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1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of the DARPA
High Productivity Computing Systems initiative.

This document is ultimately intended to be the definitive specification of the Chapel language. The current draft is a
work-in-progress and therefore incomplete.

13



2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicized.

Example.
for i in D do // iterate over domain D
writeln (i) ; // output indices in D

Chapel syntax is represented with standard syntax notation in which productions define the syntax of the language. A
production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols. The complete syntax
defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-terminal that
is being defined followed by a colon. The next lines before an empty line define the alternative productions to define
the non-terminal.

Example. The production

bool-literal:
true
false

defines bool-literal to be either the symbol true or false.

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is used to
indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the definition of
the non-terminal may be followed by “one of” to indicate that the single line in the production defines alternatives for
each symbol.

Example. The production

unary-operator: one of
+ -~ !

is equivalent to

unary—-operator:
+

!

14



Notation 15

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed to the
symbol.

Example. The production

formal:
formal-tag identifier formal-type,,. default—expression,:

is equivalent to

formal:
formal-tag identifier formal-type default—expression
formal-tag identifier formal-type
formal-tag identifier default-expression
formal-tag identifier



3 Organization

This specification is organized as follows:

e Chapter[I] Scope, describes the scope of this specification.

e Chapter 2] Notation, introduces the notation that is used throughout this specification.

e Chapter 3] Organization, describes the contents of each of the chapters within this specification.
e Chapter[d] Acknowledgements, offers a note of thanks to people and projects.

e Chapter[5] Language Overview, describes Chapel at a high level.

e Chapter[6] Lexical Structure, describes the lexical components of Chapel.

e Chapter[7] Types, describes the types in Chapel and defines the primitive and enumerated types.
e Chapter[§] Variables, describes variables and constants in Chapel.

e Chapter[9] Conversions, describes the legal implicit and explicit conversions allowed between values of different
types. Chapel does not allow for user-defined conversions.

e Chapter[I0} Expressions, describes the non-parallel expressions in Chapel.

e Chapter[IT] Statements, describes the non-parallel statements in Chapel.

e Chapter[I2} Modules, describes modules in Chapel., Chapel modules allow for name space management.
e Chapter[I3] Functions, describes functions and function resolution in Chapel.

e Chapter[I5] Tuples, describes tuples in Chapel.

e Chapter[I6} Classes, describes reference classes in Chapel.

e Chapter[I7} Records, describes records or value classes in Chapel.

° Chapter@ Unions, describes unions in Chapel.

e Chapter[I9] Ranges, describes ranges in Chapel.

e Chapter 20, Domains, describes domains in Chapel. Chapel domains are first-class index sets that support the
description of iteration spaces, array sizes and shapes, and sets of indices.

e Chapter[21] Arrays, describes arrays in Chapel. Chapel arrays are more general than in most languages including
support for multidimensional, sparse, associative, and unstructured arrays.

e Chapter 22} Iterators, describes iterator functions.
e Chapter 23] Generics, describes Chapel’s support for generic functions and types.
e Chapter 24] Input and Output, describes support for input and output in Chapel, including file input and output..

e Chapter 25} Task Parallelism and Synchronization, describes task-parallel expressions and statements in Chapel
as well as synchronization constructs, atomic variables, and the atomic statement.

16
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e Chapter[26] Data Parallelism, describes data-parallel expressions and statements in Chapel including reductions
and scans, whole array assignment, and promotion.

e Chapter[27} Locales, describes constructs for managing locality and executing Chapel programs on distributed-
memory systems.

e Chapter Domain Maps, describes Chapel’s domain map construct for defining the layout of domains and
arrays within a single locale and/or the distribution of domains and arrays across multiple locales.

e Chapter User-Defined Reductions and Scans, describes how Chapel programmers can define their own
reduction and scan operators.

e Chapter [30] Memory Consistency Model, describes Chapel’s rules for ordering the reads and writes performed
by a program’s tasks.

e Chapter [31] describes Chapel’s interoperability features for combining Chapel programs with code written in
different languages.

e Appendix [A] Collected Lexical and Syntax Productions, contains the syntax productions listed throughout this
specification in both alphabetical and depth-first order.
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S Language Overview

Chapel is an emerging parallel programming language designed for productive scalable computing. Chapel’s pri-
mary goal is to make parallel programming far more productive, from multicore desktops and laptops to commodity
clusters and the cloud to high-end supercomputers. Chapel’s design and development are being led by Cray Inc. in
collaboration with academia, computing centers, and industry.

Chapel is being developed in an open-source manner at GitHub under the Apache v2.0 license and also makes use of
other third-party open-source packages under their own licenses. Chapel emerged from Cray’s entry in the DARPA-led
High Productivity Computing Systems program (HPCS). It is currently being hardened from that initial prototype to
more of a product-grade implementation.

This section provides a brief overview of the Chapel language by discussing first the guiding principles behind the
design of the language and second how to get started with Chapel.

5.1 Guiding Principles

The following four principles guided the design of Chapel:

1. General parallel programming
2. Locality-aware programming
3. Object-oriented programming

4. Generic programming

The first two principles were motivated by a desire to support general, performance-oriented parallel programming
through high-level abstractions. The second two principles were motivated by a desire to narrow the gulf between
high-performance parallel programming languages and mainstream programming and scripting languages.

5.1.1 General Parallel Programming

First and foremost, Chapel is designed to support general parallel programming through the use of high-level language
abstractions. Chapel supports a global-view programming model that raises the level of abstraction in expressing both
data and control flow as compared to parallel programming models currently in use. A global-view programming
model is best defined in terms of global-view data structures and a global view of control.

Global-view data structures are arrays and other data aggregates whose sizes and indices are expressed globally even
though their implementations may distribute them across the locales of a parallel system. A locale is an abstraction
of a unit of uniform memory access on a target architecture. That is, within a locale all threads exhibit similar access
times to any specific memory address. For example, a locale in a commodity cluster could be defined to be a single
core of a processor, a multicore processor, or an SMP node of multiple processors.
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Such a global view of data contrasts with most parallel languages which tend to require users to partition distributed
data aggregates into per-processor chunks either manually or using language abstractions. As a simple example,
consider creating a 0-based vector with n elements distributed between p locales. A language that supports global-
view data structures, as Chapel does, allows the user to declare the array to contain n elements and to refer to the array
using the indices 0. ..n — 1. In contrast, most traditional approaches require the user to declare the array as p chunks
of n/p elements each and to specify and manage inter-processor communication and synchronization explicitly (and
the details can be messy if p does not divide n evenly). Moreover, the chunks are typically accessed using local indices
on each processor (e.g., 0..n/p), requiring the user to explicitly translate between logical indices and those used by the
implementation.

A global view of control means that a user’s program commences execution with a single logical thread of control
and then introduces additional parallelism through the use of certain language concepts. All parallelism in Chapel
is implemented via multithreading, though these threads are created via high-level language concepts and managed
by the compiler and runtime rather than through explicit fork/join-style programming. An impact of this approach
is that Chapel can express parallelism that is more general than the Single Program, Multiple Data (SPMD) model
that today’s most common parallel programming approaches use. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel is de-
signed to target a wide spectrum of HPC hardware including clusters of commaodity processors and SMPs; vector, mul-
tithreading, and multicore processors; custom vendor architectures; distributed-memory, shared-memory, and shared
address-space architectures; and networks of any topology. Our portability goal is to have any legal Chapel program
run correctly on all of these architectures, and for Chapel programs that express parallelism in an architecturally-
neutral way to perform reasonably on all of them. Naturally, Chapel programmers can tune their code to more closely
match a particular machine’s characteristics.

5.1.2 Locality-Aware Programming

A second principle in Chapel is to allow the user to optionally and incrementally specify where data and computation
should be placed on the physical machine. Such control over program locality is essential to achieve scalable perfor-
mance on distributed-memory architectures. Such control contrasts with shared-memory programming models which
present the user with a simple flat memory model. It also contrasts with SPMD-based programming models in which
such details are explicitly specified by the programmer on a process-by-process basis via the multiple cooperating
program instances.

5.1.3 Object-Oriented Programming

A third principle in Chapel is support for object-oriented programming. Object-oriented programming has been in-
strumental in raising productivity in the mainstream programming community due to its encapsulation of related data
and functions within a single software component, its support for specialization and reuse, and its use as a clean mech-
anism for defining and implementing interfaces. Chapel supports objects in order to make these benefits available in
a parallel language setting, and to provide a familiar coding paradigm for members of the mainstream programming
community. Chapel supports traditional reference-based classes as well as value classes that are assigned and passed
by value.
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5.1.4 Generic Programming

Chapel’s fourth principle is support for generic programming and polymorphism. These features allow code to be
written in a style that is generic across types, making it applicable to variables of multiple types, sizes, and precisions.
The goal of these features is to support exploratory programming as in popular interpreted and scripting languages, and
to support code reuse by allowing algorithms to be expressed without explicitly replicating them for each possible type.
This flexibility at the source level is implemented by having the compiler create versions of the code for each required
type signature rather than by relying on dynamic typing which would result in unacceptable runtime overheads for the
HPC community.

5.2 Getting Started

A Chapel version of the standard “hello, world” computation is as follows:

writeln("hello, world");

This complete Chapel program contains a single line of code that makes a call to the standard writeln function.

In general, Chapel programs define code using one or more named modules, each of which supports top-level initial-
ization code that is invoked the first time the module is used. Programs also define a single entry point via a function
named main. To facilitate exploratory programming, Chapel allows programmers to define modules using files rather
than an explicit module declaration and to omit the program entry point when the program only has a single user
module.

Chapel code is stored in files with the extension .chpl. Assuming the “hello, world” program is stored in a file
called hello.chpl, it would define a single user module, hel1lo, whose name is taken from the filename. Since the
file defines a module, the top-level code in the file defines the module’s initialization code. And since the program
is composed of the single hello module, the main function is omitted. Thus, when the program is executed, the
single he11lo module will be initialized by executing its top-level code thus invoking the call to the writeln function.
Modules are described in more detail in §12}

To compile and run the “hello world” program, execute the following commands at the system prompt:

> chpl hello.chpl
> ./hello

The following output will be printed to the console:

hello, world



6 Lexical Structure

This section describes the lexical components of Chapel programs. The purpose of lexical analysis is to separate the
raw input stream into a sequence of tokens suitable for input to the parser.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters // and before the end of the line
is in a comment. All text following the consecutive characters /+ and before the consecutive characters x/ is in a
comment. A comment delimited by /+ and x/ can be nested in another comment delimited by /» and =/

Comments, including the characters that delimit them, do not affect the behavior of the program (except in delimiting

tokens). If the delimiters that start the comments appear within a string literal, they do not start a comment but rather
are part of the string literal.

Example. The following program makes use of both forms of comment:

/*
* main function
*/

proc main() {

writeln("hello, world"); // output greeting with new line

}

6.2 White Space

White-space characters are spaces, tabs, line feeds, form feeds, and carriage returns. Along with comments, they
delimit tokens, but are otherwise ignored.

6.3 Case Sensitivity
Chapel is a case sensitive language.

Example. The following identifiers are considered distinct: chapel, Chapel, and CHAPEL.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

22
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6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that starts with a lowercase or uppercase letter or an underscore and
is optionally followed by a sequence of lowercase or uppercase letters, digits, underscores, and dollar-signs. Identifiers
are designated by the following syntax:

identifier:
letter—or-underscore legal-identifier—chars, .

legal-identifier—chars:
legal-identifier—char legal-identifier—chars, .

legal-identifier—char:
letter—or—underscore
digit
$

letter—or—underscore:
letter

letter: one of
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

digit: one of
0123456789

Rationale. Why include “$” in the language? The inclusion of the $ character is meant to assist program-
mers using sync and single variables by supporting a convention (a $ at the end of such variables) in order
to help write properly synchronized code. It is felt that marking such variables is useful since using such
variables could result in deadlocks.

Example. The following are legal identifiers: Crayl, syncvar$, legalldentifier,and legal_identifier.

6.4.2 Keywords

The following identifiers are reserved as keywords:

dmapped inout
.. PP _ private subdomain
align do iter roc syne
as domain label P i ¥

: public then
atomic else let
. record type
begin enum local .
reduce union
break except module
ref use
by export new s
X require var
class extern nil
: .. return when
cobegin for noinit
scan where
coforall forall on .
: : select while
config if only . .

R . serial with
const in otherwise single ield
continue index out g y .

sparse zip

delete inline param
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The following identifiers are keywords reserved for future use:

lambda

6.4.3 Literals

Bool literals are designated by the following syntax:

bool-literal: one of
true false

Signed and unsigned integer literals are designated by the following syntax:

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
00 octal-digits
0b binary—-digits
0B binary-digits

digits:
digit
digit digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0123456789ABCDEFabcdef

octal-digits:
octal-digit
octal-digit octal-digits

octal-digit: one of
01234567

binary-digits:
binary-digit
binary-digit binary—digits

binary-digit: one of
01

Integer literals in the range O to max(int), §7.1.3] have type int and the remaining literals have type uint.

Rationale. Why are there no suffixes on integral literals? Suffixes, like those in C, are not necessary.
Explicit conversions can then be used to change the type of the literal to another integer size.
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Real literals are designated by the following syntax:

real-literal:
digits,,. . digits exponent-part,,;
digits ., exponent—part
0x hexadecimal-digits,,: . hexadecimal-digits p—exponent—part, .
0X hexadecimal-digits,,: . hexadecimal—-digits p—exponent—part,,.
0x hexadecimal-digits .,,. p—exponent-part
0X hexadecimal-digits ... p—exponent—part

exponent-part:
e sign,,; digits
E sign,,. digits

p-exponent-part:
p sign,,; digits
P sign,,. digits

sign: one of
+ -

Rationale. Why can’t a real literal end with *.’? There is a lexical ambiguity between real literals ending

in ’. and the range operator ’.." that makes it difficult to parse. For example, we want to parse 1. .10 as
arange from 1 to 10 without concern that 1. is a real literal.

Hexadecimal real literals are supported with a hexadecimal integer and fractional part. Because e’ could be a hex-
adecimal character, the exponent for these literals is instead marked with *p’ or "P’. The exponent value follows and is
written in decimal.

The type of a real literal is real. Explicit conversions are necessary to change the size of the literal.

Imaginary literals are designated by the following syntax:

imaginary-literal:
real-literal i
integer-literal i

The type of an imaginary literal is imag. Explicit conversions are necessary to change the size of the literal.
There are no complex literals. Rather, a complex value can be specified by adding or subtracting a real literal with an

imaginary literal. Alternatively, a 2-tuple of integral or real expressions can be cast to a complex such that the first
component becomes the real part and the second component becomes the imaginary part.

Example. The following expressions are identical: 1.0 + 2.0i and (1.0, 2.0) :complex.
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Interpreted string literals are designated by the following syntax:
interpreted-string—literal:
" double-quote—delimited-characters,,; "
> single—-quote—delimited—characters, . ’
double-quote—delimited-characters:
string—character double-quote—-delimited—characters, .
> double—quote—delimited—characters,,.
single—quote—delimited-characters:
string—character single—quote—delimited—characters,:
" single-quote—delimited—characters,, .
string—character:
any character except the double quote, single quote, or new line
simple—escape—character
hexadecimal-escape—character
simple-escape-character: one of
VA" A2 A \a \b A \m A\t
hexadecimal—-escape—character:
\x hexadecimal-digits
Uninterpreted string literals are designated by the following syntax:
uninterpreted-string—literal:
""" uninterpreted—double—quote—delimited—characters """
>’ uninterpreted-single—quote—delimited-characters *”’
uninterpreted—double—-quote—delimited—characters:
uninterpreted—double—quote-string—character uninterpreted—double—quote—delimited—characters,,
uninterpreted-single—quote—delimited—characters:
uninterpreted-single—quote—string—character uninterpreted-single—quote—delimited—characters, .
uninterpreted—double—quote—string—character:
any character except three double quotes in a row
uninterpreted-single—quote-string—character:
any character except three single quotes in a row
Uninterpreted string literals do not interpret their contents, so for example """\n""" is not a newline, but rather two

characters ‘\” and ‘n’. Uninterpreted string literals may span multiple lines and the literal newline characters will be

included in the string.

A string literal can be either interpreted or uninterpreted.

string—literal:
interpreted-string—literal
uninterpreted-string—literal
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6.4.4 Operators and Punctuation

The following operators and punctuation are defined in the syntax of the language:

symbols use

= assignment

compound assignment

swap

1/0

.. range specifier

by range/domain stride specifier
# range count operator
variable argument lists

+
I
|
Il
*
Il
~
I
*
*
Il
o°
Il
gl
Il
Il

>
Il
gl
gl
Il
I
A
A
Il
\
Y
I

&& |V & ] N~ << >> logical/bitwise operators

== l= <= >= < > relational operators

T arithmetic operators
type specifier

H statement separator

, expression separator

. member access

? type query

string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

braces | use

) parenthesization, function calls, and tuples

1 array literals, array types, forall expressions, and function calls
} domain literals, block statements

(
[
{




7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive types,
enumerated types, structured types (classes, records, unions, tuples), data parallel types (ranges, domains, arrays), and
synchronization types (sync, single, atomic).

The syntax of a type is as follows:

type—expression:
primitive-type
enum-type
structured—-type
dataparallel-type
synchronization—type
Ivalue—expression
if-expression
unary—expression
binary—expression

Many expressions are syntactically allowed as a type; however not all expressions produce a type. For example, a call
to a function is syntactically allowed as the type of a variable. However it would be an error for that call to result in a
value (rather than a type) in that context.

Programmers can define their own enumerated types, classes, records, unions, and type aliases using type declaration
statements:

type—declaration—-statement:
enum-—declaration— statement
class—declaration—statement
record—declaration—statement
union—declaration—-statement
type—alias—declaration—statement

These statements are defined in Sections §7.2] §16.1] §17.1] §18.2] and §7.6] respectively.

7.1 Primitive Types

The primitive types are: void, bool, int, uint, real, imag, complex, and string. They are defined in this
section.

The primitive types are summarized by the following syntax:

primitive—type:
void
bool primitive—type-parameter—part,
int primitive—type-parameter—part, .
uint primitive—type-parameter—part, .
real primitive—type—parameter—part,,,:
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imag primitive—type-parameter—part, .
complex primitive—type—parameter—part,
string

primitive—-type—parameter—part:
( integer-parameter—expression )

integer—parameter—expression:
expression

If present, the parenthesized integer—parameter-expression must evaluate to a compile-time constant of integer type.

See §8.4.1]

Open issue. There is an expectation of future support for larger bit width primitive types depending on a
platform’s native support for those types.

7.1.1 The Void Type
The void type is used to represent the lack of a value, for example when a function has no arguments and/or no return
type.

There may be storage associated with a value of type void, in which case its lifetime obeys the same rules as a value
of type int.

7.1.2 The Bool Type

Chapel defines a logical data type designated by the symbol bool with the two predefined values true and false.
This default boolean type is stored using an implementation-defined number of bits. A particular number of bits can
be specified using a parameter value following the bool keyword, such as bool (8) to request an 8-bit boolean value.
Legal sizes are 8, 16, 32, and 64 bits.

Some statements require expressions of bool type and Chapel supports a special conversion of values to bool type
when used in this context (§9.1.3).

7.1.3 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bits used to represent them. Valid bit-sizes are 8, 16, 32,
and 64. The default signed integral type, int, and the default unsigned integral type, uint correspond to int (64)
and uint (64) respectively.

The integral types and their ranges are given in the following table:
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Type Minimum Value Maximum Value
int (8) -128 127
uint (8) 0 255
int (16) -32768 32767
uint (16) 0 65535
int (32) -2147483648 2147483647
uint (32) 0 4294967295
int (64), int -9223372036854775808 | 9223372036854775807
uint (64),uint 0 | 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit precision. Using
these operators on integral types represented with fewer bits results in an implicit conversion to the corresponding 32-
bit types according to the rules defined in §0.1]

7.1.4 Real Types

Like the integral types, the real types can be parameterized by the number of bits used to represent them. The default
real type, real, is 64 bits. The real types that are supported are machine-dependent, but usually include real (32)
(single precision) and real (64) (double precision) following the IEEE 754 standard.

7.1.5 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imaginary type,
imag, is 64 bits. The imaginary types that are supported are machine-dependent, but usually include imag (32) and
imag (64).

Rationale.  The imaginary type is included to avoid numeric instabilities and under-optimized code
stemming from always converting real values to complex values with a zero imaginary part.

7.1.6 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to represent them.
A complex number is composed of two real numbers so the number of bits used to represent a complex is twice the
number of bits used to represent the real numbers. The default complex type, complex, is 128 bits; it consists of two
64-bit real numbers. The complex types that are supported are machine-dependent, but usually include complex (64)
and complex (128).

The real and imaginary components can be accessed via the methods re and im. The type of these components is real.
The standard Math module provides some functions on complex types. See
https://chapel-lang.org/docs/modules/standard/Math.html

Example. Given a complex number c with the value 3.14+2.721, the expressions c.re and c. im refer
to 3.14 and 2. 72 respectively.


https://chapel-lang.org/docs/modules/standard/Math.html
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7.1.7 The String Type

Strings are a primitive type designated by the symbol st ring comprised of multibyte characters (normally UTF-8).
Their length is unbounded.

Open issue. There is an expectation of future support for fixed-length strings.

Open issue. There is an expectation of future support for different character sets, possibly including
internationalization.

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum-declaration—statement:
enum identifier { enum-constant-list }

enum-constant-list:
enum-constant
enum-constant , enum-constant—1ist, .

enum-constant:
identifier init-part, .

init—part:
= expression

The enumerated type can then be referenced by its name, as summarized by the following syntax:

enum-type:
identifier

An enumerated type defines a set of named constants that can be referred to via a member access on the enumerated
type. Each enumerated type is a distinct type.

If the init-part is omitted for all of the named constants in an enumerated type, the enumerated values are abstract and
do not have associated integer values. Any constant that has an init-part will be associated with that integer value.
Such constants must be parameter values of integral type. Any constant that does not have an init-part, yet which
follows one that does, will be associated with an integer value one greater than its predecessor. An enumerated type
whose first constant has an init—part is called concrete, since all constants in the enum will have an associated integer
value, whether explicit or implicit. An enumerated type that specifies an init—part for some constants, but not the first
is called semi-concrete. Numeric conversions are automatically supported for enumerated types which are concrete or

semi-concrete (see §9.2.3).

Example (enum.chpl). The code

enum statesman { Aristotle, Roosevelt, Churchill, Kissinger }
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defines an abstract enumerated type with four constants. The function

proc quote(s: statesman) {
select s {
when statesman.Aristotle do
writeln ("All paid jobs absorb and degrade the mind.");
when statesman.Roosevelt do

writeln ("Every reform movement has a lunatic fringe.");
when statesman.Churchill do
writeln("A joke is a very serious thing.");
when statesman.Kissinger do
{ write("No one will ever win the battle of the sexes; ");
writeln("there’s too much fraternizing with the enemy.");

32

}

outputs a quote from the given statesman. Note that enumerated constants must be prefixed by the enu-

merated type name and a dot unless a use statement is employed (see §TT.TT).

It is possible to iterate over an enumerated type. The loop body will be invoked on each named constant in the enum.

The following method is also available:

proc enum.size: param int

The number of constants in the given enumerated type.
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7.3 Structured Types

The structured types are summarized by the following syntax:

structured-type:
class—type
record—type
union-type
tuple—type

Classes are discussed in §16] Records are discussed in Unions are discussed in §I8] Tuples are discussed in §I5]

7.3.1 Class Types

A class can contain variables, constants, and methods.

Classes are defined in §16] The class type can also contain type aliases and parameters. Such a class is generic and is

defined in §23.3]

A class type C has the variants owned C, shared C, borrowed C (equivalent to C), and unmanaged C. These
variants are discussed in §16.1.2]

7.3.2 Record Types

Records can contain variables, constants, and methods. Unlike class types, records are values rather than references.
Records are defined in

7.3.3 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may also define
methods. Unions are defined in §I8]

7.3.4 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same type,
the tuple is homogeneous. Tuples are defined in §T3]



Types 34

7.4 Data Parallel Types

The data parallel types are summarized by the following syntax:

dataparallel-type:
range—type
domain-type
mapped—-domain—type

array—type
index—type

Ranges and their index types are discussed in §19] Domains and their index types are discussed in §20} Arrays are
discussed in

7.4.1 Range Types

A range defines an integral sequence of some integral type. Ranges are defined in §19]

7.4.2 Domain, Array, and Index Types

A domain defines a set of indices. An array defines a set of elements that correspond to the indices in its domain. A
domain’s indices can be of any type. Domains, arrays, and their index types are defined in §20]and §21]

7.5 Synchronization Types

The synchronization types are summarized by the following syntax:

synchronization—type:
sync—type
single-type
atomic—type

Sync and single types are discussed in The atomic type is discussed in
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7.6 Type Aliases

Type aliases are declared with the following syntax:

type—alias—declaration—statement:
privacy-specifier.,,; config,,. type type—alias—declaration-list ;
external-type-alias—declaration—statement

type-alias—declaration-list:
type-alias—declaration
type—alias—declaration , type—alias—declaration—list

type-alias—declaration:
identifier = type—expression
identifier

A type alias is a symbol that aliases the type specified in the type-expression. A use of a type alias has the same meaning
as using the type specified by type-expression directly.

Type aliases defined at the module level are public by default. The optional privacy—specifier keywords are provided to
specify or change this behavior. For more details on the visibility of symbols, see §12.4.2]

If the keyword config precedes the keyword type, the type alias is called a configuration type alias. Configura-
tion type aliases can be set at compilation time via compilation flags or other implementation-defined means. The
type—expression in the program is ignored if the type-alias is alternatively set.

If the keyword extern precedes the type keyword, the type alias is external. The declared type name is used by
Chapel for type resolution, but no type alias is generated by the backend. See the chapter on interoperability (§31) for
more information on external types.

The type—expression is optional in the definition of a class or record. Such a type alias is called an unspecified type
alias. Classes and records that contain type aliases, specified or unspecified, are generic (§23.3.1).

Open issue. There is on going discussion on whether a type alias is a new type or simply an alias. The
former should enable redefinition of default values, identity elements, etc.
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A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every variable has a
type that is known at compile-time and the compiler enforces that values assigned to the variable can be stored in that
variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

variable—declaration—statement:
privacy-specifier.,,,; config—or-extern,,, variable—kind variable—declaration-list ;

config-or-extern: one of
config extern

variable—kind:
param
const
var
ref
const ref

variable—declaration- list:
variable—declaration
variable—declaration , variable—declaration—list

variable—declaration:
identifier-list type—part,,,, initialization—part
identifier-list type—part no-initialization—part,

type—part:
: type—expression

initialization—part:
= expression

no-initialization—part:
= noinit

identifier-list:
identifier
identifier , identifier—list
tuple-grouped-identifier—list
tuple-grouped-identifier-list , identifier—list

tuple-grouped-identifier—list:
( identifier-list)

36
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A variable—declaration—statement is used to define one or more variables. If the statement is a top-level module statement,
the variables are module level; otherwise they are local. Module level variables are discussed in §[82} Local variables
are discussed in

The optional privacy-specifier keywords indicate the visibility of module level variables to outside modules. By default,
variables are publicly visible. More details on visibility can be found in §12.4.2

The optional keyword config specifies that the variables are configuration variables, described in Section The
optional keyword extern indicates that the variable is externally defined. Its name and type are used within the
Chapel program for resolution, but no space is allocated for it and no initialization code emitted. See §31.2.7] for
further details.

The variable-kind specifies whether the variables are parameters (param), constants (const), ref variables (ref), or
regular variables (var). Parameters are compile-time constants whereas constants are runtime constants. Both levels
of constants are discussed in Ref variables are discussed in

The type-part of a variable declaration specifies the type of the variable. It is optional if the initialization—part is specified.
If the type-part is omitted, the type of the variable is inferred using local type inference described in If the
type—part refers to a generic type, then an initialization—part is required and will be used to determine the type of the
variable. In this event, the compiler will fail with an error if the initialization—part is not coercible to an instantiation of
the generic type.

The initialization—part of a variable declaration specifies an initial expression to assign to the variable. If the initialization—part
is omitted, the type-part must be present, and the variable is initialized to the default value of its type as described

in §8.1.1]

If the no-initialization—part is present, the variable declaration does not initialize the variable to any value, as described
in §8.1.2] The result of any read of an uninitialized variable is undefined until that variable is written.

Multiple variables can be defined in the same variable-declaration-list. The semantics of declaring multiple variables
that share an initialization—part and/or type-part is defined in §8.1.4]

Multiple variables can be grouped together using a tuple notation as described in

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its type. The
default values are as follows:
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Type Default Value

bool (x) false

int (*) 0

uint (*) 0

real (*) 0.0

imag (x) 0.01

complex (%) | 0.0 + 0.01

string "

enums first enum constant

classes nil

records default constructed record
ranges 1..0 (empty sequence)
arrays elements are default values
tuples components are default values
sync/single base default value and empty status
atomic base default value

8.1.2 Deferred Initialization

For performance purposes, a variable’s declaration can specify that the variable should not be default initialized by
using the noinit keyword in place of an initialization expression. Since this variable should be written at a later point
in order to be read properly, it must be a regular variable (var). It is incompatible with declarations that require the
variable to remain unchanged throughout the program’s lifetime, such as const or param. Additionally, its type must
be specified at declaration time.

The result of any read of this variable before it is written is undefined; it exists and therefore can be accessed, but no
guarantees are made as to its contents.

8.1.3 Local Type Inference

If the type is omitted from a variable declaration, the type of the variable is defined to be the type of the initialization
expression. With the exception of sync and single expressions, the declaration

var v = e;

is equivalent to

var v: e.type = ¢e;

for an arbitrary expression e. If e is of sync or single type, the type of v is the base type of e.

8.1.4 Multiple Variable Declarations

All variables defined in the same identifier-list are defined such that they have the same type and value, and so that the
type and initialization expression are evaluated only once.
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Example (multiple.chpl). In the declaration
proc g() { writeln("side effect"); return "a string"; }

i
var a, b 1.0, ¢, diint, e, £ = g();

variables a and b are of type real with value 1.0. Variables c and d are of type int and are initialized
to the default value of 0. Variables e and £ are of type string with value "a string". The string
"side effect™ has been written to the display once. It is not evaluated twice.

The exact way that multiple variables are declared is defined as follows:

o If the variables in the identifier-list are declared with a type, but without an initialization expression as in

var vl1, v2, v3: t;

for an arbitrary type expression t, then the declarations are rewritten so that the first variable is declared to be
of type t and each later variable is declared to be of the type of the first variable as in

var vl: t; var v2: vl.type; var v3: vl.type;

o If the variables in the identifier-list are declared without a type, but with an initialization expression as in

var vl, v2, v3 = e;

for an arbitrary expression e, then the declarations are rewritten so that the first variable is initialized by expres-
sion e and each later variable is initialized by the first variable as in

var vl = e; var v2 = vl; var v3 = vl;

e If the variables in the identifier-list are declared with both a type and an initialization expression as in

var vl, v2, v3: t = e;

for an arbitrary type expression t and an arbitrary expression e, then the declarations are rewritten so that the
first variable is declared to be of type t and initialized by expression e, and each later variable is declared to be
of the type of the first variable and initialized by the result of calling the function readxx on the first variable
as in

var vl: t = e; var v2: vl.type = readxXX(vl); var v3: vl.type = readXX(vl);

where the function readxX is defined as follows:

proc readXX(x: sync) return x.readXX();
proc readXX(x: single) return x.readXX();
proc readXX(x) return x;

Note that the use of the helper function readxX () in this code fragment is solely for the purposes of illustration.
It is not actually a part of Chapel’s semantics or implementation.

Rationale. This algorithm is complicated by the existence of sync and single variables. If these did not
exist, we could rewrite any multi-variable declaration such that later variables were simply initialized by
the first variable and the first variable was defined as if it appeared alone in the identifier-list. However,
both sync and single variables require careful handling to avoid unintentional changes to their full/empty
state.
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8.2 Module Level Variables

Variables declared in statements that are in a module but not in a function or block within that module are module level
variables. Module level variables can be accessed anywhere within that module after the declaration of that variable.
If they are public, they can also be accessed in other modules that use that module.

8.3 Local Variables

Local variables are declared within block statements. They can only be accessed within the scope of that block
statement (including all inner nested block statements and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is called the
lifetime of the variable. When execution has finished within that block statement, the local variable and the storage it

represents is removed. Variables of class type are the sole exception. Initializers of class types create storage that is
not associated with any scope. Such storage can be reclaimed as described in §16.8]

8.4 Constants

Constants are divided into two categories: parameters, specified with the keyword param, are compile-time constants
and constants, specified with the keyword const, are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant, or “parameter”’, must have a single value that is known statically by the compiler. Parameters
are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted to the
following constructs:

Literals of primitive or enumerated type.

e Parenthesized parameter expressions.

e Casts of parameter expressions to primitive or enumerated types.

e Applications of the unary operators +, —, !, and ~ on operands that are bool or integral parameter expressions.

e Applications of the unary operators + and — on operands that are real, imaginary or complex parameter expres-
sions.

e Applications of the binary operators +, —, *, /, %, **, &&, | |, &, |, *, <<, >>, ==, =, <=, >=, <, and > on
operands that are bool or integral parameter expressions.

e Applications of the binary operators +, —, %, /, %, ==, !=, <=, >=, <, and > on operands that are real,
imaginary or complex parameter expressions.



Variables 41

e Applications of the string concatenation operator +, string comparison operators ==, ! =, <=, >=, <, >, and the
string length and ascii functions on parameter string expressions.

e The conditional expression where the condition is a parameter and the then- and else-expressions are parameters.

e Call expressions of parameter functions. See

8.4.2 Runtime Constants

Runtime constants, or simply “constants”, do not have the restrictions that are associated with parameters. Constants
can be of any type. Whether initialized explicitly or via its type’s default value, a constant stores the same value
throughout its lifetime.

A variable of a class type that is a constant is a constant reference. That is, the variable always points to the object that
it was initialized to reference. However, the fields of that object are allowed to be modified.

8.5 Configuration Variables

If the keyword config precedes the keyword var, const, or param, the variable, constant, or parameter is called a
configuration variable, configuration constant, or configuration parameter respectively. Such variables, constants, and
parameters must be at the module level.

The initialization of these variables can be set via implementation dependent means, such as command-line switches
or environment variables. The initialization expression in the program is ignored if the initialization is alternatively
set.

Configuration parameters are set at compilation time via compilation flags or other implementation-defined means.
The value passed via these means can be an arbitrary Chapel expression as long as the expression can be evaluated at
compile-time. If present, the value thus supplied overrides the default value appearing in the Chapel code.

Example (config-param.chpl). For example,

config param rank = 2;
sets an integer parameter rank to 2. At compile-time, this default value of rank can be overridden with

another parameter expression, such as 3 or 2n, provided n itself is a parameter. The rank configuration
variable can be used to write rank-independent code.

8.6 Ref Variables

A ref variable is a variable declared using the ref keyword. A ref variable serves as an alias to another variable, field
or array element. The declaration of a ref variable must contain initialization—part, which specifies what is to be aliased
and can be a variable or any lvalue expression.

Access or update to a ref variable is equivalent to access or update to the variable being aliased. For example, an
update to a ref variable is visible via the original variable, and visa versa.
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If the expression being aliased is a runtime constant variable, a formal argument with a const ref concrete intent
(§13:570), or a call to a function with a const ref return intent (§13.7.2), the corresponding ref variable must be
declared as const ref. Parameter constants and expressions cannot be aliased.

Open issue. The behavior of a const ref alias to a non-const variable is an open issue. The options
include disallowing such an alias, disallowing changes to the variable while it can be accessed via a
const ref alias, making changes visible through the alias, and making the behavior undefined.

Example (refVariables.chpl). For example, the following code:

var myInt = 51;

ref refInt = myInt; // alias of a local or global variable
myInt = 62;

writeln("refInt = ", reflInt);

refInt = 73;

writeln("myInt = ", myInt);

var myArr: [1..3] int = 51;
proc arrayElement (1) ref return myArr([i];

ref refToExpr = arrayElement (3); // alias to lvalue returned by a function
myArr[3] = 62;

writeln ("refToExpr = ", refToExpr);

refToExpr = 73;

writeln ("myArr[3] = ", myArr[3]);

const constArr: [1..3] int = 51..53;

const ref myConstRef = constArr[2]; // would be an error without ’const’
writeln ("myConstRef = ", myConstRef);
prints out:
refInt = 62
myInt = 73
refToExpr = 62
myArr[3] = 73

myConstRef = 52
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Conversions

A conversion converts an expression of one type to another type, possibly changing its value. We refer to these two
types the source and target types. Conversions can be either implicit (§9.1)) or explicit (§9.2).

9.1

Implicit Conversions

An implicit conversion is a conversion that occurs implicitly, that is, not due to an explicit specification in the program.
Implicit conversions occur at the locations in the program listed below. Each location determines the target type. The
source and target types of an implicit conversion must be allowed. They determine whether and how the expression’s
value changes.

Implicit conversions are not applied when initializing ref or type values or for actual arguments passed to ref or
type formal arguments.

An implicit conversion occurs at each of the following program locations:

In an assignment, the expression on the right-hand side of the assignment is converted to the type of the variable
or another lvalue on the left-hand side of the assignment.

The actual argument of a function call or an operator is converted to the type of the corresponding formal
argument, if the formal’s intent is param, in, const in, or an abstract intent (§13.5.2)) with the semantics of
in or const in.

If the formal argument’s intent is out, the formal argument is converted to the type of the corresponding actual
argument upon function return.

The return or yield expression within a function without a ref return intent is converted to the return type of
that function.

The condition of a conditional expression, conditional statement, while-do or do-while loop statement is con-
verted to the boolean type (§9.1.3). A special rule defines the allowed source types and how the expression’s
value changes in this case.

Implicit conversions are allowed between the following source and target types, as defined in the referenced subsec-

tions:

numeric and boolean types (§9.1.1)),

class types (§16.7.2),

integral types in the special case when the expression’s value is a compile-time constant (§9.1.2), and

from an integral or class type to bool in certain cases (§0.1.3).

43
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In addition, an implicit conversion from a type to the same type is allowed for any type. Such conversion does not
change the value of the expression.

Implicit conversion is not transitive. That is, if an implicit conversion is allowed from type T1 to T2 and from T2 to
T3, that by itself does not allow an implicit conversion from T1 to T3.

9.1.1 Implicit Numeric and Bool Conversions

Implicit conversions among numeric types are allowed when all values representable in the source type can also be
represented in the target type, retaining their full precision. In addition, implicit conversions from types int (64) and
uint (64) totypes real (64) and complex (128) are allowed, even though they may result in a loss of precision.

Rationale. We allow these additional conversions because they are an important convenience for applica-
tion programmers. Therefore we are willing to lose precision in these cases. The largest real and complex
types are chosen to retain precision as often as as possible.

Any boolean type can be implicitly converted to any other boolean type, retaining the boolean value. Any boolean
type can be implicitly converted to any integral type by representing false as 0 and true as 1, except (if applicable)
a boolean cannot be converted to int (1).

Rationale. We disallow implicit conversion of a boolean to a real, imaginary, or complex type because of
the following. We expect that the cases where such a conversion is needed will more likely be unintended
by the programmer. Marking those cases as errors will draw the programmer’s attention. If such a
conversion is actually desired, a cast §9.2]can be inserted.

Legal implicit conversions with numeric and boolean types may thus be tabulated as follows:

Target Type
Source Type | bool(t) uint(t) int(t) real(t) imag(t) complex(t)
bool(s) all s,t alls,t alls;2<t
uint(s) s<t s<t s < mant(t) s < mant(t/2)
uint(64) real(64) complex(128)
int(s) s<t s < mant(t) +1 s < mant(t/2) + 1
int(64) real(64) complex(128)
real(s) s<t s<t/2
imag(s) s<t s<t/2
complex(s) s<t

Here, mant(#) is the number of bits in the (unsigned) mantissa of the i-bit floating-point typeﬂ Conversions for the
default integral and real types (uint, complex, etc.) are the same as for their explicitly-sized counterparts.

'For the TEEE 754 format, mant(32) = 24 and mant(64) = 53.
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9.1.2 Implicit Compile-Time Constant Conversions
The following implicit conversion of a parameter is allowed:

e A parameter of type int (64) can be implicitly converted to int (8), int (16), int (32), or any unsigned
integral type if the value of the parameter is within the range of the target type.

9.1.3 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions to bool are
supported:

e An expression of integral type is taken to be false if it is zero and is true otherwise.

e An expression of a class type is taken to be false if it is nil and is true otherwise.

9.2 Explicit Conversions

Explicit conversions require a cast in the code. Casts are defined in §10.9] Explicit conversions are supported between
more types than implicit conversions, but explicit conversions are not supported between all types.

The explicit conversions are a superset of the implicit conversions. In addition to the following definitions, an explicit
conversion from a type to the same type is allowed for any type. Such conversion does not change the value of the
expression.

9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type, boolean, or string to any other numeric type, boolean, or
string.

When a bool is converted to a bool, int or uint of equal or larger size, its value is zero-extended to fit the new
representation. When a bool is converted to a smaller bool, int or uint, its most significant bits are truncated (as
appropriate) to fit the new representation.

When a int, uint, or real is converted to a bool, the result is false if the number was equal to 0 and true
otherwise.

When an int is converted to a larger int or uint, its value is sign-extended to fit the new representation. When a
uint is converted to a larger int or uint, its value is zero-extended. When an int or uint is converted to an int or
uint of the same size, its binary representation is unchanged. When an int or uint is converted to a smaller int or
uint, its value is truncated to fit the new representation.



Conversions 46

Future. There are several kinds of integer conversion which can result in a loss of precision. Currently, the
conversions are performed as specified, and no error is reported. In the future, we intend to improve type
checking, so the user can be informed of potential precision loss at compile time, and actual precision loss
at run time. Such cases include: When an int is converted to a uint and the original value is negative;
When a uint is converted to an int and the sign bit of the result is true; When an int is converted to
a smaller int or uint and any of the truncated bits differs from the original sign bit; When a uint is
converted to a smaller int or uint and any of the truncated bits is true;

Rationale. For integer conversions, the default behavior of a program should be to produce a run-time
error if there is a loss of precision. Thus, cast expressions not only give rise to a value conversion at run
time, but amount to an assertion that the required precision is preserved. Explicit conversion procedures
would be available in the run-time library so that one can perform explicit conversions that result in a loss
of precision but do not generate a run-time diagnostic.

When converting from a real type to a larger real type, the represented value is preserved. When converting from a
real type to a smaller real type, the closest representation in the target type is chosenE]

When converting to a real type from an integer type, integer types smaller than int are first converted to int. Then,
the closest representation of the converted value in the target type is chosen. The exact behavior of this conversion is
implementation-defined.

When converting from real (k) to complex (2k), the original value is copied into the real part of the result, and the
imaginary part of the result is set to zero. When converting from a real (k) to a complex (¢) such that ¢ > 2k, the
conversion is performed as if the original value is first converted to real (£/2) and then to /.

The rules for converting from imag to complex are the same as for converting from real, except that the imaginary
part of the result is set using the input value, and the real part of the result is set to zero.

9.2.2 Explicit Tuple to Complex Conversion

A two-tuple of numerical values may be converted to a complex value. If the destination type is complex (128), each
member of the two-tuple must be convertible to real (64) . If the destination type is complex (64), each member of
the two-tuple must be convertible to real (32). The first member of the tuple becomes the real part of the resulting
complex value; the second member of the tuple becomes the imaginary part of the resulting complex value.

9.2.3 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated type to any string and vice-versa, and include param conver-
sions. For enumerated types that are either concrete or semi-concrete (§7.2)), conversions are supported between the
enum’s constants and any numeric type or bool, including param conversions. For a semi-concrete enumerated type,
if a conversion is attempted involving a constant with no underlying integer value, it will generate a compile-time error
for a param conversion or an execution-time error otherwise.

When the target type is an integer type, the value is first converted to its underlying integer type and then to the target
type, following the rules above for converting between integers.

2When converting to a smaller real type, a loss of precision is expected. Therefore, there is no reason to produce a run-time diagnostic.
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When the target type is a real, imaginary, or complex type, the value is first converted to its underlying integer type
and then to the target type.

When the target type is bool, the value is first converted to its underlying integer type. If the result is zero, the value
of the boo1l is false; otherwise, it is true.

When the target type is string, the value becomes the name of the enumerator.

When the source type is bool, enumerators corresponding to the values 0 and 1 in the underlying integer type are
selected, corresponding to input values of false and true, respectively.

When the source type is a real or integer type, the value is converted to the target type’s underlying integer type.
The conversion from complex and imag types to an enumerated type is not permitted.

When the source type is string, the enumerator whose name matches value of the input string is selected. If no such
enumerator exists, a runtime error occurs.

9.2.4 Explicit Class Conversions

An expression of static class type C can be explicitly converted to a class type D provided that C is derived from D or D
is derived from C.

When at run time the source expression refers to an instance of D or it subclass, its value is not changed. Otherwise,
or when the source expression is ni1l, the result of the conversion is nil.

9.2.5 Explicit Record Conversions

An expression of record type C can be explicitly converted to another record type D provided that C is derived from D.
There are no explicit record conversions that are not also implicit record conversions.

9.2.6 Explicit Range Conversions

An expression of stridable range type can be explicitly converted to an unstridable range type, changing the stride to 1
in the process.

9.2.7 Explicit Domain Conversions

An expression of stridable domain type can be explicitly converted to an unstridable domain type, changing all strides
to 1 in the process.
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9.2.8 Explicit Type to String Conversions

A type expression can be explicitly converted to a st ring. The resultant string is the name of the type.

Example (explicit-type-to-string.chpl). For example:

var x: real(c4) = 10.0;
writeln (x.type:string);

This program will print out the string "real (64) ".
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10 Expressions

Chapel provides the following expressions:

expression:
literal-expression
nil-expression
variable—expression
enum-constant—expression
call-expression
type—expression
iteratable—call-expression
member-access—expression
new-expression
query—expression
cast—expression
Ivalue—expression
parenthesized—expression
unary—expression
binary—expression
let-expression
if-expression
for-expression
forall-expression
reduce—expression
scan—expression
module—-access—expression
tuple—expression
tuple—expand-expression
locale—access—expression
mapped—-domain—expression

Individual expressions are defined in the remainder of this chapter and additionally as follows:

e forall, reduce, and scan §26|

e module access §12.4.3)|
e tuple and tuple expand §I3]

e locale access
e mapped domain §2§]

e initializer calls §16.3]
o nil §16.2.5]
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10.1 Literal Expressions

A literal value for any of the predefined types is a literal expression.

Literal expressions are given by the following syntax:

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal
array-literal

Literal values for primitive types are described in Literal range values are described in §19.3.1] Literal tuple
values are described in §15.2] Literal values for domains are described in §20.2.T]and §20.2.2] Literal values for arrays

are described in §21.2.1]and §21.2.2]

10.2 Variable Expressions

A use of a variable, constant, parameter, or formal argument, is itself an expression. The syntax of a variable expression
is given by:

variable—expression:
identifier

10.3 Enumeration Constant Expression

A use of an enumeration constant is itself an expression. Such a constant must be preceded by the enumeration type
name. The syntax of an enumeration constant expression is given by:

enum-constant—-expression:

enum-type . identifier

For an example of using enumeration constants, see §7.2}

10.4 Parenthesized Expressions

A parenthesized-expression is an expression that is delimited by parentheses as given by:

parenthesized—expression:
( expression )

Such an expression evaluates to the expression. The parentheses are ignored and have only a syntactical effect.
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10.5 Call Expressions

Functions and function calls are defined in §13]

10.6 Indexing Expressions

Indexing, for example into arrays, tuples, and domains, has the same syntax as a call expression.

Indexing is performed by an implicit invocation of the this method on the value being indexed, passing the indices
as the actual arguments.

10.7 Member Access Expressions

Member access expressions provide access to a field or invoke a method of an instance of a class, record, or union.
They are defined in §16.5]and §16.6] respectively.

member—access—expression:
field—access—expression
method-call-expression

10.8 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of a query
expression is given by:

query—expression:
? identifier,

Querying is restricted to querying the type of a formal argument, the element type of a formal argument that is an
array, the domain of a formal argument that is an array, the size of a primitive type, or a type or parameter field of a
formal argument type.

The identifier can be omitted. This is useful for ensuring the genericity of a generic type that defines default values for
all of its generic fields when specifying a formal argument as discussed in §23.1.5]

Example (query.chpl). The following code defines a generic function where the type of the first argument
is queried and stored in the type alias t and the domain of the second argument is queried and stored in
the variable D:
proc foo(x: ?t, y: [?D] t) {
for i in D do
y[i]l = x;
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This allows a generic specification of assigning a particular value to all elements of an array. The value
and the elements of the array are constrained to be the same type. This function can be rewritten without
query expression as follows:

proc foo(x, y: [] x.type) {
for i in y.domain do
yli] = x;

There is an expectation that query expressions will be allowed in more places in the future.

10.9 Casts

A cast is specified with the following syntax:

cast—expression:
expression : type—expression

The expression is converted to the specified type. A cast expression invokes the corresponding explicit conver-
sion (§9.2). A resolution error occurs if no such conversion exists.

10.10 LValue Expressions

An lvalue is an expression that can be used on the left-hand side of an assignment statement or on either side of a
swap statement, that can be passed to a formal argument of a function that has out, inout or ref intent, or that can
be returned by a function with a ref return intent (§I3.7.T). Valid Ivalue expressions include the following:

Variable expressions.

Member access expressions.

Call expressions of functions with a ref return intent.

Indexing expressions.

LValue expressions are given by the following syntax:

Ivalue-expression:
variable—expression
member—access—expression
call-expression
parenthesized—expression

The syntax is less restrictive than the definition above. For example, not all call-expressions are lvalues.
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10.11 Precedence and Associativity

53

The following table summarizes operator and expression precedence and associativity. Operators and expressions
listed earlier have higher precedence than those listed later.

4

Operator Associativity | Use
. member access
() left function call or access
[] function call or access
new right initializer call
left cast
* K right exponentiation
reduce reduction
scan left scan
dmapped domain map application
! right lqgigal negatipn
~ bitwise negation
* multiplication
/ left division
% modulus
unary + right positiye identity
unary — negation
<< left ljcft shif.t
>> right shift
& left bitwise/logical and
~ left bitwise/logical xor
| left bitwise/logical or
+ left addition.
- subtraction
.. left range initialization
<= less-than-or-equal-to comparison
>= left greater—than-or-egual-to comparison
< less-than comparison
> greater-than comparison
== left equal-to comparison.
= not-equal-to comparison
&& left short-circuiting logical and
| left short-circuiting logical or
in left forall expression
by range/domain stride application
# left range count application
align range alignment
if then else conditional expression
forall do forall expression
[ ] left forall expression
for do for expression
sync single atomic sync, single and atomic type
left comma separated expressions
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Rationale. In general, our operator precedence is based on that of the C family of languages including
C++, Java, Perl, and C#. We comment on a few of the differences and unique factors here.

We find that there is tension between the relative precedence of exponentiation, unary minus/plus, and
casts. The following three expressions show our intuition for how these expressions should be parenthe-

sized.
—2xx4 wants - (2xx4)
—-2:uint wants (=2) :uint
2:ulntx*4:uint wants (2:uint) ** (4:uint)

Trying to support all three of these cases results in a circularity—exponentiation wants precedence over
unary minus, unary minus wants precedence over casts, and casts want precedence over exponentiation.
We chose to break the circularity by making unary minus have a lower precedence. This means that for
the second case above:

-2:uint requires (-2) :uint

We also chose to depart from the C family of languages by making unary plus/minus have lower prece-
dence than binary multiplication, division, and modulus as in Fortran. We have found very few cases that
distinguish between these cases. An interesting one is:

const minint = min (int (32));
...-minint/2...

Intuitively, this should result in a positive value, yet C’s precedence rules results in a negative value due to
asymmetry in modern integer representations. If we learn of cases that argue in favor of the C approach,
we would likely reverse this decision in order to more closely match C.

We were tempted to diverge from the C precedence rules for the binary bitwise operators to make them
bind less tightly than comparisons. This would allow us to interpret:

a | b == as (a | b) ==0

However, given that no other popular modern language has made this change, we felt it unwise to stray
from the pack. The typical rationale for the C ordering is to allow these operators to be used as non-short-
circuiting logical operations.

In contrast to C, we give bitwise operations a higher precedence than binary addition/subtraction and
comparison operators. This enables using the shift operators as shorthand for multiplication/division by
powers of 2, and also makes it easier to extract and test a bitmapped field:

(x & MASK) == MASK as x & MASK == MASK
a + b x pow(2,y) as a * b <<y

One final area of note is the precedence of reductions. Two common cases tend to argue for making
reductions very low or very high in the precedence table:

max reduce A - min reduce A wants (max reduce A) — (min reduce A)
max reduce A x B wants max reduce (A x B)

The first statement would require reductions to have a higher precedence than the arithmetic operators
while the second would require them to be lower. We opted to make reductions have high precedence due
to the argument that they tend to resemble unary operators. Thus, to support our intuition:
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max reduce A x B requires max reduce (A * B)

This choice also has the (arguably positive) effect of making the unparenthesized version of this statement
result in an aggregate value if A and B are both aggregates—the reduction of A results in a scalar which
promotes when being multiplied by B, resulting in an aggregate. Our intuition is that users who forget the
parentheses will learn of their error at compilation time because the resulting expression is not a scalar as
expected.

10.12 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given by:

unary-expression:
unary—-operator expression

unary—-operator: one of

+ -~ !

The syntax of a binary expression is given by:

binary-expression:
expression binary—operator expression

binary-operator: one of
+ -/ % x & | N << > && Il == = <= >= < > by #

The operators are defined in subsequent sections.

10.13 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different types using
operator overloading (§13.12).

For each operator, implicit conversions are applied to the operands of an operator such that they are compatible with
one of the function forms listed, those listed earlier in the list being given preference. If no compatible implicit
conversions exist, then a compile-time error occurs. In these cases, an explicit cast is required.
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10.13.1 Unary Plus Operators

The unary plus operators are predefined as follows:

proc +(a: int(8)): int (8)

proc +(a: int(16)): int(16)

proc +(a: int(32)): int (32)

proc +(a: int (64)): int (64)

proc +(a: uint(8)): uint (8)

proc +(a: uint (16)): uint (16)

proc +(a: uint (32)): uint (32)

proc +(a: uint (64)): uint (64)

proc +(a: real(32)): real(32)

proc +(a: real(64)): real(64)

proc +(a: imag(32)): imag(32)

proc +(a: imag(64)): imag(64)

proc +(a: complex(64)): complex(64)
proc +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

10.13.2 Unary Minus Operators

The unary minus operators are predefined as follows:

proc —(a: int(8)): int(8)

proc —(a: int(16)): int (16)

proc —(a: int(32)): int (32)

proc —(a: int (64)): int (64)

proc —(a: real(32)): real(32)

proc —(a: real(64)): real(64)

proc —(a: imag(32)): imag(32)

proc —(a: imag(64)): imag(64)

proc —(a: complex(64)): complex(64)
proc —(a: complex(128)): complex(128)

For each of these definitions that return a value, the result is the negation of the value of the operand. For integral
types, this corresponds to subtracting the value from zero. For real and imaginary types, this corresponds to inverting
the sign. For complex types, this corresponds to inverting the signs of both the real and imaginary parts.

It is an error to try to negate a value of type uint (64) . Note that negating a value of type uint (32) first converts the
type to int (64) using an implicit conversion.
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10.13.3 Addition Operators

The addition operators are predefined as follows:

proc +(a: int(8), b: int(8)): int (8)

proc +(a: int(16), b: int(16)): int (16)

proc +(a: int(32), b: int(32)): int (32)

proc +(a: int(64), b: int(64)): int (64)

proc +(a: uint(8), b: uint(8)): uint (8)

proc +(a: uint (16), b: uint(16)): uint (16)

proc +(a: uint(32), b: uint(32)): uint (32)

proc +(a: uint (64), b: uint (64)): uint (64)

proc +(a: real(32), b: real(32)): real(32)

proc +(a: real(64), b: real(64)): real (64)

proc +(a: imag(32), b: imag(32)): imag(32)

proc +(a: imag(64), b: imag(64)): imag (64)

proc +(a: complex(64), b: complex(64)): complex(64)
proc +(a: complex(128), b: complex(128)): complex(128)
proc +(a: real(32), b: imag(32)): complex (64)
proc +(a: imag(32), b: real(32)): complex(64)
proc +(a: real(64), b: imag(64)): complex(128)
proc +(a: imag(64), b: real(64)): complex(128)
proc +(a: real(32), b: complex(64)): complex(64)
proc +(a: complex(64), b: real(32)): complex(64)
proc +(a: real(64), b: complex(128)): complex(128)
proc +(a: complex(128), b: real(64)): complex(128)
proc +(a: imag(32), b: complex(64)): complex(64)
proc +(a: complex(64), b: imag(32)): complex(64)
proc +(a: imag(64), b: complex(128)): complex(128)
proc +(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the sum of the two operands.
It is a compile-time error to add a value of type uint (64) and a value of type int (64).

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition of values
of complex type and either real or imaginary types also produces a value of complex type.



Expressions 58

10.13.4 Subtraction Operators

The subtraction operators are predefined as follows:

proc —(a: int(8), b: int(8)): int (8)

proc —(a: int(16), b: int(16)): int (16)

proc —(a: int(32), b: int(32)): int (32)

proc —(a: int (64), b: int(64)): int (64)

proc —(a: uint(8), b: uint(8)): uint (8)

proc —(a: uint (16), b: uint(16)): uint (16)

proc —(a: uint(32), b: uint (32)): uint (32)

proc —(a: uint (64), b: uint (64)): uint (64)

proc —(a: real(32), b: real(32)): real(32)

proc —(a: real(64), b: real(64)): real (64)

proc —(a: imag(32), b: imag(32)): imag(32)

proc —(a: imag(64), b: imag(64)): imag (64)

proc —(a: complex(64), b: complex(64)): complex(64)
proc —(a: complex(128), b: complex(128)): complex(128)
proc —(a: real(32), b: imag(32)): complex (64)
proc —(a: imag(32), b: real(32)): complex(64)
proc —(a: real(64), b: imag(64)): complex(128)
proc —(a: imag(64), b: real(64)): complex(128)
proc —(a: real(32), b: complex(64)): complex(64)
proc —(a: complex(64), b: real(32)): complex(64)
proc —(a: real(64), b: complex(128)): complex(128)
proc —(a: complex(128), b: real(64)): complex(128)
proc - (a: imag(32), b: complex(64)): complex(64)
proc —(a: complex(64), b: imag(32)): complex(64)
proc —(a: imag(64), b: complex(128)): complex(128)
proc —(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the value obtained by subtracting the second operand from
the first operand.

It is a compile-time error to subtract a value of type uint (64) from a value of type int (64), and vice versa.
Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex type.

Subtraction of values of complex type from either real or imaginary types, and vice versa, also produces a value of
complex type.
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10.13.5 Multiplication Operators

The multiplication operators are predefined as follows:

proc
proc
proc
proc

proc
proc
proc
proc

proc
proc

proc
proc

proc
proc

proc
proc
proc
proc

proc
proc
proc
proc

proc
proc
proc
proc

For each of these definitions that return a value, the result is the product of the two operands.

It is a compile-time error to multiply a value of type uint (64) and a value of type int (64).

Xk ok X

[URR I VRN

* ok kX

USSR V)

* % kX

* ok k%

AR VR

* ok %

USSR V)

[UR RV

complex (64),
complex (128),

real (32),
imag (32),
real (64),
imag (64),

oo oo

real (32), b
complex (64)
real (64), b
complex (128

)

imag(32), b
complex (64)
imag(64), b
complex (128

’

) 4

b: complex (64)):
b: complex(128)):

imag (32)):
real (32)) :
imag (64)):
real (64)) :

complex (64)

int (8), b: int(8)): int (8)
int (16), b: int(16)): int(16)
int (32), b: int(32)): int (32)
int (64), b: int (64)): int (64)
: uint (8), b: uint (8)): uint (8)
: uint (16), b: uint(16)): uint (16)
: uint (32), b: uint(32)): uint (32)
: uint (64), b: uint (64)): uint (64)
real (32), b: real(32)): real(32)
real (64), b: real(64)): real (64)
imag (32), b: imag(32)): real(32)
imag (64), b: imag(64)): real(64)

imag (32)
imag (32)
imag (64)
imag (64)

complex (64)

b: real (32)) complex (64)
complex (128)): complex (128)
b: real(64)): complex(128)

complex (64))

complex (64)

b: imag(32)): complex (64)

complex (128)
b: imag (64

complex (128)
complex (128)

))

complex (64)
complex (128)
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Multiplication of values of imaginary type produces a value of real type. Multiplication over a value of real type and a
value of imaginary type produces a value of imaginary type. Multiplication of values of complex type and either real
or imaginary types produces a value of complex type.
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10.13.6 Division Operators

The division operators are predefined as follows:

proc /(a: int(8), b: int(8)): int(8)

proc /(a: int (16), b: int (16)): int (16)

proc /(a: int(32), b: int (32)): int (32)

proc /(a: int (64), b: int (64)): int (64)

proc /(a: uint(8), b: uint(8)): uint (8)

proc /(a: uint (16), b: uint(16)): uint (16)

proc /(a: uint(32), b: uint(32)): uint (32)

proc /(a: uint (64), b: uint (64)): uint (64)

proc /(a: real(32), b: real(32)): real(32)

proc /(a: real(64), b: real(64)): real (64)

proc /(a: imag(32), b: imag(32)): real (32)

proc /(a: imag(64), b: imag(64)): real (64)

proc /(a: complex(64), b: complex(64)): complex(64)
proc /(a: complex(128), b: complex(128)): complex(128)
proc /(a: real(32), b: imag(32)): imag(32)

proc /(a: imag(32), b: real(32)): imag(32)

proc /(a: real(64), b: imag(64)): imag (64)

proc /(a: imag(64), b: real(64)): imag (64)

proc /(a: real(32), b: complex(64)): complex (64)
proc /(a: complex(64), b: real(32)): complex(64)
proc /(a: real(64), b: complex(128)): complex(128)
proc /(a: complex(128), b: real(64)): complex(128)
proc /(a: imag(32), b: complex(64)): complex (64)
proc /(a: complex(64), b: imag(32)): complex (64)
proc /(a: imag(64), b: complex(128)): complex(128)
proc /(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the quotient of the two operands.
It is a compile-time error to divide a value of type uint (64) by a value of type int (64), and vice versa.

Division of values of imaginary type produces a value of real type. Division over a value of real type and a value of
imaginary type produces a value of imaginary type. Division of values of complex type and either real or imaginary
types produces a value of complex type.

When the operands are integers, the result (quotient) is also an integer. If b does not divide a exactly, then there are
two candidate quotients g1 and g2 such that b x g1 and b x ¢2 are the two multiples of b closest to a. The integer result
q is the candidate quotient which lies closest to zero.
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10.13.7 Modulus Operators

The modulus operators are predefined as follows:

proc %$(a: int(8), b: int(8)): int (8)

proc % (a: int(16), b: int(16)): int (16)
proc %$(a: int(32), b: int(32)): int (32)
proc $(a: int (64), b: int (64)): int (64)
proc $(a: uint(8), b: uint(8)): uint (8)
proc % (a: uint(16), b: uint(16)): uint (16)
proc %$(a: uint(32), b: uint(32)): uint (32)
proc % (a: uint(64), b: uint (64)): uint (64)

For each of these definitions that return a value, the result is the remainder when the first operand is divided by the
second operand.

The sign of the result is the same as the sign of the dividend a, and the magnitude of the result is always smaller than
that of the divisor b. For integer operands, the % and / operators are related by the following identity:

var g = a
var r = a
q

writeln( + r == a); // true

It is a compile-time error to take the remainder of a value of type uint (64) and a value of type int (64), and vice
versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and complex
types in the future.

10.13.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

proc xx(a: int(8), b: int(8)): int (8)

proc x*(a: int(16), b: int (16)): int(16)
proc xx(a: int(32), b: int(32)): int(32)
proc xx(a: int(64), b: int (64)): int (64)
proc xx(a: uint (8), b: uint(8)): uint (8)
proc xx(a: uint (16), b: uint (16)): uint (16)
proc xx(a: uint (32), b: uint(32)): uint (32)
proc xx(a: uint (64), b: uint (64)): uint (64)
proc x*(a: real(32), b: real(32)): real(32)
proc xx(a: real(64), b: real(64)): real (64)

For each of these definitions that return a value, the result is the value of the first operand raised to the power of the
second operand.

It is a compile-time error to take the exponent of a value of type uint (64) by a value of type int (64), and vice
versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary and complex
types in the future.
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10.14 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types using
operator overloading (§13.12).

10.14.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

proc ~(a: bool): bool

proc ~(a: int(8)): int(8)
proc ~(a: int(16)): int (16)
proc ~(a: int (32)): int (32)
proc ~(a: int (64)): int (64)
proc ~(a: uint(8)): uint (8)
proc ~(a: uint (16)): uint (16)
proc ~(a: uint(32)): uint (32)
proc ~(a: uint (64)): uint (64)

For each of these definitions, the result is the bitwise complement of the operand.

10.14.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

proc & (a: bool, b: bool): bool

proc &(a: int(?w), b: int(w)): int (w)

proc & (a: uint (?w), b: uint(w)): uint (w)
proc & (a: int (?w), b: uint(w)): uint (w)
proc &(a: uint (?w), b: int(w)): uint (w)

For each of these definitions, the result is computed by applying the logical and operation to the bits of the operands.

Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise and.
In the mixed case the result is of the same size as the arguments and is unsigned. No run-time error is issued, even if
the apparent sign changes as the required conversions are performed.

Rationale. The mathematical meaning of integer arguments is discarded when they are passed to bitwise
operators. Instead the arguments are treated simply as bit vectors. The bit-vector meaning is preserved
when converting between signed and unsigned of the same size. The choice of unsigned over signed as
the result type in the mixed case reflects the semantics of standard C.
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10.14.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

proc | (a: bool, b: bool): bool

proc | (a: int(?w), b: int(w)): int (w)

proc | (a: uint(?w), b: uint(w)): uint (w)
proc | (a: int(?w), b: uint(w)): uint (w)
proc | (a: uint(?w), b: int(w)): uint (w)

For each of these definitions, the result is computed by applying the logical or operation to the bits of the operands.
Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise or.
No run-time error is issued, even if the apparent sign changes as the required conversions are performed.

Rationale. The same as for bitwise and (§10.14.2).

10.14.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

proc " (a: bool, b: bool): bool

proc " (a: int (?w), b: int(w)): int (w)

proc " (a: uint (?w), b: uint(w)): uint (w)
proc " (a: int (?w), b: uint(w)): uint (w)
proc " (a: uint(?w), b: int(w)): uint (w)

For each of these definitions, the result is computed by applying the XOR operation to the bits of the operands. Chapel
allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise xor. No
run-time error is issued, even if the apparent sign changes as the required conversions are performed.

Rationale. The same as for bitwise and (§10.14.2).
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10.15 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types using
operator overloading (§13.12).

The shift operators are predefined as follows:

proc <<(a: int(8), b): int (8)
proc << (a: int(16), b): int(16)
proc <<(a: int (32), b): int (32)
proc << (a: int(64), b): int (64)
proc <<(a: uint (8), b): uint(8)
proc <<(a: uint(16), b): uint (16)
proc <<(a: uint (32), b): uint (32)
proc <<(a: uint (64), b): uint (64)
proc >>(a: int(8), b): int (8)
proc >>(a: int (16), b): int (16)
proc >>(a: int (32), b): int (32)
proc >>(a: int(64), b): int (64)
proc >>(a: uint(8), b): uint (8)
proc >>(a: uint (16), b): uint (16)
proc >>(a: uint (32), b): uint (32)
proc >>(a: uint (64), b): uint (64)

The type of the second actual argument must be any integral type.
The << operator shifts the bits of a left by the integer b. The new low-order bits are set to zero.

The >> operator shifts the bits of a right by the integer b. When a is negative, the new high-order bits are set to one;
otherwise the new high-order bits are set to zero.

The value of b must be non-negative.

10.16 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types using
operator overloading (§13.12).

10.16.1 The Logical Negation Operator

The logical negation operator is predefined for booleans and integers as follows:

proc ! (a: bool): bool
proc ! (a: int (?w)): bool
proc ! (a: uint(?w)): bool

For the boolean form, the result is the logical negation of the operand. For the integer forms, the result is true if the
operand is zero and false otherwise.
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10.16.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true; otherwise it
returns false. If the first operand evaluates to false, the second operand is not evaluated and the result is false.

The logical and operator over expressions a and b given by

a && b

is evaluated as the expression

if isTrue(a) then isTrue(b) else false

The function isTrue is predefined over bool type as follows:

proc isTrue(a:bool) return a;

Overloading the logical and operator over other types is accomplished by overloading the i sTrue function over other
types.

10.16.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise it
returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressions a and b given by

a ||l b

is evaluated as the expression

if isTrue(a) then true else isTrue (b)

The function isTrue is predefined over bool type as described in §10.16.2] Overloading the logical or operator over
other types is accomplished by overloading the i sTrue function over other types.
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10.17

Relational Operators
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This section describes the predefined relational operators. These operators can be redefined over different types using
operator overloading (§13.12).

10.17.1 Ordered Comparison Operators

The “less than” comparison operators are predefined over numeric types as follows:

proc
proc
proc
proc

proc
proc
proc
proc

proc
proc

proc
proc

proc
proc

The result of a < b is true if a is less than b; otherwise the result is false.

The “greater than” comparison operators are predefined over numeric types as follows:

proc
proc
proc
proc

proc
proc
proc
proc

proc
proc

proc
proc

proc
proc

The result of a > b is true if a is greater than b; otherwise the result is false.

The “less than or equal to” comparison operators are predefined over numeric types as follows:

(
(
(
(

<
<
<
<

<(
<(
<(
<(

> (
> (
> (
> (

[U I V)

USR]
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int (8), b:
int (16),
int (32),
int (64),

o o

o

int (8)): bool
: int (16)): bool

: int (32)): bool
: int (64)): bool

: uint (8), b:
: uint (16),
: uint (32),
: uint (64),

b:
b:
b:

int (64), b:

: uint (64),

real (32),
real (64),

imag (32),
imag (64),

int (8), b:
int (16),
int (32),
int (64),

o oo

: uint (64),

b:

o o

o o

uint (8)): bool

uint (16)): bool
uint (32)): bool
uint (64)): bool
uint (64)): bool
int (64)): bool

real (32)): bool
real (64)) : bool

imag (32)): bool
imag (64)): bool

int (8)): bool

: int (16)): bool
: int (32)): bool

: uint (8), b:
: uint (16),
: uint (32),

b:
b:

: int (64)): bool
uint (8)) : bool
uint (16)): bool
uint (32)): bool
uint (64)): bool

b:

int (64), b:

: uint (64),

real (32),
real (64),

imag (32),
imag (64),

b:

o o

o o

uint (64)): bool

int (64)) : bool
real (32)): bool
real (64)) : bool

imag (32)): bool
imag (64)): bool
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proc
proc
proc
proc

proc
proc
proc
proc

proc
proc

proc
proc

proc
proc

The result of a <= b is true if a is less than or equal to b; otherwise the result is false.

The “greater than or equal to” comparison operators are predefined over numeric types as follows:

proc
proc
proc
proc

proc
proc
proc
proc

proc
proc

proc
proc

proc
proc

The result of a >= b is true if a is greater than or equal to b; otherwise the result is false.

The ordered comparison operators are predefined over strings as follows:
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proc
proc
proc
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int (8),
int (16)
int (32)
int (64)

: uint (8)
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int (64)

’

’

’

’

b

’

: uint (64),

real (32),
real (64),

imag (32),
imag (64),

int (8),
int (16)
int (32)
int (64)

: uint (8)
: uint (16),
: uint (32),
: uint (64),

int (64)

’

’

’

’

’
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b:

b:

: uint (64),

real (32),
real (64),

imag (32),
imag (64),

string,

string,
string,
string,
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b:
b:
b:
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int (8)): bool

int (16)): bool
int (32)) : bool
int (64)): bool
uint (8)) : bool

: uint (16)): bool
: uint (32)): bool

: uint (64)) : bool

uint (64)): bool
int (64)) : bool
real (32)): bool

real (64)): bool

imag (32)): bool
imag (64)): bool

int (8)): bool
int (16)): bool
int (32)): bool

int (64)): bool

uint (8)): bool

: uint (16)) : bool
: uint (32)) : bool
: uint (64)) : bool
uint (64)) : bool

int (64)) : bool

real (32)): bool
real (64)) : bool

imag (32)): bool
imag (64)): bool

string) : bool
string): bool

string) : bool
string): bool

67

Comparisons between strings are defined based on the ordering of the character set used to represent the string, which

is applied elementwise to the string’s characters in order.

10.17.2 Equality Comparison Operators

The equality comparison operators == and ! = are predefined over bool and the numeric types as follows:
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proc ==(a: int(8), b: int(8)): bool
proc ==(a: int (16), b: int (16)): bool
proc ==(a: int (32), b: int(32)): bool
proc ==(a: int(64), b: int (64)): bool
proc ==(a: uint (8), b: uint(8)): bool
proc ==(a: uint (16), b: uint(16)): bool
proc ==(a: uint (32), b: uint(32)): bool
proc ==(a: uint (64), b: uint(64)): bool
proc ==(a: int(64), b: uint (64)): bool
proc ==(a: uint (64), b: int(64)): bool
proc ==(a: real(32), b: real(32)): bool
proc ==(a: real(64), b: real(64)): bool
proc ==(a: imag(32), b: imag(32)): bool
proc ==(a: imag(64), b: imag(64)): bool
proc ==(a: complex(64), b: complex(64)):
proc ==(a: complex(128), b: complex(128)):
proc !=(a: int(8), b: int(8)): bool
proc !=(a: int(16), b: int(16)): bool
proc !=(a: int(32), b: int (32)): bool
proc !=(a: int(64), b: int (64)): bool
proc !=(a: uint (8), b: uint(8)): bool
proc !=(a: uint (16), b: uint(16)): bool
proc !=(a: uint (32), b: uint(32)): bool
proc !=(a: uint(64), b: uint (64)): bool
proc !=(a: int (64), b: uint (64)): bool
proc !=(a: uint (64), b: int (64)): bool
proc !=(a: real(32), b: real(32)): bool
proc !=(a: real(64), b: real(64)): bool
proc !=(a: imag(32), b: imag(32)): bool
proc !=(a: imag(64), b: imag(64)): bool
proc !=(a: complex(64), b: complex(64)): bool
proc !=(a: complex(128), b: complex(128)): bool
The result of a == b is true if a and b contain the same value; otherwise the result is false. The result of a !'= b is
equivalentto ! (a == b).
The equality comparison operators are predefined over classes as follows:
proc ==(a: object, b: object): bool
proc !=(a: object, b: object): bool
The result of a == b is true if a and b reference the same storage location; otherwise the result is false. The result of

a != bisequivalentto ! (a == b).

Default equality comparison operators are generated for records if the user does not define them. These operators are

described in

The equality comparison operators are predefined over strings as follows:

proc ==(a: string, b: string): bool
proc !=(a: string, b: string): bool
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The result of a == b is true if the sequence of characters in a matches exactly the sequence of characters in b;
otherwise the result is false. The result of a != b isequivalentto ! (a == b).

10.18 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types using
operator overloading (§13.12).

10.18.1 The String Concatenation Operator

The string concatenation operator + is predefined over numeric, boolean, and enumerated types with strings. It casts
its operands to string type and concatenates them together.

Example (string-concat.chpl). The code

"result: "+i

where i is an integer appends the string representation of i to the string literal "result: ". If i is 3,
then the resulting string would be "result: 3".

10.18.2 The By Operator

The operator by is predefined on ranges and rectangular domains. It is described in §19.5.1]for ranges and §20.8.72] for
domains.

10.18.3 The Align Operator

The operator align is predefined on ranges and rectangular domains. It is described in §19.5.2]for ranges and §20.8.3
for domains.

10.18.4 The Range Count Operator

The operator # is predefined on ranges. It is described in §19.5.3]
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10.19 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The syntax of
a let expression is given by:

let-expression:
let variable—declaration—list in expression

The scope of the variables is the let-expression.

Example (let.chpl). Let expressions are useful for defining variables in the context of an expression. In
the code

let x: real = a*b, y = x*x in 1/y

the value determined by a«b is computed and converted to type real if it is not already a real. The square
of the real is then stored in y and the result of the expression is the reciprocal of that value.

10.20 Conditional Expressions

A conditional expression is given by the following syntax:

if-expression:
if expression then expression else expression
if expression then expression

The conditional expression is evaluated in two steps. First, the expression following the if keyword is evaluated.
Then, if the expression evaluated to true, the expression following the then keyword is evaluated and taken to be the
value of this expression. Otherwise, the expression following the e1se keyword is evaluated and taken to be the value
of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ clause can be omitted only when the conditional expression is nested immediately inside a for or forall
expression. Such an expression is used to filter predicates as described in §10.21.1]and §26.2.4] respectively.

Example (condexp.chpl). This example shows how if-then-else can be used in a context in which an
expression is expected. The code

writehalf (8);
writehalf (21);
writehalf (1000);

proc writehalf(i: int) {
var half = if (i % 2) then i/2 +1 else i/2;
writeln("Half of ",i," is ",half);

}

produces the output

Half of 8 is 4
Half of 21 is 11
Half of 1000 is 500
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10.21 For Expressions

A for expression is given by the following syntax:

for-expression:
for index—var-declaration in iteratable—expression do expression
for iteratable—expression do expression

A for expression is an iterator that executes a for loop (§I1.9), evaluates the body expression on each iteration of the
loop, and yields each resulting value.

When a for expression is used to initialize a variable, such as

var X = for iterableExpression() do computeValue();

the variable will be inferred to have an array type. The array’s domain is defined by the iterable—expression following
the same rules as for promotion, both in the regular case §26.5|and in the zipper case §26.5.2]

10.21.1 Filtering Predicates in For Expressions

A conditional expression that is immediately enclosed in a for expression and does not require an else clause filters
the iterations of the for expression. The iterations for which the condition does not hold are not reflected in the result
of the for expression.

When a for expression with a filtering predicate is captured into a variable, the resulting array has a 1-based one-

dimensional domain.

Example (vieldPredicates.chpl). The code

var A = for i in 1..10 do if i $ 3 != 0 then i;

declares an array A that is initialized to the integers between 1 and 10 that are not divisible by 3.



11 Statements

Chapel is an imperative language with statements that may have side effects. Statements allow for the sequencing of
program execution. Chapel provides the following statements:

statement:
block—-statement
expression—statement
assignment-statement
swap-statement
io—statement
conditional-statement
select—statement
while—do-statement
do—while—-statement
for-statement
label-statement
break—statement
continue-statement
param-for—statement
use—statement
defer—statement
empty—statement
return—statement
yield-statement
module—declaration—statement
procedure-declaration—statement
external-procedure—declaration—statement
exported—procedure—declaration—-statement
iterator—declaration— statement
method—-declaration—statement
type—declaration—-statement
variable—declaration—statement
remote— variable—declaration—statement
on-statement
cobegin-statement
coforall-statement
begin—statement
sync-statement
serial-statement
atomic—statement
forall-statement
delete—statement

Individual statements are defined in the remainder of this chapter and additionally as follows:

e return §13.§]
o yield §22.7]

e module declaration

72
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e procedure declaration §13.2]

e external procedure declaration §31.1.1]
e exporting procedure declaration §31.1.7]
e iterator declaration §22.1

e method declaration §16.1.3|

e type declaration §7]

e variable declaration §8.1]

e remote variable declaration §27.2.1]

e on statement §27.7]

e cobegin, coforall, begin, sync, serial and atomic statements §|§]
e forall §26|

o delete §16.5]

11.1 Blocks

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

block—statement:
{ statements, . }

statements:
statement
statement statements

Variables defined within a block are local variables (§8.3).

The statements within a block are executed serially unless the block is in a cobegin statement (§25.3).

11.2 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression statement is
given by

expression—statement:
variable-expression ;
member—access—expression ;
call-expression ;
new-expression ;
let—expression ;
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11.3 Assignment Statements

An assignment statement assigns the value of an expression to another expression, for example, a variable. Assignment
statements are given by

assignment-statement:
Ivalue—-expression assignment-operator expression

assignment-operator: one of
= += —= %= [= P= %= &= |= = &&= = <<= >>=

The assignment operators that contain a binary operator symbol as a prefix are compound assignment operators. The
remaining assignment operator = is called simple assignment.

The expression on the left-hand side of the assignment operator must be a valid lvalue (§10.10). It is evaluated before
the expression on the right-hand side of the assignment operator, which can be any expression.

When the left-hand side is of a numerical type, there is an implicit conversion (§9.1) of the right-hand side expression
to the type of the left-hand side expression. Additionally, for simple assignment, if the left-hand side is of Boolean
type, the right-hand side is implicitly converted to the type of the left-hand side (i.e. a bool (?w) with the same width

w).

For simple assignment, the validity and semantics of assigning between classes (§16.7.1), records (§17.6.2)), unions (§I8.3),
tuples (§15.3)), ranges (§19.4.1), domains (§20.8.1), and arrays (§21.3) are discussed in these later sections.

A compound assignment is shorthand for applying the binary operator to the left- and right-hand side expressions
and then assigning the result to the left-hand side expression. For numerical types, the left-hand side expression is
evaluated only once, and there is an implicit conversion of the result of the binary operator to the type of the left-hand
side expression. Thus, for example, x += y is equivalentto x = x + y where the expression x is evaluated once.

For all other compound assignments, Chapel provides a completely generic catch-all implementation defined in the
obvious way. For example:
inline proc +=(ref lhs, rhs) {

lhs = 1lhs + rhs;
}

Thus, compound assignment can be used with operands of arbitrary types, provided that the following provisions are
met: If the type of the left-hand argument of a compound assignment operator op= is L and that of the right-hand
argument is R, then a definition for the corresponding binary operator op exists, such that L is coercible to the type of
its left-hand formal and R is coercible to the type of its right-hand formal. Further, the result of op must be coercible
to L, and there must exist a definition for simple assignment between objects of type L.

Both simple and compound assignment operators can be overloaded for different types using operator overload-
ing (§13.12). In such an overload, the left-hand side expression should have ref intent and be modified within
the body of the function. The return type of the function should be void.
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11.4 The Swap Statement

The swap statement indicates to swap the values in the expressions on either side of the swap operator. Since both
expressions are assigned to, each must be a valid lvalue expression (§10.10).

The swap operator can be overloaded for different types using operator overloading (§13.12]).

swap-statement:
Ivalue—-expression swap—operator Ivalue—expression

swap—operator:
<=>

To implement the swap operation, the compiler uses temporary variables as necessary.

Example. When resolved to the default swap operator, the following swap statement

var a, b: real;
a <=> b;

is semantically equivalent to:

const t = Db;
b = a;
a = t;

11.5 The I/0 Statement

The I/O operator indicates writing to the left-hand-side the value in the right-hand-side; or reading from the left-hand-
side and storing the result in the variable on the right-hand-side. This operator can be chained with other I/O operator

calls.
The I/0 operator can be overloaded for different types using operator overloading (§13.12).
io—statement:

io—expression io—operator expression

io—expression:
expression
io—expression i0—operator expression

io—operator:
<>

See the module documentation on I/O for details on how to use the I/O statement.

Example. In the example below,
var w = opentmp () .writer(); // a channel
var a: real;
var b: int;

w <~> a <~> Db;

the I/O operator is left-associative and indicates writing a and then b to w in this case.
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11.6 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an expression
of bool type. The syntax for a conditional statement is given by

conditional-statement:
if expression then statement else-part, .
if expression block—statement else—part, .

else—part:
else statement

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first statement
in the conditional statement is executed. If the expression evaluates to false and the optional else-clause exists, the
statement following the else keyword is executed.

If the expression is a parameter, the conditional statement is folded by the compiler. If the expression evaluates to true,
the first statement replaces the conditional statement. If the expression evaluates to false, the second statement, if it
exists, replaces the conditional statement; if the second statement does not exist, the conditional statement is removed.

Each statement embedded in the conditional-statement has its own scope whether or not an explicit block surrounds
it.

If the statement that immediately follows the optional then keyword is a conditional statement and it is not in a block,
the else-clause is bound to the nearest preceding conditional statement without an else-clause. The statement in the
else-clause can be a conditional statement, too.

Example (conditionals.chpl). The following function prints two when x is 2 and B, four when x is 4.

proc condtest (x:int) {
if x > 3 then
if x > 5 then
write("A,");
else
write("B,");

if x == 2 then
writeln ("two");

else if x == 4 then
writeln ("four");
else

writeln ("other");
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11.7 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

select-statement:
select expression { when-statements }

when- statements:
when-statement
when-statement when—statements

when-statement:
when expression-list do statement
when expression-list block—statement
otherwise statement
otherwise do statement

expression-list:
expression
expression , expression—list

The expression that follows the keyword select, the select expression, is evaluated once and its value is then com-
pared with the list of case expressions following each when keyword. These values are compared using the equality
operator ==. If the expressions cannot be compared with the equality operator, a compile-time error is generated. The
first case expression that contains an expression where that comparison is true will be selected and control trans-
ferred to the associated statement. If the comparison is always false, the statement associated with the keyword
otherwise, if it exists, will be selected and control transferred to it. There may be at most one otherwise statement
and its location within the select statement does not matter.

Each statement embedded in the when-statement or the otherwise-statement has its own scope whether or not an
explicit block surrounds it.

11.8 The While Do and Do While Loops

There are two variants of the while loop in Chapel. The syntax of the while-do loop is given by:

while-do-statement:
while expression do statement
while expression block—statement

The syntax of the do-while loop is given by:

do-while-statement:
do statement while expression ;

In both variants, the expression evaluates to a value of type bool which determines when the loop terminates and
control continues with the statement following the loop.
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The while-do loop is executed as follows:

1. The expression is evaluated.

2. If the expression evaluates to false, the statement is not executed and control continues to the statement fol-
lowing the loop.

3. If the expression evaluates to true, the statement is executed and control continues to step 1, evaluating the
expression again.

The do-while loop is executed as follows:

1. The statement is executed.
2. The expression is evaluated.
3. If the expression evaluates to false, control continues to the statement following the loop.

4. If the expression evaluates to true, control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

Example (while.chpl). The following example illustrates the difference between the do—while-statement
and the while-do-statement. The body of the do-while loop is always executed at least once, even if the
loop conditional is already false when it is entered. The code

var t = 11;
writeln ("Scope of do while loop:");
do {

t += 1;

writeln(t);
} while (t <= 10);

t = 11;
writeln ("Scope of while loop:");
while (t <= 10) {

t += 1;

writeln(t);

}

produces the output

Scope of do while loop:
12
Scope of while loop:



Statements 79

Chapel do-while loops differ from those found in most other languages in one important regard. If the body of a
do-while statement is a block statement and new variables are defined within that block statement, then the scope of
those variables extends to cover the loop’s termination expression.

Example (do-while.chpl). The following example demonstrates that the scope of the variable t includes
the loop termination expression.

var i = 0;

do {
var t = i;
i +=1;
writeln(t);

} while (t != 5);

produces the output

g w NP o

11.9 The For Loop

The for loop iterates over ranges, domains, arrays, iterators, or any class that implements an iterator named these.
The syntax of the for loop is given by:

for-statement:
for index—var-declaration in iteratable—expression do statement
for index—var-declaration in iteratable—expression block-statement
for iteratable—expression do statement
for iteratable—expression block—-statement

index—var—declaration:
identifier
tuple-grouped-identifier—list

iteratable—expression:
expression
zip ( expression—list )

The index—var-declaration declares new variables for the scope of the loop. It may specify a new identifier or may
specify multiple identifiers grouped using a tuple notation in order to destructure the values returned by the iterator
expression, as described in §15.6.3]

The index—var—declaration is optional and may be omitted if the indices do not need to be referenced in the loop.

If the iteratable-expression begins with the keyword zip followed by a parenthesized expression-list, the listed ex-
pressions must support zipper iteration.
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11.9.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over, the
values are returned by the iterators in a tuple and assigned to the index, and then statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example (zipper.chpl). The output of
for (i, j) in zip(l..3, 4..6) do
Write(i, " ll’ j’ " ll);
is

142536

11.9.2 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a variable. The
syntax for a parameter for loop statement is given by:

param—for—statement:
for param identifier in param-iteratable—expression do statement
for param identifier in param-iteratable—expression block—statement

param~—iteratable—expression:
range-literal
range-literal by integer-literal

Parameter for loops are restricted to iteration over range literals with an optional by expression where the bounds and
stride must be parameters. The loop is then unrolled for each iteration.
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11.10 The Break, Continue and Label Statements

The break- and continue-statements are used to alter the flow of control within a loop construct. A break-statement
causes flow to exit the containing loop and resume with the statement immediately following it. A continue-statement
causes control to jump to the end of the body of the containing loop and resume execution from there. By default,
break- and continue-statements exit or skip the body of the immediately-containing loop construct.

The label-statement is used to name a specific loop so that break and continue can exit or resume a less-nested
loop. Labels can only be attached to for-, while-do- and do-while-statements. When a break statement has a label,
execution continues with the first statement following the loop statement with the matching label. When a continue
statement has a label, execution continues at the end of the body of the loop with the matching label. If there is no
containing loop construct with a matching label, a compile-time error occurs.

The syntax for label, break, and continue statements is given by:

break-statement:
break identifier,,. ;

continue- statement:
continue identifier,,. ;

label-statement:
label identifier statement

A break statement cannot be used to exit a parallel loop §26.1]

Rationale. Breaks are not permitted in parallel loops because the execution order of the iterations of
parallel loops is not defined.

Future.  We expect to support a eureka concept which would enable one or more tasks to stop the
execution of all current and future iterations of the loop.

Example. In the following code, the index of the first element in each row of A that is equal to findval
is printed. Once a match is found, the continue statement is executed causing the outer loop to move to
the next row.

label outer for i in 1..n {
for j in 1..n {
if A[i, J] == findval {
writeln("index: ", (i, j), " matches.");
continue outer;

}
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11.11 The Use Statement

The use statement provides access to the constants in an enumerated type or the public symbols of a module within
the scope in which it appears without the need to provide a full qualified path.

The syntax of the use statement is given by:

use—statement:
use module—or—enum-name-list ;

module-or—enum-name-list:
module—or-enum-name limitation—clause,,.
module-or-enum—-name , module—or—enum-name-list

module—or-enum-name:
identifier
identifier . module—or—enum-name

limitation-clause:
except exclude-list
only rename-list,,;

exclude-list:
identifier—list
*

rename-list:
rename—base
rename-Dbase , rename-list

rename-—base:

identifier as identifier
identifier

For example, the program

Example (usel.chpl).

module M1 {

proc foo () {
writeln("In M1’s foo.");
}
}
module M2 {
proc main () {
writeln("In M2’s main.");
M1l.foo();
}
}
prints out

In M2’s main.
In M1l’s foo.
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This program is equivalent to:

Example (use2.chpl).

module M1 {
proc foo() {
writeln("In M1’s foo.");
}
}

module M2 {
proc main () {
use Ml;

writeln("In M2’s main.");
foo();
}
}

which also prints out

In M2’'s main.
In M1l’s foo.

The names that are imported by a use statement are inserted in to a new scope that immediately encloses the scope
within which the statement appears. This implies that the position of the use statement within a scope has no effect
on its behavior. If a scope includes multiple use statements then the imported names are inserted in to a common
enclosing scope.

An error is signaled if multiple enumeration constants or public module-level symbols would be inserted into this
enclosing scope with the same name, and that name is referenced by other statements in the same scope as the use.

Use statements are transitive by default: if a module A uses a module B, and module B contains a use of a module or
enumerated type C, then C’s public symbols may also be visible within A. The exception to this occurs when B has
public symbols that shadow symbols with the same name in C.

This notion of transitivity extends to the case in which a scope imports symbols from multiple modules or constants
from multiple enumeration types. For example if a module A uses modules B1, B2, B3 and modules B1, B2, B3 use
modules C1, C2, C3 respectively, then all of the public symbols in B1, B2, B3 have the potential to shadow the public
symbols of C1, C2, and C3. However an error is signaled if C1, C2, C3 have public module level definitions of the
same symbol.

An optional Iimitation—clause may be provided to limit the symbols made available by the use statement. If an except
list is provided, then all the visible but unlisted symbols in the module or enumerated type will be made available
without prefix. If an only list is provided, then just the listed visible symbols in the module or enumerated type will
be made available without prefix. All visible symbols not provided via these limited use statements are still accessible
with the module or enumerated type name prefix. It is an error to provide a name in a limitation—clause that does not
exist or is not visible in the respective module or enumerated type.

If an only list is left empty or except is followed by * then no symbols are made available to the scope without

prefix. However, any methods or fields defined within a module used in this way will still be accessible on instances
of the type. For example:

Example (limited-access.chpl).
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module M1 {
record A {

var x = 1;
proc foo() {
writeln("In A.foo()");

}
}

module M2 {
proc main() {
use Ml only;

var a = new M1.A(3); // Only accessible via the module prefix
writeln(a.x); // Accessible because we have a record instance
a.foo(); // Ditto
}
}

will print out

3
In A.foo ()

Within an only list, a visible symbol from that module may optionally be given a new name using the as keyword.
This new name will be usable from the scope of the use in place of the old name unless the old name is additionally
specified in the only list. If a use which renames a symbol is present at module scope, uses of that module will also
be able to reference that symbol using the new name instead of the old name. Renaming does not affect accesses to
that symbol via the source module’s or enumerated type’s prefix, nor does it affect uses of that module or enumerated
type from other contexts. It is an error to attempt to rename a symbol that does not exist or is not visible in the
respective module or enumerated type, or to rename a symbol to a name that is already present in the same only list.
It is, however, perfectly acceptable to rename a symbol to a name present in the respective module or enumerated type
which was not specified via that only list.

If a use statement mentions multiple modules or enumerated types or a mix of these symbols, only the last module or
enumerated type can have a limitation—clause. Limitation clauses are applied transitively as well - in the first example,
if module A’s use of module B contains an except or only list, that list will also limit which of C’s symbols are
visible to A.

For more information on enumerated types, please see For use statement rules which are only applicable to
modules, please see §12.4.4] For more information on modules in general, please see §12]

11.12 The Defer Statement

A defer statement declares a clean-up action to be run when exiting a block. defer is useful because the clean-up
action will be run no matter how the block is exited.
The syntax is:

defer—statement:
defer statement
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At a given place where control flow exits a block, the in-scope defer statements and the local variables will be
handled in reverse declaration order. Handling a de fer statement consists of executing the contained clean-up action.
Handling a local variable consists of running its deinitializer if it is of record type.

When an iterator contains a de fer statement at the top level, the associated clean-up action will be executed when the
loop running the iterator exits. defer actions inside a loop body are executed when that iteration completes.

The following program demonstrates a simple use of defer to create an action to be executed when returning from a
function:

Example (deferl.chpl).

class Integer {
var x:int;

}

proc deferInFunction() {
var ¢ = new unmanaged Integer (1l);
writeln ("created ", c);

defer {
writeln("defer action: deleting ", c);
delete c;
}
// ... (function body, possibly including return statements)

// The defer action is executed no matter how this function returns.
}

deferInFunction();

produces the output

created {x = 1}
defer action: deleting {x = 1}

The following example uses a nested block to demonstrate that de fer is handled when exiting the block in which it is
contained:

Example (defer2.chpl).

class Integer {
var x:int;
}
proc deferInNestedBlock () {
var i = 1;
writeln ("before inner block");
{
var c = new unmanaged Integer (i);
writeln("created ", c);
defer {
writeln ("defer action: deleting ", c);
delete c;
}
writeln("in inner block");
// note, defer action is executed no matter how this block is exited
}
writeln("after inner block");
}
deferInNestedBlock () ;

produces the output



Statements 86

before inner block

created {x = 1}

in inner block

defer action: deleting {x = 1}
after inner block

Lastly, this example shows that when defer is used in a loop, the action will be executed for every loop iteration,
whether or not loop body is exited early.

Example (defer3.chpl).

class Integer {
var x:int;

}

proc deferInLoop() {
for i in 1..10 {

var c = new unmanaged Integer (i);
writeln("created ", c);
defer {
writeln ("defer action: deleting ", c);
delete c;

}
writeln(c);
if i == 2 then
break;
}
}
deferInLoop () ;

produces the output

created {x = 1}

{x = 1}

defer action: deleting {x = 1}
created {x = 2}

{x = 2}

defer action: deleting {x = 2}

11.13 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty—statement:

s
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Chapel supports modules to manage name spaces. A program consists of one or more modules. Every symbol,
including variables, functions, and types, is associated with some module.

Module definitions are described in §12.1] The relation between files and modules is described in §12.2} Nested
modules are described in §12.3] The visibility of a module’s symbols by users of the module is described in §12.4.2
The execution of a program and module initialization/deinitialization are described in §12.5]

12.1 Module Definitions

A module is declared with the following syntax:

module-declaration-statement:
privacy-specifier,,, module module-identifier block—statement

privacy-specifier:
private
public

module—identifier:
identifier

A module’s name is specified after the module keyword. The block-statement opens the module’s scope. Symbols
defined in this block statement are defined in the module’s scope and are called top-level module symbols. The
visibility of a module is defined by its privacy-specifier (§12.4.T).

Module declaration statements must be top-level statements within a module. A module that is declared within another
module is called a nested module (§12.3).

12.2 Files and Implicit Modules

Multiple modules can be defined in the same file and need not bear any relation to the file in terms of their names.

Example (two-modules.chpl). The following file contains two explicitly named modules (§12.4.3), MX
and MY.

module MX {
var x: string = "Module MX";
proc printX() {
writeln (x);
}
}

module MY {
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var y: string = "Module MY";
proc printY() {
writeln(y);
}
}

Module MX defines top-level module symbols x and printX, while MY defines top-level module symbols
y and printY.

For any file that contains top-level statements other than module declarations, the file itself is treated as the module
declaration. In this case, the module is implicit and takes its name from the base filename. In particular, the module
name is defined as the remaining string after removing the . chpl suffix and any path specification from the specified
filename. If the resulting name is not a legal Chapel identifier, it cannot be referenced in a use statement.

Example (implicit.chpl). The following file, named implicit.chpl, defines an implicitly named module
called implicit.

var x: int
var y: int

I
—

proc printX() {
writeln (x);

}

proc print¥Y() {
writeln(y);

}

Module implicit defines the top-level module symbols X, y, printX, and printY.

12.3 Nested Modules

A nested module is a module that is defined within another module, the outer module. Nested modules automatically
have access to all of the symbols in the outer module. However, the outer module needs to explicitly use a nested
module to have access to its symbols.

A nested module can be used without using the outer module by explicitly naming the outer module in the use state-
ment.

Example (nested-use.chpl). The code

use libsci.blas;

uses a module named blas that is nested inside a module named 1ibsci.

Files with both module declarations and top-level statements result in nested modules.

Example (nested.chpl). The following file, named nested.chpl, defines an implicitly named module called
nested, with nested modules MX and MY.
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module MX

var x: int = 0O;
}
module MY {

var y: int = O;

}
use MX, MY;

proc printX() {
writeln (x);

}

proc printY() {
writeln(y);

}

12.4 Access of Module Contents

A module’s contents can be accessed by code outside of that module depending on the visibility of the module it-
self (§12.4.1)) and the visibility of each individual symbol (§12.4.2). This can be done via explicit naming (§12.4.3) or

the use statement (§12.4.4).

12.4.1 Visibility Of A Module

A module defined at file scope is visible anywhere. The visibility of a nested module is subject to the rules of §12.4.2]
There, the nested module is considered a "symbol defined at the top level scope" of its outer module.

12.4.2 Visibility Of A Module’s Symbols

A symbol defined at the top level scope of a module is visible from outside the module when the privacy-specifier of
its definition is public or is omitted (i.e. by default). When a symbol defined at the top level scope of a module
is declared private, it is not visible outside of that module. A symbol’s visibility inside its module is controlled
by normal lexical scoping and is not affected by its privacy-specifier. A module’s visible symbols are accessible via
explicit naming (§12.4.3) or the use statement (§12.4.4) only where the module’s symbol is visible (§12.4.T).

12.4.3 Explicit Naming

All publicly visible top-level module symbols can be named explicitly with the following syntax:

module-access—expression:
module-identifier-list . identifier

module-identifier—list:
module—identifier
module—identifier . module—identifier—list
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This allows two variables that have the same name to be distinguished based on the name of their module. Using
explicit module naming in a function call restricts the set of candidate functions to those in the specified module.

If code refers to symbols that are defined by multiple modules, the compiler will issue an error. Explicit naming can
be used to disambiguate the symbols in this case.

Open issue. It is currently unspecified whether the first-named module is always at the outermost module
level scope, or whether a scope-search mechanism is used starting at the scope containing the usage.

Example (ambiguity.chpl). In the following example,

module M1 {

var x: int = 1;

var y: int = -1;

proc printX() {
writeln("Ml’s x is: ", x);

}
proc printY() {
writeln("Ml’s y is: ", vy);
}
}

module M2 {
use M3;
use Ml;

var x: int = 2;

proc printX() {
writeln("M2’s x is: ", x);

}

proc main () {
Ml.x = 4;
Ml.printX();
writeln (x);
printX(); // This is not ambiguous
printY(); // ERROR: This is ambiguous

}

module M3 {

var x: int = 3;

var y: int = -3;

proc print¥Y() {
writeln("M3’s y is: ", y);

}
}

The call to printX() is not ambiguous because M2’s definition shadows that of M1. On the other hand,
the call to printY() is ambiguous because it is defined in both M1 and M3. This will result in a compiler
error.

12.4.4 Using Modules

If a module is visible to the scope in which accessing its symbols is desirable, then a use statement on that module
may be employed. Use statements make a module’s visible symbols available without requiring them to be prefixed
by the module’s name. For information about use statements in general, see §11.11
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If a type is specified in the limitation—clause, then the type’s fields and methods are treated similarly to the type name.
These fields and methods cannot be specified in a limitation—clause on their own.

12.4.5 Module Initialization

Module initialization occurs at program start-up. All top-level statements in a module other than function and type
declarations are executed during module initialization.

Example (init.chpl). In the code,

var x = fool(); // executed at module initialization
writeln ("Hi!"); // executed at module initialization
proc sayGoodbye {

writeln ("Bye!"); // not executed at module initialization

}

The function foo() will be invoked and its result assigned to x. Then “Hi!” will be printed.

Module initialization order is discussed in §12.5.2]

12.4.6 Module Deinitialization

Module deinitialization occurs at program tear-down. During module deinitialization:

e If the module contains a deinitializer, which is a function named deinit () thatis declared at the module level,
it is executed first.

e [f the module declares global variables, they are deinitialized in the reverse declaration order.

Module deinitialization order is discussed in §12.5.3

12.5 Program Execution

Chapel programs start by initializing all modules and then executing the main function (§12.5.1).
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12.5.1 The main Function

The main function must be called main and must have zero arguments. It can be specified with or without parentheses.
In any Chapel program, there is a single main function that defines the program’s entry point. If a program defines
multiple potential entry points, the implementation may provide a compiler flag that disambiguates between main
functions in multiple modules.

Cray’s Chapel Implementation. In the Cray Chapel compiler implementation, the — —main-module flag
can be used to specify the module from which the main function definition will be used.

Example (main-module.chpl). Because it defines two main functions, the following code will yield an
error unless a main module is specified on the command line.
module M1 {
const x = 1;
proc main () {
writeln("M", x, "’s main");
}
}

module M2 {
use M1;

const x = 2;
proc main () {
M1l.main () ;
writeln("M", x, "’/s main");
}
}

If M1 is specified as the main module, the program will output:

M1l’s main

If M2 is specified as the main module the program will output:
M1’s main

M2’s main

Notice that main is treated like just another function if it is not in the main module and can be called as
such.

To aid in exploratory programming, a default main function is created if the program does not contain a user-defined
main function. The default main function is equivalent to

proc main() {}

Example (no-main.chpl). The code

writeln ("hello, world");

is a legal and complete Chapel program. The startup code for a Chapel program first calls the module
initialization code for the main module and then calls main (). This program’s initialization function
is the top-level writeln() statement. The module declaration is taken to be the entire file, as described
in §12.2]
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12.5.2 Module Initialization Order

Module initialization is performed using the following algorithm.

Starting from the module that defines the main function, the modules named in its use statements are visited depth-first
and initialized in post-order. If a use statement names a module that has already been visited, it is not visited a second
time. Thus, infinite recursion is avoided.

Modules used by a given module are visited in the order in which they appear in the program text. For nested modules,
the parent module and its uses are initialized before the nested module and its uses.

Example (init-order.chpl). The code

module M1 {
use M2.M3;

use M2;
writeln("In M1l’s initializer");
proc main () {

writeln("In main");
}
}

module M2 {
use M4;
writeln("In M2’s initializer");
module M3 ({
writeln("In M3’s initializer");
}
}

module M4 {
writeln("In M4’s initializer");

}

prints the following

In M4’s initializer
In M2’'s initializer
In M3’s initializer
In M1l’s initializer
In main

M1, the main module, uses M2.M3 and then M2, thus M2.M3 must be initialized. Because M2.M3 is a
nested module, M4 (which is used by M2) must be initialized first. M2 itself is initialized, followed by
M2.M3. Finally M1 is initialized, and the main function is run.

12.5.3 Module Deinitialization Order

Module deinitialization is performed in the reverse order of module initialization, as specified in §12.5.2]
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A function is a code abstraction that can be invoked by a call expression. Throughout this specification the term
“function” is used in this programming-languages sense, rather than in the mathematical sense. A function has zero
or more formal arguments, or simply formals. Upon a function call each formal is associated with the corresponding
actual argument, or simply actual. Actual arguments are provided as part of the call expression, or at the the call site.
Direct and indirect recursion is supported.

A function can be a procedure, which completes and returns to the call site exactly once, returning no result, a single
result, or multiple results aggregated in a tuple. A function can also be an iterator, which can generate, or yield,
multiple results (in sequence and/or in parallel). A function (either a procedure or an iterator) can be a method if it is
bound to a type (often a class). An operator in this chapter is a procedure with a special name, which can be invoked
using infix notation, i.e., via a unary or binary expression. This chapter defines procedures, but most of its contents
apply to iterators and methods as well.

Functions are presented as follows:

e procedures (this chapter)

e operators §13.2] §10.12)

e iterators §22|

e methods (when bound to a class) §16.1.5|

e function calls

e various aspects of defining a procedure

e calling external functions from Chapel §31.1.1]

e calling Chapel functions from external functions§31.1.7]

e determining the function to invoke for a given call site: function and operator overloading §13.12] function

resolution §13.13]

13.1 Function Calls

The syntax to call a non-method function is given by:

call-expression:
Ivalue—expression ( named-expression-list )
Ivalue-expression [ named-expression—list ]
parenthesesless—function—identifier

named-expression—list:

named-expression
named-expression , named—expression-list

94
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named-expression:
expression
identifier = expression

parenthesesless—function—identifier:
identifier

A call-expression is resolved to a particular function according to the algorithm for function resolution described

in §13.13

Functions can be called using either parentheses or brackets.

Rationale. This provides an opportunity to blur the distinction between an array access and a function
call and thereby exploit a possible space/time tradeoff.

Functions that are defined without parentheses must be called without parentheses as defined by scope resolution.
Functions without parentheses are discussed in

A named-expression is an expression that may be optionally named. It provides an actual argument to the function
being called. The optional identifier refers to a named formal argument described in §13.4.1

Calls to methods are defined in Section

13.2 Procedure Definitions

Procedures are defined with the following syntax:

procedure—declaration—statement:
privacy-specifier,,. procedure-kind,,; proc function-name argument-list,,, return—intent,,; return-type,,. where-clause,,.
function—body

procedure-kind:
inline
export
extern
override

function—name:
identifier
operator-name

operator —name: one of
+ —x / % xx | == = <= >= < > << > & | N ~
= += —= *x= [= P= *xx= &= |= M= <<= >S>= <=> <~>

argument-list:
( formals,,: )

formals:
formal
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formal , formals

formal:

formal-intent,,,, identifier formal-type,,; default—expression,,.

formal-intent,,. identifier formal-type,,, variable-argument—expression

formal-intent,,,, tuple-grouped—identifier-list formal-type,,. default—expression,:
formal-intent,,,, tuple-grouped-identifierlist formal-type,,. variable-argument-expression

formal-type:

: type—expression
: ? identifier,

default—expression:
= expression

variable—argument-expression:

... expression
... ? identifier,

formal-intent:
const
const in
const ref
in
out
inout
ref
param
type

return—intent:
const
const ref
ref
param
type

return—type:
: type—expression

where-clause:
where expression

function-body:
block—-statement
return-statement

Functions do not require parentheses if they have no arguments. Such functions are described in §13.3]

Formal arguments can be grouped together using a tuple notation as described in §15.6.4]

96

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing of a
default value. Default values are discussed in §13.4.2]
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The intents const, const in, const ref, in, out, inout and ref are discussed in §13.5] The intents param and
type make a function generic and are discussed in §23.1] If the formal argument’s type is omitted, generic, or prefixed
with a question mark, the function is also generic and is discussed in §23.1]

Functions can take a variable number of arguments. Such functions are discussed in
The return—intent can be used to indicate how the value is returned from a function. return—intent is described further in

§13.7

Open issue. Parameter and type procedures are supported. Parameter and type iterators are currently not
supported.

The return—type is optional and is discussed in §13.9] A type function may not specify a return type.

The where-clause is optional and is discussed in §13.10)

Function and operator overloading is supported in Chapel and is discussed in §13.12] Operator overloading is sup-
ported on the operators listed above (see operator-name).

The optional privacy-specifier keywords indicate the visibility of module level procedures to outside modules. By
default, procedures are publicly visible. More details on visibility can be found in §12.4.2]

The linkage specifier inline indicates that the function body must be inlined at every call site.

Rationale. A Chapel compiler is permitted to inline any function if it determines there is likely to be
a performance benefit to do so. Hence an error must be reported if the compiler is unable to inline a
procedure with this specifier. One example of a preventable inlining error is to define a sequence of
inlined calls that includes a cycle back to an inlined procedure.

See the chapter on interoperability (§31)) for details on exported and imported functions.

13.3 Functions without Parentheses

Functions do not require parentheses if they have empty argument lists. Functions declared without parentheses around
empty argument lists must be called without parentheses.

Example (function-no-parens.chpl). Given the definitions
proc foo { writeln("In foo"); }

proc bar() { writeln("In bar"); }

the procedure foo can be called by writing foo and the procedure bar can be called by writing bar ().
It is an error to use parentheses when calling foo or omit them when calling bar.
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13.4 Formal Arguments

A formal argument’s intent (§13.5)) specifies how the actual argument is passed to the function. If no intent is specified,
the default intent (§13.5.2) is applied, resulting in type-dependent behavior.

13.4.1 Named Arguments

A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example (named-args.chpl). Running the code

proc foo(x: int, y: int) { writeln(x); writeln(y); }

foo (x=2, y=3);
foo(y=3, x=2);

will produce the output

w N wN

named argument passing is used to map the actual arguments to the formal arguments. The two function
calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values. For a
function that has many arguments, it is sometimes good practice to name the arguments at the call site for compiler-
checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default expression to
the declaration of the formal argument. If the actual argument is omitted from the function call, the default expression
is evaluated when the function call is made and the evaluated result is passed to the formal argument as if it were
passed from the call site. Note though that the default value is evaluated in the same scope as the called function.
Default value expressions can refer to previous formal arguments or to variables that are visible to the scope of the
function definition.

Example (default-values.chpl). The code

proc foo(x: int = 5, y: int = 7) { writeln(x); writeln(y); }
foo();

foo (7);

foo(y=5);

writes out
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[C NG SN N RS BN,

Default values are specified for the formal arguments x and y. The three calls to foo are equivalent to the
following three calls where the actual arguments are explicit: foo (5, 7), foo(7, 7),and foo (5, 5).
The example foo (y=5) shows how to use a named argument for y in order to use the default value for x
in the case when x appears earlier than y in the formal argument list.

13.5 Argument Intents

Argument intents specify how an actual argument is passed to a function where it is represented by the corresponding
formal argument.

Argument intents are categorized as being either concrete or abstract. Concrete intents are those in which the semantics
of the intent keyword are independent of the argument’s type. Abstract intents are those in which the keyword (or lack
thereof) expresses a general intention that will ultimately be implemented via one of the concrete intents. The specific
choice of concrete intent depends on the argument’s type and may be implementation-defined. Abstract intents are
provided to support productivity and code reuse.

13.5.1 Concrete Intents

The concrete intents are in, out, inout, ref, const in, and const ref.

The In Intent

When in is specified as the intent, the formal argument represents a variable that is copy-initialized with the value of
the actual argument. For example, for integer arguments, the formal argument will store a copy of the actual argument.
An implicit conversion occurs from the actual argument to the type of the formal. The formal can be modified within
the function, but such changes are local to the function and not reflected back to the call site.

The Out Intent

When out is specified as the intent, the actual argument is ignored when the call is made, but when the function
returns, the formal argument is copied back to the actual argument. An implicit conversion occurs from the type of the
formal to the type of the actual. The actual argument must be a valid lvalue. The formal argument is initialized to its
default value if one is supplied, or to its type’s default value otherwise. The formal argument can be modified within
the function.
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The Inout Intent

When inout is specified as the intent, the actual argument is copied into the formal argument as with the in intent
and then copied back out as with the out intent. The actual argument must be a valid lvalue. The formal argument can
be modified within the function. The type of the actual argument must be the same as the type of the formal.

The Ref Intent

When ref is specified as the intent, the actual argument is passed by reference. Any reads of, or modifications to, the
formal argument are performed directly on the corresponding actual argument at the call site. The actual argument
must be a valid lvalue. The type of the actual argument must be the same as the type of the formal.

The ref intent differs from the inout intent in that the inout intent requires copying from/to the actual argument
on the way in/out of the function, while ref allows direct access to the actual argument through the formal argument

without copies. Note that concurrent modifications to the ref actual argument by other tasks may be visible within
the function, subject to the memory consistency model.

The Const In Intent

The const in intent is identical to the in intent, except that modifications to the formal argument are prohibited
within the function.

The Const Ref Intent

The const ref intent is identical to the ref intent, except that modifications to the formal argument are prohibited
within the dynamic scope of the function. Note that concurrent tasks may modify the actual argument while the
function is executing and that these modifications may be visible to reads of the formal argument within the function’s
dynamic scope (subject to the memory consistency model).

Summary of Concrete Intents

The following table summarizes the differences between the concrete intents:

‘ in ‘ out inout ref const in | const ref
copied in on function call? yes no yes no yes no
copied out on function return? | no yes yes no no no
refers to actual argument? no no no yes no yes
formal can be read? yes yes yes yes yes yes
formal can be modified? yes yes yes yes no no
local changes affect the actual? | no | onreturn | onreturn | immediately N/A N/A
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13.5.2 Abstract Intents

The abstract intents are const and the default intent (when no intent is specified).

Abstract Intents Table

The following table summarizes what these abstract intents mean for each type:

meaning of meaning of

type const intent | default intent notes

bool const in const in

int const in const in

uint const in const in

real const in const in

imag const in const in

complex const in const in

range const in const in

owned class const in in see|"Default Intent for owned and shared"
shared class const in in see\“Default Intent for owned and shared”‘
borrowed class const in const in

unmanaged class | const in const in

atomic const ref ref

single const ref ref

sync const ref ref

string const ref const ref

record const ref | const ref see|”Default Intent for Arrays and Record this"|
union const ref const ref

dmap const ref const ref

domain const ref const ref

array const ref | ref/const ref see|”Default Intent for Arrays and Record this"|

The Const Intent

The const intent specifies the intention that the function will not and cannot modify the formal argument within its
dynamic scope. Whether the actual argument will be passed by const in or const ref intent depends on its type.
In general, small values, such as scalar types, will be passed by const in; while larger values, such as domains and
arrays, will be passed by const ref intent. Thel[table]earlier in this sub-section lists the meaning of the const intent
for each type.

The Default Intent

When no intent is specified for a formal argument, the default intent is applied. It is designed to take the most
natural/least surprising action for the argument, based on its type. The|[table]earlier in this sub-section lists the meaning
of the default intent for each type.

Default argument passing for tuples generally matches the default argument passing strategy that would be applied if
each tuple element was passed as a separate argument.
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Open issue. ~ How tuples should be handled under default intents is an open issue; particularly for
heterogeneous tuples whose components would fall into separate categories in the table above. One
proposed approach is to apply the default intent to each component of the tuple independently.

Default Intent for Arrays and Record ’this’

The default intent for arrays and for a this argument of record type (see §14.2) is ref or const ref. Itis ref if
the formal argument is modified inside the function, otherwise it is const ref. Note that neither of these cause an
array or record to be copied by default. The choice between ref and const ref is similar to and interacts with return

intent overloads (see §13.7.3).

Default Intent for ’owned’ and ’shared’

The default intent for owned and shared arguments is generally in. There is an exception for generic formal argu-
ments that use default or const intent and have no type expression. When a such a generic formal is instantiated for
an owned or shared actual argument, the instantiated formal will have the relevant borrowed type. This exception
does not apply to type arguments or to the default initializer generated for a class type.

Example (owned-any-intent.chpl).

proc defaultGeneric(arg) {
writeln (arg.type:string);
}
class SomeClass { }
defaultGeneric (new owned SomeClass());

Here, the program will output the type borrowed SomeClass rather than owned SomeClass. It would
output owned SomeClass if the argument were declared with an in intent (e.2. in arg) or if the
argument included a type specifier (e.g. arg: owned).

Open issue. The reason for this rule is to make it clearer when ownership transfer will happen. In
particular, with this rule, ownership transfer can only occur for arguments marked with an in intent or
with an owned or shared argument type.

This rule is likely change based upon further experience in using it.

13.6 Variable Number of Arguments

Functions can be defined to take a variable number of arguments where those arguments can have any intent or can be
types. A variable number of parameters is not supported. This allows the call site to pass a different number of actual
arguments. There must be at least one actual argument.

If the variable argument expression contains an identifier prepended by a question mark, the number of actual argu-
ments can vary, and the identifier will be bound to an integer parameter value indicating the number of arguments at
a given call site. If the variable argument expression contains an expression without a question mark, that expression
must evaluate to an integer parameter value requiring the call site to pass that number of arguments to the function.

Within the function, the formal argument that is marked with a variable argument expression is a tuple of the actual
arguments.



Procedures 103

Example (varargs.chpl). The code

proc mywriteln(x ...%k) {
for param i in 1..k do
writeln(x(i));

}

defines a generic procedure called mywriteln that takes a variable number of arguments of any type and
then writes them out on separate lines. The parameter for-loop (§11.9.2) is unrolled by the compiler so
that i is a parameter, rather than a variable. This needs to be a parameter for-loop because the expression
x (1) will have a different type on each iteration. The type of x can be specified in the formal argument
list to ensure that the actuals all have the same type.

Example (varargs-with-type.chpl). Either or both the number of variable arguments and their types can
be specified. For example, a basic procedure to sum the values of three integers can be written as

proc sum(x: int...3) return x (1) + x(2) + x(3);

Specifying the type is useful if it is important that each argument have the same type. Specifying the
number is useful in, for example, defining a method on a class that is instantiated over a rank parameter.

Example (varargs-returns-tuples.chpl). The code

proc tuple(x ...) return x;

defines a generic procedure that is equivalent to building a tuple. Therefore the expressions tuple (1, 2)
and (1,2) are equivalent, as are the expressions tuple (1) and (1,).

13.7 Return Intents

The return—intent specifies how the value is returned from a function, and in what contexts that function is allowed to
be used. By default, or if the return—intent is const, the function returns a value that cannot be used as an Ivalue.

13.7.1 The Ref Return Intent

When using a ref return intent, the function call is an lvalue (specifically, a call expression for a procedure and an
iterator variable for an iterator).

The ref return intent is specified by following the argument list with the ref keyword. The function must return or

yield an lvalue.

Example (ref-return-intent.chpl). The following code defines a procedure that can be interpreted as a
simple two-element array where the elements are actually module level variables:
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var x, y = 0;

proc A(i: int) ref {
if i <0 ||] 1 > 1 then
halt ("array access out of bounds");
if i == 0 then
return x;
else
return y;

}

Calls to this procedure can be assigned to in order to write to the “elements” of the array as in
A(0) = 1;
A(l) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1));

This code outputs the number 3.

13.7.2 The Const Ref Return Intent

The const ref return intent is also available. It is a restricted form of the ref return intent. Calls to functions
marked with the const ref return intent are not lvalue expressions.

13.7.3 Return Intent Overloads

In some situations, it is useful to choose the function called based upon how the returned value is used. In particular,
suppose that there are two functions that have the same formal arguments and differ only in their return intent. One
might expect such a situation to result in an error indicating that it is ambiguous which function is called. However,
the Chapel language includes a special rule for determining which function to call when the candidate functions are
otherwise ambiguous except for their return intent. This rule enables data structures such as sparse arrays.

See|[13.13.5|for a detailed description of how return intent overloads are chosen based upon calling context.

Example (ref-return-intent-pair.chpl).

Return intent overload can be used to ensure, for example, that the second element in the pseudo-array is
only assigned a value if the first argument is positive. The following is an example:

var x, y = 0;
proc doA (param setter, i: int) ref {

if i <0 |l 1 > 1 then
halt ("array access out of bounds");

if setter && i == 1 && x <= 0 then
halt ("cannot assign value to A(l) if A(0) <= 0");

if i == 0 then
return x;
else

return y;
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}

proc A(i: int) ref ({
return doA (true, 1i);

}

proc A(i: int) {
return doA (false, 1i);

}

A(0) 0;
A(l) = 1;

13.7.4 The Param Return Intent

A parameter function, or a param function, is a function that returns a parameter expression. It is specified by following
the function’s argument list by the keyword param. It is often, but not necessarily, generic.

It is a compile-time error if a parameter function does not return a parameter expression. The result of a parameter
function is computed during compilation and substituted for the call expression.

Example (param-functions.chpl). In the code
proc sumOfSquares (param a: int, param b: int) param
return ax*+*2 + b**2;

var x: sumOfSquares (2, 3)x*int;

sumOfSquares is a parameter procedure that takes two parameters as arguments. Calls to this procedure
can be used in places where a parameter expression is required. In this example, the call is used in the
declaration of a homogeneous tuple and so is required to be a parameter.

Parameter functions may not contain control flow that is not resolved at compile-time. This includes loops other than
the parameter for loop and conditionals with a conditional expressions that is not a parameter.

13.7.5 The Type Return Intent

A type function is a function that returns a type, not a value. It is specified by following the function’s argument list
by the keyword type, without the subsequent return type. It is often, but not necessarily, generic.

It is a compile-time error if a type function does not return a type. The result of a type function is computed during
compilation.

As with parameter functions, type functions may not contain control flow that is not resolved at compile-time. This
includes loops other than the parameter for loop §11.9.2] and conditionals with a conditional expression that is not a
parameter.

Example (type-functions.chpl). In the code

proc myType (x) type {
if numBits (x.type) <= 32 then return int (32);
else return int (64);

}
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myType i a type procedure that takes a single argument x and returns int (32) if the number of bits used
to represent x is less than or equal to 32, otherwise it returns int (64). numBits is a param procedure
defined in the standard Types module.

13.8 The Return Statement

The return statement can only appear in a function. It causes control to exit that function, returning it to the point at
which that function was called.

A procedure can return a value by executing a return statement that includes an expression. If it does, that expression’s
value becomes the value of the invoking call expression.

A return statement in a procedure of a non-void return type (§13.9) must include an expression. A return statement
in a procedure of a void return type or in an iterator must not include an expression. A return statement of a variable
procedure must contain an lvalue expression.

The syntax of the return statement is given by

return—statement:
return expression,p: ;

Example (return.chpl). The following code defines a procedure that returns the sum of three integers:

proc sum(il: int, i2: int, i3: int)
return il + 12 + 1i3;

13.9 Return Types

Every procedure has a return type. The return type is either specified explicitly via return-type in the procedure
declaration, or is inferred implicitly.

13.9.1 Explicit Return Types

If a return type is specified and is not void, each return statement of the procedure must include an expression. For
a non-ref return intent, an implicit conversion occurs from each return expression to the specified return type. For a
ref return intent (§13.7.1), the return type must match the type returned in all of the return statements exactly, when
checked after generic instantiation and parameter folding (if applicable).
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13.9.2 Implicit Return Types

If a return type is not specified, it is inferred from the return statements. It is illegal for a procedure to have a
return statement with an expression and a return statement without an expression. For procedures without any return
statements, or when none of the return statements include an expression, the return type is void.

Otherwise, the types of the expressions in all of the procedure’s return statements are considered. If a function has a
ref return intent (§13.7.1), they all must be the same exact type, which becomes the inferred return type. Otherwise,
there must exist exactly one type such that an implicit conversion is allowed between every other type and that type,
and that type becomes the inferred return type. If the above requirements are not satisfied, it is an error.

13.10 Where Clauses

The list of function candidates can be constrained by where clauses. A where clause is specified in the definition of a
function (§13.2). The expression in the where clause must be a boolean parameter expression that evaluates to either
true or false. If it evaluates to false, the function is rejected and thus is not a possible candidate for function
resolution.

Example (whereClause.chpl). Given two overloaded function definitions

proc foo(x) where x.type == int { writeln("int"); }
proc foo(x) where x.type == real { writeln("real"); }

the call foo(3) resolves to the first definition because the where clause on the second function evaluates to
false.

13.11 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to arbitrary
degrees, i.e., a function can be nested in a nested function.

Nested functions are only visible to function calls within the lexical scope in which they are defined.

Nested functions may refer to variables defined in the function(s) in which they are nested.

13.12 Function and Operator Overloading
Functions that have the same name but different argument lists are called overloaded functions. Function calls to
overloaded functions are resolved according to the function resolution algorithm in §I3.13]

Operator overloading is achieved by defining a function with a name specified by that operator. The operators that
may be overloaded are listed in the following table:
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arity | operators
unary | + — ! ~
binary | + — * / % %% == <= >= < > << >> & | ~ by
= 4= —= x= /= %= xx= &= |= "= <<= >>= <=> <~>

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution follows the
same algorithm as function resolution.

13.13 Function Resolution

Function resolution is the algorithm that determines which function to invoke for a given call expression. Function
resolution is defined as follows.

e Identify the set of visible functions for the function call. A visible function is any function that satisfies the
criteria in §13.13.1] If no visible function can be found, the compiler will issue an error stating that the call
cannot be resolved.

e From the set of visible functions for the function call, determine the set of candidate functions for the function
call. A candidate function is any function that satisfies the criteria in If no candidate function can be
found, the compiler will issue an error stating that the call cannot be resolved. If exactly one candidate function
is found, this is determined to be the function.

e From the set of candidate functions, determine the set of most specific functions. In most cases, there is one
most specific function, but there can be several if they differ only in return intent. The set of most specific
functions is the set of functions that are not more specific than each other but that are more specific than every
other candidate function. The more specific relationship is defined in

e From the set of most specific functions, the compiler determines a best function for each return intent as de-
scribed in §13.13.4] If there is more than one best function for a given return intent, the compiler will issue
an error stating that the call is ambiguous. Otherwise, it will choose which function to call based on the calling
context as described in §13.13.5]

13.13.1 Determining Visible Functions

Given a function call, a function is determined to be a visible function if the name of the function is the same as the
name of the function call and the function is defined in the same scope as the function call or a lexical outer scope of
the function call, or if the function is publicly declared in a module that is used from the same scope as the function
call or a lexical outer scope of the function call. Function visibility in generic functions is discussed in

13.13.2 Determining Candidate Functions

Given a function call, a function is determined to be a candidate function if there is a valid mapping from the function
call to the function and each actual argument is mapped to a formal argument that is a legal argument mapping.
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Valid Mapping
The following algorithm determines a valid mapping from a function call to a function if one exists:

e Each actual argument that is passed by name is matched to the formal argument with that name. If there is no
formal argument with that name, there is no valid mapping.

e The remaining actual arguments are mapped in order to the remaining formal arguments in order. If there are
more actual arguments then formal arguments, there is no valid mapping. If any formal argument that is not
mapped to by an actual argument does not have a default value, there is no valid mapping.

e The valid mapping is the mapping of actual arguments to formal arguments plus default values to formal argu-
ments that are not mapped to by actual arguments.

Legal Argument Mapping

An actual argument of type T4 can be mapped to a formal argument of type T if any of the following conditions
hold:

e T4 and T are the same type.
e There is an implicit conversion from T4 to Tr.
e T4 is derived from 1.

e T4 is scalar promotable to 7.

13.13.3 Determining More Specific Functions

Given two functions F; and F5, the more specific function is determined by the first of the following steps that applies:

e If F does not require promotion and F5 does require promotion, then F} is more specific.
e If F5 does not require promotion and F} does require promotion, then F5 is more specific.

o If at least one of the legal argument mappings to F3 is a more specific argument mapping than the corresponding
legal argument mapping to F5 and none of the legal argument mappings to F5 is a more specific argument
mapping than the corresponding legal argument mapping to F1, then F} is more specific.

o If at least one of the legal argument mappings to F5 is a more specific argument mapping than the corresponding
legal argument mapping to I} and none of the legal argument mappings to F} is a more specific argument
mapping than the corresponding legal argument mapping to Fb, then F5 is more specific.

e If F shadows F5, then F} is more specific.
e If F;, shadows F1i, then F5 is more specific.

o If at least one of the legal argument mappings to F} is weak preferred and none of the legal argument mappings
to F are weak preferred, then F} is more specific.
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o If at least one of the legal argument mappings to F5 is weak preferred and none of the legal argument mappings
to F are weak preferred, then F5 is more specific.

o [f atleast one of the legal argument mappings to F} is weaker preferred and none of the legal argument mappings
to Fy are weaker preferred, then I} is more specific.

o [f atleast one of the legal argument mappings to Fb is weaker preferred and none of the legal argument mappings
to F are weaker preferred, then F5 is more specific.

o If at least one of the legal argument mappings to I is weakest preferred and none of the legal argument map-
pings to Fy are weakest preferred, then F is more specific.

o If at least one of the legal argument mappings to F5 is weakest preferred and none of the legal argument map-
pings to F are weakest preferred, then F; is more specific.

e Otherwise neither function is more specific.

Given an argument mapping, M7, from an actual argument, A, of type T4 to a formal argument, F'1, of type Ty
and an argument mapping, Ms, from the same actual argument to a formal argument, F'2, of type T2, the level of
preference for one of these argument mappings is determined by the first of the following steps that applies:

e If T'r1 and T are the same type, F'1 is an instantiated parameter, and F'2 is not an instantiated parameter, M,
is more specific.

o If T'r1 and T are the same type, F'2 is an instantiated parameter, and F'1 is not an instantiated parameter, M
is more specific.

e If M, does not require scalar promotion and M5 requires scalar promotion, M; is more specific.

e If M requires scalar promotion and M5 does not require scalar promotion, M, is more specific.

e If Ty and T'ro are the same type, F'1 is generic, and F'2 is not generic, M; is more specific.

e If Try and T'ro are the same type, F'2 is generic, and F'1 is not generic, M5 is more specific.

e If F'1 is not generic over all types and F'2 is generic over all types, M; is more specific.

e If F'1 is generic over all types and F'2 is not generic over all types, M> is more specific.

e If F'1 and F'2 are both generic, and F'1 is partially concrete but £'2 is not, then M7 is more specific.
e If F'1 and F'2 are both generic, and F'2 is partially concrete but F'1 is not, then M> is more specific.
o If F'1 is a param argument but F'2 is not, then M is weak preferred.

o If F'2is a param argument but F'1 is not, then My is weak preferred.

e If Ais not a param argument with a default size and F'2 requires a narrowing conversion but F'1 does not, then
M is weak preferred.

e If Ais not a param argument with a default size and F'1 requires a narrowing conversion but '2 does not, then
M5 is weak preferred.

e If Ty and T'r; are the same type and Ty and T’ro are not the same type, M; is more specific.

e If Ty and T'r; are not the same type and T4 and T are the same type, M, is more specific.
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e If A uses a scalar promotion type equal to Ty but different from 7T'ro, then M; will be preferred as follows:

— if Ais a param argument with a default size, then M; is weakest preferred
— if A is a param argument with non-default size, then M; is weaker preferred

— otherwise, M is more specific
e If A uses a scalar promotion type equal to Tro but different from 7'r1, then My will be preferred as follows:

— if A is a param argument with a default size, then M5 is weakest preferred
— if A is a param argument with non-default size, then M5 is weaker preferred

— otherwise, M5 is more specific

e If T4 orits scalar promotion type prefers conversion to 71 over conversion to Tz2, then M is weaker preferred.

Type conversion preferences are as follows:

— Prefer converting a numeric argument to a numeric argument of a different width but the same category
over converting to another type. Categories are

bool

enum

int or uint

real

imag

EE R

complex

Prefer an enum or bool cast to int over uint

Prefer an enum or bool cast to a default-sized int or uint over another size of int or uint

Prefer an enum, bool, int, or uint cast to a default-sized real over another size of real or complex

Prefer an enum, bool, int, or uint cast to a default-sized complex over another size of complex

Prefer real/imag cast to the complex with that component size (ie total width of twice the real/imag) over
another size of complex

If T'4 or its scalar promotion type prefers conversion to 7’ro over conversion to 71, then My is weaker preferred.

If T'r is derived from T2, then M is more specific.

If T'ry is derived from T, then M5 is more specific.

If there is an implicit conversion from Ty to Trs, then M; is more specific.

If there is an implicit conversion from T2 to T, then M, is more specific.

If T is any int type and 1o is any uint type, M; is more specific.

If Ty is any int type and T is any uint type, My is more specific.

Otherwise neither mapping is more specific.
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13.13.4 Determining Best Functions

Given the set of most specific functions for a given return intent, only the following function(s) are selected as best
functions:

e all functions, if none of them contain a where clause;

e only those functions that have a where clause, otherwise.

13.13.5 Choosing Return Intent Overloads Based on Calling Context

See also

The compiler can choose between overloads differing in return intent when:

e there are zero or one best functions for each of ref, const ref, const, or the default (blank) return intent

e at least two of the above return intents have a best function.

In that case, the compiler is able to choose between ref return, const ref return, and value return functions based
upon the context of the call. The compiler chooses between these return intent overloads as follows:

If present, a ref return version will be chosen when:

the call appears on the left-hand side of a variable initialization or assignment statement

the call is passed to another function as a formal argument with out, inout, or ref intent

the call is captured into a ref variable

the call is returned from a function with ref return intent

Otherwise, the const ref return or value return version will be chosen. If only one of these is in the set of most
specific functions, it will be chosen. If both are present in the set, the choice will be made as follows:

The const ref version will be chosen when:

o the call is passed to another function as a formal argument with const ref intent
o the call is captured into a const ref variable

e the call is returned from a function with const ref return intent

Otherwise, the value version will be chosen.



14 Methods

A method is a procedure or iterator that is associated with an expression known as the receiver.

Methods are declared with the following syntax:

method—declaration—statement:
procedure-kind,,,; proc—or—iter this-intent,,, type—binding,,.; function-name argument-Iist,,.
return-intent,,,, return—type,,: where—clause,,; function-body

proc—or-iter:
proc
iter

this—intent:
param
type
ref
const ref
const

type-binding:
identifier .
(expr).

Methods defined within the lexical scope of a class, record, or union are referred to as primary methods. For such
methods, the type-binding is omitted and is taken to be the innermost class, record, or union in which the method is
defined.

Methods defined outside of such scopes are known as secondary methods and must have a type-binding (otherwise,
they would simply be standalone functions rather than methods). Note that secondary methods can be defined not only
for classes, records, and unions, but also for any other type (e.g., integers, reals, strings).

Secondary methods can be declared with a type expression instead of a type identifier. In particular, if the type-binding
is a parenthesized expression, the compiler will evaluate that expression to find the receiver type for the method. In
that case, the method applies only to receivers of that type. See also §23.3]

Method calls are described in §14.1]

The use of this—intent is described in §14.2]

14.1 Method Calls

A method is invoked with a method call, which is similar to a non-method call expression, but it can include a receiver
clause. The receiver clause syntactically identifies a single argument by putting it before the method name. That
argument is the method receiver. When calling a method from another method, or from within a class or record
declaration, the receiver clause can be omitted.

113
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method-call-expression:
receiver—clause,,; expression ( named—expression—list )
receiver—-clause,,; expression [ named-expression-list ]
receiver—clause,,, parenthesesless—function—identifier

The receiver-clause (or its absence) specifies the method’s receiver §14.2]

Example (defineMethod.chpl). A method to output information about an instance of the Actor class can
be defined as follows:
proc Actor.print () {

writeln ("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance of the Actor class, anActor, with the call expression anActor.print ().

The actual arguments supplied in the method call are bound to the formal arguments in the method declaration follow-
ing the rules specified for procedures (§I3)). The exception is the receiver §14.2]

14.2 The Method Receiver and the this Argument

A method’s receiver is an implicit formal argument named this representing the expression on which the method is
invoked. The receiver’s actual argument is specified by the receiver-clause of a method-call-expression as specified in

{14.1

Example (implicitThis.chpl). Let class c, method foo, and function bar be defined as

class C {
proc foo() {
bar (this);
}
}

proc bar(c: C) { writeln(c); }

Then given an instance of ¢ called c1, the method call c1. foo () results in a call to bar where the argu-
ment is c1. Within primary method C. foo (), the (implicit) receiver formal has static type C (otherwise
known as borrowed C) and is referred to as this.

Methods whose receivers are objects are called instance methods. Methods may also be defined to have type
receivers—these are known as type methods.

The optional this-intent is used to specify type methods, to constrain a receiver argument to be a param, or to specify
how the receiver argument should be passed to the method.

When no this-intent is used, a default this intent applies. For methods on classes and other primitive types, the de-
fault this intent is the same as the default intent for that type. For record methods, the intent for the receiver formal
argument is ref or const ref, depending on whether the formal argument is modified inside of the method. Pro-
grammers wishing to be explicit about whether or not record methods modify the receiver can explicitly use the ref
or const ref this-intent.
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A method whose this-intent is type defines a type method. It can only be called on the type itself rather than on an
instance of the type. When this—intent is param, it specifies that the function can only be applied to param objects of
the given type binding.

Example (paramTypeThisIntent.chpl).  In the following code, the isodd method is defined with a
this-intent of param, permitting it to be called on params only. The size method is defined with a
this—intent of type, requiring it to be called on the int type itself, not on integer values.

proc param int.isOdd() param {

return this & 0x1 == 0x1;

}

proc type int.size () param {
return 64;

}

param three = 3;

var seven = 7;

writeln (42.is0dd()); // prints false

writeln (three.is0Odd()); // prints true

writeln((42+three) .1s0dd()); // prints true

// writeln (seven.isOodd()); // illegal since ’seven’ 1s not a param
writeln (int.size()); // prints 64

// writeln(42.size()); // illegal since ’size()’ 1s a type method

Type methods can also be iterators.

Example (typeMethodlter.chpl). In the following code, the class C defines a type method iterator which
can be invoked on the type itself:
class C {

var x: int;
var y: string;

iter type myIter () {
yield 3;
yield 5;
yield 7;
yield 11;

}

for i in C.myIter () do
writeln(1i);

When this-intent is ref, the receiver argument will be passed by reference, allowing modifications to this. If
this-intent is const ref, the receiver argument is passed by reference but it cannot be modified inside the method.
The this-intent can also describe an abstract intent as follows. If it is const, the receiver argument will be passed with
const intent. If it is left out entirely, the receiver will be passed with a default intent. For records, that default intent
is ref if this is modified within the function and const ref otherwise. For other types, the default this intent
matches the default argument intent described in

Example (refThisIntent.chpl). In the following code, the doubleMe function is defined with a this—intent
of ref, allowing variables of type int to double themselves.
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proc ref int.doubleMe () { this *= 2; }

Given a variable x = 2, a call to x.doubleMe () will set x to 4.

14.3 The this Method

A procedure method declared with the name this allows the receiver to be “indexed” similarly to how an array is
indexed. Indexing (as with A[11]) has the semantics of calling a method named this. There is no other way to call a
method called this. The this method must be declared with parentheses even if the argument list is empty.

Example (thisMethod.chpl). 1In the following code, the this method is used to create a class that acts
like a simple array that contains three integers indexed by 1, 2, and 3.

class ThreeArray {
var x1, x2, x3: int;
proc this(i: int) ref ({
select i {
when 1 do return x1;
when 2 do return x2;
when 3 do return x3;
}
halt ("ThreeArray index out of bounds: ", 1i);

}

14.4 The these Method

An iterator method declared with the name these allows the receiver to be “iterated over” similarly to how a domain
or array supports iteration. When a value supporting a these method is used as the the iteratable—expression of a loop,
the loop proceeds in a manner controlled by the these iterator.

Example (theselterator.chpl). In the following code, the these method is used to create a class that acts
like a simple array that can be iterated over and contains three integers.

class ThreeArray {
var x1, x2, x3: int;
iter these() ref {
yield x1;
yield x2;
yield x3;
}

An iterator type method with the name these supports iteration over the class type itself.

Example (typeMethodlterThese.chpl). In the following code, the class C defines a type method iterator
named these, supporting direct iteration over the type:
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class C {
var x: int;
var y: string;

iter type these () {
yield 1;
yield 2;
yield 4;
yield 8;

}

for i in C do
writeln(i);



15 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight collection of values. As the
examples in this chapter illustrate, tuples are a boon to the Chapel programmer. In addition to making it easy to return
multiple values from a function, tuples help to support multidimensional indices, to group arguments to functions, and
to specify mathematical concepts.

15.1 Tuple Types

A tuple type is defined by a fixed number (a compile-time constant) of component types. It can be specified by a
parenthesized, comma-separated list of types. The number of types in the list defines the size of the tuple; the types
themselves specify the component types.

The syntax of a tuple type is given by:

tuple-type:
( type—expression , type—list )
( type—expression , )

type-list:
type—expression
type—expression , type—list

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical. Homoge-
neous tuples have fewer restrictions for how they can be indexed (§15.3). Homogeneous tuple types can be defined
using the above syntax, or they can be defined as a product of an integral parameter (a compile-time constant integer)
and a type. This latter specification is implemented by overloading * with the following prototype:

proc x (param p: int, type t) type

Rationale. Homogeneous tuples require the size to be specified as a parameter (a compile-time constant).
This avoids any overhead associated with storing the runtime size in the tuple. It also avoids the question
as to whether a non-parameter size should be part of the type of the tuple. If a programmer requires a
non-parameter value to define a data structure, an array may be a better choice.

Example (homogeneous.chpl). The statement

var xl: (string, real),
x2: (int, int, int),
x3: 3*int;

defines three variables. Variable x1 is a 2-tuple with component types string and real. Variables x2
and =3 are homogeneous 3-tuples with component type int. The types of x2 and x3 are identical even
though they are specified in different ways.

118
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Note that if a single type is delimited by parentheses, the parentheses only impact precedence. Thus (int) is equiva-
lent to int. Nevertheless, tuple types with a single component type are legal and useful. One way to specify a 1-tuple
is to use the overloaded » operator since every 1-tuple is trivially a homogeneous tuple.

Rationale. Like parentheses around expressions, parentheses around types are necessary for grouping in
order to avoid the default precedence of the grammar. Thus it is not the case that we would always want
to create a tuple. The type 3+ (3xint) specifies a 3-tuple of 3-tuples of integers rather than a 3-tuple of
1-tuples of 3-tuples of integers. The type 3x3xint, on the other hand, specifies a 9-tuple of integers.

15.2 Tuple Values

A value of a tuple type attaches a value to each component type. Tuple values can be specified by a parenthesized,
comma-separated list of expressions. The number of expressions in the list defines the size of the tuple; the types of
these expressions specify the component types of the tuple. A trailing comma is allowed.

The syntax of a tuple expression is given by:

tuple—-expression:
( tuple—component , )
( tuple-component , tuple-component-list )
( tuple-component , tuple-component-list , )

tuple-component:
expression

tuple-component-list:
tuple—component
tuple-component , tuple—component-list

An underscore can be used to omit components when splitting a tuple (see [I5.6.1).

Example (values.chpl). The statement

var x1: (string, real) = ("hello", 3.14),
x2: (int, int, int) = (1, 2, 3),
x3: 3xint = (4, 5, 6);

defines three tuple variables. Variable x1 is a 2-tuple with component types string and real. It is
initialized such that the first component is "hello" and the second component is 3.14. Variables x2 and
%3 are homogeneous 3-tuples with component type int. Their initialization expressions specify 3-tuples
of integers.

Note that if a single expression is delimited by parentheses, the parentheses only impact precedence. Thus (1) is
equivalent to 1. To specify a 1-tuple, use the form with the trailing comma (1, ).

Example (onetuple.chpl). The statement

var x: lxint = (7,);
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creates a 1-tuple of integers storing the value 7.

Tuple expressions are evaluated similarly to function calls where the arguments are all generic with no explicit intent.
So a tuple expression containing an array does not copy the array.

When a tuple is passed as an argument to a function, it is passed as if it is a record type containing fields of the same
type and in the same order as in the tuple.

15.3 Tuple Indexing

A tuple component may be accessed by an integral parameter (a compile-time constant) as if the tuple were an array.
Indexing is 1-based, so the first component in the tuple is accessed by the index 1, and so forth.

Example (access.chpl). The loop

var myTuple = (1, 2.0, "three");
for param i in 1..3 do
writeln (myTuple (1)) ;

uses a param loop to output the components of a tuple.
Homogeneous tuples may be accessed by integral values that are not necessarily compile-time constants.

Example (access-homogeneous.chpl). The loop

var myHTuple = (1, 2, 3);
for i in 1..3 do
writeln (myHTuple (1)) ;

uses a serial loop to output the components of a homogeneous tuple. Since the index is not a compile-time
constant, this would result in an error were tuple not homogeneous.

Rationale. Non-homogeneous tuples can only be accessed by compile-time constants since the type of
an expression must be statically known.

15.4 Iteration over Tuples

Only homogeneous tuples support iteration via standard for, forall and coforall loops. These loops iterate over
all of the tuple’s elements. A loop of the form:

[for|forall |coforall] e in t do
PRIPS S

where t is a homogeneous tuple of size n, is semantically equivalent to:

[for|forall |coforall] i in 1..n do
I A 1) B

The iterator variable for an tuple iteration is a either a const value or a reference to the tuple element type, following
default intent semantics.
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15.5 Tuple Assignment

In tuple assignment, the components of the tuple on the left-hand side of the assignment operator are each assigned
the components of the tuple on the right-hand side of the assignment. These assignments occur in component order
(component one followed by component two, etc.).

15.6 Tuple Destructuring

Tuples can be split into their components in the following ways:

e In assignment where multiple expression on the left-hand side of the assignment operator are grouped using
tuple notation.

e In variable declarations where multiple variables in a declaration are grouped using tuple notation.

o In for, forall, and coforall loops (statements and expressions) where multiple indices in a loop are grouped using
tuple notation.

e In function calls where multiple formal arguments in a function declaration are grouped using tuple notation.

e In an expression context that accepts a comma-separated list of expressions where a tuple expression is expanded
in place using the tuple expansion expression.

15.6.1 Splitting a Tuple with Assignment

When multiple expression on the left-hand side of an assignment operator are grouped using tuple notation, the tuple
on the right-hand side is split into its components. The number of grouped expressions must be equal to the size of
the tuple on the right-hand side. In addition to the usual assignment evaluation order of left to right, the assignment is
evaluated in component order.

Example (splitting.chpl). The code

var a, b, c: int;
(a, (b, c)) = (1, (2, 3));

defines three integer variables a, b, and c. The second line then splits the tuple (1, (2, 3)) such that
1 is assigned to a, 2 is assigned to b, and 3 is assigned to c.

Example (aliasing.chpl). The code

var A = [1i in 1..4] 1i;

writeln (A);

(A(1..2), A(3..4)) = (A(3..4), A(1..2));
writeln (A);

creates a non-distributed, one-dimensional array containing the four integers from 1 to 4. Line 2 outputs
1 2 3 4. Line 3 does what appears to be a swap of array slices. However, because the tuple is created
with array aliases (like a function call), the assignment to the second component uses the values just
overwritten in the assignment to the first component. Line 4 outputs 3 4 3 4.
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When splitting a tuple with assignment, the underscore token can be used to omit storing some of the components. In
this case, the full expression on the right-hand side of the assignment operator is evaluated, but the omitted values will

not be assigned to anything.
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Example (omit-component.chpl). The code

proc f()
return (1, 2);

var x: int;
(x,_) = £0);

defines a function that returns a 2-tuple, declares an integer variable x, calls the function, assigns the first
component in the returned tuple to x, and ignores the second component in the returned tuple. The value
of x becomes 1.

15.6.2 Splitting a Tuple in a Declaration

When multiple variables in a declaration are grouped using tuple notation, the tuple initialization expression is split into
its type and/or value components. The number of grouped variables must be equal to the size of the tuple initialization
expression. The variables are initialized in component order.

The syntax of grouped variable declarations is defined in §8.1}

Example (decl.chpl). The code

var (a, (b, c)) = (1, (2, 3));

defines three integer variables a, b, and c. It splits the tuple (1, (2, 3)) such that 1 initializes a, 2
initializes b, and 3 initializes c.

Grouping variable declarations using tuple notation allows a 1-tuple to be destructured by enclosing a single variable
declaration in parentheses.

Example (onetuple-destruct.chpl). The code

var (a) = (1, );

initialize the new variable a to 1.

When splitting a tuple into multiple variable declarations, the underscore token may be used to omit components of the
tuple rather than declaring a new variable for them. In this case, no variables are defined for the omitted components.

Example (omit-component-decl.chpl). The code

proc f()
return (1, 2);

var (x,_) = f£();

defines a function that returns a 2-tuple, calls the function, declares and initializes variable x to the first
component in the returned tuple, and ignores the second component in the returned tuple. The value of x
is initialized to 1.
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15.6.3 Splitting a Tuple into Multiple Indices of a Loop

When multiple indices in a loop are grouped using tuple notation, the tuple returned by the iterator (§22) is split across
the index tuple’s components. The number of indices in the index tuple must equal the size of the tuple returned by
the iterator.

Example (indices.chpl). The code

iter bar () {
yield (1, 1);
yield (2, 2);
}

for (i, j) in bar() do
writeln (i+73);

defines a simple iterator that yields two 2-tuples before completing. The for-loop uses a tuple notation to
group two indices that take their values from the iterator.

When a tuple is split across an index tuple, indices in the index tuple (left-hand side) may be omitted. In this case, no
indices are defined for the omitted components.

However even when indices are omitted, the iterator is evaluated as if an index were defined. Execution proceeds as if
the omitted indices are present but invisible. This means that the loop body controlled by the iterator may be executed
multiple times with the same set of (visible) indices.

15.6.4 Splitting a Tuple into Multiple Formal Arguments in a Function Call

When multiple formal arguments in a function declaration are grouped using tuple notation, the actual expression is
split into its components during a function call. The number of grouped formal arguments must be equal to the size of
the actual tuple expression. The actual arguments are passed in component order to the formal arguments.

The syntax of grouped formal arguments is defined in §13.2]

Example (formals.chpl). The function

proc f(x: int, (y, z): (int, int)) {
// body
}

is defined to take an integer value and a 2-tuple of integer values. The 2-tuple is split when the function is
called into two formals. A call may look like the following:

£(1, (2, 3));

An implicit where clause is created when arguments are grouped using tuple notation, to ensure that the function is
called with an actual tuple of the correct size. Arguments grouped in tuples may be nested arbitrarily. Functions with
arguments grouped into tuples may not be called using named-argument passing on the tuple-grouped arguments. In
addition, tuple-grouped arguments may not be specified individually with types or default values (only in aggregate).
They may not be specified with any qualifier appearing before the group of arguments (or individual arguments) such
as inout or type. They may not be followed by . . . to indicate that there are a variable number of them.
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Example (implicit-where.chpl). The function £ defined as
proc f((x, (y, z))) {
writeln((x, y, z));
}
is equivalent to the function g defined as

proc g(t) where isTuple(t) && t.size == 2 && isTuple(t(2)) && t(2).size == 2 {
writeln ((t (1), t(2) (1), t(2)(2)));
}

except without the definition of the argument name t.

Grouping formal arguments using tuple notation allows a 1-tuple to be destructured by enclosing a single formal
argument in parentheses.

Example (grouping-Formals.chpl). The empty function
proc f((x)) { }

accepts a 1-tuple actual with any component type.

When splitting a tuple into multiple formal arguments, the arguments that are grouped using the tuple notation may be
omitted. In this case, no names are associated with the omitted components. The call is evaluated as if an argument
were defined.

15.6.5 Splitting a Tuple via Tuple Expansion

Tuples can be expanded in place using the following syntax:

tuple—expand—-expression:
(... expression )

In this expression, the tuple defined by expression is expanded in place to represent its components. This can only be
used in a context where a comma-separated list of components is valid.

Example (expansion.chpl). Given two 2-tuples

var x1 = (1, 2.0), x2 = ("three", "four");

the following statement

var x3 = ((...x1), (...x2));

creates the 4-tuple x3 with the value (1, 2.0, "three", "four").

Example (expansion-2.chpl). The following code defines two functions, a function first that returns
the first component of a tuple and a function rest that returns a tuple containing all of the components of
a tuple except for the first:

proc first (t) where isTuple(t) {
return t (1);

}

proc rest (t) where isTuple(t) {
proc helper (first, rest...)

return rest;

return helper((...t));

}
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15.7 Tuple Operators

15.7.1 Unary Operators

The unary operators +, —, ~, and ! are overloaded on tuples by applying the operator to each argument component and
returning the results as a new tuple.

The size of the result tuple is the same as the size of the argument tuple. The type of each result component is the
result type of the operator when applied to the corresponding argument component.

The type of every element of the operand tuple must have a well-defined operator matching the unary operator being
applied. That is, if the element type is a user-defined type, it must supply an overloaded definition for the unary
operator being used. Otherwise, a compile-time error will be issued.

15.7.2 Binary Operators

The binary operators +, —, x, /, %, **, &, |, *, <<, and >> are overloaded on tuples by applying them to pairs of the
respective argument components and returning the results as a new tuple. The sizes of the two argument tuples must
be the same. These operators are also defined for homogeneous tuples and scalar values of matching type.

The size of the result tuple is the same as the argument tuple(s). The type of each result component is the result type
of the operator when applied to the corresponding pair of the argument components.

When a tuple binary operator is used, the same operator must be well-defined for successive pairs of operands in the

two tuples. Otherwise, the operation is illegal and a compile-time error will result.

Example (binary-ops.chpl). The code

var x = (1, 1, 1) + (2, 2.0, "2");

creates a 3-tuple of an int, a real and a string with the value (3, 3.0, "12").

15.7.3 Relational Operators

The relational operators >, >=, <, <=, ==, and ! = are defined over tuples of matching size. They return a single boolean
value indicating whether the two arguments satisfy the corresponding relation.

The operators >, >=, <, and <= check the corresponding lexicographical order based on pair-wise comparisons between
the argument tuples’ components. The operators == and ! = check whether the two arguments are pair-wise equal or
not. The relational operators on tuples may be short-circuiting, i.e. they may execute only the pair-wise comparisons
that are necessary to determine the result.

However, just as for other binary tuple operators, the corresponding operation must be well-defined on each successive
pair of operand types in the two operand tuples. Otherwise, a compile-time error will result.

Example (relational-ops.chpl). The code
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var x = (1, 1, 0) > (1, 0, 1);

creates a variable initialized to true. After comparing the first components and determining they are
equal, the second components are compared to determine that the first tuple is greater than the second
tuple.

15.8 Predefined Functions and Methods on Tuples

proc isHomogeneousTuple (t: Tuple) param

Returns true if t is a homogeneous tuple; otherwise false.
proc isTuple (t: Tuple) param
Returns true if t is a tuple; otherwise false.
proc isTupleType (type t) param
Returns true if t is a tuple of types; otherwise false.
proc max (type t) where isTupleType (t)
Returns a tuple of type t with each component set to the maximum value that can be stored in its position.
proc min (type t) where isTupleType (t)
Returns a tuple of type t with each component set to the minimum value that can be stored in its position.

proc Tuple.size param

Returns the size of the tuple.



16 Classes

Classes are data structures with associated state and functions. A variable of class type either refers to a class instance,
or contains a special nil value. Note that object is another name for a class instance. Storage for a class instance is
not necessarily tied to the scope of the variable(s) referring to that class instance. It is possible for multiple variables
to refer to the same class instance.

The new-expression can be used to create an instance of a class (§16.3). Depending on the memory management
strategy, a class instance is either deleted automatically or can be deleted using the delete-statement (§16.8).

A class declaration (§16.T)) generates a class type (§16.1.2). A variable of a class type can refer to an instance of that
class or any of its derived classes.

A class is generic if it has generic fields. A class can also be generic if it inherits from a generic class. Generic classes
and fields are discussed in §23.3

16.1 Class Declarations

A class is defined with the following syntax:

class—declaration—statement:
simple-class—declaration—statement

simple—class—declaration—statement:
class identifier class—inherit,,, { class—statement-list,,; }

class—inherit:
: basic—class—type

class—statement-—list:
class—statement
class—statement class—statement—1list

class—statement:
variable—declaration— statement
method-declaration— statement
type—declaration-statement
empty-statement

A class—declaration-statement defines a new type symbol specified by the identifier. Classes inherit data and functionality
from other classes if the inherit-type-list is specified. Inheritance is described in §16.2]

The body of a class declaration consists of a sequence of statements where each of the statements either defines a
variable (called a field), a procedure or iterator (called a method), or a type alias. In addition, empty statements are
allowed in class declarations, and they have no effect.

If a class declaration contains a type alias or a parameter field, or it contains a variable or constant without a specified
type and without an initialization expression, then it declares a generic class type. Generic classes are described

in §23.3]
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Future.  Privacy controls for classes and records are currently not specified, as discussion is needed
regarding its impact on inheritance, for instance.

16.1.1 Class Lifetime and Borrows

The lifetime of a class instance is the time between its creation and its deletion. It is legal to access the class fields or
methods only during its lifetime.

Each allocation of a class instance specifies a memory management strategy . Four memory management strategies
are available: owned, shared, borrowed, and unmanaged

owned and shared class instances always have their lifetime managed by the compiler. In other words, the compiler
automatically calls delete on these instances to reclaim their memory. For these instances, = and copy initialization
can result in the transfer or sharing of ownership. See
https://chapel-lang.org/docs/builtins/internal/OwnedObject.html
and
https://chapel-lang.org/docs/builtins/internal/SharedObject.html

When borrowed is used as a memory management strategy in a new—expression, it also creates an instance that has its
lifetime managed by the compiler (§16.3).

Class instances that are unmanaged have their lifetime managed explicitly and delete must be used to reclaim their
memory.

No matter the memory management strategy used, class types support borrowing. A borrowed class instance refers
to the same class instance as another variable but has no impact on the lifetime of that instance. The process of getting
such a reference to an instance is called borrowing.

There are several ways to borrow an instance. To borrow explicitly the instance managed by another variable, call the
.borrow () method. Additionally, coercions are available that are equivalent to calling the .borrow () method. For
example:

Example (borrowing.chpl).

class C { }
proc test () {
var own = new owned C(); // ’own’ manages the memory of the instance

var b = own.borrow(); // ’b’ refers to the same instance but has no
// impact on the lifetime.

var bc: borrowed C = b; // ’bc’ stores the result of b.borrow()
// due to coercion from owned C to C

var c: C = b; // same as above
// since ’C’ is equivalent to ’borrowed C’

// Note that these coercions can also apply
// in the context of procedure calls.

// the instance referred to by ’‘own’ 1is
// deleted here, at the end of the containing
// block.


https://chapel-lang.org/docs/builtins/internal/OwnedObject.html
https://chapel-lang.org/docs/builtins/internal/SharedObject.html
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The .borrow () method is available on all class types (including unmanaged and borrowed) in order to support
generic programming.

Errors due to accessing an instance after the end of its lifetime are particularly difficult to debug. For this reason, the
compiler includes a component called the lifetime checker. It identifies some cases where a borrowing variable can be
accessed beyond the lifetime of an instance it refers to.

Future. The details of lifetime checking are not yet finalized or specified. Additional syntax to specify
the lifetimes of function returns will probably be needed.

16.1.2 Class Types

A class type is formed by the combination of a basic class type and a memory management strategy.

class—type:
basic—class—type
owned basic—class—type
shared basic—class—type
borrowed basic—class—type
unmanaged basic—class—type

A basic class type is given simply by the class name for non-generic classes. Generic classes must be instantiated
to serve as a fully-specified type, for example to declare a variable. This is done with type constructors, which are
defined in Section 23.3.4]

basic-class—type:
identifier
identifier ( named-expression—list )

A basic class type, including a generic class type that is not fully specified, may appear in the inheritance lists of other
class declarations.

If no memory management strategy is indicated, borrowed will be used.

Rationale. borrowed is the default memory management strategy for a class type because there are
likely to be more variables referring to a class instance than managing its memory. A further advantage
of this default is that borrowed, along with unmanaged, has minimal performance overhead.

The memory management strategies have the following meaning:

e owned the instance will be deleted automatically when the owned variable goes out of scope, but only one
owned variable can refer to the instance at a time. See
https://chapel-lang.org/docs/builtins/internal/OwnedObject.html

e shared will be deleted when all of the shared variables referring to the instance go out of scope. See
https://chapel-lang.org/docs/builtins/internal/SharedObject.htmll

e borrowed refers to a class instance that has a lifetime managed by another variable.

e unmanaged the instance must have delete called on it explicitly to reclaim its memory.


https://chapel-lang.org/docs/builtins/internal/OwnedObject.html
https://chapel-lang.org/docs/builtins/internal/SharedObject.html
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16.1.3 Class Values

A class value is either a reference to an instance of a class or nil (§16.2.5). Class instances can be created using a

new expression (§16.3).

For a given class type, a legal value of that type is a reference to an instance of either that class or a class inheriting,
directly or indirectly, from that class. nil is a legal value of any class type.

The default value of a class type is nil.

Example (declaration.chpl).

class C { }

var c : C; // ¢ has the class type C, initialized with the value nil.
c = new C(); // Now c refers to an object of type C.

var c2 = c; // The type of c2 is also C.

// c2 refers to the same object as c.
class D : C {} // Class D is derived from C.
c = new D(); // Now c refers to an object of type D.
// the C and D instances allocated above will be reclaimed
// at the end of this block.

When the variable c is declared, it initially has the value of nil. The next statement assigned to it an
instance of the class C. The declaration of variable c2 shows that these steps can be combined. The type
of c2 is also ¢, determined implicitly from the the initialization expression. Finally, an object of type D is
created and assigned to c.

16.1.4 Class Fields

A variable declaration within a class declaration defines a field within that class. Each class instance consists of one
variable per each var or const field in the class.

Example (defineActor.chpl). The code

class Actor {
var name: string;
var age: uint;

}
defines a new class type called Actor that has two fields: the string field name and the unsigned integer
field age.

Field access is described in §16.3]

Future. ref fields, which are fields corresponding to variable declarations with ref or const ref
keywords, are an area of future work.

16.1.5 Class Methods

Methods on classes are referred to as to as class methods. See the methods section
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16.1.6 Nested Classes

A class defined within another class or record is a nested class. A nested class can be referenced only within its
immediately enclosing class or record.

16.2 Inheritance

A derived class can inherit from one or more other classes by listing those classes in the derived class declaration.
It is possible for a class to inherit from a generic class. Suppose for example that a class C inherits from class ParentcC.

In this situation, ¢ will have type constructor arguments based upon generic fields in the ParentC as described in
[23.3.4] Furthermore, a fully specified c will be a subclass of a corresponding fully specified Parentc.

Future. Multiple inheritance is not currently specified or implemented. It is unclear if it will ever be
included in the language.

16.2.1 The object Class

All classes are derived from the object class, either directly or indirectly. If no class name appears in the inheritance
list, the class derives implicitly from object. Otherwise, a class derives from object indirectly through the class it
inherits. A variable of type object can hold a reference to an object of any class type.

16.2.2 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the same
way that they are accessed in their base class unless a getter method is overridden in the derived class, as discussed

in §16.2.4]

16.2.3 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field shadows the
field in the base class in that it is always referenced when it is accessed in the context of the derived class.

Open issue. There is an expectation that there will be a way to reference the field in the base class but
this is not defined at this time.
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16.2.4 Overriding Base Class Methods

If a method in a derived class is declared with a signature identical to that of a method in a base class, then it is said to
override the base class’s method. Such methods are considered for dynamic dispatch. In particular, dynamic dispatch
will be used when the method receiver has a static type of the base class but refers to an instance of a derived class

type.

In order to have identical signatures, two methods must have the same the names, intents, types, and order of formal
arguments. The return type of the overriding method must either be the same as the return type of the base class’s
method or be a subclass of the base class method’s return type.

Methods that override a base class method must be marked with the override keyword in the procedure-kind. Ad-
ditionally, methods marked with override but for which there is no parent class method with an identical signature
will result in a compiler error.

Rationale.  This feature is designed to help avoid cases where class authors accidentally override a
method without knowing it; or fail to override a method that they intended to due to not meeting the
identical signature condition.

Methods without parentheses are not candidates for dynamic dispatch.

Rationale. Methods without parentheses are primarily used for field accessors. A default is created if
none is specified. The field accessor should not dispatch dynamically since that would make it impossible
to access a base field within a base method should that field be shadowed by a subclass.

16.2.5 The nil Value

Chapel provides nil to indicate the absence of a reference to any object. nil can be assigned to a variable of any
class type. Invoking a class method or accessing a field of the ni1 value results in a run-time error.

nil-expression:
nil

16.3 Class New

To create an instance of a class, use a new expression. For example:

Example (class-new.chpl).

class C {
var x: int;
}

var instance = new C(1);



Classes 134

The new expression can be defined by the following syntax:

new-expression:
new type-expression ( argument-list )

An initializer for a given class is called by placing the new operator in front of a type expression. Any initializer
arguments follow the class name in a parenthesized list.

Syntactically, the type—expression includes owned, shared, borrowed, and unmanaged. However these have impor-
tant consequences for class new expressions. In particular, suppose C is a type—expression that results in a class type.
Then:

e new C () is the same as new borrowed C ()

e new owned C () allocates and initializes an instance that will be deleted at the end of the current block unless
it is transferred to another owned variable. It results in something of type owned C.

e new shared C () allocates and initializes the instance that will be deleted when the last shared variable
referring to it goes out of scope. Results in something of type shared C.

e new borrowed C() allocates and initializes an instance that will be automatically deleted at the end of the
current block. This process is managed by an owned temporary. Unlike new owned C (), this results in a value
of type borrowed C and ownership of the instance cannot be transferred out of the block. In other words,
new borrowed C () is equivalent to

(new owned C()) .borrow ()

e new unmanaged C () allocates and initializes an instance that must have delete called on it explicitly to avoid
a memory leak. It results in something of type unmanaged C.

See also §16.1.1]and §16.1.2

16.4 Class Initializers

A new expression allocates memory for the desired class and invokes an initializer method on the uninitialized memory,
passing any arguments following the class name. An initializer is implemented by a method named init and is
responsible for initializing the fields of the class.

Any initializers declared in a program are user-defined initializers. If the program declares no initializers for a class,
the compiler must generate an initializer for that class based on the types and initialization expressions of fields defined
by that class.



Classes 135

16.4.1 User-Defined Initializers

A user-defined initializer is an initializer method explicitly declared in the program. An initializer declaration has the
same syntax as a method declaration, with the restrictions that the name of the method must be init and there must
not be a return type specifier. When an initializer is called, the usual function resolution mechanism (§13.13) is applied
with the exception that an initializer may not be virtually dispatched.

A user-defined initializer is responsible for initializing all fields. An initializer may omit initialization of fields, but all
fields that are initialized must be initialized in declaration order.

Initializers for generic classes (§23.3)) handle generic fields without default values differently and may need to satisfy
additional requirements. See Section[23.3.7|for details.

Example (simplelnitializers.chpl). The following example shows a class with two initializers:

class MessagePoint {
var x, y: real;
var message: string;

proc init (x: real, y: real) ({

this.x = x;
this.y = vy;
this.message = "a point";

}

proc init (message: string) {
this.x = 0;
this.y = 0;
this.message = message;

}

}  // class MessagePoint

// create two objects
var mpl = new MessagePoint (1.0, 2.0);
var mp2 = new MessagePoint ("point mp2");

The first initializer lets the user specify the initial coordinates and the second initializer lets the user
specify the initial message when creating a MessagePoint.

Field Initialization Versus Assignment

Within the body of an initializer, the first use of a field as the left-hand side of an assignment statement will be
considered initialization. Subsequent uses of the assignment operator on the field will invoke regular assignment as
defined by the language.

Example (fieldInitAssignment.chpl).  The following example documents the difference between field
initialization and field assignment.

class PointDoubleX {
var x, y : real;

proc init (x: real, y: real) {
this.x = x; // initialization
writeln("x = ", this.x); // use of initialized field
this.x = this.x * 2; // assignment, use of initialized field
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this.y = y; // initialization

var p = new PointDoubleX (1.0, 2.0);

The first statement in the initializer initializes field x to the value of the formal x. The second statement
simply reads the value of the initialized field. The third statement reads the value of the field, doubles it,
and assigns the result to the field x.

If a field is used before it is initialized, an compile-time error will be issued.

Example (usedBeforelnitialized.chpl). In the following code:

class Point {
var x, y : real;

proc init (x: real, y: real) {

writeln(this.x); // Error: use of uninitialized field!
this.x = x;
this.y = vy;

writeln(this.y);

}

var p = new Point (1.0, 2.0);

The first statement in the initializer reads the value of uninitialized field x, so the compiler will issue an
error:

usedBeforeInitialized.chpl:4: In initializer:
usedBeforeInitialized.chpl:5: error: field "x" used before it is initialized

Omitting Field Initializations

In order to support productive and elegant initializers, the language allows field initializations to be omitted if the field
has a type or if the field has an initialization expression. The compiler will insert initialization statements for such
fields based on their types and default values.

Example (fieldInitOmitted.chpl). In the following code:

class LabeledPoint {
var x : real;
var y : real;
var msg : string = ’Unlabeled’;

proc init (x: real, y: real) {

this.x = x;
this.y = y;
// compiler inserts "this.msg = ’Unlabeled’";

}

proc init (msg : string) {
// compiler inserts "this.x = 0.0;"
// compiler inserts "this.y
this.msg = msg;

Il
(e}
=)
.
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}

var A = new LabeledPoint (2.0, 3.0);
var B = new LabeledPoint ("Origin");

The first initializer initializes the values of fields x and y, and the compiler inserts initialization for the msg
field by using its default value. The second initializer initializes the msg field, and the compiler inserts
initialization for fields x and y based on the type of those fields (§8.1.1).

In order to reduce ambiguity and to ensure a well-defined order for side-effects, the language requires that all fields
be initialized in field declaration order. This applies regardless of whether field initializations are omitted from the
initializer body. If fields are initialized out of order, a compile-time error will be issued.

Example (fieldsOutOfOrder.chpl). In the following code:

class Point3D {

var x 1.0;
var vy = 1.0;
var z = 1.0;

proc init (x: real) {
this.x = x;
// compiler inserts "this.y = 1.0;"
this.z =y % 2.0;

}

proc init (x: real, y: real, z: real) {

this.x = x;
this.z = z;
this.y = y; // Error!

}
}

var A = new Point3D(1.0);
var B = new Point3D (1.0, 2.0, 3.0);

The first initializer leverages the well-defined order of omitted field initialization to use the default value
of field y in order to explicitly initialize field z.

The second initializer initializes field z before field y, causing a compile-time error to be issued.

Rationale. Without this rule the compiler could insert default initialization for field y before z is ex-
plicitly initialized. The following statement would then be assignment to field y, despite appearing to be
initialization. This subtle difference may be confusing and surprising, and is avoided by requiring fields
to be initialized in field declaration order.

Limitations on Instance Usage in Initializers

As the initializer makes progress, the class instance is incrementally initialized. In order to prevent usage of uninitial-
ized memory, there are restrictions on usage of the class instance before it is fully initialized:

e Methods may not be invoked on partially-initialized instances
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e this may not be passed to functions while partially-initialized

These rules allow all methods and functions to assume that class instances have been initialized, provided their value
isnotnil.

Rationale.  The compiler could conceivably attempt to analyze methods and functions to determine
which fields are used, and selectively allow method calls on partially-initialized class instances. Instead,
it is simpler for the language to forbid method calls on partially-initialized instances.

Methods may be called and this may be passed to functions only after the built-in complete method is invoked.
This method may not be overridden. If any fields have not been initialized by the time the complete method is
invoked, they will be considered omitted and the compiler will insert initialization statements as described earlier. If
the user does not invoke the complete method explicitly, the compiler will insert a call to complete at the end of the
initializer.

Rationale.  Due to support for omitted field initialization, there is potential for confusion regarding
the overall status of initialization. This confusion is addressed in the design by requiring complete to
explicitly mark the transition between partially and fully initialized instances.

Implementors’ note.  Even if the user explicitly initializes every field, the complete method is still
required to invoke other methods.

Example (thisDotComplete.chpl). In the following code:

class LabeledPoint {
var x, y : real;
var max = 10.0;
var msg : string = ‘Unlabeled’;

proc init (x: real, y: real) {
this.x = x;
this.y = y;
// compiler inserts initialization for ’‘max’ and ’‘msg’

this.complete(); // ‘this’ is now considered to be fully initialized

this.verify();
writeln (this);

}

proc init (msg : string) {
// compiler inserts initialization for fields ’'x’, ’'y’, and ’max’
this.msg = msg;

// Illegal: this.verify();
// Implicit ’this.complete();”’
}

proc verify () {
if x > max || y > max then
halt ("LabeledPoint out of bounds!");

var A = new LabeledPoint (1.0, 2.0);
var B new LabeledPoint ("Origin");
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The first initializer leverages the complete method to initialize the remaining fields and to allow for
the usage of the verify method. Calling the verify method or passing this to writeln before the
complete method is called would result in a compile-time error.

The second initializer exists to emphasize the rule that even though all fields are initialized after the
initialization of the msg field, the compiler does not consider the type initialized until the complete
method is called. If the second initializer tried to invoke the verify method, a compile-time error would
be issued.

Invoking Other Initializers

In order to allow for code-reuse, an initializer may invoke another initializer implemented for the same type. Because
the invoked initializer must operate on completely uninitialized memory, a compile-time error will be issued for field
initialization before a call to init. Because each initializer either explicitly or implicitly invokes the complete
method, all fields and methods may be used after such a call to init.

Example (thisDotlnit.chpl). In the following code:

class Point3D {
var x, y, z : real;

proc init (x: real, y: real, z: real) {

this.x = x;
this.y = y;
this.z = z;

// implicit ’‘this.complete();’
}

proc init (u: real) ({
this.init (u, u, u);
writeln(this);
}
}

var A = new Point3D(1.0);

The second initializer leverages the first initializer to initialize all fields with the same value. After the
init call the type is fully initialized, the complete method has been invoked, and so this can be passed
to the writeln function.

Initializing Fields in Conditional Statements

Fields may be initialized inside of conditional statements, with the restriction that the same set of fields must be
initialized in every branch. If the user omits any field initializations, the compiler will insert field initializations up
to and including the field furthest in field declaration order between the conditional branches. If the else branch
of a conditional statement is omitted, the compiler will generate an empty else branch and insert field initialization
statements as needed.

Example (initFieldConditional.chpl). In the following code:
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class Point {
var x, y : real;
var r, theta : real;

proc init (polar : bool, val : real) {

if polar {
// compiler inserts initialization for fields ’‘x’ and "y’
this.r = val;

} else {
this.x = val;
this.y = val;
// compiler inserts initialization for field ’r’

}

// compiler inserts initialization for field ’theta’

var A new Point (true, 5.0);
var B = new Point (false, 1.0);

The compiler identifies field r as the latest field in both branches, and inserts omitted field initialization
statements as needed to ensure that fields x, y, and r are all initialized by the end of the conditional.

Conditionals may also contain calls to parent initializers (§16.4.4) and other initializers defined for the current type,
provided that the initialization state is the same at the end of the conditional statement.

Example (thisDotlnitConditional.chpl). In the following code:

class Parent {
var x, y : real;

}

class Child : Parent {
var z : real;

proc init (cond : bool, val : real) ({
if cond {
super.init (val, val);
this.z = val;
this.complete();
} else {
this.init (val, wval, val);

}

proc init (x: real, y: real, z: real) {
super.init(x, vy);
this.z = z;

var ¢ = new Child(true, 5.0);

The first initializer must invoke the complete method at the end of the if-branch in order to match the
state at the end of the else-branch.

Miscellaneous Field Initialization Rules

Fields may not be initialized within loop statements or parallel statements.
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16.4.2 The Compiler-Generated Initializer

A compiler-generated initializer for a class is created automatically if there are no initializers for that class in the
program. The compiler-generated initializer has one argument for every field in the class, each of which has a default
value equal to the field’s default value (if present) or the default value of the field’s type (if not). The order and names
of arguments matches the order and names of field declarations within the class.

Generic fields are discussed in Section §23.3.6
The compiler-generated initializer will initialize each field to the value of the corresponding actual argument.

Example (defaultlnitializer.chpl). Given the class

class C {

var x: int;
var y: real = 3.14;
var z: string = "Hello, World!";

}

there are no user-defined initializers for C, so new expressions will invoke C’s compiler-generated initial-
izer. The x argument of the compiler-generated initializer has the default value 0. The y and z arguments
have the default values 3.14 and "Hello, World!",respectively.

C instances can be created by calling the compiler-generated initializer as follows:

e The call new C () isequivalentto new C(0,3.14,"Hello, World!").

e The call new C(2) is equivalent to new C(2,3.14,"Hello, World!™").

e The call new C(z="") is equivalent to new C(0,3.14,"").
e Thecall new C(2, z="") isequivalentto new C(2,3.14,"").
e The call new C(0,0.0,"") specifies the initial values for all fields explicitly.

16.4.3 The postinit Method

The compiler-generated initializer is powerful and flexible, but cannot satisfy all initialization patterns desired by users.
One way for users to leverage the compiler-generated initializer while adding their own functionality is to implement
a method named postinit. The postinit method may also be implemented for types with user-defined initializers.

The compiler will insert a call to the postinit method after the initializer invoked by the new expression finishes,
if the method exists. The postinit method accepts zero arguments and may not return anything. Otherwise, this
method behaves like any other method.

Example (postinit.chpl). In the following code:

class Point3D {
var x, y : real;
var max = 10.0;

proc postinit () {
verify();

}

proc verify () {
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writeln(" (", x, ", ", v, ")");
if x > max || y > max then
writeln (" Point out of bounds!");
}
}
var A = new Point3D();
var B = new Point3D (1.0, 2.0);
var C = new Point3D(y=5.0);
var D = new Point3D(50.0, 50.0);

Each of the new expressions invokes the compiler-generated initializer, then invokes the verify method
via the postinit method:

(0.0, 0.0)
(1.0, 2.0)
(0.0, 5.0)
(50.0, 50.0)

Point out of bounds!

For classes that inherit, the user may invoke the parent’s postinit method or let the compiler insert a call automati-

cally (§T6.49).

16.4.4 Initializing Inherited Classes

User-defined initializers also allow for control over initialization of parent classes. All the fields of the parent type must
be initialized before any fields of the child type, otherwise a compile-time error is issued. This allows for parent fields
to be used in the definition of child fields. An initializer may invoke a parent’s initializer using the super keyword.

If the user does not explicitly call the parent’s initializer, the compiler will insert a call to the parent initializer with
zero arguments at the start of the initializer.

Example (simpleSuperlnit.chpl). In the following code:

class A {
var a, b : real;

proc init () {
this.init (1.0);
}

proc init(val : real) ({
this.a = val;
this.b = val x 2;

}

class B : A {
var x, y : real;

proc init(val: real, x: real, y: real) ({
super.init (val);
this.x = x;
this.y = y;

}



Classes 143

proc init () {
// implicit super.init();
this.x = a*2;
this.y = bx*2;
}
}

var bl = new B(4.0, 1.0, 2.0);
var b2 = new B();

The first initializer explicitly calls an initializer for class A. Once the parent’s initializer is complete, fields
of class B may be initialized.

The second initializer implicitly invokes the parent’s initializer with zero arguments, and then uses the
parent’s fields to initialize its own fields.

As stated earlier, the compiler will insert a zero-argument call to the parent’s initializer if the user has not explicitly
written one themselves. The exception to this rule is if the initializer body invokes another initializer on the current
type (§16.4.1). This other initializer will either contain an implicit or explicit call to the parent initializer, and so
the calling initializer should not attempt to initialize the parent itself. This also means that parent fields may not be
accessed before explicit calls to init.

Example (superinitThisInit.chpl). In the following code:

class Parent {
var x, y: real;

}

class Child : Parent {
var z : real;

proc init (x: real, y: real, z: real) {
super.init (x, y);
this.z = z;

}

proc init(z: real) {
this.init (0.0, 0.0, z);
}
}

var ¢ = new Child(5.0);

The second initializer does not contain an implicit call to the parent’s initializer because it explicitly
invokes another initializer.

Calling Methods on Parent Classes

Once super.init () returns, the dynamic type of this is the parent’s type until the complete method (§16.4.1) is
invoked (except when the child’s fields are initialized and used). As a result, the parent’s methods may be called and
this may be passed to functions as though it were of the parent type.

Rationale.  After super.init () returns the instance is in some partially-initialized, but valid, state.
Allowing this to be treated as the parent allows for additional functionality and flexibility for users.
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Example (dynamicThisInit.chpl). In the following code:

class Parent {
var x, y : real;

proc foo () {
writeln ("Parent.foo");

}
}

class Child : Parent {
var z : real;

proc init (x: real, y: real, z: real) {

super.init(x, vy); // parent’s compiler—-generated initializer
foo(); // Parent.foo()
this.z = z;

this.complete () ;
foo(); // Child.foo()
}

override proc foo() {
writeln ("Child.foo");

}
}

var ¢ = new Child(1.0, 2.0, 3.0);

Once the parent’s initializer is finished, the parent method foo may be called. After the complete method
is invoked, a call to foo resolves to the child’s overridden (§16.2.4) implementation:
Parent.foo

Child. foo
{x =1.0, vy =2.0, z = 3.0}

The Compiler Generated Initializer for Inheriting Classes

The compiler-generated initializer for inheriting classes will have arguments with default values and names based on
the field declarations in the parent class. Formals for the parent type will be listed before formals for the child type.

Example (compilerGeneratedInheritancelnit.chpl). In the following code:

class Parent {
var x, y: real;

}

class Child : Parent {
var z : real;

}

var A = new Child();
var B = new Child(1.0, 2.0, 3.0); // x=1.0, y=2.0, z=3.0
var C = new Child(y=10.0);

Any new expressions using the Child type can invoke an initializer with three formals named x, v, and z
that all have default values based on their types.
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The postinit Method for Inheriting Classes

The postinit method on inheriting classes allows users to invoke the parent’s postinit method using the super
keyword. If the user does not explicitly invoke the parent’s postinit, the compiler will insert the call at the top of the
user’s postinit method. If the parent type has a postinit method but the inheriting class does not, the compiler
will generate a postinit method that simply invokes the parent’s postinit method.

Example (inheritancePostinit.chpl). In the following code:

class Parent {
var a, b : real;
proc postinit () {
writeln ("Parent.postinit: ", a, ", ", b);
}
}

class Child : Parent {
var x, y : real;
proc postinit () {

// compiler inserts "super.postinit();"
n " "

writeln("Child.postinit: ", x, , y YY)
}
}

var ¢ = new Child(1.0, 2.0, 3.0, 4.0);

The compiler inserts a call to the parent’s post init method in the child’s postinit method, and invokes
the child’s postinit method after the compiler-generated initializer finishes:

Parent.postinit: 1.0, 2.0
Child.postinit: 3.0, 4.0

16.5 Field Accesses

The field in a class is accessed via a field access expression.

field—access—expression:
receiver—clause,,, identifier

receiver—clause:
expression .

The receiver-clause specifies the receiver, which is the class instance whose field is being accessed. The receiver
clause can be omitted when the field access is within a method. In this case the receiver is the method’s receiver. The
receiver clause can also be omitted when the field access is within a class declaration. In this case the receiver is the
instance being implicitly defined or referenced.

The identifier in the field access expression indicates which field is accessed.

A field can be modified via an assignment statement where the left-hand side of the assignment is a field access
expression.

Accessing a parameter or type field returns a parameter or type, respectively. In addition to being available for access
with a class instance receiver, parameter and type fields can be accessed from the instantiated class type itself.
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Example (useActorl.chpl). Given a variable anActor of type Actor as defined above, the code
var s: string = anActor.name;

anActor.age = 27;

reads the field name and assigns the value to the variable s, and assigns the field age in the object anActor
the value 27.

16.5.1 Variable Getter Methods

All field accesses are performed via getters. A getter is a method without parentheses with the same name as the field.
It is defined in the field’s class and has a ref return intent (§I3.7.1). If the program does not define it, the default
getter, which simply returns the field, is provided.

Example (getterSetter.chpl). In the code

class C {

var setCount: int;

var x: int;

proc x ref {
setCount += 1;
return x;

}

proc x {
return x;

}
}

an explicit variable getter method is defined for field x. It returns the field x and increments another field
that records the number of times x was assigned a value.

16.6 Class Method Calls

Class method calls are similar to other method calls which are described in §I4.1] However, class method calls are
subject to dynamic dispatch.

The receiver-clause (or its absence) specifies the method’s receiver in the same way it does for field accesses §16.5]

See (§14.2)) for more details of about method receivers.

16.7 Common Operations

16.7.1 Class Assignment

Classes are assigned by reference. After an assignment from one variable of a class type to another, both variables
reference the same class instance.

Assignment for an owned variable transfers ownership and leaves the source variable empty. For example:
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Example (owned-assignment.chpl).

// assume that C is a class

var a = new owned C();

var b:owned C; // default initialized to store ‘nil'
b = a; // transfers ownership from a to b
writeln(a); // a is left storing ‘'nil’

In contrast, assignment for shared variables allows both variables to refer to the same class instance.

16.7.2 Implicit Class Conversions

An implicit conversion from class type D to another class type C is allowed when D is a subclass of c. The value nil
can be implicitly converted to any class type. These conversions do not change the value.

Class types other than borrowed ¢, for example owned C, can be implicitly converted to borrowed C. Note that C
is equivalent to borrowed C. This coercion is equivalent to calling the .borrow () method. See §16.1.1]

16.8 Deleting Unmanaged Class Instances

Memory associated with unmanaged class instances can be reclaimed with the delete statement:

delete—statement:
delete expression-list ;

where the expression-list specifies the class objects whose memory will be reclaimed. Prior to releasing their memory,
the deinitialization routines for these objects will be executed (§16.8.1). The expression-list can contain array expres-
sions, in which case each element of that array will be deleted in parallel using a forall loop over the array. It is
legal to delete a class variable whose value is ni1, though this has no effect. If a class instance is referenced after it
has been deleted, the behavior is undefined.

Example (delete.chpl). The following example allocates a new object c of class type C and then deletes
it.

var c : unmanaged C = nil;
delete c; // Does nothing: ¢ 1is nil.

c = new unmanaged C(); // Creates a new object.
delete c; // Deletes that object.

// The following statements reference an object after it has been deleted, so
// the behavior of each is "undefined":

// writeln(c.1i); // May read from freed memory.

// c.i = 3; // May overwrite freed memory.

// delete c; // May confuse some allocators.
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16.8.1 Class Deinitializer

A class author may create a deinitializer to specify additional actions to be performed when a class instance is deleted.
A class deinitializer is a method named deinit (). It must take no arguments (aside from the implicit this argument).
If defined, the deinitializer is called each time a delete statement is invoked with a valid instance of that class type.
The deinitializer is not called if the argument of delete evaluates to nil. Note that when an owned or shared
variable goes out of scope, it may call delete on a class instance which in turn will run the deinitializer and then
reclaim the memory.

Example (classDeinitializer.chpl).

class C {

var i: int;

proc deinit () { writeln("Bye, bye ", 1i); }
}

var c : unmanaged C = nil;
delete c; // Does nothing: c is nil.

c = new unmanaged C(1l); // Creates a new instance.
delete c; // Deletes that instance: Writes out "Bye, bye 1"
// and reclaims the memory that was held by c.
{
var own = new owned C(2); // Creates a new owned instance

// The instance is automatically deleted at
// the end of this block, so "Bye, bye 2" is
// output and then the memory is reclaimed.



17 Records

A record is a data structure that is similar to a class except it has value semantics, similar to primitive types. Value
semantics mean that assignment, argument passing and function return values are by default all done by copying.
Value semantics also imply that a variable of record type is associated with only one piece of storage and has only
one type throughout its lifetime. Storage is allocated for a variable of record type when the variable declaration is
executed, and the record variable is also initialized at that time. When the record variable goes out of scope, or at the
end of the program if it is a global, it is deinitialized and its storage is deallocated.

A record declaration statement creates a record type A variable of record type contains all and only the fields
defined by that type (§I7.1.T). Value semantics imply that the type of a record variable is known at compile time (i.e.
it is statically typed).

A record can be created using the new operator, which allocates storage, initializes it via a call to a record initializer,
and returns it. A record is also created upon a variable declaration of a record type.

A record type is generic if it contains generic fields. Generic record types are discussed in detail in

17.1 Record Declarations

A record type is defined with the following syntax:

record—declaration—statement:
simple—-record—declaration—statement
external-record—declaration—statement

simple—record-declaration—statement:
record identifier { record-statement-list }

record-statement-list:
record—statement
record-statement record— statement—list

record-statement:
variable—declaration—statement
method—declaration— statement
type—declaration—statement
empty-statement

A record-declaration-statement defines a new type symbol specified by the identifier. As in a class declaration, the body
of a record declaration can contain variable, method, and type declarations.

If a record declaration contains a type alias or parameter field, or it contains a variable or constant field without a
specified type and without an initialization expression, then it declares a generic record type. Generic record types are

described in §23.3]
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If the extern keyword appears before the record keyword, then an external record type is declared. An external
record is used within Chapel for type and field resolution, but no corresponding backend definition is generated. It
is presumed that the definition of an external record is supplied by a library or the execution environment. See the
chapter on interoperability (§31) for more information on external records.

Future.  Privacy controls for classes and records are currently not specified, as discussion is needed
regarding its impact on inheritance, for instance.

17.1.1 Record Types

A record type specifier simply names a record type, using the following syntax:
record-type:
identifier
identifier ( named-expression-list )

A record type specifier may appear anywhere a type specifier is permitted.

For non-generic records, the record name by itself is sufficient to specify the type. Generic records must be instantiated
to serve as a fully-specified type, for example to declare a variable. This is done with type constructors, which are
defined in Section

17.1.2 Record Fields

Variable declarations within a record type declaration define fields within that record type. The presence of at least one
parameter field causes the record type to become generic. Variable fields define the storage associated with a record.

Example (defineActorRecord.chpl). The code

record ActorRecord {
var name: string;
var age: uint;

}

defines a new record type called Act orRecord that has two fields: the string field name and the unsigned
integer field age. The data contained by a record of this type is exactly the same as that contained by an
instance of the Actor class defined in the preceding chapter

17.1.3 Record Methods

A record method is a function or iterator that is bound to a record. See the methods section §14]for more information
about methods.

Note that the receiver of a record method is passed by ref or const ref intent by default, depending on whether or
not this is modified in the body of the method.



Records 151

17.1.4 Nested Record Types

A record defined within another class or record is a nested record. A nested record can be referenced only within its
immediately enclosing class or record.

17.2 Record Variable Declarations

A record variable declaration is a variable declaration using a record type. When a variable of record type is declared,
storage is allocated sufficient to store all of the fields defined in that record type.

In the context of a class or record or union declaration, the fields are allocated within the object as if they had been
declared individually. In this sense, records provide a way to group related fields within a containing class or record

type.

In the context of a function body, a record variable declaration causes storage to be allocated sufficient to store all of
the fields in that record type. The record variable is initialized with a call to an initializer (§16.4) that accepts zero
actual arguments.

17.2.1 Storage Allocation

Storage for a record variable directly contains the data associated with the fields in the record, in the same manner as
variables of primitive types directly contain the primitive values. Record storage is reclaimed when the record variable
goes out of scope. No additional storage for a record is allocated or reclaimed. Field data of one variable’s record is
not shared with data of another variable’s record.

17.2.2 Record Initialization

A variable of a record type declared without an initialization expression is initialized through a call to the record’s
default initializer, passing no arguments. The default initializer for a record is defined in the same way as the default

initializer for a class (§16.4.2).

To create a record as an expression, i.e. without binding it to a variable, the new operator is required. In this case,
storage is allocated and reclaimed as for a record variable declaration (§17.2.1]), except that the temporary record goes
out of scope at the end of the enclosing block.

The initializers for a record are defined in the same way as those for a class (§16.4). Note that records do not support
inheritance and therefore the initializer rules for inheriting classes (§16.4.4) do not apply to record initializers.

Example (recordCreation.chpl). The program
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record TimeStamp {

var time: string = "1/1/1011";
}
var timestampDefault: TimeStamp; // use the default for ’‘time’
var timestampCustom = new TimeStamp ("2/2/2022"); // ... or a different one

writeln (timestampDefault) ;
writeln (timestampCustom) ;

var idCounter = 0;
record UniqueID {
var id: int;
proc init () { idCounter += 1; id = idCounter; }

}

var firstID : UniquelD; // invokes zero-argument initializer

writeln (firstID);

writeln (new UniqueID()); // create and use a record value without a variable
writeln (new UniqueID());

produces the output

(time = 1/1/1011)
(time = 2/2/2022)

(id = 1)
(id = 2)
(id = 3)

The variable timestampDefault is initialized with TimeStamp’s default initializer. The expression

new TimeStamp creates arecord thatis assigned to t imestampCustom. It effectively initializes t imestampCustom
via a call to the initializer with desired arguments. The records created with new UniquelID () are dis-

carded after they are used.

As with classes, the user can provide their own initializers (§16.4.1). If any user-defined initializers are supplied, the
default initializer cannot be called directly.

17.2.3 Record Deinitializer

A record author may specify additional actions to be performed before record storage is reclaimed by defining a record
deinitializer. A record deinitializer is a method named deinit (). A record deinitializer takes no arguments (aside
from the implicit this argument). If defined, the deinitializer is called on a record object after it goes out of scope
and before its memory is reclaimed.

Example (recordDeinitializer.chpl).

class C { var x: int; } // A class with nonzero size.
// If the class were empty, whether or not its memory was reclaimed
// would not be observable.

// Defines a record implementing simple memory management.
record R {
var c: unmanaged C;
proc init () {
c = new unmanaged C(0);
}
proc deinit () {
delete c; ¢ = nil;
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proc foo()

{

var r: R; // Initialized using default initializer.

writeln(r);

// r will go out of scope here.

// Its deinitializer will be called to free the C object it contains.

foo();

17.3 Record Arguments

When records are copied into or out of a function’s formal argument, the copy is performed consistently with the
semantics described for record assignment (§17.6.2).

Example (paramPassing.chpl). The program

record MyColor ({
var color: int;

}

proc printMyColor (in mc: MyColor) {
writeln("my color is ", mc.color);

mc.color = 6; // does not affect the caller’s record
}
var mcl: MyColor; // ’color’ defaults to 0
var mc2: MyColor = mcl; // mcl’s value is copied into mc2
mcl.color = 3; // mcl’s value is modified
printMyColor (mc2) ; // mc2 is not affected by assignment to mcl
printMyColor (mc2) ; // ... or by assignment in printMyColor ()

proc modifyMyColor (inout mc: MyColor, newcolor: int) {
mc.color = newcolor;

}
modifyMyColor (mc2, 7); // mc2 is affected because of the ’inout’ intent

printMyColor (mc2) ;

produces

my color is 0
my color is 0
my color is 7

The assignment to mc1.color affects only the record stored in mc1. The record in mc2 is not affected
by the assignment to mc1 or by the assignment in printMyColor. mc2 is affected by the assignment in
modifyMyColor because the intent inout is used.

17.4 Record Field Access

A record field is accessed the same way as a class field (@. When a field access is used as an rvalue, the value of
that field is returned. When it is used as an lvalue, the value of the record field is updated.
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Accessing a parameter or type field returns a parameter or type, respectively. Also, parameter and type fields can be
accessed from an instantiated record type in addition to from a record value.

17.4.1 Field Getter Methods

As in classes, field accesses are performed via getter methods (§16.5.1). By default, these methods simply return a
reference to the specified field (so they can be written as well as read). The user may redefine these as needed.

17.5 Record Method Calls

Record method calls are written the same way as other method calls (@. Unlike class methods, record methods
are always resolved at compile time.

17.6 Common Operations

17.6.1 Copy Initialization of Records

When a new record variable is created based upon an existing variable, we say that the new variable is copy initialized
from the existing variable. For example:

var x: MyRecordType;
var y = x; // this is called copy initialization

We say that y is copy initialized from x. Since x and y both exist after y is initialized and they are different record
variables, they must not be observed to alias. That is, modifications to a field in x should not cause the corresponding
field in y to change.

Initializing a record variable with the result of a call returning a record by value simply captures the result of the call
into the variable and does not cause copy initialization. For example:

proc returnsRecord() {
var ret: MyRecordType;
return ret;

}

var z = returnsRecord(); // captures result into z without copy initializing

Future. Specifying further details of copy initialization is future work.
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17.6.2 Record Assignment

A variable of record type may be updated by assignment. The compiler provides a default assignment operator for
each record type R having the signature:

proc =(ref lhs:R, rhs) : void ;

In it, the value of each field of the record on the right-hand side is assigned to the corresponding field of the record
on the left-hand side. It is a type error if the left-hand side and the right-hand side do not have the same set of field
names. It is also a type error if two fields with the same name do not have assignable types.

The compiler-provided assignment operator may be overridden as described in[T1.3]

The following example demonstrates record assignment.

Example (assignment.chpl).
record R {
var i: int;
var x: real;
proc print () { writeln("i = ", this.i, ", x =", this.x); }
}
var A: R;
A.i1 = 3;
A.print (); // "i =3, x =0.0"

var C: R;
A = C;
A.print (); // "1 =0, x =0.0"

C.x = 3.14;
A.print(); // "i =0, x = 0.0"

Prior to the first call to R. print, the record 2 is created and initialized to all zeroes. Then, its i field is set
to 3. For the second call to R.print, the record C is created assigned to A. Since C is default-initialized
to all zeroes, those zero values overwrite both values in A.

The next clause demonstrates that A and C are distinct entities, rather than two references to the same
object. Assigning 3.14 to C.x does not affect the x field in A.

17.6.3 Default Comparison Operators

Default functions to overload == and ! = are defined for records if none are explicitly defined. The default implemen-
tation of == applies == to each field of the two argument records and reduces the result with the & operator. The
default implementation of != applies != to each field of the two argument records and reduces the result with the | |
operator.

17.7 Differences between Classes and Records

The key differences between records and classes are listed below.
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17.7.1 Declarations

Syntactically, class and record type declarations are identical, except that they begin with the class and record
keywords, respectively. In contrast to classes, records do not support inheritance.

17.7.2 Storage Allocation

For a variable of record type, storage necessary to contain the data fields has a lifetime equivalent to the scope in which
it is declared. No two record variables share the same data. It is not necessary to call new to create a record.

By contrast, a class variable contains only a reference to a class instance. A class instance is created through a call to
its new operator. Storage for a class instance, including storage for the data associated with the fields in the class, is
allocated and reclaimed separately from variables referencing that instance. The same class instance can be referenced
by multiple class variables.

17.7.3 Assignment

Assignment to a class variable is performed by reference, whereas assignment to a record is performed by value. When
a variable of class type is assigned to another variable of class type, they both become names for the same object. In
contrast, when a record variable is assigned to another record variable, then contents of the source record are copied
into the target record field-by-field.

When a variable of class type is assigned to a record, matching fields (matched by name) are copied from the class
instance into the corresponding record fields. Subsequent changes to the fields in the target record have no effect upon

the class instance.

Assignment of a record to a class variable is not permitted.

17.7.4 Arguments

Record arguments use the const ref intent by default - in contrast to class arguments which pass by const in
intent by default.

Similarly, the this receiver argument is passed by const in by default for class methods. In contrast, it is passed
by ref or const ref by default for record methods.

17.7.5 No nil Value

Records do not provide a counterpart of the nil value. A variable of record type is associated with storage throughout
its lifetime, so ni1 has no meaning with respect to records.
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17.7.6 The delete operator

Calling delete on arecord is illegal.

17.7.7 Default Comparison Operators

For records, the compiler will supply default comparison operators if they are not supplied by the user. In contrast,
the user cannot redefine == and =! for classes. The default comparison operators for a record examine the arguments’
fields, while the comparison operators for classes check whether the L.h.s. and r.h.s. refer to the same class instance or
are both nil.



18 Unions

Unions have the semantics of records, however, only one field in the union can contain data at any particular point in
the program’s execution. Unions are safe so that an access to a field that does not contain data is a runtime error. When
a union is initialized, it is in an unset state so that no field contains data.

18.1 Union Types

The syntax of a union type is summarized as follows:

union-type:
identifier

The union type is specified by the name of the union type. This simplification from class and record types is possible
because generic unions are not supported.

18.2 Union Declarations

A union is defined with the following syntax:

union—declaration—statement:
extern,,; union identifier { union—statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type—declaration-statement
procedure—declaration—statement
iterator—declaration— statement
variable—declaration—statement
empty-statement

If the extern keyword appears before the union keyword, then an external union type is declared. An external
union is used within Chapel for type and field resolution, but no corresponding backend definition is generated. It is
presumed that the definition of an external union type is supplied by a library or the execution environment.

18.2.1 Union Fields

Union fields are accessed in the same way that record fields are accessed. It is a runtime error to access a field that is
not currently set.

Union fields should not be specified with initialization expressions.
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18.3 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned to the
union on the left-hand side of the assignment and this same field is marked as set.
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Ranges

A range is a first-class, constant-space representation of a regular sequence of indices of either integer, boolean, or
enumerated type. Ranges support iteration over the sequences they represent and are the basis for defining domains

(320).

Ranges are presented as follows:

definition of the key range concepts §19.1]
range types §19.2]

range values §19.3]

range assignment §19.4.1]

operators on ranges §19.3|
predefined functions on ranges §19.6|

19.1 Range Concepts

A range has four primary properties. Together they define the sequence of indices that the range represents, or the
represented sequence, as follows.

The low bound is either a specific index value or -oo.

The high bound is either a specific index value or +o0c. The low and high bounds determine the span of the rep-
resented sequence. Chapel does not represent oo explicitly. Instead, infinite bound(s) are represented implicitly
in the range’s type (§19.2). When the low and/or high bound is oo, the represented sequence is unbounded in
the corresponding direction(s).

The stride is a non-zero integer. It defines the distance between any two adjacent members of the represented
sequence. The sign of the stride indicates the direction of the sequence:
e stride > 0 indicates an increasing sequence,

e stride < 0 indicates a decreasing sequence.

The alignment is either a specific index value or is ambiguous. It defines how the represented sequence’s
members are aligned relative to the stride. For a range with a stride other than 1 or -1, ambiguous alignment
means that the represented sequence is undefined. In such a case, certain operations discussed later result in an
error.

160
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More formally, the represented sequence for the range (low, high, stride, alignmt) contains all indices ¢z such that:
low < iz < high and iz = alignmt (mod |stride|) if alignmt is not ambiguous
low < 1x < high if stride = 1 or stride = —1
the represented sequence is undefined otherwise

The sequence, if defined, is increasing if stride > 0 and decreasing if stride < 0.

If the represented sequence is defined but there are no indices satisfying the applicable equation(s) above, the range
and its represented sequence are empty. A common case of this occurs when the high bound is greater than the low
bound.

We will say that a value ix is aligned w.r.t. the range (low, high, stride, alignmt) if:

e alignmt is not ambiguous and iz = alignmt (mod |stridel), or

e strideis 1 or-1.

Furthermore, oo is never aligned.

Ranges have the following additional properties.

o A range is ambiguously aligned if
— its alignment is ambiguous, and

— its stride is neither 1 nor -1.

e The first index is the first member of the represented sequence.

A range has no first index when the first member is undefined, that is, in the following cases:

the range is ambiguously aligned,

the represented sequence is empty,

the represented sequence is increasing and the low bound is -oco,

the represented sequence is decreasing and the high bound is +o0.

e The last index is the last member of the represented sequence.

A range has no last index when the last member is undefined, that is, in the following cases:

it is ambiguously aligned,

the represented sequence is empty,

the represented sequence is increasing and the high bound is +oo,

the represented sequence is decreasing and the low bound is -co.

e The aligned low bound is the smallest value that is greater than or equal to the low bound and is aligned w.r.t.
the range, if such a value exists.

The aligned low bound equals the smallest member of the represented sequence, when both exist.

e The aligned high bound is the largest value that is less than or equal to the high bound and is aligned w.r.t. the
range, if such a value exists.

The aligned high bound equals the largest member of the represented sequence, when both exist.

e The range is iterable, that is, it is legal to iterate over it, if it has a first index.
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19.2 Range Types

The type of a range is characterized by three parameters:

e idxType is the type of the indices of the range’s represented sequence. However, when the range’s low and/or
high bound is oo, the represented sequence also contains indices that are not representable by idxType.

idxType must be an integral, boolean, or enumerated type and is int by default. The range’s low bound and
high bound (when they are not co) and alignment are of the type idxType. The range’s stride is of the signed
integer type that has the same bit size as 1dxType for integral ranges; for boolean and enumerated ranges, it is
simply int.

e boundedType indicates which of the range’s bounds are not co. boundedType is an enumeration constant of
the type BoundedRangeType. It is discussed further below.

e stridable is a boolean that determines whether the range’s stride can take on values other than 1. stridable
is false by default. A range is called stridable if its type’s stridable is true.

boundedType is one of the constants of the following type:

enum BoundedRangeType { bounded, boundedLow, boundedHigh, boundedNone };

The value of boundedType determines which bounds of the range are specified (making the range “bounded”, as
opposed to infinite, in the corresponding direction(s)) as follows:

e bounded: both bounds are specified.
e boundedLow: the low bound is specified (the high bound is +00).
e boundedHigh: the high bound is specified (the low bound is -00).

e boundedNone: neither bound is specified (both bounds are co).

boundedType is BoundedRangeType .bounded by default.

The parameters idxType, boundedType, and stridable affect all values of the corresponding range type. For
example, the range’s low bound is -oco if and only if the boundedType of that range’s type is either boundedHigh or
boundedNone.

Rationale. Providing boundedType and stridable in a range’s type allows the compiler to identify
the more common cases where the range is bounded and/or its stride is 1. The compiler can also detect
user and library code that is specialized to these cases. As a result, the compiler has the opportunity to
optimize these cases and the specialized code more aggressively.

A range type has the following syntax:

range—type:
range ( named-expression-list )

That is, a range type is obtained as if by invoking the range type constructor (§23.3.4) that has the following header:
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proc range (type idxType = int,
param boundedType = BoundedRangeType.bounded,
param stridable = false) type

As a special case, the keyword range without a parenthesized argument list refers to the range type with the default
values of all its parameters, i.e., range (int, BoundedRangeType.bounded, false).

Example (rangeVariable.chpl). The following declaration declares a variable r that can represent ranges
of 32-bit integers, with both high and low bounds specified, and the ability to have a stride other than 1.

var r: range (int (32), BoundedRangeType.bounded, stridable=true);

19.3 Range Values

A range value consists of the range’s four primary properties (§19.1)): low bound, high bound, stride and alignment.

19.3.1 Range Literals

Range literals are specified with the following syntax.

range-literal:
expression .. expression
expression ..
.. expression

The expressions to the left and to the right of . ., when given, are called the low bound and the high bound expression,
respectively.

The type of a range literal is a range with the following parameters:

e idxType is determined as follows:
— If both the low bound and the high bound expressions are given and have the same type, then idxType is
that type.

— If both the low bound and the high bound expressions are given and an implicit conversion is allowed from
one expression’s type to the other’s, then idxType is that type.

— If only one bound expression is given and it has an integral, boolean, or enumerated type, then idxType
is that type.

— If neither bound expression is given, then idxType is int.

— Otherwise, the range literal is not legal.
e boundedType is a value of the type BoundedRangeType that is determined as follows:

— bounded, if both the low bound and the high bound expressions are given,

— boundedLow, if only the high bound expression is given,
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— boundedHigh, if only the low bound expression is given,

— boundedNone, if neither bound expression is given.

stridableis false.

The value of a range literal is as follows:

The low bound is given by the low bound expression, if present, and is -oo otherwise.
The high bound is given by the upper bound expression, if present, and is +co otherwise.
The stride is 1.

The alignment is ambiguous.

19.3.2 Default Values

The default value for a range type depends on the type’s boundedType parameter as follows:

1..0 (an empty range) if boundedType is bounded
1.. if boundedType is boundedLow
..0if boundedType is boundedHigh

. if boundedType is boundedNone

Rationale.  'We use 0 and 1 to represent an empty range because these values are available for any
idxType.

We have not found the natural choice of the default value for boundedLow and boundedHigh ranges.
The values indicated above are distinguished by the following property. Slicing the default value for a
boundedLow range with the default value for a boundedHigh range (or visa versa) produces an empty
range, matching the default value for a bounded range

19.4 Common Operations

All operations on a range return a new range rather than modifying the existing one. This supports a coding style in
which all ranges are immutable (i.e. declared as const).

Rationale.
The intention is to provide ranges as immutable objects.

Immutable objects may be cached without creating coherence concerns. They are also inherently thread-
safe. In terms of implementation, immutable objects are created in a consistent state and stay that way:
Outside of initializers, internal consistency checks can be dispensed with.

These are the same arguments as were used to justify making strings immutable in Java and C#.
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19.4.1 Range Assignment

Assigning one range to another results in the target range copying the low and high bounds, stride, and alignment from
the source range.

Range assignment is legal when:

e An implicit conversion is allowed from idxType of the source range to idxType of the destination range type,
e the two range types have the same boundedType, and

e cither the destination range is stridable or the source range is not stridable.

19.4.2 Range Comparisons

Ranges can be compared using equality and inequality.

proc ==(rl: range(?), r2: range(?)): bool

Returns true if the two ranges have the same represented sequence or the same four primary properties, and
false otherwise.

19.4.3 Iterating over Ranges

A range can be used as an iterator expression in a loop. This is legal only if the range is iterable. In this case the loop
iterates over the members of the range’s represented sequence, in the order defined by the sequence. If the range is
empty, no iterations are executed.

Cray’s Chapel Implementation. An attempt to iterate over a range causes an error if adding stride to the
range’s last index overflows its index type, i.e. if the sum is greater than the index type’s maximum value,
or smaller than its minimum value.

Iterating over Unbounded Ranges in Zippered Iterations

When a range with the first index but without the last index is used in a zippered iteration ( §I1.9.T), it generates as
many indices as needed to match the other iterator(s).

Example (zipWithUnbounded.chpl). The code

for i in zip(1..5, 3..) do
write(i, "; ");

produces the output

(1, 3); (2, 4); (3, 5); (4, 6); (5, 7);
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19.4.4 Range Promotion of Scalar Functions

Range values may be passed to a scalar function argument whose type matches the range’s index type. This results in
a promotion of the scalar function as described in §26.3]

Example (rangePromotion.chpl). Given a function addOne (x:int) that accepts int values and a range
1..10, the function addone () can be called with 1. .10 as its actual argument which will result in the
function being invoked for each value in the range.

proc addOne (x:int) {

return x + 1;

}
var A:[1..10] int;
A = addOne (1..10);

The last statement is equivalent to:

forall (a,i) in zip(A,1..10) do
a = addOne (1) ;

19.5 Range Operators

The following operators can be applied to range expressions and are described in this section: stride (by), alignment
(align), count (#) and slicing (() or []). Chapel also defines a set of functions that operate on ranges. They are

described in §19.6

range—expression:
expression
strided-range—expression
counted-range—expression
aligned—-range—expression
sliced-range—expression

19.5.1 By Operator

The by operator selects a subsequence of the range’s represented sequence, optionally reversing its direction. The
operator takes two arguments, a base range and an integral step. It produces a new range whose represented sequence
contains each |step|-th element of the base range’s represented sequence. The operator reverses the direction of the
represented sequence if step<<0. If the resulting sequence is increasing, it starts at the base range’s aligned low bound, if
it exists. If the resulting sequence is decreasing, it starts at the base range’s aligned high bound, if it exists. Otherwise,
the base range’s alignment is used to determine which members of the represented sequence to retain. If the base
range’s represented sequence is undefined, the resulting sequence is undefined, too.

The syntax of the by operator is:
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strided—-range—expression:
range—expression by step—expression

step—expression:

expression

The type of the step must be a signed or unsigned integer of the same bit size as the base range’s idxType, or an
implicit conversion must be allowed to that type from the step’s type. It is an error for the step to be zero.

Future. We may consider allowing the step to be of any integer type, for maximum flexibility.

The type of the result of the by operator is the type of the base range, but with the st ridable parameter set to t rue.

Formally, the result of the by operator is a range with the following primary properties:

e The low and upper bounds are the same as those of the base range.

e The stride is the product of the base range’s stride and the step, cast to the base range’s stride type before
multiplying.

e The alignment is:

— the aligned low bound of the base range, if such exists and the stride is positive;
— the aligned high bound of the base range, if such exists and the stride is negative;

— the same as that of the base range, otherwise.

Example (rangeByOperator.chpl). 1In the following declarations, range r1 represents the odd integers
between 1 and 20. Range r2 strides r1 by two and represents every other odd integer between 1 and 20:
1,5,9,13 and 17.

var rl = 1..20 by 2;
var r2 = rl by 2;

Rationale. Why isn’t the high bound specified first if the stride is negative? The reason for this choice
is that the by operator is binary, not ternary. Given a range R initialized to 1. .3, we want R by -1
to contain the ordered sequence 3,2,1. But then R by -1 would be different from 3..1 by -1 even
though it should be identical by substituting the value in R into the expression.

19.5.2 Align Operator

The a1ign operator can be applied to any range, and creates a new range with the given alignment.

The syntax for the align operator is:

aligned-range-expression:
range—expression align expression
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The type of the resulting range expression is the same as that of the range appearing as the left operand, but with the
stridable parameter set to true. An implicit conversion from the type of the right operand to the index type of the
operand range must be allowed. The resulting range has the same low and high bounds and stride as the source range.
The alignment equals the align operator’s right operand and therefore is not ambiguous.

Example (alignedStride.chpl).

var rl = 0 .. 10 by 3 align O;
for i in rl do
write(" ", 1i); // Produces "0 3 6 9".

writeln();

var r2 = 0 .. 10 by 3 align 1;
for i in r2 do
write(" ", i); // Produces "1 4 7 10".

writeln();

When the stride is negative, the same indices are printed in reverse:

Example (alignedNegStride.chpl).

var r3 = 0 .. 10 by -3 align 0;
for i in r3 do
write(" ", 1); // Produces "9 6 3 0".

writeln();

var r4 = 0 .. 10 by -3 align 1;
for i in r4 do
write(" ", 1i); // Produces "10 7 4 1".

writeln();

To create a range aligned relative to its first index, use the offset method (§19.6.4).

19.5.3 Count Operator

The # operator takes a range and an integral count and creates a new range containing the specified number of indices.
The low or high bound of the left operand is preserved, and the other bound adjusted to provide the specified number
of indices. If the count is positive, indices are taken from the start of the range; if the count is negative, indices are
taken from the end of the range. The count must be less than or equal to the 1ength of the range.

counted-range-expression:
range—expression # expression

The type of the count expression must be a signed or unsigned integer of the same bit size as the base range’s 1dxType,
or an implicit conversion must be allowed to that type from the count’s type.

The type of the result of the # operator is the type of the range argument.

Depending on the sign of the count and the stride, the high or low bound is unchanged and the other bound is adjusted
so that it is ¢ * stride — 1 units away. Specifically:
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o If the count times the stride is positive, the low bound is preserved and the high bound is adjusted to be one less
than the low bound plus that product.

o If the count times the stride is negative, the high bound is preserved and the low bound is adjusted to be one
greater than the high bound plus that product.

Rationale. Following the principle of preserving as much information from the original range as possible,
we must still choose the other bound so that exactly count indices lie within the range. Making the two
bounds lie count * stride — 1 apart will achieve this, regardless of the current alignment of the range.

This choice also has the nice symmetry that the alignment can be adjusted without knowing the bounds
of the original range, and the same number of indices will be produced:

# 4 align 0 // Contains four indices.
# 4 align 1 // Contains four indices.
# 4 align 2 // Contains four indices.
# 4 align 3 // Contains four indices.

R R KRR

It is an error to apply the count operator with a positive count to a range that has no first index. It is also an error
to apply the count operator with a negative count to a range that has no last index. It is an error to apply the count
operator to a range that is ambiguously aligned.

Example (rangeCountOperator.chpl). The following declarations result in equivalent ranges.

var rl = 1..10 by -2 # -3;
var r2 = ..6 by -2 # 3;
var r3 = -6..6 by -2 # 3;
var r4d = 1..#6 by -2;

Each of these ranges represents the ordered set of three indices: 6, 4, 2.

19.5.4 Arithmetic Operators

The following arithmetic operators are defined on ranges and integral types:

proc +(r: range, s: integral): range
proc +(s: integral, r: range): range
proc - (r: range, s: integral): range

The + and - operators apply the scalar via the operator to the range’s low and high bounds, producing a shifted version
of the range. If the operand range is unbounded above or below, the missing bounds are ignored. The index type of
the resulting range is the type of the value that would result from an addition between the scalar value and a value with
the range’s index type. The bounded and stridable parameters for the result range are the same as for the input range.

The stride of the resulting range is the same as the stride of the original. The alignment of the resulting range is
shifted by the same amount as the high and low bounds. It is permissible to apply the shift operators to a range that is
ambiguously aligned. In that case, the resulting range is also ambiguously aligned.

Example (rangeAdd.chpl). The following code creates a bounded, non-stridable range r which has an
index type of int representing the indices 0, 1, 2, 3. It then uses the + operator to create a second range r2
representing the indices 1,2, 3, 4. The r2 range is bounded, non-stridable, and is represented by indices
of type int.

var r = 0..3;
var r2 = r + 1; // 1..4
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19.5.5 Range Slicing

Ranges can be sliced using other ranges to create new sub-ranges. The resulting range represents the intersection
between the two ranges’ represented sequences. The stride and alignment of the resulting range are adjusted as needed
to make this true. idxType and the sign of the stride of the result are determined by the first operand.

Range slicing is specified by the syntax:

sliced-range—expression:
range—expression ( range—expression )
range—expression [ range—expression |

If either of the operand ranges is ambiguously aligned, then the resulting range is also ambiguously aligned. In this
case, the result is valid only if the strides of the operand ranges are relatively prime. Otherwise, an error is generated
at run time.

Rationale. 1f the strides of the two operand ranges are relatively prime, then they are guaranteed to have
some elements in their intersection, regardless whether their relative alignment can be determined. In that
case, the bounds and stride in the resulting range are valid with respect to the given inputs. The alignment
can be supplied later to create a valid range.

If the strides are not relatively prime, then the result of the slicing operation would be completely ambigu-
ous. The only reasonable action for the implementation is to generate an error.

If the resulting sequence cannot be expressed as a range of the original type, the slice expression evaluates to the empty
range 1. .0. This can happen, for example, when the operands represent all odd and all even numbers, or when the first
operand is an unbounded range with unsigned idxType and the second operand represents only negative numbers.

Example (rangeSlicing.chpl). In the following example, r represents the integers from 1 to 20 inclusive.
Ranges r2 and r3 are defined using range slices and represent the indices from 3 to 20 and the odd
integers between 1 and 20 respectively. Range r4 represents the odd integers between 1 and 20 that are

also divisible by 3.
var r = 1..20;
var r2 = r[3..];
var r3 = r[l.. by 2];

var r4 = r3[0.. by 3];

19.6 Predefined Functions on Ranges

19.6.1 Range Type Parameters

proc range.boundedType : BoundedRangeType
Returns the boundedType parameter of the range’s type.

proc range.idxType : type
Returns the idxType parameter of the range’s type.

proc range.stridable : bool

Returns the stridable parameter of the range’s type.
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19.6.2 Range Properties

Most of the methods in this subsection report on the range properties defined in §19.1] A range’s represented sequence
can be examined, for example, by iterating over the range in a for loop §11.9]

proc

proc

proc

proc

proc

proc

proc

proc

proc

Open issue. The behavior of the methods that report properties that may be undefined, co, or ambiguous,
may change.

range.aligned : bool

Reports whether the range’s alignment is unambiguous.

range.alignedHigh : idxType
Returns the range’s aligned high bound. If the aligned high bound is undefined (does not exist), the behavior is

undefined.

Example (alignedHigh.chpl). The following code:

var r = 0..20 by 3;
writeln(r.alignedHigh) ;

produces the output
18
range.alignedLow : idxType

Returns the range’s aligned low bound. If the aligned low bound is undefined (does not exist), the behavior is
undefined.

range.alignment : idxType

Returns the range’s alignment. If the alignment is ambiguous, the behavior is undefined. See also aligned.

range.first : idxType

Returns the range’s first index. If the range has no first index, the behavior is undefined. See also hasFirst.

range.hasFirst () : bool

Reports whether the range has the first index.

range.hasHighBound () param: bool

Reports whether the range’s high bound is not +oo.

range.hasLast () : bool

Reports whether the range has the last index.

range.hasLowBound () param: bool
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proc

proc

proc

proc

proc

proc

proc

Reports whether the range’s low bound is not -co.

range.high : idxType

Returns the range’s high bound. If the high bound is +c0, the behavior is undefined. See also hasHighBound.
range.isAmbiguous () : bool

Reports whether the range is ambiguously aligned.

range.last : idxType

Returns the range’s last index. If the range has no last index, the behavior is undefined. See also hasLast.

range.length : idxType

Returns the number of indices in the range’s represented sequence. If the represented sequence is infinite or is
undefined, an error is generated.

range.low : idxType

Returns the range’s low bound. If the low bound is -oo, the behavior is undefined. See also hasLowBound.
range.size : idxType

Same as range.length.

range.stride : int (numBits (idxType))

Returns the range’s stride. This will never return 0. If the range is not stridable, this will always return 1.

19.6.3 Other Queries

proc

proc

proc

range.boundsCheck (r2: range(?)): bool
Returns false if either range is ambiguously aligned. Returns t rue if range r2 lies entirely within this range
and false otherwise.

ident (rl: range(?), r2: range(?)): bool

Returns true if the two ranges are the same in every respect: i.e. the two ranges have the same idxType,
boundedType, stridable, low, high, stride and alignment values.

range.indexOrder (i: idxType): idxType

If i is a member of the range’s represented sequence, returns an integer giving the ordinal index of i within the
sequence using 0-based indexing. Otherwise, returns (-1) : idxType. It is an error to invoke indexOrder if
the represented sequence is not defined or the range does not have the first index.

Example. The following calls show the order of index 4 in each of the given ranges:
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(0..10) .indexOrder (4) == 4
(1..10) .indexOrder (4) == 3
(3..5) .indexOrder (4) ==

(0..10 by 2).indexOrder (4) == 2
(3..5 by 2).indexOrder (4) == -1

proc range.member (i: idxType): bool

Returns t rue if the range’s represented sequence contains i, false otherwise. It is an error to invoke member
if the represented sequence is not defined.

proc range.member (other: range): bool

Reports whether other is a subrange of the receiver. That is, if the represented sequences of the receiver and
other are defined and the receiver’s sequence contains all members of the other’s sequence.

19.6.4 Range Transformations

proc range.alignHigh ()
Sets the high bound of this range to its aligned high bound, if it is defined. Generates an error otherwise.

proc range.alignLow ()
Sets the low bound of this range to its aligned low bound, if it is defined. Generates an error otherwise.
proc range.expand(i: idxType)

Returns a new range whose bounds are extended by 7 units on each end. If ¢ < 0 then the resulting range is
contracted by its absolute value. In symbols, given that the operand range is represented by the tuple (I, h, s, a),
the result is (I — i, h+4, s, a). The stride and alignment of the original range are preserved. If the operand range
is ambiguously aligned, then so is the resulting range.

proc range.exterior (i: idxType)

Returns a new range containing the indices just outside the low or high bound of the range (low if ¢ < 0 and
high otherwise). The stride and alignment of the original range are preserved. Let the operand range be denoted
by the tuple (I, h, s, a). Then:

ifi <0, theresultis (I + 4,1 —1,s,a),
ifi > 0, the resultis (h + 1,h + 4, s,a), and
ifi = 0, the result is (I, h, s, a).

If the operand range is ambiguously aligned, then so is the resulting range.
proc range.interior (i: idxType)

Returns a new range containing the indices just inside the low or high bound of the range (low if 7 < 0 and high
otherwise). The stride and alignment of the original range are preserved. Let the operand range be denoted by
the tuple (I, h, s, a). Then:

ifi <0, theresultis (1,1 — (i — 1), s, a),
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ifi > 0, the result is (h — (¢ — 1), h, s,a), and
ifi = 0, the result is (I, h, s, a).

This differs from the behavior of the count operator, in that interior () preserves the alignment, and it uses the
low and high bounds rather than first and last to establish the bounds of the resulting range. If the operand
range is ambiguously aligned, then so is the resulting range.

proc range.offset (n: idxType)

Returns a new range whose alignment is this range’s first index plus n. The new alignment, therefore, is not
ambiguous. If the range has no first index, a run-time error is generated.

proc range.translate(i: integral)

Returns a new range with its 1ow, high and alignment values adjusted by 7. The stride value is preserved.
If the range’s alignment is ambiguous, the behavior is undefined.



20 Domains

A domain is a first-class representation of an index set. Domains are used to specify iteration spaces, to define the size
and shape of arrays (§21), and to specify aggregate operations like slicing. A domain can specify a single- or multi-
dimensional rectangular iteration space or represent a set of indices of a given type. Domains can also represent a
subset of another domain’s index set, using either a dense or sparse representation. A domain’s indices may potentially
be distributed across multiple locales as described in §28| thus supporting global-view data structures.

In the next subsection, we introduce the key characteristics of domains. In §20.2] we discuss the types and values that
can be associated with a base domain. In §20.3] we discuss the types and values of simple subdomains that can be
created from those base domains. In §20.4] we discuss the types and values of sparse subdomains. The remaining
sections describe the important manipulations that can be performed with domains, as well as the predefined operators
and functions defined for domains.

20.1 Domain Overview

There are three kinds of domain, distinguished by their subset dependencies: base domains, subdomains and sparse
subdomains. A base domain describes an index set spanning one or more dimensions. A subdomain creates an index
set that is a subset of the indices in a base domain or another subdomain. Sparse subdomains are subdomains which can
represent sparse index subsets efficiently. Simple subdomains are subdomains that are not sparse. These relationships
can be represented as follows:

domain-type:
base—-domain-type
simple-subdomain-type
sparse—subdomain—type

Domains can be further classified according to whether they are regular or irregular. A regular domain represents a
rectangular iteration space and can have a compact representation whose size is independent of the number of indices.
Rectangular domains, with the exception of sparse subdomains, are regular.

An irregular domain can store an arbitrary set of indices of an arbitrary but homogeneous index type. Irregular domains
typically require space proportional to the number of indices being represented. All associative domain types and their
subdomains (including sparse subdomains) are irregular. Sparse subdomains of regular domains are also irregular.

An index set can be either ordered or unordered depending on whether its members have a well-defined order rela-
tionship. All regular domains are ordered. All associative domains are unordered.

The type of a domain describes how a domain is represented and the operations that can be performed upon it, while
its value is the set of indices it represents. In addition to storing a value, each domain variable has an identity that
distinguishes it from other domains that may have the same type and value. This identity is used to define the domain’s

relationship with subdomains, index types (§20.3)), and arrays (§21.11).

The runtime representation of a domain is controlled by its domain map. Domain maps are presented in §28]

175
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20.2 Base Domain Types and Values

Base domain types can be classified as regular or irregular. Dense and strided rectangular domains are regular domains.
Irregular base domain types include all of the associative domain types.

base-domain-type:
rectangular-domain—type
associative—domain—-type

These base domain types are discussed in turn in the following subsections.

20.2.1 Rectangular Domains

Rectangular domains describe multidimensional rectangular index sets. They are characterized by a tensor product
of ranges and represent indices that are tuples of an integral type. Because their index sets can be represented using
ranges, regular domain values typically require only O(1) space.

Rectangular Domain Types
Rectangular domain types are parameterized by three things:

e rank a positive int value indicating the number of dimensions that the domain represents;
e idxType a type member representing the index type for each dimension; and

e stridable a bool parameter indicating whether any of the domain’s dimensions will be characterized by a
strided range.

If rank is 1, the index type represented by a rectangular domain is idxType. Otherwise, the index type is the
homogeneous tuple type rank+idxType. If unspecified, idxType defaults to int and st ridable defaults to false.

Open issue. We may represent a rectangular domain’s index type as rank*idxType even if rank is 1. This
would eliminate a lot of code currently used to support the special (rank == 1) case.

The syntax of a rectangular domain type is summarized as follows:

rectangular—domain-type:
domain ( named-expression-list )

where named-expression-list permits the values of rank, idxType, and stridable to be specified using standard type
signature.

Example (typeFunctionDomain.chpl). The following declarations both create an uninitialized rectangular
domain with three dimensions, with int indices:

var D1 : domain (rank=3, idxType=int, stridable=false);
var D2 : domain(3);
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Rectangular Domain Values

Each dimension of a rectangular domain is a range of type range (idxType, BoundedRangeType.bounded,
stridable). The index set for a rank 1 domain is the set of indices described by its singleton range. The index
set for a rank n domain is the set of all nxidxType tuples described by the tensor product of its ranges. When ex-
panded (as by an iterator), rectangular domain indices are ordered according to the lexicographic order of their values.
That is, the index with the highest rank is listed first and changes most slowlyp_-]

Future. Domains defined using unbounded ranges may be supported.

Literal rectangular domain values are represented by a comma-separated list of range expressions of matching idxType
enclosed in curly braces:

rectangular—domain- literal:
{ range—expression-list }

range—expression-list:

range—expression
range—expression, range—expression—1list

The type of a rectangular domain literal is defined as follows:

e rank = the number of range expressions in the literal;
e idxType = the type of the range expressions;

e stridable = true if any of the range expressions are stridable, otherwise false.

If the index types in the ranges differ and all of them can be promoted to the same type, then that type is used as the
idxType. Otherwise, the domain literal is invalid.

Example. The expression {1..5, 1..5} defines a rectangular domain with type domain (rank=2,
idxType=int, stridable=false). Itis a5 x 5 domain with the indices:

(1,1),(1,2),.... (1,5), (2,1),...(5,5). (20.1)
A domain expression may contain bounds which are evaluated at runtime.

Example. In the code

var D: domain(2) = {1..n, 1..n};

D is defined as a two-dimensional, nonstridable rectangular domain with an index type of 2«int and is
initialized to contain the set of indices (i, j) for all ¢ and j such thati € 1,2,...,nand j € 1,2,...,n.

The default value of a domain type is the rank default range values for type:

IThis is also known as row-major ordering.
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range (idxType, BoundedRangeType.bounded, stridable)

Example (rectangularDomain.chpl). The following creates a two-dimensional rectangular domain and
then uses this to declare an array. The array indices are iterated over using the domain’s dim () method,
and each element is filled with some value. Then the array is printed out.

Thus, the code

var D : domain(2) = {1..2, 1..7};
var A : [D] int;
for i in D.dim(1l) do
for j in D.dim(2) do
Ali,J] = 7 » 1*%x2 + 7J;
writeln (A);

produces

8 9 10 11 12 13 14
29 30 31 32 33 34 35

20.2.2 Associative Domains

Associative domains represent an arbitrary set of indices of a given type and can be used to describe sets or to create
dictionary-style arrays (hash tables). The type of indices of an associative domain, or its idxType, can be any primitive
type except void or any class type.

Associative Domain Types

An associative domain type is parameterized by idxType, the type of the indices that it stores. The syntax is as
follows:

associative—domain-type:
domain ( associative—index—type )
domain ( opaque )

associative—index—type:

type—expression

The three expansions of associative—domain-type correspond to the three kinds of associative domain listed below.

1. In general, associative—index—type determines idxType of the associative domain type.

2. Opaque domains are a special case, indicated by the type opaque. Anonymous values of the type opaque are
used as index values in this case.

When an associative domain is used as the index set of an array, the relation between the indices and the array elements
can be thought of as a map between the values of the index set and the elements stored in the array. Opaque domains
can be used to build unstructured arrays that are similar to pointer-based data structures in conventional languages.
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Associative Domain Values

An associative domain’s value is simply the set of all index values that the domain describes. The iteration order over
the indices of an associative domain is undefined.

Specification of an associative domain literal value follows a similar syntax as rectangular domain literal values. What
differentiates the two are the types of expressions specified in the comma separated list. Use of values of a type other
than ranges will result in the construction of an associative domain.

associative—domain-literal:

{ associative—expression—list }

associative—expression-list:
non-range—expression
non-range—expression, associative—expression—list

non-range—expression:
expression

It is required that the types of the values used in constructing an associative domain literal value be of the same type.
If the types of the indices does not match a compiler error will be issued.

Future. Due to implementation of == over arrays it is currently not possible to use arrays as indices
within an associative domain.

Open issue. Assignment of an associative domain literal results in a warning message being printed
alerting the user that whole-domain assignment has been serialized. This results from the resize operation
over associative arrays not being parsafe.

Example (associativeDomain.chpl). The following example illustrates construction of an associative
domain containing string indices "bar" and "foo". Note that due to internal hashing of indices the order in
which the values of the associative domain are iterated is not the same as their specification order.

This code

var D : domain(string) = {"bar", "foo"};
writeln (D) ;

produces the output

{foo, bar}

If uninitialized, the default value of an associative domain is the empty index set.

Indices can be added to or removed from an associative domain as described in §20.8.6]
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20.3 Simple Subdomain Types and Values

A subdomain is a domain whose indices are guaranteed to be a subset of those described by another domain known as
its parent domain. A subdomain has the same type as its parent domain, and by default it inherits the domain map of
its parent domain. All domain types support subdomains.

Simple subdomains are subdomains which are not sparse. Sparse subdomains are discussed in the following section
(820.4). A simple subdomain inherits its representation (regular or irregular) from its base domain (or base subdo-
main). A sparse subdomain is always irregular, even if its base domain is regular.

In all other respects, the two kinds of subdomain behave identically. In this specification, “subdomain” refers to both
simple and sparse subdomains, unless it is specifically distinguished as one or the other.

Rationale. Subdomains are provided in Chapel for a number of reasons: to facilitate the ability of the
compiler or a reader to reason about the inter-relationship of distinct domain variables; to support the
author’s ability to omit redundant domain mapping specifications; to support the compiler’s ability to
reason about the relative alignment of multiple domains; and to improve the compiler’s ability to prove
away bounds checks for array accesses.

20.3.1 Simple Subdomain Types

A simple subdomain type is specified using the following syntax:

simple—subdomain-type:
subdomain ( domain-expression )

This declares that domain-expression is the parent domain of this subdomain type. A simple subdomain specifies a
subdomain with the same underlying representation as its base domain.

Open issue.

An open semantic issue for subdomains is when a subdomain’s subset property should be re-verified once
its parent domain is reassigned and whether this should be done aggressively or lazily.

20.3.2 Simple Subdomain Values

The value of a simple subdomain is the set of all index values that the subdomain describes.
The default value of a simple subdomain type is the same as the default value of its parent’s type (§20.2.1] §20.2.7).
A simple subdomain variable can be initialized or assigned to with a tuple of values of the parent’s idxType. Indices

can also be added to or removed from a simple subdomain as described in §20.8.6] It is an error to attempt to add an
index to a subdomain that is not also a member of the parent domain.
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20.4 Sparse Subdomain Types and Values

sparse—subdomain-type:
sparse subdomain,,, ( domain-expression )

This declaration creates a sparse subdomain. Sparse subdomains are irregular domains that describe an arbitrary subset
of a domain, even if the parent domain is a regular domain. Sparse subdomains are useful in Chapel for defining sparse
arrays in which a single element value (usually “zero”) occurs frequently enough that it is worthwhile to avoid storing
it redundantly. The set difference between a sparse subdomain’s index set and that of parent domain is the set of
indices for which the sparse array will store this replicated value. See §21.10| for details about sparse arrays.

20.4.1 Sparse Subdomain Types

Each root domain type has a unique corresponding sparse subdomain type. Sparse subdomains whose parent domains
are also sparse subdomains share the same type.

20.4.2 Sparse Subdomain Values

A sparse subdomain’s value is simply the set of all index values that the domain describes. If the parent domain defines
an iteration order over its indices, the sparse subdomain inherits that order.

There is no literal syntax for a sparse subdomain. However, a variable of a sparse subdomain type can be initialized
using a tuple of values of the parent domain’s index type.

The default value for a sparse subdomain value is the empty set.

Example. The following code declares a two-dimensional dense domain D, followed by a two dimensional
sparse subdomain of D named SpsD. Since SpsbD is uninitialized, it will initially describe an empty set of
indices from D.

const D: domain(2) = {1..n, 1l..n};
var SpsD: sparse subdomain (D) ;

20.5 Domain Index Types

Each domain value has a corresponding compiler-provided index type which can be used to represent values belonging
to that domain’s index set. Index types are described using the following syntax:

index—type:
index ( domain—expression )

A variable with a given index type is constrained to take on only values available within the domain on which it is
defined. This restriction allows the compiler to prove away the bound checking that code safety considerations might
otherwise require. Due to the subset relationship between a base domain and its subdomains, a variable of an index
type defined with respect to a subdomain is also necessarily a valid index into the base domain.
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Since an index types are known to be legal for a given domain, it may also afford the opportunity to represent that
index using an optimized format that doesn’t simply store the index variable’s value. This fact could be used to support
accelerated access to arrays declared over that domain. For example, iteration over an index type could be implemented
using memory pointers and strides, rather than explicitly calculating the offset of each index within the domain.

These potential optimizations may make it less expensive to index into arrays using index type variables of their
domains or subdomains.

In addition, since an index type is associated with a specific domain or subdomain, it carries more semantic weight

than a generic index. For example, one could iterate over a rectangular domain with integer bounds using an int (n)
as the index variable. However, it would be more precise to use a variable of the domain’s index type.

Open issue.

An open issue for index types is what the semantics should be for an index type value that is live across
a modification to its domain’s index set—particularly one that shrinks the index set. Our hypothesis is
that most stored indices will either have short lifespans or belong to constant or monotonically growing
domains. But these semantics need to be defined nevertheless.

20.6 Iteration Over Domains

All domains support iteration via standard for, forall, and coforall loops. These loops iterate over all of the
indices that the domain describes. If the domain defines an iteration order of its indices, then the indices are visited in
that order.

The type of the iterator variable for an iteration over a domain named D is that domain’s index type, index (D).

20.7 Domains as Arguments

This section describes the semantics of passing domains as arguments to functions.

20.7.1 Formal Arguments of Domain Type

When a domain value is passed to a formal argument of compatible domain type by default intent, it is passed by
reference in order to preserve the domain’s identity.

20.7.2 Domain Promotion of Scalar Functions

Domain values may be passed to a scalar function argument whose type matches the domain’s index type. This results
in a promotion of the scalar function as defined in §26.5]
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Example. Given a function foo () that accepts real floating point values and an associative domain D of
type domain (real), foo can be called with D as its actual argument which will result in the function
being invoked for each value in the index set of D.

Example.  Given an array A with element type int declared over a one-dimensional domain D with
idxType int, the array elements can be assigned their corresponding index values by writing:

A = D;

This is equivalent to:

forall (a,i) in zip(A,D) do
a = 1i;

20.8 Domain Operations

Chapel supplies predefined operators and functions that can be used to manipulate domains. Unless otherwise noted,
these operations are applicable to a domain of any type, whether a base domain or a subdomain.

20.8.1 Domain Assignment

All domain types support domain assignment.

domain-expression:
domain-literal
domain—name
domain-assignment—expression
domain-striding—expression
domain-alignment—expression
domain-slice-expression

domain-literal:
rectangular-domain-literal
associative—domain-literal

domain-assignment—expression:
domain—name = domain—-expression

domain—name:
identifier

Domain assignment is by value and causes the target domain variable to take on the index set of the right-hand side
expression. In practice, the right-hand side expression is often another domain value; a tuple of ranges (for regular
domains); or a tuple of indices or a loop that enumerates indices (for irregular domains). If the domain variable being
assigned was used to declare arrays, these arrays are reallocated as discussed in §21.11]

It is an error to assign a stridable domain to an unstridable domain without an explicit conversion.
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Example. The following three assignments show ways of assigning indices to a sparse domain, SpsD.
The first assigns the domain two index values, (1,1) and (n,n). The second assigns the domain all
of the indices along the diagonal from (1, 1)...(n,n). The third invokes an iterator that is written to
yield indices read from a file named “inds.dat”. Each of these assignments has the effect of replacing
the previous index set with a completely new set of values.

SpsD = ((1,1), (n,n));
SpsD = [1 in 1..n] (i,1);
SpsD = readIndicesFromFile ("inds.dat");

20.8.2 Domain Striding

The by operator can be applied to a rectangular domain value in order to create a strided rectangular domain value.
The right-hand operand to the by operator can either be an integral value or an integral tuple whose size matches the
domain’s rank.
domain-striding—expression:
domain-expression by expression

The type of the resulting domain is the same as the original domain but with stridable set to true. In the case of an
integer stride value, the value of the resulting domain is computed by applying the integer value to each range in the
value using the by operator. In the case of a tuple stride value, the resulting domain’s value is computed by applying
each tuple component to the corresponding range using the by operator.

20.8.3 Domain Alignment

The align operator can be applied to a rectangular domain value in order to change the alignment of a rectangular
domain value. The right-hand operand to the a11ign operator can either be an integral value or an integral tuple whose
size matches the domain’s rank.

domain-alignment—expression:
domain-expression align expression

The type of the resulting domain is the same as the original domain but with stridable set to true. In the case of an
integer alignment value, the value of the resulting domain is computed by applying the integer value to each range in
the value using the align operator. In the case of a tuple alignment value, the resulting domain’s value is computed
by applying each tuple component to the corresponding range using the align operator.

20.8.4 Domain Slicing

Slicing is the application of an index set to a domain. It can be written using either parentheses or square brackets.
The index set can be defined with either a domain or a list of ranges.

domain-slice—expression:
domain—expression [ slicing—index—set ]
domain-expression ( slicing—index-set )

slicing—index—set:
domain-expression
range—expression—list
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The result of slicing, or a slice, is a new domain value that represents the intersection of the index set of the domain
being sliced and the index set being applied. The type and domain map of the slice match the domain being sliced.

Slicing can also be performed on an array, resulting in aliasing a subset of the array’s elements (§21.6).
Domain-based Slicing

If the brackets or parentheses contain a domain value, its index set is applied for slicing.

Open issue. Can we say that it is an alias in the case of sparse/associative?

Range-based Slicing

When slicing rectangular domains or arrays, the brackets or parentheses can contain a list of rank ranges. These
ranges can either be bounded or unbounded. When unbounded, they inherit their bounds from the domain or array
being sliced. The Cartesian product of the ranges’ index sets is applied for slicing.

Example. The following code declares a two dimensional rectangular domain D, and then a number of
subdomains of D by slicing into D using bounded and unbounded ranges. The InnerD domain describes
the inner indices of D, Co120£D describes the 2nd column of D, and A11ButLastRow describes all of D
except for the last row.

const D: domain(2) = {1..n, 1..n},
InnerD = D[2..n-1, 2..n-17,
Col20fD = D[.., 2..2],
AllButLastRow = D[..n-1, 1;

Rank-Change Slicing

For multidimensional rectangular domains and arrays, substituting integral values for one or more of the ranges in a
range-based slice will result in a domain or array of lower rank.

The result of a rank-change slice on an array is an alias to a subset of the array’s elements as described in §21.6.1]
The result of rank-change slice on a domain is a subdomain of the domain being sliced. The resulting subdomain’s

type will be the same as the original domain, but with a rank equal to the number of dimensions that were sliced by
ranges rather than integers.

20.8.5 Count Operator

The # operator can be applied to dense rectangular domains with a tuple argument whose size matches the rank of the
domain (or optionally an integer in the case of a 1D domain). The operator is equivalent to applying the # operator to
the component ranges of the domain and then using them to slice the domain as in Section



Domains 186

20.8.6 Adding and Removing Domain Indices

All irregular domain types support the ability to incrementally add and remove indices from their index sets. This can
either be done using add (i:idxType) and remove (i:idxType) methods on a domain variable or by using the +=
and -= assignment operators. It is legal to add the same index to an irregular domain’s index set twice, but illegal to
remove an index that does not belong to the domain’s index set.

Open issue. These remove semantics seem dangerous in a parallel context; maybe add flags to both the
method versions of the call that say whether they should balk or not? Or add exceptions...

As with normal domain assignments, arrays declared in terms of a domain being modified in this way will be reallo-
cated as discussed in §21.11}

20.9 Predefined Methods on Domains

This section gives a brief description of the library functions provided for Domains. These are categorized by the type
of domain to which they apply: all, regular or irregular. Within each subsection, entries are listed in alphabetical order.

20.9.1 Methods on All Domain Types

The methods in this subsection can be applied to any domain.

proc Domain.clear ()

Resets this domain’s index set to the empty set.

Example (clearAssociativeDomain).  This function provides a way to produce an empty associative
domain.

When run, the code

enum Counter { one, two, three };

var D : domain ( Counter ) = {Counter.one, Counter.two};
writeln ("D has ", D.numIndices, " indices.");
D.clear();
writeln ("D has ", D.numIndices, " indices.");
prints out

D has 2 indices.
D has 0 indices.

proc Domain.dist : dmap

Returns the domain map that implements this domain

Example (getDomainMap). In the code
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proc

proc

proc

proc

proc

proc

proc

proc

use BlockDist;

proc foo(d : domain) where isSubtype(d.dist.type, Block) {
writeln ("Block-distributed domain");

}

proc foo(d : domain) {
writeln ("Unknown distribution");

}

var D = {1..10} dmapped Block ({1..10});

foo (D) ;

dist is used in a where-clause to determine the type of the argument’s distribution. The output is:
Block-distributed domain

Domain.idxType type

Returns the domain type’s idxType. This function is not available on opaque domains.

Domain.indexOrder (i: index (Domain)): idxType

If 1 is a member of the domain, returns the ordinal value of i using a total ordering of the domain’s indices

using 0-based indexing. Otherwise, it returns (-1) : idxType. For rectangular domains, this ordering will be

based on a row-major ordering of the indices; for other domains, the ordering may be implementation-defined
and unstable as indices are added and removed from the domain.

isIrregularDom(d: domain) param

Returns a param t rue if the given domain is irregular, false otherwise.
isOpaqueDom (d: domain) param

Returns a param true if the given domain is opaque, false otherwise.
isRectangularDom(d: domain) param

Returns a param t rue if the given domain is rectangular, false otherwise.
isSparseDom(d: domain) param

Returns a param t rue if the given domain is sparse, false otherwise.
Domain .member (1)

Returns true if the given index i is a member of this domain’s index set, and false otherwise.

Open issue. We would like to call the type of i above idxType, but it’s not true for rectangular domains.
That observation provides some motivation to normalize the behavior.

Domain.numIndices: capType

Returns the number of indices in the domain as a value of the capacity type.
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20.9.2 Methods on Regular Domains

The methods described in this subsection can be applied to regular domains only.

proc

proc

proc
proc

proc
proc

proc

proc
proc

proc

proc

proc

Domain.dim(d: int): range

Returns the range of indices described by dimension d of the domain.

Example. In the code

for i in D.dim(1l) do
for j in D.dim(2) do
writeln (A (i, j));

domain D is iterated over by two nested loops. The first dimension of D is iterated over in the outer loop.
The second dimension is iterated over in the inner loop.

Domain.dims () : ranksrange

Returns a tuple of ranges describing the dimensions of the domain.

Domain.expand (off: integral): domain
Domain.expand (off: rankxintegral): domain

Returns a new domain that is the current domain expanded in dimension d if off or off (d) is positive or
contracted in dimension d if of £ or of £ (d) is negative.

Domain.exterior (off: integral): domain
Domain.exterior (off: rankxintegral): domain

Returns a new domain that is the exterior portion of the current domain with off or off (d) indices for each
dimension d. If off or off (d) is negative, compute the exterior from the low bound of the dimension; if
positive, compute the exterior from the high bound.

Domain.high: index (Domain)

Returns the high index of the domain as a value of the domain’s index type.

Domain.interior (off: integral): domain
Domain.interior (off: rankxintegral): domain

Returns a new domain that is the interior portion of the current domain with off or off (d) indices for each
dimension d. If off or off (d) is negative, compute the interior from the low bound of the dimension; if
positive, compute the interior from the high bound.

Domain.low: index (Domain)

Returns the low index of the domain as a value of the domain’s index type.

Domain.rank param : int

Returns the rank of the domain.

Domain.size: capType
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proc

proc
proc

proc
proc

Same as Domain.numlndices.

Domain.stridable param : bool

Returns whether or not the domain is stridable.

Domain.stride: int (numBits (idxType)) where rank ==
Domain.stride: rankxint (numBits (idxType))

Returns the stride of the domain as the domain’s stride type (for 1D domains) or a tuple of the domain’s stride
type (for multidimensional domains).

Domain.translate (off: integral): domain
Domain.translate (off: rank+integral): domain

Returns a new domain that is the current domain translated by of £ or of £ (d) for each dimension d.

20.9.3 Methods on Irregular Domains

The following methods are available only on irregular domain types.

proc
proc

proc

proc

proc

proc

+(d: domain, i: index(d))
+(i, d: domain) where i: index(d)

Adds the given index to the given domain. If the given index is already a member of that domain, it is ignored.
+(dl: domain, d2: domain)

Merges the index sets of the two domain arguments.

—(d: domain, i: index(d))

Removes the given index from the given domain. It is an error if the domain does not contain the given index.
- (dl: domain, d2: domain)

Removes the indices in domain d2 from those in d1. It is an error if d2 contains indices which are not also in
dl.

requestCapacity(s: int)

Resizes the domain internal storage to hold at least s indices.



21 Arrays

An array is a map from a domain’s indices to a collection of variables of homogeneous type. Since Chapel domains
support a rich variety of index sets, Chapel arrays are also richer than the traditional linear or rectilinear array types in
conventional languages. Like domains, arrays may be distributed across multiple locales without explicitly partitioning
them using Chapel’s Domain Maps (§28).

21.1 Array Types

An array type is specified by the identity of the domain that it is declared over and the element type of the array. Array
types are given by the following syntax:
array-type:
[ domain—expression ] type—expression

The domain-expression must specify a domain that the array can be declared over. If the domain-expression is a domain
literal, the curly braces around the literal may be omitted.

Example (decls.chpl). In the code
const D: domain(2) = {1..10, 1..10};
var A: [D] real;

A is declared to be an arithmetic array over rectangular domain D with elements of type real. As
a result, it represents a 2-dimensional 10 x 10 real floating point variables indexed using the indices
(1,1),(1,2),...,(1,10),(2,1),...,(10,10).

An array’s element type can be referred to using the member symbol el tType.

Example (eltType.chpl). In the following example, x is declared to be of type real since that is the
element type of array A.

var A: [D] real;
var x: A.eltType;

21.2 Array Values

An array’s value is the collection of its elements’ values. Assignments between array variables are performed by value
as described in §21.5] Chapel semantics are defined so that the compiler will never need to insert temporary arrays of
the same size as a user array variable.

Array literal values can be either rectangular or associative, corresponding to the underlying domain which defines its
indices.

array-literal:
rectangular-array-literal
associative—array—literal

190
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21.2.1 Rectangular Array Literals

Rectangular array literals are specified by enclosing a comma separated list of expressions representing values in
square brackets. A 1-based domain will automatically be generated for the given array literal. The type of the array’s
values will be the type of the first element listed. A trailing comma is allowed.

rectangular—array-literal:
[ expression—list ]
[ expression—list , ]

Example (adecl-literal.chpl). The following example declares a 5 element rectangular array literal con-
taining strings, then subsequently prints each string element to the console.

var A = ["1", "2m, w3m, wgnw wgni.

for i in 1..5 do
writeln(A[i]);

Future. Provide syntax which allows users to specify the domain for a rectangular array literal.

Future. Determine the type of a rectangular array literal based on the most promoted type, rather than
the first element’s type.

Example (decl-with-anon-domain.chpl). The following example declares a 2-element array A containing
3-element arrays of real numbers. A is initialized using array literals.

var A: [1..2] [1..3] real = [[1.1, 1.2, 1.3], [2.1, 2.2, 2.31];

Open issue. We would like to differentiate syntactically between array literals for an array of arrays and
a multi-dimensional array.

An rectangular array’s default value is for each array element to be initialized to the default value of the element type.

21.2.2 Associative Array Literals

Associative array values are specified by enclosing a comma separated list of index-to-value bindings within square
brackets. It is expected that the indices in the listing match in type and, likewise, the types of values in the listing also
match. A trailing comma is allowed.

associative—array-literal:
[ associative—expr-list |
[ associative—expr-list , ]

associative—expr-list:
index—expr => value—expr
index—expr => value—expr, associative—expr—list
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index—expr:
expression

value—expr:
expression

Open issue. Currently it is not possible to use other associative domains as values within an associative
array literal.

Example (adecl-assocLiteral.chpl). The following example declares a 5 element associative array literal
which maps integers to their corresponding string representation. The indices and their corresponding
values are then printed.

var A = [1 => "one", 10 => "ten", 3 => "three", 16 => "sixteen"];

for da in zip (A.domain, A) do
writeln (da);

21.2.3 Runtime Representation of Array Values

The runtime representation of an array in memory is controlled by its domain’s domain map. Through this mechanism,
users can reason about and control the runtime representation of an array’s elements. See §28|for more details.

21.3 Array Indexing

Arrays can be indexed using index values from the domain over which they are declared. Array indexing is expressed
using either parentheses or square brackets. This results in a reference to the element that corresponds to the index
value.

Example (array-indexing.chpl). Given:

var A: [1..10] real;

the first two elements of A can be assigned the value 1.2 and 3.4 respectively using the assignment:

A(l) = 1.2;
A[2] = 3.4;

Except for associative arrays, if an array is indexed using an index that is not part of its domain’s index set, the
reference is considered out-of-bounds and a runtime error will occur, halting the program.
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21.3.1 Rectangular Array Indexing

Since the indices for multidimensional rectangular domains are tuples, for convenience, rectangular arrays can be
indexed using the list of integer values that make up the tuple index. This is semantically equivalent to creating a tuple
value out of the integer values and using that tuple value to index the array. For symmetry, 1-dimensional rectangular
arrays can be accessed using 1-tuple indices even though their index type is an integral value. This is semantically
equivalent to de-tupling the integral value from the 1-tuple and using it to index the array.

Example (array-indexing-2.chpl). Given:

var A: [1..5, 1..5] real;
var ij: 2+int = (1, 1);

the elements of array A can be indexed using any of the following idioms:

A(ij) = 1.1;
A((l, 2)) = 1.2;
A(l, 3) = 1.3;
A[ij] = -1.1;
AL(1, 4)] = 1.4;
A[l, 5] = 1.5;

Example (index-using-var-arg-tuple.chpl). The code
proc f(A: [], is...)

return A (is);

defines a function that takes an array as the first argument and a variable-length argument list. It then
indexes into the array using the tuple that captures the actual arguments. This function works even for
one-dimensional arrays because one-dimensional arrays can be indexed into by 1-tuples.

21.3.2 Associative Array Indexing

Indices can be added to associative arrays in two different ways.

The first way is through the array’s domain.

Example (assoc-add-index.chpl). Given:
var D : domain (string);
var A : [D] int;
the array A initially contains no elements. We can change that by adding indices to the domain D:
D.add ("a") ;
D.add ("b") ;
The array A can now be indexed with indices "a" and "b":
[ n a " ] = l;

["b"] — 2;
var x = A["a"];

A
A
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The second way is more concise, and has the same effect as the first method:

Example (assoc-add-index-2.chpl).

var D : domain (string);
var A : [D] int;

For other array types, assigning to an index not in the array’s domain would incur an out-of-bounds error.
For associative arrays such assignment will add the index to the array’s domain, and the array can be
indexed with the newly added indices:

Al"a"] = 1;
A["b"] = 2;
var x = A["a"];

Here, the indices "a" and "b" are implicitly added to the domain D. Reading from an index not in the array
is still an out-of-bounds error.

// writeln(A["c"]); // halts if "c" is not in A’s domain

An important restriction for this method is that A may not share its domain with another array. This
restriction exists because it may be surprising to seemingly modify one array, and to then see a change in
another array. This restriction is checked at runtime.

Note that extending an associative array via indexing in this way is not parallel-safe. Thus, if multiple
tasks are adding elements to a single array via indexing simultaneously, the responsibility of synchronizing
between the tasks to avoid races is the user’s.

21.4 Iteration over Arrays

All arrays support iteration via standard for, forall and coforall loops. These loops iterate over all of the array
elements as described by its domain. A loop of the form:

[for|forall |coforall] a in A do
Lla. ..

is semantically equivalent to:

[for|forall |coforall] i in A.domain do
LLWA[R] ...

The iterator variable for an array iteration is a reference to the array element type.
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21.5 Array Assignment
Array assignment is by value. Arrays can be assigned arrays, ranges, domains, iterators, or tuples.

Example (assign.chpl). 1f A is an lvalue of array type and B is an expression of either array, range, or
domain type, or an iterator, then the assignment

A = B;

is equivalent to
forall (a,b) in zip(A,B) do
a = b;

If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented
with the semantics of a forall loop.

Arrays can be assigned tuples of values of their element type if the tuple contains the same number of elements as the
array. For multidimensional arrays, the tuple must be a nested tuple such that the nesting depth is equal to the rank of
the array and the shape of this nested tuple must match the shape of the array. The values are assigned element-wise.

Arrays can also be assigned single values of their element type. In this case, each element in the array is assigned this
value.

Example (assign-2.chpl). If e is an expression of the element type of the array or a type that can be
implicitly converted to the element type of the array, then the assignment

A = ¢g;

is equivalent to

forall a in A do
a = e;

21.6 Array Slicing

An array can be sliced using a domain that has the same type as the domain over which it was declared. The result
of an array slice is an alias to the subset of the array elements from the original array corresponding to the slicing
domain’s index set.

Example (slicing.chpl). Given the definitions

var OuterD: domain(2) = {0..n+1, 0..n+1};
var InnerD: domain(2) = {l1..n, 1..n};
var A, B: [OuterD] real;

the assignment given by

A[InnerD] = B[InnerD];

assigns the elements in the interior of B to the elements in the interior of A.
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21.6.1 Rectangular Array Slicing

A rectangular array can be sliced by any rectangular domain that is a subdomain of the array’s defining domain. If the
subdomain relationship is not met, an out-of-bounds error will occur. The result is a subarray whose indices are those
of the slicing domain and whose elements are an alias of the original array’s.

Rectangular arrays also support slicing by ranges directly. If each dimension is indexed by a range, this is equivalent
to slicing the array by the rectangular domain defined by those ranges. These range-based slices may also be expressed
using partially unbounded or completely unbounded ranges. This is equivalent to slicing the array’s defining domain
by the specified ranges to create a subdomain as described in §21.6|and then using that subdomain to slice the array.

21.6.2 Rectangular Array Slicing with a Rank Change

For multidimensional rectangular arrays, slicing with a rank change is supported by substituting integral values within
a dimension’s range for an actual range. The resulting array will have a rank less than the rectangular array’s rank and
equal to the number of ranges that are passed in to take the slice.

Example (array-decl.chpl). Given an array

var A: [l..n, 1..n] int;

the slice A[1..n, 1] isa one-dimensional array whose elements are the first column of A.

21.7 Count Operator

The # operator can be applied to dense rectangular arrays with a tuple argument whose size matches the rank of the
array (or optionally an integer in the case of a 1D array). The operator is equivalent to applying the # operator to the
array’s domain and using the result to slice the array as described in Section [21.6.1]

21.8 Array Arguments to Functions

By default, arrays are passed to function by ref or const ref depending on whether or not the formal argument is
modified. The in, inout, and out intent can create copies of arrays.

When a formal argument has array type, the element type of the array can be omitted and/or the domain of the array
can be queried or omitted. In such cases, the argument is generic and is discussed in

If a formal array argument specifies a domain as part of its type signature, the domain of the actual argument must
represent the same index set. If the formal array’s domain was declared using an explicit domain map, the actual
array’s domain must use an equivalent domain map.
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21.8.1 Array Promotion of Scalar Functions

Arrays may be passed to a scalar function argument whose type matches the array’s element type. This results in a
promotion of the scalar function as defined in §26.3]

Example (whole-array-ops.chpl). Whole array operations is a special case of array promotion of scalar
functions. In the code

A =B + C;

if A, B, and C are arrays, this code assigns each element in A the element-wise sum of the elements in B
and C.

21.9 Returning Arrays from Functions

Arrays return by value by default. The ref and const ref return intents can be used to return a reference to an array.

Similarly to array arguments, the element type and/or domain of an array return type can be omitted.

21.10 Sparse Arrays

Sparse arrays in Chapel are those whose domain is sparse. A sparse array differs from other array types in that it stores
a single value corresponding to multiple indices. This value is commonly referred to as the zero value, but we refer
to it as the implicitly replicated value or IRV since it can take on any value of the array’s element type in practice
including non-zero numeric values, a class reference, a record or tuple value, etc.

An array declared over a sparse domain can be indexed using any of the indices in the sparse domain’s parent domain.
If it is read using an index that is not part of the sparse domain’s index set, the IRV value is returned. Otherwise, the
array element corresponding to the index is returned.

Sparse arrays can only be written at locations corresponding to indices in their domain’s index set. In general, writing
to other locations corresponding to the IRV value will result in a runtime error.

By default a sparse array’s IRV is defined as the default value for the array’s element type. The IRV can be set to any
value of the array’s element type by assigning to a pseudo-field named IRV in the array.

Example (sparse-error.chpl). The following code example declares a sparse array, SpsA using the sparse
domain spsD (For this example, assume that n>1). Line 2 assigns two indices to SpsD’s index set and
then lines 3—4 store the values 1.1 and 9.9 to the corresponding values of Spsa. The IRV of spsa will
initially be 0.0 since its element type is real. However, the fifth line sets the IRV to be the value 5.5,
causing SpsA to represent the value 1.1 in its low corner, 9.9 in its high corner, and 5.5 everywhere else.
The final statement is an error since it attempts to assign to SpsA at an index not described by its domain,
SpsD.
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var SpsD: sparse subdomain (D) ;
var SpsA: [SpsD] real;

SpsD = ((1,1), (n,n));
SpsA(1,1) = 1.1;

SpsA(n,n) = 9.9;

SpsA.IRV = 5.5;

SpsA(l,n) = 0.0; // ERROR!

21.11 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain identity over which it was declared. This linkage
is invariant for the array’s lifetime and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular domain.
In the case of adding an index, an element is added to the array and initialized to the IRV for sparse arrays, and to
the default value for the element type for dense arrays. In the case of removing an index, the element in the array is
removed.

When a domain is reassigned a new value, its arrays are also impacted. Values that correspond to indices in the
intersection of the old and new domain are preserved in the arrays. Values that could only be indexed by the old
domain are lost. Values that can only be indexed by the new domain have elements added to the new array, initialized
to the IRV for sparse arrays, and to the element type’s default value for other array types.

For performance reasons, there is an expectation that a method will be added to domains to allow non-preserving
assignment, i.e., all values in the arrays associated with the assigned domain will be lost. Today this can be achieved
by assigning the array’s domain an empty index set (causing all array elements to be deallocated) and then re-assigning
the new index set to the domain.

An array’s domain can only be modified directly, via the domain’s name or an alias created by passing it to a function
via default intent. In particular, the domain may not be modified via the array’s .domain method, nor by using the
domain query syntax on a function’s formal array argument (§23.1.7).

Rationale. When multiple arrays are declared using a single domain, modifying the domain affects all of
the arrays. Allowing an array’s domain to be queried and then modified suggests that the change should
only affect that array. By requiring the domain to be modified directly, the user is encouraged to think in
terms of the domain distinctly from a particular array.

In addition, this choice has the beneficial effect that arrays declared via an anonymous domain have
a constant domain. Constant domains are considered a common case and have potential compilation
benefits such as eliminating bounds checks. Therefore making this convenient syntax support a common,
optimizable case seems prudent.

21.12 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined methods will grow.

proc Array.eltType type
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Returns the element type of the array.

proc Array.rank param

Returns the rank of the array.

proc Array.domain: this.domain

Returns the domain of the given array. This domain is constant, implying that the domain cannot be resized by
assigning to its domain field, only by modifying the domain directly.

proc Array.numElements: this.domain.dim_type

Returns the number of elements in the array.

proc reshape (A: Array, D: Domain): Array

Returns a copy of the array containing the same values but in the shape of the new domain. The number of
indices in the domain must equal the number of elements in the array. The elements of the array are copied into
the new array using the default iteration orders over both arrays.

proc Array.size: this.domain.dim_type

Same as Array.numElements.



22 Iterators

An iterator is a function that can generate, or yield, multiple values (consecutively or in parallel) via its yield state-
ments.

Open issue. The parallel iterator story is under development. It is expected that the specification will be
expanded regarding parallel iterators soon.

22.1 Iterator Definitions

The syntax to declare an iterator is given by:

iterator—declaration—statement:
privacy-specifier,,. iter iterator-name argument-list,,. yield—intent,,; yield—type,,: where—clause,.
iterator-body

iterator—name:
identifier

yield-intent:
const
const ref
ref
param
type

yield-type:
: type—expression

iterator—body:
block-statement
yield-statement

The syntax of an iterator declaration is similar to a procedure declaration, with some key differences:

e The keyword iter is used instead of the keyword proc.
e The name of the iterator cannot overload any operator.
e yield statements may appear in the body of an iterator, but not in a procedure.

e A return statement in the body of an iterator is not allowed to have an expression.

The intent and type specified after the argument list refer to the type yielded, not the type returned (see previous
bullet). However, they are syntactically the same as a return—intent and a return—type.

Open issue. Iterators that yield types or params are not currently supported.

200
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22.2 The Yield Statement

The yield statement can only appear in iterators. The syntax of the yield statement is given by

yield-statement:
yield expression ;

When an iterator is executed and a yield is encountered, the value of the yield expression is returned. However,
the state of execution of the iterator is saved. On its next invocation, execution resumes from the point immediately
following that yield statement and with the saved state of execution. A yield statement in a variable iterator must
contain an lvalue expression.

When a return is encountered, the iterator finishes without yielding another index value. The return statements
appearing in an iterator are not permitted to have a return expression. An iterator also completes after the last statement
in the iterator is executed. An iterator need not contain any yield statements.

22.3 Iterator Calls

Iterators are invoked using regular call expressions:

iteratable—call-expression:
call-expression

All details of iterator calls, including argument passing, function resolution, the use of parentheses versus brackets to
delimit the parameter list, and so on, are identical to procedure calls as described in Chapter [I3]

However, the result of an iterator call depends upon its context, as described below.

22.3.1 [Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an interleaved
manner. For each iteration, the iterator yields a value and the body is executed.

22.3.2 Iterators as Arrays

If an iterator function is captured into a new variable declaration or assigned to an array, the iterator is iterated over
in total and the expression evaluates to a one-dimensional arithmetic array that contains the values returned by the
iterator on each iteration.

Example (as-arrays.chpl). Given this iterator

iter squares(n: int): int {
for i in 1..n do
yield i * 1i;
}

var A = squares(5);

then the variable A will be an array storing:
149 16 25
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22.3.3 Iterators and Generics

An iterator call expression can be passed to a generic function argument that has neither a declared type nor default
value (§23.1.3). In this case the iterator is passed without being evaluated. Within the generic function the correspond-
ing formal argument can be used as an iterator, e.g. in for loops. The arguments to the iterator call expression, if any,
are evaluated at the call site, i.e. prior to passing the iterator to the generic function.

22.3.4 Recursive Iterators

Recursive iterators are allowed. A recursive iterator invocation is typically made by iterating over it in a loop.

Example (recursive.chpl). A post-order traversal of a tree data structure could be written like this:

iter postorder (tree: Tree): string {
if tree != nil {
for child in postorder (tree.left) do
yield child;
for child in postorder (tree.right) do
yield child;
yield tree.data;
}
}

By contrast, using calls postorder (tree.left) and postorder (tree.right) as stand-alone state-

ments would result in generating temporary arrays containing the outcomes of these recursive calls, which
would then be discarded.

22.3.5 Iterator Promotion of Scalar Functions

Iterator calls may be passed to a scalar function argument whose type matches the iterator’s yielded type. This results
in a promotion of the scalar function as described in §26.5]

Example (iteratorPromotion.chpl). Given a function addOne (x:int) that accepts int values and an
iterator £irstN () that yields int values, addOne () can be called with firstN () as its actual argument.
This pattern creates a new iterator that yields the result of applying addone () to each value yielded by
firstN().

proc addOne (x:int) {
return x + 1;
}
iter firstN(n:int) {
for i in 1..n {
yield i;
}
}
for number in addOne (firstN(10)) {
writeln (number) ;

}



Iterators 203

22.4 Parallel Iterators
Iterators used in explicit forall-statements or -expressions must be parallel iterators. Reductions, scans and promotion
over serial iterators will be serialized.

Parallel iterators are defined for standard constructs in Chapel such as ranges, domains, and arrays, thereby allowing
these constructs to be used with forall-statements and -expressions.

The left-most iteratable expression in a forall-statement or -expression determines the number of tasks, the iterations
each task executes, and the locales on which these tasks execute. For ranges, default domains, and default arrays, these

values can be controlled via configuration constants (§26.7).

Domains and arrays defined using distributed domain maps will typically implement forall loops with multiple tasks
on multiple locales. For ranges, default domains, and default arrays, all tasks are executed on the current locale.

A more detailed definition of parallel iterators is forthcoming.



23 Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The generic
functions and types look similar to non-generic functions and types already discussed.

23.1 Generic Functions

A function is generic if any of the following conditions hold:

e Some formal argument is specified with an intent of t ype or param.
e Some formal argument has no specified type and no default value.
e Some formal argument is specified with a queried type.

e The type of some formal argument is a generic type, e.g., List. Queries may be inlined in generic types, e.g.,
List (?eltType).

e The type of some formal argument is an array type where either the element type is queried or omitted or the
domain is queried or omitted.

These conditions are discussed in the next sections.

23.1.1 Formal Type Arguments

If a formal argument is specified with intent type, then a type must be passed to the function at the call site. A copy
of the function is instantiated for each unique type that is passed to this function at a call site. The formal argument
has the semantics of a type alias.

Example (build2tuple.chpl). The following code defines a function that takes two types at the call site and
returns a 2-tuple where the types of the components of the tuple are defined by the two type arguments
and the values are specified by the types default values.
proc build2Tuple (type t, type tt) {
var x1: t;
var x2: tt;

return (x1, x2);

}

This function is instantiated with “normal” function call syntax where the arguments are types:

var t2 = build2Tuple (int, string);
t2 = (1, "hello");

204
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A formal type argument can include a formal type (a colon followed by a type). This pattern is sometimes useful to
create generic functions accepting type arguments that only apply to a specific group of types.

Example (typeColonArgument.chpl).  Suppose that we’d like to define a function that accepts a type
argument and returns 1 represented in that type.
proc getOne (type t:numeric) {

return 1:t;

}

Now calls to this function will resolve to the appropriate version based upon the argument type supplied.

var anInt8 = getOne (int (8));
var aReal = getOne (real);

23.1.2 Formal Parameter Arguments

If a formal argument is specified with intent param, then a parameter must be passed to the function at the call site. A
copy of the function is instantiated for each unique parameter that is passed to this function at a call site. The formal
argument is a parameter.

Example (fillTuple.chpl). The following code defines a function that takes an integer parameter p at the
call site as well as a regular actual argument of integer type x. The function returns a homogeneous tuple
of size p where each component in the tuple has the value of x.
proc fillTuple (param p: int, x: int) {
var result: pxint;
for param i in 1..p do
result (1) = x;
return result;

}

The function call £i11Tuple (3, 3) returns a 3-tuple where each component contains the value 3.

23.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the actual
argument passed to the function at the call site. A copy of the function is instantiated for each unique actual type.

Example (fillTuple2.chpl). The example from the previous section can be extended to be generic on a
parameter as well as the actual argument that is passed to it by omitting the type of the formal argument x.
Additionally the parameter argument can allow any type be passed. The following code defines a function
that returns a homogeneous tuple of size p where each component in the tuple is initialized to x:
proc fillTuple (param p, x) {
var result: pxx.type;
for param i in 1..p do
result (i) = x;

return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call fill1Tuple (3, 3.14)
returns a 3-tuple of real values (3.14, 3.14, 3.14). Thereturntypeis (real, real, real).
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23.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type. The queried type has the semantics of a type alias.

Example (fillTuple3.chpl). The example from the previous section can be rewritten to use a queried type
for clarity:
proc fillTuple (param p: int, x: ?t) {
var result: pxt;
for param i in 1..p do
result (i) = x;
return result;

}

Example (query.chpl). Type queries can also be used to constrain the types of other function arguments
and/or the return type. In this example, the type query on the first argument establishes type constraints
on the other arguments and also determines the return type.

The code

writeln (sumOfThree(1,2,3));
writeln (sumOfThree (4.0,5.0,3.0));

proc sumOfThree(x: ?t, y:t, z:t):t {
var sum: t;

sum = X + y + z;
return sum;

}

produces the output

6
12.0

23.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type of the actual
argument passed to the function at the call site with the constraint that the type of the actual argument is an instantiation
of the generic type. A copy of the function is instantiated for each unique actual type.

Example.  The following code defines a function writeTop that takes an actual argument that is a
generic stack (see §23.6) and outputs the top element of the stack. The function is generic on the type of
its argument.

proc writeTop(s: Stack) {

write(s.top.item);

}
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Types and parameters may be queried from the types of formal arguments as well. In the example above, the formal
argument’s type could also be specified as Stack (?t) in which case the symbol t is equivalent to s. itemType.

The types integral, numeric and enumerated are generic types that can only be instantiated with, respectively,
the signed and unsigned integral types, all of the numeric types, and all enumerated types.

Note that generic types which have default values for all of their generic fields, e.g. range, are not generic when simply
specified and require a query to mark the argument as generic. For simplicity, the identifier may be omitted.

Example. The following code defines a class with a type field that has a default value. Function £ is
defined to take an argument of this class type where the type field is instantiated to the default. Function
g, on the other hand, is generic on its argument because of the use of the question mark.

class C {
type t = int;
}
proc f(c: C) {
// c.type is always int

}
proc g(c: C(?)) {

// c.type may not be int
}

23.1.6 Formal Arguments of Partially Generic Type

The generic type for a formal argument may be specified with some queries or generic types and some concrete types
or values. Using concrete types or values in this manner makes the argument partially concrete for the purpose of
function resolution.

Example (nested-type-queries.chpl).
Given the code:

class C {
type elementType;
type indexType;
type containerType;

}

class Container {
type containedType;

}

proc f(c: C(real,?t,?u)) {
/S

}

The function £ can only apply when the c.elementType==real.

It’s also possible to use a generic type as an argument to C. The following function, g, can only apply
when c.containerType is an instance of Container:

proc g(c: C(?t,?u,Container)) {
VAR
}

Similarly, a tuple type with query arguments forms a partially concrete argument.
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Example. The function definition

proc f (tuple: (?t,real)) {
// body
}

specifies that tuple.size == 2 && tuple(2).type == real.
Homogeneous tuple arguments of generic type are also supported:

Example (partially-concrete-star-tuple.chpl).

record Number ({
var n;
}
proc f (tuple: 2xNumber) ({
}

specifies that £ accepts a tuple with 2 elements, where each element has the same type, and that type is
instantiation of Number.

Note that specifying a tuple consisting entirely of queried types does create a partially concrete argument because the
size of the tuple is constrained.

Example (partially-concrete-tuple-ambiguity.chpl).
The following program results in an ambiguity error:

proc f (tuple: (?,real)) {
}

proc f (tuple: (?,7?)) {

}

£( (1.0, 2.0) );

since the tuple arguments in both versions of f are partially concrete.

23.1.7 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted, the
type of the formal argument is taken to be the type of the actual argument passed to the function at the call site. If the
domain is omitted, the domain of the formal argument is taken to be the domain of the actual argument.

A queried domain may not be modified via the name to which it is bound (see §21.T1|for rationale).

23.2 Function Visibility in Generic Functions

When resolving function calls made within generic functions, there is an additional source of visible functions. Besides
functions visible to the generic function’s point of declaration, visible functions are also taken from one of the call sites
at which the generic function is instantiated for each particular instantiation. The specific call site chosen is arbitrary
and it is referred to as the point of instantiation.
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Example (point-of-instantiation.chpl). ~ Consider the following code which defines a generic function
bar:
module M1 {
record R {
var x: int;
proc foo() { }

}
}

module M2 {
proc bar (x) {
x.foo();
}
}

module M3 {
use M1, M2;
proc main () {
var r: R;
bar (r);
}
}

In the function main, the variable r is declared to be of type R defined in module M1 and a call is made to
the generic function bar which is defined in module M2. This is the only place where bar is called in this
program and so it becomes the point of instantiation for bar when the argument x is of type R. Therefore,
the call to the foo method in bar is resolved by looking for visible functions from within main and going
through the use of module M1.

If the generic function is only called indirectly through dynamic dispatch, the point of instantiation is defined as the
point at which the derived type (the type of the implicit this argument) is defined or instantiated (if the derived type
is generic).

Rationale. Visible function lookup in Chapel’s generic functions is handled differently than in C++’s
template functions in that there is no split between dependent and independent types.

Also, dynamic dispatch and instantiation is handled differently. Chapel supports dynamic dispatch over
methods that are generic in some of its formal arguments.

Note that the Chapel lookup mechanism is still under development and discussion. Comments or questions
are appreciated.

23.3 Generic Types

Generic types are generic classes and generic records. A class or record is generic if it contains one or more generic
fields. A generic field is one of:

e a specified or unspecified type alias,
e a parameter field, or

e avar or const field that has no type and no initialization expression.
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For each generic field, the class or record is parameterized over:

e the type bound to the type alias,
o the value of the parameter field, or

o the type of the var or const field, respectively.

Correspondingly, the class or record is instantiated with a set of types and parameter values, one type or value per
generic field.

23.3.1 Type Aliases in Generic Types

If a class or record defines a type alias, the class or record is generic over the type that is bound to that alias. Such a
type alias is accessed as if it were a field from either a class or record instance or from the instantiated class or record
type itself. Similar to a parameter field, it cannot be assigned except in its declaration.

The type alias becomes an argument with intent type to the compiler-generated initializer (§23.3.6) for its class or
record. This makes the compiler-generated initializer generic. The type alias also becomes an argument with intent
type to the type constructor (§23.3.4). If the type alias declaration binds it to a type, that type becomes the default for
these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the type alias to the actual type passed to the corresponding argument of
a user-defined (§23.3.7) or compiler-generated initializer or type constructor. If that argument has a default, the actual
type can be omitted, in which case the default will be used instead.

Example (NodeClass.chpl). The following code defines a class called Node that implements a linked list
data structure. It is generic over the type of the element contained in the linked list.
class Node {
type eltType;
var data: eltType;
var next: unmanaged Node (eltType) ;

}

The call new Node (real, 3.14) creates a node in the linked list that contains the value 3.14. The
next field is set to nil. The type specifier Node is a generic type and cannot be used to define a variable.
The type specifier Node (real) denotes the type of the Node class instantiated over real. Note that the
type of the next field is specified as Node (eltType) ; the type of next is the same type as the type of
the object that it is a field of.

23.3.2 Parameters in Generic Types

If a class or record defines a parameter field, the class or record is generic over the value that is bound to that field.
The field can be accessed from a class or record instance or from the instantiated class or record type itself.

The parameter becomes an argument with intent param to the compiler-generated initializer (§23.3.6) for that class or
record. This makes the compiler-generated initializer generic. The parameter also becomes an argument with intent
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param to the type constructor (§23.3.4). If the parameter declaration has an initialization expression, that expression
becomes the default for these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the parameter to the actual value passed to the corresponding argument
of a user-defined (§23.3.7) or compiler-generated initializer or type constructor. If that argument has a default, the
actual value can be omitted, in which case the default will be used instead.

Example (IntegerTuple.chpl). The following code defines a class called IntegerTuple that is generic
over an integer parameter which defines the number of components in the class.
class IntegerTuple {
param size: int;

var data: size=*int;

}

The call new IntegerTuple (3) creates an instance of the IntegerTuple class that is instantiated
over parameter 3. The field data becomes a 3-tuple of integers. The type of this class instance is
IntegerTuple (3). The type specified by IntegerTuple is a generic type.

23.3.3 Fields without Types

If a var or const field in a class or record has no specified type or initialization expression, the class or record
is generic over the type of that field. The field becomes an argument with default intent to the compiler-generated
initializer (§23.3.6). That argument has no specified type and no default value. This makes the compiler-generated
initializer generic. The field also becomes an argument with type intent and no default to the type constructor
(§23.3.4). Correspondingly, an actual value must always be passed to the default initializer argument and an actual
type to the type constructor argument.

The class or record is instantiated by binding the type of the field to the type of the value passed to the corresponding
argument of a user-defined (§23.3.7) or compiler-generated initializer (§23.3.6). When the type constructor is invoked,
the class or record is instantiated by binding the type of the field to the actual type passed to the corresponding
argument.

Example (fieldWithoutType.chpl). The following code defines another class called Node that implements
a linked list data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather omits the type from the
data field.

class Node {
var data;
var next: unmanaged Node (data.type) = nil;

}
A node with integer element type can be defined in the call to the initializer. The call new Node (1)
defines a node with the value 1. The code

var list = new unmanaged Node (1) ;

list.next = new unmanaged Node (2);

defines a two-element list with nodes containing the values 1 and 2. The type of each object could be
specified as Node (int).
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23.3.4 The Type Constructor

A type constructor is automatically created for each class or record. A type constructor is a type function (§13.7.5) that
has the same name as the class or record. It takes one argument per the class’s or record’s generic field, including fields
inherited from the superclasses, if any. The formal argument has intent t ype for a type alias field and is a parameter
for a parameter field. It accepts the type to be bound to the type alias and the value to be bound to the parameter,
respectively. For a generic var or const field, the corresponding formal argument also has intent t ype. It accepts the
type of the field, as opposed to a value as is the case for a parameter field. The formal arguments occur in the same
order as the fields are declared and have the same names as the corresponding fields. Unlike the compiler-generated
initializer, the type constructor has only those arguments that correspond to generic fields.

A call to a type constructor accepts actual types and parameter values and returns the type of the class or record that
is instantiated appropriately for each field (§23.3.1] §23.3.2} §23.3.3). Such an instantiated type must be used as the
type of a variable, array element, non-generic formal argument, and in other cases where uninstantiated generic class
or record types are not allowed.

When a generic field declaration has an initialization expression or a type alias is specified, that initializer becomes
the default value for the corresponding type constructor argument. Uninitialized fields, including all generic var
and const fields, and unspecified type aliases result in arguments with no defaults; actual types or values for these
arguments must always be provided when invoking the type constructor.

23.3.5 Generic Methods

All methods bound to generic classes or records, including initializers, are generic over the implicit this argument.
This is in addition to being generic over any other argument that is generic.

23.3.6 The Compiler-Generated Initializer

If no user-defined initializers are supplied for a given generic class, the compiler generates one following in a manner
similar to that for concrete classes (§16.4.2). However, the compiler-generated initializer for a generic class or record
(816.4.2) is generic over each argument that corresponds to a generic field, as specified above.

The argument has intent type for a type alias field and has intent param for a parameter field. It accepts the type
to be bound to the type alias and the value to be bound to the parameter, respectively. This is the same as for the
type constructor. For a generic var or const field, the corresponding formal argument has the default intent and
accepts the value for the field to be initialized with. The type of the field is inferred automatically to be the type of the
initialization value.

The default values for the generic arguments of the compiler-generated initializer are the same as for the type con-
structor (§23.3.4). For example, the arguments corresponding to the generic var and const fields, if any, never have
defaults, so the corresponding actual values must always be provided.
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23.3.7 User-Defined Initializers

If a generic field of a class or record does not have a default value or type alias, each user-defined initializer for that
class must explicitly initialize that field.

Example (initializersForGenericFields.chpl).
In the following code:

class MyGenericClass {
type t1;
param pl;
const cl;
var vl;
var x1: tl; // this field is not generic

type t5 = real;

param p5 = "a string";

const c5 = 5.5;

var v5 = 555;

var x5: t5; // this field is not generic

proc init (cl, vl, type tl, param pl) {
this.tl = t1;
this.pl = pl;
this.cl = cl;
this.vl = vl;
// compiler inserts initialization for remaining fields
}
proc init (type t5, param p5, c5, v5, x5,
type tl, param pl, cl, vl, x1) {
this.tl = t1;
this.pl = pl;
this.cl = cl;
this.vl = vl;
this.x1l = x1;
this.t5 = t5;
this.p5 = p5;
this.c5 = c5;
this.v5 = v5;
this.x5 = x5;
}
} // class MyGenericClass

var gl = new MyGenericClass (11, 111, int, 1);
var g2 = new MyGenericClass (int, "this is g2", 3.3, 333, 3333,
real, 2, 222, 222.2, 22);

The initializers are required to initialize fields t1, p1, c1, and v1. Otherwise, field initializations may be
omitted according to previously-described initializer semantics.
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23.4 User-Defined Compiler Diagnostics

The special compiler diagnostic function calls compilerError and compilerWarning generate compiler diagnostic
of the indicated severity if the function containing these calls may be called when the program is executed and the
function call is not eliminated by parameter folding.

The compiler diagnostic is defined by the actual arguments which must be string parameters. The diagnostic points
to the spot in the Chapel program from which the function containing the call is called. Compilation halts if a
compilerError is encountered whereas it will continue after encountering a compilerWarning.

Example (compilerDiagnostics.chpl). The following code shows an example of using user-defined com-
piler diagnostics to generate warnings and errors:

proc foo(x, y) {
if (x.type != y.type) then
compilerError ("foo() called with non-matching types: ",
x.type:string, " != ", y.type:string);
writeln("In 2-argument foo...");

}

proc foo (x) {
compilerWarning ("l-argument version of foo called");
writeln("In generic foo!");

}

The first routine generates a compiler error whenever the compiler encounters a call to it where the two
arguments have different types. It prints out an error message indicating the types of the arguments. The
second routine generates a compiler warning whenever the compiler encounters a call to it.

Thus, if the program foo.chpl contained the following calls:

foo(3.4);

foo ("hi");

foo (1, 2);

foo (1.2, 3.4);
foo ("hi", "bye");
foo(l, 2.3);

foo ("hi", 2.3);

R Y T

compiling the program would generate output like:

foo.chpl:1: warning: l-argument version of foo called with type: real
foo.chpl:2: warning: l-argument version of foo called with type: string
foo.chpl:6: error: foo() called with non-matching types: int != real

23.5 Creating General and Specialized Versions of a Function

The Chapel language facility supports three mechanisms for using generic functions along with concrete functions.
These mechanisms allow users to create a general generic implementation and also a special implementation for
specific concrete types.

The first mechanism applies to functions. According to the function resolution rules described in §I3.13] functions
accepting concrete arguments are selected in preference to those with a totally generic argument. So, creating a second
version of a generic function that declares a concrete type will cause the concrete function to be used where possible:
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Example (specializeGenericFunction.chpl).

proc foo (x) {
writeln("in generic foo(x)");
}
proc foo(x:int) {
writeln("in specific foo(x:int)");

}

var myReal:real;

foo (myReal); // outputs "in generic foo(x)"
var myInt:int;

foo(myInt); // outputs "in specific foo(x:int)"

This program will run the generic foo function if the argument is a real, but it runs the specific version for int if the
argument is an int.

The second mechanism applies when working with methods on generic types. When declaring a secondary method, the
receiver type can be a parenthesized expression. In that case, the compiler will evaluate the parenthesized expression
at compile time in order to find the concrete receiver type. Then, the resolution rules described above will cause the
concrete method to be selected when applicable. For example:

Example (specializeGenericMethod.chpl).

record MyNode {
var field; // since no type is specified here, MyNode is a generic type

}

proc MyNode.foo () {
writeln("in generic MyNode.foo()");
}
proc (MyNode (int)) .foo() {
writeln("in specific MyNode (int) .foo()");

}

var myRealNode = new MyNode (1.0);

myRealNode.foo(); // outputs "in generic MyNode.foo ()"
var myIntNode = new MyNode (1) ;
myIntNode.foo(); // outputs "in specific MyNode (int).foo ()"

The third mechanism is to use a where clause. Where clauses limit a generic method to particular cases. Unlike the
previous two cases, a where clause can be used to declare special implementation of a function that works with some
set of types - in other words, the special implementation can still be a generic function. See also §13.10]

23.6 Example: A Generic Stack

Example (genericStack.chpl).

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: unmanaged MyNode (itemType); // reference to next node (same type)
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record Stack {
type itemType;

proc push(item: itemType)
top = new unmanaged MyNode (itemType,

proc pop () {
if isEmpty then

halt ("attempt to pop an item off an empty stack");

var oldTop = top;

var oldItem = top.item;

top = top.next;
delete oldTop;
return oldItem;

proc isEmpty return top ==

// type of items
var top: unmanaged MyNode (itemType) ;

nil;

// top node on stack linked list
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24 Input and Output

24.1 See Library Documentation

Chapel includes an extensive library for input and output that is documented in the standard library documentation.
See

https://chapel-lang.org/docs/modules/standard/IO.html
and

https://chapel-lang.org/docs/builtins/internal/ChapelIO.htmll

217


https://chapel-lang.org/docs/modules/standard/IO.html
https://chapel-lang.org/docs/builtins/internal/ChapelIO.html

25 Task Parallelism and Synchronization

Chapel supports both task parallelism and data parallelism. This chapter details task parallelism as follows:

§25.1]introduces tasks and task parallelism.

o §25.7]describes the begin statement, an unstructured way to introduce concurrency into a program.
e §25.3|describes synchronization variables, an unstructured mechanism for synchronizing tasks.

o §25.4|describes atomic variables, a mechanism for supporting atomic operations.

o §25.5|describes the cobegin statement, a structured way to introduce concurrency into a program.

o §25.0|describes the coforall loop, another structured way to introduce concurrency into a program.

§25.7|specifies how variables from outer scopes are handled within begin, cobegin and coforall statements.
o §25.8|describes the sync statement, a structured way to control parallelism.

o §25.9|describes the serial statement, a structured way to suppress parallelism.

§25.10] describes the atomic statement, a construct to support atomic transactions.

25.1 Tasks and Task Parallelism

A Chapel task is a distinct context of execution that may be running concurrently with other tasks. Chapel provides
a simple construct, the begin statement, to create tasks, introducing concurrency into a program in an unstructured
way. In addition, Chapel introduces two type qualifiers, sync and single, for synchronization between tasks.

Chapel provides two constructs, the cobegin and coforall statements, to introduce concurrency in a more structured
way. These constructs create multiple tasks but do not continue until these tasks have completed. In addition, Chapel
provides two constructs, the sync and serial statements, to insert synchronization and suppress parallelism. All four
of these constructs can be implemented through judicious uses of the unstructured task-parallel constructs described
in the previous paragraph.

Tasks are considered to be created when execution reaches the start of a begin, cobegin, or coforall statement.
When the tasks are actually executed depends on the Chapel implementation and run-time execution state.

A task is represented as a call to a task function, whose body contains the Chapel code for the task. Variables defined in
outer scopes are considered to be passed into a task function by default intent, unless a different task intent is specified

explicitly by a task—intent-clause.

Accesses to the same variable from different tasks are subject to the Memory Consistency Model (§30). Such accesses
can result from aliasing due to ref argument intents or task intents, among others.
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25.2 The Begin Statement

The begin statement creates a task to execute a statement. The syntax for the begin statement is given by

begin-statement:
begin task-intent-clause,,, statement

Control continues concurrently with the statement following the begin statement.

Example (beginUnordered.chpl). The code

begin writeln ("output from spawned task");
writeln ("output from main task");

executes two writeln statements that output the strings to the terminal, but the ordering is purposely
unspecified. There is no guarantee as to which statement will execute first. When the begin statement is
executed, a new task is created that will execute the writeln statement within it. However, execution
will continue immediately after task creation with the next statement.

A begin statement creates a single task function, whose body is the body of the begin statement. The handling of the
outer variables within the task function and the role of task-intent-clause are defined in §25.7]

Yield and return statements are not allowed in begin blocks. Break and continue statements may not be used to exit a
begin block.

25.3 Synchronization Variables

Synchronization variables have a logical state associated with the value. The state of the variable is either full or
empty. Normal reads of a synchronization variable cannot proceed until the variable’s state is full. Normal writes of a
synchronization variable cannot proceed until the variable’s state is empty.

Chapel supports two types of synchronization variables: sync and single. Both types behave similarly, except that a
single variable may only be written once. Consequently, when a sync variable is read, its state transitions to empty,
whereas when a single variable is read, its state does not change. When either type of synchronization variable is
written, its state transitions to full.

sync and single are type qualifiers and precede the type of the variable’s value in the declaration. Sync and single
are supported for all Chapel primitive types ( except complex. They are also supported for enumerated types
( §7.2) and variables of class type ( §16.1.2). For sync variables of class type, the full/empty state applies to the
reference to the class object, not to its member fields.

Rationale. 1t is only well-formed to apply full-empty semantics to types that have no more than a single
logical value. Booleans, integers, real and imaginary numbers, enums, and class references all meet this
criteria. Since it is possible to read/write the individual elements of a complex value, it’s not obvious how
the full-empty semantics would interact with such operations. While one could argue that record types
with a single field could also be included, the user can more directly express such cases by declaring the
field itself to be of sync type.
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If a task attempts to read or write a synchronization variable that is not in the correct state, the task is suspended. When
the variable transitions to the correct state, the task is resumed. If there are multiple tasks blocked waiting for the state
transition, one is non-deterministically selected to proceed and the others continue to wait if it is a sync variable; all
tasks are selected to proceed if it is a single variable.

A synchronization variable is specified with a sync or single type given by the following syntax:

sync—type:
sync type—expression

single—type:
single type—expression

If a synchronization variable declaration has an initialization expression, then the variable is initially full, otherwise it
is initially empty.

Example (beginWithSyncVar.chpl). The code

class Tree {
var isLeaf: bool;
var left, right: unmanaged Tree;
var value: int;

proc sum() :int {
if (isLeaf) then
return value;

var x$: sync int;
begin x$ = left.sum();
var y = right.sum();
return x$ + y;

}

the sync variable x$ is assigned by an asynchronous task created with the begin statement. The task
returning the sum waits on the reading of x$ until it has been assigned. By convention, synchronization
variables end in $ to provide a visual cue to the programmer indicating that the task may block.

Example (syncCounter.chpl). Sync variables are useful for tallying data from multiple tasks as well. If all
updates to an initialized sync variable are via compound assignment operators (or equivalently, traditional
assignments that read and write the variable once), the full/empty state of the sync variable guarantees
that the reads and writes will be interleaved in a manner that makes the updates atomic. For example, the
code:
var count$: sync int = 0;
cobegin {
count$ += 1;
count$ += 1;
count$ += 1;
}

creates three tasks that increment count $. If count $ were not a sync variable, this code would be unsafe
because two tasks could then read the same value before either had written its updated value, causing one
of the increments to be lost.
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Example (singleVar.chpl). The following code implements a simple split-phase barrier using a single
variable.

var count$: sync int = n; // counter which also serves as a lock
var release$: single bool; // barrier release

forall t in 1..n do begin {

work (t);
var myc = count$; // read the count, set state to empty
if myc!=1 {

write(".");

count$ = myc-1; // update the count, set state to full
// we could also do some work here before blocking
release$;

} else {
release$ = true; // last one here, release everyone
writeln ("done");

}

In each iteration of the forall loop after the work is completed, the task reads the count $ variable, which
is used to tally the number of tasks that have arrived. All tasks except the last task to arrive will block
while trying to read the variable release$. The last task to arrive will write to releases, setting its
state to full at which time all the other tasks can be unblocked and run.

If a formal argument with a default intent either has a synchronization type or the formal is generic (§23.1.5) and the
actual has a synchronization type, the actual must be an Ivalue and is passed by reference. In these cases the formal
itself is an lvalue, too. The actual argument is not read or written during argument passing; its state is not changed or
waited on. The qualifier sync or single without the value type can be used to specify a generic formal argument that
requires a sync or single actual.

When the actual argument is a sync or single and the corresponding formal has the actual’s base type or is implicitly
converted from that type, a normal read of the actual is performed when the call is made, and the read value is passed
to the formal.

25.3.1 Predefined Single and Sync Methods

The following methods are defined for variables of sync and single type.

proc (sync t).readFE(): t

Returns the value of the sync variable. This method blocks until the sync variable is full. The state of the
sync variable is set to empty when this method completes. This method implements the normal read of a sync

variable.
proc (sync t).readFF(): t
proc (single t).readFF(): t

Returns the value of the sync or single variable. This method blocks until the sync or single variable is full.
The state of the sync or single variable remains full when this method completes. This method implements the
normal read of a single variable.
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proc
proc

proc
proc

proc

proc

proc

proc
proc

(sync t) .readXX(): t
(single t).readXX(): t

Returns the value of the sync or single variable. This method is non-blocking and the state of the sync or single
variable is unchanged when this method completes.

(sync t).writeEF (v: t)
(single t).writeEF (v: t)

Assigns v to the value of the sync or single variable. This method blocks until the sync or single variable
is empty. The state of the sync or single variable is set to full when this method completes. This method
implements the normal write of a sync or single variable.

(sync t) .writeFF(v: t)

Assigns v to the value of the sync variable. This method blocks until the sync variable is full. The state of the
sync variable remains full when this method completes.

(sync t).writeXF(v: t)

Assigns v to the value of the sync variable. This method is non-blocking and the state of the sync variable is set
to full when this method completes.

(sync t) .reset ()

Assigns the default value of type t to the value of the sync variable. This method is non-blocking and the state
of the sync variable is set to empty when this method completes.

(sync t).isFull: bool
(single t).isFull: bool

Returns t rue if the sync or single variable is full and false otherwise. This method is non-blocking and the
state of the sync or single variable is unchanged when this method completes.

Note that writeEF and readFE/readfFF methods (for sync and single variables, respectively) are implicitly in-
voked for normal writes and reads of synchronization variables.

Example (syncMethods.chpl). Given the following declarations

var x$: sync int;
var y$: single int;
var z: int;

the code

x$ = 5;
y$ = 6;
z = x$ + y$;

is equivalent to

x$.writeEF (5);
y$.writeEF (6);
z = x$.readFE () + yS$S.readFF();
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25.4 Atomic Variables

Atomic variables are variables that support atomic operations. Chapel currently supports atomic operations for bools,
all supported sizes of signed and unsigned integers, as well as all supported sizes of reals.

Rationale. The choice of supported atomic variable types as well as the atomic operations was strongly
influenced by the C11 standard.

Atomic is a type qualifier that precedes the variable’s type in the declaration. Atomic operations are supported for
bools, and all sizes of ints, uints, and reals.

An atomic variable is specified with an atomic type given by the following syntax:

atomic—type:
atomic type—expression

25.4.1 Predefined Atomic Methods

The following methods are defined for variables of atomic type. Note that not all operations are supported for all
atomic types. The supported types are listed for each method.

Most of the predefined atomic methods accept an optional argument named order of type memory_order. The order
argument is used to specify the ordering constraints of atomic operations. The supported memory_order values are:

e memory_order_relaxed
e memory_order_acquire
e memory_order_release
e memory_order_acq_rel

e memory_order_seq_cst

Open issue. The memory_order values were taken directly from the C11 specification. We expect to
review and better define the supported values with work on Chapel’s memory consistency model (see [30).

Unless specified, the default for the memory_order parameter is memory_order_seq_cst.

Implementors’ note. Not all architectures or implementations may support all memory_order values. In
these cases, the implementation should default to a more conservative ordering than specified.

proc (atomic t).read(memory_order order): t

Reads and returns the stored value. Defined for all atomic types.
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(atomic t) .peek(): t

Reads and returns the stored value using memory_order_relaxed. Defined for all atomic types.

(atomic t) .write(v: t, memory_order order)

Stores v as the new value. Defined for all atomic types.

(atomic t) .poke(v: t)

Stores v as the new value using memory_order_relaxed. Defined for all atomic types.

(atomic t) .exchange(v: t, memory_order order): t

Stores v as the new value and returns the original value. Defined for all atomic types.

(atomic t).compareExchangeWeak (e: t, v: t, memory_order order): bool

(atomic t).compareExchangeStrong(e: t, v: t, memory_order order): bool

(atomic t).compareExchange(e: t, v: t, memory_order order): bool

Stores v as the new value, if and only if the original value is equal to e. Returns true if v was stored, false
otherwise. The weak’ variation may return false even if the original value was equal to e, if, for example,
the value could not be updated atomically. compareExchange is equivalent to compareExchangeStrong.
Defined for all atomic types.

(atomic t).add(v: t, memory_order order)

(atomic t).sub(v: t, memory_order order)

(atomic t).or(v: t, memory_order order)

(atomic t).and(v: t, memory_order order)

(atomic t).xor(v: t, memory_order order)

Applies the appropriate operator (+, —, |, &, ") to the original value and v and stores the result. All of the
methods are defined for integral atomic types. Only add and sub (+, -) are defined for real atomic types. None
of the methods are defined for the boo1l atomic type.

Future. In the future we may overload certain operations such as += to call the above methods automati-

cally for atomic variables.

(atomic t).fetchAdd(v: t, memory_order order): t

(atomic t).fetchSub(v: t, memory_order order): t

(atomic t).fetchOr(v: t, memory_order order): t

(atomic t).fetchAnd(v: t, memory_order order): t

(atomic t).fetchXor(v: t, memory_order order): t

Applies the appropriate operator (+, —, |, &, *) to the original value and v, stores the result, and returns the
original value. All of the methods are defined for integral atomic types. Only add and sub (+, —) are defined for
real atomic types. None of the methods are defined for the bool atomic type.

(atomic bool) .testAndSet (memory_order order): bool

Stores true as the new value and returns the old value. Equivalent to exchange (true). Only defined for the
bool atomic type.

(atomic bool) .clear (memory_order order)

Stores false as the new value. Equivalent to write (false). Only defined for the bool atomic type.
(atomic t) .waitFor(v: t)

Waits until the stored value is equal to v. The implementation may yield the running task while waiting. Defined
for all atomic types.
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25.5 The Cobegin Statement

The cobegin statement is used to introduce concurrency within a block. The cobegin statement syntax is

cobegin-statement:
cobegin task-intent-clause,,; block—statement

A new task and a corresponding task function are created for each statement in the block-statement. Control continues
when all of the tasks have finished. The handling of the outer variables within each task function and the role of
task—intent-clause are defined in

Return statements are not allowed in cobegin blocks. Yield statement may only be lexically enclosed in cobegin blocks
in parallel iterators (§22.4). Break and continue statements may not be used to exit a cobegin block.

Example (cobeginAndEquivalent.chpl). The cobegin statement

cobegin {
stmtl () ;
stmt2 () ;
stmt3();
}

is equivalent to the following code that uses only begin statements and single variables to introduce con-
currency and synchronize:

var sl$, s2$, s3$: single bool;

begin { stmtl(); sl$ = true; }
begin { stmt2(); s2$ = true; }
begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;

Each begin statement is executed concurrently but control does not continue past the final line above until
each of the single variables is written, thereby ensuring that each of the functions has finished.

25.6 'The Coforall Loop

The coforall loop is a variant of the cobegin statement in loop form. The syntax for the coforall loop is given by

coforall-statement:
coforall index—var—declaration in iteratable—expression task—intent—clause,,; do statement
coforall index—var—declaration in iteratable—expression task—intent—clause,,; block—statement
coforall iteratable—expression task—intent-clause,,.; do statement
coforall iteratable—expression task—intent-clause,,. block—statement

The coforall loop creates a separate task for each iteration of the loop. Control continues with the statement
following the coforal1l loop after all tasks corresponding to the iterations of the loop have completed.

The single task function created for a coforall and invoked by each task contains the loop body. The handling of
the outer variables within the task function and the role of task—intent-clause are defined in

Return statements are not allowed in coforall blocks. Yield statement may only be lexically enclosed in coforall blocks
in parallel iterators (§22.4). Break and continue statements may not be used to exit a coforall block.
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Example (coforallAndEquivalent.chpl). The coforall statement

coforall i in iterator() {
body () ;
}

is equivalent to the following code that uses only begin statements and sync and single variables to intro-

duce concurrency and synchronize:

var runningCount$: sync int = 1;

var finished$: single bool;

for i in iterator() {
runningCount$ += 1;

begin {
body () ;
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;
}
}
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;
finished$;
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Each call to body () executes concurrently because it is in a begin statement. The sync variable runningCount$

is used to keep track of the number of executing tasks plus one for the main task. When this variable
reaches zero, the single variable finisheds is used to signal that all of the tasks have completed. Thus

control does not continue past the last line until all of the tasks have completed.

25.7 Task Intents

If a variable is referenced within the lexical scope of a begin, cobegin, or coforall statement and is declared
outside that statement, it is considered to be passed as an actual argument to the corresponding task function at task
creation time. All references to the variable within the task function implicitly refer to the task function’s correspond-

ing formal argument.

Each formal argument of a task function has the default intent by default. For variables of primitive and class types,
this has the effect of capturing the value of the variable at task creation time and referencing that value instead of the

original variable within the lexical scope of the task construct.

A formal can be given another intent explicitly by listing it with that intent in the optional task—intent-clause. For
example, for variables of most types, the ref intent allows the task construct to modify the corresponding original

variable or to read its updated value after concurrent modifications.

The syntax of the task intent clause is:

task—intent—clause:
with ( task—intent—list )

task—intent—list:
task—intent—item
task—intent—item, task—intent—list

task—intent—item:
formal-intent identifier
task—private—var—decl
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where the following intents can be used as a formal-intent: ref, in, const, const in, const ref. task—private—var—decl

is defined in §26.4] In addition, task-intent-item may define a reduce intent. Reduce intents are described in the Re-

duce Intents technical note in the online documentation:
https://chapel-lang.org/docs/technotes/reducelntents.html

The implicit treatment of outer scope variables as the task function’s formal arguments applies to both module level
and local variables. It applies to variable references within the lexical scope of a task construct, but does not extend
to its dynamic scope, i.e., to the functions called from the task(s) but declared outside of the lexical scope. The loop
index variables of a coforall statement are not subject to such treatment within that statement; however, they are
subject to such treatment within nested task constructs, if any.

Rationale. The primary motivation for task intents is to avoid some races on scalar/record variables,
which are possible when one task modifies a variable and another task reads it. Without task intents, for
example, it would be easy to introduce and overlook a bug illustrated by this simplified example:
{
var i = 0;
while i < 10 {
begin {
f(i);

i+=1;
}

If all the tasks created by the begin statement start executing only after the while loop completes, and
i within the begin is treated as a reference to the original i, there will be ten tasks executing £ (10).
However, the user most likely intended to generate ten tasks executing £ (0), £ (1), ..., £ (9). Task intents
ensure that, regardless of the timing of task execution.

Another motivation for task intents is that referring to a captured copy in a task is often more efficient than
referring to the original variable. That’s because the copy is a local constant, e.g. it could be placed in a
register when it fits. Without task intents, references to the original variable would need to be implemented
using a pointer dereference. This is less efficient and can hinder optimizations in the surrounding code,
for example loop-invariant code motion.

Furthermore, in the above example the scope where i is declared may exit before all the ten tasks com-
plete. Without task intents, the user would have to protect i to make sure its lexical scope doesn’t exit
before the tasks referencing it complete.

We decided to treat cobegin and coforall statements the same way as begin. This is for consistency
and to make the race-avoidance benefit available to more code.

We decided to apply task intents to module level variables, in addition to local variables. Again, this is for
consistency. One could view module level variables differently than local variables (e.g. a module level
variable is “always available”), but we favored consistency over such an approach.

We decided not to apply task intents to “closure” variables, i.e., the variables in the dynamic scope of a
task construct. This is to keep this feature manageable, so that all variables subject to task intents can be
obtained by examining just the lexical scope of the task construct. In general, the set of closure variables
can be hard to determine, unwieldy to implement and reason about, it is unclear what to do with extern
functions, etc.

We do not provide inout or out as task intents because they will necessarily create a data race in a
cobegin or coforall. type and param intents are not available either as they do not seem useful as
task intents.
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Future. For a given intent, we would also like to provide a blanket clause, which would apply the intent
to all variables. An example of syntax for a blanket re f intent would be ref =*.

25.8 The Sync Statement

The sync statement acts as a join of all dynamically encountered begins from within a statement. The syntax for the
sync statement is given by

sync-statement:
sync statement
sync block-statement

Return statements are not allowed in sync statement blocks. Yield statement may only be lexically enclosed in sync
statement blocks in parallel iterators (§22.4). Break and continue statements may not be used to exit a sync statement
block.

Example (syncStmtl.chpl). The sync statement can be used to wait for many dynamically created tasks.

sync for i in 1..n do begin work () ;

The for loop is within a sync statement and thus the tasks created in each iteration of the loop must
complete before the continuing past the sync statement.

Example (syncStmt2.chpl). The sync statement

sync {
begin stmtl();
begin stmt2();
}

is similar to the following cobegin statement

cobegin {
stmtl () ;
stmt2 () ;

}

except that if begin statements are dynamically encountered when stmt1 () or stmt2 () are executed,
then the former code will wait for these begin statements to complete whereas the latter code will not.

25.9 The Serial Statement

The serial statement can be used to dynamically disable parallelism. The syntax is:

serial-statement:
serial expression,,, do statement
serial expression,,. block—statement
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where the optional expression evaluates to a boolean value. If the expression is omitted, it is as though ’true’ were
specified. Whatever the expression’s value, the statement following it is evaluated. If the expression is true, any
dynamically encountered code that would normally create new tasks within the statement is instead executed by the
original task without creating any new ones. In effect, execution is serialized. If the expression is false, code within
the statement will generates task according to normal Chapel rules.

Example (serialStmt1.chpl). In the code

proc f (i) {
serial i<13 {
cobegin {
work (1) ;
work (1) ;

}

}

for i in lo..hi {
£(1);
}

the serial statement in procedure f() inhibits concurrent execution of work() if the variable i is less than
13.

Example (serialStmt2.chpl). The code

serial {
begin stmtl();
cobegin {
stmt2 () ;
stmt3 () ;
}
coforall i in 1..n do stmt4();

}

is equivalent to

stmtl () ;

{
stmt2 () ;
stmt3();

}
for i in 1..n do stmt4();

because the expression evaluated to determine whether to serialize always evaluates to true.

25.10 Atomic Statements

Open issue. This section describes a feature that is a work-in-progress. We seek feedback and collabora-
tion in this area from the broader community.

The atomic statement is used to specify that a statement should appear to execute atomically from other tasks’ point of
view. In particular, no task will see memory in a state that would reflect that the atomic statement had begun executing
but had not yet completed.
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Open issue. This definition of the atomic statement provides a notion of strong atomicity since the action
will appear atomic to any task at any point in its execution. For performance reasons, it could be more
practical to support weak atomicity in which the statement’s atomicity is only guaranteed with respect to
other atomic statements. We may also pursue using atomic type qualifiers as a means of marking data that
should be accessed atomically inside or outside an atomic section.

The syntax for the atomic statement is given by:

atomic—statement:
atomic statement

Example. The following code illustrates the use of an atomic statement to perform an insertion into a
doubly-linked list:

proc Node.insertAfter (newNode: Node) {
atomic
newNode.prev = this;
newNode.next = this.next;
if this.next then this.next.prev = newNode;
this.next = newNode;

}

The use of the atomic statement in this routine prevents other tasks from viewing the list in a partially-
updated state in which the pointers might not be self-consistent.



26 Data Parallelism

Chapel provides two explicit data-parallel constructs (the forall-statement and the forall-expression) and several idioms
that support data parallelism implicitly (whole-array assignment, function and operator promotion, reductions, and
scans).

This chapter details data parallelism as follows:

e §26.T|describes the forall statement.

o §26.2|describes forall expressions

e §26.3|specifies how variables from outer scopes are handled within forall statements and expressions.
e §26.5|describes promotion.

e §26.6|describes reductions and scans.

describes the configuration constants for controlling default data parallelism.

Data-parallel constructs may result in accesses to the same variable from different tasks, possibly due to aliasing using
ref argument intents or forall intents, among others. Such accesses are subject to the Memory Consistency Model

(30D

26.1 The Forall Statement

The forall statement is a concurrent variant of the for statement described in §11.9]

26.1.1 Syntax

The syntax of the forall statement is given by

forall-statement:
forall index—var-declaration in iteratable—expression task—intent-clause,,; do statement
forall index—var—declaration in iteratable—expression task—intent—clause,,, block—statement
forall iteratable-expression task—intent-clause,,. do statement
forall iteratable—expression task—intent—clause,,: block—statement
[ index—var—declaration in iteratable-expression task—intent—clause,, | statement
[ iteratable—-expression task—intent-clause,,. | statement

As with the for statement, the indices may be omitted if they are unnecessary and the do keyword may be omitted
before a block statement. The square bracketed form is a syntactic convenience.

The handling of the outer variables within the forall statement and the role of task-intent-clause are defined in §26.3]

231
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26.1.2 Execution and Serializability

The forall statement evaluates the loop body once for each element yielded by the iteratable-expression. Each instance
of the forall loop’s body may be executed concurrently with the others, but this is not guaranteed. In particular, the
loop must be serializable. Details regarding concurrency and iterator implementation are described in[22.4}

This differs from the semantics of the coforall loop, discussed in §25.6] where each iteration is guaranteed to run
using a distinct task. The coforall loop thus has potentially higher overhead than a forall loop with the same number
of iterations, but in cases where concurrency is required for correctness, it is essential.

In practice, the number of tasks that will be used to evaluate a forall loop is determined by the object or iterator that
is leading the execution of the loop, as is the mapping of iterations to tasks.

This concept will be formalized in future drafts of the Chapel specification. For now, the primer on parallel iterators

in the online documentation provides a brief introduction:
https://chapel-lang.org/docs/primers/parlters.html

Please also refer to User-Defined Parallel Zippered Iterators in Chapel, published in the PGAS 2011 workshop.

Control continues with the statement following the forall loop only after every iteration has been completely evaluated.
At this point, all data accesses within the body of the forall loop will be guaranteed to be completed.

A return statement may not be lexically enclosed in a forall statement. A yield statement may only be lexically
enclosed in a forall statement that is within a parallel iterator §22.4] A break statement may not be used to exit a
forall statement. A continue statement skips the rest of the current iteration of the forall loop.

Example (forallStmt.chpl). In the code
forall i in 1..N do
a(i) = b(i);

the user has stated that the element-wise assignments can execute concurrently. This loop may be executed
serially with a single task, or by using a distinct task for every iteration, or by using a number of tasks
where each task executes a number of iterations. This loop can also be written as

[i in 1..N] a(i) = b(i);

26.1.3 Zipper Iteration

Zipper iteration has the same semantics as described in §11.9.T)and §22.4]for parallel iteration.
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26.2 The Forall Expression

The forall expression is a concurrent variant of the for expression described in §10.2T]

26.2.1 Syntax

The syntax of a forall expression is given by

forall-expression:
forall index—var—declaration in iteratable—expression task—intent-clause,,.; do expression
forall iteratable—expression task—intent-clause,,; do expression
[ index—var—declaration in iteratable—expression task—intent-clause,,. ] expression
[ iteratable—expression task—intent—clause,,: | expression

As with the for expression, the indices may be omitted if they are unnecessary. The do keyword is always required in
the keyword-based notation. The bracketed form is a syntactic convenience.

The handling of the outer variables within the forall expression and the role of task-intent-clause are defined in §26.3]

26.2.2 Execution

A forall expression is an iterator that executes a forall loop (§26.1)), evaluates the body expression on each iteration of
the loop, and yields each resulting value.

When a forall expression is used to initialize a variable, such as

var X = forall iterableExpression() do computeValue () ;

the variable will be inferred to have an array type. The array’s domain is defined by the iterable-expression following
the same rules as for promotion, both in the regular case §26.5|and in the zipper case §26.5.2]

Example (forallExpr.chpl). The code

writeln (+ reduce [i in 1..10] 1i%%2);

applies a reduction to a forall-expression that evaluates the square of the indices in the range 1. .10.

The forall expression follows the semantics of the forall statement as described in[26.1.2]

26.2.3 Zipper Iteration

Forall expression also support zippered iteration semantics as described in §11.9.T]and §22.4]for parallel iteration.
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26.2.4 Filtering Predicates in Forall Expressions

A filtering predicate is an if expression that is immediately enclosed by a forall expression and does not have an else
clause. Such an if expression filters the iterations of the forall expression. The iterations for which the condition does
not hold are not reflected in the result of the forall expression.

When a forall expression with a filtering predicate is captured into a variable, the resulting array has a 1-based one-
dimensional domain.

Example (forallFilter.chpl). The following expression returns every other element starting with the first:

[1 in 1..s.numElements] if i % 2 == 1 then s (i)

26.3 Forall Intents

If a variable is referenced within the lexical scope of a forall statement or expression and is declared outside that
statement or expression, it is subject to forall intents, analogously to task intents (§25.7) for task-parallel constructs.
That is, the variable is considered to be passed as an actual argument to each task function created by the object or
iterator leading the execution of the loop. If no tasks are created, it is considered to be an actual argument to the leader
or standalone iterator itself. All references to the variable within the forall statement or expression implicitly refer to
a shadow variable, i.e. the corresponding formal argument of the task function or the leader/standalone iterator.

Each formal argument of a task function or iterator has the default intent by default. For variables of primitive, enum,
and class types, this has the effect of capturing the value of the variable at task creation time. Within the lexical scope
of the forall statement or expression, the variable name references the captured value instead of the original value.

A formal can be given another intent explicitly by listing it with that intent in the optional task—intent-clause. For
example, for variables of most types, the ref intent allows the body of the forall loop to modify the corresponding
original variable or to read its updated value after concurrent modifications. The in intent is an alternative way to
obtain task-private variables (§26.4). A reduce intent can be used to reduce values across iterations of a forall or
coforall loop. Reduce intents are described in the Reduce Intents technical note in the online documentation:
https://chapel-lang.org/docs/technotes/reducelntents.html

Rationale. A forall statement or expression may create tasks in its implementation. Forall intents affect
those tasks in the same way that task intents affect the behavior of a task construct such as a
coforall loop.

26.4 Task-Private Variables

A task-private variable declared in a forall loop results in a separate shadow variable in each task created by the forall
loop’s parallel iterator, as well as a "top-level" shadow variable created at the top level of the parallel iterator itself.
In contrast to regular forall intents §26.3] these shadow variables are unrelated to outer variables of the same name, if
any.
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A given shadow variable is created at the start and destroyed at the end of its task. Within the lexical scope of the body
of the forall statement or expression, the variable name refers to the shadow variable created in the task that executed

the current yield statement.

The "top-level" shadow variable is created at the start and destroyed at the end of the parallel iterator. It is referenced in
those iterations of the forall loop that are due to "top-level" yields, i.e. yields that are outside any of the task constructs

that the iterator may have.

The syntax of a task-private variable declaration in a forall statement’s with-clause is:

task—private—var—decl:
task—private- var—kind identifier type—part,,. initialization—part, .

task—private— var-kind:
const
var
ref

The declaration of a const or var task-private variable must have at least one of type-part and initialization-part. A
ref task-private variable must have initialization—part and cannot have type—part. A ref shadow variable is a reference
to the initialization—part as calculated at the start of the corresponding task or the iterator. ref shadow variables are

never destroyed.

Cray’s Chapel Implementation. Currently task-private variables are not available for task constructs. A
regular variable declared at the start of the begin/cobegin/coforall block can be used instead.

Example (task-private-variable.chpl).  In the following example, the writeln () statement will ob-
serve the first shadow variable 4 times: twice each for the yields "before coforall" and "after
coforall". An additional shadow variable will be created and observed twice for each of the three

coforall tasks.

var cnt: atomic int; // count our shadow variables

record R { var id = cnt.fetchAdd(1l); }
iter myIter() { yield ""; } // serial iterator,

iter mylter (param tag) where tag == iterKind.standalone {
for 1..2 do

yield "before coforall"; // shadow var 0 ("top-level")

coforall 1..3 do
for 1..2 do
yield "inside coforall"; // shadow vars 1..3
for 1..2 do

yield "after coforall"; // shadow var 0, again

}

forall str in myIter ()

with (var tpv: R) // declare a task-private variable

do
writeln("shadow var: ", tpv.id, " vyield: ", str);
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26.5 Promotion

A function that expects one or more scalar arguments but is called with one or more arrays, domains, ranges, or
iterators is promoted if the element types of the arrays, the index types of the domains and/or ranges, or the yielded
types of the iterators can be resolved to the type of the argument. The rules of when an overloaded function can be

promoted are discussed in §13.13

Functions that can be promoted include procedures, operators, casts, and methods. Also note that since class and
record field access is performed with getter methods (§16.5.1)), field access can also be promoted.

If the original function returns a value or a reference, the corresponding promoted expression is an iterator yielding
each computed value or reference.

When a promoted expression is used to initialize a variable, such as var X = A.x; in the above example, the vari-
able’s type will be inferred to be an array. The array’s domain is defined by the expression that causes promotion:

input expression | resulting array’s domain

array that array’s domain

domain that domain

range one-dimensional domain built from that range
iterator 1-based one-dimensional domain

Future. We would like to allow the iterator author to specify the shape of the iterator, i.e. the domain of
the array that would capture the result of the corresponding promoted expression, such as

var myArray = myScalarFunction(myIterator());

This will be helpful, for example, when the iterator yields one value per an array or domain element that
it iterates over internally.

Example (promotion.chpl). Given the array

var A: [1..5] int = [1i in 1..5] 1i;

and the function

proc square (x: int) return xxx2;

then the call square (A) results in the promotion of the square function over the values in the array A.
The result is an iterator that returns the values 1, 4, 9, 16, and 25.

Example (field-promotion.chpl). Given an array of points, such as 2 defined below:

record Point {
var x: real;
var y: real;
}
var A: [1..5] Point = [i in 1..5] new Point (x=i, y=1i);

the following statement will create a new array consisting of the x field value for each value in A:

var X = A.x;

and the following call will set the y field values for each element in A to 1.0:
A.y = 1.0;
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26.5.1 Default Arguments

When a call is promoted and that call relied upon default arguments (§13.4.2), the default argument expression can be
evaluated many times. For example:

Example (promotes-default.chpl).

var counter: atomic int;

proc nextCounterValue () :int {
var i = counter.fetchAdd(1l);
return i;

}

proc assignCounter (ref x:int, counter=nextCounterValue()) {
x = counter;

}
Here the function assignCounter has a default argument providing the next value from an atomic counter
as the value to set.

var A: [1..5] int;

assignCounter (34) ;

The assignCounter call uses both the default argument for counter as well as promotion. When these
features are combined, the default argument will be evaluated once per promoted element. As a result,
after this command, A will contain the elements O 1 2 3 4 in some order.

26.5.2 Zipper Promotion

Promotion also supports zippered iteration semantics as described in §11.9.1]and §22.4]for parallel iteration.

Consider a function £ with formal arguments s1, s2, ... that are promoted and formal arguments a1, a2, ... that are
not promoted. The call

f(sl, s2, ..., al, a2, ...)

is equivalent to

[(el, e2, ...) in zip(sl, s2, ...)] f(el, e2, ..., al, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the promoted actuals must have the same shape.

A zipper promotion can be captured in a variable, such as var X = f(sl, s2, ..., al, a2, ...); usingthe
above example. If so, the domain of the resulting array is defined by the first argument that causes promotion. The
rules are the same as in the non-zipper case.

Example (zipper-promotion.chpl). Given a function defined as

proc foo(i: int, j: int) {
return (i, Jj);

}

and a call to this function written
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writeln(foo(1..3, 4..6));

then the output is

26.5.3 Whole Array Operations and Evaluation Order

Whole array operations are a form of promotion as applied to operators rather than functions.

Whole array assignment is one example. It is is implicitly parallel. The array assignment statement:

LHS = RHS;

is equivalent to

forall (el,e2) in zip(LHS,RHS) do
el = e2;

The semantics of whole array assignment and promotion are different from most array programming languages.
Specifically, the compiler does not insert array temporaries for such operations if any of the right-hand side array
expressions alias the left-hand side expression.

Example. If A is an array declared over the indices 1. . 5, then the following codes are not equivalent:

A[2..4] = A[1..3] + A[3..5];
and

var T = A[1..3] + A[3..5];

A[2..4] = T;

This follows because, in the former code, some of the new values that are assigned to A may be read to
compute the sum depending on the number of tasks used to implement the data parallel statement.

26.6 Reductions and Scans

Chapel provides reduction and scan expressions that apply operators to aggregate expressions in stylized ways. Re-
duction expressions collapse the aggregate’s values down to a summary value. Scan expressions compute an aggregate
of results where each result value stores the result of a reduction applied to all of the elements in the aggregate up to
that expression. Chapel provides a number of predefined reduction and scan operators, and also supports a mechanism
for the user to define additional reductions and scans (Chapter 29).
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26.6.1 Reduction Expressions

A reduction expression applies a reduction operator to an aggregate expression, collapsing the aggregate’s dimensions
down into a result value (typically a scalar or summary expression that is independent of the input aggregate’s size).
For example, a sum reduction computes the sum of all the elements in the input aggregate expression.

The syntax for a reduction expression is given by:

reduce-expression:
reduce-scan—operator reduce iteratable—expression
class—type reduce iteratable—expression

reduce—-scan—-operator: one of
+ % && I & | ~ min max minloc maxloc

Chapel’s predefined reduction operators are defined by reduce-scan—operator above. In order, they are: sum, product,
logical-and, logical-or, bitwise-and, bitwise-or, bitwise-exclusive-or, minimum, maximum, minimum-with-location,
and maximum-with-location. The minimum reduction returns the minimum value as defined by the < operator. The
maximum reduction returns the maximum value as defined by the > operator. The minimum-with-location reduction
returns the lowest index position with the minimum value (as defined by the < operator). The maximum-with-location
reduction returns the lowest index position with the maximum value (as defined by the > operator).

The expression on the right-hand side of the reduce keyword can be of any type that can be iterated over, provided
the reduction operator can be applied to the values yielded by the iteration. For example, the bitwise-and operator can
be applied to arrays of boolean or integral types to compute the bitwise-and of all the values in the array.

For the minimum-with-location and maximum-with-location reductions, the argument on the right-hand side of the
reduce keyword must be a 2-tuple. Its first component is the collection of values for which the minimum/maximum
value is to be computed. The second argument component is a collection of indices with the same size and shape that
provides names for the locations of the values in the first component. The reduction returns a tuple containing the
minimum/maximum value in the first argument component and the value at the corresponding location in the second
argument component.

Example (reduce-loc.chpl). The first line below computes the smallest element in an array A as well as
its index, storing the results in minA and minALoc, respectively. It then computes the largest element in
a forall expression making calls to a function foo (), storing the value and its number in maxval and

maxValNum.
var (minA, minALoc) = minloc reduce zip (A, A.domain);
var (maxVal, maxValNum) = maxloc reduce zip([i in 1..n] foo(i), 1l..n);

User-defined reductions are specified by preceding the keyword reduce by the class type that implements the reduc-
tion interface as described in §29]

26.6.2 Scan Expressions

A scan expression applies a scan operator to an aggregate expression, resulting in an aggregate expression of the same
size and shape. The output values represent the result of the operator applied to all elements up to and including the
corresponding element in the input.

The syntax for a scan expression is given by:
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scan—expression:
reduce-scan—operator scan iteratable—expression
class—type scan iteratable—expression

The predefined scans are defined by reduce-scan-operator. These are identical to the predefined reductions and are

described in
The expression on the right-hand side of the scan can be of any type that can be iterated over and to which the operator

can be applied.

Example. Given an array

var A: [1..3] int = 1;

that is initialized such that each element contains one, then the code

writeln(+ scan A);

outputs the results of scanning the array with the sum operator. The output is

123

User-defined scans are specified by preceding the keyword scan by the class type that implements the scan interface
as described in Chapter[29]

26.7 Configuration Constants for Default Data Parallelism

The following configuration constants are provided to control the degree of data parallelism over ranges, default
domains, and default arrays:

Config Const Type | Default
dataParTasksPerLocale int top level .maxTaskPar (see §|27.1.2)
dataParIgnoreRunningTasks | bool | true

dataParMinGranularity int 1

The configuration constant dataParTasksPerLocale specifies the number of tasks to use when executing a forall
loop over a range, default domain, or default array. The actual number of tasks may be fewer depending on the other
two configuration constants. A value of zero results in using the default value.

The configuration constant dataParIgnoreRunningTasks, when true, has no effect on the number of tasks to use
to execute the forall loop. When false, the number of tasks per locale is decreased by the number of tasks that are
already running on the locale, with a minimum value of one.

The configuration constant dataParMinGranularity specifies the minimum number of iterations per task created.
The number of tasks is decreased so that the number of iterations per task is never less than the specified value.

For distributed domains and arrays that have these same configuration constants (e.g., Block and Cyclic distributions),
these same module level configuration constants are used to specify their default behavior within each locale.



27 Locales

Chapel provides high-level abstractions that allow programmers to exploit locality by controlling the affinity of both
data and tasks to abstract units of processing and storage capabilities called locales. The on-statement allows for the
migration of tasks to remote locales.

Throughout this section, the term local will be used to describe the locale on which a task is running, the data located

on this locale, and any tasks running on this locale. The term remote will be used to describe another locale, the data
on another locale, and the tasks running on another locale.

27.1 Locales

A locale is a portion of the target parallel architecture that has processing and storage capabilities. Chapel implemen-
tations should typically define locales for a target architecture such that tasks running within a locale have roughly
uniform access to values stored in the locale’s local memory and longer latencies for accessing the memories of other
locales. As an example, a cluster of multicore nodes or SMPs would typically define each node to be a locale. In
contrast a pure shared memory machine would be defined as a single locale.

27.1.1 Locale Types

The identifier 1ocale is a class type that abstracts a locale as described above. Both data and tasks can be associated
with a value of locale type. A Chapel implementation may define subclass(es) of 1ocale for a richer description of
the target architecture.

27.1.2 Locale Methods

The locale type supports the following methods:

proc locale.callStackSize: uint (64);

Returns the per-task call stack size used when creating tasks on the locale in question. A value of 0 indicates
that the call stack size is determined by the system.

proc locale.id: int;

Returns a unique integer for each locale, from O to the number of locales less one.

proc locale.maxTaskPar: int (32);

Returns an estimate of the maximum parallelism available for tasks on a given locale.

241
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proc locale.name: string;

Returns the name of the locale.

proc numPUs (logical: bool = false, accessible: bool = true);

Returns the number of processing unit instances available on a given locale. Basically these are the things
that execute instructions. If 1ogical is false then the count reflects physical instances, often referred to as
cores. Otherwise it reflects logical instances, such as hardware threads on multithreaded CPU architectures. If
accessible is true then the count includes only those processors the OS has made available to the program.
Otherwise it includes all processors that seem to be present.

use Memory;
proc locale.physicalMemory (unit: MemUnits=MemUnits.Bytes, type retType=int (64)): retType;

Returns the amount of physical memory available on a given locale in terms of the specified memory units
(Bytes, KB, MB, or GB) using a value of the specified return type.

27.1.3 The Predefined Locales Array

Chapel provides a predefined environment that stores information about the locales used during program execution.
This execution environment contains definitions for the array of locales on which the program is executing (Locales),
a domain for that array (LocaleSpace), and the number of locales (numLocales).

config const numLocales: int;

const LocaleSpace: domain(l) = [0..numLocales-1];
const Locales: [LocaleSpace] locale;

When a Chapel program starts, a single task executes main on Locales (0).

Note that the Locales array is typically defined such that distinct elements refer to distinct resources on the target
parallel architecture. In particular, the Locales array itself should not be used in an oversubscribed manner in which
a single processor resource is represented by multiple locale values (except during development). Oversubscription
should instead be handled by creating an aggregate of locale values and referring to it in place of the Locales array.

Rationale. This design choice encourages clarity in the program’s source text and enables more opportu-
nities for optimization.

For development purposes, oversubscription is still very useful and this should be supported by Chapel
implementations to allow development on smaller machines.

Example. The code

const MyLocales: [0..numLocalesx4] locale
= [loc in 0..numLocalesx4] Locales (loc%numLocales);
on MyLocales|[i]

defines a new array MyLocales that is four times the size of the Locales array. Each locale is added to
the MyLocales array four times in a round-robin fashion.
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27.1.4 The here Locale

A predefined constant locale here can be used anywhere in a Chapel program. It refers to the locale that the current
task is running on.

Example. The code

on Locales (1) {
writeln (here.id);

}

results in the output 1 because the writeln statement is executed on locale 1.

The identifier here is not a keyword and can be overridden.

27.1.5 Querying the Locale of an Expression

The locale associated with an expression (where the expression is stored) is queried using the following syntax:

locale-access—expression:
expression . locale

When the expression is a class, the access returns the locale on which the class object exists rather than the reference
to the class. If the expression is a value, it is considered local. The implementation may warn about this behavior. If
the expression is a locale, it is returned directly.

Example. Given a class C and a record R, the code

on Locales (1) {
var x: int;
var c: C;
var r: R;
on Locales (2) {
on Locales (3) {
c = new C();
r = new R();
}
writeln (x.locale.id);
writeln(c.locale.id);
writeln(r.locale.id);

}

results in the output

1
3
1

The variable x is declared and exists on Locales (1). The variable c is a class reference. The reference
exists on Locales (1) but the object itself exists on Locales (3). The locale access returns the locale
where the object exists. Lastly, the variable r is a record and has value semantics. It exists on Locales (1)
even though it is assigned a value on a remote locale.
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Global (non-distributed) constants are replicated across all locales.

Example. For example, the following code:

const c = 10;
for loc in Locales do on loc do
writeln(c.locale.id);

outputs

I N =)

when running on 5 locales.

27.2 The On Statement

The on statement controls on which locale a block of code should be executed or data should be placed. The syntax of
the on statement is given by

on-statement:
on expression do statement
on expression block-statement

The locale of the expression is automatically queried as described in Execution of the statement occurs on
this specified locale and then continues after the on-statement.

Return statements may not be lexically enclosed in on statements. Yield statements may only be lexically enclosed in
on statements in parallel iterators §22.4]

27.2.1 Remote Variable Declarations

By default, when new variables and data objects are created, they are created in the locale where the task is running.
Variables can be defined within an on-statement to define them on a particular locale such that the scope of the variables
is outside the on-statement. This is accomplished using a similar syntax but omitting the do keyword and braces. The
syntax is given by:
remote- variable—declaration—statement:
on expression variable-declaration—statement



28 Domain Maps

A domain map specifies the implementation of the domains and arrays that are mapped using it. That is, it defines how
domain indices and array elements are mapped to locales, how they are stored in memory, and how operations such as
accesses, iteration, and slicing are performed. Each domain and array is mapped using some domain map.

A domain map is either a layout or a distribution. A layout describes domains and arrays that exist on a single locale,
whereas a distribution describes domains and arrays that are partitioned across multiple locales.

A domain map is represented in the program with an instance of a domain map class. Chapel provides a set of standard
domain map classes. Users can create domain map classes as well.

Domain maps are presented as follows:

domain maps for domain types §28.1} domain values §28.2] and arrays

domain maps are not retained upon domain assignment §28.4]

standard layouts and distributions, such as Block and Cyclic, are documented under Standard Library in Cray
Chapel online documentation here:
https://chapel-lang.org/docs/modules/layoutdist.html

specification of user-defined domain maps is forthcoming; please refer to the Domain Map Standard Interface
page under Technical Notes in Cray Chapel online documentation here:
https://chapel-lang.org/docs/technotes/dsi.html

28.1 Domain Maps for Domain Types

Each domain type has a domain map associated with it. This domain map is used to map all domain values of this type

(§28.2).

If a domain type does not have a domain map specified for it explicitly as described below, a default domain map is
provided by the Chapel implementation. Such a domain map will typically be a layout that maps the entire domain to
the locale on which the domain value is created or the domain or array variable is declared.

Cray’s Chapel Implementation. The default domain map provided by the Cray Chapel compiler is such a
layout. The storage for the representation of a domain’s index set is placed on the locale where the domain
variable is declared. The storage for the elements of arrays declared over domains with the default map is
placed on the locale where the array variable is declared. Arrays declared over rectangular domains with
this default map are laid out in memory in row-major order.
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A domain map can be specified explicitly by providing a dmap value in a dmapped clause:
mapped-domain—type:
domain-type dmapped dmap-value

dmap-value:
expression

A dmap value consists of an instance of a domain map class wrapped in an instance of the predefined record dmap.
The domain map class is chosen and instantiated by the user. dmap behaves like a generic record with a single generic
field, which holds the domain map instance.

Example. The code
use BlockDist;

var MyBlockDist: dmap (Block (rank=2));

declares a variable capable of storing dmap values for a two-dimensional Block distribution. The Block
distribution is described in more detail in the standard library documentation. See:
https://chapel-lang.org/docs/modules/dists/BlockDist.html

Example. The code
use BlockDist;

var MyBlockDist: dmap (Block (rank=2)) = new dmap (new Block ({1..5,1..6}));

creates a dmap value wrapping a two-dimensional Block distribution with a bounding box of {1..5, 1..6}
over all of the locales.

Example. The code

use BlockDist;
var MyBlockDist = new dmap (new Block ({1..5,1..6}));
type MyBlockedDom = domain (2) dmapped MyBlockDist;

defines a two-dimensional rectangular domain type that is mapped using a Block distribution.

The following syntactic sugar is provided within the dmapped clause. If a dmapped clause starts with the name of a
domain map class, it is considered to be an initialization expression as if preceded by new. The resulting domain map
instance is wrapped in a newly-created instance of dmap implicitly.

Example. The code

use BlockDist;

type BlockDom = domain (2) dmapped Block ({1..5,1..6});
is equivalent to

use BlockDist;
type BlockDom = domain (2) dmapped new dmap (new Block ({1..5,1..6}));
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28.2 Domain Maps for Domain Values

A domain value is always mapped using the domain map of that value’s type. The type inferred for a domain literal
(§20.2.T)) has a default domain map.

Example. In the following code

use BlockDist;
var MyDomLiteral = {1..2,1..3};
var MyBlockedDom: domain (2) dmapped Block({1..5,1..6}) = MyDomLiteral;

MyDomLiteral is given the inferred type of the domain literal and so will be mapped using a default
map. MyBlockedDom is given a type explicitly, in accordance to which it will be mapped using a Block
distribution.

A domain value’s map can be changed explicitly with a dmapped clause, in the same way as a domain type’s map.

mapped-domain-expression:
domain-expression dmapped dmap-value

Example. In the following code

use BlockDist;
var MyBlockedDomLiterall = {1..2,1..3} dmapped new dmap (new Block ({1..5,1..6}));
var MyBlockedDomLiteral2 {1..2,1..3} dmapped Block ({1..5,1..6});

both MyBlockedDomLiterall and MyBlockedDomLiteral2 will be mapped using a Block distribu-
tion.

28.3 Domain Maps for Arrays
Each array is mapped using the domain map of the domain over which the array was declared.

Example. In the code

use BlockDist;
var Dom: domain (2) dmapped Block ({1..5,1..6}) = {1..5,1..6};
var MyArray: [Dom] real;

the domain map used for MyArray is the Block distribution from the type of Dom.
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28.4 Domain Maps Are Not Retained upon Domain Assignment

Domain assignment (§20.8.T) transfers only the index set of the right-hand side expression. The implementation of the
left-hand side domain expression, including its domain map, is determined by its type and so does not change upon a
domain assignment.

Example. In the code

use BlockDist;
var Doml: domain (2) dmapped Block ({1..5,1..6}) = {1..5,1..6};
var Dom2: domain (2) = Doml;

Dom2 is mapped using the default distribution, despite Dom1 having a Block distribution.

Example. In the code

use BlockDist;
var Doml: domain (2) dmapped Block ({1..5,1..6}) = {1..5,1..6};
var Dom2 = Doml;

Dom2 is mapped using the same distribution as Dom1. This is because the declaration of Dom2 lacks an
explicit type specifier and so its type is defined to be the type of its initialization expression, Dom1. So in
this situation the effect is that the domain map does transfer upon an initializing assignment.



29 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural interface.
The definition of this structural interface is forthcoming. The following paper sketched out such an interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstractions for user-defined
reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2006.
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30 Memory Consistency Model

In this section, we describe Chapel’s memory consistency model. The model is based on sequential consistency for
data-race-free programs as adopted by C11, C++11, Java, UPC, and Fortran 2008.

Sequential consistency (SC) means that all Chapel tasks agree on the interleaving of memory operations and this
interleaving results in an order is consistent with the order of operations in the program source code. Conflicting
memory operations, i.e., operations to the same variable, or memory location, and one of which is a write, form a data
race if they are from different Chapel tasks and can be executed concurrently. Accesses to the same variable from
different tasks can result from the tasks referencing the same variable directly — or indirectly via aliases. Aliases arise,
for example, when using re £ variables, argument intents, return intents, task intents and forall intents.

Any Chapel program with a data race is not a valid program, and an implementation cannot be relied upon to pro-
duce consistent behavior. Valid Chapel programs will use synchronization constructs such as sync, single, or atomic
variables or higher-level constructs based on these to enforce ordering for conflicting memory operations.

The following design principles were used in developing Chapel’s memory consistency model:

1. Sequential programs have program order semantics. Programs that are completely sequential cannot have data
races and should appear to execute as though each statement was executed one at a time and in the expected
order.

2. Chapel’s fork-join constructs introduce additional order dependencies. Operations within a task cannot behave
as though they started before the task started. Similarly, all operations in a task must appear to be completed to
a parent task when the parent task joins with that task.

3. Multi-locale programs have the same memory consistency model as single-locale programs. The Chapel lan-
guage seeks to allow a single description of an algorithm to work with different data distributions. A result of
this property is that an expression of a program must be correct whether it is working on local or distributed
data.

4. Chapel’s memory model should be as relaxed as possible while still consistent with these design principles. In
particular, making all operations sequentially consistent is not likely to enable good performance. At the same
time, sequential consistency should be available to programmers when requested.

See A Primer on Memory Consistency and Cache Coherence by Sorin, et al. for more background information on
memory consistency models. This chapter will proceed in a manner inspired by the X C' memory model described
there.

30.1 Sequential Consistency for Data-Race-Free Programs

Sequential consistency for data-race-free programs is described in terms of two orders: program order and memory
order. The program order <, is a partial order describing serial or fork-join parallelism dependencies between variable
reads and writes. The memory order <,, is a total order that describes the semantics of synchronizing memory
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operations (via atomic, sync or single variables) with sequential consistency. Non-SC atomic operations (described
in Section[30.2) do not create this total order.

Note that sync/single variables have memory consistency behavior equivalent to a sequence of SC operations on
atomic variables. Thus for the remainder of the chapter, we will primarily focus on operations on at omic variables.

We will use the following notation:

e L(a) indicates a load from a variable at address a. a could refer to local or remote memory.
e S(a) indicates a store to a variable at address a. a could refer to local or remote memory.

e A,.(a) indicates an atomic operation on a variable at address a with sequential consistency. The variable at
address a could refer to local or remote memory. Atomic operations must be completed as a single operation
(i.e. atomically), and so it is not possible to observe an intermediate state from an atomic operation under any
circumstances.

e A, (a, o) indicates an atomic operation on a variable at address a with ordering constraint o, where o can be one
of relaxed, acquire, or release (see Section . As with A,.(a), relaxed atomic operations must be completed
as a single operation.

e L(a), S(a), Asc(a), and A, (a, o) are also called memory operations
e X <, Y indicates that X precedes Y in program order

e X <,, Y indicates that X precedes Y in memory order

e t = begin{X]} starts a new task named t to execute X

e waitFor (¢1..t,) waits for tasks ¢;..t,, to complete

e on (L) migrates the running task to locale L. Note that while the on statement may change the locale on which
the current task is running, it has no impact on the memory consistency requirements.

For the purposes of describing this memory model, it is assumed that Chapel programs will be translated into sequences
of memory operations, begin statements, and waitFor statements. The translation of a Chapel program into a
sequence of memory operations must preserve sequential program semantics. That is, if we have a snippet of a Chapel
program without task operations, such as x; Y;, the statements X and Y will be converted into a sequence of load,
store, and atomic operations in a manner that preserves the behavior of a this serial portion of the program. That is,
X = z1,29,...and Y = y1,¥s,... where x; and y; are each a sequence of load, store, or atomic operations and we
have x; <, y;.

Likewise, for the purposes of this memory model, Chapel’s parallelism keywords are viewed as a sequence of opera-
tions including the primitives of starting a task (begin) and waiting for some number of tasks (waitFor (¢1..tn)).
In particular:

e forall (including promotion) creates some number of tasks m to execute the n iterations of the loop

(ti= begin{some-loop-bodies} foreachtask¢ = 1..m) and waits for them to complete (waitFor (t1. .tm)).
The number of tasks m is defined by the implementation of the parallel iterator (See Section [22]for details on
iterators).

e coforall creates one task per loop iteration (¢;= begin{loop-body} for all loop iterations ¢ = 1..n) and
then waits for them all to complete (waitFor (¢1. .tn)).
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e cobegin creates one task per enclosed statement (¢,= begin{X;} for statements X;..X,) and then waits for
them all to complete (waitFor (t1. .t,)).

e begin creates a task to execute the enclosed statement (t = begin{x}). The sync statement waits for all
tasks t; created by a begin statement in the dynamic scope of the sync statement that are not within other,
nested sync statements (waitFor (¢1. .t,) for all n such tasks).

30.1.1 Program Order

Task creation and task waiting create a conceptual tree of program statements. The task bodies, task creation, and task
wait operations create a partial order <, of program statements. For the purposes of this section, the statements in the
body of each Chapel task will be implemented in terms of load, store, and atomic operations.

e If we have a program snippet without tasks, such as X; Y;, where X and Y are memory operations, then
X <Y,

The program X; begin{Y}; z; implies X <, Y. However, there is no particular relationship between Y and
Z in program order.

The program t = begin{Y}; waitFor(t); Zz; impliesY <, Z

X < YandY <, Zimply X <, Z

30.1.2 Memory Order
The memory order <,,, of SC atomic operations in a given task respects program order as follows:
o If Ac(a) <p Agc(b) then Age(a) <, Asc(D)

Every SC atomic operation gets its value from the last SC atomic operation before it to the same address in the total
order <,,:

e Value of A,.(a) = Value of maz, (AL (a)|AL.(a) <m Asc(a))

For data-race-free programs, every load gets its value from the last store before it to the same address in the total order
< m :

e Value of L(a) = Value of maz,, (S(a)|S(a) <. L(a) or S(a) <, L(a))

For data-race-free programs, loads and stores are ordered with SC atomics. That is, loads and stores for a given task
are in total order <,,, respecting the following rules which preserve the order of loads and stores relative to SC atomic
operations:

o If L(a) <, Asc(b) then L(a) <., Asc(b)
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o If S(a) <, Asc(b) then S(a) <, Asc(D)
o If A;c(a) <, L(b) then Ay.(a) < L(D)
o If Asc(a) <, S(b) then Ayo(a) <u, S(D)

For data-race-free programs, loads and stores preserve sequential program behavior. That is, loads and stores to the
same address in a given task are in the order <,, respecting the following rules which preserve sequential program
behavior:

e If L(a) <, L'(a) then L(a) <,,, L'(a)
o If L(a) <, S(a) then L(a) <, S(a)
o If S(a) <, S'(a) then S(a) <., S'(a)

30.2 Non-Sequentially Consistent Atomic Operations

Sequential consistency for atomic operations can be a performance bottleneck under some circumstances. Chapel
provides non-SC atomic operations to help alleviate such situations. Such uses of atomic operations must be done
with care and should generally not be used to synchronize tasks.

Non-SC atomic operations are specified by providing a memory order argument to the atomic operations. See Sec-
tion [25.4.T| for more information on the memory order types.

30.2.1 Relaxed Atomic Operations

Although Chapel’s relaxed atomic operations (memory_order_relaxed) do not complete in a total order by them-
selves and might contribute to non-deterministic programs, relaxed atomic operations cannot contribute to a data race
that would prevent sequential consistency.

When relaxed atomics are used only for atomicity and not as part of synchronizing tasks, their effect can be understood
in the memory consistency model described in[30.1]by treating them as ordinary loads or stores with two exceptions:

e Atomic operations (including relaxed atomic operations) cannot create data races.

o All atomic operations (including relaxed atomic operations) will eventually be visible to all other threads. This
property is not true for normal loads and stores.
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30.3 Unordered Memory Operations
Open issue. Syntax for unordered operations has not yet been finalized.

Open issue. Should Chapel provide a memory fence that only completes unordered operations started by
the current task?

Open issue. Should unordered operations on a particular memory address always wait for the address to
be computed?

Open issue. Does starting a task or joining with a task necessarily wait for unordered operations to
complete?

Rather than issuing normal loads and stores to read or write local or remote memory, a Chapel program can use
unordered loads and stores when preserving sequential program behavior is not important. The following notation for
unordered memory operations will be used in this section:

e UL(a) indicates an unordered load from a variable at address a. a could point to local or remote memory.

e US(a) indicates an unordered store to a variable at address a. Again, a could point to local or remote memory.

The unordered loads and stores UL(a) and US(a) respect fences but not program order. As in Section
unordered loads and stores are ordered with SC atomics. That is, unordered loads and stores for a given task are
in total order <, respecting the following rules which preserve the order of unordered loads and stores relative to SC
atomic operations:

o IfUL(a b) then UL(a b

se(
Aue(b
(
(

<77L

o If A..(a UL(b) then A.(a) <,, UL(b

(a) <p Asc(b) (a) )
o IfUS(a) <, Ase(b) then US(a) < )
(a) <p UL(b) (a) )
o If Asc(a) <p US(b) then Ag.(a) <., US(D)

Unordered loads and stores do not preserve sequential program behavior.

30.3.1 Unordered Memory Operations Examples

Unordered operations should be thought of as happening in a way that overlaps with the program task. Unordered
operations started in different program statements can happen in any order unless an SC atomic operation orders them.

Since unordered operations started by a single task can happen in any order, totally sequential programs can have a
data race when using unordered operations. This follows from our original definition of data race.
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var x: int = 0;
unordered_store (x, 10);
unordered_store(x, 20);
writeln(x);

255

The value of x at the end of this program could be 0, 10, or 20. As a result, programs using unordered loads and stores
are not sequentially consistent unless the program can guarantee that unordered operations can never operate on the

same memory at the same time when one of them is a store. In particular, the following are safe:

e Unordered stores to disjoint regions of memory.

e Unordered loads from potentially overlapping regions of memory when no store could overlap with the loads.

e Unordered loads and stores to the same memory location when these are always separated by an SC atomic

operation.

Unordered loads and stores are available as a performance optimization. For example, a program computing a permu-

tation on an array might want to move data between two arrays without requiring any ordering:

const n = 10;

// P 1s a permutation on 1..n, in this case reversing its input
var P = for i in 1..n by -1 do i;

// A 1s an array to permute

var A = for i in 1..n do i;

// Compute, in B, the permutation applied to A

var B:[1l..n] int;

for i in 1..n {
unordered_store (B[P[i]], A[i]);

30.4 Examples

Example. In this example, a synchronization variable is used to (a) ensure that all writes to an array of
unsynchronized variables are complete, (b) signal that fact to a second task, and (c) pass along the number
of values that are valid for reading.

The program

var A: [1..100] real;
var done$: sync int; // initially empty
cobegin {

{ // Reader task

const numToRead = done$; // block until writes are complete
for i in 1..numToRead do
writeln ("A[", i, "] =", A[i]);

{ // Writer task

const numToWrite = 14; // an arbitrary number
for i in 1..numToWrite do
A[i] = 1/10.0;

done$ = numToWrite; // fence writes to A and signal done
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produces the output

A[l] = 0.1
A[2] = 0.2
A[3] = 0.3
A[4] = 0.4
A[5] = 0.5
A[6] = 0.6
A[7] = 0.7
A[8] = 0.8
A[9] = 0.9
A[10] = 1.0
A[11] = 1.1
A[12] = 1.2
A[13] = 1.3
A[14] = 1.4

Example (syncSpinWait.chpl). One consequence of Chapel’s memory consistency model is that a task
cannot spin-wait on a normal variable waiting for another task to write to that variable. The behavior of
the following code is undefined:
var x: int;
cobegin with (ref x) {
while x != 1 do ; // INCORRECT spin wait
x = 1;

}

In contrast, spinning on a synchronization variable has well-defined behavior:

var x$: sync int;

cobegin {
while x$.readxX() != 1 do ; // spin wait
x$.writeXF (1) ;

}

In this code, the first statement in the cobegin statement executes a loop until the variable is set to one.
The second statement in the cobegin statement sets the variable to one. Neither of these statements block.

Example (atomicSpinWait.chpl). Atomic variables provide an alternative means to spin-wait. For exam-
ple:
var x: atomic int;
cobegin {
while x.read() != 1 do ; // spin wait - monopolizes processor

x.write(1);

}

Example (atomicWaitFor.chpl). The main drawback of the above example is that it prevents the thread
executing the spin wait from doing other useful work. Atomic variables include a waitFor method that
will block the calling thread until a read of the atomic value matches a particular value. In contrast to the
spin wait loop above, waitFor will allow other tasks to be scheduled. For example:
var x: atomic int;
cobegin {
x.waitFor (1);

x.write (1) ;

}

Future.  Upon completion, Chapel’s atomic statement (§25.10) will serve as an additional means of
correctly synchronizing between tasks.



31 Interoperability

Chapel’s interoperability features support cooperation between Chapel and other languages. They provide the ability
to create software systems that incorporate both Chapel and non-Chapel components. Thus, they support the reuse of
existing software components while leveraging the unique features of the Chapel language.

Interoperability can be broken down in terms of the exchange of types, variables and procedures, and whether these
are imported or exported. An overview of procedure importing and exporting is provided in §31.1} Details on sharing
types, variables and procedures are supplied in §31.2]

Future.

At present, the backend language for Chapel is C, which makes it relatively easy to call C libraries from
Chapel and vice versa. To support a variety of platforms without requiring recompilation, it may be
desirable to move to an intermediate-language model.

In that case, each supported platform must minimally support that virtual machine. However, in addition
to increased portability, a virtual machine model may expose elements of the underlying machine’s pro-
gramming model (hardware task queues, automated garbage collection, etc.) that are not easily rendered
in C. In addition, the virtual machine model can support run-time task migration.

The remainder of this chapter documents Chapel support of interoperability through the existing C-language backend.

31.1 Interoperability Overview

The following two subsections provide an overview of calling externally-defined (C) routines in Chapel, and setting
up Chapel routines so they can be called from external (C) code.

31.1.1 Calling External Functions

To use an external function in a Chapel program, it is necessary to inform the Chapel compiler of that routine’s
signature through an external function declaration. This permits Chapel to bind calls to that function signature during
function resolution. The user must also supply a definition for the referenced function by naming a C source file, an
object file or an object library on the chpl command line.

An external procedure declaration has the following syntax:

external-procedure—declaration—statement:
extern external-name,,, proc function-name argument-list return—intent,,,, return—type,,.
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Chapel code will call the external function using the parameter types supplied in the extern declaration. Therefore,
in general, the type of each argument in the supplied argument-list must be the Chapel equivalent of the corresponding
external type.

The return value of the function can be used by Chapel only if its type is declared using the optional return—type
specifier. If it is omitted, Chapel assumes that no value is returned, or equivalently that the function returns void.

It is possible to use the external-name syntax to create an extern function that presents a different name to Chapel
code than the name of the function actually used when linking. The external-name expression must evaluate to a param
string. For example, the code below declares a function callable in Chapel as c_atoi but that will actually link with
the C atoi function.

extern "atoi" proc c_atoi(arg:c_string):c_int;

At present, external iterators are not supported.

Future. The overloading of function names is also not supported directly in the compiler. However,
one can use the external-name syntax to supply a name to be used by the linker. In this way, function
overloading can be implemented “by hand”. This syntax also supports calling external C++ routines: The
external-name to use is the mangled function name generated by the external compilation environmentﬂ

Future. Dynamic dispatch (polymorphism) is also unsupported in this version. But this is not ruled
out in future versions. Since Chapel already supports type-based procedure declaration and resolution,
it is a small step to translate a type-relative extern method declaration into a virtual method table entry.
The mangled name of the correct external function must be supplied for each polymorphic type avail-
able. However, most likely the generation of .chpl header files from C and C++ libraries can be fully
automated.

There are three ways to supply to the Chapel compiler the definition of an external function: as a C source file (.c
or .h), as an object file and as an object library. It is platform-dependent whether static libraries (archives), dynamic
libraries or both are supported. See the chpl man page for more information on how these file types are handled.

31.1.2 Calling Chapel Functions

To call a Chapel procedure from external code, it is necessary to expose the corresponding function symbol to the
linker. This is done by adding the export linkage specifier to the function definition. The export specifier ensures
that the corresponding procedure will be resolved, even if it is not called within the Chapel program or library being
compiled.

An exported procedure declaration has the following syntax:

exported—procedure—declaration-statement:
export external-name,,; proc function—name argument-list return—intent,,; return—type,:
function-body

external-name:
expression

'In UNIX-like programming environments, nm and grep can be used to find the mangled name of a given function within an object file or
object library.
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The rest of the procedure declaration is the same as for a non-exported function. An exported procedure can be called
from within Chapel as well. Currently, iterators cannot be exported.

As with the extern—name for extern proc, if this syntax element is provided, then it must be a param st ring and will
be used to determine the name of the function to use when linking. For example, the code below declares a function
callable in C as chapel_addone but it is callable from Chapel code as addone:

export "chapel addone" proc addone (arg:c_int) :c_int {

return arg+l;

}

Future. Currently, exported functions cannot have generic, param or type arguments. This is because
such functions actually represent a family of functions, specific versions of which are instantiated as need
during function resolution.

Instantiating all possible versions of a template function is not practical in general. However, if explicit
instantiation were supported in Chapel, an explicit instantiation with the export linkage specifier would
clearly indicate that the matching template function was to be instantiated with the given param values
and argument types.

31.2 Shared Language Elements

This section provides details on how to share Chapel types, variables and procedures with external code. It is written
assuming that the intermediate language is C.

31.2.1 Shared Types

This subsection discusses how specific types are shared between Chapel and external code.

Referring to Standard C Types

In Chapel code, all standard C types must be expressed in terms of their Chapel equivalents. This is true, whether
the entity is exported, imported or private. Standard C types and their corresponding Chapel types are shown in the
following table.

C Type Chapel Type CType Chapel Type C Type Chapel Type
int8_t int (8) uint8_t uint (8) _real32 real(32)
intle_t 1int (16) uintl6_t uint (16) _real6d real (64)
int32_t int (32) uint32_t uint (32) _imag32 imag(32)
int64_t int (64) uint64_t uint (64) _imag64 imag(64)
chpl _bool bool const charx c_string
_complex64 complex(64) _complexl28 complex (128)

Standard C types are built-in. Their Chapel equivalents do not have to be declared using the extern keyword.

In C, the “colloquial” integer type names char, signed char,unsigned char, (signed)short (int),unsigned short
(int), (signed) int, unsigned int, (signed) long (int), unsigned long (int), (signed) long long (int)
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and unsigned long long (int) may have an implementation-defined widthﬂ When referring to C types in a
Chapel program, the burden of making sure the type sizes agree is on the user. A Chapel implementation must ensure
that all of the C equivalents in the above table are defined and have the correct representation with respect to the
corresponding Chapel type.

Referring to External C Types

An externally-defined type can be referenced using a external type declaration with the following syntax.

external-type-alias—declaration—statement:
extern type type-alias—declaration-list ;

In each type-alias—declaration, if the type-expression part is supplied, then Chapel uses the supplied type specifier inter-
nally. Otherwise, it treats the named type as an opaque type. The definition for an external type must be supplied by a
C header file named on the chpl command line.

Fixed-size C array types can be described within Chapel using its homogeneous tuple type. For example, the C typedef

typedef double vec[3];

can be described in Chapel using

extern type vec = 3xreal (64);

Referring to External C Structs

External C struct types can be referred to within Chapel by prefixing a Chapel record definition with the extern
keyword.

external-record—declaration—statement:
extern external-name,,, simple-record-declaration-statement

For example, consider an external C structure defined in foo.h called £1tdbl.

typedef struct _fltdbl {
float x;
double vy;

} fltdbl;

This type could be referred to within a Chapel program using

extern record fltdbl {
var x: real(32);
var y: real (64);

}

2However, most implementations have settled on using 8, 16, 32, and 64 bits (respectively) to represent char, short, int and 1ong, and
long long types
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and defined by supplying foo.h on the chpl command line.

Within the Chapel declaration, some or all of the fields from the C structure may be omitted. The order of these
fields need not match the order they were specified within the C code. Any fields that are not specified (or that cannot
be specified because there is no equivalent Chapel type) cannot be referenced within the Chapel code. Some effort
is made to preserve the values of the undefined fields when copying these structs but Chapel cannot guarantee the
contents or memory story of fields of which it has no knowledge.

If the optional external-name is supplied, then it is used verbatim as the exported struct symbol.

A C header file containing the struct’s definition in C must be specified on the chpl compiler command line. Note that
only typdef’d C structures are supported by default. That is, in the C header file, the st ruct must be supplied with a
type name through a typede £ declaration. If this is not true, you can use the external-name part to apply the struct
specifier. As an example of this, given a C declaration of:

struct Vec3 {
double x, y, z;
bi

in Chapel you would refer to this st ruct via

extern "struct Vec3" record Vec3 {
var x, y, z: real(64);
}

Opaque Types

It is possible refer to external pointer-based C types that cannot be described in Chapel by using the "opaque" keyword.
As the name implies, these types are opaque as far as Chapel is concerned and cannot be used for operations other
than argument passing and assignment.

For example, Chapel could be used to call an external C function that returns a pointer to a structure (that can’t or
won’t be described as a pointer to an external record) as follows:

extern proc returnStructPtr(): opaque;

var structPtr: opaque = returnStructPtr();

However, because the type of st ructPtr is opaque, it can be used only in assignments and the arguments of functions
expecting the same underlying type.

var copyOfStructPtr = structPtr;
extern proc operateOnStructPtr(ptr: opaque);

operateOnStructPtr (structPtr);

Like a void« in C, Chapel’s opaque carries no information regarding the underlying type. It therefore subverts type
safety, and should be used with caution.
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31.2.2 Shared Data

This subsection discusses how to access external variables and constants.

A C variable or constant can be referred to within Chapel by prefixing its declaration with the extern keyword. For
example:

extern var bar: foo;

would tell the Chapel compiler about an external C variable named bar of type foo. Similarly,

extern const baz: int (32);

would refer to an external 32-bit integer constant named baz in the C code. In practice, external consts can be used to
provide Chapel definitions for #defines and enum symbols in addition to traditional C constants.

Cray’s Chapel Implementation. Note that since params must be known to Chapel at compile-time and
the Chapel compiler does not necessarily parse C code, external params are not supported.

31.2.3 Shared Procedures

This subsection provides additional detail and examples for calling external procedures from Chapel and for exporting
Chapel functions for external use.

Calling External C Functions

To call an external C function, a prototype of the routine must appear in the Chapel code. This is accomplished by
providing the Chapel signature of the function preceded by the extern keyword. For example, for a C function foo()
that takes no arguments and returns nothing, the prototype would be:

extern proc foo();

To refer to the return value of a C function, its type must be supplied through a return-type clause in the prototypeE]

If the above function returns a C double, it would be declared as:

extern proc foo(): real;

Similarly, for external functions that expect arguments, the types of those arguments types may be declared in Chapel
using explicit argument type specifiers.

The types of function arguments may be omitted from the external procedure declaration, in which case they are
inferred based on the Chapel callsite. For example, the Chapel code
extern proc foo(x: int, y): real;

var a, b: int;
foo(a, b);

3The return type cannot be inferred, since an ext e rn procedure declaration has no body.
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would imply that the external function foo takes two 64-bit integer values and returns a 64-bit real. External function
declarations with omitted type arguments can also be used call external C macros.

External function arguments can be declared using the default—expression syntax. In this case, the default argument will
be supplied by the Chapel compiler if the corresponding actual argument is omitted at the callsite. For example:

extern proc foo(x: int, y = 1.2): real;
foo (0);

Would cause external function foo() to be invoked with the arguments 0 and 1.2.

C varargs functions can be declared using Chapel’s variable-argument-expression syntax (. ..). For example, the C
print £ function can be declared in Chapel as

extern proc printf (fmt: c_string, vals...?numvals): int;

External C functions or macros that accept type arguments can also be prototyped in Chapel by declaring the argument
as a type. For example:

extern foo(type t);

Calling such a routine with a Chapel type will cause the type identifier (e.g., ’int’) to be passed to the routineE]

31.2.4 Calling Chapel Procedures Externally

To call a Chapel procedure from external code, the procedure name must be exported using the export keyword. An
exported procedure taking no arguments and returning void can be declared as:

export proc fool();

If the procedure body is omitted, the procedure declaration is a prototype; the body of the procedure must be supplied
elsewhere. In a prototype, the return type must be declared; otherwise, it is assumed to be void. If the body is
supplied, the return type of the exported procedure is inferred from the type of its return expression(s).

If the optional external-name is supplied, that is the name used in linking with external code. For example, if we declare

export "myModule_foo" proc fool();

then the name foo is used to refer to the procedure within chapel code, whereas a call to the same function from C code
would appear as myModule_foo () ;. If the external name is omitted, then its internal name is also used externally.

When a procedure is exported, all of the types and functions on which it depends are also exported. Iterators cannot
be explicitly exported. However, they are inlined in Chapel code which uses them, so they are exported in effect.

4In practice, this will typically only be useful if the external function is a macro or built-in that can handle type identifiers.
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31.2.5 Argument Passing

The manner in which arguments are passed to an external function can be controlled using argument intents. The
following table shows the correspondence between Chapel intents and C argument type declarations. These corre-
spondences pertain to both imported and exported function signatures.

Chapel C
T const T
in T T
inout T Tx
out T Tx
ref T Tx
param

type charx*

Currently, param arguments are not allowed in an extern function declaration, and type args are passed as a string
containing the name of the actual type being passed. Note that the level of indirection is changed when passing
arguments to a C function using inout, out, or ref intent. The C code implementing that function must dereference
the argument to extract its value.



A Collected Lexical and Syntax Productions

This appendix collects the syntax productions listed throughout the specification. There are no new syntax productions
in this appendix. The productions are listed both alphabetically and in depth-first order for convenience.

A.1 Alphabetical Lexical Productions

binary-digit: one of
01

binary-digits:
binary-digit
binary-digit binary-digits

bool-literal: one of
true false

digit: one of
0123456789

digits:
digit
digit digits

double-quote—delimited—-characters:
string—character double—quote—delimited—characters, .
* double—-quote—delimited—characters, .

exponent-part:
e sign,,; digits
E sign,,. digits

hexadecimal—-digit: one of
0123456789ABCDEFabcdef

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-escape—character:
\x hexadecimal-digits

identifier:
letter-or—underscore legal-identifier—chars,,,.

imaginary-literal:

real-literal i
integer-literal i

265
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integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
00 octal-digits
Ob binary-digits
0B binary—-digits

interpreted-string—literal:
" double-quote—delimited—characters,,
> single—quote—-delimited—characters,,; ’

"

legal-identifier—char:
letter—or—underscore
digit
$

legal-identifier-chars:
legal-identifier-char legal-identifier-chars,, .

letter—or—underscore:
letter

letter: one of
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

octal-digit: one of
01234567

octal-digits:
octal-digit
octal-digit octal-digits

p—exponent-part:
p sign,, digits
P sign,,. digits

real-literal:
digits,,. . digits exponent—part,,;
digits .,,+ exponent—part
0x hexadecimal-digits.,. . hexadecimal-digits p—exponent—part,,
0X hexadecimal-digits,,. . hexadecimal-digits p—exponent—part,
0x hexadecimal-digits .,,: p—exponent-part
0X hexadecimal-digits .,,: p—exponent—part

sign: one of
+ —

simple—escape—character: one of

VAT AZ AL \a \b AE An Ar A v
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single—quote—-delimited—characters:
string—character single—quote—delimited—characters,,.
" single-quote—delimited—characters,, .

string—character:
any character except the double quote, single quote, or new line
simple—escape—character
hexadecimal-escape—character

string-literal:
interpreted-string—literal
uninterpreted-string—literal

uninterpreted—double—-quote—delimited—characters:
uninterpreted—double—quote—string—character uninterpreted—double—quote—delimited—characters,,.

uninterpreted—double—quote-string—character:
any character except three double quotes in a row

uninterpreted-single—quote—delimited—characters:
uninterpreted-single—quote-string—character uninterpreted-single—quote—delimited—characters, .

uninterpreted-single—quote—string—character:
any character except three single quotes in a row

uninterpreted-string—literal:
""" uninterpreted—double-quote—delimited—characters
’*’ uninterpreted-single—quote—delimited—-characters *”’

nn

A.2 Alphabetical Syntax Productions

aligned-range—expression:
range—expression align expression

argument-list:
( formals,,: )

array-literal:
rectangular-array-literal
associative—array-literal

array—type:
[ domain—expression ] type—expression

assignment-operator: one of
= += —= *= [= P= *xx= &= |= = &&= = <<= >>=

assignment-statement:
Ivalue—-expression assignment-operator expression
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associative—array-literal:
[ associative—expr-list |
[ associative—expr-list , ]

associative—domain-literal:
{ associative—expression—list }

associative—domain-type:
domain ( associative—index—type )
domain ( opaque )

associative—expr-list:
index—expr => value—expr
index—expr => value—expr, associative—expr—list

associative—expression—list:
non-range—expression
non-range—expression, associative—expression-list

associative—index—type:
type—expression

atomic—statement:
atomic statement

atomic—type:
atomic type—expression

base-domain-type:
rectangular—domain-type
associative—domain—type

basic-class—type:
identifier
identifier ( named-expression—list )

begin-statement:
begin task-intent-clause,,, statement

binary-expression:
expression binary—operator expression

binary-operator: one of
+ -/ %D o & | N << > && Il == = <= >= < > by #

block—statement:
{ statements,,: }

break—statement:
break identifier,,: ;

call-expression:
Ivalue—-expression ( named-expression—list )
Ivalue—expression [ named-expression-list |
parenthesesless—function—identifier
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cast—expression:
expression : type—expression

class—declaration—statement:
simple-class—declaration—-statement

class—inherit:
: basic—class—type

class—statement—list:
class—statement
class—statement class—statement-list

class—statement:
variable—declaration—-statement
method-declaration—statement
type—declaration- statement
empty-statement

class—type:
basic—class—type
owned basic—class—type
shared basic-class—type
borrowed basic—class—type
unmanaged basic—class—type

cobegin-statement:
cobegin task—intent-clause,,; block—statement

coforall-statement:
coforall index—var-declaration in iteratable-expression task—intent—clause,,, do statement
coforall index—var—declaration in iteratable—expression task—intent—clause,,; block—statement
coforall iteratable—expression task—intent-clause,,.; do statement
coforall iteratable—expression task—intent-clause,,, block-statement

conditional-statement:
if expression then statement else-part, .
if expression block—statement else—part, .

config—or-extern: one of
config extern

continue- statement:
continue identifier,,. ;

counted-range—expression:
range—expression # expression

dataparallel-type:
range—type
domain—type
mapped—domain—type
array—type
index—type

269
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default—expression:
= expression

defer—statement:
defer statement

delete—statement:
delete expression-list ;

dmap-value:
expression

do—while—-statement:
do statement while expression ;

domain-alignment-expression:
domain—expression align expression

domain-assignment—expression:
domain—name = domain—expression

domain-expression:
domain-literal
domain—-name
domain-assignment—expression
domain-striding—expression
domain-alignment—expression
domain-slice-expression

domain-literal:
rectangular-domain-literal
associative—domain-literal

domain—name:
identifier

domain-slice-expression:
domain-expression [ slicing—index—set ]
domain—expression ( slicing—index—set )

domain-striding—expression:
domain-expression by expression

domain-type:
base-domain-type
simple—subdomain—-type
sparse-subdomain—type

else—part:
else statement

empty-statement:

s
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enum-constant—expression:
enum-—type . identifier

enum-constant-list:
enum-constant
enum-—constant , enum-constant—list, .

enum-constant:
identifier init—part,

enum-—declaration—statement:
enum identifier { enum-constant-list }

enum-type:
identifier

exclude-list:
identifier—list
*

exported—procedure—declaration—statement:
export external-name,,; proc function—name argument-list return—intent,,, return—type,:
function—body

expression-list:
expression
expression , expression—list

expression—statement:
variable—expression ;
member—access—expression ;
call-expression ;
new—expression ;
let-expression ;

expression:
literal-expression
nil-expression
variable—expression
enum-constant—expression
call-expression
type—expression
iteratable—call-expression
member-access—expression
new-expression
query—expression
cast—expression
Ivalue—expression
parenthesized—expression
unary—expression
binary—expression
let-expression
if-expression
for-expression
forall-expression
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reduce—expression
scan—expression
module-access—expression
tuple—expression
tuple—expand—expression
locale—access—expression
mapped—-domain—expression

external-name:
expression

external—-procedure—declaration—statement:
extern external-name,,, proc function-name argument-list return—intent,,, return—type,,.

external-record—declaration—statement:
extern external-name,,, simple-record—declaration—-statement

external-type-alias—declaration-statement:
extern type type-alias—declaration—list ;

field—access—expression:
receiver—clause,,, identifier

for-expression:
for index—var—declaration in iteratable—expression do expression
for iteratable—expression do expression

for-statement:
for index—var-declaration in iteratable—expression do statement
for index—var-declaration in iteratable—expression block—statement
for iteratable—expression do statement
for iteratable—expression block—statement

forall-expression:
forall index—var—declaration in iteratable—expression task—intent-clause,,.; do expression
forall iteratable—expression task—intent-clause,,: do expression
[ index—var—declaration in iteratable-expression task—intent-clause,,. ] expression
[ iteratable—expression task—intent-clause,,. ] expression

forall-statement:
forall index—var—declaration in iteratable—expression task—intent-clause,,, do statement
forall index—var—declaration in iteratable—expression task—intent-clause,,; block—statement
forall iteratable-expression task—intent-clause,,; do statement
forall iteratable—expression task—intent—clause,,; block—statement
[ index—var—declaration in iteratable—expression task—intent—clause,, | statement
[ iteratable—expression task—intent—clause,,. | statement

formal-intent:
const
const in
const ref
in
out
inout
ref
param

type
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formal-type:
: type—expression
: ? identifier,,.

formal:
formal-intent,,,, identifier formal-type,,: default-expression,.
formal-intent,, identifier formal-type,,. variable-argument-expression
formal-intent,,,, tuple-grouped—identifier—list formal-type,,. default—expression,:
formal-intent,,,, tuple-grouped-identifier—list formal-type,,. variable-argument-expression

formals:
formal
formal , formals

function—body:
block-statement
return—statement

function—name:
identifier
operator-name

identifier-list:
identifier
identifier , identifier—list
tuple—grouped—-identifier—list
tuple-grouped-identifier—list , identifier—list

if-expression:
if expression then expression else expression
if expression then expression

index—expr:
expression

index—type:
index ( domain—expression )

index—var—declaration:
identifier
tuple-grouped-identifier—list

init-part:
= expression

initialization—part:
= expression

integer—parameter—expression:
expression

io—expression:
expression
io—expression io—operator expression

273
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io—operator:
<>

io—statement:
io—expression i0—operator expression

iteratable—call-expression:
call-expression

iteratable—expression:
expression
zip ( expression—list )

iterator—body:
block-statement
yield-statement

iterator—declaration-statement:
privacy-specifier.,,, iter iterator-name argument-list,,; yield-intent,,, yield-type,,. where-clause,,.
iterator—body

iterator-name:
identifier

label-statement:
label identifier statement

let-expression:
let variable—declaration—list in expression

limitation—clause:
except exclude-list
only rename-—list,,,;

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal
array-literal

locale—access—expression:
expression . locale

Ivalue-expression:
variable—expression
member-access—expression
call-expression
parenthesized-expression

mapped-domain—expression:
domain-expression dmapped dmap-value
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mapped-domain-type:
domain—-type dmapped dmap-value

member—access—expression:
field—access—expression
method-call-expression

method-call-expression:
receiver—clause,,, expression ( named-expression—list )
receiver—clause,,; expression [ named-expression—list ]
receiver—clause,,; parenthesesless—function—identifier

method-declaration—-statement:
procedure-kind,,; proc—or—iter this-intent,,, type-binding,,. function—name argument-list, .
return—intent,, return-type,,. where—clause,,, function—body

module-access—expression:
module-identifier-list . identifier

module-declaration—statement:
privacy-specifier,,, module module—identifier block—statement

module—identifier—list:
module—identifier
module—-identifier . module—identifier—list

module—identifier:
identifier

module—or-enum-name-list:
module-or-enum-name limitation—clause,,.
module-or-enum—-name , module—or-enum-name-list

module—-or-enum-name:
identifier
identifier . module—or—enum-name

named-expression-list:
named-expression
named-expression , named—expression—list

named-expression:
expression
identifier = expression

new-expression:
new type-expression ( argument-list )

nil-expression:
nil

no-initialization-part:
= noinit
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non-range—expression:
expression

on-statement:
on expression do statement
on expression block—statement

operator-name: one of
+ —x / % xx | == = <= >= < > << > & | N ~
= += —= %= [= Q= **x= &= |= M= <<= >>= <=> <~>

param-~for-statement:
for param identifier in param-iteratable—expression do statement
for param identifier in param-iteratable—expression block—statement

param-—iteratable—expression:
range-literal
range-literal by integer—literal

parenthesesless—tunction—identifier:
identifier

parenthesized—expression:
( expression )

primitive—type—parameter—part:
( integer-parameter—expression )

primitive—type:
void
bool primitive-type-parameter—part, .
int primitive—type-parameter—part, .
uint primitive—type—parameter—part, .
real primitive—type—parameter—part, .
imag primitive—type-parameter—part, .
complex primitive—type—parameter—part,
string

privacy-specifier:
private
public

proc—or-iter:
proc
iter

procedure—declaration—statement:
privacy-specifier.,,,; procedure-kind,,; proc function-name argument-list,,, return—intent,,; return—type,,, where-clause, .
function-body

procedure-kind:
inline
export
extern
override
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query—expression:
? identifier, .

range—expression-list:
range—expression
range—expression, range—expression—1list

range-expression:
expression
strided—-range—expression
counted-range—expression
aligned-range—expression
sliced-range—expression

range-literal:
expression .. expression
expression ..
.. expression

range-type:
range ( named—expression—list )

receiver—clause:
expression .

record—declaration—statement:
simple-record—declaration-statement
external-record—declaration—statement

record-statement-list:
record-statement
record-statement record— statement-—list

record-statement:
variable—declaration—statement
method—declaration— statement
type—declaration—-statement
empty—statement

record-type:
identifier
identifier ( named—expression—list )

rectangular—array-literal:
[ expression—list ]
[ expression-list, ]

rectangular-domain-literal:
{ range-expression-list }

rectangular—domain-type:
domain ( named-expression-list )
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reduce-expression:
reduce-scan—operator reduce iteratable—expression
class—type reduce iteratable—expression

reduce—-scan—operator: one of
+ % && I & | » min max minloc maxloc

remote— variable—declaration—statement:
on expression variable-declaration—statement

rename-base:
identifier as identifier
identifier

rename-list:
rename-base
rename-Dbase , rename-list

return—intent:
const
const ref
ref
param
type

return-statement:
return expression,,: ;

return—type:
: type—expression

scan-—expression:
reduce—scan—operator scan iteratable—expression
class—type scan iteratable—-expression

select-statement:
select expression { when-statements }

serial-statement:
serial expression,,. do statement
serial expression,,; block—statement

simple—class—declaration—statement:
class identifier class—inherit,,, { class—statement-list,,. }

simple—-record—declaration-statement:
record identifier { record-statement-list }

simple—subdomain-type:
subdomain ( domain-expression )

single—type:
single type—expression
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sliced-range—expression:
range—expression ( range—expression )
range—expression [ range—expression ]

slicing—index—set:
domain-expression
range—expression—list

sparse—subdomain-type:
sparse subdomain,,,; ( domain—expression )

statement:
block—statement
expression—statement
assignment-statement
swap-—statement
io—statement
conditional- statement
select—statement
while—do-statement
do—while—statement
for—statement
label-statement
break-statement
continue-statement
param-for—statement
use—statement
defer—statement
empty-statement
return—statement
yield-statement
module—declaration—statement
procedure—declaration—statement
external-procedure—declaration—statement
exported—procedure—declaration—statement
iterator—declaration—statement
method-declaration—- statement
type—declaration—-statement
variable—declaration—statement
remote— variable—declaration—statement
on-statement
cobegin-statement
coforall-statement
begin—statement
sync-statement
serial-statement
atomic—statement
forall-statement
delete—statement

statements:
Statement
statement statements

step—expression:
expression
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strided—-range—expression:
range—expression by step—expression

structured—-type:
class—type
record-type
union—type
tuple-type

swap—operator:
<=>

swap-statement:
Ivalue—expression swap—operator Ivalue—expression

sync-statement:
sync statement
sync block-statement

sync—type:
sync type—expression

synchronization—type:
sync—type
single—type
atomic—type

task—intent—clause:
with ( task—intent-list )

task—intent—item:
formal-intent identifier
task-private—var—decl

task—intent-list:
task—intent—item
task—intent—item, task—intent—list

task—private—var—decl:
task—private- var-kind identifier type-part,,. initialization—part, .

task—private— var-kind:
const
var
ref

this—intent:
param
type
ref
const ref
const

tuple-component-list:
tuple-component
tuple—component , tuple—component-list
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tuple-component:
expression

tuple—expand-expression:
(... expression )

tuple—-expression:
( tuple—component , )
( tuple-component , tuple-component-list )
( tuple-component , tuple-component-list , )

tuple-grouped-identifier—list:
( identifier-list)

tuple-type:
( type—expression , type—list )
( type—expression , )

type-alias—declaration-list:
type-alias—declaration
type—-alias—declaration , type—alias—declaration—list

type—alias—declaration—statement:
privacy-specifier.,,; config,,. type type—alias—declaration-list ;
external—-type-alias—declaration—-statement

type-alias—declaration:
identifier = type—expression
identifier

type-binding:
identifier .
(expr).

type—declaration—-statement:
enum-—declaration— statement
class—declaration—statement
record—declaration—statement
union—declaration—statement
type—alias—declaration- statement

type—expression:
primitive—type
enum-type
structured—-type
dataparallel-type
synchronization—type
Ivalue—expression
if-expression
unary—expression
binary—expression

type-list:
type—expression
type—expression , type—list
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type—part:
: type—expression

unary—expression:
unary—-operator expression

unary—-operator: one of
+ -~ !

union—declaration—statement:
extern,,; union identifier { union—statement-list }

union-statement-list:
union-statement
union-statement union—statement-—list

union-statement:
type—declaration-statement
procedure—declaration—-statement
iterator—declaration— statement
variable—declaration—-statement
empty—statement

union-type:
identifier

use—statement:
use module—or—-enum-name-list ;

value—expr:
expression

variable-argument-expression:
... expression
... 7 identifier,

variable—declaration—-list:
variable—declaration
variable—declaration , variable—declaration—list

variable-declaration—statement:
privacy-specifier,,, config—or-extern,,, variable-kind variable-declaration-list ;

variable—declaration:
identifier-list type—part,,,, initialization—part
identifier-list type—part no—initialization—part, .

variable—expression:
identifier

variable—kind:
param
const
var
ref
const ref
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when-statement:
when expression-list do statement
when expression-list block—-statement
otherwise statement
otherwise do statement

when-statements:
when-statement
when-statement when—statements

where—clause:
where expression

while—-do-statement:
while expression do statement
while expression block—statement

yield-intent:
const
const ref
ref
param

type

yield-statement:
yield expression ;

yield-type:
: type—expression

A.3 Depth-First Lexical Productions

bool-literal: one of
true false

identifier:
letter—or-underscore legal-identifier—chars,

letter—or—underscore:
letter

letter: one of
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

legal-identifier-chars:
legal-identifier-char legal-identifier-chars,, .

legal-identifier-char:
letter—or—underscore
digit
$
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digit: one of
0123456789

imaginary-literal:
real-literal i
integer-literal i

real-literal:
digits,,, . digits exponent—part,,,,
digits .,,+ exponent—part
0x hexadecimal-digits.,,. . hexadecimal-digits p—exponent—part,,;
0X hexadecimal-digits,,; . hexadecimal—-digits p—exponent—part, .
0x hexadecimal-digits .,,: p—exponent-part
0X hexadecimal-digits .,,: p—exponent—part

digits:
digit
digit digits

exponent-part:
e sign,,,, digits
E sign,,. digits

sign: one of
+ —

hexadecimal—-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0123456789ABCDEFabcdef

p-exponent-part:
P sign,,: digits
P sign,,. digits

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
00 octal-digits
Ob binary-digits
0B binary-digits

octal-digits:
octal-digit
octal-digit octal-digits

octal-digit: one of
01234567

binary-digits:
binary-digit
binary-digit binary-digits



Collected Lexical and Syntax Productions 285

binary-digit: one of
01

string-literal:
interpreted-string-literal
uninterpreted—string—literal

interpreted-string—literal:
" double-quote—delimited—characters,, '
> single-quote—delimited—characters,,; ’

"

double-quote—delimited-characters:
string—character double—quote—delimited—characters, .
> double—-quote—delimited—characters, .

string—character:
any character except the double quote, single quote, or new line
simple—escape—character
hexadecimal-escape—character

simple—escape—character: one of

VA" AZ AN \a \b A A A\ At

hexadecimal-escape—character:
\x hexadecimal-digits

single—quote—delimited—characters:
string—character single-quote—delimited—characters,,,:
" single-quote—delimited—characters,, .

uninterpreted—string—literal:
""" uninterpreted—double-quote—delimited-characters
’*” uninterpreted-single-quote-delimited—characters **’

nn

uninterpreted—double—quote—delimited—characters:
uninterpreted—double—-quote-string—character uninterpreted—double—quote—delimited—characters,

uninterpreted—double—quote-string—character:
any character except three double quotes in a row

uninterpreted-single—quote-delimited—characters:
uninterpreted-single—quote—string—character uninterpreted-single—quote—delimited—characters, .

uninterpreted-single—quote-string—character:
any character except three single quotes in a row

A.4 Depth-First Syntax Productions

module-declaration-statement:
privacy-specifier,,, module module—identifier block—-statement

privacy-specifier:
private
public
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module—identifier:
identifier

block—statement:
{ statements,,: }

statements:
Statement
statement statements

statement:
block-statement
expression—statement
assignment-statement
swap-statement
io—statement
conditional-statement
select—statement
while—do-statement
do—while-statement
for—statement
label-statement
break—-statement
continue-statement
param-for—statement
use—statement
defer—statement
empty-statement
return—statement
yield-statement
module—declaration—- statement
procedure—declaration—statement
external-procedure—declaration—statement
exported—procedure—declaration—statement
iterator—declaration—statement
method-declaration— statement
type—declaration-statement
variable—declaration—-statement
remote—variable—declaration—statement
on-statement
cobegin—statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic—statement
forall-statement
delete—statement

expression—statement:
variable—expression ;
member-access—expression ;
call-expression ;
new—expression ;
let-expression ;
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variable—expression:
identifier

member-access—expression:
field-access—expression
method-call-expression

field—-access—expression:
receiver—-clause,,, identifier

receiver—clause:
expression .

expression:
literal-expression
nil-expression
variable—expression
enum-constant—expression
call-expression
type—expression
iteratable—call-expression
member—access—expression
new—expression
query—expression
cast—expression
Ivalue—expression
parenthesized—expression
unary—expression
binary—expression
let-expression
if-expression
for-expression
forall-expression
reduce—expression
scan—expression
module-access—expression
tuple-expression
tuple—expand—-expression
locale-access—expression
mapped-domain—expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal
array-literal

range-literal:
expression .. expression
expression ..
.. expression
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domain-literal:
rectangular—domain-literal
associative—domain- literal

rectangular—domain-literal:
{ range-expression-list }

range—expression-list:
range—expression
range—expression, range—expression—1list

range—expression:
expression
strided—-range—expression
counted-range—expression
aligned-range—expression
sliced-range—expression

strided—-range—expression:
range—expression by step—expression

step—expression:
expression

counted-range—-expression:
range—expression # expression

aligned-range—expression:
range—expression align expression

sliced-range—expression:
range—expression ( range—expression )
range—expression [ range—expression ]

associative—domain-literal:
{ associative—expression—list }

associative—expression-list:
non-range—expression
non-range—expression, associative—expression- list

non-range—expression:
expression

array-literal:
rectangular-array-literal
associative—array- literal

rectangular-array-literal:
[ expression—list ]
[ expression—list , ]

expression-list:
expression
expression , expression—list
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associative—array-literal:
[ associative—expr-list |
[ associative—expr-list , ]

associative—expr—list:
index—expr => value—expr
index—expr => value—expr, associative—expr—list

index—expr:
expression

value—expr:
expression

nil-expression:
nil

enum-constant—expression:
enum-type . identifier

enum-type:
identifier

type—expression:
primitive-type
enum-type
structured-type
dataparallel-type
synchronization—type
Ivalue—expression
if-expression
unary—expression
binary—expression

primitive-type:
void
bool primitive-type-parameter—part, .
int primitive—type—parameter—part,,,:
uint primitive—type-parameter-part, .
real primitive—type-parameter—part, .
imag primitive—type-parameter—part,,
complex primitive-type—parameter—part,,;
string

primitive-type—parameter—part:
( integer—parameter—expression )

integer-parameter—expression:
expression

structured-type:
class—type
record-type
union-type
tuple-type
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class—type:
basic—class—type
owned basic-class—type
shared basic-class—type
borrowed basic—class—type
unmanaged basic—class—type

basic-class—type:
identifier
identifier ( named—expression—list )

named-expression-list:
named-expression
named-expression , named—expression-list

named-expression:
expression
identifier = expression

record-type:
identifier
identifier ( named-expression—list )

union-type:
identifier

tuple—-type:
( type—expression , type-list )
( type—expression , )

type-list:
type—expression
type—expression , type—list

dataparallel-type:
range-type
domain-type
mapped—domain-type
array—-type
index—type

range-type:
range ( named-expression-list )

domain-type:
base—domain-type
simple-subdomain-type
sparse—subdomain—type

base—domain-type:
rectangular-domain-type
associative—domain—-type

rectangular—domain-type:
domain ( named-expression—list )
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associative—domain-type:
domain ( associative—index—type )
domain ( opaque )

associative—index—type:
type—expression

simple—subdomain-type:
subdomain ( domain—expression )

domain-expression:
domain-literal
domain—name
domain-assignment—expression
domain-striding—expression
domain-alignment—expression
domain-slice-expression

domain—name:
identifier

domain-assignment—expression:
domain—name = domain-expression

domain-striding—expression:
domain-expression by expression

domain-alignment-expression:
domain—expression align expression

domain-slice-expression:
domain-expression [ slicing—index—set |
domain—expression ( slicing—index—set )

slicing-index-set:
domain-expression
range—expression—list

sparse—subdomain-type:
sparse subdomain,,, ( domain-expression )

mapped-domain-type:
domain-type dmapped dmap-value

dmap-value:
expression

array—type:
[ domain—expression ] type—expression

index—type:
index ( domain—expression )
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synchronization—type:
sync—type
single-type
atomic—type

sync—type:
sync type—expression

single—type:
single type—expression

atomic—type:
atomic type—expression

iteratable—call-expression:
call-expression

query—expression:
? identifier, .

cast-expression:
expression : type—expression

Ivalue—expression:
variable—expression
member-access—expression
call-expression
parenthesized—expression

parenthesized—expression:
( expression )

unary-expression:
unary-operator expression

unary-operator: one of
+ -~ !

binary—expression:
expression binary—operator expression

binary-operator: one of
+ -/ %D o & | N << > && Il == = <= >= < > by #

if-expression:
if expression then expression else expression
if expression then expression

for-expression:
for index—var-declaration in iteratable—expression do expression
for iteratable—expression do expression

forall-expression:
forall index—var—declaration in iteratable—expression task—intent-clause,,; do expression
forall iteratable—expression task—intent-clause,,; do expression
[ index—var—declaration in iteratable—expression task—intent-clause,,. ] expression
[ iteratable—expression task—intent—clause,,: | expression

292
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index—var-declaration:
identifier
tuple- grouped-identifier—list

tuple-grouped-identifier—list:
( identifier-list)

identifier-list:
identifier
identifier , identifier—list
tuple-grouped-identifier—list
tuple—grouped-identifier-list , identifier—list

iteratable—expression:
expression
zip ( expression—list )

task—intent—clause:
with ( task—intent-Iist )

task—intent-list:
task—intent—item
task—intent—item, task—intent—list

task—intent—item:
formal-intent identifier
task—private— var—decl

formal-intent:
const
const in
const ref
in
out
inout
ref
param
type

task—private—var—decl:
task—private- var—kind identifier type-part,,. initialization—part, .

task—private— var-kind:
const
var
ref

type-part:
: type—expression

initialization—part:
= expression

reduce—expression:
reduce-scan-operator reduce iteratable—expression
class—type reduce iteratable—expression
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reduce-scan—operator: one of
+ % && I & | A~ min max minloc maxloc

scan—expression:
reduce-scan—operator scan iteratable—expression
class—type scan iteratable-expression

module—access—expression:
module—identifier-list . identifier

module—identifier—list:
module—identifier
module—identifier . module—identifier—list

tuple—expression:
( tuple-component , )
( tuple-component , tuple-component-list )
( tuple—component , tuple-component-list , )

tuple-component:
expression

tuple—component-list:
tuple—component
tuple-component , tuple—component-list

tuple—expand-expression:
(... expression )

locale—access—expression:
expression . locale

mapped-domain—expression:
domain-expression dmapped dmap-value

method-call-expression:
receiver-clause,,. expression ( named-expression-list )
receiver—clause,,, expression [ named-expression—list ]
receiver—clause,,; parenthesesless—function—identifier

parenthesesless—tunction—identifier:
identifier

call-expression:
Ivalue—expression ( named-expression—list )
Ivalue—expression [ named—expression—list ]
parenthesesless—function—identifier

new-expression:
new type—expression ( argument-list )

argument-list:
( formals,: )
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formals:
formal
formal , formals

formal:
formal-intent,,,, identifier formal-type,,: default-expression, .

formal-intent,,,, identifier formal-type,,. variable—argument-expression
formal-intent,, tuple-grouped-identifier-list formal-type,,, default—expression,,
formal-intent,,,, tuple-grouped-identifier—list formal-type,,. variable—argument-expression

default—expression:
= expression

formal-type:
: type—expression
: ? identifier,,.

variable—argument-expression:
... expression
... 7 identifier,

let-expression:
let variable—declaration—list in expression

assignment-statement:
Ivalue—-expression assignment-operator expression

assignment-operator: one of
= 4= —= x= /: Y= k*x= &: |: A= &&: ||: <<=

swap-statement:
Ivalue—expression swap—operator Ivalue—expression

swap—operator:
<=>

io—statement:
io—expression i0—operator expression

io—expression:
expression
io—expression io—operator expression

io—operator:
<>

conditional-statement:
if expression then statement else—part, .
if expression block—statement else—part,

else—part:
else statement

>>=
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select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block—statement
otherwise statement
otherwise do statement

while-do-statement:
while expression do statement
while expression block—statement

do—while-statement:
do statement while expression ;

for-statement:
for index—var-declaration in iteratable—expression do statement
for index—var-declaration in iteratable—expression block-statement
for iteratable-expression do statement
for iteratable—expression block—statement

label-statement:
label identifier statement

break—statement:
break identifier,,. ;

continue- statement:
continue identifier,,. ;

param-—for—statement:
for param identifier in param-iteratable—expression do statement
for param identifier in param-iteratable—expression block—statement

param-—iteratable—expression:
range-literal
range-literal by integer-literal

use—statement:
use module—or—enum-name-list ;

module—or-enum-name-list:
module-or-enum-name limitation—clause,,.
module-or—enum-name , module—or—enum-name-list

limitation—clause:
except exclude-list
only rename-list,,,;
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exclude-list:
identifier—list
*

rename-list:
rename—base
rename-Dbase , rename-list

rename—base:
identifier as identifier
identifier

module—-or-enum-name:
identifier
identifier . module—or—enum—name

defer—statement:
defer statement

empty-statement:

s

return-statement:
return expression,,: ;

yield-statement:
yield expression ;

module-declaration-statement:
privacy-specifier,,, module module-identifier block—statement

procedure—declaration—statement:
privacy-specifier,,; procedure—kind,,. proc function—name argument-list,,, return—intent,,, return—type,,. where—clause,,.
function—body

procedure-kind:
inline
export
extern
override

function—name:
identifier
operator-name

operator-name: one of
+ —x / % xx | == = <= >= < > << > & | N ~
= 4= —= x= [= P= xx= &= |= M= <<= >>= <=> <~>

return—intent:
const
const ref
ref
param

type
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return—type:
: type—expression

where—clause:
where expression

function—body:
block-statement
return—statement

external-procedure—declaration—statement:
extern external-name,,; proc function-name argument-list return—intent,,, return—type,:

exported—procedure—declaration—-statement:
export external-name,,; proc function—name argument-list return—intent,,; return—type,:
function-body

iterator—declaration—statement:
privacy-specifier,,,, iter iterator-name argument-list,,; yield—intent,,, yield—type,,, where—clause,:
iterator-body

iterator—name:
identifier

yield-intent:
const
const ref
ref
param

type

yield—-type:
: type—expression

iterator—body:
block-statement
yield-statement

method—-declaration—statement:
procedure-kind,,,; proc—or—iter this-intent,,, type-binding,,.; function-name argument-1Iist,,.
return-intent,,,, return—type,,: where—clause,,, function—body

proc—or-iter:
proc
iter

this—intent:
param
type
ref
const ref
const

type-binding:
identifier .
(expr).
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type—declaration-statement:
enum-—declaration—statement
class—declaration— statement
record—declaration—statement
union—declaration—-statement
type—alias—declaration—-statement

enum-—declaration—statement:
enum identifier { enum-constant-list }

enum-constant-list:
enum-constant
enum-constant , enum-constant-1ist, ¢

enum-constant:
identifier init—part,,,,

init—part:
= expression

class—declaration—statement:
simple-class—declaration—statement

simple-class—declaration—statement:
class identifier class—inherit,,. { class—statement-list,,: }

class—inherit:
: basic—class—type

class—statement—list:
class—statement
class—statement class—statement-list

class—statement:
variable—declaration—-statement
method—-declaration—statement
type—declaration—-statement
empty-statement

record—declaration—-statement:
simple-record—declaration-statement
external-record—declaration—statement

simple-record—declaration-statement:
record identifier { record—statement-list }

record-statement-list:
record-statement
record-statement record—statement-—list

record—-statement:
variable—declaration—statement
method-declaration— statement
type—declaration-statement
empty—statement
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external-record-declaration—statement:
extern external-name,,, simple-record-declaration-statement

external-name:
expression

union—declaration—statement:
extern,,; union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement—list

union-statement:
type—declaration—-statement
procedure—-declaration—statement
iterator—declaration—statement
variable—declaration—statement
empty-statement

type—alias—declaration—statement:
privacy-specifier.,,; config,,. type type—alias—declaration-list ;
external—-type-alias—declaration—-statement

type—alias—declaration—list:
type-alias—declaration
type-alias—declaration , type—alias—declaration-list

type—alias—declaration:
identifier = type—expression
identifier

external—-type—alias—declaration—statement:
extern type type—alias—declaration—list ;

variable-declaration—statement:
privacy-specifier,,,,; config—or-extern,,,, variable—kind variable—declaration-list ;

config-or-extern: one of
config extern

variable—kind:
param
const
var
ref
const ref

variable—declaration—list:
variable—declaration
variable—declaration , variable—declaration—Iist

variable-declaration:
identifier-list type—part,,. initialization—part
identifier-list type—part no—initialization—part,
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no-initialization—part:
= noinit

remote- variable—declaration—statement:
on expression variable-declaration—statement

on-statement:
on expression do statement
on expression block—statement

cobegin-statement:
cobegin task—intent-clause,,; block—statement

coforall-statement:
coforall index—var—declaration in iteratable-expression task—intent-clause,,, do statement
coforall index—var—declaration in iteratable—expression task—intent—clause,,; block—statement
coforall iteratable-expression task—intent-clause,,.; do statement
coforall iteratable—expression task—intent-clause,,, block-statement

begin-statement:
begin task-intent-clause,,, statement

sync—statement:
sync statement
sync block-statement

serial-statement:
serial expression,,; do statement
serial expression,,; block—statement

atomic—statement:
atomic statement

forall-statement:
forall index—var-declaration in iteratable-expression task—intent-clause,,, do statement
forall index—var—declaration in iteratable—expression task—intent—clause,,,; block—statement
forall iteratable-expression task—intent-clause,,; do statement
forall iteratable-expression task—intent-clause,,, block—statement
[ index—var—declaration in iteratable—expression task—intent—clause,, | statement
[ iteratable—expression task—intent—clause,,; | statement

delete-statement:
delete expression-list ;
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compareExchangeWeak (atomic var), @
compiler-generated initializers, [T41]
compilerError, 214
compilerWarning, [2T4]
complex,
conditional expressions, [70]
conditional statement
dangling else, [76]
conditional statements, [76]
config, @
const, @
const in (intent),
const ref (intent),[T00]
const ref (return intent), @
constants, [0} 4T]
compile-time,
configuration, 1]
in classes or records, |2__1_1'|
runtime, [41]
continue, ISJI
conversions, 43|
boolean, [44]
in a statement, 43
class, {7} [147]
domain, [47]
enumeration, [46]
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explicit, 3] defer,[84
class, [#7] deinitialization
domain, modules,
enumeration, [46] deinitializer

numeric, @3] classes, [T43]
range, [47] records, [152]

records, 7] delete
tuple to complex, 46| class unmanaged instances,
type to string, 8] illegal for records, [157]
implicit, 43] derived class,
allowed types, 3] distributions (see also domain maps, distributions), 243|
boolean, 44} [43] dmap value, [246|
class, [147] dmapped clause, [246|
numeric, #4] domain maps, 245
occurs at, [43] distribution, P43
parameter, 3] dmap value, 246
numeric, [#4] @3] dmapped clause, [246|
parameter, 43] domain assignment, 248]
range, for arrays,
records, 7] for domain values, 247]
source type, 43| layout, 2453
target type, 43| domain maps for domain types, 243
tuple to complex, #6] domain-based slicing, [T83)
type to string, 48] domains, [T73]

#,[185]
data parallelism, 23T] +,[189]

configuration constants, [240] -,[189]
evaluation order, 238] adding indices,
forall, 237] alignment, [T84]
forall expressions, as arguments, [182]
forall intents, 234] assignment, [T83] 248
knobs for default data parallelism, association with arrays, [T9§]
leader iterator, 232 associative, [T7§]
promotion, 236] default values, [T79]
reductions, 23§] initialization,
scans,[238] literals, [T79]
shadow variables, 234] values, [T79]
task-private variables, [234] clear,[186]
dataParIgnoreRunningTasks,[240)] common methods, [186]
dataParMinGranularity, count operator,lTﬁ]
dataParTasksPerLocale, dim,m
deallocation dims, [18§]
unmanaged class instances, [[47] dist,[186]
declarations expand, |88

records, [T49] exterior,[I8g
union,m high,l@

variables, [36] idxType,[187]
multiple, 38| index types, [T8]]
default initialization interior,[I8§]
variables, [37] isIrregularDom,[I87]

default values, 08| isOpagqueDom,
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isRectangularDom, m
isSparseDom, m
iteration, [182]
kinds, [T73]
low, m
member, M
methods
common, [136]
irregular, [T89]
regular, [T88]
numIndices, m
opaque, [T7§]
predefined functions, [T86]
promotion, [182]
rank, m
rectangular, [T76]
default value, [T77]
literals, [T77]
types,
values, [T77]
removing indices, [186]
requestCapacity, I@I
size,[18§
slicing, [T84]
sparse, [I8]]
default value, [T8T]
initialization, [T8T]
types, [I81]
values, [T8]]
stridable, @
stride, @
striding, [T84]
translate, @
types and values, [T76]
values
associative, [[79]
rectangular, [T77]

dynamic dispatch, [T33)]

else,[T0L[76]
enumerated (generic type),[207]
enumerated types, [31]

abstract,[31]
concrete, [37]

iterating,

semi-concrete, [31]

size,@

exchange (atomic var), 224
execution environment, 2472

explicit return type, [106]
exploratory programming, 92

expression statement, [73]
expressions, [49]

associativity, [53|

binary operator, 53]

call, [51]

cast,[52]

conditional,
enumeration constant, [50]

for,|7_T|

filtering predicates, [71]

forall, 233
and conditional expressions, @
filtering, 234]
semantics, 233
syntax, 233]
zipper iteration, 233]
if-then-else, [70]
indexing, [51]
literal,
lvalue, [52]
member access, 1]
operator, 53
parenthesized, [50]
precedence, [53]
reduction, 239
scan, 239
statement, [73]
type query, [51]
unary operator, [53]
variable,

fetchadd (atomic var), 224
fetchand (atomic var), 224
fetchor (atomic var),[224]
fetchsub (atomic var), 224
fetchXor (atomic var), 224
field access, [133]
class, [T43]
fields
class,[137]
generic, 209]
parameter, [210]
records, [T30]
type alias,
variable and constant, without types, 2T1]
for, I
filtering predicates, [71]
for loops, [79]
parameters,
forall (see also statements, forall), 237]
forall expressions (see also expressions, forall), 233]

305



Index 306

forall intents, 234] predefined, [127]
formal arguments, [04] type functions, [I03]
array, [208] varargs, [102]
defaults, O8] variable number of arguments, [T02]
generic, [206] visible, [T08]
naming, O8] where, [107]
partially concrete, [207] without parentheses, [97]
partially generic, [207]
with queried types, 206] generic functions and special versions, 214
without types, 203 generic specialization, 214]
function calls, 51} [94] generics, [204]
functions, classes, [209]
actual arguments, [94] 93] examples
arguments stack, 213]
defaults, fields, 209
formal, 08| function visibility, 208]
intents, [99] functions, 204]
named, 98] initializers
arrays compiler-generated, 212]
predefined, [T98] user-defined, 213
as parameters, [I03] instantiated type, [212]

as types, [T03) methods, 212
call site,[04] records, 209]

candidates, [T0§] type constructor,
const ref keyword and,[T04] types, [209]

default argument values, 98| getter method

formal arguments, [94] class, [146]

generic, [204]
iterators, [200] here. P43
lvalues, [103] identifiers, 23]

main,[92] i £, /0]
B2 if,[701[76]
method, [04] imaginary,[30)

most specific, [T09] implicit modules, 8]
named arguments, O8] implicit return type,
nested, in (intent), 99

operator, [04] indexing, [51]

overloading, m arrays, [192]

parameter function, [T03] associative arrays, [T93]
procedure, [94] N rectangular arrays, [T93]
procedure definition, inheritance, [132]

ref keyword and, [T03] initialization

resolution, [T08] arrays, [T90]

legal argument mapping, [T09] modules,
most specific, [[09] record, [T51]
valid mapping, [109 sparse domains, [T8T]

return intent, [103] initializer-inheritance, [142]

return intent overloads, [T04] initializers, [[34]

return types, [106] compiler-generated, [T47]
_eXPh_Cl_t’m_%l for generic classes or records, 212]
implicit, [T07] initializer-inheritance, [T42]

tuples type constructors, 212
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user-defined, [133)]

for generic classes or records, 213]

inout (intent),
input/output, 217]
instance methods, [TT4]
int, @

integral (generic type), 207]

intents, [99]
abstract, [TOT]
array default, [102]
concrete, 09|
const, [T07]
const in, m
const ref,
const ref return,[T04]
default, [TOT]
default for owned, [T02]
default for shared, [T0Z]
in, @
inout, @
out, m
param,[203]
record this default, [T02]
ref, m
ref return, [T03]
type, @
interoperability, 257]
argument passing, 264]
C structs
external,
C types
external,
standard, 259
Chapel functions
calling, 258]
Chapel procedures
calling, 263]
external C types,[260]
external functions
calling, 257} 262
opaque types, [261]
overview,
shared data,
shared procedures,
sharing, 259
standard C types, 259
10
operator, 73]
statement, [73)]
irregular domains

methods, [T89]

isFull (sync var),
iteration
array, [194]
domain, [T82]
tuple,
zipper,
iterators, [200)
and arrays, 201]
and generics, 202
calls,201]
definition, 200
in for loops, [201]
in forall loops, 20T]
parallel, [203]
promotion, [202]
recursive, 202]
yield,[207]

keywords, 23]

label,[8T]
language overview, [T9]
language principles, [T9]
general parallel programming, [T9]
generic programming, [21]
locality-aware programming,
object-oriented programming,
layouts (see also domain maps, layouts), 243]
leading the execution of a loop, 232]
let, m
lexical structure, 22
braces,
brackets, 27]
case sensitivity, 22]
comments,
identifiers, 23]
keywords, 23]
literals, 24]

operator, 27]
parentheses, [27]

punctuation, [27]

tokens, 22]

white space,
literal expressions, [50]
literals

primitive type, 24]
local, 241]
locale, m @
Locales,
locales, 241]

callStackSize,lQlTI
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here,m
i, 24T]
local, 241]
maxTaskPar, IEI
methods, 24T]
name, [242]
numPUs,@
physicalMemory,
remote, 241]
loops
forall (see also statements, forall),@
lvalues, 52

main, @ m
mapped
domain maps, 243
member access, 51]
memory consistency model, 250]
examples, 253
non-sequentially consisten atomic operations, 253]
sequential consistency for data-race-free programs,
250)
unordered memory operations,
method calls, [T13} [T34]
methods, [T13]
base class
overriding, [133]
calling, [TT3] [T46]
class
getter, [T46]
classes, [131]
generic, 212]
indexing, [TT6]
instance, [T14]
iterating, [TT6]
primary, [TT3} [T3T]
receiver, [T13} [T14]
records, [T30]
secondary, [TT3] [T31]
these,
this, m
type, [I14]
module, |§_7|
modules, 2]

access, [89]
and files, [87]

definitions, [§7]
deinitialization, 9]
deinitialization order, 93]
explicitly named, [89]
implicit, [8§]
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initialization, [97]
initialization order, 03
nested,

using, [82] 00|

named arguments, O8]
nested classes, [132]
nested function, [T07]
nested records, [[31]
new

classes, [133]
new, m
nil,[133

not provided for records, @
noinit, 3§

variables, 38
notation, [T4]
numeric (generic type),[207]
numLocales,m

object, @
objects, [128]
on,
opaque domains
types, [T7§]
operators, [63]
! = (string), [68]
#.[69
# (domain), [T83]
# (on arrays), [T196]
# (range),[T6§|
&,
&&,[63]
59
v [BT]
+,
+ (string), [69]
+ (unary),[56|
-8
~ (unary), [56|
/s
: (cast),[52]
<69

<<

bl

bl

BB

i

Il
Il
—~

string), [68]

e

Vv
Vv
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2 (type query), [51]
fe1]

~[63]

addition, [57]

align,[69

align (domain),[T84]

align (range),

arithmetic, 53]

range, [169]

assignment, [74]

o

string concatenation, [69]
subtraction, [58|

swap,[79]
tuple
binary, [126]
relational, [T26]
unary, [126]
unary, [53]
or (atomic var),[224]
organization, [16]
otherwise,[T7]
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compound, [74] out (intent), 09
simple, [74] overloading, [T07]
associativity, [53| overloading functions (see also functions, overloading),
binary, 53] 107
bitwise, [62] overloading operators (see also operators, overloading),
and, [62]
complement, [62] overview, [19]
exclusive or,
or, [63] parallel iterators, [203)|
by, [69] parallelism

by (domain), [T84] data, 23T]
by (range), [166] task, 218]

compound assignment, @ param,
concatenation parameter function, @
string, [69] parameters, [40)
division, configuration, 4]
equality, [67] in classes or records, [210]
exponentiation, [61] peek (atomic var), 224
greater than, [66] poke (atomic var), 224
greater than or equal, predefined functions
10,[73] + (domain), [T89]
less than, [66] - (domain), [T89]
less than or equal, [66] add (atomic var), 224]
let,[/0 aligned,[I7]]
lexical structure, 27] alignedHigh,[T7]1]
logical, [64] alignedLow,[7]]
and, [63] alignHigh (range),[T73|
not, [64] alignLow (range),
0r,|6_3| alignment,m
modulus, [61] and (atomic var),
multiplication, [59] arrays, [198]
negation, [56] boundedType, [[70]
overloading, [T107] boundsCheck,
precedence, [53] callStacksSize,[24]]
procedure, [94] clear,[186]
range clear (atomic bool), 224
count, [69] compareExchange (atomic var), 224
relational, [66] compareExchangeStrong (atomic var),@
shift, [64] compareExchangeWeak (atomic var),[224]

simple assignment, dim (domain), [T8§]
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dims (domain),[T8§]

di st,m

domain (array),@
eltType (array),[T98]
exchange (atomic Var),@
expand (domain), [T88]
expand,m

exterior (domain),@
exterior (range),[I73|
fetchadd (atomic var), 224
fetchand (atomic var), 224
fetchor (atomic var), 224
fetchsub (atomic var), 224
fetchXor (atomic var),[224]
first,[T71]

hasFirst, m
hasHighBound,m
hasLast,m
hasLowBound,
high,[T72]

high (domain),[T88]
id,24]]

ident,m
idxType,[T70}[187]
indexOrder, m
interior (domain),l@
interior (range),m
isAmbiguous,m

isFull (sync var),[222]
isIrregularDom,
isOpaqueDom,m
isRectangularDom,m
isSparseDom,m
isTuple,m
isTupleType,
last,

length,m

locale, 24T]

low, m

low (domain), [T88]
max,[127]

maxTaskPar, m

member,m

member (domain), [T87]
min, m

name, 242

numElements (array),l@l
numIndices (domain),@l
numPUs,@

offset (range),[T74]

or (atomic var),[224]
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peek (atomic var),[224]
physicalMemory,m
poke (atomic var), 224]
rank (array),@
rank (domain), [T88]
read (atomic var), 223
readFE (sync var), 221]
readFF (sync var), 221]
readxx (sync var),[222]
requestCapacity,@
reset (sync var),[222]
reshape (array),@
size,[127[T72)
size (array),[199
size (domain),[T88]
size (enum),[32]
stridable,
stridable (domain),@
stride,
stride (domain),[T89
sub (atomic var),
testAndset (atomic bool),[224]
translate (domain),[T89
translate (range),@
tuples, [127]
waitFor (atomic var),[224]
write (atomic var),[224]
writeEF (sync var),[222]
writeFF (sync var),[222]
writeXF (sync var),[222]
xor (atomic var),
primary methods, [TT3] [I31]
proc, B3]
procedure, [94]
procedures
definition, [93)]
program execution, [91]
program initialization, [9T]
promotion, 236
arrays, [197]
default arguments, 237
domain, [T82]
iterator, 202]
range, [166]

zipper iteration, [237]

range-based slicing, [I83)]
ranges, [[60]

#,[168]

align,

align operator,[167]
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aligned, m
aligned high bound, [T61]
aligned integer, [16]]
aligned low bound, [T61]
alignedHigh, m
alignedLow, m
alignHigh, m
alignLow,
alignment, [T60]
ambiguous, [TeT]
alignment, m
arithmetic operators, @
assignment, [T63)]
bounded, [T62]
boundedHigh, [T62]
boundedLow, [162]
boundedNone,
boundedType, [T62]
boundedType,
boundsCheck, m
by operator, [166]
comparisons, [[63]

concepts, [T60]

count operator, [T6§]
default values, [[64]
empty, [I61]
expand, m
exterior, m
first,[I7]]

first index, [T61]
hasFirst, m

hasHighBound,m
hasLast,m
hasLowBound,m
high,[172]
high bound, [T60]
ident,m
idxType, [162]
ideype,m
indexOrder, m
interior,m
isAmbiguous,
iterable, [T61]
iteration, [163)]
zippered, [T63)]
last,
last index, [T61]
length,m
literals, [T63]
low, m
low bound, [T60]

member, m
offset, m
operations, [164]
operators, [166]
other queries, [I72]
predefined functions, [170)
promotion, [T66]
properties,
represented sequence, [160)
decreasing, [T6]]
increasing, [T61]
sequence, [T60]
size, m
slicing,
stridable,
stridable,
stride, [T60]
stride, m
stride type,
strided,
transformations, [[73|
translate, m
type accessors, |170
types, [162]
values, [T63]

rank-change slicing, [T83]
read (atomic var), 223
readFE (sync var), 221]
readFF (sync var), 221]
readxx (sync var),[222]
real,
receiver, [114]
class, [143]
record, @
records, [T49]
1= [I55]
[
allocation, [T31] [T36]
arguments, [T533] [156]
assignment, [T53] [156]
comparison, [157]
copy initialization, [154]
declarations, [[49]
differences with classes, [T36]
deinitializer, [[52]
delete illegal,
differences with classes, [133)]
equality, [T53]
field access, [153]
fields,
generic, [209]
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getters, [154]

inequality, [T53)

initialization, [I31]

method calls, [T54]

methods,

nested, [T57]

record types, [I50]

types,

variable declarations, [T51]
rectangular array literals, [T91]
rectangular arrays

indexing, [193]

rectangular domains (see also domains, rectangular),m

reduction expressions, [239]
reductions, 23§]

ref, @

ref (intent),

ref (return intent), [T03]
regular domains

methods, [T88]
remote, 241]
reset (sync var), 222
return (see also statements, return), |1T_E|
returning

array, [197]

scan expressions, 239
scans, 238]
scope, [13]
secondary methods, [T13] [131]
select, m
serial, m
shadow variables, 234]
shadowing
base class fields, [132]
single, m
slicing
array, [T93]
arrays
rectangular, [T96]
domain-based, [T83]
domains, [T84]
range-based, [T83]
rank-change, [185]
sparse domains
default value, [T8T]
initialization, [T81]
literals
lack thereof, [[81]
specific instantiations, @
statement, [72]
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statements

assignment, [74]
atomic, @
begin,m
break,@
cobegin,m
coforall, m
conditional, [76]
continue,@
defer, @
empty, 86|
expression, [73]
for,m
forall, m
forall intents, 234]

semantics, 232]
shadow variables, 234]

syntax, 231]
task-private variables, 234]
zipper iteration,

10,[79]

jumps, [B1]

label,[8T]

on, 244

otherwise,[77]

param for, [80]

return, m
return intent, [I03]
return type, [T06]

select,[T7]

serial, m

swap, [73]

sync, 228

use,[87]

when,m

while,[77]

string, @
sub (atomic var),
subdomains, [TS0]

simple,
default values,
types, [I80]
values, [T80]
sparse, [I8]]
types, [T8]]
values, [T8]]
types

simple, [I80]

operator, [73]
statement,

swap
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sync, 219 22§]
synchronization, 2T8]
synchronization types
actual arguments, 221]
formal arguments, 22T]
synchronization variables
predefined methods on, 22T]
single, m
sync, 219

task creation, 218
task function, 218]
task intents, 226
task parallelism, 28]
task creation, 218
task function, 218]
task functions, 226]
task intents, 226]
task-private variables, @
testAndSet (atomic bool),
then, m
these, m
this,[T14}[T16]
tuples, [TT§]
assignment, [T21]
assignments grouped as, [121]

destructuring, [I21]

expanding in place, [125]

formal arguments grouped as, [124]
homogeneous, [TT8§|

indexing,

indices grouped as, [124]
isTuple, m

isTupleType,

iteration, [T20]

max, m

min, m

omitting components, [[22HI23
operators, [126]

predefined functions, [127]
size,

types, [T18]

values, [T19]

variable declarations grouped as, [123)
type aliases

in classes or records,
type inference, [38]

local, B8]

of return types, [I07]
type methods, [TT4]

types, 28]
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* tuples, [TT§]
aliases, [33]
associative domains,

bool, 29
complex, m
dataparallel, [34]
domains
domain maps for, 243
sparse, [T8]]
enumerated, [31]
using, [82]
generic, 209]
imaginary,
int, @
locale, m
opaque domains, [T78]
primitive,
range, [T162]
real,
records, [T30]
rectangular domains, m
string, Bl-l
structured, B3]
subdomains
simple, [180]
sparse, [I8]
synchronization, [34]
tuple, [TT8]
uint, |2;9|
unions, 158

void,[29

uint, |2;9|

union, m

union types, [[58]

unions, 158
assignment, [T59]
fields, [T58]

use,[87]
user-defined compiler diagnostics, 214]

user-defined compiler errors, 214]
user-defined compiler warnings, 214]
user-defined initializers, [T33]

values
domains
domain maps for, 247
sparse, [18]]
subdomains
simple, [I80]
sparse, [I8]]
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tuple, [TT9]

variable declarations
remote, [244]

variables, [36]
configuration, [41]
declarations, [36]

multiple, [3§]

default initialization,
default values, [37]
in classes or records, m
local,
module level,
records, [T31]
ref, [41]

void, m

waitFor (atomic var),[224]
when,m
whe re,m

implicit, 207]
while,[T7]
while loops, [77]
white space, [22]
whole array assignment, [238|
whole array operations, 238
write (atomic var),[224]
writeEF (sync var),[222]
writeFF (sync var),[222]
writeXF (sync var),[222]

xor (atomic var), 224
yield,[201]

zipper iteration,
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