabled and no more than 1000 files able to be created:

#DW jobdw type=scratch access_mode=striped(MFC=1000,client_cache=yes)

For further details, see XC™ Series DataWarp™ User Guide (S-2558).

6.2 DataWarp Configuration Files and Advanced Settings
There are four DataWarp configuration files:

1. The scheduler daemon (dwsd) configuration file: sdb:/etc/opt/cray/dws/dwsd.yaml
2. The manager daemon (dwmd) configuration file: sdb:/etc/opt/cray/dws/dwmd.yaml
3. The DataWarp RESTful service (dwrest) configuration file: api-gw:/etc/opt/cray/dws/dwrest.yaml
4. The dwrest Gunicorn instance configuration file: api-gw:/etc/opt/cray/dws/dwrestgun.conf
Each file contains options that define limits, determine actions for different situations, and specify how to handle
various requests. These options are considered advanced settings, and are set with default values that are
acceptable for most initial DataWarp configurations. Cray recommends not modifying the default values until there
is a good understanding of the site's configuration and workload.

CAUTION:

Advanced DataWarp settings must be modified with extreme care. The default values as released are
acceptable for most installations. Sites that modify advanced settings are at risk of degrading DataWarp
performance, decreasing SSD lifetime, and possibly other unknown outcomes. It is the administrator's
responsibility to understand the purpose of any advanced settings changed, the formatting required, and
the impact these changes may have.

Options incorrectly spelled or formatted are added but ignored, and the current value is not modified.

At some point, an administrator very familiar with the site's configuration and usage history may want to modify
one or more options to achieve a particular goal. For example, to change the method by which dwsd decides how
to select space when creating instances, the instance_optimization_default setting has three valid
options from which to choose. Before modifying any advanced setting, it is extremely important to understand the
purpose of the setting, the format used to assign its value, and the impact of changing its value.

The configuration files contain descriptions for each setting. For example, the
instance_optimization_default setting is defined in dwsd.yaml as:

When processing an instance-create request, dwsd decides how to select space
across all of the servers that are under the control of the DWS. It first
restricts selection to server nodes that belong to the pool specified in the
instance create request itself and are up and responding. It then carves out
space from each server according to some policy. When the instance create
request does not specify a policy, the instance_optimization_default
option is used as the default.

Valid options:

Advanced DataWarp Concepts

S2564 45

bandwidth - pick as many server nodes as possible
interference - pick as few server nodes as possible, and pick nodes that are
unused when possible
wear - pick nodes based on the health of the underlying block devices. Note
that the other options only take device health into account to break ties.

instance_optimization_default: bandwidth

In addition to the descriptions provided within the configuration files, certain topics within XC™ Series
DataWarp™ Installation and Administration Guide contain more information about some advanced settings, and
Cray support personnel are also an available resource.

Configuration File Formats
Within the YAML configuration files, options are set using the format: option: value. For example, the
expire_grace option in dwsd.yaml is as follows:

The length of time to allow an expired resource to linger before the scheduler
automatically requests its destruction.
#
expire_grace: 3600

Within the dwrestgun.conf file, options are set using the format: option=value. For example, loglevel
accepts a quotation mark delimited text value, and timeout requires an integer value:

the default logging level
loglevel = "info"
Default timeout for a request, 10 minutes by default
timeout=600

6.2.1 The dwsd Configuration File
The DataWarp scheduler daemon (dwsd) runs on the SDB node and reads the configuration
file /etc/opt/cray/dws/dwsd.yaml at startup and when it receives the SIGHUP signal. Keep in mind that the
majority of the configuration options are considered advanced settings; see Modify DWS Advanced Settings on
page 92.

IMPORTANT: Do not directly modify any DataWarp configuration files (dwsd.yaml, dwmd.yaml,
dwrest.yaml, dwrestgun.conf) as changes do not persist over a reboot. Modify the settings within
these files using the configurator only; this ensures that the changes become part of the system config
set.

CONFIGURATION OPTIONS
The configuration file /etc/opt/cray/dws/dwsd.yaml contains the following modifiable options:

activation_cache_default
Specifies the default for client-side caching on activation objects for activations that support
the feature. This includes scratch and cache but excludes swap. For now, this only applies
to stripe access types. With client-side caching enabled, application performance can be
greatly improved but applications must take special care to avoid having application
processes on separate client nodes write to the same page.

Advanced DataWarp Concepts

S2564 46

activation_cache_default: no

activation_private_cache_default
Specifies the default for client-side caching on activation objects of private access type
configurations. With stripe access type, multiple processes on separate nodes can write to
the same page, which can lead to what appears to be data corruption. With private access
type, this is not possible since only one client node can ever access a particular file.
Consequently the default for client-side caching for private access type is separately
configurable.

activation_private_cache_default: yes

cache_stripe_size
The stripe size for cache configurations. This must be a power of 2 (enforced) as well as a
multiple of the PFS stripe size (unenforced). Most PFS configuration stripe sizes are a factor
of the default value given here; therefore, it is unlikely this needs to change.

cache_stripe_size: 8388608

cache_substripe_width
The number of substripes for each cache stripe. Substriping improves performance when
multiple client nodes try to interact with the same stripe on a server.

cache_substripe_width: 12

device_health_interval
The minimum number of seconds before dwsd asks for a system-wide update on the health
of all block devices being used in the DWS. A value of 0 means this action is disabled.

device_health_interval: 3600

dwmd_heartbeat_watchdog
The number of seconds a dwmd may neglect to heartbeat back to dwsd before dwsd
considers the dwmd node to be offline. Although dwsd normally detects that a dwmd is down
due to node failure or connect failures to the node, there are cases where a dwmd may hang
or crash that are only detectable by a lack of heartbeats. A value of 0 disables the check.

dwmd_heartbeat_watchdog: 1800

dwsd_host
The hostname to which dwmd should connect when responding to tasks distributed by
dwsd. On multi-interface hosts running dwsd, the primary hostname may not be appropriate
for the remote dwmd to use. This option serves as an override to the primary hostname
returned by gethostname().

dwsd_host: result of gethostname()
equalize_fragments

Specifies whether the scheduler will attempt to create instances that are comprised of equal
size fragments. By default the scheduler will only pick as much space (roundup to pool
granularity) as was requested at instance creation request time. With this option, the
scheduler will allot more space to instances in attempt to make all fragments within the

Advanced DataWarp Concepts

S2564 47

instance be of equal size. This can cause problems for workload managers but can provide
for significantly improved performance to applications using DataWarp.

equalize_fragments: yes

equalize_fragments_guarantee
This option tweaks both equalize_fragments behavior and how pool "free" space is
calculated for pools. This option is only valid when equalize_fragments is set to yes.
When equalize_fragments and this option are set to yes, this option prevents the
scheduler from creating an instance that is not comprised of fragments of equal size.
Additionally, the amount of free capacity reported in pool information may be adjusted
downward so as to reflect the maximum size a request may be while respecting the
modified equalize_fragments behavior.

equalize_fragments_guarantee: yes

expire_grace
The length of time in seconds to allow an expired resource to linger before dwsd
automatically requests its destruction.

expire_grace: 3600

instance_optimization_default
When processing an instance-create request, dwsd decides how to select space across all
of the servers that are under the control of the DWS. It first restricts selection to server
nodes that belong to the pool specified in the instance create request itself and are up and
responding. It then carves out space from each server according to some policy. When the
instance create request does not specify a policy, the
instance_optimization_default option is used as the default.

Valid options:

1. bandwidth - pick as many server nodes as possible

2. interference - pick as few server nodes as possible, and pick nodes that are unused
when possible

3. wear - pick nodes based on the health of the underlying block devices. Note that the
other options only take device health into account to break ties.

instance_optimization_default: bandwidth

log_mask
A mask for the various types of messages logged by dwsd. Bits beyond warning (0x4) are
subject to change.

0x0000001: Info
0x0000002: Error
0x0000004: Warning
0x0000080: General-purpose debugging
0x0000100: JSON RPCs
0x0000200: Encrypted messages
0x0000400: JSON notification messages

Advanced DataWarp Concepts

S2564 48

0x0000800: RCA debugging messages (noisy)

log_mask: 0x7

max_failures
The maximum number of times dwsd attempts to transition a resource to its non-destroyed
state before the scheduler requires an API client interaction to try again through PATCH on
fuse_blown attributes (dwcli update resources --id id --replace-fuse).

max_failures: 2

resource_failure_cooldown
Periodically, performing an action on a resource may fail (e.g., creating an LVM logical
volume as part of fragment creation). When this occurs, it can be useful to wait a small
period of time to retry the operation, rather than aggressively retrying in a tight loop. This
parameter sets the minimum number of seconds before dwsd retries an operation.

resource_failure_cooldown: 60

resource_rm_scan_interval
Typically all nodes are up and responding and resources can be created and destroyed
without error. If a node becomes unresponsive, the resource is created or destroyed once it
comes back online. Occasionally, a node becomes unresponsive for an extended period of
time (e.g., it crashes and is not rebooted for some time) and it is desirable to "forget" about
the resource on the node. This parameter specifies the minimum number of seconds
between scans where dwsd finds all down nodes (using an external data source) and
deletes from them any resources that are intended to be destroyed.

resource_rm_scan_interval: 180

scratch_data_subdirs
The underlying XFS file system has points of serialization that can be overcome by
distributing data into multiple subdirectories. This variable influences the number of
subdirectories used for scratch file systems.

scratch_data_subdirs: 256

scratch_limit_action
What action to take when one of the scratch limits are exceeded; this action applies to all
limits.

0x1: log only
0x2: error on file system operations
0x3: log and error

scratch_limit_action: 0x3

scratch_metadata_subdirs
The underlying XFS file system has points of serialization that can be overcome by
distributing metadata into multiple subdirectories. This variable influences the number of
subdirectories used for scratch file systems.

Advanced DataWarp Concepts

S2564 49

scratch_metadata_subdirs: 32

scratch_namespace_max_file_size_default
The maximum size (bytes) of any one file that may exist in a scratch configuration
namespace. When the threshold is exceeded, a message is emitted to the system console
and an error is reported back to the file system operation that triggered the limit. A value of
0 means no limit. User requests may override this value.

scratch_namespace_max_file_size_default: 0

scratch_namespace_max_file_size_max
The maximum value a user may request when overriding
scratch_namespace_max_file_size_default. A value of 0 means there is no max.

scratch_namespace_max_file_size_max: 0

scratch_namespace_max_files_default
The maximum number of files that may be created in a scratch configuration namespace.
When the threshold is exceeded, a message is displayed on the system console and no
new files can be created in the namespace. A value of 0 means no limit. User requests may
override this value.

scratch_namespace_max_files_default: 0

scratch_namespace_max_files_max
The maximum value a user may request when overriding
scratch_namespace_max_files_default. A value of 0 means no limit.

scratch_namespace_max_files_max: 0

scratch_private_striped
Specifies whether the scratch private access type should behave in a striped manner. That
is, every client node that activates the scratch private configuration will still have its own
unique namespace, but each namespace will stripe across all servers in a dwfs realm. This
gives any one private namespace access to all space in an instance, rather than being
restricted to one fragment's worth of space.

scratch_private_striped: yes

scratch_private_substripe_width
The number of substripes to use for each scratch stripe (private access type). Substriping a
stripe improves performance when multiple client nodes try to interact with the same stripe
on a server. Because only one client node is intended to interact with a stripe at any one
time with private access type, substripes are not generally useful with scratch private.

scratch_private_substripe_width: 1

scratch_stripe_size
The stripe size for scratch configurations; this must be a power of 2 (enforced) as well as a
multiple of the PFS stripe size (unenforced). Most PFS configuration stripe sizes are a factor
of the default value here, so it is unlikely this needs to be changed.

scratch_stripe_size: 8388608

Advanced DataWarp Concepts

S2564 50

scratch_substripe_size
The substripe size to use for scratch configurations; this must be a power of 2 (enforced). If
the value is less than scratch_stripe_size, then each complete read/write of a stripe is
mapped to two or more substripe files, using round robin across the substripe files as
necessary. If the value is equal to scratch_stripe_size, then each complete read/write
of a stripe is mapped to exactly one substripe file. If the value is greater than
scratch_stripe_size, then each complete read/write of a stripe is mapped to a subset
of one substripe file.

scratch_substripe_size: 8388608

scratch_substripe_width
The number of substripes for each scratch stripe (stripe access type). Substriping a stripe
improves performance when multiple client nodes try to interact with the same stripe on a
server.

scratch_substripe_width: 12

trusted_uids
The dwsd only trusts messages from the listed numeric uids. This should be the UIDs of
dwmd (root) and the API gateway (non-root).

trusted_uids: [0, nginx_uid]

6.2.2 The dwmd Configuration File
The DataWarp management daemon (dwmd) master process reads the configuration
file /etc/opt/cray/dws/dwmd.yaml at startup and when it receives the SIGHUP signal. Keep in mind that the
majority of the configuration options are considered advanced settings; see Modify DWS Advanced Settings on
page 92.

IMPORTANT: Do not directly modify any DataWarp configuration files (dwsd.yaml, dwmd.yaml,
dwrest.yaml, dwrestgun.conf) as changes do not persist over a reboot. Modify the settings within
these files using the configurator only; this ensures that the changes become part of the system config
set.

CONFIGURATION OPTIONS
There are four ways to specify dwmd configuration settings. They are, in order of precedence:

1. environment variables

2. dwmd command line options

3. configuration file changes via the configurator

4. default dwmd settings

Not all configuration settings are meant to be modified by a site. The following subset of configuration options
found in dwmd.yaml represent those options that an experienced DataWarp administrator might modify. To
implement changes to the configuration file, send a SIGHUP to dwmd.

dvs_mnt_opt

Advanced DataWarp Concepts

S2564 51

An optional DVS mount option string added to the option string for mount -t dwfs [-o
option[,option]...]. This option string must be a comma-separated list of valid DVS
options.

dvs_mnt_opt: ""
dwfs_mnt_opt

An optional dwfs mount option string added to the option string for mount -t dwfs [-o
option[,option]...]. This option string must be a comma-separated list of valid DWfs
options.

dwfs_mnt_opt: ""
hb_aggr_delay

The minimum initial delay interval (in seconds) before dwmd goes into aggressive heartbeat
mode after the first occurrence of detecting a task failure.

hb_aggr_delay: 10
hb_val

The heartbeat to dwsd interval in seconds.

hb_val: 600
hb_num_aggr

The number of aggressive heartbeats to repeat.

hb_num_aggr: 5
hb_val_aggr

The aggressive heartbeat interval used when task failures are detected.

For example, when a task fails, dwmd changes the heartbeat delay from hb_val to
hb_val_aggr for hb_num_aggr times. If hb_val_aggr=5, hb_val=600, and
hb_val_aggr=30, dwmd sends a heartbeat every 30 seconds for five times before
returning to the normal heartbeat (600 seconds), unless another failure occurs and resets
the aggressive heartbeat counter.

hb_val_aggr: 30
substripe_type

Namespace substripe type; value must be [DEFERRED | NONDEFERRED].

substripe_type: DEFERRED
trusted_uids

A comma-separated list of trusted numeric UIDs; DataWarp only trusts messages from UIDs
within this list. This list must include the UIDs of dwsd (root) and the API gateway.

Note that the CLE installer sets this option, therefore, it does not need to be changed.

trusted_uids: [0, nginx_uid]
vgck_panic

Advanced DataWarp Concepts

S2564 52

Flag for panic node when volume group test fails; value must be [yes | no].

vgck_panic: yes
xfs_mkfs_opt:

An optional mkfs.xfs command option string added to command. This option string must
be a space-separated list of valid mkfs.xfs options. Note that -f is always added by
default.

xfs_mkfs_opt: "-K"
xfs_mnt_opt:

An optional XFS mount option string added to the option string for the mount [-o
option[,option]...] command to mount fragments. This option string must be a
comma-separated list of valid XFS mount options.

xfs_mnt_opt: "nodiscard"

6.2.3 The dwrest Configuration File
The DataWarp RESTful gateway daemon (dwrest) reads the configuration
file /etc/opt/cray/dws/dwrest.yaml at startup and when it receives the SIGHUP signal. Keep in mind that
the majority of the configuration options are considered advanced settings; see Modify DWS Advanced Settings
on page 92.

IMPORTANT: Do not directly modify any DataWarp configuration files (dwsd.yaml, dwmd.yaml,
dwrest.yaml, dwrestgun.conf) as changes do not persist over a reboot. Modify the settings within
these files using the configurator only; this ensures that the changes become part of the system config
set.

CONFIGURATION OPTIONS
The configuration file /etc/opt/cray/dws/dwrest.yaml contains the following modifiable options:
admin_mountroot_blacklist

A comma-separated list of mount paths on which an administrator cannot create activations.
This list is to prevent mistakes by an administrator accidentally mounting over /tmp as an
example.

While an admin may choose to mount to subdirectories within this blacklist, e.g., /,
depending upon the mount point it may or may not be advisable to do so.

One may choose to change this to allow these directories to be overlaid, however doing so
may put DWS or the system into an unknown state.

admin_mountroot_blacklist: /sys/fs/cgroup, /var/tmp, /dev/shm,
/usr/sbin, /usr/bin, /sbin, /bin, /.snapshots, /root, /boot, /usr, /etc, /tmp,
/proc, /sys, /dev, /run, /

admins
A comma-separated list of UIDs of MUNGE administration. MUNGE is used to provide user
authentication/identification in environments where uids are consistent across machines.

Advanced DataWarp Concepts

S2564 53

admins: []
cachemount_whitelist

White list of allowed directories for the cache backing_path parameter. Each specified
directory must be a parallel file system accessible on all DataWarp service nodes.

Only the directories listed are allowed for cache mount filesystems.

If both options are set if either optional list matches, the cache filesystem will be allowed to
be created.

Examples:

cachemount_whitelist: []
cachemount_whitelist: [/lus/scratch]
cachemount_whitelist: [/lus/scratch, /lus/users]
cachemount_whitelist:
- /lus/scratch
- /lus/users

cachemount_whitelist: [/lus/scratch]

cacheroot_whitelist

White list of allowed directory prefixes for the cache backing_path parameter. Each
specified directory must be a parallel file system accessible on all DataWarp service nodes.

The directories listed and any sub-directories are valid. Note this option could expose a
security hole in that if a sub directory is known, it could be mounted by a user that may not
have permissions.

Examples:

cacheroot_whitelist: []
cacheroot_whitelist: [/lus/scratch]
cacheroot_whitelist: [/lus/scratch, /lus/users]
cacheroot_whitelist:
- /lus/scratch
- /lus/users

cacheroot_whitelist: [/lus/scratch]

user_mountroot_whitelist
List of allowed mount paths on which a user can create activations. Note, all paths are
required to be fully rooted or dwrest will not start. The default of an empty list means that
users cannot create activations as there is no valid mount path on which to create them.

Additionally, users cannot mount to the whitelist mount itself. That is, if /one/two is in the
whitelist and a user tries to mount to /one/two, it fails. An activation must be a
subdirectory of a mount path in the whitelist. For example /one/two/three.

user_mountroot_whitelist: []

Advanced DataWarp Concepts

S2564 54

6.2.4 The dwrestgun Configuration File
The dwrestgun.conf file, found on login nodes, contains the configuration options for interfacing with Gunicorn.
Gunicorn (Green Unicorn) is a Python WSGI HTTP Server for UNIX. For dwrest, nginx communicates with
Gunicorn, which handles the running of multiple instances of dwrest in a number of Unix processes. Keep in
mind that the majority of the configuration options are considered advanced settings; see Modify DWS Advanced
Settings on page 92.

IMPORTANT: Do not directly modify any DataWarp configuration files (dwsd.yaml, dwmd.yaml,
dwrest.yaml, dwrestgun.conf) as changes do not persist over a reboot. Modify the settings within
these files using the configurator only; this ensures that the changes become part of the system config
set.

CONFIGURATION OPTIONS
The configuration file /etc/opt/cray/dws/dwrestgun.conf contains the following modifiable options:
backlog

Maximum number of pending connections – this refers to the number of clients that can be
waiting to be served. Exceeding this number results in the client getting an error when
attempting to connect. It should only affect servers under significant load.

backlog=128
graceful_timeout

Timeout for graceful workers restart – after receiving a restart signal, workers have this
much time to finish serving requests. Workers still alive after the timeout (starting from the
receipt of the restart signal) are force killed.

graceful_timeout=30
max_requests

Maximum number of requests a worker will process before restarting – any value greater
than zero will limit the number of requests a worker will process before automatically
restarting. This is a simple method to help limit the damage of memory leaks. If this is set to
zero (the default), the automatic worker restarts are disabled.

max_requests=1024
max_requests_jitter

Maximum jitter to add to the max_requests setting – the jitter causes the restart per
worker to be randomized byrandint(0, max_requests_jitter). This is intended to
stagger worker restarts to avoid all workers restarting at the same time.

max_requests_jitter=10
timeout

Workers silent for more than this many seconds are killed and restarted.

timeout=600
Some dwrestgun.conf options are not listed here because they are not meant to be modified. Additionally,
there are Gunicorn settings that, if added to dwrestgun.conf, would be valid, but their use is discouraged by

Advanced DataWarp Concepts

S2564 55

Cray. For further details on all Gunicorn configuration options, see http://docs.gunicorn.org/en/19.3/
settings.html#config-file.

6.3 DataWarp Accounting
The CLE Resource Utilization Reporting (RUR) administration tool includes three plugins (dws, dws_server,
dws_job_server) that collect DataWarp accounting data. These plugins must be enabled within the RUR
framework in order to collect data. The data is written in JSON format
to /var/opt/cray/log/partition-current/messages-date on the SMW.

Usage data is collected separately from compute and storage nodes, and is then combined during post
processing. For systems using ALPS, RUR is the primary collection mechanism for DataWarp accounting data.
Systems with SLURM must use a plugin defined by SchedMD. RUR is called from both job prologue and epilogue
scripts, and by ALPS apsys. This provides both job and application scope accounting records, with more
complete records for job scope. Job scope records do not include compute node data, only server data.

6.3.1 The dws Data Plugin
The dws plugin collects the following DataWarp utilization statistics from compute nodes, if presesnt. This usage
data is available within the scope of an application, not the scope of a job. The data is written in JSON dictionary
format. Additional DataWarp usage data is available through the dws_server and dws_job_server plugins.

bytes_read Number of bytes read

bytes_written Number of bytes written

files_created Number of files created

inodes_created Number of inodes created, including files, directories and links

max_read_offset Maximum byte offset read

max_write_offset Maximum byte offset written

RUR dws output

This example shows dws data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T13:27:32.662733-05:00 c0-1c0s8n0 RUR 16521
p0-20161006t064726 [RUR@34] uid: 12345, apid: 1140449, jobid:
1127.sdb, cmdname: /bin/hostname, plugin:dws {"token": "1127.sdb",
"mountpoint": "/var/opt/cray/dws/mounts/batch/1127.sdb/ss",
"inodes_created": 407, "files_created": 405, "bytes_read":
11207405004, "bytes_written": 6712208222, "max_read_offset":
4096024126, "max_write_offset": 21772241122}

Advanced DataWarp Concepts

S2564 56

http://docs.gunicorn.org/en/19.3/settings.html#config-file
http://docs.gunicorn.org/en/19.3/settings.html#config-file

6.3.2 The dws_job_server Data Plugin
The dws_job_server plugin collects utilization statistics from DataWarp servers, if present. This usage
information is within the scope of a job, not the scope of an application. The data is written in JSON dictionary
format. DataWarp server usage information within the scope of an application is available through the
dws_server plugin. Compute node usage of DataWarp is available through the dws plugin.

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

Advanced DataWarp Concepts

S2564 57

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,
"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,
"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

6.3.3 The dws_server Data Plugin
The dws_server plugin collects utilization statistics from DataWarp servers, if present. This usage information is
within the scope of an application, not the scope of a job. The data is written in JSON dictionary format. DataWarp
server usage information within the scope of a job is available through the dws_job_server plugin. Compute
node usage of DataWarp is available through the dws plugin.

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Advanced DataWarp Concepts

S2564 58

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,

Advanced DataWarp Concepts

S2564 59

"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,
"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

Advanced DataWarp Concepts

S2564 60

7 Post-boot Configuration
About this task
After the system boots, DataWarp requires further manual configuration. The steps required are:

Procedure

1. (Optional) Over-provision Intel P3608 cards; Over-provision an Intel P3608 SSD on page 61.

2. Flash the firmware for all Fusion IO cards; Update Fusion ioMemory Firmware on page 64.

3. Initialize all DataWarp-designated SSDs for use with the DataWarp service (DWS); Initialize an SSD on page
66.

4. Create a storage pool; Storage Pool Configuration Guidelines on page 70.

5. Assign desired nodes with space to a storage pool; Assign Nodes to a Storage Pool on page 73.

6. Verify the configuration; Verify the DataWarp Configuration on page 75.

7.1 Over-provision an Intel P3608 SSD

Prerequisites
● A Cray XC series system with one or more Intel P3608 SSD cards installed

● Ability to log in as root

About this task
IMPORTANT: This procedure is optional and is only valid for Intel P3608 SSDs. The examples provided
are based on the 4TB drives, but this procedure also works for the 1.6TB drives.

Over-provisioning is the process of increasing the spare area on an SSD. This provides extra capacity for the
SSD controller to move data around without having to re-write multiple blocks of data as the drive fills up. This
results in better performance and higher endurance, but with the tradeoff of less capacity for users. Sites can
choose to over-provision or not.

Because over-provisioning determines the size of the device available to the Logical Volume Manager (LVM)
commands, it needs to occur prior to executing any LVM commands. Typically, over-provisioning is done when the
SSD cards are first installed.

Post-boot Configuration

S2564 61

WARNING: This procedure destroys any existing data on the SSDs.

Procedure

1. Log on to an Intel P3608 SSD-endowed node as root, then determine the SSD model number.

ssd# module load linux-nvme-ctl
ssd# nvme id-ctrl /dev/nvme0 |grep mn
mn : INTEL SSDPECME040T4Y

2. Shut down the DataWarp manager daemon (dwmd).

ssd# systemctl stop dwmd

3. Remove any existing configuration.

TIP: Numerous methods exist for creating configurations on an SSD; these instructions may not
capture all possible cleanup techniques.

a. Unmount file systems (if any).

nid00350# df
boot:/home 20961280 11352064 9609216 55% /home
tmp 61504671488 624927640 57802802440 2% /scratch
nid00350# umount -f /scratch

b. Remove logical volumes (if any).

nid00350# lvdisplay
 --- Logical volume ---
 LV Path /dev/dwcache/s98i94f104o0
 LV Name s98i94f104o0
 VG Name dwcache
 LV UUID 910tio-RJXq-puYV-s3UL-yDM1-RoQl-HugeTM
 LV Write Access read/write
 LV Creation host, time nid00350, 2017-02-22 13:29:11 -0500
 LV Status available
 # open 0
 LV Size 3.64 TiB
 Current LE 953864
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 1024
 Block device 253:0

nid00350# lvremove /dev/dwcache
c. Remove volume groups (if any).

nid00350# vgs
 VG #PV #LV #SN Attr VSize VFree
 dwcache 4 0 0 wz--n- 7.28t 7.28t
nid00350# vgremove dwcache
 Volume group "dwcache" successfully removed

d. Remove physical volumes (if any).

Post-boot Configuration

S2564 62

nid00350# pvs
PV VG Fmt Attr PSize PFree
/dev/nvme0n1 lvm2 a-- 1.82t 1.82t
/dev/nvme1n1 lvm2 a-- 1.82t 1.82t
/dev/nvme2n1 lvm2 a-- 1.82t 1.82t
/dev/nvme3n1 lvm2 a-- 1.82t 1.82t

nid00350# pvremove /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
 Labels on physical volume "/dev/nvme0n1" successfully wiped
 Labels on physical volume "/dev/nvme1n1" successfully wiped
 Labels on physical volume "/dev/nvme2n1" successfully wiped
 Labels on physical volume "/dev/nvme3n1" successfully wiped

e. Clear partitions for each device removed in the previous step (if any).

WARNING: This operation destroys any existing data on an SSD. Back up any existing data
before proceeding.

nid00350# dd if=/dev/zero of=phys_vol bs=512 count=1

nid00350# dd if=/dev/zero of=/dev/nvme0n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme1n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme2n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme3n1 bs=512 count=1

4. Reconfigure the device based on the model number determined in step 1 on page 62 and the corresponding
over-provision value from the following table.

Table 2. Over-provision values for supported Intel P3608 models

Model Number Size (TB) Over-provision Value
(bytes)

HEX

SSDPECME016T4Y 1.6 1250259487 0x4a85721f

SSDPECME040T4 4.0 3125623327 0xba4d3a1f

SSDPECME040T4Y 4.0 3125623327 0xba4d3a1f

nid00350# nvme set-feature device -n 1 -f 0XC1 -v op_value
set-feature:193(Unknown), value:00000000

TIP: For the remainder of this procedure, the examples assume 4TB SSDs; values will be different for
1.6TB SSDs.

nid00350# nvme set-feature /dev/nvme0 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme1 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme2 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme3 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000

5. Confirm the change based on the SSD model number and values in Over-provision values for supported Intel
P3608 models on page 63. Note that 0xba4d3a1f = 3125623327.

Post-boot Configuration

S2564 63

nid00350# nvme get-feature device -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

nid00350# nvme get-feature /dev/nvme0 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme1 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme2 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme3 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

6. Return to the SMW, and warm boot the DataWarp node.

crayadm@smw> xtnmi cname
crayadm@smw> sleep 60
crayadm@smw> xtbootsys --reboot -r "warmboot for Intel SSD node" cname

7. Log in to the Intel P3608 SSD-endowed node as root, and confirm that SIZE = 1600319143936 bytes for
all volumes.

nid00350# lsblk -b
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 196608 0 loop /var/opt/cray/imps-distribution/squash/
loop1 7:1 0 65536 0 loop /var/opt/cray/imps-distribution/squash/
nvme0n1 259:0 0 1600319143936 0 disk
nvme1n1 259:1 0 1600319143936 0 disk
nvme2n1 259:2 0 1600319143936 0 disk
nvme3n1 259:3 0 1600319143936 0 disk
Contact Cray service personnel if SIZE is incorrect.

7.2 Update Fusion ioMemory Firmware

Prerequisites
● A Cray XC series system with one or more nodes with Fusion IO SSD hardware

● Identification of the nodes with Fusion IO SSD hardware

About this task
After the Fusion ioMemory VSL software is integrated in the FIO service node image (during the initial DataWarp
installation), it is necessary to ensure that the Fusion ioMemory device firmware is up-to-date. For ioMemory3/
SX300 cards, CLE 6.0.UP02 and beyond requires the use of the SLES12 version of SanDisk/Fusion driver – VSL
4.2.5. This driver requires firmware version 8.9.5.

WARNING:

● It is extremely important that the power not be turned off during a firmware upgrade, as this could
cause device failure.

● Do not use this utility to downgrade the Fusion ioMemory device to an earlier version of the firmware.
Doing so may result in data loss and void your warranty.

Post-boot Configuration

S2564 64

● After reflashing, the firmware level cannot be reverted to a previous level, and therefore, the drives
are no longer usable with pre-CLE6.0.UP02 releases.

For further details, see Fusion ioMemory™ VSL® 4.2.x User Guide for Linux.

Procedure

1. Log in to a node with Fusion IO SSD hardware installed and determine the firmware status.

If the firmware needs to be updated, running the "fio-status -a" command displays the following message,
“The firmware on this device is not compatible with the currently installed version of the driver,” and the device
will not attach.

nid00078# fio-status -a
Found 1 VSL driver package:
 4.2.x build 1137 Driver: loaded

Found 1 ioMemory device in this system
...

The firmware on this device is not compatible with the currently installed
version of the driver
...

There are active errors or warnings on this device! Read below for details.
...

This means the firmware needs to be updated.

2. Skip the remainder of this procedure if the firmware is compatible with the driver.

3. Determine the location of the fio-firmware-fusion file.

nid00078# rpm -q --list fio-firmware-fusion
/usr/share/doc/fio-firmware/copyright
/usr/share/fio/firmware/fusion_4.2.x-date.fff

4. Update the firmware.

nid00078# fio-update-iodrive firmware-path
For example:

nid00078# fio-update-iodrive /usr/share/fio/firmware/fusion_4.2.x-date.fff
WARNING: DO NOT TURN OFF POWER OR RUN ANY IODRIVE UTILITIES WHILE THE FIRMWARE
UPDATE IS IN PROGRESS
Please wait...this could take a while

Updating: [====================] (100%)
fct0 - successfully updated the following:
Updated the firmware from old_level to new_level
 Updated CONTROLLER from old_level to new_level
 Updated SMPCTRL from old_level to new_level
 Updated NCE from old_level to new_level

Reboot this machine to activate new firmware.

Post-boot Configuration

S2564 65

5. Repeat the previous steps for all nodes with Fusion IO SSD hardware.

6. Warm boot the node(s).

crayadm@smw> xtnmi cname
crayadm@smw> sleep 60
crayadm@smw> xtbootsys --reboot -r "warmboot for Fusion IO SSD node" cname

7. Log in to the node(s) and verify that the firmware update is recognized.

nid00078# fio-status -a
If no error messages are displayed, the node is ready for initialization. Otherwise, contact Cray service
personnel.

7.3 Initialize an SSD

Prerequisites
● root privileges

● Up-to-date firmware on Fusion IO SSDs

● Intel P3608 SSDs are not required to be over-provisioned, it is optional. For details, see Over-provision an
Intel P3608 SSD on page 61.

About this task
During the DataWarp installation process, the system administrator defines SSD-endowed nodes whose space
the DataWarp service (DWS) will manage. This step ensures that the DataWarp manager daemon, dwmd, is
started at boot time on these nodes. It does not prepare the SSDs for use with the DWS; this is performed
manually using the following instructions.

After CLE boots, the following one-time manual device configuration must be performed for each node specified
in the managed_nodes_groups setting of the cray_dws service.

The diagram below shows how the Logical Volume Manager (LVM) volume group dwcache is constructed on
each DW node. In this diagram, four SSD block devices have been converted to LVM physical devices with the
pvcreate command. These four LVM physical volumes were combined into the LVM volume group dwcache
with the vgcreate command.

Post-boot Configuration

S2564 66

Figure 12. LVM Volume Group

LVM Volume Group (dwcache)

DW Server

LVM PV

SSD Block
Device

SSD Block
Device

SSD Block
Device

SSD Block
Device

LVM PV LVM PV LVM PV

TIP: Throughout these procedures, units of bytes are described using the binary prefixes defined by the
International Electrotechnical Commission, e.g., mebi- (MiB), gibi- (GiB), tebi- (TiB), pebi- (PiB). For
further information, see Prefixes for Binary and Decimal Multiples on page 126.

Procedure

1. Log in to an SSD-endowed node as root.

This example uses nid00350.

2. Stop the dwmd service.

nid00350# systemctl stop dwmd

3. Identify the SSD block devices.

NVMe SSDs:

nid00350# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 196608 0 loop /var/opt/cray/imps-distribution/squash/
loop1 7:1 0 65536 0 loop /var/opt/cray/imps-distribution/squash/
nvme0n1 259:0 0 1600319143936 0 disk
nvme1n1 259:1 0 1600319143936 0 disk
nvme2n1 259:2 0 1600319143936 0 disk
nvme3n1 259:3 0 1600319143936 0 disk
Fusion IO SSDs:

nid00350# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
fioa 254:0 0 2.9T 0 disk
fiob 254:1 0 2.9T 0 disk
loop0 7:0 0 196608 0 loop /var/opt/cray/impsdistribution/squash/
loop1 7:1 0 65536 0 loop /var/opt/cray/impsdistribution/squash/

4. (Intel P3608 SSDs only) Proceed to step 6 on page 69 if this SSD was over-provisioned per the Over-
provision an Intel P3608 SSD on page 61 procedure.

5. (All non-Intel P3608 SSDs) Remove any existing configuration.

TIP: Numerous methods exist for creating configurations on an SSD; these instructions may not
capture all possible cleanup techniques.

Post-boot Configuration

S2564 67

a. Unmount file systems (if any).

nid00350# df
boot:/home 20961280 11352064 9609216 55% /home
tmp 61504671488 624927640 57802802440 2% /scratch
nid00350# umount -f /scratch

b. Remove logical volumes (if any).

nid00350# lvdisplay
 --- Logical volume ---
 LV Path /dev/dwcache/s98i94f104o0
 LV Name s98i94f104o0
 VG Name dwcache
 LV UUID 910tio-RJXq-puYV-s3UL-yDM1-RoQl-HugeTM
 LV Write Access read/write
 LV Creation host, time nid00350, 2017-02-22 13:29:11 -0500
 LV Status available
 # open 0
 LV Size 2.92 TiB
 Current LE 953864
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 1024
 Block device 253:0

nid00350# lvremove /dev/dwcache
c. Remove volume groups (if any).

nid00350# vgs
 VG #PV #LV #SN Attr VSize VFree
 dwcache 2 0 0 wz--n- 2.92t 2.92t
nid00350# vgremove dwcache
 Volume group "dwcache" successfully removed

d. Remove physical volumes (if any).

nid00350# pvs
PV VG Fmt Attr PSize PFree
/dev/fioa lvm2 a-- 1.46t 1.46t
/dev/fiob lvm2 a-- 1.46t 1.46t

nid00350# pvremove /dev/fioa /dev/fiob
 Labels on physical volume "/dev/fioa" successfully wiped
 Labels on physical volume "/dev/fiob" successfully wiped

e. Remove partitions for each device removed in the previous step (if any).

WARNING: This operation destroys any existing data on an SSD. Back up any existing data
before proceeding.

nid00350# dd if=/dev/zero of=phys_vol bs=512 count=1

nid00350# dd if=/dev/zero of=/dev/fioa bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/fiob bs=512 count=1

Post-boot Configuration

S2564 68

6. Initialize each physical device for later use by LVM. Note that Cray currently sells systems with 1, 2, 4, or 6
physical devices on a node.

WARNING: This operation destroys any existing data on an SSD. Back up any existing data before
proceeding.

nid00350# pvcreate phys_vol [phys_vol...]
NVMe SSDs:

nid00350# pvcreate /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
Physical volume "/dev/nvme0n1" successfully created
Physical volume "/dev/nvme1n1" successfully created
Physical volume "/dev/nvme2n1" successfully created
Physical volume "/dev/nvme3n1" successfully created
FIO SSDs:

nid00350# pvcreate /dev/fioa /dev/fiob
Physical volume "/dev/fioa" successfully created
Physical volume "/dev/fiob" successfully created

7. Create an LVM volume group called dwcache that uses these physical devices.

Requirements for the LVM physical volumes specified are:

● Any number of physical devices may be specified.

● Each physical volume specified must be the exact same size.

○ To verify physical volume size, execute the command: pvs --units b and examine the PSize
column of the output.

TIP: If sizes differ between physical volumes, it is likely that either an over-provisioning step
was forgotten or there is mixed hardware on the node. Address this issue before proceeding.

nid00350# vgcreate dwcache phys_vol [phys_vol...]
NVMe SSDs:

nid00350# vgcreate dwcache /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
Volume group "dwcache" successfully created
FIO SSDs:

nid00350# vgcreate dwcache /dev/fioa /dev/fiob
Volume group "dwcache" successfully created

8. Start the dwmd service.

nid00350# systemctl start dwmd

9. Verify that DWS recognizes the node with storage.

NVMe SSDs:

nid00350# module load dws
nid00350# dwstat nodes
 node pool online drain gran capacity insts activs
nid00350 - online fill 8MiB 3.64TiB 0 0

Post-boot Configuration

S2564 69

FIO SSDs:

nid00350# module load dws
nid00350# dwstat nodes
 node pool online drain gran capacity insts activs
nid00350 - online fill 4MiB 2.92TiB 0 0

7.4 Configure and Create a Storage Pool

7.4.1 Storage Pool Configuration Guidelines
A storage pool groups nodes with storage together such that requests for space made against the pool are
fulfilled from the nodes associated with the pool with a common allocation granularity. Pools have either byte or
node allocation granularity (pool_AG). This release of DataWarp only supports byte allocation granularity. There
are tradeoffs in picking allocation granularities too small or too large.

Choosing a pool allocation granularity equal to the capacity of each node prevents sharing of nodes across
usages of DataWarp. However, application performance is more deterministic as bandwidth is dedicated and
unrelated usages of DataWarp are less likely to perturb each other. Further, requests for a small amount of
capacity will be placed on only one server node.

Picking a small pool allocation granularity allows for higher utilization of DataWarp resources and potentially
greatly increased performance, but at the cost of less deterministic and potentially worse performance. With a
small pool allocation granularity, each usage of DataWarp capacity is more likely to be spread out over more or all
DataWarp servers. If only one application is actively performing I/O to DataWarp, then it gets all of the bandwidth
provided by all of the servers. Multiple applications performing I/O concurrently to the same DataWarp servers will
share the available bandwidth. Finally, even requests for a small amount of capacity are more likely to be placed
on multiple server nodes.

Considerations When Determining Pool Allocation Granularity
Determining an optimal pool allocation granularity for a system is a function of several factors, including the
number of SSD nodes, the number of SSD cards per node, the size of the SSDs, as well as software
requirements, limitations, and bugs. Therefore, the best value is site specific and may change over time.

All pools must meet the following requirements:

● The byte-oriented allocation granularity for a pool must be at least 16MiB.

● Each node's volume group (dwcache, configured during SSD initialization) has a Physical Extent size
(PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is equal
to the number of Physical Volumes specified during volume group creation. The DataWarp service (DWS)
places the following restriction on nodes associated with a pool:

○ A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

Choosing a pool allocation granularity that meets the above requirements will result in a functioning, but perhaps
non-optimal, DataWarp environment. Ideally, a pool's allocation granularity is defined as a factor of the aggregate
space of each node within the pool; otherwise, some space is not usable and, therefore, is wasted. For example,

Post-boot Configuration

S2564 70

if a node contributes 6.4TiB of capacity, but the pool allocation granularity is 1TiB, then 0.4TiB of capacity is
wasted per node.

How DataWarp Interacts with Pool Allocation Granularity
A request for space through DataWarp is called an instance. When DataWarp processes an instance create
request, the request is fulfilled by carving out some capacity from one or more nodes. Each piece of the instance
is called a fragment. If even one fragment of an instance is sized differently from other fragments in the instance,
the result can be greatly reduced performance. By default, DataWarp creates instances comprised of equal-size
fragments only.

TIP: This default behavior was new in CLE 6.0.UP05 when dwsd.yaml configuration settings
equalize_fragments and equalize_fragments_guarantee were both set to yes. In previous
releases the equalize_fragments default configuration setting in dwsd.yaml was no.

The equalize_fragments_guarantee setting prevents the scheduler from ever creating an instance that is
not comprised of fragments of equal size. By default, it is set to yes, but is only applicable when
equalize_fragments is also set to yes. Because equalize_fragments_guarantee has implications for
how free space is calculated, the amount of free capacity reported in pool information may be adjusted downward
so as to reflect the maximum size of a request. For more information, see Why Does the Free Capacity Displayed
by dwstat pools not Match the Quantity Capacity? on page 40.

When equalize_fragments is not enabled, certain usages of DataWarp have limitations where having too
small of a pool allocation granularity can lead to situations where not all capacity requested is accessible by that
usage. For scratch usages of DataWarp, any instance consisting of more than 4096 allocation granularities is not
guaranteed to have all of its space usable by the scratch usage. The scratch usage is still functional, but not as
much data may be able to be written to it as expected. Requesting more space than is strictly necessary helps to
alleviate the problem.

Recommendations
Taken together, Cray recommends the following:

● For performance reasons, create pools that only contain nodes with homogeneous SSD hardware.

● Keep the equalize_fragments and equalize_fragments_guarantee options set to yes (default).

● Use the smallest possible pool allocation granularity, which is typically 16MiB or 24MiB, depending on system
hardware

Example: Create a storage pool with allocation granularity = 16MiB.
As a DataWarp administrator logged on to a CLE service node:

crayadm@login> module load dws
crayadm@login> dwcli create pool --name wlm_pool --granularity 16MiB
create request for pools entity with name = wlm_pool accepted, "dwstat pools" for
status
Verify the pool was created.

crayadm@login> dwstat pools
 pool unit quantity free gran
wlm_pool bytes 0 0 16MiB

Post-boot Configuration

S2564 71

7.4.2 Create a Storage Pool

Prerequisites
This procedure assumes that the pool being created will only include nodes with homogeneous SSD hardware.
Although not recommended due to performance issues, it is possible to create a storage pool comprised of non-
homogeneous SSD nodes; see Create a Storage Pool Comprised of Non-homogeneous SSD Hardware on page
81.

About this task
A storage pool groups nodes with storage together such that requests for space made against the pool are
fulfilled from the nodes associated with the pool with a common allocation granularity. Pools have either byte or
node allocation granularity (pool_AG). This release of DataWarp only supports byte allocation granularity. There
are tradeoffs in picking allocation granularities too small or too large.

All pools must meet the following requirements:

● The byte-oriented allocation granularity for a pool must be at least 16MiB.

● Each node's volume group (dwcache, configured during SSD initialization) has a Physical Extent size
(PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is equal
to the number of Physical Volumes specified during volume group creation. The DataWarp service (DWS)
places the following restriction on nodes associated with a pool:

○ A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

For further information, see Storage Pool Configuration Guidelines on page 70.

Procedure

1. Identify the list of nodes with homogeneous SSDs to be added to the pool being created.

Use these commands to determine the type of SSD hardware available on the DataWarp nodes:

● dwstat nodes - displays a table of current DataWarp nodes

crayadm@login> module load dws
crayadm@login> dwstat nodes

 node pool online drain gran capacity insts activs
nid00001 - online fill 16MiB 5.82TiB 0 0
nid00002 - online fill 16MiB 5.82TiB 0 0
nid00425 - online fill 8MiB 5.82TiB 0 0
nid00428 - online fill 8MiB 2.91TiB 0 0

● xtssdconfig - displays SSD configuration information

 node_id model_number ssd_id ... size serial_num

 c0-0c0s0n1 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86242006Y4P0DGN-1
 c0-0c0s0n1 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86242006Y4P0DGN-2
 c0-0c0s0n1 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF8632200354P0DGN-1

Post-boot Configuration

S2564 72

 c0-0c0s0n1 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF8632200354P0DGN-2
 c0-0c0s0n2 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86242003N4P0DGN-1
 c0-0c0s0n2 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86242003N4P0DGN-2
 c0-0c0s0n2 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF8624200724P0DGN-1
 c0-0c0s0n2 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF8624200724P0DGN-2
c0-1c0s10n1 SAMSUNG MZPKK3T2HAJL-00003 0x144da821 ... 3200GB S2SDNAAGA00008
c0-1c0s10n1 SAMSUNG MZPKK3T2HAJL-00003 0x144da821 ... 3200GB S2SDNAAGA00019
c0-1c0s11n0 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86322000R4P0DGN-1
c0-1c0s11n0 INTEL SSDPECME040T4Y 0x80860953 ... 4000GB CVF86322000R4P0DGN-2

● rtr -Im - displays nid/cname mapping

crayadm@smw> rtr -Im p0
NID NIC-Addr Node Aries Blue Black Green
---- -------- ---------- ------------ ---- ----- -----
0 0 c0-0c0s0n0 c0-0c0s0a0 0 0 0
1 1 c0-0c0s0n1 c0-0c0s0a0 0 0 0
2 2 c0-0c0s0n2 c0-0c0s0a0 0 0 0
...
425 553 c0-1c0s10n1 c0-1c0s10a0 1 0 10
...
428 556 c0-1c0s11n0 c0-1c0s11a0 1 0 11
...

In this example, nodes 1, 2, and 428 have Intel SSDs, and node 425 has a Samsung SSD.

2. Select a node from the group of nodes chosen for the pool and extract its node allocation value from dwstat
nodes (gran column).

For example, if creating a pool that will include nid00001, nid00002, and nid00428, select one of the nodes,
say nid00428. Its node allocation is 8MiB.

3. Determine the pool's allocation granularity by picking the first multiple of the node granularity found in step 2
on page 73 that is greater than or equal to 16MiB.

In this example, the node allocation of nid00001 is 8MiB. The first multiple of the 8MiB that is greater than or
equal to 16MiB, is 16MiB. Therefore, the pool's allocation granularity will be defined as 16MiB.

4. Log on to a service node and create a storage pool with allocation granularity = 16MiB.

crayadm@login> module load dws
crayadm@login> dwcli create pool --name wlm_pool --granularity 16MiB
create request for pools entity with name = wlm_pool accepted, "dwstat pools"
for status

5. Verify the pool was created.

crayadm@login> dwstat pools
 pool unit quantity free gran
wlm_pool bytes 0 0 16MiB

Next: assign a node to the pool.

Post-boot Configuration

S2564 73

7.5 Assign Nodes to a Storage Pool

Prerequisites
● At least one storage pool exists

● At least one SSD is initialized for use with the DataWarp service (DWS)

● DataWarp administrator privileges

● A node can only be associated with a storage pool if the node's granularity is a factor of the pool's allocation
granularity, see Storage Pool Configuration Guidelines on page 70

About this task
Follow this procedure to associate SSD-endowed nodes with an existing storage pool.

Procedure

1. Log in to a booted CLE service node as a DWS administrator.

2. Load the DataWarp Service module.

crayadm@login> module load dws

3. Associate SSD-endowed nodes with a storage pool.

crayadm@login> dwcli update node --name hostname --pool pool_name
Note that the update action has an extended parsing capability that allows multiple inputs for --name. The
syntax allows for whitespace-delimited inputs, comma-separated inputs, pdsh-style range inputs, or any
combination of these. See the dwcli(8) man page for complete details.

For example, to associate nodes nid00001, nid00002, and nid00428 with a storage pool called
wlm_pool:

crayadm@login> dwcli update node --name nid0000[1-2] nid00428 --pool wlm_pool
update request for nodes entity with name = nid00001 accepted, "dwstat nodes" for status
update request for nodes entity with name = nid00002 accepted, "dwstat nodes" for status
update request for nodes entity with name = nid00428 accepted, "dwstat nodes" for status

The association may fail. If it does, ensure that the pool exists (dwstat pools) and that the nodes'
granularity (dwstat nodes -b) is a factor of the pool's granularity (dwstat pools -b).

4. Verify the nodes are associated with the pool.

crayadm@login> dwstat nodes
 pool units quantity free gran
wlm_pool bytes 25.48TiB 14.55TiB 16MiB

 node pool online drain gran capacity insts activs
nid00001 wlm_pool online fill 16MiB 5.82TiB 0 0
nid00002 wlm_pool online fill 16MiB 5.82TiB 0 0
nid00425 - online fill 8MiB 5.82TiB 0 0
nid00428 wlm_pool online fill 8MiB 2.91TiB 0 0

Post-boot Configuration

S2564 74

7.6 Verify the DataWarp Configuration

Prerequisites
● At least one SSD node is assigned to a storage pool

● DataWarp administrator privileges

About this task
There are a few ways to verify that the DataWarp configuration is as desired.

Procedure

1. Log in to a booted service node as crayadm, then load the DataWarp Service (DWS) module.

crayadm@login> module load dws

2. Request status information about DataWarp resources.

crayadm@login> dwstat pools nodes
 pool units quantity free gran
wlm_pool bytes 4.0TiB 3.38TiB 128GiB

 node pool online drain gran capacity insts activs
nid00065 wlm_pool online fill 16MiB 1TiB 1 0
nid00066 wlm_pool online fill 16MiB 1TiB 0 0
nid00069 wlm_pool online fill 16MiB 1TiB 0 0
nid00070 wlm_pool online fill 16MiB 1TiB 0 0
nid00004 - online fill 16MiB 3.64TiB 0 0
nid00005 - online fill 16MiB 3.64TiB 0 0

3. Check the following combinations for each row.

● If pool is - and capacity ≠ 0: This is a server node that has not yet been associated with a storage pool.
See Assign Nodes to a Storage Pool on page 73.

● If pool is - and capacity is 0: This is a non-server node (e.g., client/compute) and does not need to be
associated with a storage pool.

● If pool is something and capacity ≠ 0: This is a server node that belongs to the pool called
<something>.

● If pool is something and capacity is 0: This is a non-server node that belongs to a pool. Since the non-
server node contributes no space to the pool, this association is not necessary but harmless.

This completes the process to configure DataWarp with DWS. Refer to the site-specific workload manager (WLM)
documentation for further configuration steps to integrate the WLM with Cray DataWarp.

Post-boot Configuration

S2564 75

8 DataWarp Administrator Tasks

8.1 Check the Status of DataWarp Resources

Prerequisites
The dws module must be loaded:

> module load dws

The dwstat command
To check the status of various DataWarp resources, invoke the dwstat command, which has the following
format:

dwstat [-h] [unit_options] [RESOURCE [RESOURCE]...]

Where:
unit_options

Includes a number of options that determine the SI or IEC units with which output is
displayed. See the dwstat(1) man page for details.

RESOURCE
May be: activations, all, configurations, fragments, instances, most,
namespaces, nodes, pools, registrations, or sessions.

By default, dwstat displays the status of pools:

> dwstat
 pool units quantity free gran
wlm_pool bytes 0 0 1GiB
 scratch bytes 7.12TiB 2.88TiB 128GiB
In contrast, dwstat all reports on all resources for which it finds data:

> dwstat all
 pool units quantity free gran
wlm_pool bytes 14.38TiB 13.88TiB 128GiB

 sess state token creator owner created expiration nodes
 4 CA--- 1527 MOAB-TORQUE 1226 2017-05-19T21:16:12 never 0
 7 CA--- 1534 MOAB-TORQUE 1226 2017-05-19T23:53:17 never 0
 138 CA--- 1757 MOAB-TORQUE 827 2017-05-29T14:46:09 never 0
 139 CA--- 1759 MOAB-TORQUE 10633 2017-05-29T16:06:26 never 32

DataWarp Administrator Tasks

S2564 76

 inst state sess bytes nodes created expiration intact label public confs
 4 CA--- 4 128GiB 1 2017-05-19T21:16:12 never intact I4-0 private 1
 7 CA--- 7 128GiB 1 2017-05-19T23:53:17 never intact I7-0 private 1
 138 CA--- 138 128GiB 1 2017-05-29T14:46:09 never intact I138-0 private 1
 139 CA--- 139 128GiB 1 2017-05-29T16:06:26 never intact I139-0 private 1

 conf state inst type activs
 4 CA--- 4 scratch 0
 7 CA--- 7 scratch 0
 138 CA--- 138 scratch 0
 139 CA--- 139 scratch 0

 reg state sess conf wait
 4 CA--- 4 4 wait
 7 CA--- 7 7 wait
 137 CA--- 139 139 wait

 frag state nst capacity node
 10 CA-- 4 128GiB nid00350
 15 CA-- 7 128GiB nid00350
 180 CA-- 138 128GiB nid00350
 181 CA-- 139 128GiB nid00350

 ns state conf frag span
 4 CA-- 4 10 1
 7 CA-- 7 15 1
 138 CA-- 138 180 1
 139 CA-- 139 181 1

 node pool online drain gran capacity insts activs
nid00322 wlm_pool online fill 8MiB 5.82TiB 0 0
nid00349 wlm_pool online fill 4MiB 1.46TiB 0 0
nid00350 wlm_pool online fill 16MiB 7.28TiB 4 0

did not find any cache configurations, swap configurations, activations

For further information, see the dwstat(1) man page.

8.2 Check SSD Health and Remaining Life
The xtcheckssd command queries the health and remaining life expectancy of one or more SSDs (both
FusionIO and NVMe). xtcheckssd is located in /opt/cray/ssd/bin, or it can be accessed by loading the
ssd module. It must be run as root on an SSD service node or from a login node. xtcheckssd runs as a
daemon or as a one-time command. It reports output to:

● the console (when not run as a daemon)

● the SMW, via the /dev/console log

● the CLE system log (syslog) via the RCA event ec_rca_diag

Examples Using xtcheckssd
1. Report on all SSDs for a node:

nid00065# /opt/cray/ssd/bin/xtcheckssd
PhysLoc:IBB:Slot2,Name:INTEL SSDPECME040T4Y,SN:CVF86242003T4P0DGN-1,Size:
2000GB,Remaining life:100%,Temperature:31(c)
PhysLoc:IBB:Slot2,Name:INTEL SSDPECME040T4Y,SN:CVF86242003T4P0DGN-2,Size:

DataWarp Administrator Tasks

S2564 77

2000GB,Remaining life:100%,Temperature:31(c)
PhysLoc:IBB:Slot3,Name:INTEL SSDPECME040T4Y,SN:CVF86242005T4P0DGN-1,Size:
2000GB,Remaining life:100%,Temperature:29(c)
PhysLoc:IBB:Slot3,Name:INTEL SSDPECME040T4Y,SN:CVF86242005T4P0DGN-2,Size:
2000GB,Remaining life:100%,Temperature:29(c)
xtcheckssd-terminate. exit code: 0 Normal program termination

2. Run xtcheckssd as a daemon generating a report every 24 hours.

nid00433# /opt/cray/ssd/bin/xtcheckssd -d
3. Run xtcheckssd for multiple nodes, originating from a login node.

login# module load pdsh
login# pdsh -w nid00073,nid00421 /opt/cray/ssd/bin/xtcheckssd
nid00073: PhysLoc:IBB:Slot2,Name:INTEL
SSDPECME040T4,SN:CVF85156006N4P0DGN-1,Size:2000GB,Remaining life:
100%,Temperature:25(c)
nid00073: PhysLoc:IBB:Slot2,Name:INTEL
SSDPECME040T4,SN:CVF85156006N4P0DGN-2,Size:2000GB,Remaining life:
100%,Temperature:26(c)
nid00073: PhysLoc:IBB:Slot3,Name:INTEL
SSDPECME040T4,SN:CVF85153001J4P0DGN-1,Size:2000GB,Remaining life:
100%,Temperature:24(c)
nid00073: PhysLoc:IBB:Slot3,Name:INTEL
SSDPECME040T4,SN:CVF85153001J4P0DGN-2,Size:2000GB,Remaining life:
100%,Temperature:25(c)
nid00421: PhysLoc:IODC0:J9500,Name:ioMemory PX600-2600,SN:1410G0497,Size:
2600GB,Remaining life:96%,Temperature:29(c)
nid00421: PhysLoc:IODC0:J9500,Name:ioMemory PX600-2600,SN:1410G0369,Size:
2600GB,Remaining life:100%,Temperature:31(c)
nid00421: xtcheckssd-terminate. exit code: 0 Normal program termination

See the pdsh(1) and xtcheckssd(8) man pages for further details.

8.3 Remove Nodes From a Storage Pool

Prerequisites
● DataWarp administrator privileges

About this task
Nodes that no longer exists or are no longer DataWarp server nodes should be removed from the pool to which
they are assigned.

Procedure

1. Log in to a CLE service node as a DataWarp administrator and load the dws module.

crayadm@login> module load dws

2. Verify node names.

DataWarp Administrator Tasks

S2564 78

crayadm@login> dwstat pools nodes
 pool units quantity free gran
wlm_pool bytes 6.0TiB 6.0TiB 128GiB

 node pool online drain gran capacity insts activs
nid00065 wlm_pool online fill 16MiB 1TiB 0 0
nid00066 wlm_pool online fill 16MiB 1TiB 0 0
nid00067 wlm_pool online fill 16MiB 1TiB 0 0
nid00068 wlm_pool online fill 16MiB 1TiB 0 0
nid00069 wlm_pool online fill 16MiB 1TiB 0 0
nid00070 wlm_pool online fill 16MiB 1TiB 0 0
nid00004 - online fill 16MiB 3.64TiB 0 0
nid00005 - online fill 16MiB 3.64TiB 0 0

3. Remove the desired nodes from its pool.

crayadm@login> dwcli update node --name hostname --rm-pool
Note that the update action has an extended parsing capability that allows multiple inputs for --name. The
syntax allows for whitespace-delimited inputs, comma-separated inputs, pdsh-style range inputs, or any
combination of these. See the dwcli(8) man page for complete details.

For example, remove nodes nid00068, nid00069, and nid00070.

crayadm@login> dwcli update node --name nid000[68-70] --rm-pool
update request for nodes entity with name = nid00068 accepted, "dwstat nodes"
for status
update request for nodes entity with name = nid00069 accepted, "dwstat nodes"
for status
update request for nodes entity with name = nid00070 accepted, "dwstat nodes"
for status
The nodes are no longer assigned to the pool: wlm_pool, decreasing the pool's storage capacity.

4. Verify the change.

crayadm@login> dwstat pools nodes
 pool units quantity free gran
wlm_pool bytes 3.0TiB 3.0TiB 128GiB

 node pool online drain gran capacity insts activs
nid00065 wlm_pool online fill 16MiB 1TiB 0 0
nid00066 wlm_pool online fill 16MiB 1TiB 0 0
nid00067 wlm_pool online fill 16MiB 1TiB 0 0
nid00004 - online fill 16MiB 3.64TiB 0 0
nid00005 - online fill 16MiB 3.64TiB 0 0

8.4 Change a Node's Pool

Prerequisites
● DataWarp administrator privileges

DataWarp Administrator Tasks

S2564 79

About this task
Changing a node's pool involves reassigning it to a different pool; there is no need to remove it from its original
pool.

Procedure

1. Log in to a CLE service node as a DataWarp administrator and load the dws module.

crayadm@login> module load dws

2. Verify pool and node names.

crayadm@login> dwstat pools nodes
 pool units quantity free gran
pvt_pool bytes 3.64TiB 3.64TiB 16GiB
wlm_pool bytes 4.0TiB 4.0TiB 128GiB

 node pool online drain gran capacity insts activs
nid00004 pvt_pool online fill 16MiB 3.64TiB 0 0
nid00065 wlm_pool online fill 16MiB 1TiB 0 0
nid00066 wlm_pool online fill 16MiB 1TiB 0 0
nid00069 wlm_pool online fill 16MiB 1TiB 0 0
nid00070 wlm_pool online fill 16MiB 1TiB 0 0
nid00005 - online fill 16MiB 3.64TiB 0 0

3. Reassign the desired node(s) to the desired pool.

crayadm@login> dwcli update node --name hostname --pool pool_name
Note that the update action has an extended parsing capability that allows multiple inputs for --name. The
syntax allows for whitespace-delimited inputs, comma-separated inputs, pdsh-style range inputs, or any
combination of these. See the dwcli(8) man page for complete details.

To reassign node nid00069 and nid00070 to pool pvt_pool:

crayadm@login> dwcli update node --name nid000[69-70] --pool pvt_pool
update request for nodes entity with name = nid00069 accepted, "dwstat nodes"
for status
update request for nodes entity with name = nid00070 accepted, "dwstat nodes"
for status
Node nid00069 and nid00070 are assigned to the pool: pvt_pool, resulting in increased storage capacity
for pvt_pool and decreased capacity for wlm_pool.

4. Verify the change.

crayadm@login> dwstat pools nodes
 pool units quantity free gran
pvt_pool bytes 5.64TiB 5.64TiB 16GiB
wlm_pool bytes 2.0TiB 2.0TiB 128GiB

 node pool online drain gran capacity insts activs
nid00004 pvt_pool online fill 16MiB 3.64TiB 0 0
nid00069 pvt_pool online fill 16MiB 1TiB 0 0
nid00070 pvt_pool online fill 16MiB 1TiB 0 0
nid00065 wlm_pool online fill 16MiB 1TiB 0 0

DataWarp Administrator Tasks

S2564 80

nid00066 wlm_pool online fill 16MiB 1TiB 0 0
nid00005 - online fill 16MiB 3.64TiB 0 0

8.5 Create a Storage Pool Comprised of Non-homogeneous SSD
Hardware

Prerequisites
Task prerequisites.

About this task
A storage pool groups nodes with storage together such that requests for space made against the pool are
fulfilled from the nodes associated with the pool with a common allocation granularity. Pools have either byte or
node allocation granularity (pool_AG). This release of DataWarp only supports byte allocation granularity. There
are tradeoffs in picking allocation granularities too small or too large.

All pools must meet the following requirements:

● The byte-oriented allocation granularity for a pool must be at least 16MiB.

● Each node's volume group (dwcache, configured during SSD initialization) has a Physical Extent size
(PE_size) and Physical Volume count (PV_count). The default PE_size is 4MiB, and PV_count is equal
to the number of Physical Volumes specified during volume group creation. The DataWarp service (DWS)
places the following restriction on nodes associated with a pool:

○ A node can only be associated with a storage pool if the node's granularity (PE_size * PV_count) is a
factor of the pool's allocation granularity (pool_AG). The dwstat nodes command lists the node's
granularity in the gran column.

For further information, see Storage Pool Configuration Guidelines on page 70.

For performance reasons, Cray recommends that storage pools only contain nodes with homogeneous SSD
hardware. However, in certain facilities this may not be feasible. This procedure describes how to create a storage
pool such that its allocation granularity is compatible with different SSD hardware types. Note that it is
unnecessary to identify the different types of SSD hardware .

Procedure

1. View the DataWarp nodes and write down unique values of the gran column for nodes that will be added to
the same pool.

crayadm@login> module load dws
crayadm@login> dwstat nodes
 node pool online drain gran capacity insts activs
nid00001 - online fill 16MiB 5.82TiB 0 0
nid00422 - online fill 8MiB 2.91TiB 0 0
nid00446 - online fill 12MiB 2.18TiB 0 0
For example, assume the pool to be created will contain all three nodes. The unique node granularities are
16MiB, 8MiB, and 12MiB.

DataWarp Administrator Tasks

S2564 81

2. Determine the least common multiple (LCM) of the chosen node allocation granularities.

Use http://www.wolframalpha.com/ to assist with calculating the LCM for the selected node allocation
granularities. In the search box, enter

lcm gran1 gran2 ...

and press enter.

Using the example above, the LCM of granularities 8, 12, and 16 is 48.

3. Determine the minimum pool allocation granularity based on the LCM as follows:

● If the calculated LCM is greater than or equal to 16MiB, then the LCM value is the minimum pool
allocation granularity. Proceed to step 4 on page 82.

● If the calculated LCM is less than 16MiB, the value must be adjusted upward to determine the minimum
pool allocation granularity. Choose the first multiple of the LCM that is greater than or equal to 16MiB.

For example, if the calculated LCM is 12MiB, the first multiple of 12 is 24, 24 is greater than 16MiB,
therefore 24 is the minimum pool allocation granularity.

4. Select the pool allocation granularity.

Cray recommends using the minimum pool allocation granularity (determined in step 3 on page 82).

● For this example, the recommended pool allocation granularity is 48MiB.

Other valid pool allocation granularities are the minimum pool allocation granularity plus any multiple of the
calculated LCM.

● Example 1: If the calculated LCM is 48MiB and the minimum pool allocation granularity is 48MiB, valid
values are 48MiB, 96MiB, 144MiB, etc.

● Example 2: If the calculated LCM is 12MiB and the minimum pool allocation granularity is 24MiB, valid
values 24Mib, 36Mib, 48Mib, etc.

5. Create a storage pool with allocation granularity = 48MiB.

crayadm@login> dwcli create pool --name wlm_pool --granularity 48MiB
create request for pools entity with name = wlm_pool accepted, "dwstat pools"
for status

6. Verify the pool was created.

crayadm@login> dwstat pools
 pool unit quantity free gran
wlm_pool bytes 0 0 48MiB

Next: assign a node to the pool.

8.6 Replace a Blown Fuse
After a workload manager sends DataWarp requests to the DataWarp service (DWS), the DWS begins preparing
the SSDs and compute nodes for the corresponding batch job. When things are working well, this process is

DataWarp Administrator Tasks

S2564 82

http://www.wolframalpha.com/

quick and does not require admin intervention. The dwstat command reports CA--- or CA-- in the state
column for all objects associated with the batch job.

If the DWS encounters difficulty creating or destroying an object, it retries a configurable number of times but
eventually stops trying. To convey that the retry threshold has been exceeded, the DWS borrows terminology from
another domain and reports that the object's fuse is blown. The dwstat command reports this as an F in the 3rd
hyphen position of the state column. For example, C-F-- as in the following dwstat activations output:

crayadm@sdb> module load dws
crayadm@sdb> dwstat activations
activ state sess conf nodes
 2 C-F-- 5 11 1
When dwstat reports that an object's fuse is blown, it likely indicates a serious error that needs investigating.
Clues as to what broke and why may be found in the Lightweight Log Manager (LLM) log file for dwmd, found at
smw:/var/opt/cray/log/p#-current/dws/dwmd-date. In this log file, each session/instance/
configuration/registration/activation is abbreviated as sid/iid/cid/rid/aid; therefore, information for the
resource with the blown fuse is searchable by ID. For example, if a fuse is blown on configuration 16, grep the
log for cid:16:

crayadm@smw> cd /var/opt/cray/log/p3-current/dws
crayadm@smw> grep -A 4 cid:16 dwmd-20160520
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: (cid:16,sid:32,stoken:987333) dws_realm_member
ERROR:Invalid host found nid12345 in [u'nid12345']
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: (cid:16,sid:32,stoken:987333) dws_realm_member
ERROR:realm_member_create2 2 failed: gen_host_list_file failed for dwfs2_id=2 realm_id=2
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: Traceback (most recent call last):
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: File "/opt/cray/dws/1.3-1.0000.67025.34.35.tcp/
lib/dws_realm_member.py", line 223, in realm_member_create2
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: % (dwfs_id, realm_id))
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: RuntimeError: gen_host_list_file failed for
dwfs2_id=2 realm_id=2

Alternatively, if the batch job experiencing the failure is known, grep the same dwmd log file for the batch job ID.
For example:

crayadm@smw> cd /var/opt/cray/log/p3-current/dws
crayadm@smw> grep -A 4 stoken:987333 dwmd-20160520
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: (cid:16,sid:32,stoken:987333) dws_realm_member
ERROR:Invalid host found nid12345 in [u'nid12345']
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: (cid:16,sid:32,stoken:987333) dws_realm_member
ERROR:realm_member_create2 2 failed: gen_host_list_file failed for dwfs2_id=2 realm_id=2
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: Traceback (most recent call last):
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: File "/opt/cray/dws/1.3-1.0000.67025.34.35.tcp/
lib/dws_realm_member.py", line 223, in realm_member_create2
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: % (dwfs_id, realm_id))
2017-05-20 12:39:41 (11964): <76> [os-172-30-196-191]: RuntimeError: gen_host_list_file failed for
dwfs2_id=2 realm_id=2
...

When the issue is understood and resolved, use the dwcli command to replace the blown fuse associated with
the object, and thereby inform DWS to retry the operations associated with the failed object. For example,
continuing with the above failed activation:

crayadm@sdb> dwcli update activation --id 2 --replace-fuse
Use dwstat to find the status of the object again. Fuses are replaceable as many times as necessary.

For further information, see the dwstat(1) and dwcli(8) man pages.

DataWarp Administrator Tasks

S2564 83

8.7 Drain Storage Nodes

About this task
After an administrator assigns a node to a pool, any capacity on the node may be used when satisfying instance
requests. There are times when a site does not want to allow new instances to be placed on a node and also
does not want to disassociate the node from a pool. The drain attribute on a node controls this behavior. If a
node is in a drain state, the DataWarp service (DWS) will not place new instances on the node and will also
remove that node's free capacity contribution to a pool. The dwstat nodes pools command displays this
information.

Procedure

1. Check the node and pool information.

crayadm@login> module load dws
crayadm@login> dwstat nodes pools
 node pool online drain gran capacity insts activs
nid00022 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00023 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00024 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00025 wlm_pool online fill 8MiB 3.64TiB 0 0

 pool units quantity free gran
wlm_pool bytes 14.56TiB 14.56TiB 128GiB

2. Drain one or more storage nodes.

crayadm@login> dwcli update node --name hostname --drain
Note that the update action has an extended parsing capability that allows multiple inputs for --name. The
syntax allows for whitespace-delimited inputs, comma-separated inputs, pdsh-style range inputs, or any
combination of these. See the dwcli(8) man page for complete details.

For example, to drain nodes nid00024 and nid00025:

crayadm@login> dwcli update node --name nid00024,nid00025 --drain
update request for nodes entity with name = nid00024 accepted, "dwstat nodes"
for status
update request for nodes entity with name = nid00025 accepted, "dwstat nodes"
for status
crayadm@login> dwstat nodes pools
 node pool online drain gran capacity insts activs
nid00022 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00023 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00024 wlm_pool online drain 8MiB 3.64TiB 0 0
nid00025 wlm_pool online drain 8MiB 3.64TiB 0 0

 pool units quantity free gran
wlm_pool bytes 7.28TiB 7.28TiB 128GiB

3. (Optional) If shutting down a node after draining it, wait for existing instances to be removed from the node.
The dwstat nodes command displays the number of instances present in the inst column; 0 indicates no
instances are present. In a healthy system, instances are removed over time as batch jobs complete. If it
takes longer than expected, or to clean up the node more quickly, identify the fragments (pieces of instances)

DataWarp Administrator Tasks

S2564 84

on the node by consulting the node column output of the dwstat fragments command and then finding
the corresponding instance by looking at the inst column output:

crayadm@login> dwstat fragments
frag state inst capacity node
 102 CA-- 47 745.19GiB nid00024

4. (Optional) Remove that instance.

crayadm@login> dwcli rm instance --id 47
rm request for instance entity with id = 47 accepted, "dwstat instances" for
status
Persistent DataWarp instances, which have a lifetime that may span multiple batch jobs, must also be
removed, either through a WLM-specific command or with dwcli.

5. When the node is fit for being used by the DWS again, unset the drain, thereby allowing the DWS to place
new instances on the node.

For example, unset the drain for nid00024 only.

crayadm@login> dwcli update node --name nid00024 --fill
update request for nodes entity with name = nid00024 accepted, "dwstat nodes"
for status
crayadm@login> dwstat nodes pools
 node pool online drain gran capacity insts activs
nid00022 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00023 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00024 wlm_pool online fill 8MiB 3.64TiB 0 0
nid00025 wlm_pool online drain 8MiB 3.64TiB 0 0

 pool units quantity free gran
wlm_pool bytes 10.92TiB 10.92TiB 128GiB

8.8 Do Not Quiesce a DataWarp Node
WARNING: DVS, which provides software infrastructure for DataWarp storage, includes a quiesce
capability that enables administrators to temporarily suspend traffic to a DVS-projected file system,
allowing them to safely repair a file system or take a DVS server node out of service. This capability must
never be used on DataWarp service nodes because of the risk for data corruption. Instead, use the Drain
Storage Nodes on page 83 procedure to prevent new instance activity on a node.

8.9 Examples Using dwcli
The dwcli command provides a command line interface to act upon DataWarp resources. This is primarily an
administration command, although a user can initiate some actions using it. With full WLM support, a user does
not have a need for this command. For complete details, see the dwcli(8) man page.

The dws module must be loaded to execute DataWarp commands.

DataWarp Administrator Tasks

S2564 85

> module load dws

EXAMPLE: Create a pool
Only an administrator can execute this command.

dwcli create pool --name wlm-pool --granularity 16MiB
create request for pools entity with name = wlm-pool accepted, "dwstat pools" for
status

EXAMPLE: Assign nodes to the pool
Only an administrator can execute this command.

login# dwcli update node --name nid000[30-32] --pool wlm-pool
update request for nodes entity with name = nid00030 accepted, "dwstat nodes" for
status
update request for nodes entity with name = nid00031 accepted, "dwstat nodes" for
status
update request for nodes entity with name = nid00032 accepted, "dwstat nodes" for
status

EXAMPLE: Create a scratch session, instance, configuration, and activation
Only an administrator can create a session or instance.

login# dwcli create session --expiration 1462815522 --creator crayadm --token \
ok-scratch --owner 12345 --hosts $(dwcli ls nodes)
125
login# dwcli create instance --expiration 1462815522 --public --session 125 \
--pool wlm_pool --capacity 1099511627776 --label my-scratch
324
login# dwcli create configuration --type scratch --access-mode stripe \
--root-permissions 0755 --instance 324 --group 513
112
login# dwcli create activation --mount /mnt/dw/my_mount --caching \
--configuration 112 --session 125
231

EXAMPLE: Create a swap session, instance, configuration, and activation
Only an administrator can create a session or instance.

login# dwcli create session --expiration 1462815522 --creator crayadm --token \
ok-swap --owner 12345 --hosts nid00030
126
login# dwcli create instance --expiration 1462815522 --public --session 126 \
--pool wlm_pool --capacity 1099511627776 --label my-swap
325
login# dwcli create configuration --type swap --swap-size 4GiB --instance 325 \
--group 513
113
login# dwcli create activation --configuration 113 --session 126
232

EXAMPLE: Create a cache session, instance, configuration, and activation
Only a DataWarp administrator can create a session or instance.

DataWarp Administrator Tasks

S2564 86

login# dwcli create session --expiration 1462815522 --creator crayadm --token \
ok-cache --owner 12345 --hosts nid00030
127
login# dwcli create instance --expiration 1462815522 --public --session 127 \
--pool wlm_pool --capacity 1099511627776 --label my-cache
326
login# dwcli create configuration --type cache --access-mode stripe \
--backing-path /lus/scratch --instance 326
114
login# dwcli create activation --mount /mnt/dw/my_mount2 --configuration 114 \
--session 127
323

EXAMPLE: View results from above create commands
login# dwstat most
$dwstat most
 pool units quantity f ree gran
wlm_pool bytes 8.59TiB 2.15TiB 200GiB

sess state token creator owner created expiration nodes
 125 CA--- ok-scratch crayadm 12345 2017-05-18T11:48:45 12:38:42 1
 126 CA--- ok-swap crayadm 12345 2017-05-18T11:48:45 12:38:43 1
 127 CA--- ok-cache crayadm 12345 2017-05-18T11:48:46 12:38:43 1

inst state sess bytes nodes created expiration intact label public confs
 324 CA--- 125 200GiB 1 11:48:46 2017-05-18T12:38:43 intact my-scratch public 1
 325 CA--- 126 200GiB 1 11:48:46 2017-05-18T12:38:43 intact my-swap public 1
 326 CA--- 127 200GiB 1 11:48:48 2017-05-18T12:38:44 intact my-cache public 1

conf state inst type activs
 112 CA--- 324 scratch 1
 113 CA--- 325 swap 1
 114 CA--- 326 cache 1

reg state sess conf wait
110 CA--- 125 113 wait
111 CA--- 126 114 wait
112 CA--- 127 115 wait

activ state sess conf nodes cache mount
 321 CA--- 125 112 1 yes /mnt/dw/my_mount
 322 CA--- 126 113 1 no -
 333 CA--- 127 114 1 no /mnt/dw/my_mount2

EXAMPLE: Set multiple registrations to --haste
Directs DWS to not wait for associated configurations to finish asynchronous activities such as waiting for all
staged out data to finish staging out to the PFS.

login# dwcli update registration --id 1,4-6 --haste
update request for registrations entity with id = 1 accepted, "dwstat
registrations" for status
update request for registrations entity with id = 4 accepted, "dwstat
registrations" for status
update request for registrations entity with id = 5 accepted, "dwstat
registrations" for status
update request for registrations entity with id = 6 accepted, "dwstat
registrations" for status

DataWarp Administrator Tasks

S2564 87

EXAMPLE: Remove a pool
Only an administrator can execute this command.

login# dwstat pools
 pool units quantity free gran
canary bytes 3.98GiB 3.97GiB 16MiB
dwcli rm pool --name canary
dwstat pools
no pools

EXAMPLE: Remove multiple sessions
Only an administrator or the session owner can execute this command.

login# dwstat sessions
sess state token creator owner created expiration nodes
 1 D---- ok test 12345 2017-05-18T16:31:24 expired 1
 2 D---- ok test 12345 2017-05-18T16:31:24 expired 1
 3 D---- ok test 12345 2017-05-18T16:31:24 expired 1
$ dwcli rm session --id 1-3
rm request for sessions entity with id = 1 accepted, "dwstat sessions" for status
rm request for sessions entity with id = 2 accepted, "dwstat sessions" for status
rm request for sessions entity with id = 3 accepted, "dwstat sessions" for status

EXAMPLE: Fuse replacement
Only an administrator or the session owner can execute this command.

login# dwstat instances
inst state sess bytes nodes created expiration intact label public confs
 1 D-F-M 1 16MiB 1 2017-05-18T17:47:57 expired false canary-instance public 1
login# dwcli update instance --replace-fuse --id 1
update request for instances entity with id = 1 accepted, "dwstat instances" for status
login# dwstat instances
inst state sess bytes nodes created expiration intact label public confs
 1 D---M 1 16MiB 1 2017-05-18T17:47:57 expired false canary-instance public 1

EXAMPLE: Stage in a directory, query immediately, then stage list
user@login> dwcli stage in --session $session --configuration $configuration --dir=/tld/. \
--backing-path=/tmp/demo/
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/. - 1 3 1 - - - - -

user@login> dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 4 - - - - - -
/tld/ - 1 4 - - - - - -

user@login> dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

EXAMPLE: Stage a file in afterwards, stage list, then query
Note the difference in the stage query output.

user@login> dwcli stage in --session $session --configuration $configuration --file /dwfsfile \
--backing-path /tmp/demo/filea
path backing-path nss ->c ->q ->f <-c <-q <-f <-m

DataWarp Administrator Tasks

S2564 88

/dwfsfile /tmp/demo/filea 1 1 - - - - - -

user@login> dwcli stage list --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/dwfsfile /tmp/demo/filea 1 1 - - - - - -
/tld/filea /tmp/demo/filea 1 1 - - - - - -
/tld/fileb /tmp/demo/fileb 1 1 - - - - - -
/tld/subdir/subdirfile /tmp/demo/subdir/subdirfile 1 1 - - - - - -
/tld/subdir/subfile /tmp/demo/subdir/subfile 1 1 - - - - - -

user@login> dwcli stage query --session $session --configuration $configuration
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 5 - - - - - -
/tld/ - 1 4 - - - - - -
/dwfsfile /tmp/demo/filea 1 1 - - - - - -

EXAMPLE: Terminate stage operations
To terminate a directory stage:

user@login> dwcli stage terminate -c 4 -s 4 -d /testdir/.
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/testdir/. - 1 - - - - - - -

user@login> dwcli stage terminate -c 4 -s 4 -d /.
path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/. - 1 - - - - - - -
And similarly to terminate a file stage:

user@login> dwcli stage terminate -c 5 -s 5 -f /testdir/file
request accepted
user@login> dwcli stage terminate -c 5 -s 5 -f /testdir/file
Unexpected error codes -22 found in dwmd reply: {u'-22': [4]}
Where the "unexpected error" message indicates the file no longer exists.

EXAMPLE: Back up and restore the DataWarp configuration
Only a DataWarp administrator can execute these dwcli commands. For this example, the following
configuration is assumed:

login# dwstat nodes pools
 node pool online drain gran capacity insts activs
datawarp12-s5 backup online fill 8MiB 3.99GiB 0 0

 pool units quantity free gran
backup bytes 3.98GiB 3.98GiB 16MiB
 demo bytes 0 0 16MiB
1. Backup the configuration.

login# dwcli config backup > backup.json
2. Remove the demo pool.

login# dwcli rm pool --name demo
3. Restore the configuration as captured by the backup.

DataWarp Administrator Tasks

S2564 89

login# dwcli config restore < backup.json
note: recreating pool(s) 'demo'
note: creating pool demo with granularity=16MiB and units=bytes
pool add progress [===========] 1/1 100% done
pool chk progress [===========] 1/1 100% done
node chk progress [===========] 1/1 100% done

4. Verify the configuration.

login# dwstat nodes pools
 node pool online drain gran capacity insts activs
datawarp12-s5 backup online fill 8MiB 3.99GiB 0 0

 pool units quantity free gran
backup bytes 3.98GiB 3.98GiB 16MiB
 demo bytes 0 0 16MiB

8.10 Manage Access to DataWarp Nodes
Access to DataWarp SSD nodes is managed through the various WLMs. Each workload manager (WLM) has its
own commands for managing DataWarp, and it is beyond the scope of this administration guide to document all
cases. Therefore, WLM examples are provided with the caveat that they may be out of sync with changes made
by the WLM vendors, although it is Cray's intent to keep them up-to-date. For detailed information, refer to the
documentation for the site-specific WLM.

In Slurm, for example, access to DataWarp nodes is controlled by either the AllowUsers or DenyUsers option
within the burst buffer configuration file slurm.conf. These options are mutually exclusive. By default, all users
have access to the DataWarp nodes.

The format of either option is a colon-delimited list of usernames or UIDs. For example:

DenyUsers=username1:username2...

See http://slurm.schedmd.com/ for complete details.

8.11 Flash NVMe SSD Firmware

Prerequisites
● A Cray XC series system with one or more SSD cards installed

● Ability to log in as root
● Access to an image flash file appropriate for the specific type of SSD (location provided by Cray)

About this task
This procedure, typically only done at Cray's recommendation, ensures that the firmware of any SSD cards is up-
to-date with an image flash file. The xtiossdflash command compares the current flash version to the image
flash file and flashes the device (up or down) only if the two are different. For further information, see the
xtiossdflash(8) man page.

DataWarp Administrator Tasks

S2564 90

http://slurm.schedmd.com/

boot# module load ssd-flash
boot# man xtiossdflash

Procedure

1. Log on to the boot node as root, then load the pdsh and ssd-flash modules.

smw:# ssh boot
boot:# module load pdsh ssd-flash

2. Copy the firmware image to all target nodes to be flashed.

boot:# scp ssd_fw_image_file target:/location
Where:
ssd_fw_image_file

Specifies the SSD flash image

target
Specifies a single node with SSDs

location
Specifies the location on the node to place the image

For example:

boot:# scp /P3608_FW/FW1B0_BL133 c0-1c0s9n2:/tmp

3. Flash the firmware.

boot:# xtiossdflash -f -i /location/ssd_fw_image_file target

Where:
/location/ssd_fw_image_file

Specifies the path (on the target node) to the SSD flash image

target
Specifies a single node with SSDs, a comma-separated list of nodes with SSDs, or the
keyword all_service

For example:

boot:# xtiossdflash -f -i /tmp/FW1B0_BL133 c0-1c0s9n2
If the firmware updates successfully, the message Successfully flashed is displayed.

If the firmware does not update successfully, one of the following messages is displayed.

● No devices available - No /dev/nvmeX devices were found.

● The file /root/8DV101B0_8B1B0133_signed.bin does not exist. Skipping. - The
firmware image flash file could not be found.

● /dev/nvmeX already flashed to firmware version <version>. Skipping. - The device
is already flashed to the firmware selected.

● Failure to download firmware to /dev/nvmeX - Firmware could not be loaded to an SSD.

● Invalid firmware slot - The specified slot on the device is not valid.

DataWarp Administrator Tasks

S2564 91

● Invalid firmware image - Specified firmware is not valid for the SSD type.

If applicable, rectify the problem and try again.

4. Load the new firmware:

● For Intel SSDs:

Reboot the target node(s) to load the new firmware.

boot# xtbootsys --reboot target
For example:

boot# xtbootsys --reboot c0-1c0s9n2
● For Samsung SSDs:

1. Power cycle the blade on which the target node is located.

2. Reboot the node.

boot# xtbootsys --reboot target
For example:

boot# xtbootsys --reboot c0-1c0s10n1

5. Verify the flash version.

The firmware version displayed is for example purposes only and should not be expected.

boot# /opt/cray/ssd-flash/bin/xtiossdflash -v c0-1c0s9n2
c0-1c0s9n2: <nvme_flash>: /dev/nvme3: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme2: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme1: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme0: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0

8.12 Modify DWS Advanced Settings

Prerequisites
● Ability to log in to the SMW as root

About this task
This procedure describes how to modify DataWarp advanced settings using the system configurator. Cray
recommends that DataWarp administrators have a thorough understanding of these settings before modifying
them. DataWarp Configuration Files and Advanced Settings on page 45 provides an overview of the advanced
settings and the configuration files in which they are defined. The configuration files include a description of each
setting, and various topics within the XC™ Series DataWarp™ Installation and Administration Guide provide
additional information for certain advanced settings.

CAUTION:

Advanced DataWarp settings must be modified with extreme care. The default values as released are
acceptable for most installations. Sites that modify advanced settings are at risk of degrading DataWarp

DataWarp Administrator Tasks

S2564 92

performance, decreasing SSD lifetime, and possibly other unknown outcomes. It is the administrator's
responsibility to understand the purpose of any advanced settings changed, the formatting required, and
the impact these changes may have.

Options incorrectly spelled or formatted are added but ignored, and the current value is not modified.

Procedure

1. Invoke the configurator to access the advanced DataWarp settings.

The configurator displays the basic settings, as defined during the initial installation, as well as some of the
advanced DataWarp settings. All advanced DataWarp settings are modifiable whether or not they are
displayed by the configurator. Any advanced settings that have been modified through the configurator are
displayed, and some settings that are currently set to their default values are also displayed.

smw# cfgset update -m interactive -l advanced -s cray_dws p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_dws [status: enabled] [validation: valid]

--
 Selected # Settings Value/Status (level=advanced)
--
 service
 1) managed_nodes_groups ['datawarp_nodes']
 2) api_gateway_nodes_groups ['login_nodes_x86_64']
 3) external_api_gateway_hostnames (none)
 4) dwrest_cacheroot_whitelist /lus/scratch
 5) dwrest_cachemount_whitelist (none)
 6) allow_dws_cli_from_computes False
 7) lvm_issue_discards 0

 dwmd
 8) dwmd_conf iscsi_initiator_cred_path:
 /etc/opt/cray/dws/iscsi_target_secret,
 iscsi_target_cred_path:
 /etc/opt/cray/dws/iscsi_initiator_secret,
 capmc_os_cacert:
 /etc/pki/trust/anchors/certificate_authority.pem

 dwsd
 9) dwsd_conf log_mask: 0x7, instance_optimization_default:
 bandwidth, scratch_limit_action: 0x3,
 equalize_fragments: yes

 dwrest
 10) dwrest_conf port: 2015

 dwrestgun
 11) dwrestgun_conf max_requests=1024

--

2. Proceed based on the setting to be modified:

● To modify a displayed setting, proceed to step 3 on page 93.

● To modify a non-displayed setting, proceed to step 4 on page 94.

● To reset a displayed setting to its default value, proceed to step 5 on page 95.

3. Modify a displayed setting:

This example changes the value of instance_optimization_default within the dwsd settings.

a. Select dwsd.

TIP: The configurator uses index numbering to identify configuration items. This numbering may
vary; the value used in the examples may not be correct for all systems. The user must search

DataWarp Administrator Tasks

S2564 93

the listing displayed on the screen to determine the correct index number for the service/setting
being configured.

Cray dws Menu [default: save & exit - Q] $ 9
Cray dws Menu [default: configure - C] $ C

************************* cray_dws.settings.dwsd.data.dwsd_conf **************************

 dwsd_conf -- dwsd Config
 Internal dwsd settings. Change with extreme caution. See
 /etc/opt/cray/dws/dwsd.yaml for variables and syntax.

 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3
 4) equalize_fragments: yes
...

b. Choose to change the entry for instance_optimization_default, enter the new value, and then set
the entries.

Use the format #* to indicate which entry to change, where # is the index number for
instance_optimization_default.

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ 2*
Modify dwsd_conf:instance_optimization_default: bandwidth (Ctrl-d to exit) $ wear
...
 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: wear
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3
 4) equalize_fragments: yes
...
cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ <cr>

The configurator displays all cray_dws basic and visible advanced settings (as in step 1), including the
new value for instance_optimization_default.

c. Continue to modify advanced settings if desired; otherwise, proceed to step 6 on page 96.

4. Modify a non-displayed setting:

This example modifies the activation_private_cache_default option that is defined in the dwsd
settings as:
activation_private_cache_default

Specifies the default for client-side caching on activation objects of private access type
configurations. With stripe access type, multiple processes on separate nodes can write to
the same page, which can lead to what appears to be data corruption. With private access
type, this is not possible since only one client node can ever access a particular file.
Consequently the default for client-side caching for private access type is separately
configurable.

activation_private_cache_default: yes

a. Select dwsd_conf.

Cray dws Menu [default: save & exit - Q] $ 9
Cray dws Menu [default: configure - C] $ C

************************* cray_dws.settings.dwsd.data.dwsd_conf **************************

 dwsd_conf -- dwsd Config
 Internal dwsd settings. Change with extreme caution. See
 /etc/opt/cray/dws/dwsd.yaml for variables and syntax.

 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3

DataWarp Administrator Tasks

S2564 94

 4) equalize_fragments: yes
...

b. Choose to add entries.

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ +

c. Enter the setting(s).

TIP: Use the format: option: value to set a value for dwsd_conf, dwmd_conf, and
dwsrest_conf options. Use the format: option=value for dwrestgun_conf options, with
text values delimited by quotation marks.

Add dwsd_conf (Ctrl-d to exit) $ activation_private_cache_default: no
Add dwsd_conf (Ctrl-d to exit) $ <Ctrl-d>

****************************** cray_dws.settings.dwsd.data.dwsd_conf *******************************

 dwsd_conf -- dwsd Config
 Internal dwsd settings. Change with extreme caution. See
 /etc/opt/cray/dws/dwsd.yaml for variables and syntax.

 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3
 4) equalize_fragments: yes
 5) activation_private_cache_default: no
...
cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 5 entries, +=add an entry, ?=help, @=less] $ <cr>

The configurator displays all cray_dws basic and visible advanced settings (as in step 1), including the
new value for activation_private_cache_default.

d. Continue to modify advanced settings if desired; otherwise, proceed to step 6 on page 96.

5. Reset a displayed setting to its default value:

This example resets activation_private_cache_default to its default value.

a. Select dwsd_conf.

Cray dws Menu [default: save & exit - Q] $ 9
Cray dws Menu [default: configure - C] $ C

****************************** cray_dws.settings.dwsd.data.dwsd_conf *******************************
...
 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3
 4) equalize_fragments: yes
 5) activation_private_cache_default: no
...

b. Remove the activation_private_cache_default setting.

Use the format #- to remove a setting, thereby resetting it to its default value.

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 4 entries, +=add an entry, ?=help, @=less] $ 5-

|--- Information
* Entry 'activation_private_cache_default: no' removed successfully. Press <cr> to set.

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 4 entries, +=add an entry, ?=help, @=less] $ <cr>

Service Configuration Menu (Config Set: p0, type: cle)

 cray_dws [status: enabled] [validation: valid]

DataWarp Administrator Tasks

S2564 95

 Selected # Settings Value/Status (level=advanced)

 service
 1) managed_nodes_groups ['datawarp_nodes']
 2) api_gateway_nodes_groups ['login_nodes_x86_64']
 3) external_api_gateway_hostnames (none)
 4) dwrest_cacheroot_whitelist /lus/scratch
 5) dwrest_cachemount_whitelist (none)
 6) allow_dws_cli_from_computes False
 7) lvm_issue_discards 0

 dwmd
 8) dwmd_conf iscsi_initiator_cred_path:
 /etc/opt/cray/dws/iscsi_target_secret,
 iscsi_target_cred_path:
 /etc/opt/cray/dws/iscsi_initiator_secret,
 capmc_os_cacert:
 /etc/pki/trust/anchors/certificate_authority.pem

 dwsd
 9) dwsd_conf log_mask: 0x7, instance_optimization_default:
 bandwidth, scratch_limit_action: 0x3,
 equalize_fragments: yes

 dwrest
 10) dwrest_conf port: 2015

 dwrestgun
 11) dwrestgun_conf max_requests=2048

--

c. Continue to modify advanced settings if desired; otherwise, proceed to the next step.

6. Save and exit the configurator.

Cray dws Menu [default: save & exit - Q] $ Q

7. Activate the changes on all appropriate nodes. Proceed based on the configuration files modified.

● dwsd_conf: execute the following commands on the scheduler node.

sdb# /etc/init.d/cray-ansible start
sdb# systemctl reload dwsd

● dwmd_conf: execute the following commands on all DataWarp managed nodes.

nid# /etc/init.d/cray-ansible start
nid# systemctl reload dwmd

● dwrest_conf or dwrestgun_conf: execute the following commands on the API gateway node.

api-gw# /etc/init.d/cray-ansible start
api-gw# systemctl reload dwrest
api-gw# systemctl reload nginx

8.13 Configure SSD Protection Settings

Prerequisites
● Ability to log in as root
● Read Modify DWS Advanced Settings on page 92

DataWarp Administrator Tasks

S2564 96

About this task
The possibility exists for a user program to unintentionally cause excessive activity to SSDs, and thereby diminish
the lifetime of the devices. To mitigate this issue, DataWarp includes both administrator-defined configuration
options and user-specified job script command options that help the DataWarp service (DWS) detect when a
program’s behavior is anomalous and then react based on configuration settings.

This procedure describes how to modify the administrator-defined SSD protection settings using the system
configurator. For user-defined settings, see the XC™ Series DataWarp™ User Guide (S-2558).

IMPORTANT: Do not directly modify any DataWarp configuration files (dwsd.yaml, dwmd.yaml,
dwrest.yaml, dwrestgun.conf) as changes do not persist over a reboot. Modify the settings within
these files using the configurator only; this ensures that the changes become part of the system config
set.

Protection Settings within the dwsd Configuration File

The DataWarp scheduler daemon (dwsd) configuration file (sdb:/etc/opt/cray/dws/dwsd.yaml) contains
options for the following DataWarp SSD protection features:

● Action upon error

● Write tracking

● File creation limits

● File size limits

The configurable SSD protection options are:
cache_limit_action

The action to take when one of the cache limits is exceeded; this action applies to all limits.
Default: 0x3

0x1: log only
0x2: error on file system operations
0x3: log and error

As mentioned in DataWarp Limitations on page 9, SSD write protection is not available with
cache configurations in this release.

cache_max_file_size_default
The maximum size (bytes) of any one file that may exist in a cache configuration. In other
words, the maximum byte offset for a file that may be read from or written to. When the
threshold is exceeded, a message displays on the system console and an error is reported
back to the file system operation that triggered the limit. A value of 0 means no limit. User
requests may override this value. Default: 0

cache_max_file_size_max
The maximum value a user may request when overriding
cache_max_file_size_default. The value of 0 means there is no max. Default: 0

instance_write_window_length_default
The default number of seconds used when calculating the simple moving average of writes
to an instance. Note that the configurations using the instance must provide support for this
(e.g., does not apply to swap). A value of 0 means the write window limit is not used.
Default: 86400

DataWarp Administrator Tasks

S2564 97

instance_write_window_length_max
The maximum value a user may request when overriding
instance_write_window_length_default. A value of 0 means there is no maximum.
Default: 0

instance_write_window_length_min
The minimum value a user may request when overriding
instance_write_window_length_default. A value of 0 means there is no minimum.
Default: 0

instance_write_window_multiplier_default
The default multiplier to use against an instance size to determine the maximum number of
bytes written portion of the moving average calculation for purposes of detecting anomalous
write behavior. The multiplier must be an integer of 0 or more. A value of 0 means the write
window limit is not used. For example, if the multiplier is 10, the instance size is 2 TiB, and
the write window is 86400, then 20 TiB may be written to the instance in any 24 hour sliding
window. Default: 10

instance_write_window_multiplier_max
The maximum value a user may request when overriding
instance_write_window_multiplier_default. A value of 0 means there is no
maximum. Default: 0

scratch_limit_action
The action to take when one of the scratch limits is exceeded; this action applies to all limits.
Default: 0x3

0x1: log only
0x2: error on file system operations
0x3: log and error

scratch_namespace_max_files_default
The maximum number of files that may be created in a scratch configuration namespace.
When the threshold is exceeded, a message displays on the system console and no new
files can be created in the namespace. A value of 0 means no limit. User requests may
override this value. Default: 0

scratch_namespace_max_files_max
The maximum value a user may request when overriding
scratch_namespace_max_files_default. A value of 0 means no limit. Default: 0

scratch_namespace_max_file_size_default
The maximum size (bytes) of any one file that may exist in a scratch configuration
namespace. When the threshold is exceeded, a message displays on the system console
and an error is reported back to the file system operation that triggered the limit. A value of 0
means no limit. User requests may override this value. Default: 0

scratch_namespace_max_file_size_max
The maximum value a user may request when overriding
scratch_namespace_max_file_size_default. The value of 0 means there is no
maximum. Default: 0

DataWarp Administrator Tasks

S2564 98

The administrator selects default values, min/max user limits, and the action taken when a limit is exceeded. The
options within /etc/opt/cray/dws/dwsd.yaml are considered advanced options and must be modified with
extreme caution. This procedure describes how to modify these advanced settings using the system configurator.

CAUTION:

Advanced DataWarp settings must be modified with extreme care. The default values as released are
acceptable for most installations. Sites that modify advanced settings are at risk of degrading DataWarp
performance, decreasing SSD lifetime, and possibly other unknown outcomes. It is the administrator's
responsibility to understand the purpose of any advanced settings changed, the formatting required, and
the impact these changes may have.

Options incorrectly spelled or formatted are added but ignored, and the current value is not modified.

For further details, see Modify DWS Advanced Settings on page 92.

Procedure

1. Invoke a configurator session to modify cray_dws advanced settings.

smw# cfgset update -m interactive -l advanced -s cray_dws p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_dws [status: enabled] [validation: valid]

--
 Selected # Settings Value/Status (level=advanced)
--
 service
 1) managed_nodes_groups ['datawarp_nodes']
 2) api_gateway_nodes_groups ['login_nodes_x86_64']
 3) external_api_gateway_hostnames (none)
 4) dwrest_cacheroot_whitelist /lus/scratch
 5) dwrest_cachemount_whitelist (none)
 6) allow_dws_cli_from_computes False
 7) lvm_issue_discards 0

 dwmd
 8) dwmd_conf iscsi_initiator_cred_path:
 /etc/opt/cray/dws/iscsi_target_secret,
 iscsi_target_cred_path:
 /etc/opt/cray/dws/iscsi_initiator_secret,
 capmc_os_cacert:
 /etc/pki/trust/anchors/certificate_authority.pem

 dwsd
 9) dwsd_conf log_mask: 0x7, instance_optimization_default:
 bandwidth, scratch_limit_action: 0x3,
 equalize_fragments: yes

 dwrest
 10) dwrest_conf port: 2015

 dwrestgun
 11) dwrestgun_conf max_requests=1024

--

2. Select dwsd_conf.

TIP: The configurator uses index numbering to identify configuration items. This numbering may vary;
the value used in the examples may not be correct for all systems. The user must search the listing
displayed on the screen to determine the correct index number for the service/setting being
configured.

Cray dws Menu [default: save & exit - Q] $ 9
Cray dws Menu [default: configure - C] $ C
****************************** cray_dws.settings.dwsd.data.dwsd_conf *******************************

 dwsd_conf -- dwsd Config

DataWarp Administrator Tasks

S2564 99

 Internal dwsd settings. Change with extreme caution. See
 /etc/opt/cray/dws/dwsd.yaml for variables and syntax.

 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3

...

Only a sampling of the dwsd_conf settings are displayed, although all settings are modifiable.

3. Modify one or more settings.

This example demonstrates how to modify the scratch_namespace_max_files_default and
scratch_namespace_max_files_max settings.

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ +
Add dwsd_conf (Ctrl-d to exit) $ scratch_namespace_max_files_default: 10000
Add dwsd_conf (Ctrl-d to exit) $ scratch_namespace_max_files_max: 30000
Add dwsd_conf (Ctrl-d to exit) $<Ctrl-d>

cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ +
Add dwsd_conf (Ctrl-d to exit) $ scratch_namespace_max_files_default: 10000
Add dwsd_conf (Ctrl-d to exit) $ scratch_namespace_max_files_max: 30000
Add dwsd_conf (Ctrl-d to exit) $
****************************** cray_dws.settings.dwsd.data.dwsd_conf *******************************

 dwsd_conf -- dwsd Config
 Internal dwsd settings. Change with extreme caution. See
 /etc/opt/cray/dws/dwsd.yaml for variables and syntax.

 Default: Current:
 1) log_mask: 0x7 1) log_mask: 0x7
 2) instance_optimization_default: bandwidth 2) instance_optimization_default: bandwidth
 3) scratch_limit_action: 0x3 3) scratch_limit_action: 0x3
 4) scratch_namespace_max_files_default: 10000
 5) scratch_namespace_max_files_max: 30000
...
cray_dws.settings.dwsd.data.dwsd_conf
[<cr>=set 5 entries, +=add an entry, ?=help, @=less] $ <cr>

Complete cray_dws displayed here with new settings included
...
Cray dws Menu [default: save & exit - Q] $ Q
INFO -
...

INFO - ConfigSet 'p0' has been updated.
INFO - Run 'cfgset search -s cray_dws --level advanced p0' to review the current settings.

4. Validate the config set.

smw# cfgset validate p0
...
INFO - ConfigSet 'p0' is valid.
Correct any discrepancies before proceeding.

5. Log in to the sdb node and activate the config set changes.

sdb# /etc/init.d/cray-ansible start
sdb# systemctl reload dwsd

DataWarp Administrator Tasks

S2564 100

8.14 Back Up and Restore DataWarp State Data
The DataWarp scheduler daemon, dwsd, relies on specific node and pool information for correct operation. This
information is stored in a state database and should be backed up periodically to minimize any potential impact of
events that may cause loss of this information (e.g., drive failure or backwards incompatible DWS upgrade). Cray
recommends creating a DataWarp backup cron job or including it as part of a periodic maintenance checklist.
Additionally, it is important to create a backup of the DataWarp configuration data at the following times:

● after initial installation and configuration of DataWarp

● after configuration changes

● prior to system upgrades

Note that the dws module must be loaded to use the backup and restore commands.

sdb# module load dws

Back Up
Two commands are available to back up the configuration data from the dwsd database, dwcli config
backup and dwbackup. Any DataWarp administrator (e.g., root, crayadm) can run dwcli config backup
when the dwrest service is running. This is slightly less restrictive and may be preferable to dwbackup, which
must be run by root from the node on which dwsd runs (typically sdb).

The dwbackup command reads data from sdb:/var/opt/cray/dws/dwsd.db, whereas the dwcli config
backup command reads data through the RESTful API (i.e., through dwrest). Both commands output the node
and pool properties to stdout, and neither command backs up any user data.

The dwbackup command is normally used after an upgrade if the state database configuration information was
not backed up using either command prior to the upgrade. This is because the upgrade may include a backwards
incompatible change to the database. In this case, DataWarp fails to come up properly and dwrest fails to run,
which prevents the use of dwcli config backup.

Example 1: Run dwbackup with default option settings

As root on to the sdb node:

sdb# dwbackup
{
 "nodes": [
 {
 "links": {
 "pool": "example"
 },
 "drain": false,
 "id": "example-node"
 }
],
 "pools": [
 {
 "id": "example",
 "units": "bytes",
 "granularity": 16777216
 }
]
}

DataWarp Administrator Tasks

S2564 101

Example 2: Use dwbackup to create a backup file

As root on the sdb node:

sdb# dwbackup > /persistent/storage/my_dws_backup.json
Example 3: Use dwcli config backup to create a backup file

As a DataWarp administrator on a login node:

crayadm@login> dwcli config backup > /persistent/storage/my_dws_backup.json

Restore
Any DataWarp administrator can run dwcli config restore to restore a DataWarp configuration as captured
in a backup created by either backup command.

Example 4: Restore a saved configuration

crayadm@sdb> dwcli config restore < /persistent/storage/my_dws_backup.json
For further information, see the dwcli(8) and dwbackup(8) man pages.

8.15 In the Event of DataWarp Database Corruption

Prerequisites
● DataWarp administrator privileges

About this task
The DataWarp scheduler daemon, dwsd, relies on a state database for accurate node and pool information.
Although a rare event, it is possible for this file to become corrupt. If this happens, administrator intervention is
required.

Database Corruption Symptoms

A corrupt dwsd state database will generate varying error messages, dependent on the type of corruption, in
sdb:/var/opt/cray/dws/log/dwsd.log. The most common is SQLite error: database disk image
is malformed, as shown in this excerpt:

2018-02-24 08:50:20 Attempting to listen on port 2015
2018-02-24 08:50:20 src/dwsd/log.c:sqlite_errorlog_cb():168 -> SQLite error 11:
database corruption at line 52076 of [ea3317a480]
2018-02-24 08:50:20 src/dwsd/log.c:sqlite_errorlog_cb():168 -> SQLite error 11:
database corruption at line 52115 of [ea3317a480]
2018-02-24 08:50:20 src/dwsd/log.c:sqlite_errorlog_cb():168 -> SQLite error 11:
statement aborts at 5: []
2018-02-24 08:50:20 src/dwsd/log.c:sqlite_errorlog_cb():168 -> SQLite error 11:
database disk image is malformed
2018-02-24 08:50:20 src/dwsd/sqlite.c:sqlite_init():131 -> SQLite error:
database disk image is malformed
2018-02-24 08:50:20 src/dwsd/context.c:dwsd_context_init():356 -> Unable to
initialize sqlite

DataWarp Administrator Tasks

S2564 102

2018-02-24 08:50:20 Daemon ran for 0 seconds
2018-02-24 08:50:20 src/dwsd/dwsd.c:main():66 -> Context initialization failed.
2018-02-24 08:50:20 Shutting down

Additionally, commands such as dwstat may fail:

sdb# module load dws
sdb# dwstat
cannot communicate with dwsd daemon at sdb port 2015
[Errno 111] Connection refused
Corrective Steps

If a current backup of the dwsd state database exists, it is possible to recover some of the configuration data.
Otherwise, with no backup, it is necessary to re-create pools and the node-pool associations. In either case, no
user data is recoverable. Follow this procedure after determining that the DataWarp database is corrupt.

Cray recommends backing up the state file at regular intervals, see Back Up and Restore DataWarp State Data
on page 100.

Procedure

1. Stop the dwsd service.

sdb# service dwsd stop

2. Remove the DataWarp database file.

sdb# rm /var/opt/cray/dws/dwsd.db

3. Start the dwsd service.

sdb# service dwsd start

4. Wait 600 seconds, or restart dwmd on all SSD-endowed nodes.

sdb# module load pdsh
sdb# pdsh -w dwnode1,dwnode2,... 'kill -USR1 $(</var/opt/cray/dws/dwmd.pid)'
Where dwnode# is the hostname of any DataWarp server node.

5. Proceed based on the availability of a dwsd state file backup:

● If a current backup exists, either via cron or done manually, restore the DataWarp state file from the
backup:

sdb# dwcli config restore < path_to_backup_file
● If a current backup does not exist, recreate the pools and the node-pool associations.

sdb# dwcli create pool -n pool_name -g granularity
sdb# dwcli update node -n hostname -p pool_name

DataWarp Administrator Tasks

S2564 103

8.16 Enable the Node Health Checker DataWarp Plugin (if Necessary)

Prerequisites
● Ability to log in as root

About this task
The Node Health Checker (NHC) DataWarp plugin is enabled by default at system installation but may become
disabled. This procedure describes how to verify that the DataWarp plugin is enabled and, if not, walks through
the steps to enable it.

When enabled, NHC is automatically invoked upon the termination of every application. It performs specified tests
to determine if compute nodes allocated to the application are healthy enough to support running subsequent
applications. The DataWarp plugin is a script to check that any reservation-affiliated DataWarp mount points have
been removed; it can only detect a problem once the last reservation on a node completes. The behavior of NHC
after a job has terminated is determined through settings in the configurator.

The configurator guides the user through the configuration process with explanations, options, and prompts. The
majority of this dialog is not displayed in the steps below, only prompts and example responses are displayed.

TIP: The configurator uses index numbering to identify configuration items. This numbering may vary; the
value used in the examples may not be correct for all systems. The user must search the listing displayed
on the screen to determine the correct index number for the service/setting being configured.

For further information about NHC, see the intro_NHC(8) man page and XC™ Series System Administration
Guide.

Procedure

1. Determine if Plugin DataWarp is enabled in the cray_node_health service of the CLE config set.

smw# cfgset search -s cray_node_health -l advanced -t DataWarp p0
a. Exit this procedure if the DataWarp plugin is enabled.

11 matches for 'DataWarp' from cray_node_health_config.yaml
#--
cray_node_health.settings.plugins.data.Plugin DataWarp.name: Plugin
cray_node_health.settings.plugins.data.Plugin DataWarp.enabled: True
cray_node_health.settings.plugins.data.Plugin DataWarp.command: datawarp.sh -v
cray_node_health.settings.plugins.data.Plugin DataWarp.action: Admindown
cray_node_health.settings.plugins.data.Plugin DataWarp.warntime: 30
cray_node_health.settings.plugins.data.Plugin DataWarp.timeout: 360
cray_node_health.settings.plugins.data.Plugin DataWarp.restartdelay: 65
cray_node_health.settings.plugins.data.Plugin DataWarp.uid: 0
cray_node_health.settings.plugins.data.Plugin DataWarp.gid: 0
cray_node_health.settings.plugins.data.Plugin DataWarp.sets: Reservation
cray_node_health.settings.plugins.data.Plugin DataWarp.command: datawarp.sh -v

b. Continue with this procedure if the DataWarp plugin is not enabled.

No matches found in the configuration data for the given search terms.

INFO - Matches may be hidden by level/state/service filtering.
INFO - See 'cfgset search -h' for filtering options.

DataWarp Administrator Tasks

S2564 104

2. Invoke the configurator for the cray_node_health service.

smw# cfgset update -m interactive -l advanced -s cray_node_health p0
Service Configuration Menu (Config Set: p0, type: cle)
 cray_node_health [status: enabled] [validation: valid]

--
 Selected # Settings Value/Status
 (level=advanced)
--
...
 27) memory_plugins
 desc: Default Memory [OK]

 28) plugins
 desc: Default Alps [OK]
 desc: Plugin DVS Requests [OK]
 desc: Default Application [OK]
 desc: Default Reservation [OK]
 desc: Plugin Nvidia [OK]
 desc: Plugin ugni [OK]
 desc: Xeon Phi Plugin App Test [OK]
 desc: Xeon Phi Plugin Reservation [OK]
 desc: Xeon Phi Plugin Memory [OK]
 desc: Xeon Phi Plugin Alps [OK]
 desc: Plugin Sigcont [OK]
 desc: Plugin Hugepage Check [OK]

...

Node Health Service Menu [default: save & exit - Q] $

3. Select the plugins setting using the index numbering.

TIP: The configurator uses index numbering to identify configuration items. This numbering may vary;
the value used in the examples may not be correct for all systems. The user must search the listing
displayed on the screen to determine the correct index number for the service/setting being
configured.

Node Health Service Menu [default: save & exit - Q] $ 28

4. Configure plugins.

Node Health Service Menu [default: configure - C] $ C

5. Add an entry.

a. Enter +.

cray_node_health.settings.plugins
[<cr>=set 12 entries, +=add an entry, ?=help, @=less] $ +

b. Set desc to Plugin DataWarp.

cray_node_health.settings.plugins.data.desc
[<cr>=set '', <new value>, ?=help, @=less] $ Plugin DataWarp

c. Set name to Plugin.

DataWarp Administrator Tasks

S2564 105

cray_node_health.settings.plugins.data.Plugin DataWarp.name
[<cr>=set 'Plugin', <new value>, ?=help, @=less] $ <cr>

d. Set enabled to true.

cray_node_health.settings.plugins.data.Plugin DataWarp.enabled
[<cr>=set 'false', <new value>, ?=help, @=less] $ true

e. Set command to datawarp.sh -v.

cray_node_health.settings.plugins.data.Plugin DataWarp.command
[<cr>=set '', <new value>, ?=help, @=less] $ datawarp.sh -v

f. Set action to Admindown.

cray_node_health.settings.plugins.data.Plugin DataWarp.command
[<cr>=set '', <new value>, ?=help, @=less] $ Admindown

g. Set warntime to 30.

cray_node_health.settings.plugins.data.Plugin DataWarp.warntime
[<cr>=set '0', <new value>, ?=help, @=less] $ 30

h. Set timeout to 360.

cray_node_health.settings.plugins.data.Plugin DataWarp.timeout
[<cr>=set '0', <new value>, ?=help, @=less] $ 360

i. Set restartdelay to 65.

cray_node_health.settings.plugins.data.Plugin DataWarp.restartdelay
[<cr>=set '0', <new value>, ?=help, @=less] $ 65

j. Set uid to 0.

cray_node_health.settings.plugins.data.Plugin DataWarp.uid
[<cr>=set '0', <new value>, ?=help, @=less] $ 0

k. Set gid to 0.

cray_node_health.settings.plugins.data.Plugin DataWarp.gid
[<cr>=set '0', <new value>, ?=help, @=less] $ 0

l. Set sets to Reservation.

cray_node_health.settings.plugins.data.Plugin DataWarp.sets
[<cr>=set 'Application', <new value>, ?=help, @=less] $ Reservation

m. Accept the settings.

cray_node_health.settings.plugins
[<cr>=set 13 entries, +=add an entry, ?=help, @=less] $ <cr>
...

 28) plugins
 desc: Default Alps [OK]
 desc: Plugin DVS Requests [OK]
 desc: Default Application [OK]
 desc: Default Reservation [OK]
 desc: Plugin Nvidia [OK]

DataWarp Administrator Tasks

S2564 106

 desc: Plugin ugni [OK]
 desc: Xeon Phi Plugin App Test [OK]
 desc: Xeon Phi Plugin Reservation [OK]
 desc: Xeon Phi Plugin Memory [OK]
 desc: Xeon Phi Plugin Alps [OK]
 desc: Plugin Sigcont [OK]
 desc: Plugin Hugepage Check [OK]
 desc: Plugin DataWarp [OK]

n. Save the changes and exit the configurator.

Node Health Service Menu [default: save & exit - Q] $ Q
INFO - Configuration worksheets will be saved to
 - /var/opt/cray/imps/config/sets/p0/worksheets
INFO - Changelog will be written to
 - /var/opt/cray/imps/config/sets/p0/changelog/
changelog_2016-04-08T17:19:18.yaml
INFO - Running post-configuration scripts
INFO - Locally cloning ConfigSet 'p0' to 'p0-autosave-2016-04-08T17:19:29'.
INFO - Successfully cloned to ConfigSet 'p0-autosave-2016-04-08T17:19:29'.
INFO - Removed ConfigSet 'p0-autosave-2016-04-06T17:09:08'.
INFO - ConfigSet 'p0' has been updated.
INFO - Run 'cfgset search -s cray_node_health --level advanced p0' to review
the current settings.

6. Verify the settings.

smw# cfgset search -s cray_node_health -l advanced -t DataWarp p0
...
11 matches for 'DataWarp' from cray_node_health_config.yaml
#---
-
cray_node_health.settings.plugins.data.Plugin DataWarp.name: Plugin
cray_node_health.settings.plugins.data.Plugin DataWarp.enabled: True
cray_node_health.settings.plugins.data.Plugin DataWarp.command: datawarp.sh -v
cray_node_health.settings.plugins.data.Plugin DataWarp.action: Admindown
cray_node_health.settings.plugins.data.Plugin DataWarp.warntime: 30
cray_node_health.settings.plugins.data.Plugin DataWarp.timeout: 360
cray_node_health.settings.plugins.data.Plugin DataWarp.restartdelay: 65
cray_node_health.settings.plugins.data.Plugin DataWarp.uid: 0
cray_node_health.settings.plugins.data.Plugin DataWarp.gid: 0
cray_node_health.settings.plugins.data.Plugin DataWarp.sets: Reservation
cray_node_health.settings.plugins.data.Plugin DataWarp.command: datawarp.sh -v
smw#
Correct any discrepancies before proceeding.

7. Reboot the system.

8.17 Deconfigure DataWarp

Prerequisites
● root privileges

● The system is not running

DataWarp Administrator Tasks

S2564 107

About this task
Follow this procedure to remove the DataWarp configuration from a system.

Procedure

1. Invoke the configurator in interactive mode to update the CLE config set.

smw# cfgset update -m interactive -s cray_dws p0

2. Disable the service by entering E.

Cray dws Menu [default: save & exit - Q] $ E

3. Save and exit the configurator.

Cray dws Menu [default: save & exit - Q] $ Q

4. Reboot the system.

5. Log in to an SSD-endowed node as root.

This example uses nid00349.

6. Remove the data.

a. Remove the Logical Volume Manager (LVM) volume group.

nid00349# vgremove dwcache
A confirmation prompt may appear:

Do you really want to remove volume group "dwcache" containing 1 logical
volumes? [y/n]:

b. Answer yes.

c. Identify the SSD block devices.

nid00349# pvs
 PV VG Fmt Attr PSize PFree
 /dev/nvme0n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme1n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme2n1 dwcache lvm2 a-- 1.46t 1.46t
 /dev/nvme3n1 dwcache lvm2 a-- 1.46t 1.46t

d. Remove LVM ownership of devices. Specify all SSD block devices on the node.

nid00349:# pvremove /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
Labels on physical volume "/dev/nvme0n1" successfully wiped
Labels on physical volume "/dev/nvme1n1" successfully wiped
Labels on physical volume "/dev/nvme2n1" successfully wiped
Labels on physical volume "/dev/nvme3n1" successfully wiped

7. Repeat steps 5 on page 108 through 6 on page 108 for all SSD nodes listed within the node group(s) defined
as managed_nodes_groups.

DataWarp Administrator Tasks

S2564 108

DataWarp is deconfigured.

8.18 Prepare to Replace a DataWarp SSD

Prerequisites
● DataWarp administrator privileges

● Knowledge of the configuration of the blade on which the failing SSD is located

About this task
SSDs may require replacement due to hardware failure or low remaining endurance. Before replacing an SSD,
the DataWarp service (DWS) is instructed to temporarily stop using it for future usages, and any existing usages
are cleaned up. After the SSD is replaced, it is initialized and DWS is informed that the new hardware is available
for use.

IMPORTANT: SSD replacement involves powering down a blade and physically removing it from a
cabinet. Because a blade consists of more than one node, SSD replacement likely impacts more than just
the SSD-endowed node. If the other nodes on the blade are used by DataWarp, which is the typical
configuration, then DataWarp is told to stop using them as well. If the other nodes on the blade are not
used by DataWarp, they are shut down gracefully in accordance with their respective software.

This procedure covers three node types:

1. Failing DWS-managed SSD nodes

2. Healthy DWS-managed nodes on the same blade as a failing SSD

3. Nodes not managed by DWS on the same blade as a failing SSD

Procedure

1. Log in to the sdb node and load the dws module.

crayadm@sdb> module load dws

2. Drain the failing SSD node. This prevents the creation of new instances on the node and also removes the
node's free capacity contribution from the pool.

crayadm@sdb> dwcli update node --name hostname --drain
Throughout these examples, nid00350 is the failing SSD node and nid00349 is located on the same blade.

crayadm@sdb> dwcli update node --name nid00350 --drain
update request for nodes entity with name = nid00350 accepted, "dwstat nodes"
for status

3. WAIT for all existing instances to be removed from the node.

crayadm@sdb> watch -n 10 dwstat nodes
a. If no instances or activations remain, proceed to step 4 on page 110.

DataWarp Administrator Tasks

S2564 109

crayadm@sdb> watch -n 10 dwstat nodes
Every 10.0s: dwstat nodes

 node pool online drain gran capacity insts activs
nid00322 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00349 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00350 wlm_pool online fill 16MiB 7.28TiB 0 0

b. Determine the IDs of any persistent instances and remove them.

This example shows that the site needs to wait or take action for one instance on nid00350.

crayadm@sdb> watch -n 10 dwstat nodes
Every 10.0s: dwstat nodes

 node pool online drain gran capacity insts activs
nid00322 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00349 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00350 wlm_pool online fill 16MiB 7.28TiB 1 0

crayadm@sdb> dwstat fragments | grep nid00350
 frag state inst capacity node
88071 CA-- 2227 596.16GiB nid00350
88072 CA-- 2227 596.16GiB nid00350
88073 CA-- 2227 596.16GiB nid00350
88074 CA-- 2227 596.16GiB nid00350
crayadm@sdb> dwcli rm instance --id 2227
rm request for instances entity with id = 2227 accepted, "dwstat instances"
for status
WAIT for the instance to be removed. An instance that cannot be removed is likely blocked by a
reservation trying to copy data back out to the parallel file system (PFS). In which case, the reservation
may need to be set to --haste. For further information, see Registrations on page 41.

4. Log in to the failing SSD node as root.

This example uses nid00350.

5. Display and remove the logical volume(s).

TIP: Use -f to force removal.

nid00350# lvdisplay
 --- Logical volume ---
 LV Path /dev/dwcache/s98i94f104o0
 LV Name s98i94f104o0
 VG Name dwcache
 LV UUID 910tio-RJXq-puYV-s3UL-yDM1-RoQl-HugeTM
 LV Write Access read/write
 LV Creation host, time nid00350, 2017-02-22 13:29:11 -0500
 LV Status available
 # open 0
 LV Size 3.64 TiB
 Current LE 953864
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 1024
 Block device 253:0

DataWarp Administrator Tasks

S2564 110

nid00350# lvremove /dev/dwcache

6. Display and remove the volume group(s).

nid00350# vgs
 VG #PV #LV #SN Attr VSize VFree
 dwcache 2 0 0 wz--n- 3.64t 3.64t
nid00350# vgremove dwcache
 Volume group "dwcache" successfully removed

7. Display and remove the physical volume(s).

nid00350# pvs
PV VG Fmt Attr PSize PFree
/dev/nvme0n1 lvm2 a-- 1.46t 1.26t
/dev/nvme1n1 lvm2 a-- 1.46t 1.26t
/dev/nvme2n1 lvm2 a-- 1.46t 1.26t
/dev/nvme3n1 lvm2 a-- 1.46t 1.26t

nid00350# pvremove /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
 Labels on physical volume "/dev/nvme0n1" successfully wiped
 Labels on physical volume "/dev/nvme1n1" successfully wiped
 Labels on physical volume "/dev/nvme2n1" successfully wiped
 Labels on physical volume "/dev/nvme3n1" successfully wiped
The failing SSD is disabled and ready for replacement; however, the other node(s) on the blade must first be
quiesced. Repeat the previous steps if there are multiple failing nodes.

8. Quiesce the non-failing nodes that share the blade with the failing SSD. Proceed based on node type:

● DWS-managed SSD nodes: drain the nodes and remove all instances. Do not remove logical volumes,
volume groups, physical volumes or labels.

dwcli update node --name nid00349 --drain
update request for nodes entity with name = nid00349 accepted, "dwstat
nodes" for status

● Nodes not managed by DWS: refer to the software-specific documentation

9. Follow appropriate hardware procedures to power down the blade and replace the SSD node.

Further software configuration is required after the SSD node is physically replaced, see Complete the
Replacement of an SSD Node on page 111.

8.19 Complete the Replacement of an SSD Node

Prerequisites
● DataWarp administrator privileges

● Completion of Prepare to Replace a DataWarp SSD on page 109

DataWarp Administrator Tasks

S2564 111

About this task
SSDs may require replacement due to hardware failure or low remaining endurance. After replacing an SSD, a
one-time manual device configuration that defines the Logical Volume Manager (LVM) structure is done, and then
the DataWarp service (DWS) is informed that the new hardware is available for use.

IMPORTANT: SSD replacement involves power cycling the blade on which the new SSD is located.
Because a blade consists of more than one node, SSD replacement likely impacts more than just the
SSD-endowed node. If the other nodes on the blade are used by DataWarp, which is the typical
configuration, then DataWarp is told to enable them as well. If the other nodes on the blade are not used
by DataWarp, they are enabled in accordance with their respective software.

This procedure covers three node types:

1. Newly-replaced SSD nodes for DataWarp

2. DWS-managed nodes on the same blade as a newly-replaced node

3. Nodes not managed by DWS on the same blade as a newly-replaced node

Procedure

1. Power up the blade and boot the nodes according to standard procedure.

2. (Optional) Over-provision the new SSD if it is an Intel P3608; see Over-provision an Intel P3608 SSD on page
61.

3. Verify that the new SSD has the proper PCIe generation and width:

● Intel P3608:

○ On-board PLX switch trains as Gen3 and x8 width

○ Each card has two x4 SSD devices connected by the PLX switch

● Samsung SM1725 trains as Gen3 and x8 width

● SX300 (ioMemory3) trains as Gen2 and x4 width

● Fusion ioScale2 cards are not supported with CLE 6.0/SMW 8.0 and beyond

smw# xtcheckhss --nocolor --detail=f --pci
 Node Slot Name Target Gen Trained Gen Target Width Trained Width
---------- ---- ---------------------- ---------- ----------- ------------ -------------
...

c0-0c0s3n1 0 Intel_P3600_Series_SSD Gen3 Gen3 x4 x4
c0-0c0s3n1 0 Intel_P3600_Series_SSD Gen3 Gen3 x4 x4
c0-0c0s3n1 0 PLX_switch Gen3 Gen3 x8 x8
c0-0c0s3n1 1 Intel_P3600_Series_SSD Gen3 Gen3 x4 x4
c0-0c0s3n1 1 Intel_P3600_Series_SSD Gen3 Gen3 x4 x4
c0-0c0s3n1 1 PLX_switch Gen3 Gen3 x8 x8
...

4. Initialize the new SSD to define the LVM structure, see Initialize an SSD on page 66.

5. Set --fill for the new SSD node.

crayadm@sdb> dwcli update node --name hostname --fill
In this example, nid00350 is the new SSD node and nid00349 is a DWS-managed node located on the
same blade.

DataWarp Administrator Tasks

S2564 112

crayadm@sdb> dwcli update node --name nid00350 --fill
update request for nodes entity with name = nid00350 accepted, "dwstat nodes"
for status
crayadm@sdb> dwstat nodes
 node pool online drain gran capacity insts activs
nid00322 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00349 wlm_pool online fill 16MiB 7.28TiB 0 0
nid00350 wlm_pool online fill 16MiB 7.28TiB 0 0
The new SSD is enabled and its storage is added to the pool; however, the other nodes on the blade must
also be enabled. Repeat the previous steps if there are multiple new DataWarp nodes.

6. Enable the nodes that share the blade with the new SSD. Proceed based on node type:

● DWS-managed SSD nodes: set the nodes to not drain.

dwcli update node --name nid00349 --fill
update request for nodes entity with name = nid00349 accepted, "dwstat
nodes" for status

● Nodes not managed by DWS: refer to the software-specific documentation.

This completes the process of replacing a DataWarp SSD node.

8.20 The dwpoolhelp Command
Beginning with CLE 6.0.UP05 equalize_fragments is enabled by default; therefore, dwpoolhelp is
deprecated and will be removed in a future release.

Do not use dwpoolhelp for pools with only one node. Single node pools should always use a pool granularity
value of 16MiB or the node granularity (gran column in dwstat nodes -b), whichever is greater.

When equalize_fragments is not enabled, certain usages of DataWarp have limitations where having too
small of a pool allocation granularity can lead to situations where not all capacity requested is accessible by that
usage. For scratch usages of DataWarp, any instance consisting of more than 4096 allocation granularities is not
guaranteed to have all of its space usable by the scratch usage. The scratch usage is still functional, but not as
much data may be able to be written to it as expected. Requesting more space than is strictly necessary helps to
alleviate the problem. If having the guarantee is important, the dwpoolhelp command can suggest pool
allocation granularity values for a particular system that provide the guarantee.

TIP:

The dwpoolhelp command is only needed for DataWarp configurations of type scratch when the
administrator wants to guarantee that all of the requested space is usable for scratch usages. If
equalize_fragments is enabled, there is no need to use dwpoolhelp.

As mentioned earlier, the best pool allocation granularity value is site specific; therefore, when using
dwpoolhelp, there are no set guidelines for choosing the best value. In general, the goal is to pick a pool
allocation granularity value that minimizes the Waste per pool value, although this might not be the case if
smaller pool granularity is important. The following example shows dwpoolhelp output sorted by amount of
waste per node. See the dwpoolhelp(8) man page for further details.

DataWarp Administrator Tasks

S2564 113

Example: Create a storage pool using dwpoolhelp to first determine allocation
granularity

IMPORTANT: Note that this is for example purposes only; optimal pool allocation granularity is site
specific.

As a DataWarp administrator logged on to a CLE service node:

1. Determine node capacity and allocation granularity.

crayadm@login> dwstat -b nodes
 node pool online drain gran capacity insts activs
nid00028 - online fill 8388608 4000795590656 0 0
nid00029 - online fill 8388608 4000795590656 0 0
nid00089 - online fill 8388608 4000795590656 0 0
nid00090 - online fill 8388608 4000795590656 0 0

2. Use the above information with the dwpoolhelp command.

crayadm@login> dwpoolhelp -n 4 -g 8388608 -c 4000795590656
== Starting Values ==
Number of nodes: 4
Node capacity: 4000795590656
Allocation granularity on nodes: 8388608
Using 16777216 bytes for actual allocation granularity on nodes to satisfy XFS
requirements

== Calculating maximum granules per node ==
Max number of granules in an instance while still being able to access all capacity is
4096
floor(max_stripes / nodes) -> floor(4096 / 4) = 1024
Reducing granules per node to 1023 to account for interaction with node granularity
Maximum granules per node: 409

== Optimal pool granularities per granules per node ==
Gran / node Pool granularity Waste per node Waste per pool
 1 4000795590656 0 0
 2 2000397795328 0 0
 3 1333587345408 33554432 134217728
 4 1000190509056 33554432 134217728
 5 800155762688 16777216 67108864
 ...

3. Sort on 'Waste per pool,' as there is too much output to weed through.

crayadm@login> dwpoolhelp -n 4 -g 8388608 -c 4000795590656 | egrep '^ |Gran' | sort -bg
--key=3
Gran / node Pool granularity Waste per node Waste per pool
 1 4000795590656 0 0
 2 2000397795328 0 0
 185 21625831424 16777216 67108864
 37 108129157120 16777216 67108864
 5 800155762688 16777216 67108864
 108 37044092928 33554432 134217728
 ...

4. Create a pool with 185 granularities per node.

crayadm@login> dwcli create pool --name wlm_pool2 --granularity 21625831424
create request for pools entity with name = wlm-pool2 accepted, "dwstat pools"
for status

5. Verify the pool was created.

DataWarp Administrator Tasks

S2564 114

crayadm@login> dwstat pools
 pool unit quantity free gran
 wlm_pool bytes 0 0 16MiB
wlm_pool2 bytes 0 0 20.1GiB

DataWarp Administrator Tasks

S2564 115

9 Troubleshooting

9.1 Where are the Log Files?
The DataWarp scheduler daemon (dwsd), manager daemon (dwmd), and RESTful service (dwrest) write to local
log files, the console log, and to log files managed by the Lightweight Log Manager (LLM). logrotate manages
the following local log files on the specified nodes:

● API gateway:/var/opt/cray/dws/log/dwmd.log, gunicorn.log
● API gateway:/var/log/nginx/access.log, error.log
● Scheduler node:/var/opt/cray/dws/log/dwsd.log
● Managed nodes:/var/opt/cray/dws/log/dwmd.log
By default, logrotate runs as a daily cron job. For further information, see the logrotate(8) and cron(8)
man pages.

The following LLM-managed log files are located on the SMW
at /var/opt/cray/log/p#-bootsession/dws:

● dwmd-date: multiple daemons (one for every managed node) log to this file

● dwsd-date: one daemon logs to this file

● dwrest-date: multiple daemons (one for every API gateway) can log to this file

For further information about LLM, see the intro_LLM(8) man page.

9.2 What Does this Log Message Mean?
DataWarp daemons and the utilities they invoke write log messages for many different reasons, and not all are of
interest or concern. Additionally, a message can occur during a transient condition and not be interesting, but
become interesting during certain non-transient conditions. It is important to keep this in mind when browsing
through a log file.

9.2.1 Low SSD Life Remaining
When a DataWarp SSD reaches 90% of its life expectancy, a message is written to the console log file.

Mon 03/17/2017 3:17 PM
SEC: 15:17 sitename-systemname: Low SSD Life Remaining 8% c3-0c0s2n1 PCIe slot -1

Troubleshooting

S2564 116

9.2.2 SSD Protection Limits Exceeded
The possibility exists for a user program to unintentionally cause excessive activity to SSDs, and thereby diminish
the lifetime of the devices. To mitigate this issue, DataWarp includes both administrator-defined configuration
options and user-specified job script command options that help the DataWarp service (DWS) detect when a
program’s behavior is anomalous and then react based on configuration settings. See Configure SSD Protection
Settings on page 96 for further details.

If the SSD protection settings are configured to log SSD overuse events (default setting), then a message is
written to the console log file when an SSD protection threshold is exceeded. The message varies slightly
depending on the configuration type (scratch or cache) as well as the type of violation, but always includes the
following information:

sid Session ID

stoken Session token

When a WLM is controlling DataWarp, the session token is the batch job identifier.

rid Registration ID, or range of IDs (when same session/stoken registration gets converted into a single
label)

As mentioned in DataWarp Limitations on page 9, SSD write protection is not available for cache configurations in
this release.

Examples: SSD threshold messages written to the console log file
For a scratch configuration, when the bytes written threshold is exceeded:

[Thu Apr 20 22:13:13 2017] kdwfs: KDWFS protection limit(s) exceeded!
[Thu Apr 20 22:13:13 2017] kdwfs: Write threshold (16777216) exceeded. label=sid:
1;stoken:"WLM.111" rid:1;sid:1;stoken:"WLM.111"

For a scratch configuration, when the file size threshold is exceeded:

[Thu Apr 20 22:14:44 2017] kdwfs: KDWFS protection limit(s) exceeded!
[Thu Apr 20 22:14:44 2017] kdwfs: File size threshold (1) exceeded. label=sid:
4;stoken:"WLM.234" rid:7;sid:4;stoken:"WLM.234"

For a scratch configuration, when the file creation threshold is exceeded:

[Thu Apr 20 22:15:05 2017] kdwfs: KDWFS protection limit(s) exceeded!
[Thu Apr 20 22:15:05 2017] kdwfs: File creation threshold (1) exceeded.
label=sid:12;stoken:"WLM.432" rid:4;sid:12;stoken:"WLM.432"

For a persistent scratch instance created by one user and used by two others, when the bytes written threshold is
exceeded:

[Thu Apr 20 22:17:57 2017] kdwfs: KDWFS protection limit(s) exceeded!
[Thu Apr 20 22:17:57 2017] kdwfs: Write threshold (34359738368) exceeded.
label=sid:28;stoken:"WLM.557" rid:100-110;sid:87:stoken:"WLM.732" rid:133;sid:
92:stoken:"WLM.759"

Troubleshooting

S2564 117

9.2.3 dwmd Daemon Triggers a Crash
The dwmd daemon triggers a server node panic and writes a message to the console log when it detects a faulty
LVM logical volume, which indicates the likelihood of bad hardware.

2017-04-04T15:01:53.663992-06:00 c0-1c0s1n0 DataWarp dwmd daemon triggering a
crash after detecting a failed LVM volume group. Check for failing hardware!

Fix: Be suspicious of the hardware on the mentioned node. If an SSD comes online with no issues after reboot,
then it is possible that a problem was incorrectly detected. If it does not come online, then it must be re-seated
and/or replaced. Continue to monitor the node for some time to see if a pattern emerges. Perhaps the device is
faulty in specific situations, e.g., after a heavy load. Contact Cray support for further information.

9.2.4 MUNGE Authentication Error
Scenario: Execution of dwstat failed with the error: You must be authenticated to request this
resource. At the same time, the MUNGE authentication service wrote the following message to a DataWarp log
file:

MUNGE decrypt error: Rewound credential

DWS components depend on MUNGE authentication, which requires client/server clock times to be in sync
(within a range). This message may indicate that the time discrepancy between the client and server node
exceeded the threshold.

Fix: Sync client/server clock times. There is no need to restart any services.

9.3 SEC Notification when 90% of SSD Life Expectancy is Reached
When a DataWarp SSD reaches 90% of its life expectancy, a message is written to the console log file. If
enabled, the Simple Event Correlator (SEC) monitors system log files for significant events such as this and
sends a notification (either by email, IRC, writing to a file, or some user-configurable combination of all three) that
this has happened. The notification for nearing the end of life of an SSD is as follows:

Mon 5/22/2017 3:17 PM
SEC: 15:17 sitename-systemname: Low SSD Life Remaining 8% c3-0c0s2n1 PCIe slot
-1
 Please contact your Cray support personnel or sales representative for SSD card
replacements.

 12 hours -- skip repeats period, applies on a per SSD basis.

 System: sitename-systemname, sn9000
 Event: Low ioMemory SSD Life Remaining (8%) c3-0c0s2n1 PCIe faceplate slot:
Unknown (only one slot is populated in this node)
 Time: 15:17:04 in logged string.
 Mon May 22 15:17:05 2017 -- Time when SEC observed the logged string.

 Entire line in log file:
 /var/opt/cray/log/p0-20150817t070336/console-20150817

 2017-05-22T15:17:04.871808-05:00 c3-0c0s2n1 PCIe slot#:-1,Name:ioMemory

Troubleshooting

S2564 118

SX300-3200,SN:1416G0636,Size:3200GB,Remaining life: 8%,Temperature:41(c)

 SEC rule file:

 /opt/cray/sec/default/rules/aries/h_ssd_remaining_life.sr

 Note:

 The skip repeats period is a period during which any repeats of this event
type that occur will not be reported by SEC. It begins when the first message
that triggered this email was observed by SEC.

For detailed information about configuring SEC, see XC™ Series SEC and check_xt Software Configuration
Guide.

9.4 Why Do dwcli and dwstat Fail?
The dwcli and dwstat commands fail for a variety of reasons, some of which are described here.

1. Both commands fail if the DataWarp service is not configured or not up and running.

user@login> dwstat
Cannot determine gateway via libdws_thin
fatal: Cannot find a valid api host to connect to or no config file found.
Fix: Ensure that the DataWarp service is up and running.

2. Both commands fail if the dws module is not loaded.

user@login> dwstat
If 'dwstat' is not a typo you can use command-not-found to lookup the package
that contains it, like this:
cnf dwstat
Fix: load the module and try again.

user@login> module load dws
> dwstat
 pool units quantity free gran
 wlm_pool bytes 53.12TiB 16.74TiB 1GiB

3. Both commands fail if the DataWarp scheduler daemon goes offline.

user@login> dwstat
cannot communicate with dwsd daemon at sdb-hostname port 2015
[Errno 111] Connection refused

TIP:

One reason the scheduler daemon dwsd may go offline is if DataWarp state files are upgraded such
that the DWS is not backwards compatible with any state file from the previous release. This should
only be a concern immediately following an upgrade.

Fix: A backup of the most recent state file prior to upgrade must be restored to the upgraded format.
For details, see Back Up and Restore DataWarp State Data on page 100.

4. Both commands fail when SSL certificate verification fails.

Troubleshooting

S2564 119

user@login> dwstat all
Connecting to https://c1-0c0s0n2:81 yielded fatal error:
[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)

TIP: One reason SSL certification may fail is if SMW HA was recently installed on a system already
running DataWarp. The installation creates a new certificate chain, thereby invalidating any client
certificates that were generated by the prior non-HA installation. To remedy, the host certificates must
be re-created. See XC™ Series SMW HA Installation Guide (S-0044).

5. Both commands fail if the DataWarp configuration option allow_dws_cli_from_computes is set to false
and one of the following is true:

● the command is executed from a batch script

● the command is executed from a compute node

Both commands output an error message similar to the following:

Connecting to https://dwrest-nodename yielded fatal error:
[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)
Fix: to have this functionality, the system administrator must change the configuration setting and restart
DataWarp.

6. Both commands fail when there is a MUNGE authentication issue.

user@login> dwstat
You must be authenticated to request this resource.
Fix: DWS components depend on MUNGE authentication, which requires client/server clock times to be in
sync (within 120 seconds). This message may indicate that the time discrepancy between the client and
server node exceeded the threshold. Check client/server clock times, and sync if necessary. There is no need
to restart any services.

7. Depending on the options and actions invoked, dwcli can fail when dwmd is not functional.

user@login> dwcli stage in -c 1 -s 1 --backing-path /etc/lvm/ --dir /test
cannot communicate with backend dwmd daemon at datawarp port 49214
[Errno 111] Connection refused
Fix: If the DataWarp service is up and running, attempt to start dwmd.

smw# systemctl start dwmd

9.5 Dispatch Requests
The DataWarp scheduler daemon, dwsd, is designed to dispatch requests to the dwmd processes as soon as
there is work for the dwmd processes to perform. If the dwsd gets confused or has a bug, it may fail to dispatch a
request at the appropriate time. If this is suspected, send SIGUSR1 to the dwsd process on the sdb node, forcing
it to look for tasks to perform.

sdb# kill -USR1 $(</var/opt/cray/dws/dwsd.pid)
sdb# tail -6 /var/opt/cray/dws/log/dwsd.log
2017-05-17 15:24:05 ========== Event on fd 4
2017-05-17 15:24:05 Caught signal User defined signal 1
2017-05-17 15:24:05 Alerting the task manager to wake up
2017-05-17 15:24:05 ========== Event on fd 7

Troubleshooting

S2564 120

2017-05-17 15:24:05 Finding tasks to spawn
2017-05-17 15:24:05 Nothing can be done right now
More likely than not, the dwsd cannot yet perform the action in question. Check if any nodes are not online
(dwstat nodes) and if all prerequisites to the action are met. For example, the dwsd will not dispatch a request
to create a configuration until after the corresponding instance has been created.

9.6 Stage In or Out Fails When Transferring a Large Number of Files
The stage in and stage out operations associated with DataWarp scratch configurations have default timeout
settings that are configured in both the NGINX webserver and the dwrest application runner, Gunicorn. If the
staging of a large number of files fails, the default settings may need increasing. The following symptoms may
indicate that timeouts have been hit:

● Stage in of a directory generates error 404 and job becomes JobHeldAdmin
● HTTP 500 errors appear in the NGINX logs (API gateway:/var/log/nginx/access.log, error.log)

● WLM user receives a stage in or out failure after dwrest is forcibly restarted

The default timeout settings (in seconds) are as follows:

● NGINX proxy_read_timeout: 645

● dwrestgun timeout: 600

The disparity between the timeouts is due to a 30 second grace period with a 15 second buffer when data is
actively transferred back to clients.

TIP: Maintain at least a 30 second buffer for the NGINX timeout when modifying these default values.

These default values routinely allow for 3,000 to 10,000 files to stage in or out each minute with the transfer of
100,000 files typically not triggering the timeout. This is a general heuristic, and Cray recommends adjusting
these timeouts based on both the worst-case anticipated load and stage in/out performance measurements from
the system.

Modify the Default Settings
The following is an overview of the procedure to modify the NGINX and dwrest timeout settings.

1. Create a site-local Ansible play in smw:/var/opt/cray/imps/config/sets/configset/ansible to
modify the default timeout setting for NGINX, a third-party package not directly affected by the Cray system
configurator. Set numsecs as desired.

Datawarp site local play.
- name: Datawarp site local
 hosts: localhost
 roles:
 vars:
 run_after:
 - early
 - dws

 tasks:
 - name: fixup dwrest.conf
 lineinfile: >
 dest=/etc/nginx/conf.d/dwrest.conf
 regexp="^#?\s*proxy_read_timeout="
 line=" proxy_read_timeout=numsecs"
 when: not ansible_local.cray_system.in_init and

Troubleshooting

S2564 121

 ansible_local.cray_system.hostid in cray_dws.settings.service.data.api_gateway_nodes

 - name: restart nginx
 service: name=nginx state=restarted
 when: not ansible_local.cray_system.in_init and
 ansible_local.cray_system.hostid in cray_dws.settings.service.data.api_gateway_nodes

2. Follow the procedure in Modify DWS Advanced Settings on page 92 to modify the default dwrestgun setting:
timeout and to activate the changes and run the Ansible play.

IMPORTANT: Use the format timeout=secs if defining it for the first time; that is, if it is a non-
displayed setting (as explained in the procedure).

9.7 Staging Failure Might be Caused by Insufficient Space
A #DW stage_in or #DW stage_out job script request can fail if there is insufficient space to complete the
request. If a user reports a hung job or that a stage in/out request has failed, it could be due to insufficient space
to fulfill the request. If this occurs, the job goes into a hold state and an error message is written to the dwmd log
file on the SMW.

DataWarp Stage Out Failure
At the end of a batch job, the DWS transitions any files that are marked for deferred stage out to actually staging
out. If there is insufficient space in the PFS to accommodate the data, the #DW stage_out command fails.
Output from dwcli stage query will be similar to the following:

> dwcli stage query -s $sid -c $cid -f /demo
 path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/demo /tmp/demo 1 - - - - - 1 -
Additionally, a message similar to:

__udwfs_activate_deferred_stage failed: -28

will be written to smw:/var/opt/cray/log/$PARTITION-current/dws/dwmd-$DATE.

If the DataWarp session, configuration, and instance do not expire, then the job and all of its DataWarp resources
will remain until the system fails or an administrator intervenes.

When sufficient space is available, the stage out request can be submitted manually. Monitor the PFS to validate
that it has enough space to complete the request. Cray also recommends validating that enough inodes are
available, although this is much less likely to occur.

> df /pfs_mount; df -hi /pfs_mount
When sufficient space is available, manually resubmit the staging request via dwcli stage out. For example:

> dwcli stage out --configuration $configuration --session $session \
--backing-path /pfs/path --dir /dwfs/dir
After the data is staged out, either the user or an administrator must remove the WLM job following the WLM-
specific procedures.

Troubleshooting

S2564 122

DataWarp Stage In Failure
A #DW stage_in request will fail if the DataWarp instance requested is not large enough for the amount of data
being transferred. If this happens output from dwcli stage query will be similar to the following:

> dwcli stage query -s $sid -c $cid -f /demo
 path backing-path nss ->c ->q ->f <-c <-q <-f <-m
/demo /tmp/demo 1 - - 1 - - - -
and a message similar to:

__udwfs_activate_deferred_stage failed: -28

will be written to sdb:/var/opt/cray/dws/log/dwsd.log.

The user or an administrator must remove the WLM job following the WLM-specific procedures, after which the
user can resubmit the job with a DataWarp allocation large enough to cover the requirements of files needing to
be staged in.

9.8 Memory Swapping Caveats
When swapping is enabled, CLE uses disk space to augment RAM. This may allow programs that would
otherwise not fit within RAM, or even those that would fit, to run more efficiently by allowing CLE to keep the most
frequently used memory contents in RAM. Swapping is used for memory that is not backed by a file, for example,
heap allocations, program data and bss segments, or anonymous memory mapped by mmap().

However, not all programs reap the same benefits when swapping is enabled. Swapping primarily benefits
applications that do not use the communication runtime. Some operations and performance optimizations prevent
memory from being swapped. For example, I/O operations usually prevent the memory that contains the I/O
buffer from being swapped while the I/O is being performed. This includes file I/O and network I/O. When the I/O
operation is complete, the memory is generally free to be swapped.

Additionally, hugepages cannot be swapped. Hugepages are used to improve the performance of network codes.
They are automatically used by the programming environment runtime for some data structures described in the
table. They are also used for application memory when one of the Cray hugepages modules is loaded (see the
intro_hugepages(1) man page).

Many parallel programming models also prevent some amount of memory from being swapped. The restrictions
frequently stem from performance optimizations and the use of network I/O. The table Swapping restrictions by
parallel programming model on page 123 summarizes the programming models and their operations, using
default settings, that prevent swapping.

Table 3. Swapping restrictions by parallel programming model

Parallel Programming Model Operations that Restrict Swapping

MPI ● Internal MPI buffers used for eager messages and small
message mailboxes. Allocated during MPI_Init() or program
execution and released during MPI_Finalize().

● User buffers for large off-node transfers. During the transfer, and
while in-use by the MPI buffer cache.

Troubleshooting

S2564 123

Parallel Programming Model Operations that Restrict Swapping

● User buffers for large on-node transfers. During the transfer, and
while in-use by the MPI buffer cache.

DMAPP and SHMEM ● Program data, bss and symmetric heap: during the entire
program execution

● Buffers for transfers: during the transfer

PGAS Program data, bss, often the stack, private and shared heap: during
the entire program execution

9.9 Old Nodes in dwstat Output
The DataWarp Service (DWS) learns about node existence from two sources:

1. Heartbeat registrations between the dwsd process and the dwmd processes

2. Hostnames provided by workload managers as users are granted access to compute nodes as part of their
batch jobs

The dwsd process on the sdb node stores the DWS state in its state file and controls the information displayed by
dwstat nodes. On dwsd process restart, dwsd removes a node from its state file if the node meets the
following criteria:

1. the node is not in a pool

2. there are no instances on the node

3. there are no activations on the node

4. the node does not belong to a session

If a node lingers in the dwstat nodes output longer than expected, verify the above criterion are met, and then
restart the dwsd process on the sdb node.

sdb# systemctl restart dwsd

Troubleshooting

S2564 124

10 Supplemental Information

10.1 Terminology
The following diagram shows the relationship between the majority of the DataWarp service terminology using
Crow's foot notation. A session can have 0 or more instances, and an instance must belong to only one
session. An instance can have 0 or more configurations, but a configuration must belong to only one instance. A
registration belongs to only one configuration and only one session. Sessions and configurations can have 0 or
more registrations. An activation must belong to only one configuration, registration and session. A configuration
can have 0 or more activations. A registration is used by 0 or no activations. A session can have 0 or more
activations.

Figure 13. DataWarp Component Relationships

session

instance

configuration

registration

activation

Activation An object that represents making a DataWarp configuration available to one or more client
nodes, e.g., creating a mount point.

Client Node A compute node on which a configuration is activated; that is, where a DVS client mount
point is created. Client nodes have direct network connectivity to all DataWarp server nodes.
At least one parallel file system (PFS) is mounted on a client node.

Configuration A configuration represents a way to use the DataWarp space.

Fragment A piece of an instance as it exists on a DataWarp service node.

The following diagram uses Crow's foot notation to illustrate the relationship between an
instance-fragment and a configuration-namespace. One instance has one or more
fragments; a fragment can belong to only one instance. A configuration has 0 or more
namespaces; a namespace can belong to only one configuration.

Supplemental Information

S2564 125

Figure 14. Instance/Fragment ↔ Configuration/Namespace Relationship

instance configuration

fragment namespace

Instance A specific subset of the storage space comprised of DataWarp fragments, where no two
fragments exist on the same node. An instance is essentially raw space until there exists at
least one DataWarp instance configuration that specifies how the space is to be used and
accessed.

DataWarp
Service

The DataWarp Service (DWS) manages access and configuration of DataWarp instances in
response to requests from a workload manager (WLM) or a user.

Fragment A piece of an instance as it exists on a DataWarp service node

Job Instance A DataWarp instance whose lifetime matches that of a batch job and is only accessible to
the batch job because the public attribute is not set.

Namespace A piece of a scratch configuration; think of it as a directory on a file system.

Node A DataWarp service node (with SSDs) or a compute node (without SSDs). Nodes with space
are server nodes; nodes without space are client nodes.

Persistent
Instance

A DataWarp instance whose lifetime matches that of possibly multiple batch jobs and may
be accessed by multiple user simultaneously because the public attribute is set.

Pool Groups server nodes together so that requests for capacity (instance requests) refer to a
pool rather than a bunch of nodes. Each pool has an overall quantity (maximum configured
space), a granularity of allocation, and a unit type. The units are either bytes or nodes
(currently only bytes are supported). Nodes that host storage capacity belong to at most one
pool.

Registration A known usage of a configuration by a session.

Server Node An IO service blade that contains two SSDs and has network connectivity to the PFS.

Session An intagible object (i.e., not visible to the application, job, or user) used to track interactions
with the DWS; typically maps to a batch job.

10.2 Prefixes for Binary and Decimal Multiples
The International System of Units (SI) prefixes and symbols (e.g., kilo-, Mega-, Giga-) are often used
interchangeably (and incorrectly) for decimal and binary values. This misuse not only causes confusion and
errors, but the errors compound as the numbers increase. In terms of storage, this can cause significant
problems. For example, consider that a kilobyte (103) of data is only 24 bytes less than 210 bytes of data.
Although this difference may be of little consequence, the table below demonstrates how the differences increase
and become significant.

Supplemental Information

S2564 126

To alleviate the confusion, the International Electrotechnical Commission (IEC) adopted a standard of prefixes for
binary multiples for use in information technology. The table below compares the SI and IEC prefixes, symbols,
and values.

SI decimal vs IEC binary prefixes for multiples

SI decimal standard IEC binary standard

Prefix (Symbol) Power Value Value Power Prefix (Symbol)

kilo- (kB) 103 1000 1024 210 kibi- (KiB)

mega- (MB) 106 1000000 1048576 220 mebi- (MiB)

giga- (GB) 109 1000000000 1073741824 230 gibi- (GiB)

tera- (TB) 1012 1000000000000 1099511627776 240 tebi- (TiB)

peta- (PB) 1015 1000000000000000 1125899906842624 250 pebi- (PiB)

exa- (EB) 1018 1000000000000000000 1152921504606846976 260 exbi- (EiB)

zetta- (ZB) 1021 1000000000000000000000 1180591620717411303424 270 zebi- (ZiB)

yotta- (YB) 1024 1000000000000000000000000 1208925819614629174706176 280 yobi- (YiB)

For a detailed explanation, including a historical perspective, see http://physics.nist.gov/cuu/Units/binary.html.

Supplemental Information

S2564 127

http://physics.nist.gov/cuu/Units/binary.html

	Contents
	1 About the DataWarp Installation and Administration Guide
	2 About DataWarp
	2.1 DataWarp Use Cases
	2.2 DataWarp Limitations
	2.3 Overview of the DataWarp Process for Scratch Configurations
	2.4 Overview of the DataWarp Process for Cache Configurations
	2.5 Identify DataWarp Server Nodes

	3 Initial DataWarp Service (DWS) Installation
	3.1 Create a New Service Node Image for Fusion IO SSDs
	3.2 Update cray_node_groups for DataWarp
	3.3 Ensure that cray_ipforward, cray_lnet, cray_munge, and cray_dw_wlm are Enabled
	3.4 Set Up DataWarp Persistent Storage
	3.5 Configure the cray_dws Worksheet
	3.6 Enable and Configure Accounting

	4 DataWarp Update Following CLE Update
	4.1 Recover After a Backwards-incompatible Update
	4.2 Verify DataWarp Service Update
	4.3 Verify Settings of Required Services

	5 DataWarp Concepts
	5.1 Instances and Fragments - a Detailed Look
	5.2 Storage Pools
	5.2.1 Why Does the Free Capacity Displayed by dwstat pools not Match the Quantity Capacity?

	5.3 Registrations

	6 Advanced DataWarp Concepts
	6.1 DVS Client-side Caching can Improve DataWarp Performance
	6.1.1 Client-side Caching Options

	6.2 DataWarp Configuration Files and Advanced Settings
	6.2.1 The dwsd Configuration File
	6.2.2 The dwmd Configuration File
	6.2.3 The dwrest Configuration File
	6.2.4 The dwrestgun Configuration File

	6.3 DataWarp Accounting
	6.3.1 The dws Data Plugin
	6.3.2 The dws_job_server Data Plugin
	6.3.3 The dws_server Data Plugin

	7 Post-boot Configuration
	7.1 Over-provision an Intel P3608 SSD
	7.2 Update Fusion ioMemory Firmware
	7.3 Initialize an SSD
	7.4 Configure and Create a Storage Pool
	7.4.1 Storage Pool Configuration Guidelines
	7.4.2 Create a Storage Pool

	7.5 Assign Nodes to a Storage Pool
	7.6 Verify the DataWarp Configuration

	8 DataWarp Administrator Tasks
	8.1 Check the Status of DataWarp Resources
	8.2 Check SSD Health and Remaining Life
	8.3 Remove Nodes From a Storage Pool
	8.4 Change a Node's Pool
	8.5 Create a Storage Pool Comprised of Non-homogeneous SSD Hardware
	8.6 Replace a Blown Fuse
	8.7 Drain Storage Nodes
	8.8 Do Not Quiesce a DataWarp Node
	8.9 Examples Using dwcli
	8.10 Manage Access to DataWarp Nodes
	8.11 Flash NVMe SSD Firmware
	8.12 Modify DWS Advanced Settings
	8.13 Configure SSD Protection Settings
	8.14 Back Up and Restore DataWarp State Data
	8.15 In the Event of DataWarp Database Corruption
	8.16 Enable the Node Health Checker DataWarp Plugin (if Necessary)
	8.17 Deconfigure DataWarp
	8.18 Prepare to Replace a DataWarp SSD
	8.19 Complete the Replacement of an SSD Node
	8.20 The dwpoolhelp Command

	9 Troubleshooting
	9.1 Where are the Log Files?
	9.2 What Does this Log Message Mean?
	9.2.1 Low SSD Life Remaining
	9.2.2 SSD Protection Limits Exceeded
	9.2.3 dwmd Daemon Triggers a Crash
	9.2.4 MUNGE Authentication Error

	9.3 SEC Notification when 90% of SSD Life Expectancy is Reached
	9.4 Why Do dwcli and dwstat Fail?
	9.5 Dispatch Requests
	9.6 Stage In or Out Fails When Transferring a Large Number of Files
	9.7 Staging Failure Might be Caused by Insufficient Space
	9.8 Memory Swapping Caveats
	9.9 Old Nodes in dwstat Output

	10 Supplemental Information
	10.1 Terminology
	10.2 Prefixes for Binary and Decimal Multiples

