
XC™ Series System Administration Guide

(CLE 6.0.UP06)

S-2393 Rev A

Contents
1 About XC™ Series System Administration Guide (S-2393)...9

2 About the Cray Management System...13

2.1 About the Image Management and Provisioning System (IMPS)...14

2.1.1 Where to Place the Root File System: tmpfs versus netroot..18

2.1.2 About the Admin Image..19

2.1.3 About Image Pushes: push versus sqpush..20

2.2 About the Node Image Mapping Service (NIMS)..20

2.3 About Cray Scalable Services...21

2.4 About Service Nodes...23

2.5 About Boot Automation Files...24

3 Manage the System..26

3.1 Connect the SMW to the Console of a Service Node..26

3.2 Configure Remote Access to SMW with VNC...26

3.3 About the Integrated Dell Remote Access Controller (iDRAC)..27

3.3.1 Change the Default iDRAC Password..27

3.3.2 Dell R815 SMW: Change the BIOS and iDRAC Settings...27

3.3.3 Dell R630 SMW: Change the BIOS and iDRAC Settings...35

3.3.4 Use the iDRAC...44

3.4 Initialize zsh for Non-interactive Jobs..45

3.5 Hardware Component Identification..46

3.5.1 Physical ID for Cray XC Series Systems..46

3.5.2 Node ID (NID) on Cray XC Series Systems...49

3.5.3 Extended Node ID (XNID)..50

3.5.4 Topology Class...50

3.6 Boot the System..50

3.6.1 Run Tests after Boot is Complete...51

3.6.2 Manually Boot the Boot Node and Service Nodes...52

3.6.3 Manually Boot the Compute Nodes..53

3.6.4 Reboot a Single Compute Node...54

3.6.5 Reboot Login or Network Nodes..54

3.6.6 Reboot Many Nodes...55

3.7 Boot the SMW in Rescue Mode..55

3.8 Debug Ansible Failures During System Boot..56

3.8.1 Examine System Logs..56

3.8.2 Look Up Configuration Details..57

Contents

S2393 2

3.8.3 Examine Ansible Changelogs..58

3.8.4 Debug Ansible Failures in init...60

3.8.5 Examine System Dumps..61

3.9 Log on to the Boot Node..61

3.10 Display Boot Configuration Information...62

3.11 Update the Boot Configuration..62

3.12 Display the Format of the SDB attributes Table...62

3.13 Update SDB Tables...63

3.14 Free Up Disk Space in the btrfs File System...64

3.15 Boot a Node or Set of Nodes Using the xtcli boot Command..65

3.16 Increase the Boot Manager Timeout Value...65

3.17 Reboot Controllers of a Cabinet or Blade..66

3.18 Bounce Blades Repeatedly Until All Blades Succeed...66

3.19 Flash NVMe SSD Firmware..67

3.20 Flash the Intel P3608 Firmware...69

3.21 Request and Display System Routing...70

3.22 Initiate a Network Discovery Process..71

3.23 Configure IP Routes..71

3.24 System Component States..72

3.25 Configure Current System Timezone..74

3.26 View and Change the Status of Nodes..76

3.27 Perform Parallel Operations on Compute Nodes..77

3.28 Perform Parallel Operations on Service Nodes...78

3.29 Find Node Information...78

3.30 Dynamic Fan Speed Control...80

3.30.1 Enable Dynamic Fan Speed Control..80

3.30.2 Configure and Validate Dynamic Cooling Control Variables...81

3.31 Disable Hardware Components...83

3.32 Enable Hardware Components...84

3.33 Check Current State of Compute Node SSDs...85

3.34 Set Hardware Components to EMPTY...85

3.35 Lock Hardware Components...85

3.36 Unlock Hardware Components..86

3.37 Over-provision an Intel P3608 SSD...86

3.38 Modify BIOS Parameters...89

3.39 Increase File System Size...90

3.40 Add New Hardware to a System...92

3.41 Add a New Disk to a Volume Group in a Storage Set...96

Contents

S2393 3

3.42 Reboot Controllers of a Cabinet or Blade..98

3.43 Bounce Blades Repeatedly Until All Blades Succeed...98

3.44 Shut Down the System Using the Automation File..99

3.45 The xtshutdown Command..99

3.45.1 Shut Down Service Nodes...100

3.46 Shut Down the System or Part of the System Using the xtcli shutdown Command............................100

3.47 Stop System Components...101

3.48 Restart a Blade or Cabinet..103

3.49 Abort Active Sessions on the HSS Boot Manager...104

3.50 Display and Change Software System Status...104

3.50.1 View and Change the Status of Nodes...105

3.50.2 Find Node Information..106

3.51 Display and Change Hardware System Status...107

3.51.1 Generate HSS Physical IDs...107

3.51.2 Disable Hardware Components...108

3.51.3 Enable Hardware Components..108

3.51.4 Set Hardware Components to EMPTY..109

3.51.5 Lock Hardware Components..109

3.51.6 Unlock Hardware Components..110

3.52 Revert a System to an Earlier CLE 6.0 Release...110

3.52.1 Reset All Hardware Components to Run SMW/HSS Compatible Software...........................114

3.53 Set the Turbo Boost Limit..115

3.54 Perform Parallel Operations on Service Nodes...117

3.55 Perform Parallel Operations on Compute Nodes..117

3.56 xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync............117

3.57 Reduce Impact of Btrfs Periodic Maintenance on SMW Performance ...118

3.58 Power-cycle a Component to Handle Bus Errors..119

3.59 When a Component Fails..119

3.60 Capture and Analyze System-level and Node-level Dumps..119

3.60.1 Configure xtdumpsys for Systems Using passwordless ssh..120

3.60.2 cdump and crash Utilities for Node Memory Dump and Analysis..121

3.60.3 Dump and Reboot Nodes Automatically..121

3.60.4 The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File...122

3.60.5 The dumpd-dbadmin Tool...123

3.60.6 The dumpd-request Tool..124

3.61 Collect Debug Information From Hung Nodes Using the xtnmi Command...124

3.62 Set or Change the HSS Data Store (MariaDB) Root Password..124

3.63 Recover from a Corrupt or Missing HSS Database...126

Contents

S2393 4

3.63.1 Restore the HSS Database from a Backup..126

3.63.2 Re-create HSS Database File System After Corruption...128

3.64 Troubleshoot Temperature Warnings Reported in an End Cabinet...133

3.65 Recover from SMW R630 Boot Disk Hardware RAIDS Failure...134

3.66 Recover from SMW R815 Boot Disk Software RAID1 Failure..135

3.67 About X.509 Certificates and How to Redistribute Them..137

3.67.1 Update X.509 Host Certificate after SMW Host Name Change...143

4 Manage System Access...145

4.1 Change Account Passwords on the SMW...145

4.2 Change Account Passwords on CLE Nodes...145

5 Configure the System...147

5.1 Cray XC System Configuration..147

5.1.1 About the Configurator...148

5.1.2 Create a Config Set..150

5.1.3 Update a Config Set...154

5.1.4 Validate a Config Set and List Validation Rules..159

5.1.5 Config Set Create/Update Process..161

5.1.6 Tips for Configurator Interactive Sessions..164

5.1.7 cfgset Troubleshooting Tips..168

5.2 About Snapshots and Config Set Backups..170

5.3 Update cray_sysenv Worksheet..171

5.4 Prepare and Update the Global Config Set...172

5.5 About Simple Sync..182

5.5.1 Configure Files for Cray Simple Sync Service...187

5.6 About Node Groups...188

5.7 About Config Set Caching...192

5.7.1 Add Kernel Watch Descriptors to Improve Config Set Caching Performance..........................193

5.8 Change a File on a Compute Node...194

5.8.1 Use an Ansible Play to Change a File on a Compute Node...195

5.8.2 Use a Custom Image Recipe to Change a File on a Compute Node.......................................197

5.9 About Custom Ansible Plays...201

5.9.1 Control a Service on Specific Nodes at Boot Time...202

5.9.2 Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script)..............202

5.10 About Secure Shell Configuration...204

6 Monitor the System...207

6.1 Manage Log Files Using CLE and HSS Commands...207

6.2 Check the Status of System Components...208

6.3 Check the Status of Compute Processors...209

Contents

S2393 5

6.4 Monitor the System with the System Environmental Data Collector (SEDC)..210

6.5 Check Cabinet Cooling Parameters for an Air-Cooled XC System...210

6.6 Monitor the Health of PCIe Channels..211

6.7 Examine Activity on the HSS Boot Manager...212

6.8 Poll a Response from an HSS Daemon, Manager, or the Event Router...212

6.9 Validate the Health of the HSS..212

6.10 Monitor Event Router Daemon (erd) Events...213

6.11 Monitor Node Console Messages...213

6.12 View Component Alert, Warning, and Location History...214

6.13 Display Component Information..214

6.14 Display Alerts and Warnings..216

6.15 Display System Network Congestion Protection Information..216

6.16 Clear Component Flags...216

6.17 Display Error Codes..217

6.18 Cray Lightweight Log Manager (LLM)...217

6.19 Debug Logging using debugraw and debugmax...218

6.20 cdump and crash Utilities for Node Memory Dump and Analysis..218

6.21 Resource Utilization Reporting..218

6.21.1 Overview of RUR Configuration...219

6.21.2 Enable and Configure RUR..219

6.21.3 Configure the cray_alps Service for Per-application RUR...226

6.21.4 Configure a WLM to Enable Per-job RUR..227

6.21.5 Refresh Nodes with Updated Configuration Data..228

6.21.6 Enable/Disable Plugins..229

6.21.7 The dws Data Plugin..231

6.21.8 The dws_job_server Data Plugin...232

6.21.9 The dws_server Data Plugin..234

6.21.10 The energy Data Plugin..235

6.21.11 The gpustat Data Plugin...238

6.21.12 The memory Data Plugin..238

6.21.13 The nodeuse Data Plugin...240

6.21.14 The taskstats Data Plugin..240

6.21.15 The timestamp Data Plugin..243

6.21.16 The file Output Plugin...243

6.21.17 The llm Output Plugin...243

6.21.18 The user Output Plugin..244

6.21.19 The database Example Output Plugin..244

6.21.20 Create Custom RUR Data Plugins...245

Contents

S2393 6

6.21.21 Create Custom RUR Output Plugins..247

6.21.22 Implement a Site-Written RUR Plugin..247

6.21.23 Additional Plugin Examples..250

6.21.24 Application Completion Reporting (ACR) to RUR Migration Tips...253

6.21.25 Application Resource Utilization (ARU) to RUR Migration Tips..254

6.21.26 CSA to RUR Migration Tips..255

6.22 Linux System Accounting Tips...256

7 Modify an Installed System...258

7.1 Configure Boot Node Failover...258

7.2 Perform Boot Node Failback...261

7.3 Disable Boot Node Failover...262

7.4 Configure SDB Node Failover...264

7.5 Perform SDB Node Failback...268

7.6 Disable SDB Node Failover...268

7.7 Set Up Basic Realm-Specific IP Configuration..270

7.8 Set Up Advanced RSIP Configuration on a Booted System...271

7.8.1 Update cray_net Worksheet for an Advanced RSIP Configuration..274

7.9 Configure a VLAN, Bonded, or Bonded VLAN Interface...276

7.10 The Node ARP Management Daemon (rca_arpd)..280

7.11 Create Logical Machines for Cray XC Series Systems...281

7.12 Configure a Logical Machine...281

7.13 Boot a Logical Machine...282

7.14 Boot the System Using Another Snapshot..282

7.15 Enable Write Cache on SMW Boot RAID Volume...284

7.16 Configure an NFS client to Mount the Exported Lustre File System...285

7.17 Define Bind Mount Points Within a Config Set..286

7.18 Enable Multipath on an Installed XC System..287

7.19 Change Lustre Versions..294

7.20 Install Third-Party Software with a Custom Image Recipe..297

7.21 Remove an Undesired RPM After Building From a Cray Recipe..305

7.22 Repurpose a Compute or Service Node..307

7.23 Configure Service Node MAMU..308

7.23.1 Configure MAMU Nodes on the Cray XC System..309

7.23.2 Configure PBS for MAMU..317

7.23.3 Configure Moab/TORQUE for MAMU..322

7.24 Reconfigure SSD-endowed Compute Nodes Dynamically ...324

7.25 Node Attributes..325

7.26 View and Temporarily Set Node Attributes..325

Contents

S2393 7

7.27 The XTAdmin Database segment Table..326

7.28 Apply Rolling Patches to Compute Nodes with cnat..327

7.29 Apply Live Updates to Nodes..328

7.30 Update the Physical System Configuration While the System is Booted..329

7.30.1 Reuse One or More Previously-failed HSN Links..330

7.30.2 Add or Remove High-speed Network Cables from Service...330

7.30.3 Remove a Compute Blade from Service While the System is Running.................................331

7.30.4 Return a Compute Blade into Service..332

7.30.5 Update Config Set Information on Booted Nodes..333

7.31 State Manager LLM Logging...334

7.32 Boot Manager LLM Logging..334

7.33 Configure Node Health Checker Tests..335

7.33.1 Guidance for the Accelerator Test..338

7.33.2 Guidance for the Application Exited Check and Apinit Ping Tests ...338

7.33.3 Guidance for the Filesystem Test...339

7.33.4 Guidance for the Hugepages Test..339

7.33.5 Guidance for the NHC Lustre File System Test..340

7.33.6 NHC Control Variables...340

7.33.7 Global Configuration Variables that Affect all NHC Tests...341

7.33.8 Standard Variables that Affect Individual NHC Tests..342

7.33.9 NHC Suspect Mode..344

7.33.10 NHC Messages..345

7.33.11 Recover from a Login Node Crash when a Login Node will not be Rebooted.....................345

7.33.12 Restore Compute Nodes Marked admindown by NHC...347

Contents

S2393 8

1 About XC™ Series System Administration Guide
(S-2393)

XC™ Series System Administration Guide (CLE 6.0.UP06) S-2393 Rev A, published 27 March 2018, supersedes
XC™ Series System Administration Guide (CLE 6.0.UP06) S-2393, which was published 01 March 2018.

Scope and Audience
The XC™ Series System Administration Guide (S-2393) provides information about administering Cray XC™
Series computers running Cray System Management Workstation (SMW) and Cray Linux Environment (CLE)
software.

This publication does not include procedures for installing software on a Cray XC Series system; for those, see
XC™ Series Software Installation and Configuration Guide (S-2559).

This publication is intended for experienced Cray system administrators. It assumes some familiarity with
standard Linux and open source tools (e.g., zypper/yum for RPMs, Ansible, YAML/JSON configuration data).

CLE 6.0.UP06 / SMW 8.0.UP06 Release
XC™ Series System Administration Guide (CLE 6.0.UP06) S-2393 supports Cray software release CLE
6.0.UP06 / SMW 8.0.UP06 for Cray XC™ Series systems, released on 01 March 2018.

New in Revision A

● A new procedure checks and sets the cooling parameters for an air-cooled XC system. This must be done
after any fresh install, software update, or while customizing a preinstalled XC-AC system. See Check
Cabinet Cooling Parameters for an Air-Cooled XC System on page 210.

● Errors have been corrected in the following procedures:

○ Set Up Advanced RSIP Configuration on a Booted System on page 271

○ Update cray_net Worksheet for an Advanced RSIP Configuration on page 274

● Various minor corrections and editorial changes were made.

Changed in CLE 6.0.UP06 / SMW 8.0.UP06

● Installation, packaging, and IMPS image tools have been updated to support building images targeting the
AArch64 architecture. The changes are reflected in several procedures and topics in this publication.

● A new procedure has been added: Revert a System to an Earlier CLE 6.0 Release on page 110

● A new procedure has been added: Initialize zsh for Non-interactive Jobs on page 45

● New cmap behavior regarding how the active NIMS map is set is described in About the Node Image
Mapping Service (NIMS) on page 20.

● A note has been added to several procedures to the effect that the global and CLE config sets must be
updated after any change to hardware or after repurposing nodes.

About XC™ Series System Administration Guide (S-2393)

S2393 9

● Various minor corrections and editorial changes were made.

Table 1. Record of Revision

Publication Title Date Release

XC™ Series System Administration Guide
(CLE 6.0.UP06) S-2393 Rev A

27 Mar 2018 CLE 6.0.UP06 /
SMW 8.0.UP06

XC™ Series System Administration Guide
(CLE 6.0.UP06) S-2393

01 Mar 2018 CLE 6.0.UP06 /
SMW 8.0.UP06

XC™ Series System Administration Guide
(CLE 6.0.UP05) S-2393

05 Oct 2017 CLE 6.0.UP05 /
SMW 8.0.UP05

XC™ Series System Administration Guide
(CLE 6.0.UP04) S-2393

22 Jun 2017 CLE 6.0.UP04 /
SMW 8.0.UP04

XC™ Series System Administration Guide
(CLE 6.0.UP03) S-2393 Rev A

04 May 2017 CLE 6.0.UP03 /
SMW 8.0.UP03

XC™ Series System Administration Guide
(CLE 6.0.UP03) S-2393

16 Feb 2017 CLE 6.0.UP03 /
SMW 8.0.UP03

XC™ Series System Administration Guide
(CLE 6.0.UP02) S-2393

03 Nov 2016 CLE 6.0.UP02 /
SMW 8.0.UP02

XC™ Series System Administration Guide
(CLE 6.0.UP01) S-2393

20 Jun 2016 CLE 6.0.UP01 /
SMW 8.0.UP01

CLE XC System Administration Guide S-2393-5204xc 24 Sep 2015 CLE 5.2.UP04 /
SMW 7.2.UP04

Manage System Software for the Cray Linux Environment S-2393-5203 Apr 2015 CLE 5.2.UP03 /
SMW 7.2.UP03

Command Prompt Conventions
Host name
and account in
command
prompts

The host name in a command prompt indicates where the command must be run. The account
that must run the command is also indicated in the prompt.

● The root or super-user account always has the # character at the end of the prompt.

● Any non-root account is indicated with account@hostname>. A user account that is
neither root nor crayadm is referred to as user.

smw# Run the command on the SMW as root.

About XC™ Series System Administration Guide (S-2393)

S2393 10

cmc# Run the command on the CMC as root.

sdb# Run the command on the SDB node as root.

crayadm@boot> Run the command on the boot node as the crayadm user.

user@login> Run the command on any login node as any non-root user.

hostname# Run the command on the specified system as root.

user@hostname> Run the command on the specified system as any non-root user.

smw1#
smw2#

For a system configured with the SMW failover feature there are two
SMWs—one in an active role and the other in a passive role. The
SMW that is active at the start of a procedure is smw1. The SMW that
is passive is smw2.

smwactive#
smwpassive#

In some scenarios, the active SMW is smw1 at the start of a
procedure—then the procedure requires a failover to the other SMW.
In this case, the documentation will continue to refer to the formerly
active SMW as smw1, even though smw2 is now the active SMW. If
further clarification is needed in a procedure, the active SMW will be
called smwactive and the passive SMW will be called smwpassive.

Command
prompt inside
chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot
environment on the system.

smw# chroot /path/to/chroot
chroot-smw#

Directory path
in command
prompt

Example prompts do not include the directory path, because long paths can reduce the clarity
of examples. Most of the time, the command can be executed from any directory. When it
matters which directory the command is invoked within, the cd command is used to change
into the directory, and the directory is referenced with a period (.) to indicate the current
directory.

For example, here are actual prompts as they appear on the system:

smw:~ # cd /etc
smw:/etc# cd /var/tmp
smw:/var/tmp# ls ./file
smw:/var/tmp# su - crayadm
crayadm@smw:~> cd /usr/bin
crayadm@smw:/usr/bin> ./command
And here are the same prompts as they appear in this publication:

About XC™ Series System Administration Guide (S-2393)

S2393 11

smw# cd /etc
smw# cd /var/tmp
smw# ls ./file
smw# su - crayadm
crayadm@smw> cd /usr/bin
crayadm@smw> ./command

Typographic Conventions
Monospace Indicates program code, reserved words, library functions, command-line prompts,

screen output, file/path names, key strokes (e.g., Enter and Alt-Ctrl-F), and
other software constructs.

Monospaced Bold Indicates commands that must be entered on a command line or in response to an
interactive prompt.

Oblique or Italics Indicates user-supplied values in commands or syntax definitions.

Proportional Bold Indicates a graphical user interface window or element.

\ (backslash) At the end of a command line, indicates the Linux® shell line continuation character
(lines joined by a backslash are parsed as a single line). Do not type anything after
the backslash or the continuation feature will not work correctly.

Trademarks
The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and
design, SONEXION, Urika-GX, and YARCDATA. The following are trademarks of Cray Inc.: APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI,
NODEKARE. The following system family marks, and associated model number marks, are trademarks of Cray
Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from
LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in
this document are the property of their respective owners.

About XC™ Series System Administration Guide (S-2393)

S2393 12

2 About the Cray Management System
With Cray Linux Environment (CLE) 6.0, Cray introduces a new management system built on these core
principles:

● Separation of configuration data and software content

● Separation of the management infrastructure from the product content

● Modularity

● Prescriptive results

● Scalability

This Cray Management System (CMS) is intended to improve uptime through staging, reduce the risk associated
with updates and changes, and enable users to extend functionality.

The CMS comprises these primary components:

IMPS Image Management and Provisioning System.

IMPS enables sites to manage software content in a prescriptive way. It leverages and extends industry-
standard tools such as zypper and rpm. IMPS is used to create and distribute repository content (RPMs)
and to create and update standard or custom images. Cray provides image recipes for different node
types: service, login, compute, DAL, etc. The image recipes tie together the collections of software
defined in the package collections and the repositories that contain the software. From them, IMPS builds
a list of all the software and repositories referenced, and passes it to zypper or yum, which resolves the
RPM dependencies and installs the software into the specified image root. See the IMPS man page for
more information.

CMF Configuration Management Framework

The CMF is a combination of software and conventions that enable the modular management and
application of configuration. Each application comes with the software needed to configure that
application. All configuration information needed to operate the logical system is stored in a central
repository called a config set. It is made available to every node in the system by means of the IMPS
Distribution System (IDS), a read-only network share. Cray provides a configurator to enable sites to
create, change, or add new configuration information. Configuration for all applications installed in an
image is applied at boot time using cray-ansible, a wrapper that finds all Ansible plays installed on the
system and executes them with Ansible.

NIMS Node Image Mapping Service

NIMS enables site administrators to assign any node or group of nodes any boot image. It also provides a
mechanism for passing additional kernel parameters to the nodes on boot. See the NIMS man page for
more information.

Ansible is installed into each image. During boot, each node runs all Ansible plays, pulling in the configuration
information needed to self-configure ("pull" mode). Ansible is called twice during system boot—once from
initrd /init before Linux has started up (in_init) and once after normal Linux startup with systemd

About the Cray Management System

S2393 13

(multiuser)—to cover both early and run level 3 use cases. Ansible can be run in “push” mode after boot to
support reconfiguration.

2.1 About the Image Management and Provisioning System (IMPS)
The Image Management and Provisioning System (IMPS) allows the system administrator to manage software
content in images. IMPS leverages and extends industry-standard tools such as zypper and yum.

IMPS uses an image recipe to install collections of software (RPMs) into an image root. The image root is used to
create a boot image. Image recipes tie together collections of software defined in the package collections and the
repositories that contain the software. IMPS creates an image root from an image recipe and resolves all RPM
dependencies. When building an image root from a image recipe, IMPS builds any subrecipes and then gathers
all specified packages and package collections and software repositories in the image recipe before generating
the call to the package manager (rpm). After the package manager has created the image root, it may be further
modified by non-RPM-based content if there are post-build directives in the recipe.

Figure 1. Create Bootable Images Using Recipes

The Node Image Mapping Service (NIMS) is responsible for keeping track of which images get booted on which
nodes, what additional kernel parameters to pass to nodes at boot time, and which load file to use within a boot
image. The NIMS map is created during installation and changed when other images are created or when nodes
are added, removed, or change function. The administrator can use NIMS to assign a boot image to any node or
group of nodes. For more information, see About the Node Image Mapping Service (NIMS) on page 20.

IMPS objects include:

Image
recipe

Defines the image name and image contents (software). The recipe can include one or more
packages (RPMs), package collections (logical groupings of RPMs), repositories, and other
recipes (called subrecipes or nested recipes). A recipe can also specify post-boot actions such as
copying files or executing commands using the postbuild_copy and postbuild_chroot
directives.

Custom image recipes can reference remote repositories that are hosted on an external repository
server. For more information, see Install Third-Party Software with a Custom Image Recipe on
page 297.

Location on the SMW: /etc/opt/cray/imps/image_recipes.d/

Image root Directory on the SMW that contains the installed software. IMPS creates an image root from an
image recipe. System administrators can chroot into the image root directory to examine its
contents and the packages (RPMs) that were included to resolve build dependencies.

About the Cray Management System

S2393 14

Location on the SMW: /var/opt/cray/imps/image_roots/

Boot image IMPS creates a boot image (a .cpio file) from an image root by packaging the image root into a
format suitable for booting on a Cray node or eLogin node. Note that a boot image is essentially
unconfigured; the node configuration comes from the config set.

A boot image is the root file system for a node or group of nodes.The Cray XC™ Series root file
system for nodes can either reside in RAM (tmpfs) or be mounted from a network source (netroot),
depending on the type of node. The boot and SDB nodes, all other service nodes (except login
nodes), and all DAL (direct-attached Lustre) nodes must use tmpfs. Compute nodes and login
nodes may use either tmpfs or netroot. For more information, see Where to Place the Root File
System: tmpfs versus netroot on page 18.

Location on the SMW: /var/opt/cray/imps/boot_images/

Package
collection

Logical grouping of RPM packages. A package collection can contain versioned and unversioned
package names, and can include other package collections. (Note that the package collections
installed for CLE are read-only.) Only the top-level packages should be included in a package
collection. The IMPS image creation process takes care of determining package dependencies
and installing them from the defined repositories.

Cray recommends using a package collection because the RPMs can be used in multiple image
types (such as compute and service node images).

Location on the SMW: /etc/opt/cray/imps/package_collections.d/

Repository Logical grouping of RPMs based on operating system distribution. The content of SLES
repositories and CentOS repositories should never be mixed. The installation process creates and
populates the required repositories. System administrators can create their own repositories for
third-party software.

Most operating system and Cray repositories come in pairs (base and updates), such as
sles_12sp3 and sles_12sp3_updates. The updates repository is for future patches and
security updates.

Location on the SMW: /var/opt/cray/repos/

IMPS Commands for Working with Images
These IMPS commands are available for working with recipes, repositories, package collections, and images:

recipe Creates and manages image recipes.

repo Creates and manages repositories.

pkgcoll Creates and manages package collections.

image Creates and manages image roots and boot images.

imgbuilder Calls several IMPS commands so that multiple images can be built as a set with a single
command. This command can also call the NIMS command cnode to assign boot images to
nodes and adjust the netroot kernel parameter for nodes.

The imgbuilder command uses image group configuration information to build boot images.
Image groups are defined in the global config set
in /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml.

About the Cray Management System

S2393 15

For each command, use the list subcommand to display the existing items. Use the -h option to display the
available subcommands and arguments. For more information, see the man pages on the SMW.

Cray-provided Image Recipes
Cray provides read-only image recipes that system administrators can build into bootable images for these node
types: service, compute, admin (for boot and SDB nodes), login, Direct Attached Lustre (DAL), and eLogin. In
addition, administrators can create custom recipes that are based on the read-only recipes.

IMPORTANT: Do not directly modify a Cray-provided image recipe.

The Cray-provided image recipes have names like compute_cle_6.0.up06_sles_12sp3_x86-64_ari. The
name includes the node function (such as compute), Cray product and version (cle_6.0.up06), OS type and
version (sles_12sp3), architecture (x86-64), and network type (ari for the XC system Aries network).

Custom Image Recipes
System administrators can use IMPS commands to create custom image recipes that are based on the Cray-
provided recipes.There are two ways to customize an image recipe:

● Create a new recipe (with recipe create) and add the existing recipe as a subrecipe. Cray recommends
this approach for most images because the recipe will receive updates from patches.

● Clone the Cray-provided recipe (with recipe create --clone) and change the contents. However, the
recipe will not receive modifications from patches. For that reason, Cray does not recommend cloning an
image recipe except for testing purposes.

Local image recipes are stored in the image recipe directory (/etc/opt/cray/imps/image_recipes.d/) in
the file image_recipes.local.json.

For the procedure to create a custom image, see Install Third-Party Software with a Custom Image Recipe on
page 297 and Use a Custom Image Recipe to Change a File on a Compute Node on page 197. For information
on using a custom recipe to remove an undesired RPM, see Remove an Undesired RPM After Building From a
Cray Recipe on page 305.

Format of an Image Recipe
An image recipe is in a JSON file. Note that a single JSON file can contain multiple image recipes. Each image
recipe starts with a name and description (a comment describing the intended use for the image). The remaining
elements in a recipe specify the package collections, packages (RPMs), repositories, and other recipes
(subrecipes). Each item has a rationale (a comment explaining why the item is included in the image). A recipe
can also include post-build actions to copy files and execute commands or scripts in a chroot environment.

An image recipe has the following basic format:

"image_recipe_name": {
 "description": "Example recipe",
 "dist": "SLES12",
 "default-arch": "x86_64",
 "valid-arch": [
 "x86_64",
 "aarch64"
],
 "packages": [...],
 "package_collections": [...],
 ”recipes": [...],

About the Cray Management System

S2393 16

 "repositories": [...],
 "postbuild_chroot": [...],
 "postbuild_copyfiles": [...],
 "version": "2.0.0",
 "metadata": {
 "created": "2017-10-31T13:24:14"
 "history": [
 "2017-10-31T13:26:01: Extended recipes attribute with 1 Recipe."
 ...
]
 }
}

The following example shows the format of a custom image recipe for service nodes that includes a workload
manager (WLM). It includes the Cray-provided recipe as a subrecipe, then specifies post-build actions to copy
WLM files and run the necessary scripts.

"wlm_service": {
 "description": "WLM service node image",
 "dist": "SLES12",
 "default-arch": "x86_64",
 "valid-arch": [
 "x86_64",
 "aarch64"
],
 "packages": [],
 "package_collections": [],
 ”recipes": [
 {
 "name": "service_cle_6.0up06_sles_12_x86-64_ari",
 "rationale": "Start from standard service node recipe"
 }
],
 "repositories": [],
 "postbuild_chroot": [
 "rpm -ivh ${IMPS_POSTBUILD_FILES}/wlm.rpm",
 "${IMPS_POSTBUILD_FILES}/wlm.installer ${IMPS_POSTBUILD_FILES}/
wlm.config"
],
 "postbuild_copyfiles": [
 "/home/crayadm/wlm_install/wlm.rpm",
 "/home/crayadm/wlm_install/wlm.installer",
 "/home/crayadm/wlm_install/wlm.config"
],
 "version": "2.0.0",
 "metadata": {
 "created": "2017-10-31T13:24:14"
 "history": [
 "2017-10-31T13:26:01: Extended recipes attribute with 1 Recipe."
 ...
]
 }
}

When using post-build actions, use postbuild_copy to copy files and directories from a location on the SMW.
Use postbuild_chroot to execute post-build commands or scripts, which run in the chroot environment of
the image root (on the SMW). Use the following environment variables for post-build scripts:

● IMPS_IMAGE_NAME

About the Cray Management System

S2393 17

● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

2.1.1 Where to Place the Root File System: tmpfs versus netroot
The Cray XC™ Series root file system for nodes can either reside in RAM (tmpfs) or be mounted from a network
source (netroot), depending on the type of node. The boot and SDB nodes, all other service nodes (except login
nodes), and all DAL (direct-attached Lustre) nodes must use tmpfs. Compute nodes and login nodes may use
either tmpfs or netroot. Use the information provided here to decide whether to use netroot for some or all
compute and login nodes at this site.

About netroot and Dynamic Shared Objects and Libraries (DSL)
In releases prior to CLE 6.0 / SMW 8.0, the dynamic shared objects and libraries (DSL) feature was optional. It
was necessary for many sites because it enabled both dynamic shared libraries and large network-based images,
which were needed for systems with NVIDIA GPUs and for most production workloads.

In the current release, DSL is supported by default. Note, however, that the DSL feature no longer includes
provision for large network-based images. That capability is now provided by netroot.

● Sites that require large network-based images and additional storage should use netroot.

● Sites using NVIDIA GPUs must use netroot.

Comparison of tmpfs and netroot
tmpfs By default, the root file system on Cray XC™ Series systems resides in the memory resident file

system, tmpfs.

tmpfs has these characteristics and limitations:

● always used for service nodes (except login nodes) and DAL (direct-attached Lustre) nodes

● efficient and fast root file system access

● large memory footprint

● file system content needs to be restricted to reduce memory footprint

● typically used when minimal commands and libraries required

● works well for compute nodes with well defined workloads and for service nodes that are used
primarily for internal services

netroot netroot is an alternative approach that mounts the root file system from a network source. It is used
only for compute and login nodes. It uses overlayfs to layer tmpfs on top of a read-only network file
system.

Due to the reliance on overlayfs, the decision to use netroot should include consideration of the
characteristics and limitations of overlayfs in addition to those of netroot listed here.

netroot has these characteristics and limitations:

● used only for compute and login nodes, never for service nodes (except login nodes)

● slower root file system access

About the Cray Management System

S2393 18

● increased node boot time

● minimized memory footprint (mounted from network, so requires less disk space)

● no restriction on file system content

● typically used when a robust set of commands and libraries required (netroot enables large
network-based images, formerly enabled through the DSL feature)

● works well for compute nodes with diverse workloads and for compute nodes with a high memory
footprint

● always used for GPUs

● supports a SquashFS compressed image format for better boot performance (recommended)

This comparison of tmpfs and netroot memory footprints is based on a fresh install with nothing extra added.
These numbers could be larger or smaller for a site depending on whether the Cray image recipes for tmpfs and
netroot have been extended (by adding necessary RPMs) or reduced (by removing unnecessary RPMs).

Table 2. Comparison of tmpfs and netroot Memory Footprints

Image Type Memory Consumption Number of RPMs

Admin image root - tmpfs 1400 MB 600

Service image root – tmpfs 1700 MB 670

Login image root – tmpfs 3600 MB 1100

Compute image root – tmpfs 1500 MB 745

Login image root – netroot 125 MB 2500

Compute image root – netroot 150 MB 2380

2.1.2 About the Admin Image
About the admin image. The admin image can be used on boot and SDB nodes ("admin" nodes) instead of the
general service node image. The admin recipe produces an image root that is smaller than that produced by the
general service recipe, resulting in a boot image small enough for a PXE boot. Using the admin boot image on the
boot and SDB nodes may enable them to PXE boot at the same time. And because the general service image is
no longer used for nodes that are intended to PXE boot, content can be added to the general service image
without regard for the PXE boot size limitation.

For sites with boot node failover and/or SDB node failover, if the admin image is used on the primary nodes, it
should be used on the backup (failover) nodes as well.

Should this site use the admin recipe for both boot nodes and SDB nodes?

boot
node(s)

Yes. This will enable a PXE boot of the boot node(s).

SDB
node(s)

It depends.

● Yes, if nothing needs to be added to the recipe for the SDB node. This will enable a PXE boot
of the SDB node(s).

About the Cray Management System

S2393 19

● Maybe, if the site needs to create a custom recipe for the SDB node (e.g., to add content for a
workload manager), and the admin recipe can be used as a base. Create a custom recipe for
the SDB node and add the admin recipe as a subrecipe. A PXE boot of the SDB node(s) may
be possible if the resulting boot image size does not exceed the PXE boot size limit (the
compressed initramfs must be 500MB or smaller).

● No, if the admin recipe is missing content that is needed for the custom SDB recipe. Use the
service recipe as the base, instead. Create a custom recipe for the SDB node and add the
service recipe as a subrecipe. A PXE boot of the SDB node(s) may be possible if the resulting
boot image size does not exceed the PXE boot size limit.

For an example of creating and extending a recipe, see Install Third-Party Software with a Custom Image Recipe
on page 297.

2.1.3 About Image Pushes: push versus sqpush
Netroot, diags, and PE image roots must be staged to the boot node before booting the XC system during a fresh
install or software update. This staging is necessary because these image roots are projected from the boot node
to tier2 nodes, and from tier2 nodes to the rest of system according to the tiers set up in Cray Scalable Services.

There are two commands that can be used to push an image root from the SMW to the boot node: image push
and image sqpush. They differ in the following ways:

Table 3. Comparison of image push versus image sqpush

image push image sqpush
what is pushed transfers image root as a file system (tree) transfers image root as a single SquashFS

file

how it is pushed copies the image root; if changes made to
image root, copies only the changed files/
directories (rsync)

copies the SquashFS file; if changes made
to image root, copies entire new
SquashFS file to replace the existing one

how it is accessed
after push

entire file system is projected by DVS,
resulting in many metadata operations and
slower access

single SquashFS file is projected by DVS,
resulting in many fewer metadata
operations and quicker access

what space is needed
on boot node

consumes space equal to size of image
root file system

compressed file consumes less space

Which command should sites use?

Cray recommends using the image sqpush command in most cases. It is better for large deployments because
the dramatically reduced number of metadata operations reduces overall boot times and enables faster file
system access. In the case of SMW-managed eLogin, there is no choice. The image sqpush command MUST
be used to push eLogin images to eLogin nodes.

The image push command is still an option for development situations, where an image is modified and
transferred repeatedly to test the modifications, and the ability to transfer only what has changed provides more
rapid turnaround.

About the Cray Management System

S2393 20

2.2 About the Node Image Mapping Service (NIMS)
The Node Image Mapping Service (NIMS) maps a node to boot attributes, which are used when the node is
booted.

The primary NIMS component is the daemon, nimsd. Interactions with nimsd occur either by sending a
Hardware Supervisory System (HSS) event or by using the NIMS command line interface (CLI). The HSS Boot
Manager daemon communicates with nimsd via HSS events. All other interactions with nimsd take place
through the CLI.

The nimsd daemon provides boot attributes to Boot Manager upon request. Boot Manager uses the boot
attributes when it boots or reboots nodes. Boot Manager also provides the boot attributes to the xtcli command.

Two conceptual components, nodes and maps, are affected by nimsd. A node represents a physical, bootable
node on the XC system. A map is a collection of nodes, typically all the nodes in a partition, or for a non-
partitioned system, all the nodes in the entire system.

The NIMS CLI consists of two commands, cnode and cmap. The cnode and cmap commands replace the
nimscli command, which was deprecated in CLE 6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change
any scripts that reference nimscli. Prior to UP06, when the cmap command was invoked from within any
snapshot (either the booted snapshot or a different snapshot), it would set the active NIMS map for the currently
booted snapshot. As of UP06, cmap sets the active NIMS map in whatever snapshot cmap is invoked in. If cmap
is invoked in the current snapshot, it sets the active NIMS map for the currently running system. If cmap is
invoked in a different, non-running snapshot, it sets the active NIMS map for that snapshot. When the SMW is
rebooted into that snapshot, then the active map for that snapshot will become the active NIMS map for the
running system. For more information, see the cnode and cmap man pages.

A system can have multiple NIMS maps. However, only one map can be active at a time. The reason to have
multiple maps is to differentiate the boot attributes. For example, one map may be a test map to allow booting
nodes with a test boot image or a test config set.

TIP: Changes made using cnode affect the active map. If testing a new boot image, for example, use
cmap to set the active map to the test map before using cnode to assign the test boot image to one or
more nodes.

2.3 About Cray Scalable Services
Cray Scalable Services is an essential part of the Cray Management System that is used to both distribute and
aggregate information. Within Cray Scalable Services, nodes are designated as SoA (server of authority), tier1,
tier2, or tier3. A node can be a member of only one of these groups. Tier1 nodes are clients of the SoA and
servers for tier2 nodes. Tier2 nodes are clients of tier1 nodes and servers for tier3 nodes. Tier3 nodes are clients
of tier2 nodes. Configuration of nodes as SoA, tier1, and tier2 is defined in the cray_scalable_services
configuration service, which must be configured properly for the system to function.

As indicated in this figure, the SMW is the designated SoA in Cray XC systems. The boot and SDB nodes are
designated tier1 nodes, and they must have direct network connectivity to the SMW via Ethernet. Typically, tier2
nodes are service nodes or repurposed compute nodes that have no other duties beyond being part of the
Scalable Services. All other nodes are tier3 nodes.

About the Cray Management System

S2393 21

Figure 2. Cray Scalable Services

This table shows what gets distributed or aggregated using Cray Scalable Services.

from SMW to rest of system ● config set data is shared using a 9P file system
and diod (distributed I/O daemon)

● zypper software repositories can by used from
any node with the LiveUpdate feature (HTTP
forwarding from the SMW through the tiers)

● time synchronization (NTP)

from boot node to rest of system ● PE (Programming Environment) image root

● diag (online diagnostics) image root

● netroot image roots1

from rest of system to SMW ● Lightweight Logging Manager (LLM) logging

Here is an example of how Scalable Services works with Live Updates to distribute software out to nodes. Any
tier3 node can run zypper to access the repositories on the SMW because it has an entry
in /etc/zypp/repos.d/liveupdates.repo that points to the tier2 nodes by means of a base URL, which
uses HTTP protocol listing all of the tier2 nodes. The tier2 nodes, in turn, have an entry
in /etc/zypp/repos.d/liveupdates.repo that lists at least one tier1 node. All tier1 nodes have an entry
in /etc/zypp/repos.d/liveupdates.repo that lists the SMW.

Services that Depend on Cray Scalable Services
It is important to configure Cray Scalable Services correctly. The following features and services use data from the
cray_scalable_services configuration service, and they may not be functional if cray_scalable_services is
configured incorrectly.

1 Netroot is a mechanism that enables nodes booted with a minimal, local in-memory file system to execute
within the context of a larger, full-featured root file system that is available to the node via a network mount.

About the Cray Management System

S2393 22

Node Image Mapping
Service (NIMS) plugin

Uses cray_scalable_services data to determine tier1 servers and adds the tier1
kernel command line parameter to each tier1 server.

IMPS Distribution
Service (IDS)

Uses cray_scalable_services data to set the ids kernel command line parameter to
the node's parent, from whom it will receive config set data.

DVS Ansible
configuration

Uses cray_scalable_services data to determine which nodes should serve DVS file
systems. This will also impact netroot functionality, which uses DVS.

CLE LiveUpdates
functionality

Configured using cray_scalable_services data to determine the parent each node
should contact en route to the package repos stored on the SMW.

LLM Ansible
configuration

Uses cray_scalable_services data to determine the next server to which a node
should send its log data, which depends on the node's tier.

NFS Ansible
configuration

Uses cray_scalable_services data to determine which nodes should act as clients
and servers.

IP forwarding Ansible
configuration

Uses cray_scalable_services data to enable IP forwarding and configure servers'
routes depending on their tier.

2.4 About Service Nodes
Service nodes perform the functions needed to support users, administrators, and applications running on
compute nodes.

Service nodes, unlike compute nodes, are generally equipped with Peripheral Component Interconnect (PCI)
protocol card slots to support external devices.

Service nodes run a full-featured version of the Linux operating system. Service node kernels are configured to
enable non-uniform memory access (NUMA), which minimizes traffic between sockets by using socket-local
memory whenever possible.

System management tools are a combination of Linux commands and Cray system commands that are
analogous to standard Linux commands but operate on more than one node. After the system is up, an
administrator possessing the correct permissions can access any service node from any other service node.

Boot Node
The boot node hosts the Boot service and is controlled by Ansible. It contains the home directories on the boot
RAID for local accounts, nonvolatile storage, and image roots for PE, diagnostics, and netroot. It is a tier1 node,
which means it has a direct private network connection to the SMW. An administrator logs on to the boot node
through the SMW console. It is booted via PXE boot and is the first node to boot.

Two boot nodes can be configured per system or per partition: one primary and one secondary for backup. The
two boot nodes must be located on different blades. When the primary boot node is booted, the backup boot node
also begins to boot. But the backup boot node boot process is suspended until a primary boot-node failure event
is detected. For more information, see Configure Boot Node Failover on page 258.

Service Database (SDB) Node
The SDB node hosts the service database, a MySQL database that resides on a separate file system on the boot
RAID. The SDB is accessible to every service node. The SDB provides a central location for storing information

About the Cray Management System

S2393 23

so that it does not need to be stored on each node. The SDB is accessible, with correct authorizations, from any
service node after the system is booted.

The SDB stores the following information:

● Global state information of compute processors. This information is used by the Application Level Placement
Scheduler (ALPS), which allocates compute processing elements for compute nodes.

● System configuration tables that list and describe processor attribute and service information.

The SDB node is the second node that is started during the boot process. It is a tier1 node, which means it has a
direct private network connection to the SMW.

Two SDB nodes can be configured per system or per partition, one primary and one secondary for backup. The
two SDB nodes must be located on different system blades. For more information, see Configure SDB Node
Failover on page 264.

Login Nodes
Users log on to a login node, which is the single point of control for applications that run on the compute nodes.
Users do not log on to compute nodes.

Other Service Nodes
Some common service nodes are listed below. Not every type of service node is in use on every system.

● LNet router nodes

● Network gateway nodes

● DVS nodes

● Tier2 nodes for Cray Scalable Services

● DataWarp nodes

● DAL (direct-attached Lustre) nodes

2.5 About Boot Automation Files
The default boot behavior for Cray systems without direct-attached Lustre (DAL) nodes is to boot the boot and
SDB nodes first, then boot all other service nodes and all compute nodes at the same time, thereby decreasing
overall boot time. Systems with DAL must boot the computes nodes after the service nodes.

● Default for systems without DAL:

1. Boot + SDB (if SDB image small enough to PXE boot)

2. SDB (if SDB image too large to PXE boot)

3. Service + Compute

● Default for systems with DAL:

1. Boot + SDB (if SDB image small enough to PXE boot)

2. SDB (if SDB image too large to PXE boot)

3. Service

About the Cray Management System

S2393 24

4. Compute

Cray provides the following boot automation files with this release.

auto.generic Used to boot the entire XC system.

auto.xtshutdown Used to shut down the entire XC system.

auto.bootnode Used to boot only the boot node(s).

auto.bootnode+sdb Used to boot only the boot node(s) and SDB node(s).

During a fresh install, sites typically copy auto.generic, rename it with the host name of the system for which it
will be used (auto.hostname.start), and customize it for that site and system. Likewise, sites typically copy
auto.xtshutdown, rename it with the host name of the system for which it will be used
(auto.hostname.stop), and customize it, as needed. The host name is included because different systems
may have different software installed, resulting in different boot or shutdown requirements. For example, on a
system with a workload manager (WLM) installed, extra commands may be needed in the
auto.hostname.stop file to cleanly stop the WLM queues on SDB or MOM nodes before shutting down the
nodes.

When is customization of an automation file needed?

● For systems booting tmpfs images (instead of netroot) with no SDB node failover, no changes may be
necessary.

● For systems with boot or SDB node failover, instructions for adding or enabling commands are provided at the
appropriate place in the fresh install and update processes.

● For systems booting netroot images, instructions for making netroot-related changes after the first boot with
tmpfs are provided at the appropriate place in the fresh install process.

● For systems booting direct-attached Lustre (DAL) images, instructions for making DAL-related changes are
provided at the appropriate place in the fresh install process.

● For systems with added content in the recipe used for SDB nodes, if the resulting custom recipe produces a
boot image too large for a PXE boot, changes to the boot automation file are necessary. If based on
auto.generic, the system boot automation file will have an option (commented out by default) to boot the
boot node via PXE boot and then boot the SDB node via the HSN.

● For systems with a workload manager (WLM) installed, WLM-related changes may be needed. Specific
commands to add will vary based on the WLM.

About the Cray Management System

S2393 25

3 Manage the System
Caution is encouraged when executing system management commands and procedures; hasty actions can result
in down time and lost data.

IMPORTANT: Use persistent SCSI device names.

This does not apply to SMW disks: SCSI device names (/dev/sd*) are not guaranteed to be numbered the same
from boot to boot. This inconsistency can cause serious system problems following a reboot. When installing
CLE, the administrator must use persistent device names for file systems on the Cray system.

Cray recommends using the /dev/disk/by-id/ persistent device names. Use /dev/disk/by-id/ for the
root file system in the initramfs image and in the /etc/sysset.conf installation configuration file as well as
for other file systems, including Lustre (as specified in /etc/fstab and /etc/sysset.conf). For more
information, see CLE Installation and Configuration Guide.

Alternatively, the administrator can define persistent names using a site-specific udev rule or cray-scsidev-
emulation. However, only the /dev/disk/by-id method has been verified and tested.

CAUTION: The administrator must use /dev/disk/by-id when specifying the root file system. There is
no support in the initramfs for cray-scsidev-emulation or custom udev rules.

3.1 Connect the SMW to the Console of a Service Node
The xtcon command is a console interface for service nodes. When it is executing, the xtcon command
provides a two-way connection to the console of any running node.

With the release CLE 6.x, all service and compute nodes enable the xtcon console by default. If a node fails to
boot, then the init boot sequence halts and drops into a console bash session waiting for the administrator to take
action, such as debug the node. With release CLE 5.x, xtcon and the enablement of console on nodes is
required via the kernel parameters.

See the xtcon(8) man page for additional information.

3.2 Configure Remote Access to SMW with VNC
Virtual network computing (VNC) software enables a user to view and interact with the SMW from another
computer.

VNC is optional and enabling VNC is a site choice. With the DRAC on the SMW, many system administrators may
prefer to use DRAC and not configure VNC.

To obtain a VNC client to connect to the server, download a VNC client from a reuptable website such as these:

Manage the System

S2393 26

● RealVNC™: http://www.realvnc.com/

● TightVNC™: http://www.tightvnc.com/

The VNC software requires a TCP/IP connection between the server and the viewer. Be aware that VNC is
considered to be an insecure protocol, therefore Cray recommends that the VNC client only connect to the VNC
server on the SMW via an SSH tunnel.

3.3 About the Integrated Dell Remote Access Controller (iDRAC)
The iDRAC is a systems management hardware and software solution that provides remote management
capabilities, crashed system recovery, and power control functions for the System Management Workstation
(SMW). The iDRAC alerts administrators to server issues, helps them perform remote server management, and
reduces the need for physical access to the server. The iDRAC also facilitates inventory management and
monitoring, deployment and troubleshooting. To help diagnose the probable cause of a system crash, the iDRAC
can log event data and capture an image of the screen when it detects that the system has crashed.

3.3.1 Change the Default iDRAC Password

About this task
This procedure describes how to log in to the iDRAC web interface and change a user password.

Procedure

1. Log in to the web interface as root.

2. Select iDRAC settings on the left navigation bar.

3. Expand iDRAC settings on the left navigation bar.

4. Select User Authentication.

5. Select the user whose password is changing. To change the root password, select userid 2.

6. Select Next.

7. Select the Change Password box and enter the new password in the boxes below it.

8. Select Apply to complete the password change.

The password change is complete.

Alternative. Another approach to changing the iDRAC root password is to use ipmitool on the SMW command
line interface.

smw# ipmitool -U root -I lanplus -H <drac-ip-addr> -P <old-drac-password> \
user set password 2 <new-drac-password>

Manage the System

S2393 27

http://www.realvnc.com/
http://www.tightvnc.com/

3.3.2 Dell R815 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes the following:

● The SMW is disconnected from the boot RAID.

● The SMW is connected to a keyboard, monitor, and mouse (without this direct connection, some procedure
instructions will not work as intended).

About this task
This procedure changes the system setup for a Dell R815 SMW: the network connections, remote power control,
and the remote console. Depending on the server model and version of BIOS configuration utility, there may be
minor differences in the steps to configure the system. For more information, refer to the documentation for the
Dell server used at this site. Because Cray ships systems with most of the installation and configuration
completed, some of these steps may have been done already.

For a Dell R630 SMW, see Dell R630 SMW: Change the BIOS and iDRAC Settings on page 35.

Procedure

1. Remove SMW non-boot internal drives.

Eject all the internal disk drives from the SMW except for the primary boot disk in slot 0 and the secondary
boot disk in slot 1.

2. Power up the SMW. When the BIOS power-on self-test (POST) process begins, quickly press the F2 key
after the following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services
 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes to Entering System Setup.

After the POST process completes and all disk and network controllers have been initialized, the BIOS
System Setup menu appears.

Manage the System

S2393 28

Figure 3. Dell R815 SMW BIOS System Setup Menu

3. Change system time.

The system time should be in UTC, not in the local timezone.

a. Select System Time in the System Setup menu.

The hours will be highlighted in blue.

b. Set the correct time.

1. Press the space key to change hours.

2. Use the right-arrow key to select minutes, then change minutes with the space key.

3. Use the right-arrow key to select seconds, then change seconds with the space key.

c. Press Esc when the correct time is set.

4. Change boot settings.

a. Select Boot Settings in the System Setup menu, then press Enter.

Manage the System

S2393 29

Figure 4. Dell R815 SMW Boot Settings Menu

A pop-up menu with the following list appears:

Boot Mode .. BIOS
Boot Sequence <ENTER>
USB Flash Drive Emulation Type.................... <ENTER>
Boot Sequence Retry <Disabled>

b. Select Boot Sequence, then press Enter.

Figure 5. Dell R815 SMW Boot Sequence Settings

c. Change the order of items in the Boot Sequence list so that the optical (DVD) drive appears first, then
the hard drive. If Embedded NIC appears in the list, it should end up below the optical drive and hard
drive in the list.

Manage the System

S2393 30

d. Disable embedded NIC.

If Embedded NIC is in the list, select it and press Enter, then use the space key to disable it.

e. Press Esc to exit the Boot Sequence menu.

f. Press Esc again to exit the Boot Settings menu.

5. Change serial communication.

a. Select Serial Communication in the System Setup menu, then press Enter.

b. Confirm these settings in the Serial Communication menu.

● Serial Communication is set to On with Console Redirection via COM2

● Serial Port Address is set to Serial Device1=COM2, Serial Device2=COM1

● External Serial Connector is set to Serial Device2

● Failsafe Baud Rate is set to 115200

c. Press Esc to exit the Serial Communication menu.

6. Select Embedded Server Management in the System Setup menu, then press Enter.

The Embedded Server Management pop-up menu with the following list appears:

Front-Panel LCD OptionsUser-Defined String
User-Defined LCD String <ENTER>
a. Set Front-Panel LCD Options to User-Defined String.

b. Set User-Defined LCD String to the login host name (e.g., cray-drac), then press Enter.

c. Press Esc to exit the Embedded Server Management menu.

7. Insert base operating system DVD into SMW.

Insert the base OS DVD into the DVD drive. (The DVD drive on the front of the SMW may be hidden by a
removable decorative bezel.)

8. Save BIOS changes and exit.

a. Press Esc to exit the BIOS System Setup menu.

A menu with a list of exit options appears.

Save changes and exit
Discard changes and exit
Return to Setup

b. Ensure that Save changes and exit is selected, then press Enter.

The SMW resets automatically.

9. Enter BIOS boot manager.

a. When the BIOS POST process begins again, quickly press the F11 key within 5 seconds of when the
following messages appear in the upper-right of the screen.

 F2 = System Setup
 F10 = System Services

Manage the System

S2393 31

 F11 = BIOS Boot Manager
 F12 = PXE Boot
When the F11 keypress is recognized, the F11 = BIOS Boot Manager line changes to Entering BIOS
Boot Manager.

10. Change the integrated Dell Remote Access Controller (iDRAC) settings.

Watch the screen carefully as text scrolls until the iDRAC6 Configuration Utility 1.57 line is visible. When
the line Press <Ctrl-E> for Remote Access Setup within 5 sec... displays, press Ctrl-E within 5 seconds.

0 5 0 ATA WDC WD5000BPVT-0 1A01 465 GB
LSI Corporation MPT2 boot ROM successfully installed!
iDRAC6 Configuration Utility 1.57
Copyright 2010 Dell Inc. All Rights Reserved
iDRAC6 Firmware Revision version: 1.54.15
Primary Backplane Firmware Revision 1.07

IPv6 Settings

IPv6 Stack : Disabled
Address 1 : ::
Default Gateway : ::

IPv4 Settings

IPv4 Stack : Enabled
IP Address : 172. 31. 73.142
Subnet mask : 255.255.255. 0
Default Gateway : 172. 31. 73. 1
Press <Ctrl-E> for Remote Access Setup within 5 sec...
The iDRAC6 Configuration Utility menu appears.

11. Set iDRAC6 LAN to ON.

Figure 6. Dell R815 SMW iDRAC6 Configuration Utility Menu

Manage the System

S2393 32

12. Set IPMI Over LAN to ON.

13. Configure the iDRAC LAN parameters.

Select LAN Parameters, then press Enter.

a. Configure iDRAC6 name.

Use the arrow key to scroll down and select iDRAC6 Name, then press Enter. Enter a value for Current
DNS iDRAC6 Name (e.g., smw-drac), then press Esc.

Trouble? If unable to set the iDRAC6 name, try this:

1. Temporarily set Register iDRAC6 Name to On.

2. Press Enter to set iDRAC6 Name. Select current or suggested name (edit enabled). When done,
press Esc.

3. Return to Register iDRAC6 Name and set it to Off.

Figure 7. Dell R815 SMW iDRAC6 LAN Parameters: iDRAC6 Name

b. Configure domain name.

Use the arrow key to scroll down and select Domain Name, then press Enter. Enter a value for Current
Domain Name (e.g., us.cray.com), then press Enter.

c. Configure host name string.

Use the arrow key to scroll down and select Host Name String, then press Enter. Enter a value for
Current Host Name String (e.g., smw-drac), then press Esc.

d. Configure IPv4 settings.

Use the arrow key to scroll down into the IPv4 Settings group and confirm that the IPv4 Address Source
is set to static. Then enter values for the following:

IPv4 Address (the SMW DRAC IP address)
Subnet Mask (the SMW iDRAC subnet mask)
Default Gateway (the SMW iDRAC default gateway)

Manage the System

S2393 33

DNS Server 1 (the first site DNS server)
DNS Server 2 (the second site DNS server)

Figure 8. Dell R815 SMW iDRAC6 IPv4 Parameter Settings

e. Configure IPv6 settings.

Use the arrow key to scroll down into the IPv6 Settings group and ensure that IPv6 is disabled.

f. Press Esc to exit LAN Parameters and return to the iDRAC6 Configuration Utility menu.

14. Configure iDRAC virtual media.

a. Select Virtual Media Configuration, then press Enter.

b. Select the Virtual Media line and press the space key until it indicates Detached.

c. Press Esc to exit the Virtual Media Configuration menu.

15. Set the password for the iDRAC LAN root account.

Using the arrow keys, select LAN User Configuration, then press Enter. The following configuration is for
both SSH and web browser access to the iDRAC.

a. Select Account User Name and enter the account name root.

b. Select Enter Password and enter the intended password.

c. Select Confirm Password and enter the intended password again.

d. Press Esc to return to the iDRAC6 Configuration Utility menu.

16. Exit the iDRAC configuration utility.

a. Press Esc to exit the iDRAC6 Configuration Utility menu.

b. Select Save Changes and Exit.

Manage the System

S2393 34

The BIOS Boot Manager menu appears.

17. Choose to boot from SATA Optical Drive.

Using the arrow keys, select the SATA Optical Drive entry, then press Enter.

3.3.3 Dell R630 SMW: Change the BIOS and iDRAC Settings

Prerequisites
This procedure assumes the following:

● The Dell R630 SMW: Configure the RAID Virtual Disks procedure has been completed.

● The SMW is rebooting. If the SMW is not rebooting, press Ctrl-Alt-Delete to reboot when ready to begin this
procedure.

About this task
This procedure describes how to change the system setup for the SMW: the network connections, remote power
control, and the remote console. This procedure includes detailed steps for the Dell R630 server. Depending on
the server model and version of BIOS configuration utility, there could be minor differences in the steps to
configure the system. For more information, refer to the documentation for the Dell server used at this site.
Because Cray ships systems with most of the installation and configuration completed, some of the steps may
have been done already.

For a Dell R815 server, see Dell R815 SMW: Change the BIOS and iDRAC Settings on page 27.

Procedure

Watch as the system reboots and the BIOS power-on self-test (POST) process begins. Be prepared to
press F2, when prompted, to change the system setup.

1. Press the F2 key immediately after the following messages appear in the upper-left of the screen:

F2 = System Setup
F10 = Lifecycle Controller (Config iDRAC, Update FW, Install OS)
F11 = Boot Manager
F12 = PXE Boot
When the F2 keypress is recognized, the F2 = System Setup line changes color from white-on-black to
white-on-blue.

After the POST process completes and all disk and network controllers have been initialized, the Dell System
Setup screen appears. The following submenus are available on the System Setup Main Menu and will be
used in subsequent steps: System BIOS, iDRAC Settings, and Device Settings.

Manage the System

S2393 35

Figure 9. Dell R630 System Setup Main Menu

TIP: In system setup screens,

● Use the Tab key to move to different areas on the screen.

● Use the up-arrow and down-arrow keys to highlight or select an item in a list, then press the
Enter key to enter or apply the item.

● Press the Esc key to exit a submenu and return to the previous screen.

2. Change the BIOS settings.

a. Select System BIOS on the System Setup Main Menu, then press Enter.

The System BIOS Settings screen appears.

Manage the System

S2393 36

Figure 10. Dell R630 System BIOS Settings Screen

b. Change Boot Settings.

1. Select Boot Settings on the System BIOS Settings screen, then press Enter. The Boot Settings
screen appears.

Figure 11. Dell R630 Boot Settings Screen

2. Ensure that Boot Mode is BIOS and not UEFI.

Manage the System

S2393 37

3. Select BIOS Boot Settings, then press Enter.

4. Select Boot Sequence on the Boot Option Settings screen, then press Enter to view a pop-up
window with the boot sequence.

Figure 12. Dell R630 BIOS Boot Sequence

5. Change the boot order in the pop-up window so that the optical drive appears first, then the hard
drive. If Integrated NIC appears in the list, it should end up below the optical drive and hard drive in
the list.

TIP: Use the up-arrow or down-arrow key to highlight or select an item, then use the + and -
keys to move the item up or down.

6. Select OK, then press Enter to accept the change.

7. Select the box next to Hard drive C: under the Boot Option Enable/Disable section to enable it. Do
the same for the optical drive, if necessary.

8. Select integrated NIC, then press Enter to disable it.

9. Press Esc to exit Boot Option Settings.

10. Press Esc to exit Boot Settings and return to the System BIOS Settings screen.

c. Change Serial Communication Settings.

Manage the System

S2393 38

Figure 13. Dell R630 System BIOS Settings: Serial Communication

1. Select Serial Communication on the System BIOS Settings screen. The Serial Communication
screen appears.

Figure 14. Dell R630 Serial Communication Screen

2. Select Serial Communication on the Serial Communication screen, then press Enter. A pop-up
window displays the available options.

3. Select On with Console Redirection via COM2 in the pop-up window, then press Enter to accept
the change.

Manage the System

S2393 39

4. Select Serial Port Address, then select Serial Device1=COM1, Serial Device2=COM2, then press
Enter.

5. Select External Serial Connector, then press Enter. A pop-up window displays the available
options.

6. Select Remote Access Device in the pop-up window, then press Enter to return to the previous
screen.

7. Select Failsafe Baud Rate, then press Enter. A pop-up window displays the available options.

8. Select 115200 in the pop-up window, then press Enter to return to the previous screen.

9. Press the Esc key to exit the Serial Communication screen.

10. Press Esc to exit the System BIOS Settings screen. A "Settings have changed" message appears.

11. Select Yes to save changes. A "Settings saved successfully" message appears.

12. Select Ok.

3. Change the iDRAC (Integrated Dell Remote Access Controller) settings.

Select iDRAC Settings on the System Setup Main Menu, then press Enter.

The iDRAC Settings screen appears.

Figure 15. Dell R630 iDRAC6 Settings Screen

4. Change the iDRAC network.

a. Select Network to display a long list of network settings.

b. Change the DNS DRAC name.

Use the arrow key to scroll down to DNS DRAC Name, then enter an iDRAC host name that is similar to
the SMW node host name (e.g., cray-drac).

c. Change the static DNS domain name.

Manage the System

S2393 40

Use the arrow key to scroll down to Static DNS Domain Name, then enter the DNS domain name and
press Enter.

d. Change the IPv4 settings.

Use the arrow key to scroll down to the IPV4 SETTINGS list.

1. Ensure that IPv4 is enabled.

a. If necessary, select Enable IPV4, then press Enter.

b. Select <Enabled> in the pop-up window, then press Enter to return to the previous screen.

2. Ensure that DHCP is disabled.

a. If necessary, select Enable DHCP, then press Enter.

b. Select <Disabled> in the pop-up window, then press Enter to return to the previous screen.

3. Change the IP address.

a. Select Static IP Address.

b. Enter the IP address of the iDRAC interface (ipmi0) for the SMW, then press Enter.

4. Change the gateway.

a. Select Static Gateway.

b. Enter the appropriate value for the gateway of the network to which the iDRAC is connected, then
press Enter.

5. Change the subnet mask.

a. Select Subnet Mask.

b. Enter the subnet mask for the network to which the iDRAC is connected (such as
255.255.255.0), then press Enter.

6. Change the DNS server settings.

a. Select Static Preferred DNS Server, enter the IP address of the primary DNS server, then press
Enter.

b. Select Alternate DNS Server, enter the IP address of the alternate DNS server, then press
Enter.

e. Change the IPMI settings.

Change the IPMI settings to enable the Serial Over LAN (SOL) console.

1. Use the arrow key to scroll down to the IPMI SETTINGS list.

2. Ensure that Enable IPMI over LAN is selected.

TIP: Use the left-arrow or right-arrow to switch between two settings.

3. Ensure that Channel Privilege Level Limit is set to Administrator.

f. Exit Network screen.

Press the Esc key to exit the Network screen and return to the iDRAC Settings screen.

5. Change host name in iDRAC LCD display.

Change front panel security to show the host name in LCD display.

a. Use the arrow key to scroll down and highlight Front Panel Security on the iDRAC Settings screen,
then press Enter.

Manage the System

S2393 41

b. Select Set LCD message, then press Enter.

c. Select User-Defined String, then press Enter.

d. Select User-Defined String, then enter the SMW host name and press Enter.

e. Press the Esc key to exit the Front Panel Security screen.

6. (Optional) Change the iDRAC System Location fields.

Change the System Location configuration on the iDRAC Settings screen to set any of these fields: Data
Center Name, Aisle Name, Rack Name, and Rack Slot.

7. Configure iDRAC virtual media.

a. Select Media and USB Port Settings, then press Enter.

b. Configure settings as needed for this system.

c. Press Esc to exit the Media and USB Port Settings menu.

8. Set the password for the iDRAC root account.

a. Use the arrow key to highlight User Configuration on the iDRAC Settings screen, then press Enter.

b. Confirm that User Name is root. Select User Name, then enter the "root" user name.

c. Select Change Password, then enter a new password.

d. Reenter the new password in the next pop-up window to confirm it (the default password is "calvin").

e. Press the Esc key to exit the User Configuration screen.

9. Exit iDRAC settings.

a. Press the Esc key to exit the iDRAC Settings screen.

A "Settings have changed" message appears.

b. Select Yes, then press Enter to save the changes.

A "Success" message appears.

c. Select Ok, then press Enter.

The main screen (System Setup Main Menu) appears.

10. Change device settings.

These steps disable an integrated NIC device by changing the setting for the integrated NIC on a port from
PXE to None.

a. Change Integrated NIC 1 Port 1

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Manage the System

S2393 42

Figure 16. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 1: ... on the Device Settings screen, then press Enter.

3. Select NIC Configuration on the Main Configuration Page screen, then press Enter.

4. Select Legacy Boot Protocol on the NIC Configuration screen, use the right-arrow or left-arrow key
to highlight None, then press Enter.

5. Press the Esc key to exit the NIC Configuration screen.

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

b. Change Integrated NIC 1 Port 2

1. Select Device Settings on the System Setup Main Menu, then press Enter. The Device Settings
screen appears.

Manage the System

S2393 43

Figure 17. Dell R630 Device Settings Screen

2. Select Integrated NIC 1 Port 2: ... on the Device Settings screen, then press Enter.

3. Select NIC Configuration on the Main Configuration Page screen, then press Enter.

4. Select Legacy Boot Protocol on the NIC Configuration screen, use the right-arrow or left-arrow key
to highlight None, then press Enter.

5. Press the Esc key to exit the NIC Configuration screen.

6. Press Esc to exit the Main Configuration Page screen. A "Warning Saving Changes" message
appears.

7. Select Yes, then press Enter to save the changes. A "Success" message appears.

8. Select OK, then press Enter. The Device Settings screen appears.

9. Press Esc to exit the Device Settings screen. A "Settings have changed" message appears.

10. Select Yes, then press Enter to save the changes. A "Settings saved successfully" message
appears.

11. Select OK, then press Enter. The main screen (System Setup Main Menu) appears.

3.3.4 Use the iDRAC

Prerequisites
This procedure assumes an integrated Dell Remote Access Controller (iDRAC) has been set up for use with the
node.

About this task
An iDRAC enables remote management of a node. This procedure describes how to access the node console
through the iDRAC.

Manage the System

S2393 44

Procedure

1. Bring up a web browser.

2. Go to: https://cray-drac, where cray-drac is the name assigned to the iDRAC during setup. The
iDRAC login screen appears.

3. Enter the account user name and password set up in the iDRAC setup procedure.

The System Summary window appears.

4. Select Submit.

5. To access the SMW console, select the Console Media tab.

The Virtual Console and Virtual Media window appears.

6. Select Launch Virtual Console.

TIP: By default, the console window has two cursors: one for the console and one for the
administrator's window environment. To switch to single-cursor mode, select Tools, then Single
Cursor. This single cursor will not move outside the console window. To exit single-cursor mode,
press the F9 key.

TIP: To log out of the virtual console, kill the window or select File, then Exit. The web browser is still
logged into the iDRAC.

For detailed information, see the iDRAC documentation at: http://www.dell.com/support.

3.4 Initialize zsh for Non-interactive Jobs
Each shell available to users has its own rules for run-time setup. This affects which files are read in different
contexts; interactive, batch, and ssh commands use different files depending on the shell being used. For
example, zsh (Z shell) does not initialize like bash, and when ssh launches a shell, the environment for bash
users and zsh users is different. For bash users, this means that the modules command is available for remotely
executed commands, and for zsh users it is not available.

Users of zsh may find that bash scripts executed as part of batch scheduled jobs do not have the same
environment as the login node they are submitted from because they are invoked on non-local MOM nodes. As a
result, some commands that work interactively outside of the job script may fail when the batch scheduler tries to
invoke the job script. In the context of ssh commands under zsh, only one type of file from two possible locations
is read: the zshenv file. To enable the job script to operate, users with accounts on the remote machine can
make changes to ~/.zshenv on the remote machine. If the system administrator believes that all users should
automatically have a change made, the contents of /etc/zshenv can be modified by a site-local Ansible play.

There are two methods of affecting the environment for the bash scripts that comprise the batch scheduler jobs. If
zsh makes environment changes before the bash script is invoked, they can be inherited by the script.
Alternatively, zsh can nominate a file that provides the environment that bash processes, including scripts, should
use in the environment variable BASH_ENV. Remember that the contents of zshenv are executed by every zsh
process, so if ssh is heavily used for purposes other than batch scheduler jobs, it might be more efficient to use
zshenv to nominate BASH_ENV and only 'pay' the cost for batch scheduler jobs.

Manage the System

S2393 45

http://www.dell.com/support

method 1 Export an environment variable that will enable bash scripts (like the job script) to include the
module command when the script starts. To enable bash scripts to execute with modules for zsh
users as they would for bash users, append the following line to the zshenv file:

export BASH_ENV=/etc/bash.bashrc.local

method 2 Modify zsh initialization to always execute interactive startup code every time zsh is launched. To
force every zsh shell to perform the startup that an interactive zsh shell does, append the following
line to the zshenv file:

source /etc/zshrc

These two methods can be used by individual zsh users or by system administrators who wish to make system-
wide changes.

3.5 Hardware Component Identification
System components (nodes, blades, chassis, cabinets, etc.) are named and located by node ID (NID), IP
address, or physical ID. Physical IDs are often referred to as cnames.

3.5.1 Physical ID for Cray XC Series Systems
The physical ID identifies the cabinet's location on the floor and the component's location in the cabinet as seen
by the HSS. Descriptions within the table below assume the reader is facing the front of the system cabinets.

Table 4. Physical ID Naming Conventions

Component Format Description

SMW s0, all All components attached to the SMW.

xtcli power up s0 powers up all
components attached to the SMW.

cabinet cX-Y Compute/service cabinet, cabinet
controller hostname. Not used for
blower cabinets.

For example: c12-3 is cabinet 12 in
row 3.

compute/service cabinet controller
HSS microcontroller

cX-YmM Compute/Service cabinet controller
HSS microcontroller; M is 0.

power rectifier module within a
cabinet

cX-YrR Power rectifier module within a
cabinet; R is 0 to 63.

cabinet controller (CC) FPGA cX-YfF Cabinet controller (CC) FPGA; F is 0.

blower cabinet bX-Y Blower cabinet, cabinet controller
hostname (if applicable). X is 0 to 63;
Y is 0 to 15.

Manage the System

S2393 46

Component Format Description

For example: b12-3 is blower cabinet
12 in row 3.

blower cabinet controller bX-YmM Blower cabinet, cabinet controller; M is
0.

blower within a blower cabinet bX-YbB Blower within a blower cabinet; B is
0-5.

chassis cX-YcC Physical unit within cabinet: cX-Y; cC
is the chassis number and C is 0-2.
Chassis are numbered bottom to top.

For example: c0-0c2 is chassis 2 of
cabinet c0-0.

chassis host controller cX-YcCmM Chassis host controller; M is 0.

optical connectors cX-YcCjJ Optical connectors per chassis; there
are 40 optical connectors per chassis.
J is 0-63.

chassis host FPGA cX-YcCfF Chassis host FPGA; F is 0.

blade or slot cX-YcCsS Physical unit within a slot of a chassis
cX-YcC; sS is the slot number of the
blade and S is 0-15.

For example: c0-0c2s4 is slot 4 of
chassis 2 of cabinet c0-0.

For example: c0-0c2s* is all slots
(0...15) of chassis 2 of cabinet c0-0.

optical controller groups cX-YcCoO Optical controller groups -- controller
groups are associated with slots by
multiplying controller number by 2
(and optionally adding 1); O is 0-7.

individual optical controller cX-YcCoOxX Individual optical controller within an
optical controller group; X is 0-4.

L0D FPGA within a base blade cX-YcCsSfF L0D FPGA within a base blade; F is 0.

Aries™ ASIC cX-YcCsSaA Aries ASIC within a base blade. There
is only one Aries ASIC per blade, and
all nodes on the blade connect to it.
aA is the location of the ASIC within
the blade and A is 0.

For example: c0-1c2s3a0.

Aries NIC cX-YcCsSaAnNIC NIC (Network Interface Controller)
within an Aries ASIC; NIC is 0-3.

For example: c0-1c2s3a0n1

Manage the System

S2393 47

Component Format Description

LCB tile row/column cX-YcCsSaAlRCol LCB tile row/column. Row 5 is all
processor tiles; all other rows contain
only HSN tiles. Note the octal
numbering. R is 0-5 and Col is 0-7.

SerDes macro associated with an
LCB

cX-YcCsSaAmRCol SerDes macro associated with an
LCB. Note the octal numbering. R is
0-5 and Col is 0-7.

SerDes macro network processor
associated with an LCB

cX-YcCsSaApRCol SerDes macro network processor
associated with an LCB. Note the
octal numbering. R is 0-5 and Col is
0-7.

Aries ASIC VRM cX-YcCsSaAvV Aries ASIC VRM; V is 0.

Processor Daughter Card (PDC)
within a base blade

cX-YcCsSpP Processor Daughter Card within a
base blade; P is 0-3.

quad Processor Daughter Card
(QPDC) within a base blade

cX-YcCsSqQ Quad Processor Daughter Card within
a base blade; Q is 0-1.

general-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade

cX-YcCsSkK General-purpose-accelerator
Processor Daughter Card (GPDC)
within a base blade; K is 0-1.

L0C FPGA within a PDC cX-YcCsSpPfF L0C FPGA within a PDC; F is 0.

L0C FPGA within a QPDC cX-YcCsSqQfF L0C FPGA within a Quad PDC; F is 0.

L0C FPGA within a GPDC cX-YcCsSkKfF L0C FPGA within a GPDC; F is 0.

VRM within a PDC associated with a
processor socket

cX-YcCsSpPvV VRM within a PDC associated with a
processor socket; V is 0-1.

SouthBridge chip within a PDC cX-YcCsSpPsSouthBridge SouthBridge chip within a PDC;
SouthBridge is 0.

SouthBridge chip within a QPDC cX-YcCsSqQsSouthBridge SouthBridge chip within a Quad PDC;
SouthBridge is 0-1.

SouthBridge chip within a GPDC cX-YcCsSkKsSouthBridge SouthBridge chip within a GPDC;
SouthBridge is 0-1.

blade controller HSS microcontroller
within a base blade

cX-YcCsSmM Blade controller HSS microcontroller
within a base blade (not the blade
controller CPU); M is 0.

node cX-YcCsSnN Physical node on a base blade; nN is
the location of the node and N is 0-3.

For example: c0-0c2s4n0 is node 0
on blade 4 of chassis 2 in cabinet
c0-0.

For example: c0-0c2s4n* is all
nodes on blade 4 of chassis 2 of
cabinet c0-0.

Manage the System

S2393 48

Component Format Description

accelerator cX-YcCsSnNaA Accelerator associated with a node;
may be any type of supported
accelerator. A is 0-7.

processor socket associated with a
physical node

cX-YcCsSnNsSocket Processor socket associated with a
physical node; Socket is 0-1.

DIMM associated with a processor
socket

cX-YcCsSnNsSocketmM DIMM associated with a processor
socket; M is 0-7.

VDD VRM associated with processor
socket

cX-YcCsSnNsSocketvV VDD VRM associated with processor
socket; V is 0.

VDR VRM associated with processor
socket

cX-YcCsSnNsSocketrR VDR VRM associated with processor
socket; R is 0.

die within a processor socket cX-YcCsSnNsSocketdD Die within a processor socket; D is
0-3.

core within a die cX-YcCsSnNsSocketdDcCore Core within a die; Core is 0-63.

memory controller within a die cX-YcCsSnNsSocketdDmM Memory controller within a die; M is
0-3.

logical machine (partition) p# A partition is a group of components
that make up a logical machine.
Logical systems are numbered from 0
to the maximum number of logical
systems minus one. Because p0 is
reserved to refer to the entire machine
as a partition a configuration with 31
logical machines would be numbered
p1 through p31 and p0 would need to
be deactivated or removed as it would
no longer be valid.

3.5.2 Node ID (NID) on Cray XC Series Systems
The node ID (NID) is a decimal numbering of all CLE nodes. NIDs are sequential numberings of the nodes
starting in cabinet c0-0. Each additional cabinet continues from the highest value of the previous cabinet;
therefore, cabinet 0 has NIDs 0-191, and cabinet 1 has NIDs 192 - 383, and so on.

With the exception of Cray XC-AC (air-cooled) systems, all Cray XC Series cabinets contain three chassis;
chassis 0 is the lower chassis in the cabinet. Each chassis contains sixteen blades and each blade contains four
nodes. The lowest numbered NID in the cabinet is in chassis 0 slot 0 (lower left corner); slots are numbered from
0 (bottom) to 7 (top) on the left side and 8 (bottom) to 15 (top) on the right side (when facing the front of the
cabinet). NID numbering begins in cabinet 0, slot 0 with NIDs 0, 1, 2, and 3; NIDs 4, 5, 6, 7 are in slot 1; this
numbering scheme continues to slot 15 and then moves up to chassis 1 and so on.

Cray XC-AC systems only have one chassis, which is rotated 90 degrees counter-clockwise. Therefore, slot 0 is
on the bottom right and slot 7 is on the bottom left; slot 8 (right) through 15 (left) are in the top row of the chassis
(when facing the front of the cabinet).

Manage the System

S2393 49

Use the xtnid2str command to convert a NID to a physical ID. For information about using the xtnid2str
command, see the xtnid2str(8) man page. To convert a physical ID to a NID number, use the rtr --
system-map command and filter the output. For example:

crayadm@smw> rtr --system-map | grep c1-0c0s14n3 | awk '{ print $1 }'
251

Use the nid2nic command to print the nid-to-nic_address mappings, nic_address-to-nid mappings, and
a specific physical_location-to-nic_address and nid mappings. For information about using the nid2nic
command, see the xtnid2str(8) man page.

3.5.3 Extended Node ID (XNID)
An extended node ID (XNID) provides a means of addressing host nodes and their coprocessors independently
even though a host and coprocessor share the same network interface. An XNID provides a handle for common
communication interfaces within the system, such as PMI, LNET, TCP/IP, and DVS, to access coprocessors. This
direct access permits direct (autonomous) execution of coprocessor-targeted executables.

During the installation of a system with coprocessors, the CLE installer prompts for a base extended node
identifier offset value for the system. For example, assume that base is set to 50000. That number is added to the
host NID for a node containing a coprocessor. If the host node is nid00032, then the coprocessor is nid50032.

3.5.4 Topology Class
Each Cray system is given a topology class based on the number of cabinets and their cabling. Some commands,
such as xtbounce, enable the administrator to specify topology class as an option.

The follow commands display the topology class of a system in their output:

● xtcli status
● rca-helper -o
● xtclass (executed on the SMW)

For example:

smw# xtclass
1

3.6 Boot the System
The xtbootsys command is used to manually boot the boot node, service nodes, and CNL compute nodes. An
administrator can boot the system using both user-defined and built-in procedures in automation files
(e.g., /opt/cray/hss/default/etc/auto.generic). Before modifying the auto.generic file, Cray
recommends making a copy because it will be replaced by an SMW software upgrade. Avoid strict boot ordering
of service nodes in an automated boot file. Rename the copied file with the host name of the system for which it

Manage the System

S2393 50

will be used (auto.hostname.start). For related procedures, see XC Series Software Installation and
Configuration Guide (S-2559).

crayadm@smw> xtbootsys -a auto.hostname.start

The xtbootsys command prevents unintentional booting of currently booted partitions. If a boot automation file
is being used, xtbootsys checks that file to determine if the string shutdown exists within any actions defined
in the file. If it does, xtbootsys assumes that a shutdown is being done, and no further verification of operating
on a booted partition occurs. If the partition is not being shut down and the boot node is in the ready state,
xtbootsys announces this fact and queries for confirmation to proceed. By default, confirmation is enabled. To
disable or enable confirmation when booting booted partitions, use the xtbootsys
config,confirm_booting_booted and the config,confirm_booting_booted_last_session global
TCL variables, the --config name=value on the xtbootsys command line, or the
XTBOOTSYS_CONFIRM_BOOTING_BOOTED and XTBOOTSYS_CONFIRM_BOOTING_BOOTED_LAST_SESSION
environment variables.

3.6.1 Run Tests after Boot is Complete

Prerequisites
This procedure assumes the following:

● The system has completed booting.

● The compute nodes are “interactive" (i.e., not under workload manager control).

● ALPS is available.

If ALPS is not available and Slurm is used as the workload manager (WLM), then the compute nodes can be
either "interactive" or "batch" and srun (the Slurm command equivalent to aprun) should be used instead of the
aprun commands in the steps that follow.

About this task
Log in to the login node as crayadm. This can be done from the SMW to the boot node to the login node, or
directly from another computer to the login node without passing through the SMW and boot node. Then perform
these rudimentary functionality checks.

Procedure

1. Run apstat to get the number of nodes to use for the following commands.

crayadm@login> NUMNODES=$(($(apstat -v | grep XT | awk "{print \$3}")))
crayadm@login> echo NUMNODES is $NUMNODES

2. Verify that all nodes run (from /tmp).

crayadm@login> cd /tmp
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

3. Verify that the home directory is working by running a job.

Manage the System

S2393 51

crayadm@login> cd ~
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

4. Verify that the Lustre directory is working by running a job.

crayadm@login> cd /lustre_file_system
crayadm@login> aprun -b -n $NUMNODES -N 1 /bin/cat /proc/sys/kernel/hostname

3.6.2 Manually Boot the Boot Node and Service Nodes

Prerequisites
The Lustre file system should start up before the compute nodes, and compute node Lustre clients should be
unmounted before shutting down the Lustre file system.

About this task
If more than one boot image is set up to run, the administrator can check which image is set up to boot with the
xtcli boot_cfg show or xtcli part_cfg show pN commands. To change which image is booting, see
Update the Boot Configuration on page 62

Procedure

1. Log on to the SMW as crayadm.

2. Invoke the xtbootsys command to boot the boot node. If the system is partitioned, invoke xtbootsys with
the --partition pN option.

crayadm@smw> xtbootsys
The xtbootsys command prompts with a series of questions. Cray recommends answering yes by typing Y
to each question.

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...
 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

3. Select option 10 (boot bootnode and wait).

Manage the System

S2393 52

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the boot node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
After the boot node is booted, the process returns to the boot choice menu.

4. Select option 11 (boot sdb and wait).

A prompt to confirm the selection is displayed. Press the Enter key or type Y to each question to confirm.

Do you want to boot the sdb node ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y

5. Select option 13 (boot service and wait).

A prompt to enter a list of service nodes to be booted is displayed.

6. Type p0 to boot the remaining service nodes in the entire system or pN (where N is the partition number) to
boot a partition.

Do you want to boot service p0 ? [Yn] Y
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn] Y
To confirm the selection, press the Enter key or type Y to each question.

7. Log on to any service nodes for which there are local configuration or startup scripts (such as starting Lustre)
and run the scripts.

3.6.3 Manually Boot the Compute Nodes

Prerequisites
All service and login nodes are booted and Lustre, if configured at this time, has started.

Procedure

1. Invoke the xtbootsys command if it is not running.

crayadm@smw> xtbootsys

Enter your boot choice:
 0) boot bootnode ...
 1) boot sdb ...
 2) boot compute ...
 3) boot service ...
 4) boot all (not supported) ...
 5) boot all_comp ...
 10) boot bootnode and wait ...
 11) boot sdb and wait ...
 12) boot compute and wait ...
 13) boot service and wait ...
 14) boot all and wait (not supported) ...
 15) boot all_comp and wait ...
 17) boot using a loadfile ...
 18) turn console flood control off ...

Manage the System

S2393 53

 19) turn console flood control on ...
 20) spawn off the network link recovery daemon (xtnlrd)...
 q) quit.

2. Select option 17 (boot using a loadfile). A series of prompts are displayed. Type the responses indicated in
the following example. For the component list prompt, type p0 to boot the entire system, or pN (where N
is the partition number) to boot a partition. At the final three prompts, press the Enter key.

Enter your boot choice: 17
Enter a boot type string (or nothing to do nothing): CNL0
Enter a boot type option (or nothing to do nothing): compute
Enter a component list (or nothing to do nothing): p0
Enter 'any' to wait for any console output,
 or 'linux' to wait for a linux style boot,
 or anything else (or nothing) to not wait at all: Enter
Enter an alternative CPIO archive name (or nothing): Enter
Do you want to send the ec_boot event ('no' means to only load memory) ? [Yn]
Enter

3. Return to the xtbootsys menu after all compute nodes are booted. Type q to exit the xtbootsys program.

4. Remove the /etc/nologin file from all service nodes to permit a non-root account to log on.

smw# ssh root@boot
boot# xtunspec -r /rr/current -d /etc/nologin

3.6.4 Reboot a Single Compute Node
A system administrator can initiate a warm boot with the xtbootsys command's --reboot option. This
operation performs minimal initialization followed by a boot of only the selected compute nodes. Unlike the
sequence that is used by the xtbounce command, there is no power cycling of the Cray ASICs or of the node
itself; therefore, the high-speed network (HSN) routing information is preserved. Do not specify a session identifier
(-s or --session option) because --reboot continues the last session and adds the selected components to
it.

Reboot a single comput node

For this example, reboot node c1-0c2s1n2:

crayadm@smw> xtbootsys --reboot c1-0c2s1n2

3.6.5 Reboot Login or Network Nodes
Login or network nodes cannot be rebooted through a shutdown or reboot command issued on the node; they
must be restarted through the HSS system using the xtbootsys --reboot idlist SMW command. The HSS
must be used so that the proper kernel is pushed to the node.

IMPORTANT: Do not attempt to warm boot nodes running other services in this manner.

For additional information, see the xtbootsys(8) man page.

Manage the System

S2393 54

Reboot login or network nodes

crayadm@smw> xtbootsys --reboot idlist

3.6.6 Reboot Many Nodes
When rebooting many CLE nodes, the default is to reboot nodes in chunks up to 96 at a time. To change this
chunk size to a different value, the reboot_maxids variable in xtbootsys can be adjusted on the command
line for the warm boot command. This example changes reboot_maxids from 96 to 512.

Reboot many nodes

crayadm@smw> xtbootsys --reboot -c reboot_maxids=512

3.7 Boot the SMW in Rescue Mode

Prerequisites
● Download the image to use for booting the SMW to the system that is running the browser accessing the

iDRAC web interface.

● If the system running the web browser used for accessing iDRAC is not a Windows machine, determine how
to type the equivalent of F11 key. For example, on a MacBook, the keystroke is fn-F11.

● Ensure that no physical media is loaded in the drive.

● Start the Dell iDRAC for the SMW.

About this task
If unable to boot the SMW through normal means, such as when file system corruption occurs, use the Dell
iDRAC web interface to start the system in rescue mode.

Procedure

1. Launch the virtual console by selecting Overview → Server → Properties. The System Summary page
displays. Under Virtual Console Preview section, click Launch. The Virtual Console Viewer launches.

2. From the Virtual Console Viewer, launch virtual media by selecting Virtual Media → Launch Virtual Media.
The Client View window displays.

3. Select Add Image and select the SMW image to launch. The name of this image is (or is similar to)
SLE-12-SP3-Server-DVD-x86_64-GM-DVD1.iso. Click Open.

4. Select the Mapped check box, which is next the selected SMW image. Leave the Client View window open.

Manage the System

S2393 55

5. Reinitialize BIOS and boot the system by powering on the system or, if the system was not previously
shutdown, resetting the system. From the Virtual Console Viewer, select Power → Power On System or
Power → Reset System.

As the BIOS hardware initialization proceeds, watch the Virtual Console Viewer for instructions to press F11
for the BIOS Boot Manager and press that key or its equivalent. If the opportunity is missed, reset the system
and try again.

6. In the BIOS Boot Manager, select Virtual CD.

7. On the SUSE boot window, select the More... option. Then select Rescue System. A prompt is displayed for
access to rescue system tools.

3.8 Debug Ansible Failures During System Boot
Ansible runs in init and Ansible runs a second time after systemd completes the boot process. Ansible failures
in init cause the affected node to drop into a debug shell for node access via xtcon for troubleshooting. When
the debug shell is exited, Ansible is re-executed in init. A node's boot does not proceed until the first run of
cray-ansible in init is successful.

The Ansible callback plugin captures any file changes made by Ansible file modules and stores a record of these
changes in log files located at /var/opt/cray/log/ansible/changelog. The plugin provides detailed
failure information, including the path to the task file being executed and any config set variable references in the
task file.

Ansible logs under /var/opt/cray/log/ansible are collected via cdump and xtdumpsys. In addition,
xtdumpsys collects the files from running nodes, changed by Ansible according to the changelog callback plugin.
When possible, Ansible Cray-provided plays create a backup of files modify by a play to let the administrator to
perform a diff of these files to see the changes made by Ansible. Administrators can use the
ansible_cfg_search command to examine an image and a config set. This command outputs a list of
variables and the Ansible files that accessed each variable.

See also XC™ Series Boot Troubleshooting Guide (S-2565).

3.8.1 Examine System Logs
Various logs receive entries during the boot process that can indicate boot problems.

systemd Journal
The systemd init system takes over the boot process after initrd. Use the journalctl -a to display all
kernel messages and other information in the systemd journal. Using journalctl -f displays the most recent
journal entries and continuously prints new entries. systemd stores messages in a custom database, the
systemd journal. The information available in the journal includes:

● syslogd messages

● Kernel log messages

● initrd messages

● Messages written to stdout/stderr for all services

Manage the System

S2393 56

HSS Daemon Logs
The HSS daemons and the rsyslogd daemon running on the SMW logs to files in the /var/opt/cray/log
directory. These daemons include nimsd, xtpmd, xtremoted, xtpowerd, xtsnmpd, xtdiagd, erfsd,
state_manager, bootmanager, sedc_manager, nid_mgr, erdh, and erd.

SMW Command Log
The /var/opt/cray/log/commands log lists the commands issued from the SMW console.

CLE Boot Logs
The output from booting CLE is in the /var/opt/cray/log/p0-current log. For more detailed information,
go to the p0-current directory and examine these log files:

● bootinfo.timestamp
Contains output from the xtbootsys command. Timing information for how long sections of the boot process
take is listed at the bottom of this file.

● console-YYYYMMDD
Contains the combined console output from every node. To find Ansible failures for a node during init,
search for cray-ansible: serial start of play type cle FAILED in init phase

3.8.2 Look Up Configuration Details
The ansible_cfg_search command line tool enables an administrator on the SMW to specify a config set, an
IMPS image root, and optionally, an Ansible play to query for config set lookups and template locations. The intent
is to provide a general understanding of which configuration files are used at specific points in the boot process.
The command uses the playbook structure to inspect the plays, roles, templates, and task files for patterns that
appear to be config set variable lookups. For each lookup found in the Ansible content, the command lists a path
to the configuration template that holds the variable.

Disclaimer: the ansible_cfg_search tool may not find all references.

Before using ansible_cfg_search, load the system-config module.

ansible_cfg_search [-h] [-p PLAYBOOK] [-s CONFIG_SETTING] [-e LOOKUP_EXPRESSION]
 [-q] config_set image

Required arguments:

config_set The config set to search for config variables.

image The IMPS image root containing ansible content to search. If necessary, use the image list
command to find the IMPS image root.

Optional arguments:

-h, --help Display help information.

-p PLAYBOOK, --playbook PLAYBOOK The Ansible playbook file contained in the IMPS image to
search for configuration lookups.

-s CONFIG_SETTING, --config-setting
CONFIG_SETTING

List the configuration templates and Ansible files that contain
the specified setting.

Manage the System

S2393 57

Example
Examine a config set to determine the settings that the baseopts.yaml play is looking up:

smw: # module load system-config
smw: # ansible_cfg_search p0 \
service_cle_6.0.UP03-build6.0.3074_sles_12-created20170120 \
--play baseopts.yaml

Output:

/var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-created20170120/
etc/ansible/baseopts.yaml:

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/smw.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/main.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_login_config.yaml:
 - cray_login.settings.login_nodes.data.members
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login
 - cray_user_settings.settings.default_modules.data.service
 - cray_user_settings.settings.default_modules.data.smw

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/login.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.settings.default_modules.data.login

 - /var/opt/cray/imps/image_roots/service_cle_6.0.UP03-build6.0.3074_sles_12-
created20170120/etc/ansible/roles/baseopts/tasks/service.yaml:
 - /var/opt/cray/imps/config/sets/p0/config/cray_user_settings_config.yaml:
 - cray_user_settings.default_modules
 - cray_user_settings.default_modules.login
 - cray_user_settings.default_modules.service
 - cray_user_settings.default_modules.smw
 - cray_user_settings.settings.default_modules.data.service

3.8.3 Examine Ansible Changelogs
Ansible changelogs provide information about files created, modified, and deleted by Ansible. Changelogs are
created for cray-ansible when it first runs during the init phase and again when cray-ansible runs for the
second time, during the booted phase. These logs are stored on the SMW in /var/opt/cray/log/ansible.

Note that the Ansible changelogs record changes made by common methods; it is possible that some changes
may not be captured.

Logs created in the first phase (init):

sitelog-init Contains Ansible play output from each task in executed plays.

file-changelog-init Human-readable listing of each file changed by an Ansible play.

file-changelog-init.yaml Machine-readable listing of each file changed by an Ansible play.

Logs created in the second phase (booted):

Manage the System

S2393 58

sitelog-booted Contains Ansible play output from each task in executed plays.

file-changelog-booted Human-readable listing of each file changed by an Ansible play.

file-changelog-booted.yaml Machine-readable listing of each file changed by an Ansible play.

This sitelog entry shows that a task updated the message of the day (motd) file.

2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release]

2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true,
"cmd": "grep RELEASE /etc/opt/cray/release/cle-release | awk -F\\='{print $2}'",
"delta": "0:00:00.002536", "end": "2016-01-17 12:15:27.471384", "rc": 0,
"start": "2016-01-17 12:15:27.468848", "stderr": "", "stdout": "6.0.UP01",
"warnings": []}

The location of failing task can be found in plays:

boot# grep -Rn "task motd, release" /etc/ansible \
/etc/opt/cray/config/current/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release

The file-changelog files show the Ansible phase, each changed file, and the play that changed the file. This
an entry from a file-changelog-init changelog:

Apr 05 2016 21:07:47 (init) template: file '/etc/nologin' changed by Ansible
task file '/etc/ansible/roles/early/tasks/nologin.yaml' with owner=root,
group=root, mode=0775

This an entry from a file-changelog-booted changelog:

May 16 2016 22:26:39 (booted) lineinfile: file '/etc/hosts' changed by Ansible
task file '/etc/ansible/roles/hosts/tasks/main.yaml' with owner=None,
group=None, mode=None

The same entry for the /etc/hosts edit in the file-changelog-booted.yaml changelog:

- backup_file_path: ''
 file_path: /etc/hosts
 group: null
 mode: null
 module: lineinfile
 owner: null
 phase: booted
 play: populate local hostfile
 state: null
 task_file: /etc/ansible/roles/hosts/tasks/main.yaml
 task_name: Add additional hosts to master file
 time: May 16 2016 22:26:39

The changelog entry fields are:

Field Name Description

backup_file_path Location of backup copy of file modified or deleted, if available.

file_path Full path to the file which was modified.

Manage the System

S2393 59

Field Name Description

group Group given to the file if created or modified, or null if not specified.

mode Permissions changed on the file if created or modified, or null if permissions were
not changed.

module Ansible module executed.

owner Owner given to the file if created or modified, or null if not specified.

phase Values are "booted" or "init".

play Name of play making change.

state Whether a line should be "present" or "absent".

task_file Name of the task file which made the change.

task_name Name of the task which made this change.

time Format is "Month Day Year HH:mm:ss".

3.8.4 Debug Ansible Failures in init

About this task
Check the console log on the SMW to find out which nodes failed. Ansible failures in init drop a node into
debug shell. The boot process is not allowed to continue until cray-ansible during init is successful on a
node.

Procedure

1. Look for cray-ansible failures in the SMW console log.

crayadm@smw~> /var/opt/cray/log/p0-current> cat console-20160523 | grep 'FAILED
in init phase'

<158>1 2016-05-23T12:01:22.576591-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: serial start of play type cle
FAILED in init phase
<158>1 2016-05-23T12:01:22.576634-05:00 c0-0c0s0n1 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: serial start of play type cle
FAILED in init phase
<158>1 2016-05-23T12:01:34.411653-05:00 c0-0c0s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: serial start of play type cle
FAILED in init phase
<158>1 2016-05-23T12:01:34.411699-05:00 c1-0c2s1n2 xtconsole 31798
p0-20160523t115109 [console@34] cray-ansible: serial start of play type cle
FAILED in init phase

2. Access the debug shell with xtcon from the SMW.

smw# xtcon c1-0c2s1n2

DEBUG(err_ansible)#

Manage the System

S2393 60

3. Inspect Ansible logs on the node in /var/opt/cray/log/ansible, make a configuration change in the
config set, or do some other corrective action. Exiting from the debug shell causes cray-ansible to run
again in init.

3.8.5 Examine System Dumps
The xtdumpsys command collects and analyzes information from a Cray XC system that is failing or has failed,
has crashed, or is hung. The dump file includes:

● Event log data, active heartbeat probing, voltages, temperatures, health faults, in-memory console buffers,
and high-speed interconnection network errors.

● Config sets from the SMW.

● Ansible logs from nodes.

● Ansible changed files log from nodes can be collected.

● NIMS logs from SMW can be collected.

Include the files that Ansible changed by using the ansible_changed_files xtdumpsys plugin.

xtdumpsys --plugins-include=ansible_changed_files --reason="add changed files" -
add c0-0c0s3n2

Include the NIMS logs from the SMW by using the nims_logs xtdumpsys plugin. The NIMS logs are written to
the nims directory in the dump.

xtdumpsys --plugins-include=nims_logs --reason="include NIMS logs"

3.9 Log on to the Boot Node

About this task
The standard Cray configuration has a gigabit Ethernet connection between the SMW and boot node. All other
nodes on the Cray system are accessible from the boot node.

Procedure

1. Log on to the SMW as crayadm.

2. There are two methods to log on to the boot node: ssh to the boot node.

● Use ssh:

crayadm@smw> ssh boot
crayadm@boot>

● Open an administrator window on the SMW:

crayadm@smw> xterm -ls -vb -sb -sl 2049 6&
After the window opens, use it to ssh to the boot node.

Manage the System

S2393 61

3.10 Display Boot Configuration Information
Use the xtcli command to display the configuration information for the primary and backup boot nodes, the
primary and backup SDB nodes, and the cpio path.

Display boot configuration information for the entire system

crayadm@smw> xtcli boot_cfg show
Network topology: class 2
=== xtcli_boot_cfg ===
[boot]: c0-0c0s0n1:ready,c0-0c0s0n1:ready
[sdb]: c1-0c0s1n1:ready
[cpio_path]: /tmp/boot/kernel.cpio_5.2.14-wGPFS

Display boot configuration information for one partition in a system

crayadm@smw> xtcli part_cfg show pN
Where pN is the partition number. p0 is always the whole system.

3.11 Update the Boot Configuration
The HSS xtcli boot_cfg command allows the administrator to specify the primary and backup boot nodes
and the primary and backup SDB nodes for s0 or p0 (the entire system). For a partitioned system, use xtcli
part_cfg to manage boot configurations for partitions.

For more information about these commands, see the xtcli_boot(8) and xtcli_part(8) man pages.

Note that these commands alone are not sufficient to configure boot or SDB node failover. For the full procedures,
see Configure Boot Node Failover on page 258 and Configure SDB Node Failover on page 264.

This example updates the boot configuration using the boot image /bootimagedir/
bootimage, primary boot node (for example, c0-0c0s0n1), backup boot node, primary SDB
node, and the backup SDB node:

crayadm@smw> xtcli boot_cfg update -b primaryboot_id,backupboot_id \
-d primarySDB_id,backupSDB_id -i /bootimagedir/bootimage

3.12 Display the Format of the SDB attributes Table
When the SDB boots, it reads the /etc/opt/cray/sdb/attributes file and loads it into the SDB
attributes table.

Manage the System

S2393 62

To display the format of the attributes SDB table, use the mysql command:

crayadm@login> mysql -e "desc attributes;" -h sdb XTAdmin
+----------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+-------+
nodeid	int(32) unsigned	NO	PRI	0	
archtype	int(4) unsigned	NO		2	
osclass	int(4) unsigned	NO		2	
coremask	int(4) unsigned	NO		1	
availmem	int(32) unsigned	NO		0	
pageszl2	int(32) unsigned	NO		12	
clockmhz	int(32) unsigned	YES		NULL	
label0	varchar(32)	YES		NULL	
label1	varchar(32)	YES		NULL	
label2	varchar(32)	YES		NULL	
label3	varchar(32)	YES		NULL	
numcores	int(4) unsigned	NO		1	
sockets	int(4) unsigned	NO		1	
dies	int(4) unsigned	NO		1	
+----------+------------------+------+-----+---------+-------+
The service database command pair xtdb2attr and xtattr2db enables the system administrator to update
the attributes table in the SDB. For additional information about updating SDB tables using command pairs,
see Update SDB Tables on page 63.

3.13 Update SDB Tables
The CLE command pairs shown enable the system administrator to update tables in the SDB. One command
converts the data into an ASCII text file to edit; the other writes the data back into the database file.

Table 5. Service Database Update Commands

Get Command Put Command Table Accessed Reason to Use Default File

xtdb2proc xtproc2db processor Updates the
database when a
node is taken out of
service

./processor

xtdb2attr xtattr2db attributes Updates the
database when
node attributes
change

./attribute

xtdb2segment xtsegment2db segment For nodes with
multiple NUMA
nodes, updates the
database when
attribute information
about node changes

./segment

xtdb2servcmd xtservcmd2db service_cmd Updates the
database when

./serv_cmd

Manage the System

S2393 63

Get Command Put Command Table Accessed Reason to Use Default File

characteristics of a
service change

xtdb2servconfig xtservconfig2db service_config Updates the
database when
services change

./serv_config

xtdb2etchosts none processor Manages IP
mapping for service
nodes

none

xtdb2lustrefailove
r

xtlustrefailover
2db

lustre_failove
r

Updates the
database when a
node's Lustre
failover state
changes

./
lustre_failove
r

xtdb2lustreserv xtlustreserv2db lustre_service Updates the
database when a
file system's failover
process is changed

./lustre_serv

xtdb2filesys xtfilesys2db filesystem Updates the
database when a
file system's status
changes

./filesys

xtdb2gpus xtgpus2db gpus Updates the
database when
attributes about the
accelerators change

./gpus

xtprocadmin none processor Displays or sets the
current value of
processor flags and
node attributes in
the service
database (SDB).
The batch scheduler
and ALPS are
impacted by
changes to these
flags and attributes.

none

xtservconfig none service_config Adds, removes, or
modifies service
configuration in the
SDB
service_config
table

none

Manage the System

S2393 64

3.14 Free Up Disk Space in the btrfs File System
The btrfs file system requires some maintenance, particularly to free up disk space consumed by unneeded
snapshots. When administrators encounter a No space left on device message, snapshots could be
causing the problem.

For information about this issue, visit SUSE™ documentation at https://www.suse.com/documentation/, select the
appropriate SUSE Linux Enterprise Server version, and then in the list of installation and administration
publications, see the following:

● Storage Administration Guide (see File Systems and Mounting > Overview of File Systems in Linux >
Troubleshooting File Systems)

● Administration Guide (see Common Tasks > System Recovery and Snapshot Management > Frequently
Asked Questions)

3.15 Boot a Node or Set of Nodes Using the xtcli boot Command
To boot a specific image or load file on a given node or set of nodes, execute the HSS xtcli boot boot_type
command, as shown in the following examples. When using a file for the boot image, the same file must be on
both the SMW and the bootroot at the same path.

WARNING: Each system boot must be started with an xtbootsys session to establish a sessionid.
Perform direct boot commands using the xtcli boot command only after a session has been
established through xtbootsys.

Boot all service nodes with a specific image

For this example, the specific image is located at /raw0:

crayadm@smw> xtcli boot all_serv_img -i /raw0

Boot all compute nodes with a specific image

For this example, the specific image is located at /bootimagedir/bootimage:

crayadm@smw> xtcli boot all_comp_img -i /bootimagedir/bootimage

Boot compute nodes using a load file

The following example boots all compute nodes in the system with using a load file name CNL0:

crayadm@smw> xtcli boot CNL0 -o compute s0

Manage the System

S2393 65

https://www.suse.com/documentation/

3.16 Increase the Boot Manager Timeout Value
On systems of 4,000 nodes or larger, the time that elapses until the boot manager receives all responses to the
boot requests can be greater than the default 60-second time-out value. This is due, in large part, to the amount
of other event traffic that occurs as each compute node generates its console output.

To avoid this problem, change the boot_timeout value in the /opt/cray/hss/default/etc/bm.ini file on
the SMW to increase the default 60-second time-out value by 60 seconds for every 5,000 nodes; for example:

Increase the boot_timeout value

For systems of 5,000 to 10,000 nodes, change the boot_timeout line to:

boot_timeout 120
For systems of 10,000 to 15,000 nodes, change the boot_timeout line to:

boot_timeout 180

3.17 Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw# xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

3.18 Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw# xtbounce s0

Manage the System

S2393 66

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw# xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

3.19 Flash NVMe SSD Firmware

Prerequisites
● A Cray XC series system with one or more SSD cards installed

● Ability to log in as root
● Access to an image flash file appropriate for the specific type of SSD (location provided by Cray)

About this task
This procedure, typically only done at Cray's recommendation, ensures that the firmware of any SSD cards is up-
to-date with an image flash file. The xtiossdflash command compares the current flash version to the image
flash file and flashes the device (up or down) only if the two are different. For further information, see the
xtiossdflash(8) man page.

boot# module load ssd-flash
boot# man xtiossdflash

Procedure

1. Log on to the boot node as root, then load the pdsh and ssd-flash modules.

smw:# ssh boot
boot:# module load pdsh ssd-flash

2. Copy the firmware image to all target nodes to be flashed.

boot:# scp ssd_fw_image_file target:/location
Where:
ssd_fw_image_file

Specifies the SSD flash image

target
Specifies a single node with SSDs

location
Specifies the location on the node to place the image

Manage the System

S2393 67

For example:

boot:# scp /P3608_FW/FW1B0_BL133 c0-1c0s9n2:/tmp

3. Flash the firmware.

boot:# xtiossdflash -f -i /location/ssd_fw_image_file target

Where:
/location/ssd_fw_image_file

Specifies the path (on the target node) to the SSD flash image

target
Specifies a single node with SSDs, a comma-separated list of nodes with SSDs, or the
keyword all_service

For example:

boot:# xtiossdflash -f -i /tmp/FW1B0_BL133 c0-1c0s9n2
If the firmware updates successfully, the message Successfully flashed is displayed.

If the firmware does not update successfully, one of the following messages is displayed.

● No devices available - No /dev/nvmeX devices were found.

● The file /root/8DV101B0_8B1B0133_signed.bin does not exist. Skipping. - The
firmware image flash file could not be found.

● /dev/nvmeX already flashed to firmware version <version>. Skipping. - The device
is already flashed to the firmware selected.

● Failure to download firmware to /dev/nvmeX - Firmware could not be loaded to an SSD.

● Invalid firmware slot - The specified slot on the device is not valid.

● Invalid firmware image - Specified firmware is not valid for the SSD type.

If applicable, rectify the problem and try again.

4. Load the new firmware:

● For Intel SSDs:

Reboot the target node(s) to load the new firmware.

boot# xtbootsys --reboot target
For example:

boot# xtbootsys --reboot c0-1c0s9n2
● For Samsung SSDs:

1. Power cycle the blade on which the target node is located.

2. Reboot the node.

boot# xtbootsys --reboot target
For example:

boot# xtbootsys --reboot c0-1c0s10n1

Manage the System

S2393 68

5. Verify the flash version.

The firmware version displayed is for example purposes only and should not be expected.

boot# /opt/cray/ssd-flash/bin/xtiossdflash -v c0-1c0s9n2
c0-1c0s9n2: <nvme_flash>: /dev/nvme3: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme2: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme1: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme0: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0

3.20 Flash the Intel P3608 Firmware

Prerequisites
● A Cray XC series system with one or more Intel P3608 SSD cards installed

● Ability to log in as root
● Access to an Intel P3608 image flash file (location provided by Cray)

About this task
This procedure, typically only done at Cray's recommendation, ensures that the firmware of any Intel P3608 SSD
cards is up-to-date with an image flash file. The xtiossdflash command compares the current flash version to
the image flash file and flashes the device (up or down) only if the two are different.

For further information, see the xtiossdflash(8) man page.

boot# man -l /opt/cray/ssd-flash/man/man8/xtiossdflash.8

Procedure

1. Log on to the boot node as root and load the pdsh module.

smw:# ssh root@boot
boot:# module load pdsh

2. Copy the firmware image to the target nodes.

boot:# scp P3608_fw_image_file target:/location
For example:

boot:# scp /P3608_FW/FW1B0_BL133 c0-1c0s9n2:/tmp

3. Flash the firmware.

boot:# /opt/cray/ssd-flash/bin/xtiossdflash -f -i /location/P3608_fw_image_file target

Where:
/location/P3608_fw_image_file

Specifies the path to the Intel P3608 flash image

target

Manage the System

S2393 69

Specifies a single node with SSDs, a comma-separated list of nodes (with SSDs), or the
keyword all_service

For example:

boot:# /opt/cray/ssd-flash/bin/xtiossdflash -f -i /tmp/FW1B0_BL133 c0-1c0s9n2
If the firmware updates successfully, one of the following messages is displayed.

● Firmware application requires conventional reset.
● Firmware application requires NVM subsystem reset.
If the firmware does not update successfully, one of the following messages is displayed.

● No devices available - No /dev/nvmeX devices were found.

● The file /root/8DV101B0_8B1B0133_signed.bin does not exist. Skipping. - The firmware image flash file
could not be found.

● Could not find image file compatible with /dev/nvmeX. Skipping - The device exists,
but no firmware image was found that matches the device.

● /dev/nvmeX already flashed to firmware version <version>. Skipping - The device is
already flashed to the firmware selected.

If applicable, rectify the problem and try again.

4. Reboot the target node(s) to load the new firmware.

boot# xtbootsys --reboot c0-1c0s9n2

5. Verify the flash version.

The firmware version displayed below is for example purposes only and should not be expected.

boot# /opt/cray/ssd-flash/bin/xtiossdflash -v c0-1c0s9n2
c0-1c0s9n2: <nvme_flash>: /dev/nvme3: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme2: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme1: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0
c0-1c0s9n2: <nvme_flash>: /dev/nvme0: Model = INTEL SSDPECME040T4Y , FW Version = 8DV101B0

3.21 Request and Display System Routing
Use the HSS rtr command to request routing for the HSN, to verify current route configuration, or to display
route information between nodes. Upon startup, rtr determines whether it is making a routing request or an
information request.

For more information, see the rtr(8) man page.

Display routing information

The --system-map option to rtr writes the current routing information to stdout or to a
specified file. This command can also be helpful for translating node IDs (NIDs) to physical ID
names.

crayadm@smw> rtr --system-map

Manage the System

S2393 70

Route the entire system

The rtr -R | --route-system command sends a request to perform system routing. If no
components are specified, the entire configuration is routed as a single routing domain based on
the configuration information provided by the state manager. If a component list (idlist) is
provided, routing is limited to the listed components. The state manager configuration further
limits the routing domain to omit disabled blades, nodes, and links and empty blade slots.

crayadm@smw> rtr --route-system

3.22 Initiate a Network Discovery Process
Use the HSS rtr --discover command to initiate a network discovery process.

crayadm@smw> rtr --discover
The discovery process must be done on the system as a whole—it cannot be applied to individual partitions.
Therefore, discovery will immediately fail if the system does not have partition p0 enabled.

The rtr --discover process should be used under the following circumstances:

● During an initial install, after successful execution of xtdiscover
● During the installation of additional cabinets in an existing installation, after the successful execution of

xtdiscover
● During an upgrade of optical cabling in a system, after all recabling is complete

The rtr --discover process is NOT required under the following circumstances:

● On any single group system at any time, even those listed above

● During a warmswap operation

See the rtr(8) man page for additional information.

3.23 Configure IP Routes

Prerequisites
Configuring IP routes for compute nodes is not required on a CLE system.

About this task
An /etc/routes file can provide route entries for compute nodes. This provides a mechanism for administrators
to configure routing access from compute nodes to login and network nodes, using external IP destinations
without having to traverse RSIP tunnels. Careful consideration should be given before using this capability for
general purpose routing.

Manage the System

S2393 71

The /etc/routes file will provide a route from the compute nodes to a gateway node (login or network).
However, that gateway node must provide a connection to the network of interest (via IP forwarding, NAT, or
something else). These instructions do not cover providing that connection.

Use the simple_sync functionality to make the /etc/routes file available on the compute nodes.

Procedure

Configure IP routes via simple_sync.

The new /etc/routes file is examined during startup. Non-comment, non-blank lines are passed to the
route add command. The empty file contains comments describing the syntax.

To make the routes file available to the compute nodes, do the following on the SMW.

a. Edit a routes file with the desired compute node routes in a local directory.

smw# vi routes
b. Create the directory etc in the desired config set

directory,
/var/opt/cray/imps/config/sets/<config set>/files/roles/simple_sync/classes/compute
. This will create an /etc directory on the compute nodes.

smw# mkdir -p /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

c. Copy the routes files from the local directory into the newly created etc directory. Then, this file will be
available on all of the compute nodes when they boot.

smw# cp -p routes /var/opt/cray/imps/config/sets/p0/files/roles/simple_sync/
classes/compute/etc

3.24 System Component States
Component state definitions are designated by uppercase letters. The state of OFF means that a component is
present on the system. If the component is a blade controller, node, or ASIC, then this will also mean that the
component is powered off. If the administrator disables a component, the state shown becomes disabled.
When the xtcli enable command is used to enable that component for use once again, its state switches from
disabled to off. In the same manner, enabling an empty component means that its state switches from empty
to off.

The state of EMPTY components does not change when using the xtcli enable or the xtcli disable
command, unless the force option (-f) is used.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Manage the System

S2393 72

Table 6. State Definitions

State Cabinet
Controller

Blade Controller Cray ASIC CPU Link

OFF Powered off Powered off Powered off Powered off Link is down

ON Powered on Powered on Powered on and
operational

Powered on Link is up

HALT -- -- -- CPU halted --

STANDBY -- -- -- Booting was
initiated

--

READY Operational Operational Operational Booted Operational

Table 7. Additional State Definitions (Common to all components)

State Description

DISABLED Operator disabled this component.

EMPTY Component does not exist.

N/A Component cannot be accessed by the system.

RESVD Reserved; new jobs are not allocated to this component.

There are two notification flags, which can occur with any state.

WARNING A condition of the component was detected that is outside the normal operating range but is not yet
dangerous.

ALERT A dangerous condition or fatal error has been detected for the component.

Administrative states are hierarchal, so disabling or enabling a component has a cascading effect on that
component's children. A component may not be enabled if its parent component is disabled, but a subcomponent
may be disabled without affecting its parents.

Table 8. xtcli Commands and Valid States

xtcli Command Subcommand Cabinet Controller Blade Controller Node

power up ON OFF OFF
 down READY ON ON, HALT, DIAG
 up_slot (an alias

for up)

 down_slot (an alias
for down)

 force_down (an
alias for down)

halt N/A N/A STANDBY, READY

Manage the System

S2393 73

xtcli Command Subcommand Cabinet Controller Blade Controller Node

boot N/A N/A ON, HALT

3.25 Configure Current System Timezone

Prerequisites
Start with the XC system booted.

About this task
Changing the timezone of a system can be done with a few configuration changes and then rebooting
components.

Procedure

Check current timezone

1. Check timezone on SMW.

smw# date

2. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date

3. Check timezone on boot node.

smw# ssh boot date

4. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with an
Ethernet connection to the SMW.

smw# ssh sdb date

5. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"

6. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

Change SMW local timezone

7. Execute this command to change the default timezone. The default timezone on the SMW is "America/
Chicago".

smw# yast2 timezone

Manage the System

S2393 74

The change on the SMW will be immediate, but users will need to logout and then login again to get the new
environment.

This does not change the timezone for the CLE nodes or the cabinet and blade controllers. See below to
make those changes.

Change timezone in global config set

8. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive global

9. Validate the config set.

smw# cfgset validate global

Change timezone in CLE config set

If the CLE config set has cray_time.inherit set to true, then the timezone and other time settings from
the global config set will be inherited by the CLE config set.

If the CLE config set has cray_time.inherit set to false, then use the following command to change the
setting.

10. Set cray_time.settings.service.data.timezone to be the desired timezone. A list of possible
timezones is available on the SMW in /usr/share/zoneinfo/zone1970.tab.

smw# cfgset update -s cray_time -m interactive p0

11. Validate the config set.

smw# cfgset validate p0

Reboot for new timezone

Follow these steps to set a new timezone for all components in the SMW and CLE system after the global
and CLE config sets and SMW yast2 have been updated with the new setting.

12. Reboot SMW.

a. Shutdown CLE and reboot the SMW.

crayadm@smw> xtbootsys -s last -a auto.hostname.stop
crayadm@adm> su - root
smw# reboot

b. Check that the SMW has the desired timezone setting once the SMW reboots.

smw# date

13. Power down the system.

smw# xtcli power down s0

14. Reboot the cabinet controllers

Manage the System

S2393 75

smw# xtccreboot -c all
xtccreboot: reboot sent to specified CCs
smw# sleep 120
smw# xtalive -l cc

15. Power up the system.

smw# xtcli power up s0

16. Boot CLE nodes for new timezone.

crayadm@smw> xtbootsys -a auto.rhine

17. Check current timezone.

a. Check timezone on SMW.

smw# date
b. Check timezone on cabinet and blade controllers.

smw# xtrsh -l root -s date
c. Check timezone on boot node.

smw# ssh boot date
d. Check timezone on SDB node. This command works from the SMW if the SDB node is a tier1 node with

an Ethernet connection to the SMW.

smw# ssh sdb date
e. Check timezone on all service nodes.

smw# ssh sdb pcmd -r -n ALL_SERVICE_NOT_ME "date"
f. Check timezone on all compute nodes.

smw# ssh sdb pcmd -r -n ALL_COMPUTE "date"

3.26 View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

Manage the System

S2393 76

View node characteristics

login# xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

View all node attributes
login# xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

login# xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004> xtprocadmin -k s admindown

Manage the System

S2393 77

3.27 Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

module load nodehealth
For additional information, see the pcmd(1) man page.

3.28 Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot# pdsh -w 'login[1-9]' /etc/init.d/ntp restart

3.29 Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw> rtr --system-map | grep cname | awk '{ print $1 }'

Manage the System

S2393 78

For more information, see the rtr(8) man page.

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Find the physical ID for node 38

smw# xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw# xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Find the physical IDs for Aries IDs 0-7

smw# xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man page.

Print the nid-to-nic address mappings for the node with NID 31

smw# nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Manage the System

S2393 79

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw# nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

3.30 Dynamic Fan Speed Control
Effective with SMW version 8.0.UP04, the HSS cooling system for liquid-cooled XC and XC+ cabinets supports
dynamic fan speed control by row or for the entire system.

When dynamic fan speed control is not enabled the HSS cooling software operates the cabinet fans at one of 3
fan speeds, defined as fan_speed_idle when the blades in the cabinet are not powered on, fan_speed_high
when a CPU or GPU is within 8 degrees of the highest temperature that it can operate at without being throttled
(TJMAX), and fan_speed_normal at all other times.

The speed setting of fan_speed_normal ensures that, under normal operation, the temperature of the CPU/
GPU dies are maintained below the hot spot detection threshold. If the cooling water is at the required
temperature and the temperature setpoint is set appropriately, no hot spot should be detected, as this setting is
expected to cover the worst case. Typically, die temperatures on a production system fluctuate but are below the
throttle threshold most of the time. Setting fan speed to a constant fan_speed_normal is unnecessary and can
consume more energy than is needed to properly cool the system.

When the dynamic fan speed feature is enabled, the cabinets self-regulate their fan speed based upon observed
CPU and/or GPU temperatures. Each cabinet in a row runs its fans at the same speed, based on the highest CPU
or GPU temperature sensor reading from all of the blades in all cabinets within the row. The frequency with which
fan speeds change in response to temperature sensor readings varies depending on the type of jobs running on
the system, and is bounded by two pre-existing ini file variables:

● fan_speed_step_up_delay This variable controls how fast the system will switch to a higher speed in a
fan speed table if die temperatures are increasing. The default is 20 seconds.

● fan_speed_step_down_delay This variable controls how fast the system will switch to a lower fan speed
if die temperatures are decreasing.The default is 300 seconds.

IMPORTANT: Cray recommends that these and other cooling variables related to dynamic fan speeds in
the initialization files be kept at their default values. The exception is fan_auto_speed_enable, which
enables dynamic fan speed control.

Enabling dynamic fan speed control does not supercede CPU hot spot detection and control. When a hot spot is
detected, the cabinet fans in a row will still switch to the fan_speed_high setting and remain at that setting until
the hot spot is cleared. Similarly, if the blades are powered down, the fans will run at the fan_speed_idle
setting.

3.30.1 Enable Dynamic Fan Speed Control

Prerequisites
Dynamic fan speed has not enabled at the system level or on a specified row within the system.

Manage the System

S2393 80

Procedure

1. Edit the system-level (hss.ini) file or a row-level (hss_rN.ini) file in the /opt/tftpboot/ccrd
directory to set the fan_auto_speed_enable variable to 1.

Setting fan speeds dynamically on systems with mixed blower types within the same row is not supported. On
systems with both STD and HP blowers in separate rows, fan speed settings must be done via row-specific
ini files.

fan_auto_speed_enable=1

2. If the system is running, reload the ini file or files.

crayadm@smw>xtccr load_ini

3. The cooling software on each blade will automatically generate fan speed tables based on the CPUs and/or
GPUs that are on the blade. To view the current fan speed table run the following command on the SMW:

crayadm@smw>xtdaemonconfig --daemon ccrd|grep _table
c0-0c0s7: fan_auto_speed_table_cpu=-:92:2750|91:87:2600|86:82:2450|81:77:2300
|76:72:2150|71:-:*2000
c0-0c0s7: fan_auto_speed_table_gpu=-:80:2750|79:75:2600|74:70:2450|69:65:2300
|64:60:2150|59:-:*2000
The above fan speed tables were generated for both the CPUs and the GPUs on blade c0-0c0s7. Each set
of values between the | symbol gives the temperature range in degrees C and the corresponding fan speed in
RPMs. For example, On the CPUs, a fan speed of 2750 RPMs is specified for component temperatures of 92
C and above, and a fan speed of 2600 RPMs is specified for component temperatures between 91 C and 87
C.

3.30.2 Configure and Validate Dynamic Cooling Control Variables
Under normal circumstances, administrators need only set the fan_auto_speed_enable to 1 to enable
dynamic fan speed control. All other dynamic fan speed related variables should be left at their default settings.

In particular, adjusting the fan_auto_speeds variable is not recommended as the automatically generated fan
speed tables will always be correct for the type of hardware on each blade.

The following settings are described here for use in special situations where the default values are not adequate.

CAUTION: It is recommended that these settings (other than fan_auto_speed_enable) be changed
only in consultation with Cray service personnel.

fan_auto_speed_enable
Enables or disables dynamic fan speed control.

fan_auto_speed_enable=0 # disable
fan_auto_speed_enable=1 # enable

fan_auto_speed_temp_step

Manage the System

S2393 81

Specifies the change in temperature (in C) that would be required for the fan speed to
change. The default value for fan_auto_speed_temp_step is 5C. The allowed range is
5-12C. This variable applies to both specified and auto-generated fan speed tables.

Example:

fan_auto_speed_temp_step=5

fan_auto_speed_rpm_step

Specifies the RPM step between fan speeds for auto-generated fan speeds. It is also used
to compute the value of the highest allowed RPM in a auto-generated fan speed table
(fan_auto_speed_high - fan_auto_speed_rpm_step). The default value for
fan_auto_speed_rpm_step is 150. The allowed range is 150-300. The value of
fan_auto_speed_rpm_step does not limit user-specified fan speeds.

Example:

fan_auto_speed_rpm_step=150

fan_auto_speed_high

Specifies the highest fan speed that can be used within a fan speed table, whether the table
is user-specified or auto-generated. The default value of fan_auto_speed_high in auto-
generated fan speed tables is the value of fan_speed_normal. The potential range of
values for this variable are >= fan_speed_normal and <= fan_speed_high.

Example:

fan_auto_speed_high=3100

fan_auto_high_temp_offset

Specifies the offset from the highest temperature that a CPU or GPU can operate at without
being throttled (TJMAX), that corresponds to the highest fan speed in a fan speed table.
The default value of fan_auto_high_temp_offset is 10. The potential range of values
for this variable are >= 0 and <= 20. For example, if fan_auto_speed_high is not set
and fan_auto_high_temp_offset is set if a component has a TJMAX of 100, then the
highest fan speed in the fan speed table will be equal to fan_speed_normal, and the
corresponding temperature for that fan speed will be at >= 90. Example:

fan_auto_high_temp_offset=10

fan_auto_speeds

Specifies a fan speed table choice. A minimum of 3 and a maximum of 15 fan speeds can
be specified. If duplicate values are specified, or any specified fan speeds fail validation
checks, then all specified fan speeds are ignored.

The minimum fan speed value is fan_auto_speed_min and the maximum value is
fan_auto_speed_high. Each fan speed is separated by a vertical bar (|). Example:

fan_auto_speeds=3100|2800|2500|2200

Manage the System

S2393 82

In this case, if the default values for fan_auto_temp_step and
fan_auto_high_temp_offset are used and TJMAX for a component were to be 100C,
then the fan speed table lools like:

-:90:3100|89:85:2800|84:80:2500|79:-:2200

fan_speed_step_up_delay
Specifies the amount of time before the system switches to a higher speed in a fan speed
table when die temperatures are increasing. The default is 20 seconds.

fan_speed_step_down_delay
Specifies the amount of time before the system switches to a lower fan speed when die
temperatures are decreasing.The default is 300 seconds.

INI File Validation
If the dynamic fan speed variables have been changed from their default values, it's important to validate
the .ini files, prior to loading them onto the controllers. Use the xtccr --validate command to do this.

crayadm@smw> xtccr --validate=filename
Some of the variables defined in the cooling .ini files may be fully validated in this fashion, whereas other
variables may only be provisionally validated, as information specific to each cabinet is required to fully validate
the value of a variable.

Setting fan speeds dynamically via xtccr on systems with mixed blower types within the same row is not
supported. On systems with both STD and HP blowers in separate rows, fan speed settings must be done by
means of row-specific .ini files.

For example, the value of fan_speed_high can only be validated provisionally because knowledge of the type
of fans installed within a cabinet (STD or HP) is required to fully validate the value.

3.31 Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Manage the System

S2393 83

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

crayadm@smw> xtcli status -t aries c0-0c1s3a0
2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw> xtcli power up c0-0c1s3

3.32 Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

Manage the System

S2393 84

3.33 Check Current State of Compute Node SSDs

Prerequisites
This procedure is intended only for XC systems that have compute nodes with SSDs, such as DataWarp SSDs or
Intel® Xeon Phi™ "Knights Landing" processors.

About this task
Use this command after an initial installation, SSD hardware change, or system update. Cray also recommends
running xtcheckssd periodically (daily/weekly).

Procedure

Run xtcheckssd to ensure that SMW databases have the current state of compute node SSDs.

root@login# pcmd -r -n ALL_COMPUTE "/opt/cray/ssd/bin/xtcheckssd"

3.34 Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw> xtcli set_empty -a c0-0c1s7

Manage the System

S2393 85

3.35 Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw> xtcli lock show

3.36 Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

3.37 Over-provision an Intel P3608 SSD

Prerequisites
● A Cray XC series system with one or more Intel P3608 SSD cards installed

● Ability to log in as root

About this task
IMPORTANT: This procedure is optional and is only valid for Intel P3608 SSDs. The examples provided
are based on the 4TB drives, but this procedure also works for the 1.6TB drives.

Manage the System

S2393 86

Over-provisioning is the process of increasing the spare area on an SSD. This provides extra capacity for the
SSD controller to move data around without having to re-write multiple blocks of data as the drive fills up. This
results in better performance and higher endurance, but with the tradeoff of less capacity for users. Sites can
choose to over-provision or not.

Because over-provisioning determines the size of the device available to the Logical Volume Manager (LVM)
commands, it needs to occur prior to executing any LVM commands. Typically, over-provisioning is done when the
SSD cards are first installed.

WARNING: This procedure destroys any existing data on the SSDs.

Procedure

1. Log on to an Intel P3608 SSD-endowed node as root, then determine the SSD model number.

ssd# module load linux-nvme-ctl
ssd# nvme id-ctrl /dev/nvme0 |grep mn
mn : INTEL SSDPECME040T4Y

2. Shut down the DataWarp manager daemon (dwmd).

ssd# systemctl stop dwmd

3. Remove any existing configuration.

TIP: Numerous methods exist for creating configurations on an SSD; these instructions may not
capture all possible cleanup techniques.

a. Unmount file systems (if any).

nid00350# df
boot:/home 20961280 11352064 9609216 55% /home
tmp 61504671488 624927640 57802802440 2% /scratch
nid00350# umount -f /scratch

b. Remove logical volumes (if any).

nid00350# lvdisplay
 --- Logical volume ---
 LV Path /dev/dwcache/s98i94f104o0
 LV Name s98i94f104o0
 VG Name dwcache
 LV UUID 910tio-RJXq-puYV-s3UL-yDM1-RoQl-HugeTM
 LV Write Access read/write
 LV Creation host, time nid00350, 2017-02-22 13:29:11 -0500
 LV Status available
 # open 0
 LV Size 3.64 TiB
 Current LE 953864
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 1024
 Block device 253:0

nid00350# lvremove /dev/dwcache

Manage the System

S2393 87

c. Remove volume groups (if any).

nid00350# vgs
 VG #PV #LV #SN Attr VSize VFree
 dwcache 4 0 0 wz--n- 7.28t 7.28t
nid00350# vgremove dwcache
 Volume group "dwcache" successfully removed

d. Remove physical volumes (if any).

nid00350# pvs
PV VG Fmt Attr PSize PFree
/dev/nvme0n1 lvm2 a-- 1.82t 1.82t
/dev/nvme1n1 lvm2 a-- 1.82t 1.82t
/dev/nvme2n1 lvm2 a-- 1.82t 1.82t
/dev/nvme3n1 lvm2 a-- 1.82t 1.82t

nid00350# pvremove /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
 Labels on physical volume "/dev/nvme0n1" successfully wiped
 Labels on physical volume "/dev/nvme1n1" successfully wiped
 Labels on physical volume "/dev/nvme2n1" successfully wiped
 Labels on physical volume "/dev/nvme3n1" successfully wiped

e. Clear partitions for each device removed in the previous step (if any).

WARNING: This operation destroys any existing data on an SSD. Back up any existing data
before proceeding.

nid00350# dd if=/dev/zero of=phys_vol bs=512 count=1

nid00350# dd if=/dev/zero of=/dev/nvme0n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme1n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme2n1 bs=512 count=1
nid00350# dd if=/dev/zero of=/dev/nvme3n1 bs=512 count=1

4. Reconfigure the device based on the model number determined in step 1 on page 87 and the corresponding
over-provision value from the following table.

Table 9. Over-provision values for supported Intel P3608 models

Model Number Size (TB) Over-provision Value
(bytes)

HEX

SSDPECME016T4Y 1.6 1250259487 0x4a85721f

SSDPECME040T4 4.0 3125623327 0xba4d3a1f

SSDPECME040T4Y 4.0 3125623327 0xba4d3a1f

nid00350# nvme set-feature device -n 1 -f 0XC1 -v op_value
set-feature:193(Unknown), value:00000000

TIP: For the remainder of this procedure, the examples assume 4TB SSDs; values will be different for
1.6TB SSDs.

nid00350# nvme set-feature /dev/nvme0 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme1 -n 1 -f 0XC1 -v 3125623327

Manage the System

S2393 88

set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme2 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000
nid00350# nvme set-feature /dev/nvme3 -n 1 -f 0XC1 -v 3125623327
set-feature:193(Unknown), value:00000000

5. Confirm the change based on the SSD model number and values in Over-provision values for supported Intel
P3608 models on page 88. Note that 0xba4d3a1f = 3125623327.

nid00350# nvme get-feature device -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

nid00350# nvme get-feature /dev/nvme0 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme1 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme2 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f
nid00350# nvme get-feature /dev/nvme3 -n 1 -f 0XC1 --sel=0
get-feature:193(Unknown), value:0xba4d3a1f

6. Return to the SMW, and warm boot the DataWarp node.

crayadm@smw> xtnmi cname
crayadm@smw> sleep 60
crayadm@smw> xtbootsys --reboot -r "warmboot for Intel SSD node" cname

7. Log in to the Intel P3608 SSD-endowed node as root, and confirm that SIZE = 1600319143936 bytes for
all volumes.

nid00350# lsblk -b
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 196608 0 loop /var/opt/cray/imps-distribution/squash/
loop1 7:1 0 65536 0 loop /var/opt/cray/imps-distribution/squash/
nvme0n1 259:0 0 1600319143936 0 disk
nvme1n1 259:1 0 1600319143936 0 disk
nvme2n1 259:2 0 1600319143936 0 disk
nvme3n1 259:3 0 1600319143936 0 disk
Contact Cray service personnel if SIZE is incorrect.

3.38 Modify BIOS Parameters
There are a few, rare circumstances where it may be necessary to modify BIOS parameters, for example, in order
to troubleshoot a problem, or if there is a need to test a new BIOS version on a small set of nodes before
implementing the change across an entire system.

The xtbiosconf command allows administrators to specify BIOS parameters at the node, blade, chassis, or
cabinet level. BIOS parameters can be associated with a BIOS revision, numeric parameter offset or parameter
name, and target nodes. BIOS revision wildcards are supported. The BIOS parameter data is saved in a database
on the SMW, and made available automatically to blade controllers via the ERFS file system. In most cases a cold
reboot of the affected nodes is needed to apply the new settings.

Manage the System

S2393 89

CAUTION: Do not attempt to use this command except under guidance by Cray support personnel, who
will provide all the steps for shutting down the nodes, changing the settings, and bringing the nodes back
up. Improper use of this command can damage a system.

The following command displays the current BIOS Parameter settings for the entire system:

smw~> xtbiosconf --show s0
==============|======|===================================
 | BIOS | BIOS
Node | REV | Parameter
==============|======|===================================
c0-1c0s0n1 | 4030 | numlock=1
c0-1c0s0n1 | 4030 | acpiauto=0
==============|======|===================================
c0-1c0s0n2 | 4030 | numlock=1
c0-1c0s0n2 | 4030 | acpiauto=0
==============|======|===================================
For more information see the xtbiosconf man page.

3.39 Increase File System Size

About this task
When a Btrfs or XFS file system on the boot RAID needs to be increased, it is necessary to change the file
system size in the cray_bootraid configuration service, use the lvextend command to extend the logical volume,
and then use the appropriate Btrfs or XFS command to grow the file system.

Reference the following information when modifying cray_bootraid to increase file system size:

The CLE default storage set (cledefault) has the following three volume groups, each of which has multiple
volumes with file system type as shown:

● boot_node_vg
home (XFS)

imps (Btrfs)

nvolatile (XFS)

● sdb_node_vg
db (XFS)

alps (XFS)

ncmd (XFS)

● compute_node_local
temporary (ext3)

swap (swap)

unmanaged (ext3)

Manage the System

S2393 90

The SMW default storage set (smwdefault) has just one volume group, which has five volumes with file system
type as shown:

● smw_node_vg
home (XFS)

db (Btrfs)

log (XFS)

imps (XFS)

repos (Btrfs)

Procedure

1. Change a setting in the cray_bootraid configuration service to increase the size for the file system that needs
to grow.

XFS Example: The following example shows how to change the file system size of the home volume on the
smw_node_vg volume group in the smwdefault storage set.

Retrieve the current value.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.home.fs_size \
global
40

Increase it to 90.

smw# cfgset modify --set 90 \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.home.fs_size \
global

Verify that the value was changed.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.home.fs_size \
global
90

Btrfs Example: The following example shows how to change the file system size of the repos volume on the
smw_node_vg volume group in the smwdefault storage set.

Retrieve the current value.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.repos.fs_size \
global
100

Increase it to 120.

smw# cfgset modify --set 120 \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.repos.fs_size \
global

Verify that the value was changed.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.volumes.repos.fs_size \
global
120

2. Update and validate the global config set.

Manage the System

S2393 91

The cfgset CLI subcommands get and modify do not run pre- and post-configuration scripts. Because the
config set was changed with cfgset modify, it must be updated with cfgset update so that the scripts
will be run. The --mode prepare flag is used to make user interaction unnecessary.

smw cfgset update -m prepare global
smw cfgset validate global

3. Extend the LVM volume for the file system.

XFS Example: The following example shows how to extend the LVM of the home volume on the
smw_node_vg volume group.

smw# lvextend -L90G /dev/mapper/smw_node_vg-home
Btrfs Example: The following example shows how to extend the LVM of the repos volume on the
smw_node_vg volume group.

smw# lvextend -L120G /dev/mapper/smw_node_vg-repos

4. Grow the file system.

XFS Example: The following example shows how to grow the /home file system.

smw# xfs_growfs /home
Btrfs Example: The following example shows how to grow the /var/opt/cray/repos file system.

smw# btrfs filesystem resize max /var/opt/cray/repos

3.40 Add New Hardware to a System

About this task
Whether adding a single compute blade or a single service blade or several components in a full cabinet or
several cabinets, the process is similar.

Procedure

1. Add new components to system partition.

a. If the system is partitioned, then add the new components to the specific partition. If the system is not
partitioned, then this step can be skipped.

crayadm@smw> xtcli part_cfg show p2
crayadm@smw> xtcli part_cfg deactivate p2

b. Update the members of the partition with the old components and the new components.

crayadm@smw> xtcli part_cfg update p2 -m
c2-0c0s0,c2-0c0s1,c2-0c0s7,c0-0c0s9,c2-0c0s11,c2-0c0s13,c2-0c0s15,c2-0c0s3
crayadm@smw> xtcli part_cfg activate p2

Manage the System

S2393 92

2. Ensure new components are not disabled and are assigned to the desired partition. If they are disabled, they
will not be discovered. If they are not assigned to a partition, they will not be bounced during the xtdiscover
process, and therefore will not be properly discovered.

Full system:

crayadm@smw> xtcli status s0
Partitioned system:

crayadm@smw> xtcli status p1
crayadm@smw> xtcli status p2

3. Discover the new hardware.

Full system:

 crayadm@smw> su -
 smw# xtdiscover
 smw# exit
Partitioned system:

 crayadm@smw> su -
 smw# xtdiscover
 smw# exit
a. Run rtr --discover if there is a significant change modifying the routing configuration.

Full system:

crayadm@smw> rtr --discover
If this is a partitioned system, first deactivate the partitions, run rtr for the full system, and then activate
the partitions again. This is most important when xtdiscover has identified a hardware change.

Partitioned system:

crayadm@smw> xtcli part_cfg deactivate p1
crayadm@smw> xtcli part_cfg deactivate p2
crayadm@smw> xtcli part_cfg activate p0

crayadm@smw> rtr --discover

crayadm@smw> xtcli part_cfg deactivate p0
crayadm@smw> xtcli part_cfg activate p1
crayadm@smw> xtcli part_cfg activate p2

b. Confirm that the new components are now seen.

crayadm@smw> xtcli status s0
If the new components do not show up properly in the status output, do not continue. Power cycle the
whole system, try the xtdiscover again. If they still are not showing, there may be a problem with the
new hardware components.

4. Update firmware on new components. Check whether any firmware needs to be updated on the various
controllers.

crayadm@smw> xtzap -r -v s0

Manage the System

S2393 93

If any are out of date, output like the following from the xtzap command will be seen and the firmware needs
to be updated.

Individual Revision Mismatches:

Type ID Expected Installed
---------- ----------------- ---------- --
cc_bios c0-0 0013 0012
bc_bios c0-0c0s0 0013 0012
bc_bios c0-0c0s1 0013 0012
bc_bios c0-0c0s2 0013 0012
bc_bios c0-0c0s3 0013 0012
a. Update firmware, if not all current.

CAUTION: The xtzap command is normally intended for use by Cray Service personnel only. Improper
use of this restricted command can cause serious damage to the computer system.

If the output of xtzap includes a "Revision Mismatches" section, then some firmware is out of date and
needs to be reflashed. To update, run xtzap with one or more of the options described in the next
paragraph.

While the xtzap -a command can be used to update all components with a single command, it may be
faster to use the xtzap -blade command when only blade types need to be updated, or the xtzap -t
command when only a single type needs to be updated. On larger systems, this can save significant time.

This is the list of all cabinet level components:

cc_mc (CC Microcontroller)
cc_bios (CC Tolapai BIOS)
cc_fpga (CC FPGA)
chia_fpga (CHIA FPGA)
This is a list of all blade level components:

cbb_mc (CBB BC Microcontroller)
ibb_mc (IBB BC Microcontroller)
anc_mc (ANC BC Microcontroller)
bc_bios (BC Tolapai BIOS)
lod_fpga (LOD FPGA)
node_bios (Node BIOS)
loc_fpga (LOC FPGA)
qloc_fpga (QLOC FPGA)
If the output of the xtzap command shows that only a specific type needs to be updated, then use the -t
option with that type (this example uses the node_bios type).

crayadm@smw> xtzap -t node_bios s0
If the output of the xtzap command shows that only blade component types need to be updated, then
use the -b option:

crayadm@smw> xtzap -b s0
If the output of the xtzap command shows that only cabinet component types need to be updated, then
use the -c option:

crayadm@smw> xtzap -c s0

Manage the System

S2393 94

If the output of the xtzap command shows that both blade- and cabinet-level component types need to
be updated, or if unsure of what needs to be updated, then use the -a option:

crayadm@smw> xtzap -a s0
b. Perform xtbounce --linktune, if not all current.

Force xtbounce to do a linktune on the full system before checking firmware again.

crayadm@smw> xtbounce --linktune=all s0
c. Check firmware, after update and linktune. After updating them, confirm that they were all updated.

crayadm@smw> xtzap -r -v s0

5. Check routing configuration of the system.

The rtr -R command produces no output unless there is a routing problem.

Full system:

crayadm@smw> rtr -R s0
Partitioned system:

crayadm@smw> rtr -R p1
crayadm@smw> rtr -R p2

6. Update NIMS for new components.

Now that the new components have been added and the firmware is up to date, several NIMS commands are
needed.

NOTE: The cnode and cmap commands replace the nimscli command, which was deprecated in
CLE 6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change any scripts that reference
nimscli.

a. View settings for already existing similar nodes.

crayadm@smw> cnode list -p p0
b. If this blade was swapped out and replaced with a different type (for example, was compute, swapped for

service), remove it from the old group.

crayadm@smw> cnode update --partition p1 -c p1 -G netroot_compute \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

c. Assign the nodes to the correct config set, group (compute, netroot_compute, service, login, dal,
etc.), and image.

crayadm@smw> cnode update --partition p1 -c p1 -g service \
-i /var/opt/cray/imps/boot_images/service_XXX.cpio \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

d. If this is a netroot_compute node, assign the key for netroot (can be combined with the config set,
group, and image assignment in above command).

crayadm@smw> cnode update --partition p1 -s netroot=compute-large_cle_XXX \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

Manage the System

S2393 95

e. If this was a netroot_compute and is not anymore, remove the netroot key.

crayadm@smw> cnode update --partition p1 -K netroot \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3

f. If this was a compute node, and is now a service, remove the rest of the extraneous keys.

crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_mask \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K hsn_ipv4_net \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K sdbnodeip \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'
crayadm@smw> cnode update --partition p1 -c p1 -K bootnodeip \
c0-0c0s1n0 c0-0c0s1n1 c0-0c0s1n2 c0-0c0s1n3'

7. Update config sets with the new components.

This will generate a new /etc/hosts file for the CLE nodes.

Full system:

crayadm@smw> su -
smw# cfgset update global
smw# cfgset update p0
smw# exit
crayadm@smw>
Partitioned system:

crayadm@smw> su -
smw# cfgset update global
smw# cfgset update p1
smw# cfgset update p2
smw# exit
crayadm@smw>

8. Update any workload manager (WLM) configuration as specified in the associated WLM documentation.

● PBS Professional™ is a commercial product licensed by Altair Engineering, Inc. For documentation, see
http://www.pbsworks.com/PBSProductGT.aspx?n=PBS-Professional&c=Overview-and-
Capabilities&d=PBS-Professional,-Documentation.

● Moab™ and TORQUE are commercial products licensed by Adaptive Computing. For general product
information, see http://www.adaptivecomputing.com.

● Slurm (Simple Linux Utility for Resource Management) is an open source application that is commercially
supported by SchedMD, among others. For Cray-specific installation/configuration instructions, see XC™
Series Slurm Installation Guide (S-2538).

9. Boot the system using the standard boot procedure.

––

If this is an air-cooled XC system (XC-AC), then when the system has completed booting, perform the procedure
in Check Cabinet Cooling Parameters for an Air-Cooled XC System on page 210.

Manage the System

S2393 96

http://www.pbsworks.com/PBSProductGT.aspx?n=PBS-Professional&c=Overview-and-Capabilities&d=PBS-Professional,-Documentation
http://www.pbsworks.com/PBSProductGT.aspx?n=PBS-Professional&c=Overview-and-Capabilities&d=PBS-Professional,-Documentation
http://www.adaptivecomputing.com

3.41 Add a New Disk to a Volume Group in a Storage Set

About this task
When more disk space is needed in an LVM volume group, add another physical volume to the cray_bootraid
configuration service and run cray-ansible on the node that owns the storage.

Reference the following information when modifying cray_bootraid to add a physical volume:

The CLE default storage set (cledefault) has the following three volume groups, each of which has multiple
volumes with file system type as shown:

● boot_node_vg
home (XFS)

imps (Btrfs)

nvolatile (XFS)

● sdb_node_vg
db (XFS)

alps (XFS)

ncmd (XFS)

● compute_node_local
temporary (ext3)

swap (swap)

unmanaged (ext3)

The SMW default storage set (smwdefault) has just one volume group, which has five volumes with file system
type as shown:

● smw_node_vg
home (XFS)

db (Btrfs)

log (XFS)

imps (XFS)

repos (Btrfs)

Procedure

1. Add a physical device to the list of devices in a volume group in the cray_bootraid configuration service.

The following example shows how to add a new disk device
(/dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d) to the smw_node_vg volume
group in the smwdefault storage set.

Retrieve the current list of devices.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.devices global
/dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7

Manage the System

S2393 97

Add a new device.

smw# cfgset modify --add \
/dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.devices \
global

Verify that the device was added.

smw# cfgset get \
cray_bootraid.settings.storage_sets.data.smwdefault.volume_groups.smw_node_vg.devices global
/dev/disk/by-id/wwn-0x600a0980006b47b7000000e5561260a7
/dev/disk/by-id/wwn-0x600a0980006b47b7000000e756127f9d

2. Update and validate the global config set.

The cfgset CLI subcommands get and modify do not run pre- and post-configuration scripts. Because the
config set was changed with cfgset modify, it must be updated with cfgset update so that the scripts
will be run. The --mode prepare flag is used to make user interaction unnecessary.

smw cfgset update -m prepare global
smw cfgset validate global

3. Run cray-ansible on the affected node.

If the storage was added to the SMW volume group, re-provision storage on the SMW.

smw# /media/SMW/SMWinstall --mode=provision-storage
If the storage was added to the boot node volume group, run cray-ansible on the boot node.

boot# /etc/init.d/cray-ansible start
If the storage was added to the SDB node volume group, run cray-ansible on the SDB node.

sdb# /etc/init.d/cray-ansible start

3.42 Reboot Controllers of a Cabinet or Blade
The xtccreboot command provides a means to reboot controllers. Options allow for rebooting all controllers of
a specified type (cabinet or blade) or providing a list of controllers of a specified type to be rebooted.

For additional information, see the xtccreboot(8) man page.

Reboot cabinet controller c0-0, with verbose output

smw# xtccreboot -v -c c0-0
xtccreboot: /opt/cray-xt-pdsh/default/bin/pdsh -w "c0-0" /sbin/reboot
xtccreboot: reboot sent to specified CCs

Manage the System

S2393 98

3.43 Bounce Blades Repeatedly Until All Blades Succeed

About this task
IMPORTANT: This iterative xtbounce should typically be done in concert with an xtbootsys
automation file where bounce and routing are turned off.

Procedure

1. Bounce the system.

smw# xtbounce s0

2. Bounce any blades that failed the first bounce. Repeat as necessary.

3. Execute the following command, which copies route configuration files, based on the idlist (such as s0), to
the blade controllers. This avoids having old, partial route configuration files left on the blades that were
bounced earlier and ensures that the links are initialized correctly.

smw# xtbounce --linkinit s0

4. Route and boot the system without executing xtbounce again. If using a xtbootsys automation file, specify
set data(config,xtbounce) 0, or use the xtbootsys --config xtbounce=0 command.

3.44 Shut Down the System Using the Automation File
The preferred method to shut down the system is to use the xtbootsys command with the auto shutdown file as
follows:

crayadm@smw> xtbootsys -s last -a auto.hostname.stop
Or, for a partitioned system with partition pN:

smw# xtbootsys --partition pN -s last -a auto.hostname.stop
This method shuts down the compute nodes (which are commonly also Lustre clients), then executes
xtshutdown on service nodes, halting the nodes and then stopping processes on the SMW. A system
administrator can shut down the system using both user-defined and built-in procedures in the
auto.xtshutdown file, which is located on the SMW in the /opt/cray/hss/default/etc directory. Before
modifying the auto.xtshutdown file, Cray recommends making a copy because it will be replaced by an SMW
software upgrade. Avoid strict boot ordering of service nodes in an automated boot file. Rename the copied file
with the host name of the system for which it will be used (auto.hostname.stop).

For related procedures, see XC Series Software Installation and Configuration Guide (S-2559). For more
information about using automation files, see the xtbootsys(8) man page.

Manage the System

S2393 99

3.45 The xtshutdown Command
The xtshutdown command executes a series of commands locally on the boot node and service nodes to shut
down the system in an orderly fashion. The sequence of shutdown steps and the nodes on which to execute them
are defined by the system administrator in the /etc/opt/cray/xtshutdown/xtshutdown.conf file or in the
file specified by the environment variable XTSHUTDOWN_CONF.

Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user from
the boot node to all service nodes.

The xtshutdown command uses pdsh to invoke commands on the selected service nodes (i.e., boot node, SDB
node, a class of nodes, or a single host). A system administrator can define functions to execute when the system
is shut down. Place these functions in the /etc/opt/cray/init-service/xt_shutdown_local file or the
file defined by the XTSHUTDOWN_LOCAL environment variable.

3.45.1 Shut Down Service Nodes

Prerequisites
Root user privileges are required to run xtshutdown. Passwordless ssh must be enabled for the root user
from the boot node to all service nodes.

CAUTION: The xtshutdown command does not shut down compute nodes. To shut down the compute
and service nodes, see Shut Down the System Using the Automation File on page 99.

About this task
For information about shutting down service nodes, see the xtshutdown(8) man page.

Procedure

1. Modify the /etc/opt/cray/xtshutdown/xtshutdown.conf file or the file specified by the
XTSHUTDOWN_CONF environment variable to define the sequence of shutdown steps and the nodes on which
to execute them. The /etc/opt/cray/xtshutdown/xtshutdown.conf file resides on the boot node.

2. If desired, define functions to execute when the system is shut down. Place these functions in
the /etc/opt/cray/init-service/xt_shutdown_local file or the file defined by the
XTSHUTDOWN_LOCAL environment variable.

3. Execute xtshutdown.

boot# xtshutdown
After the software on the nodes is shutdown, the administrator can halt the hardware, reboot, or power down.

Manage the System

S2393 100

3.46 Shut Down the System or Part of the System Using the xtcli
shutdown Command

The HSS xtcli shutdown command shuts down the system or a part of the system. To shut down compute
nodes, execute the xtcli shutdown command. Under normal circumstances, for example to successfully
disconnect from Lustre, invoking the xtcli shutdown command attempts to gracefully shut down the specified
nodes.

For information, see the xtcli(8) man page.

Shut down all compute nodes

crayadm@smw> xtcli shutdown compute

Shut down specified compute nodes

For this example, shut down only compute nodes in cabinet c13-2:

crayadm@smw> xtcli shutdown c13-2

Shut down all nodes of a system

crayadm@smw> xtcli shutdown s0

Shut down a partition pN of a system

crayadm@smw> xtcli shutdown pN

Force nodes to shut down (immediate halt)

When all nodes of a system must be halted immediately, use the -f argument; nodes will not go
through their normal shutdown process. Forced shutdown occurs even if the nodes have an alert
status present.

crayadm@smw> xtcli shutdown -f s0
After the software on the nodes is shutdown, the system administrator can halt the hardware,
reboot, or power down.

3.47 Stop System Components
When a system administrator removes, stops, or powers down components, any applications and compute
processes that are running on those components are lost.

Manage the System

S2393 101

Reserve a Component
To allow applications and compute processes to complete before stopping components, use the HSS xtcli
set_reserve idlist command to prevent the selected nodes from accepting new jobs.

A node running CNL and using ALPS is considered to be down by ALPS after it is reserved using the xtcli
set_reserve command. The output from apstat will show the node as down (DN), even though there may be
an application running on that node. This DN designation indicates that no other work will be placed on the node
after the currently running application has terminated.

For more information, see the xtcli_set(8) man page.

Reserve a component

crayadm@smw> xtcli set_reserve idlist

Power Down Blades or Cabinets
WARNING: Power down the cabinets with software commands. Tripping the circuit breakers may result in
damage to system components.

WARNING: Before powering down a blade or a cabinet, ensure the operating system is not running.

The xtcli power down command powers down the specified cabinet and/or blades within the specified
partition, chassis or list of blades. Cabinets must be in the READY state to receive power commands.

When a request is made to power down a blade consisting of Intel® Xeon® processor Scalable Family nodes or a
Cabinet containing processor blades of this type, the nodes are powered off into the G3 state (full power off) prior
to the Cabinet controller removing power from the blade. See System Component States on page 72.

The xtcli power down command has the following form, where physIDlist is a comma-separated list of
cabinets, blades, or nodes present on the system.

xtcli power down physIDlist
The xtcli power force_down and xtcli power down_slot commands are aliases for the xtcli power
down command. For information about disabling and enabling components, see Disable Hardware Components,
and Enable Hardware Components, respectively.

WARNING: Although a blade is powered off, the HSS in the cabinet is live and has power.

For information about powering down a component, see the xtcli_power(8) man page.

Power down a specified blade

For this example, power down a blade with the ID c0-0c0s7:

crayadm@smw> xtcli power down c0-0c0s7

Manage the System

S2393 102

Power Down a Specific Node
The xtcli power down_node command powers down the specified node and/or nodes within a specified
partition, chassis, list of blades, or list of nodes. When specifying a specific node or list of nodes, all node types
are powered down to the G3 state except for Intel® Xeon® processor Scalable Family nodes, which are powered
down to the S5 state (soft off). These nodes can be powered down to the G3 state using one of the following
methods:

● Issue the xtcli power down_node command with the --with-si flag.

● Power down the blade that the Intel® Xeon® processor Scalable Family nodes reside on. Blades must be in
the READY state to receive power commands. See System Component States on page 72.

The xtcli power down_node command has the following form, where physIDlist is a comma-separated
list of cabinets, blades, or nodes present on the system.

xtcli power down_node physIDlist

Power down specified nodes

In these example commands, c0-0c0s7n0 is a Haswell node and c0-1c1s8n2 is a Intel®
Xeon® processor Scalable Family node. The following down_node power command does not
include the --with-si flag.

crayadm@smw> xtcli power down_node c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. The state of c0-0c0s7n0 is G3, and the state
of c0-1c1s8n2 is S5.

The next example uses the --with-si flag to power down the same two nodes.

crayadm@smw> xtcli power down_node --with-si c0-0c0s7n0,c0-1c1s8n2
HSS reports both nodes as being in the off state. Both nodes are in the G3 state. See the
xtcli_power(8) man page for more information.

Halt Selected Nodes
Use the HSS xtcli halt command to halt selected nodes. For more information, see the xtcli(8) man
page.

Halt a node

For this example, halt node 157:

crayadm@smw> xtcli halt 157

Manage the System

S2393 103

3.48 Restart a Blade or Cabinet
IMPORTANT: Change the state of the hardware only when the operating system is not running or is shut
down.

The xtcli power up command powers up the specified cabinet and/or blades within the specified partition,
chassis or list of blades. Cabinets must be in the READY state (see System Component States on page 72) to
receive power commands. The xtcli power up command does not attempt to power up network mezzanine
cards or nodes that are handled by the xtbounce command during system boot.

The xtcli power up_slot command is an alias for the xtcli power up command.

The xtcli power up command has the following form, where physIDlist is a comma-separated list of
cabinets or blades present on the system.

xtcli power up physIDlist
For more information, see the xtcli_power(8) man page.

Power up blades in c0-0c0s7

crayadm@smw> xtcli power up c0-0c0s7

3.49 Abort Active Sessions on the HSS Boot Manager

About this task
Use the HSS xtcli session abort command to abort sessions in the boot manager. A session corresponds
to executing a specific command such as xtcli power up or xtcli boot.

For more information about manager sessions, see the xtcli(8) man page.

Procedure

1. Display all running sessions in the boot manager. Only the boot manager supports multiple simultaneous
sessions.

crayadm@smw> session show BM all

2. Abort the selected session, session_id.

crayadm@smw> xtcli session abort BM session_id

Manage the System

S2393 104

3.50 Display and Change Software System Status
The user command xtnodestat provides a display of the status of nodes: how they are allocated and to what
jobs. The xtnodestat command provides current job and node status summary information, and it provides an
interface to ALPS and jobs running on CNL compute nodes. ALPS must be running in order for xtnodestat to
report job information.

For more information, see the xtnodestat(1) man page.

3.50.1 View and Change the Status of Nodes
Use the xtprocadmin command on a service node to view the status of components of a booted system in the
processor table of the SDB. The command enables the system administrator to retrieve or set the processing
mode (interactive or batch) of specified nodes. The administrator can display the state (up, down,
admindown, route, or unavailable) of the selected components, if needed. The administrator can also
allocate processor slots or set nodes to become unavailable at a particular time. The node is scheduled only if the
status is up.

When the xtprocadmin -ks option is used, then the option can either a normal argument (up, down, etc.), or it
can have a colon in it to represent a conditional option; for example, the option of the form up:down means "if
state was up, mark down".

For more information, see the xtprocadmin(8) man page.

View node characteristics

login# xtprocadmin
 NID (HEX) NODENAME TYPE STATUS MODE
 1 0x1 c0-0c0s0n1 service up batch
 2 0x2 c0-0c0s0n2 service up batch
 5 0x5 c0-0c0s1n1 service up batch
 6 0x6 c0-0c0s1n2 service up batch
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

View all node attributes
login# xtprocadmin -A
 NID (HEX) NODENAME TYPE ARCH OS CPUS CU AVAILMEM PAGESZ CLOCKMHZ GPU SOCKETS DIES C/
CU LABEL0 LABEL1
LABEL2 LABEL3
 1 0x1 c0-0c0s0n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 2 0x2 c0-0c0s0n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 5 0x5 c0-0c0s1n1 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 6 0x6 c0-0c0s1n2 service xt (service) 16 8 32768 4096 2600 0 1 1
2
 8 0x8 c0-0c0s2n0 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 9 0x9 c0-0c0s2n1 compute xt CNL 32 16 65536 4096 2600 0 2 2
2
 10 0xa c0-0c0s2n2 compute xt CNL 32 16 65536 4096 2600 0 2 2
2

View selected attributes of selected nodes

For this example, the -a option lists the selected attributes to display:

Manage the System

S2393 105

login# xtprocadmin -n 8 -a arch,clockmhz,os,cores
 NID (HEX) NODENAME TYPE ARCH CLOCKMHZ OS CPUS
 8 0x8 c0-0c0s2n0 compute xt 2600 CNL 32

Disable a node

For this example, the admindown option disables node c0-0c0s3n1 such that it cannot be
allocated:

crayadm@nid00004> xtprocadmin -n c0-0c0s3n1 -k s admindown

Disable all processors

crayadm@nid00004> xtprocadmin -k s admindown

3.50.2 Find Node Information

Translate Between Physical ID Names and Integer NIDs
To translate between physical ID names (cnames) and integer NIDs, generate a system map on the System
Management Workstation (SMW) and filter the output, enter the following command:

crayadm@smw> rtr --system-map | grep cname | awk '{ print $1 }'
For more information, see the rtr(8) man page.

Find Node Information Using the xtnid2str Command
The xtnid2str command converts numeric node identification values to their physical names (cnames). This
allows conversion of Node ID values, ASIC NIC address values, or ASIC ID values.

For additional information, see the xtnid2str(8) man page.

Find the physical ID for node 38

smw# xtnid2str 28
node id 0x26 = 'c0-0c0s1n2'

Find the physical ID for nodes 0, 1, 2, and 3

smw# xtnid2str 0 1 2 3
node id 0x0 = 'c0-0c0s0n0'
node id 0x1 = 'c0-0c0s0n1'
node id 0x2 = 'c0-0c0s1n0'
node id 0x3 = 'c0-0c0s1n1'

Manage the System

S2393 106

Find the physical IDs for Aries IDs 0-7

smw# xtnid2str -a 0-7
aries id 0x0 = 'c0-0c0s0a0'
aries id 0x1 = 'c0-0c0s1a0'
aries id 0x2 = 'c0-0c0s2a0'
aries id 0x3 = 'c0-0c0s3a0'
aries id 0x4 = 'c0-0c0s4a0'
aries id 0x5 = 'c0-0c0s5a0'
aries id 0x6 = 'c0-0c0s6a0'
aries id 0x7 = 'c0-0c0s7a0'

Find Node Information Using the nid2nic Command
The nid2nic command prints the nid-to-nic address mappings, nic-to-nid address mappings, and a specific
physical_location-to-nic address and nid mappings.

For information about using the nid2nic command, see the nid2nic(8) man page.

Print the nid-to-nic address mappings for the node with NID 31

smw# nid2nic 31
NID:0x1f NIC:0x21 c0-0c0s7n3

Print the nid-to-nic address mappings for the node with NID 31, but specify the NIC value in the command
line

smw# nid2nic -n 0x21
NIC:0x21 NID:0x1f c0-0c0s7n3

3.51 Display and Change Hardware System Status
A system administrator can execute commands that look at and change the status of the hardware.

CAUTION: Execute commands that change the status of hardware only when the operating system is
shut down.

3.51.1 Generate HSS Physical IDs
The HSS xtgenid command generates HSS physical IDs, for example, to create a list of blade controller
identifiers for input to the flash manager. Selection can be restricted to components of a particular type. Only user
root can execute the xtgenid command.

For more information, see the xtgenid(8) man page.

Manage the System

S2393 107

Create a list of node identifiers that are not in the DISABLE, EMPTY, or OFF state

smw# xtgenid -t node --strict

3.51.2 Disable Hardware Components
If links, nodes, or Cray ASICs have hardware problems, the system administrator can direct the system to ignore
the components with the xtcli disable command.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

The xtcli disable command has the following form, where idlist is a comma-separated list of components
(in cname format) that the system is to ignore. The system disregards these links or nodes.

xtcli disable [{-t type [-a] } | -n] [-f] idlist
IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

Disabling of a cabinet, chassis, or blade will fail if any nodes under the component are in the ready state, unless
the force option (-f) is used. An error message will indicate the reason for the failure.

Disabling of a node in the ready state will fail, unless the force option (-f) is used. An error message will indicate
the reason for the failure.

The state of empty components will not change when using the disable command, unless the force option (-f)
is used.

For detailed information about using the xtcli disable command, see the xtcli(8) man page.

Disable the Aries ASIC c0-0c1s3a0
1. Determine that the ASIC is in the OFF state.

crayadm@smw> xtcli status -t aries c0-0c1s3a0
2. If the ASIC is not in the OFF state, power down the blade that contains the ASIC.

crayadm@smw> xtcli power down c0-0c1s3
3. Disable the ASIC.

crayadm@smw> xtcli disable c0-0c1s3a0
4. Power up the blade that contains the ASIC.

crayadm@smw> xtcli power up c0-0c1s3

Manage the System

S2393 108

3.51.3 Enable Hardware Components
If links, nodes, or Cray ASICs that have been disabled are later fixed, the system administrator can add them
back to the system with the xtcli enable command.

The xtcli enable command has the following form, where idlist is a comma-separated list of components
(in cname format) for the system to recognize.

xtcli enable [{-t type [-a] } | -n] [-f] idlist
By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

The state of empty components does not change when using the xtcli enable command, unless the force
option (-f) is used.

The state of off means that a component is present on the system. If the component is a blade controller, node,
or ASIC, then this will also mean that the component is powered off. If the administrator disables a component,
the state shown becomes disabled. When the xtcli enable command is used to enable that component for
use once again, its state switches from disabled to off. In the same manner, enabling an empty component
means that its state switches from empty to off.

For more information, see the xtcli(8) man page.

3.51.4 Set Hardware Components to EMPTY
Use the xtcli set_empty command to set a selected component to the EMPTY state. HSS managers and the
xtcli command ignore empty or disabled components.

Setting a selected component to the EMPTY state is typically done when a component, usually a blade, is
physically removed. By setting it to EMPTY, the system ignores it and routes around it.

By default, when disabling a component, this command takes into consideration the hierarchy of components,
performs the action upon the identified component(s) and cascades that action to any subcomponent of the
identified component(s), unless the -n option is specified.

IMPORTANT: The -n option with the xtcli disable command must be used carefully because this
may create invalid system state configurations.

For more information, see the xtcli(8) man page.

Set a blade to the EMPTY state

crayadm@smw> xtcli set_empty -a c0-0c1s7

3.51.5 Lock Hardware Components
Components are automatically locked when a command that can change their state is running. As the command
is started, the state manager locks these components so that nothing else can affect their state while the
command executes. When the manager is finished with the command, it unlocks the components.

Manage the System

S2393 109

Use the HSS xtcli lock command to lock components. Locking a component prints out the state manager
session ID.

For more information, see the xtcli(8) man page.

Lock cabinet c0-0

crayadm@smw> xtcli lock -l c0-0

Show all session (lock) data

crayadm@smw> xtcli lock show

3.51.6 Unlock Hardware Components
Use the HSS xtcli lock command to unlock components. This command is useful when an HSS manager
fails to unlock some set of components.

The system administrator can manually check for locks with the xtcli lock show command and then unlock
them. Unlocking a component does not print out the state manager session ID. The -u option must be used to
unlock a component as follows:

crayadm@smw> xtcli lock -u lock_number
Where lock_number is the value given when initiating the lock; it is also indicated in the xtcli lock show
query. Unlocking does nothing to the state of the component other than to release locks associated with it.

HSS daemons cannot affect components that are locked by a different session.

3.52 Revert a System to an Earlier CLE 6.0 Release

About this task
This procedure reverts switching a system running a newer C:LE 6.0 release to a previous CLE 6.0 release that
may have major differences.

Procedure

1. Log in as root on the SMW. All commands are run as root unless otherwise stated.

smw# mount /dev/cdrom my_mountpoint

2. Pick the desired release to boot into:

smw# export MYUP=UP01
smw# export MYUP=UP02
smw# export MYUP=UP03

Manage the System

S2393 110

smw# export MYUP=UP04
smw# export MYUP=UPXX

3. Start a typescript in a non-snapshotted area. Do not skip using a typescript; this step greatly aids in
troubleshooting in the event of an error.

smw# script -af /tmp/${MYUP}_patch_reversion.`date +%Y%m%d`.script

4. Shut down the system. If more than one partition exists, multiple shutdowns can be done in parallel in
separate windows without conflict.

5. If the current snapshot is desired to be restored at a later time, take note of the current snapshot being
reverted from.

smw# snaputil list
Status Name Created
-------- --

 @ 2017-01-20
09:30:23 -0600
 SLES12 2017-01-23
05:49:45 -0600
 smw-8.0.3075_cle-6.0.3074.20170123 2017-01-23
07:45:32 -0600
 SMW-8.0.UP06_CLE-6.0.UP06.20171107.save1.postinstall 2017-11-07
12:11:57 -0600
cur,def SMW-8.0.UP06_CLE-6.0.UP06.20171211 2017-12-11
06:25:25 -0600
 SMW-8.0.UP06_CLE-6.0.UP06.20171211.save1.postinstall 2017-12-11
06:53:29 -0600
 SMW-8.0.UP06_CLE-6.0.UP06.20171211.save3.devint 2017-12-11
11:04:44 -0600
 autoreset-snap-save 2017-12-11
11:05:19 -0600

6. Set a variable for the snapshot to be reverted to. If the target snapshot will be used for testing purposes, the
snapshot should be a clone of the target release snapshot. This preserves a copy of the release snapshot. If
simply reverting to a previous release, creating a clone of the target release snapshot is not necessary.

smw# export MYPATCHSET=ps01
smw# export MYSNAP=SMW-8.0.${MYUP}_CLE-6.0.${MYUP}.GOLD.$MYPATCHSET
smw# snaputil create $MYSNAP --from SMW-8.0.${MYUP}_CLE-6.0.${MYUP}.GOLD

7. Set the snapshot to be booted into as active and as the new default.

smw# snaputil default $MYSNAP

8. Power down the system.

smw# xtcli power down s0

9. Ensure that a copy of the current global and partitioned config sets are saved.

smw# cfgset list
global
global.UP04.GOLD
global.UP05.GOLD

Manage the System

S2393 111

p0
p0.UP04.GOLD
p0.UP05.GOLD
smw# cfgset create --clone global global.bak
smw# cfgset create --clone p0 p0.bak

10. Replace the current global config set with the current GOLD template. This will be used as a base to start
from.

smw# cfgset remove global
smw# cfgset remove p0
smw# cfgset create --clone global.$MYUP.GOLD global
smw# cfgset create --clone p0.$MYUP.GOLD p0

11. Reboot the SMW.

smw# reboot

12. SSH back in to the SMW as root once it has finished rebooting. Resume the previously started typescript.

Choose your previously selected release:
export MYUP=UP01
export MYUP=UP02
export MYUP=UP03
export MYUP=UP04
smw# script -af /tmp/${MYUP}_patch_reversion.`date +%Y%m%d`.script

13. Ensure that the system uptime is at least five minutes long.

smw# uptime

14. Ensure that the proper cmap is set. If the cmap active link points to a non-existent cmap, NIMS will break.

smw# cmap list
NAME PARTITION ACTIVE_MAP
cle6.0.UP01.GOLD p0 False
cle6.0.UP02.GOLD p0 False
cle6.0.UP03.GOLD p0 False
cle6.0.UP04.GOLD p0 False
cle6.0.UP05.GOLD p0 False
smw# cmap setactive cle6.0.${MYUP}.GOLD

15. Verify that all rsms processes are running. If not all processes show a state of running, wait a few minutes
and check again. Reverting to an earlier release cannot be completed until all rsms processes are running.

smw# rsms status
PID DAEMON STATE UPTIME
38492 erd running Mon 2017-12-11
07:25:00 CST
38602 erdh running Mon 2017-12-11
07:25:03 CST
38722 state_manager running Mon 2017-12-11
07:25:03 CST
38838 nid_mgr running Mon 2017-12-11
07:25:04 CST
38946 bootmanager running Mon 2017-12-11
07:25:05 CST
39390 xtpmd running Mon 2017-12-11

Manage the System

S2393 112

07:25:15 CST
40161 erfsd running Mon 2017-12-11
07:25:19 CST
40393 xtremoted running Mon 2017-12-11
07:25:23 CST
40562 xtpowerd running Mon 2017-12-11
07:25:27 CST
40705 nimsd running Mon 2017-12-11
07:25:31 CST
40853 xtsnmpd running Mon 2017-12-11
07:25:35 CST
41014 xtdiagd running Mon 2017-12-11
07:25:39 CST
If after ten minutes of uptime some processes are not running, use rsms restart to attempt a restart of
rsms processes.

smw# rsms restart

16. Run cfgset validate to ensure that the selected config sets are valid.

smw# cfgset validate global
smw# cfgset validate p0

17. Verify that dhcpd and nfsserver are running.

smw# systemctl -l -n 99 status nfsserver dhcpd
● nfsserver.service - Alias for NFS server
 Loaded: loaded (/usr/lib/systemd/system/nfsserver.service; enabled; vendor
preset: disabled)
 Active: active (exited) since Mon 2017-12-11 06:46:04 CST; 10h ago
 Main PID: 2578 (code=exited, status=0/SUCCESS)
 Tasks: 0 (limit: 131072)
 CGroup: /system.slice/nfsserver.service

Warning: Journal has been rotated since unit was started. Log output is
incomplete or unavailable.

● dhcpd.service - ISC DHCPv4 Server
 Loaded: loaded (/usr/lib/systemd/system/dhcpd.service; enabled; vendor
preset: disabled)
 Active: active (running) since Mon 2017-12-11 06:46:50 CST; 10h ago
 Main PID: 5591 (dhcpd)
 Tasks: 1 (limit: 131072)
 CGroup: /system.slice/dhcpd.service
 └─5591 /usr/sbin/dhcpd -4 -cf /etc/dhcpd.conf -pf /var/run/dhcpd.pid
-chroot /var/lib/dhcp -lf /db/dhcpd.leases -user dhcpd -group nogroup eth1 eth3

Warning: Journal has been rotated since unit was started. Log output is
incomplete or unavailable.
If either service has any warnings or errors, a reset can be attempted with systemctl restart
[service].

smw# systemctl restart dhcpd

18. Perform the hardware reset procedure: Reset All Hardware Components to Run SMW/HSS Compatible
Software on page 114

Manage the System

S2393 113

The system has now been reverted to the selected previous release environment.

3.52.1 Reset All Hardware Components to Run SMW/HSS Compatible Software

About this task
This procedure resets all hardware components to run software that is compatible with the current SMW/HSS
software.

Procedure

1. Reboot CC(s) so that it revers to the controller image in the booted SMW snapshot:

smw# xtccreboot -c all
smw# sleep 180

2. Verify that the CC is back up and is running the proper software:

a. Show a list of all CCs on the system:

smw# xtcli status -t cc s0
b. Run this step for each CC on the system. Uptime should only show a few minutes:

smw# xtlogin c0-0
smw# uptime; uname -a; ls-l /opt/cray/bin/ccsysd; cat /image.manifest

3. Power the system back up and wait at least one minute after the command completes for daemons to settle:

smw# xtcli power up s0
smw# sleep 60

4. Verify that all blades successfully powered up:

a. If the the number of partitions on the machine is unknown, check using the following command:

smw# xtcli part_cfg show|grep enable
[partition]: p0: enable (noflags|)

b. Run xtalive for each partition:

smw# xtalive --partition p0

5. If hardware changes to the machine have occurred since it was last in the current snapshot, disable the
incorrect blades or run xtdiscover.

6. Flash the firmware. Run all commands as crayadm

CAUTION: It is possible to brick hardware if xtzap is interrupted. Never interrupt or cancel xtzap.
Built in timeouts will stop if they are needed.

Manage the System

S2393 114

a. (This step can be skipped if xtdiscover was run in step five.) Bounce each partition to query firmware
information with xtzap in the next substep. The bounces can be run in parallel in separate terminal
windows. Run this command as crayadm

crayadm@smw> xtbounce -o try_count=1 -o stop_after=node_up -o portals=False -
o cpio_path=/dev/null -o link_deadstart=false p0

b. Check the firmware being reported on the machine:

crayadm@smw> xtzap -r -v
c. If bringing the system back to current AND all installed revision mismatches are lower or older numbers:

Run the following command to flash everything. This may take longer than flashing each type individually.

crayadm@smw> xtzap -a -v
Alternatively, each type can be flashed individually. Example type entries: node_bios, cc_bios,
bc_bios.

crayadm@smw> xtzap -v -t type
d. If reverting the system back to an older software version OR installed version mismatches are higher/

newer numbers, each type must be flashed manually using the --force option:

crayadm@smw> xtzap -v --force -t type
e. Bounce all partitions after all component tpyes are flashed:

crayadm@smw> xtbounce p0
f. Check firmware revisions:

crayadm@smw> xtzap -r -v
If mismatches still exist, attempt to reflash the mismatched components.

The system is now running software that matches the SMW environment. If reverting the system to an earlier
release, continue following the procedure outlined in Revert a System to an Earlier CLE 6.0 Release on page 110

3.53 Set the Turbo Boost Limit
Turbo boost limiting is supported on the Intel® Xeon® processor Scalable family. Turbo boost limiting is NOT
supported on Intel® Xeon Phi™ "Knights Landing" (KNL) or on Intel® Xeon® "Sandy Bridge" processors.

Because Intel processors have a high degree of variability in the amount of turbo boost each processor can
supply, limiting the amount of turbo boost can reduce performance variability and reduce power consumption.
Turbo boost can be limited by setting the turbo_boost_limit kernel parameter to one of these valid values:

Value Result

0 Disable turbo boost.

100 Limits turbo boost to 100 MHz.

Manage the System

S2393 115

Value Result

200 Limits turbo boost to 200 MHz.

300 Limits turbo boost to 300 MHz.

400 Limits turbo boost to 400 MHz.

999 (default) No limit is applied.

The limit applies only when a high number of cores are active. On an N-core processor, the limit is in effect when
the active core count is N, N-1, N-2, or N-3. For example, on a 12-core processor, the limit is in effect when 12,
11, 10, or 9 cores are active.

Set or Change the Turbo Boost Limit Parameter
Set or change the turbo boost limit parameter using one of the following methods:

● TEMPORARY. To make a one-time non-persistent change, warm boot the compute nodes using the --
compute-boot-params option.

smw> xtbootsys --reboot -L DEFAULT --compute-boot-params \
turbo_boost_limit=value idlist
where value is one of the values listed above and idlist is a comma-separated list of compute node
cnames (or all_comp for all compute nodes) to be booted. This configuration change is not persisted.

● PERMANENT. To make a persistent change, use cnode (as root) to change the parameter, and then reboot
the nodes. Note that the following commands target all nodes or all compute nodes. To specify individual
nodes, add their cnames at the end of the command line.

1. To list the current kernel parameters:

smw# cnode list
2. To change the turbo_boost_limit kernel parameter for all compute nodes, substitute one of the

values listed above for value in this command:

smw# cnode update --filter group=compute \
--add-parameter turbo_boost_limit=value

3. To remove the change, if needed, use one of these commands:

smw# cnode update --filter group=compute \
--remove-parameter turbo_boost_limit

Verify that the Turbo Boost Limit Parameter was Changed
If desired, the turbo_boost_limit change can be verified on the nodes after they have been rebooted. To
verify, look at the contents of the following file on the target NIDs.

login> aprun -L nidlist cat /sys/module/cray_power_management/\
parameters/turbo_boost_limit
where nidlist is a comma-separated list of NIDs.

Manage the System

S2393 116

3.54 Perform Parallel Operations on Service Nodes
Use pdsh, the CLE parallel remote shell utility for service nodes, to issue commands to groups of nodes in
parallel. The system administrator can select the nodes on which to use the command, exclude nodes from the
command, and limit the time the command is allowed to execute. Only user root can execute the pdsh
command. The command has the following form:

pdsh [options] command
For more information, see the pdsh(1) man page.

Restart the NTP service

boot# pdsh -w 'login[1-9]' /etc/init.d/ntp restart

3.55 Perform Parallel Operations on Compute Nodes
The parallel command tool (pcmd) facilitates execution of the same commands on groups of compute nodes in
parallel, similar to pdsh. Although pcmd is launched from a service node, it acts on compute nodes. It allows
administrators and/or, if the site deems it feasible, other users to securely execute programs in parallel on
compute nodes. The user can specify on which nodes to execute the command. Alternatively, the user can
specify an application ID (apid) to execute the command on all the nodes available under that apid.

An unprivileged user must execute the command targeting nodes where the user is currently running an aprun. A
root user is allowed to target any compute node, regardless of whether there are jobs running there or not. In
either case, if the aprun exits and the associated applications are killed, any commands launched by pcmd will
also exit.

By default, pcmd is installed as a root-only tool. It must be installed as setuid root in order for unprivileged
users to use it.

The pcmd command is located in the nodehealth module. If the nodehealth module is not part of the default
profile, load it by specifying:

module load nodehealth
For additional information, see the pcmd(1) man page.

3.56 xtbounce Error Message Indicates Cabinet Controller and Its
Blade Controllers Not in Sync

During the gather_cab_pwr_states phase of xtbounce, if the HSS software on a cabinet controller and any
of its blade controllers is out of sync, error messages such as the following will be printed during the xtbounce.

Manage the System

S2393 117

***** gather_cab_pwr_states *****
18:28:42 - Beginning to wait for response(s)

ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
ERROR: rs_phys_node2ascii() failed for node struct 0xb7e70150080700f8
If this occurs, it indicates that the blade controller software is at a different revision than the cabinet controller
software. xtbounce will print a list of cabinets for which this error has occurred. The message will be similar to
the following:

ERROR: power state check error on 2 cabinet(s)
WARNING: unable to find c0-0 in err_cablist
WARNING: unable to find c0-2 in err_cablist
This error is an indication that when the HSS software was previously updated, the cabinet controllers and the
blade controllers were not updated to the same version.

To correct this error, cancel out of xtbounce (with Ctrl-C), wait approximately five minutes for the xtbounce
related activities on the blade controllers to finish, then reboot the cabinet controller(s) and their associated blade
controllers to get the HSS software synchronized. Following this, the xtbounce may be executed once again.

3.57 Reduce Impact of Btrfs Periodic Maintenance on SMW
Performance

About this task
Btrfs (B-tree file system) runs periodic maintenance. The weekly and monthly maintenance scripts, which include
balance, trim, and scrub actions, can consume large amounts of compute resource. This can impact a site's ability
to use the SMW for normal operations, including using SSH to log into nodes. This procedure describes how to
reduce the impact to SMW performance by controlling when these scripts are run.

Note that Cray does not manage the /etc/sysconfig/btrfsmaintenance file, so a site administrator
wishing to perform Btrfs maintenance commands should manage that file based on the site's best practices for
Btrfs maintenance.

Procedure

1. Create a file /etc/cron.d/cray_btrfs.cron.

The new cron file needs to be in /etc/cron.d because the Btrfs RPM installs links to maintenance scripts
into the /etc/cron.{weekly,monthly} directories.

smw# vi /etc/cron.d/cray_btrfs.cron

Add these lines to the new file. Adjust as needed for this site.

Control when btrfs maintenance scripts run by deleting the corresponding
'lastrun' files at a predetermined time. Caveat, this affects all of the
scripts in the corresponding cron directories (/etc/cron.{weekly,monthy})

Manage the System

S2393 118

Run weekly on Saturday at 2 AM as root
0 2 * * 6 root rm -f /var/spool/cron/lastrun/cron.weekly
Run monthly on the first Sunday of the month at 2 AM as root
0 2 * * 0 root [$(date +%d) -le 07] && rm -f /var/spool/cron/lastrun/cron.monthly

2. Set ownership of the new cron file to root,root with permissions 644.

smw# chown root:root /etc/cron.d/cray_btrfs.cron
smw# chmod 644 /etc/cron.d/cray_btrfs.cron

3.58 Power-cycle a Component to Handle Bus Errors

About this task
Bus errors are caused by machine-check exceptions. If a bus error occurs, try power-cycling the component.

Procedure

1. Power down the components. The physIDlist is a comma-separated list of components present on the
system.

crayadm@smw> xtcli power down physIDlist

2. Power up the components.

crayadm@smw> xtcli power up physIDlist

3.59 When a Component Fails
Components that fail are replaced as field replaceable units (FRUs). FRUs include compute blade components,
service blade components, and power and cooling components.

When a field replaceable unit (FRU) problem arises, contact a Customer Service Representative to schedule a
repair.

3.60 Capture and Analyze System-level and Node-level Dumps
The xtdumpsys command collects and analyzes information from a Cray system that is failing or has failed, has
crashed, or is hung. Analysis is performed on, for example, event log data, active heartbeat probing, voltages,
temperatures, health faults, in-memory console buffers, and high-speed interconnection network errors. When
failed components are found, detailed information is gathered from them.

Manage the System

S2393 119

To collect similar information for components that have not failed, invoke the xtdumpsys command with the --
add option and name the components from which to collect data. The HSS xtdumpsys command saves dump
information in /var/opt/cray/dump/timestamp by default.

NOTE: When using the --add option to add multiple components, separate components with spaces, not
commas.

Dump information about a working component

For this example, dump the entire system and collect detailed information from all blade
controllers in chassis 0 of cabinet 0:

crayadm@smw> xtdumpsys --add c0-0c0s0

The xtdumpsys command is written in Python and supports plug-ins written in Python. A number of plug-in
scripts are included in the software release. Call xtdumpsys --list to view a list of included plug-ins and their
respective directories. The xtdumpsys command also now supports the use of configuration files to specify
xtdumpsys presets, rather than entering them via the command line.

For more information, see the xtdumpsys(8) man page.

3.60.1 Configure xtdumpsys for Systems Using passwordless ssh
The xtdumpsys command collects data from a system that is failing, crashed, or hung. By default, xtdumpsys
collects information only from the SMW and HSS. To collect data from other system nodes automatically, specify
plugins from the /etc/opt/cray/dumpsys/config/plugin.conf file that enable xtdumpsys to gather the
needed data. xtdumpsys runs all the enabled plugins unless individual plugins are included or excluded on the
command line.

Access to the additional nodes can be achieved using passwordless ssh. xtdumpsys is not aware of site-
specific passwords. When xtdumpsys cannot access a node because of a site-specific password or an inability
to used passwordless ssh, it prompts the user for a password for each time, which could be very often.
xtdumpsys uses the following ssh connections (user@node), and passwordless ssh needs to be set up for
these connections. To skip one or more of these ssh connections in xtdumpsys processing, exclude the plugin
specified with the connection.

● root@boot → root@sdb

○ Skip using --plugins-exclude slurm_status command line option.

● root@boot → crayadm@sdb

○ Skip using the --plugins-exclude slurm_status command line option.

● For each compute node that is down, or admindown, or unavail:

○ root@boot → root@<compute_node>

▪ Skip using the --plugins-exclude alps_compute_logs command line option.

● For each node with the dwrest service (/boot/dwrest_gw.conf):

○ root@boot → root@<node>

▪ Skip using the --plugins-exclude datawarp command line option.

● For each suspect/dead node:

Manage the System

S2393 120

○ root@boot → root@<node>

▪ Skip using the --plugins-exclude knc_host_logs command line option.

● For each service node:

○ crayadm@boot → root@<service_node>

▪ Skip using the --plugins-exclude systemd_status command line option.

● For each node specified by the xtdumpsys --add (node) option:

○ root@<boot> → root@<node>

▪ Skip using the --plugins-exclude ansible_changed_files command line option.

A more permanent way of excluding plugins is to edit the /etc/opt/cray/dumpsys/config/default.conf
file. Add the plugin names, delimited with commas, to the plugins_exclude_default setting.

3.60.2 cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

xc-knc The xc-knc method is used to dump Intel Xeon Phi nodes. Use this method when dumping only the
Xeon Phi coprocessor without dumping the host node. When dumping the host node, do not use xc-
knc. A host node dump automatically includes dumping the Xeon Phi coprocessors unless they are
suppressed by specifying the -n option.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

Manage the System

S2393 121

3.60.3 Dump and Reboot Nodes Automatically
The SMW daemon dumpd initiates automatic dump and reboot of nodes when requested by the Node Health
Checker (NHC).

CAUTION: The dumpd daemon is invoked automatically by xtbootsys on system (or partition) boot. In
most cases, system administrators do not need to use this daemon directly.

A system administrator can set global variables in the /etc/opt/cray/nodehealth/nodehealth.conf
configuration file to control the interaction of NHC and dumpd. For more information about NHC and the
nodehealth.conf configuration file, see Configure the Node Health Checker (NHC).

Variables can also be set in the /etc/opt/cray-xt-dumpd/dumpd.conf configuration file on the SMW to
control how dumpd behaves on the system.

Each CLE release package also includes an example dumpd configuration
file, /etc/opt/cray-xt-dumpd/dumpd.conf.example. The dumpd.conf.example file is a copy of
the /etc/opt/cray-xt-dumpd/dumpd.conf file provided for an initial installation.

IMPORTANT: The /etc/opt/cray-xt-dumpd/dumpd.conf file is not overwritten during a CLE
upgrade if the file already exists. This preserves the site-specific modifications previously made to the file.
Cray recommends comparing the site's /etc/opt/cray-xt-dumpd/dumpd.conf file content with
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file provided with each release to identify any
changes and then update the site's /etc/opt/cray-xt-dumpd/dumpd.conf file accordingly.

If the /etc/opt/cray-xt-dumpd/dumpd.conf file does not exist, then
the /etc/opt/cray-xt-dumpd/dumpd.conf.example file is copied to
the /etc/opt/cray-xt-dumpd/dumpd.conf file.

The CLE installation and upgrade processes automatically install dumpd software, but it must be explicitly
enabled.

3.60.4 The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
The dumpd configuration file, /etc/opt/cray-xt-dumpd/dumpd.conf, is located on the SMW. There is no
need to change any installation configuration parameters, but a system administrator can edit
the /etc/opt/cray-xt-dumpd/dumpd.conf file to customize how dumpd behaves on the system using the
following configuration variables.

enable: yes|no Provides a quick on/off switch for all dumpd functionality.

Default is no.

partitions: number Specifies whether or not dumpd acts on specific partitions or ranges of partitions.
Placing ! in front of a partition or range disables it.

For example, specifying

partitions: 1-10,!2-4

enables partitions 1, 5, 6, 7, 8, 9, and 10 but not 2, 3, or 4. Partitions must be explicitly
enabled. Leaving this option blank disables all partitions.

Manage the System

S2393 122

disabled_action:
ignore|queue Specifies what to do when requests come in for a disabled partition. If ignore is

specified, requests are removed from the database and not acted upon. If queue is
specified, requests continue to build while dumpd is disabled on a partition. When the
partition is reenabled, the requests will be acted on. Specifying queue is not
recommended if dumpd will be disabled for long periods of time, as it can cause SMW
stress and database problems.

save_output:
always|errors|
never

Indicates when to save stdout and stderr from dumpd commands that are
executed. If save_output is set to always, all output is saved. If errors is
specified, output is saved only when the command exits with a nonzero exit code. If
never is specified, output is never saved.

The default is to save output on errors.

command_output:
directory

Specifies where to save output of dumpd commands, per the save_output variable.
The command output is put in the file action.pid.timestamp.out in the directory
specified by this option.

Default directory is /var/opt/cray/dump.

dump_dir:
directory

Specifies the directory in which to save dumps.

Default directory is /var/opt/cray/dump.

max_disk: nnnMB|
unlimited

Specifies the amount of disk space beyond which no new dumps will be created. This
is not a hard limit; if dumpd sees that this directory has less than this amount of space,
it starts a new dump, even if that dump subsequently uses enough space to exceed
the max_disk limit.

The default value is max_disk: unlimited.

no_space_action:
action

Specifies a command to be executed if the directory specified by the variable
dump_dir does not have enough space free, as specified by max_disk. For
example:

Deletes the oldest dump in the dump directory:

no_space_action: rm -rf $dump_dir/$(ls -rt $dump_dir | head
-1)

Moves the oldest dump somewhere useful:

no_space_action: mv $dump_dir/$(ls -t $dump_dir|head
-1) /some/dump/archive

Sends E-mail to an administrator at admin@fictionalcraysite.com:

no_space_action: echo "" | mail -s "Not Enough Space in
$dump_dir" \
admin@fictionalcraysite.com

Manage the System

S2393 123

mailto:admin@fictionalcraysite.com

3.60.5 The dumpd-dbadmin Tool
The dumpd daemon sits and waits for requests from NHC (or some other entity using the dumpd-request tool).
When dumpd gets a request, it creates a database entry in the mznhc database for the request, and calls the
script /opt/cray-xt-dumpd/default/bin/executor to read the dumpd.conf configuration file and
perform the requested actions.

Use the dumpd-dbadmin tool to view or delete entries in the mznhc database in a convenient manner.

3.60.6 The dumpd-request Tool
Use the dumpd-request tool to send dump and reboot requests to dumpd from the SMW. A request includes a
comma-separated list of actions to perform, and the node or nodes on which to perform the actions.

A typical request from NHC looks like this:

cname: c0-0c1s4n0 actions: halt,dump,reboot

A system administrator can define additional actions in the dumpd.conf configuration file. To use, execute the
dumpd-request tool located on the SMW. A typical call would be:

dumpd-request -a halt,dump,reboot -c c0-0c1s4n0

Or

dumpd-request -a myaction1,myaction2 -c
c1-0c0s0n0,c1-0c0s0n1,c1-0c0s0n2,c1-0c0s0n3

For this example to work, myaction1 and myaction2 must be defined in the dumpd.conf file. See the
examples in the configuration file for more detail.

3.61 Collect Debug Information From Hung Nodes Using the xtnmi
Command

CAUTION: This is not a harmless tool to use to repeatedly get information from a node at various times;
only use this command when debugging data from nodes that are in trouble is needed. The xtnmi
command output may be used to determine problems such as a core hang. xtnmi will stop a running
node. It is best used when a node is not running correctly and debugging information is needed, or to stop
a node that is running incorrectly.

The sole purpose of the xtnmi command is to collect debug information from unresponsive nodes. As soon as
that debug information is displayed to the console, the node panics.

For additional information, see the xtnmi(8) man page.

Manage the System

S2393 124

3.62 Set or Change the HSS Data Store (MariaDB) Root Password

About this task
The method for setting or changing the HSS data store (database) root password has changed with the release of
CLE 6.0.

Old The HSS database was implemented with MySQL. After initial installation, its root password was changed
from the initial default empty string to a user-defined value by the SMWconfig script, which was run after
SMWinstall and the initial discovery of the system.

New The HSS database is now implemented with MariaDB, a MySQL work-alike database with identically
named commands. As before, the initial default root password is the empty string; however, the
SMWconfig script is no longer used to set it after installation. The administrator must use the following
procedure to set the root password to a user-defined value.

After the MariaDB root password has been set, it must be placed in /root/.my.cnf, a file readable only
by root that has the format shown in step 2. This file is the mechanism by which the installer and the
snaputil command obtain the root password when they access MariaDB as root. If the file does not
exist or it has no password= line, the system will attempt to access MariaDB using the default empty-
string password, which will fail once the password has been changed.

● Create /root/.my.cnf the first time the root password is set to a user-defined value.

● Update /root/.my.cnf to match the MariaDB root password whenever it is changed.

Procedure

1. Set or change the MariaDB root password.

smw# mysqladmin -uroot password -p
a. Enter existing password.

At the "Enter password" prompt, do ONE of the following:

● If setting the root password for the first time (fresh install, migration, database reinitialization), the
existing password is an empty string (the default initial password), so just press Enter.

Enter password: <cr>
● If changing the root password, enter the existing password.

Enter password: existing_password
b. Enter and confirm the new password.

At these prompts, enter the new root password, and then enter it again.

New password:
Confirm new password:

2. Ensure that the root password in the /root/.my.cnf file matches the new root password.

If this file does not yet exist, create it and add the lines shown in the example, substituting the new password
for the placeholder <MariaDB-password>.

Manage the System

S2393 125

smw# vi /root/.my.cnf
[client]
user=root
password=<MariaDB-password>

3. Ensure that only root can see or write to the /root/.my.cnf file.

smw# chmod 600 /root/.my.cnf

3.63 Recover from a Corrupt or Missing HSS Database

About this task
If the Hardware Supervisory System (HSS) MariaDB (formerly MySQL) database has been damaged or is
missing, there are three possible courses of action:

● Repair.

If the database has become corrupt, MariaDB automatically attempts to repair damaged tables. Look in the
log file (default /var/lib/mysql/machine.err) for suggested manual recovery steps, if any, and try
those first. Repairing the database is the best option when possible.

● Restore and regenerate.

If there are no suggestions or the suggested steps fail to repair the database, use this procedure:

Restore the HSS Database from a Backup on page 126

Restoring the database from the most recent backup (provided a more recent manual backup is not available)
will restore the database to its state just prior to the last xtdiscover or warmswap add operation. An
incremental discovery to the present system state will usually be faster than one made from a fresh database,
and it will not require administrative state changes made prior to the backup (such as marking compute nodes
as 'service') to be performed again.

TIP: To minimize needed discovery, make more frequent backups:

/usr/bin/mysqldump --add-drop-database --routines -uhssds -phssds hssds
 > /home/crayadm/hss_db_backup/my-new-hssds-backup.sql
The HSS MariaDB database could be backed up after every successful warmswap (xtdiscover --
warmswap), regular xtdiscover, and any administrative state change (e.g., xtcli disable/
enable/set_empty/mark_node). Because these actions are all logged in the commands log, they
could be used to automatically trigger backups.

● Regenerate from scratch.

If all else fails, use this procedure:

Re-create HSS Database File System After Corruption on page 128

In this case, the database and the database root password are wiped out, and discovery is used to
regenerate the database.

Manage the System

S2393 126

3.63.1 Restore the HSS Database from a Backup

Prerequisites
This procedure assumes that the Hardware Supervisory System (HSS) MariaDB database has become corrupt or
is missing, and automated attempts to repair damaged tables have failed.

About this task
This procedure partially restores the HSS MariaDB database from a backup.

Procedure

1. Stop RSMS, which will stop the HSS daemons.

smw# systemctl stop rsms

2. Stop the MySQL service.

smw# systemctl stop mysql

3. Move the damaged database files out of the database directory.

smw# mkdir /tmp/backup12
smw# cd /var/lib/mysql
smw# mv ibdata1 ib_logfile0 ib_logfile1 hssds /tmp/backup12
This procedure assumes that the old database files cannot be repaired; however, this step retains those old
database files (just in case) and clears out the database directory.

4. Restart MariaDB.

smw# systemctl start mysql

5. Ensure that the database is gone.

smw# mysql -uhssds -phssds -e "drop database hssds"
If the database is gone, the following error message appears:

ERROR 1008 (HY000) at line 1: Can't drop database 'hssds'; database doesn't
exist

6. Load the most recent MariaDB backup (from /home/crayadm/hss_db_backup/).

smw# mysql -uhssds -phssds < db_backup.date-time.sql
The backups in /home/crayadm/hss_db_backup/ are from past runs of xtdiscover and xtwarmswap
--add and were taken before the state of the database was updated.

7. Restart the HSS daemons (important!)

smw# systemctl start rsms

Manage the System

S2393 127

8. Run xtdiscover to pick up any changes to the system since the backup was taken (or all of the database, if
a backup was not loaded in the previous step).

smw# xtdiscover

3.63.2 Re-create HSS Database File System After Corruption

Prerequisites
This procedure assumes that the Hardware Supervisory System (HSS) MariaDB database has become corrupt or
is missing, and all attempts to repair or restore it have failed.

About this task
This procedure re-creates the database from scratch. Deleting the contents of /var/lib/mysql removes
everything that stores MariaDB state, including the password (hence the need to re-create it). When MariaDB is
restarted and its directory is empty, /var/lib/mysql will be re-initialized.

Re-creating the HSS database includes the following tasks:

● Create a new btrfs file system with a subvolume that matches the currently booted snapshot.

● Update /etc/fstab.

● Mount the new btrfs snapshot.

● Start the MySQL database and create a new password.

● Initialize the data in the HSS database.

● Prepare snapshots of the /var/lib/mysql file system with similar names to other snapshots that the SMW
might be switched to as part of reversion from a staged upgrade/update.

Procedure

1. Stop RSMS, which will stop the HSS daemons.

smw# systemctl stop rsms

2. Stop the MySQL service.

smw# systemctl stop mysql

3. Make a new btrfs file system on /dev/mapper/smw_node_vg-db.

The btrfs subvolume has to be created to hold snapshots, and a snapshot matching the name
from /etc/fstab must be created before trying to mount the /var/lib/mysql file system
from /etc/fstab.

smw# mkfs -t btrfs -f /dev/mapper/smw_node_vg-db

4. Show the btrfs file system on the database volume.

smw# btrfs filesystem show /dev/mapper/smw_node_vg-db

Manage the System

S2393 128

5. Mount the database file system.

smw# mount /dev/mapper/smw_node_vg-db /mnt

6. Confirm btrfs file system is mounted.

smw# mount | grep mnt
/dev/mapper/smw_node_vg-db on /mnt type btrfs
(rw,relatime,space_cache,subvolid=5,subvol=/)

smw# ls /mnt

7. List btrfs subvolume.

smw# btrfs subvolume list /mnt

8. Show btrfs subvolume.

smw# btrfs subvolume show /mnt
/mnt is toplevel subvolume

9. Confirm mysql entry in /etc/fstab file.

smw# cat /etc/fstab | grep mysql
/dev/mapper/smw_node_vg-db /var/lib/mysql btrfs x-cray.managed,noauto,x-
cray.snapshot,subvol=snapshots/SMW-8.0UP02_CLE-6.0UP02.20160317c,nofail 0 0

10. Confirm same device is mounted on /mnt as was in /etc/fstab file.

smw# ls /mnt
smw# mount | grep mnt
/dev/mapper/smw_node_vg-db on /mnt type btrfs
(rw,relatime,space_cache,subvolid=5,subvol=/)

11. Create a subvolume for snapshots.

smw# btrfs sub create /mnt/snapshots
Create subvolume '/mnt/snapshots'

12. Create a snapshot in the subvolume.

This example shows a snapshot made on a system running SMW 8.0.UP02 / CLE 6.0.UP02. Substitute a
different snapshot name for this system.

smw# btrfs sub snap /mnt /mnt/snapshots/SMW-8.0UP02_CLE-6.0UP02.20160317c
Create a snapshot of '/mnt' in '/mnt/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160317c'

13. Unmount temporary mount point of /mnt.

smw# umount /mnt

14. Mount path from /etc/fstab.

smw# mount /var/lib/mysql

Manage the System

S2393 129

15. Confirm new database file system was mounted.

smw# df | grep mysql
/dev/mapper/smw_node_vg-db 10485760 16960 8359680 1% /var/lib/mysql

16. Start the MySQL service.

smw# systemctl start mysql
redirecting to systemctl start mysql.service

17. Create a new root password for the database.

smw# mysqladmin -uroot password -p
a. Enter existing password.

When setting the root password for the first time (fresh install, migration, database reinitialization), the
existing password is an empty string (the default initial password), so just press Enter at this prompt.

Enter password: <cr>
b. Enter and confirm the new password.

At these prompts, enter the new root password, and then enter it again.

New password:
Confirm new password:

18. Ensure that the root password in the /root/.my.cnf file matches the new root password.

If this file does not yet exist, create it and add the lines shown in the example, substituting the new password
for the placeholder <MariaDB-password>.

smw# vi /root/.my.cnf
[client]
user=root
password=<MariaDB-password>

19. Ensure that only root can see or write to the /root/.my.cnf file.

smw# chmod 600 /root/.my.cnf

20. Initialize the HSS datastore.

The system will prompt for the MySQL root password.

smw# hssds_init
*********** hssds_init started ***********Command line: hssds_init

Cray HSS Datastore Setup Application [1.0]

Please enter your MySQL root password: MariaDB_password
hssds_init: SUCCESSFULLY initialized HSS Data Store.
hssds_init: Restarting HSS Daemons...
hssds_init: Restarting service: rsms
hssds_init: Restart successful.
*********** hssds_init finished ***********

21. List directory contents to confirm data in mysql directory.

Manage the System

S2393 130

smw# ls /var/lib/mysql
aria_log.00000001 hssds ib_logfile1 mars1-smw.err
mysql performance_schema test
aria_log_control ib_logfile0 ibdata1 multi-master.info
mysql_upgrade_info snapshots

22. Show btrfs subvolume.

smw# btrfs sub show /var/lib/mysql
/var/lib/mysql
 Name: SMW-8.0UP02_CLE-6.0UP02.20160317c
 uuid: de9c765c-f212-5e4b-82ba-346305ee274d
 Parent uuid: -
 Creation time: 2016-03-24 10:25:03
 Object ID: 258
 Generation (Gen): 16
 Gen at creation: 11
 Parent: 257
 Top Level: 257
 Flags: -
 Snapshot(s):

23. Restore user permission tables.

The system will prompt for the MySQL root password.

smw# dbgrant

24. Run xtdiscover twice (first with the --bootstrap option) to regenerate the database.

smw# xtdiscover --bootstrap
smw# xtdiscover

–––

The file sytem has now been re-created with valid contents for the currently booted snapshot. However, only
one snapshot has been made of the new database. If snaputil is used to switch to other snapshots, there
will be a failure at that point. To avoid this problem, continue with the remaining steps, which make
snapshots of this state with names matching the other snapshots that could be booted.

25. List snapshots.

The example output is for illustrative purposes only. Actual output will differ for this system.

smw# snaputil list
Status Name Size (MB
unshared) Created
-------- --
-------------------- -------------------
 @
14213.1 2015-12-04 10:31:24
 SLES12
92.25 2015-12-07 08:19:56
 SLES12_pristine
92.25 2015-12-07 08:20:11
 SMW-8.0UP02_CLE-6.0UP02.20160302
6.28 2016-03-02 06:36:19
 SMW-8.0UP02_CLE-6.0UP02.20160302.save1.postinstall
48.09 2016-03-02 08:22:56

Manage the System

S2393 131

 SMW-8.0UP02_CLE-6.0UP02.20160303
789.27 2016-03-03 06:36:31
 SMW-8.0UP02_CLE-6.0UP02.20160316
2744.32 2016-03-16 06:22:56
 SMW-8.0UP02_CLE-6.0UP02.20160316.save1.postinstall
49.54 2016-03-16 07:16:11
 SMW-8.0UP02_CLE-6.0UP02.20160317b
37.4 2016-03-17 08:58:14
cur,def SMW-8.0UP02_CLE-6.0UP02.20160317c
559.79 2016-03-17 10:58:50

26. Create two environment variables for use in later commands.

smw# export OLDSNAPSHOT=SMW-8.0UP02_CLE-6.0UP02.20160302
smw# export SNAPSHOT=SMW-8.0UP02_CLE-6.0UP02.20160317c

27. Make temporary mount points.

smw# mkdir /tmp/tmp1.$SNAPSHOT /tmp/tmp2.$SNAPSHOT

28. Mount the root subvolume for the /var/lib/mysql file system.

smw# mount -o subvolid=0 /dev/mapper/smw_node_vg-db \
/tmp/tmp1.$SNAPSHOT

29. Show current btrfs subvolumes.

smw# btrfs subvolume show /tmp/tmp1.$SNAPSHOT

30. Mount subvolume so snapshot can be made.

smw# mount -o subvol=snapshots/$SNAPSHOT \
/dev/mapper/smw_node_vg-db /tmp/tmp2.$SNAPSHOT

31. Create a snapshot of the subvolume.

smw# btrfs subvolume snapshot /tmp/tmp2.$SNAPSHOT \
/tmp/tmp1.$SNAPSHOT/snapshots/$OLDSNAPSHOT
Create a snapshot of '/tmp/tmp2.SMW-8.0UP02_CLE-6.0UP02.20160317c' in '/tmp/
tmp1.SMW-8.0UP02_CLE-6.0UP02.20160317c/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160316.save2.devint

32. Show subvolume.

smw# btrfs subvolume show /tmp/tmp1.$SNAPSHOT/snapshots/$SNAPSHOT
/tmp/tmp1.SMW-8.0UP02_CLE-6.0UP02.20160317c/snapshots/
SMW-8.0UP02_CLE-6.0UP02.20160317c
 Name: SMW-8.0UP02_CLE-6.0UP02.20160317c
 uuid: de9c765c-f212-5e4b-82ba-346305ee274d
 Parent uuid: -
 Creation time: 2016-03-24 10:25:03
 Object ID: 258
 Generation (Gen): 45
 Gen at creation: 11
 Parent: 257
 Top Level: 257
 Flags: -

Manage the System

S2393 132

 Snapshot(s):
 SMW-8.0UP02_CLE-6.0UP02.20160302

33. Unmount temporary mounts.

smw# umount /tmp/tmp1.$SNAPSHOT /tmp/tmp2.$SNAPSHOT

3.64 Troubleshoot Temperature Warnings Reported in an End Cabinet

About this task
If the consumer log or xtcheckhss reports temperature warnings in an end-of-row cabinet of a liquid-cooled
system, the current hss.ini file may not have the necessary temperature set point defined, or the set point
value may not be appropriate for the site. Use this procedure to ensure that this temperature set point is defined
and is set to an appropriate value.

Details In a liquid-cooled cabinet with chassis (cages) that are unevenly populated, the exit temperatures in
each cage will be very different. In a normal cabinet, the water valve is controlled by the average
temperature of the hottest temperature strip. By contrast, the water valve in an end-of-row cabinet is
controlled by the average temperature of all temperature strips. This may lead to inadequate cooling
of a populated cage if the other two cages are not populated or have minimal heat load.

To avoid problems arising from inadequate cooling, the exit air temperatures of the end-of-row
cabinet can be independently controlled. This is achieved through an entry in the hss.ini file that
sets the end-of-row cabinet exit temperature lower than that of other cabinets. The default value is
22°C; however this should be adjusted to meet site-specific requirements. If the end cabinet exit air
temperature is not defined in the hss.ini file, the air temperature will default to the setting defined
for the other cabinets in the cooling row.

What to
look for

The consumer log may show entries similar to the example below:

Mon Jul 28 05:59:47 2014 - rs_event_t at 0x7f5bc0000920
ev_id = 0x080040ed (ec_l1_failed)
ev_src = ::c1-0
ev_gen = ::c0-0c0s0n0
ev_flag = 0x00000002 ev_priority = 0 ev_len = 158 ev_seqnum = 0x00000000
ev_stp = 53d5e6d3.0000176d [Mon Jul 28 05:59:47 2014]
svcid 0: ::c1-0 = svid_inst=0x0/svid_type=0x0/svid_node=c1-0[rsn_node=0x0/
rsn_type=0x3/rsn_state=0x6], err code 65914
- Cabinet Controller Temperature Fault
ev_data...
00000000: 01 00 00 00 00 00 00 00 00 00 00 00 0c 06 00 00 *................*
00000010: 04 00 00 00 00 00 00 00 01 00 00 00 7a 01 01 00 *............z...*
00000020: 7a 00 00 00 30 39 34 7c 57 41 52 4e 7c 54 45 4d *z...094|WARN|TEM*
00000030: 50 7c 2f 64 61 74 61 2f 63 6f 6d 70 75 74 65 5f *P|/data/compute_*
00000040: 63 61 62 69 6e 65 74 2f 61 69 72 5f 73 65 6e 73 *cabinet/air_sens*
00000050: 6f 72 73 2f 63 68 32 2f 61 69 72 5f 74 65 6d 70 *ors/ch2/air_temp*
00000060: 32 3a 64 65 67 63 2a 31 30 30 7c 4d 61 78 69 6d *2:degc*100|Maxim*
00000070: 75 6d 20 73 6f 66 74 20 6c 69 6d 69 74 20 65 78 *um soft limit ex*
00000080: 63 65 65 64 65 64 21 7c 44 61 74 61 3d 33 30 30 *ceeded!|Data=300*
00000090: 32 7c 4c 69 6d 69 74 3d 33 30 30 30 2e 00 *2|Limit=3000....*

With xtcheckhss, the problem may look like this:

Manage the System

S2393 133

No Version Mismatches Found!
===
========== Sensor Warnings =================
===
Component Module Sensor HMIN SMIN DATA UNIT SMAX HMAX
--------- ------------ ------------- ---- ---- ---- -------- ---- ----
c2-0 compute_cabinet ambient_temp0 30 50 324 degc*10 300 350
c2-0 compute_cabinet ambient_temp1 30 50 306 degc*10 300 350
c2-0 compute_cabinet ch0_air_temp0 0 1000 3486 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp1 0 1000 3355 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp2 0 1000 3338 degc*100 3000 3500
c2-0 compute_cabinet ch0_air_temp3 0 1000 3486 degc*100 3000 3500

No SEEP Errors Found!
No ITP Errors Found!
No NTP Time Sync Errors Found!
No Control Errors Found!

Procedure

1. Edit hss.ini.

Open the /opt/tftpboot/ccrd/hss.ini and look for the following entry.

crayadm@smw> vi /opt/tftpboot/ccrd/hss.ini

----------------- END CABINET -----------------
This group is used to define the attributes that are only applied to the end
cabinet
of a row. The attributes defined here will override the same attributes in
group [ccrd]
above. If no attributes are defined in this group the end cabinet will be
configured
using the attributes of group [ccrd].
[endcabinet]
#define the temperature setpoint for the last cabinet in a row
temp_setpoint=22

2. Adjust the value of temp_setpoint as appropriate for the installation site.

To determine an appropriate value, consider the following:

● The inlet water temperature, which should be below the exit air temperature setting.

● The facility room environment.

3.65 Recover from SMW R630 Boot Disk Hardware RAIDS Failure
If one of the disks in the SMW R630, which is part of the hardware RAID5, fails, the hot spare will take over and
the data will be rebuilt using the remaining drives. The bad drive should be removed. When a new disk is inserted
into the SMW, the hardware RAID will begin the process of adding it back into the RAID5 set of drives.

This procedure does not apply to the SMW R815 which has software RAID1 for the boot disk.

Manage the System

S2393 134

3.66 Recover from SMW R815 Boot Disk Software RAID1 Failure

About this task
If one of the disks in the SMW R815, part of the software RAID1 mirror, fails, corrective action should be taken.

This procedure does not apply to the SMW R630 which has hardware RAID5 for the boot disk.

Procedure

1. Check status of RAID1 filesystems.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices. swap is on /dev/md125, /boot is on /dev/md126, and /

is on /dev/md127.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

2. Replace the failed disk drive in slot 0 on the SMW.

a. Shutdown CLE if still booted before the next step of shutting down and booting the SMW itself.

crayadm@smw> xtbootsys -s last -a auto.hostname.stop
b. Shutdown SMW.

smw# shutdown -h now
c. Remove the failed disk drive in slot 0 of the SMW so that drive 1 will become the bootable disk.

d. Boot SMW from drive 1. System boots from drive 1, but calls it /dev/sda since it is the first drive found
and there is no drive in slot 0.

e. Remove failed drive from RAID1 configuration.

smw# mdadm --manage /dev/md127 --fail /dev/sda1
smw# mdadm --manage /dev/md127 --remove /dev/sda1
smw# mdadm --manage /dev/md126 --fail /dev/sda3
smw# mdadm --manage /dev/md126 --remove /dev/sda3
smw# mdadm --manage /dev/md125 --fail /dev/sda2
smw# mdadm --manage /dev/md125 --remove /dev/sda2

f. Replace drive 0. The system still runs.

g. Reboot the SMW.

smw# reboot
h. Check RAID1 status.

Manage the System

S2393 135

System boots and immediately will use /dev/md125 (swap) as shown by this command with [UU],
however, md126 and md127 show [_U] indicating a degraded state.

smw# cat /proc/mdstat
mdadm shows active sync for both drives in /dev/md125 (/dev/sda2 and /dev/sdb2).

smw# mdadm -D /dev/md125
mdadm shows removed for drive 0 but active sync for /dev/sdb1 in /dev/md127 and /dev/sdb3
in /dev/md126.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

i. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sdb | sfdisk --force /dev/sda
j. Add drive 0 back to RAID1 configuration to reconstruct degraded RAID1.

smw# mdadm -v --manage /dev/md126 --add /dev/sda3
smw# mdadm -v --manage /dev/md127 --add /dev/sda1

k. Check status of RAID1 rebuild with these commands.

smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat
When all reconstruction is complete, mdstat will display the percentage of recovery and an estimate of
when it will complete for each device being reconstructed.

smw# cat /proc/mdstat

3. Replace the failed disk drive in slot 1 of the SMW. If drive 1 is removed, then the process is similar to drive 0
above, but there are differences.

a. Confirm that all RAID1 filesystems are fully synced.

smw# cat /proc/mdstat
b. Get detailed information on RAID1 devices.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

c. Shutdown CLE, if CLE is still booted, before the next step of shutting down and booting the SMW itself.

d. Shutdown SMW.

smw# shutdown -h now
e. Remove the failed disk drive in slot 1 of the SMW so that drive 0 will become the bootable disk.

Manage the System

S2393 136

smw# mdadm --manage /dev/md127 --fail /dev/sdb1
smw# mdadm --manage /dev/md127 --remove /dev/sdb1
smw# mdadm --manage /dev/md126 --fail /dev/sdb3
smw# mdadm --manage /dev/md126 --remove /dev/sdb3
smw# mdadm --manage /dev/md125 --fail /dev/sdb2
smw# mdadm --manage /dev/md125 --remove /dev/sdb2

f. Boot SMW from drive 0.

g. Replace drive 1. The SMW still runs, but in degraded mode for RAID1 devices. One of the other disks
(local to SMW or in boot RAID) will be called /dev/sdb.

h. Reboot SMW so that drive 1 will appear as /dev/sdb.

smw# reboot
i. Check RAID 1 status. System boots and, unlike with disk 0 above, will not immediately use /dev/md125

(swap) as shown by this command with [U_], also, md126 and md127 show [U_] indicating a degraded
state.

smw# cat /proc/mdstat
mdadm shows removed for drive 1 but active sync for /dev/sda1 in /dev/md127 and /dev/sda3
in /dev/md/126 and /dev/sda2 in /dev/md125.

smw# mdadm -D /dev/md125
smw# mdadm -D /dev/md126
smw# mdadm -D /dev/md127

j. Partition new drive correctly using sfdisk or fdisk so it matches drive 1.

smw# sfdisk -d /dev/sda | sfdisk --force /dev/sdb
k. Add Drive 1 back to RAID1 configuration.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1

l. Check status of RAID1 rebuild with these commands.

smw# mdadm -v --manage /dev/md125 --add /dev/sdb2
smw# mdadm -v --manage /dev/md126 --add /dev/sdb3
smw# mdadm -v --manage /dev/md127 --add /dev/sdb1
Checking mdstat will display the percentage of recovery and an estimate of when it will complete for
each device being reconstructed.

smw# cat /proc/mdstat
When all reconstruction is complete, mdstat should show all drives as [UU].

smw# cat /proc/mdstat

Manage the System

S2393 137

3.67 About X.509 Certificates and How to Redistribute Them
Some features of Cray XC systems, such as Cray Advanced Platform Monitoring and Control (CAPMC), use X.
509 certificate authority files (certificates) for access authorization. These certificates are generated and managed
using the xtmake_ca tool. The certificate authority (CA) resides on the SMW and is typically generated during
the SMW software installation process; however, there may be occasion to rebuild the CA from scratch. The
xtmake_ca man page describes how to do this, but it does not provide details about what certificates are used,
where they are used, and how to redistribute them after rebuilding a CA from scratch. This topic fills that gap.

Table 10. X.509 Certificate Summary

What uses
certs

Certs used Where used How redistributed

CAPMC API
service

certificate_authority.crt
certificate_authority.crl
hosts/host.crt
hosts/host.key
client/xtremoted.crt
client/xtremoted.key

SMW reconfigure and restart
CAPMC API service

CAPMC SDB
node service

certificate_authority.crt
host/sdb-p0.crt
host/sdb-p0.key

SDB node update and apply config set

DataWarp
service

certificate_authority.crt
/etc/opt/cray/dws/dw_node_name.crt
/etc/opt/cray/dws/dw_node_name.key

DataWarp
service nodes

update and apply config set

capmc certificate_authority.crt
client/client.crt
client/client.key

SMW move aside existing capmc
configuration directory and
rerun xtremoted_setup

In the default set of certificates that follows, file paths are specified relative to the certificate authority
directory: /var/opt/cray/certificate_authority.

Certificate Authority
Certificates used to maintain the CA include:

● certificate_authority.crt
This is the root certificate in which the SMW CA is based. It is used to validate the authenticity of all other
certificates created by the SMW private CA. It must be distributed to all clients and services that use
certificates generated by the SMW CA.

● certificate_authority.key
This is the CA private key file, which must be kept private at all times. It must never be distributed to any
system.

● certificate_authority.crl

Manage the System

S2393 138

This is an optional certificate revocation list. It is a PEM-encoded certificate containing a list of serial numbers
that identify any client access or host certificates that have been revoked. certificate_authority.crl
is rebuilt each time xtmake_ca buildcrl is invoked.

CAPMC API Service
The CAPMC API service runs on the SMW. It is implemented by nginx, a standard HTTP server that provides
encrypted communications and client authorization, and xtremoted, which handles client requests that have
been authorized by nginx.

Certificates used

The following certificates are used by the HTTP server (nginx) on the SMW.

certificate_authority.crt nginx uses this certificate to validate that the client access certificate,
presented when a client first connects, was issued by the SMW CA. If the
certificate was not issued by the local SMW CA, the client is denied access.

certificate_authority.crl If this file exists, the HTTP server checks it for client access certificates that
have been revoked. Any client with a revoked certificate is denied access.

hosts/host.crt This is the host certificate used by the HTTP server to enable encrypted
communications. It is generated automatically at the time of SMW
installation, or when a system administrator takes an explicit action to
regenerate it using xtmake_ca. The Common Name (CN) field of the
certificate subject line should match the DNS host name associated with the
SMW. This certificate implements the X509v3 Subject Alternative Name
extension, which uses a list of DNS attribute values to specify additional host
names that a client should consider valid. The default list of DNS attribute
values includes these two elements:

● the fully qualified domain name (FQDN) of the SMW

● the text string literal "smw"

hosts/host.key This is the private key associated with the SMW host certificate.

client/xtremoted.crt This is the client access certificate used by xtremoted to identify itself to
remote procedure call handlers. This is needed because some API calls
require xtremoted to forward a client's request to another server running on
the target partition's system database (SDB) node (see CAPMC SDB Node
Service below).

client/xtremoted.key This is the private key associated with the client access certificate.

How to redistribute

If the CA has been rebuilt from scratch, certificate_authority.crl has been rebuilt, or hosts/host.crt
has been modified, then reconfigure and restart the CAPMC API service (as root):

smw# xtremoted_setup
This command restarts the CAPMC API service and copies relevant files, with appropriate permissions, into a
directory owned by that xtremoted userid (/opt/cray/hss/default/etc/xtremoted). This copy is

Manage the System

S2393 139

necessary because the user ID under which the xtremoted process is running does not have read access to
files located within the certificate_authority directory.

CAPMC SDB Node Service
The CAPMC SDB node service handles remote procedure call requests issued from the CAPMC API service
running on the SMW. It is implemented by nginx, a front-end HTTP server that performs encryption and client
access authorization, and xtremoted-agent, a remote procedure call handler that handles the specific request.

Certificates used

The following certificates are used by the HTTP server (nginx) on the SDB node.

certificate_authority.crt nginx running on the SDB node uses this certificate to validate that the
client access certificate, presented when xtremoted issues a remote
procedure call request, was issued by the SMW CA. If the certificate was not
issued by the local SMW CA, the request is denied. In addition, the CN field
of the client access certificate subject line must match the string
"xtremoted" for the request to be accepted.

hosts/sdb-p0.crt This is the host certificate for the SDB node and config set p0.

hosts/sdb-p0.key This is the private key associated with the SDB node host certificate and
config set p0.

How to redistribute

If the CA has been rebuilt from scratch, update the config set and apply it.

1. Update the current configuration set (as root):

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of the xremoted_agent
post-configuration callback script, which updates the certificates from
the /var/opt/cray/certificate_authority location to the config set being updated. The
xremoted_agent script is located in this directory:

/opt/cray/imps_config/system-config/default/configurator/callbacks/post/xtremoted_agent.py

2. Reboot the system. When the node boots, the config set certificate files are copied from the config set to the
node using an Ansible play.

3. After the Ansible play has run, verify that the certificates have been distributed.

smw> ls -la /var/opt/cray/imps/config/sets/p0/files/roles/common/etc/opt/cray/
xtremoted-agent
total 12
drwxr-xr-x 1 root root 90 Dec 7 15:39 .
drwxr-xr-x 1 root root 42 Dec 7 15:39 ..
-rw------- 1 root root 956 Dec 9 11:18 certificate_authority.crt
-rw------- 1 root root 3002 Dec 9 11:18 sdb-p0.crt
-rw------- 1 root root 916 Dec 9 11:18 sdb-p0.key

Manage the System

S2393 140

DataWarp Service Nodes
DataWarp service nodes (and eLogin and compute nodes as well) use the SSL certificates only to connect to the
HTTP API. The client certificates are not essential because they can be regenerated. What is essential is that the
CA on the SMW is trusted on the remote nodes.

Certificates used

The following certificates are used primarily at the login node and any elogin node. Copies of the cert chain are
made so that client compute nodes and service nodes are able to run tools that interact with the DataWarp API
with no problems.

certificate_authority.crt This file is synced with the certificate on the DataWarp service.

hosts/$dw_node_name.crt This file is synced with the certificate on the DataWarp service.

hosts/$dw_node_name.key This file is synced with the certificate on the DataWarp service.

/etc/opt/cray/dws/$dw_node_name.crt This is the certificate on the DataWarp service.

/etc/opt/cray/dws/$dw_node_name.key This is the private key on the DataWarp service.

How to redistribute

Certificates are deployed initially by means of the configurator and Ansible plays when the DataWarp service is
set up. The Ansible plays generate the certificates using xtmake_ca and synchronize the certificate authority to
the remote nodes as needed. If the CA has been rebuilt from scratch, update the config set and apply it.

1. Update the current configuration set (as root):

smw# cfgset update -m auto p0
When the config set is updated, the config set gets the new certificates by means of a post-configuration
callback script, which updates the certificates from the /var/opt/cray/certificate_authority
location to the config set being updated.

2. Reboot the system. When the node boots, the config set certificate files are copied from the config set to the
node using an Ansible play.

Troubleshooting
Problem: capmc outputs a host name mismatch error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - Certificate identity does not match the target hostname
Possible Causes:

● The capmc client configuration, (/etc/opt/cray/capmc/capmc.json) os_service_url, setting is
invalid.

When capmc is being executed from the SMW on an internal Cray service node running the Cray Linux
Environment, the os_service_url setting should configured as follows:

https://smw:8443
When capmc is being executed from an external system, the os_service_url setting should include the
fully qualified domain name of the SMW as follows:

Manage the System

S2393 141

https://my-smw.my-domain.com:8443
○ Resolution: Reconfigure the os_service_url parameter.

● The SMW capmc API server host certificate contains an incorrect list of acceptable DNS names.

Verify that the "Subject Alternative Name" DNS name list contains the SMW FQDN and short host name smw:

smw:/etc/opt/cray/capmc # openssl x509 -text -noout \
-in /var/opt/cray/certificate_authority/hosts/host.crt | \
grep -A 1 "Subject Alternative Name"

X509v3 Subject Alternative Name:
 DNS:my-smw.my-domain.com, DNS:smw
○ Resolution: Regenerate the SMW host server certificate.

Problem: capmc outputs a certificate verification error.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)
Possible Causes:

● The client's copy of the CA certificate is not from the actual certificate authority that generated the SMW
CAPMC API server certificate.

○ Resolution: Redistribute the certificate_authority.crt file from the SMW to the client system.

● The SMW CAPMC API server was not restarted after regenerating the certificate authority from scratch.

○ Resolution: Reconfigure the capmc API server by invoking xtremoted_setup.

Problem: Capmc client connection times out. IP connectivity is nonfunctional between the capmc client system
and the SMW.

smw:/etc/opt/cray/capmc # capmc node_rules
 Error - url(https://smw:8443/capmc/get_node_rules) \
 [Errno 113] No route to host
Possible Causes:

● capmc client os_service_url is configured incorrectly.

○ Resolution:

▪ For use on internal Cray service nodes, reconfigure the os_service_url to https://smw:8443.

▪ For use on external nodes, reconfigure the os_service_url to be the SMW's fully qualified domain
name and verify that a valid IP connectivity path is established.

● When using capmc from an internal Cray service node, the IP path taken is over the high speed network
(HSN), to the boot node, and on the SMW. IP routing tables may be misconfigured on the SMW, boot node, or
internal service node.

○ Resolution:

▪ Verify that the boot node has IP forwarding enabled.

boot-p0# sysctl net.ipv4.ip_forward
 net.ipv4.ip_forward = 1

Manage the System

S2393 142

▪ Verify that the boot node firewall has TCP port 8443 open.

boot-p0# iptables -L
 ...

▪ Verify that the SMW has a return route on an internal interface to the HSN via the boot node.

smw# netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask Iface
 ...
 10.128.0.0 10.3.1.254 255.255.0.0 UG 0 0 0 eth3
 ...

▪ Verify that the internal Cray service node has a route to the SMW's internal interface via the boot
node.

svc-node# netstat -rn
 Kernel IP routing table
 Destination Gateway Genmask ...
Iface
 ...
 10.3.1.1 10.128.255.254 255.255.255.255 UGH 0 0 0
ipogif0
 ...

3.67.1 Update X.509 Host Certificate after SMW Host Name Change

About this task
Whenever the SMW host name changes, the previously generated X.509 SMW host certificate host.crt file
must be updated. Failure to update it will result in a host name certificate validation error, which will prevent the
capmc client from connecting to the SMW.

Procedure

1. Create a backup copy of the certificate_authority directory.

smw# cd /var/opt/cray
smw# cp -a certificate_authority certificate_authority.backup

2. Run the host validation.

smw# xtmake_ca validate
..
 - CN in SMW host file matches current hostname (my-smw.example.com)
Alternate names: my-smw.example.com, smw - SMW host certificate file
validation succeeded.
..
The output indicates whether the common name in host.crt matches the current host name.

3. Generate the new certificate using one of the following options.

● Option 1: If the SMW was only renamed, rebuild the host certificate using the new host name.

Manage the System

S2393 143

smw# xtmake_ca update
● Option 2: If a specific SMW host name or list of alternate names must be specified, manually revoke the

SMW host server certificate and re-create it with a list of appropriate host names.

smw# xtmake_ca revoke \
/var/opt/cray/certificate_authority/hosts/host.crt
smw# xtmake_ca CN=my-smw.example.com,my-smw.local,my-smw

NOTE: Option 2 does not require remaking or redistributing existing certificates. xtmake_ca will
re-create only missing certificates. In this case, the only missing certificate should be the SMW
host certificate, which was intentionally revoked. Any services running on the SMW that are using
the rebuilt host certificate, such as nginx, should be restarted.

The new host certificate is generated with the currently assigned host name listed in the CN field, as well as a
list of additional DNS names that capmc should consider valid.

4. Run the host validation again.

smw# xtmake_ca validate

5. Reconfigure and restart nginx on the SMW.

smw# xtremoted_setup

6. View the contents of the newly generated SMW host server certificate.

smw# openssl x509 -noout -text -in \
/var/opt/cray/certificate_authority/hosts/host.crt

Manage the System

S2393 144

4 Manage System Access

4.1 Change Account Passwords on the SMW

About this task
The SMW contains its own /etc/passwd and /etc/shadow files that are separate from the files for the rest of
the CLE system.

Procedure

Execute the following commands to change the passwords on the SMW for the following Linux accounts.

smw# passwd root
smw# passwd crayadm
smw# passwd mysql

4.2 Change Account Passwords on CLE Nodes

About this task
Use this procedure to change a password for an account that is local to the CLE nodes, such as root and
crayadm.

For LDAP or other authentication services, passwords are changed through those services.

Procedure

1. Update passwords in cray_local_users.

a. Update the CLE config set to change passwords for root
(cray_local_users.settings.users.data.root.crypt) and crayadm
(cray_local_users.settings.users.data.crayadm.crypt).

Full system:

smw# cfgset update -s cray_local_users -l advanced -m interactive p0
Partitioned system (update a config set for each partition):

Manage System Access

S2393 145

smw# cfgset update -s cray_local_users -l advanced -m interactive p1
smw# cfgset update -s cray_local_users -l advanced -m interactive p2

2. Validate config set.

Full system:

smw# cfgset validate p0
Partitioned system:

smw# cfgset validate p1
smw# cfgset validate p2

3. Activate new passwords for local accounts. The password changes can be made immediately on the CLE
nodes or can take effect at the next boot of the nodes.

a. Activate new passwords immediately on nodes. Doing so immediately does not require a reboot of the
node, merely running cray-ansible again.

On the boot node:

boot# /etc/init.d/cray-ansible start
On the SDB node:

sdb# /etc/init.d/cray-ansible start
On all service nodes:

sdb# pcmd -r -n ALL_SERVICE_NOT_ME "/etc/init.d/cray-ansible start"
On all compute nodes:

sdb# pcmd -r -n ALL_COMPUTE "/etc/init.d/cray-ansible start"

4. Activate new passwords by rebooting nodes. Either a full system reboot or warm booting individual nodes will
cause cray-ansible to activate these new passwords on the CLE nodes.

Manage System Access

S2393 146

5 Configure the System

5.1 Cray XC System Configuration
To configure Cray XC systems and manage configuration content, system administrators use the Cray
configuration management framework (CMF). The CMF comprises configuration data, the tools to manage and
distribute that data, and software to apply the configuration data to the running image at boot time. Its major
components include configuration service packages, config sets, the IMPS distribution service (IDS), the
configurator, cray-ansible, and Ansible.

Configuration Starts with Configuration Service Packages
Configuration content (data and software) is installed as configuration service packages on the management node
of Cray XC systems (in /opt/cray/imps_config/<service package>/default/configurator by
default). Each service package delivers configuration content for one or more system services. The contents of
each service package reside in the following subdirectories:

ansible Drop zone for Cray-provided Ansible play content.

callbacks Pre- and post-configuration scripts.

dist Drop zone for other Cray-provided content, such as static files required for the configuration of a
service.

template Configuration templates that define the configuration settings to be set and provide some default
values. These templates are never modified by administrators or other users.

Configuration service packages are installed for system upgrades and updates as well as for initial installation.

Configuration Information is Stored in Config Sets
Administrators use the cfgset command to manage configuration information. It takes configuration content
delivered in service packages and invokes the configurator tool to combine that content with site-specific
configuration content gathered from administrators either interactively or through bulk import. The results are used
by cfgset to create a configuration set or config set. A config set is a central repository that stores all
configuration information necessary to operate the system. Config sets reside on the management node (e.g., the
SMW) in /var/opt/cray/imps/config/sets by default. The contents of each config set reside in the
following subdirectories:

ansible Drop zone for local site-provided Ansible play content to be distributed with the config set. When
the config set is created, cfgset copies Ansible content from service packages to this location.
Whenever the config set is updated, cfgset copies Ansible content from service packages
again, overwriting the previous service-package Ansible content and leaving the site-provided
content unchanged.

Configure the System

S2393 147

changelog YAML change logs from previous sessions with the configurator.

config Configuration templates containing configuration information. When the config set is created, the
configurator copies service package templates to this location. Administrators can modify the
content of these templates using cfgset and the configurator. Whenever the config set is
updated, the configurator merges service package templates with the templates in this location.

dist Drop zone for other site-provided content, such as static files required for the configuration of a
service. When the config set is created, cfgset copies dist content from service packages to this
location. Whenever the config set is updated, cfgset copies dist content from service packages
again, overwriting the previous service-package dist content and leaving the site-provided content
unchanged.

files Files necessary for system configuration that are generated by configuration callback scripts or
manually and distributed with the config set (e.g., /etc/hosts).

worksheets Configuration worksheets generated by the configurator using data stored in the configuration
templates in the config subdirectory of the config set. Administrators copy these worksheets to
a location outside the config set, edit them with site-specific configuration data, and then import
them to create a new config set or update an existing one.

An administrator may create multiple config sets to support partitions or alternate configurations. Typically a config
set of type cle is created for each partition to store partition- and CLE-specific content, and another config set of
type global is created to store management node and global configuration data.

IDS Distributes Config Sets to Nodes
IDS, a read-only network share of content from the management node to the rest of the system, distributes config
sets to every node in the system. All config sets are shared throughout the system, but only one cle config set is
active on a given node at a time (in addition to an active global config set, which is applied to the entire system).
Currently, IDS leverages the 9P network file system and the Linux automounter facility as its distribution
mechanism; however, the content and use of the config sets is independent of the distribution mechanism.

Ansible Plays Apply Configuration during System Boot
Prior to booting the system, each node will have an image, the global config set, and the cle config set. When
the system boots, each node boots an unconfigured software image. Then Ansible plays, which can be located in
both the image and the config set (config set is the preferred location for site-supplied Ansible plays), apply
configuration to that image, bringing up the services pertinent to each node.

Administrators Configure/Reconfigure the System on an Ongoing Basis
Configuration happens at times other than initial installation. New configuration service packages can be installed
during system upgrades and updates, sites can decide to enable a new service or change the configuration of an
existing service, and so forth. In all of these scenarios, an administrator uses the cfgset command to manage
config sets and the cray-ansible script to apply any configuration changes. The cfgset command and its
associated subcommands and options enable administrators to perform a variety of operations on config sets in
addition to create and update, such as search, diff, list, show, validate, push, and remove. See the cfgset man
page for a description of its subcommands and options and some examples of each.

Configure the System

S2393 148

5.1.1 About the Configurator
The configurator plays a major role in Cray XC system configuration. The configurator gathers configuration data
from several sources (including the user, with helpful prompts and default values), merges and validates it, and
stores it in a central location on the management node, where it is used during boot to configure the entire
system. The configurator is invoked by the cfgset command to:

● handle all configuration template and worksheet operations

● perform steps 4, 5, and 6 of the Config Set Create/Update Process, including providing a user interface to
gather and modify configuration data interactively or through the import of configuration worksheets

The configurator is invoked with the cfgset subcommands create (except when the --clone option used) and
update. It is invoked also with the search subcommand, because that involves searching data stored in the
configuration templates, but no changes are made to the config set using search. The options selected for the
create and update subcommands determine the mode in which the configurator is run (with or without user
interaction), which settings can be viewed and set by a user, and whether callback scripts are run before and after
the configurator session. The configurator is not involved when the remaining cfgset subcommands are used:
diff, list, push, remove, show, and validate. See the cfgset man page for a description of its
subcommands and options and some examples of each, or use cfgset SUBCOMMAND -h to see information
about just one of the subcommands.

Choose How to Interact with the Configurator: Modes
The mode option of the cfgset command determines how the configurator interacts with a user. Mode can be
specified only with subcommands create and update.

--mode | -m Possible values: auto (default), interactive, prepare

auto The configurator searches through all available configuration templates in the config set and
automatically presents all configuration settings that meet state and level filtering criteria. It
presents the configuration settings in a certain order (taking into account dependencies among
services) one at a time until all have been presented to the user, and then it automatically ends
the session and saves the config set.

interactive The configurator searches through templates as with auto mode, but in interactive mode, it
presents a menu of all available services (or a menu of all available settings, when a service has
been selected) that meet state and level filtering criteria. This mode enables the user to navigate
through the services and settings to view and modify the settings as needed. The configuration
session ends when the user exits the session. The user chooses whether to save any changes
to the config set upon exit.

prepare The configurator prepares configuration worksheets, one for each service. Each worksheet
contains all configuration settings (unfiltered) for that service, and the worksheet can be edited
offline and then imported later to create or update a config set. In this mode, the configurator
does not open an interactive session with the user.

Choose What to See with the Configurator: Filters
Two cfgset command options act as filters to determine which settings are available to view and set or update.
These options can be specified only with subcommands create, update, and search.

--state | -S Possible values: unset (default), set, all
--level | -l Possible values: required, basic (default), advanced

Configure the System

S2393 149

required Settings that must be set or the system will not function. The config set will not validate if any
required settings are skipped (i.e., left unset). Specify level required in a cfgset command to
filter for required settings only.

basic Settings that are likely to be used by most sites. If a basic setting is left unset, the template-
provided default is used. Specify level basic in a cfgset command to filter for both basic and
required settings.

advanced Settings that are likely to be used only by advanced users to tune a service. If an advanced setting
is left unset, the template-provided default is used. Specify level advanced in a cfgset command
to filter for all settings: advanced, basic, and required.

5.1.2 Create a Config Set
Choosing the best strategy for creating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Create a
Config Set
from
Configuration
Worksheets

when performing fresh installs, major
upgrades, or any time there is a large amount
of configuration data to set up

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Create a
Config Set by
Cloning

when there is already a config set with site-
specific data and additional config sets are
needed with minor variations (for partitions,
alternate configurations, etc.), or when
manually backing up a config set

Cloning is quick, and it is easy to interactively
update the clone with needed variations.

Create a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Create a
Config Set
Interactively

when configuring a smaller system with little
configuration data to change

Setting all configuration values one at a time in
response to a series of prompts or when
selected from a menu can be very time-
consuming.

These strategies all use the cfgset command. Use cfgset create -h for information about the create
subcommand. See Config Set Create/Update Process on page 161 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

Note that when the create subcommand is used in any of these strategies (except cloning), it is necessary to
specify the config set type for any type other than the default cle. Most of the following create procedures omit
--type because they are for config sets of type cle.

REMEMBER: Run cfgset as root.

CAUTION: Boot failure possible if using cfgset under certain conditions.

Configure the System

S2393 150

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in system boot
failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the --no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For more information on creating a config set using --no-scripts, see Create a Config Set without Callbacks
on page 153

Create Backup Config Sets Automatically
If the auto_clone option in the IMPS configuration file (/etc/opt/cray/imps/imps.json) is enabled,
the cfgset create and cfgset update commands will automatically clone a config set as a backup upon
successful creation/update of the original config set. A failed operation will not create a backup.

The autosave_limit parameter in the IMPS configuration file determines how many clones will be retained.
Config set backups are rotated with the oldest backup removed as a new backup is generated. Config set
backups are saved with names of the
form CONFIGSET-autosave-YYYY-MM-DDTHH:mm:SS, where CONFIGSET is the name of the original config
set.

5.1.2.1 Create a Config Set from Configuration Worksheets

Prerequisites
This procedure has no prerequisites.

About this task
Use this procedure when performing fresh installs, major upgrades, or any time there is a large amount of
configuration data to set up. To create a config set from configuration worksheets, use this process:

1. Generate the worksheets.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets.

The detailed steps of this procedure show an example of how to create config set p0 of type cle (default) from
configuration worksheets.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system.

Configure the System

S2393 151

smw# cfgset create --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit the worksheets to customize them for this site.

The system administrator typically distributes them to site staff members with knowledge about the services
being configured so that they can edit the worksheets and enter appropriate values. Each worksheet is a
YAML file that contains instructions on how to edit it; the basic idea is to locate the settings of interest,
uncomment them, and either retain or change the default setting (if provided).

4. Import the completed worksheets using cfgset update or cfgset create.

Import the completed worksheets by updating the config set created when the worksheets were generated
originally or by creating an entirely new config set. The argument to the --worksheet-path option is a file
glob to allow multiple worksheets to be imported in a single create/update operation. Full paths to single
worksheets can also be used.

● Import to the config set created with --mode prepare in step 1.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
● Import to a new config set.

smw# cfgset create --worksheet-path '/some/edit/location/*_worksheet.yaml' \
 p0-new

REMEMBER: When importing worksheets using cfgset with the --worksheet-path option,

● Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

5.1.2.2 Create a Config Set by Cloning

Prerequisites
This procedure assumes that the config set to be cloned (the original) already exists.

About this task
Use this procedure when there is already a config set with site-specific data and additional config sets are needed
with minor variations (for partitions, alternate configurations, etc.), or when manually backing up a config set. This
procedure shows an example of creating config set p0-new by cloning it from existing config set p0. No callback
scripts or configurator sessions occur when cloning a config set. The clone will have the same config set type as
the original.

Note that the cfgset command is run as root.

Configure the System

S2393 152

Procedure

Create a clone using the --clone option.

smw# cfgset create --clone p0 p0-new
The configurator is not invoked when the --clone option is used, so no configurator session occurs, and no
changes are made to the configuration data in the original config set.

5.1.2.3 Create a Config Set without Callbacks

Prerequisites
This procedure has no prerequisites.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of creating config set global0 of type global from worksheets
while skipping all callback scripts. The --no-scripts option can also be used when creating a config set
interactively.

Note that the cfgset command is run as root.

Procedure

Create a config set without callbacks.

smw# cfgset create --no-scripts --worksheet-path \
'/some/edit/location/*_worksheet.yaml' --type global global0

CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

5.1.2.4 Create a Config Set Interactively

Prerequisites
This procedure has no prerequisites.

About this task
This procedure shows examples of creating config set p0 of type cle interactively. For additional examples, use
cfgset create -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

Configure the System

S2393 153

● Auto mode.

To be presented with all settings with state unset (default) and level basic (default) in all services in
config set p0:

smw# cfgset create p0
To be presented with all settings (any state and any level) in all services in config set p0:

smw# cfgset create --state all --level advanced p0
● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset create --mode interactive p0
To display a menu of all services (with settings of any state and any level):

smw# cfgset create --mode interactive --state all --level advanced p0

5.1.3 Update a Config Set
Choosing the best strategy for updating a config set depends on the circumstances ("when to use"):

Strategy When to use Rationale

Update a
Config Set
Interactively

when one or more config sets require a few
changes (e.g., cloned config sets that need to
be adjusted for a particular purpose), when a
software update introduces just a few new
fields to configure, or to confirm that all
required and basic settings have been set
(very useful!)

Setting just a few configuration values one at a
time in response to a series of prompts or
when selected from a menu works well when
there are just a few settings that need to be
configured or updated.

Update a
Config Set
from
Configuration
Worksheets

when performing system upgrades and
updates, or any time there is a large amount of
configuration data to change

Worksheets can be generated, filled out offline
with site-specific data by the appropriate staff,
and then imported when needed.

Update a
Config Set
without
Callbacks

when no hardware is attached to the XC
system, as in some testing scenarios

Pre- and post-configuration callback scripts
may invoke utilities that query hardware in
order to provide additional config set content.

Rename a
Config Set

when a config set needs to be renamed as well
as updated, or just renamed

This could become necessary for a variety of
reasons.

Update a
Single Service
in a Config Set

when setting up a new service, or when just
one service requires modification

This can be done either interactively or with
worksheets, so refer to those circumstances
and rationales for the right strategy.

Configure the System

S2393 154

These strategies all use the cfgset command. Use cfgset update -h for information about the update
subcommand. See Config Set Create/Update Process on page 161 for an outline of the process followed by
cfgset each time the create or update subcommand is used.

CAUTION: Boot failure possible if using cfgset under certain conditions.

The cfgset create and cfgset update commands always call pre- and post-configuration scripts.
Some of these scripts require HSS daemons and other CLE services to be running. This can cause
problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in system boot
failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update to
avoid running the scripts. Because using that option results in an invalid config set, remember to run
cfgset update without the --no-scripts option afterwards, when circumstances permit, to ensure
that all pre- and post-configuration scripts are run.

For information on updating a config set using --no-scripts, see Update a Config Set without Callbacks on
page 157

5.1.3.1 Update a Config Set Interactively

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when one or more config sets require a few changes (e.g., cloned config sets that need to be
adjusted for a particular purpose), or to confirm that all required and basic settings have been set (very useful!).
To update just one service in a config set, see Update a Single Service in a Config Set on page 158.

cfgset has two modes that initiate an interactive configurator session: auto (default) and interactive. This
procedure shows examples of updating config set p0 of type cle interactively in either mode. For additional
examples, use cfgset update -h.

Note that the cfgset command is run as root.

Procedure

Invoke the configurator in auto mode (default) or interactive mode.

● Interactive mode.

To display a menu of services in config set p0 that have configuration settings with state unset (default)
and level basic (default):

smw# cfgset update --mode interactive p0
To display a menu of services in config set p0 that have configuration settings with level required and
state unset:

smw# cfgset update --mode interactive --level required p0

Configure the System

S2393 155

To display a menu of all services in config set p0, use the broadest state and level filters:

smw# cfgset update --mode interactive --state all --level advanced p0
● Auto mode.

To confirm that all required and basic settings have been set (in which case, the configurator will not
initiate an interactive session) or to be presented with all settings with state unset (default) and level
basic (default) in all services in config set p0:

smw# cfgset update p0
For a discussion of common outcomes of this command, see cfgset Troubleshooting Tips on page 168.

To be presented with all settings in config set p0, use the broadest state and level filters:

smw# cfgset update --state all --level advanced p0

5.1.3.2 Update a Config Set from Configuration Worksheets

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Use this procedure when performing system upgrades and updates, or any time there is a large amount of
configuration data to change. The configurator overwrites all data in a service with the contents of the worksheets
specified on the command line. If a worksheet with stale data is used to update the config set, data loss may
occur. To ensure that the worksheets used to update the config set are as up-to-date as possible, use this
process:

1. Generate worksheets from the current config set.

2. Copy the worksheets to a new location on the management node.

3. Edit the worksheets.

4. Import the worksheets to the current config set.

The detailed steps of this procedure show an example of how to update config set p0 of type cle (default) from
configuration worksheets. To update just one service in a config set, see Update a Single Service in a Config Set
on page 158.

Note that the cfgset command is run as root.

Procedure

1. Generate new worksheets from configuration service packages installed on the system and config set p0.

smw# cfgset update --mode prepare p0

2. Locate the newly generated worksheets and copy them to a new location on the management node.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0

Configure the System

S2393 156

smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit one or more worksheets to make the needed changes.

To edit the worksheets, open those with settings that need to be changed and make changes, as needed.
Each worksheet is a YAML file that contains instructions on how to edit it.

4. Import the completed worksheets to p0 using cfgset update.

smw# cfgset update --worksheet-path '/some/edit/location/*_worksheet.yaml' p0
The argument to the --worksheet-path option is a file glob to allow multiple worksheets to be imported in
a single create/update operation. Full paths to single worksheets can also be used. The configurator will
replace config set data with imported worksheet data only for services that have matching worksheets
provided on the command line.

REMEMBER: When importing worksheets using cfgset with the --worksheet-path option,

● Always add single quote marks around the worksheet path if a wildcard is used
(e.g.,*_worksheet.yaml).

● Do not add mode, state, level, or service options; the configurator ignores them for worksheet
import.

● The type of the config set must match the type of the worksheets being imported.

5.1.3.3 Update a Config Set without Callbacks

Prerequisites
This procedure assumes an existing config set needs to be updated.

About this task
Pre- and post-configuration callback scripts may invoke utilities that query hardware in order to provide additional
config set content. Use this procedure when no hardware is attached to the XC system, as in some testing
scenarios. This procedure shows an example of updating config set p0 of type cle interactively while skipping all
callback scripts. The --no-scripts option can also be used when updating a config set from worksheets.

Note that the cfgset command is run as root.

Procedure

Update a config set without callbacks.

smw# cfgset update --no-scripts p0
CAUTION: Skipping callback script processing invalidates a config set. A config set cannot be
considered validated unless it is updated successfully without the --no-scripts option. Update all
config sets to run the callback scripts before using the config set with the system.

Configure the System

S2393 157

5.1.3.4 Rename a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when a config set needs to be renamed or updated as well as renamed. The renaming
operation follows the same basic configurator flow as a regular update but renames the config set prior to other
processing. If auto-cloning is enabled, config set backups of the original config set will not be renamed. This
procedure shows an example of renaming config set p0.

Note that the cfgset command is run as root.

Procedure

Rename a config set using the update subcommand with the --rename option.

smw# cfgset update p0 --rename p0.new
Note that the config set being operated on (p0 in this example), does not have to be the last argument on the
command line.

5.1.3.5 Update a Single Service in a Config Set

Prerequisites
This procedure assumes an existing config set.

About this task
Use this procedure when setting up a new service, or when just one service requires modification. This procedure
provides examples of updating a single service at a time instead of the entire config set, and it can be done either
interactively or using a configuration worksheet.

Procedure

Update a single service in config set p0.

● Update interactively: use the --service option.

IMPORTANT: For a service with configuration template file cray_example_config.yaml, use
only the cray_example portion on the command-line when specifying a single service.

To display a menu of settings in the cray_example service in config set p0 that are level required and
any state (default for interactive mode when only one service is specified):

smw# cfgset update --service cray_example --mode interactive \
--level required p0
To display a menu of all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --mode interactive \
--level advanced p0

Configure the System

S2393 158

To be presented with all settings (with settings of any state and any level):

smw# cfgset update --service cray_example --state all --level advanced p0
● Update with a worksheet: use the --worksheet-path option.

To update the service using a worksheet, use the --worksheet-path option instead of --service.
Unlike the --service option, with the --worksheet-path option it is necessary to provide the full path
to the worksheet for that service, which includes the _worksheet.yaml portion. The configurator will
replace only the config set data that corresponds to the data in the worksheet being imported.

smw# cfgset update --worksheet-path \
/path/to/worksheets/cray_example_worksheet.yaml p0

5.1.4 Validate a Config Set and List Validation Rules
It is important to validate any config set that has been modified, because there is currently no mechanism to
prevent the system from trying to use an invalid config set. Validation is useful for determining if the config set is
minimally viable for use with the system it is intended to configure.

IMPORTANT: Validation ensures that a config set passes all rules stored on the system. A validated
config set does not necessarily equate to a config set with configuration data that will result in a properly
configured system.

When validating a config set, the configurator checks the following:

● Config set has the proper directory structure and permissions.

● All configuration templates have correct YAML syntax.

● All configuration templates adhere to the configurator schema.

● All fields of type lookup reference values and settings that exist in the available configuration services.

● All level required fields in enabled services are configured (i.e., their state is set).

● Pre-configuration and post-configuration callback scripts ran successfully during the latest config set update.

● cfgset validate has run all validation rules installed on the system.

Validate a Config Set with the validate Command
To validate a config set, use the cfgset validate command:

smw# cfgset validate p0
The cfgset validate command runs all rules installed on the system. Users may specify which rules to
include or exclude by using the rules file in /etc/opt/cray/imps/rules.yaml.

The --no-rules subcommand can be used to prevent the cfgset from executing any validation rules against
the config set. All other validation checks will be done.

smw# cfgset validate --no-rules p0
NOTE: Using the --no-rules option will not invalidate a config set, unlike cfgset create/update
--no-scripts command behavior.

Configure the System

S2393 159

The --include-rule subcommand specifies a rule name to execute to validate the config set. Multiple --
include-rule declarations can be made. Rules included via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules.yaml). Included rules supersede all excluded rules as well.

smw# cfgset validate --include-rule INCLUDE_RULE p0
The --exclude-rule subcommand specifies a rule name to skip when validating the config set. Multiple --
exclude-rule declarations can be made. Rules excluded via this parameter supersede rules specified in the
rules file (/etc/opt/cray/imps/rules.yaml).

To validate the resulting configuration services after a merge of the service packages with the config set content,
add the --merge option.

smw# cfgset validate --merge SERVICE_PACKAGE

List Validation Rules with the list-rules Command
Use the cfgset list-rules command to list the validation rules for a given config set:

smw# cfgset list-rules p0
Listing the rules for the config set.

Rules:

- name: sdb.cray_sdb.CraySDBEnabled
 description: The cray_sdb service must be enabled.
 location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py

- name: sdb.cray_sdb.SDBGroupsNodeCheck
 description: The cray_sdb service must only configure tier1 and/or tier2 nodes
as SDB nodes.
 location: /opt/cray/imps_config/sdb/default/configurator/rules/cray_sdb.py
The --service SERVICE subcommand can be used to list the rules that apply to a specified service. The --
service subcommand should not be used with the --name subcommand.

smw# cfgset list-rules --service cray_boot p0
Listing rules for the cray_boot service.

Rules:

- name: system-config.cray_boot.BootGroupsNodeCheck
 description: The cray_boot service must only configure tier1 and/or tier2 nodes
as boot nodes.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py

- name: system-config.cray_boot.BootNodeGroupsNotEmpty
 description: The cray_boot service must set at least one node as the boot node.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_boot.py
The --name NAME subcommand can be used to limit the output of the rule listing to a specified service for the
given config set. The --name subcommand should not be used with the --service subcommand.

smw# cfgset list-rules --name system-config.cray_storage.CrayStorageEnabled p0

Configure the System

S2393 160

- name: system-config.cray_storage.CrayStorageEnabled
 description: The cray_storage service must be enabled.
 location: /opt/cray/imps_config/system-config/default/configurator/rules/
cray_storage.py

5.1.5 Config Set Create/Update Process
Config sets are created and updated using the cfgset command with the create and update subcommands,
respectively. Invoking cfgset with one of those subcommands initiates the following process, which defines how
configuration content is discovered from service packages installed on the management node and used, along
with site-supplied content, to create or update a config set.

1. cfgset searches for service packages in /opt/cray/imps_config.

2. cfgset copies to the config set (for create) or overwrites in the config set (for update) ansible and dist
content from each service package. Note that it is only content from service packages that is overwritten;
content placed in those directories manually is unchanged.

NOTE: Manual changes to service package content in this directory will be overwritten!

3. cfgset runs pre-configuration callback scripts from each service package. Scripts act on the config set to
create content necessary for system configuration, which they place into the files subdirectory of the config
set.

4. cfgset invokes the configurator to do steps 4 through 6.

Configurator finds configuration templates from each service package that match the config set type, and then
copies them into the config set (for create) or merges them with the templates already in the config set (for
update).

5. Configurator takes one of these actions to further modify config set template data, depending on the
command-line options used:

interacts with
user

Initiates an interactive session with the user and modifies config set template data
based on the values supplied by the user.

Occurs when --mode interactive option used or no mode option used, which
defaults to auto mode.

does not interact
with user

Does not initiate an interactive session and does no further modification to config set
template data beyond the copy/merge of service package data already done in step 4.

Occurs when --mode prepare option used. Note that although this action is
associated with preparing worksheets, all three actions result in worksheets being
written in step 6.

imports
worksheets

Imports configuration worksheets and modifies config set template data based on the
values in each service worksheet.

Occurs when --worksheet-path FILEPATH option used.

6. Configurator writes configuration template data, configuration worksheets, and a changelog to the config set.
Note that the configurator never modifies the configuration templates in service packages, which are found
in /opt/cray/imps_config/SERVICE PACKAGE for each service package.

7. cfgset runs post-configuration callback scripts from each service package.

8. cfgset autosaves the config set to a time-stamped clone.

Configure the System

S2393 161

The following three figures illustrate how this eight-step process is used to create a CLE config set. They differ in
how configuration data in a config set is further modified in step 5, corresponding to the three different actions:
interacting with the user (modification through user interaction), not interacting with the user (no further
modification), and importing worksheets (modification through bulk import of configuration worksheets). Black
lines indicate cfgset actions, and red lines indicate actions taken by the configurator when invoked by cfgset.

This first figure shows how the configurator creates config set templates (in the config subdirectory) from
service package templates in step 4, enables the user to enter new or modify existing configuration data in step 5,
and then saves the new/modified data to the config set templates and worksheets in step 6.

Figure 18. Process to Create a Config Set Interactively

Configure the System

S2393 162

Figure 19. Process to Create a Config Set and Prepare Worksheets

The prepare-mode figure shows how the configurator creates config set templates from service package
templates in step 4, does nothing to that configuration data in step 5, and then saves the data from step 4 to
config set templates and worksheets in step 6. The blue dashed line indicates an action taken by the user after
cfgset has completed the create/update process to prepare worksheets. The user (usually an installer or system
administrator) copies the worksheets prepared by the configurator to a location outside the config set and edits
them (or has other site staff edit them) with site-specific configuration values. It is these edited worksheets that
are used when creating (or updating) a config set from worksheets (shown in worksheets figure).

Configure the System

S2393 163

Figure 20. Process to Create a Config Set from Worksheets

The worksheets figure shows how the configurator creates config set templates from service package templates
in step 4, imports new or modified configuration data from worksheets in step 5, and then saves the new/modified
data to the config set templates and worksheets in step 6.

5.1.6 Tips for Configurator Interactive Sessions
When a user invokes cfgset in auto or interactive mode to create or update a config set, cfgset invokes
the configurator to initiate an interactive session with the user. The configurator provides command help to aid
users in navigating the tool and adding/updating configuration data. These tips supplement that help.

Know the difference between the two "interactive" modes
Interactive mode and auto mode can both result in a configurator interactive session, but their uses and behaviors
are quite different.

auto mode Helpful for verifying that all desired settings have been set.

Auto mode initiates an interactive session when there are one or more settings in the config set
that meet state and level filtering criteria. Those settings are presented one at a time, and when
all have been presented, the configurator exits the session.

interactive
mode

Helpful for seeing the "big picture" and having more control over which services/settings are
presented for configuration.

Configure the System

S2393 164

Interactive mode always initiates an interactive session. It provides two tiers of menus from which
users can select one or more services/settings to drill down and configure just what is needed.
The configurator presents the selected settings one at a time, as in auto mode, but when all
selected settings have been presented, it returns the user to the menu from which the selection
was made.

● Service Configuration List Menu (or Service List Menu) lists the services in the config set

● Service Configuration Menu (or service menu) lists the settings in a particular service

Filter wisely
Level and state filters determine what the configurator displays to users: what is included in the menu of services/
settings for selection in interactive mode, and what setting fields are presented automatically for configuration in
auto mode. The filters can be specified on the command line when invoking cfgset, and they can be changed in
interactive mode. If not specified, they default to level basic and state unset (exception: for interactive mode, if
a single service is specified, the default state is all).

In interactive mode, the configurator populates the Service List Menu with only those services that meet state and
level filtering criteria; both filters can be switched to different values on this menu screen. In the case of a service
menu, the configurator populates it with only those setting fields that meet level filtering criteria (shows all states);
level can be switched on this menu screen, but state cannot. Just for fun, cycle through all levels/states, noting
how level affects which services appear in the list, while state affects the status displayed for each service.

TIP: If the desired service/setting is not visible in an interactive-mode menu, simply switch level.

In auto mode, the configurator presents only those setting fields that meet state and level filtering criteria. There is
no opportunity to switch filter values in auto mode, except by first switching to interactive mode.

TIP: A good way to confirm that all basic settings have been set is to run cfgset update p0 (where p0
is the config set name), which defaults to auto mode, level basic, and state unset. If the configurator
does not present any settings, it means that no basic or required settings are unset.

How to switch states and levels (interactive mode only):

switch
states

Enter s at the configurator prompt to switch from the current state to the next one:
unset→set→all. To see all services/settings with the specified level, enter s until state=all
displays in the menu header.

switch
levels

Enter l (lowercase L) at the configurator prompt to switch from the current level to the next one:
basic→advanced→required. To view all services/settings with the specified state, enter l until
level=advanced displays in the menu header.

To see all possible services/settings, switch to state=all and level=advanced.

Get familiar with menus in interactive mode
The Service List Menu and all service menus have the same three-section layout: a list of services/settings,
actions the user can take, and a prompt.

Configure the System

S2393 165

Figure 21. Sections of Interactive-Mode Menus

list The menu name, config set name, and config set type are shown at the top of the list section. This
section is helpful for seeing which services still have unconfigured settings (status column—see what
changes when state is switched) and for selecting which service(s) to configure or reconfigure.

In a service menu, the list items are configuration settings for that particular service, filtered by level
only (state is set to all and cannot be switched). This list is helpful for seeing the current state and
value of the settings and for selecting which setting(s) to set or change.

actions These three submenus show all commands currently available. Always use an action from the Select
Options submenu before using any from the Actions on Selected submenu. Items in the Other
Actions submenu can be used at any time (with the obvious exceptions of the exit commands Q and x,
because when one of those is used, the configurator exits the interactive session).

Select
Options

Actions that select one or more services/settings from the list. The selected services/
settings are the only ones that can be acted upon. Once selected, an asterisk appears
in the Selected column next to the item and its font color changes.

Actions on
Selected

Actions that can be used on the selected service(s) or setting(s); a selection must be
made first. Shows in parentheses how many items have been selected. A few of these
actions, like toggle whether a service is enabled and toggle whether it inherits setting
values from the global version of its template (applies to only a few services) move to
the Other Actions submenu on service menu screens.

Other
Actions

Actions that can be used on all services/settings or on the current configurator
session. The most commonly used are the filter switches and help (?).

prompt The prompt shows which menu is active and what the default action is. Before a selection is made, the
default action is to save and exit (as shown in previous figure). When a selection is made, the default
action is to configure the selected service(s) or setting(s), and the prompt changes to

MENU_NAME [default: configure – C] $

Configure the System

S2393 166

Note that accepting this default action (or entering C) displays the configuration setting screen for the
first selected setting.

Get familiar with configuration setting screens
A configuration setting screen shows users information about the setting field to be configured (default/current
values, data type, level, current state, etc.) and enables the user to navigate among setting fields, enter/change
field values, and switch to interactive mode. The configuration setting screen is displayed when a user makes a
selection and enters C in interactive mode, or when a setting matches state and level filters in auto mode.
Configuration setting screens have a prompt that is packed with useful information. Consider this example of a
prompt:

cray_lmt.settings.lmt_database.data.database_fstype
[<cr>=set 'ext3', <new value>, ?=help, @=less] $
The first line is the full name of the setting field being presented (this is the same as the corresponding entry in
the configuration worksheet for this service). The part that precedes .settings. is the service name
(cray_lmt, the Lustre Monitoring Tool service, in the example), and the part that follows is the setting field being
presented. In the example, the setting is lmt_database and the field to be set (one of several for that setting) is
database_fstype.

The second line lists available commands. In the example, the default command (selected by pressing Enter or
<cr>) sets the value to ext3, which is the default value provided in the configuration template for that service. If
this setting field had already been configured with the value ext3, the default command would be <cr>=keep
'ext3', (set becomes keep). This list of available commands is not exhaustive: to see all possible options,
enter ? after the prompt, which will insert a context-sensitive menu of commands between the information section
and the prompt.

Switch to interactive mode, as needed
When in a configuration setting screen, whether the user has arrived there by invoking cfgset in auto mode or
by making a selection and entering C in interactive mode, it is possible to switch to interactive mode and display
either the service menu (lists settings for a single service) or the Service List Menu (lists services in the config
set).

switch from
setting screen to
a service menu

To switch to interactive mode and display the service menu, enter ^ at the configurator
prompt. Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^

switch from
setting screen to
Service List Menu

To switch to interactive mode and display the Service List Menu, enter ^^ at the
configurator prompt. This action can be taken only if cfgset was invoked for all services
(as this is the default, this is true unless the --service or -s option was used). Example:

cray_node_health.enabled
[<cr>=keep 'true', <new value>, ?=help, @=less] $ ^^

Configure the System

S2393 167

Switch between menus in interactive mode, as needed
switch from
Service List
Menu to service
menu

When a service has been selected from the Service List Menu in interactive mode, enter v
(view settings) to switch to the selected service's menu instead of taking the default action of
Configure (C). The v action is available if only a single service is selected. If multiple
services are selected, C is the only action available. Example:

Service List Menu [default: configure - C] $ v

switch from
service menu to
Service List
Menu

To switch from a service menu to the Service List Menu, enter ^^ at the configurator prompt.
This action can be taken only if cfgset was invoked for all services (as this is the default,
this is true unless the --service or -s option was used). Example:

Node Health Service Menu [default: save & exit - Q] $ ^^

When in doubt, jump out
It is better to leave a setting field unconfigured than set it to an incorrect value or 'none.' If unsure what the value
should be or whether that setting field is needed, jump out using one of these methods:

● Switch to interactive mode, as needed.

● Skip to the next setting field: enter > at the configurator prompt.

Get help early and often
Enter ? at the configurator prompt at any time to see a list of available commands. In interactive mode, this simply
displays a verbose list of the same commands listed in the menu's three action submenus. However, in a
configuration setting screen, entering ? displays a context-sensitive menu of available commands not displayed
elsewhere. Here is an example of the commands available in the context of configuring a multival setting in a
service (multival settings are configured by adding/changing entries). Use the ? command in configuration setting
screens early and often to learn the available commands.

|--- Command Help
| * ++ - double view limit (currently 2)
| * -- - decrease view limit by half (currently 2)
| * * - view all entries (no limit)
| * + - add entries
| * <#>* - change the <#> entry. Example: '2b*' selects sub-item b in entry 2
to change
| * <#>- - delete the <#> entry. Example: '4-' deletes entry 4
| * d - delete all entries in the list
| * <cr> - accept the current value(s)
| * # - set the value to its default
| * < - go back to the previous setting
| * > - skip and go to the next setting
| * ^ - Go to the 'cray_dvs' service menu (interactive mode)
| * ^^ - Go to the service list menu (interactive mode)
| * Q - write out changes and exit the configurator
| * x - revert all changes and exit the configurator
| * r - refresh the screen
| * @ - toggle more/less info
| * ? - show this help

Configure the System

S2393 168

5.1.7 cfgset Troubleshooting Tips

Unable to Update a Service in a Config Set
The following command to update SERVICE in config set p0 can result in a variety of outcomes, depending on the
level and state of the settings in that service.

smw# cfgset update --service SERVICE p0
Note that for a service with configuration template file cray_example_config.yaml, use only the
cray_example portion on the command-line when specifying a single service.

● Outcome 1: No configuration settings presented.

INFO - Running pre-configuration scripts
...
INFO - Merging configuration templates and validating schema.
INFO - Configuration worksheets will be saved to /var/opt/cray/imps/config/sets/
p0/worksheets
INFO - Changelog will be written to
 - /var/opt/cray/imps/config/sets/p0/changelog/
changelog_2015-12-02T16:39:25.yaml
INFO - Running post-configuration scripts
...
INFO - ConfigSet 'p0' has been updated.
The command does not specify mode, level, or state, so defaults are used: auto mode, level basic, and
state unset. Therefore, the configurator looks only for required and basic settings that are unset. If it finds
none, no interaction with the user is necessary, so it proceeds directly to saving worksheets and logs, and
then cfgset runs post-configuration activities and exits automatically. If the intention was to confirm that
all required and basic settings have been set, then this is the desired outcome. However, if the intention
was to view all settings and perhaps change a few, use this command instead:

smw# cfgset update --service SERVICE --level advanced --mode interactive p0
● Outcome 2: Some configuration settings presented, but not the ones that need to be changed.

The settings that need to be set/changed are not presented because either they are already set or they are
level advanced. Try this:

1. Enter ^ at the configurator prompt to switch to interactive mode. Now settings of all states are
displayed in the service menu and can be selected and set/changed. If the desired settings are still not
found in the service menu, continue to the next step.

2. Enter l (lowercase L) at the configurator prompt to switch to the next level (cycles through all three levels)
until level=advanced displays in the service menu header. Now settings of all levels and states are
displayed in the service menu and can be selected and set/changed.

● Outcome 3: Some new and unfamiliar configuration settings presented.

If the service package that contains the service being updated has been reinstalled, the associated service
configuration template may have new or revised settings and values. The configurator will find that template
in /opt/cray/imps_config/SERVICE_PACKAGE/default/configurator/template and merge its
contents with configuration data already in the config set. When the configurator presents those new settings
to the user, they may appear unfamiliar. If settings other than the ones presented need to be set/changed, see
Outcome 2.

Configure the System

S2393 169

Validation Rule Failure
When cfgset validate encounters a rule failure, a non-zero value is returned and the rule failure is printed:

smw# cfgset validate p0
...
Validating ConfigSet 'p0'

Lookup/Reference Errors (1):
 Template: /var/opt/cray/imps/config/sets/p0.alison/config/cray_dvs_config.yaml
 Error: The configured value 'dvs_servers' is not located in the reference
field 'cray_node_groups.settings.groups'
 Location: cray_dvs.settings.client_mount.data.test-ro.server_groups
Rule failure can be remedied by adjusting config set data to conform with the failed rule. Alternatively, the rule can
be temporarily bypassed using either the --no-rules or --exclude-rule option. See Validate a Config Set
and List Validation Rules on page 159 for more details on bypassing validation rules.

5.2 About Snapshots and Config Set Backups
Sites can make as few or as many snapshots and config set backups as they deem useful, but Cray recommends
that sites make a snapshot and back up config sets at certain milestones during the installation and configuration
process. Most of these will be for archival purposes, but snapshots and config set backups can be used to stage
updates/upgrades and roll back to or switch between SMW and CLE releases as well.

How are snapshots and config sets created?

● Snapshots are created and managed using snaputil, a Python utility delivered with the cray-install-support
RPM that is installed by default on the SMW. However, the fresh install procedure makes the first snapshot
manually, because at that point in the process, snaputil has not yet been installed.

Note that on a system with SMW 8.0.UP05 / CLE 6.0.UP05 or a later release installed, whenever that system
is booted to a pre-UP05 snapshot, the full path to snaputil must be used to boot the system back to an
UP05 or post-UP05 snapshot:

/boot/install-support/default/snaputil

Beginning with the SMW 8.0.UP05 / CLE 6.0.UP05 release, the snaputil utility is in that directory, which is
exempt from snapshots.

● Config sets are created and managed using cfgset.

Procedures for creating snapshots and config set backups are included at each point in the process where they
are needed.

What does a snapshot contain? Snapshots capture content in these three file systems on the SMW: root
(/), /var/lib/mysql, and /var/opt/cray/repos. Used in conjunction with backups of config sets, they
provide enough information to be able to re-create the state of the system at the time of the snapshot and config
set backup.

What does a config set contain? See "Configuration Information is Stored in Config Sets" in Cray XC System
Configuration on page 147 for details about the contents of a config set.

Best Practice. Make a snapshot and back up the config set at the same time to keep them in sync. Name the
snapshot and config set backup using the same suffix and date/time stamp to help administrators identify which
snapshot and config set backup pairs belong together.

Configure the System

S2393 170

Table 11. Suffixes and Corresponding Milestones for Snapshots and Config Set Backups

Suffix Description Snapshot Config Set

preupdate before beginning any software update activities (software
updates only)

yes yes

postinstall after installing a new software release (fresh install or software
update) and before configuring the SMW for CLE system
hardware

yes yes

postconfig after configuring CLE and before booting the CLE system yes yes

postboot after booting the CLE system yes yes

postpe after installing Cray PE software yes yes

postcustomize after customizing a preinstalled system (not for fresh installs or
software updates)

yes yes

Other Snapshot-related Utilities: dumphss and freshenhss
Because the Hardware Supervisory System (HSS) database is local to a snapshot, for staged updates/upgrades,
Cray provides these two additional utilities as well:

dumphss The dumphss utility dumps the current HSS database. When an administrator runs snaputil to
set the default snapshot before rebooting to that snapshot, snaputil runs dumphss automatically
to back up the database.

freshenhss The freshenhss utility updates the HSS database on the new snapshot after the SMW is
rebooted to that snapshot. It syncs the snapshot-local HSS database with the changes made while
the previously booted snapshot was active. The freshenhss command is not run automatically; it
is run manually by an administrator, if needed.

The HSS database in a snapshot that has not been booted recently may no longer reflect the
physical state (what components are where) or administrative state (which nodes are enabled,
disabled, set-to-service, and so forth) of the XC system. In such cases, after the SMW is rebooted
to that snapshot, run freshenhss in the snapshot to restore this information from the last-booted
snapshot. Note that freshenhss will not take action if (1) the software versions are too different
between the snapshots, or (2) hardware changes have occurred since the snapshot was last
booted. In the case of hardware changes, run xtdiscover to manually update the HSS database.

When possible, it is usually preferrable to run freshenhss instead of xtdiscover, because
while xtdiscover can restore the physical state, it cannot detect administrative state changes
made while another snapshot was booted. The freshenhss utility compares the last snapshot
with the current one before taking any action, and depending on the software levels involved, an
explicit xtdiscover may still be required as an additional step. See the freshenhss man page
for details.

Configure the System

S2393 171

5.3 Update cray_sysenv Worksheet

Prerequisites
This procedure assumes that a work area has been set up for editing CLE configuration worksheets and that the
current directory has been set to that work area.

smw# cd /var/adm/cray/release/p0_worksheet_workarea

About this task
The Cray System Environment service enables sites to make any sysctl, systemd, or limit changes needed within
the CLE system environment. This procedure enables the cray_sysenv configuration service.

● "DefaultTasksMax" and "UserTasksMax" limits on the CLE system and the SMW were increased. No system
administrator action needed.

● The cray_sysenv config service now uses node groups.

● A global counterpart to this CLE config service, cray_global_sysenv, enables sites to make any sysctl,
systemd, or limit changes needed on the SMW.

IMPORTANT: Changes to sysctl settings take effect as soon as cray-ansible is run. However, changes to
systemd or limits settings made after a system has booted take effect only at the next boot.

Procedure

1. Edit cray_sysenv_worksheet.yaml.

smw# vi cray_sysenv_worksheet.yaml

2. Uncomment cray_sysenv.enabled and set it to true.

5.4 Prepare and Update the Global Config Set

Prerequisites
This procedure assumes that the SMW and CLE software has been installed so that the global config set is
present.

About this task
The global config set must be updated with site-specific information about several services. This procedure
describes how to add site configuration data to the configuration worksheets for each service in the global config
set, update the config set with the edited configuration worksheets, and then run Ansible plays on the SMW to
effect the changes there. The final steps check for external NTP servers and place the SMW time zone setting
where cabinet and blade controllers can access it.

Notes on editing a configuration worksheet:

Configure the System

S2393 172

● Uncomment all settings that are marked level=basic and modify values as needed. All settings that remain
commented are considered unconfigured.

● Settings that are already uncommented in the original worksheet are preconfigured to ensure proper
configuration of the system; Cray recommends not modifying those preconfigured settings.

● Leave commented all settings that are marked level=advanced unless a default value needs to be modified.
Leaving them commented (unconfigured) allows the configurator to safely update defaults that may change in
later releases.

● To enter a value for a string that currently is set to '' (empty string), replace the quotes with the new value.
For example, ipv4_network: '' becomes ipv4_network: 10.1.0.0. In cases where the string value
might be interpreted as a number, retain the single quotes. For example, a string setting with value '512'
needs quotes.

● To enter one or more values for a list that is currently set to [] (empty list), remove the brackets and add
each entry on a separate line, preceded by a hyphen and a space (-). For example, a list with multiple
entries would look like this:

cray_global_net.settings.networks.data.management.dns_servers:
- 172.31.84.40
- 172.30.84.40

● Do NOT change or remove the null value in lines like this that appear at the beginning of each multival entry
(such as the network, host, and host interface entries in cray_net_worksheet.yaml. This line sets the
key, or identifier, for that multival entry. In this example, "hsn" is the identifier for the HSN network entry.

cray_net.settings.networks.data.name.hsn: null
For more information about editing configuration worksheets and updating config sets, see XC™ Series
Configurator User Guide (S-2560).

NOTE: (SMW HA only) For SMW HA systems, the following procedures are done only on the first SMW
because the config sets are shared between both SMWs in the HA cluster. In contrast, Ansible plays must
be run on each SMW.

Procedure

1. Save a copy of original global worksheets.

Copy the original configuration worksheets into a new directory to preserve them in case they are needed
later for comparison.

smw# ls -l /var/opt/cray/imps/config/sets/global/worksheets

smw# cp -a /var/opt/cray/imps/config/sets/global/worksheets \
/var/opt/cray/imps/config/sets/global/worksheets.orig

2. Make a work area for global worksheets.

a. Copy the global configuration worksheets to a new work area for editing.

The worksheets should not be edited in their original location for two reasons: (1) the configurator will not
permit updating a config set from worksheets within that config set, and (2) edits would be overwritten
when the config set is updated.

Configure the System

S2393 173

smw# cp -a /var/opt/cray/imps/config/sets/global/worksheets \
/var/adm/cray/release/global_worksheet_workarea

b. Change to the work area directory to simplify the editing commands in the following steps.

smw# cd /var/adm/cray/release/global_worksheet_workarea

UPDATE WORKSHEETS FOR GLOBAL SERVICES

3. Update cray_firewall.

a. Edit cray_firewall_worksheet.yaml.

smw# vi cray_firewall_worksheet.yaml
b. Uncomment cray_firewall.enabled and set it to true.

4. Update cray_global_local_users.

a. Edit cray_global_local_users_worksheet.yaml.

smw# vi cray_global_local_users_worksheet.yaml
b. Uncomment all lines of the pre-populated craylogreaders group.

Cray provides a pre-populated group called craylogreaders that has more restricted permissions than
the crayadm group. It is intended for use when specifying group ownership for log files and directories.
This step configures the roles field of that group.

Uncomment both lines that are commented, and leave the default value for the roles list, smw.

** 'groups' DATA **

cray_global_local_users.settings.groups.data.name.craylogreaders: null
cray_global_local_users.settings.groups.data.craylogreaders.gid: '14902'
cray_global_local_users.settings.groups.data.craylogreaders.description:
 Default Cray log readers group
cray_global_local_users.settings.groups.data.craylogreaders.deleted: false
#cray_global_local_users.settings.groups.data.craylogreaders.roles:
#- smw

c. (Optional) Create a new group, if needed.

Cray recommends using the pre-populated craylogreaders group to specify ownership of log files and
directories in cray_logging, which is configured in a later step in this procedure. However, if this site
wishes to create and use a custom group, copy these lines and place them in the section for additional
group definitions, as shown in the following example. Replace sample_key_a in all lines with the name
(key) for this new group, then replace the default values with site-specific values, as needed.

The gid field cannot remain an empty string. Replace '' with some unused GID. To see what GIDs are
already in use on this SMW, look in /etc/groups.

NOTE: Place additional 'groups' setting entries here, if desired.

cray_global_local_users.settings.groups.data.name.sample_key_a: null
cray_global_local_users.settings.groups.data.sample_key_a.gid: ''
cray_global_local_users.settings.groups.data.sample_key_a.description: ''
cray_global_local_users.settings.groups.data.sample_key_a.deleted: false
cray_global_local_users.settings.groups.data.sample_key_a.roles: []

Configure the System

S2393 174

5. Update cray_global_net.

a. Edit cray_global_net_worksheet.yaml.

smw# vi cray_global_net_worksheet.yaml
b. Uncomment cray_global_net.enabled and ensure that it is set to true.

c. Search in the file for 'networks' DATA, then uncomment all of the lines below it that begin with
cray_global_net.settings.networks so that those settings will be applied and marked as
configured. They define four networks: admin, SMW failover, HSS, and management.

NOTE: Do NOT uncomment the similar lines under this heading, because they are examples only
and are not configured for these four networks.

** EXAMPLE 'networks' VALUE (with current defaults) **
d. Enter SMW-specific or site-specific values for these management network fields.

cray_global_net.settings.networks.data.management.ipv4_network:
cray_global_net.settings.networks.data.management.ipv4_netmask:
cray_global_net.settings.networks.data.management.ipv4_gateway:
cray_global_net.settings.networks.data.management.dns_servers:
cray_global_net.settings.networks.data.management.dns_search:
cray_global_net.settings.networks.data.management.ntp_servers:
Add values for the dns_servers and dns_search fields for the management network only, not to any
other network. The DNS information to use for these fields was entered during the SLES12 installation, so
those values can be found in /etc/resolv.conf.

NOTE: If this site does not use DNS search but does use DNS domain in /etc/resolv.conf,
then adding a single entry to the dns_search setting is functionally equivalent to setting the
DNS domain.

e. Set the management network external firewall to true.

cray_global_net.settings.networks.data.management.fw_external: true
f. Search in the file for 'hosts' DATA, then uncomment all of the lines that begin with

cray_global_net.settings.hosts so that those settings will be applied and marked as configured.
They define a host called "primary_smw" and two interfaces for it: one that connects to the customer
management network ("customer_ethernet") and one that connects to admin nodes ("admin_interface"),
such as the boot and SDB nodes.

g. Enter SMW-specific or site-specific values for these items.

There are many more fields defining the "primary_smw" host and its interfaces than are included in this
example. These four fields are shown because they are the most likely to need site customization. Sites
may wish to change the values of other fields as well.

See the notes on editing worksheets at the beginning of this procedure for information about changing
empty string and empty list values.

cray_global_net.settings.hosts.data.primary_smw.aliases:
cray_global_net.settings.hosts.data.primary_smw.hostid:
cray_global_net.settings.hosts.data.primary_smw.hostname:
cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.ipv4_address:

Note that if the customer Ethernet IP address changes, the output from the hostid command will be
different. After changing the following Ethernet field

Configure the System

S2393 175

cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.ipv4_address

ensure that this field (the SMW host ID) is set to the output of the hostid command.

cray_global_net.settings.hosts.data.primary_smw.hostid

h. Set the unmanaged_interface field of the customer_ethernet and admin_interface interface
settings to true.

This applies to both stand-alone SMWs and SMW HA systems. In the case of an SMW that is or will be
configured for an SMW HA system, this prevents Ansible from managing eth0 and eth3 before the SMW
HA cluster has been configured.

cray_global_net.settings.hosts.data.primary_smw.interfaces.customer_ethernet.unmanaged_interface: true
...
cray_global_net.settings.hosts.data.primary_smw.interfaces.admin_interface.unmanaged_interface: true

i. (Optional) Configure a virtual LAN (VLAN) interface, as needed.

This example shows the configuration fields needed to configure a VLAN interface with common name
set to vlan0. With the vlan_id set to 42 and the etherdevice set to eth0, the interface name will be set
automatically to eth0.42 (vlan_etherdevice.vlan_id) if the name field is left empty
(recommended). If this site chooses to leave vlan_id empty instead (NOT recommended), the name field
must be set to a non-empty string.

cray_global_net.settings.hosts.data.primary_smw.interfaces.common_name.vlan0: null
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.name: ''
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_id: 42
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_etherdevice: eth0
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.ipv4_address: some_IP_address
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.startmode: auto

j. (Optional) Configure a bonded interface, as needed.

This example shows the configuration fields needed to configure a bonded interface with common name
set to bond0 and interface name set also to bond0. There is no field for bonding master because it is set
automatically when the bonding_slaves list has at least one member.

cray_global_net.settings.hosts.data.some_host.interfaces.common_name.bond0: null
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.name: bond0
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bonding_slaves:
- eth0
- eth2
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bonding_module_opts:
 miimon=100 mode=active-backup
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_address: some_IP_address
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.startmode: onboot
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bootproto: static

6. (Optional) Configure a bonded VLAN, as needed.

A "bonded VLAN" is a bonded interface with two ethernet NICs as slaves and two or more VLAN interfaces
with the bonded interface as their etherdevice. The VLAN interfaces are typically on different subnets. These
examples show the configuration fields needed to configure the necessary interfaces.

Example bonded interface. Note that there is no field for bonding master because it is set automatically when
the bonding_slaves list has at least one member. Also note that the ipv4_address field is the default empty
string because the address will be set on the VLAN.

cray_global_net.settings.hosts.data.some_host.interfaces.common_name.bond0: null
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.name: bond0
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bonding_slaves:
- eth0
- eth2

Configure the System

S2393 176

cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bonding_module_opts:
 miimon=100 mode=active-backup
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_address: some_IP_address
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.startmode: onboot
cray_global_net.settings.hosts.data.some_host.interfaces.bond0.bootproto: static

Example VLAN interfaces:

cray_global_net.settings.hosts.data.primary_smw.interfaces.common_name.vlan0: null
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.name: ''
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_id: 42
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.vlan_etherdevice: bond0
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.ipv4_address: some_IP_address
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan0.startmode: auto

cray_global_net.settings.hosts.data.primary_smw.interfaces.common_name.vlan1: null
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan1.name: ''
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan1.vlan_id: 43
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan1.vlan_etherdevice: bond0
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan1.ipv4_address: some_IP_address
cray_global_net.settings.hosts.data.primary_smw.interfaces.vlan1.startmode: auto

7. Update cray_global_sysenv.

The cray_global_sysenv config service enables sites to make any sysctl, systemd, or limit changes needed
on the SMW. It provides the same functionality and works the same way as its counterpart in the CLE config
set, cray_sysenv. The only difference between them is that cray_sysenv is used for CLE nodes and uses
node groups to specify the scope of any change, while cray_global_sysenv is used for the SMW and uses the
'scope' field (always set to 'smw') instead of node groups.

IMPORTANT: Changes to sysctl settings take effect as soon as cray-ansible is run. However,
changes to systemd or limits settings made after a system has booted take effect only at the next
boot.

"DefaultTasksMax" and "UserTasksMax" limits on the CLE system and the SMW were increased in CLE
6.0.UP04. System administrators do not need to take any action.

a. Edit cray_global_sysenv_worksheet.yaml.

smw# vi cray_global_sysenv_worksheet.yaml
b. Uncomment cray_global_sysenv.enabled, if it is commented out, and ensure that it is set to true.

8. Update cray_ipforward.

a. Edit cray_ipforward_worksheet.yaml.

smw# vi cray_ipforward_worksheet.yaml
b. Uncomment cray_ipforward.enabled, if it is commented out, and ensure that it is set to true.

9. Update cray_liveupdates.

a. Edit cray_liveupdates_worksheet.yaml.

smw# vi cray_liveupdates_worksheet.yaml
b. Uncomment cray_liveupdates.enabled and ensure that it is set to true.

10. Update cray_logging.

The cray_logging configuration service configures the Lightweight Log Manager (LLM).

Configure the System

S2393 177

a. Edit cray_logging_worksheet.yaml.

smw# vi cray_logging_worksheet.yaml
b. Uncomment cray_logging.enabled and ensure that it is set to true.

c. Uncomment cray_logging.settings.global_options.data.raid. If the boot RAID has a non-
standard IP address, change the value of this setting.

d. Configure the site_loghost setting.

Uncomment the following setting. If this system uses the LLM to send logs from the SMW to a site log
host, replace the empty string with the name of the site log host.

#********** START Service Setting: site_loghost ***********
...
#cray_logging.settings.site_loghost.data.name: ''
If this system has a site log host, and any of the following settings needs a value different than the default,
uncomment that setting and change the value. Unchanged settings should remain commented.

#********** START Service Setting: site_loghost ***********
...
#cray_logging.settings.site_loghost.data.ip_protocol: tcp
#cray_logging.settings.site_loghost.data.ip_port: 514
#cray_logging.settings.site_loghost.data.syslog_format: rfc5424

e. Use the current default permissions for log files and directories, which are not backward compatible, or
change permissions to maintain backward compatibility.

The current default permissions for log files and directories are different than in releases prior to CLE
6.0.UP06, and they enable use of the craylogreaders group (defined in cray_global_local_users) for
log ownership.

WARNING: The current default permissions for log files and directories are not backward
compatible with releases older than CLE 6.0.UP06. If current permissions are used, this system
will no longer be able to boot and run the older CLE 6.0 releases.

Sites must choose whether to go forward with the current default permissions and possibly use a non-
default group for log ownership, or change the permissions to maintain backward compatibility.

● If backward compatibility is NOT an issue, use the current default permissions (no action needed),
and use one of the following ownership groups for log files and directories:

○ crayadm, the default group

○ (recommended) craylogreaders, a pre-populated group that has more restricted permissions
than the crayadm group

○ custom group defined in cray_global_local_users (see step 4 on page 174)

To use crayadm (the default) as the ownership group, do nothing. To use craylogreaders or a
custom group instead, uncomment both of the following settings and set them to the desired group
(this example sets them to craylogreaders):

cray_logging.settings.dirs.data.group: craylogreaders
cray_logging.settings.logs.data.group: craylogreaders
Note that the value of group in the dirs setting must always be the same as the value of group in
the logs setting.

Configure the System

S2393 178

● If backward compatibility is necessary, keep crayadm as the ownership group for log files and
directories, and change the permissions for log files and directories to values compatible with
previous releases.

To keep crayadm (the default) as the ownership group, do nothing. Change the permissions for log
files and directories to backward compatible values by uncommenting both of the following settings
and setting them to the values shown in this example:

cray_logging.settings.dirs.data.mode: '0775'
cray_logging.settings.logs.data.mode: '0644'

Note that the ownership group specified for log files and directories, whether the default or some other
group, will be set as a secondary group for the crayadm and postgres users.

11. Update cray_multipath.

Multipath does NOT need to be fully cabled to be used. The multipath driver can handle using one path or
many.

a. Edit cray_multipath_worksheet.yaml.

smw# vi cray_multipath_worksheet.yaml
b. Choose one of the following options, depending on whether this site intends to use multipath.

NOTE: (SMW HA only) Cray recommends configuring multipath before configuring and enabling
HA. If HA is configured and enabled first, then additional precautions must be taken when
enabling multipath, as documented in XC™ Series SMW HA Installation Guide.

Will multipath be used?

If no, then uncomment cray_multipath.enabled and ensure that it is set to false. There is nothing
else to configure in this step; proceed to step 12 on page 180.

If yes, then uncomment cray_multipath.enabled and set it to true. Continue with the following
substeps.

c. Enter the list of multipath nodes.

Uncomment cray_multipath.settings.multipath.data.node_list, remove the [] (denotes
empty list), and add a list of nodes (by cname or host ID) in this system that have multipath devices and
need to have multipath configured.

This example shows a list of three nodes: an SMW with host ID 1eac4e0c, a boot node with cname
c0-0c0s4n1, and an SDB node with cname c0-0c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-0c0s3n1
Boot/SDB node failover. If configuring boot and/or SDB node failover, add both the primary and backup
(failover) nodes to this list. This example shows a list of five nodes: an SMW with host ID 1eac4e0c, a
primary boot node with cname c0-0c0s4n1, a backup boot node with cname c0-2c0s4n1, a primary SDB
node with cname c0-0c0s3n1, and a backup SDB node with cname c0-4c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-2c0s4n1

Configure the System

S2393 179

- c0-0c0s3n1
- c0-4c0s3n1

d. Configure enabled devices.

Cray has provided a number of enabled devices with pre-populated data under # **
'enabled_devices' DATA **. These storage devices are the devices that will be whitelisted, which
means they will be listed as exceptions to the blacklist. The settings for these devices have default values
provided by the device vendors and do not need to be changed. If this site intends to configure a
multipath device that does not appear in this group of enabled devices, contact a Cray representative for
help.

e. (Optional) Configure aliases for the multipath devices.

This is the equivalent of adding aliases to the multipaths section of the multipath.conf file. If no
aliases are specified, this setting will show as unconfigured when the config set is updated, but this is not
a problem. It can remain unconfigured and will not cause the config set to be invalid.

In the worksheet, copy the two lines below # ** EXAMPLE 'aliases' VALUE (with current
defaults) ** and paste them below # NOTE: Place additional 'aliases' setting
entries here, if desired.
** EXAMPLE 'aliases' VALUE (with current defaults) **
cray_multipath.settings.aliases.data.wwid.sample_key_a: null <-- setting a multival key
cray_multipath.settings.aliases.data.sample_key_a.alias: ''
#

Uncomment the lines, replace sample_key_a with the World Wide Identifier (WWID) of the device to be
aliased (60080e50002e203c00002a085551b2c8 in this example) in all lines, and remove the <--
setting a multival key text at the end of the first line (note that the null value is required; do not
remove or change it). Finally, add the alias for this device (smw_node_pv1 in this example). Repeat this
substep for each device, as needed.

NOTE: Place additional 'aliases' setting entries here, if desired.
cray_multipath.settings.aliases.data.wwid.60080e50002e203c00002a085551b2c8: null
cray_multipath.settings.aliases.data.60080e50002e203c00002a085551b2c8.alias: smw_node_pv1
#***************** END Service Setting: aliases ****************

Note that as of CLE 6.0.UP06, cray_multipath supports WWIDs that are 33 characters long, which is
needed for DAL Lustre configuration.

12. Skip cray_network_boot_packages.

The cray_network_boot_packages configuration service is enabled by default and has no variables that need
to be changed.

13. Update cray_time.

a. Edit cray_time_worksheet.yaml.

smw# vi cray_time_worksheet.yaml
b. Uncomment cray_time.enabled, if it is commented out, and ensure that it is set to true.

c. Uncomment cray_time.settings.service.data.timezone and change its value, as needed.

There are many possible values for time zone, such as I.E., US/Central, US/Eastern, and EMEA/BST.

UPLOAD WORKSHEETS AND UPDATE/VALIDATE GLOBAL CONFIG SET

CAUTION: Boot failure possible if using cfgset under certain conditions.

Configure the System

S2393 180

The cfgset create and cfgset update commands always call pre- and post-configuration
scripts. Some of these scripts require HSS daemons and other CLE services to be running. This
can cause problems under these conditions:

● If xtdiscover is running, cfgset may hang or produce incorrect data that can result in
system boot failure.

● If xtbounce is in progress or if the SMW is not connected to XC hardware, cfgset will fail.

In these circumstances, use the --no-scripts option with cfgset create or cfgset update
to avoid running the scripts. Because using that option results in an invalid config set, remember to
run cfgset update without the --no-scripts option afterwards, when circumstances permit, to
ensure that all pre- and post-configuration scripts are run.

14. Upload modified worksheets into global config set.

Note that the full filepath must be specified in this cfgset command, and it must be enclosed in single
quotes (to prevent the shell trying to expand the file glob).

smw# cfgset update -w \
'/var/adm/cray/release/global_worksheet_workarea/*_worksheet.yaml' global

15. Update the global config set.

Using the configurator in interactive mode to update the global config set is a good way to check whether all
required settings and basic settings have been configured for services that are enabled. If they have, then all
enabled services will show OK status in the Service Configuration List Menu. If configuration of a basic setting
was missed, then the menu will show how many unconfigured settings there are for each service. Set or
change any settings from this menu, as needed.

Note that some basic settings can be left unconfigured, such as aliases for multipath devices, because
configuring them is optional.

smw# cfgset update -m interactive global
When the configurator session completes, it displays a message indicating the file name of the changelog file
for this configuration session. The changelog is written to a file in
the /var/opt/cray/imps/config/sets/global/changelog directory.

16. Validate the global config set.

Because this validation step occurs after making changes to the config set and before Ansible plays are run to
apply those changes, changes such as the addition of a new group (e.g., craylogreaders) may be flagged
as not yet existing on the system, resulting in an error message. In such cases, after confirming that the
"missing" group or other setting has indeed been defined properly, it is safe to ignore the error message and
proceed to the next step.

smw# cfgset validate global

APPLY CONFIGURATION CHANGES ON THE SMW

17. Run Ansible plays on the SMW.

After the global config set has been updated, reapply any Ansible plays that consume global config set data.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

Configure the System

S2393 181

smw# /etc/init.d/cray-ansible start
Logs from running Ansible plays, such as cray-ansible, are stored on the SMW
in /var/opt/cray/log/ansible.

18. Restart PostgreSQL on the SMW.

The group membership of the postgres user was changed in CLE 6.0.UP06 to allow it to
read /var/opt/cray/log/xtdiag. That change is applied late in the cray-ansible run, after the
PostgreSQL daemon starts. This step ensures that PostgreSQL is aware of the new permissions.

smw# systemctl restart postgresql

CHECK TIME SETTINGS

19. Check for external NTP servers.

Check that external NTP servers have been set as desired in the global config set.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

smw# grep server /etc/ntp.conf
server ntpserver1 minpoll 4 iburst
server ntpserver2 minpoll 4 iburst

20. Put the SMW time zone setting where the cabinet and blade controllers can access it.

This SMW time zone setting will be applied to the cabinet and blade controllers when they are rebooted later
in the process.

NOTE: (SMW HA only) Both SMWs require this command. The procedure to install and configure the
second SMW includes this command.

smw# cp -p /etc/localtime /opt/tftpboot/localtime

5.5 About Simple Sync
The Cray Simple Sync service (cray_simple_sync) provides a simple, generic mechanism for copying user-
defined content to internal and external nodes in a Cray XC system. When executed, the service automatically
copies files found in source directories in the config set to one or more target nodes. The Simple Sync service is
enabled by default and has no additional configuration options. It can be enabled or disabled during the initial
installation using worksheets or with the cfgset command at any time. For more information, see man cfgset(8).

With regard to external nodes like eLogin nodes, the exclusions specified in the cray_cfgset_exclude
configuration service are applied when the CLE config set is transferred to the node, and some portions of the
Simple Sync directory in the config set are excluded. The "Files Excluded from eLogin Nodes" section contains
more details.

Simple Sync is a simple tool and not intended as the sole solution for making configuration changes to the
system. Writing custom Ansible plays might provide better maintainability, flexibility, and scalability in the long
term.

Configure the System

S2393 182

How Simple Sync Works
When enabled, the Simple Sync service is executed on all internal CLE nodes and eLogin nodes at boot time and
whenever the administrator executes /etc/init.d/cray-ansible start on a CLE node or eLogin node.
When Simple Sync is executed, files placed in the following directory structure are copied to the root file system
(/) on the target nodes.

The Simple Sync directory structure has this root:
smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/
Below that root are the directories listed on the left. Files placed in those directories are copied to their associated
target nodes.

./common/files/ Targets all nodes, both internal CLE nodes and eLogin
nodes.

./hardwareid/<hardwareid>/files/ Targets a specific node with that hardware ID, which is the
cname of a CLE node or the output of the hostid command
(e.g., 1eac0b0c) on other nodes. An admin must create both
the <hardwareid> directory and the files directory.

Not applicable to eLogin nodes.

./hostname/<hostname>/files/ Used ONLY for eLogin nodes. Targets a node with the
specified host name. An admin must create both the
<hostname> directory and the files directory.

./nodegroups/<node_group_name>/files/ Targets all nodes in the specified node group. The
directories for this nodegroups directory are automatically
stubbed out when the config set is updated after node
groups are defined and configured in the cray_node_groups
service.

./platform/[compute|service]/files/ Targets all compute nodes or all service nodes, depending
on whether they are placed in platform/compute/files
or platform/service/files. Each time the config set is
updated, the HSS data store is queried to update which
nodes are service and which are compute.

Not applicable to eLogin nodes.

./README Provides brief guidance on using Simple Sync and a list of
existing node groups in the order in which files will be
copied. This ordering enables an administrator to predict
behavior in cases where a file may be duplicated within the
Simple Sync directory structure.

Simple Sync copies content into place prior to the standard Linux startup (systemd) and before cray-ansible
runs any other services.

The ownership and permissions of copied directories and files are preserved when they are copied to root on the
target nodes. An administrator can run cray-ansible multiple times, as needed, and only the files that have
changed will be copied to the target nodes.

Because of the way it works, Simple Sync can be used to configure services that have configuration parameters
not currently supported by configuration templates and worksheets. An administrator can create a configuration

Configure the System

S2393 183

file with the necessary settings and values, place it in the Simple Sync directory structure, and it will be distributed
and applied to the target nodes.

Files Excluded from eLogin Nodes
Because eLogin nodes use the cray_cfgset_exclude configuration service, some directories within the Simple
Sync directory structure on the SMW can be excluded from transfer to eLogin nodes. The default “elogin_security”
profile will exclude the following config set directories from being transferred to an eLogin node when the CLE
config set is pushed to the node from the SMW.

● files/simple_sync/common/files/etc/ssh
● files/simple_sync/common/files/root/.ssh
To specify other areas within the Simple Sync directory structure that should not be transferred to eLogin nodes,
create a customized site profile in cray_cfgset_exclude.

Simple Sync and Configuration File Management
Configuration files can be managed in one of three ways:

● Managed entirely by a site system administrator

Such config files are considered non-conflicting because there is no potential conflict between administrator-
provided content and Cray-managed content.

● Managed entirely by Cray configuration services

Where possible, such config files have a comment at the top indicating that the file is completely under the
management of the Cray service. Files that have been changed by Cray services can be identified by
checking the change logs on the running node in /var/opt/cray/log/ansible. Simple Sync does not
provide a mechanism to override changes made by Cray services. To override changes made by Cray
services, refer to the documentation for the specific service.

● Jointly managed by a system administrator and by Cray config services

These config files can contain both administrator-managed content and Cray-managed content, so there is
potential for conflict. Administrator changes to Cray-managed content can be overridden. Content that is not
managed by Cray is considered non-conflicting because any admin changes to it will not conflict with changes
made by Cray services.

Because Simple Sync copies administrator-provided files into place before cray-ansible runs, any Cray
services that make small changes to jointly managed files will operate on the administrator-provided files.
Afterwards, that file will contain both non-conflicting administrator-provided content as well as the changes
made by the Cray service. Because these changes happen prior to Linux startup, the changes will be in place
when the services start up.

Characteristics of Simple Sync
Simple Sync is: Simple Sync is NOT:

for simple and straightforward use cases a comprehensive system management solution

for copying a moderate number of
moderately sized files*

intended to transfer large objects or a large volume of files

Configure the System

S2393 184

Simple Sync is: Simple Sync is NOT:

an interface to configure Cray "turnkey" services such as ALPS,
Node Health or Lightweight Log Manager (LLM)

* Bear in mind that anything in the Simple Sync directory structure is part of a config set, and a SquashFS copy of
the current config set is distributed to all nodes in the system. Even though it is a reduced-size config set that is
distributed, it is good practice to not add very large files to a config set, hence the use of "moderate" here.

Simple Sync:

● runs as early in the Ansible execution sequence as possible (it runs BEFORE other cray-ansible plays, so
it can be used to make changes to files that Cray updates, like sshd_config)

● runs during the netroot setup sequence, so it can be used to change LNet and DVS settings, if needed

● supports node groups for targeting which system nodes to copy files to (see About Node Groups on page
188)

Simple Sync does not support:

● removing files

● appending to files

● changing file ownership and permissions (the permissions of the file in the config set are mirrored on-node)

● backing up files

● overriding Cray-set values (it cannot be used to change files that Cray completely overwrites, such as
alps.conf, or change values in files that Cray modifies such as PermitRootLogin
in /etc/ssh/sshd_config)

Cautions about the Use of Simple Sync
● Simple Sync copies files from the config set, which in the case of nodes without a persistent root file-system is

cached in a compressed form, locally, in memory. As a result, each file stored in the config set uses some
memory on the node. Therefore, using Simple Sync to copy binary files or large numbers of files is
inadvisable.

● Be aware of differences in node environments when using Simple Sync. For example, systems configured
with direct-attached Lustre (DAL) have nodes running CentOS instead of SLES. Administrators would have to
be very careful to avoid putting an inappropriate configuration file into place when using the Simple Sync
platform/service target in such a situation.

● Storage and distribution of verbatim config files through Simple Sync creates the potential for unintentional
impact to the system when config files evolve due to software changes. Making minimal necessary changes
through a site-local Ansible playbook provides more flexibility and minimizes the potential for unintended
consequences.

Use Cases

Copy a non-conflicting file to all nodes

1. Place etc/myfile under ./common/files/ in the Simple Sync directory structure.

2. Simple Sync copies it to /etc/myfile on all nodes.

Configure the System

S2393 185

Copy a non-conflicting file to a service node

1. Place etc/servicefile under ./platform/service/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/servicefile on all service nodes.

Copy a non-conflicting file to a compute node

1. Place etc/computefile under ./platform/compute/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/computefile on all compute nodes.

Copy a non-conflicting file to a specific node

1. Place etc/mynode under ./hardwareid/c0-0c0s0n0/files/ in the Simple Sync
directory structure.

2. Simple Sync copies it to /etc/mynode on c0-0c0s0n0.

Copy a non-conflicting file to a user-defined collection of nodes

1. Create a node group called "my_nodes" containing a list of nodes.

2. Update the config set.

smw# cfgset update p0
3. Place etc/mynodes under ./nodegroups/my_nodes/files/ in the Simple Sync

directory structure.

4. Simple Sync copies it to /etc/mynodes on all nodes listed in node group my_nodes.

Copy to a node a file that has Cray-maintained content

To reduce the number of authentication tries from the default of six,

1. Place a version of sshd_config (entire file) that includes “MaxAuthTries 3”
under ./nodegroups/login_nodes_x86_64/files/etc/ssh/
and ./nodegroups/login_nodes_aarch64/files/etc/ssh/ in the Simple Sync
directory structure.

2. The booted system will contain both:

● “MaxAuthTries 3” (from the files copied by Simple Sync)

● “PasswordAuthentication yes” (from modification of file by Cray)

Copy to a node a file that is exclusively maintained by Cray

Files exclusively maintained by Cray such as alps.conf cannot be updated using Simple Sync.
Please refer to the owning service (such as ALPS) for information on how to update the contents.

Configure the System

S2393 186

Copy to a node a file that resides on a file system that will be mounted during Linux boot

No special operational changes are necessary. However, Simple Sync will put the file in place
early in the boot sequence, and then it will be over-mounted by the file system. Because Simple
Sync runs again later, it will copy the file into the mounted file system. Due to the ordering of
operations, the file will not be present between the time the file system was mounted and the late
execution of Ansible.

On netroot login nodes, modify an LNet modprobe parameter

1. Generate a file my_lnet.conf containing options lnet router_ping_timeout=100.

2. Place my_lnet.conf under ./nodegroups/login/files/etc/modprobe.d/ in the
Simple Sync directory structure.

3. The lnet router_ping_timeout value will be 100.

Note that normally Simple Sync does not allow the user to override Cray values, but this
procedure takes advantage of the standard Linux mechanism to override Kernel module options.

Copy a file with incompatible content to a node file that has Cray-maintained content

While Simple Sync allows an administrator to make changes to configuration files that are
modified by Cray, be very careful to avoid introducing syntax errors or incompatible values that
may cause the system to fail to operate correctly.

5.5.1 Configure Files for Cray Simple Sync Service

About this task
Cray Simple Sync provides a generic mechanism to automatically distribute files to targeted locations on a Cray
XC system. This mechanism can be used to override or change default system behavior through the contents of
the distributed files. When enabled, the Simple Sync service is executed on all internal CLE nodes and eLogin
nodes at boot time and whenever the administrator executes /etc/init.d/cray-ansible start on a CLE
node or eLogin node. When Simple Sync is executed, files placed in the following directory structure are copied to
the root file system (/) on the target nodes.

About the Simple Sync Directory Structure

The Simple Sync directory structure has this root:
smw:/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/
Below that root are the directories listed on the left. Files placed in those directories are copied to their associated
target nodes.

Files placed here are copied to

./common/files/ all internal and eLogin nodes

./platform/[compute|service]/files/ all CLE compute nodes or all service nodes (not applicable
to eLogin nodes)

Configure the System

S2393 187

Files placed here are copied to

./hardwareid/<hardwareid>/files/ nodes with matching hardware ID, which is the cname of a
CLE node or the output of the hostid command (e.g.,
1eac0b0c) on other nodes (not applicable to eLogin nodes)

./hostname/<hostname>/files/ nodes with matching host name (use this for eLogin nodes
ONLY)

./nodegroups/<node_group_name>/files/ nodes in the matching node group

NOTE: The directory structure for a particular hardware ID or host name (everything
below./hardwareid/ and ./hostname/) must be created manually as needed. This is unnecessary
for node groups because their associated directories are created automatically by post-configuration
callback scripts when the config set is created or updated using cfgset.

Anything (directory structure and files) placed below ./files/ in the Simple Sync directory structure on the
SMW is replicated on the target node starting at root (/). For example, if the myapplication.conf file is placed
in this path on the SMW

/var/opt/cray/imps/config/sets/p0/files/simple_sync/common/files/etc/myapplication.conf

then Simple Sync will place myapplication.conf here on all nodes:

/etc/myapplication.conf
Note that the ownership and permissions of files in the config set are preserved in the copies made to nodes.

For more information and use cases, see About Simple Sync on page 182.

5.6 About Node Groups
The Cray Node Groups service (cray_node_groups) enables administrators to define and manage logical
groupings of system nodes. Nodes can be grouped arbitrarily, though typically they are grouped by software
functionality or hardware characteristics, such as login, compute, service, DVS servers, and RSIP servers.

Node groups that have been defined in a config set can be referenced by name within all CLE services in that
config set, thereby eliminating the need to specify groups of nodes (often the same ones) for each service
individually and greatly streamlining service configuration. Node groups are used in many Cray-provided Ansible
configuration playbooks and roles and can be also used in site-local Ansible plays. Node groups are similar to but
more powerful than the class specialization feature of releases prior to CLE 6.0. For example, a node can be a
member of more than one node group but could belong to only one class.

The figure below demonstrates how several nodes may belong to more than one node group. In this example,
node group A contains nodes 1-5, node group B contains nodes 4-5, and node group C contains nodes 4-9.
Nodes 4 and 5 belong to node groups A, B, and C. In this example, if nodes 1-5 are the desired target for an
Ansible play, the play can target node group A instead of specifying each node individually.

Configure the System

S2393 188

Figure 22. Node Group Member Overlap

Sites are encouraged to define their own node groups and specify their members. Administrators can define and
manage node groups using any of these methods:

● Edit and upload the node groups configuration worksheet (cray_node_groups_worksheet.yaml).

● Use the cfgset command to view and modify node groups interactively with the configurator.

● Use the cfgset get and cfgset modify CLI commands to view and modify node groups at the command
line. Note that CLI modifications must be followed by a config set update.

After using any of these methods, remember to validate the config set.

Characteristics of Node Groups
● Node group membership is not exclusive, that is, a node may be a member of more than one node group.

● Node group membership is specified as a list of nodes:

○ use cname for a CLE node

○ use host ID (the output of the hostid command) for the SMW

○ use host name for an eLogin node

● All compute nodes and/or all service nodes can be added as node group members by including the keywords
“platform:compute” and/or “platform:service” in a node group.

● Any CLE configuration service is able to reference any defined node group by name.

● The Configuration Management Framework (CMF) exposes node group membership of the current node
through the local system "facts" provided by the Ansible runtime environment. This means that each node
knows what node groups it belongs to, and that knowledge can be used in Cray and site-local Ansible
playbooks.

Pre-populated Node Groups
Pre0populated node groups are groups of nodes that

● are likely to be customized and used by many sites

● support useful default values for many of the configuration services

Configure the System

S2393 189

Several of the pre-populated node groups require customization by a site to provide the appropriate node
membership information. This table lists the pre-populated groups and indicates which ones require site
customization.

Note that beginning with CLE 6.0.UP06, Cray no longer supports a single node group for all login nodes. Instead,
there are two architecture-specific login node groups: one for all login nodes with the x86-64 architecture and one
for all login nodes with the AArch64 architecture. To specify all login nodes in the system, use both of those node
groups.

Table 12. cray_node_groups

Pre-populated Node Group Requires
Customization?

Notes

compute_nodes No Contains all compute nodes in the given partition. The list of
nodes is determined at runtime.

compute_nodes_x86_64 No Contains all x86-64 compute nodes in the given partition.
The list of nodes is determined at runtime.

compute_nodes_aarch64 No Contains all AArch64 compute nodes in the given partition.
The list of nodes is determined at runtime.

service_nodes No Contains all service nodes in the given partition. The list of
nodes is determined at runtime.

service_nodes_x86_64 No Contains all x86-64 service nodes in the given partition. The
list of nodes is determined at runtime.

service_nodes_aarch64 No Contains all AArch64 service nodes in the given partition.
The list of nodes is determined at runtime.

smw_nodes Yes Add the host ID (output of the hostid command) of the
SMW. For an SMW HA system, add the host ID of the
second SMW also.

boot_nodes Yes Add the cname of the boot node. If there is a failover boot
node, add its cname also.

sdb_nodes Yes Add the cname of the SDB node. If there is a failover SDB
node, add its cname also.

login_nodes_x86_64 Yes Add the cnames of all x86-64 internal login nodes on the
system.

login_nodes_aarch64 Yes Add the cnames of all AArch64 internal login nodes on the
system. Leave empty (set to []) if there are none.

elogin_nodes Yes Add the host names of external login nodes on the system.
Leave empty (set to []) if there are no eLogin nodes.

all_nodes Maybe Contains all compute nodes and service nodes on the
system. Add external nodes (e.g., eLogin nodes), if needed.

all_nodes_x86_64 No Contains all x86-64 nodes in the given partition. The list of
nodes is determined at runtime.

Configure the System

S2393 190

Pre-populated Node Group Requires
Customization?

Notes

all_nodes_aarch64 No Contains all AArch64 nodes in the given partition. The list of
nodes is determined at runtime.

tier2_nodes Yes Add the cnames of nodes that will be used as tier2 servers
in the cray_scalable_services configuration.

Why is there no "tier1_nodes" pre-populated node group? Cray provides a pre-populated tier2_nodes node
group to support defaults in the cray_simple_shares service. Cray does not provide a tier1_nodes node group
because no default data in any service requires it. Because it is likely that tier1 nodes will consist of only the boot
node and the SDB node, for which node groups already exist, Cray recommends using those groups to populate
the cray_scalable_services tier1_groups setting rather than defining a tier1_nodes group.

About eLogin nodes. To add eLogin nodes to a node group, use their host names instead of cnames, because
unlike CLE nodes, eLogin nodes do not have cname identifiers. If eLogin nodes are intended to receive
configuration settings associated with the all_nodes group, add them to that group, or change the relevant
settings in other configuration services to include both all_nodes and elogin_nodes.

Additional Platform Keywords
Cray uses these two platform keywords to create pre-populated node groups that contain all compute or all
service nodes.

platform:compute
platform:service

Cray uses these keywords to create pre-populated node groups that contain all compute or service nodes with the
x86-64 or AArch64 architecture.

platform:compute-X86
platform:service-X86
platform:compute-ARM
platform:service-ARM

Disabled nodes. All platform keywords, such as platform:compute, platform:service-ARM, and
platform:compute-HW12, include nodes that have been disabled. To identify disabled nodes, use this
keyword: platform:disabled
Excluded nodes. Groups of nodes can be excluded using a negation operator: ~ (the tilde symbol). For example,
a custom node group that contains all enabled compute and service nodes would have the following list as its
members. The ordering of the list does not matter: all non-negated keywords are resolved first, then negated ones
are removed.

- platform:compute
- platform:service
- ~platform:disabled
Sites that need finer-grained groupings can use additional platform keywords to create custom node groups. For a
node group that contains all compute or service nodes with a particular processor/core type, use one of the
following platform keywords.

Configure the System

S2393 191

platform:compute-XX##
platform:service-XX##

For XX##, substitute a processor/core code, such as KL64 or KL68, which designate two Intel® Xeon Phi™
"Knights Landing" (KNL) processors with different core counts. To find the code associated with each node on a
Cray system, use the xtcli status p0 command and look in the "Core" column of the output, as shown in the
following example.

smw# xtcli status p0
Network topology: class 0
Network type: Aries
Nodeid: Service Core Arch| Comp state [Flags]

c0-0c0s0n0: service BW18 X86| ready [noflags|]
c0-0c0s0n1: service BW18 X86| ready [noflags|]
c0-0c0s0n2: service BW18 X86| ready [noflags|]
c0-0c0s0n3: service BW18 X86| ready [noflags|]
c0-0c0s1n0: service BW18 X86| ready [noflags|]
c0-0c0s1n1: service BW18 X86| ready [noflags|]
c0-0c0s1n2: service BW18 X86| ready [noflags|]
c0-0c0s1n3: service BW18 X86| ready [noflags|]
c0-0c0s2n0: - HW12 X86| ready [noflags|]
c0-0c0s2n1: - HW12 X86| ready [noflags|]
c0-0c0s2n2: - HW12 X86| ready [noflags|]
c0-0c0s2n3: - HW12 X86| ready [noflags|]
The following table lists some of the common processor/core codes supported by Cray.

Table 13. Cray Supported Intel Processor/Core (XX##) Codes

Processor (XX) Core (##) Intel Code Name

BW 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44 "Broadwell"

HW 04, 06, 08, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36 "Haswell"

IV 02, 04, 06, 08, 10, 12, 16, 20, 24 "Ivy Bridge"

KL 60, 64, 66, 68, 72 "Knights Landing"

SB 04, 06, 08, 12, 16 "Sandy Bridge"

SK 04, 08, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56 "Skylake"

5.7 About Config Set Caching
Config sets are defined and reside on the Server of Authority, which on XC systems is the SMW. Config set
content is made available to all nodes in the system by means of Cray Scalable Services.

To make the sharing of config set content both quick and reliable, the cray-cfgset-cache service was created. It
caches config sets locally on nodes (compressed for a smaller footprint). On the SMW, it does the following:

● notices changes to config sets on the SMW

● refreshes the local caches dynamically

Configure the System

S2393 192

● detects failures and retries automatically

The cray-cfgset-cache service ensures that config set content gets refreshed on all nodes whenever config sets
are created or updated on the SMW. It is triggered when cray-ansible is run on a node with the start,
restart, or link commands.

ATTENTION: If the cray-cfgset-cache service is stopped, config set content in node-local memory will not
get refreshed when cray-ansible is run. If that happens, nodes will continue to use the most recent
compressed copy of the config set data created before the service was stopped.

What Gets Cached
The cray-cfgset-cache service does not copy an entire config set to node-local memory. Instead, it uses the config
set on the SMW to create these two files in the root of the config set:

● a compressed copy of the config set using SquashFS tools, (typically < 3 MB)

● a checksum of the compressed copy of the config set

The compressed copy is made available (effectively copied) to node-local RAM, and the checksum is used to
know when the config set in node-local memory no longer matches the config set on the SMW. Even though
Scalable Services makes the entire config set directory structure on the SMW available to the rest of the system,
only the compressed copy and its associated checksum are used by nodes. They are the key to the performance,
scalability, and reliability improvements provided by config set caching.

When cray-ansible is run on a node, the node will do the following:

1. Check to see if the cached node-local version of the compressed config set is out of date.

2. If it is stale, replace it with a newer version available on the SMW and start using that newer version.

5.7.1 Add Kernel Watch Descriptors to Improve Config Set Caching Performance

About this task
Config set caching is a mechanism for exporting config set data to nodes quickly and reliably. The cray-cfgset-
caching service operates on kernel watch descriptors to automatically generate the config set compressed copy
and checksum files. The performance of this service depends on the number of config sets created and the
number of directories within each config set. Service startup performance is affected by large numbers of config
sets and the availability of kernel watch descriptors. Additional watch descriptors may be required to provide
coverage for large numbers of config sets.

For more information about config set caching, see About Config Set Caching on page 192.

Procedure

1. Determine how many watch descriptors are in use.

smw# cd /var/opt/cray/imps/config/sets
smw# find . -type d | wc

2. Increase the total number of available watch descriptors, if desired.

Configure the System

S2393 193

smw# sysctl fs.inotify.max_user_watches=524288

5.8 Change a File on a Compute Node

About this task
System administrators sometimes need to change files such as modprobe.conf, fstab, and
nodehealth.conf on compute nodes. For example, to tune DataWarp or Lustre, the modprobe.conf file
might need to be changed. Cray provides configuration templates and Ansible plays for most Cray services (such
as cray_net, cray_rsip, cray_node_health, and cray_dvs), which generate or change such files
automatically as part of the boot process or after reconfiguring a service. If no Cray-provided play exists to make
the needed changes or an existing play does not cover a needed use case, administrators can change these files
directly.

There are three general methods of changing a file on a compute node:

● Option 1: Use image chroot, either in a custom image recipe (recommended) or after building an image.

● Option 2: Use the Cray-provided Simple Sync service.

● Option 3: Write an Ansible play that either changes the file directly or runs a script to change the file.

It is important to understand the pros and cons of each method.

Option 1:
chroot

Use chroot to change the file in an image root using one of these methods:

Option 1a: (Recommended) Create a custom image recipe that includes postbuild_chroot. This
method is preferred because the changed file persists in image roots and boot images. Every time
the recipe is built into an image root, the changed file will be there. When the image root is
packaged into a boot image, the boot image will still have this content.

Option 1b: After building an image, use image chroot to navigate into the image root and put the
file there (or merge it with an existing file). The Cray image chroot command can be used to
chroot into any XC system image root, regardless of architecture. (Note that using image
chroot on a non-bootable image like PE or diags may result in a prompt like this because such
images lack the content used to populate the prompt: [diag-all_cle_6.0up06_sles_12sp3]
I have no name!@smw:/"I have no name!") With this method, the changed file does not
persist when rebuilding an image root and then packaging it into a boot image.

Pros:

● Works well for static files

● Done on the SMW

Cons:

● Option 1b (manual image chroot): Must repeat change each time an image recipe is rebuilt
or an image root is packed into a boot image.

For more information: Use a Custom Image Recipe to Change a File on a Compute Node on page
197

Configure the System

S2393 194

Option 2:
Simple
Sync

Use the Cray-provided Simple Sync service.

Pros:

● Easy to do: just put a file in a directory and turn on the Simple Sync service

● Done on the SMW

● Can specialize targets to a limited set of targets: by class, cname, node groups, or hostname
(hostnames used for non-Cray platforms that do not have cnames)

● Works best for providing access during run time to small admin tools (e.g., a widget or script)
and third-party software

Cons:

● Simple Sync writes the file to the desired place without regard for what may already be there, so
must know what else touches the file (such as other Ansible plays)

For more information: About Simple Sync on page 182

Option 3:
Ansible
play

Create an Ansible play using one of these methods:

Option 3a: (Recommended) Use the Ansible module lineinfile (a directive) to change a file
directly.

Option 3b: Use the Ansible module shell to run a script to change the file.

Pros:

● Done on SMW in config set

● Can specialize the target nodes further than possible with Simple Sync; can specify any
grouping of nodes

● Can choose when the Ansible play is run during the boot sequence

● Can edit or replace a file programmatically, but be careful to not delete something that needs to
be there

● Once a play is set up and tested, it is easy to maintain

● Easily scales to large systems

● If play is written at a high enough level of abstraction, can reuse for different systems by using
node groups or by changing the target node list in the play

Cons:

● Requires some knowledge of the boot process (ordering, timing)

● More work up front to set up a play

● Plays/scripts must be tested

For more information: Use an Ansible Play to Change a File on a Compute Node on page 195.

Configure the System

S2393 195

5.8.1 Use an Ansible Play to Change a File on a Compute Node

About this task
This procedure describes how to change a file on a compute node with an Ansible play, which can use several
methods. For other ways to accomplish this task, see Change a File on a Compute Node on page 194.

For information on using Ansible on a Cray system, see the XC Series Ansible Play Writing Guide.

Procedure

1. Choose one of these methods for the play content.

● Option 1: Use the Ansible module lineinfile (a directive) to change a file directly.

● Option 2: Use the Ansible module shell to run a script to change the file.

2. Write the Ansible play.

● Option 1: Use the Ansible module lineinfile to change a file directly. This example changes a specific
line in /etc/fstab.

change_file.yaml
Use Ansible modules to do individual steps
(e.g., add a line to a file)

- hosts: localhost

 vars: # Cray-provided node "facts"
 in_init: "{{ ansible_local.cray_system.in_init }}"
 is_compute: "{{ ansible_local.cray_system.platform == 'compute' }}"

 tasks:
 - name: add mount to fstab
 lineinfile:
 dest=/etc/fstab
 regexp="^172.30.79.66:/home/users"
 line="172.30.79.66:/home/users /home/users nfs nfsvers=3,noacl 0 0"
 backup=yes
 when: in_init|bool and is_compute|bool

In the task, lineinfile specifies the the file to be changed (/etc/fstab) and how to change it. More
information about the Ansible lineinfile module is at: http://docs.ansible.com/ansible/
service_module.html.

● Option 2: Use the Ansible module shell. The following example runs a script named site_script.sh
to change the file.

change_file.yaml
Use the shell directive to do everything in a script

- hosts: localhost
 vars: # Cray-provided node "facts"
 in_init: "{{ ansible_local.cray_system.in_init }}"
 is_compute: "{{ ansible_local.cray_system.platform == 'compute' }}"

 tasks:
 - name: run my script on all service nodes

Configure the System

S2393 196

http://docs.ansible.com/ansible/service_module.html
http://docs.ansible.com/ansible/service_module.html

 shell: /etc/opt/cray/config/current/dist/site_script.sh
 when: in_init|bool and is_compute|bool

Note that the config set path on the SMW, such as /var/opt/cray/imps/config/sets/p0/dist for
the p0 config set, will appear on the node as /etc/opt/cray/config/current/dist.

3. Put the Ansible play and any supporting content into the config set on the SMW.

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new change_file.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using the
Ansible script directive, as in option 2, put the
site script (site_script.sh) here.

4. Test the new Ansible play by running it manually on a compute node.

node# ansible-playbook -v change_file.yaml
The new play can also be tested by running cray-ansible. Testing in the init phase requires the existence
of /var/run/in_init; the in_init file can be created and deleted after testing is complete:

node# /etc/init.d/cray-ansible start

This Ansible play will be available on all nodes any time that cray-ansible is run on the node to pull new config
set data to the node, order Ansible plays, and then run the Ansible plays. When the system boots, this play will
run on all nodes, and the conditional (when) clauses will determine whether a particular task will execute on any
given node.

5.8.2 Use a Custom Image Recipe to Change a File on a Compute Node

About this task
This procedure describes how to change a file on a compute node by using a custom recipe with post-build
actions (postbuild_copy and postbuild_chroot). For other ways to accomplish this task, see Change a
File on a Compute Node on page 194.

IMPORTANT: Do not directly modify a Cray-provided recipe.

Procedure

1. List the existing recipes to determine which image recipe to include.

smw# recipe list
compute-large_cle_6.0up03_sles_12_x86-64_ari
compute-large_cle_6.0up04_sles_12sp2_x86-64_ari
compute-large_cle_6.0up05_sles_12sp3_x86-64_ari
compute-large_cle_6.0up06_sles_12sp3_ari
compute_cle_6.0up03_sles_12_x86-64_ari
compute_cle_6.0up04_sles_12sp2_x86-64_ari
compute_cle_6.0up05_sles_12sp3_x86-64_ari
compute_cle_6.0up06_sles_12sp3_ari

Configure the System

S2393 197

dal_cle_6.0up03_centos_6.5_x86-64_ari
dal_cle_6.0up04_centos_6.5_x86-64_ari
dal_cle_6.0up05_centos_6.5_x86-64_ari
dal_cle_6.0up06_centos_6.5_ari
elogin_cle_6.0up06_sles_12sp3_ari
...

2. Create a new image recipe. This example uses the recipe name site_compute.

smw# recipe create --description \
"Example recipe for 3rd-party software on compute nodes" site_compute

3. Add the existing image recipe as a subrecipe. This example uses the Cray-provided recipe
compute_cle_6.0up06_sles_12sp3_ari.

smw# recipe update -i compute_cle_6.0up06_sles_12sp3_ari site_compute

4. Add post-build actions by manually editing the image recipe
in /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json.

Post-build actions can add non-RPM content (files or directories) to the image or specify commands to run in
the chroot environment of the image root (on the SMW). For example, the post-build actions could include
copying a tar file into the image, then using chroot to run the commands to untar it and run an install script.

● In the postbuild_chroot section, add the commands to run in a chroot environment for this image
root.

● In the postbuild_copy section, add the files to copy into the image.

smw# vi /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json
"site_compute": {
 ...
 "postbuild_chroot": [
 "chroot_command1",
 ...
 "chroot_commandN"
],
 "postbuild_copy": [
 "/file/1",
 ...
 "/dir/2/content"
],
 ”recipes": { ... },
 ...
 },

TIP: Post-build scripts can use the following environmental variables:

● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

5. Validate the image recipe.

smw# recipe validate site_compute
INFO - Validating recipe site_compute is valid for x86_64 architecture.
INFO - Validating Image 'site_compute-validate-2017-10-31_13:31:44'

Configure the System

S2393 198

...
INFO - Building out site_compute
INFO - Calling package manager to validate Recipe 'site_compute'; this can take
a few minutes.
INFO - Removed Image 'site_compute-validate-2017-10-31_13:31:44'.
INFO - Removed Image 'site_compute-validate-2017-10-31_13:31:44'.
INFO - Recipe validates.
This command checks that the JSON syntax of the image recipe is correct. It also validates, for the specified
architecture, all repositories and package collections referenced by the image recipe, checks that all required
packages are included in the recipe, and ensures that it can access any files in the postbuild_copy
section.

Caveat. Recipe validation does NOT validate post-build activities, such as running scripts and copyfiles
actions, because without actually installing packages, the scripts/actions cannot be run.

6. Build the image recipe to create the image root.

Choose a unique name for the image root. Cray recommends using the image recipe name plus the current
date/time. This example uses the image root name site_compute_timestamp.

IMPORTANT: If the image root name is not unique, it will overwrite an existing image root. A unique
name is especially important for images that are pushed to the boot node. Do not overwrite the image
root that is currently used by running nodes.

The image create command builds the image recipe starting with the package manager installation and
then proceeds to step through the post-build copy and post-build chroot commands (in that order).

If the image to be created should have a different architecture than the recipe's default architecture, add the
--arch ARCH to the following command, where ARCH is one of the valid architectures, such as x86_64 or
aarch64.

smw# image create -r site_compute site_compute_timestamp
INFO - Repository 'my_sles12_repo' validates.
INFO - Recipe 'site_compute' is valid for building.
INFO - Calling Package manager to build new image root; this will take a few
minutes.
INFO - Rebuilding RPM database for Image 'site_compute_timestamp'.
INFO - RPM database does not need to be rebuilt.
INFO - Running post-build scripts for Image 'site_compute_timestamp'.
INFO - Copying postbuild files to /tmp/tmpmAyzGl in Image
'site_compute_timestamp'
INFO - * Executing post-build chroot script: 'common_command1'
INFO - post-build chroot script output will be located in /tmp/
site_compute_postbuild_out_20170713-15:55:11g4WA6p
INFO - Build of Recipe 'site_compute' has completed successfully.

7. (Optional) Display the build history of the image root.

smw# image show site_compute_20171121082046
site_compute_20171121082046:
 name: site_compute_20171121082046
 arch: x86_64
 dist: SLES12
 created: 2017-11-21T08:20:46
 history:
 2017-11-21T08:20:57: Successful build of Recipe 'seed_common_6.0up06_sles_12sp3' into Image
'site_compute_20171121082046'.
 2017-11-21T08:22:53: Successful build of top level recipe 'compute_cle_6.0up06_sles_12sp3_ari'.
 2017-11-21T08:22:53: Successful rebuild of RPM database.
 path: /var/opt/cray/imps/image_roots/site_compute_20171121082046

Configure the System

S2393 199

8. Package the image root into a boot image.

smw# image export site_compute_timestamp

INFO - Copying kernel /var/opt/cray/imps/image_roots/site_compute_timestamp/boot/
bzImage-3.12.28-4.6_1.0000.8685-cray_ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
INFO - Copying parameters file /var/opt/cray/imps/image_roots/site_compute_timestamp/
boot/parameters-ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
 .
 .
 .
INFO - Image 'site_compute_timestamp' has been packaged into /var/opt/cray/imps/
boot_images/site_compute_timestamp.cpio.

9. If this is a netroot image, push the image root to the boot node.

IMPORTANT: Before pushing the image root, make sure that there is sufficient space on the boot
node in /var/opt/cray/imps/image_roots.

smw# image sqpush site_compute_timestamp --destination boot
The image sqpush command puts a SquashFS compressed image root on the boot node. Cray
recommends using this command instead of image push for better boot performance. For more information,
see About Image Pushes: push versus sqpush on page 20.

10. Test the new boot image on a single node.

a. Assign the boot image to a node with the NIMS cnode command.

The cnode and cmap commands replace the nimscli command, which was deprecated in CLE
6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change any scripts that reference nimscli.

This example assigns the boot image file site_compute_timestamp.cpio (in the
directory /var/opt/cray/imps/boot_images/) to the compute node with the cname c0-0c0s15n3.

● For a tmpfs image:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/site_compute_timestamp.cpio c0-0c0s15n3

● For a netroot image:

smw# cnode update c0-0c0s15n3 \
--set-parameter netroot=site_compute_timestamp

b. Warm-boot the node to test the boot image.

smw# xtcli shutdown c0-0c0s15n3
.
.
.
crayadm@smw> xtbootsys --reboot \
-r "testing new boot image site_compute_timestamp" c0-0c0s15n3

11. Change the NIMS map to assign the new image to the applicable nodes.

a. Back up the current map before changing to the new image. First, identify the active map.

smw# cmap list | grep -i 'true'
The following steps use the active map name "current-map".

Configure the System

S2393 200

b. Next, clone the current map.

smw# cmap create -clone current-map new-map
c. Mark the new map as the active map.

smw# cmap setactive new-map
d. Assign the new boot image to all applicable nodes. This example uses "--group compute" to assign

the image to all compute nodes.

● For a tmpfs image:

smw# cnode update --group compute \
-i /var/opt/cray/imps/boot_images/site_compute_timestamp.cpio

● For a netroot image:

smw# cnode update --group compute \
--set-parameter netroot=site_compute_timestamp

Trouble? If problems occur, use this command to revert to the previous map (current-map):

smw# cmap setactive current-map

12. Choose when the nodes should switch to the new image.

● To immediately use the new image, warm-boot all applicable nodes with the new image. This example
specifies the compute nodes as a comma-separated list of cnames; see the xtcli(8) man page for
other ways of specifying multiple nodes.

smw# xtcli shutdown cname, cname, ... cname
.
.
.

smw# xtbootsys --reboot -r "Booting custom image on all compute nodes" \
cname, cname, ... cname

● To have the workload manager (WLM) reboot the node once the current user's job finishes, see Apply
Rolling Patches to Compute Nodes with cnat on page 327.

● Otherwise, wait until the next full system reboot. The nodes will boot with the new image.

5.9 About Custom Ansible Plays
The following procedures provide examples of tasks that can be done with Ansible plays within the Cray
Management System (CMS). In most cases, there are several ways to accomplish the same task. For example, a
site could choose to keep using a favorite script within the Ansible framework, convert it to an Ansible play, or use
it outside of the framework. Using an Ansible play (or a script within the Ansible framework) is useful for sites with
a large number of Cray nodes.

For XC systems with release CLE 6.0 and later, Cray uses Ansible to orchestrate the boot sequence and
configuration. Configuration for all applications installed in an image is applied at boot time using cray-ansible,
a wrapper that finds all Ansible plays installed on the system and executes them with Ansible. Configuration
content is centralized in a config set located on the SMW. All content within the config set is accessible by every

Configure the System

S2393 201

CLE node on the system, which is how configuration information is distributed throughout the system. For more
information, see Cray XC System Configuration on page 147.

For information on using Ansible on a Cray system, see the XC Series Ansible Play Writing Guide.

5.9.1 Control a Service on Specific Nodes at Boot Time
Using a custom Ansible play is the best way to start or stop a service on specified nodes. This example ensures
that cron runs on login nodes only. Because cron starts automatically on all nodes at boot time, this example
play stops cron on nodes that are not login nodes.

manage_cron_service.yaml
- hosts: localhost
 vars:
 in_init: "{{ ansible_local.cray_system.in_init }}"
 is_login: "{{ ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups) }}"

 tasks:
 - name: stop cron on non-login nodes
 service:
 name: cron
 state: stopped
 when: not is_login|bool and not in_init|bool

The cron service starts on all nodes, so this example play causes cron to boot in a stopped state on all nodes
except the login nodes.

In the task, service specifies the service to be started (cron) and what to do to the service. More information
about the Ansible service module is at: http://docs.ansible.com/ansible/service_module.html.

The conditional statement (when) specifies the nodes where the action is to be taken and when to run the play.

● The Cray-provided fact ansible_local.cray_system.in_init indicates when to run the play. Ansible is
run twice during the boot of a CLE node: first from the /init script (referred to as “in init”) before Linux
systemd starts, then again after Linux systemd starts (referred to as “booted” and also as “not in init”).
When running plays that control processes, it is usually best to avoid running plays in init. To accomplish that,
use the Cray-provided fact ansible_local.cray_system.in_init which is true if “in init” and false if in
“booted”.

● The ansible_local.cray_system.hostid string is a Cray-supplied Ansible fact that corresponds to the
cname on CLE nodes.

● To determine if the node running this play is a login node, the Cray-supplied Ansible filter ismember is used
to determine if the current node is a member of the node groups that are configured as login nodes.

When this play runs on a node, cron is stopped if the node is not a login node.

5.9.2 Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script)

About this task
In previous releases, many Cray customer sites used a boot.last script, or something like it, to start up and
manage additional services, configurations, and settings, such as tuning Lustre, starting a secondary sshd for a
customer network, starting a workload manager, or setting up service nodes to talk to other service nodes using

Configure the System

S2393 202

http://docs.ansible.com/ansible/service_module.html

ssh. This script would run last on each service node as it booted. Its value lay partly in enabling sites to specialize
nodes and/or classes in a scalable way.

This procedure shows two ways to accomplish the same thing using Ansible.

Procedure

1. Choose how to accomplish the purpose of the original boot.last script.

● Option 1: Write an Ansible play that uses Ansible modules (directives, a bit like function calls) to do
individual steps equivalent to the lines in the boot.last script.

● Option 2: Write an Ansible play that simply uses the shell directive (an Ansible module) to run the
original boot.last script.

● Option 3: Run the boot.last script outside the Ansible framework, after the system nodes have finished
booting.

Options 1 and 2 are executed when cray-ansible, which is a wrapper around Ansible, gathers all Ansible
plays into a master playbook and then runs that playbook. Option 3 would occur after the system has booted.
Because Option 3 does not use the Ansible framework, it is not described further in this procedure.

2. Write the Ansible play.

● Option 1: Use Ansible modules to perform individual steps. This example play starts a service named
myserviced. There could be many other tasks that a site would want to include in a boot.last play.

boot.last.yaml
Option 1: Use Ansible modules to do individual steps (e.g., start a
service)

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 nid: "{{ ansible_local.cray_system.nid }}"
 is_nid7: "{{ ansible_local.cray_system.nid == '7' }}"
 is_login: "{{ ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups) }}"
 is_sdb: "{{ ansible_local.cray_system.hostid |
ismember(cray_sdb.settings.node_groups.data.sdb_groups) }}"
 in_init: "{{ ansible_local.cray_system.in_init }}"
 run_late: true

 tasks:
 - name: start myserviced service on nid0007, sdb, login nodes
 service: name=myserviced state=started args="-f /path/to/
myservice_config.conf"
 when:
 (is_nid7|bool or is_login|bool or is_sdb|bool) and not in_init|
bool

In this example, run_late: true is a Cray-provided directive for play ordering that places the current
play in the last of three groups of Ansible plays that are executed by cray-ansible. Plays that specify
run_early: true are run first, then plays that don’t specify run_early or run_late: true, and
finally plays that specify run_late: true are executed. However, plays that call out dependencies with
the Cray-provided run_after and run_before directives take precedence over all other play ordering
mechanisms.

Configure the System

S2393 203

● Option 2: Use Ansible to run a script on specified nodes: This example play uses script to run a site-
specific script (site_script.sh) on all service nodes.

boot.last.yaml
Option 2: Just do everything in site_script.sh

 - hosts: localhost
 vars: # Cray-provided node “facts” + config set data
 nid: "{{ ansible_local.cray_system.nid }}"
 is_nid7: "{{ ansible_local.cray_system.nid == '7' }}"
 is_login: "{{ ansible_local.cray_system.hostid |
ismember(cray_login.settings.login_nodes.data.member_groups) }}"
 is_sdb: "{{ ansible_local.cray_system.hostid |
ismember(cray_sdb.settings.node_groups.data.sdb_groups) }}"
 in_init: "{{ ansible_local.cray_system.in_init }}"
 run_late: true

 tasks:
 - name: run site script on all service nodes
 shell: /etc/opt/cray/config/current/dist/site_script.sh
 when:
 (is_nid7|bool or is_login|bool or is_sdb|bool) and not in_init|
bool

3. Put the Ansible play and any supporting content into the config set.

/var/opt/cray/imps/config/sets/p0/ansible/ Location in config set p0 for site Ansible plays,
like this new boot.last.yaml.

/var/opt/cray/imps/config/sets/p0/dist/ Location in config set p0 for content that supports
or is used by site Ansible plays. If using the
Ansible script directive (as in option 2), put the
site script here.

4. Test the new Ansible play by running it manually on two nodes: one where the task should be executed (a
service node), and another where the task should NOT be executed (a compute node).

node# ansible-playbook -v boot.last.yaml

This Ansible play will be distributed to all nodes. When the system boots, this play will run on all nodes, and the
conditional (when) clauses will determine whether a particular task will execute on any given node.

5.10 About Secure Shell Configuration
The Cray secure shell (SSH) configuration service, which generates and manages SSH keys, provides a turnkey
environment that establishes SSH functionality quickly and easily and supports basic customer needs. SSH
functionality can also be established in a variety of ways that support more complex SSH configurations for both
CLE and eLogin nodes (for systems running CLE 6.0.UP04 and later):

● Automatic SSH key generation can be disabled to prevent interference with site-provided configuration.

Configure the System

S2393 204

The cray_ssh configuration service has a flag called simple_ssh_keys. It is set to true by default, which
enables automatic SSH key generation/management. If this flag is set to false, that functionality is disabled,
and the site assumes responsibility for providing a working SSH key configuration.

● eLogin nodes can have different SSH keys.

The cray_login configuration service has a setting that must be set on all systems: elogin_groups. It
specifies which nodes will be used as external login nodes, and it is set to the pre-populated elogin_nodes
node group by default.

IMPORTANT: Action required. Sites that DO NOT have eLogin nodes MUST set elogin_groups
to an empty list ([]). Sites that DO have eLogin nodes must ensure that the node group(s) specified
for elogin_groups contain ALL elogin nodes in the system. Instructions are included in the
appropriate fresh install and software update procedures.

● Simple Sync and node groups are used to synchronize SSH keys.

The location for all SSH keys is in the Simple Sync directory structure. For CLE nodes, common keys are
located in the common subdirectory, and keys for specific node groups can be placed in the associated node
group subdirectories. For eLogin nodes,

○ Common key location for CLE nodes: <Simple Sync path>/common/files
○ Common key location for eLogin nodes: <Simple Sync path>/nodegroups/elogin_nodes/files
<Simple Sync path> = /var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/

Basic Components
The following three basic components of SSH configuration can be combined in several ways to create a wide
range of SSH functionality.

SSH key generation ● [default] generated automatically by Cray

● generated entirely by the site

● a mixture of Cray-generated and site-generated

SSH key
synchronization

● [default] synchonized automatically by Cray using Simple Sync or the Cray SSH
play (only if Simple Sync disabled)

● synchonized automatically using Simple Sync only

● synchronized entirely by the site

sshd_config ● [default] minimally modified by the Cray SSH play

● never modified by the Cray SSH play

The following use cases illustrate common combinations of these elements.

Use Case 1: [Default] Automatic SSH Key Management
By default, the Cray SSH play and automatic key management are enabled. This means:

● Generation. System and root user SSH keys will be automatically generated (if none are present in the
common key location) when the config set is updated.

● Synchronization. Keys will be copied automatically from the config set onto the nodes.

Configure the System

S2393 205

● sshd_config. The Cray SSH play will make minimal changes to sshd_config to ensure that basic logins
are enabled.

The behavior is identical to previous CLE 6.0 releases, except that the location in the config set of the SSH files is
now in the Simple Sync directory.

Use Case 2: Site Modifies SSH Content in Simple Sync Directories
The Cray SSH play and automatic key management are enabled, as in Use Case 1, but after installation or
configuration, the site administrator adds new or different content in Simple Sync directories for SSH, such as
different keys for login nodes. This use case illustrates that sites can leave automatic key generation in place but
still customize SSH keys in Simple Sync.

● Generation. Automatic key generation is enabled, as in Use Case 1, but after the admin adds site-specific
content to the common key SSH key location in the Simple Sync directory, no new keys will be generated.

● Synchronization. Same as Use Case 1.

● sshd_config. Same as Use Case 1.

Use Case 3: Automatic SSH Key Management Disabled
Disabling automatic key generation and synchronization (set simple_ssh_keys to 'false' in cray_ssh config
service) enables sites to have complete control over key management. A site may wish to use a configuration that
has no common SSH keys, and because the absence of keys in the common location triggers the generation of
new keys, the site would need to disable automatic SSH key management.

ATTENTION: A site that disables automatic SSH key management assumes responsibility for providing a
working SSH key configuration.

● Generation. No SSH keys will be automatically generated when the config set is updated, even if none are
present in the common key location.

● Synchronization. No special synchronization will be performed for SSH keys beyond generic Simple Sync
functionality.

● sshd_config. Same as Use Case 1.

Use Case 4: SSH Play Disabled
Disabling the Cray SSH play (set cray_ssh.enabled: false in cray_ssh config service) enables sites to
completely replace Cray SSH configuration. The site must provide sshd_config as well as SSH keys. Keys may
be synchronized using Simple Sync or a site-local Ansible play.

● Generation. Same as Use Case 3.

● Synchronization. Site will synchronize keys using Simple Sync or a site-local Ansible play.

● sshd_config. No configuration of sshd_config will take place.

Use Case 4-EZ: SSH Play Disabled after System Boot
Customers who wish total control over SSH and SSH keys can still leverage the Cray SSH infrastructure:

1. Boot the system with Cray SSH play and automatic key management are enabled (Use Case 1).

2. Copy sshd_config from the booted system into the Simple Sync directory.

3. Disable the Cray SSH play (Use Case 4).

Configure the System

S2393 206

6 Monitor the System

6.1 Manage Log Files Using CLE and HSS Commands
Boot, diagnostic, and other Hardware Supervisory System (HSS) events are logged on the SMW in
the /var/opt/cray/log directory, which is created during the installation process. The time-stamped
bootinfo, console, consumer, and netwatch log files are located in the /var/opt/cray/log/sessionid
directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

CLE logs are saved on the SMW in /var/opt/cray/log/sessionid.

Controller logs are saved on the SMW
in /var/opt/cray/log/controller/cabinet/controller/messages-yyyymmdd, where cabinet is of
the form c0-0, c1-0, etc.; and controller is either of the form c0-0, c1-0 for cabinet controllers (CC) or
c0-0c0s0 for blade controllers (BC) .

For more information, see the intro_llm_logfiles(5) man page.

Filter the Event Log
The xtlogfilter command enables the system administrator to filter the event log for information such as the
time a particular event occurred or messages from a particular cabinet.

For more information, see the xtlogfilter(8) man page.

Finding information in the event log

For this example, search for all console messages from node c9-2c0s3n2:

crayadm@smw> xtlogfilter -f /var/opt/cray/log/event-yyyymmdd c9-2c0s3n2

Add Entries to Log Files
The system administrator can add entries (e.g., the start or finish of system activities) to the syslog with the
logger command. The entry is then available to anyone who reads the log.

For more information, see the logger(1) man page.

Monitor the System

S2393 207

Add entries to syslog file

For this example, mark the start of a new system test:

login# logger -is "Start of test 4A $(date) "
Start of test 4A Thu Jul 14 16:20:43 CDT 2011
The system log shows:

Jul 14 16:20:43 nid00003 xx[21332]:
Start of test 4A Thu Jul 13 16:20:43 CDT 2012

Examine Log Files
Time-stamped log files of boot, diagnostic and other HSS events are located on the SMW in
the /var/opt/cray/log directory. The time-stamped bootinfo, console, consumer, and netwatch log
files are located in the /var/opt/cray/log/sessionid directory by default.

For example, the HSS xtbootsys command starts the xtconsole command, which redirects the output to a
time-stamped log file, such as /var/opt/cray/log/p0-20120716t104708/console-20120716.

The SMWinstall, SMWconfig, and SMWinstallCLE commands create several detailed log files in
the /var/adm/cray/logs directory. The log files are named using the PID of the SMWinstall or the
SMWinstallCLE command; the exact names are displayed when the command is invoked.

Remove Old Log Files
The xttrim utility provides a simple and configurable method to automate the compression and deletion of old
log files. The xttrim utility is intended to be run on the SMW from cron and is automatically configured to do
this as part of the SMW software installation process. Review the xttrim.conf configuration file and ensure
that xttrim will manage the desired directories and that the compression and deletion times are appropriate.

The xttrim utility does not perform any action unless the --confirm flag is used (to avoid unintended actions),
nor will xttrim perform any action on open files. All actions are based on file-modified time.

For additional information, see the xttrim(8) and xttrim.conf(5) man pages.

6.2 Check the Status of System Components
Check the status of the system or a component with the xtcli status command on the System Management
Workstation (SMW). By default, the xtcli status command returns the status of nodes.

The xtcli status command has the following form:

xtcli status [-n] [-m] [{-t type -a}] node_list

Where type may be: cc, bc, cage, node, aries, aries_lcb, pdc, or qpdc. The list must have component IDs
only and contain no wild cards.

Use the -m option to display all nodes that were repurposed by using the xtcli mark_node command (see
Repurpose a Compute or Service Node on page 307).

Monitor the System

S2393 208

For more information, see the xtcli(8) man page.

Show the status of a component

For this example, display all nodes that were repurposed using the xtcli mark_node
command:

crayadm@smw> xtcli status -m c0-0c0
Network topology: class 2
Network type: Aries
 Nodeid: Service Core Arch| Comp state [Flags]
 --
 c0-0c0s2n0: - SB16 X86| off [noflags|]
 c0-0c0s3n0: service SB16 X86| off [noflags|]
 --
This shows that c0-0c0s2n0 is a service node repurposed as a compute node, and that
c0-0c0s3n0 is a compute node repurposed as a service node.

6.3 Check the Status of Compute Processors
Use the xtprocadmin command on a service node to check that compute nodes are available after the system
is booted.

Use the xtprocadmin command on a node to check that compute nodes are available after the system is
booted.

Identify nodes in down or admindown state

nid00007> xtprocadmin | grep down

Use the user xtnodestat command to display the current allocation and status of each compute processing
element and the application that it is running. A simplified text display shows each processing element on the
Cray system interconnection network.

Display current allocation and status of each compute processing element and the application that it is
running

nid00007> xtnodestat
Current Allocation Status at Wed Jul 06 13:53:26 2011

 C0-0
 n3 AAaaaaaa
 n2 AAaaaaaa
 n1 Aeeaaaa-
c2n0 Aeeaaaaa
 n3 Acaaaaa-
 n2 cb-aaaa-
 n1 AA-aaaa-
c1n0 Aadaaaa-
 n3 SASaSa--

Monitor the System

S2393 209

 n2 SbSaSa--
 n1 SaSaSa--
c0n0 SASaSa--
 s01234567

Legend:
 nonexistent node S service node
; free interactive compute node - free batch compute node
A allocated interactive or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 15 batch

Job ID User Size Age State command line
--- ------- -------- ----- --------- -------- ---------------
a 3772974 user1 48 0h06m run app1
b 3773088 user2 2 0h01m run app2
c 3749113 user3 2 28h26m run app3
d 3773114 user4 1 0h00m run app4
e 3773112 user5 4 0h00m run app5

For more information, see the xtprocadmin(8) and xtnodestat(1) man pages.

6.4 Monitor the System with the System Environmental Data
Collector (SEDC)

The System Environment Data Collections (SEDC) manager, sedc_manager, monitors the system's health and
records the environmental data and status of hardware components such as power supplies, processors,
temperature, and fans. SEDC can be set to run at all times or only when a client is listening. The SEDC
configuration file provided by Cray has automatic data collection set as the default action.

The SEDC configuration file (/opt/cray/hss/default/etc/sedc_srv.ini by default) configures the SEDC
server. In this file, the administrator can create sets of different configurations as groups so that the blade and
cabinet controller daemons can scan components at different frequencies. The sedc_manager sends out the
scanning configuration for specific groups to the cabinet and blade controllers and records the incoming data by
group.

For information about configuring the SEDC manager, see XC™ Series System Environment Data Collections
(SEDC) Guide.

6.5 Check Cabinet Cooling Parameters for an Air-Cooled XC System

Prerequisites
● This is an XC Series air-cooled (XC-AC) system running SMW 8.x / CLE 6.x software.

● Patches have been installed.

● The system is booted.

Monitor the System

S2393 210

About this task
Cray provides the xtaccheckcool tool to enable sites to check and/or set the cooling parameters of an XC-AC
system. Use this tool in the following circumstances:

● after a fresh install

● after a software update

● as part of customizing a preinstalled system

● after adding hardware to a system

● periodically, to verify that parameters are set correctly for an operational system

Procedure

1. Display current and recommended cabinet cooling parameters.

Substitute the elevation (in feet) of this site.

smw# xtaccheckcool -e elevation_in_feet

2. Write the recommended cabinet cooling parameters to all cabinet controllers, as needed.

This command uses the -w option to write the recommended cooling parameters for the specified elevation to
every cabinet in the system. Substitute the elevation (in feet) of this site.

smw# xtaccheckcool -w -e elevation_in_feet
To target a specific cabinet, use the -t cname option, where cname is the cname of the cabinet.

For more information and example output, see the xtaccheckcool(8) man page.

6.6 Monitor the Health of PCIe Channels
Processors are connected to the high-speed interconnect network (HSN) ASIC through PCIe channels.

The xtpcimon command is executed from the System Management Workstation (SMW) and is started and run
during the boot process.

Any PCIe-related errors are reported to stdout, unless directed to a log file.

xtpcimon also displays CLE-originated GHAL-based Advanced Error Reporting (AER) errors for PCIe.

If the optional /opt/cray/hss/default/etc/xtpcimon.ini initialization file is present, the xtpcimon
command uses the settings provided in the file.

For more information, see the xtpcimon(8) man page.

Report PCIe-related errors to stdout

crayadm@smw> xtpcimon
starting
----> connection to event router made
121017 04:57:01 ############# ################# ##################
121017 04:57:01 Node Category Description
121017 04:57:01 ############# ################# ##################
Received all responses to request to start monitoring

Monitor the System

S2393 211

121017 04:58:01 c0-0c0s7a0n1 CorrectableMemErr 0:0:0 AER Correctable: Non-fatal \
 error (mask bit: 1)
121008 05:42:00 c0-0c1s6a0n2 CorrectableMemErr Link CRC error (cnt: 3)
121008 05:43:30 c0-0c1s6a0n2 Info Correctable/CRC error

6.7 Examine Activity on the HSS Boot Manager
Use the HSS xtcli session show command to examine sessions in the boot manager. A session
corresponds to running a specific command such as xtcli power up or xtcli boot. This command reports
on sessions, not daemons.

For more information, see the xtcli(8) man page.

View a session running on the boot manager

crayadm@smw> xtcli session show BM

6.8 Poll a Response from an HSS Daemon, Manager, or the Event
Router

Use the HSS xtalive command to verify that an HSS daemon, manager, or the event router is responsive.

For more information, see the xtalive(8) man page.

Check the boot manager

crayadm@smw> xtalive -l smw -a bm s0

6.9 Validate the Health of the HSS
The xtcheckhss command initiates a series of tests that validate the health of the HSS by gathering and
displaying information supplied by scripts located on blade controllers (BCs) and cabinet controllers (CCs).
xtcheckhss includes the following tests:

● Version Checker: Reads the current version running on the L0C, QLOC, L0Ds, BC micro, CC micro, CC
FPGA, CHIA FPGAs, Tolapai BIOSes, and Node BIOS. The version that is read from each device is
compared to the currently installed versions on the SMW.

● Sensor Checker: Reads environment sensors including temperatures, voltages, currents, and other data.

● SEEP Checker: Reads serial electrically erasable PROMs (SEEPs) in the system. This test can report any
un-initialized, zeroed, or unreadable SEEPs.

Monitor the System

S2393 212

● AOC Checker: Reads all active optical cable (AOC) data. This test displays any outliers relative to the
average data calculated by previous runs.

● ITP Checker: Validates the embedded ITP path

● NTP Checker: Reads system time on all controllers and compares them with the SMW time; displays any
mismatches.

● Control Checker: Examines and modifies system controls.

● Configuration Information Checker: Reads the system hardware configuration and reports the system
setup, including the blade type, daughter card type, CPU type and count, and the CPU and PDC mask.

● PCI checker: Checks for missing or degraded PCIe connectivity on add-in cards on an IBB. This test requires
that the nodes be powered up and bounced. Any cards that do not train to the PCIe Gen or Width specified in
the Link Capability register are flagged. Any cards that are reported as physically present but not seen by the
node are flagged.

For complete information, see the xtcheckhss(8) man page.

6.10 Monitor Event Router Daemon (erd) Events
The HSS xtconsumer command enables the system administrator to monitor events mediated by the event
router daemon erd, which runs passively.

Monitor for specific events

For this example, watch two events: ec_heartbeat_stop, which will be sent if either the node
stops sending heartbeats or if the system interconnection network ASIC stops sending
heartbeats, and ec_l0_health, which will be sent if any of the subcomponents of a blade
controller report a bad health indication:

crayadm@smw> xtconsumer -b ec_heartbeat_stop ec_l0_health

Use the xthb command to confirm the stopped heartbeat. Use the xthb command only when actively looking
into a known problem because it is intrusive and degrades system performance.

Check events except heartbeat

crayadm@smw> xtconsumer -x ec_l1_heartbeat

For more information, see the xtconsumer(8) and xthb(8) man pages.

6.11 Monitor Node Console Messages
The xtbootsys command automatically initiates an xtconsole session, which displays the console text of a
specified node(s) or accelerator(s). The xtconsole command operates in a shell window and monitors the event
router daemon (erd) for console messages. The node or accelerator ID appears at the beginning of each line.

Monitor the System

S2393 213

The messages are written into /var/opt/cray/log/sessionid/console-yyyymmdd where the
administrator may monitor them.

The xtconsole utility may only have one concurrent instance.

For more information, see the xtconsole(8) man page.

6.12 View Component Alert, Warning, and Location History
Use the xtcli comp_hist command to display component alert, warning, and location history. Either an error
history, which displays alerts or warnings found on designated components, or a location history may be
displayed.

Display the location history for component c0-0c0s0n1

crayadm@smw> xtcli comp_hist -o loc c0-0c0s0n1

For more information, see the xtcli(8) man page.

6.13 Display Component Information
Use the HSS xtshow command to identify compute and service components. Commands are typed as xtshow
--option_name. Combine the --service or --compute option with other xtshow options to limit the
selection to the specified type of node.

For a list of all xtshow --option_name options, see the xtshow(8) man page.

Identify all service nodes

crayadm@smw> xtshow --service
L1s ...
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
 c0-0c0s1: service X86| ready [noflags|]
 c1-0c0s0: service X86| ready [noflags|]
 c1-0c0s1: service X86| ready [noflags|]
 c2-0c0s1: service X86| ready [noflags|]
 c2-0c1s1: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n0: service X86| empty [noflags|]
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
 c0-0c0s0n3: service X86| empty [noflags|]
 c0-0c0s1n0: service X86| empty [noflags|]
 c0-0c0s1n1: service SB08 X86| ready [noflags|]
 .
 .
 .
Aries ...

Monitor the System

S2393 214

 c0-0c0s0a0: service X86| on [noflags|]
 c0-0c0s1a0: service X86| on [noflags|]
 c1-0c0s0a0: service X86| on [noflags|]
 c1-0c0s1a0: service X86| on [noflags|]
 c2-0c0s1a0: service X86| on [noflags|]
 c2-0c1s1a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]
 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Identify compute nodes in the disabled state

crayadm@smw> xtshow --compute --disabled
L1s ...
Cages ...
L0s ...
Nodes ...
 c0-0c2s0n3: - X86| disabled [noflags|]
 c0-0c2s11n0: - X86| disabled [noflags|]
 c0-0c2s11n3: - X86| disabled [noflags|]
 c1-0c0s11n2: - X86| disabled [noflags|]
Aries ...
AriesLcbs ...

Identify components with a status of not empty

crayadm@smw> xtshow --not_empty c0-0c0s0
L1s ...
 c0-0: - | on [warn|alert|]
Cages ...
L0s ...
 c0-0c0s0: service X86| ready [noflags|]
Nodes ...
 c0-0c0s0n1: service SB08 X86| ready [noflags|]
 c0-0c0s0n2: service SB08 X86| ready [noflags|]
Aries ...
 c0-0c0s0a0: service X86| on [noflags|]
AriesLcbs ...
 c0-0c0s0a0l00: service X86| on [noflags|]
 c0-0c0s0a0l01: service X86| on [noflags|]
 c0-0c0s0a0l02: service X86| on [noflags|]
 c0-0c0s0a0l03: service X86| on [noflags|]
 c0-0c0s0a0l04: service X86| on [noflags|]
 c0-0c0s0a0l05: service X86| on [noflags|]
 c0-0c0s0a0l06: service X86| on [noflags|]
 .
 .
 .

Monitor the System

S2393 215

6.14 Display Alerts and Warnings
Use the xtshow command to display alerts and warnings. Type commands as xtshow --option_name, where
option_name is alert, warn, or noflags.

Alerts are not propagated through the system hierarchy, only information for the component being examined is
displayed. For example, invoking the xtshow --alert command for a cabinet does not display an alert for a
node. Similarly, checking the status of a node does not detect an alert on a cabinet.

Show all alerts on the system

crayadm@smw:~> xtshow --alert

Alerts and warnings typically occur while the HSS xtcli command operates; these alerts and warnings are listed
in the command output with an error message. After they are generated, alerts and warnings become part of the
state for the component and remain set until manually cleared.

For example, the temporary loss of a heartbeat by the blade controller may set a warning state on a chip.

For additional information, see the xtshow(8) man page.

6.15 Display System Network Congestion Protection Information
Two utilities help to identify the time and duration of system network congestion events, either by parsing through
logs (xtcpreport) or in real time (xtcptop):

xtcpreport This command uses information contained in the given xtnlrd file to extract and display
information related to system network congestion protection. See the xtcpreport(8) man
page for additional information.

xtcptop This command monitors an xtnlrd file that is currently being updated and displays real-time
system network congestion protection information, including start time, duration, and apid. See
the xtcptop(8) man page for additional information.

To use these utilities, load the congestion-tools module if it is not already loaded.

crayadm@smw> module load congestion-tools

6.16 Clear Component Flags
Use the xtclear command to clear system information for selected components. Type commands as xtclear
--option_name, where option_name is alert, reserve, or warn.

Clear all warnings in specified cabinet

For this example, clear all warnings in cabinet c13-2:

Monitor the System

S2393 216

smw:~> xtclear --warn c13-2

Alerts, reserves, and warnings must be cleared before a component can operate. Clearing an alert on a
component frees its state.

For more information, see the xtclear(8) man page.

6.17 Display Error Codes
When an HSS event error occurs, the related message is displayed on the SMW. The xterrorcode command
on the SMW displays a single error code or the entire list of error codes.

Display HSS error codes

crayadm@smw> xterrorcode errorcode

A system error code entered in a log file is a bit mask; invoking the xterrorcode bitmask_code_number
command on the SMW displays the associated error code.

Display an HSS error code using its bit mask number

crayadm@smw> xterrorcode 131279
Maximum error code (RS_NUM_ERR_CODE) is 447
code = 207, string = 'Node Voltage Fault'

6.18 Cray Lightweight Log Manager (LLM)
The Cray Lightweight Log Manager (LLM) is the log infrastructure for Cray systems and must be enabled for
systems to successfully log events. At a high level, a library is used to deliver messages to rsyslog using the
RFC 5424 protocol; rsyslog transports those messages to the SMW and places the messages into log files.

The LLM system relies on the sessionid that is generated by xtbootsys. Therefore, systems must always be
booted using xtbootsys. If the site has multi-part boot procedures or uses manual procedures, have the
process started by an xtbootsys session. That session can be effectively empty; it is needed only to initiate a
boot sessionid. Subsequent xtbootsys calls can then use --session last or manual processes.

By default, LLM has a log trimming mechanism enabled called xttrim.

IMPORTANT: Do not use the xtgetsyslog command because it is not compatible with LLM. For
additional information, see Manage Log Files Using CLE and HSS Commands on page 207.

To configure the LLM, use cfgset update to update the cray_logging configuration service in the global or CLE
config set.

For further information, see the intro_LLM(8) and intro_LLM_logfiles(5) man pages.

Monitor the System

S2393 217

6.19 Debug Logging using debugraw and debugmax
The debugraw and debugmax settings in the cray_logging configuration service enable administrators to debug
the operation of the logging system itself. Enabling the debugraw setting will put all raw log messages received
by rsyslog into a file. Enabling the debugmax setting will put everything rsyslog knows about each log
message, including which host sent the message, into a file.

Because they are resource intensive, the debugraw and debugmax settings are typically left disabled (default)
and should be enabled only to diagnose an issue with the rsyslog utility.

6.20 cdump and crash Utilities for Node Memory Dump and Analysis
The cdump and crash utilities may be used to analyze the memory on any Cray service node or CNL compute
node. The cdump command is used to dump node memory to a file. After cdump completes, the crash utility can
be used on the dump file generated by cdump.

Cray recommends executing the cdump utility only if a node has panicked or is hung, or if a dump is requested by
Cray.

To select the desired access method for reading node memory, use the cdump -r access option. Valid access
methods are:

xt-bhs The xt-bhs method uses a basic hardware system server that runs on the SMW to access and read
node memory. xt-bhs is the default access method for these systems.

xt-hsn The xt-hsn method utilizes a proxy that reads node memory through the High-speed Network
(HSN). The xt-hsn method is faster than the xt-bhs method, but there are situations where it will
not work (for example, if the ASIC is not functional). However, the xt-hsn method is preferable
because the dump completes in a short amount of time and the node can be returned to service
sooner.

xt-file The xt-file method is used for memory dump file created by the -z option. The compressed
memory dump file must be uncompressed prior to executing this command. Use the file name for
node-id.

To dump Cray node memory, access takes the following form:

method[@host]
For additional information, see the cdump(8) and crash(8) man pages.

6.21 Resource Utilization Reporting
Resource Utilization Reporting (RUR) is an administrator tool for gathering statistics on how system resources are
being used by applications or jobs. RUR is a scalable infrastructure that collects compute node statistics before
an application or job runs and again after it completes. The extensible RUR infrastructure allows plugins to be

Monitor the System

S2393 218

easily written to collect data uniquely interesting to each site. Cray supplied plugins collect a variety of data,
including process accounting, energy usage, memory usage, and GPU accounting.

When RUR is enabled on a Cray system running CLE, resource utilization statistics are gathered from compute
nodes running all applications or jobs. RUR is configured to run per application, per job, or both. RUR runs
primarily before an application/job has started and after it ends, ensuring minimal impact on performance.

Prior to application/job runtime, the ALPS or WLM prologue script calls an RUR prologue script that, based on
enabled plugins, initiates pre-application/pre-job data staging on all compute nodes used by the application/job.
This staging may involve resetting counters to zero or collecting initial values of counters. Following application/
job completion, the ALPS or WLM epilogue script calls an RUR epilogue script that gathers these counters,
compares them to the initial values, where applicable, stages the data on the compute nodes, and then transfers
data from the compute nodes to the login/MOM node. RUR post-processes the data to create a summary report
that is written out to a log file or other backing store.

Plugin Architecture
RUR supports a plugin architecture, allowing many types of usage data to be collected while using the same
software infrastructure. Two basic types of RUR plugins are supported: data plugins, which collect particular
statistics about system resources, and output plugins, which send the output of the RUR software stack to a
backing store.

Cray supplies several plugins as part of the RUR distribution, including data collection plugins, output plugins, and
an example plugin. Sites choose which plugins to enable or disable by modifying the RUR configuration file. See
Enable/Disable Plugins on page 229 for more information. Sites can also create custom plugins, specific to their
needs, as described in Create Custom RUR Data Plugins on page 245 and Create Custom RUR Output Plugins
on page 247.

6.21.1 Overview of RUR Configuration
RUR is one of many services that store service configuration content in CLE configuration sets (config sets) on
Cray systems. RUR can be configured when config sets are created during a fresh install or major update, or it
can be configured/reconfigured later by updating existing config sets during normal system operation. Whether
sites enter values in an interactive configurator session or enter values in a configuration worksheet for bulk
import, the configurator takes the supplied values and ensures that they become part of the config set being
created or updated.

What does RUR Need?
For RUR to function properly, the following tasks are required:

1. Enable and configure the cray_rur service.

2. Update the cray_alps service (or Slurm) to call RUR's prologue and epilogue scripts. This enables per-
application RUR.

3. Modify the WLM prologue and epilogue scripts to call RUR's prologue and epilogue scripts. This enables per-
job RUR.

4. Refresh CLE nodes with updated configuration data.

Monitor the System

S2393 219

6.21.2 Enable and Configure RUR

Prerequisites
This procedure assumes that the user has generated configuration worksheets and is editing the RUR
configuration worksheet (cray_rur_worksheet.yaml). If new worksheets need to be generated, use this
procedure:

1. Generate up-to-date worksheets for config set p0 (merges any new service packages installed on the system
with data already in config set p0).

smw# cfgset update --mode prepare --no-scripts p0
2. Locate the newly generated worksheets and copy them to a new location.

smw# cfgset show --fields path p0
p0:
 path: /var/opt/cray/imps/config/sets/p0
smw# cp /var/opt/cray/imps/config/sets/p0/worksheets/* /some/edit/location

3. Edit the RUR worksheet.

smw# vi /some/edit/location/cray_rur_worksheet.yaml

About this task
This procedure identifies both necessary and optional settings for RUR to function properly. The following steps
correspond to the configuration settings available in the RUR worksheet, and step numbering reflects the order in
which those settings appear.

TIP: The default values assigned for settings are sufficient for an initial install.

Procedure

1. Edit cray_rur_worksheet.yaml.

2. Uncomment cray_rur.enabled and set it to true.

Enable 'cray_rur' Service? (boolean, level=basic)
cray_rur.enabled: true
#
#********************* END Service Enable/Disable ********************

Monitor the System

S2393 220

3. Uncomment the lines corresponding to the base settings. Review the guidance information and default value
for each setting to determine whether or not to modify it.

#
cray_rur.settings.base.data.debug_level: ERROR
#

#
cray_rur.settings.base.data.keep_temp_files: false
#

#
cray_rur.settings.base.data.use_json: false
#

4. Uncomment the lines corresponding to the rur_stage settings. Review the guidance information and default
value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_stage.data.stage_timeout: 90
#

#
cray_rur.settings.rur_stage.data.stage_dir: /var/spool/RUR
#

5. Uncomment the lines corresponding to the rur_gather settings. Review the guidance information and
default value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_gather.data.gather_timeout: 90
#

#
cray_rur.settings.rur_gather.data.gather_dir: /tmp/rur
#

6. Uncomment the lines corresponding to the rur_post settings. Review the guidance information and default
value for each setting to determine whether or not to modify it.

#
cray_rur.settings.rur_post.data.post_timeout: 90
#

#
cray_rur.settings.rur_post.data.post_dir: /tmp/rur
#

7. (Optional) Enable the gpustat data plugin.

The gpustat plugin collects utilization statistics for NVIDIA GPUs, if present (see The gpustat Data Plugin
on page 238).

Monitor the System

S2393 221

a. Uncomment cray_rur.settings.gpustat.data.enable and set it to true.

#
cray_rur.settings.gpustat.data.enable: true
#

b. Uncomment the remaining gpustat settings.

#
cray_rur.settings.gpustat.data.stage: /opt/cray/rur/default/bin/gpustat_stage.py
#

#
cray_rur.settings.gpustat.data.post: /opt/cray/rur/default/bin/gpustat_post.py
#

8. (Optional) Enable the taskstats data plugin.

The taskstats plugin collects process accounting data (see The taskstats Data Plugin on page 240).

a. Uncomment cray_rur.settings.taskstats.data.enable and set it to true.

#
cray_rur.settings.taskstats.data.enable: true
#

b. Uncomment the remaining taskstats settings.

#
cray_rur.settings.taskstats.data.stage: /opt/cray/rur/default/bin/taskstats_stage.py
#

#
cray_rur.settings.taskstats.data.post: /opt/cray/rur/default/bin/taskstats_post.py
#

#
cray_rur.settings.taskstats.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.taskstats.data.arg and modify its
value if desired.

TIP: The amount of data reported by the taskstats plugin and the format in which it is written is
determined by the value of arg. Examples are included in The taskstats Data Plugin on page
240.

9. (Optional) Enable the energy data plugin.

The energy plugin collects compute node energy usage data (see The energy Data Plugin on page 235).

a. Uncomment cray_rur.settings.energy.data.enable and set it to true.

#
cray_rur.settings.energy.data.enable: true
#

Monitor the System

S2393 222

b. Uncomment the remaining energy settings.

#
cray_rur.settings.energy.data.stage: /opt/cray/rur/default/bin/energy_stage.py
#

#
cray_rur.settings.energy.data.post: /opt/cray/rur/default/bin/energy_post.py
#

#
cray_rur.settings.energy.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.energy.data.arg and modify its value if
desired.

TIP: The amount of data reported by the energy plugin and the format in which it is written is
determined by the value of arg. Examples are included in The energy Data Plugin on page 235.

10. (Optional) Enable the timestamp data plugin.

The timestamp plugin collects the start and end times of an application or job (see The timestamp Data
Plugin on page 243).

a. Uncomment cray_rur.settings.timestamp.data.enable and set it to true.

#
cray_rur.settings.timestamp.data.enable: true
#

b. Uncomment the remaining timestamp settings.

#
cray_rur.settings.timestamp.data.stage: /opt/cray/rur/default/bin/timestamp_stage.py
#

#
cray_rur.settings.timestamp.data.post: /opt/cray/rur/default/bin/timestamp_post.py
#

11. (Optional) Enable the memory data plugin.

The memory plugin collects information from /proc and /sys that is useful when assessing the memory
performance of an application or job (see The memory Data Plugin on page 238).

a. Uncomment cray_rur.settings.memory.data.enable and set it to true.

#
cray_rur.settings.memory.data.enable: true
#

Monitor the System

S2393 223

b. Uncomment the remaining memory settings.

#
cray_rur.settings.memory.data.stage: /opt/cray/rur/default/bin/memory_stage.py
#

#
cray_rur.settings.memory.data.post: /opt/cray/rur/default/bin/memory_post.py
#

#
cray_rur.settings.memory.data.arg: json-dict
#

c. Review the guidance information for cray_rur.settings.memory.data.arg and modify if desired.

TIP: The amount of data reported by the memory plugin is determined by the value of arg.
Examples are included in The memory Data Plugin on page 238.

12. (Optional) Enable the nodeuse data plugin.

The nodeuse plugin collects compute node usage data within the scope of an application (see The nodeuse
Data Plugin on page 240).

a. Uncomment cray_rur.settings.nodeuse.data.enable and set it to true.

#
cray_rur.settings.nodeuse.data.enable: true
#

b. Uncomment the remaining nodeuse settings.

#
cray_rur.settings.nodeuse.data.stage: /opt/cray/rur/default/bin/nodeuse_stage.py
#

#
cray_rur.settings.nodeuse.data.post: /opt/cray/rur/default/bin/nodeuse_post.py
#

13. (Optional) Enable the dws data plugin.

The dws plugin collects DataWarp utilization statistics (within the scope of an application) from compute
nodes, if present (see The dws Data Plugin on page 231).

a. Uncomment cray_rur.settings.dws.data.enable and set it to true.

#
cray_rur.settings.dws.data.enable: true
#

Monitor the System

S2393 224

b. Uncomment the remaining dws settings.

#
cray_rur.settings.dws.data.stage: /opt/cray/rur/default/bin/dws_stage.py
#

#
cray_rur.settings.dws.data.post: /opt/cray/rur/default/bin/dws_post.py
#

14. (Optional) Enable the dws_server data plugin.

The dws_server plugin collects utilization statistics (within the scope of an application) from DataWarp
servers, if present (see The dws_server Data Plugin on page 234).

a. Uncomment cray_rur.settings.dws_server.data.enable and set it to true.

#
cray_rur.settings.dws_server.data.enable: true
#

b. Uncomment the remaining dws_server settings.

#
cray_rur.settings.dws_server.data.stage: /opt/cray/rur/default/bin/
dws_server_stage.py
#

#
cray_rur.settings.dws_server.data.post: /opt/cray/rur/default/bin/dws_server_post.py
#

15. (Optional) Enable the dws_job_server data plugin.

The dws_job_server plugin collects utilization statistics (within the scope of a job) from DataWarp servers,
if present (The dws_job_server Data Plugin on page 232).

a. Uncomment cray_rur.settings.dws_job_server.data.enable and set it to true.

#
cray_rur.settings.dws_job_server.data.enable: true
#

b. Uncomment the remaining dws_job_server settings.

Note that the post script is the same as dws_server.

#
cray_rur.settings.dws_job_server.data.stage: /opt/cray/rur/default/bin/dws_job_server_stage.py
#

#
cray_rur.settings.dws_server.data.post: /opt/cray/rur/default/bin/dws_server_post.py
#

16. (Optional) Enable the llm output plugin.

Monitor the System

S2393 225

The llm plugin aggregates log messages from various Cray nodes and places them on the SMW (The llm
Output Plugin on page 243).

a. Uncomment cray_llm.settings.llm.data.enable and set it to true.

#
cray_rur.settings.llm.data.enable: true
#

b. Uncomment the other llm setting.

#
cray_rur.settings.llm.data.output: /opt/cray/rur/default/bin/llm_output.py
#

17. (Optional) Enable the user output plugin.

The user plugin writes RUR output for a user's application to the user's home directory (default) or a user-
defined location, only if the user has indicated that this behavior is desired (The user Output Plugin on page
244).

a. Uncomment cray_rur.settings.user.data.enable and set it to true.

#
cray_rur.settings.user.data.enable: true
#

b. Uncomment the remaining user settings.

#
cray_rur.settings.user.data.output: /opt/cray/rur/default/bin/user_output.py
#

#
cray_rur.settings.user.data.arg: single, opt_in
#

c. Review the guidance information for cray_rur.settings.user.data.arg and modify if desired.

TIP: The number of output files created by the user plugin and its opt-in flag are determined by
the value of arg. Further details are included in The user Output Plugin on page 244.

Next, configure the cray_alps to call the RUR prologue and epilogue scripts. Sites running Slurm must modify
the Slurm configuration file to call the RUR prologue and epilogue scripts.

6.21.3 Configure the cray_alps Service for Per-application RUR

Prerequisites
This procedure assumes that cray_alps has already been enabled.

Monitor the System

S2393 226

About this task
Although Resource Utilization Reporting (RUR) is not a part of ALPS, it is initiated by the ALPS prologue and
epilogue scripts. This enables per-application RUR.

During CLE installation, cray_alps might have been configured for RUR. If this is known to be true, then this
procedure may be skipped; however, Cray recommends that sites verify the settings are accurate.

Procedure

1. Edit cray_alps_worksheet.yaml.

2. Verify that cray_alps.enabled is uncommented and set to true.

This should have occurred during the initial CLE installation. If not, exit this procedure and refer to XC™
Series Software Installation and Configuration Guide.

3. Uncomment and define cray_alps.settings.apsys.data.prologPath and
cray_alps.settings.apsys.data.epilogPath.

ALPS supports only one prologue script and one epilogue script; therefore, enabling RUR is dependent on
whether or not these parameters are already defined for ALPS.

a. If prologPath and epilogPath are not set, define them as follows.

cray_alps.settings.apsys.data.prologPath: /opt/cray/rur/default/bin/rur_prologue.py
cray_alps.settings.apsys.data.epilogPath: /opt/cray/rur/default/bin/rur_epilogue.py

b. For either parameter that is defined, a wrapper script must be written that will run both the ALPS script
and the RUR script. Cray recommends adjusting the prologTimeout and epilogTimeout parameters
to be the sum of the timeouts expected for the constituent scripts. Because RUR supports its own
timeout, it is recommended to run RUR first, with a timeout, allowing the second plugin to run even if RUR
times out.

4. Uncomment cray_alps.settings.apsys.data.prologTimeout and
cray_alps.settings.apsys.data.epilogTimeout, review the guidance information and modify if
desired.

cray_alps.settings.apsys.data.prologTimeout: 300
...
cray_alps.settings.apsys.data.epilogTimeout: 300

Next, configure the workload manager to enable per-job RUR.

6.21.4 Configure a WLM to Enable Per-job RUR

Prerequisites
Task prerequisites.

Monitor the System

S2393 227

About this task
Although Resource Utilization Reporting (RUR) is not a part of a workload manager (WLM), it is initiated through
the WLM prologue and epilogue scripts to enable per-job RUR. Job level RUR data is identified by records with
apid: 0 and jobid: ID_of_WLM_job.

Procedure

1. Edit the WLM prologue and epilogue scripts, according to the specific WLM system guidelines, to call the
rur_prologue and rur_epilogue scripts, respectively.

Prologue:

/opt/cray/rur/default/bin/rur_prologue.py -C /etc/opt/cray/rur/rur2.conf -a 0
-j $JOBID -A jobtoken=$JOBID -A jobfile=$JOBFILE -N /tmp/

Epilogue:

/opt/cray/rur/default/bin/rur_epilogue.py -C /etc/opt/cray/rur/rur2.conf -a 0
-j $JOBID -A jobtoken=$JOBID -A jobfile=$JOBFILE -N /tmp/

Where:
-C /etc/opt/cray/rur/rur2.conf

Is required to fully implement job scope RUR

$JOBFILE
User's job script file that may or may not contain DataWarp directives (#DW)

$JOBID
Job ID selected by the WLM. It is available to the WLM's prologue and epilogue scripts, but
implementation may vary between the various WLMs.

-N nidfile
Points to a file containing a list of the DataWarp node IDs (one node per line). Currently
RUR only addresses the DataWarp nodes within this list.

TIP: To run other job scope RUR plugins, it is necessary to add a second call to rur_prologue and
rur_epilogue scripts (with a different configuration file than used above) within the WLM prologue
and epilogue scripts, respectively.

2. Consult the specific WLM documentation to restart the WLM.

Next, refresh nodes to apply configuration changes.

6.21.5 Refresh Nodes with Updated Configuration Data

Prerequisites
This procedure assumes that configuration data has been changed.

Monitor the System

S2393 228

About this task
Whenever data in a global or CLE config set has been changed, it is necessary to update and validate that config
set and run cray-ansible on the SMW (for global config set changes) and any affected CLE nodes (for CLE
config set changes) in order to apply the configuration changes. If the system will be rebooted, the steps to run
cray-ansible are not needed because cray-ansible is run automatically when the system boots.

This procedure updates the CLE config set, if needed, validates it, then runs cray-ansible to refresh the config set
data stored on the CLE nodes. Using cfgset update ensures that all pre- and post-configuration scripts get
run. Running cray-ansible on a CLE node triggers a refresh of the CLE config set cache on that node and
applies configuration changes on the node. If the node will be rebooted, the step to run cray-ansible is not
needed because cray-ansible is run automatically when the system boots.

Procedure

1. (If cfgset update not already run) Update the config set.

smw# cfgset update p0

2. Validate the config set.

smw# cfgset validate p0

3. (If CLE nodes will not be rebooted) Run Ansible plays on the CLE nodes.

After the CLE config set has been updated, refresh the local config set cache to pull any config set changes to
the node and run cray-ansible to apply them on the node.

hostname# /opt/cray/imps-distribution/default/bin/refresh.py
hostname# /etc/init.d/cray-ansible start

6.21.6 Enable/Disable Plugins

About this task
RUR (cray_rur) configuration changes are done within the Cray configuration management framework.
Changes are made either during an interactive configurator session or by modifying the cray_rur worksheet.
The worksheet method is described in the procedure to initially enable and configure RUR. This procedure
invokes an interactive configurator session, which would likely be the method used when only enabling or
disabling plugins.

Procedure

1. Invoke an interactive configurator session.

This example shows that gpustat is enabled, taskstat is disabled, and dws is not defined, which renders
it disabled.

smw# cfgset update -m interactive -s cray_rur -l advanced p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_rur [status: enabled] [validation: valid]

Monitor the System

S2393 229

 Selected # Settings Value/Status (level=basic)

...
 gpustat
 10) enable True
 11) stage /opt/cray/rur/default/bin/gpustat_stage.py
 12) post default=/opt/cray/rur/default/bin/
 gpustat_post.py

 taskstats
 13) enable False
 14) stage /opt/cray/rur/default/bin/taskstats_stage.py
 15) post /opt/cray/rur/default/bin/taskstats_post.py
 16) arg json-dict
...
 dws
 31) enable [unconfigured, default=False]
 32) stage [unconfigured, default=/opt/cray/rur/default
 /bin/dws_stage.py]
 33) post [unconfigured, default=/opt/cray/rur/default
 /bin/dws_post.py]
...

2. Disable a plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 10
The setting is highlighted:

 gpustat
 * 10) enable True

b. Set enable to false.

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.gpustat.data.enable
[<cr>=keep 'true', <new value>, ?=help, @=less] $ false
The enable status changes.

 gpustat
 10) enable False

3. To enable a configured plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 13
The setting is highlighted:

 taskstat
 * 13) enable False

b. Set enable to true.

Monitor the System

S2393 230

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.taskstat.data.enable
[<cr>=keep 'false', <new value>, ?=help, @=less] $ true
The enable status changes.

 taskstat
 * 13) enable True

4. To enable an unconfigured plugin:

a. Select the number corresponding to its enable setting.

RUR service Menu [default: save & exit - Q] $ 31
The setting is highlighted:

 dws
 * 31) enable [unconfigured, default=False]

b. Set enable to true.

RUR service Menu [default: configure - C] $ C
...
ray_rur.settings.dws.data.enable
[<cr>=keep 'false', <new value>, ?=help, @=less] $ true
The enable status changes.

 dws
 * 31) enable True

c. Configure all of the plugin's other settings.

RUR service Menu [default: save & exit - Q] $ 32
RUR service Menu [default: configure - C] $ C
cray_rur.settings.dws.data.stage
[<cr>=set '/opt/cray/rur/default/bin/dws_stage.py', <new value>, ?=help,
@=less] $ <cr>
RUR service Menu [default: save & exit - Q] $ 33
RUR service Menu [default: configure - C] $ C
cray_rur.settings.dws.data.post
[<cr>=set '/opt/cray/rur/default/bin/dws_post.py', <new value>, ?=help,
@=less] $ <cr>

5. Save and exit the configurator.

RUR service Menu [default: save & exit - Q] $ Q

To apply these configuration changes, refresh the appropriate nodes with the updated config set.

6.21.7 The dws Data Plugin
The dws plugin collects the following DataWarp utilization statistics from compute nodes, if presesnt. This usage
data is available within the scope of an application, not the scope of a job. The data is written in JSON dictionary
format. Additional DataWarp usage data is available through the dws_server and dws_job_server plugins.

Monitor the System

S2393 231

bytes_read Number of bytes read

bytes_written Number of bytes written

files_created Number of files created

inodes_created Number of inodes created, including files, directories and links

max_read_offset Maximum byte offset read

max_write_offset Maximum byte offset written

RUR dws output

This example shows dws data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T13:27:32.662733-05:00 c0-1c0s8n0 RUR 16521
p0-20161006t064726 [RUR@34] uid: 12345, apid: 1140449, jobid:
1127.sdb, cmdname: /bin/hostname, plugin:dws {"token": "1127.sdb",
"mountpoint": "/var/opt/cray/dws/mounts/batch/1127.sdb/ss",
"inodes_created": 407, "files_created": 405, "bytes_read":
11207405004, "bytes_written": 6712208222, "max_read_offset":
4096024126, "max_write_offset": 21772241122}

6.21.8 The dws_job_server Data Plugin
The dws_job_server plugin collects utilization statistics from DataWarp servers, if present. This usage
information is within the scope of a job, not the scope of an application. The data is written in JSON dictionary
format. DataWarp server usage information within the scope of an application is available through the
dws_server plugin. Compute node usage of DataWarp is available through the dws plugin.

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

Monitor the System

S2393 232

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,
"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,

Monitor the System

S2393 233

"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

6.21.9 The dws_server Data Plugin
The dws_server plugin collects utilization statistics from DataWarp servers, if present. This usage information is
within the scope of an application, not the scope of a job. The data is written in JSON dictionary format. DataWarp
server usage information within the scope of a job is available through the dws_job_server plugin. Compute
node usage of DataWarp is available through the dws plugin.

Type scratch File Systems
The following data is collected for type=scratch file systems.

Per realm: dwtype Type of DataWarp file system (scratch)

namespace_count Number of namespaces within the realm

realm_id Realm ID

server_count Number of servers in the realm

server_hostname Server hostname

Per
fragment:

bytes_read Number of bytes read from this fragment

bytes_written Number of bytes written to this fragment

capacity_used Amount of file system capacity used

capacity_max Maximum capacity of fragment

files_created Number of files created in this realm

fs_capacity Capacity of file system to which this fragment belongs

max_window_write Maximum amount of data written during a write window period of time

write_high_water The largest amount of data written

write_limit Maximum bytes allowed to be written per fragment

write_moving_avg The average amount of data written during a write window period of time

Per
namespace:

namespace_id Namespace ID

bytes_read Number of bytes read from this namespace

bytes_written Number of bytes written to this namespace

files_create_threshold Maximum number of files allowed to be created within this
namespace

file_size_limit Maximum size (bytes) of one file

files_created Number of files created within this namespace

Monitor the System

S2393 234

max_offset_read Maximum byte offset read

max_offset_written Maximum byte offset written

num_data_created Total number of data files created on all DataWarp servers

stage_bytes_read Number of staged bytes read

stage_bytes_written Number of staged bytes written

stripe_size Size of each stripe (bytes)

stripe_width Number of stripes in this namespace

substripe_size Size of each substripe (bytes)

substripe_width Number of substripes in per stripe

RUR dws_server / dws_job_server output for type=scratch file systems

This example shows data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

uid: 12345, apid: 416746, jobid: 21268, cmdname: xio_p,
plugin:dws_server {{"realm": {"server_count": 1, "fragments": [{
{"capacity_used": 128648781824, "fs_capacity": 3296920076288,
"capacity_max": 128648781824, "max_window_write": 86400,
"files_created": 258, "write_high_water": 3407329284614,
"write_moving_avg": 3407329284614, "bytes_read": 3298534883328,
"write_limit": 32985348833280, "bytes_written": 3407329284614,
"server_hostname": "c0-0c1s1n1"], "namespaces": [{ "namespace_id":
9324, "stripe_width": 1, "stripe_size": 8388608, "bytes_read":
3298534883328, "substripe_width": 12, "stage_bytes_read": 0,
"substripe_size": 8388608, "max_offset_read": 1099511627776,
"files_created": 258, "bytes_written": 3407329284614,
"files_create_threshold": 0, "file_size_limit": 0,
"num_data_created": 258, "stage_bytes_written": 0,
"max_offset_written": 1099511627776 }], "realm_id": 3704}}

6.21.10 The energy Data Plugin
The energy plugin collects compute node energy usage data. The amount of data reported and the format in
which it is written is determined by the value of arg set for the energy plugin within the cray_rur service
settings.

If arg is not set or set to json-dict (default), the plugin reports the following extended energy data, written in
JSON dictionary format:

cpu_energy_used The total energy (joules) used by each node's CPU energy domain.

This statistic is nonzero only for nodes with Intel® Xeon Phi™ ("KNL"),
Xeon® Scalable ("Skylake"), or later generation processors.

error If a Python exception occurs during the post or staging scripts, the
following data is reported:

Monitor the System

S2393 235

traceback Stack frame list

type Python exception type

value Python exception parameter

nid NID on which exception occurred

cname cname on which exception occurred

memory_energy_used The total energy (joules) used by each node's memory energy domain.

This statistic is nonzero only for nodes with KNL, Skylake, or later
generation processors.

nodes Number of nodes in job.

nodes_cpu_throttled Number of nodes experiencing CPU power/thermal throttling.

nodes_memory_throttled Number of nodes experiencing memory power/thermal throttling.

nodes_power_capped Number of nodes with nonzero power cap.

nodes_throttled Number of nodes experiencing any of the following types of throttling:

● CPU power/thermal throttling

● Memory power/thermal throttling

nodes_with_changed_power_cap Number of nodes with power caps that changed during execution.

On nodes with accelerators, this value includes the number of
accelerators with power caps that changed.

max_power_cap Maximum nonzero power cap.

energy_used The total energy (joules) used across all nodes.

On nodes with accelerators, this value includes accel_energy_used,
the total energy used by the accelerators.

max_power_cap_count Number of nodes with the maximum nonzero power cap.

min_power_cap Minimum nonzero power cap.

min_power_cap_count Number of nodes with the minimum nonzero power cap.

On nodes with accelerators, the extended data also include the following data:

accel_energy_used Total accelerator energy (joules) used.

nodes_accel_power_capped Number of accelerators with nonzero power cap.

max_accel_power_cap Maximum nonzero accelerator power cap.

max_accel_power_cap_count Number of accelerators with the maximum nonzero power cap.

min_accel_power_cap Minimum nonzero accelerator power cap.

min_accel_power_cap_count Number of accelerators with the minimum nonzero power cap.

If arg contains the verbose option, a log per node is generated in addition to the standard summary log. The
verbose logs include the following data:

cname The cname of the node.

Monitor the System

S2393 236

nid The NID of the node.

energy_used The total energy (joules) on the node.

On nodes with an accelerator, this value includes accel_energy_used.

On nodes with KNL, Skylake, or later generation processors, this value includes
cpu_energy_used and cpu_memory_used.

cpu_energy_used The total energy (joules) used in the node's CPU energy domain.

This statistic is nonzero only for nodes with KNL, Skylake, or later generation
processors.

memory_energy_used The total energy (joules) used in the node's memory energy domain.

This statistic is nonzero only for nodes with KNL, Skylake, or later generation
processors.

cpu_throttled Nonzero if the node experienced CPU power/thermal throttling.

memory_throttled Nonzero if the node experienced memory power/thermal throttling.

start_power_cap Power cap at start of execution, if set.

stop_power_cap Power cap at end of execution, if set.

accel_energy_used Total accelerator energy (joules) used.

start_accel_power_cap Accelerator power cap at start of execution, if set.

stop_accel_power_cap Accelerator power cap at end of execution, if set.

changed_power_cap A power cap changed (includes changed accelerator power cap).

RUR extended energy output

This example shows extended energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T15:44:23.583598-05:00 c0-0c0s7n1 RUR 6048
p1-20160906t093257 [RUR@34] uid: 12345, apid: 18554, jobid: 0,
cmdname: /bin/cat, plugin: energy {"nodes_throttled": 0,
"memory_energy_used": 120,"min_accel_power_cap_count": 0,
"nodes_with_changed_power_cap": 0,"max_power_cap_count": 0,
"energy_used": 1214, "max_power_cap": 0,"nodes_memory_throttled": 0,
"accel_energy_used": 0,"max_accel_power_cap_count": 0,
"nodes_accel_power_capped": 0,"min_power_cap": 0,
"max_accel_power_cap": 0, "min_power_cap_count":
0,"min_accel_power_cap": 0, "nodes_power_capped": 0, "nodes": 4,
"cpu_energy_used": 752, "nodes_cpu_throttled": 0}

If arg is set to json-list (deprecated), the plugin reports the following, written in JavaScript Object Notation
(JSON) list format:

energy_used The total energy (joules) used across all nodes.

On nodes with accelerators, this value includes accel_energy_used, the total energy used by
the accelerators.

Monitor the System

S2393 237

On nodes with KNL, Skylake, or later generation processors, this value includes
cpu_energy_used and cpu_memory_used, the total energy used by the CPU and memory
energy domains.

RUR energy output using json-list (deprecated)

This example shows default energy data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-01-30T11:19:06.545114-05:00 c0-0c0s2n2 RUR 18657
p2-20130829t090349 [RUR@34] uid: 12345, apid: 10963, jobid: 0,
cmdname: /opt/intel/vtune_xe_2013/bin64/amplxe-cl plugin: energy
['energy_used', 318]

6.21.11 The gpustat Data Plugin
The gpustat plugin collects the following utilization statistics for NVIDIA GPUs, if present. The data is written in
JSON list format.

maxmem Maximum memory used across all nodes

summem Total memory used across all nodes

gpusecs Time spent processing on GPUs

RUR gpustat output

This example shows gpustat data as written
in /var/opt/cray/log/partition-current/messages-date on the SMW.

2017-02-03T15:50:42.761257-05:00 c0-0c0s2n2 RUR 11329
p2-20130709t145714 [RUR@34] uid: 12345, apid: 8410, jobid: 0,
cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000, 'summem',
108000, 'gpusecs', 44]

6.21.12 The memory Data Plugin
The memory plugin collects information from /proc and /sys that is useful when assessing the memory
performance of an application or job. The data is written in JSON dictionary format. The type of data reported is
determined by the value of arg set for the memory within the cray_rur service settings.

IMPORTANT: The memory plugin does not provide consolidated information for all nodes within an
application; instead it reports memory statistics for each node within the application. This can result in a
large amount of RUR output data for systems of even modest size. When the memory plugin is enabled, it
produces a significant amount of output.

If arg is not set (default), the plugin reports the following data:

%_of_boot_mem The % of boot memory for each order chunk in /proc/buddyinfo summed across all
memory zones

Monitor the System

S2393 238

Active(anon) Total amount of memory in active use by the application

Active(file) Total amount of memory in active use by cache and buffers

boot_freemem Contents of /proc/boot_freemem
current_freemem Contents of /proc/current_freemem
free Number of hugepages that are not yet allocated

hugepages-sizekB The hugepage size for the select entries
from /sys/kernel/mm/hugepages/hugepages-*kB/*

Inactive(anon) Total amount of memory that is candidate to be swapped out

Inactive(file) Total amount of memory that is candidate to be dropped from cache

nr Number of hugepages that exist at this point

resv Number of hugepages committed for allocation, but no allocation has occurred

Slab Total amount of memory used by the kernel

surplus Number of hugepages above nr

RUR default memory output

This example shows the default memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

2017-02-03T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"%_of_boot_mem": ["67.23", "67.23", "67.23", "67.22", "67.21",
"67.18", "67.11", "67.04", "66.94", "66.83", "66.77", "66.66",
"66.53", "66.38", "65.87", "65.07", "63.05", "61.43"], "nid": "8",
"cname": "c0-0c0s2n0", "boot_freemem": 32432628}

If arg is set to extended_buddy, the output relating to /proc/buddyinfo includes NUMA node granularity
information in addition to the existing node granularity information. This information is useful when troubleshooting
certain fragmentation related issues.

RUR extended memory output

This example shows extended memory data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-02-03T11:37:24.480982-05:00 c0-0c0s0n2 RUR 23710
p0-20140321t091957 [RUR@34] uid: 12345, apid: 33079, jobid: 0,
cmdname: /bin/hostname, plugin: memory {"current_freemem": 21858372,
"meminfo": {"Active(anon)": 35952, "Slab": 105824, "Inactive(anon)":
1104}, "hugepages-2048kB": {"nr": 5120, "surplus": 5120},
"Node_0_zone_DMA": ["0.05", "0.05", "0.05", "0.05", "0.05", "0.05",
"0.05", "0.05", "0.05", "0.04", "0.04", "0.03", "0.00", "0.00",
"0.00", "0.00", "0.00", "0.00"],"%_of_boot_mem": ["67.23", "67.23",
"67.23", "67.22", "67.21", "67.18", "67.11", "67.04", "66.94",
"66.83", "66.77", "66.66", "66.53", "66.38", "65.87", "65.07",
"63.05", "61.43"], "nid": "8", "cname": "c0-0c0s2n0", "boot_freemem":

Monitor the System

S2393 239

32432628, "Node_0_zone_DMA32": ["6.07", "6.07", "6.07", "6.07",
"6.07", "6.07", "6.07", "6.06", "6.05", "6.04", "6.01", "5.94",
"5.86", "5.76", "5.46", "4.85", "3.23", "3.23"], "Node_0_zone_Normal":
["61.11", "61.11", "61.11", "61.11", "61.09", "61.07", "60.99",
"60.93", "60.84", "60.75", "60.72", "60.70", "60.67", "60.62",
"60.42", "60.22", "59.81", "58.20"]}

6.21.13 The nodeuse Data Plugin
The nodeuse plugin collects the following compute node usage data within the scope of an application. The data
is written in JSON dictionary format.

nodes Number of nodes reserved

nidlist NIDs of the reserved nodes

RUR nodeuse output

This example shows nodeuse data as written
to /var/opt/cray/log/partition-current/messages-date on the SMW:

2017-01-08T15:44:23.583598-05:00 uid: 12345, apid: 35489, jobid: 0,
cmdname: /usr/bin/df, plugin: nodeuse {"nodes": 6, "nidlist":
"36-38, 40-41, 43"}

6.21.14 The taskstats Data Plugin
The taskstats plugin collects process accounting data. The amount of data reported and the format in which it
is written is determined by the value of arg set for the taskstats plugin within the cray_rur service settings.

If arg is not set or set to json-dict (default), the plugin reports the following basic process accounting data
similar to that provided by UNIX process accounting or getrusage. This data is written in JSON dictionary
format. If arg is set to json-list (deprecated), the data is written in JSON list format.

These values are sums across all nodes, except for the max_rss, which is the maximum value of any individual
process across all nodes.

core Set to 1 if core dump occurred

exitcode Lists all unique exit codes

max_rss Maximum value used by any individual process across all nodes

rchar Characters read by process

stime System time

utime User time

wchar Characters written by process

Monitor the System

S2393 240

RUR taskstats output

This example shows taskstats output as written
to /var/opt/cray/log/partition-current/messages-date on the SMW.

For a job that exits normally:

2017-02-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20161101t153028 [RUR@34] uid: 12345, apid: 86989, jobid: 0,
cmdname: /lus/tmp/rur01.2338/./CPU01-2338 plugin: taskstats {"utime":
10000000, "stime": 0, "max_rss": 940, "rchar": 107480, "wchar": 90,
"exitcode:signal": ["0:0"], "core": 0}
For a job that core dumps:

2017-02-02T11:12:45.020716-05:00 c0-0c1s1n2 RUR 3731
p0-20131101t153028 [RUR@34] uid: 12345, apid: 86996, jobid: 0,
cmdname: /lus/tmp/rur01.3657/./exit04-3657 plugin: taskstats {"utime":
4000, "stime": 144000, "max_rss": 7336, "rchar": 252289, "wchar": 741,
"exitcode:signal": ["0:9", "139:0", "0:11", "0:0"], "core": 1}

If arg is set to xpacct, the plugin also provides the following extended process accounting data similar to that
which was collected by the deprecated Cray System Accounting (CSA).

abortinfo If abnormal termination occurs, a list of abort_info fields is reported

apid Application ID as defined by application launcher

bkiowait Total delay time (ns) waiting for synchronous block I/O to complete

btime UNIX time when process started

comm String containing process name. May be different than the header, which is the process run by the
launcher.

coremem Integral of RSS used by process in MB-usec

ecode Process exit code

etime Total elapsed time in microseconds

gid Group ID

jid Job ID - the PAGG job container used on the compute node

majfault Number of major page faults

minfault Number of minor page faults

nice POSIX nice value of process

nid String containing node ID

pgswapcnt Number of pages swapped; should be 0 on Cray compute nodes

pid Process ID

2 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

S2393 241

pjid Parent job ID - the PAGG job container on the MOM node

ppid Parent process ID

prid Job project ID

rcalls Number of read system calls

rchar Characters read by process

rss RSS highwater mark

sched Scheduling discipline used on node

uid User ID

vm Integral of virtual memory used by process in MB-usecs3

wcalls Number of write system calls

wchar Characters written by process

RUR extended taskstats output

This example shows RUR extended taskstats output:

2017-02-03T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats {"btime": 1386061749, "etime":
8000, "utime": 0, "stime": 4000, "coremem": 442, "max_rss": 564,
"max_vm": 564, "pgswapcnt": 63, "minfault": 15, "majfault": 48,
"rchar": 2608, "wchar": 686, "rcalls": 19, "wcalls": 7, "bkiowait":
1000, "exitcode:signal": [0], "core": 0]

If arg is set to xpacct, per-process, the plugin reports extended accounting data for every compute node
process rather than a summary of all processes for an application. per-process must be set in combination with
xpacct.

CAUTION: If per-process is set and many processes are run on each node, the volume of data
generated and stored on disk can become an issue.

RUR per-process taskstats output

This example shows RUR per-process taskstats output.

2017-02-03T13:25:34.446167-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12345, "wcalls": 37,
"pid": 2997, "vm": 16348, "jid": 395136991233, "bkiowait": 1201616,
"majfault": 1, "etime": 0, "btime": 1386098731, "gid": 0, "ppid":
2992, "utime": 0, "nice": 0, "sched": 0, "nid": "92", "prid": 0,
"comm": "mount", "stime": 4000, "wchar": 3465, "rss": 1028,
"minfault": 352, "coremem": 1109, "ecode": 0, "rcalls": 22, "pjid":

3 The current memory usage is added to these counters (i.e., coremem, vm) every time. A tick is charged to a
task's system time. Therefore, at the end we will have memory usage multiplied by system time and an
average usage per system time unit can be calculated.

Monitor the System

S2393 242

7045, "pgswapcnt": 0, "rchar": 12208}

2017-02-03T13:25:34.949138-06:00 c0-0c2s0n2 RUR 7623
p3-20131202t090205 [RUR@34] uid: 12345, apid: 1560, jobid: 0,
cmdname: ./it.sh, plugin: taskstats {"uid": 12345, "wcalls": 0, "pid":
2998, "vm": 20268, "jid": 395136991233, "bkiowait": 0, "majfault": 0,
"etime": 0, "btime": 1386098731, "gid": 0, "ppid": 2992, "utime": 0,
"nice": 0, "sched": 0, "nid": "92", "prid": 0, "apid": 1560, "comm":
"ls", "stime": 4000, "wchar": 0, "rss": 1040, "minfault": 360,
"coremem": 3140, "ecode": 0, "rcalls": 19, "pjid": 7045, "pgswapcnt":
0, "rchar": 10629}

6.21.15 The timestamp Data Plugin
The timestamp plugin collects the start and end times of an application or job.

RUR timestamp output

This example shows timestamp data, as written
in /var/opt/cray/log/partition-current/messages-date on the SMW, for an
application that slept 20 seconds:

2017-01-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 12345, apid: 6640, jobid: 0,
cmdname: /bin/sleep plugin: timestamp APP_START 2013-08-30T14:31:46CDT
APP_STOP 2013-08-30T14:32:06CDT

6.21.16 The file Output Plugin
The file plugin allows RUR data to be stored to a flat text file on any file system to which the login node can
write. This plugin is also intended as a very simple guide for anyone interested in writing an output plugin.

This example shows sample output from file to a location defined in the RUR configuration file:

uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/dostuff plugin:
taskstats ['utime', 32000, 'stime', 132000, 'max_rss', 1736, 'rchar',
44524, 'wchar', 289] uid: 1000, apid: 8410, jobid: 0, cmdname: /tmp/
dostuff plugin: energy ['energy_used', 24551] uid: 1000, apid: 8410,
jobid: 0, cmdname: /tmp/dostuff plugin: gpustats ['maxmem', 108000,
'summem', 108000]

6.21.17 The llm Output Plugin
The llm plugin aggregates log messages from various Cray nodes and places them on the SMW. llm has its
own configuration options, but typically it will place RUR messages into the messages log
file /var/opt/cray/log/partition-current/messages-date on the SMW. The messages shown in the
previous sections are in LLM log format.

Monitor the System

S2393 243

6.21.18 The user Output Plugin
The user plugin writes RUR output for a user's application to the user's home directory (default) or a user-defined
location, only if the user has indicated that this behavior is desired (as described below).

The naming of the default output file(s), rur.suffix, is dependent on the value of the argument arg, which
defines a report type and is set in the user section of the RUR configuration file. If arg is set to:

apid An output file is created for each application executed and suffix is the apid.

jobid An output file is created for each job submitted and suffix is the jobid
single All output is placed in a single file and no suffix is appended to the output file name.

User Options
Users have the option to opt-in or out for the user plugin, redirect plugin output to a specific file or directory, or
override the default report type.

● By default, RUR data is written to a user's directory. A user must either create the file
~/.rur/user_output_optin to indicate that data should be written, or create a file that initiates one of the
following two options.

1. Users may redirect the output of RUR by specifying a redirect location in
~/.rur/user_output_redirect. The contents of this file must be a single line that specifies the
absolute or relative (from the user's home directory) path of the directory or file to which the RUR output
data is to be written. If the redirect file either does not exist, points to a path that does not exist, or points
to a path to which the user does not have write permission, then the output is written to the user's home
directory.

2. A user with an existing ~/.rur/user_output_redirect file can temporarily stop RUR data from
being written by setting the redirect path to /dev/null.

● Additionally, the user may override the default report type by specifying a valid report type in
~/.rur/user_output_report_type. Valid report types are apid, jobid, or single, resulting in the
user's RUR data being written to one file per application, one file per job, or a single file, respectively. If the file
~/.rur/user_output_report_type is empty or contains an invalid type, then the default report type, as
defined in the configuration file, is created.

6.21.19 The database Example Output Plugin
The database plugin is provided as a guide for sites wanting to output RUR data to a site-supplied database.
Sites will need to configure their own systems, provide an external database, create their own tables, and modify
database_output.py to collect the desired data.

MySQL is the database supported by the example plugin. The following arguments are defined for connecting to a
database:

● DB_NAME='rur'
● DB_USER='rur_user'
● DB_PASS='rur_pass'
● DB_HOST='rur_host'

Monitor the System

S2393 244

The database plugin collects the values: energy_used, apid, jobid, and uid, and saves this data to a
table, energy. It does this by performing the following:

● Digests RUR data into a dictionary and saves it to class DbData
● Creates rules for saving data collected in DbData to particular tables

● Uses the rules to scan the DbData dictionary and INSERT that data into a database

Cray recommends that the database is not hosted on SDB or login nodes. It should also be noted that,
depending on job load, interacting with an external database may cause system latency.

6.21.20 Create Custom RUR Data Plugins
A data plugin is comprised of a staging component and a post processing component. The data plugin staging
component is called by rur-stage.py on the compute node prior to the application/job running and again after
the application/job has completed. The staging component may reset counters before application/job execution
and collect them after application/job completion, or it may collect initial and final values prior to and after
application/job execution, respectively, and then calculate the delta values. Python functions have been defined to
simplify writing plugins, although it is not necessary for the plugin to be written in Python. The interface for the
data plugin staging component is through command line arguments.

Data Plugin Staging Component
All data plugin staging components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--pre Indicates the plugin is being called prior to the application/job.

--post Indicates the plugin is being called after the application/job.

--outputfile=output_file Defines where the output data is written. Each plugin should define a default
output file in /var/spool/RUR/ if this argument is not provided.

--arg=arg A plugin-specific argument, set in the RUR config file. RUR treats this as an
opaque string.

The output of an RUR data plugin staging component is a temporary file located in /var/spool/RUR on the
compute node. The file name must include both the name of the plugin, as defined in the RUR config file,
and .apid. The RUR gather phase will automatically gather the staged files from all compute nodes after the
application/job has completed and place it in gather_dir as defined in the configuration file.

Data plugin staging component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin staging component
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():

Monitor the System

S2393 245

 apid, inputfile, outputfile, timeout, pre, post, \
 parg = rur_plugin_args(sys.argv[1:])
 if outputfile is "":
 outputfile = "/var/spool/RUR/pluginname."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 write_postapp_stateto(outputfile)

if __name__ == "__main__":
 main()

Data Plugin Post Processing Component
A data plugin also requires a post processing component that processes the data staged by the staging
component and collected during the RUR gather phase. The post processing component is called by
rur-post.py. The input file contains records, one node per line, of all of the statistics created by the staging
component. The output of the post processing component is a file containing the summary of data from all
compute nodes.

All data plugin post processing components must support the following arguments:

--apid=apid Defines the application ID of the running application.

--timeout=time Defines a timeout period in seconds during which the plugin must finish
running. Set to 0 for unlimited; default is unlimited.

--inputfile=input_file Specifies the file from which the plugin gets its input data.

--outputfile=output_file Specifies the file to which the plugin writes its output data.

Data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample data plugin post processing component
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile is "":
 outputfile = inputfile + ".out"

 pc = PostCompute()
 pc.process_file(inputfile)
 formated = pc.present_entries([('plugin_foo_data','sum')])
 fout=open(outputfile, 'w+')
 fout.write("energy %s" % formated)

if __name__ == "__main__":
 main()

Monitor the System

S2393 246

6.21.21 Create Custom RUR Output Plugins
Output plugins allow RUR data to be outputted to an arbitrary backing store. This can be a storage device or
another piece of software that then consumes the RUR data. The output plugin is passed a number of command
line arguments that describe the application/job run and provide a list of input working files (the output of data
plugin post processing components). The plugin takes the data in the working files and exports it to the
destination specified in the RUR configuration file for the specific output plugin.

Data passed to custom output plugins can be optionally configured to be JSON-formatted by adding the
use_json argument to the [global] section of the configuration file and setting it to
True, yes, 1, or enable.

TIP: If there is an error from an output plugin, the error message appears in the ALPS
log /var/opt/cray/alps/log/apsys on the service node rather than the LLM logs on the SMW.

Output Plugin

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
Sample output plugin
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_output_args

def main():
 apid, jobid, uid, cmdname, inputfilelist, timeout, \
 parg = rur_output_args(sys.argv[1:])

 outfile = open(parg, "a")
 for inputfile in inputfilelist:
 infile = open(inputfile, "r")
 lines = infile.readlines()
 for line in lines:
 outfile.write(line)
 infile.close()
 outfile.close()

6.21.22 Implement a Site-Written RUR Plugin

About this task
For a site written plugin to run, it must be added to the cray_rur service settings and enabled.

Procedure

1. Ensure that the site written plugin is located on a file system that is readable by compute nodes, owned by
root, and not writeable by non-root users.

2. Invoke an interactive configurator session.

Monitor the System

S2393 247

smw# cfgset update -m interactive -s -l interactive cray_rur p0
Service Configuration Menu (Config Set: p0, type: cle)

 cray_rur [status: enabled] [validation: valid]

 Selected # Settings Value/Status (level=basic)

...
 42) data_plugins [5 sub-settings unconfigured, select
 and enter C to add entries]
 43) output_plugins [4 sub-settings unconfigured, select
 and enter C to add entries]

3. Add a site-written data plugin.

a. Select the number corresponding to the data_plugins setting.

RUR service Menu [default: save & exit - Q] $ 42
The setting is highlighted:

 * 42) data_plugins True
b. Add a data plugin name.

RUR service Menu [default: configure - C] $ C
...
cray_rur.settings.data_plugins
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
cray_rur.settings.data_plugins.data.plugin_name
[<cr>=set '', <new value>, ?=help, @=less] $ sitedataplug

c. Add the complete path to the data plugin's staging script.

cray_rur.settings.data_plugins.data.sitedataplug.stage
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/default/bin/
sitedataplug_stage.py

d. Add the complete path to the data plugin's post script.

cray_rur.settings.data_plugins.data.sitedataplug.post
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/default/bin/
sitedataplug_post.py

e. (Optional) Add a data plugin argument arg.

cray_rur.settings.data_plugins.data.sitedataplug.arg
[<cr>=set 'none', <new value>, ?=help, @=less] $ <cr>

f. Enable the data plugin.

cray_rur.settings.data_plugins.data.sitedataplug.enable
[<cr>=set 'true', <new value>, ?=help, @=less] $ <cr>
The configured values are displayed:

 1) 'sitedataplug'
 a) stage: /opt/cray/rur/default/bin/sitedataplug_stage.py
 b) post: /opt/cray/rur/default/bin/sitedataplug_post.py

Monitor the System

S2393 248

 c) arg: none
 d) enable: True

g. Set the completed data plugin entry.

cray_rur.settings.data_plugins
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>
The data_plugins setting is updated.

 42) data_plugins
 plugin_name: sitedataplug [OK]

4. Add a site-written output plugin.

a. Select the number corresponding to the output_plugins setting.

RUR service Menu [default: save & exit - Q] $ 43
The setting is highlighted:

 * 43) output_plugins True
b. Add an output plugin name.

RUR service Menu [default: configure - C] $ C
...
cray_rur.settings.output_plugins
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
cray_rur.settings.output_plugins.data.plugin_name
[<cr>=set '', <new value>, ?=help, @=less] $ siteoutplug

c. Add the path to the output plugin script or binary.

cray_rur.settings.output_plugins.data.siteoutplug.output
[<cr>=set 'none', <new value>, ?=help, @=less] $ /opt/cray/rur/site/bin/
siteoutplug_output.py

d. (Optional) Add an output plugin argument arg.

cray_rur.settings.output_plugins.data.siteoutplug.arg
[<cr>=set 'none', <new value>, ?=help, @=less] $ <cr>

e. Enable the output plugin.

cray_rur.settings.output_plugins.data.siteoutplug.enable
[<cr>=set 'true', <new value>, ?=help, @=less] $ <cr>
The configured values are displayed:

 1) 'siteoutplug'
 a) output: /opt/cray/rur/site/bin/siteoutplug_output.py
 b) arg: none
 c) enable: True

f. Set the completed output plugin entry.

cray_rur.settings.output_plugins
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>

Monitor the System

S2393 249

The output_plugins setting is updated.

 42) output_plugins
 plugin_name: siteoutplug [OK]

5. Save and exit the configurator.

RUR service Menu [default: save & exit - Q] $ Q

To apply these configuration changes, refresh the appropriate nodes with the updated config set.

6.21.23 Additional Plugin Examples
This is a set of RUR plugins that report information about the number of available huge pages on each node. The
huge page counts are reported in /proc/buddyinfo. There are two versions of the staging component: one
that reports what is available and the second that reports changes during the application run.

Huge pages data plugin staging component (version A)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#
Each node reports its nid and the number of available pages of
each size.
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 zero_counters()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0), ('16M',
0), ('32M', 0), ('64M', 0)])

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

Monitor the System

S2393 250

 o = open(outputfile, "w")
 o.write("{6} {0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'], sizes['64M'], nid))
 o.close()

if __name__ == "__main__":
 main()

Huge pages data plugin staging component (version B)

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is an RUR plugin that reports information about the number of
available
huge pages on each node. This is reported in /proc/buddyinfo.
#
This plugin records the number of available pages before the job
is launched.
At job completion time it reports the change
#
#!/usr/bin/env python
import sys, os, getopt
from rur_plugins import rur_plugin_args
def main():
 apid, inputfile, outputfile, timeout, pre, post, parg
=rur_plugin_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = "/var/spool/RUR/buddyinfo."+str(apid)
 if (pre==1):
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])
 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 o = open("/tmp/buddyinfo_save", "w")
 o.write("{0} {1} {2} {3} {4}
{5}".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M']))
 o.close()
 else:
 nidf = open("/proc/cray_xt/nid", "r")
 n = nidf.readlines()
 nid = int(n[0])
 inf = open("/proc/buddyinfo", "r")
 b = inf.readlines()
 sizes = dict([('2M' , 0), ('4M', 0), ('8M', 0),
('16M', 0), ('32M', 0), ('64M', 0)])

Monitor the System

S2393 251

 for line in b:
 l = line.split()
 sizes['2M'] += int(l[13])
 sizes['4M'] += int(l[14])
 sizes['8M'] += int(l[15])
 sizes['16M'] += int(l[16])
 sizes['32M'] += int(l[17])
 sizes['64M'] += int(l[18])

 obf = open("/tmp/buddyinfo_save", "r")
 ob = obf.readlines()
 n=0

 obd0 = ob[0]
 obd = obd0.split()

 diff = [
 (int(obd[0]) - sizes['2M']),
 (int(obd[1]) - sizes['4M']),
 (int(obd[2]) - sizes['8M']),
 (int(obd[3]) - sizes['16M']),
 (int(obd[4]) - sizes['32M']),
 (int(obd[5]) - sizes['64M'])
]

 o = open(outputfile, "w")
 # uncomment the following line to get the actual sizes
 #o.write("sizes {6} {0} {1} {2} {3} {4}
{5}\n".format(sizes['2M'],sizes['4M'], \
 sizes['8M'], sizes['16M'], sizes['32M'],
sizes['64M'], nid))
 o.write("diff {6} {0} {1} {2} {3} {4} {5}".format(diff[0],
diff[1], diff[2], \
 diff[3], diff[4], diff[5], nid))
 o.close()
 os.unlink("/tmp/buddyinfo_save")

if __name__ == "__main__":
 main()

Huge pages data plugin post processing component

#
Copyright (c) 2013 Cray Inc. All rights reserved.
#
This is a RUR postprocessing pluging for the buddyinfo data
collection. It copies the input files to output, adding a
"buddyinfo" label.
#
#!/usr/bin/env python
import sys, os
from rur_plugins import rur_args

def main():
 apid, inputfile, outputfile, timeout = rur_args(sys.argv[1:])
 if outputfile == 0:
 outputfile = inputfile + ".out"

Monitor the System

S2393 252

 fin=open(inputfile, "r")
 l = fin.readlines()

 fout=open(outputfile, 'w+')
 for line in l:
 fout.write("buddyinfo {0}".format(line))

if __name__ == "__main__":
 main()

6.21.24 Application Completion Reporting (ACR) to RUR Migration Tips
Cray supplied RUR data plugins collect the same data found in Mazama's Application Completion Reporting
(ACR) feature (deprecated), but RUR does not include a reporting utility like mzreport. When using RUR's llm
output plugin, the type of data reported by mzreport can be extracted from the output files as demonstrated in
the following sections.

ACR Job Reporting
The information provided by mzreport -j and mzreport --job can easily be obtained in the RUR
environment from the log files /var/opt/cray/log/partition-current/messages-date by invoking the
following command:

smw# grep -e "RUR" messages-* |grep -e "jobid: jobid"

ACR Timespan Reporting
In ACR, mzreport -t and mzreport -T control the span of time over which job completions are reported. The
following example is a simple Python script, timesearch.py, that provides this functionality.

#cat timesearch.py
#!/usr/bin/env python
for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if (rurline.split(' ')[1] > sys.argv[2]) and (rurline.split(' ')[1] <
sys.argv[3]):
 print rurline

The script is called with the log file of interest and the desired start/stop time stamps, where start_time and
end_time are formatted as "yyyy-mm-ddThh:mm:ss", as follows:

smw# python ./timesearch.py messages-date "start_time" "end_time"

ACR Exit Code Reporting
The get_exit.py Python script listed here provides a list of the user IDs with the most non-zero exit codes.

cat get_exit.py
#!/usr/bin/env python
import os,sys,re

statre = re.compile("'(\w*):(\w*)',\s*\[('(\w*):(\w*)'(,)?)+\]")
statsre = re.compile("(\w*):(\w*)")

Monitor the System

S2393 253

uidre = re.compile("uid:\s*(\w*)")
cnt = {}

for rurline in [line for line in open(sys.argv[1], 'r') if 'RUR' in line]:
 if 'taskstats' in rurline:
 sus = statre.search(rurline)
 status = sus.group()
 stats = statsre.findall(status)
 for stat in stats[1:]:
 if stat[0] != '0':
 uid = int(uidre.findall(rurline)[0])
 if cnt.get(str(uid)):
 cnt[str(uid)] += 1
 else:
 cnt[str(uid)] = 1

x = sorted(cnt, key = cnt.get, reverse=True)
print "uids with the most non-zero exit codes %s" % x[:sys.argv[2]]

The script is called with the log file of interest and the number of user IDs on which to report, as follows:

smw# python ./get_exit.py messages-date num

6.21.25 Application Resource Utilization (ARU) to RUR Migration Tips
Sites that use ARU (deprecated) will have an easy transition to RUR as all of the data provided in ARU is
available in RUR, but in a slightly different format.

This example shows that the following ARU output is available by enabling the taskstats
plugin's default behavior:

ARU output:

2012-11-26T08:52:37.802113-06:00 c0-0c0s0n2 apsys 19864
p0-20121126t060549 -
apid=6240364, Finishing, user=8855, batch_id=114.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3168 inblocks=0 outblocks=0
cpus=8
start=Mon Nov 26 08:52:37 2012 stop=Wed Dec 31 18:00:00 1969
cmd=growfiles
RUR taskstats default output:

2013-11-02T11:09:49.457770-05:00 c0-0c1s1n2 RUR 2417
p0-20131101t153028 [RUR@34]
uid: 10973, apid: 86989, jobid: 0, cmdname: /lus/esfs/overby/
rur01.2338/./CPU01-2338
plugin: taskstats ['utime', 10000000, 'stime', 0, 'max_rss', 940,
'rchar', 107480,
'wchar', 90, 'exitcode:signal', ['0:0'], 'core', 0]

This example shows that the following ARU output is available by enabling the RUR timestamp
plugin.

Monitor the System

S2393 254

ARU output:

2012-11-26T08:53:15.618239-06:00 c0-0c0s0n2 apsys 20604
p0-20121126t060549 -
apid=6240378, Finishing,user=8855, batch_id=121.sdb, exit_code=0,
exitcode_array=0,
exitsignal_array=0, utime=0 stime=0 maxrss=3152 inblocks=0 outblocks=0
cpus=1
start=Mon Nov 26 08:52:51 2012 stop=Wed Dec 31 18:00:00 1969
cmd=close2_01
RUR timestamp plugin output:

2013-08-30T14:32:07.593469-05:00 c0-0c0s5n2 RUR 12882
p3-20130830t074847 [RUR@34] uid: 0,
apid: 6640, jobid: 0, cmdname: /bin/sleep plugin: timestamp APP_START
2013-08-30T14:31:46CDT APP_STOP 2013-08-30T14:32:06CDT

6.21.26 CSA to RUR Migration Tips
The Cray supplied RUR data plugin taskstats, when enabled and configured for extended accounting data,
collects all of the data in the CSA process accounting record with the exception of ac_sbu, the system billing
units.

RUR extended taskstats output

This example shows RUR extended taskstats output:

2017-02-03T10:29:38.285378-05:00 c0-0c0s1n1 RUR 24393
p1-20131018t081133 [RUR@34] uid: 12345, apid: 370583, jobid: 0,
cmdname: /bin/cat, plugin: taskstats {"btime": 1386061749, "etime":
8000, "utime": 0, "stime": 4000, "coremem": 442, "max_rss": 564,
"max_vm": 564, "pgswapcnt": 63, "minfault": 15, "majfault": 48,
"rchar": 2608, "wchar": 686, "rcalls": 19, "wcalls": 7, "bkiowait":
1000, "exitcode:signal": [0], "core": 0]

RUR does not include the report generation capabilities provided by CSA, however, the type of data reported by
CSA can be extracted from the messages files on the SMW. The following is a short Python script for searching
through these files. It allows filtering for group ID (-g), job ID (-j), user ID (-u), and system time exceeding a
certain value (-s); similar to the csacom filters -g, -j, -u, -O, respectively.

#!/usr/bin/env python
Usage: filter-messages [-g gid] [-j jid] [-u uid] [-s stime] -f messages-date
import os,sys,re,getopt,collections

def getcmdlineargs(args):
 arglist = collections.defaultdict(lambda: 0, {})
 options, remainder = getopt.getopt(args,
 'g:j:u:s:f:',
 ['gid=', 'jid=', 'uid=', 'Stimeexceeds=', 'filename='])

 for opt,arg in options:
 if opt in ('-g', '--gid'):
 arglist['gid'] = arg

Monitor the System

S2393 255

 if opt in ('-j', '--jid'):
 arglist['jid'] = arg
 if opt in ('-u', '--uid'):
 arglist['uid'] = arg
 if opt in ('-s', '--Stimeexceeds'):
 arglist['stimeexceeds'] = arg
 if opt in ('-f', '--filename'):
 arglist['filename'] = arg
 return arglist

def reeqgt(tag, restr, rurline, eq):
 retre = re.compile("'" + str(restr) + "'," + "\s*(\w*)")
 field = retre.findall(rurline)
 if field == []:
 return False
 if eq and tag == field[0]:
 return True
 elif (not eq) and tag <= field[0]:
 return True
 return False

arglist = getcmdlineargs(sys.argv[1:])
if not arglist['filename']:
 exit(1)
for rurline in [line for line in open(arglist['filename'], 'r') if 'RUR' in
line]:
 if 'taskstats' in rurline:
 if arglist['jid'] and not (reeqgt(arglist['jid'], 'jid', rurline, 1)):
 continue
 if arglist['uid'] and not (reeqgt(arglist['uid'], 'uid', rurline, 1)):
 continue
 if arglist['gid'] and not (reeqgt(arglist['gid'], 'gid', rurline, 1)):
 continue
 if arglist['stimeexceeds'] and not (reeqgt(arglist['stimeexceeds'],
'stime',
 rurline, 0)):
 continue

 print "%s" % rurline,

6.22 Linux System Accounting Tips
Although Resource Utilization Reporting (RUR) is the Cray-specific (and recommended) administrator tool for
gathering statistics on how system resources are being used by applications or jobs, some site may choose to run
traditional Linux accounting. This topic is a venue for sharing tips or tricks that Cray is aware of related to running
Linux accounting on an XC Series system.

Linux Accounting on Service Nodes
Linux process accounting is not enabled by default on Cray service or compute nodes. If a site chooses to enable
process accounting, the Linux kernel writes a process accounting record at each process exit. These records are
written into a pacct binary data file (e.g., /var/log/pacct). When /var is mounted from the Cray boot RAID,
the /var/log/pacct file writes can result in a heavy I/O load, which may cause issues with other accesses to
files and directories on the boot RAID, including node crashes.

Monitor the System

S2393 256

Cray recommends the following:

● the pacct file location is defined to be within a node local directory

● The pacct file is regularly switched to a new pacct file through ckpacct so that the prior local, non-persistent
pacct file can be copied to a persistent location

The pacct files copied to a persistent location can later be used to generate accounting reports.

Monitor the System

S2393 257

7 Modify an Installed System

7.1 Configure Boot Node Failover

Prerequisites
Boot node failover requirements:

● Both the boot node and the backup boot node must have a Fibre Channel or SAS connection to the boot
RAID.

● Both the boot node and the backup boot node must have an Ethernet connection to the network shared with
the SMW in order to PXE boot and transfer data as a tier1 node.

● The primary and backup nodes must not be on the same blade.

● The boot and SDB nodes must not be on the same blade.

CAUTION: The system will fail if a blade containing both the boot node and the SDB node fails, because
Cray does not support concurrent failover of boot and SDB nodes. Therefore, the boot and SDB nodes
and their backups (for boot/SDB node failover) must be on different blades.

The system must be shut down before invoking the xtcli halt command, which is used in this procedure.

About this task
If a secondary (backup) boot node is configured, boot node failover will occur automatically if the primary boot
node fails. This procedure configures the system for boot node failover. If boot node failover was configured
during an SMW/CLE software installation or update, this procedure is not needed.

For the examples in this procedure, the cname of the primary boot node is c0-0c0s4n1, and the cname of the
backup boot node is c0-2c0s4n1.

Procedure

1. Configure cray_multipath for the backup boot node, if cray_multipath is enabled.

cray_multipath is in the global config set and may be inherited by the CLE config set. If the global
cray_multipath is enabled and the CLE cray_multipath is set to inherit from the global config set, then
make the changes in the global cray_multipath service. If the CLE cray_multipath service is enabled
and not set to inherit from the global config set, then make the changes in the CLE cray_multipath
service.

Enter the list of multipath nodes.

Modify an Installed System

S2393 258

Change cray_multipath.settings.multipath.data.node_list, so that it includes both the primary
boot node and the backup boot node.

This example shows a list of four nodes: an SMW with host ID 1eac4e0c, a primary boot node with cname
c0-0c0s4n1, a backup boot node with cname c0-2c0s4n1, and an SDB node with cname c0-0c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-2c0s4n1
- c0-0c0s3n1

2. Configure cray_node_groups to add a backup boot node.

In the CLE config set, the cray_node_groups service should have a boot_nodes node group with the
primary boot node (c0-0c0s4n1) and the backup boot node (c0-2c0s3n1) as members.

cray_node_groups.settings.groups.data.group_name.boot_nodes: null
cray_node_groups.settings.groups.data.boot_nodes.description: Default node
 group which contains the primary and failover (if applicable) boot
 nodes associated with the current partition.
cray_node_groups.settings.groups.data.boot_nodes.members:
- c0-0c0s4n1
- c0-2c0s4n1

3. Configure cray_persistent_data to add the boot_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_persistent_data.settings.mounts.data./var/lib/nfs.client_groups:
- boot_nodes
- sdb_nodes

4. Configure cray_scalable_services to add boot_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_scalable_services.settings.scalable_service.data.tier1_groups:
- boot_nodes
- sdb_nodes

5. Configure cray_net to add a backup boot node.

These settings configure a host as the backup boot node (backup_bootnode) when using boot node failover.
Ensure that the standby_node variable is set to true.

NOTE: The host name for the primary and backup boot node should both be set to boot. The aliases
can be different so that the /etc/hosts entry for the cname has the host name alias.

cray_net.settings.hosts.data.common_name.backup_bootnode: null
cray_net.settings.hosts.data.backup_bootnode.description: backup Boot node for the system
cray_net.settings.hosts.data.backup_bootnode.aliases:
- cray-boot2
cray_net.settings.hosts.data.backup_bootnode.hostid: c0-2c0s4n1
cray_net.settings.hosts.data.backup_bootnode.host_type: admin
cray_net.settings.hosts.data.backup_bootnode.hostname: boot
cray_net.settings.hosts.data.backup_bootnode.standby_node: true

cray_net.settings.hosts.data.backup_bootnode.interfaces.common_name.hsn_boot_alias: null
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.name: ipogif0:1
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.description:
 Well known address used for boot node services.
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.vlan_id: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.vlan_etherdevice: ''

Modify an Installed System

S2393 259

cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bonding_slaves: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bonding_module_opts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.aliases: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.network: hsn
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.ipv4_address: 10.131.255.254
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.ipv4_secondary_addresses: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.mac: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.startmode: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.bootproto: static
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.mtu: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.extra_attributes: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.module: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.params: ''
#cray_net.settings.hosts.data.backup_bootnode.interfaces.hsn_boot_alias.unmanaged_interface: false

cray_net.settings.hosts.data.backup_bootnode.interfaces.common_name.primary_ethernet: null
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.name: eth0
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.description:
 Ethernet connecting boot node to the SMW.
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.vlan_id: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.vlan_etherdevice: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bonding_slaves: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bonding_module_opts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.aliases: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.network: admin
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.ipv4_address: 10.3.1.254
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.ipv4_secondary_addresses: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.mac: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.startmode: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.bootproto: static
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.mtu: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.extra_attributes: []
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.module: ''
cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.params: ''
#cray_net.settings.hosts.data.backup_bootnode.interfaces.primary_ethernet.unmanaged_interface: false

6. Update the config set to regenerate the CLE /etc/hosts file so that it contains the appropriate backup node
settings.

smw# cfgset update p0
smw# cfgset validate p0

7. Halt the primary and backup boot nodes.

crayadm@smw> xtcli halt boot_primary_id,boot_backup_id

8. Set the primary and backup boot nodes using the xtcli command. Use the -b argument for a boot node.

crayadm@smw> xtcli part_cfg update p0 -b boot_primary_id,boot_backup_id

9. Add boot node failover to the boot automation file, auto.hostname.start.

When boot node failover is used, add settings to the boot automation file to ensure that STONITH is enabled
on the blades that contain the primary and backup boot nodes. The STONITH setting does not survive a
power cycle or any other action that causes the bcsysd daemon to restart. Adding these lines to the boot
automation file maintains that setting.

Set STONITH for the blades that contain the primary and backup boot nodes. In the example, the primary
boot node is c0-0c0s4n1, so its blade is c0-0c0s4, and the backup boot node is c0-2c0s4n1, so its blade is
c0-2c0s4. Add these lines before the line for booting the boot node.

Set STONITH for primary boot node
lappend actions {crms_exec "xtdaemonconfig c0-0c0s4 stonith=true"}
Set STONITH for the backup boot node
lappend actions {crms_exec "xtdaemonconfig c0-2c0s4 stonith=true"}

10. Enable the xtfailover_halt command in the auto.hostname.stop file.

Modify an Installed System

S2393 260

Uncomment the second of these lines in auto.hostname.stop. This file
in /opt/cray/hss/default/etc is normally copied from auto.xtshutdown to auto.hostname.stop
during a fresh install. The xtfailover_halt command ensures that the xtbootsys shutdown process
sends a STOP NMI to the failover nodes.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given) --
shutdown"

11. Assign the boot image to the backup boot node.

Check which NIMS group and boot image are being used for the primary boot node and the backup boot
node. (The cnode and cmap commands replace the nimscli command, which was deprecated in CLE
6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change any scripts that reference nimscli.)

smw# cnode list c0-0c0s4n1
smw# cnode list c0-2c0s4n1
If the backup boot node does not have the same NIMS group and boot image assigned, update the backup
boot node.

Remove the old NIMS group from the backup boot node.

smw# cnode update -G oldNIMSgroup c0-2c0s4n1
Assign the primary boot node's NIMS group and boot image to the backup boot node.

smw# cnode update -g primaryNIMSgroup \
-i /path/to/primary/bootimage c0-2c0s4n1
Confirm the change.

smw# cnode list c0-2c0s4n1

12. Boot the system.

crayadm@smw> xtbootsys -a auto.hostname.start
Trouble? If a node that is on a blade with STONITH enabled fails to boot, try adjusting the heartbeat timeout
setting for that node (see the xtdaemonconfig man page).

For all other problems booting CLE, see the XC™ Series Boot Troubleshooting Guide (S-2565).

7.2 Perform Boot Node Failback

About this task
When a primary boot node fails and a secondary node takes over, bring the primary node back online without
doing a full system boot. An xtbootsys --reboot command is prohibited on the boot node. Therefore, enter
several commands to reintroduce a failed primary node to the system as the new backup boot node.

Modify an Installed System

S2393 261

Procedure

1. Shut down the primary boot node.

smw# xtcli shutdown primary_id

2. Bounce the primary boot node.

smw# xtbounce -s primary_id

3. Boot the primary boot node.

smw# xtcli boot DEFAULT primary_id

7.3 Disable Boot Node Failover

Prerequisites
The CLE system must be shut down before invoking xtcli halt, which is used in this procedure.

About this task
For the examples in this procedure, the cname of the primary boot node is c0-0c0s4n1, and the cname of the
backup boot node is c0-2c0s4n1.

Procedure

1. Save a copy of the config set before making modifications.

Use a meaningful name for the archival copy of the config set.

smw# cfgset create --clone p0 p0_before_disabling_failover

2. Determine the active NIMS map and save a copy of it before making modifications.

Use a meaningful name for the archival copy of the NIMS map. The second command in this example uses
the name of the NIMS map output from the grep command.

smw# cmap list | grep -i true
p0
smw# cmap create --clone p0 p0_before_disabling_failover

3. Update cray_multipath to remove the backup boot node from the list.

smw# cfgset modify --remove c0-2c0s4n1 \
cray_multipath.settings.multipath.data.node_list

4. Update cray_node_groups to remove the backup boot node.

smw# cfgset modify --remove c0-2c0s4n1 \
cray_node_groups.settings.groups.data.boot_nodes.members

Modify an Installed System

S2393 262

5. Update cray_net to remove the host entry for the backup boot node. It may have another key, but typically it is
called backup_bootnode.

a. List the defined hosts to determine the correct key to use.

smw# cfgset get cray_net.settings.hosts
b. Remove the backup boot node entry.

smw# cfgset modify --delete cray_net.settings.hosts.data.backup_bootnode

6. Update and validate the global and CLE config sets.

This will regenerate the CLE /etc/hosts file so that it contains none of the backup node settings.

smw# cfgset update -m prepare global
smw# cfgset validate global
smw# cfgset update -m prepare p0
smw# cfgset validate p0

7. Halt the primary and backup boot nodes.

smw# su - crayadm
crayadm@smw> xtcli halt c0-0c0s4n1,c0-2c0s4n1

8. Update the default boot configuration.

Note that this command is used for only the primary node when there is no failover node.

crayadm@smw> xtcli boot_cfg update -b c0-0c0s4n1

9. Use xtdaemonconfig to update the HSS daemon to remove STONITH from the blades containing the
primary and backup boot nodes.

crayadm@smw> xtdaemonconfig c0-0c0s4 stonith=false
crayadm@smw> xtdaemonconfig c0-2c0s4 stonith=false

10. Remove or comment out the following lines in the auto.hostname.start boot automation file that set
stonith=true for the blades containing the boot nodes.

Set STONITH for primary boot node
lappend actions {crms_exec "xtdaemonconfig c0-0c0s4 stonith=true"}
Set STONITH for backup boot node
lappend actions {crms_exec "xtdaemonconfig c0-2c0s4 stonith=true"}

11. Remove or comment out the following lines in the auto.hostname.stop file.

Skip this step if SDB node failover will NOT be disabled. This step applies only if both boot and SDB node
failover will be disabled.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given)
--shutdown" }

12. Update NIMS for the backup boot node.

Modify an Installed System

S2393 263

Change the NIMS group and boot image of the node being removed as the backup boot node so that it looks
like other service nodes instead of like the primary boot node.

a. Determine which NIMS group and boot image are being used for the primary and backup boot nodes.

crayadm@smw> exit
smw# cnode list c0-0c0s4n1
 smw# cnode list c0-2c0s4n1
 smw# cnode list other_service_node

b. Remove the old NIMS group from the backup boot node.

 smw# cnode update -G oldNIMSgroup c0-2c0s4n1
c. Assign the service node NIMS group and boot image to the backup boot node.

 smw# cnode update -g serviceNIMSgroup \
-i /path/to/service/bootimage c0-2c0s4n1

13. Boot the system to confirm these changes.

smw# su - crayadm
crayadm@smw> xtbootsys -a auto.hostname.start

7.4 Configure SDB Node Failover

Prerequisites
SDB node failover requirements:

● Both the SDB node and the backup SDB node must have a Fibre Channel or SAS connection to the boot
RAID.

● Both the SDB node and the backup SDB node must have an Ethernet connection to the network shared with
the SMW in order to PXE boot and transfer data as a tier1 node.

● The primary and backup nodes must not be on the same blade.

● The SDB and boot nodes must not be on the same blade.

CAUTION: The system will fail if a blade containing both the boot node and the SDB node fails, because
Cray does not support concurrent failover of boot and SDB nodes. Therefore, the boot and SDB nodes
and their backups (for boot/SDB node failover) must be on different blades.

The system must be shut down before invoking the xtcli halt command, which is used in this procedure.

About this task
If a secondary (backup) service database (SDB) node is configured, SDB node failover will occur automatically if
the primary SDB node fails. This procedure configures the system for SDB node failover. If SDB node failover was
configured during an SMW/CLE software installation or update, this procedure is not needed.

Modify an Installed System

S2393 264

For the examples in this procedure, the cname of the primary SDB node is c0-0c0s3n1, and the cname of the
backup SDB node is c0-4c0s3n1.

Procedure

1. Configure cray_multipath for the backup node, if cray_multipath is enabled.

cray_multipath is in the global config set and may be inherited by the CLE config set. If the global
cray_multipath is enabled and the CLE cray_multipath is set to inherit from the global config set, then
make the changes in the global cray_multipath service. If the CLE cray_multipath service is enabled
and not set to inherit from the global config set, then make the changes in the CLE cray_multipath
service.

Enter the list of multipath nodes.

Change cray_multipath.settings.multipath.data.node_list, so that it includes both the primary
SDB node and the backup SDB node.

This example shows a list of five nodes: an SMW with host ID 1eac4e0c, a primary boot node with cname
c0-0c0s4n1, a backup boot node with cname c0-2c0s4n1, a primary SDB node with cname c0-0c0s3n1, and
a backup SDB node with cname c0-4c0s3n1.

cray_multipath.settings.multipath.data.node_list:
- 1eac4e0c
- c0-0c0s4n1
- c0-2c0s4n1
- c0-0c0s3n1
- c0-4c0s3n1

2. Configure cray_node_groups to add the backup SDB node.

In the CLE config set, the cray_node_groups service should have an sdb_nodes node group with the
primary SDB node (c0-0c0s3n1) and the backup SDB node (c0-4c0s3n1) as members.

cray_node_groups.settings.groups.data.group_name.sdb_nodes: null
cray_node_groups.settings.groups.data.sdb_nodes.description: Default node
 group which contains the primary and failover (if applicable) SDB
 nodes associated with the current partition.
cray_node_groups.settings.groups.data.sdb_nodes.members:
- c0-0c0s3n1
- c0-4c0s3n1

3. Configure cray_persistent_data to add the sdb_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_persistent_data.settings.mounts.data./var/lib/nfs.client_groups:
- boot_nodes
- sdb_nodes

4. Configure cray_scalable_services to add the sdb_nodes node group.

Ensure that this setting includes the boot_nodes node group and the sdb_nodes node group.

cray_scalable_services.settings.scalable_service.data.tier1_groups:
- boot_nodes
- sdb_nodes

Modify an Installed System

S2393 265

5. Configure cray_net to add the backup SDB node.

These settings configure a host as the backup SDB node (backup_sdbnode) when using SDB node failover.
Ensure that the standby_node variable is set to true.

NOTE: The host name for the primary and backup SDB node should both be set to sdb. The aliases
can be different so that the /etc/hosts entry for the cname has the host name alias.

cray_net.settings.hosts.data.common_name.backup_sdbnode: null
cray_net.settings.hosts.data.backup_sdbnode.description: backup SDB node for the system
cray_net.settings.hosts.data.backup_sdbnode.aliases:
- cray-sdb2
cray_net.settings.hosts.data.backup_sdbnode.hostid: c0-4c0s3n1
cray_net.settings.hosts.data.backup_sdbnode.host_type: admin
cray_net.settings.hosts.data.backup_sdbnode.hostname: sdb
cray_net.settings.hosts.data.backup_sdbnode.standby_node: true

cray_net.settings.hosts.data.backup_sdbnode.interfaces.common_name.hsn_boot_alias: null
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.name: ipogif0:1
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.description:
 Well known address used for SDB node services.
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_id: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_etherdevice: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_slaves: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_module_opts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.aliases: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.network: hsn
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.ipv4_address: 10.131.255.253
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.ipv4_secondary_addresses: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.mac: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.startmode: auto
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bootproto: static
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.mtu: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.extra_attributes: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.module: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.params: ''
#cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.unmanaged_interface: false

cray_net.settings.hosts.data.backup_sdbnode.interfaces.common_name.primary_ethernet: null
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.name: eth0
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.description:
 Ethernet connecting SDB node to the SMW.
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_id: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.vlan_etherdevice: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_slaves: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.hsn_boot_alias.bonding_module_opts: mode=active-backup
 miimon=100
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.aliases: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.network: admin
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.ipv4_address: 10.3.1.253
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.ipv4_secondary_addresses: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.mac: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.startmode: auto
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.bootproto: static
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.mtu: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.extra_attributes: []
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.module: ''
cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.params: ''
#cray_net.settings.hosts.data.backup_sdbnode.interfaces.primary_ethernet.unmanaged_interface: false

6. Update the config set to regenerate the hosts file so that it contains the appropriate backup node settings.

smw# cfgset update p0
smw# cfgset validate p0

7. Halt the primary and backup SDB nodes using their cnames.

crayadm@smw> xtcli halt c0-0c0s3n1,c0-4c0s3n1

8. Set the primary and backup SDB nodes using the xtcli command. Use the -d argument for an SDB node.

crayadm@smw> xtcli part_cfg update p0 -d c0-0c0s3n1,c0-4c0s3n1

9. Add SDB node failover to the boot automation file, auto.hostname.start.

Modify an Installed System

S2393 266

When SDB node failover is used, add settings to the boot automation file to ensure that STONITH is enabled
on the blades that contain the primary and backup SDB nodes. The STONITH setting does not survive a
power cycle or any other action that causes the bcsysd daemon to restart. Adding these lines to the boot
automation file maintains that setting.

Set STONITH for the blades that contain the primary and backup SDB nodes. In the example, the primary
SDB node is c0-0c0s3n1, so its blade is c0-0c0s3. Add these lines before the line for booting the SDB node.

Set STONITH for primary SDB node
lappend actions {crms_exec "xtdaemonconfig c0-0c0s3 stonith=true"}
Set STONITH for the backup SDB node
lappend actions {crms_exec "xtdaemonconfig c0-4c0s3 stonith=true"}

10. Enable the xtfailover_halt command in the auto.hostname.stop file.

Uncomment the second of these lines in auto.hostname.stop. This file
in /opt/cray/hss/default/etc is normally copied from auto.xtshutdown to auto.hostname.stop
during a fresh install. The xtfailover_halt command ensures that the xtbootsys shutdown process
sends a STOP NMI to the failover nodes.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given) --
shutdown" }
If the above lines are not present in the site auto.hostname.stop automation file for shutting down CLE,
add them.

11. Assign the boot image to the backup SDB node.

Check which NIMS group and boot image are being used for the primary SDB node and the backup SDB
node. (The cnode and cmap commands replace the nimscli command, which was deprecated in CLE
6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change any scripts that reference nimscli.)

smw# cnode list c0-0c0s3n1
smw# cnode list c0-4c0s3n1
If the backup SDB node does not have the same NIMS group and boot image assigned, update the backup
SDB node.

Remove the old NIMS group from the backup SDB node.

smw# cnode update -G oldNIMSgroup c0-4c0s3n1
Assign the primary SBD node's NIMS group and boot image to the backup SDB node.

smw# cnode update -g primaryNIMSgroup \
-i /path/to/primary/bootimage c0-4c0s3n1
Confirm the change.

smw# cnode list c0-4c0s3n1

12. Boot the system.

crayadm@smw> xtbootsys -a auto.hostname.start

Modify an Installed System

S2393 267

Trouble? If a node that is on a blade with STONITH enabled fails to boot, try adjusting the heartbeat timeout
setting for that node (see the xtdaemonconfig man page).

For all other problems booting CLE, see the XC™ Series Boot Troubleshooting Guide (S-2565).

7.5 Perform SDB Node Failback

About this task
When a primary SDB node fails and the backup SDB node takes over, bring the primary node back online without
doing a full system boot.

Procedure

Use the xtbootsys command to reintroduce the original primary SDB node to the system as the new
backup SDB node.

smw# xtbootsys --reboot primary_id

7.6 Disable SDB Node Failover

Prerequisites
The CLE system must be shut down before invoking xtcli halt, which is used in this procedure.

About this task
For the examples in this procedure, the cname of the primary SDB node is c0-0c0s3n1, and the cname of the
backup SDB node is c0-4c0s3n1.

Procedure

1. Save a copy of the config set before making modifications.

Use a meaningful name for the archival copy of the config set.

smw# cfgset create --clone p0 p0_before_disabling_failover

2. Determine the active NIMS map and save a copy of it before making modifications.

Use a meaningful name for the archival copy of the NIMS map. The second command in this example uses
the name of the NIMS map output from the grep command.

smw# cmap list | grep -i true
p0
smw# cmap create --clone p0 p0_before_disabling_failover

Modify an Installed System

S2393 268

3. Update cray_multipath to remove the backup SDB node from the list.

smw# cfgset modify --remove c0-4c0s3n1 \
cray_multipath.settings.multipath.data.node_list

4. Update cray_node_groups to remove the backup SDB node.

smw# cfgset modify --remove c0-4c0s3n1 \
cray_node_groups.settings.groups.data.sdb_nodes.members

5. Update cray_net to remove the host entry for the backup SDB node. It may have another key, but typically it is
called backup_sdbnode.

a. List the defined hosts to determine the correct key to use.

smw# cfgset get cray_net.settings.hosts
b. Remove the backup boot node entry.

smw# cfgset modify --delete cray_net.settings.hosts.data.backup_sdbnode

6. Update and validate the global and CLE config sets.

This will regenerate the CLE /etc/hosts file so that it contains none of the backup node settings.

smw# cfgset update -m prepare global
smw# cfgset validate global
smw# cfgset update -m prepare p0
smw# cfgset validate p0

7. Halt the primary and backup SDB nodes.

smw# su - crayadm
crayadm@smw> xtcli halt c0-0c0s3n1,c0-4c0s3n1

8. Update the default boot configuration.

Note that this command is used for only the primary node when there is no failover node.

crayadm@smw> xtcli boot_cfg update -d c0-0c0s3n1

9. Use xtdaemonconfig to update the HSS daemon to remove STONITH from the blades containing the
primary and backup SDB nodes.

crayadm@smw> xtdaemonconfig c0-0c0s3 stonith=false
crayadm@smw> xtdaemonconfig c0-4c0s3 stonith=false

10. Remove or comment out the following lines in the auto.hostname.start boot automation file that set
stonith=true for the blades containing the SDB nodes.

Set STONITH for primary SDB node
lappend actions {crms_exec "xtdaemonconfig c0-0c0s3 stonith=true"}
Set STONITH for backup SDB node
lappend actions {crms_exec "xtdaemonconfig c0-4c0s3 stonith=true"}

11. Remove or comment out the following lines in the auto.hostname.stop file.

Modify an Installed System

S2393 269

Skip this step if boot node failover will NOT be disabled. This step applies only if both boot and SDB node
failover will be disabled.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given)
--shutdown" }

12. Update NIMS for the backup SDB node.

Change the NIMS group and boot image of the node being removed as the backup SDB node so that it looks
like other service nodes instead of like the primary SDB node.

a. Determine which NIMS group and boot image are being used for the primary and backup SDB nodes.

crayadm@smw> exit
smw# cnode list c0-0c0s3n1
 smw# cnode list c0-4c0s3n1
 smw# cnode list other_service_node

b. Remove the old NIMS group from the backup SDB node.

 smw# cnode update -G oldNIMSgroup c0-4c0s3n1
c. Assign the service node NIMS group and boot image to the backup SDB node.

 smw# cnode update -g serviceNIMSgroup \
-i /path/to/service/bootimage c0-4c0s3n1

13. Boot the system to confirm these changes.

smw# su - crayadm
crayadm@smw> xtbootsys -a auto.hostname.start

7.7 Set Up Basic Realm-Specific IP Configuration

Prerequisites
This procedure assumes the following:

● This system will use RSIP, that is, it has one or more service nodes that will provide the RSIP service.

● Advanced RSIP configuration (e.g., RSIP failover, RSIP pools) is not needed.

About this task
RSIP (realm-specific IP) helps to maintain packet integrity by allowing an RSIP host to borrow one or more IP
addresses from a set of configured RSIP gateways. This procedure configures some settings in the Cray RSIP
configuration service worksheet to add site-specific data for a basic RSIP configuration. If advanced RSIP
configuration is needed, use Set Up Advanced RSIP Configuration on a Booted System on page 271 instead of
this procedure.

Modify an Installed System

S2393 270

Procedure

1. Edit cray_rsip_worksheet.yaml.

smw# vi cray_rsip_worksheet.yaml

2. Uncomment cray_rsip.enabled and set it to true.

3. Enter the node group (or groups) of the nodes that will be RSIP servers on this system.

To create one or more node groups that contain the RSIP server nodes (by cname) for this system
(rsip_nodes in this example), edit cray_node_groups_worksheet.yaml.

Uncomment cray_rsip.settings.service.data.server_groups, remove the empty list ([]), and
add the node group(s) on separate lines prefixed by a hyphen and space (-).

cray_rsip.settings.service.data.server_groups:
- rsip_nodes

4. Enter the node group (or groups) of the service nodes that will be RSIP clients on this system, such as a
MOM node.

To create one or more node groups that contain the RSIP client nodes (by cname) for this system
(rsip_servicenode_clients in this example), edit cray_node_groups_worksheet.yaml.

Uncomment cray_rsip.settings.service.data.node_groups_as_client, remove the empty list
([]), and add the node group(s) on separate lines prefixed by a hyphen and space (-).

cray_rsip.settings.service.data.node_groups_as_client:
- rsip_servicenode_clients

5. Set cray_rsip.settings.service.data.use_xtrsipcfg to false.

7.8 Set Up Advanced RSIP Configuration on a Booted System

Prerequisites
The configuration in this example requires a dedicated RSIP node.

About this task
This procedure uses the xtrsipcfg_v2 script to set up more advanced RSIP configuration (e.g., RSIP failover,
RSIP pools) on an XC system that is booted. It generates RSIP client and server configuration files, including
configuring RSIP methods RSA-IP and RSAP-IP. In the example, an RSIP server is set up to use two IP
addresses.

Procedure

1. Clone a config set to create a workspace for the new RSIP settings.

Modify an Installed System

S2393 271

smw# cfgset create --clone p0 myconfigset-p0

2. Enable the cray_rsip config service in the new CLE config set (myconfigset-p0 in the example).

smw# cfgset modify -s true cray_rsip.enabled myconfigset-p0

3. Set the use_xtrsipcfg setting in the cray_rsip config service to true.

smw# cfgset modify -s true \
cray_rsip.settings.service.data.use_xtrsipcfg myconfigset-p0

4. Update the CLE config set that was just modified (myconfigset-p0 in the example) and generate worksheets.

smw# cfgset update --mode prepare myconfigset-p0

5. Locate the newly generated worksheets and copy them to a new location on the management node.

smw# cfgset show --fields path myconfigset-p0
myconfigset-p0:
 path: /var/opt/cray/imps/config/sets/myconfigset-p0
smw# cp /var/opt/cray/imps/config/sets/myconfigset-p0/worksheets/* /some/edit/
location

6. From the SMW, run the xtrsipcfg_v2 script using the -b flag, which ensures that the rsipd.NID.conf
files for each server will be built.

smw# xtrsipcfg_v2 -b

7. When the script prompts for the name of the config set to update, enter the config set name.

config_set_name: myconfigset-p0
Gathering Node Information

8. The script prompts whether to add isolated service nodes as RSIP clients. For this example, enter N, the
default. If the response to this question is y, a list of the isolated service nodes displays. Enter a space
delimited list of cnames to configure them as RSA clients. All other isolated nodes are configured as RSAP
clients.

Should the isolated service nodes be setup as RSIP clients? [y/N]:
Note that the list of isolated service nodes could be missing an isolated node that is targeted as an RSIP
client. The SDB node for instance, may not show up because it has an Ethernet interface. Do not attempt to
use non-isolated nodes as RSIP clients. However, exceptions can be made if the node simply has an
interface that is connected only internally. The next prompt asks if there were any missing nodes to be added
as RSIP clients (RSAP or RSA). It is possible to add the previously described nodes as clients in response to
these prompts, but be very careful to only add nodes that do not have external network connectivity.

9. The script creates a list of compute nodes in a default location unless an alternative location is specified.

By default a file containing all compute_names is created in /tmp/
rsip_compute_names.txt
Refer to this file for the next steps if necessary.
Enter Alternate filepath for compute_names file or hit return:

10. Specify compute nodes to be used as RSA clients. By default all compute nodes are configured as RSAP
clients. For this example, do not enter any nodes for RSA client configuration.

Modify an Installed System

S2393 272

Enter a space delimited list of COMPUTE Node cnames to be RSA CLIENTS.
** Unlisted nodes will be configured as RSAP CLIENTS **

Compute RSA Clients:
The script displays connectivity information to use in response to subsequent questions from the script.

Service node network connectivity:
(login) c1-0c0s0n2: eth0 : 192.0.2.88 255.255.240.0
 eth1 : DOWN -
 c1-0c1s3n1: eth0 : DOWN -
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -
 c1-0c1s3n2: eth0 : 192.0.2.253 255.255.0.0
 eth1 : DOWN -
 eth2 : 192.0.2.17 255.255.255.0
 eth3 : DOWN -
 c1-0c1s4n1: eth0 : DOWN -
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -
 c1-0c1s4n2: eth0 : 192.0.2.43 255.255.240.0
 eth1 : DOWN -
 eth2 : DOWN -
 eth3 : DOWN -

11. When the script prompts for the cnames of service nodes to use as RSIP servers, specify only dedicated
RSIP nodes.

Clients are automatically assigned to servers by the script. Specify one or more service nodes from the
connectivity information just provided by the script.

Auto Config Servers: c1-0c1s4n2

Provide an Address Pool as a combination of IPs and IP ranges in a space
delimited list.
ex: 192.0.2.0-192.0.2.24 192.0.2.30 192.0.2.34-192.0.2.40
Leave this field empty if using RSAP-IP with the server's primary external
interface

12. The cnames of the specified servers are displayed. For each server, provide a pool of IP addresses to use.

The script accepts a space-delimited list or a range of IP addresses. Not specifying a pool of available IP
addresses causes the server to instead use its primary external interface.

In this example, use multiple IP addresses for the node c1-0c1s4n2. The specified addresses should be on
the same subnet. Accept the default for IPs reserved for RSA because no RSA clients or servers are
configured in this example.

c1-0c1s4n2: 192.0.2.43 192.0.2.44
How many IPs should be reserved for RSA? [Default 0]:

13. Specify RSIP servers to manually assign clients to them. This example does not include any manually
assigned clients to any servers, so press Enter.

Enter a space delimited list of node cnames for nodes that will be RSIP SERVERS.
For example: c0-0c0s7n0 c0-0c0s7n3 c0-0c1s1n3

Modify an Installed System

S2393 273

* RSIP Servers may be manually or automatically configured with clients
You will list below the servers which you will manually assign clients to,
followed by the servers which you want clients automatically assigned to.
* RSIP Servers MUST have external network connectivity.

Manual Config Servers:

14. The script prompts for an RSIP port range and a system port range for each server. For this example, accept
the defaults by pressing Enter.

Provide RSIP port range and System port range for the following servers (Non
overlapping ranges).
These ranges will be used only for RSAP IP.
Defaults RSIP: 1-60000 Default System: 60001-65535. Hit enter to use defaults
c1-0c1s4n2
 RSIP:
 System:
Should all subsequent servers utilize these settings? (Y/n):

15. The script displays the locations of the configuration files that it has created.

Created krsip config file at /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/krsip.yaml
Created RSIPD.<nid>.conf files in /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/opt/cray/
rsipd/
Created rsipd.yaml at /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/opt/cray/rsipd/rsipd.yaml

16. Verify the contents of the RSIP configuration file.

smw# cd /var/opt/cray/imps/config/sets/myconfigset-p0/files/roles/rsip/etc/opt/
cray/rsipd
rsipd.c1-0c1s4n2.conf rsipd.yaml
smw# grep "^pool " rsipd.c1-0c1s4n2.conf
pool 192.0.2.90
pool 192.0.2.91

Go to the topic Update cray_net Worksheet for an Advanced RSIP Configuration on page 274 to continue this
configuration example.

7.8.1 Update cray_net Worksheet for an Advanced RSIP Configuration

Prerequisites
This procedure assumes that:

● The xtrsipcfg_v2 script has been run.

● A work area has been set up for editing CLE configuration worksheets.

● The current directory is set to that work area.

smw# cd /some/edit/location

About this task
Update the cray_net worksheet with advanced RSIP settings. Then import that worksheet to the config set,
which updates the config set, and run cray-ansible to apply the configuration changes.

Modify an Installed System

S2393 274

Procedure

1. Edit cray_net_worksheet.yaml.

smw# vi cray_net_worksheet.yaml

2. Update the RSIP host definition with values (bolded) shown in the following listing. If a RSIP host is not
defined in the config set, add a host definition stanza for the RSIP server like the following one, placing it
under NOTE: Place additional 'host' setting entries here, if desired. A sample host
definition that includes default host settings is included in the worksheet under
cray_net.settings.hosts.data.common_name.sample_key_a: null.

cray_net.settings.hosts.data.common_name.rsip_node: null
cray_net.settings.hosts.data.rsip_node.description: RSIP node
cray_net.settings.hosts.data.rsip_node.aliases:
- rsip
cray_net.settings.hosts.data.rsip_node.hostid: c1-0c1s4n2
cray_net.settings.hosts.data.rsip_node.host_type: ''
cray_net.settings.hosts.data.rsip_node.hostname: rsip1
cray_net.settings.hosts.data.rsip_node.standby_node: false
cray_net.settings.hosts.data.rsip_node.interfaces.common_name.eth0: null
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.name: eth0
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.description:
 Ethernet connecting the RSIP node to the customer network.
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.aliases: []
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.network: login
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.ipv4_address: 192.0.2.43
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.mac: ''
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.startmode: auto
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.bootproto: static
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.mtu: ''
cray_net.settings.hosts.data.rsip_node.interfaces.eth0.extra_attributes:
- IPADDR1='192.0.2.90/20'
- IPADDR2='192.0.2.91/20'
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.module: ''
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.params: ''
#cray_net.settings.hosts.data.rsip_node.interfaces.eth0.unmanaged_interface: false

3. Import the completed cray_net worksheet to the CLE config set (myconfigset-p0 in the example).

smw# cfgset update --worksheet-path \
'/some/edit/location/cray_net_worksheet.yaml' myconfigset-p0

4. Link the nodes to the config set.

The following example updates my_map to link all system nodes to the new config set.

smw# cmap update --config-set myconfigset-p0 my_map

5. Use the cmap setactive command if necessary to make my_map active.

smw# cmap setactive my_map

6. Log in to the RSIP server node and run cray-ansible.

smw# ssh boot
crayadm@boot> ssh c1-0c1s4n2
user@host> /etc/init.d/cray-ansible start

Modify an Installed System

S2393 275

7. Verify that multiple inets are displayed when the following command is run on the RSIP server node.

user@host> ip addr show eth0

7.9 Configure a VLAN, Bonded, or Bonded VLAN Interface

About this task
This procedure uses the configurator in interactive mode to configure a virtual LAN (VLAN), bonded, or bonded
VLAN interface for a host on a network defined for this system.

Procedure

1. Update the cray_net config service in the CLE config set.

smw# cfgset update -m interactive -l advanced -s cray_net p0

2. Select the hosts setting in the configurator Service Configuration Menu.

Cray Networking Configuration Service Menu [default: save & exit - Q] $ 2
Cray Networking Configuration Service Menu [default: configure - C] $ C

3. Select an existing host for the new interface or configure a new host for it.

Enter * to view all host entries.

cray_net.settings.hosts
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ *
● To select the interfaces setting (item g) of an existing host, enter the number of the host followed by g*.

Then continue to the next step in this procedure.

cray_net.settings.hosts
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ 2g*

● To configure a new host, enter + to add a new host entry.

cray_net.settings.hosts
[<cr>=set 3 entries, +=add an entry, ?=help, @=less] $ +
Enter the values for the new host as prompted by the configurator. When prompted for the interfaces
setting, continue to the next step in this procedure.

4. Configure the new interface.

Enter + to add a new interface.

cray_net.settings.hosts.data.selected_host.interfaces
[<cr>=set N entries, +=add an entry, ?=help, @=less] $ +
The configurator will prompt for the interface fields. Use one of the following steps as guidance in entering
values for those fields.

Modify an Installed System

S2393 276

● To configure a virtual LAN (VLAN) interface, proceed to the next step of this procedure.

● To configure a bonded interface, proceed to step 6 on page 277.

● To configure a bonded VLAN interface, proceed to step 7 on page 278.

–––––––––– CONFIGURE VLAN INTERFACE ––––––––––

5. Configure a VLAN interface.

This example shows the configuration fields needed to configure a VLAN interface with common name set to
vlan0. With the vlan_id set to 42 and the etherdevice set to eth0, the interface name will be set
automatically to eth0.42 (vlan_etherdevice.vlan_id) if the name field is left empty (recommended). If
this site chooses to leave vlan_id empty instead (NOT recommended), the name field must be set to a non-
empty string. The network field must be specified for any interface that has an assigned IP address, and that
network must be defined in the cray_net config service.

Key to inline comments:

required Necessary for this type of interface. When prompted, replace the default with an interface-specific
value.

default Needs to be configured, but the default value is sufficient. When prompted, press Enter to accept
the default.

optional Not necessary. Leave unconfigured all fields that are level=advanced unless a default value
needs to be modified. Leaving them unconfigured allows the configurator to safely update defaults
that may change in later releases. To leave unconfigured, enter > when prompted.

ignore Incompatible with this type of interface or this context. Leave unconfigured by entering > when
prompted.

cray_net.settings.hosts.data.some_host.interfaces.common_name.vlan0: null # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.name: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.description: '' # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.vlan_id: 42 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.vlan_etherdevice: eth0 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bonding_slaves: [] # ignore
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bonding_module_opts: # ignore
 mode=active-backup miimon=100
cray_net.settings.hosts.data.some_host.interfaces.vlan0.aliases: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.network: some_network # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.ipv4_address: some_IP_addr # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.ipv4_secondary_addresses: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.mac: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.startmode: auto # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bootproto: static # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.mtu: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.extra_attributes: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.module: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.params: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.unmanaged_interface: false # optional

When finished entering values for the VLAN interface setting, proceed to step 8 on page 280.

–––––––––– CONFIGURE BONDED INTERFACE ––––––––––

6. Configure a bonded interface.

This example shows the configuration fields needed to configure a bonded interface with common name set
to bond0 and interface name set also to bond0. There is no field for bonding master because it is set
automatically when the bonding_slaves list has at least one member. The network field must be specified for
any interface that has an assigned IP address, and that network must be defined in the cray_net config

Modify an Installed System

S2393 277

service. In the case of bonded interfaces, a network must be specified for the master bond interface but not
for the slave bond interfaces.

required Necessary for this type of interface. When prompted, replace the default with an interface-specific
value.

default Needs to be configured, but the default value is sufficient. When prompted, press Enter to accept
the default.

optional Not necessary. Leave unconfigured all fields that are level=advanced unless a default value
needs to be modified. Leaving them unconfigured allows the configurator to safely update defaults
that may change in later releases. To leave unconfigured, enter > when prompted.

ignore Incompatible with this type of interface or this context. Leave unconfigured by entering > when
prompted.

cray_net.settings.hosts.data.some_host.interfaces.common_name.bond0: null # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.name: bond0 # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.description: '' # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.vlan_id: '' # ignore
cray_net.settings.hosts.data.some_host.interfaces.bond0.vlan_etherdevice: '' # ignore
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_slaves: # required
- eth0
- eth2
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_module_opts: # required
 mode=active-backup miimon=100
cray_net.settings.hosts.data.some_host.interfaces.bond0.aliases: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.network: some_network # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_address: some_IP_addr # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_secondary_addresses: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.mac: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.startmode: onboot # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.bootproto: static # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.mtu: '' # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.extra_attributes: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.module: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.params: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.unmanaged_interface: false # optional

When finished entering values for the bonded interface setting, proceed to step 8 on page 280.

–––––––––– CONFIGURE BONDED VLAN INTERFACE ––––––––––

7. Configure a bonded VLAN interface.

A "bonded VLAN" is a bonded interface with two ethernet NICs as slaves and two or more VLAN interfaces
with the bonded interface as their etherdevice. The VLAN interfaces are typically on different subnets. These
examples show the configuration fields needed to configure the necessary interfaces. The network field must
be specified for any interface that has an assigned IP address, and that network must be defined in the
cray_net config service. In the case of bonded interfaces, a network must be specified for the master bond
interface but not for the slave bond interfaces.

required Necessary for this type of interface. When prompted, replace the default with an interface-specific
value.

default Needs to be configured, but the default value is sufficient. When prompted, press Enter to accept
the default.

optional Not necessary. Leave unconfigured all fields that are level=advanced unless a default value
needs to be modified. Leaving them unconfigured allows the configurator to safely update defaults
that may change in later releases. To leave unconfigured, enter > when prompted.

Modify an Installed System

S2393 278

ignore Incompatible with this type of interface or this context. Leave unconfigured by entering > when
prompted.

a. Configure a bonded interface.

Example bonded interface. Note that there is no field for bonding master because it is set automatically
when the bonding_slaves list has at least one member. Also note that the ipv4_address field is the default
empty string because the address will be set on the VLAN.

cray_net.settings.hosts.data.some_host.interfaces.common_name.bond0: null # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.name: bond0 # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.description: '' # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.vlan_id: '' # ignore
cray_net.settings.hosts.data.some_host.interfaces.bond0.vlan_etherdevice: '' # ignore
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_slaves: # required
- eth0
- eth2
cray_net.settings.hosts.data.some_host.interfaces.bond0.bonding_module_opts: # required
 mode=active-backup miimon=100
cray_net.settings.hosts.data.some_host.interfaces.bond0.aliases: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.network: some_network # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_address: '' # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.ipv4_secondary_addresses: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.mac: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.startmode: onboot # required
cray_net.settings.hosts.data.some_host.interfaces.bond0.bootproto: static # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.mtu: '' # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.extra_attributes: [] # default
cray_net.settings.hosts.data.some_host.interfaces.bond0.module: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.params: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.bond0.unmanaged_interface: false # optional

b. Configure the first VLAN interface.

Enter + to add a new interface.

cray_net.settings.hosts.data.selected_host.interfaces
[<cr>=set N+1 entries, +=add an entry, ?=help, @=less] $ +
Example for first VLAN interface:

cray_net.settings.hosts.data.some_host.interfaces.common_name.vlan0: null # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.name: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.description: '' # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.vlan_id: 42 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.vlan_etherdevice: bond0 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bonding_slaves: [] # ignore
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bonding_module_opts: # ignore
 mode=active-backup miimon=100
cray_net.settings.hosts.data.some_host.interfaces.vlan0.aliases: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.network: some_network # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.ipv4_address: some_IP_addr # required
cray_net.settings.hosts.data.some_host.interfaces.vlan0.ipv4_secondary_addresses: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.mac: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.startmode: auto # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.bootproto: static # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.mtu: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.extra_attributes: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan0.module: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.params: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan0.unmanaged_interface: false # optional

c. Configure the second VLAN interface.

Enter + to add a new interface.

cray_net.settings.hosts.data.selected_host.interfaces
[<cr>=set N+2 entries, +=add an entry, ?=help, @=less] $ +

Modify an Installed System

S2393 279

Example for second VLAN interface:

cray_net.settings.hosts.data.some_host.interfaces.common_name.vlan1: null # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.name: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.description: '' # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.vlan_id: 43 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.vlan_etherdevice: bond0 # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.bonding_slaves: [] # ignore
cray_net.settings.hosts.data.some_host.interfaces.vlan1.bonding_module_opts: # ignore
 mode=active-backup miimon=100
cray_net.settings.hosts.data.some_host.interfaces.vlan1.aliases: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.network: some_network # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.ipv4_address: some_IP_addr # required
cray_net.settings.hosts.data.some_host.interfaces.vlan1.ipv4_secondary_addresses: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.mac: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan1.startmode: auto # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.bootproto: static # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.mtu: '' # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.extra_attributes: [] # default
cray_net.settings.hosts.data.some_host.interfaces.vlan1.module: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan1.params: '' # optional
cray_net.settings.hosts.data.some_host.interfaces.vlan1.unmanaged_interface: false # optional

–––––––––– SAVE CHANGES AND VALIDATE THE CONFIG SET ––––––––––

8. Set the interface and host entries.

Press Enter to set the interface entries.

cray_net.settings.hosts.data.selected_host.interfaces
[<cr>=set M entries, +=add an entry, ?=help, @=less] $ <cr>
Press Enter to set the host entries.

cray_net.settings.hosts
[<cr>=set m entries, +=add an entry, ?=help, @=less] $ <cr>

9. Save changes and exit the configurator.

Cray Networking Configuration Service Menu [default: save & exit - Q] $ Q

10. Validate the config set.

smw# cfgset validate p0

These changes will take effect as soon as the host node is rebooted or /etc/init.d/cray-ansible start
is run on it.

7.10 The Node ARP Management Daemon (rca_arpd)
The node ARP management daemon (rca_arpd) manages the system ARP cache. This daemon deletes the IP
to hardware address (ARP) mappings for failed nodes and reads them when they become available. It only
manages ARP mappings on the high speed interconnect network and not external network interfaces such as
Ethernet. If failover is configured, rca_arpd also manages ARP mappings for the backup boot or SDB node.
When a node failed event from the primary boot or SDB node is received, rca_arpd updates the ARP mapping
for the boot or SDB node virtual IP address to point to the backup node.

Modify an Installed System

S2393 280

This functionality is included in the cray-rca-compute and cray-rca-service RPMs and is installed by
default.

7.11 Create Logical Machines for Cray XC Series Systems
Configure a logical machine (sometimes known as a system partition) with the xtcli part_cfg command.
Partition IDs are predefined as p0 to p31. The default partition p0 is reserved for the complete system and is no
longer a valid ID once a system has been partitioned.

Cray XC Series systems can have one or more cabinets. Systems with one or two compute cabinets scale at the
blade level. For larger liquid-cooled systems, every cabinet is fully populated (with 3 chassis), with the possible
exception of the last cabinet.

For Cray XC Series systems, groups are made up of two-cabinet pairs starting from the beginning. The last group
may not be completely full, and it can consist of 1 to 6 fully-populated chassis.

Multiple Group Systems
When a Cray XC Series system contains multiple groups, the system administrator can partition the system at a
per-group level of granularity. Groups do not need to be sequentially positioned in a multi-group partition.

If a Cray XC Series system has more than 2 cabinets, every partition can consist of any number of groups; the
last group (or remainder of system chassis that is not part of a full 6-chassis group) in the system should be
considered a group whether it is fully-populated or not in this partitioning context.

Single Group, Multiple-chassis Systems
When a Cray XC Series system contains between two and six fully-populated chassis, then the administrator can
partition the system at a per-chassis level of granularity. Each partition must be at least one full chassis, and a
chassis cannot be shared between partitions. Chassis do not need to be sequentially positioned in a multi-chassis
partition.

Single Chassis Systems
When a Cray XC Series system is composed of a single fully-populated chassis, each slot must be in the same
partition with its corresponding even/odd pair, because even/odd pair nodes (for example, slot 0 and slot 1, or slot
8 and slot 9) share optical connections and therefore must be in the same partition.

There are 16 slots (or blades) in a single chassis, making 8 even/odd slot pairs, and a maximum of 8 partitions.
Single chassis systems can have any combination of even/odd slot pairs (e.g., 4-4, 6-2, 4-2-2, 2-2-1-1-1-1), and
even/odd slot pairs do not need to be sequentially positioned in a multiple slot pair partition. In order for a partition
to be bootable, it must have a boot node, an SDB node, an I/O node, and a login node.

7.12 Configure a Logical Machine
The logical machine can have one of three states:

● EMPTY - not configured

Modify an Installed System

S2393 281

● DISABLED - configured but not activated

● ENABLED - configured and activated

When a partition is defined, its state changes to DISABLED. Undefined partitions are EMPTY by default.

The xtcli part_cfg command
Use the xtcli part_cfg command with the part_cmd option (add in the following example) to identify the
operation to be performed and the part_option (-m, -b, -d and -i) to specify the characteristics of the logical
machine. The boot image may be a raw device, such as /raw0, or a file.

Create a logical machine with a boot node and SDB node specifying the boot image path

● When using a file for the boot image, the same file must be on both the SMW and the
bootroot at the same path.

● For the logical machine to be bootable, both the boot node and SDB node IDs must be
specified.

crayadm@smw> xtcli part_cfg add p2 -m c0-0,c0-1,c0-2,c0-3 \
-b c0-0c0s0n0 -d c0-0c0s2n1 -i /bootimagedir/bootimage

To watch HSS events on the specified partition, execute the xtconsumer -p partition_name command.

To display the console text of the specified partition, execute the xtconsole -p partition_name command.

For more information, see the xtcli_part(8), xtconsole(8), and xtconsumer(8) man pages.

7.13 Boot a Logical Machine
The xtbootsys --partition pN option enables the administrator to indicate which logical machine (partition)
to boot. If a partition name is not specified, the default partition p0 (component name for the entire system) is
booted. Alternatively, if a partition name is not specified and the CRMS_PARTITION environment variable is
defined, this variable is used as the default partition name. Valid values are in the form pN, where N ranges from 0
to 31.

xtbootsys manages a link from /var/opt/cray/log/partition-current to the current sessionid
directory for that partition, allowing changes to /var/opt/cray/log/p1-current, for example.

7.14 Boot the System Using Another Snapshot

Prerequisites
A user must be root to run snaputil.

Modify an Installed System

S2393 282

About this task
Use the snaputil command to roll back the system to a previous snapshot if a system becomes unstable or
broken. Rolling back or forward can require switching the active config set if settings differ between the
snapshots.

Snapshot and config set synchronization is particularly critical when rolling back or forward between CLE releases
because of significant config set differences. To revert a system to an earlier Rhine Redwood release, see Revert
a System to an Earlier CLE 6.0 Release on page 110.

Procedure

1. List the snapshots available on the system.

smw: # snaputil list

Status Name
Created
-------- --

 @ 2016-08-10
01:35:35
 SMW-8.1DV00_CLE-6.1DV00.20160928 2016-09-28
10:41:59
 SMW-8.1DV00_CLE-6.1DV00.20160928.save1.postinstall 2016-09-28
12:15:30
 SMW-8.1DV00_CLE-6.1DV00.20160928.save2.postboot 2016-09-28
13:29:30
 SMW-8.1DV00_CLE-6.1DV00.20161003.save0.preupdate 2016-10-03
08:10:00
cur,def SMW-8.1DV00_CLE-6.1DV00.20161003 2016-10-03
08:13:50
 SMW-8.1DV00_CLE-6.1DV00.20161003.save1.postinstall 2016-10-03
10:09:52
 SMW-8.1DV00_CLE-6.1DV00.20161003.save2.postboot 2016-10-03
11:24:28

2. Compare the previous snapshot to the current snapshot.

smw# snaputil diff <current_snapshot>.preupdate <current_snapshot>

3. If a file has been changed, check for differences in the contents of the text file.

When a file is specified (filename), this command will list line-by-line differences for that file. See the
snaputil man page for more information.

smw# snaputil diff <current_snapshot>.preupdate <current_snapshot> filename

4. Roll back to the snapshot dated 20160928.

smw # snaputil default SMW-8.1DV00_CLE-6.1DV00.20160928

subvolume SMW-8.1DV00_CLE-6.1DV00.20160928 is now default.

Modify an Installed System

S2393 283

5. When a snapshot switch requires config set synchronization, use the cmap command to specify the config set
to use when booting CLE nodes with a new default snapshot. The config_set_name should be the config
set associated with the snapshot to be reverted to.

smw# cmap update --config-set config_set_name

6. Clone the global config set:

smw# cfgset create --clone global global.$FROM_SNAPSHOT

7. Save the current global config set and switch to the global config set associated with the target snapshot:

smw# cfgset create --clone global.$TARGET_SNAPSHOT global

8. Reboot the SMW. When the system is booted, it will use the new default snapshot.

smw# reboot

9. If boot or SDB node failover is used, ensure that the xtfailover_halt command is included and enabled
in the shutdown automation file (auto.hostname.stop. Ensure that the second line is uncommented. The
xtfailover_halt command must be enabled so that the xtbootsys shutdown process sends a STOP
NMI to the failover nodes.

Enable the following line if boot or sdb failover is enabled:
lappend actions { crms_exec \
"/opt/cray/hss/default/bin/xtfailover_halt --partition $data(partition,given) --
shutdown" }

10. Run xtbootsys with auto.hostname.start.

smw# su - crayadm
crayadm@smw > xtbootsys -a auto.hostname.start

7.15 Enable Write Cache on SMW Boot RAID Volume

Prerequisites
This procedure assumes the following:

● Familiarity with Cray FN5338 "Write cache support statement"

● The SANtricity Storage Manager has been installed.

● The SMW boot RAID has been configured for a NetApp, Inc. storage device.

● The user is logged on to the SMW as crayadm.

About this task
To reduce risk to end-user data integrity, all SMW boot RAID storage arrays are shipped (or configured, for a fresh
install) with write cache support disabled. However, there are situations in which sites may want or need to enable

Modify an Installed System

S2393 284

write cache on one or more storage volumes to better handle high write rates. ALPS requires write caching, for
example, so the volume that contains the ALPS shared file system will need to have write cache enabled.

This procedure enables write cache on a single volume of an existing NetApp, Inc. storage device. Repeat this
procedure for each volume to be write-cache enabled.

To mitigate the risk to data integrity, write caching should be used only with battery backup and controller
mirroring.

Procedure

1. Start the SANtricity Storage Manager.

crayadm@smw> /usr/bin/SMclient

2. Select the storage array containing the volume to be write-cache enabled.

3. Locate the volume to be write-cache enabled, right-click it, then select Change > Cache Settings.

4. Enable the desired cache settings.

7.16 Configure an NFS client to Mount the Exported Lustre File
System

About this task
Depending on the site client system, the configuration may be different. This procedure contains general
information that will help configure the client system to properly mount the exported Lustre file system. Consult
the client system documentation for specific configuration instructions.

Procedure

1. As root, verify that the nfs client service is started at boot.

2. Add a line to the /etc/fstab file to mount the exported file system. (For more information on NFS mount
options, see the mount(8) and nfs(5) man pages.)

server@network:/filesystem /client/mount/point lustre file_system_options 0 0

Recommended file system mount options.

rsize=1048576,wsize=1048576 Set the read and write buffer sizes from the server at 1MiB.
These options match the NFS read/write transaction to the
Lustre filesystem block size, which reduces cache/buffer
thrashing on the service node providing the NFS server
functionality.

soft,intr Use a soft interruptible mount request.

Modify an Installed System

S2393 285

async Use asynchronous NFS I/O. Once the NFS server has
acknowledged receipt of an operation, let the NFS client
move along even though the physical write to disk on the
NFS server has not been confirmed. For sites that need end-
to-end write-commit validation, set this option to sync
instead.

proto=tcp Force use of TCP transport—this makes the larger rsize/
wsize operations more efficient. This option reduces the
potential for UDP retransmit occurrences, which improves
end-to-end performance.

relatime,timeo=600,local_lock=none Lock and time stamp handling, transaction timeout at 10
minutes.

nfsvers=3 Use NFSv3 specifically. NFSv4 is not supported at this time.

3. Mount the file system manually or reboot the client to verify that it mounts correctly at boot.

7.17 Define Bind Mount Points Within a Config Set

About this task
When a site's directory needs to be bind mounted, like the Cray Programming Environment (PE) image root,
create a new image root that populates the bind mount point and the configure.

Procedure

1. Create a new image root using a recipe that populates a site directory, for example, /opt/site. This
example uses an image root called site_image_root_name as the result of building this recipe into an
image root.

smw# recipe create site_image_recipe

2. Extend the new recipe with sub-recipes, repositories, package collections, RPMs, and post_build_chroot
and post_build_copy actions to get the site content into /opt/site of the image root.

3. Build the image root from the recipe.

smw# image create -r site_image_recipe site_image_root_name

4. Push the image root (site_image_root_name) from the SMW to the boot node.

Note that the following example uses image sqpush. If this image root will be modified and pushed more
than once to test it, consider using image push instead. For more information, see About Image Pushes:
push versus sqpush on page 20.

smw# image sqpush -d boot site_image_root_name

Modify an Installed System

S2393 286

5. Update the cray_image_binding worksheet with a new profile named site. The profile settings define the
image name and the bind directories. The listing that follows shows the necessary settings.

cray_image_binding.settings.profiles.data.profile_name.site: null
cray_image_binding.settings.profiles.data.site.image: site_image_root_name
cray_image_binding.settings.profiles.data.site.bind_directories:
/opt/site
#cray_image_binding.settings.profiles.data.site.callbacks: []
cray_image_binding.settings.profiles.data.site.enabled: false
To have more than one directory from this image root bind mounted, add them to the directories setting.

cray_image_binding.settings.profiles.data.site.bind_directories:
/opt/site
/opt/another_site
/opt/last_site

7.18 Enable Multipath on an Installed XC System

Prerequisites
This procedure assumes that the Cray XC system has already been installed and configured without multipath
having been enabled. If performing a fresh install, this procedure is not necessary if multipath was already set up
using Prepare and Update the Global Config Set on page 172 or Update cray_multipath Worksheet.

About this task
This procedure describes how to enable multipath on a Cray XC system that has already been installed and
configured. Note that multipath does NOT need to be fully cabled to be used. The multipath driver can handle
using one path or many.

IMPORTANT: If this system has partitions, repeat any steps that modify 'p0' for each partition. Multipath
must be enabled everywhere or nowhere; enabling it on only part of the system causes problems.

Procedure

1. Start the multipath daemon now.

smw# systemctl start multipathd

Later in this procedure, the cray-ansible command will be used to enable the multipath daemon.

2. Obtain the host ID of the SMW and the cnames of any nodes in the system that are connected to the boot
RAID with an HBA (host bus adapter).

The system should be bounced or booted for xtcheckhss to return a proper list.

smw# hostid
{8 digit hostid}

Modify an Installed System

S2393 287

smw# xtcheckhss --detail=f --pci

Look for cnames with HBAs like 'QLogic_ISP2532_8Gb_Fibre_Channel_HBA.'

––––––– UPDATE CRAY_MULTIPATH IN GLOBAL CONFIG SET –––––––

3. Use the configurator to update cray_multipath in the global config set.

smw# cfgset update -s cray_multipath -m interactive -l advanced global

a. Enable multipath.

Enter E at the configurator prompt to toggle the enable status of the multipath service, which is disabled
by default.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ E

b. Add the host ID and cnames obtained in an earlier step.

At the prompt, enter 1 to select the node_list setting, then enter C to configure it. At the prompt for that
setting, enter values + to add node_list entries: add the host IDs and cnames obtained in an earlier step,
one per line. When finished, press Ctrl-d and then <cr> to set the entries.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 1
...
Cray Multipath Configuration Service Menu [default: configure - C] $ C
...
cray_multipath.settings.multipath.data.node_list
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add node_list (Ctrl-d to exit) $

Do NOT save changes and exit the configurator yet.

4. Correct the values of three pre-populated multipath device settings.

Perform this step only if this system was updated from CLE 6.0.UP03 or an earlier release AND these values
were not corrected during the update.

a. View all enabled devices.

At the prompt, enter 33 to select the enabled_devices setting, then enter C to configure it.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 33

Cray Multipath Configuration Service Menu [default: configure - C] $ C
At the prompt for this setting, enter * to view all of the pre-populated device settings.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ *

b. Change the value of the path grouping policy field for the DDN_EF3015 device.

Find the DDN_EF3015 device in the list of enabled devices, and enter its number (5 in this example)
followed by 'd' and '*' to select and edit the path_grouping_policy field.

Modify an Installed System

S2393 288

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 5d*
If this field is not already set to group_by_prio, set it to that value now.

cray_multipath.settings.enabled_devices.data.DDN_EF3015.path_grouping_policy
[<cr>=keep 'multibus', <new value>, ?=help, @=less] $ group_by_prio

c. Change the value of the product field for the DDN_SFA12K_20 device.

Find the DDN_SFA12K_20 device in the list of enabled devices, and enter its number (10 in this example)
followed by 'b' and '*' to select and edit the product field.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 10b*
If this field is not already set to SFA12K-20, set it to that value now.

cray_multipath.settings.enabled_devices.data.DDN_SFA12K_20.product
[<cr>=keep 'SFA12K20', <new value>, ?=help, @=less] $ SFA12K-20

d. Change the value of the product field for the DDN_SFA12K_40 device.

Find the DDN_SFA12K_40 device in the list of enabled devices, and enter its number (11 in this example)
followed by 'b' and '*' to select and edit the product field.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ 11b*
If this field is not already set to SFA12K-40|SFA12KX*, set it to that value now.

cray_multipath.settings.enabled_devices.data.DDN_SFA12K_40.product
[<cr>=keep 'SFA12K40', <new value>, ?=help, @=less] $ SFA12K-40|SFA12KX*
Set the enabled_devices entries, but DO NOT save changes and exit the configurator yet.

cray_multipath.settings.enabled_devices
[<cr>=set 11 entries, +=add an entry, ?=help, @=less] $ <cr>

Do NOT save changes and exit the configurator yet.

5. Correct the syntax of the multipath blacklist devices setting.

Perform this step only if this system was updated from CLE 6.0.UP03 or an earlier release AND these values
were not corrected during the update.

The multipath configuration contains syntax that works under SLES 12 but not under SLES 12 SP2 or SP3.
That syntax must be corrected in three places (more if there is more than one CLE config set) on systems
updating from CLE 6.0.UP03:

● the /etc/multipath.conf file in the new release snapshot

● multipath configuration service template in the global config set

● multipath configuration service template in every CLE config set in use

The /etc/multipath.conf file must be corrected manually because the corrections are needed for the init
boot phase, and any changes to the multipath configuration service (the preferred approach) would not be
reflected in /etc/multipath.conf until cray-ansible runs, which on the SMW occurs only in the multi-user
boot phase. However, correcting only /etc/multipath.conf is not sufficient, because when cray-ansible
runs in multi-user phase, that file is replaced with one that reflects the settings in the multipath configuration

Modify an Installed System

S2393 289

service. Therefore, the corrections must be made in the global and CLE config sets as well. Note that the
corrected syntax works under both SLES 12 and SLES 12 SP2/SP3.

a. Select the blacklist_devices setting.

At the configuration service menu prompt, enter 31 to select blacklist_devices, and then enter C to
configure that setting. Both the vendor and product values will be changed from * to .*.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ 31
Cray Multipath Configuration Service Menu [default: configure - C] $ C
**************************** cray_multipath.settings.blacklist_devices

 blacklist_devices
 Enter the devices which you would like to blacklist for multipath.
By
 default, all devices are blacklisted. Remove the 'all' key in this
 setting to de-blacklist all devices.

 Configured Values:
 1) 'all'
 a) vendor: *
 b) product: *

 Inputs: menu commands (? for help)

|--- Information
* Multiple 'blacklist_devices' entries can be added using this menu

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $

b. Enter 1a* to change the vendor value.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1a*

c. Enter .* to update the current value to the correct value.

cray_multipath.settings.blacklist_devices.data.all.vendor
[<cr>=keep '*', <new value>, ?=help, @=less] $.*

d. Enter 1b* to change the product value.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1b*

e. Enter .* to update the current value to the correct value.

cray_multipath.settings.blacklist_devices.data.all.product
[<cr>=keep '*', <new value>, ?=help, @=less] $.*

f. Set the changed blacklist_devices entry.

cray_multipath.settings.blacklist_devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>

g. Save changes and exit the configurator.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ Q

Modify an Installed System

S2393 290

h. Edit the multipath configuration file.

smw# vi /etc/multipath.conf
The following section in /etc/multipath.conf shows the incorrect vendor and product values of
"*" and "*":

blacklist {
 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
 devnode "^hd[a-z]"
 devnode "^cciss!c[0-9]d[0-9]*"
 device {
 vendor "*"
 product "*"
 }
}
The same section displayed with correct vendor and product values:

blacklist {
 devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
 devnode "^hd[a-z]"
 devnode "^cciss!c[0-9]d[0-9]*"
 device {
 vendor ".*"
 product ".*"
 }
}

6. If still in the configurator, save changes and exit the configurator now.

If the previous step was skipped because the values had already been corrected during an update or this
system had a fresh install of CLE 6.0.UP04 or a later release, then the configurator may still be running from
an earlier step.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ Q

––––––– UPDATE CRAY_BOOTRAID IN GLOBAL CONFIG SET –––––––

7. Use the configurator to update cray_bootraid in the global config set.

smw# cfgset update -s cray_bootraid -m interactive global

a. Select the storage sets setting to configure it.

Boot RAID Configuration Service Menu [default: save & exit - Q] $ 1
...
Boot RAID Configuration Service Menu [default: configure - C] $ C

b. For each device in the cledefault and smwdefault storage sets, modify the path name from scsi to
dm-uuid-mpath.

This example shows selecting the cledefault (1) volume group (a) boot_node_vg (1) devices (b)
field. The * indicates that the selection is to be edited.

Modify an Installed System

S2393 291

cray_bootraid.settings.storage_sets
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ 1a1b*

Remove the scsi path name and replace it with the dm-uuid-mpath name.

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ 1-

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 0 entries, +=add an entry, ?=help, @=less] $ +
Add devices (Ctrl-d to exit) $ /dev/disk/by-id/dm-uuid-mpath-3600a0980009ec0750000010a5762af70
Add devices (Ctrl-d to exit) $ <Ctrl-d>

Press Enter (<cr>) to set the entries for the boot_node_vg volume group.

cray_bootraid.settings.storage_sets.data.cledefault.volume_groups.boot_node_vg.devices
[<cr>=set 1 entries, +=add an entry, ?=help, @=less] $ <cr>

Repeat this substep for each device in the cledefault and smwdefault storage sets. Enter * at the
prompt to see all storage set entries.

● To select the next cledefault volume group device (sdb_node_vg), enter 1a2b* at the prompt. If
there are more cledefault volume groups, increment the third character to select each one
(1a3b*, 1a4b*, and so forth).

● To select the first smwdefault volume group device (smw_node_vg), enter 2a1b* at the prompt. If
there are more smwdefault volume groups, increment the third character to select each one
(2a2b*, 2a3b*, and so forth).

c. Set the storage set entries, then save changes and exit the configurator.

cray_bootraid.settings.storage_sets
[<cr>=set 2 entries, +=add an entry, ?=help, @=less] $ <cr>
...
Boot RAID Configuration Service Menu [default: save & exit - Q] $ Q

––––––– UPDATE CRAY_MULTIPATH IN CLE CONFIG SET(S) –––––––

8. Use the configurator to set up inheritance for multipath in the CLE config set.

This example uses 'p0' as the name of the CLE config set. Substitute the actual name used for this system.

smw# cfgset update -s cray_multipath -m interactive p0

Enter I at the configurator prompt to toggle the inherit status of the multipath service, which is disabled by
default. This means that multipath settings in the global config set will be used instead of multipath settings in
the CLE config set.

Cray Multipath Configuration Service Menu [default: save & exit - Q] $ I

Repeat this step for each CLE config set.

––––––– VALIDATE CONFIG SETS AND APPLY CHANGES –––––––

9. Validate the config sets and run cray-ansible to apply the config set changes.

Modify an Installed System

S2393 292

a. Validate the config sets.

smw# cfgset validate global

smw# cfgset validate p0
b. Run cray-ansible.

smw# /etc/init.d/cray-ansible start

––––––– FOR SYSTEMS USING DAL –––––––

10. For systems using direct-attached Lustre (DAL), update the dal.fs_defs file.

Repeat these steps for each partition.

a. Locate the current fs_defs files (typically stored in /home/crayadm).

smw# find /home/crayadm -name "*fs_defs*"

b. Find the fs_defs files that are currently installed and compare with the one found in /home/crayadm.

smw# cd /var/opt/cray/imps/config/sets
smw# find p0 -name "*fs_defs*"

smw# diff /home/crayadm/dal.fs_defs \
p0/lustre/.lctrl/dal.fs_defs.20160205.1454685527

c. Edit the dal.fs_defs file to ensure that it has the proper mpath paths in it.

smw# cd /home/crayadm

smw# sed -i.nompath \
's/\/dev\/disk\/by-id\/scsi/\/dev\/disk\/by-id\/dm-uuid-mpath/g' \
dal.fs_defs

smw# cp -p dal.fs_defs dal.fs_defs.mpath

d. Install the new dal.fs_defs file using lustre_control.

smw# lustre_control install -c p0 /home/crayadm/dal.fs_defs

––––––– SHUT DOWN AND REBOOT SYSTEM –––––––

11. Shut down all partitions of the Cray system.

12. Reboot the SMW.

13. Boot the Cray system.

Modify an Installed System

S2393 293

7.19 Change Lustre Versions

Prerequisites
CLE software must be installed.

About this task
This procedure describes how to build image root and boot images with a version of Lustre other than the default
version in the standard image recipes for XC systems running CLE 6.0.UP06 or a later release.

Procedure

1. Identify recipes with non-default Lustre.

With CLE 6.x, the default Lustre version is Lustre 2.7.2, and that version is included in the package collections
for all recipes. However, a second set of recipes exist that use package collections with the non-default
version of Lustre RPMs (2.5.4). These additional recipes can be located by this command.

smw# recipe list | grep lustre
compute-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
compute-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
elogin-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
elogin-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
initrd-compute-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
initrd-login-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
initrd-login-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
login-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
login-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
service-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari

BUILD CLE IMAGES WITH NON-DEFAULT LUSTRE VERSION

2. Customize the cray_image_groups configuration file, as needed, by
editing /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml and by
adding stanzas for standard and/or netroot images to be created.

Choose only the set of tmpfs recipes or the set of netroot recipes which matches the existing recipes in use
on this system. There is a single recipe for service since it is always tmpfs.

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml

For tmpfs.

cray_image_groups:
 lustre25:
 - recipe: "compute-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "compute-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}"
 export_format: "cpio"
 nims_group: "compute"
 - recipe: "login-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "login-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}"
 export_format: "cpio"
 nims_group: "login"
 - recipe: "service-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "service-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}"

Modify an Installed System

S2393 294

 export_format: "cpio"
 nims_group: "service"

For netroot.

cray_image_groups
 lustre25:
 - recipe: "initrd-compute-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "initrd-compute-large-lustre-2.5{note}_cle_{cle_release}-build{cle_build}
{patch}_sles_12sp2-created{date}"
 export_format: "cpio"
 nims_group: "compute"
 - recipe: "initrd-login-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "login-large-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created {date}"
 export_format: "cpio"
 nims_group: "login"
 - recipe: "service-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari"
 dest: "service-lustre-2.5{note}_cle_{cle_release}-build{cle_build}{patch}_sles_12sp2-
created{date}"
 export_format: "cpio"
 nims_group: "service"

3. Run imgbuilder to make Lustre images.

smw# imgbuilder -g lustre25

4. (For netroot images only) Push netroot image roots to the boot node.

Note that the following example uses image sqpush. If these image roots will be modified and pushed more
than once to test them, consider using image push instead. For more information, see About Image Pushes:
push versus sqpush on page 20.

smw# image sqpush -d boot login-large-lustre-2.5_cle_version_and_build.cpio
smw# image sqpush -d boot compute-large-lustre-2.5_cle_version_and_build.cpio

ASSIGN NEW LUSTRE IMAGES TO TEST NODES

5. Determine names of boot images built above.

smw# image list | grep lustre

6. Use cnode to assign the boot images to nodes for testing.

a. Assign service image.

smw# cnode update -i \
/var/opt/cray/imps/boot_images/service-lustre-2.5_cle_version_and_build.cpio c9-9c0s0n1

b. Assign DAL image.

smw# cnode update -i \
/var/opt/cray/imps/boot_images/dal-lustre-2.5_cle_version_and_build.cpio c8-8c0s0n2

c. Assign login image.

● For tmpfs:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/login-lustre-2.5_cle_version_and_build.cpio c8-8c0s0n1

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-login-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=login-large-lustre-2.5_cle_version_and_build c8-8c0s0n1

d. Assign compute image.

Modify an Installed System

S2393 295

● For tmpfs:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/compute-lustre-2.5_cle_version_and_build.cpio c7-7c0s0n1

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-compute-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=compute-large-lustre-2.5_cle_version_and_build c7-7c0s0n1

WARMBOOT TEST NODES WITH NEW LUSTRE IMAGES

7. Warmboot test nodes with new Lustre images.

a. Login as crayadm.

smw# su - crayadm

b. Shutdown node.

crayadm@smw> xtnmi c8-8c0s0n1

c. Wait sixty seconds.

crayadm@smw> sleep 60

d. Reboot node with new image.

crayadm@smw> xtbootsys --reboot -r "warmboot to test Lustre-2.5" c8-8c0s0n1

e. Repeat for each type of node to be tested.

REBOOT ENTIRE CLE SYSTEM WITH NEW LUSTRE IMAGES

8. Assign Lustre 2.5 images to all nodes.

a. Assign to all service nodes.

smw# cnode update --filter group=service -i \
/var/opt/cray/imps/boot_images/service-lustre-2.5_cle_version_and_build.cpio

b. Assign to all login nodes.

● For tmpfs:

smw# cnode --filter group=login update -i \
/var/opt/cray/imps/boot_images/login-lustre-2.5_cle_version_and_build.cpio

● For netroot:

smw# cnode update \
-i /var/opt/cray/imps/boot_images/initrd-login-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=login-large-lustre-2.5_cle_version_and_build --filter group=login

c. Assign to all compute nodes.

● For tmpfs:

smw# cnode update --filter group=compute -i \
/var/opt/cray/imps/boot_images/compute-lustre-2.5_cle_version_and_build.cpio

● For netroot:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/initrd-compute-large-lustre-2.5_cle_version_and_build.cpio \
-k netroot=compute-large-lustre-2.5_cle_version_and_build.cpio --filter group=compute

Modify an Installed System

S2393 296

For netroot only, if the compute-large and login-large image roots were not pushed to the boot node when
testing the new images, push them to the boot node before rebooting the entire system. The boot node must
be booted for the image sqpush command to succeed.

9. Shutdown CLE.

crayadm@smw> xtbootsys -s last -a auto.hostname.stop

10. Boot CLE.

crayadm@smw> xtbootsys -a auto.hostname.start

11. Build recipes and deploy boot image for eLogin nodes using non-default Lustre.

To build eLogin images, use the procedure in XC Series SMW-managed eLogin Installation Guide (S-3020),
but remember to choose the appropriate image recipe which includes the non-default version of Lustre. This
example shows the elogin recipes that match the netroot and tmpfs login recipes configured for the XC
system. Select the image recipe that most closely resembles what the XC login node uses.

smw# recipe list | grep lustre | grep elogin
elogin-large-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari
elogin-lustre-2.5_cle_6.0up06_sles_12sp3_x86-64_ari

7.20 Install Third-Party Software with a Custom Image Recipe

About this task
Any software that is created independent from Cray and that is not delivered with a Cray system is third-party
software that administrators install as add-ons to the Cray system. (The information in this section does not
pertain to software installed on an external file system that is connected to a Cray system.) There are several
ways to install third-party software:

● (Recommended) Create a custom image recipe for the third-party software and add a Cray-provided recipe
as a subrecipe (also called extending a recipe). This method is preferred because the update to the image is
persisted in the recipe.

● Clone an existing recipe, then modify the clone to add the third-party software. This method is not
recommended because cloned recipes do not receive updates from patches.

● Use the image chroot command to install the software to an existing image. Software installed with this
method is lost when a node image is rebuilt from a recipe. However, this approach can be useful when
persistence is not important, such as when testing third-party software. The Cray image chroot command
can be used to chroot into any XC system image root, regardless of architecture. (Note that using image
chroot on a non-bootable image like PE or diags may result in a prompt like this because such images lack
the content used to populate the prompt: [diag-all_cle_6.0up06_sles_12sp3] I have no name!@smw:/"I have
no name!")

● Use the zypper command to install software on a node. Software installed with this method is lost the next
time the node is booted. Like the image chroot method, this approach can be used when testing software
that does not need to persist in the image.

Modify an Installed System

S2393 297

IMPORTANT: Do not directly modify a Cray-provided recipe. For information on removing an RPM after
building from a Cray-provided recipe, see Remove an Undesired RPM After Building From a Cray Recipe
on page 305.

This procedure describes the recommended method of creating a new image recipe for third-party software that
will run on Cray nodes (except eLogin nodes). The procedure explains how to add a Cray-provided image recipe
as a subrecipe, then add the third-party repositories, package collections, and RPMs, as well as optional non-
RPM content. It then shows how to build an image root, export the image root into a boot image, push the boot
image to the boot node (netroot only), test it on a single node, and assign the tested image to all applicable
nodes.

For more information on image-related concepts and commands, see About the Image Management and
Provisioning System (IMPS) on page 14.

NOTE: This procedure does not apply to eLogin images. To create, build, and transfer custom eLogin
images, see the XC™ Series eLogin Installation Guide (S-2566).

Procedure

CREATE REPOSITORY

1. Create a new repository and add the third-party packages (RPMs). Skip this step if the repository already
exists on the SMW or is hosted on a remote repository server.

a. Use the repo create command to create the new repository (for example, my_sles12_repo).

This command requires the operating system distribution (for example, SLES12, RHEL6, CentOS).

smw# repo create --dist SLES12 my_sles12_repo
b. Verify that the new repository was created.

smw# repo list my*
my_sles12_repo

c. Add the third-party RPMs to the repository. This example takes all RPMs starting with myrpm in the
example repository path /path/to/repos/ and copies them to the example repo my_sles12_repo.

smw# repo update -a "/path/to/repos/myrpm*.rpm" my_sles12_repo
smw# ls -l /var/opt/cray/repos/my_sles12_repo
-rw-r--r-- 1 crayadm crayadm 485137 Nov 23 08:56 myrpm-11.13.1.1-4.x86_64.rpm

d. (Optional) Check the contents of the repository. This command displays the packages but not the full
RPM names.

smw# repo show --fields contents
Add the --detailed option to display the version and architecture for each package in the repository.

e. Validate the repository.

smw# repo validate my_sles12_repo

CREATE PACKAGE COLLECTION

2. Create a package collection and add the RPM package names.

Modify an Installed System

S2393 298

A package collection represents a logical grouping of RPMs. Cray recommends using a package collection
because the RPMs can be used in multiple image types (such as compute and service node images).
Package collections are stored on the SMW in /etc/opt/cray/imps/package_collections.d/.

Cray provides the following package collections for workload manager (WLM) software:

● service-pbs_cle_6.0up06_sles_12sp3 (packages needed to build and run PBS)

● service-torque_cle_6.0up06_sles_12sp3 (packages needed to build and run Moab/TORQUE)

● slurm-build_cle_6.0up06_sles_12sp3 (packages needed to build Slurm)

● compute-slurm_cle_6.0up06_sles_12sp3 (packages needed to run Slurm on compute nodes)

● login-slurm_cle_6.0up06_sles_12sp3 (packages needed to run Slurm on login nodes)

● service-slurm_cle_6.0up06_sles_12sp3 (packages needed to run Slurm on service nodes)

a. Create an empty package collection (for example, my_collection).

smw# pkgcoll create --description "Example package collection" my_collection
b. Verify that the package collection was created.

smw# pkgcoll list my*
my_collection

c. Add the RPM package name or names (for example, myrpm) to the package collection.

IMPORTANT: When adding an RPM package to a package collection, use the file name of the
RPM without the .rpm extension. Otherwise, the package will not install in the image root, even
though the package collection may validate.

smw# pkgcoll update -p myrpm \
--description "My package collection" my_collection

d. Display information about the package collection.

smw# pkgcoll show my_collection
my_collection:
 name: my_collection
 description: My package collection
 packages:
 myrpm

e. Validate the package collection.

This example assumes that my_collection is for the x86-64 architecture. Use --arch aarch64 if the
package collection is for that architecture.

smw# pkgcoll --arch x86_64 validate my_collection

CREATE RECIPE

3. Create a new recipe and customize it by adding a subrecipe (the Cray-provided image) and the content for
the third-party software.

a. List the existing recipes to determine which image recipe to include.

smw# recipe list
compute-large_cle_6.0up03_sles_12_x86-64_ari
compute-large_cle_6.0up04_sles_12sp2_x86-64_ari

Modify an Installed System

S2393 299

compute-large_cle_6.0up05_sles_12sp3_x86-64_ari
compute-large_cle_6.0up06_sles_12sp3_ari
compute_cle_6.0up03_sles_12_x86-64_ari
compute_cle_6.0up04_sles_12sp2_x86-64_ari
compute_cle_6.0up05_sles_12sp3_x86-64_ari
compute_cle_6.0up06_sles_12sp3_ari
dal_cle_6.0up03_centos_6.5_x86-64_ari
dal_cle_6.0up04_centos_6.5_x86-64_ari
dal_cle_6.0up05_centos_6.5_x86-64_ari
dal_cle_6.0up06_centos_6.5_ari
elogin_cle_6.0up06_sles_12sp3_ari
...

b. Create a new image recipe. This example uses the recipe name site_compute.

smw# recipe create --description \
"Example recipe for 3rd-party software on compute nodes" site_compute

c. Add the existing image recipe as a subrecipe. This example uses the Cray-provided recipe
compute_cle_6.0up06_sles_12sp3_ari.

smw# recipe update -i compute_cle_6.0up06_sles_12sp3_ari site_compute
d. Add the package collection that contains the third-party RPMs (in this example, my_collection).

smw# recipe update -c my_collection \
--rationale "Include my package collection" site_compute

e. Add the repository that contains the third-party RPMs (for example, my_sles12_repo).

smw# recipe update -r my_sles12_repo \
--rationale "Include third-party RPMs" site_compute
To add a remote repository that is hosted on an external repository server, specify the repository's
Uniform Resource Identifier (URI) starting with http:// or https://.

f. Add the objects mentioned in the subrecipe that are also needed for the parent recipe.

IMPORTANT: The objects mentioned in a subrecipe are used to build that subrecipe but are not
available to the parent recipe. If a package (RPM) or package collection is specified in the parent
recipe, the custom recipe must explicitly contain the set of repositories where the packages can
be found.

1. Determine which repository contains the necessary RPM or RPMs. This example find command
identifies the Cray repository that contains the RPM otherrpm.

smw# find /var/opt/cray/repos -name otherrpm* -ls
2. Select the correct repository:

● Choose the repository for the image's operating system distribution — use a SLES repository for
a SLES image recipe; use a CentOS repository for a CentOS recipe.

● Most operating system and Cray repositories come in pairs (base and updates), such as
sles_12sp3 and sles_12sp3_updates. Be sure to select both the base and base_updates
repositories if they exist, because RPMs in update repositories will have higher version RPMs
that will be used instead of lower version RPMs contained in base repos.

3. Add the required repository or repositories (in this example, otherrepo).

Modify an Installed System

S2393 300

smw# recipe update -r otherrepo \
--rationale "Additional repo for third-party software" site_compute
Repeat the -r option to add multiple repositories, such as a base and base_updates repository
pair.

smw# recipe update -r sles_12 \
-r sle-server_12sp3 -r sle-server_12sp3_updates \
--rationale "SLES12 update repo" site_compute

g. (Optional) Add post-build actions by manually editing the image recipe
in /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json.

Post-build actions can add non-RPM content (files or directories) to the image or specify commands to
run in the chroot environment of the image root (on the SMW). For example, the post-build actions could
include copying a tar file into the image, then using chroot to run the commands to untar it and run an
install script.

● In the postbuild_chroot section, add the commands to run in a chroot environment for this
image root.

● In the postbuild_copy section, add the files to copy into the image.

smw# vi /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json

"site_compute": {
 "description": "Example recipe for 3rd-party software on compute nodes",
 "dist": "SLES12",
 "default-arch": "x86_64",
 "valid-arch": [
 "x86_64",
 "aarch64"
],
 "packages": [...],
 "package_collections": [...],
 ”recipes": [...],
 "repositories": [...],
 "postbuild_chroot": [
 "common_command_1",
 "common_command_2",
 "{% if arch == 'aarch64' %}aarch64_command_1{% endif %}",
 "{% if arch == 'x86_64' %}x86_64_command_1{% endif %}",
 "common_command_3",
 "common_command_4",
 ...
],
 "postbuild_copyfiles": [
 "/path/to/file/copyfile_1",
 "/path/to/file/copyfile_2",
 "{% if arch == 'aarch64' %}/path/to/file/aarch64_copyfile_1{% endif
%}",
 "{% if arch == 'aarch64' %}/path/to/file/aarch64_copyfile_2{% endif
%}",
 "/path/to/file/copyfile_3",
 "/path/to/file/copyfile_4",
 ...
],
 "version": "2.0.0",
 "metadata": {
 "created": "2017-10-31T13:24:14"

Modify an Installed System

S2393 301

 "history": [
 "2017-10-31T13:26:01: Extended recipes attribute with 1 Recipe."
 ...
]
 }
}
While editing the recipe, do not delete or change the version or metadata fields.

TIP: Post-build scripts can use the following environmental variables:

● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

h. Validate the image recipe.

smw# recipe validate site_compute
INFO - Validating recipe site_compute is valid for x86_64 architecture.
INFO - Validating Image 'site_compute-validate-2017-10-31_13:31:44'
...
INFO - Building out site_compute
INFO - Calling package manager to validate Recipe 'site_compute'; this can
take a few minutes.
INFO - Removed Image 'site_compute-validate-2017-10-31_13:31:44'.
INFO - Removed Image 'site_compute-validate-2017-10-31_13:31:44'.
INFO - Recipe validates.
This command checks that the JSON syntax of the image recipe is correct. It also validates, for the
specified architecture, all repositories and package collections referenced by the image recipe, checks
that all required packages are included in the recipe, and ensures that it can access any files in the
postbuild_copy section.

Caveat. Recipe validation does NOT validate post-build activities, such as running scripts and copyfiles
actions, because without actually installing packages, the scripts/actions cannot be run.

BUILD AND PACKAGE IMAGE

4. Build the image recipe to create the image root.

Choose a unique name for the image root. Cray recommends using the image recipe name plus the current
date/time. This example uses the image root name site_compute_timestamp.

IMPORTANT: If the image root name is not unique, it will overwrite an existing image root. A unique
name is especially important for images that are pushed to the boot node. Do not overwrite the image
root that is currently used by running nodes.

The image create command builds the image recipe starting with the package manager installation and
then proceeds to step through the post-build copy and post-build chroot commands (in that order).

If the image to be created should have a different architecture than the recipe's default architecture, add the
--arch ARCH to the following command, where ARCH is one of the valid architectures, such as x86_64 or
aarch64.

smw# image create -r site_compute site_compute_timestamp
INFO - Repository 'my_sles12_repo' validates.
INFO - Recipe 'site_compute' is valid for building.
INFO - Calling Package manager to build new image root; this will take a few

Modify an Installed System

S2393 302

minutes.
INFO - Rebuilding RPM database for Image 'site_compute_timestamp'.
INFO - RPM database does not need to be rebuilt.
INFO - Running post-build scripts for Image 'site_compute_timestamp'.
INFO - Copying postbuild files to /tmp/tmpmAyzGl in Image
'site_compute_timestamp'
INFO - * Executing post-build chroot script: 'common_command1'
INFO - post-build chroot script output will be located in /tmp/
site_compute_postbuild_out_20170713-15:55:11g4WA6p
INFO - Build of Recipe 'site_compute' has completed successfully.

5. (Optional) Display the build history of the image root.

smw# image show site_compute_20171121082046
site_compute_20171121082046:
 name: site_compute_20171121082046
 arch: x86_64
 dist: SLES12
 created: 2017-11-21T08:20:46
 history:
 2017-11-21T08:20:57: Successful build of Recipe 'seed_common_6.0up06_sles_12sp3' into Image
'site_compute_20171121082046'.
 2017-11-21T08:22:53: Successful build of top level recipe 'compute_cle_6.0up06_sles_12sp3_ari'.
 2017-11-21T08:22:53: Successful rebuild of RPM database.
 path: /var/opt/cray/imps/image_roots/site_compute_20171121082046

6. Package the image root into a boot image.

smw# image export site_compute_timestamp

INFO - Copying kernel /var/opt/cray/imps/image_roots/site_compute_timestamp/boot/
bzImage-3.12.28-4.6_1.0000.8685-cray_ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
INFO - Copying parameters file /var/opt/cray/imps/image_roots/site_compute_timestamp/
boot/parameters-ari_c into /tmp/temp_tempfs_50LJ93/DEFAULT
 .
 .
 .
INFO - Image 'site_compute_timestamp' has been packaged into /var/opt/cray/imps/
boot_images/site_compute_timestamp.cpio.

7. If this is a netroot image, push the image root to the boot node.

IMPORTANT: Before pushing the image root, make sure that there is sufficient space on the boot
node in /var/opt/cray/imps/image_roots.

smw# image sqpush site_compute_timestamp --destination boot
The image sqpush command puts a SquashFS compressed image root on the boot node. Cray
recommends using this command instead of image push for better boot performance. For more information,
see About Image Pushes: push versus sqpush on page 20.

TEST IMAGE

8. Test the new boot image on a single node.

a. Assign the boot image to a node with the NIMS cnode command.

The cnode and cmap commands replace the nimscli command, which was deprecated in CLE
6.0.UP04 and removed in CLE 6.0.UP05. Be sure to change any scripts that reference nimscli.

This example assigns the boot image file site_compute_timestamp.cpio (in the
directory /var/opt/cray/imps/boot_images/) to the compute node with the cname c0-0c0s15n3.

Modify an Installed System

S2393 303

● For a tmpfs image:

smw# cnode update -i \
/var/opt/cray/imps/boot_images/site_compute_timestamp.cpio c0-0c0s15n3

● For a netroot image:

smw# cnode update c0-0c0s15n3 \
--set-parameter netroot=site_compute_timestamp

b. Warm-boot the node to test the boot image.

smw# xtcli shutdown c0-0c0s15n3
.
.
.
crayadm@smw> xtbootsys --reboot \
-r "testing new boot image site_compute_timestamp" c0-0c0s15n3

ASSIGN IMAGE TO NODES

9. Change the NIMS map to assign the new image to the applicable nodes.

a. Back up the current map before changing to the new image. First, identify the active map.

smw# cmap list | grep -i 'true'
The following steps use the active map name "current-map".

b. Next, clone the current map.

smw# cmap create -clone current-map new-map
c. Mark the new map as the active map.

smw# cmap setactive new-map
d. Assign the new boot image to all applicable nodes. This example uses "--group compute" to assign

the image to all compute nodes.

● For a tmpfs image:

smw# cnode update --group compute \
-i /var/opt/cray/imps/boot_images/site_compute_timestamp.cpio

● For a netroot image:

smw# cnode update --group compute \
--set-parameter netroot=site_compute_timestamp

Trouble? If problems occur, use this command to revert to the previous map (current-map):

smw# cmap setactive current-map

10. Choose when the nodes should switch to the new image.

● To immediately use the new image, warm-boot all applicable nodes with the new image. This example
specifies the compute nodes as a comma-separated list of cnames; see the xtcli(8) man page for
other ways of specifying multiple nodes.

Modify an Installed System

S2393 304

smw# xtcli shutdown cname, cname, ... cname
.
.
.

smw# xtbootsys --reboot -r "Booting custom image on all compute nodes" \
cname, cname, ... cname

● To have the workload manager (WLM) reboot the node once the current user's job finishes, see Apply
Rolling Patches to Compute Nodes with cnat on page 327.

● Otherwise, wait until the next full system reboot. The nodes will boot with the new image.

After a recipe has been defined and tested, the imgbuilder command can be used to rebuild and package boot
images.

7.21 Remove an Undesired RPM After Building From a Cray Recipe

About this task
Sites can create their own new recipe and model it after a Cray recipe by including the Cray recipe as a
subrecipe. Using a Cray-provided recipe to build an image root will have the set of RPMs Cray requires. If one or
more of those RPMs are not needed for the site recipe, the site recipe can be augmented with zypper or RPM
commands to explicitly erase an RPM by using the POSTBUILD_CHROOT method. One advantage of this method
is that any Cray changes delivered in patches that require a rebuild of the recipe will be included in the recipe,
while still using the site modifications in the site recipe to remove unneeded RPMs after the Cray subrecipe has
been built.

Procedure

1. Create a new recipe that will be similar to the login-large recipe.

smw# recipe create site-login-large_cle_6.0up06_sles_12sp3_ari

2. Add the Cray login-large recipe as a subrecipe.

smw# recipe update -i login-large_cle_6.0up06_sles_12sp3_ari \
site-login-large_cle_6.0up06_sles_12sp3_ari

3. Edit this new site recipe to add the desired POSTBUILD_CHROOT steps.

This example calls zypper to remove three RPMs called badrpm1, badrpm2, and badrpm3. While editing
the recipe, do not delete or change the version or metadata fields.

smw# vi /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json

"site-login-large_cle_6.0up06_sles_12sp3_ari": {
 "description": "Site login node image",
 "dist": "SLES12",
 "default-arch": "x86_64",
 "valid-arch": [
 "x86_64",

Modify an Installed System

S2393 305

 "aarch64"
],
 "packages": [],
 "package_collections": [],
 "recipes": [
 {"name": "login-large_cle_6.0up06_sles_12sp3_ari", "rationale": ""}
],
 "repositories": [],
 "postbuild_chroot": [
 "zypper remove badrpm1 badrpm2 badrpm3"
],
 "postbuild_copyfiles": [],
 "version": "2.0.0",
 "metadata": {
 "created": "2018-05-17T13:24:14"
 "history": [
 "2018-05-17T13:26:01: Extended recipes attribute with 1 Recipe."
 ...
]
 }
}

4. Build the new site recipe into a uniquely named image root using the image command to ensure a clean build.

Attempting to remove RPMs may determine that other RPMs have dependencies on the RPMs to be
removed. Several iterations may be required to determine the proper set of RPMs to be removed. For
example, if a dependency is discovered with badrpm2, that RPM will need to be removed from the zypper
command of the previous step.

smw# image create -r site-login-large_cle_6.0up06_sles_12sp3_ari \
site-login-large_cle_6.0up06_sles_12sp3_ari_created20180517

5. Inspect the build image root to ensure that the desired content has been removed.

This example uses the Cray image chroot command, which can be used to chroot into any XC system
image root, regardless of architecture.

smw# image chroot \
site-login-large_cle_6.0up06_sles_12sp3_ari_created20180517
chroot-smw# exit
smw#
Things to note about image chroot:

● The image chroot command requires only the name of the image root, whereas the Linux chroot
command requires the full path name of the image root.

● Using image chroot to chroot into a non-bootable image like PE or diags may result in a prompt like
this because such images lack the content used to populate the prompt: [diag-
all_cle_6.0up06_sles_12sp3] I have no name!@smw:/"I have no name!"

6. To ensure that the new image will be built automatically by imgbuilder in the future, add the new image to
the default image group of cray_image_groups.yaml.

The new image must be added as part of an image specification (stanza) like the one in the example.
Substitute the correct recipe/image names and NIMS group for this system.

Modify an Installed System

S2393 306

smw# vi /var/opt/cray/imps/config/sets/global/config/cray_image_groups.yaml

cray_image_groups:
 default:
 ...
 - recipe: "site-login-large_cle_6.0up06_sles_12sp3_ari"
 dest: "site-login-large_cle_{cle_release}_sles_12sp3-created{date}"
 export_format: "cpio"
 nims_group: "login"

For more information, see "About Image Groups and How to Customize Them" under "Introduction to
Installation and Configuration of Cray XC™ Software" in XC™ Series Software Installation and Configuration
Guide (S-2559).

7.22 Repurpose a Compute or Service Node

Prerequisites
This procedure assumes that the XC system is booted.

About this task
When a compute node is configured for a non-compute role, that node is called a repurposed compute node
(RCN). Compute nodes can be repurposed to become service nodes for use as tier2 servers (recommended) or
in other capacities. However, compute nodes should not be repurposed as service nodes for services that require
external connectivity.

By marking a node as compute or service in the Hardware Supervisory System (HSS) database, a system
administrator controls

This procedure provides steps for repurposing a compute node to become a service node. It can also be used to
repurpose a service node as a compute node, to return an RCN to its original compute role, for example. Note
that nodes on a service blade must always have the service role.

In the example commands shown, two compute nodes (c0-0c0s2n0 and c0-0c0s2n1) are repurposed as service
nodes.

Procedure

1. Shut down the compute node to be repurposed, and confirm that it was shut down.

crayadm@smw> xtcli shutdown c0-0c0s2n0,c0-0c0s2n1

crayadm@smw> xtcli status c0-0c0s2n0,c0-0c0s2n1
The node must be down when using the xtcli mark_node command in the next step.

2. Mark the compute node as 'service' in the HSS database.

crayadm@smw> xtcli mark_node service c0-0c0s2n0,c0-0c0s2n1
If repurposing a service node as compute, use the following command instead.

Modify an Installed System

S2393 307

crayadm@smw> xtcli mark_node compute c0-0c0s2n0,c0-0c0s2n1
Important. Using the xtcli mark_node command to change the node type in the HSS database is
considered a hardware change. To keep everything in synch (HSS, NIMS, and IMPS), it must be followed by
changing the NIMS parameters of the node, updating the CLE and global config sets, and rebooting the node.

3. Update the NIMS group for the repurposed node and confirm the change.

crayadm@smw> cnode update -G compute -g service c0-0c0s2n0,c0-0c0s2n1

crayadm@smw> cnode list c0-0c0s2n0,c0-0c0s2n1

4. Update the CLE config set (p0 in the example) and the global config set.

Whenever a node has been repurposed, it is necessary to update the associated CLE config set and the
global config set. This ensures that the files/node_groups/platforms/p0-mamu.platform.json in
the global config set directory structure (/var/opt/cray/imps/config/sets/global) is updated with
accurate information.

crayadm@smw> su - root
smw# cfgset update -m prepare p0
smw# cfgset update -m prepare global

5. Reboot the repurposed node.

smw# exit
crayadm@smw> xtbootsys --reboot c0-0c0s2n0,c0-0c0s2n1

7.23 Configure Service Node MAMU
The service node MAMU feature enables administrators to set aside a small number of repurposed compute
nodes for serial workload. These nodes serve as workload management execution nodes specifically designated
for serial workload and intra-node message passing interface (MPI). The workload manager (WLM) manages
these as standard Linux nodes and supports core level placement. Users place jobs directly to the nodes by
submitting jobs to a designated WLM queue. These serial workload nodes do not run ALPS, and therefore they
cannot be used to place jobs to the compute nodes. Service Node MAMU also provides cgroup-based out-of-
memory (OOM) protection for the serial workload nodes.

Initial setup and configuration of MAMU nodes can be done during initial SMW/CLE installation or updates. Setup
and configuration of MAMU nodes can also be done on an installed system. After the MAMU nodes are
configured on the XC system, a WLM must be set up to use these nodes.

Limitations
Current service node MAMU limitations include:

● This feature is supported only with these WLMs: PBS Pro (version 12.1 or later) and Moab/TORQUE.

● A system can have up to 100 serial workload nodes (having more may be possible but has not been tested).

● The only way to increase or decrease the pool of MAMU nodes is to reconfigure it and reboot the system.

● Cray-specific options, such as node health checking, are supported only to the extent that the workload
manager vendor supports these features.

Modify an Installed System

S2393 308

● To guarantee out-of-memory protection, the serial workload nodes do not support ssh login, except for root
and crayadm administrative users.

● Sites using power capping may need to take additional action when repurposing nodes. For more information,
see XC™ Series Power Management and SEDC Administration Guide (S-0043).

7.23.1 Configure MAMU Nodes on the Cray XC System

Prerequisites
Obtain the cnames of the compute nodes to be repurposed.

About this task
This procedure describes how to configure multiple application, multiple user (MAMU) nodes on the Cray XC
system. It comprises the following tasks:

● Create and modify a config set for MAMU nodes.

● Create and update an image recipe for MAMU nodes.

● Build and export the MAMU image.

● Mark MAMU nodes as 'service' and map MAMU image and config set

Procedure

–––––– CREATE AND MODIFY A CONFIG SET FOR MAMU NODES ––––––

1. Create a CLE config set for use on repurposed compute nodes.

Clone the CLE config set used on the PBS server host (SDB node), p0 in the example, to a config set for use
on MAMU nodes, p0-mamu in the example.

smw# cfgset create --clone p0 p0-mamu

2. Create a node group in the cray_node_groups config service to contain the repurposed nodes.

a. Create the new node group (mamu_nodes in the example) and verify that it was added to the list of node
groups.

smw# cfgset modify --add mamu_nodes cray_node_groups.settings.groups.data
p0-mamu

smw# cfgset get cray_node_groups.settings.groups.data p0-mamu
compute_nodes
service_nodes
smw_nodes
boot_nodes
sdb_nodes
login_nodes
elogin_nodes
all_nodes

Modify an Installed System

S2393 309

tier2_nodes
mamu_nodes

b. Set the description field of the MAMU node group and verify that it was set.

smw# cfgset modify --set 'Repurposed Compute Nodes' \
cray_node_groups.settings.groups.data.mamu_nodes.description p0-mamu

smw# cfgset get cray_node_groups.settings.groups.data.mamu_nodes.description
p0-mamu
Repurposed Compute Nodes

c. Add the repurposed compute nodes to the MAMU node group and verify that they were added.

This example adds two nodes to the MAMU node group. Adjust the number of nodes and their cnames for
this system.

smw# cfgset modify --add c0-0c0s7n2 --add c0-0c0s7n3 \
cray_node_groups.settings.groups.data.mamu_nodes.members p0-mamu

smw# get cray_node_groups.settings.groups.data.mamu_nodes.members
c0-0c0s7n2
c0-0c0s7n3

3. Ensure that secure shell (SSH) is enabled for the system.

smw cfgset get cray_ssh.enabled p0-mamu
false
smw# cfgset modify --set true cray_ssh.enabled p0-mamu
smw cfgset get cray_ssh.enabled p0-mamu
true

4. Add the MAMU nodes node group (mamu_nodes) to the node_groups_as_client list in the cray_rsip
service, and then verify that it was added.

smw# cfgset modify --add mamu_nodes \
cray_rsip.settings.service.data.node_groups_as_client p0-mamu

smw# cfgset get cray_rsip.settings.service.data.node_groups_as_client p0-mamu
mamu_nodes

5. Add the MAMU nodes node group (mamu_nodes) to the config_id_service_groups list in the cray_auth
service, and then verify that it was added.

smw# cfgset modify --add mamu_nodes \
cray_auth.settings.access.data.config_id_service_groups p0-mamu

smw# cfgset get cray_auth.settings.access.data.config_id_service_groups p0-mamu

6. Remove all default modules on the service nodes and verify that they were removed.

smw# cfgset get cray_user_settings.settings.default_modules.data.service p0-mamu
sysadm
nodehealth
nodestat
sdb
alps

Modify an Installed System

S2393 310

llm
system-config

smw# cfgset modify --clear
cray_user_settings.settings.default_modules.data.service p0-mamu

smw# cfgset get cray_user_settings.settings.default_modules.data.service p0-mamu
smw#

7. Enable out of memory (OOM) App kill by configuring it in the system setting of the cray_sysenv config
service.

Create a new system entry called "vm_oom_kill" and then set and verify each of its fields.

smw# cfgset modify --add vm_oom_kill cray_sysenv.settings.system.data p0-mamu
smw# cfgset get cray_sysenv.settings.system.data p0-mamu

smw# cfgset modify --set 'Enable out-of-memory (OOM) app kill' \
cray_sysenv.settings.system.data.vm_oom_kill.description p0-mamu

smw# cfgset get cray_sysenv.settings.system.data.vm_oom_kill.description p0-mamu

smw# cfgset modify --set sysctl \
cray_sysenv.settings.system.data.vm_oom_kill.type p0-mamu

smw# cfgset get cray_sysenv.settings.system.data.vm_oom_kill.type p0-mamu

smw# cfgset modify --add mamu_nodes \
cray_sysenv.settings.system.data.vm_oom_kill.target_groups p0-mamu

smw# cfgset get cray_sysenv.settings.system.data.vm_oom_kill.target_groups
p0-mamu

smw# cfgset modify --set vm.oom_appkill \
cray_sysenv.settings.system.data.vm_oom_kill.name p0-mamu

smw# cfgset get cray_sysenv.settings.system.data.vm_oom_kill.name p0-mamu

smw# cfgset modify --set 1 \
cray_sysenv.settings.system.data.vm_oom_kill.value p0-mamu

smw# cfgset get cray_sysenv.settings.system.data.vm_oom_kill.value p0-mamu

8. Add a DVS client mount for the MAMU nodes.

Use /home as the mount point. Create a new client mount entry called /home and then set and verify each of
its fields.

smw# cfgset modify --add /home cray_dvs.settings.client_mount.data p0-mamu
smw# cfgset get cray_dvs.settings.client_mount.data p0-mamu

smw# cfgset modify --set /home \
cray_dvs.settings.client_mount.data./home.mount_point p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.mount_point p0-mamu

Modify an Installed System

S2393 311

smw# cfgset modify --set /home \
cray_dvs.settings.client_mount.data./home.spath p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.spath p0-mamu

smw# cfgset modify --add tier2_nodes \
cray_dvs.settings.client_mount.data./home.server_groups p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.server_groups p0-mamu

smw# cfgset modify --add mamu_nodes \
cray_dvs.settings.client_mount.data./home.client_groups p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.client_groups p0-mamu

smw# cfgset modify --set false \
cray_dvs.settings.client_mount.data./home.loadbalance p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.loadbalance p0-mamu

smw# cfgset modify --set 0 \
cray_dvs.settings.client_mount.data./home.attrcache_timeout p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.attrcache_timeout
p0-mamu

smw# cfgset modify --set true \
cray_dvs.settings.client_mount.data./home.readonly p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.readonly p0-mamu

smw# cfgset modify --set 'maxnodes=1' \
cray_dvs.settings.client_mount.data./home.options p0-mamu

smw# cfgset get cray_dvs.settings.client_mount.data./home.readonly p0-mamu

9. Create a host for each MAMU node in the config set for the MAMU nodes (p0-mamu in the example) and in
the config set for the PBS server host (p0 in the example).

In this example, there are two MAMU nodes, so two hosts are specified: ppn1 and ppn2. This example
specifies two hosts, one for each node in the MAMU node group. Adjust the number of hosts and their host
IDs for this system.

a. Create a host for the first MAMU node in both config sets.

smw# cfgset modify --add ppn1 cray_net.settings.hosts.data p0-mamu
smw# cfgset modify --add ppn1 cray_net.settings.hosts.data p0

smw# cfgset modify --set 'Post-processing node' \
cray_net.settings.hosts.data.ppn1.description p0-mamu

Modify an Installed System

S2393 312

smw# cfgset modify --set 'Post-processing node' \
cray_net.settings.hosts.data.ppn1.description p0

smw# cfgset modify --set c0-0c0s7n2 \
cray_net.settings.hosts.data.ppn1.hostid p0-mamu

smw# cfgset modify --set c0-0c0s7n2 \
cray_net.settings.hosts.data.ppn1.hostid p0

smw# cfgset modify --set ppn1 \
cray_net.settings.hosts.data.ppn1.hostname p0-mamu

smw# cfgset modify --set ppn1 \
cray_net.settings.hosts.data.ppn1.hostname p0

smw# cfgset modify --set false \
cray_net.settings.hosts.data.ppn1.standby_node p0-mamu

smw# cfgset modify --set false \
cray_net.settings.hosts.data.ppn1.standby_node p0

b. Create a host for the first MAMU node in both config sets.

smw# cfgset modify --add ppn2 cray_net.settings.hosts.data p0-mamu
smw# cfgset modify --add ppn2 cray_net.settings.hosts.data p0

smw# cfgset modify --set 'Post-processing node' \
cray_net.settings.hosts.data.ppn2.description p0-mamu

smw# cfgset modify --set 'Post-processing node' \
cray_net.settings.hosts.data.ppn2.description p0

smw# cfgset modify --set c0-0c0s7n3 \
cray_net.settings.hosts.data.ppn2.hostid p0-mamu

smw# cfgset modify --set c0-0c0s7n3 \
cray_net.settings.hosts.data.ppn2.hostid p0

smw# cfgset modify --set ppn2 \
cray_net.settings.hosts.data.ppn2.hostname p0-mamu

smw# cfgset modify --set ppn2 \
cray_net.settings.hosts.data.ppn2.hostname p0

smw# cfgset modify --set false \
cray_net.settings.hosts.data.ppn2.standby_node p0-mamu

smw# cfgset modify --set false \
cray_net.settings.hosts.data.ppn2.standby_node p0

10. Disable ALPS on the MAMU nodes by adding the MAMU node group to the mamu_node_groups setting of
the cray_aps config service.

smw# cfgset modify --add mamu_nodes \
cray_alps.settings.common.data.mamu_node_groups p0-mamu

–––––– CREATE AND UPDATE AN IMAGE RECIPE FOR MAMU NODES ––––––

Modify an Installed System

S2393 313

11. Create a recipe for the MAMU nodes by cloning an existing recipe.

Clone either the service node recipe or the login netroot recipes.

● Service recipe:

smw# recipe create --clone service_cle_6.0up06_sles_12sp3_x86-64_ari \
mamu-service_cle_6.0up06_sles_12sp3_x86-64_ari

● Login netroot recipes:

Create two recipes for netroot, because two images are required: the initrd-mamu-large image will be set
as the NIMS boot image, and the mamu-large image will be set as the NIMS "netroot" kernel parameter.

smw# recipe create --clone initrd-login-
large_cle_6.0up06_sles_12sp3_x86-64_ari \
initrd-mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari
smw# recipe create --clone login-large_cle_6.0up06_sles_12sp3_x86-64_ari \
mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari

12. Update the new MAMU node recipe by adding packages for MAMU. The -p option specifies each required
package.

● Service-based MAMU recipe:

smw# recipe update -p cray-xpmem -p cray-libxpmem0 -p cray-libxpmem-devel \
-p cray-xpmem-kmp-cray_ari_s -p cray-libxpmem-devel-headers \
mamu-service_cle_6.0up06_sles_12sp3_x86-64_ari

● Login netroot-based MAMU recipe:

Add packages to the mamu-large recipe only, not to the initrd-mamu-large recipe.

smw# recipe update -p cray-xpmem -p cray-libxpmem0 -p cray-libxpmem-devel \
-p cray-xpmem-kmp-cray_ari_s -p cray-libxpmem-devel-headers \
mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari

–––––– BUILD AND EXPORT THE MAMU IMAGE ––––––

13. Build an image using the updated MAMU recipe.

● Service-based MAMU recipe:

smw# image create -r mamu-service_cle_6.0up06_sles_12sp3_x86-64_ari \
mamu-service_cle_6.0up06_sles_12sp3_x86-64_ari

● Login netroot-based MAMU recipes:

smw# image create -r initrd-mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari \
initrd-mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari
smw# image create -r mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari \
mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari

14. Export the MAMU image.

● Service-based MAMU image:

smw# image export mamu-service_cle_6.0up06_sles_12sp3_x86-64_ari
● Login netroot-based MAMU images:

Modify an Installed System

S2393 314

Export the initrd-mamu-large image, and push the mamu-large image root.

Note that the following example uses image sqpush. If this image root will be modified and pushed
more than once to test it, consider using image push instead. For more information, see About Image
Pushes: push versus sqpush on page 20.

smw# image export initrd-mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari
smw# image sqpush -d boot mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari

–––––– MARK MAMU NODES, MAP MAMU IMAGE AND CONFIG SETS ––––––

The examples in the remaining steps use the same two nodes from the MAMU node group created at the
beginning of this procedure. Adjust the number of nodes and their cnames for this system.

15. Specify for the Hardware Supervisory System (HSS) that the repurposed compute nodes are now MAMU
service nodes.

a. Halt each MAMU node.

Run this command as crayadm.

crayadm@smw> xtcli halt c0-0c0s7n2,c0-0c0s7n3
b. Bounce each MAMU node.

crayadm@smw> xtbounce c0-0c0s7n2,c0-0c0s7n3
c. Display the Node Image Mapping Service (NIMS) metadata for each MAMU node to verify current node

settings.

crayadm@smw> cnode list c0-0c0s7n2 c0-0c0s7n3
The listing should indicate that the current settings are compute type, compute node group, compute
node image, the current active config set (p0), and various kernel parameters.

d. Change the type of each MAMU node to service.

crayadm@smw> xtcli mark_node service c0-0c0s7n2,c0-0c0s7n3
Important. Using this command to change the node type in the HSS database is considered a hardware
change, and to keep everything in synch (HSS, NIMS, and IMPS), the MAMU nodes must also have their
NIMS parameters changed and the CLE and global config sets updated. These occur in later steps in this
procedure.

16. Create a NIMS map for use with the MAMU configuration and images.

It is good practice to use a different NIMS map for each image-configuration combination. Clone the active
NIMS map, then set the new MAMU map as the active map so that subsequent cnode commands will make
changes to the MAMU map only.

a. Find the NIMS map that is active.

crayadm@smw> cmap list
b. Clone the active NIMS map.

crayadm@smw> cmap create --clone active_map mamu_map

Modify an Installed System

S2393 315

c. Set the new MAMU map as the active NIMS map.

crayadm@smw> cmap setactive mamu_map

17. Update the NIMS parameters for the MAMU nodes.

Remove the netroot_compute group and add the service group, set the MAMU image and config set, and
remove or set the netroot kernel parameter, depending on whether the MAMU nodes have a netroot image.

● Service-based MAMU nodes:

The netroot kernel parameter must be removed in this case.

crayadm@smw> cnode update -G netroot_compute -g service \
-i /var/opt/cray/imps/boot_images/mamu-
service_cle_6.0up06_sles_12sp3_x86-64_ari \
-c p0-mamu -K netroot c0-0c0s7n2 c0-0c0s7n3

● Login netroot-based MAMU nodes:

The netroot kernel parameter must be set to the mamu-large image root in this case.

crayadm@smw> cnode update -G netroot_compute -g service \
-i /var/opt/cray/imps/boot_images/initrd-mamu-
large_cle_6.0up06_sles_12sp3_x86-64_ari \
-c p0-mamu -s netroot=mamu-large_cle_6.0up06_sles_12sp3_x86-64_ari \
c0-0c0s7n2 c0-0c0s7n3

18. Verify the NIMS parameters for the MAMU nodes.

crayadm@smw> cnode list c0-0c0s7n2 c0-0c0s7n3
 NAME TYPE GROUP IMAGE CONFIG_SET EXT_PARAMETERS
c0-0c0s7n2 service service /var/opt/cray/imps/boot_images/mamu-
service_cle_6.0up06_sles_12sp3_x86-64_ari.cpio p0-mamu
 sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254 hsn_ipv4_mask=255.252.0.0
 hsn_ipv4_net=10.128.0.0 NIMS_GROUP=service ids=10.128.0.6 config_set=p0-mamu
c0-0c0s7n3 service service /var/opt/cray/imps/boot_images/mamu-
service_cle_6.0up06_sles_12sp3_x86-64_ari.cpio p0-mamu
 sdbnodeip=10.131.255.253 bootnodeip=10.131.255.254 hsn_ipv4_mask=255.252.0.0
 hsn_ipv4_net=10.128.0.0 NIMS_GROUP=service ids=10.128.0.6 config_set=p0-mamu

–––––– UPDATE/VALIDATE CLE CONFIG SETS AND REBOOT MAMU NODES ––––––

19. Update both config sets that were modified.

Because the cfgset modify command does not call pre- and post-configuration scripts, any config set
modified in that way is marked as invalid. Therefore both of the config sets that were modified earlier in the
procedure must be updated using cfgset update. The "prepare" mode is used so that no user interaction
will be required.

smw# cfgset update -m prepare p0-mamu
smw# cfgset update -m prepare p0
This update of the CLE config set was also necessitated by the MAMU nodes being repurposed. The update
ensures that the files/node_groups/platforms/p0-mamu.platform.json file in the global config
set directory structure (/var/opt/cray/imps/config/sets/global) is updated with accurate
information.

Modify an Installed System

S2393 316

20. Validate both config sets.

smw# cfgset validate p0-mamu
smw# cfgset validate p0

21. Reboot the MAMU nodes.

This command must be run as crayadm.

crayadm@smw> xtbootsys --reboot c0-0c0s7n2,c0-0c0s7n3

7.23.2 Configure PBS for MAMU

Prerequisites
This procedure assumes the following:

● MAMU (multiple application, multiple user) service nodes are configured on the Cray XC system.

● PBS (12.1 or a later release) is installed and running on the SDB node of the Cray XC system.

About this task
This procedure describes how to configure one PBS complex to manage multiple architectures. It comprises the
following tasks:

● Add a non-Cray machine-oriented miniserver (MOM) node to the PBS complex.

● Set up the PBS scheduler.

● Create and import prologue and epilogue hooks.

Note that Cray no longer supports the cgroup hook, which was formerly enabled as part of this procedure. Sites
are expected to use the hook provided by Altair Engineering, Inc. to perform a similar function.

Procedure

–––––––––– ADD A NON-CRAY MOM NODE TO THE PBS COMPLEX ––––––––––

The non-Cray MOM node could be a MAMU or post-processing node (PPN). A MAMU node is a repurposed
compute node that functions as a service node.

For each non-Cray MOM node to add, repeat step 1 through step 10 on page 319.

1. Create a custom tag to differentiate the Linux nodes from the compute nodes.

This example uses the tag mamu for PPN nodes as well. Add this boolean custom resource to the PBS
resourcedef file on the PBS server node. After adding the resource restart the PBS Server.

sdb# cat /var/spool/PBS/server_priv/resourcedef | grep mamu
mamu type=boolean flag=h

2. Ensure that the host names are set up correctly on the Linux hosts.

Modify an Installed System

S2393 317

Use host names that describe the function of these nodes. The host name should be present in /etc/hosts
as well as what is returned by the host name command.

sdb# cat /etc/hosts | grep mamu
10.128.0.31 nid00030 c0-0c0s7n2 mamu1

mamu1# hostname
mamu1

3. Create the MAMU node inside of PBS.

sdb# qmgr -c "create node mamu1"

mamu1# /etc/init.d/pbs start

4. Configure the PBS MOM config file $usecp variables.

Do not set the alps_client variable.

mamu1# cat /var/spool/PBS/mom_priv/config
$usecp *:/home /home
$usecp *:/ufs /ufs
$usecp *:/cray /cray

5. Verify that the node is configured in PBS and the node state is free.

sdb# qmgr -c "print node mamu1"
#
Create nodes and set their properties.
#
#
Create and define node mamu1
#
create node mamu1 Mom=nid00030
set node mamu1 state = free
set node mamu1 resources_available.arch = linux
set node mamu1 resources_available.host = nid00030
set node mamu1 resources_available.mem = 32993312kb
set node mamu1 resources_available.ncpus = 16
set node mamu1 resources_available.vnode = mamu1
set node mamu1 resv_enable = True
set node mamu1 sharing = default_shared

6. Tag each node in the complex with mamu=false.

sdb# qmgr -c "set node @default resources_available.mamu = false"

7. Tag the MAMU node with mamu=true.

sdb# qmgr -c "set node mamu1 resources_available.mamu = true"

8. Verify that the new resource is present.

sdb# qmgr -c "print node mamu1"
#
Create nodes and set their properties.
#
#

Modify an Installed System

S2393 318

Create and define node mamu1
#
create node mamu1 Mom=nid00030
set node mamu1 state = free
set node mamu1 resources_available.arch = linux
set node mamu1 resources_available.host = nid00030
set node mamu1 resources_available.mem = 32993312kb
set node mamu1 resources_available.ncpus = 16
set node mamu1 resources_available.mamu = True
set node mamu1 resources_available.vnode = mamu1
set node mamu1 resv_enable = True
set node mamu1 sharing = default_shared

9. Ensure that all other non-MAMU nodes have mamu=false.

10. Run jobs targeting the mamu nodes using one of the following options.

● Option 1: If the MAMU nodes have a default memory setting, use the following command.

crayadm@login> qsub -I -lselect=1:mamu=true
qsub: waiting for job job_name to start
qsub: job job_name ready

crayadm@mamu1>

● Option 2: If there is NO default memory setting for the MAMU nodes, specify the maximum amount of
memory that the job is expected to use.

crayadm@login> qsub -I -lselect=1:mamu=true:mem=200mb
qsub: waiting for job job_name to start
qsub: job job_name ready

crayadm@mamu1>

–––––––––– SET UP THE PBS SCHEDULER ––––––––––

11. Edit the PBS configuration file.

smw# vi /var/spool/PBS/sched_priv/sched_config

12. To set a scheduling policy, see the PBS Professional Administrator's Guide.

–––––––––– CREATE AND IMPORT PROLOGUE AND EPILOGUE HOOKS ––––––––––

Enabling a hook to use the execjob_prologue event will disable any prologue bash scripts in PBS. Likewise,
enabling a hook to use the execjob_epilogue event will disable any epilogue bash scripts in PBS.

The creation and import of prologue and epilogue hooks is necessary for cluster compatibility mode (CCM)
functionality on the Cray XC system.

13. Install the following prologue and epilogue hooks on any system that needs both hook and prologue/epilogue
script functionality.

These hooks are wrappers for the prologue/epilogue scripts.

sdb# qmgr -c 'create hook cray_prologue'
sdb# qmgr -c 'set hook cray_prologue type = site'

Modify an Installed System

S2393 319

sdb# qmgr -c 'set hook cray_prologue enabled = true'
sdb# qmgr -c 'set hook cray_prologue event = execjob_prologue'
sdb# qmgr -c 'set hook cray_prologue user = pbsadmin'
sdb# qmgr -c 'set hook cray_prologue alarm = 30'
sdb# qmgr -c 'set hook cray_prologue order = 1'

sdb# qmgr -c 'create hook cray_epilogue'
sdb# qmgr -c 'set hook cray_epilogue type = site'
sdb# qmgr -c 'set hook cray_epilogue enabled = true'
sdb# qmgr -c 'set hook cray_epilogue event = execjob_epilogue'
sdb# qmgr -c 'set hook cray_epilogue user = pbsadmin'
sdb# qmgr -c 'set hook cray_epilogue alarm = 30'
sdb# qmgr -c 'set hook cray_epilogue order = 1'

14. Create the following temporary file.

sdb# vi /var/spool/PBS/mom_priv/prologue.py

15. Copy and paste the following text into prologue.py.

"""
Copyright 2015 Cray Inc. All rights reserved.
This script sets up the environment for the main hook code then invokes the
main routine from the library on disk where this hook was installed. One
benefit of this organization is to improve the testability of the main routine
by allowing it to work, without modification, under either PBS or a test
environment.
Description:
This hook will execute a prologue script located at ${PBS_HOME}/mom_priv/
prologue
if the file exists, and there are arguments to pass.
"""
import pbs
import sys
import os
For now the PBS_HOME value has to be editeded manually
There is no way to access PBS_HOME with the pbs module
PBS_HOME = '/var/spool/PBS-12.1.400/'
PROLOGUE_DIR = PBS_HOME + '/mom_priv'
PROLOGUE = PROLOGUE_DIR + '/prologue'
try:
 # Get the hook event information and parameters
 e = pbs.event()
 # Check to see if a prologe even exists
 if os.path.exists(PROLOGUE) == False:
 e.accept()
 # Ignore requests from scheduler or server
 if e.requestor in ["PBS_Server", "Scheduler"]:
 e.accept()
 # Get the information for the job being queued
 j = e.job
 if j and j.id and j.euser and j.egroup:
 # Assemble and execute the prolgue command
 cmd = PROLOGUE
 cmd = cmd + ' ' + j.id
 cmd = cmd + ' ' + j.euser
 cmd = cmd + ' ' + j.egroup
 os.popen(cmd, 'w')
 # accept the event
 e.accept()

Modify an Installed System

S2393 320

except SystemExit:
 pass
except:
 print sys.exc_info()[0]

16. Import the prologue.

sdb# qmgr -c 'import hook cray_prologue \
application/x-python default /var/spool/PBS/mom_priv/prologue.py'

17. Create the following temporary file.

sdb# vi /var/spool/PBSmom_priv/epilogue.py

18. Copy and paste the following text into epilogue.py.

"""
Copyright 2015 Cray Inc. All rights reserved.
This script sets up the environment for the main hook code then invokes the
main routine from the library on disk where this hook was installed. One
benefit of this organization is to improve the testability of the main routine
by allowing it to work, without modification, under either PBS or a test
environment.
Description:
This hook will execute a epilogue script located at ${PBS_HOME}/mom_priv/
epilogue
if the file exists, and there are 3 arguments to pass. Passing more than 3
arguments is unsupported
"""
import pbs
import sys
import os
The PBS_HOME value has to be editeded manually
There is no way to access PBS_HOME with the pbs module
PBS_HOME = '/var/spool/PBS-12.1.400/'
EPILOGUE_DIR = PBS_HOME + '/mom_priv'
EPILOGUE = EPILOGUE_DIR + '/epilogue'
try:
 # Get the hook event information and parameters
 e = pbs.event()
 if os.path.exists(EPILOGUE) == False:
 e.accept()
 # Ignore requests from scheduler or server
 if e.requestor in ["PBS_Server", "Scheduler"]:
 e.accept()
 # Get the information for the job being queued
 j = e.job
 if j and j.id and j.euser and j.egroup:
 # Assemble and execute the epilogue command
 cmd = EPILOGUE
 cmd = cmd + ' ' + j.id
 cmd = cmd + ' ' + j.euser
 cmd = cmd + ' ' + j.egroup
 os.popen(cmd, 'w')
 # accept the event
 e.accept()
except SystemExit:
 pass

Modify an Installed System

S2393 321

except:
 print sys.exc_info()[0]

19. Import the epilogue.

sdb# qmgr -c 'import hook cray_epilogue \
application/x-python default /var/spool/pbs/mom_priv/epilogue.py'

7.23.3 Configure Moab/TORQUE for MAMU

Prerequisites
This procedure assumes the following:

● MAMU (multiple application, multiple user) service nodes are configured on the Cray XC system.

● Moab/TORQUE is installed and running on the SDB node of the Cray XC system. If a different node is used,
substitute the name of that node for 'sdb' in all commands.

About this task
This procedure describes how to configure the Moab/TORQUE workload manager to use MAMU or post-
processing (PPN) nodes. In the following examples, the PPN or 'postproc' nodes are called postproc1 (nid 38)
and postproc2 (nid 39).

login# grep postproc /etc/hosts
10.4.0.39 nid00038 c0-0c0s9n2 postproc1
10.4.0.40 nid00039 c0-0c0s9n3 postproc2

Procedure

–––––––––– CONFIGURE POSTPROC NODES ––––––––––

1. Copy the ${TORQUE_HOME}/mom_priv/config file from the login node to every postproc node.

login# cat /var/spool/torque/mom_priv/config
$usecp *:/ufs /ufs
$usecp *:/home /home
$usecp *:/home/users /home/users
$usecp *:/scratch /scratch
$usecp *:/lus /lus
$usecp *:/extlus /extlus
$login_node true
$apbasil_protocol 1.2
$prologalarm 120
login# scp -pr /var/spool/torque/mom_priv/config root@postproc1:/var/spool/
torque/mom_priv/

2. Start the daemons.

login# ssh root@postproc1 /etc/init.d/trqauthd start
login# ssh root@postproc1 /etc/init.d/torque_mom start

Modify an Installed System

S2393 322

–––––––––– CONFIGURE MOAB/TORQUE ––––––––––

3. Ensure that there are three partitions defined in the /var/spool/moab/etc/moab.cfg file: one for the
login node, one for the compute nodes, and one for the postproc nodes. Set the allocation policy as well.

sdb# vi /var/spool/moab/etc/moab.cfg
NODECFG[login] Partition=login OS=linux ARCH=XT PRIORITYF='PRIORITY'
NODECFG[postproc1] Partition=postproc ACCESS=SHARED
NODECFG[postproc2] Partition=postproc ACCESS=SHARED
CLIENTCFG[DEFAULT] DEFAULTSUBMITPARTITION=login
RMCFG[login] TYPE=TORQUE SUBMITCMD=/opt/torque/default/bin/qsub
NODEALLOCATIONPOLICY[postproc] CPULOAD

4. Define the postproc nodes in /var/spool/torque/server_priv/nodes and give them the POSTPROC
attribute.

sdb# vi /var/spool/torque/server_priv/nodes
login np=16 alps_login
postproc1 np=32 POSTPROC
postproc2 np=32 POSTPROC
sdb alps_reporter

5. Create a serial queue to submit postproc jobs.

sdb# qmgr -c "create queue serial"
sdb# qmgr -c "set queue serial queue_type = Execution"
sdb# qmgr -c "set queue serial resources_default.mem = 1gb"
sdb# qmgr -c "set queue serial resources_default.mppnppn = 1"
sdb# qmgr -c "set queue serial resources_default.neednodes = POSTPROC"
sdb# qmgr -c "set queue serial resources_default.partition = postproc"
sdb# qmgr -c "set queue serial enabled = True"
sdb# qmgr -c "set queue serial started = True"

6. Save the prologue script to /var/spool/torque/mom_priv/prologue on the MAMU or PPN node.

ppn# scp login:/var/spool/torque/mom_priv/prologue \
/var/spool/torque/mom_priv/prologue

7. Make the prologue script executable.

ppn# chmod +x /var/spool/torque/mom_priv/prologue

8. Create a link to the epilogue script.

The epilogue script and prologue script are the same scripts.

ppn# cd /var/spool/torque/mom_priv/
login# ln -P prologue epilogue

9. Recycle the scheduler and restart the node that the Moab TORQUE workload manager is installed on, which
in this example is the SDB node.

–––––––––– SUBMIT A JOB ––––––––––

10. Submit a job to verify the configuration.

Modify an Installed System

S2393 323

crayadm@login> qsub -I -qserial
qsub: waiting for job 109.login to start
qsub: job 109.login ready
crayadm@postproc1>

7.24 Reconfigure SSD-endowed Compute Nodes Dynamically

Prerequisites
This procedure assumes that the XC system is booted.

About this task
Nodes endowed with Intel® Xeon Phi™ "Knights Landing" processors (KNL nodes) are bootable into a number of
NUMA (non-uniform memory access) and MCDRAM (multichannel dynamic random access memory)
configurations. These configurations are reported in the bios-populated hardware inventory table. At system boot
time, xtbootsys invokes xthwinv to capture a snapshot of the XC system's hardware inventory, including KNL
NUMA and MCDRAM modes, and publishes this snapshot for consumption by the SDB node. To keep the cached
hardware inventory on the SDB node in sync with the actual state of the XC system, xtwarmswap --add can
recapture hardware inventory for swapped blades and dynamically update the SDB node when new hardware is
added. However, due to the dynamic reconfiguration capability of a KNL node, its apparent hardware complement
(as reported by bios hardware inventory) can change on any node reboot.

This procedure describes how to use the capmc utility to reconfigure KNL nodes. When the reconfigured nodes
are rebooted, the SDB node will be notified of those hardware inventory changes, thereby keeping the hardware
inventory current. See the capmc(8) man page for details about these commands, including default and allowed
values for setting the "mode" of a node.

Procedure

1. Change NUMA modes on one or more KNL nodes.

a. List the NUMA parameters possible for a set of KNL nodes (specified as a comma-separated list and/or
range of NIDs).

smw# capmc get_numa_capabilities --nids nidlist --pretty
b. Change the NUMA configuration mode on a set of KNL nodes, as needed.

smw# capmc set_numa_cfg --nids nidlist --mode mode

2. Change MCDRAM modes on one or more KNL nodes.

a. List the MCDRAM parameters possible for a set of KNL nodes (specified as a comma-separated list and/
or range of NIDs).

smw# capmc get_mcdram_capabilities --nids nidlist --pretty
b. Change the MCDRAM configuration mode on a set of KNL nodes (specified as a list of NIDs), as needed.

For MCDRAM, the mode represents the amount of MCDRAM that is to be used as cache.

Modify an Installed System

S2393 324

smw# capmc set_mcdram_cfg --nids nidlist --mode mode

3. Call capmc node_reinit to shut down the changed KNL nodes cleanly, go through a full BIOS re-
initialization, and reboot those nodes.

smw# capmc node_reinit --nids nidlist --reason "changed MCDRAM/NUMA on KNL"

7.25 Node Attributes
Users can control the selection of the compute nodes on which to run their applications and can select nodes on
the basis of desired characteristics (node attributes). This allows a placement scheduler to schedule jobs based
on the node attributes.

A user invokes the cnselect command to specify node-selection criteria. The cnselect script uses these
selection criteria to query the table of node attributes in the SDB and returns a node list to the user based on the
results of the query. When launching the application, the user includes the node list using the aprun -L
node_list option as described on the aprun(1) man page. The ALPS placement scheduler allocates nodes
based on this list.

To meet specific user needs, the administrator can modify the cnselect script. For additional information about
the cnselect script, see the cnselect(1) man page.

7.26 View and Temporarily Set Node Attributes
Use the xtprocadmin command to view current node attributes. The xtprocadmin -A option lists all attributes
of selected nodes. The xtprocadmin -a attr1,attr2 option lists selected attributes of selected nodes.

An administrator can use the xtprocadmin -a attr=value command to temporarily set certain site-specific
attributes. Using the xtprocadmin -a attr=value command to set certain site-specific attributes is not
persistent across reboots. Attribute settings that are intended to be persistent across reboots (such as labels)
must be specified in the attr.defaults file.

NOTE: For compute nodes, xtprocadmin changes to attributes require restarting the apbridge
daemon on the boot node in order for ALPS to detect changes that the xtprocadmin command has
made to the SDB. Restarting the other ALPS components (for example, on the SDB node or on the login
node if they are separate nodes) is not necessary. To restart apbridge, log into the boot node as root
and execute the following command:

boot# /etc/init.d/alps restart
For example, the following command creates a new label1 attribute value for the compute node whose NID is
350. The xtprocadmin command must be executed by root from a service node and the SDB must be
running:

boot# xtprocadmin -n 350 -a label1=eedept

Connected
NID (HEX) NODENAME TYPE LABEL1
350 0x15e c1-0c1s0n0 compute eedept

Modify an Installed System

S2393 325

Then restart the apbridge daemon on the boot node in order for ALPS to detect changes that the
xtprocadmin command has made to the SDB.

boot# /etc/init.d/alps restart

7.27 The XTAdmin Database segment Table
The XTAdmin database contains a segment table that supports the memory affinity optimization tools for
applications and CPU affinity options for all Cray compute nodes. The CPU affinity options apply to all Cray
multicore compute nodes.

The segment table is similar to the attributes table but differs in that a node may have multiple segments
associated with it; the attributes table provides summary information for each node.

In order to address the application launch and placement requirements for compute nodes with two or more
NUMA nodes, the Application Level Placement Scheduler (ALPS) requires additional information that
characterizes the intranode topology of the system. This data is stored in the segment table of the XTAdmin
database and acquired by apbridge when ALPS is started, in much the same way that node attribute data is
acquired.

The segment table contains the following fields:

node_id The node identifier that maps to the nodeid field of the attributes table and processor_id
field of the processor table.

socket_id Contains a unique ordinal for each processor socket.

die_id Contains a unique ordinal for each processor die; with this release, die_id is 0 in the segment
table and is otherwise unused (reserved for future use).

numcores The number of integer cores per node; in systems with accelerators this only applies to the host
processor (CPU).

coremask The processor core mask. The coremask has a bit set for each core of a CPU. 24-core nodes will
have a value of 16777215 (hex 0xFFFFFF).

coremask is deprecated and will be removed in a future release.

mempgs Represents the amount of memory available, in Megabytes, to a single segment.

The /etc/sysconfig/xt file contains SDBSEG field, which specifies the location of the segment table file; by
default, SDBSEG=/etc/opt/cray/sdb/segment.

To update the segment table, use the following service database commands:

● xtdb2segment, which converts the data into an ASCII text file that can be edited

● xtsegment2db, which writes the data back into the database file

For more information, see the xtdb2segment(8) and xtsegment2db(8) man pages.

After manually updating the segment table, log on to any login node or the SDB node as root and execute the
apmgr resync command to request that ALPS reevaluate the configuration node segment information and
update its information.

If ALPS or any portion of the feature fails in relation to segment scheduling, ALPS reverts to the standard
scheduling procedure.

Modify an Installed System

S2393 326

7.28 Apply Rolling Patches to Compute Nodes with cnat
Prerequisites
● The system requires access to a workload manager (WLM) with administrative privileges.

● Enable the rolling patches service in the config set by editing the cray_cnat_worksheet.yaml file.
Uncomment cray_cnat.enabled and set it to true.

About this task
A rolling patch applies a patch to a set of compute nodes without rebooting the system. The patch is applied to
compute nodes between jobs. Applying rolling patches using cnat (short for compute node administrative tool) is
not supported for service nodes. Patches with dependencies requiring a full system reboot do not support rolling
patches. Another qualification for rolling patches is that patches must be updated within a CLE update release.
Upgrades between update releases (for example, from CLE 6.0 UP01 to CLE 6.0 UP02) require a system reboot.

The cnat command runs a batch script through a workload manager and ensures that it runs successfully on
each specified node. This allows administrative tasks, such as a rolling patch, to run on compute nodes without
interfering with user jobs. The cnat (1) man page on the login node provides syntax and other details.

For patches that require node reboots, the cnat command uses the provided cnat-reboot script to control the
reboot of compute nodes specified for a rolling patch. The cnat-status command returns information about a
cnat run. See the cnat-reboot (1) and cnat-status (1) man pages for information about these
commands.

Procedure

1. Set up the WLM. These WLMs are supported: Cobalt, Moab/Torque, PBS, and Slurm. The following setup
information is for PBS and Slurm. Moab/Torque do not require any special setup.

● For PBS:

1. Enable manager access to the server for the user running cnat.

crayadm@login> qmgr -c 'set server managers+="user@hostname"'
2. Add cnat to the PBS_HOME/server_priv/resourcedef file by appending this line to the file:

cnat type=boolean flag=h

3. Restart the PBS sever.

crayadm@login> /etc/init.d/pbs restart
● For Slurm, cnat must be configured to submit to a partition without Shared=FORCE set. cnat must be

run as SlurmUser or root.

2. Make a directory on the SMW (if it does not already exist) to hold any patches that may be available on
CrayPort.

smw# mkdir -p /var/opt/cray/patchsets

Modify an Installed System

S2393 327

3. Download patches to the patchsets directory on the SMW, as described in the release notes. The default
location is /var/adm/cray/release/patchsets.

4. Run the LOAD script that is included in the patch.

A LOAD script usually does following setup tasks:

● Creates a SMW file system snapshot (optionally)

● Backs up the Node Image Mapping Service (NIMS) active map

● Backs up the CLE and global config sets

● Mounts the patch ISO image file

● Copies the RPMs from the ISO to the appropriate repositories on the SMW

● Refreshes the repository metadata

● Copies patch instructions and support files to /var/opt/cray/patchsets/patchset_directory

5. Follow the instructions in the /var/opt/cray/patchsets/patchset_directory/README file.

An INSTALL script in the patch directory performs the necessary tasks to get the patched code into the
appropriate image roots and boot images. This script will print further instructions required to get the patch
changes onto the affected compute nodes.

6. When the README indicates that rolling updates are supported for the patch, run the cnat command as
instructed by the README. Run cnat on the login node as the crayadm user, though some WLMs may
have different user execution requirements. The example that follows calls the cnat-reboot script to reboot
the patched compute nodes, but not all patches require a reboot.

crayadm@login> module load cnat
crayadm@login> cnat -n <node_list> /opt/cray/cnat/default/bin/cnat-reboot

7. Use the cnat-status script for information about the cnat run. The example command that follows
specifies the output directory created for the cnat run that initiated the update. The cnat-status script
output is placed in this directory and also displayed on the console.

crayadm@login> cnat-status cnat-20160502101159

7.29 Apply Live Updates to Nodes

Prerequisites
Enable the live updates service in the config set by editing the cray_liveupdate_worksheet.yaml file.
Uncomment cray_liveupdate.enabled and set it to true.

About this task
A live update is an update that can be applied to running nodes. Live updates use package managers, such as
zypper and yum, to install updated content on booted nodes. Live updates can be applied to both service nodes
and compute nodes.

Modify an Installed System

S2393 328

The INSTALL script for a patch updates the package repositories and node images on the SMW. When a patch
can be applied with live updates, the patch script and README file provide further instructions to the administrator
to properly update the images on the relevant booted nodes.

Procedure

1. Make a directory on the SMW (if it does not already exist) to hold any patches that may be available on
CrayPort.

smw# mkdir -p /var/opt/cray/patchsets

2. Download patches to the patchsets directory on the SMW, as described in the release notes. The default
location is /var/adm/cray/release/patchsets.

3. Run the LOAD script that is included in the patch.

A LOAD script usually does following setup tasks:

● Creates a SMW file system snapshot (optionally)

● Backs up the Node Image Mapping Service (NIMS) active map

● Backs up the CLE and global config sets

● Mounts the patch ISO image file

● Copies the RPMs from the ISO to the appropriate repositories on the SMW

● Refreshes the repository metadata

● Copies patch instructions and support files to /var/opt/cray/patchsets/patchset_directory

4. Follow the instructions in the /var/opt/cray/patchsets/patchset_directory/README file.

An INSTALL script in the patch directory performs the necessary tasks to get the patched code into the
appropriate system images. This script will print further instructions required to get the patch changes onto the
affected system nodes.

7.30 Update the Physical System Configuration While the System is
Booted

To change the system configuration physically while the system is booted, use the xtwarmswap command to
remove or add one or more blades or high-speed network (HSN) cables.

CAUTION: When reserving nodes for maintenance, an admindown of any node in use by a current batch
job can cause a subsequent aprun in the job to fail. Instead, it is recommended that a batch subsystem
be used to first reserve nodes for maintenance, and then verify that a node is not in use by a batch job
prior to setting a node to admindown. Contact a Cray service representative to reserve nodes for
maintenance.

The xtwarmswap command runs on the SMW and coordinates with the xtnlrd daemon to take the necessary
steps to perform warm swap operations. For additional information, see the xtwarmswap(8) man page.

Modify an Installed System

S2393 329

Note that the global config set and active CLE config set must be updated after any hardware changes so that
platform information is updated appropriately, and cray-ansible must be run on all currently booted nodes so
that updated config set info is pulled to those nodes.

7.30.1 Reuse One or More Previously-failed HSN Links

About this task
To integrate failed links back into the HSN configuration, the xtwarmswap command may be invoked with one of
the following:

● -s LCB, ..., specifying the list of LCBs to bring back up

● -s all, to bring in all available LCBs

● -s none, to cause a reroute without changing the LCBs that are in use

Procedure

1. Execute an xtwarmswap -s LCB_names -p partition_name to tell the system to reroute the HSN
using the specified set of LCBs in addition to those that are currently in use.

Doing so will clear the alert flags on the specified LCBs automatically. If the warm swap fails, the alert flag will
be restored to the specified LCBs.

2. Execute an xtwarmswap -s all -p partition_name command to tell the system to reroute the HSN
using all available links.

The xtwarmswap command results in xtnlrd performing the same link recovery steps as for a failed link, but
with two differences: no alert flags are set, and an init_new_links and a reset_new_links step are
performed to initialize both ends of any links to be used, before new routes are asserted into the Aries™ routing
tables.

The elapsed time for the warm swap synchronization operation is typically about 30 seconds.

7.30.2 Add or Remove High-speed Network Cables from Service
To specify one or more high-speed network (HSN) cables to add or remove from service, use the xtwarmswap
--add-cable command or the xtwarmswap --remove-cable command, respectively. These options
provide the ability to replace one or more cables without removing blades or shutting down the system. The
routing of the Cray HSN will be updated to route around the removed cable or cables.

To add or remove a single HSN cable, specify one cable argument as in this --add-cable example:

xtwarmswap --add-cable cable
To add or remove multiple HSN cables, specify a comma-separated list of cables, as in this --remove-cable
example:

xtwarmswap --remove-cable cable1,cable2,...,cableN

Modify an Installed System

S2393 330

The --add-cable and --remove-cable options are not supported if more than a single active partition exists
in the system. Do not specify the -p|--partition option when using these options. In addition, do not use the
--linktune option when using the --remove-cable option.

7.30.3 Remove a Compute Blade from Service While the System is Running

About this task
A compute blade can be physically removed for maintenance or replacement while the system is running;
however, the applications using the nodes on the blade to be removed must either be allowed to drain or be killed
beforehand.

CAUTION: This procedure warm swaps a compute blade from service while the system is running. Do
not warm swap service blades, unless the blade is an I/O base blade (IBB) that has InfiniBand cards and
is an LNET blade. Before attempting to warm swap any service blade, it is advisable to consult with a
Cray service representative.

Procedure

1. Log on to the login node as root.

2. Ensure that the batch system or Slurm marks the blade as unavailable for scheduling.

3. Execute the following command to mark the nodes on the compute blade as admindown. This tells ALPS not
to launch new applications onto them. (This command may also be executed from the boot node as user
root.)

login# xtprocadmin -k s admindown -n blade_ID
The arguments to the -n option should be the NID values for the nodes on the blade being removed, as
shown by executing xtprocadmin | grep bladename.

For example, to find the NID values for the nodes on the blade c0-0c0s2 being removed:

login# xtprocadmin | grep c0-0c0s2
 8 0x8 c0-0c0s2n0 compute up batch
 9 0x9 c0-0c0s2n1 compute up batch
 10 0xa c0-0c0s2n2 compute up batch
 11 0xb c0-0c0s2n3 compute up batch

4. From the login node, execute the apstat -n command or the appropriate Slurm command to determine if
any applications are running on the node marked admindown. This example shows that apid 675722 is
running on all nodes of blade c0-0c0s2.

login# apstat -n | egrep -w 'NID|8|9|10|11
 8 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 9 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 10 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722
 11 XT UP B 32 32 1 4K 16777216 8388608 262144 1 675722

5. Wait until the applications using the nodes on the blade finish or use the apkill apid command to kill the
application.

Modify an Installed System

S2393 331

6. Log on to the SMW as crayadm.

7. Execute the xtcli halt blade_ID command to halt the blade.

smw# xtcli halt blade_ID

8. Execute the xtwarmswap --remove blade_ID command to remove the compute blade from service. The
routing of the Cray HSN will be updated to route around the removed blade.

The --remove stage of the xtwarmswap process uses the Aries™ resiliency infrastructure and takes about
30 seconds to complete.

smw# xtwarmswap --remove blade_ID

9. Execute the xtcli power down blade_ID command, which helps to identify which blade to pull (all lights
are off on the blade).

smw# xtcli power down blade_ID

10. Physically remove the blade, if desired. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

CAUTION: If a blade cannot be reinstalled in the empty slot within 2 minutes, install a filler blade
assembly in the empty slot; failure to do so can cause other blades in the system to overheat.

7.30.4 Return a Compute Blade into Service

About this task
After a blade has been repaired or when a replacement blade is available, use the following procedure to return
the blade into service.

Procedure

1. Physically insert the blade into the slot. To complete this step, see the hardware maintenance and
replacement procedures documentation for the Cray system, or contact a Cray Service representative.

2. On the SMW, execute the xtcli power up blade_ID command.

smw# xtcli power up blade_ID

3. Ensure that the blade is ready by entering the following command, and wait until the command returns the
correct response:

smw# xtalive blade_ID
The expected response was received.

4. Verify the status of the blade controller to ensure that its "Comp state" is "up" and that there are no flags set.

smw# xtcli status -t bc blade_ID

5. Bounce the blade.

Modify an Installed System

S2393 332

smw# xtbounce blade_ID

6. If the blade or PDC type is different, su to root, execute the xtdiscover command, and then exit root.
Otherwise, skip this step.

smw# su - root
smw# xtdiscover
smw# exit
smw#

7. Execute the xtzap --blade command to update the BC BIOS, node BIOS, microcontroller, and FPGAs as
required.

smw# xtzap --blade blade_ID

8. Execute the xtbounce --linkdown blade_ID command to prepare the blade for the warm swap (takes
down all HSN links on the blade).

smw# xtbounce --linkdown blade_ID

9. Add the blade(s) to the HSN by executing the xtwarmswap --add blade_ID,... command. This
command activates routing on the newly installed blade and automatically executes a mini-xtdiscover
command once the warm swap steps have completed successfully. No additional manual invocation of
xtdiscover, which gets the new hardware attributes from the added blades, is necessary.

smw# xtwarmswap --add blade_ID
Because the xtwarmswap --add command initializes the added blades, the time to return the blades back
to service is about 10 minutes, including the time to initialize the blades, run the BIOS on the nodes, and
initialize the links to the blades.

10. Boot the nodes on the blade(s) by executing the xtcli boot CNL0 blade_ID,... command on the
SMW.

smw# xtcli boot CNL0 blade_ID

11. As root on the login node, execute the following command to mark the nodes on the compute blade as up.
This tells ALPS that new applications may be launched onto those nodes. (This command may also be
executed from the boot node as user root.)

login# xtprocadmin -k s up -n blade_ID

12. Verify that the blade is up.

login# xtprocadmin | grep blade_ID

13. Ensure that the batch system or Slurm marks the blade as available for scheduling.

7.30.5 Update Config Set Information on Booted Nodes

Prerequisites
This procedure assumes that the CLE system is booted.

Modify an Installed System

S2393 333

About this task
Whenever physical hardware information is changed, the global config set and the CLE config set for the affected
nodes must be updated on the SMW, and the updated config set information must be propagated to all affected
CLE nodes. An example of a change to physical hardware is the reintroduction of originally disabled nodes to the
XC system by means of a warmswap.

Procedure

1. Update the global config set.

smw# cfgset update --mode prepare global

2. Update the CLE config set (p0 in the example).

smw# cfgset update --mode prepare p0

3. Run cray-ansible on all affected CLE nodes to refresh the config set information on them.

On the boot node:

boot# /etc/init.d/cray-ansible start
On the SDB node:

sdb# /etc/init.d/cray-ansible start
On all service nodes:

sdb# pcmd -r -n ALL_SERVICE_NOT_ME "/etc/init.d/cray-ansible start"
On all compute nodes:

sdb# pcmd -r -n ALL_COMPUTE "/etc/init.d/cray-ansible start"

7.31 State Manager LLM Logging
The log data from the State Manager is written to /var/opt/cray/log/sm-yyyymmdd. The default setting for
the State Manager is to enable LLM logging. If LLM or craylog failures occur, State Manager logging is not
disrupted. Logging then reverts to behavior that is very similar to legacy State Manager logging, which is also
used when State Manager LLM logging is turned off.

To disable LLM logging for the State Manager, add the -L noption to
the /opt/cray/hss/default/bin/rsms script entry:

sm=(/opt/cray/hss/default/bin/state_manager sm "-L n")

Modify an Installed System

S2393 334

7.32 Boot Manager LLM Logging
The log data from the Boot Manager is written to /var/opt/cray/log/bm-yyyymmdd. If the -L command line
option is used with the bootmanager command or if LLM is not enabled, Boot Manager reverts to legacy logging,
which writes log data to /var/opt/cray/log/bm.out. This is a less satisfactory logging method because each
Boot Manager restart creates a new log and moves the previous log to bm.out.1. A third restart can possibly
cause recent log data to be lost.

7.33 Configure Node Health Checker Tests
NHC is automatically invoked by ALPS upon the termination of an application. ALPS passes a list of CNL
compute nodes associated with the terminated application to NHC. NHC performs specified tests to determine if
compute nodes allocated to the application are healthy enough to support running subsequent applications. If not,
it removes any compute nodes incapable of running an application from the resource pool. The CLE installation
and upgrade processes automatically install and enable NHC software; there is no need to change any
installation configuration parameters or issue any commands.

Use the cray_node_health_worksheet.yaml file or configurator to configure the NHC tests, which test CNL
compute node functionality. All tests that are enabled will run when NHC is in either Normal Mode or in Suspect
Mode. Tests run in parallel, independently of each other, except for the Free Memory Check test, which
requires that the Application Exited Check test passes before the Free Memory Check test begins.

The xtcheckhealth binary runs the NHC tests; for information about the xtcheckhealth binary, see the
intro_NHC(8) and xtcheckhealth(8) man pages.

The NHC tests are listed below. In the default NHC configuration file, each test that is enabled starts with an
action of admindown, except for Free Memory Check, which starts with an action of log.

Also read important test usage information in Guidance for the Accelerator Test on page 338, Guidance for the
Application Exited Check and Apinit Ping Tests on page 338, Guidance for the Filesystem Test on page 339,
Guidance for the Hugepages Test on page 339, and Guidance for the NHC Lustre File System Test on page
340.

Accelerator Tests the health of any accelerators present on the node. It is an application set test and
should not be run in the reservation set.

The global accelerator test (gat) script detects the type of accelerator(s) present on the
node and then launches a test specific to the accelerator type. The test fails if it is
unable to run successfully on the accelerator, or if the amount of allocated memory on
the accelerator exceeds the amount specified using the gat -m argument.

Default: enabled

Application
Exited Check

Verifies that any remaining processes from the most recent application have terminated.
It is an application set test and should not be run in the reservation set because an
application is not associated with a reservation cancellation.

The Application Exited Check test checks locally on the compute node for
processes running under the ID of the application (APID). If processes are running,
NHC waits a period of time (defined in the configuration file) to determine if the
application processes exit properly. If the process does not exit within that time, this test
fails.

Modify an Installed System

S2393 335

Default: enabled

Apinit Log and
Core File
Recovery

A plugin script to copy apinit core dump and log files to a login/service node. It is an
application set test.

Default: not enabled. Apinit Log and Core File Recovery should not be
enabled until a destination directory is determined and specified in the NHC
configuration file.

Apinit Ping Verifies that the ALPS daemon is running on the compute node and is responsive. It is
an application set test.

The Apinit Ping test queries the status of the apinit daemon locally on each
compute node; if the apinit daemon does not respond to the query, then this test fails.

Default: enabled

DataWarp A plugin script to check that any reservation-affiliated DataWarp mount points have
been removed. Note that the plugin can only detect a problem after the last reservation
on a node completes.

Default: disabled

Free Memory Check Examines how much memory is consumed on a compute node while applications are
not running. Use it only as a reservation test because an application within a reservation
may leave data for another application in a reservation. If run in the application set,
Free Memory Check could consider data that was intentionally left for the next
application to be leaked memory and mark the node admindown. Run the Free
Memory Check only after the Reservation test passes successfully.

Default: enabled (action is log only)

Filesystem Ensures that the compute node is able to perform simple I/O to the specified file
system. It is configured as an application set test in the default configuration, but it can
be run in the reservation set. For a file system that is mounted read-write, the test
performs a series of operations on the file system to verify the I/O. A file is created,
written, flushed, synced, and deleted. If a mount point is not explicitly specified, the
mount point(s) from the compute node /etc/fstabs file will be used and a
Filesystem test will be created for each mount point found in the file. If a mount point
is explicitly specified, then only that file system will be checked. An administrator can
specify multiple FileSystem tests by placing multiple Filesystem lines in the
configuration file. For example, one line could specify the implicit Filesystem test, and
the next line could specify a specific file system that does not appear in /etc/fstab.
This could continue for any and all file systems.

When enabling the Filesystem test, an administrator can exclude mount points that
should not be tested using the excluding setting in the configuration to list mount
points that should not be tested by the Filesystem test. This allows intentionally
excluding specific mount points even though they appear in the fstab file. This action
prevents NHC from setting nodes to admindown because of errors on relatively benign
file systems. Explicitly specified mount points cannot be excluded in this fashion; if they
should not be checked, then they should simply not be specified.

The Filesystem test creates its temporary files in a subdirectory
(.nodehealth.fstest) of the file system root. An error message is written to the
console when the unlink of a file created by this test fails.

Modify an Installed System

S2393 336

Default: enabled

Hugepages Calculates the amount of memory available in a specified page size with respect to a
percentage of /proc/boot_freemem. It is a reservation set test.

This test will continue to check until either the memory clears up or the time-out is
reached. The default time-out is 300 seconds.

Default: disabled

Sigcont Plugin Sends a SIGCONT signal to the processes of the current APID. It is an application set
test.

Default: disabled

Plugin Allows scripts and executables not built into NHC to be run, provided they are
accessible on the compute node. .

Default: disabled so that local configuration settings may be used

ugni_nhc_plugins Tests the User level Gemini Network Interface (uGNI) on compute nodes. It is a
reservation set test and an application set test. By extension, testing the uGNI interface
also tests the proper operation of parts of the network interface card (NIC). The test
sends a datagram packet out to the node's NIC and back again.

Reservation checks for the existence of the /proc/reservations/rid directory, where rid is
the reservation ID. It is a reservation set test, and should not be run in the application
set.

If this directory still exists, the test will attempt to end the reservation and then wait for
the specified timeout value for the directory to disappear. If the test fails and Suspect
Mode is enabled, NHC enters Suspect Mode. In Suspect Mode, Reservation
continues running, repeatedly requesting that the kernel clean up the reservation, until
the test passes or until Suspect Mode times out. If the directory does not disappear in
that time, the test prints information to the console and exits with a failure.

Default: enabled with a timeout value of 300 seconds

CCM plugin validates the cleanup of a cluster compatibility mode (CCM) environment at the end of a
reservation. It is a reservation set test, and it will not run if it is misconfigured as an
application test.

This test runs on a compute node only when /var/crayccm is detected. The test
removes the /var/lib/{empty,debus} directories, unmounts CCM mount points if
they still exist, and unmounts /dsl/dev/random and /dsl/dev/pts. If the
unmounts are successful, the test removes the /var/crayccm, /var/lib/rpcbind,
and /var/spool/{PBS,torque} directories.

The CCM plugin is not included in a site's NHC configuration file. Administrators must
add the test to their configuration in order to use it. See the
cray_node_health_worksheet.yaml file for CCM plugin settings to copy into a
site's NHC configuration file.

Individual tests may appear multiple times in the configuration, with different variable values. Every time a test is
specified, NHC will run that test. This means if the same line is specified five times, NHC will try to run that same
test five times. This functionality is mainly used in the case of the Plugin test, allowing the administrator to
specify as many additional tests as have been written for the site, or the Filesystem test, allowing the
adminstrator to specify as many additional file systems as wanted. However, any test can be specified to run any

Modify an Installed System

S2393 337

number of times. Different parameters and test actions can be set for each test. For example, this could be used
to set up hard limits and soft limits for the Free Memory Check test. Two Free Memory Check tests could be
specified in the configuration file; the first test configured to only warn about small amounts of non-free memory,
and the second test configured to admindown a node that has large amounts of non-free memory. See the
cray_node_health_worksheet.yaml file for configuration information.

7.33.1 Guidance for the Accelerator Test
This test uses the global accelerator test (gat) script (/opt/cray/nodehealth/default/bin/gat.sh) to
first detect the accelerator type and then launch the test specific to that type of accelerator.

The gat script supports two arguments for NVIDIA GPUs:

-mmaximum_memory_size Specify the maximum_memory_size as either a kilobyte value or a percentage of
total memory. For example, -m 100 specifies that no more than 100 kilobytes of
memory can be allocated, while -m 10% specifies that no more than 10 percent of
memory can be allocated.

In the default NHC configuration file, the specified memory size is 10%.

-r Perform a soft restart on the GPU and then rerun the test. In the default NHC
configuration file, the -r argument is specified.

The gat script has the following options for Intel Xeon Phi:

-M kilobytes or -M n% This option works exactly as the -m option for the NVIDIA GPUs.

-c Specifies the minimum number of cores that must be active on the Xeon Phi for the
test to pass. If -c is omitted, the minimum number of active cores required to pass the
test is the total number of cores on the Xeon Phi.

7.33.2 Guidance for the Application Exited Check and Apinit Ping Tests
These two tests must be enabled and both tests must have their action set as admindown or die; otherwise,
NHC runs the risk of allowing ALPS to enter a live-lock. Only specify the die action when the
advanced_features control variable is turned off.

ALPS must guarantee two conditions about the nodes in a reservation before releasing that reservation:

● that ALPS is functioning on the nodes

● that the previous application has exited from the nodes

Either those two conditions are guaranteed or the nodes must be set to some state other than up. When either
ALPS has guaranteed these two conditions about the nodes or the nodes have been set to some state other than
up, then ALPS can release the reservation.

These NHC tests guarantee two conditions:

● Apinit_ping guarantees that ALPS is functioning on the nodes

● Application_Exited_Check guarantees that the previous application has exited from the nodes

If either test fails, then NHC sets the nodes to suspect state if Suspect Mode is enabled; otherwise, NHC sets
the nodes to admindown or unavail. Therefore, either the nodes pass these tests or the nodes are no longer in
the up state. In either case, ALPS is free to release the reservation and the live-lock is avoided. Note that this only

Modify an Installed System

S2393 338

happens if the two tests are enabled and their action is set as admindown or die. The log action does not
suffice because it does not change the state of the nodes. If either test is disabled or has an action of log, then
ALPS may live-lock. In this live-lock, ALPS will call NHC endlessly.

7.33.3 Guidance for the Filesystem Test
The NHC Filesystem test can take an explicit argument (the mount point of the file system) or no argument. If
an argument is provided, the Filesystem test is referred to as an explicit Filesystem test. If no argument is
given, the Filesystem test is referred to as an implicit Filesystem test.

The explicit Filesystem test will test the file system located at the specified mount point.

The implicit Filesystem test will test each file system listed in the /etc/fstab file on each compute node. The
implicit Filesystem test is enabled by default in the NHC configuration file.

The Filesystem test will determine whether a file system is mounted read-only or read-write. If the file system is
mounted read-write, then NHC will attempt to write to it. If it is mounted read-only, then NHC will attempt to read
the directory entities "." and ".." in the file system to guarantee, at a minimum, that the file system is readable.

Some file systems are mounted on the compute nodes as read-write file systems, while their underlying
permissions are read-only. As an example, for an auto-mounted file system, the base mount-point may have read-
only permissions; however, it could be mounted as read-write. It would be mounted as read-write, so that the
auto-mounted sub-mount-points could be mounted as read-write. The read-only permissions prevent tampering
with the base mount-point. In a case such as this, the Filesystem test would see that the base mount-point had
been mounted as a read-write file system. The Filesystem test would try to write to this file system, but the
write would fail due to the read-only permissions. Because the write fails, the Filesystem test would fail, and
NHC would incorrectly decide that the compute node is unhealthy because it could not write to this file system.
For this reason, file systems that are mounted on compute nodes as read-write file systems, but are in reality
read-only file systems, should be excluded from the implicit Filesystem test.

The administrator can exclude tests by adding an "Excluding: file system mount point" entry in the NHC
configuration file. See the NHC configuration file for further details and an example.

A file system is deemed a critical file system if it is needed to run applications. All systems will likely need at least
one shared file system for reading and writing input and output data. Such a file system would be a critical file
system. File systems that are not needed to run applications or read and write data would be deemed as
noncritical file systems. The administrator must determine the criticality of each file system.

Cray recommends the following:

● Exclude noncritical file systems from the implicit Filesystem test. See the NHC configuration file for further
details and an example.

● If there are critical file systems that do not appear in the /etc/fstab file on the compute nodes (such file
systems would not be tested by the implicit Filesystem test), these critical file systems should be checked
through explicit Filesystem tests. Add explicit Filesystem tests to the NHC configuration file by providing
the mount point of the file system as the final argument to the Filesystem test. See the NHC configuration
file for further details and an example.

● If a file system that is mounted as read-write but it has read-only permissions, exclude it from the implicit
Filesystem test. NHC does not support such file systems.

● Client mounts may fail as a system is booting because not all routes have had sufficient time to be
established. The retry ensures a mount attempt will be made after all routes are up.

Modify an Installed System

S2393 339

7.33.4 Guidance for the Hugepages Test
The Hugepages test runs the hugepages_check command, which supports two arguments:

-t threshold Use this argument to specify the threshold as a percentage of /proc/boot_freemem. If this
test is enabled and this argument is not supplied, the default of -t 90 is used.

-s size Specify the hugepage size. The valid sizes are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and
2048. If this test is enabled and this argument is not supplied, the default of -s 2 is used.

7.33.5 Guidance for the NHC Lustre File System Test
The Lustre file system has its own hard time-out value that determines the maximum time that a Lustre recovery
will last. This time-out value is called RECOVERY_TIME_HARD, and it is located in the file system's fs_defs file.
The default value for the RECOVERY_TIME_HARD is 15 minutes.

IMPORTANT: The time-out value for the NHC Lustre file system test should be twice the
RECOVERY_TIME_HARD value.

The default in the NHC configuration file is 30 minutes, which is twice the default RECOVERY_TIME_HARD. If the
value of RECOVERY_TIME_HARD is changed, the time-out value of the NHC Lustre file system test must also
change correspondingly.

The NHC time-out value is specified on the following line in the NHC configuration file:

Lustre: <warning time-out> <test time-out> <restart delay>
Lustre: 900 1800 60

Further, the overall time-out value of NHC's Suspect Mode is based on the maximum time-out value for all of the
NHC tests. Invariably, the NHC Lustre file system test has the longest time-out value of all the NHC tests.

IMPORTANT: If the NHC Lustre file system test time-out value is changed, then the time-out value for
Suspect Mode must also be changed. The time-out value for Suspect Mode is set by the suspectend
variable in the NHC configuration file. The guidance for setting the value of suspectend is that it should
be the maximum time-out value, plus an additional buffer. In the default case, suspectend was set to 35
minutes -- 30 minutes for the Lustre test, plus an additional 5 minute buffer. For more information about
the suspectend variable, see NHC Suspect Mode.

7.33.6 NHC Control Variables
The following variables in /etc/opt/cray/nodehealth/nodehealth.conf affect the fundamental behavior
of NHC.

advanced_features If set to on, this variable allows multiple instances of NHC to run simultaneously. This
variable must be on to use CNCU and reservation sets.

Default: on

dumpdon If set to off, NHC will not request any dumps or reboots from dumpd. This is a quick
way to turn off dump and reboot requests from NHC. The dump, reboot, and
dumpreboot actions do not function properly when this variable is off.

Default: on

Modify an Installed System

S2393 340

anyapid Turning anyapid on specifies that NHC should look for any apid in /dev/cpuset
while running the Application Exited Check and print stack traces for processes
that are found.

Default: off

7.33.7 Global Configuration Variables that Affect all NHC Tests
The following global configuration variables may be set in
the /etc/opt/cray/nodehealth/nodehealth.conf file to alter the behavior of all NHC tests. The global
configuration variables are case-insensitive.

Runtests:
Frequency

Determines how frequently NHC tests are run on the compute nodes. Frequency may be
either errors or always. When the value errors is specified, the NHC tests are run
only when an application terminates with a non-zero error code or terminates abnormally.
When the value always is specified, the NHC tests are run after every application
termination. If the Runtests global variable is not specified, the implicit default is
errors.

This variable applies only to tests in the application set; reservations do not terminate
abnormally.

Connecttime:
TimeoutSeconds

Specifies the amount of time, in seconds, that NHC waits for a node to respond to
requests for the TCP connection to be established. If Suspect Mode is disabled and a
particular node does not respond after connecttime has elapsed, then the node is
marked admindown. If Suspect Mode is enabled and a particular node does not respond
after connecttime has elapsed, then the node is marked suspect. NHC will then
attempt to contact the node with a frequency established by the recheckfreq variable.

If the Connecttime global variable is not specified, then the implicit default TCP time-out
value is used. NHC will not enforce time-out on the connections if none is specified. The
Connecttime: TimeoutSeconds value provided in the default NHC configuration file is
60 seconds.

The following global variables control the interaction of NHC and dumpd, the SMW daemon that initiates
automatic dump and reboot of nodes.

maxdumps:
MaximumNodes

Specifies the number of nodes that fail with the dump or dumpreboot action that will be
dumped. For example, if NHC was checking on 10 nodes that all failed tests with the dump
or dumpreboot actions, only the number of nodes specified by maxdumps would be
dumped, instead of all of them. The default value is 1.

To disable dumps of failed nodes with dump or dumpreboot actions, set maxdumps: 0.

downaction:
action

Specifies the action NHC takes when it encounters a down node. Valid actions are log,
dump, reboot, and dumpreboot. The default action is log.

downdumps:
number_dumps

Specifies the maximum number of dumps that NHC will dump for a given APID, assuming
that the downaction variable is either dump or dumpreboot. These dumps are in
addition to any dumps that occur because of NHC test failures. The default value is 1.

The following global variables control the interaction between NHC, ALPS, and the SDB.

Modify an Installed System

S2393 341

alps_recheck_max:
number of seconds

NHC will attempt to verify its view of the states of the nodes with the
ALPS view. If NHC is unable to contact ALPS, this variable controls
the maximum delay between rechecks.

Default value: 10 seconds

alps_sync_timeout:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls the length of time before NHC gives up and aborts.

Default value: 1200 seconds

alps_warn_time:
number of seconds

If NHC is unable to contact ALPS to verify the states of the nodes, this
variable controls how often warnings are issued.

Default value: 120 seconds

sdb_recheck_max:
number of seconds

NHC will contact the SDB to query for the states of the nodes. If NHC
is unable to contact the SDB, this variable controls the maximum delay
between rechecks.

Default value: 10 seconds

sdb_warn_time:
number of seconds

If NHC is unable to contact the SDB, this variable controls how often
warnings are issued.

Default value: 120 seconds

node_no_contact_warn_time:
number of seconds

If NHC is unable to contact a specific node, this variable controls how
often warnings are issued.

Default value: 600 seconds

The following global variable controls NHC's use of node states.

unhealthy_state:
swdown

When a node is deemed unhealthy, it is normally set to admindown. This variable
permits a different state to be chosen instead.

Default: not set

unhealthy_state:
rebootq

When a node is going to be rebooted, it is normally set to Unavail. This variable
permits a different state to be chosen instead.

Default: not set

7.33.8 Standard Variables that Affect Individual NHC Tests
The following variables are used with each NHC test; set each variable for each test. All variables are case-
insensitive. Each NHC test has values supplied for these variables in the default NHC configuration file.

Specific NHC tests require additional variables, which are defined in the nodehealth configuration file.

action Specifies the action to perform if the compute node fails the given NHC test. action may
have one of the following values:

Modify an Installed System

S2393 342

log Logs the failure to the system console log. The log action will not cause a
compute node's state to be set to admindown.

IMPORTANT: Tests that have an action of Log do not run in Suspect
Mode. If using plugin scripts with an action of Log, the script will only
be run once, in Normal Mode. This makes log collecting and various
other maintenance tasks easier to code.

admindown Sets the compute node's state to admindown (no more applications will be
scheduled on that node) and logs the failure to the system console log.

If Suspect Mode is enabled, the node will first be set to suspect state, and if
the test continues to fail, the node will be set to admindown at the end of
Suspect Mode.

die Halts the compute node so that no processes can run on it, sets the compute
node's state to admindown, and logs the failure to the system console log. (The
die action is the equivalent of a kernel panic.) This action is good for catching
bugs because the state of the processes is preserved and can be dumped at a
later time.

If the advanced_features variable is enabled, die is not allowed.

Each subsequent action includes the actions that preceded it; for example, the
die action encompasses the admindown and log actions.

If NHC is running in Normal Mode and cannot contact a compute node, and if
Suspect Mode is not enabled, NHC will set the compute node's state to
admindown.

The following actions control the NHC and dumpd interaction.

dump Sets the compute node's state to admindown and requests a dump from the
SMW, in accordance with the maxdumps configuration variable.

reboot Sets the compute node's state to unavail and requests a reboot from the
SMW. The unavail state is used rather than the admindown state when
nodes are to be rebooted because a node that is set to admindown and
subsequently rebooted stays in the admindown state. The unavail state
does not have this limitation.

dumpreboot Sets the compute node's state to unavail and requests a dump and reboot
from the SMW.

The following actions control the NHC and dumpd interaction.

warntime Specifies the amount of elapsed test time, in seconds, before xtcheckhealth logs a warning
message to the console file. This allows an administrator to take corrective action, if
necessary, before the timeout is reached.

timeout Specifies the total time, in seconds, that a test should run before an error is returned by
xtcheckhealth and the specified action is taken.

restartdelay Valid only when NHC is running in Suspect Mode. Specifies how long NHC will wait, in
seconds, to restart the test after the test fails. The minimum restart delay is one second.

sets Indicates when to run a test. The default NHC configuration specifies to run specific tests after
application completion and to run an alternate group of tests at reservation end. When ALPS

Modify an Installed System

S2393 343

calls NHC at the end of the application, tests marked with Sets: Application are run. By
default, these tests are: Filesystem, Accelerator, ugni_nhc_plugins, Application
Exited Check, Apinit Ping Test, and Apinit Log and Core File Recovery. At
the end of the reservation, ALPS calls tests marked Sets: Reservation. By default, these
are: Free Memory Check, ugni_nhc_plugins, Reservation, and Hugepages Check.

If no set is specified for a test, it will default to Application, and run when ALPS calls NHC
at the end of the application. If NHC is launched manually, using the xtcheckhealth
command, and the -m sets argument is not specified on the command line, then
xtcheckhealth defaults to running the Application set.

If a test is marked Sets: All, it will always run, regardless of how NHC is invoked.

7.33.9 NHC Suspect Mode
Upon entry into Suspect Mode, NHC immediately allows healthy nodes to be returned to the resource pool.
Suspect Mode allows the remaining nodes, which are all in suspect state, an opportunity to return to
healthiness. If the nodes do not return to healthiness by the end of the Suspect Mode (determined by the
suspectend global variable; see below), their states are set to admindown. For more information about how
Suspect Mode functions, see the intro_NHC(8) man page.

IMPORTANT: Suspect Mode is enabled in the default configuration. Cray recommends that sites run
NHC with Suspect Mode enabled.

If enabled, the default NHC configuration file uses the following Suspect Mode variables:

suspectenable: Enables Suspect Mode; valid values are y and n.

Default: y

suspectbegin: Sets the Suspect Mode timer. Suspect Mode starts after the number of seconds indicated
by suspectbegin have expired.

Default: 180

suspectend: Suspect Mode ends after the number of seconds indicated by suspectend have expired.
This timer only starts after NHC has entered Suspect Mode.

Default: 2100
Considerations when evaluating shortening the length of Suspect Mode:

● The length of Suspect Mode can be shortened if there are no external file systems, such
as Lustre, for NHC to check.

● Cray recommends that the length of Suspect Mode be at least a few seconds longer
than the longest time-out value for any of the NHC tests. For example, if the
Filesystem test had the longest time-out value at 900 seconds, then the length of
Suspect Mode should be at least 905 seconds.

● The longer the Suspect Mode, the longer nodes have to recover from any unhealthy
situations. Setting the length of Suspect Mode too short reduces this recovery time and
increases the likelihood of the nodes being marked admindown prematurely.

recheckfreq: Suspect Mode rechecks the health of the nodes in suspect state at a frequency specified
by recheckfreq. This value is in seconds.

Modify an Installed System

S2393 344

For a detailed description about NHC actions during the recheck process, see the
intro_NHC(8) man page.

Default: 300

7.33.10 NHC Messages
NHC messages may be found on the SMW in /var/opt/cray/log/sessionid/nhc-YYYYMMDD with
'<node_health:M.m>' in the message, where M is the major and m is the minor NHC revision number. All NHC
messages are visible in the console file.

NHC prints a summary message per node at the end of Normal Mode and Suspect Mode when at least one test
has failed on a node. For example:

<node_health:3.1> APID:100 (xtnhc) FAILURES: The following tests have failed in
normal mode:
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Apinit_Ping
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Plugin /example/plugin
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Log Only) Filesystem_Test on /
mydir
<node_health:3.1> APID:100 (xtnhc) FAILURES: (Admindown) Free_Memory_Check
<node_health:3.1> APID:100 (xtnhc) FAILURES: End of list of 5 failed test(s)

The xtcheckhealth error and warning messages include node IDs and application IDs and are written to the
console file on the SMW; for example:

[2010-04-05 23:07:09][c1-0c2s0n0]<node_health:3.0> APID:2773749
(check_apid) WARNING: Failure: File /dev/cpuset/2773749/tasks exists and is not
empty. \
The following processes are running under expired APID
2773749:
[2010-04-05 23:07:09][c1-0c2s0n1]<node_health:3.0> APID:2773749
(check_apid) WARNING: Pid: 300 Name: (marys_program) State: D

The xtcleanup_after script writes its normal launch information to the /var/log/xtcheckhealth_log file,
which resides on the login nodes. The xtcleanup_after launch information includes the time that
xtcleanup_after was launched and the time xtcleanup_after called xtcheckhealth.

The xtcleanup_after script writes error output (launch failure information) to
the /var/log/xtcheckhealth_log file, to the console file on the SMW, and to the syslog.

Example xtcleanup_after output follows:

Thu Apr 22 17:48:18 CDT 2010 <node_health> (xtcleanup_after)
/opt/cray/nodehealth/3.0-1.0000.20840.30.8.ss/bin/xtcheckhealth -a 10515
-e 1 /tmp/apsysLVNqO9 /etc/opt/cray/nodehealth/nodehealth.conf

Modify an Installed System

S2393 345

7.33.11 Recover from a Login Node Crash when a Login Node will not be Rebooted

About this task
If a login node crashes while xtcheckhealth binaries on that login node are monitoring compute nodes that are
in suspect state, those xtcheckhealth binaries will die when the login node crashes. When the login node
that crashed is rebooted, a recovery action takes place. When the login node boots, the
node_health_recovery binary starts up. This script checks for all compute nodes that are in suspect state
and were last set to suspect state by this login node. The script then determines the APID of the application that
was running on each of these compute nodes at the time of the crash. The script then launches an
xtcheckhealth binary to monitor each of these compute nodes. One xtcheckhealth binary is launched per
compute node monitored.

If the Application_Exited_Check test is enabled in the configuration file (default), xtcheckhealth is
launched with this APID to test for processes that may have been left behind by that application. Otherwise, NHC
does not run the Application_Exited_Check test and will not check for leftover processes, but will run any
other NHC tests that are enabled in the configuration file.

Nodes are changed from suspect state to up or admindown, depending upon whether they fail any health
checks. No system administrator intervention should be necessary.

NHC automatically recovers the nodes in suspect state when the crashed login node is rebooted because the
recovery feature runs on the rebooted login node. If the crashed login node is not rebooted, then manual
intervention is required to rescue the nodes from suspect state. This manual recovery can commence as soon
as the login node has crashed. To recover from a login node crash during the case in which a login node will not
be rebooted, the nhc_recovery binary is provided to help release the compute nodes owned by the crashed
login node; see Recovering from a login node crash when a login node will not be rebooted. Also, see the
nhc_recovery(8) man page for a description of the nhc_recovery binary usage.

Procedure

1. Create a file, nodelistfile, that contains a list of the nodes in the system that are currently in Suspect
Mode. The file must be a list of NIDs, one per line; do not include a blank line at the end of the file.

2. List all of the suspect nodes in the system and the login nodes to which they belong.

smw# nhc_recovery -d nodelistfile

3. Parse the nhc_recovery output for the NID of the login node that crashed, creating a file, computenodes,
that contains all of the compute nodes owned by the crashed login node.

4. Use the computenodes file to create nodelist files containing nodes that share the same APID (to
determine the nodes from the crashed login node). For example, the files can be named
nodelistfile-APID1, nodelistfile-APID2, nodelistfile-APID3, etc.

5. Release all of the suspect compute nodes owned by the crashed login node.

smw# nhc_recovery -r computenodes
All of these compute nodes are released in the database, but they are all still in suspect state.

6. Determine what to do with these suspect nodes from the following three options:

Modify an Installed System

S2393 346

● (Cray recommends this option) Rerun NHC on a non-crashed login node to recover the nodes listed in
step 4 on page 346. Invoke NHC for each nodelist-APID file. Supply the APID that corresponds to the
nodelistfile; an iteration count of 0 (zero), which is the value normally supplied to NHC by ALPS; and
an application exit code of 1 as the APID argument. An exit code of 1 ensures that NHC will run
regardless of the value of the runtests variable (always or errors) in the NHC configuration file. For
example:

smw# xtcleanup_after -s nodelist-APID1 APID1 0 1
smw# xtcleanup_after -s nodelist-APID2 APID2 0 1
smw# xtcleanup_after -s nodelist-APID3 APID3 0 1
.
.
.

● Set the suspect nodes to admindown and determine their fate by further analysis.

● Set the suspect nodes back to up, keeping in mind that they were in Suspect Mode for a reason.

7.33.12 Restore Compute Nodes Marked admindown by NHC

About this task
After failing an NHC test case within an application or reservation test set, a compute node can be set to an
admindown state by NHC. In order to restore that compute node and return it for application use, the following
steps should be done for each compute node with an admindown state.

Procedure

1. Check the console logfile to find which NHC test failed for that compute node.

Depending upon the test case failure, determine if there is manual action to take to clear up the issue.

2. Run xtcleanup_after to determine if the compute node is now healthy.

After completion of xtcleanup_after, if the NHC tests now passed, the compute node state will be set to
up; otherwise, the state will be set back to admindown, and the node needs to be rebooted.

xtprocadmin -ks suspect -n {nid}
xtcleanup_after -n {nid} -a all -s
xtprocadmin -n {nid}
This action can be performed for a group of admindown compute nodes through use of the
xtcleanup_after "-a all" flag along with a node list. This flag causes NHC tests for any apid on the
provided compute node list. The two xtprocadmin commands should be invoked as noted above.

xtcleanup_after -n {nodelist} -a all -s

3. A compute node admindown state persists across a node reboot. If the compute node needs to be rebooted,
use xtprocadmin to change the node state from admindown to down and then reboot the node. This will
allow the node state to automatically be set to up following a successful reboot.

xtprocadmin -ks down -n {nid}
xtbootsys --reboot c-name

Modify an Installed System

S2393 347

4. If the compute node is rebooted while its state is still admindown, then use xtprocadmin to set the compute
node state to up following a successful reboot.

xtbootsys --reboot c-name
xtprocadmin -ks up -n {nid}

Modify an Installed System

S2393 348

	Contents
	1 About XC™ Series System Administration Guide (S-2393)
	2 About the Cray Management System
	2.1 About the Image Management and Provisioning System (IMPS)
	2.1.1 Where to Place the Root File System: tmpfs versus netroot
	2.1.2 About the Admin Image
	2.1.3 About Image Pushes: push versus sqpush

	2.2 About the Node Image Mapping Service (NIMS)
	2.3 About Cray Scalable Services
	2.4 About Service Nodes
	2.5 About Boot Automation Files

	3 Manage the System
	3.1 Connect the SMW to the Console of a Service Node
	3.2 Configure Remote Access to SMW with VNC
	3.3 About the Integrated Dell Remote Access Controller (iDRAC)
	3.3.1 Change the Default iDRAC Password
	3.3.2 Dell R815 SMW: Change the BIOS and iDRAC Settings
	3.3.3 Dell R630 SMW: Change the BIOS and iDRAC Settings
	3.3.4 Use the iDRAC

	3.4 Initialize zsh for Non-interactive Jobs
	3.5 Hardware Component Identification
	3.5.1 Physical ID for Cray XC Series Systems
	3.5.2 Node ID (NID) on Cray XC Series Systems
	3.5.3 Extended Node ID (XNID)
	3.5.4 Topology Class

	3.6 Boot the System
	3.6.1 Run Tests after Boot is Complete
	3.6.2 Manually Boot the Boot Node and Service Nodes
	3.6.3 Manually Boot the Compute Nodes
	3.6.4 Reboot a Single Compute Node
	3.6.5 Reboot Login or Network Nodes
	3.6.6 Reboot Many Nodes

	3.7 Boot the SMW in Rescue Mode
	3.8 Debug Ansible Failures During System Boot
	3.8.1 Examine System Logs
	3.8.2 Look Up Configuration Details
	3.8.3 Examine Ansible Changelogs
	3.8.4 Debug Ansible Failures in init
	3.8.5 Examine System Dumps

	3.9 Log on to the Boot Node
	3.10 Display Boot Configuration Information
	3.11 Update the Boot Configuration
	3.12 Display the Format of the SDB attributes Table
	3.13 Update SDB Tables
	3.14 Free Up Disk Space in the btrfs File System
	3.15 Boot a Node or Set of Nodes Using the xtcli boot Command
	3.16 Increase the Boot Manager Timeout Value
	3.17 Reboot Controllers of a Cabinet or Blade
	3.18 Bounce Blades Repeatedly Until All Blades Succeed
	3.19 Flash NVMe SSD Firmware
	3.20 Flash the Intel P3608 Firmware
	3.21 Request and Display System Routing
	3.22 Initiate a Network Discovery Process
	3.23 Configure IP Routes
	3.24 System Component States
	3.25 Configure Current System Timezone
	3.26 View and Change the Status of Nodes
	3.27 Perform Parallel Operations on Compute Nodes
	3.28 Perform Parallel Operations on Service Nodes
	3.29 Find Node Information
	3.30 Dynamic Fan Speed Control
	3.30.1 Enable Dynamic Fan Speed Control
	3.30.2 Configure and Validate Dynamic Cooling Control Variables

	3.31 Disable Hardware Components
	3.32 Enable Hardware Components
	3.33 Check Current State of Compute Node SSDs
	3.34 Set Hardware Components to EMPTY
	3.35 Lock Hardware Components
	3.36 Unlock Hardware Components
	3.37 Over-provision an Intel P3608 SSD
	3.38 Modify BIOS Parameters
	3.39 Increase File System Size
	3.40 Add New Hardware to a System
	3.41 Add a New Disk to a Volume Group in a Storage Set
	3.42 Reboot Controllers of a Cabinet or Blade
	3.43 Bounce Blades Repeatedly Until All Blades Succeed
	3.44 Shut Down the System Using the Automation File
	3.45 The xtshutdown Command
	3.45.1 Shut Down Service Nodes

	3.46 Shut Down the System or Part of the System Using the xtcli shutdown Command
	3.47 Stop System Components
	3.48 Restart a Blade or Cabinet
	3.49 Abort Active Sessions on the HSS Boot Manager
	3.50 Display and Change Software System Status
	3.50.1 View and Change the Status of Nodes
	3.50.2 Find Node Information

	3.51 Display and Change Hardware System Status
	3.51.1 Generate HSS Physical IDs
	3.51.2 Disable Hardware Components
	3.51.3 Enable Hardware Components
	3.51.4 Set Hardware Components to EMPTY
	3.51.5 Lock Hardware Components
	3.51.6 Unlock Hardware Components

	3.52 Revert a System to an Earlier CLE 6.0 Release
	3.52.1 Reset All Hardware Components to Run SMW/HSS Compatible Software

	3.53 Set the Turbo Boost Limit
	3.54 Perform Parallel Operations on Service Nodes
	3.55 Perform Parallel Operations on Compute Nodes
	3.56 xtbounce Error Message Indicates Cabinet Controller and Its Blade Controllers Not in Sync
	3.57 Reduce Impact of Btrfs Periodic Maintenance on SMW Performance
	3.58 Power-cycle a Component to Handle Bus Errors
	3.59 When a Component Fails
	3.60 Capture and Analyze System-level and Node-level Dumps
	3.60.1 Configure xtdumpsys for Systems Using passwordless ssh
	3.60.2 cdump and crash Utilities for Node Memory Dump and Analysis
	3.60.3 Dump and Reboot Nodes Automatically
	3.60.4 The /etc/opt/cray-xt-dumpd/dumpd.conf Configuration File
	3.60.5 The dumpd-dbadmin Tool
	3.60.6 The dumpd-request Tool

	3.61 Collect Debug Information From Hung Nodes Using the xtnmi Command
	3.62 Set or Change the HSS Data Store (MariaDB) Root Password
	3.63 Recover from a Corrupt or Missing HSS Database
	3.63.1 Restore the HSS Database from a Backup
	3.63.2 Re-create HSS Database File System After Corruption

	3.64 Troubleshoot Temperature Warnings Reported in an End Cabinet
	3.65 Recover from SMW R630 Boot Disk Hardware RAIDS Failure
	3.66 Recover from SMW R815 Boot Disk Software RAID1 Failure
	3.67 About X.509 Certificates and How to Redistribute Them
	3.67.1 Update X.509 Host Certificate after SMW Host Name Change

	4 Manage System Access
	4.1 Change Account Passwords on the SMW
	4.2 Change Account Passwords on CLE Nodes

	5 Configure the System
	5.1 Cray XC System Configuration
	5.1.1 About the Configurator
	5.1.2 Create a Config Set
	5.1.2.1 Create a Config Set from Configuration Worksheets
	5.1.2.2 Create a Config Set by Cloning
	5.1.2.3 Create a Config Set without Callbacks
	5.1.2.4 Create a Config Set Interactively

	5.1.3 Update a Config Set
	5.1.3.1 Update a Config Set Interactively
	5.1.3.2 Update a Config Set from Configuration Worksheets
	5.1.3.3 Update a Config Set without Callbacks
	5.1.3.4 Rename a Config Set
	5.1.3.5 Update a Single Service in a Config Set

	5.1.4 Validate a Config Set and List Validation Rules
	5.1.5 Config Set Create/Update Process
	5.1.6 Tips for Configurator Interactive Sessions
	5.1.7 cfgset Troubleshooting Tips

	5.2 About Snapshots and Config Set Backups
	5.3 Update cray_sysenv Worksheet
	5.4 Prepare and Update the Global Config Set
	5.5 About Simple Sync
	5.5.1 Configure Files for Cray Simple Sync Service

	5.6 About Node Groups
	5.7 About Config Set Caching
	5.7.1 Add Kernel Watch Descriptors to Improve Config Set Caching Performance

	5.8 Change a File on a Compute Node
	5.8.1 Use an Ansible Play to Change a File on a Compute Node
	5.8.2 Use a Custom Image Recipe to Change a File on a Compute Node

	5.9 About Custom Ansible Plays
	5.9.1 Control a Service on Specific Nodes at Boot Time
	5.9.2 Manage Node Configuration, Services, and Settings at Boot Time (boot.last Script)

	5.10 About Secure Shell Configuration

	6 Monitor the System
	6.1 Manage Log Files Using CLE and HSS Commands
	6.2 Check the Status of System Components
	6.3 Check the Status of Compute Processors
	6.4 Monitor the System with the System Environmental Data Collector (SEDC)
	6.5 Check Cabinet Cooling Parameters for an Air-Cooled XC System
	6.6 Monitor the Health of PCIe Channels
	6.7 Examine Activity on the HSS Boot Manager
	6.8 Poll a Response from an HSS Daemon, Manager, or the Event Router
	6.9 Validate the Health of the HSS
	6.10 Monitor Event Router Daemon (erd) Events
	6.11 Monitor Node Console Messages
	6.12 View Component Alert, Warning, and Location History
	6.13 Display Component Information
	6.14 Display Alerts and Warnings
	6.15 Display System Network Congestion Protection Information
	6.16 Clear Component Flags
	6.17 Display Error Codes
	6.18 Cray Lightweight Log Manager (LLM)
	6.19 Debug Logging using debugraw and debugmax
	6.20 cdump and crash Utilities for Node Memory Dump and Analysis
	6.21 Resource Utilization Reporting
	6.21.1 Overview of RUR Configuration
	6.21.2 Enable and Configure RUR
	6.21.3 Configure the cray_alps Service for Per-application RUR
	6.21.4 Configure a WLM to Enable Per-job RUR
	6.21.5 Refresh Nodes with Updated Configuration Data
	6.21.6 Enable/Disable Plugins
	6.21.7 The dws Data Plugin
	6.21.8 The dws_job_server Data Plugin
	6.21.9 The dws_server Data Plugin
	6.21.10 The energy Data Plugin
	6.21.11 The gpustat Data Plugin
	6.21.12 The memory Data Plugin
	6.21.13 The nodeuse Data Plugin
	6.21.14 The taskstats Data Plugin
	6.21.15 The timestamp Data Plugin
	6.21.16 The file Output Plugin
	6.21.17 The llm Output Plugin
	6.21.18 The user Output Plugin
	6.21.19 The database Example Output Plugin
	6.21.20 Create Custom RUR Data Plugins
	6.21.21 Create Custom RUR Output Plugins
	6.21.22 Implement a Site-Written RUR Plugin
	6.21.23 Additional Plugin Examples
	6.21.24 Application Completion Reporting (ACR) to RUR Migration Tips
	6.21.25 Application Resource Utilization (ARU) to RUR Migration Tips
	6.21.26 CSA to RUR Migration Tips

	6.22 Linux System Accounting Tips

	7 Modify an Installed System
	7.1 Configure Boot Node Failover
	7.2 Perform Boot Node Failback
	7.3 Disable Boot Node Failover
	7.4 Configure SDB Node Failover
	7.5 Perform SDB Node Failback
	7.6 Disable SDB Node Failover
	7.7 Set Up Basic Realm-Specific IP Configuration
	7.8 Set Up Advanced RSIP Configuration on a Booted System
	7.8.1 Update cray_net Worksheet for an Advanced RSIP Configuration

	7.9 Configure a VLAN, Bonded, or Bonded VLAN Interface
	7.10 The Node ARP Management Daemon (rca_arpd)
	7.11 Create Logical Machines for Cray XC Series Systems
	7.12 Configure a Logical Machine
	7.13 Boot a Logical Machine
	7.14 Boot the System Using Another Snapshot
	7.15 Enable Write Cache on SMW Boot RAID Volume
	7.16 Configure an NFS client to Mount the Exported Lustre File System
	7.17 Define Bind Mount Points Within a Config Set
	7.18 Enable Multipath on an Installed XC System
	7.19 Change Lustre Versions
	7.20 Install Third-Party Software with a Custom Image Recipe
	7.21 Remove an Undesired RPM After Building From a Cray Recipe
	7.22 Repurpose a Compute or Service Node
	7.23 Configure Service Node MAMU
	7.23.1 Configure MAMU Nodes on the Cray XC System
	7.23.2 Configure PBS for MAMU
	7.23.3 Configure Moab/TORQUE for MAMU

	7.24 Reconfigure SSD-endowed Compute Nodes Dynamically
	7.25 Node Attributes
	7.26 View and Temporarily Set Node Attributes
	7.27 The XTAdmin Database segment Table
	7.28 Apply Rolling Patches to Compute Nodes with cnat
	7.29 Apply Live Updates to Nodes
	7.30 Update the Physical System Configuration While the System is Booted
	7.30.1 Reuse One or More Previously-failed HSN Links
	7.30.2 Add or Remove High-speed Network Cables from Service
	7.30.3 Remove a Compute Blade from Service While the System is Running
	7.30.4 Return a Compute Blade into Service
	7.30.5 Update Config Set Information on Booted Nodes

	7.31 State Manager LLM Logging
	7.32 Boot Manager LLM Logging
	7.33 Configure Node Health Checker Tests
	7.33.1 Guidance for the Accelerator Test
	7.33.2 Guidance for the Application Exited Check and Apinit Ping Tests
	7.33.3 Guidance for the Filesystem Test
	7.33.4 Guidance for the Hugepages Test
	7.33.5 Guidance for the NHC Lustre File System Test
	7.33.6 NHC Control Variables
	7.33.7 Global Configuration Variables that Affect all NHC Tests
	7.33.8 Standard Variables that Affect Individual NHC Tests
	7.33.9 NHC Suspect Mode
	7.33.10 NHC Messages
	7.33.11 Recover from a Login Node Crash when a Login Node will not be Rebooted
	7.33.12 Restore Compute Nodes Marked admindown by NHC

