]74HC125; 74HCT125 Quad buffer/line driver; 3-state - NXP .. - PDF - Farnell Element 14
- Revenir à l'accueil
VCC + 0.5 V - 20 mA
IOK output clamping current VO < 0.5 V or VO > VCC + 0.5 V - 20 mA
IO output current VO = 0.5 V to (VCC + 0.5 V) - 35 mA
ICC supply current - +70 mA
IGND ground current - 70 mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation DIP20 package [1] - 750 mW
SO20, SSOP20, TSSOP20 and
DHVQFN20 packages
[2] - 500 mW
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 6 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
8. Recommended operating conditions
9. Static characteristics
Table 5. Recommended operating conditions
Voltages are referenced to GND (ground = 0 V)
Symbol Parameter Conditions 74HC573 74HCT573 Unit
Min Typ Max Min Typ Max
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V
VI input voltage 0 - VCC 0 -VCC V
VO output voltage 0 - VCC 0 -VCC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
t/V input transition rise and fall rate VCC = 2.0 V - - 625 - - - ns/V
VCC = 4.5 V - 1.67 139 - 1.67 139 ns/V
VCC = 6.0 V - - 83 - - - ns/V
Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC573
VIH HIGH-level
input voltage
VCC = 2.0 V 1.5 1.2 - 1.5 - 1.5 - V
VCC = 4.5 V 3.15 2.4 - 3.15 - 3.15 - V
VCC = 6.0 V 4.2 3.2 - 4.2 - 4.2 - V
VIL LOW-level
input voltage
VCC = 2.0 V - 0.8 0.5 - 0.5 - 0.5 V
VCC = 4.5 V - 2.1 1.35 - 1.35 - 1.35 V
VCC = 6.0 V - 2.8 1.8 - 1.8 - 1.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL
IO = 20 A; VCC = 2.0 V 1.9 2.0 - 1.9 - 1.9 - V
IO = 20 A; VCC = 4.5 V 4.4 4.5 - 4.4 - 4.4 - V
IO = 20 A; VCC = 6.0 V 5.9 6.0 - 5.9 - 5.9 - V
IO = 6.0 mA; VCC = 4.5 V 3.98 4.32 - 3.84 - 3.7 - V
IO = 7.8 mA; VCC = 6.0 V 5.48 5.81 - 5.34 - 5.2 - V
VOL LOW-level
output voltage
VI = VIH or VIL
IO = 20 A; VCC = 2.0 V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 4.5 V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 6.0 V - 0 0.1 - 0.1 - 0.1 V
IO = 6.0 mA; VCC = 4.5 V - 0.15 0.26 - 0.33 - 0.4 V
IO = 7.8 mA; VCC = 6.0 V - 0.16 0.26 - 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND;
VCC = 6.0 V
- - 0.1 - 1.0 - 1.0 A
IOZ OFF-state
output current
VI = VIH or VIL;
VO = VCC or GND;
VCC = 6.0 V
- - 0.5 - 5.0 - 10.0 A
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 7 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 6.0 V
- - 8.0 - 80 - 160 A
CI input
capacitance
- 3.5 - pF
74HCT573
VIH HIGH-level
input voltage
VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - 2.0 - V
VIL LOW-level
input voltage
VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 - 0.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A 4.4 4.5 - 4.4 - 4.4 - V
IO = 6 mA 3.98 4.32 - 3.84 - 3.7 - V
VOL LOW-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A - 0 0.1 - 0.1 - 0.1 V
IO = 6.0 mA - 0.16 0.26 - 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND;
VCC = 5.5 V
- - 0.1 - 1.0 - 1.0 A
IOZ OFF-state
output current
VI = VIH or VIL; VCC = 5.5 V;
VO = VCC or GND per input
pin; other inputs at VCC or
GND; IO =0A
- - 0.5 - 5.0 - 10 A
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 5.5 V
- - 8.0 - 80 - 160 A
ICC additional
supply current
VI = VCC 2.1 V;
other inputs at VCC or GND;
VCC = 4.5 V to 5.5 V;
IO =0A
per input pin; Dn inputs - 35 126 - 158 - 172 A
per input pin; LE input - 65 234 - 293 - 319 A
per input pin; OE input - 125 450 - 563 - 613 A
CI input
capacitance
- 3.5 - - - - - pF
Table 6. Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 8 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
10. Dynamic characteristics
Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 11.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC573
tpd propagation
delay
Dn to Qn; see Figure 7 [1]
VCC = 2.0 V - 47 150 - 190 - 225 ns
VCC = 4.5 V - 17 30 - 38 - 45 ns
VCC = 5 V; CL = 15 pF - 14 - - - - - ns
VCC = 6.0 V - 14 26 - 33 - 38 ns
tpd propagation
delay
LE to Qn; see Figure 8 [1]
VCC = 2.0 V - 50 150 - 190 - 225 ns
VCC = 4.5 V - 18 30 - 38 - 45 ns
VCC = 5 V; CL = 15 pF - 15 - - - - - ns
VCC = 6.0 V - 14 26 - 33 - 38 ns
ten enable time OE to Qn; see Figure 9 [2]
VCC = 2.0 V - 44 140 - 175 - 210 ns
VCC = 4.5 V - 16 28 - 35 - 42 ns
VCC = 6.0 V - 13 24 - 30 - 36 ns
tdis disable time OE to Qn; see Figure 9 [3]
VCC = 2.0 V - 55 150 - 190 - 225 ns
VCC = 4.5 V - 20 30 - 38 - 45 ns
VCC = 6.0 V - 16 26 - 33 - 38 ns
tt transition
time
Qn; see Figure 7 [4]
VCC = 2.0 V - 14 60 - 75 - 90 ns
VCC = 4.5 V - 5 12 - 15 - 18 ns
VCC = 6.0 V - 4 10 - 13 - 15 ns
tW pulse width LE HIGH; see Figure 8
VCC = 2.0 V 80 14 - 100 - 120 - ns
VCC = 4.5 V 16 5 - 20 - 24 - ns
VCC = 6.0 V 14 4 - 17 - 20 - ns
tsu set-up time Dn to LE; see Figure 10
VCC = 2.0 V 50 11 - 65 - 75 - ns
VCC = 4.5 V 10 4 - 13 - 15 - ns
VCC = 6.0 V 9 3 - 11 - 13 - ns
th hold time Dn to LE; see Figure 10
VCC = 2.0 V 5 3 - 5 - 5 - ns
VCC = 4.5 V 5 1 - 5 - 5 - ns
VCC = 6.0 V 5 1 - 5 - 5 - ns
CPD power
dissipation
capacitance
CL = 50 pF; f = 1 MHz;
VI = GND to VCC
[5] - 26 - - - - - pF
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 9 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
[1] tpd is the same as tPLH and tPHL.
[2] ten is the same as tPZH and tPZL.
[3] tdis is the same as tPLZ and tPHZ.
[4] tt is the same as tTHL and tTLH.
[5] CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi N + (CL VCC2 fo) where:
fi
= input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
(CL VCC2 fo) = sum of outputs.
74HCT573
tpd propagation
delay
Dn to Qn; see Figure 7 [1]
VCC = 4.5 V - 20 35 - 44 - 53 ns
VCC = 5 V; CL = 15 pF - 17 - - - - - ns
tpd propagation
delay
LE to Qn; see Figure 8 [1]
VCC = 4.5 V - 18 35 - 44 - 53 ns
VCC = 5 V; CL = 15 pF - 15 - - - - - ns
ten enable time OE to Qn; see Figure 9 [2]
VCC = 4.5 V - 17 30 - 38 - 45 ns
tdis disable time OE to Qn; see Figure 9 [3]
VCC = 4.5 V - 18 30 - 38 - 45 ns
tt transition
time
Qn; see Figure 7 [4]
VCC = 4.5 V - 5 12 - 15 - 18 ns
tW pulse width LE HIGH; see Figure 8
VCC = 4.5 V 16 5 - 20 - 24 - ns
tsu set-up time Dn to LE; see Figure 10
VCC = 4.5 V 13 7 - 16 - 20 - ns
th hold time Dn to LE; see Figure 10
VCC = 4.5 V 9 4 - 11 - 15 - ns
CPD power
dissipation
capacitance
CL = 50 pF; f = 1 MHz;
VI = GND to VCC 1.5 V
[5] - 26 - - - - - pF
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 11.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 10 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
11. Waveforms
Measurement points are given in Table 8.
Fig 7. Propagation delay data input (Dn) to output (Qn) and output transition time
DDH
'QLQSXW
4QRXWSXW
90
W3/+ W3+/
W7/+ W7+/
90
Measurement points are given in Table 8.
Fig 8. Pulse width latch enable input (LE), propagation delay latch enable input (LE) to output (Qn) and output
transition time
90
90
W3+/ W3/+
W:
/(LQSXW
4QRXWSXW
DDH
W7+/ W7/+
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 11 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 9. Enable and disable times
DDH
W3/=
W3+=
RXWSXWV
GLVDEOHG
RXWSXWV
HQDEOHG
RXWSXWV
HQDEOHG
RXWSXW
/2:WR2))
2))WR/2:
RXWSXW
+,*+WR2))
2))WR+,*+
2(LQSXW
9,
92/
92+
9&&
90
*1'
*1'
W3=/
W3=+
90
90
Measurement points are given in Table 8.
The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig 10. Set-up and hold times for data input (Dn) to latch input (LE)
DDH
/(LQSXW 90
'QLQSXW 90
WK
WVX
WK
WVX
Table 8. Measurement points
Type Input Output
VM VM
74HC573 0.5VCC 0.5VCC
74HCT573 1.3 V 1.3 V
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 12 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Test data is given in Table 9.
Definitions test circuit:
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
CL = Load capacitance including jig and probe capacitance.
RL = Load resistance.
S1 = Test selection switch.
Fig 11. Test circuit for measuring switching times
90 90
W:
W:
9
9,
9,
QHJDWLYH
SXOVH
SRVLWLYH
SXOVH
9
90 90
WI
WU
WU
WI
DDG
'87
9&& 9&&
9, 92
57
5/ 6
&/
RSHQ *
Table 9. Test data
Type Input Load S1 position
VI tr, tf CL RL tPHL, tPLH tPZH, tPHZ tPZL, tPLZ
74HC573 VCC 6 ns 15 pF, 50 pF 1 k open GND VCC
74HCT573 3 V 6 ns 15 pF, 50 pF 1 k open GND VCC
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 13 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
12. Package outline
Fig 12. Package outline SOT146-1 (DIP20)
81,7 $
PD[ E F ' ( H / 0+
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
LQFKHV
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
627
$
PLQ
$
PD[ E =
PD[ H 0( Z
06 6&
0+
F
H
0(
$
/
VHDWLQJSODQH
$
Z 0
E
H
'
$
=
E
(
SLQLQGH[
PP
VFDOH
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
',3SODVWLFGXDOLQOLQHSDFNDJHOHDGVPLO 627
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 14 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Fig 13. Package outline SOT163-1 (SO20)
81,7 $
PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
LQFKHV
R
R
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627
Z 0 ES
GHWDLO;
=
H
'
\
( 06
SLQLQGH[
PP
VFDOH
;
ș
$
$
$
+(
/S
4
(
F
/
Y 0 $
$
$
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 15 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Fig 14. Package outline SOT339-1 (SSOP20)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627 02
;
Z 0
ș
$
$
$
ES
'
+(
/S
4
GHWDLO;
(
=
H
F
/
Y 0 $
$
$
\
SLQLQGH[
PP
VFDOH
6623SODVWLFVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 16 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Fig 15. Package outline SOT360-1 (TSSOP20)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFLQWHUOHDGSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627 02
Z 0 ES
'
=
H
SLQLQGH[
ș
$ $
$
/S
4
GHWDLO;
/
$
+(
(
F
Y 0 $
;
$
\
PP
VFDOH
76623SODVWLFWKLQVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 17 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Fig 16. Package outline SOT764-1 (DHVQFN20)
2XWOLQH 5HIHUHQFHV
YHUVLRQ
(XURSHDQ
SURMHFWLRQ ,VVXHGDWH
,(& -('(& -(,7$
627 02
VRWBSR
8QLW
PP
PD[
QRP
PLQ
$
'LPHQVLRQVPPDUHWKHRULJLQDOGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
$ E
F ' 'K ( (K
H H /
Y Z
\ \
GHWDLO;
% $
H
H
H
&
\ & \
;
Y & % $
Z &
VFDOH
$
$
F
/
(K
'K
E
'
(
WHUPLQDO
LQGH[DUHD
WHUPLQDO
LQGH[DUHD
PP
'+94)1SODVWLFGXDOLQOLQHFRPSDWLEOHWKHUPDOHQKDQFHGYHU\WKLQTXDGIODWSDFNDJHQROHDGV
WHUPLQDOVERG\[[PP 627
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 18 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
13. Abbreviations
14. Revision history
Table 10. Abbreviations
Acronym Description
CMOS Complementary Metal Oxide Semiconductor
DUT Device Under Test
ESD ElectroStatic Discharge
HBM Human Body Model
MM Machine Model
TTL Transistor-Transistor Logic
Table 11. Revision history
Document ID Release date Data sheet status Change notice Supersedes
74HC_HCT573 v.6 20150126 Product data sheet - 74HC_HCT573 v.5
Modifications: • Table 7: Power dissipation capacitance condition for 74HCT573 is corrected.
74HC_HCT573 v.5 20120815 Product data sheet - 74HC_HCT573 v.4
Modifications: • Alternative descriptive title corrected (errata).
74HC_HCT573 v.4 20120806 Product data sheet - 74HC_HCT573 v.3
Modifications: • The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors.
• Legal texts have been adapted to the new company name where appropriate.
74HC_HCT573 v.3 20060117 Product data sheet - 74HC_HCT573_CNV v.2
74HC_HCT573_CNV v.2 19901201 Product specification - -
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 19 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
15. Legal information
15.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
15.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
74HC_HCT573 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 6 — 26 January 2015 20 of 21
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
15.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
16. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors 74HC573; 74HCT573
Octal D-type transparent latch; 3-state
© NXP Semiconductors N.V. 2015. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 26 January 2015
Document identifier: 74HC_HCT573
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
17. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
4 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
5 Pinning information. . . . . . . . . . . . . . . . . . . . . . 4
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
6 Functional description . . . . . . . . . . . . . . . . . . . 5
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
8 Recommended operating conditions. . . . . . . . 6
9 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
10 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8
11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 13
13 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 18
14 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 18
15 Legal information. . . . . . . . . . . . . . . . . . . . . . . 19
15.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19
15.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
15.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
15.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
16 Contact information. . . . . . . . . . . . . . . . . . . . . 20
17 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1. General description
The 74HC123; 74HCT123 are high-speed Si-gate CMOS devices and are pin compatible
with Low-power Schottky TTL (LSTTL). They are specified in compliance with JEDEC
standard no. 7A.
The 74HC123; 74HCT123 are dual retriggerable monostable multivibrators with output
pulse width control by three methods:
1. The basic pulse is programmed by selection of an external resistor (REXT) and
capacitor (CEXT).
2. Once triggered, the basic output pulse width may be extended by retriggering the
gated active LOW-going edge input (nA) or the active HIGH-going edge input (nB). By
repeating this process, the output pulse period (nQ = HIGH, nQ = LOW) can be made
as long as desired. Alternatively an output delay can be terminated at any time by a
LOW-going edge on input nRD, which also inhibits the triggering.
3. An internal connection from nRD to the input gates makes it possible to trigger the
circuit by a HIGH-going signal at input nRD as shown in Table 3.
Schmitt-trigger action in the nA and nB inputs, makes the circuit highly tolerant to slower
input rise and fall times.
The 74HC123; 74HCT123 are identical to the 74HC423; 74HCT423 but can be triggered
via the reset input.
2. Features and benefits
DC triggered from active HIGH or active LOW inputs
Retriggerable for very long pulses up to 100 % duty factor
Direct reset terminates output pulse
Schmitt-trigger action on all inputs except for the reset input
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115-A exceeds 200 V
Specified from 40 C to +85 C and from 40 C to +125 C
74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Rev. 9 — 19 January 2015 Product data sheet
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 2 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
3. Ordering information
4. Functional diagram
Table 1. Ordering information
Type number Package
Temperature range Name Description Version
74HC123N 40 C to +125 C DIP16 plastic dual in-line package; 16 leads (300 mil) SOT38-4
74HCT123N
74HC123D 40 C to +125 C SO16 plastic small outline package; 16 leads;
body width 3.9 mm
SOT109-1
74HCT123D
74HC123DB 40 C to +125 C SSOP16 plastic shrink small outline package; 16 leads;
body width 5.3 mm
SOT338-1
74HCT123DB
74HC123PW 40 C to +125 C TSSOP16 plastic thin shrink small outline package; 16 leads;
body width 4.4 mm
SOT403-1
74HCT123PW
74HC123BQ 40 C to +125 C DHVQFN16 plastic dual in-line compatible thermal enhanced
very thin quad flat package; no leads; 16 terminals;
body 2.5 3.5 0.85 mm
SOT763-1
Fig 1. Functional diagram
4 4
5'
5'
6
5(;7&(;7
&(;7
4 4
DDD
5'
$
$
%
%
7
4
5'
6
5(;7&(;7
&(;7
4
4 4
7
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 3 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Fig 2. Logic symbol Fig 3. IEC logic symbol
4
4
5'
5'
6
5(;7&(;7
5(;7&(;7
&(;7
&(;7
4
4
4
4
PQD 5'
$
$
%
%
7
PQD
&;
5&;
5
&;
5&;
5
Fig 4. Logic diagram
PQD
Q5(;7&(;7
9&&
9&& 9&&
5
Q5'
Q$
Q%
5
&/
&/ &/
&/ &/
Q4
5 Q4
5
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 4 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
5. Pinning information
5.1 Pinning
5.2 Pin description
(1) This is not a supply pin. The substrate is attached to this
pad using conductive die attach material. There is no
electrical or mechanical requirement to solder this pad.
However, if it is soldered, the solder land should remain
floating or be connected to VCC.
Fig 5. Pin configuration for DIP16, SO16, SSOP16
and TSSOP16
Fig 6. Pin configuration for DHVQFN16
+&
+&7
$ 9&&
% 5(;7&(;7
5' &(;7
4 4
4 4
&(;7 5'
5(;7&(;7 %
*1' $
DDD
DDI
+&
5(;7&(;7 %
&(;7 5'
4 4
4 4
5' &(;7
% 5(;7&(;7 *1'$ $
9&&
7UDQVSDUHQWWRSYLHZ
WHUPLQDO
LQGH[DUHD
9&&
Table 2. Pin description
Symbol Pin Description
1A 1 negative-edge triggered input 1
1B 2 positive-edge triggered input 1
1RD 3 direct reset LOW and positive-edge triggered input 1
1Q 4 active LOW output 1
2Q 5 active HIGH output 2
2CEXT 6 external capacitor connection 2
2REXT/CEXT 7 external resistor and capacitor connection 2
GND 8 ground (0 V)
2A 9 negative-edge triggered input 2
2B 10 positive-edge triggered input 2
2RD 11 direct reset LOW and positive-edge triggered input 2
2Q 12 active LOW output 2
1Q 13 active HIGH output 1
1CEXT 14 external capacitor connection 1
1REXT/CEXT 15 external resistor and capacitor connection 1
VCC 16 supply voltage
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 5 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
6. Functional description
[1] H = HIGH voltage level; L = LOW voltage level; X = don’t care; = LOW-to-HIGH transition; = HIGH-to-LOW transition;
= one HIGH level output pulse; = one LOW level output pulse.
[2] If the monostable was triggered before this condition was established, the pulse will continue as programmed.
7. Limiting values
[1] For DIP16 package: Ptot derates linearly with 12 mW/K above 70 C.
[2] For SO16 package: Ptot derates linearly with 8 mW/K above 70 C.
[3] For SSOP16 and TSSOP16 packages: Ptot derates linearly with 5.5 mW/K above 60 C.
[4] For DHVQFN16 package: Ptot derates linearly with 4.5 mW/K above 60 C.
Table 3. Function table[1]
Input Output
nRD nA nB nQ nQ
LXXLH
XHXL[2] H[2]
XXLL[2] H[2]
H L
H H
L H
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions Min Max Unit
VCC supply voltage 0.5 +7 V
IIK input clamping current VI < 0.5 V or VI > VCC + 0.5 V - 20 mA
IOK output clamping current VO < 0.5 V or VO > VCC + 0.5 V - 20 mA
IO output current except for pins nREXT/CEXT;
VO = 0.5 V to (VCC + 0.5 V)
- 25 mA
ICC supply current - 50 mA
IGND ground current - 50 mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation
DIP16 package [1] - 750 mW
SO16 package [2] - 500 mW
SSOP16 package [3] - 500 mW
TSSOP16 package [3] - 500 mW
DHVQFN16 package [4] - 500 mW
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 6 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
8. Recommended operating conditions
9. Static characteristics
Table 5. Recommended operating conditions
Symbol Parameter Conditions 74HC123 74HCT123 Unit
Min Typ Max Min Typ Max
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V
VI input voltage 0 - VCC 0 -VCC V
VO output voltage 0 - VCC 0 -VCC V
t/V input transition rise and
fall rate
nRD input
VCC = 2.0 V - - 625 - - - ns/V
VCC = 4.5 V - 1.67 139 - 1.67 139 ns/V
VCC = 6.0 V - - 83 - - - ns/V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC123
VIH HIGH-level
input voltage
VCC = 2.0 V 1.5 1.2 - 1.5 - 1.5 - V
VCC = 4.5 V 3.15 2.4 - 3.15 - 3.15 - V
VCC = 6.0 V 4.2 3.2 - 4.2 - 4.2 - V
VIL LOW-level
input voltage
VCC = 2.0 V - 0.8 0.5 - 0.5 - 0.5 V
VCC = 4.5 V - 2.1 1.35 - 1.35 - 1.35 V
VCC = 6.0 V - 2.8 1.8 - 1.8 - 1.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL
IO = 20 A; VCC = 2.0 V 1.9 2.0 - 1.9 - 1.9 - V
IO = 20 A; VCC = 4.5 V 4.4 4.5 - 4.4 - 4.4 - V
IO = 20 A; VCC = 6.0 V 5.9 6.0 - 5.9 - 5.9 - V
IO = 4 mA; VCC = 4.5 V 3.98 4.32 - 3.84 - 3.7 - V
IO = 5.2 mA; VCC = 6.0 V 5.48 5.81 - 5.34 - 5.2 - V
VOL LOW-level
output voltage
VI = VIH or VIL
IO = 20 A; VCC = 2.0 V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 4.5 V - 0 0.1 - 0.1 - 0.1 V
IO = 20 A; VCC = 6.0 V - 0 0.1 - 0.1 - 0.1 V
IO = 4 mA; VCC = 4.5 V - 0.15 0.26 - 0.33 - 0.4 V
IO = 5.2 mA; VCC = 6.0 V - 0.16 0.26 - 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND; VCC = 6.0 V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 6.0 V
- - 8.0 - 80 - 160 A
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 7 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
CI input
capacitance
- 3.5 - - - - - pF
74HCT123
VIH HIGH-level
input voltage
VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - 2.0 - V
VIL LOW-level
input voltage
VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 - 0.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A 4.4 4.5 - 4.4 - 4.4 - V
IO = 4 mA 3.98 4.32 - 3.84 - 3.7 - V
VOL LOW-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
IO = 20 A - 0 0.1 - 0.1 - 0.1 V
IO = 4.0 mA - 0.15 0.26 - 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND; VCC = 5.5 V - - 0.1 - 1.0 - 1.0 A
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 5.5 V
- - 8.0 - 80 - 160 A
ICC additional
supply current
per input pin; IO = 0 A;
VI = VCC 2.1 V;
other inputs at VCC or GND;
VCC = 4.5 V to 5.5 V
pins nA, nB - 35 125 - 160 - 170 A
pin nRD - 50 180 - 225 - 245 A
CI input
capacitance
- 3.5 - - - - - pF
Table 6. Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 8 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
10. Dynamic characteristics
Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 12.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC123
tpd propagation
delay
nRD, nA, nB to nQ or nQ;
CEXT = 0 pF;
REXT =5k;
see Figure 9
[1]
VCC = 2.0 V - 83 255 - 320 - 385 ns
VCC = 4.5 V - 30 51 - 64 - 77 ns
VCC = 5 V; CL = 15 pF - 26 - - - - - ns
VCC = 6.0 V - 24 43 - 54 - 65 ns
nRD (reset) to nQ or nQ;
CEXT = 0 pF;
REXT =5k;
see Figure 9
VCC = 2.0 V - 66 215 - 270 - 325 ns
VCC = 4.5 V - 24 43 - 54 - 65 ns
VCC = 5 V; CL = 15 pF - 20 - - - - - ns
VCC = 6.0 V - 19 37 - 46 - 55 ns
tt transition time see Figure 9 [1]
VCC = 2.0 V - 19 75 - 95 - 110 ns
VCC = 4.5 V - 7 15 - 19 - 22 ns
VCC = 6.0 V - 6 13 - 16 - 19 ns
tW pulse width nA LOW; see Figure 10
VCC = 2.0 V 100 8 - 125 - 150 - ns
VCC = 4.5 V 20 3 - 25 - 30 - ns
VCC = 6.0 V 17 2 - 21 - 26 - ns
nB HIGH; see Figure 10
VCC = 2.0 V 100 17 - 125 - 150 - ns
VCC = 4.5 V 20 6 - 25 - 30 - ns
VCC = 6.0 V 17 5 - 21 - 26 - ns
nRD LOW; see Figure 11
VCC = 2.0 V 100 14 - 125 - 150 - ns
VCC = 4.5 V 20 5 - 25 - 30 - ns
VCC = 6.0 V 17 4 - 21 - 26 - ns
nQ HIGH and nQ LOW;
VCC = 5.0 V;
see Figure 10 and 11
[2]
CEXT = 100 nF;
REXT = 10 k
- 450 - - - - - s
CEXT = 0 pF;
REXT =5k
- 75 - - - - - ns
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 9 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
trtrig retrigger time nA, nB; CEXT = 0 pF;
REXT = 5 k; VCC = 5.0 V;
see Figure 10
[3][4] - 110 - - - - - ns
REXT external timing
resistor
see Figure 7
VCC = 2.0 V 10 - 1000 - - - - k
VCC = 5.0 V 2 - 1000 - - - - k
CEXT external timing
capacitor
VCC = 5.0 V; see Figure 7 [4] - - - - - - - pF
CPD power
dissipation
capacitance
per monostable;
VI = GND to VCC
[5] - 54 - - - - - pF
74HCT123
tPHL HIGH to LOW
propagation
delay
nRD, nA, nB to nQ or nQ;
CEXT = 0 pF; REXT =
5 k; see Figure 9
VCC = 4.5 V - 30 51 - 64 - 77 ns
VCC = 5 V; CL = 15 pF - 26 - - - - - ns
nRD (reset) to nQ or nQ;
CEXT = 0 pF;
REXT =5k;
see Figure 9
VCC = 4.5 V - 27 46 - 58 - 69 ns
VCC = 5 V; CL = 15 pF - 23 - - - - - ns
tPLH LOW to HIGH
propagation
delay
nRD, nA, nB to nQ or nQ;
CEXT = 0 pF;
REXT =5k;
see Figure 9
VCC = 4.5 V - 28 51 - 64 - 77 ns
VCC = 5 V; CL = 15 pF - 26 - - - - - ns
nRD (reset) to nQ or nQ;
CEXT = 0 pF; REXT =
5 k; see Figure 9
VCC = 4.5 V - 23 46 - 58 - 69 ns
VCC = 5 V; CL = 15 pF - 23 - - - - - ns
tt transition time VCC = 4.5 V; see Figure 9 [1] - 7 15 - 19 - 22 ns
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 12.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 10 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
[1] tpd is the same as tPHL and tPLH; tt is the same as tTHL and tTLH
[2] For other REXT and CEXT combinations see Figure 7. If CEXT > 10 nF, the next formula is valid.
tW = K REXT CEXT, where:
tW = typical output pulse width in ns;
REXT = external resistor in k;
CEXT = external capacitor in pF;
K = constant = 0.45 for VCC = 5.0 V and 0.55 for VCC = 2.0 V.
The inherent test jig and pin capacitance at pins 15 and 7 (nREXT/CEXT) is approximately 7 pF.
[3] The time to retrigger the monostable multivibrator depends on the values of REXT and CEXT. The output pulse width will only be
extended when the time between the active-going edges of the trigger input pulses meets the minimum retrigger time. If CEXT >10 pF,
the next formula (at VCC = 5.0 V) for the setup time of a retrigger pulse is valid:
trtrig = 30 + 0.19 REXT CEXT0.9 + 13 REXT1.05, where:
trtrig = retrigger time in ns;
CEXT = external capacitor in pF; REXT = external resistor in k.
The inherent test jig and pin capacitance at pins 15 and 7 (nREXT/CEXT) is 7 pF.
[4] When the device is powered-up, initiate the device via a reset pulse, when CEXT < 50 pF.
[5] CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi + (CL VCC2 fo) + 0.75 CEXT VCC2 fo + D 16 VCC where:
fi = input frequency in MHz;
fo = output frequency in MHz;
D = duty factor in %;
CL = output load capacitance in pF;
VCC = supply voltage in V;
CEXT = timing capacitance in pF;
(CL VCC2 fo) sum of outputs.
tW pulse width VCC = 4.5 V
nA LOW; see Figure 10 20 3 - 25 - 30 - ns
nB HIGH; see Figure 10 20 5 - 25 - 30 - ns
nRD LOW; see Figure 11 20 7 - 25 - 30 - ns
nQ HIGH and nQ LOW;
VCC = 5.0 V;
see Figure 10 and 11
[2]
CEXT = 100 nF;
REXT = 10 k
- 450 - - - - - s
CEXT = 0 pF;
REXT =5k
- 75 - - - - - ns
trtrig retrigger time nA, nB; CEXT = 0 pF;
REXT = 5 k; VCC = 5.0 V;
see Figure 10
[3][4] - 110 - - - - - ns
REXT external timing
resistor
VCC = 5.0 V; see Figure 7 2 - 1000 - - - - k
CEXT external timing
capacitor
VCC = 5.0 V; see Figure 7 [4] - - - - - - - pF
CPD power
dissipation
capacitance
per monostable;
VI = GND to VCC 1.5 V
[5] - 56 - - - - - pF
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 12.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max Min Max
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 11 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
VCC = 5.0 V; Tamb = 25 C.
(1) REXT = 100 k
(2) REXT = 50 k
(3) REXT = 10 k
(4) REXT = 2 k
CEXT = 10 nF; REXT = 10 k to 100 k.
Tamb = 25 C.
Fig 7. Typical output pulse width as a function of the
external capacitor value
Fig 8. 74HC123 typical ‘K’ factor as function of VCC
DDD
W:
QV
&(;7S)
9&&9
DDD
.
IDFWRU
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 12 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
11. Waveforms
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 9. Propagation delays from inputs (nA, nB, nRD) to outputs (nQ, nQ) and output transition times
DDD
Q%LQSXW
W:
W:
W3/+
90
92+
90
90
W:
W3/+
W7+/
W:
W3+/
W3+/
90
W:
W3/+
Q$LQSXW
Q5'LQSXW
Q4RXWSXW
Q4RXWSXW
90
W7/+
9<
9;
9<
9;
W3+/ W3+/ W3/+
UHVHW
UHVHW
92/
92+
92/
9,
9,
9,
*1'
*1'
*1'
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 13 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
nRD = HIGH
Fig 10. Output pulse control using retrigger pulse
PQD
W: W:
W:
W:
W:
Q%LQSXW
Q$LQSXW
Q4RXWSXW
WUWULJ
nA = LOW
Fig 11. Output pulse control using reset input nRD
PQD
W: W:
W:
Q%LQSXW
Q5'LQSXW
Q4RXWSXW
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 14 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Test data is given in Table 8.
Definitions test circuit:
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
CL = Load capacitance including jig and probe capacitance.
RL = Load resistance.
S1 = Test selection switch.
Fig 12. Test circuit for measuring switching times
90 90
W:
W:
9
9,
9,
QHJDWLYH
SXOVH
SRVLWLYH
SXOVH
9
90 90
WI
WU
WU
WI
DDG
'87
9&& 9&&
9, 92
57
5/ 6
&/
RSHQ *
Table 8. Test data
Type Input Load S1 position
VI tr, tf CL RL tPHL, tPLH
74HC123 VCC 6 ns 15 pF, 50 pF 1 k open
74HCT123 3 V 6 ns 15 pF, 50 pF 1 k open
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 15 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
12. Application information
12.1 Timing component connections
The basic output pulse width is essentially determined by the values of the external timing
components REXT and CEXT.
12.2 Power-up considerations
When the monostable is powered-up it may produce an output pulse, with a pulse width
defined by the values of REXT and CEXT. This output pulse can be eliminated using the
circuit shown in Figure 14.
(1) For minimum noise generation it is recommended to ground pins 6 (2CEXT) and 14 (1CEXT)
externally to pin 8 (GND).
Fig 13. Timing component connections
DDD
&(;7 5(;7
Q$
Q%
9&&
Q&(;7
Q5'
Q5(;7&(;7
Q4
Q4
*1'
Fig 14. Power-up output pulse elimination circuit
DDD
5(6(7 9&&
Q5'
&(;7 5(;7
Q$
Q%
9&&
*1' Q5(;7&(;7 Q&(;7
Q4
Q4
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 16 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
12.3 Power-down considerations
A large capacitor CEXT may cause problems when powering-down the monostable due to
the energy stored in this capacitor. When a system containing this device is
powered-down or a rapid decrease of VCC to zero occurs, the monostable may sustain
damage, due to the capacitor discharging through the input protection diodes. To avoid
this possibility, use a damping diode (DEXT) preferably a germanium or Schottky type
diode able to withstand large current surges and connect as shown in Figure 15.
Fig 15. Power-down protection circuit
DDD
'(;7
Q5'
&(;7 5(;7
Q$
Q%
9&&
Q&(;7 Q5(;7&(;7
Q4
Q4
*1'
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 17 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
13. Package outline
Fig 16. Package outline SOT38-4 (DIP16)
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
627
0+
F
H
0(
$
/
VHDWLQJSODQH
$
Z 0
E
E
H
'
$
=
(
SLQLQGH[
E
PP
VFDOH
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
81,7 $
PD[ E E F ' ( H 0 = / +
PP
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
$
PLQ
$
PD[ E PD[ H 0( Z
LQFKHV
',3SODVWLFGXDOLQOLQHSDFNDJHOHDGVPLO 627
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 18 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Fig 17. Package outline SOT109-1 (SO16)
;
Z 0
ș
$ $
$
ES
'
+(
/S
4
GHWDLO;
(
=
H
F
/
Y 0 $
$
$
\
SLQLQGH[
81,7 $
PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
LQFKHV
R
R
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627
( 06
PP
VFDOH
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 19 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Fig 18. Package outline SOT338-1 (SSOP16)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627
Z 0 ES
'
+(
(
=
H
F
Y 0 $
;
$
\
ș
$ $
$
/S
4
GHWDLO;
/
$
02
SLQLQGH[
PP
VFDOH
6623SODVWLFVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 20 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Fig 19. Package outline SOT403-1 (TSSOP16)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFLQWHUOHDGSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627 02
Z 0 ES
'
=
H
ș
$ $
$
/S
4
GHWDLO;
/
$
+(
(
F
Y 0 $
;
$
\
PP
VFDOH
76623SODVWLFWKLQVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
SLQLQGH[
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 21 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Fig 20. Package outline SOT763-1 (DHVQFN16)
WHUPLQDO
LQGH[DUHD
81,7 $ E (K H \
F
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
'K
\
H
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
627 02
/
Y
Z
PP
VFDOH
627
'+94)1SODVWLFGXDOLQOLQHFRPSDWLEOHWKHUPDOHQKDQFHGYHU\WKLQTXDGIODWSDFNDJHQROHDGV
WHUPLQDOVERG\[[PP
$
PD[
$
$
F
GHWDLO;
\ \ H &
/
(K
'K
H
H
E
;
'
(
&
% $
WHUPLQDO
LQGH[DUHD
& $
&
Y 0 %
Z 0
(
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
'
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 22 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
14. Abbreviations
15. Revision history
Table 9. Abbreviations
Acronym Abbreviation
CMOS Complementary Metal Oxide Semiconductor
DUT Device Under Test
ESD ElectroStatic Discharge
HBM Human Body Model
LSTTL Low-power Schottky Transistor-Transistor Logic
MM Machine Model
Table 10. Revision history
Document ID Release date Data sheet status Change notice Supersedes
74HC_HCT123 v.9 20150119 Product data sheet - 74HC_HCT123 v.8
Modifications: • Table 7: Power dissipation capacitance condition for 74HCT123 is corrected.
74HC_HCT123 v.8 20111216 Product data sheet - 74HC_HCT123 v.7
Modifications: • Legal pages updated.
74HC_HCT123 v.7 20110825 Product data sheet - 74HC_HCT123 v.6
74HC_HCT123 v.6 20110314 Product data sheet - 74HC_HCT123 v.5
74HC_HCT123 v.5 20090713 Product data sheet - 74HC_HCT123 v.4
74HC_HCT123 v.4 20060616 Product data sheet - 74HC_HCT123 v.3
74HC_HCT123 v.3 20040511 Product specification - 74HC_HCT123_CNV v.2
74HC_HCT123_CNV v.2 19980708 Product specification - -
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 23 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
16. Legal information
16.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
74HC_HCT123 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 9 — 19 January 2015 24 of 25
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
17. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors 74HC123; 74HCT123
Dual retriggerable monostable multivibrator with reset
© NXP Semiconductors N.V. 2015. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 19 January 2015
Document identifier: 74HC_HCT123
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
18. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
4 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
5 Pinning information. . . . . . . . . . . . . . . . . . . . . . 4
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
6 Functional description . . . . . . . . . . . . . . . . . . . 5
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
8 Recommended operating conditions. . . . . . . . 6
9 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
10 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8
11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
12 Application information. . . . . . . . . . . . . . . . . . 15
12.1 Timing component connections . . . . . . . . . . . 15
12.2 Power-up considerations . . . . . . . . . . . . . . . . 15
12.3 Power-down considerations . . . . . . . . . . . . . . 16
13 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 17
14 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 22
15 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 22
16 Legal information. . . . . . . . . . . . . . . . . . . . . . . 23
16.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 23
16.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
17 Contact information. . . . . . . . . . . . . . . . . . . . . 24
18 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1. General description
The 74HC595; 74HCT595 are high-speed Si-gate CMOS devices and are pin compatible
with Low-power Schottky TTL (LSTTL). They are specified in compliance with JEDEC
standard No. 7A.
The 74HC595; 74HCT595 are 8-stage serial shift registers with a storage register and
3-state outputs. The registers have separate clocks.
Data is shifted on the positive-going transitions of the shift register clock input (SHCP).
The data in each register is transferred to the storage register on a positive-going
transition of the storage register clock input (STCP). If both clocks are connected together,
the shift register will always be one clock pulse ahead of the storage register.
The shift register has a serial input (DS) and a serial standard output (Q7S) for cascading.
It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The
storage register has 8 parallel 3-state bus driver outputs. Data in the storage register
appears at the output whenever the output enable input (OE) is LOW.
2. Features and benefits
8-bit serial input
8-bit serial or parallel output
Storage register with 3-state outputs
Shift register with direct clear
100 MHz (typical) shift out frequency
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115-A exceeds 200 V
Multiple package options
Specified from 40 C to +85 C and from 40 C to +125 C
3. Applications
Serial-to-parallel data conversion
Remote control holding register
74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output
latches; 3-state
Rev. 7 — 26 January 2015 Product data sheet
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 2 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
4. Ordering information
5. Functional diagram
Table 1. Ordering information
Type number Package
Temperature range Name Description Version
74HC595N 40 C to +125 C DIP16 plastic dual in-line package; 16 leads (300 mil) SOT38-4
74HCT595N
74HC595D 40 C to +125 C SO16 plastic small outline package; 16 leads;
body width 3.9 mm
SOT109-1
74HCT595D
74HC595DB 40 C to +125 C SSOP16 plastic shrink small outline package; 16 leads;
body width 5.3 mm
SOT338-1
74HCT595DB
74HC595PW 40 C to +125 C TSSOP16 plastic thin shrink small outline package; 16 leads;
body width 4.4 mm
SOT403-1
74HCT595PW
74HC595BQ 40 C to +125 C DHVQFN16 plastic dual in-line compatible thermal enhanced
very thin quad flat package; no leads; 16 terminals;
body 2.5 3.5 0.85 mm
SOT763-1
74HCT595BQ
Fig 1. Functional diagram
PQD
67$7(2873876
%,76725$*(5(*,67(5
67$*(6+,)75(*,67(5
4 4 4 4 4 4 4 4
46
'6
6+&3
67&3
2(
05
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 3 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Fig 2. Logic symbol Fig 3. IEC logic symbol
05 2(
PQD
4
4
4
4
4
4
4
4
46
'6
6+&3 67&3
PQD
' '
&
&
(1
5 65*
Fig 4. Logic diagram
67$*( 67$*(672 67$*(
))
'
&3
4
5
/$7&+
'
&3
4
))
'
&3
4
5
/$7&+
'
&3
4
PQD
' 4
4 4 4 4 4 4 4
46
4
'6
67&3
6+&3
2(
05
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 4 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
6. Pinning information
6.1 Pinning
Fig 5. Pin configuration DIP16, SO16 Fig 6. Pin configuration SSOP16, TSSOP16
+&
+&7
4 9&&
4 4
4 '6
4 2(
4 67&3
4 6+&3
4 05
*1' 46
DDR
+&
+&7
4 9&&
4 4
4 '6
4 2(
4 67&3
4 6+&3
4 05
*1' 46
DDR
(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or
mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to
GND.
Fig 7. Pin configuration for DHVQFN16
DDR
+&
+&7
4 05
4 6+&3
4 67&3
4 2(
4 '6
4 4 *1' 46 4
9&&
7UDQVSDUHQWWRSYLHZ
WHUPLQDO
LQGH[DUHD
*1'
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 5 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
6.2 Pin description
7. Functional description
[1] H = HIGH voltage state;
L = LOW voltage state;
= LOW-to-HIGH transition;
X = don’t care;
NC = no change;
Z = high-impedance OFF-state.
Table 2. Pin description
Symbol Pin Description
Q1 1 parallel data output 1
Q2 2 parallel data output 2
Q3 3 parallel data output 3
Q4 4 parallel data output 4
Q5 5 parallel data output 5
Q6 6 parallel data output 6
Q7 7 parallel data output 7
GND 8 ground (0 V)
Q7S 9 serial data output
MR 10 master reset (active LOW)
SHCP 11 shift register clock input
STCP 12 storage register clock input
OE 13 output enable input (active LOW)
DS 14 serial data input
Q0 15 parallel data output 0
VCC 16 supply voltage
Table 3. Function table[1]
Control Input Output Function
SHCP STCP OE MR DS Q7S Qn
X X L L X L NC a LOW-level on MR only affects the shift registers
X L L X L L empty shift register loaded into storage register
X X H L X L Z shift register clear; parallel outputs in high-impedance OFF-state
X L H H Q6S NC logic HIGH-level shifted into shift register stage 0. Contents of all
shift register stages shifted through, e.g. previous state of stage 6
(internal Q6S) appears on the serial output (Q7S).
X L H X NC QnS contents of shift register stages (internal QnS) are transferred to
the storage register and parallel output stages
L H X Q6S QnS contents of shift register shifted through; previous contents of the
shift register is transferred to the storage register and the parallel
output stages
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 6 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
8. Limiting values
[1] For DIP16 package: Ptot derates linearly with 12 mW/K above 70 C.
[2] For SO16 package: Ptot derates linearly with 8 mW/K above 70 C.
[3] For SSOP16 and TSSOP16 packages: Ptot derates linearly with 5.5 mW/K above 60 C.
[4] For DHVQFN16 package: Ptot derates linearly with 4.5 mW/K above 60 C.
Fig 8. Timing diagram
6+&3
'6
67&3
05
2(
4
4
4
4
46
=VWDWH
=VWDWH
=VWDWH
=VWDWH
PQD
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions Min Max Unit
VCC supply voltage 0.5 +7 V
IIK input clamping current VI < 0.5 V or VI > VCC + 0.5 V - 20 mA
IOK output clamping current VO < 0.5 V or VO > VCC + 0.5 V - 20 mA
IO output current VO = 0.5 V to (VCC + 0.5 V)
pin Q7S - 25 mA
pins Qn - 35 mA
ICC supply current - 70 mA
IGND ground current 70 - mA
Tstg storage temperature 65 +150 C
Ptot total power dissipation DIP16 package [1] - 750 mW
SO16 package [2] - 500 mW
SSOP16 package [3] - 500 mW
TSSOP16 package [3] - 500 mW
DHVQFN16 package [4] - 500 mW
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 7 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
9. Recommended operating conditions
10. Static characteristics
Table 5. Recommended operating conditions
Symbol Parameter Conditions 74HC595 74HCT595 Unit
Min Typ Max Min Typ Max
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V
VI input voltage 0 - VCC 0 -VCC V
VO output voltage 0 - VCC 0 -VCC V
t/V input transition rise and
fall rate
VCC = 2.0 V - - 625 - - - ns/V
VCC = 4.5 V - 1.67 139 - 1.67 139 ns/V
VCC = 6.0 V - - 83 - - - ns/V
Tamb ambient temperature 40 +25 +125 40 +25 +125 C
Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max
74HC595
VIH HIGH-level
input voltage
VCC = 2.0 V 1.5 1.2 - 1.5 - V
VCC = 4.5 V 3.15 2.4 - 3.15 - V
VCC = 6.0 V 4.2 3.2 - 4.2 - V
VIL LOW-level
input voltage
VCC = 2.0 V - 0.8 0.5 - 0.5 V
VCC = 4.5 V - 2.1 1.35 - 1.35 V
VCC = 6.0 V - 2.8 1.8 - 1.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL
all outputs
IO = 20 A; VCC = 2.0 V 1.9 2.0 - 1.9 - V
IO = 20 A; VCC = 4.5 V 4.4 4.5 - 4.4 - V
IO = 20 A; VCC = 6.0 V 5.9 6.0 - 5.9 - V
Q7S output
IO = 4 mA; VCC = 4.5 V 3.84 4.32 - 3.7 - V
IO = 5.2 mA; VCC = 6.0 V 5.34 5.81 - 5.2 - V
Qn bus driver outputs
IO = 6 mA; VCC = 4.5 V 3.84 4.32 - 3.7 - V
IO = 7.8 mA; VCC = 6.0 V 5.34 5.81 - 5.2 - V
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 8 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
VOL LOW-level
output voltage
VI = VIH or VIL
all outputs
IO = 20 A; VCC = 2.0 V - 0 0.1 - 0.1 V
IO = 20 A; VCC = 4.5 V - 0 0.1 - 0.1 V
IO = 20 A; VCC = 6.0 V - 0 0.1 - 0.1 V
Q7S output
IO = 4 mA; VCC = 4.5 V - 0.15 0.33 - 0.4 V
IO = 5.2 mA; VCC = 6.0 V - 0.16 0.33 - 0.4 V
Qn bus driver outputs
IO = 6 mA; VCC = 4.5 V - 0.15 0.33 - 0.4 V
IO = 7.8 mA; VCC = 6.0 V - 0.16 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND; VCC = 6.0 V - - 1.0 - 1.0 A
IOZ OFF-state
output current
VI = VIH or VIL; VCC = 6.0 V;
VO = VCC or GND
- - 5.0 - 10 A
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 6.0 V
- - 80 - 160 A
CI input
capacitance
- 3.5 - - - pF
74HCT595
VIH HIGH-level
input voltage
VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - V
VIL LOW-level
input voltage
VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 V
VOH HIGH-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
all outputs
IO = 20 A 4.4 4.5 - 4.4 - V
Q7S output
IO = 4 mA 3.84 4.32 - 3.7 - V
Qn bus driver outputs
IO = 6 mA 3.7 4.32 - 3.7 - V
VOL LOW-level
output voltage
VI = VIH or VIL; VCC = 4.5 V
all outputs
IO = 20 A - 0 0.1 - 0.1 V
Q7S output
IO = 4.0 mA - 0.15 0.33 - 0.4 V
Qn bus driver outputs
IO = 6.0 mA - 0.16 0.33 - 0.4 V
II input leakage
current
VI = VCC or GND; VCC = 5.5 V - - 1.0 - 1.0 A
Table 6. Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 9 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
11. Dynamic characteristics
IOZ OFF-state
output current
VI = VIH or VIL; VCC = 5.5 V;
VO = VCC or GND
- - 5.0 - 10 A
ICC supply current VI = VCC or GND; IO = 0 A;
VCC = 5.5 V
- - 80 - 160 A
ICC additional
supply current
per input pin; IO = 0 A; VI = VCC
2.1 V; other inputs at
VCC or GND; VCC = 4.5 V to 5.5 V
pins MR, SHCP, STCP, OE - 150 675 - 735 A
pin DS - 25 113 - 123 A
CI input
capacitance
- 3.5 - - - pF
Table 6. Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max
Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ[1] Max Min Max Min Max
74HC595
tpd propagation
delay
SHCP to Q7S; see Figure 9 [2]
VCC = 2 V - 52 160 - 200 - 240 ns
VCC = 4.5 V - 19 32 - 40 - 48 ns
VCC = 6 V - 15 27 - 34 - 41 ns
STCP to Qn; see Figure 10 [2]
VCC = 2 V - 55 175 - 220 - 265 ns
VCC = 4.5 V - 20 35 - 44 - 53 ns
VCC = 6 V - 16 30 - 37 - 45 ns
MR to Q7S; see Figure 12 [3]
VCC = 2 V - 47 175 - 220 - 265 ns
VCC = 4.5 V - 17 35 - 44 - 53 ns
VCC = 6 V - 14 30 - 37 - 45 ns
ten enable time OE to Qn; see Figure 13 [4]
VCC = 2 V - 47 150 - 190 - 225 ns
VCC = 4.5 V - 17 30 - 38 - 45 ns
VCC = 6 V - 14 26 - 33 - 38 ns
tdis disable time OE to Qn; see Figure 13 [5]
VCC = 2 V - 41 150 - 190 - 225 ns
VCC = 4.5 V - 15 30 - 38 - 45 ns
VCC = 6 V - 12 27 - 33 - 38 ns
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 10 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
tW pulse width SHCP HIGH or LOW;
see Figure 9
VCC = 2 V 75 17 - 95 - 110 - ns
VCC = 4.5 V 15 6 - 19 - 22 - ns
VCC = 6 V 13 5 - 16 - 19 - ns
STCP HIGH or LOW;
see Figure 10
VCC = 2 V 75 11 - 95 - 110 - ns
VCC = 4.5 V 15 4 - 19 - 22 - ns
VCC = 6 V 13 3 - 16 - 19 - ns
MR LOW; see Figure 12
VCC = 2 V 75 17 - 95 - 110 - ns
VCC = 4.5 V 15 6 - 19 - 22 - ns
VCC = 6 V 13 5 - 16 - 19 - ns
tsu set-up time DS to SHCP; see Figure 10
VCC = 2 V 50 11 - 65 - 75 - ns
VCC = 4.5 V 10 4 - 13 - 15 - ns
VCC = 6 V 9 3 - 11 - 13 - ns
SHCP to STCP;
see Figure 11
VCC = 2 V 75 22 - 95 - 110 - ns
VCC = 4.5 V 15 8 - 19 - 22 - ns
VCC = 6 V 13 7 - 16 - 19 - ns
th hold time DS to SHCP; see Figure 11
VCC = 2 V 3 6 - 3 - 3 - ns
VCC = 4.5 V 3 2 - 3 - 3 - ns
VCC = 6 V 3 2 - 3 - 3 - ns
trec recovery
time
MR to SHCP; see Figure 12
VCC = 2 V 50 19 - 65 - 75 - ns
VCC = 4.5 V 10 7 - 13 - 15 - ns
VCC = 6 V 9 6 - 11 - 13 - ns
fmax maximum
frequency
SHCP or STCP;
see Figure 9 and 10
VCC = 2 V 9 30 - 4.8 - 4 - MHz
VCC = 4.5 V 30 91 - 24 - 20 - MHz
VCC = 6 V 35 108 - 28 - 24 - MHz
CPD power
dissipation
capacitance
fi
= 1 MHz; VI = GND to VCC [6][7] - 115 - - - - - pF
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ[1] Max Min Max Min Max
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 11 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
[1] Typical values are measured at nominal supply voltage.
[2] tpd is the same as tPHL and tPLH.
[3] tpd is the same as tPHL only.
[4] ten is the same as tPZL and tPZH.
[5] tdis is the same as tPLZ and tPHZ.
[6] CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi + (CL VCC2 fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
(CL VCC2 fo) = sum of outputs;
CL = output load capacitance in pF;
VCC = supply voltage in V.
[7] All 9 outputs switching.
74HCT595; VCC = 4.5 V to 5.5 V
tpd propagation
delay
SHCP to Q7S; see Figure 9 [2] - 25 42 - 53 - 63 ns
STCP to Qn; see Figure 10 [2] - 24 40 - 50 - 60 ns
MR to Q7S; see Figure 12 [3] - 23 40 - 50 - 60 ns
ten enable time OE to Qn; see Figure 13 [4] - 21 35 - 44 - 53 ns
tdis disable time OE to Qn; see Figure 13 [5] - 18 30 - 38 - 45 ns
tW pulse width SHCP HIGH or LOW;
see Figure 9
16 6 - 20 - 24 - ns
STCP HIGH or LOW;
see Figure 10
16 5 - 20 - 24 - ns
MR LOW; see Figure 12 20 8 - 25 - 30 - ns
tsu set-up time DS to SHCP; see Figure 10 16 5 - 20 - 24 - ns
SHCP to STCP;
see Figure 11
16 8 - 20 - 24 - ns
th hold time DS to SHCP; see Figure 11 3 2 - 3 - 3 - ns
trec recovery
time
MR to SHCP; see Figure 12 10 7 - 13 - 15 - ns
fmax maximum
frequency
SHCP and STCP;
see Figure 9 and 10
30 52 - 24 - 20 - MHz
CPD power
dissipation
capacitance
fi
= 1 MHz;
VI = GND to VCC 1.5 V
[6]
[7]
- 130 - - - - - pF
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.
Symbol Parameter Conditions 25 C 40 C to +85 C 40 C to +125 C Unit
Min Typ[1] Max Min Max Min Max
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 12 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
12. Waveforms
Measurement points are given in Table 8.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 9. Shift clock pulse, maximum frequency and input to output propagation delays
PQD
6+&3LQSXW
46RXWSXW
W3/+ W3+/
W:
IPD[
90
92+
9,
*1'
92/
90
Measurement points are given in Table 8.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 10. Storage clock to output propagation delays
PQD
67&3LQSXW
4QRXWSXW
W3/+ W3+/
W:
WVX IPD[
90
92+
9,
*1'
92/
90
6+&3LQSXW
9,
*1'
90
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 13 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Measurement points are given in Table 8.
The shaded areas indicate when the input is permitted to change for predictable output performance.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 11. Data set-up and hold times
PQD
*1'
*1'
WK
WVX
WK
WVX
90
90
90
9,
92+
92/
9,
46RXWSXW
6+&3LQSXW
'6LQSXW
Measurement points are given in Table 8.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 12. Master reset to output propagation delays
PQD
05 LQSXW
6+&3LQSXW
46RXWSXW
W3+/
W: WUHF
90
92+
92/
9,
*1'
9,
*1'
90
90
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 14 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Measurement points are given in Table 8.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 13. Enable and disable times
PVD
W
3/=
W
3+=
RXWSXWV
GLVDEOHG
RXWSXWV
HQDEOHG
RXWSXWV
HQDEOHG
2(LQSXW 90
W
3=/
W
3=+
90
90
4QRXWSXW
/2:WR2))
2))WR/2:
4QRXWSXW
+,*+WR2))
2))WR+,*+
W
U W
I
Table 8. Measurement points
Type Input Output
VM VM
74HC595 0.5VCC 0.5VCC
74HCT595 1.3 V 1.3 V
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 15 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Test data is given in Table 9.
Definitions for test circuit:
CL = load capacitance including jig and probe capacitance.
RL = load resistance.
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.
S1 = test selection switch.
Fig 14. Test circuit for measuring switching times
90 90
W:
W:
9
9,
9,
QHJDWLYH
SXOVH
SRVLWLYH
SXOVH
9
90 90
WI
WU
WU
WI
DDG
'87
9&& 9&&
9, 92
57
5/ 6
&/
RSHQ *
Table 9. Test data
Type Input Load S1 position
VI tr, tf CL RL tPHL, tPLH tPZH, tPHZ tPZL, tPLZ
74HC595 VCC 6 ns 50 pF 1 k open GND VCC
74HCT595 3 V 6 ns 50 pF 1 k open GND VCC
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 16 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
13. Package outline
Fig 15. Package outline SOT38-4 (DIP16)
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
627
0+
F
H
0(
$
/
VHDWLQJSODQH
$
Z 0
E
E
H
'
$
=
(
SLQLQGH[
E
PP
VFDOH
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
81,7 $
PD[ E E F ' ( H 0 = / +
PP
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
$
PLQ
$
PD[ E PD[ H 0( Z
LQFKHV
',3SODVWLFGXDOLQOLQHSDFNDJHOHDGVPLO 627
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 17 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Fig 16. Package outline SOT109-1 (SO16)
;
Z 0
ș
$ $
$
ES
'
+(
/S
4
GHWDLO;
(
=
H
F
/
Y 0 $
$
$
\
SLQLQGH[
81,7 $
PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
LQFKHV
R
R
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627
( 06
PP
VFDOH
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 18 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Fig 17. Package outline SOT338-1 (SSOP16)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627
Z 0 ES
'
+(
(
=
H
F
Y 0 $
;
$
\
ș
$ $
$
/S
4
GHWDLO;
/
$
02
SLQLQGH[
PP
VFDOH
6623SODVWLFVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 19 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Fig 18. Package outline SOT403-1 (TSSOP16)
81,7 $ $ $ ES F ' ( H +( / /S 4 Y Z \ = ș
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
R
R
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFLQWHUOHDGSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
627 02
Z 0 ES
'
=
H
ș
$ $
$
/S
4
GHWDLO;
/
$
+(
(
F
Y 0 $
;
$
\
PP
VFDOH
76623SODVWLFWKLQVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627
$
PD[
SLQLQGH[
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 20 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Fig 19. Package outline SOT763-1 (DHVQFN16)
WHUPLQDO
LQGH[DUHD
81,7 $ E (K H \
F
287/,1( 5()(5(1&(6
9(56,21
(8523($1
352-(&7,21 ,668('$7(
,(& -('(& -(,7$
PP
'K
\
H
',0(16,216PPDUHWKHRULJLQDOGLPHQVLRQV
627 02
/
Y
Z
PP
VFDOH
627
'+94)1SODVWLFGXDOLQOLQHFRPSDWLEOHWKHUPDOHQKDQFHGYHU\WKLQTXDGIODWSDFNDJHQROHDGV
WHUPLQDOVERG\[[PP
$
PD[
$
$
F
GHWDLO;
\ \ H &
/
(K
'K
H
H
E
;
'
(
&
% $
WHUPLQDO
LQGH[DUHD
& $
&
Y 0 %
Z 0
(
1RWH
3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG
'
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 21 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
14. Abbreviations
15. Revision history
Table 10. Abbreviations
Acronym Abbreviation
CMOS Complementary Metal Oxide Semiconductor
DUT Device Under Test
ESD ElectroStatic Discharge
HBM Human Body Model
LSTTL Low-power Schottky Transistor-Transistor Logic
MM Machine Model
Table 11. Revision history
Document ID Release date Data sheet status Change notice Supersedes
74HC_HCT595 v.7 20150126 Product data sheet - 74HC_HCT595 v.6
Modifications: • Table 7: Power dissipation capacitance condition for 74HCT595 is corrected.
74HC_HCT595 v.6 20111212 Product data sheet - 74HC_HCT595 v.5
Modifications: • Legal pages updated.
74HC_HCT595 v.5 20110628 Product data sheet - 74HC_HCT595 v.4
74HC_HCT595 v.4 20030604 Product specification - 74HC_HCT595_CNV v.3
74HC_HCT595_CNV v.3 19980604 Product specification - -
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 22 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
16. Legal information
16.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
74HC_HCT595 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.
Product data sheet Rev. 7 — 26 January 2015 23 of 24
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
17. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors 74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
© NXP Semiconductors N.V. 2015. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 26 January 2015
Document identifier: 74HC_HCT595
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
18. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
5 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
6 Pinning information. . . . . . . . . . . . . . . . . . . . . . 4
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5
7 Functional description . . . . . . . . . . . . . . . . . . . 5
8 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6
9 Recommended operating conditions. . . . . . . . 7
10 Static characteristics. . . . . . . . . . . . . . . . . . . . . 7
11 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9
12 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
13 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16
14 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 21
15 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 21
16 Legal information. . . . . . . . . . . . . . . . . . . . . . . 22
16.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 22
16.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
16.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
16.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
17 Contact information. . . . . . . . . . . . . . . . . . . . . 23
18 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
La chaîne de signal analogique, selon National Semiconductor
Haute vitesse et basse puissance
19
Il y a quelques années, on annonçait le déclin de
l’électronique analogique, mais en fait ce secteur va
de mieux en mieux. Dans nombre de domaines, les
composants analogiques ont été remplacés par des
numériques, mais ils ont trouvé d’autres niches de
marché. Par exemple, on estime à dix le nombre de
composants analogiques requis pour le fonctionnement
de chaque DSP dans un circuit.
L’organisation mondiale des statistiques du commerce
des semi-conducteurs estime le marché analogique à
36.77 milliards de dollars US en 2007 et il semblerait
que sa croissance atteigne 12,6% l’année prochaine (le
deuxième plus important secteur de croissance de l’industrie,
après le logique). Ce développement a été alimenté par
une croissance considérable de l’utilisation des appareils
électroniques portables grand public et de l’infrastructure
de communications venant en support de ceux-ci. Les deux
fonctions principales qui restent et demeureront analogiques
dans l’avenir prévisible sont la gestion de puissance et la
chaîne de signal.
Le rôle de la gestion de puissance est évident, notamment
dans les appareils portables alimentés sur batteries, la durée
de vie de celles-ci étant primordiale au succès d’un produit
portable. La chaîne de signal constitue la seconde fonction
analogique d’un circuit et, bien qu’elle ait un rôle moins
évident qu’auparavant, elle est tout aussi importante.
Focus sur les composants analogiques
de National Semiconductor
National Semiconductor est l’un des premiers fabricants de
composants analogiques. L’entreprise a cédé son activité
microprocesseur Geode à AMD en 2003 afin de cibler
exclusivement ses solutions analogiques. L’entreprise focalise
tous ses efforts de R&D dans ce domaine technologique.
National offre des solutions de transfert de données série
et de conversion, de conditionnement de signal analogique
haute performance pour répondre aux besoins des
applications finales techniquement exigeantes, telles que les
stations de base sans fil, la réseautique, l’instrumentation,
l’équipement militaire, aérospatial et médical. L’entreprise
tente de simplifier le processus de conception de la chaîne de
signal avec une offre étendue de solutions. Cet article traite de
certaines solutions de National et explique les spécifications
les plus importantes requises par les ingénieurs concepteurs.
Les trois domaines du concept MIDAS, sur lesquels l’article
se concentre, sont les amplificateurs, les convertisseurs de
données et les produits d’interface.
Besoins pour la conception
La sélection des composants de la chaîne de signal implique
la prise en compte du flux d’un signal, de sa source (souvent
un capteur ou une source de signal) vers l’univers numérique
des contrôleurs, processeurs et FPGA où le traitement du
signal a lieu. Le processus de conception nécessite des
valeurs d’impédance appariées, une minimisation des
sources de bruit et la garantie d’un gain suffisant au niveau
de l’entrée pour commander un CAN. Dès que la chaîne de
base est élaborée, le travail de développement subsidiaire
implique de s’assurer que chaque composant de la chaîne
est correctement entraîné et protégé. La sélection du CAN
le « mieux adapté » pour une application donnée repose
sur plusieurs facteurs. La résolution est l’une des priorités
car la précision du système en dépend, généralement. La
précision elle-même dépend beaucoup de l’exécution du
CAN et peut varier selon qu’il s’agit d’applications à très haut
débit avec des fréquences d’échantillonnage supérieures
à 200Msps (ex., ADC08D1000WG-QV), d’applications à
haut débit allant de 1Msps à 200Msps (ex., ADC14V155) ou
d’applications à usage général et débit plus faible, inférieur à
1Msps. En général, le choix entre le CAN ou l’amplificateur est
habituellement le facteur restrictif dans les chaînes de signal à
haute fréquence, si bien que la sélection des deux exige une
grande attention.
L’un des besoins les plus exigeants pour ce qui concerne le
traitement de signal analogique est la fonction de conversion
d’une terminaison simple vers une différentielle : éclatement
du signal en deux signaux identiques qui peuvent être
comparés pour filtrer le bruit, la distorsion ou tout autre effet
non désiré au niveau signal. Celle-ci est souvent réalisée avec
des transformateurs, mais si la gamme de fréquence du signal
inclut du courant continu, le transformateur ne fonctionnera
pas et il sera nécessaire d’utiliser un amplificateur terminaison
simple / différentielle (ex., LMH6551). L’amplificateur ne
fournit pas seulement une amplification, mais offre également
déphasage niveau (permettant de soustraire le composant
CC du signal), fonctions de correspondance d’impédance
et gain. Bande passante, gain, bruit et distorsion constituent
les principales spécifications dont il faut tenir compte pour un
amplificateur. Le gain d’un amplificateur qui est légèrement
inférieur au signal maximum de la pleine échelle d’un CAN
est idéal pour éviter que le signal amplifié ne surcharge
l’entrée du CAN et écrêter le signal en raison d’un décalage
ou de légères imprécisions des valeurs de gain. Pour éviter
également l’atténuation du signal avant qu’il arrive au CAN, il
est souhaitable d’utiliser une bande passante d’amplificateur
de 3dB supérieure à la bande passante du signal d’entrée.
Enfin, dans tout système intégrant une chaîne de signal, le
rapport signal/bruit est sans conteste une métrique clé. Du
fait que le bruit d’horloge contribue au bruit d’ensemble du
système, et que les horloges sont des composants essentiels
de tout système, la régulation du bruit d’horloge est un
élément capital de la conception système. National fabrique
des conditionneurs d’horloge de précision avec VCO intégré
(ex., LMK03000). Ce dispositif permet au concepteur de
créer une architecture d’horloge complète (sous-système)
qui réalise la meilleure performance possible et, à un niveau
fonctionnel, non seulement génère une horloge de précision,
mais également reconditionne et distribue une horloge
générée en externe.
Invitez vos clients à consulter cet article en ligne sur
www.electronicsdesignworld.com
11
Puissance utile pour
une performance de pointe
Aujourd’hui, cette déclaration est
devenue une nécessité. Dans la
conception électronique moderne,
la puissance représente un produit fini et la
plus grande partie de la puissance qui fait
fonctionner l’électronique finit en chaleur
perdue car inutilisée.
De plus en plus de pays ajoutent
des fonctionnalités technologiquement
avancées, la courbe de la consommation
énergétique va cependant continuer à
monter. Conscient de cette tendance à la
hausse, National Semiconductor a développé
des produits PowerWise pour offrir un niveau
de performance avec une consommation
énergétique réduite.
Le rapport performance/puissance
Une mesure métrique simple pour une voiture
est la consommation moyenne de 0 à 100
km/h. Du fait de l’augmentation du prix des
carburants, cette mesure métrique prend
de l’importance. Ce concept s’applique
également au rapport performance/puissance
et pour un ingénieur cela peut signifier une ou
deux choses : consommation plus faible ou
performance supérieure. L’avantage évident
d’une consommation moindre est l’économie
plus importante réalisée ou la durée de
vie prolongée des batteries, en plus d’une
usure thermique réduite des composants
électroniques. Plus la température ambiante
est faible, plus la durée de vie du produit est
prolongée, impliquant une baisse des coûts
de remplacement.
Améliorer le rapport performance/
puissance peut aussi offrir des avantages
lorsqu’il est nécessaire d’installer un nouveau
design avec des ressources sortantes.
Par exemple, un boîtier Set Top (STB) pour
connexion par câble peut nécessiter un
espace physique égal ou plus petit que le
modèle précédent, une puissance de même
niveau ou supérieur, mais requiert un niveau
de performance supérieur. Même si les
ressources n’ont pas changées, pour réaliser
avec succès son projet, le concepteur doit
utiliser des composants plus performants et
consommant la même énergie ou moins.
Technologie de processus,
architecture et systèmes
La technologie de processus est importante,
non seulement pour un niveau de qualité
constant, mais également pour une meilleure
performance avec une consommation
moindre. Des traitements à bande passante
élevée et faible déperdition sont essentiels
pour fournir une performance globale
optimale dans les semiconducteurs, mais
ils ne représentent que 50% des critères
requis. Les techniques et propriétés
intellectuelles à la base de la conception des
dispositifs sont aussi importantes que les
traitements employés.
Autre aspect important de la mesure du
rapport performance/puissance qui n’est pas
toujours apparent au niveau des composants
individuels : la façon dont ces composants
interagissent entre eux et qui permettra de
réduire la consommation d’énergie.
Outils pour augmenter l’efficacité
Certains composants ont besoin d’outils
pour contribuer à améliorer le rapport
performance/puissance. Cela s’applique
essentiellement, mais non exclusivement,
aux régulateurs de commutation de
puissance. L’outil de conception WEBENCH
de National Semiconductor permet aux
ingénieurs de ‘composer en interne’ un
niveau de performance pour circuits
d’alimentation en contrepartie d’autres
paramètres, c.-à-d. la taille des composants.
La famille PowerWise de régulateurs
commutateurs simples (LM5576) en est
un bon exemple. Cette famille est prise en
charge par l’outil WEBENCH avec un contrôle
du réglage du rendement requis pour le
système, comme indiqué en Figure 1.
En 1908, William A. Smith déclarait, « L’ingénierie est la science de la maîtrise, de la conservation de l’énergie fournie et
stockée sous forme naturelle pour les besoins de l’homme. C’est le rôle de l’ingénierie d’utiliser cette énergie de manière
optimale afin qu’il y ait le moins
de pertes possible. »
Figure 1. Contrôle d’optimisation WEBENCH
Premier Farnell Global Technology Centre
Conception de systèmes médicaux avec des microprocesseurs
Abrégé
Les dispositifs électroniques médicaux représentent toute une gamme de matériel comprenant aussi bien des machines de diagnostic par imagerie qui occupent toute une pièce, que des petits dispositifs portables que les patients peuvent emporter partout.
Pour atteindre leurs objectifs de prestations optimales et de coûts réduits, les prestataires de soins de santé réclament aux fabricants des améliorations dans le domaine de la visualisation et de la transmission des données médicales image et vidéo. En réponse à cette demande, nous assistons à l'émergence de plusieurs tendances techniques susceptibles d'influencer l'architecture des matériels futurs :
Le développement de matériel disponible dans le commerce et de matériel portable ;
L'interface parallèle propriétaire sera remplacée par une interface HSIO standardisée ;
Ajout de dispositifs de communication par Internet filaires et sans-fil.
Alors que le public se préoccupe de plus en plus des questions de santé, la demande en produits médicaux électroniques sur le marché augmente, plus particulièrement dans le secteur des produits haut de gamme, comme les scanners CT, les IRM, les appareils de diagnostic à ultrasons ultra performants, etc.
La taille du marché mondial de l'électronique médicale a connu une croissance importante. Espicom (une société d'étude de marché) prévoit que le volume des ventes sur le marché mondial de l'instrumentation médicale dépassera les 200 milliards de dollars, la part des produits médicaux électroniques étant de 45 %, c'est-à-dire 90 milliards de dollars.
Quant à la perspective sur le marché médical chinois, il est évident que l'influence favorable provient des changements de politique gouvernementale, des progrès en matière de libéralisation du milieu hospitalier et d'une croissance accélérée du marché.
La tendance au développement de matériel de petites dimensions plus portable sera accompagnée d'exigences plus strictes en matière de consommation d'énergie et de traitement des signaux. Les ingénieurs vont donc devoir relever des défis encore plus importants.
Le marché chinois de l'électronique médicale poursuivait son expansion en 2006. Le volume total des ventes sur ce marché a dépassé les 20 milliards de RMB pour atteindre 21,08 milliards de RMB, une croissance de 15,6 % par rapport à l'année précédente, ce qui, de toute évidence, dépasse celle du même marché à l'échelle mondiale. Le marché chinois de l'électronique médicale maintiendra une croissance régulière avec un taux de croissance annuel moyen de 18,2 % dans les années à venir et on peut s'attendre à ce qu'en 2011, le volume de ce marché approche les 50 milliards de RMB.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Taux de croissance annuel moyen 11 %
Figure 1 Marché international des semi-conducteurs médicaux
Taux de croissance annuel moyen 12 %
Taux de croissance annuel moyen ultrasons 15 %
Source : Databeans, 2007
Figure 2 Marché international des semi-conducteurs d'imagerie médicale
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
bone density scanner
scanner de densité osseuse
MRI scanner
scanner IRM
Premier Farnell Global Technology Centre
X-ray
Rayon-X
PET scanner
scanner PET
CT Scanner
scanner CT
electrocardiogram
électrocardiogramme
other imaging
autre type d'imagerie
ultrasound
ultrasons
Les secteurs de l'industrie tels que les semi-conducteurs, les composants, les matériaux électroniques médicaux et le matériel de fabrication ont vu leur production accélérée par la croissance du marché de l'électronique médicale.
Dans les cinq prochaines années, le volume du marché des semi-conducteurs électroniques médicaux dépassera les 3,5 milliards de dollars avec un taux de croissance annuel moyen de 11 %. Pour répondre aux exigences strictes concernant la stabilité et les performances du matériel électronique médical, la sécurité du matériel et la sécurité personnelle des utilisateurs, ainsi qu'aux exigences spécifiques de certification des systèmes médicaux, les éléments électroniques médicaux et les programmes de conception, ainsi que les matériaux et les technologies de fabrication, etc., doivent satisfaire des exigences plus strictes.
Architecture des systèmes médicaux
À l'exclusion des analyseurs des gaz du sang, des tensiomètres numériques, des moniteurs de rythme cardiaque/pouls numériques, des glucomètres ou même des thermomètres numériques, la plupart des dispositifs médicaux se composent de cinq blocs de niveau système communs à chaque :
Élément de biocapteur
Module AFE
Contrôle et traitement des données
Interface utilisateur
Gestion de batterie/d'alimentation électrique
En apparence, la topologie de mise en oeuvre effective diffère largement d'un bloc à l'autre selon les exigences de détection, de traitement et d'affichage des informations qui dépendent du type d'appareil de mesure et de l'ensemble des caractéristiques.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Figure 3 Schéma fonctionnel d'un système médical
uProcessor
microprocesseur
biosensor
biocapteur
precision amp
ampli. précision
buffer/ op. amp.
buffer/ampli op.
monitor
moniteur
speaker
haut-parleur
ADC
CAN
LCD Ctrl
Commande LCD
data bus
bus de données
Bluetooth .....
Transmission de données sans fil Bluetooth Zigbee WiFi/WiMax
LED/KEY driver
Driver de LED/Clavier
USB controller wired data transmission
Contrôleur USB - Transmission de données filaire
Flash/ROM
Mémoire flash/ROM
Keypad
clavier
Power charger/management
chargeur/gestion d'alimentation
sensor
capteur
user interface
interface utilisateur
power
alimentation
back end
arrière
data ctrl
contrôle des données
LED display
affichage LED
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Matériel à ultrasons utilisant des DSP et MCU
Les systèmes à ultrasons tant médicaux qu'industriels utilisent des techniques d'imagerie focales pour obtenir des images performantes ; cette technique dépasse largement ce qui peut être obtenu par une approche à une voie. En utilisant un réseau de récepteurs, on peut créer une image haute définition en décalant, en mettant à l'échelle puis en résumant intelligemment l'énergie d'écho. Le concept de décalage et les signaux reçus d'un réseau de transducteurs de mise à l'échelle lui permettent de se concentrer sur un point unique dans la région balayée. En se concentrant sur différents points en une seule séquence, on peut finalement assembler une image.
Figure 4 Schéma fonctionnel d'un système à ultrasons
scan conversion post processing
post-traitement de conversion de scan
spectral doppler processing
traitement de doppler spectral
color/power doppler processing
traitement de doppler couleur/Power doppler
B mode processing
traitement mode B
switches
commutateurs
feedback
retour
time gain control
contrôle de gain de temps
audio amp.
ampli audio
monitor
moniteur
speaker
haut-parleur
beamformer unit Tx & Tx
Transmission/réception - filtre de formation de voies numériques
ADC
CAN
transducer matrix
matrice de transducteur
data bus
bus de données
Power management
gestion de puissance
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Core power
alimentation de coeur
I/O power
alimentation des E/S
system power
alimentation du système
Flash/ROM
Mémoire flash/ROM
data storage
stockage de données
Keypad
clavier
Power management
gestion d'alimentation
sensor
capteur
user interface
interface utilisateur
power
alimentation
back end
arrière
data ctrl
contrôle des données
LED display
affichage LED
On utilise généralement un filtre passe-bas comme filtre anti-alias entre la tension Vac et le CAN, pour limiter la bande passante du bruit. On pourra trouver ici les topologies en phase linéaire basées sur le filtre deux à cinq pôles d'un système spécifique. Quant à la sélection d'un ampli op., les considérations primaires doivent inclure les fréquences d'entrée minimales et maximales, les déviations de signal, les distorsions harmoniques et les exigences de gain. Typiquement, les convertisseurs analogique/numérique (CAN) sont de 10 et 12 bits. Le rapport signal/bruit et la consommation électrique sont les facteurs les plus importants, suivis de l'intégration de voie.
Source : www.ti.com/ADS527x EVM User’s Guide
Figure 5 Mise en oeuvre des convertisseurs analogiques/numériques (CAN)
[see note = voir note]
L'ajout d'une interface LVDS entre le CAN et le filtre de formation de voies représente une autre tendance dans les CAN, le nombre de lignes d'interface pouvant être réduit de 6144 à 1024 pour un système à 512 voies en sérialisant les données sortant du CAN. Cette réduction permet d'utiliser des cartes de circuit imprimé plus petites et plus économiques qui forment une partie essentielle des systèmes d'imagerie portables.
Les fonctions du DSP pouvant être utilisées dans un système d'imagerie comprennent le traitement Doppler, l'imagerie 2D, 3D et même 4D ainsi que tout un éventail d'algorithmes post-traitement destinés à améliorer la fonctionnalité et les performances. Les exigences les plus importantes d'un système d'imagerie sont des performances élevées et une large bande passante.
Les systèmes à ultrasons offrent de nombreux niveaux de performance et de fonctionnalité différents.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Certaines solutions peuvent contenir des composants réclamant une gamme dynamique élevée, ou des composants dont les fonctions consistent à réaliser un traitement en virgule flottante en beaucoup moins de cycles. On peut citer la réduction spectrale ou la racine carrée comme exemples de ce type de fonctions. Les DSP conviennent parfaitement dans les applications qui favorisent un traitement en virgule flottante. Lorsqu'une application à ultrasons réclame un système d'exécution, un microcontrôleur de type processeur ARM, peut fournir la solution, car il est capable de gérer les exigences d'un système d'exécution.
L'assemblage des signaux est assuré par un filtre de formation des voies numérique. Il s'agit d'un ASIC normal conçu sur mesure, mais sa fonction est mise en oeuvre par un procédé de logique programmable différent. Le signal numérisé est mis à l'échelle et décalé dans le filtre de formation des voies de manière à générer l'effet de concentration dans la chaîne réceptrice. Après le réglage correct, les signaux de toutes les voies réceptrices sont alors rassemblés et transférés au système d'imagerie. Le système d'imagerie peut être développé en tant qu'ASIC séparé, être un processeur programmable tel qu'un DSP, ou être entièrement un ordinateur de bureau.
Les éléments de transmission doivent pouvoir être capables de contrôler des déviations de signal entre 100 V et 200 V. La plupart du temps cette opération est assurée par des FET haute tension. Deux types de commandes de FET peuvent être utilisés : marche/arrêt (pousser/tirer) ou linéaire classe-AB. La plus populaire est la méthode pousser/tirer qui ne demande qu'une interface très simple et très économique pour connecter les FET. La méthode classe-AB peut beaucoup améliorer la distorsion harmonique mais réclame des pilotes plus complexes et consomme plus d'énergie.
Les fabricants de systèmes et d'équipement ont choisi de nombreux types de produits différents de plusieurs fournisseurs pour leurs applications d'imagerie à ultrasons, y compris les amplis op., les CAN simples, doubles et octaux (tous avec récupération de surcharge d'entrée rapide et d'excellentes performances dynamiques), les processeurs de signaux numériques, une circuit intégré frontal ultrason basse puissance à 8 voies, par exemple VCA8617 et ADS5270, conçu spécifiquement pour le marché des appareils à ultrasons.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Conception d'un scanner PET avec FPGA /PLD
Selon le type d'isotope utilisé, on peut observer différentes fonctions métaboliques. Un scanner PET étant capable de suivre le trajet d'un cancer dans le corps et d'illustrer avec précision l'étendue de la maladie, c'est un outil particulièrement efficace dans le diagnostic des cancers, par exemple. Un autre secteur d'application en développement constant des scanners PET est le diagnostic des troubles neurologiques courants tels que la maladie d'Alzheimer, la maladie de Hodgkins et les accidents cérébrovasculaires.
Figure 6 Schéma fonctionnel d'un scanner PET
radiation
radiation
PMT array
réseau PMT
motors
moteurs
Precision amps
amplis de précision
HV supply control
commande d'alimentation HT
Rx gain control
commande réception gain
motor driver
Driver moteur
motion control
contrôle de mouvement
monitor
moniteur
timing and control
relation temps et commande
image processor
processeur d'image
ADC
CAN
data bus
bus de données
Power management
gestion d'alimentation
Core power
alimentation coeur
I/O power
alimentation E/S
system power
alimentation système
Flash/ROM
Mémoire flash/ROM
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
data storage
stockage de données
Keypad
clavier
À cause du grand nombre de détecteurs qu'ils contiennent et de leurs caractéristiques avancées, les scanners PET ont besoin d'une solution de traitement frontal économique, souple, puissante et rapide. L'avantage d'utiliser des FPGA/PLD dans les scanners PET plutôt qu'un circuit intégré spécifique à l'application (ASIC) parait évident aux ingénieurs système. La reconfigurabilité en circuit (ICR) des dispositifs FPGA /PLD leur permet d'être configurés pour l'installation, reconfigurés pour le processus de détection effectif, et reconfigurés encore une fois pour réaliser des autodiagnostics, le cas échéant. Par exemple, pendant la configuration, l'ordinateur PC/104 programme les algorithmes d'étalonnage dans les dispositifs Altera, permettant ainsi à toutes les voies de traitement en bloc de réaliser l'étalonnage en même temps, réduisant ainsi la durée de configuration des détecteurs.
La reconfigurabilité du dispositif FPGA/PLD lui permet de traiter facilement toutes ces fonctions. Il suffit de reconfigurer dans le système à chaque étape du processus. De même, la durée de traitement du signal reste minimale car le dispositif Altera peut accéder simultanément à tous les autres dispositifs du sous-système.
Les dispositifs FPGA/PLD pouvant être facilement reconfigurés dans le système, ils représentent le meilleur choix pour la plupart des scanner PET haute résolution. Ils peuvent mettre en oeuvre la configuration, le processus de détection et un autodiagnostic dans les mêmes dispositifs FPGA/PLD, et permettent ainsi de raccourcir les temps de développement, d'économiser de l'espace au niveau des cartes et de réduire la consommation et les coûts d'énergie. Ils offrent également l'avantage supplémentaire d'un support garanti en cas de modifications futures éventuelles des exigences ou de la configuration du système.
Tensiomètre avec microcontrôleurs
Un microcontrôleur est conçu pour les applications haute précision en temps réel portables qui ont besoin d'un circuit intégré avec une grande mémoire. Il est utilisé en général dans les tensiomètres, les moniteurs du rythme cardiaque, les analyseurs de sang, les thermomètres numériques, les oxymètres de pouls, etc.
Le système mesure la pression artérielle par l'une de trois méthodes, c'est-à-dire Korotkoff, oscillométrie ou pouls. À l'aide d'un brassard, d'une pompe et d'un transducteur, il mesure la pression artérielle et le rythme cardiaque en trois étapes : gonflement, mesure, et dégonflement. Il comporte un écran LCD, des boutons de sélection, un rappel de mémoire, une gestion d'alimentation et une interface USB.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
LCD display
afficheur LCD
LED display
afficheur LED
air pressure control
commande de pression d'air
Precision amp
ampli de précision
Pressure transducer
transducteur de pression
audio amp
ampli audio
MCU processor
processeur MCU
LCD ctrl
commande LCD
speaker
haut-parleur
I/O port LED driver
port E/S Driver de LED
I/O port keypad
port E/S clavier
I/O port air pressure control
port E/S Commande de pression d'air
ADC
can
data bus
bus de données
Power charger/management
Chargeur/gestion d'alimentation
USB controller wired data transmission
Contrôleur USB - transmission de données filaire
Flash/ROM
Mémoire flash/ROM
Présentation du modèle :
Processeur MCU : commande du système, traitement des données.
Mémoire flash : données et consignes d'enregistrement.
Interface utilisateur : manipulation par l'utilisateur et affichage des résultats.
Capteur : conversion de la pression en signal électronique
Modèle AFE : amplification et numérisation du signal analogique
Alimentation : électrique.
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Premier Farnell Global Technology Centre
Suggestions de conception de dispositif médical électronique avec MCU, DSP, FPGA ou PLD
Suggestions de dispositif médical électronique avec microcontrôleur (coeur ARM)
Les capacités de traitement d'image améliorée par moteur HD avec contrôles de graphiques accélérés 2D répondent aux besoins de la plupart des produits avec des écrans larges ;
Algorithmes matériels propriétaires et calculs logiques pour les différents produits ;
Conception hautement intégrée pour assurer portabilité, fiabilité et économie ;
Consommation d'énergie ultra-basse pour garantir la portabilité des appareils ;
Les systèmes sur puce hautement intégrés à consommation ultra-basse sont les systèmes de choix pour les dispositifs médicaux implantables.
Suggestions de dispositif médical électronique avec DSP
Utilisation d'un DSP pour mettre en oeuvre des algorithmes complexes ;
Utilisation d'un DSP pour mettre en oeuvre des performances d'imagerie 3D et 4D avec plus de précision et de clarté qu'en 2D.
Suggestions de dispositif médical électronique avec FPGA/PLD
Utilisation d'un FPGA quand les données d'un appareil médical doivent être fréquemment mises à jour ;
Utilisation d'un FPGA haute performance avec plusieurs modules DSP, bus PCIe, mémoires DDR2 et DDR3 ;
Utilisation d'un FPGA avec E/S multi-types et interface mémoire ;
Développement avec les outils IP rapides intégrés ;
Utilisation d'un FPGA avec une interface série haute vitesse, telle que LVDS.
Références :
www.ti.com
www.eetchina.com
www.ednchina.com
www.analog.com
www.altera.com
www.xilinx.com
NOUVEAU Le site Produits électroniques de Premier Farnell maintenant consultable en Chinois - Essayez dès
AUJOURD'HUI !!
http://www.farnell.com/
Tous les prix de cette brochure sont en euros hors TVA
www.farnell.fr Tel.: 04 74 68 99 99 Fax: 04 74 68 99 90
Semiconducteurs
12
TECHNOLOGY FIRST
Récemment, ZigBee™ a été un sujet largement discuté. Le standard, ZigBee ou 802.15.4 peut être, un très bon choix
dans de nombreuses applications de communication à faible puissance, faible taux de transfert. Cependant, est-il
adapté pour toutes les applications? Bien sûr que non ! Il y a des situations où un réseau local sans fil (WLAN) 802.11
est meilleur, car son taux de transfert est plus élevé. De la même façon, il y a des applications qui nécessitent une plus
grande portée ou une autonomie plus longue. En fait, l’architecture nécessaire permet de déterminer le type de réseau
sans fil le plus adapté à une application. Cet article vous expose les différentes solutions disponibles pour réaliser des
réseaux industriels sans fil.
8Ko
«Réseaux propriétaires»
BANDE ISM
315, 433, 915 GHz
Ressources système
(Ko de mémoire)
Zigbee™ 2,4 GHz
mondial 915 GHz
NA 868 GHz Europe
Bluetooth
2,4GHz
Réseau local
sans fil (WLAN)
2,4GHz, 5,4 GHz
32-7Ko
1000 _
100 _
10 _
1 _
250Ko
1MOctet Dans les réseaux sans fil, lorsque
le taux de transfert augmente,
les ressources système nécessaire
augmentent également. Par exemple un
réseau local sans fil avec un protocole
802.11, ne fonctionnerait pas avec la
plupart des applications embarquées
(comme les téléphones portables), à
cause de la consommation et de la taille
du code nécessaires pour réaliser ce type
de réseau. Un réseau local sans fil 802.11
nécessite jusqu’à 1 Mo de mémoire
programme pour réaliser un noeud et
la consommation, de l’émetteur radio,
ajoutée à celle du processeur système,
le rend plus adapté aux applications
informatiques ou aux réseaux industriels
pour lesquels la puissance n’est pas
un problème. De nombreuses tâches,
comme le contrôle à distance de
températures, de pressions et l’activation,
tiennent compte de l’importance de la
consommation et de la taille de code des
réseaux sans fil 802.11.
Les protocoles ZigBee sont relativement
légers en ce qui concerne les tailles
de code (32 à 70 Ko) et ont une portée
comprise entre 10 et 100 mètres. Cela
leur permet d’être un bonne alternative
pour le réseautage industriel. Un de ces
principaux avantages, est sa capacité
de «maillage». Un réseau maillé permet
le passage des messages d’un noeud à
l’autre, de manière que, si un des noeuds
échoue ou est coupé, le message peut
tout de même atteindre sa destination
par un autre noeud. Les réseaux maillés
ZigBee ou les différents réseaux
sans fil, adaptés à votre application
par Vince Stueve FAE, Micrel, Inc.
Figure 1. Ressources système nécessaires pour
différents types de réseaux RF
nécessitent un traitement sophistiqué
des paquets et donc, plus de mémoire.
La figure 1 montre la taille de code utilisé
par différents réseaux sans fil.
Certains réseaux propriétaires utilisent
les bandes ISM (réservées aux utilisations
industrielles, scientifiques, et médicales).
Les applications de surveillance à
distance de températures, de pressions
et d’activation sont nettement mieux
traitées sur ce type de réseaux. La portée
des réseaux propriétaires à bande ISM
est nettement plus importante que celle
des réseaux réalisés avec les protocoles
ZigBee, Bluetooth ou WLAN (réseau
local sans fil). La figure 2 montre une
comparaison des portées en fonction de
la technologie utilisée.
Participez au premier concours de conception électronique où vos idées
deviennent réalité ... et gagnez un prix de 100.000$ US ! www.live-edge.com/fr
RoHS Conforme
Non-conforme Commandez du lundi au vendredi de 8h30 à 19h pour une livraison gratuite le lendemain
Semiconducteurs
13
TECHNOLOGY FIRST
La consommation d’énergie d’un réseau
ZigBee ou d’un réseau propriétaire sur
bande ISM est plus en ligne avec les
besoins des applications de surveillance à
distance des températures, des pressions
et l’activation. Un noeud ZigBee doit pouvoir
fonctionner environ un an avec deux
piles AA, alors que les noeuds utilisant les
protocoles propriétaires sur bande ISM
peuvent facilement durer jusqu’à dix ans
sur la même source d’alimentation. Une
durée de vie plus longue, des piles, peut
être un critère de choix important, pour le
concepteur, qui doit adapter le choix de la
solution à la situation.
La fréquence des systèmes ZigBee
802.15.4 est 2,4 GHz. Elle est largement et
mondialement utilisée, pour les techniques
de DSSS (étalement de spectre à
séquence directe, O-QPSK). Les émissions
ZigBee sont également autorisées à
915 MHz DSSS aux États-Unis et à 868
MHz DSSS en Europe. Ces fréquences
utilisent la modulation BPSK (Binary Phase
Shift Keying) une modulation de phase
à enveloppe du spectre. La plupart des
solutions ZigBee utilisent actuellement la
bande des 2,4 GHz, mais elle est devenue
de plus en plus encombrée à cause de son
utilisation mondiale, notamment pour les
fours à micro-ondes. Les bandes ISM sont
moins encombrées, et les fréquences de
915MHz, 868 MHz ou 433 MHz offrent une
alternative aux réseaux sans fil 2,4 GHz.
Jusqu’à 200 Ko ps
«Réseaux propriétaires»
BANDE ISM
315, 433, 915 GHz
Portée (mètres)
Zigbee™ 2,4 GHz
mondial 915 GHz
NA 868 GHz Europe
Bluetooth
2,4GHz
Réseau local
sans fil (WLAN)
2,4GHz, 5,4 GHz
20-250 Ko ps
1000 _
100 _
10 _
1-3 Mo ps
11-54 Mo ps
La longueur d’onde d’antenne à 2.4GHz
est plus courte que celles des fréquences
inférieures ou égales à 915MHz. C’est
la raison pour laquelle de nombreux
routeurs WLAN nécessitent deux
antennes (voir même 3 antennes pour
les 802.11g à 5,6 GHz). Les réflexions et
les trajets multiples provoquent des trous
de polarisation sur les transmissions à
2,4 GHz. Les réseaux qui utilisent des
fréquences plus basses comme le 915
MHz présentent moins de trajets multiples
ou de trous de polarisation. De ce fait,
ils fonctionnent très bien avec une seule
antenne. De nombreuses applications
qui fonctionnent sur des fréquences de
915 MHz ou inférieures, peuvent être
réalisées avec une antenne PCB intégrée.
Cette diminution de l’antenne permet de
réduire considérablement le coût total du
système. Ceci est une des raisons pour
laquelle les réseaux qui fonctionnent hors
de la bande des 2,4 GHz sont souvent
choisis pour les réseaux industriels à
faible coût et ou la portée est plus longue.
Quelles sont donc les autres options
disponibles avec les bandes ISM ?
Pendant très longtemps, les ingénieurs
ont créé des réseaux RF propriétaires
en utilisant les modulations OOK (On/Off
Key) une modulation en tout ou rien, ASK
(Amplitude Shift Key) une modulation
d’amplitude ou FSK (Frequency Shift
Key) une modulation de fréquence.
Très souvent, ces réseaux offrent des
avantages que les ingénieurs ne peuvent
pas se permettre d’omettre. Micrel
propose, des émetteurs-récepteurs
pour la bande de 310 MHz à 950 MHz
Figure 2. Portée en fonction de la technologie pour
différents type de réseaux
Tous les prix de cette brochure sont en euros hors TVA
www.farnell.fr Tel.: 04 74 68 99 99 Fax: 04 74 68 99 90
Semiconducteurs
14
TECHNOLOGY FIRST
ƒ
25-50 Sauts
Figure 3. Modulation par étalement du spectre à sauts
de fréquence (FHSS)
qui peuvent exécuter de nombreux RKE
(télé déverrouillage) et des protocoles de
réseau sans fil à deux voies sur la bande
ISM. La principale difficulté d’un réseau
sans fil est la pile de protocole utilisée
par le microcontrôleur. Cette partie du
développement est généralement celle
qui pose le plus de problèmes.
Pour le protocole 15.247, Micrel rend
maintenant disponible un code source
générique en C, conforme FCC pour la
modulation à spectre étalé à saut de
fréquence (FHSS) utilisable avec les
émetteurs-récepteurs MICRF505 FSK.
Ce logiciel est appelé MicrelNet™,
il permet une modulation FHSS d’une
largeur de bande de 250 KHz avec 25
sauts de fréquence. Le circuit MICRF505
dispose d’un amplificateur de puissance
intégré (PA) permettant une transmission
de -3 dBm à +10 dBm avec une antenne
sans commutateur émetteur/récepteur
externe. En utilisant l’amplificateur
intégré, réglé à 10 dBm, la portée du
MICRF505, peut facilement atteindre
jusqu’à 300 mètres avec un taux de
transfert allant jusqu’à 200 Kbps.
La figure 3 montre différentes fréquences
de porteuses utilisées dans les systèmes
FHSS. Tous les noeuds sont synchronisés
pour permettre un saut. S’il y a une
mauvaise fréquence ou une fréquence
utilisée, le système saute simplement sur
la fréquence suivante. La pile de protocole
gère le rassemblement des paquets qui
sont envoyés entre les noeuds. MicrelNet
dispose d’un programme d’adressage
IP qui prend en charge le formatage de
l’adresse de destination et de source,
et rend facilement reconnaissable les
paquets de données. Les contrôles par
redondance cyclique logiciels assurent
l’acheminement des données.
Dans les réseaux industriels sans
fil, l’application et l’environnement
sont déterminant, pour choisir le type
de réseau le plus adapté. Les choix
de la fréquence, du protocole, et la
consommation sont les éléments clés qui
permettent de prendre la bonne décision.
Des protocoles comme 802.11, ZigBee,
et mêmes les systèmes propriétaires
comme MicrelNet peuvent tous cohabiter.
L’émergence de «contrôleurs de porte»,
comme le montre la figure 4, permettra à
différents réseaux de communiquer sur le
réseau le plus commun de tous.
Note : MicrelNet est une marque déposée de Micrel, Inc.
Toutes les autres maques déposées sont les propriétaires
de leurs sociétés respectives.
Contrôleur de passerelle
10/100 Copper Ethernet,
RS232 ou tRS485
o el
0 e
ZigBee™
65 000 noeuds possibles
LIAISON VIRTUELLE
COORDINATEUR
DE RÉSEAU
NOEUD À
FONCTION
INTÉGRALE
NOEUD À
FONCTION
RÉDUITE
802.11 WLAN
30 noeuds par routeur
Bande ISM MicrelNet™
65 000 noeuds possibles
MAÎTRE
CENTRAL
MAÎTRE
ESCLAVE
Figure 4.
Différents exemples de réseaux
19
www.rohs.fr
Les derniers semiconducteurs discrets conformes RoHS
Semiconducteurs discrets
Commutateurs de charge
très performants en petits
signaux
Transistors bipolaires à
émetteur commuté
Modules de puissance IGBT
Diodes Schottky ThinQ!™ de
600V au SiC
Modules de puissance
intelligents
Transistors pour applications Triacs Sanrex
d’éclairage
Drivers intelligents MOSFET
MOSFET de puissance
DirectFET™
IGBT NPT (Non-Punch Through)
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Transistors à valeur VCE(sat) ultrabasse
et transistors numériques
réunis dans des boîtiers miniatures
SOT-666.
Commutation 150kHz. Tension
assignée 1700V, avec faibles
pertes et RBSOA carrée (zone
de fonctionnement sûre avec
polarisation inverse).
Tension assignée 1200V. Technologie
Trench, pouvant supporter le courant
d’avalanche.
Tension assignée 600V - 1700V,
faisant appel à une technologie
évoluée de mise sous boîtier.
Module original, effficace d’un point de
vue thermique. Compatibilité SO-8.
Caractéristiques de commutation
presque parfaites, à base de carbure
de silicum.
Contrôleur autonome SMPS
(alimentation à commutation) en
mode courant avec CoolMOS™
intégré de 650V/800V.
Pont inverseur IGBT 600V 10A
triphasé, comprenant des circuits
intégrés pour la commande de grille
et la protection.
Gamme de transistors de puissance
bipolaires pour ballasts de lampes
industrielles et domestiques.
Gamme très variée, offrant la
commutation standard et haute
dans des modules de puissance
couramment demandés.
Increase System Reliability
and Effi ciency
www.fairchildsemi.com
Industrial Applications Integrated solutions
Fairchild Semiconductor offers the industry’s widest
range of integrated motor drive solutions (50VA to
10kVA). Motion-SPM provides complete adjustable
speed motor drive control and fully integrated circuit
protection for AC motors in appliance applications.
The PFC-SPM™ reduce component count and board
space while increasing system reliability and effi ciency.
The PFC-SPM™ provides 99% power factor (typical) to
meet the mandatory PFC standard (IEC61000-3-2).
Discrete solutions
Fairchild Semiconductor offers a wide portfolio of
discrete solutions.
Gate Drivers: Fairchild’s high voltage gate drivers
improve system reliability by using an innovative noise
cancelling circuit that provides excellent noise immunity.
IGBTs: Fairchild IGBTs are designed for high speed
switching to improve power density, system effi ciency,
and reliability compared to the MOSFET technology.
SuperFETs™: N-channel SuperFET™ MOSFETs
minimize conduction losses and increase switching
performance by lowering RDS[ON] and gate charge (Qg).
These devices are designed to operate reliably at higher
frequencies.
21
www.rohs.fr
Condensateurs
Les derniers condensateurs conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Sélection parmi les plus récentes technologies de
condensateurs conformes RoHS proposées par Farnell
InOne. Pour toutes informations complémentaires, veuillez
consulter www.farnellinone.fr
Condensateurs céramique
multicouche série
Série FM
Série FCA & FKA Série T528
Kits de condensateurs
AVX pour concepteurs
Gamme élargie de condensateurs
tantale et Oxicap™
Série VE Série VC32
Il s’agit de deux condensateurs
connectés en série dans un seul
composant, ce qui réduit le risque de
court-circuit.
Condensateurs électrolytiques en
aluminium à faible impédance et
excellente endurance, livrés dans un
boîtier qui est environ 30% plus petit
que celui de la série FC.
Les condensateurs de ces nouvelles
séries se basent sur les séries FC et
FK, et ils sont réalisés spécialement
pour supporter les conditions sévères
de brasage par refusion.
Condensateurs tantales organiques
montés en surface, cathodes en
polymères, présentant une faible
inductance et un bon comportement
en hautes fréquences.
Gamme de 12 kits offrant un choix
maximum d’échantillons en nombre
suffisant pour servir la conception et
le développement.
Pour ajouter aux kits de
condensateurs pour concepteurs,
cinq gammes courantes élargies plus
cinq nouvelles séries.
Varistances radiales en métal-oxyde
pour applications de protection contre
les surtensions.
Varistances monocouche à montage
en surface, offrant des tensions
assignées et des énergies transitoires
plus élevées que les varistances
typiques multicouches.
Pour le RoHS ne vous risquez pas ailleurs Condensateurs
22
Les derniers condensateurs conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Séries W2H et W3H Séries W2F4 et W3F4
Série MLCC Hi-Cap Condensateurs céramiques
multicouches à connexions
flexibles
Condensateurs Oxicap™ Série T510
Série A700 Série BXA
Série ZLH Série NP
Condensateurs céramiques
miniatures fort courant, réunissant
des condensateurs et inductances
dans un seul circuit de filtre à
régime permanent.
Condensateurs céramiques
multicouches de forte capacité
dans des boîtiers compacts. Les
condensateurs de cette série sont
également livrables sur bobines.
Condensateurs électrolytiques, dont
la céramique est faite d’oxyde de
niobium. En cas de défaillance sous
une tension inférieure ou égale à la
tension assignée, le condensateur
OxiCap™ ne prend pas feu.
Ensembles de condensateurs de
fuite contenant quatre éléments et
une connexion de mise à la masse
commune, donnant une faible
inductance parallèle et une excellente
capacité de découplage.
Les connexions flexibles garantissent
une flexion minimum de 5mm
sans aucune fissuration. Ces
condensateurs conviennent
idéalement pour les circuits-imprimés
soumis à des flexions importantes.
Condensateurs tantales multianodes
d’une résistance série
équivalente très faible, donnant un
courant d’ondulation allant jusqu’à 4
ampères.
Condensateurs en aluminium
polymères offrant une plus grande
rétention de capacité, et donc plus
performants aux hautes fréquences.
Conception assurant une bonne
protection contre la fissuration.
Condensateurs électrolytiques
miniatures haute température en
aluminium, à très longue durée de vie
et courant d’ondulation très élevé.
Série améliorée de condensateurs
électrolytiques miniatures en
aluminium, très fiables et à longue
durée de vie, présentant une faible
impédance aux hautes fréquences.
Condensateurs électrolytiques
aluminium, non polarisés, de type
radial, présentant d’excellentes
caractéristiques de fréquences,
et utilisable dans les réseaux de
transition.
23
www.rohs.fr
Les dernières résistances RoHS
Résistances
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Série WP-S
Résistances de puissance bobinées
et compactes résistant à la flamme,
excellente tenue aux impulsions.
Disponibles en versions 2W ou 4W.
Deux résistances parallèles dans
un seul boîtier, excellente tenue en
impulsions.
Série DSC
Série WSL
Résistances métalliques de puissance
avec une grande capacité résistive
aux surtensions, excellente stabilité
sur une large plage de conditions
environnementales.
visitez www.rohs.fr visitez www.rohs.fr
Résistances à couches épaisses,
haute puissance, à résistance
thermique extrêmement basse,
livrées dans un boîtier mince pour
l’installation haute densité sur
circuits-imprimés.
Série MHP140
Sélection parmi des milliers de nouvelles résistances
conformes RoHS en provenance des plus grands fabricants.
Pour toutes informations complémentaires, veuillez consulter
www.farnellinone.fr
Série CB10 Série CT6
Série CP16 Série Modèle 18
Potentiomètres d’ajustement en
carbone, avec flèche indicatrice de
position. Livrés avec axe de réglage.
Potentiomètres de réglage contenant
un élément moulé en résine dans
un boîtier miniature. A l’abri de la
poussière et du flux et stable en
présence d’une forte humidité.
Potentiomètres en plastique avec
axe de réglage, haute résistance
d’isolement et capables de supporter
des tensions élevées. Différentes
tailles disponibles, grande fiabilité.
Diamètre 22,2mm, cadrans 15 tours
et “frein à encliquetage” puissant.
Pour le RoHS ne vous risquez pas ailleurs
24
Les dernières résistances RoHS
Résistances
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Série SMHP Série FC
Série YR1 Série RWM 6 x 22
Série BSC8 Série LVR
Série B57540 Série B59601
Série 3204 Séries PRC201 et PRC221
Résistances non inductives, haute
puissance, à résistance thermique
extrêmement basse. Montage sur
circuits-imprimés par soudure ou
par clip.
Résistances de précision à faible
résistance interne, qui fonctionnent
presque comme des résistances
pures dans une bande de fréquences
très large.
Résistances à couches métalliques,
très faible bruit et faible coefficient
de tension, et excellente stabilité en
présence de charges et de conditions
environnementales sévères.
Résistances de puissance émaillées
à bobinage axial, forte dissipation et
grande fiabilité. Disponibles en faible
valeurs ohmiques.
Résistances de détection de courant,
excellente tenue en présence
d’impulsions et de surtensions,
livrées dans un boîtier bas profil pour
montage en surface.
Résistances de puissance de précision
à bobinage axial offrant des valeurs
de résistance extrêmement faibles et
une excellente stabilité en présence de
charges.
Thermistances haute stabilité à
coefficient de température négatif,
encapsulées dans du verre avec fils
“dumet”, conçues pour les hautes
températures et des temps de
réponse très rapide.
Thermistances compactes à
coefficient de température positif,
conçues pour fournir une réponse
rapide et fiable. Conviennent pour le
brasage par refusion.
Potentiomètres de réglage Cermet
CMS compacts monotour, dont la
disposition des bornes empêche le
chevauchement des soudures.
Résistances CMS, dissipation
thermique de 1 watt. Les résistances
de la série PRC221 sont également
livrables en bobines.
visitez www.rohs.fr
25
www.rohs.fr
Les derniers composants optoélectroniques conformes RoHS
Optoélectronique
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Sélection de Leds mono ou multicouleurs pour l’affi chage ou la
détection.
Densité de flux lumineux élevée,
émettant vers le haut ou le côté.
Choix de couleurs.
Types: BA9S, BA15D, BA15S,
GX53 et S6S.
Livrée sur bobines de 4,5m.
6 LED indicatrices de tension, choix
de couleurs: rouge, blanc et bleu.
Solution souple et modulaire pour
l’éclairage.
Génération la plus récente, intensité
lumineuse parmi la plus élevées du
marché.
Intensités de flux les plus élevées
dans cette catégorie, encombrement
réduit.
visitez www.rohs.fr
visitez www.rohs.fr
Système LinkLED™
LED de puissance Atlas 8,6W
Source lumineuse LED -
RVB (rouge, vert, bleu)
Bande lumineuse flexible
Ampoule de remplacement
à LED
Bande de LED
Bande de LED de
puissance, 8W
LED de puissance K2
visitez www.rohs.fr
visitez www.rohs.fr
www.avagotech.com/LED
For more information please visit our website
Technical Specifications
© 2006 Avago Technologies, Ltd. All rights reserved.
LED Lighting Solutions Technology
Features
• IR-reflow solderable, compatible with standard
SMT assembly process
• Robust moisture sensitivity level (MLS) 2a, for flexible
assembly at customers’ site
• Low thermal resistance, for reliable long operating life
• High current operation
• Wide viewing angle
• Silicon encapsulation
• Available in white, blue and green color
Key Applications
• Portable Lighting– flash light, bicycle head light,
miner’s head lamp
• Focused Lighting– reading light, spot light,
accent light
• General Lighting– decorative, architectural & garden
• Back Lighting– signs and billboards
From lighting your way through the darkness to
high performance lighting for your outdoor signage,
Avago Technologies has a high power LED lighting
solution for you.
Avago’s high brightness, high performance, energy
efficient LEDs can handle high thermal and high
driving current. A smooth radiation pattern offers a
120º viewing angle and the low profile package
design is ideal for a wide range of applications
especially where height is a constraint.
The ASMT-Mx00 is the first of Avago’s 1W high
Power LED products with moisture sensitivity level
(MSL) 2a and can be driven at 350mA. It is one of
the thinnest packages available and has superior
heat dissipation. It is compatible with IR soldering,
and is encapsulated in a heat and UV resistant
silicon compound.
High brightness
LED lighting
solutions from
Avago Technologies
give you reliable,
high performance
illumination,
flexibility of design
and robust, easy to
handle packaging
Light up the night
These products are available from Farnell InOne:
www.farnellinone.com
27
www.rohs.fr
Optoélectronique
Les derniers composants optoélectroniques conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Montées dans un module TO-220
facilitant la dissipation thermique.
LED de puissance,
350mW et 700mW
LED de puissance
‘Lednium’ 10W
LED de puissance Platinum
Dragon
LED de puissance
Ostar
Modules LCD d’interface
série I2C
Afficheurs OLED
Afficheurs industriels LCD Capteur de couleurs RVB
dans un boîtier QFN
Capteurs de distance Convertisseur lumière-signal
numérique
Génération la plus récente de LED
de 4,6W dans des modules à profil
réduit montés en surface.
Module tridimensionnel
révolutionnaire donnant un angle de
visualisation de 120°.
Luminosité et luminance
exceptionnelles dans un module
en forme d’étoile thermiquement
efficace.
Dimensions très demandées, avec
interfaçage simplifié et souple.
Affichages clair, brillant et efficaces
sur une large gamme de couleurs.
Capacité vidéo intégrale.
6.5” à 12.1” - VGA, SVGA et XGA. Convertit la lumière pour la séparer
en tensions de sortie RVB.
Choix très varié, avec mesures
précises entre 4,5 mm et 800 mm.
Se rapproche du comportement de
l’oeil humain. Option I2C offerte.
Pour le RoHS ne vous risquez pas ailleurs
28
Optoélectronique
Les derniers composants optoélectroniques conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Ecran couleur à matrice
active, de 3.6” à 10.4”
Kits de démarrage pour écrans
couleurs à matrice active Sharp
Module LCD interfaçable
facilement
Modules émetteurs/récepteurs
à fibres optiques LC
Kits d’évaluation des lentilles
pour LED
LED CMS
Emetteurs et récepteurs
numériques audio à fibres
optiques
Guides de lumière
flexibles ou rigides
Le plus petit multiplexeur/
démultiplexeur au monde
Emetteurs infrarouges rapides
à montage en surface
Série ‘Strong’: brillance et facteur de
contraste élevés.
Livré avec contrôleur RVB, panneau
d’affichage sur écran et câbles de
raccordement nécessaires.
Ecran couleur à matrice active
320 x 234 de 32K, avec bus
d’interface 8051.
Conformes aux normes de l’industrie,
faible facteur de forme.
Conçus pour les LEDde puissance
Osram Golden Dragon et Luxeon K2.
Choix très varié de couleurs et de
designs, y compris le blanc.
Conforme à la norme JEITA CP-1212. Livrés en tronçons de 1m et 3m
de long, avec systèmes optiques
correspondants.
4 et 8 voies. Haute intensité 35mW dans un très
petit boîtier .
To explore the possibilities or receive
free samples please contact us at
+49 6322 95670 or visit us online
at www.cml-it.com
Europe - Robert-Bunsen-Str.1, 67098, Bad Durkheim, Germany
America - 147 Central Avenue, Hackensack, NJ07601
Asia - 61 Aida Street, Singapore 459975
Un-leading
by example!
European product range from
CML Innovative Technologies
now fully RoHS compliant
CML Innovative Technologies (CML-IT) is producing its wide
European range of miniature lighting products according to the
RoHS directive from the European Commission. All devices
are manufactured featuring the same product specifications as
before but now comply with the RoHS' significant limitations on
the use of lead, mercury, cadmium and hexavalent chromium.
All lamps and bulbs in CML-IT's European product range are
manufactured using lead-free glass and RoHS-compliant chips
for the company's range of LEDs and Power LEDs
More Innovative Technology from CML-IT!
Engineering Know-How from CML-IT
30
Pour le RoHS ne vous risquez pas ailleurs Connecteur
Les dernières gammes de connecteurs conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Vous trouverez ci-dessous une sélection de nouveaux
connecteurs originaux issus des plus grands fabricants
Connecteurs autodénudants
0,27 mm
Série UTS de connecteurs
circulaires étanches
Série Harax M12 Ecomate
SCE & PPS Série Datamate à montage en
surface et vis d’accouplement
MicroClasp Mini USB Bucanneer
• Système d’accouplement triphasé
robuste
• Interface autodénudante très
performante du type bosselé
• Capot-verrou métallique et serrecâble
en option assurant la fiabilité
à long terme
• Connecteurs circulaires en
plastique IP68/IP69K
• Système de blocage rapide et sûr,
sertissage et installation rapides
• Etanchéité extrême à l’eau
• Comportant le système de
raccordement rapide HARAX
• Pour les applications utilisant
auparavant du câble préassemblé
• Connecteur ergonomique et
résistant à la poussière
• Convient pour usage dans des
environnements hostiles
• Utilisable avec câbles de 6 à
12,5 mm de diamètre
• Connecteurs miniatures PPS
(du type push-pull) et SCE (à
désaccouplement) et assemblages
de câbles
• Robustes avec excellente
étanchéité (IP65 à IP68)
• Nouveaux connecteurs J-Tek (vis
d’accouplement) venant s’ajouter à
la gamme Datamate très fiable de
Harwin
• Livrés en double rangée, de 6 à 50
voies
• Nouveau connecteur MicroClasp™
au pas de 2,00 mm
• Système fils/cartes à simple et
double rangée conçu par Molex
• Conception unique pour le marché
des connecteurs
• Nouveau Mini USB Buccaneer
- résistant à la poussière
conformément à IP68 après
accouplement
• Câbles livrés en tronçons longueurs
de 2, 3 et 4,5m
Farnell InOne exclusif
31
www.rohs.fr
Connecteurs
Les dernières gammes de connecteurs conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Connecteurs Sub D
avec filtres
Connecteurs Sub D double
empilage
I Pass Série ZDC, SMA, SMC
Accessoires modulaires HAN Connecteurs pour câbles
plats souples
Mate N Lock Type RJ48
Fiches et douilles de
test 1mm
Champ RJ
• Mini-connecteurs Harting bas profil
et autodénudants pour circuits
imprimés
• Hauteur après montage inférieure à
5,5 mm
• Connecteurs Sub D à montage
sur carte, et empilables
• Réduisent l’espace total occupé
sur le circuit-imprimé par les
connecteurs individuels
• Totalement interconnectables avec
les autres connecteurs Sub D
• Ensembles connecteurs et câbles
offrant une plus grande densité et
des vitesses plus élevées
• Solution idéale pour
l’interconnexion dans le marché
des serveurs en pleine croissance
• Solutions rentables pour
applications commerciales
• Composants moulés de précision
avec diélectriques thermoplastiques
• La série comprend à présent les
connecteurs SMA et SMC
• Gamme plus étendue d’accessoires
modulaires HAN
• Comprenant USB (bus série
universel), Firewire, D Sub et DDD
• Les nouveaux accessoires
comprennent des serre-câble
métalliques et en plastique
Tyco Electronics présente sa gamme
de connecteurs pour câbles plats
souples (FFC). Tailles 0,5mm à
1,25mm, 4 à 30 voies. Montage en
surface et options ZIF prévues.
• Farnell InOne ajoute à sa gamme
de connecteurs Mate N Lock
• Utiles pour les connexions internes
des équipements, fils à fils, et fils à
cartes
• Nouvelle gamme RJ48 10 voies
proposée par Farnell InOne
• Fiche sans blindage et fiche à
angle droit sans blindage
• Fiches et douilles de test 1mm
pour le raccordement fiable dans
les espaces très restreints
• Livrés en un choix de couleurs
• Permet de transformer les groupes
de cordons standard RJ45 ou USB
pour usage dans les applications
industrielles
• Etanchéité assurée en une minute
- sans aucun outillage
32
Pour le RoHS ne vous risquez pas ailleurs
Les dernières gammes d’accessoires conformes RoHS
Accessoires
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Sélection dans notre gamme courante de vêtements/
équipements de protection antistatique et
d’accessoires pour semi-conducteurs
Connecteurs
d’extension mémoire
DIMM
Matériau conducteur
thermique Sil-Pad
SP900S
Ruban auto-adhésif à
conductivité thermique
Bond-Ply 100
Matériau conducteur
thermique Gap-Pad™
Ensembles de dissipateurs
thermiques avec ventilation
forcé en option
Ensembles de bracelets économiques
Bracelet ajustable économique Cordons de mise à la terre économique
Comportant SDRAM, DRAM DDR,
DDR1 et DDR2.
Grosseur moyenne, haute conformité
et faible impédance thermique.
Ruban adhésif très performant, à
conductivité thermique, et à forte
adhérence.
Elément de conduction thermique,
placé entre les dissipateurs
thermiques et les circuits
électroniques.
Dissipateurs thermiques à utiliser
avec les modules d’alimentation
isolés Semikron: Semipack,
Semitrans et redresseurs en pont
Semipoint.
Bracelet ajustable et cordon spiralé
de mise à la terre de 3m.
Non allergénique - pas de fibres en
acier inoxydable, choix de boutons
4mm ou 10mm.
Cordons jaunes à haute visibilité,
longueur déployée 3m.
33
www.rohs.fr
Les dernières gammes d’accessoires conformes RoHS
Accessoires
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Talons de mise à la terre économique Kit d’entretien sur le terrain
Ioniseur de table Vestes et blouses de protection
antistatiques
Tablier de mise à la terre (ESD) Caisses antistatiques pour
pièces détachées
Couvre-chaussure jetable
antistatique
Appareil de contrôle continu
des bracelets de mise à la terre
Boîte à outils antistatique Sonde à anneaux concentriques
Talons durables double couche en
PVC/caoutchouc nitrile à dissipation/
conduction.
Kit d’entretien sur le terrain offrant
une protection optimale contre
l’électricité statique.
Ioniseur compact et léger à autoéquilibrage,
courant continu. Montage
sur banc ou mural.
Vêtements antistatiques fabriqués
avec du tissu haute qualité.
Protège les vêtements des salissures
et des taches dans la zone de
protection électrostatique.
Caisses empilables fabriquées
en polypropylène E9 à propriétés
antistatiques permanentes.
Modèle élégant et confortable,
revêtement en polyuréthane, résistant
aux produits chimiques avec sole non
glissante.
Signale toute interruption
accidentelle de la boucle de mise à
la terre dans une zone de protection
électrostatique.
Boîte à outils robuste, résistant aux
chocs, fabriquée en E9 durAstatic.
Mesure la résistivité de surface des
matériaux.
34
Pour le RoHS ne vous risquez pas ailleurs Câbles
Les dernières gammes de câbles conformes RoHS
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
Sélection de produits dans notre gamme de câbles et
accessoires conformes RoHS pour des applications très
variées. Pour toutes informations complémentaires, veuillez
consulter www.farnellinone.fr
Fils UL pour la connexion
des équipements
XTRA-GUARD® 1 - Câble de
transmission de données
Câble Belden Câble coaxial
Presse-étoupes
SKINTOP® et
SKINDICHT®
Marqueurs Helagrip
en chevrons
Attaches et montures de
câble Panduit
Gaines
thermorétractables
Fil de connexion UL1007, 1015,
1061 & 1213, à isolant en PVC et
TFE. Conducteurs torsadés en cuivre
étamé.
Applications possibles: périphériques
connectés aux ordinateurs,
équipements commerciaux,
électroniques médicaux et
autres environnements de haute
technologie.
Gamme variée de câbles à paires
torsadées offrant un large choix
de longueurs, d’applications et de
nombres de paires.
Gamme de câbles coaxiaux proposée
par Nexans - Possibilité de coupe
au mètre.
Gamme de presse-étoupes, contreécrous
et bouchons en nylon,
polyamide et laiton nickelé.
Gamme de marqueurs de câble
en PVC.
Gamme Panduit d’attaches et de
montures et plaques de fixation de
câble adhésives/vissées.
Tubes souples en polyoléfine livrés
en longueurs de 1,2 m et aussi sur
bobines. Choix varié de couleurs et
de tailles.
Et si vous pouviez
devenir quelqu’un
d’autre?
NXP– La nouvelle
compagnie née de
Philips Semiconducteurs
Avec toute l’énergie d’un nouveau
commencement, alimenté par 50 années
de sagesse, NXP Semiconducteurs
est prêt à répondre à toutes vos
questions, et tout spécialement aux
questions impossibles. Celles qui ne
sont encore que des rêves, mais qui
se transformeront rapidement en
expériences sensorielles étonnantes.
Conduit par l’ouverture d’esprit et la
curiosité d’un nouveau-né, NXP est déjà
à l’avant-garde d’un univers vibrant
des technologies multimédias. Cette
position de leader se reflète dans les
milliards de dollars investis dans les
projets de recherche, le dépôt de plus
de 25 000 brevets, ainsi que dans
le nombre de solutions innovantes
dans les secteurs de l’identification,
de l’automobile, de la mobilité et de
l’électronique domestique. Découvrez
comment vos idées d’avant-garde
peuvent être vues, entendues et
ressenties d’une manière totalement
nouvelle sur www.what-if-you-could.com,
parce que la question à partir de
maintenant est la suivante: qu’aimeriezvous
mettre en question?
Et si vous pouviez
Pour le RoHS ne vous risquez pas ailleurs
36
Pro-Power
La dernière gamme Pro-Power conforme RoHS
Gaines thermorétractable 2:1 Fils d’équipements
Fil pour appareillage de commutation
conforme TRI
Câble résistant à la chaleur de 1/0,80mm
Fil de connexion Câble coaxial RG58BU/CU
Gaines thermorétractable 3:1
à revêtement adhésif
Gaine thermorétractable 4:1 en PTFE
Gaine isolante Gaine en PTFE
Tube thermorétractable 2:1 ignifuge,
livré en longueurs différentes.
Fils d’équipements de 1/0,60mm à
isolant en PVC.
Entre autres applications: câblage
des tableaux de commutation et
de commande, et câblage interne
général.
Câbles à âme unique servant
normalement au câblage
d’éclairage fluorescent.
Fil de connexion homologué UL et
certifié CSA.
Câbles coaxiaux à isolant en
polyéthylène solide.
Tube thermorétractable de rapport
3:1 à revêtement adhésif noir.
Gaine thermorétractable haute
température en PTFE translucide
naturel.
Gaine isolante en PVC souple sans
plomb, livrée en bobines de 100m.
Excellentes propriétés d’isolement,
convient idéalement pour les
applications haute température.
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
visitez www.rohs.fr visitez www.rohs.fr
A selection of quality
products from Pro-Power
- platine à adaptateur multiple doté de six éléments semi-conducteurs
micro-miniature
- fibre de verre époxyde FR4 1,50 mm, simple face 35 μm CU
- côté des composants chimiques nickel/or, cache d'arrêt de brasage et impression
d'équipement
- le placement de vingt différents types de semi-conducteurs énoncés dans le
tableau est possible sur la platine
- baguette à 8 broches pas 2,54 mm, diamètre de perçage 1,00 mm
- point rainuré destiné à la rupture de séparation des modules
- données de Gerber pour la fabrication de la cache d'arrêt de brasage et de
l'impression de la pâte à braser sont gratuitement mises à disposition sur
simple demande
- dimensions 22,86 mm x 46,72 mm
Layout Pad Size Pad Pitch Taille Configuration Occupation
TO252 * * * * TO252
SOT223 * * * * SOT223
SOT89 * * * * SOT89A
SOT23 0,71 x 1,0 mm 0,95 mm 2,4 mm 2 Reihen x 3 SC59, SC74
SC74A,SMT3,
SMT5, SMT6,
SOT23, SOT23-5,
SOT23-6
SOT23-8 0,46 x 1,1 mm 0,65 mm 2,4 mm 2 Reihen x 4 SC70, SC88A,
SOT23-8, UMT3,
UMT5, UMT6
SC75 * * * * EMT3, SC75
SOT 23 Multiadaptateur-CMS
RE901
26
Réaliser un circuit
de protection fiable
La technologie HDMI comble cet écart
en utilisant des débits de transmission
très élevés, jusqu’à 10Gbit/s (norme
HDMI 1.3).
En raison de leur microélectronique
complexe, les téléviseurs à écran plat sont
extrêmement sensibles aux surtensions
transitoires, telles que les ESD (surtensions
électrostatiques). La protection ESD de
l’interface HDMI présente un défi particulier
pour les fabricants d’équipements
électroniques grand public. Il y a de très fortes
chances qu’une impulsion ESD atteigne
l’appareil si des câbles périphériques
sont touchés ou si des connecteurs sont
débranchés. L’impulsion circule alors
du terminal vers la carte, détruisant
potentiellement la carte ou ses composants.
Les diodes à semiconducteurs
conventionnelles ne sont pas bien adaptées
à la protection ESD dans les téléviseurs à
écran plat car leurs propriétés protectrices
commencent à s’altérer à partir de
25°C (réduction des caractéristiques de
fonctionnement). À l’opposé, la CeraDiode,
développée par EPCOS, est immunisée
contre les températures élevées souvent
rencontrées dans les téléviseurs LCD
et plasma. Ses propriétés protectrices
restent stables jusqu’à une température de
fonctionnement de 85°C.
La CeraDiode est fabriquée à base
d’oxydes de céramique selon une technologie
multicouche. Ces composants suppriment
efficacement les tensions transitoires. Ses
couches sont composées de
nombreux grains d’oxyde de
zinc, formant une micro-
CeraDiode, comparable à une
diode Zener. Grâce au grand
nombre de micro-CeraDiodes
individuelles, la puissance
globale ESD d’une CeraDiode
est supérieure à celle d’une
diode de suppression, qui
ne présente qu’une simple
jonction PN.
Les CeraDiodes offrent
une résistance très stable,
insensible aux variations de
température et aux tensions
de polarisation continues.
Cela signifie que la résistance elle-même
peut servir de filtre pour les composants
haute fréquence, remplaçant ainsi plusieurs
composants externes qui auraient été
nécessaires pour la protection ESD et la
fonction de filtrage.
En raison de leur structure interne et
d’un boîtier plus petit, les CeraDiodes ont
des inductances parasites très faibles, par
conséquent, les temps de réponse sont
inférieur à 0,5ns et garantissent une protection
ESD fiable. Les diodes de suppression ont des
temps de réponse de 0,8ns ou plus en raison
d’un format plus grand et d’une inductance
parasite supérieure.
Les CeraDiodes ne sont pas seulement
une alternative rentable par rapport aux
composants de protection ESD à base de
semiconducteurs – comme les diodes
Zener ou TVS – Elles offrent également des
avantages techniques. Elles remplacent
dans de nombreux cas une diode à
semiconducteur sans modifications.
Les CeraDiodes étant des composants
bidirectionnels, il n’y a aucun risque de
mauvais positionnement au cours du
processus de placement automatique.
Avoir une norme de connexion numérique à haut débit pour la transmission audio et vidéo de qualité optimale n’a jamais
été un besoin aussi pressant qu’aujourd’hui. L’utilisation très répandue des écrans plats et l’avènement de la télévision
haute définition (jusqu’à 1920 x 1080
pixels) ont créé un réel décalage
dans le domaine de la connexion.
0 Time [ns] 1.8
875
-875
Voltage [mV]
Source Eye Diagram
17
Les tendances du marché incitent à
réduire la consommation d’énergie
tout en continuant à satisfaire
aux demandes de performances et de
fonctionnalités accrues. Plusieurs domaines
sont concernés par l’optimisation, comme
la technologie des semiconducteurs, les
techniques de conception, les architectures
système, les configurations de plate-forme
et les méthodes de conception. Cette
optimisation s’étend également au logiciel
système, un composant intégral des produits
à base de semiconducteurs.
La consommation électrique dans les
circuits intégrés CMOS est en général classée
en puissance dynamique dans un circuit de
commande, comme la puissance commutée
et la puissance statique ; la déperdition
d’électricité qui est mesurée à chaque fois
qu’un circuit est mis sous tension en est un
exemple. Traditionnellement, la puissance
statique consomme moins d’énergie que la
puissance dynamique. Cependant, du fait
que les configurations CMOS continuent à
se réduire, la puissance statique commence
à représenter une portion plus importante
de l’énergie totale utilisée. Par conséquent,
les technologies d’économie d’énergie
doivent s’attaquer aux deux formes de
consommation électrique.
Exemple d’application :
Microcontrôleurs QE128
Le ColdFire V1 MCF51QE128 (32 bits) fait partie
de la série de microcontrôleur Flexis. La série
Flexis fait preuve d’une efficacité énergétique
optimale, prolongeant la durée de vie des
batteries dans les applications portables
grâce à des modes de veille prolongée
« Deep-Sleep ». Chaque appareil dispose de
plusieurs modes d’arrêt, en plus des nouveaux
modes d’attente et de fonctionnement en
basse puissance, chacun d’eux économisant
encore plus l’énergie consommée. Les modes
d’attente et de fonctionnement en basse
puissance permettent à l’appareil d’opérer
en mode basse puissance avec tous les
périphériques activés. En outre, un oscillateur
externe 32KHz ultra-basse puissance
consomme moins de 1uA et peut être utilisé
dans toutes ces configurations.
Normalement, en mode exécution un circuit
intégré doit fonctionner à une fréquence d’au
moins 1MHz. Les passages répétés entre le
mode veille et le mode réveil pour contrôler
les besoins et les événements système
peuvent augmenter considérablement la
consommation d’énergie (les arborescences
peuvent consommer jusqu’à 40% de la
puissance active du circuit). Les MCU QE128,
par contre, utilisent un oscillateur 32kHz avec
un courant d’alimentation très faible, évitant
ainsi les pointes de courant qui se produisent
normalement lors de chaque changement
de mode.
Les MCU QE128 sont fabriqués à l’aide
d’une technique LVLP (basse tension – basse
puissance), utilisant des transistors avec une
longueur de canal plus grande pour réduire
le courant de fuite qui, à terme, diminue la
consommation de puissance statique. La
bibliothèque de cellules standard a aussi été
considérablement optimisée et comprend des
éléments basse puissance.
Ces appareils sont également dotés d’un
registre périphérique ‘clock gating’ pour
désactiver les modules non utilisés, ainsi
que l’oscillateur externe 32kHz qui fournit
une source d’horloge précise au compteur
temps réel.
Collaborer pour un rendement
énergétique rentable
Enfin, l’efficacité énergétique est mesurée
par rapport aux besoins du client. Que
l’application nécessite une longévité
batterie accrue ou une diminution de la
dissipation thermique, les concepteurs
se basent sur les semiconducteurs
qui répondent à leurs exigences de
performance sans dépasser le budget
énergie fixé. Freescale travaille en étroite
collaboration avec ses clients pour définir
clairement les paramètres de performance
énergétique requis. Cette étroite
collaboration contribue à optimiser des
solutions en vue de développer facilement
des applications économiques d’énergie,
accélérer la commercialisation et rendre le
produit fini plus attrayant pour les clients.
L’efficacité énergétique pour
un rendement optimum
Les fabricants de produits électroniques disent que l’objectif de performance pure n’est plus leur préoccupation
première. Il s’agit désormais de réduire la facture énergétique au maximum, en raison de l’augmentation des coûts et des
responsabilités environnementales.
Produits Luxeon, SuperFlux et SnapLED
G U I D E D E S P R O D U I T S
2
Qu’est-ce que Luxeon ?
Les diodes Luxeon sont les diodes
électroluminescentes qui ont le flux
lumineux le plus élevé au monde, pour
fournir les solutions d’éclairage à semiconducteurs
les plus lumineuses. La
couleur blanche Luxeon produit plus de
20 lumens par Watt ; les diodes Luxeon
sont 10 à 20 fois plus lumineuses que les
DEL standard, ce qui permet d’obtenir
des densités lumineuses de 5 à 20 fois
supérieures. Luxeon est une source
lumineuse optimale.
Dure plus longtemps que toute autre
source lumineuse — plus de 10 ans
Luxeon a recours à des technologies de
semi-conducteurs utilisées dans la Silicon
Valley et similaires à celles des derniers
microprocesseurs. A la différence des
sources lumineuses classiques, les DEL
ne tombent pas en panne d’un seul coup,
dans le sens où elles ne brûlent pas et ne
cessent de fonctionner sans prévenir.
Dans de nombreuses applications, les
solutions Luxeon fonctionnent pendant
plus de 10 ans.
Frais de maintenance réduits
Du fait que les produits Luxeon durent au
moins 10 fois plus longtemps qu’une
source lumineuse classique, il n’est pas
nécessaire de remplacer la source
lumineuse, ce qui réduit, et même élimine,
les frais de maintenance récurrents et de
remplacement de l’éclairage.
Meilleur rendement énergétique
Adoptez la solution écologique. Luxeon,
avec un meilleur rendement que les
sources halogènes et incandescentes, se
rapproche rapidement du rendement des
solutions fluorescentes.
Couleurs vives saturées — sans filtre
Luxeon ne nécessite aucun filtre pour
générer une lumière colorée, ce qui a pour
effet des couleurs saturées plus profondes
sans perte de lumière. La profondeur des
rouges, verts et bleus est générée
directement par cette source lumineuse à
semi-conducteur.
Eclairage dirigé pour améliorer
le rendement lumineux
Les sources lumineuses Luxeon sont de
petits points de lumière directionnels. Leur
taille et la commande de leur direction en
font des systèmes optiques très
contrôlables, sans gaspillage de lumière.
Eclairage à semi-conducteurs fiable
Les sources lumineuses Luxeon sont des
appareils à semi-conducteurs. Elles ne
comportent pas de pièces mobiles, aucun
élément susceptible de rompre, de se
briser, de fuir ou de contaminer
l’environnement.
Contrôle dynamique des couleurs,
réglable sur le blanc
Les couleurs vives et saturées de Luxeon
permettent d’obtenir une large gamme
d’effets d’éclairage statiques et
dynamiques. Du blanc réglable à une seule
lumière capable de générer
numériquement n’importe quelle couleur
de l’arc-en-ciel, Luxeon ouvre de nouvelles
dimensions au monde de l’éclairage.
Totalement réglable —
sans variation de couleur
Les sources lumineuses Luxeon sont
totalement réglables — plus de 1000 fois
— sans compromettre les caractéristiques
de la lumière.
Pas de mercure dans la source
A la différence de la plupart des sources
fluorescentes, Luxeon ne contient pas de
mercure.
Absence de chaleur ou d’UV dans le
rayon lumineux
Pas de rayons ultraviolets ou infrarouges
nuisibles dans le rayon lumineux Luxeon.
Démarrage à froid
Luxeon n’a aucun problème de
démarrage aux basses températures —
jusqu’à -400 C.
Fonctionnement basse tension CC
Luxeon est un appareil à semi-conducteur
commandé par le courant, qui fonctionne
sous des tensions aussi faibles que
3,5 VCC.
Caractéristiques Luxeon
3
Conservation supérieure de l’intensité lumineuse — par conception
Les sources lumineuses Luxeon ne contiennent pas d’époxy. L’époxy se dégrade dans le
temps, ce qui entraîne une médiocre conservation de l’intensité lumineuse. La technologie
Luxeon apporte une conservation supérieure de l’intensité lumineuse par rapport à
d’autres sources semi-conductrices et aux éclairages classiques.
Meilleur rendement — par conception
La lumière émise par un produit Luxeon est
directionnelle. Les sources lumineuses classiques
(incandescentes, halogènes, fluorescentes) sont
omnidirectionnelles : la lumière est émise dans toutes
les directions. Pour éclairer un objet, la lumière qui
n’est pas dirigée vers l’endroit voulu doit être redirigée
au moyen d’optiques secondaires. Chaque fois qu’un
rayon lumineux est reflété, il perd de son intensité.
Les pertes typiques sont de l’ordre de 40 à 60 % :
cela signifie que dans certains cas, la moitié de la
lumière générée par la source est dirigée vers l’endroit
voulu. La nature dirigée de la lumière Luxeon fournit
des rendements de 80 à 90%. L’intensité lumineuse
totale nécessaire est donc inférieure pour obtenir la
même luminosité. Par exemple, la source Luxeon
Star/O génère un rayon étroit de 2x5 degrés avec un
rendement optique égal à 85 %.
Lorsque vous envisagez d’utiliser un produit Luxeon
comme source lumineuse, il est important de prendre
en compte tous les facteurs, y compris le modèle de
rayonnement le plus adapté à votre application. Il
existe différents modèles de rayonnement pour de
nombreux produits Luxeon. Le choix et la conception
du modèle de rayonnement améliore notablement le
rendement de votre système d’éclairage.
0
20
40
60
80
100
120
4000 8000 12000 20000
temps (heures)
puissance lumineuse relative %
DEL blanche 5 mm incandescence typique luxeon forte puissance
déplacement angulaire (degrés)
i n t e n s i t é r e l a t i v e %
aile de chauve-souris
modèle de rayonnement (sans optique)
-100 0 100
20
60
100
Supériorité de la conception
lambert
modèle de rayonnement (sans optique)
-100
20
60
100
0 100
déplacement angulaire (degrés)
i n t e n s i t é r e l a t i v e %
émission latérale
modèle de rayonnement (sans optique)
20
60
100
-120 0 120
déplacement angulaire (degrés)
i n t e n s i t é r e l a t i v e % 0
-
40
20
60
100
40
modèle de rayonnement
optique de réglage
déplacement angulaire (degrés)
i n t e n s i t é r e l a t i v e %
4
Diode Luxeon Emitter
Description
La puissance Luxeon sous sa forme la plus basique. Concevez et construisez
votre source lumineuse Luxeon selon vos spécifications. Diodes standard Luxeon
disponibles en blanc chaud, blanc, vert, cyan, bleu, bleu roi, rouge, rouge/orange
et ambre.
LXHL-BW02 Blanc 5500 K 25
LXHL-BW03 Blanc chaud 3300 K 20
LXHL-BM01 Vert 530 nm 30
LXHL-BE01 Cyan 505 nm 30
LXHL-BB01 Bleu 470 nm 10
LXHL-BR02 Bleu roi 455 nm 150 mW
LXHL-BD01 Rouge 625 nm 27
LXHL-BL01 Ambre 590 nm 25
LXHL-BD03 Rouge 625 nm 42
LXHL-BH03 Rouge/Orange 617 nm 55
LXHL BL03 Ambre 590 nm 42
LXHL-PL01 Ambre 590 nm 42
LXHL-DW01 Blanc 5500 K 22
LXHL-DM01 Vert 530 nm 27
LXHL-DE01 Cyan 505 nm 27
LXHL-DB01 Bleu 470 nm 9
LXHL-DR01 Bleu roi 455 nm 135 mW
LXHL-DD01 Rouge 625 nm 40
LXHL-DH01 Rouge/Orange 617 nm 50
LXHL-DL01 Ambre 590 nm 38
Aile de chauve-souris
Lambert
Emission latérale
DESSINS A
L’ECHELLE
REELLE
LXHL-PM01 Vert 530 nm 30
LXHL-PE01 Cyan 505 nm 30
LXHL-PB01 Bleu 470 nm 10
LXHL-PR03 Bleu roi 455 nm 150 mW
LXHL-PD01 Rouge 625 nm 44
LXHL-PH01 Rouge/Orange 617 nm 55
LXHL-PW01 Blanc 5500 K 25
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
Référence Couleur Longueur d’onde dominante
ou temp. couleur Lumens TYP
Modèle de
rayonnement
Luxeon Star
5
LXHL-FD1C N/A N/A Rouge 625 nm 40 —
LXHL-FH1C N/A N/A Rouge/Orange 617 nm 50 —
LXHL-FL1C N/A N/A Ambre 590 nm 38 —
Description
Modules Luxeon de forme carrée et hexagonale. Fournis avec connecteur AMP 2
broches, ou pastilles à souder pour la connexion électrique. Pour un contrôle
précis du rayonnement, également disponible avec optique secondaire PMMA à
haut rendement. Disponible en blanc, blanc chaud, vert, cyan, bleu, bleu roi,
rouge, rouge/orange et ambre.
LXHL-MM1C LXHL-MM1A LXHL-NM98 Vert 530 nm 30 600
LXHL-ME1C LXHL-ME1A LXHL-NE98 Cyan 505 nm 30 600
LXHL-MB1C LXHL-MB1A LXHL-NB98 Bleu 470 nm 10 200
LXHL-MRRC LXHL-MRRA LXHL-NRR8 Bleu roi 455 nm 150 mW 120
LXHL-MD1C LXHL-MD1A LXHL-ND98 Rouge 625 nm 27 810
LXHL-ML1C LXHL-ML1A LXHL-NL98 Ambre 590 nm 25 750
LXHL-MDAC N/A N/A Rouge 625 nm 42 —
LXHL-MHAC N/A N/A Rouge/Orange 617 nm 55 —
LXHL-MLAC N/A N/A Ambre 590 nm 42 —
LXHL-MW1D LXHL-MW1B N/A Blanc 5500 K 25 —
LXHL-MM1D LXHL-MM1B N/A Vert 530 nm 30 —
LXHL-ME1D LXHL-ME1B N/A Cyan 505 nm 30 —
LXHL-MB1D LXHL-MB1B N/A Bleu 470 nm 10 —
LXHL-MRRD LXHL-MRRB N/A Bleu roi 455 nm 150 mW —
LXHL-MD1D LXHL-MD1B LXHL-ND94 Rouge 625 nm 44 660
LXHL-MH1D LXHL-MH1B LXHL-NH94 Rouge/Orange 617 nm 55 825
LXHL-ML1D LXHL-ML1B LXHL-NL94 Ambre 590 nm 42 540
LXHL-FW1C N/A N/A Blanc 5500 K 22 —
LXHL-FM1C N/A N/A Vert 530 nm 27 —
LXHL-FE1C N/A N/A Cyan 505 nm 27 —
LXHL-FB1C N/A N/A Bleu 470 nm 10 —
LXHL-FR1C N/A N/A Bleu roi 455 nm 135 mW —
Blanc chaud 3300 K 20 200
LXHL-MWEC LXHL-MWEA LXHL-NWE8 Blanc 5500 K 25 500
DESSINS A L’ECHELLE REELLE
LXHL-MWGC N/A LXHL-NWG8
La valeur “Lumens typique” pour les produits Star/O est approximativement inférieure de 10% à la même valeur pour les
produits Luxeon Star sans optique de réglage. Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
Couleur
Longueur
d’onde
dominante ou
temp. couleur
Lumens TYP
Candela
typique
(Star/O)
Modèle de
rayonnement
Star
(aile de chauve-souris, Lambert)
Star/O
(avec optique)
Star
(émission latérale)
Star/C
(avec connecteur)
Référence
Luxeon Star
Référence
Luxeon Star/C
Référence
Luxeon Star/O
Emission latérale Lambert Aile de chauve-souris
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
6
Luxeon III Emitter & Star
Star
Modules Luxeon de forme hexagonale. Deux ou trois fois plus de lumière que les
produits Luxeon I. Livré avec pastilles à souder pour la connexion électrique.
Disponibles en blanc, vert, cyan, bleu et bleu roi. Prévu pour fonctionner en
700 mA et 1000 mA.
Emitter
La puissance Luxeon III sous sa forme la plus basique. Concevez et construisez
votre source lumineuse Luxeon III selon vos spécifications. Luxeon III est prévu pour
fonctionner en 700 mA et 1000 mA. Les diodes Luxeon III sont disponibles en
blanc, vert, cyan, bleu et bleu roi.
LXHL-PW09 Blanc 5500 K 65 80
LXHL-PM09 Vert 530 nm 64 80
LXHL-PE09 Cyan 505 nm 64 80
LXHL-PB09 Bleu 470 nm 23 30
LXHL-PR09 Bleu roi 455 nm 340 mW 450 mW
Lambert
Référence Couleur
Longueur d’onde
dominante ou
temp. couleur
Lumens TYP
(700 mA)
Lumens TYP
(1000 mA)
Modèle de
rayonnement
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
LXHL-LW3C Blanc 5500 K 65 80
LXHL-LM3C Vert 530 nm 64 80
LXHL-LE3C Cyan 505 nm 64 80
LXHL-LB3C Bleu 470 nm 23 30
LXHL-LR3C Bleu roi 455 nm 340 mW 450 mW
Lambert
Référence Couleur
Longueur d’onde
dominante ou
temp. couleur
Lumens TYP
(700 mA)
Lumens TYP
(1000 mA)
Modèle de
rayonnement
DESSINS A L’ECHELLE REELLE
Référence Couleur
Longueur d’onde
dominante ou temp.
couleur
Lumens TYP
Modèle de
rayonnement
7
Luxeon V Emitter & Star
Star Star
(émission latérale)
Référence Couleur
Longueur d’onde
dominante ou temp.
couleur
Lumens TYP
Modèle de
rayonnement
LXHL-LM5C Vert 530 nm 120
LXHL-LE5C Cyan 505 nm 120
LXHL-LB5C Bleu 470 nm 45
LXHL-LR5C Bleu roi 455 nm 500 mW
LXHL-FW6C Blanc 5500 K 105 Emission latérale
LXHL-FM5C Vert 530 nm 110
LXHL-FE5C Cyan 505 nm 110
LXHL-FB5C Bleu 470 nm 27
LXHL-FR5C Bleu roi 455 nm 450 mW
Star
Modules Luxeon de forme hexagonale. Quatre fois plus de lumière que les
produits Luxeon standard. Livré avec pastilles à souder pour la connexion
électrique. Disponibles en vert, cyan, bleu et bleu roi. Les diodes Luxeon V
portables, disponibles en blanc, sont conçues pour les applications avec piles
(1000 heures), les «lampes de mineur» et les issues de secours.
Lambert
Emission latérale
LXHL-LW6C Blanc 5500 K 120 Lambert
Remarque : Les diodes portables Luxeon V sont conçues et spécifiées pour une durée de vie de 1 000
heures. Voir la fiche technique (document DS40) pour la conservation de l’intensité lumineuse. Pour de plus
amples informations, veuillez visiter le site www.luxeon.com.
Lambert
Emission latérale
LXHL-PM02 Vert 530 nm 120
LXHL-PE02 Cyan 505 nm 120
LXHL-PB02 Bleu 470 nm 45
LXHL-PR02 Bleu roi 455 nm 500 mW
LXHL-DM02 Vert 530 nm 110
LXHL-DE02 Cyan 505 nm 110
LXHL-DB02 Bleu 470 nm 27
LXHL-DR02 Bleu roi 455 nm 450 mW
LXHL-PW03 Blanc 5500 K 120 Lambert
LXHL-DW03 Blanc 5500 K 105 Emission latérale
Luxeon V Emitter
Remarque : Les diodes portables blanches Luxeon V sont conçues et spécifiées pour une durée de vie de
1 000 heures. Voir la fiche technique (document DS40) pour la conservation de l’intensité lumineuse.
Emitter
La puissance des diodes Luxeon V et Luxeon V portables sous sa forme la plus
basique. Concevez et construisez votre source lumineuse Luxeon V selon vos
spécifications. Les diodes Luxeon V sont disponibles en vert, cyan, bleu et bleu
roi. Les diodes portables Luxeon V sont disponibles en blanc.
Luxeon V Portable
DESSIN A
L’ECHELLE
REELLE
Luxeon V Star
Luxeon V Portable
Star
8
Luxeon Warm White
LXHL-BW03 Blanc chaud 3300 K 20 Aile de chauve-souris
LXHL-NWG8 Blanc chaud 3300 K 17 Avec optique de réglage
Référence Couleur
Longueur d’onde
dominante ou temp.
couleur
Lumens TYP
Modèle de
rayonnement
Description
Les produits Luxeon Emitter et Star Warm White sont les seules sources de
lumière blanche à semi-conducteurs de faible CCT et de CRI élevé. Avec un indice
de rendu des couleurs de 90 et une température de couleur corrélée de 3200 K,
les produits Luxeon en lumière blanche ouvrent la porte à l’utilisation plus
importante d’éclairages par semi-conducteurs dans les applications intérieures et
spécialisées en apportant le caractère apaisant et chaud des lampes
incandescentes et halogènes.
DESSINS A L’ECHELLE REELLE
Emitter
LXHL-MWGC Blanc chaud 3300 K 20 Aile de chauve-souris
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
LXHL-BRD1 Bleu dentaire 460nm 140mw Aile de chauve-souris
LXHL-PRD5 Bleu dentaire 460nm 600mw Lambert
9
Luxeon Dental
Référence Couleur
Longueur d’onde
dominante ou temp.
couleur
Puissance Radiométrique
Typique
Modèle de
rayonnement
LXHL-MRD1 Bleu dentaire 460nm 140mw Aile de chauve-souris
LXHL-LRD5 Bleu dentaire 460nm 600mw Lambert
Star
Emitter
Description
Les solutions Luxeon Dental incluent les produits Luxeon et Luxeon V qui offrent
deux options de correction des puissances élevées. La gamme Luxeon Dental est
disponible en configurations diode et étoile qui permettent une conception souple
des systèmes de corrections de puissance.
Les produits Luxeon Dental sont choisis sur la base de la longueur d’onde en
pointe pour des temps de correction courts. Ils sont produits avec des niveaux
élevés de puissance minimale pour fournir la courte longueur d’onde bleue
nécessaire à la réduction des temps de correction tout en autorisant des
baguettes portatives.
Cette gamme révolutionnaire est particulièrement adaptée au secteur des soins
dentaires pour fournir le meilleur rendement nécessaire à ces applications.
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
DESSINS A L’ECHELLE REELLE
10
Luxeon DCC
DESSIN A L’ECHELLE REELLE
Description
Luxeon DCC est une matrice linéaire de DEL Luxeon RVB spécialement conçue
comme source lumineuse de rétro-éclairage des écrans à cristaux liquides (LCD).
Pour ces applications, Luxeon DCC offre des avantages significatifs par rapport
aux solutions classiques et à base d’autres DEL.
Luxeon DCC permet aux fabricants de réaliser des écrans plus lumineux, plus
colorés et plus solides avec des avantages concurrentiels sur le marché.
Lumileds a mis rassemblé les compétences de base pour profiter des
caractéristiques uniques de chaque diode Luxeon. Chacune a été choisie pour
compléter les caractéristiques de chaque autre diode de la source lumineuse.
LXHL-MGAA 99 x 32
LXHL-MGBA 153 x 32
Source lumineuse Taille (mm) 5” 7” 8” 9” 10.1” 12.1” 15.0” 18.1”
4:3 16:10 4:3 4:3 4:3 4:3 4:3 4:3
Taille & proportions de l’écran
B S
B B B S
LXHL-MGCA 225 x 32
LXHL-MGDA 306 x 32
B S S
B
LXHL-MGEA 360 x 32 B
S= source lumineuse Luxeon DCC placée sur le côté de l’écran
B= source lumineuse Luxeon DCC placée au bas de l’écran
11
Luxeon Flood
LXHL-MWCA Blanc 5500 K 300
LXHL-MMCA Vert 530 nm 360
LXHL-MECA Cyan 505 nm 360
LXHL-MBCA Bleu 470 nm 120
LXHL-MDCA Rouge 625 nm 320
LXHL-MLCA Ambre 590 nm 300
LXHL-MWJA Blanc 5500 K 450
LXHL-MMJA Vert 530 nm 540
LXHL-MEJA Cyan 505 nm 540
LXHL-MBJA Bleu 470 nm 180
LXHL-MDJA Rouge 625 nm 480
LXHL-MLJA Ambre 590 nm 450
LXHL-MDCB Rouge 625 nm 525
LXHL-MLCB Ambre 590 nm 500
LXHL-MDJB Rouge 625 nm 790
LXHL-MLJB Ambre 590 nm 750
12
18
12
18
Aile de chauvesouris
Lambert
Nombre
Référence Couleur de DEL
Longueur d’onde
dominante ou
temp. couleur
Lumens TYP
Modèle de
rayonnement
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
Description
Matrice rectangulaire de 12 ou 18 sources lumineuses Luxeon densément
conditionnées. Connecteur AMP fourni pour faciliter la connexion électrique.
Disponible en blanc, vert, cyan, bleu, rouge et ambre.
DESSIN A L’ECHELLE REELLE
12
Luxeon Line & Ring
LXHL-NW97 Blanc 5500 K 125
LXHL-NM97 Vert 530 nm 150
LXHL-NE97 Cyan 505 nm 150
LXHL-NB97 Bleu 470 nm 50
LXHL-ND93 Rouge 625 nm 225
LXHL-NL93 Ambre 590 nm 215
LXHL-NW96 Blanc 5500 K 250
LXHL-NM96 Vert 530 nm 300
LXHL-NE96 Cyan 505 nm 300
LXHL-NB96 Bleu 470 nm 100
LXHL-ND92 Rouge 625 nm 450
LXHL-NL92 Ambre 590 nm 425
Jusqu’à 6 Luxeon Ring
Jusqu’à 12 Luxeon Ring
Référence Couleur
Longueur d’onde
dominante ou
temp. couleur
Lumens TYP Configuration
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
Ring
Matrices circulaires de 6 ou 12 sources lumineuses, utilisables séparément ou
conjointement. Livrées avec optique secondaire PMMA haut rendement pour le
contrôle précis du rayonnement. Connecteur AMP 2 broches fourni pour faciliter la
connexion électrique. Disponible en blanc, vert, cyan, bleu, rouge et ambre.
Line
Matrice linéaire de 12 sources lumineuses Luxeon. Livrée avec optique secondaire
PMMA haut rendement pour le contrôle précis du rayonnement. Deux connecteurs
AMP 2 broches permettent la connexion en chaîne de mètres de lumière.
Disponible en blanc, vert, cyan, bleu, rouge et ambre.
LXHL-NW99 Blanc 5500 K 250
LXHL-NM99 Vert 530 nm 300
LXHL-NE99 Cyan 505 nm 300
LXHL-NB99 Bleu 470 nm 100
LXHL-ND95 Rouge 625 nm 450
LXHL-NL95 Ambre 590 nm 425
Référence Couleur
Longueur d’onde dominante
ou temp. couleur
Lumens TYP
Pour de plus amples informations, veuillez visiter le site www.luxeon.com.
DESSINS A L’ECHELLE REELLE
13
HPWN-MG00 Vert 525 nm 4,5 4,1 90
HPWN-MC00 Cyan 505 nm 5,0 4,5 90
HPWN-MB00 Bleu 470 nm 2,0 1,8 90
HPWT-RD00 Rouge 630 nm 3,0 3,8 25 x 68
HPWT-MD00 Rouge 630 nm 3,0 1,8 70
HPWT-DD00 Rouge 630 nm 3,0 4,5 40
HPWT-BD00 Rouge 630 nm 3,0 6,0 30
HPWT-RH00 Rouge/Orange 620 nm 3,8 4,8 25 x 68
HPWT-MH00 Rouge/Orange 620 nm 3,8 2,3 70
HPWT-DH00 Rouge/Orange 620 nm 3,8 5,7 40
HPWT-BH00 Rouge/Orange 620 nm 3,8 7,6 30
HPWT-RL00 Ambre 594 nm 1,5 1,9 25 x 68
HPWT-ML00 Ambre 594 nm 1,5 0,9 70
HPWT-DL00 Ambre 594 nm 1,5 2,3 40
HPWT-BL00 Ambre 594 nm 1,5 3,0 30
Référence Couleur
Longueur d’onde
dominante
Lumens Candela
Angle de vision
(deg.)
SuperFlux
DEL carrées, 4 broches, montage sur trou. Disponible en vert, cyan, bleu, rouge,
rouge/orange et ambre et avec différents angles de vision pour tous besoins de
conception.
DEL SuperFlux & SnapLED
DESSINS A L’ECHELLE REELLE
Pour de plus amples informations, veuillez visiter le site www.lumileds.com.
SnapLED
DEL SnapLED rectangulaires haute luminosité. Il est possible de créer des
dispositions innovantes dans des boîtiers qui utilisent une technologie de montage
sans soudure. Disponibles en couleurs rouge/orange et ambre en versions 70 mA et
150 mA.
HPWT-TH00 Rouge/Orange 621 nm 3,0 1,8 85
HPWT-TL00 Ambre 594 nm 1,5 0,9 85
HPWT-FH00 Rouge/Orange 621 nm 3,0 6,0 30
HPWT-FL00 Ambre 594 nm 1,5 3,0 30
HPWS-TH00 Rouge/Orange 621 nm 6,0 3,6 85
HPWS-TL00 Ambre 594 nm 3,0 1,8 85
HPWS-FH00 Rouge/Orange 621 nm 6,0 12,0 30
HPWS-FL00 Ambre 594 nm 3,0 6,0 30
Référence Couleur
Longueur d’onde
dominante
Lumens
(min.)
Candela
(min.)
Angle de vision
(deg.)
Pour de plus amples informations, veuillez visiter le site www.lumileds.com.
70mA
150mA
14
Documentation générale
Lumileds Plug and Play Guide
Lumileds Application Overview
Luxeon Lighting
Vitrines des applications
AS01 Portable Lighting
AS02 Task/Reading Lights
AS03 Architectural Detail Lighting
AS04 Landscape and Path Lighting
AS05 Stairway and Marker Lighting
AS06 Interior Decorative Color Lighting
AS08 Colored Signal Lighting
AS10 Interior Decorative Lighting
AS11 Museum Quality/Fiber
Alternative/Display Pinpoint
Lighting
AS12 Entertainment, Film and Studio
Lighting
AS13 LED Retrofit Lamps
AS14 Luxeon DCC
AS15 Lighting for Digital Imaging
AS16 Sign Lighting
Fiches techniques
DS05 SuperFlux LEDs
DS21 Luxeon Line
DS22 Luxeon Ring
DS23 Luxeon Star
DS23A Luxeon Star Option Code
Selections
DS24 Luxeon Flood
DS25 Luxeon Emitter
DS25A Luxeon Emitter Option Code
Selections
DS26 Luxeon Collimator
DS30 Luxeon V Star
DS34 Luxeon V Emitter
DS35 Luxeon Dental
DS40 Luxeon V Portable
DS45 Luxeon III Emitter
DS46 Luxeon III Star
DS47 Luxeon Warm White Light Sources
DS48 Luxeon DCC
Notes d’applications résumées
AB05 Luxeon Thermal Design Guide
AB07 Lumen Maintenance of White
Luxeon Light Sources
AB08 Optical Testing for SuperFlux,
SnapLED and Luxeon Emitters
AB10 Luxeon Emitter Assembly Guide
AB11 Electrical Drive Information for
Luxeon Samples
AB12 Luxeon Custom Design Guide
AB13 Soldering SuperFlux LEDs
AB16 Lumileds SuperFlux LEDs versus
Other LEDs
AB17 Benefits of Lumileds Solid-State
Lighting Solutions vs.
Conventional Lighting
Ressources
Documentation Luxeon - Index
Lumileds modifie et met à jour régulièrement sa documentation. Pour les versions
les plus récentes de ces documents et d’autres, veuillez visiter la bibliothèque
Lumileds à l’adresse : www.lumileds.com.
15
Guide des fournisseurs
Le Guide des fournisseurs (Lumileds Vendor Resource Guide) est un annuaire
complet des sociétés qui fournissent dans le monde entier les produits et services
Luxeon, SuperFlux et SnapLED. Vous pouvez les rechercher par nom, par pays ou
par spécialité. Si vous avez besoin de l’assistance d’experts pour le développement
de vos solutions à base de produits Lumileds, consultez d’abord notre Guide des
fournisseurs.
AB20-3 Electrical Design
Considerations for Super
FluxLEDs
AB20-3A Advanced Electrical Design
Models
AB20-3B SuperFlux and SnapLED
Emitter Forward Voltage Data
AB20-4 Thermal Management
Considerations for SuperFlux
LEDs
AB20-5 Secondary Optics Design
Considerations for SuperFlux
LEDs
AB20-6 Reliability Considerations for
SuperFlux LEDs
AB20-7 SuperFlux Categories and
Labels
AB21 Luxeon Product Binning and
Labeling (June 2003)
AB22 Thyristor Application Brief
AB23 Thermal Design
Considerations for Luxeon V
Power Light Sources
AB25 Luxeon Reliability
Modèles de référence
DR01 Luxeon for Camera, Phone
Flash PDA and DSC
Applications
Lumileds Lighting
370 W. Trimble Road
San Jose, CA 95131
+1 408.435.6044 en Amérique du Nord
+31 499.339.439 en Europe
+60 4680.5342 en Asie / Japon
www.lumileds.com
www.luxeon.com
Luxeon distribué par
Future Electronics
www.FutureElectronics.com
888.589.3662 en Amérique du Nord
00.800.443.88.873 en Europe
800.5864.5337 en Asie
Document : PG-01-E Mars 2004
TO-220AB
BT136-600D
4Q Triac
30 September 2013 Product data sheet
Scan or click this QR code to view the latest information for this product
1. General description
Planar passivated very sensitive gate four quadrant triac in a SOT78 plastic package
intended for use in general purpose bidirectional switching and phase control
applications, where high sensitivity is required in all four quadrants. This very sensitive
gate "series D" triac is intended to be interfaced directly to microcontrollers, logic
integrated circuits and other low power gate trigger circuits.
2. Features and benefits
• Direct triggering from low power drivers and logic ICs
• High blocking voltage capability
• Low holding current for low current loads and lowest EMI at commutation
• Planar passivated for voltage ruggedness and reliability
• Triggering in all four quadrants
• Very sensitive gate
3. Applications
• General purpose motor control
• General purpose switching
4. Quick reference data
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit
VDRM repetitive peak offstate
voltage
- - 600 V
ITSM non-repetitive peak onstate
current
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5
- - 25 A
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 107 °C; Fig. 1;
Fig. 2; Fig. 3
- - 4 A
Static characteristics
VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7
IGT gate trigger current - 2 5 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7
- 2.5 5 mA
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 2 / 13
Symbol Parameter Conditions Min Typ Max Unit
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7
- 2.5 5 mA
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7
- 5 10 mA
IH holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.2 10 mA
5. Pinning information
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol
1 T1 main terminal 1
2 T2 main terminal 2
3 G gate
mb T2 mounting base; main
terminal 2
1 2
mb
3
TO-220AB (SOT78)
sym051
T1
G
T2
6. Ordering information
Table 3. Ordering information
Type number Package
Name Description Version
BT136-600D TO-220AB plastic single-ended package; heatsink mounted; 1 mounting
hole; 3-lead TO-220AB
SOT78
BT136-600D/DG TO-220AB plastic single-ended package; heatsink mounted; 1 mounting
hole; 3-lead TO-220AB
SOT78
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 3 / 13
7. Limiting values
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDRM repetitive peak off-state voltage - 600 V
IT(RMS) RMS on-state current full sine wave; Tmb ≤ 107 °C; Fig. 1;
Fig. 2; Fig. 3
- 4 A
full sine wave; Tj(init) = 25 °C;
tp = 20 ms; Fig. 4; Fig. 5
ITSM non-repetitive peak on-state - 25 A
current
full sine wave; Tj(init) = 25 °C;
tp = 16.7 ms
- 27 A
I2t I2t for fusing tp = 10 ms; SIN - 3.1 A2s
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/μs;
T2+ G+
- 50 A/μs
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/μs;
T2+ G-
- 50 A/μs
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/μs;
T2- G-
- 50 A/μs
dIT/dt rate of rise of on-state current
IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/μs;
T2- G+
- 10 A/μs
IGM peak gate current - 2 A
PGM peak gate power - 5 W
PG(AV) average gate power over any 20 ms period - 0.5 W
Tstg storage temperature -40 150 °C
Tj junction temperature - 125 °C
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 4 / 13
Tmb (°C)
- 50 0 50 100 150
003aae828
2
3
1
4
5
IT(RMS)
(A)
0
Fig. 1. RMS on-state current as a function of mounting
base temperature; maximum values
003aae830
4
8
12
IT(RMS)
(A)
0
surge duration (s)
10- 2 10- 1 1 10
2
6
10
f = 50 Hz
Tmb ≤ 107 °C
Fig. 2. RMS on-state current as a function of surge
duration; maximum values
003aae827
4
2
6
8
Ptot
(W)
0
IT(RMS) (A)
0 1 2 3 4 5
conduction
angle
(degrees)
form
factor
a
30
60
90
120
180
4
2.8
2.2
1.9
1.57
α
α = 180°
120°
90°
60°
30°
α = conduction angle
a = form factor = IT(RMS) / IT(AV)
Fig. 3. Total power dissipation as a function of RMS on-state current; maximum values
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 5 / 13
003aae831
10
20
30
ITSM
(A)
0
number of cycles
1 10 102 103 104
5
15
25
ITSM
t
IT
Tj(init) = 25 °C max
1/f
f = 50 Hz
Fig. 4. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximum
values
003aae829
tp (s)
10- 5 10- 4 10- 3 10- 2 10- 1
102
103
ITSM
(A)
10
ITSM
t
IT
Tj(init) = 25 °C max
tp
(1)
(2)
tp ≤ 20 ms
(1) dIT/dt limit
(2) T2- G+ quadrant limit
Fig. 5. Non-repetitive peak on-state current as a function of pulse width; maximum values
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 6 / 13
8. Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Rth(j-mb) thermal resistance half cycle; Fig. 6 - - 3.7 K/W
from junction to
mounting base
full cycle; Fig. 6 - - 3 K/W
Rth(j-a) thermal resistance
from junction to
ambient
in free air - 60 - K/W
003aae836
tp (s)
10- 5 10- 4 10- 3 10- 2 10- 1 1 10
1
10- 1
10
Zth(j-mb)
(K/W)
10- 2
bidirectional
unidirectional
tp
P
t
Fig. 6. Transient thermal impedance from junction to mounting base as a function of pulse width
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 7 / 13
9. Characteristics
Table 6. Characteristics
Symbol Parameter Conditions Min Typ Max Unit
Static characteristics
VD = 12 V; IT = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 7
- 2 5 mA
VD = 12 V; IT = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 7
- 2.5 5 mA
VD = 12 V; IT = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 7
- 2.5 5 mA
IGT gate trigger current
VD = 12 V; IT = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 7
- 5 10 mA
VD = 12 V; IG = 0.1 A; T2+ G+;
Tj = 25 °C; Fig. 8
- 1.6 10 mA
VD = 12 V; IG = 0.1 A; T2+ G-;
Tj = 25 °C; Fig. 8
- 4.5 15 mA
VD = 12 V; IG = 0.1 A; T2- G-;
Tj = 25 °C; Fig. 8
- 1.2 10 mA
IL latching current
VD = 12 V; IG = 0.1 A; T2- G+;
Tj = 25 °C; Fig. 8
- 2.2 15 mA
IH holding current VD = 12 V; Tj = 25 °C; Fig. 9 - 1.2 10 mA
VT on-state voltage IT = 5 A; Tj = 25 °C; Fig. 10 - 1.4 1.7 V
VD = 12 V; IT = 0.1 A; Tj = 25 °C;
Fig. 11
VGT gate trigger voltage - 0.7 1 V
VD = 400 V; IT = 0.1 A; Tj = 125 °C;
Fig. 11
0.25 0.4 - V
ID off-state current VD = 600 V; Tj = 125 °C - 0.1 0.5 mA
Dynamic characteristics
dVD/dt rate of rise of off-state
voltage
VDM = 402 V; Tj = 125 °C; RGT1 = 1 kΩ;
(VDM = 67% of VDRM); exponential
waveform
- 5 - V/μs
tgt gate-controlled turn-on
time
ITM = 6 A; VD = 600 V; IG = 0.1 A; dIG/
dt = 5 A/μs
- 2 - μs
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 8 / 13
Tj (°C)
- 60 - 10 40 90 140
003aae833
1
2
3
0
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
IGT
IGT (25 °C)
(1) T2- G+
(2) T2- G-
(3) T2+ G-
(4) T2+ G+
Fig. 7. Normalized gate trigger current as a function of
junction temperature
Tj (°C)
- 60 - 10 40 90 140
003aae835
1
2
3
0
IL
IL(25°C)
Fig. 8. Normalized latching current as a function of
junction temperature
Tj (°C)
- 60 - 10 40 90 140
003aae837
1.0
0.5
1.5
2.0
0
IH
IH(25°C)
Fig. 9. Normalized holding current as a function of
junction temperature
VT (V)
0 1 2 3
003aae834
4
8
12
IT
(A)
0
(1) (2) (3)
Vo = 1.27 V
Rs = 0.091 Ω
(1) Tj = 125 °C; typical values
(2) Tj = 125 °C; maximum values
(3) Tj = 25 °C; maximum values
Fig. 10. On-state current as a function of on-state
voltage
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 9 / 13
Tj (°C)
- 60 - 10 40 90 140
003aae832
0.8
0.4
1.2
1.6
0
VGT
VGT (25 °C)
Fig. 11. Normalized gate trigger voltage as a function of junction temperature
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 10 / 13
10. Package outline
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT78 3-lead TO-220AB SC-46
SOT78
08-04-23
08-06-13
Notes
1. Lead shoulder designs may vary.
2. Dimension includes excess dambar.
UNIT A
mm 4.7
4.1
1.40
1.25
0.9
0.6
0.7
0.4
16.0
15.2
6.6
5.9
10.3
9.7
15.0
12.8
3.30
2.79
3.8
3.5
A1
DIMENSIONS (mm are the original dimensions)
Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB
0 5 10 mm
scale
b b1(2)
1.6
1.0
c D
1.3
1.0
b2(2) D1 E e
2.54
L L1(1) L2(1)
max.
3.0
p q
3.0
2.7
Q
2.6
2.2
D
D1
q
p
L
1 2 3
L1(1)
b1(2)
(3×)
b2(2)
(2×)
e e
b(3×)
E A
A1
c
Q
L2(1)
mounting
base
Fig. 12. Package outline TO-220AB (SOT78)
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 11 / 13
11. Legal information
11.1 Data sheet status
Document
status [1][2]
Product
status [3]
Definition
Objective
[short] data
sheet
Development This document contains data from
the objective specification for product
development.
Preliminary
[short] data
sheet
Qualification This document contains data from the
preliminary specification.
Product
[short] data
sheet
Production This document contains the product
specification.
[1] Please consult the most recently issued document before initiating or
completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have
changed since this document was published and may differ in case of
multiple devices. The latest product status information is available on
the Internet at URL http://www.nxp.com.
11.2 Definitions
Preview — The document is a preview version only. The document is still
subject to formal approval, which may result in modifications or additions.
NXP Semiconductors does not give any representations or warranties as to
the accuracy or completeness of information included herein and shall have
no liability for the consequences of use of such information.
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is
intended for quick reference only and should not be relied upon to contain
detailed and full information. For detailed and full information see the
relevant full data sheet, which is available on request via the local NXP
Semiconductors sales office. In case of any inconsistency or conflict with the
short data sheet, the full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product
is deemed to offer functions and qualities beyond those described in the
Product data sheet.
11.3 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those
given in the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 12 / 13
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor
tested in accordance with automotive testing or application requirements.
NXP Semiconductors accepts no liability for inclusion and/or use of nonautomotive
qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
11.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are the property of their respective owners.
Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV,
FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE,
ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse,
QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET,
TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.
HD Radio and HD Radio logo — are trademarks of iBiquity Digital
Corporation.
NXP Semiconductors BT136-600D
4Q Triac
BT136-600D All information provided in this document is subject to legal disclaimers. © NXP N.V. 2013. All rights reserved
Product data sheet 30 September 2013 13 / 13
12. Contents
1 General description ............................................... 1
2 Features and benefits ............................................1
3 Applications ........................................................... 1
4 Quick reference data ............................................. 1
5 Pinning information ............................................... 2
6 Ordering information ............................................. 2
7 Limiting values .......................................................3
8 Thermal characteristics .........................................6
9 Characteristics .......................................................7
10 Package outline ................................................... 10
11 Legal information .................................................11
11.1 Data sheet status ............................................... 11
11.2 Definitions ...........................................................11
11.3 Disclaimers .........................................................11
11.4 Trademarks ........................................................ 12
© NXP N.V. 2013. All rights reserved
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 30 September 2013
Page 26-1
Semiconductors
Integrated Circuits
Part Number Description
NTE4001B IC-CMOS, Quad 2-Input NOR Gate
NTE4001BT IC-CMOS, Quad 2-Input NOR Gate (Surface Mount)
NTE4002B IC-CMOS, Dual 4-Input NOR Gate
NTE4002BT IC-CMOS, Dual 4-Input NOR Gate (Surface Mount)
NTE4006B IC-CMOS, 18-Stage Static Shift Register
NTE4007 IC-CMOS, Dual Complementary Pair Plus Inverter
NTE4007T IC-CMOS, Dual Complementary Pair Plus Inverter (Surface
Mount)
NTE4008B IC-CMOS, 4-Bit Full Adder w/Parallel Carry Out
NTE4009 IC-CMOS, Hex Buffer/Converter (Inverting)
NTE40098B IC-CMOS, Hex 3-State Buffer (Inverting)
NTE40100B IC-CMOS, 32-Stage Static Shift Left/Right, Shift Register
NTE40106B IC-CMOS, Hex Schmitt Trigger
NTE40106BT IC-CMOS, Hex Schmitt Trigger (Surface Mount)
NTE4011B IC-CMOS, Quad 2-Input NAND Gate
NTE4011BT IC-CMOS, Quad 2-Input NAND Gate (Surface Mount)
NTE4012B IC-CMOS, Dual 4-Input NAND Gate
NTE4012BT IC-CMOS, Dual 4-Input NAND Gate (Surface Mount)
NTE4013B IC-CMOS, Dual D Type Flip-Flop
NTE4013BT IC-CMOS, Dual D Type Flip-Flop (Surface Mount)
NTE4014B IC-CMOS, 8-Stage Shift Register Synchronous Parallel or
Serial Input/Serial Output
NTE4015B IC-CMOS, Dual 4-Stage Static Shift Register w/Serial
Input/Parallel Output
NTE4015BT IC-CMOS, Dual 4-Stage Static Shift Register w/Serial
Input/Parallel Output (Surface Mount)
NTE40160B IC-CMOS, Synchronous Programmable 4-Bit BCD Counter
w/Asynchronous Clear
Integrated Circuits
(cont.)
Part Number Description
NTE40161B IC-CMOS, Synchronous Programmable 4-Bit Binary
Counter w/Asynchronous Clear
NTE40162B IC-CMOS, Synchronous Programmable 4-Bit BCD
Counter w/Synchronous Clear
NTE40163B IC-CMOS, Synchronous Programmable 4-Bit BCD Counter
w/Synchronous Clear
NTE4016B IC-CMOS, Quad Bilateral Switch for Transmission or
Multiplexing of Analog or Digital Signals
NTE40174B IC-CMOS, Hex D-Type Flip-Flop
NTE40174BT IC-CMOS, Hex D-Type Flip-Flop (Surface Mount)
NTE40175B IC-CMOS, Quad D-Type Flip-Flop
NTE4017B IC-CMOS, Decade Counter w/10 Decoder Outputs
NTE40182B IC-CMOS, Look Ahead Carry Generator
NTE4018B IC-CMOS, Presettable Divide-By-"N" Counter
NTE40192B IC-CMOS, Presettable Up/Down BCD Counter, Dual Clock
w/Reset
NTE40193B IC-CMOS, Presettable Up/Down Binary Counter, Dual Clock
w/Reset
NTE40194B IC-CMOS, 4-Bit Bidirectional Universal Shift Register
w/Asynchronous Master/Reset
NTE40195B IC-CMOS, 4-Bit Shift Register
NTE4020B IC-CMOS, 14-Stage Ripple-Carry Binary Counter/Divider
NTE4020BT IC-CMOS, 14-Stage Ripple-Carry Binary Counter/Divider
(Surface Mount)
NTE4021B IC-CMOS, 8-Stage Static Shift Register Asynchronous Parallel
Input or Synchronous Serial Input/Serial Output
NTE4021BT IC-CMOS, 8-Stage Static Shift Register Asynchronous Parallel
Input or Synchronous Serial Input/Serial Output (Surface
Mount)
NTE4022B IC-CMOS, Octal Counter/Divider w/8 Decoded Outputs
NTE4023B IC-CMOS, Triple 3-Input NAND Gate
NTE4023BT IC-CMOS, Triple 3-Input NAND Gate (Surface Mount)
NTE4024B IC-CMOS, 7-Stage Ripple-Carry Binary Counter/Divider
NTE4025B IC-CMOS, Triple 3-Input NOR Gate
NTE4016BT
NTE4019B
IC-CMOS, Quad Bilateral Switch for Transmission or
Multiplexing of Analog or Digital Signals (Surface Mount)
IC-CMOS, Quad AND/OR Select Gate
NTE4025BT IC-CMOS, Triple 3-Input NOR Gate (Surface Mount)
NTE4026B IC-CMOS, Decade Counter/Divider w/Decoded Seven-
Segment Display Outputs and Display Enable
NTE4027B IC-CMOS, Dual J-K Master-Slave Flip-Flop
NTE4027BT IC-CMOS, Dual J-K Master-Slave Flip-Flop (Surface Mount)
NTE4028B IC-CMOS, BCD-to-Decimal Decoder
NTE4029BT IC-CMOS, Presettable Up/Down Counter, Binary or BCD
Decade Decoder (Surface Mount)
NTE4030B IC-CMOS, Quad Exclusive OR Gate
NTE4028BT IC-CMOS, BCD-to-Decimal Decoder (Surface Mount)
NTE4029B IC-CMOS, Presettable Up/Down Counter, Binary or BCD
Decade Decoder
NTE4031B IC-CMOS, 64-Stage Static Shift Register
NTE4032B IC-CMOS, Triple Serial Positive Logic Adder
NTE4033B IC-CMOS, Decade Counter/Divider w/Decoded Seven-
Segment Display Outputs and Ripple Blanking
NTE4034B IC-CMOS, 8-Stage Static Bi-Directional Parallel/Serial
Input/Output Bus Register
NTE4035B IC-CMOS, 4-Stage Parallel In/Parallel Out Shift Register w/J-K
Serial Input and True Complement Output
NTE4038B IC-CMOS, Triple Serial Negative Logic Adder
NTE4040B IC-CMOS, 12-Stage Ripple-Carry Binary Counter/Divider
Page 26-2
Semiconductors
NTE4256 IC-NMOS, 256K Dynamic RAM, 100ns
NTE4501 IC-CMOS, Dual 4-Input NAND Gate, 2-Input NOR/OR Gate, 8-
Input AND/NAND Gate
NTE4503B IC-CMOS, Hex 3-State Non-Inverting Buffer
NTE4510B IC-CMOS, Presettable UP/Down BCD Counter
NTE4510BT IC-CMOS, Presettable UP/Down BCD Counter (Surface Mount)
NTE4511B IC-CMOS, BCD-to-Seven-Segment Latch Decoder Driver
Integrated Circuits
(cont.)
Part Number Description
NTE4041 IC-CMOS, Quad True/Complement Buffer
NTE4042B IC-CMOS, Quad, Clocked D-Type Latch
NTE4042BT IC-CMOS, Quad, Clocked D-Type Latch (Surface Mount)
NTE4043B IC-CMOS, Quad, 3-State NOR R/S Latch
NTE4043BT IC-CMOS, Quad, 3-State NOR R/S Latch (Surface Mount)
NTE4044B IC-CMOS, Quad 3-State NAND R/S Latch
NTE4044BT IC-CMOS, Quad 3-State NAND R/S Latch (Surface Mount)
NTE4045B IC-CMOS, 21-Stage Counter
NTE4045BT IC-CMOS, 21-Stage Counter (Surface Mount)
NTE4046B IC-CMOS, Phase-Lock Loop (PLL)
NTE4046BT IC-CMOS, Phase-Lock Loop (PLL) (Surface Mount)
Integrated Circuits
(cont.)
Part Number Description
NTE4047B IC-CMOS, Low-Power Monostable/Astable Multivibrator
NTE4047BT IC-CMOS, Low-Power Monostable/Astable Multivibrator
(Surface Mount)
NTE4048B IC-CMOS, Multi-Function Expandable 8-Input Gate
NTE4049 IC-CMOS, Hex Buffer/Converter, Inverting
NTE4049T IC-CMOS, Hex Buffer/Converter, Inverting (Surface Mount)
NTE4050BT IC-CMOS, Hex Buffer/Converter, Non-Inverting (Surface Mount)
NTE4051B IC-CMOS, Analog, Single 8-Channel Multiplexer/Demultiplexer
NTE4051BT IC-CMOS, Analog, Single 8-Channel Multiplexer/Demultiplexer
(Surface Mount)
NTE4052B IC-CMOS, Analog, Differential 4-Channel Multiplexer
NTE4052BT IC-CMOS, Analog, Differential 4-Channel Multiplexer
NTE4053B IC-CMOS, Triple 2-Channel Analog Multiplexer
NTE4053BT IC-CMOS, Triple 2-Channel Analog Multiplexer (Surface Mount)
NTE4055B IC-CMOS, BCD-to-7 Segment Decoder/Driver w/"Display-
Frequency" Output
NTE4056B IC-CMOS, BCD-to-7-Segement Decoder/Divider w/Strobed
Latch Function
NTE4060B IC-CMOS 14-Stage Ripple-Carry Binary Counter/Divider and
Oscillator
NTE4060BT IC-CMOS 14-Stage Ripple-Carry Binary Counter/Divider and
Oscillator (Surface Mount)
NTE4063B IC-CMOS, 4-Bit Magnitude Comparator (High-Voltage Type)
NTE4066B IC-CMOS, Quad Bilateral Switch
NTE4066BT IC-CMOS, Quad Bilateral Switch (Surface Mount)
NTE4067B IC-CMOS, Analog, Single 16-Channel Multiplexer/Demultiplexer
NTE4068B IC-CMOS, 8-Input NAND/AND Gate (High Voltage Type)
NTE4050B IC-CMOS, Hex Buffer/Converter, Non-Inverting
NTE4040BT IC-CMOS, 12-Stae Ripple-Carry Binary Counter/Divider
(Surface Mount)
NTE4070B IC-CMOS, Quad Exclusive OR Gate
NTE4070BT IC-CMOS, Quad Exclusive OR Gate (Surface Mount)
NTE4071B IC-CMOS, Quad 2-Input OR Gate
NTE4071BT IC-CMOS, Quad 2-Input OR Gate (Surface Mount)
NTE4072B IC-CMOS, Dual 4-Input OR Gate
NTE4073B IC-CMOS, Triple 3-Input AND Gate
NTE4073BT IC-CMOS, Triple 3-Input AND Gate (Surface Mount)
NTE4075BT IC-CMOS, Triple 3-Input OR Gate
NTE4076B IC-CMOS, 4-Bit D-Type Register (High Voltage Type)
NTE4077B IC-CMOS, Quad Exclusive NOR Gate
NTE4077BT IC-CMOS, Quad Exclusive NOR Gate (Surface Mount)
NTE4078B IC-CMOS, 8-Input NOR Gate
NTE4081B IC-CMOS, Quad 2-Input AND Gate
NTE4082B IC-CMOS, Dual 4-Input AND Gate
NTE4085B IC-CMOS, Dual 2-Wide, 2-Input AND/OR Invert Gate
NTE4086B IC-CMOS, Expandable 4-Wide, 2-Input AND/OR Invert Gate
NTE4089B IC-CMOS, Binary Rte Multiplier
NTE4093B IC-CMOS, Quad 2-Input NAND Schmitt Trigger
NTE4093BT IC-CMOS, Quad 2-Input NAND Schmitt Trigger (Surface Mount)
NTE4094B IC-CMOS, 8-Stage Shift and Storage Bus Register
NTE4094BT IC-CMOS, 8-Stage Shift and Storage Bus Register (Surface
Mount)
NTE4095B IC-CMOS, Gated J-K Master/Slave Flip-Flop w/Set-Reset
Capability Non-Inverting J and K Inputs
NTE4096B IC-CMOS, Gated J-K Master/Slave Flip-Flop w/Set-Reset
Capability Inverting and Non-Inverting J and K Inputs
NTE4097B IC-CMOS, Analog, Differential 8-Channel
Multiplexer/Demultiplexer
NTE4098B IC-CMOS, Dual Monostable Multivibrator
NTE4099B IC-CMOS, 8-Bit Addressable Latch
NTE4164 IC-NMOS, 64K Dynamic RAM, 150ns
NTE4075B IC-CMOS, Triple 3-Input AND Gate (Surface Mount)
NTE4068BT IC-CMOS, 8-Input NAND/AND Gate (High Voltage Type)
NTE4069 IC-CMOS, Hex Inverter (High Voltage Type)
NTE4069T IC-CMOS, Hex Inverter (High Voltage Type) (Surface Mount)
NTE4511BT IC-CMOS, BCD-to-Seven-Segment Latch Decoder Driver
(Surface Mount)
NTE4512B IC-CMOS, 8-Channel Data Selector
Page 26-3
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
Part Number Description
NTE4513B IC-CMOS, BCD-to-Seven-Segment Latch Decoder Driver
NTE4514B IC-CMOS, 4-Bit Latch/4-to-16 Decoder Line (Output "High" on
Select)
NTE4515B IC-CMOS, 4-Bit Latch/4-to-16 Line Decoder (Output "Low" on
Select)
NTE4516B IC-CMOS, Presettable UP/Down Binary Counter
NTE4517B IC-CMOS, Dual 64-Stage Static Shift Register
NTE4518B IC-CMOS, Dual BCD UP-Counter
NTE4518BT IC-CMOS, Dual BCD UP-Counter (Surface Mount)
NTE4520B IC-CMOS, Dual Binary Up-Counter
NTE4520BT IC-CMOS, Dual Binary Up-Counter (Surface Mount)
NTE4522B IC-CMOS, Programmable Diode-by-"N" 4-Bit BCD Counter
NTE4526B IC-CMOS, Programmable Divide-by-"N" 4-Bit Binary Counter
NTE4527B IC-CMOS, BCD Rate Multiplier
NTE4528B IC-CMOS, Dual Retriggerable/Resettable Monostable
Multivibrator
NTE4528BT IC-CMOS, Dual Retriggerable/Resettable Monostable
Multivibrator (Surface Mount)
NTE4529B IC-CMOS, Dual 4-Channel Analog Data Selector
NTE4531B IC-CMOS, 12-Bit Parity Tree
NTE4532B IC-CMOS, 8-Bit Priority Encoder
NTE4536B IC-CMOS, Programmable Timer
NTE4538B IC-CMOS, Dual Precision Monostable Multivibrator
NTE4521B IC-CMOS, 24-Stage Frequency Divider
NTE4539B IC-CMOS, Dual 4-Channel Data Selector/Multiplexer
NTE4541B
NTE4541BT IC-CMOS, Programmable Timer (Surface Mount)
NTE4543B IC-CMOS, BCD-to-Seven-Segment Latch/Decoder/Driver for
Liquid Crystals
NTE4547B IC-CMOS, High Current BCD-to-Seven-Segment
Decoder/Driver
NTE4553B IC-CMOS, 3-Digit BCD Counter
NTE4555B IC-CMOS, Dual Binary to 1-of-4 Decoder/Demultiplexer
(Output "High" on Select)
NTE4556B IC-CMOS, Dual Binary to 1-of-4 Decoder/Demultiplexer (Output
"Low" on Select)
NTE4558B IC-CMOS, BCD-to-Seven-Segment Decoder
NTE4566B IC-CMOS, Industrial Time Base Generator
NTE4569B IC-CMOS, Programmable Divide-by-"N" Dual 4-Bit BCD/Binary
Counter
NTE4583B IC-CMOS, Dual Schmitt Trigger
NTE4551B IC-CMOS, Quad 2-Input analog Multiplexer/Demultiplexer
Part Number Description
NTE4597B IC-CMOS, 8-Bit, Bus Compatible Counter Latch
NTE4598B IC-CMOS, 8-Bit, Bus Compatible Addressable Latch
NTE7400 IC-TTL, Quad 2-Input Pos NAND Gate
NTE7401 IC-TTL, Quad 2-Input Pos NAND Gate w/Open Collector
Outputs
NTE7402 IC-TTL, Quad 2-Input Positive NOR Gate
NTE7403 IC-TTL, Quad 2-Input Positive NAND Gate w/Open Collector
Outputs
NTE7404 IC-TTL, Hex Inverter
NTE7405 IC-TTL Hex Inverter w/Open Collector Outputs
NTE7406 IC-TTL, Hex Inverter Buffer/Driver w/Open Collector HV
Outputs
NTE7407 IC-TTL, Hex Buffer/Driver w/Open Collector HV Outputs
NTE7408 IC-TTL, Quad 2-Input Pos AND Gate
NTE7409 IC-TTL, Quad 2-Input Pos AND Gate w/Open Collector Outputs
NTE7410 IC-TTL, Triple 3-Input Pos NAND Gate
NTE74107 IC-TTL, Dual J-K Negative Edge Triggered Flip-FLop w/Clear
and Preset
NTE74109 IC-TTL, Dual J-K Pos Edge Triggered Flip-FLop w/Clear and
Preset
NTE7411 IC-TTL, Triple 3-Input Pos AND Gate
NTE74110 IC-TTL, AND Gated J-K Master/Slave Flip-FLop w/Data Lockout
NTE74116 IC-TTl, Dual 4-Bit Latch
NTE7412 IC-TTL, Triple 3-Input Pos NAND Gate w/Collector Outputs
NTE74120 IC-TTL, Dual Pulse Synchronizer/Driver
NTE74121 IC-TTL, Monostable Multivibrator
NTE74122 IC-TTL, Retriggerable Monostable Multivibrator w/Clear
NTE74123 IC-TTL, Dual Retriggerable Monostable Multivibrator w/Clear
NTE74126 IC-TTL, Quad Bus Buffer w/3-State Outputs
NTE74128 IC-TTL, Quad 2-Input NOR 50ohm Line Driver
NTE7413 IC-TTL, Dual 4-Input NAND Schmitt Trigger
NTE74132 IC-TTL, Quad 2-Input Pos NAND Schmitt Trigger
NTE7414 IC-TTL, Hex Schmitt Trigger
NTE74141 IC-TTL, BCD-to-Decimal Decoder/Driver, Driver Filled Cold
Cathode Indicator Tubes Directly
NTE74145 IC-TTL, BCD-to-Decimal Decoder/Driver for Lamps, Relays,
MOS
NTE74147 IC-TTL, 10-Line Decimal-to-4-Line BCD Priority Encoder
NTE74136 IC-TTL, Quad Exclusive OR Gate w/Open Collector Outputs
NTE74150 IC-TTL, 1-of-16 Data Selector/Mulitplexer
NTE74151 IC-TTL, 8-Channel Multiplexer
NTE74148 IC-TTL, 8-Line to 3-Line OCtal Priority Encoder
NTE74152 IC-TTL, 1-of-8 Data Selector/Multiplexer
IC-CMOS, Programmable Timer
NTE4584B IC-CMOS, Hex Schmitt Trigger
NTE4585B IC-CMOS, 4-Bit Magnitude Comparator NTE74153 IC-TTL, Dual 4-Line-to-1-Line Data Selector/Mulitplexer
NTE74154 IC-TTL, 4-Line-to-16-Line Decoder/Demultiplexer
Page 26-4
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
Part Number Description
NTE74155 IC-TTL, Dual 2-Line-to-4-Line Decoder/Demultiplexer w/Totem
Pole Outputs
NTE74156 IC-TTL, Dual 2-Line-to-4-Line Decoder/Demultiplexer w/Open
Collector Outputs
NTE74157 IC-TTL, Quad 2-to-1-Line Data Selector/ Multiplexer w/Non-
Inverted Data Outputs
NTE74158 IC-TTL, Quad 2-to-1-Line Data Selector/ Multiplexer w/Inverted
Data Outputs
NTE7416 IC-TTL, Hex Inverter Buffer/Driver w/Open Collector HV Outputs
NTE74160 IC-TTL, Synchronous 4-Bit Decade Counter w/Direct Clear
NTE74161 IC-TTL, Synchronous 4-Bit Binary Counter w/Direct Clear
NTE74162 IC-TTL, Synchronous 4-Bit Binary Counter w/Synchronous Clear
NTE74163 IC-TTL, Synchronous 4-Bit Binary Counter w/Synchronous Clear
NTE74164 IC-TTL, 8-Bit Parallel-Out Serial Shift Register w/Async Clear
NTE74165 IC-TTL, 8-Bit Parallel-In/Serial Out Shift Register
NTE74166 IC-TTL, 8-Bit Parallel-In or Serieal-In/Serial Out Shift Register
NTE7417 IC-TTL, Hex Buffer/Driver w/Open Collector HV Outputs
NTE74170 IC-TTL, 4-by-4 Register File w/Open Collector Outputs
NTE74173 IC-TTL, 4-Bit D-Type Flip-Flop w/3-State Outputs
NTE74174 IC-TTL, Hex D-Type Flip-Flop w/Serial Rail Outputs and
Common Direct Clear
NTE74175 IC-TTl, Quad D-Type Flip-FLop w/Common Direct Clear and
Complementary Outputs
NTE74176 IC-TTL, Presettable Decade Counter/Latch
NTE74177 IC-TTL, Presettable Binary Counter/Latch
NTE74179 IC-TTL, 4-Bit Universal Shift Register w/Direct Clear
NTE74180 IC-TTL, 9-Bit Odd/Even Parity Generator/Checker
NTE74182 IC-TTL, Look-Ahead Carry Generator
NTE74191 IC-TTL, Synchronous Up/Down Binary Counter
NTE74192 IC-TTL, Synchronous Up/Down BCD Counter (Dual Clock
w/Clear)
NTE74193 IC-TTL, Synchronous Up/Down Binary Counter (Dual Clock
w/Clear)
NTE74195 IC-TTL, 4-Bit Parallel Access Shift Register
NTE74196 IC-TTL, Presettable Decade Counter/Latch
NTE74197 IC-TTL, Presettable Modulo-16 Binary Counter/Latch
NTE74199 IC-TTL, 8-Bit Bidirectional Universal Shift Register
NTE7420 IC-TTL, Dual 4-Input NAND Gate
NTE7421 IC-TTL, Dual 4-Input AND Gate
NTE7422 IC-TTL, Dual 4-Input NAND Gate w/Open COllector Outputs
Part Number Description
NTE74251 IC-TTL, Data Selector/Mulitplexer w/True and Inverted 3-State
Outputs
NTE7426 IC-TTL, Quad 2-Input High Voltage Interface NAND Gate
NTE74265 IC-TTL, Quad Complementary Output Elements
NTE7427 IC-TTL, Triple 3-Input Pos NOR Gate
NTE74278 IC-TTL, 4-Bit Cascadable Priority Register w/Latched Data
Inputs and Priority Output Gating
NTE74279 IC-TTL, Quad Set-Reset Latch w/Diode-Clamped Inputs and
Totem Pole Outputs
NTE7428 IC-TTL, Quad 2-Input Pos NOR Buffer/Clock Driver w/Totem
Pole Outputs
NTE7430 IC-TTL, 8-Input Pos NAND Gate
NTE7432 IC-TTL, Quad 2-Input OR Gate
NTE7433 IC-TTL, Quad 2-Input NOR Buffer w/Open Collector Outputs
NTE74298 IC-TTL, Quad 2-Input Multiplexer w/Storage
NTE74365 IC-TTL, 3-State Hex Bus/Buffer Driver w/Non-Inverted Outputs
NTE74366 IC-TTL, 3-State Hex Bus/Buffer Driver w/Inverted Outputs
NTE74367 IC-TTL, Hex Bus/Buffer Driver w/Non-Inverted 3-State Outputs,
Organized to Handle 4-Bit Data
NTE74368 IC-TTL, Hex Bus/Buffer Driver w/Inverted 3-State Outputs,
Organized to Handle 4-Bit Data
NTE7437 IC-TTL, Quad 2-Input NAND Buffer
NTE74376 IC-TTL, Quardruple J-K Flip-Flop
NTE7438 IC-TTL, Quad 2-Input NAND Buffer w/Open Collector Outputs
NTE7439 IC-TTL, Quad 2-Input NAND Buffer w/Open Collector Outputs
NTE74390 IC-TTL, Dual 4-Bit Decade Ripple Counter
NTE74393 IC-TTL, Dual 4-Bit Binary Ripple Counter
NTE7440 IC-TTL, Dual 4-Input NAND Buffer
NTE7441 IC-TTL, 1-of-10 Decoder Driver for Cold Cathode Indicator
Tubes
NTE7442 IC-TTL, 4-Line-to-10-Line BCD-to-Decimal Decoder
NTE74426 IC-TTL, Quad Gate w/3-State Outputs and Active High Enabling
NTE7443 IC-TTL, 4-Line-to-10-Line Excess-3-Decimal Decoder
NTE7444 IC-TTL, 4-Line-to-10-Line Excess-3-Gray-to Decimal Decoder
NTE7445 IC-TTL, BCD-to-Decimal Decoder/Driver
NTE7446 IC-TTL, BCD-to-Seven-Segment Decoder/Driver w/Active Low,
Open Collector Outputs
NTE7423 IC-TTL, Expandable Dual 4-Input NOR Gate w/Strobe
NTE74221 IC-TTL, Dual Monostable Multivibrator
NTE74249 IC-TTL, BCD-to-Seven-Segment Decoder/driver w/Open
Collector Outputs
NTE7425 IC-TTL, Dual 4-Input Pos NOR Gate w/Strobe
NTE7447 IC-TTL, BCD-to-Seven-Segment Decoder/Driver w/Active Low,
Open Collector Outputs
NTE7448 IC-TTL, BCD-to-Seven-Segment Decoder/Driver w/Internal
Pull-Up Outputs
NTE74490 IC-TTL, Dual BCD Decade Ripple Counter
NTE7450 IC-TTL, Dual 2-Wide, 2-Input, AND/OR Invert Gate (One Gate
Expandable)
NTE7451 IC-TTL, Dual 2-Wide, 2-Input, AND/OR Gate
Page 26-5
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
Part Number Description
NTE7453 IC-TTL, Expandable AND/OR Invert Gate
NTE7454 IC-TTL, 4-Wide AND/OR Invert Gate
NTE7460 IC-TTL, Dual 4-Input Expander
NTE7470 IC-TTL, AND Gated J-K Pos Edge Triggered Flip-Flop w/Present
and Clear
NTE7472 IC-TTL, AND Gated J-K Master/Slave Flip-Flop w/Present and
Clear
NTE7473 IC-TTL, Dual J-K Flip-Flop w/Clear
NTE7474 IC-TTL, Dual D-Type Pos Edge Triggered Flip-Flop w/Present
and Clear
NTE7475 IC-TTL, 4-Bit Bistable Latch
NTE7476 IC-TTL, Dual J-K Flip-Flop w/Present and Clear
NTE7480 IC-TTL, Gated Full Adder w/Complementary Inputs and
Complementary Sum Outputs
NTE7482 IC-TTL, 2-Bit Binary Full Adder
NTE7483 IC-TTL, 4-Bit Binary Full Adder w/Fast Carry
NTE7485 IC-TTL, 4-Bit Magnitude Comparator
NTE7486 IC-TTL, Quad 2-Input Exclusive OR Gate
NTE7489 IC-TTL, 64-Bit Read/Write Memory
NTE7490 IC-TTL, Decade Counter (Divide by 2 and 5)
NTE7491 IC-TTL, 8-Bit Shift Register w/Gated Serial INputs and Serial
Outputs
NTE7492 IC-TTL, Divide-by-Twelve Counter
NTE7493A IC-TTL, 4-Bit Binary Counter (Divide by 2 and 8)
NTE7495 IC-TTL, 4-Bit Parallel In/Parallel Out Shift Register
NTE7496 IC-TTL, 5-Bit Shift Register w/Async Preset
NTE7497 IC-TTL, Sychronous 6-Bit Binary Rate Multiplier
NTE74C160 IC-CMOS, Synchronous 4-Bit Decade Counter with Direct
Clear
NTE74C161 IC-CMOS, Synchronous 4-Bit Binary Counter with Direct Clear
NTE74C164 IC-CMOS, 8-Bit Parallel-Out Serial Shift Register with Async
Clear
NTE74C174 IC-CMOS, Hex D-Type Flip-Flop with Serial Rail Outputs and
Common Direct Clear
NTE74C173 IC-CMOS, 4-Bit D-Type Flip-Flop w/3-State Outputs
NTE74C175 IC-CMOS, Quad D-Type Flip-Flop with Common Direct Clear
and Complementary Outputs
NTE74C192 IC-CMOS, Synchronous Up/Down BCD Counter (Dual Clock
with Clear)
Part Number Description
NTE74C373 IC-CMOS, Octal D-Type Latch with 3-State Outputs and
Common Output Control
NTE74C901 IC-CMOS, Hex Inverting TTL Buffer
NTE74C902 IC-CMOS, Hex Non-Inverting TTL Buffer
NTE74C903 IC-CMOS, Hex Inverting DMOS Buffer
NTE74C904 IC-CMOS, Hex Non-Inverting DMOS Buffer
NTE74C922 IC-CMOS, 16-Key Keyboard Encoder with 3-State Output
NTE74C923 IC-CMOS, 20 Key Keyboard Encoder with 3-State Output
NTE74C925 IC-CMOS, 4-Digit Counter with Multiplexed Seven-Segment
Output Driver
NTE74H00 IC-TTL, High Speed, Quad 2-Input Pos NAND Gate
NTE74H01 IC-TTL, High Speed, quad 2-Input Pos NAND Gate with Open
Collector Outputs
NTE74H04 IC-TTL, High Speed, Hex Inverter
NTE74H05 IC-TTL, High Speed, Hex Inverter with Open Collector Outputs
NTE74H101 IC-TTL, High Speed, AND OR Gate J-K
Neg Edge Triggered Flip-Flop w/Present
NTE74H102 IC-TTL, High Speed, AND Gated J-K Neg Edge Triggered Flip-
Flop w/Clear & Reset
NTE74H103 IC-TTL, High Speed, Dual J-K Neg Edge Triggered Flip-Flop
w/Clears
NTE74H106 IC-TTL, High Speed, Dual J-K Neg Edge Triggered Flip-Flop
w/Present and Clear
NTE74C374 IC-CMOS, Octal D-Type Flip-Flop w/3-State Outputs, Common
Output Control and Common Clock
NTE74H108 IC-TTL, High Speed, Dual J-K Neg Triggered Flip-Flop
w/Presents, Common Clear & Common Clock
NTE74H183 IC-TTL, High Speed Dual Carry/ Save Full Adder
NTE74H21 IC-TTL, High Speed, Dual 4-Input AND Gate
NTE74H22 IC-TTL, High Speed, Dual 4-Input NAND Gate with Open
Collector Outputs
NTE74H30 IC-TTL, High Speed, 8-Input Pos NAND Gate
NTE74H40 IC-TTL, High Speed, Dual 4-Input NAND Buffer
NTE74H50 IC-TTL, High Speed, Dual 2-Wide, 2-Input, AND/OR Invert Gate
(One Gate Expandable)
NTE74H51 IC-TTL, High Speed, Dual 2-Wide, 2-Input AND/OR Gate
NTE74H52 IC-TTL, High Speed, Expandable 4-Wide AND/OR Gate
NTE74H53 IC-TTL, High Speed, Expandable AND/OR Inver Gate
NTE74H54 IC-TTL, High Speed, 4-Wide AND/OR Invert Gate
NTE74H55 IC-TTL, High Speed, Expandable, 2-Wide, 4-Input AND/OR
Invert Gate
NTE74C193 IC-CMOS, Synchronous Up/Down Binary Counter (Dual Clock
with Clear)
NTE74C221 IC-CMOS, Dual Monostable Multivibrator
NTE74C240 IC-CMOS, Octal Buffer/Line Driver/Receiver with 3-State
Inverted Outputs
NTE74C244 IC-CMOS, Octal Buffer/Line Driver/Receiver with 3-State Non-
Inverted Outputs
NTE74H61 IC-TTL, High Speed Triple 3-Input Expander
NTE74H62 IC-TTL, High Speed 4-Wide AND/OR Expander
NTE74H71 IC-TTL, High Speed AND Gated J-K Master/Slave Flip-Flop with
Preset and Clear
NTE74H60 IC-TTL, High Speed Dual 4-Input Expander
NTE74H72 IC-TTL, High Speed, AND Gated
Page 26-6
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
Part Number Description
NTE74H73 IC-TTL, High Speed, Dual J-K Flip-Flop w/Clear
NTE74H74 IC-TTL, High Speed Dual D-Type Pos Edge Triggered Flip-Flop
w/Present & Clear
NTE74H76 IC-TTL, High Speed, Dual J-K Flip-Flop w/Present & Clear
NTE74H78 IC-TTL, High Speed, Dual J-K Flip-Flop
w/Present Common Clear & Common Clock
NTE74H87 IC-TTL, High Speed, 4-Bit True/ Complement Zero/One
Element
NTE74HC00 IC-TTL, High Speed CMOS, QUAD 2-Input NAND Gate
NTE74HC02 IC-TTL, High Speed CMOS, Quad 2-Input NOR Gate
NTE74HC04 IC-TTL, High Speed CMOS, Hex Inverter
NTE74HC08 IC-TTL, High Speed CMOS, Quad 2-Input AND Gate
NTE74HC10 IC-TTL, High Speed CMOS, Triple 3-Input NAND Gate
NTE74HC109 IC-TTL, High Speed CMOS, Dual J-K Flip-Flop w/Present &
Clear
NTE74HC11 IC-TTL, High Speed CMOS, Triple 3-Input AND Gate
NTE74HC123 IC-TTL, High Speed CMOS, Dual Retriggerable
Monostable Multivibrator
NTE74HC125 IC-TTL, High Speed CMOS, TRI-STATE Quad Buffer
NTE74HC126 IC-TTL, High Speed CMOS, TRI-STATE Quad Buffer
NTE74HC132 IC-TTL, High Speed CMOS, Quad 2-Input NAND Schmitt Trigger
NTE74HC138 IC-TTL, High Speed CMOS, 3-to-8-Line Decoder/ Demultiplexer
NTE74HC139 IC-TTL, High Speed CMOS, Dual 2-to-4-line
Decoder/ Demultiplexer
NTE74HC14 IC-TTL, High Speed CMOS, Hex Schmitt Trigger Inverter
NTE74HC151 IC-TTL, High Speed CMOS, 8-Channel Multiplexer
NTE74HC153 IC-TTL, High Speed CMOS, Dual 4-Input, Multiplexer
NTE74HC154 IC-TTL, High Speed CMOS, 4-to-16-Line Decoder/
Demultiplexer
NTE74HC161 IC-TTL, High Speed CMOS, Synchronous 4-Bit Binary Counter
w/Direct Clear
NTE74HC163 IC-TTL, High Speed CMOS, Synchronous 4-Bit Binary Counter
w/Direct Clear
NTE74HC164 IC-TTL, High Speed CMOS, 8-Bit Serial-In/ Parallel-Out Shift
Register
NTE74HC165 IC-TTL, High Speed CMOS, Parallel-In/ Serial-Out 8-Bit Shift
Register
NTE74HC173 IC-TTL, High Speed CMOS, Tri-State Quad D-Type Flip-Flop
Part Number Description
NTE74HC273 IC-TTL, High Speed CMOS, Octal D-Type Flip-Flop w/ Clear
NTE74HC299 IC-TTL, High Speed CMOS, 8-Bit TRI-STATE Universal Shift
Register
NTE74HC32 IC-TTL, High Speed CMOS, Quad 2-Input OR Gate.
NTE74HC373 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Latch
NTE74HC374 IC-TTL, High Sped CMOS, TRI-STATE Octal D-Type Flip-Flop
NTE74HC377 IC-TTL, High Speed CMOS, Octal D-Type Flip-Flop
NTE74HC390 IC-TTL, High Speed CMOS, Dual 4-Bit Decade Counter
NTE74HC393 IC-TTL, High Speed CMOS, Dual 4-Bit Binary Counter
NTE74HC40105 IC-TTL, High Speed CMOS, 4-Bit x 16 Word FIFO Register
NTE74HC4020 IC-TTL, High Speed CMOS, 14-Stage Binary Counter
NTE74HC4040 IC-TTL, High Speed CMOS, 12-Stage Binary Counter
NTE74HC4053 IC-TTL, High Speed CMOS, Triple 2-Channel Analog
Multiplexer/Demultiplexer
NTE74HC4060 IC-TTL, High Speed CMOS, 14-Stage Binary Counter/
Oscillator
NTE74HC4067 IC-TTL, High Speed CMOS, 16-Channel/
Multiplexer/Demultiplexer
NTE74HC574 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Edge
Triggered Edge
NTE74HC86 IC-TTL, High Speed CMOS, Quad 2-Input Exclusive OR Gate
NTE74HCT00 IC-TTL, High Speed CMOS, Quad 2-Input NAND Gate
NTE74HCT04 IC-TTL, High Speed CMOS, Hex Inverter
NTE74HC573 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Latch
NTE74HCT08 IC-TTL, High Speed CMOS, Quad 2-Input AND Gate
NTE74HCT138 IC-TTL, High Speed CMOS, 3-to-8-Line Decoder/
Demultiplexer
NTE74HCT14 IC-TTL, High Speed CMOS, Hex Schmitt Trigger Inverter
NTE74HCT161 IC-TTL, High Speed CMOS, 4-Bit Binary Counter
w/Asynchronous Clear
NTE74HCT163 IC-TTL, High Speed CMOS, 4-Bit Binary Counter
w/Asynchronous Clear
NTE74HCT174 IC-TTL, High Speed CMOS, Hex D-Type Flip-Flop w/ Clock
and Clear
NTE74HC175 IC-TTL, High Speed CMOS, Quad D-Type Flip-Flop w/Clear
NTE74HC240 IC-TTL, High Speed CMOS, Inverting Octal TRI-STATE Buffer
NTE74HC244 IC-TTL, High Speed CMOS, Octal TRI-STATE Buffer
NTE74HC257 IC-TTL, High Speed CMOS, Quad 2-Channel TRI-STATE
Multiplexer
NTE74HC174 IC-TTL, High Speed CMOS, Hex D-Type Flip-Flops w/Clock &
Clear
NTE74HC259 IC-TTL, High Speed CMOS, 8-Bit Addressable
Latch/3-to-8 Line Decoder
NTE74HCT240 IC-TTL, High Speed CMOS, Inverting Octal TRI-STATE Buffer
NTE74HCT244 IC-TTL, High Speed CMOS, Octal TRI-STATE Buffer
NTE74HCT273 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Flip-
Flop w/ Clear
NTE74HCT32 IC-TTL, High Speed CMOS, Quad 2-Input OR Gate.
NTE74HCT373 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Latch
NTE74HCT573 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Latch
NTE74HCT574 IC-TTL, High Speed CMOS, TRI-STATE Octal D-Type Flip-
Flop
NTE74L93 IC-TTL, 4-Bit Counter (Divide by 2 & 8)
Page 26-7
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
NTE74LS00 Quad 2-Input Pos NAND Gate
NTE74LS01 IC-TTL, Low Power Schottky, Quad 2-Input Pos NAND Gate
w/Open Collector Outputs
NTE74LS02 IC-TTL, Low Power Schottky, Quad 2-Input Pos NOR Gate
NTE74LS03 IC-TTL, Low Power Schottky, Quad 2-Input Pos NAND Gate
w/Power Collector Outputs
NTE74LS04 IC-TTL, Low Power Schottky, Hex Inverter
NTE74LS05 IC-TTL, Low Power Schottky, Hex Inverter
w/Open Collector Outputs
NTE74LS06 IC-TTL, Low Power Schottky, Hex Inverter Buffer/Driver
w/Open Collector HV Outputs
NTE74LS08 IC-TTL, Low Power Schottky, Triple 3-Input Pos AND Gate
NTE74LS09 IC-TTL, Low Power Schottky, Triple 3-Input Pos NAND Gate
w/Open Collector Outputs
NTE74LS124 IC-TTL, Low Power Schottky, Dual Voltage Controlled
Oscillator
NTE74LS125A IC-TTL, Low Power Schottky, Quad Bus w/3-State Outputs
NTE74LS126A IC-TTL, Low Power Schottky, Quad Bus w/3-State Outputs
Part Number Description
NTE74LS10 IC-TTL, Low Power Schottky, Triple 3-Input Pos NAND Gate
NTE74LS107 IC-TTL, Low Power Schottky, Dual J-K Neg Edge Triggered
Flip-Flop w/Clear
NTE74LS109A IC-TTL, Low Power Schottky, Dual J-K Pos Edge Triggered
Flip-Flop w/Clear & Present
NTE74LS11 IC-TTL, Low Power Schottky, Triple 3-Input Pos AND Gate
NTE74LS112A IC-TTL, Low Power Schottky, Dual J-K Neg Edge Triggered
Flip-Flop w/Present & Clear
NTE74LS113 IC-TTL, Low Power Schottky, Dual J-K Neg Edge Triggered
Flip-Flop w/Present
NTE74LS114 IC-TTL, Low Power Schottky, Dual J-K Neg Edge Triggered
Flip-Flop w/Present Common Clock & Clear
NTE74LS12 IC-TTL, Low Power Schottky, Triple 3-Input Pos NAND Gate
w/Open Collector Outputs
NTE74LS122 IC-TTL, Low Power Schottky, Retriggerable
Monostable Multivibrator w/Clear
NTE74LS123 IC-TTL, Low Power Schottky, Dual Retriggerable Monostable
Multivibrator w/Clear
Part Number Description
NTE74LS140 IC-TTL, Ultra-High Speed, Dual 4-Input Pos NAND "W"50 Line
Driver
NTE74LS145 IC-TTL, Low Power Schottky, BCD-to-Decimal Decoder/ Drive
For Lamps, Relays MOS
NTE74LS147 IC-TTL, Low Power Schottky, 10-Line Decimal-to-4-Line BCD
Priority Encoder
NTE74LS148 IC-TTL, Low Power Schottky, 8-Line-to-3-Line Octal Priority
Encoder
NTE74LS15 IC-TTL, Low Power Schottky, Triple 3-Input AND Gate w/Open
Collector Outputs
NTE74LS151 IC-TTL, Low Power Schottky, 8-Channel Multiplexer
NTE74LS153 IC-TTL, Low Power Schottky, Dual4-Line-to-1 Line Data
Selector/ Multiplexer
NTE74LS155 IC-TTL, Low Power Schottky, Dual 2-Line-to-4-Line Decoder/
Demultiplxer w/Totem Pole Outputs
NTE74LS156 IC-TTL, Low Power Schottky, Dual 2-Line-to-4-Line
Decoder/Demultiplexer w/Open Collector Outputs
NTE74LS157 IC-TTL, Low Power Schottky, Quad 2-to1-Line
Data Selector/Multiplexer w/Non-Inverted Date Outputs
NTE74LS158 IC-TTL, Low Pwr Schottky, Quad 2-to-1- Line
Data Selector/Multiplexer w/Inverted Data Outputs
NTE74LS160A IC-TTL, Low Power Schottky, Synchronous 4-Bit Decade
Counter w/Direct Clear
NTE74LS161A IC-TTL, Low Power Schottky, Synchronous 4-Bit Binary
Counter w/Direct Clear
NTE74LS162A IC-TTL, Low Power Schottky, Synchronous 4-Bit Decade
Counter w/ Synchronous Clear
NTE74LS163 IC-TTL, Ultra-High Speed, Synchronous 4-Bit Binary Counter
w/Synchronous Clear
NTE74LS163A IC-TTL, Low Power Schottky, Synchronous 4-Bit Binary
Counter w/Synchronous Clear
NTE74LS164 IC-TTL, Low Power Schottky, 8-Bit Parallel-Out Serial Shift
Register w/Async Clear
NTE74LS165 IC-TTL, Low Power Schottky, 8-Bit Parallel-In/Serial-Out Shift
Register
NTE74LS166 IC-TTL, Low Power Schottky, 8-Bit, Parallel-In/Serial-Out Shift
Register
NTE74LS168A IC-TTL, Low Power Schottky, Synchronous Presettable BCD
NTE74LS13 IC-TTL, Low Power Schottky, Dual 4-Input NAND Schmitt Decade Up-Down Counter
Trigger
NTE74LS132 IC-TTL, Low Power Schottky, Quad 2-Input Pos NAND
Schmitt Trigger
NTE74LS133 IC-TTL, Low Power Schottky, 13-Input Pos NAND Gate
NTE74LS136 IC-TTL, Low Power Schottky, Quad Exclusive OR Gate
w/Open Collector Outputs
NTE74LS138 IC-TTL, Low Power Schottky, 3-of-8 Decoder/Demultiplexer
NTE74LS139 IC-TLL, Low Power Schottky, Dual 4-to-4 Line
Decoder/ Demultiplexer
NTE74LS14 IC-TTL, Low Power Schottky, Hex Schmitt Trigger Inverter
NTE74LS169A IC-TTL, Low Power Schottky, Synchronous Presettable 4-Bit
Binary Up/Down Counter
NTE74LS170 IC-TTL , Low Power Schottky, 4-by-4 Register File w/Open
Collector Output
NTE74LS173A IC-TTL, Low Power Schottky, 4-Bit D-Type Flip-Flop w/3-State
Outputs
NTE74LS174 IC-TTL, Low Power Schottky, Hex D-Type Flip Flop w/3-State
Outputs
NTE74LS175 IC-TTL, Low Power Schottky, Hex D-Type Flip Flop w/Serial
Rail Outputs & Common Direct Clear
Page 26-8
Semiconductors
Part Number Description
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
IC-TTL, Schottky, 256-Bit (32 x 8) PROM w/Open Collector
Outputs
NTE74LS181 IC-TTL, Low Power Schottky, Quad D-Type Flip-Flop
w/Common Direct Clear & Complementary Outputs
NTE74LS182 IC-TTL, Ultra-High Speed, Lock-Ahead Carry Generator
NTE74LS188
NTE74LS189 IC-TTL, Schottky, 64-Bit RAM w/3-State Outputs
NTE74LS190 IC-TTL, Low Power Schottky, Arithmetic Logic Unit/ Function
Generator
NTE74LS191 IC-TTL, Low Power Schottky, Synchronous Up/Down BCD
Counter
NTE74LS192 IC-TTL, Low Power Schottky, Synchronous Up/ Down BCD
Counter (Dual Clock w/Clear)
NTE74LS193 IC-TTL, Low Power Schottky, Synchronous Up/ Down Binary
Counter (Dual Clock w/Clear)
NTE74LS194 IC-TTL, Low Power Schottky, 4-Bit BiDirectional Universal Shift
Register
NTE74LS194A IC-TTL, Low Power Schottky, 4-Bit BiDirectional Universal Shift
Register
NTE74LS195A IC-TTL, Low Power Schottky, 4-Bit Parallel Access Shift
Register
NTE74LS196 IC-TTL, Low Power Schottky, Presentable Decade
Counter/Latch
NTE74LS197 IC-TTL, Low Power Schottky, Presettable Modulo-16 Binary
Counter/Latch
NTE74LS20 IC-TTL, Low Power Schottky, Dual 4-Input NAND Gate
NTE74LS21 IC-TTL, Low Power Schottky, Dual 4-Input AND Gate
NTE74LS22 IC-TTL, Low Power Schottky, Dual 4-Input NAND Gate w/Open
Collector Outputs
NTE74LS221 IC-TTL, Low Power Schottky, Dual Monostable Multivibrator
NTE74LS240 IC-TTL, Low Power Schottky, Octal Buffer/Line Driver/Receiver
w/3-State Inverted Outputs
NTE74LS241 IC-TTL, Low Power Schottky, Octal Buffer/Line Driver/Receiver
w/3-State Non-Inverted Outputs
NTE74LS242 IC-TTL, Low Power Schottky, Quad Bus Transceiver w/Inverted
3-State Outputs
NTE74LS243 IC-TTL, Low Power Schottky, Quad Bus Transceiver w/Non-
Inverted 3-State Outputs
NTE74LS244 IC-TTL, Low Power Schottky, Octal Buffer/Line Driver/Receiver
w/3-State Non-Inverted Outputs
NTE74LS245 IC-TTL, Low Power Schottky, Octal Bus Transceiver w/Non-
Inverted 3-State Outputs
Part Number Description
NTE74LS253 IC-TTL, Low Power Schottky, Quad Data Selector/Multiplexer
w/3-State Outputs
NTE74LS257 IC-TTL, Low Power Schottky, Quad Data Selector/Multiplexer
w/Non-Inverted 3-State Outputs
NTE74LS258 IC-TTL, Low Power Schottky, Quad Data Selector/Multiplexer
w/Non-Inverted 3-State Outputs
NTE74LS259 IC-TTL, Low Power Schottky, 8-Bit Addressable Latch
NTE74LS26 IC-TTL, Low Power Schottky, Quad 2-Input High Voltage
Interface NAND Gate
NTE74LS260 IC-TTL, Low Power Schottky, Dual 5-Input NOR Gate
NTE74LS266 IC-TTL, Low Power Schottky, Quad 2-Input Exclusive NOR
Gate w/Open Collector Outputs
NTE74LS27 IC-TTL, Low Power Schottky, Triple 3-Input Positive NOR Gate
NTE74LS273 IC-TTL, Low Power Schottky, Octal D-Type Flip-Flop w/Common
Clock & Single Rail Outputs
NTE74LS279 IC-TTL, Low Power Schottky, Quad Set-Reset Latch w/Diode-
Clamped Inputs & Totem Pole Outputs
NTE74LS28 IC-TTL, Low Power Schottky, Quad 2-Input NOR Buffer/Clock
Driver w/ Totem Pole Outputs
NTE74LS280 IC-TTL, Low Power Schottky, 9-Bit Odd/ Even Parity
Generator/Checker (N-Bit Cascadable)
NTE74LS283 IC-TTL, Low Power Schottky, 4-Bit Binary Full Adder
NTE74LS287 IC-TTL, Schottky, Bipolar 1024-Bit PROM, 50ns Max
Addressable Access
NTE74LS288 IC-TTL, Schottky, 256-Bit (32 x 8) PROM w/TRI-STATE Outputs
NTE74LS290 IC-TTL,Low Power Schottky,Decade Counter(Divide by 2 & 5)
NTE74LS293 IC-TTL, Low Power Schottky, 4-Bit Binary Counter (Divide by 2
& 5)
NTE74LS295 IC-TTL, Low Power Schottky, 4-Bit Bidirectional Universal Shift
Register
NTE74LS295A IC-TTL, Low Power Schottky, 4-Bit Bidirectional Universal Shift
Register
NTE74LS298 IC-TTL, Low Power Schottky, Quad 2-Input Multiplexer
w/Storage
NTE74LS299 IC-TTL, Low Power Schottky, 8-Bit Shift Register w/3-State
Outputs
NTE74LS30 IC-TTL, Low Power, Schottky, 8-Input Pos NAND Gate.
NTE74LS32 IC-TTL, Low Power Schottky, Quad 2-Input OR Gate.
NTE74LS324 IC-TTL, Low Power Schottky, Voltage Controlled Oscillator
NTE74LS247 IC-TTL, Low Power Schottky, BCD-to-Seven-Segment
Decoder/Driver w/3-State Non-Inverted Outputs
NTE74LS248 lC-TTL, Low Power Schottky, BCD-to-Seven-Segment
Decoder/Driver w/International Pull-Up Outputs
NTE74LS249 lC-TTL, Low Power Schottky, BCD-to-Seven-Segment
Decoder/Driver w/Open Collector Outputs
NTE74LS251 IC-TTL, Low Power Schottky, Data Selector/Multiplexer w/True
& Inverted 3-State Outputs
NTE74LS327 IC-TTL, Low Power Schottky, Dual Voltage Controlled
Oscillator
NTE74LS33 IC-TTL, Low Power Schottky, Quad 2-Input NOR Buffer/Clock
w/Open Collector Outputs
NTE74LS348 IC-TTL, Low Power Schottky, 8-Line-to-3-Line Priority Encoder
NTE74LS352 IC-TTL, Low Power Schottky, Dual 4-Line-to-1-Line Data
Selector/Multiplexer (Inverting Version of NTE74LS153)
Page 26-9
Semiconductors
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
Part Number Description
NTE74LS365A IC-TTL, Low Power Schottky, 3-State Hex Bus/Buffer w/Non-
Inverted Outputs
NTE74LS366A IC-TTL, Low Power Schottky, 3-State Hex Bus/Buffer Drive
w/Inverted Outputs
NTE74LS367 IC-TTL, Low Power Schottky, Hex Bus/Buffer Driver w/Non-
Inverted 3-State Outputs, Organize to Handle 4-Bit Data
NTE74LS368 IC-TTL, Low Power Schottky, Hex Bus/Buffer Driver w/Inverted
3-State Outputs, Organize to Handle 4-Bit Data
NTE74LS37 IC-TTL, Low Power Schottky, Quad 2-Input NAND Buffer
NTE74LS373 IC-TTL, Low Power Schottky, Octal D-Type Latch w/3-State
Outputs & Common Output Control
NTE74LS374 IC-TTL, Low Power Schottky, Octal D-Type Flip-Flop w/3-State
Outputs, Common Output Control & Common Clock
NTE74LS377 IC-TTL, Low Power Schottky, Octal D-Type Flip-Flop
w/Common Enable w/Clock & Single Rail Outputs
NTE74LS378 IC-TTL, Low Power Schottky, Hex D-Type Flip-Flop w/Clock
Enable
NTE74LS379 IC-TTL, Low Power Schottky, Quad D-Type Flip-Flop
NTE74LS38 IC-TTL, Low Power Schottky, Quad 2-Input NAND Buffer
w/Open Collector Outputs
NTE74LS386 IC-TTL, Low Power Schottky, Quad 2-Input Exclusive OR Gate
NTE74LS387 IC-TTL, Schottky, 1024-Bit (256 x 4) PROM w/Open Collector
Outputs, 50ns Max Address Access
NTE74LS390 IC-TTL, Low Power Schottky, Dual 4-Bit Decade Ripple
Counter
NTE74LS393 IC-TTL, Low Power Schottky, Dual 4-Bit Binary Ripple Counter
NTE74LS395A IC-TTL, Low Power Schottky, 4-Bit Cascadable Shift Register
w/3-State Outputs
NTE74LS396 IC-TTL, Low Power Schottky, Octal Storage Register w/Parallel
Access
NTE74LS398 IC-TTL, Low Power Schottky, Quad 2-Port Register
NTE74LS399 IC-TTL, Low Power Schottky, Quad 2-Input Multiplexer
w/Storage
NTE74LS40 IC-TTL, Low Power Schottky, Dual 4-Input NAND Buffer
NTE74LS42 IC-TTL, Low Power Schottky, 4-Line-to-10-Line BCD-to-
Decimal Decoder
Part Number Description
NTE74LS49 IC-TTL, Low Power Schottky, BCD-to-Seven -Segment
Decoder/ Driver w/Open Collector Outputs
NTE74LS490 IC-TTL, Low Power Schottky, Dual BCD Decade Ripple
Counter
NTE74LS51 IC-TTL, Low Pwr Schottky, Dual 2-Wide2-Input AND/OR Gate.
NTE74LS54 IC-TTL, Low Power Schottky, 4-Wide AND/OR Invert Gate.
NTE74LS540 IC-TTL, Low Power Schottky, Octal Buffer/Line Driver
w/Inverted 3-State Outputs
NTE74LS541 IC-TTL, Low Power Schottky, Octal Buffer/Line Driver w/Non-
Inverted 3-State Outputs
NTE74LS55 IC-TTL, Low Power Schottky, Expandable 2-Wide 4-Input
AND/OR Invert Gate
NTE74LS570 IC-TTL, Schottky, 2048-Bit PROM w/Open Collector Outputs
NTE74LS571 IC-TTL, Schottky, 2048-Bit PROM w/3-State Outputs
NTE74LS572 IC-TTL, Schottky, 4096-Bit PROM w/Open Collector Outputs
NTE74LS624 IC-TTL, Low Power Schottky, Voltage Controlled Oscillator
NTE74LS625 IC-TTL, Low Power Schottky, Dual Voltage Controlled
Oscillator
NTE74LS627 IC-TTL, Low Power Schottky, Dual Voltage Controlled
Oscillator
NTE74LS629 IC-TTL, Low Power Schottky, Dual Voltage Controlled
Oscillator
NTE74LS63 IC-TTL, Low Power Schottky, Hex Current-Sensing Interface
Gate
NTE74LS640 IC-TTL, Low Power Schottky, Inverting Octal Bus Transceiver
w/3-State Outputs
NTE74LS641 IC-TTL, Low Power Schottky, Non-Inverting, Octal Bus
Transceiver w/Open Collector Outputs
NTE74LS642 IC-TTL, Low Power Schottky, Inverting Octal Bus Transceiver
w/Open Collector Outputs
NTE74LS643 IC-TTL, Low Power Schottky, True & Inverting Octal Bus
Transceiver w/3-State Outputs
NTE74LS645 IC-TTL, Low Power Schottky, Non-Inverting, Octal Bus
Transceiver w/3-State Outputs
NTE74LS670 IC-TTL, Low Power Schottky, 4-By-4-Register File
w/Simultaneous Read/Write, 3-State Outputs & Expandable to
1024 Words
NTE74LS353 IC-TTL, Low Power Schottky, Dual 4-Line-to-1-Line Data
Selector/Multiplexer
NTE74LS363 IC-TTL, Low Power Schottky, Octal Transparent Latch w/3-
State Outputs
NTE74LS445 IC-TTL, Low Power Schottky, BCD-to-Decimal Decoder/Driver
w/Open Collector Outputs
NTE74LS47 IC-TTL, Low Power Schottky, BCD-to-Seven Segment
Decoder/Driver w/Active Low, Open Collector Outputs
NTE74LS472 IC-TTL, Schottky, 4096-Bit (512 x 8) PROM w/3-State Outputs
NTE74LS474 IC-TTL, Schottky, 4096-Bit (512 x 8) PROM w/3-State Outputs
NTE74LS48 IC-TTL, Low Power Schottky, BCD-to-Seven-Segment
Decoder/Driver w/International Pull-Up Outputs
NTE74LS73 IC-TTL, Low Power Schottky, Dual J-K-Flip-Flop w/Clear
NTE74LS74A IC-TTL, Low Power Schottky, Dual D-Type Pos Edge
Triggered Flip-Flip w/Present & Clear
NTE74LS75 IC-TTL, Low Power Schottky, 4-Bit Bistable Latch
NTE74LS76A IC-TTL, Low Power Schottky, Dual J-K-Flip w/Present & Clear
NTE74LS77 IC-TTL, Low Power Schottky, 4-Bit D-Type Latch
NTE74LS78 IC-TTL, Low Power Schottky, Dual J-K Flip-Flop w/Present,
Common Clear & Common Clock
NTE74LS83A IC-TTL, Low Power Schottky, 4-Bit Binary Full Adder w/Fast
Carry
NTE74LS85 IC-TTL, Low Power Schottky, 4-Bit Magnitude Comparator
Page 26-10
Semiconductors
Part Number Description
NTE74LS86 IC-TTL, Low Power Schottky, Quad 2-Input Exclusive OR Gate
NTE74LS90 IC-TTL, Low Power Schottky, Decade Counter (Divide by 2&5)
NTE74LS91 IC-TTL, Low Power Schottky, 8-Bit Shift Register w/Gated
Serial Inputs & Serial Outputs
NTE74LS92 IC-TTL, Low Power Schottky, Divide - by - Twelve Counter
NTE74LS93 IC-TTL, Low Power Schottky, 4-Bit Binary Counter (Divide by 2
& 8)
Integrated Circuits
(cont.)
Integrated Circuits
(cont.)
NTE74LS95B IC-TTL, Low Power Schottky, 4-Bit Shift Register
NTE74S00 IC-TTL, Ultra-High Speed, Quad 2-Input Pos NAND Gate
NTE74S02 IC-TTL, Ultra-High Speed, Quad 2-Input Pos NOR Gate
NTE74S03 IC-TTL, Ultra-High Speed, Quad 2-Input Pos NAND Gate
w/Open Collector Ouputs
NTE74S04 IC-TTL, Ultra-High Speed, Hex Inverter
NTE74S05 IC-TTL, Ultra-High Speed, Hex Inverter
NTE74S08 IC-TTL, Ultra-High Speed, Quad 2-Input Pos AND Gate
NTE74S09 IC-TTL, Ultra-High Speed, Quad 2-Input Pos AND Gate
w/Collector Outputs
NTE74S10 IC-TTL, Ultra-High Speed, Triple 3-Input Pos NAND Gate
NTE74S11 IC-TTL, Ultra-High Speed, Triple 3-Input Pos AND Gate
NTE74S112 IC-TTL, Ultra-High Speed, Dual J-K Neg Edge Triggered Flip-
Flop w/Present & Clear
Part Number Description
NTE74S74 IC-TTL, Ultra-High Speed, Dual D-Type Pos Edge Triggered
Flip-Flop w/Present & Clear
NTE74S85 IC-TTL, Ultra-High Speed, 4-Bit Magnitude Comparator
NTE74S86 IC-TTL, Ultra-High Speed, Quad 2-Input Exclusive OR Gate
NTE75188 IC-TTL, DTL Quad Line Driver RS232C
NTE75189 IC-TTL, DTL Quad Line Driver RS232C
NTE74S51 IC-TTL, Ultra-High Speed, Dual 2-Wide 2-Input AND/OR Gate
NTE74S64 IC-TTL, Ultra-High Speed, 4-2-3-2 Input AND/OR Invert Gate
w/Totem Pole Ouputs
NTE74S65 IC-TTL, Ultra-High Speed, 4-2-3-2 Input AND/OR Invert Gate
w/Open Collector Outputs
NTE75450B IC-TTL, Dual Peripheral AND Driver
NTE75451B IC-TTL, Dual Peripheral AND Driver
NTE75454B IC-TTL, Dual Peripheral NOR Driver
NTE75491B IC-TTL, 4-Segment MOS TO LED Anode Driver
NTE75492B IC-TTL, 6-Digit MOS to LED Cathode Driver
NTE75493 IC-TTL, 4-Segment MOS to LED Anode Driver
NTE75494 IC-TTL, 6-Digit MOS to LED Cathode Driver
NTE74S40 IC-TTL, Ultra-High Speed, Dual 4-Input NAND Buffer
Transient Suppressors
Part
Number
Description
NTE4900 Overvoltage Transient Suppressor, Vr =5.0V
NTE4901 Overvoltage Transient Suppressor, Bi-Directional Vr =5.0V
NTE4902 Overvoltage Transient Suppressor, Vr =5.8V
NTE4903 Overvoltage Transient Suppressor, Bi-Directional Vr =5.50V
NTE4904 Overvoltage Transient Suppressor, Vr =6.40V
NTE4905 Overvoltage Transient Suppressor, Bi-Directional Vr =6.40V
NTE4906 Overvoltage Transient Suppressor, Vr =7.02V
NTE4907 Overvoltage Transient Suppressor, Bi-Directional Vr =7.02V
NTE4910 Overvoltage Transient Suppressor, Vr =8.55V
NTE4911 Overvoltage Transient Suppressor, Bi-Directional Vr =8.55V
NTE4914 Overvoltage Transient Suppressor, Vr =10.20V
NTE4915 Overvoltage Transient Suppressor, Bi-Directional Vr =10.20V
NTE4918 Overvoltage Transient Suppressor, Vr =11.1V
NTE4919 Overvoltage Transient Suppressor, Bi-Directional Vr =11.1V
NTE4920 Overvoltage Transient Suppressor, Vr =12.80V
NTE4921 Overvoltage Transient Suppressor, Bi-Directional Vr =12.80V
NTE74S113 IC-TTL, Ultra-High Speed, Dual J-K Neg Edge Triggered Flip-
Flop w/Present
NTE4922 Overvoltage Transient Suppressor, Vr =13.60V
NTE4923 Overvoltage Transient Suppressor, Bi-Directional Vr =13.60V
NTE4926 Overvoltage Transient Suppressor, Vr =15.3V
NTE4927 Overvoltage Transient Suppressor, Bi-Directional Vr =15.3V
NTE4929 Overvoltage Transient Suppressor, Bi-Directional Vr =17.1V
NTE4933 Overvoltage Transient Suppressor, Bi-Directional Vr =20.50V
NTE4934 Overvoltage Transient Suppressor, Vr =23.1V
NTE4935 Overvoltage Transient Suppressor, Bi-Directional Vr =23.1V
NTE4936 Overvoltage Transient Suppressor, Vr =25.60V
NTE4932 Overvoltage Transient Suppressor, Vr=20.50V
NTE4937 Overvoltage Transient Suppressor, Bi-Directional Vr =25.60V
NTE4938 Overvoltage Transient Suppressor, Vr =28.20V
NTE4939 Overvoltage Transient Suppressor, Bi-Directional Vr =28.20V
NTE4940 Overvoltage Transient Suppressor, Vr =30.80V
NTE4944 Overvoltage Transient Suppressor, Vr =36.80V
NTE4941 Overvoltage Transient Suppressor, Bi-Directional Vr =30.80V
NTE4942 Overvoltage Transient Suppressor, Vr =33.30V
NTE4943 Overvoltage Transient Suppressor, Bi-Directional Vr =33.30V
NTE4928 Overvoltage Transient Suppressor, Vr =17.1V
NTE74S114 IC-TTL, Ultra-High Speed, Dual J-K Neg Edge Triggered Flip-
Flop w/Present, Common Clock & Clear
NTE74S15 IC-TTL, Ultra-High Speed, Triple 3-Input And Gate w/Open
Collector Outputs
NTE74S20 IC-TTL, Ultra-High Speed, Dual 4-Input NAND Gate
NTE74S22 IC-TTL, Ultra-High Speed, Dual 4-Input NAND Gate w/Open
Collector Outputs
NTE74S30 IC-TTL, Ultra-High Speed, 8-Input Pos NAND Gate
NTE74S37 IC-TTL, Ultra-High Speed, Quad 2-Input NAND Buffer
NTE74S38 IC-TTL, Ultra-High Speed, Quad 2-Input NAND Buffer w/Open
Collector Outputs
NTE75452B IC-TTL, Dual Peripheral NAND Driver
NTE75453B IC-TTL, Dual Peripheral OR Driver
Page 26-11
Semiconductors
Part
Number
Description
NTE4945 Overvoltage Transient Suppressor, Bi-Directional Vr =36.80V
NTE4946 Overvoltage Transient Suppressor, Vr =40.2V
NTE4947 Overvoltage Transient Suppressor, Bi-Directional Vr =40.20V
NTE4950 Overvoltage Transient Suppressor, Vr =43.6V
NTE4951 Overvoltage Transient Suppressor, Bi-Directional Vr =43.6V
NTE4952 Overvoltage Transient Suppressor, Vr =47.80V
NTE4953 Overvoltage Transient Suppressor, Bi-Directional Vr =47.80V
NTE4954 Overvoltage Transient Suppressor, Vr =53V
NTE4955 Overvoltage Transient Suppressor, Bi-Directional Vr =53V
NTE4958 Overvoltage Transient Suppressor, Vr =58.1V
NTE4960 Overvoltage Transient Suppressor, Vr =64.10V
NTE4961 Overvoltage Transient Suppressor, Bi-Directional Vr =64.10V
Part
Number
Description
NTE4959 Overvoltage Transient Suppressor, Bi-Directional Vr =58.1V
NTE4979 Overvoltage Transient Suppressor,Bi-Directional Vr =145.00V
NTE4980 Overvoltage Transient Suppressor, Vr =154.00V
NTE4981 Overvoltage Transient Suppressor,Bi-Directional Vr =154.00V
NTE4982 Overvoltage Transient Suppressor, Vr =185.00V
NTE4983 Overvoltage Transient Suppressor,Bi-Directional Vr =185.00V
NTE4984 Overvoltage Transient Suppressor, Vr =214.00V
NTE4985 Overvoltage Transient Suppressor,Bi-Directional Vr =214.00V
NTE4988 Overvoltage Transient Suppressor, Vr =171V
NTE4989 Overvoltage Transient Suppressor,Bi-Directional Vr =171V
NTE4990 Overvoltage Transient Suppressor, Vr =256.00V
NTE4991 Overvoltage Transient Suppressor,Bi-Directional Vr =256.00V
NTE4992
NTE4993 Overvoltage Transient Suppressor,Bi-Directional Vr =273.00V
NTE4994 Overvoltage Transient Suppressor, Vr =300V
NTE4962 Overvoltage Transient Suppressor, Vr =70.10V
NTE4963 Overvoltage Transient Suppressor, Bi-Directional Vr =70.10V
NTE4964 Overvoltage Transient Suppressor, Vr =77.80V
NTE4965 Overvoltage Transient Suppressor, Bi-Directional Vr =77.80V
NTE4966 Overvoltage Transient Suppressor, Vr =85.80V
NTE4967 Overvoltage Transient Suppressor, Bi-Directional Vr =85.50V
NTE4968 Overvoltage Transient Suppressor, Vr =94.00V
NTE4969 Overvoltage Transient Suppressor, Bi-Directional Vr =94.00V
NTE4970 Overvoltage Transient Suppressor, Vr =102.00V
NTE4971 Overvoltage Transient Suppressor, Bi-Directional Vr =102.00V
NTE4972 Overvoltage Transient Suppressor, Vr =111.00V
NTE4973 Overvoltage Transient Suppressor, Bi-Directional Vr =111.00V
NTE4995 Overvoltage Transient Suppressor,Bi-Directional Vr =300V
NTE4996 Overvoltage Transient Suppressor, Vr =342.00V
NTE4997 Overvoltage Transient Suppressor,Bi-Directional Vr =342.00V
NTE4998 Overvoltage Transient Suppressor, Vr =376.00V
NTE4999 Overvoltage Transient Suppressor,Bi-Directional Vr =376.00V
NTE4976 Overvoltage Transient Suppressor, Vr =136.00V
NTE4977 Overvoltage Transient Suppressor,Bi-Directional Vr =136.00V
NTE4974 Overvoltage Transient Suppressor, Vr =121.00V
NTE4975 Overvoltage Transient Suppressor,Bi-Directional Vr =128.00V
NTE4978 Overvoltage Transient Suppressor, Vr =145.00V
Transient Suppressors
(cont.)
Transient Suppressors
(cont.)
NTE5000A Zener Diode, 2.4V, 1/2W, 5% Tol
NTE5001A Zener Diode, 2.5V, 1/2W, 5% Tol
NTE5002A Zener Diode, 2.7V, 1/2W, 5% Tol
NTE5003A Zener Diode, 2.8V, 1/2W, 5% Tol
NTE5004A Zener Diode, 3.0V, 1/2W, 5% Tol
NTE5005SM Zener Diode, 3.3V, 300mW, 5% Tol, Surface Mount
NTE5007A Zener Diode, 3.9V, 1/2W, 5% Tol
NTE5005A
NTE5007SM
Zener Diode, 3.3V, 1/2W, 5% Tol
Zener Diode, 3.9V, 300mW, 5% Tol, Surface Mount
NTE5008A Zener Diode, 4.3V, 1/2W, 5% Tol
NTE5008SM Zener Diode, 4.3V, 300mW, 5% Tol, Surface Mount
NTE5009A Zener Diode, 4.7V, 1/2W, 5% Tol
NTE5009SM Zener Diode, 4.7V, 300mW, 5% Tol, Surface Mount
NTE5010A Zener Diode, 5.1V, 1/2W, 5% Tol
NTE5010SM Zener Diode, 5.1V, 300mW, 5% Tol, Surface Mount
NTE5010T1 Zener Diode, 5.1V, 1/2W, 1% Tol
NTE5011A Zener Diode, 5.6V, 1/2W, 5% Tol
NTE5011SM Zener Diode, 5.6V, 300mW, 5% Tol, Surface Mount
NTE5011T1 Zener Diode, 5.6V, 1/2W, 1% Tol
NTE5012A Zener Diode, 6.0V, 1/2W, 5% Tol
NTE5013SM Zener Diode, 6.2V, 300mW, 5% Tol, Surface Mount
NTE5013A Zener Diode, 6.2V, 1/2W, 5% Tol
NTE5013T1 Zener Diode, 6.2V, 1/2W, 1% Tol
NTE5014A Zener Diode, 6.8V, 1/2W, 5% Tol
NTE5014SM Zener Diode, 6.8V, 300mW, 5% Tol, Surface Mount
NTE5015A Zener Diode, 7.5V, 1/2W, 5% Tol
Part
Number
Description
Zener Diodes
Overvoltage Transient Suppressor, Vr =273.00V
Page 26-12
Semiconductors
2.4 5000A 5061A - - -
2.5 5001A 5062A - - -
2.7 5002A 5063A - - -
2.8 5003A 5064A - - -
3.0 5004A 5065A - - -
3.3 5005A 5066A 5111A - -
3.6 5006A 134A 5112A - -
3.9 5007A 5067A 5113A 5174A 5240A
4.3 5008A 5068A 5114A 5175A 5241A
4.7 5009A 5069A 5115A 5176A 5242A
5.1 5010A 135A 5116A 5177A 5243A
5.6 5011A 136A 5117A 5178A 5244A
6.0 5012A 5070A 5118A 5179A 5245A
6.2 5013A 137A 5119A 5180A 5246A
6.8 5014A 5071A 5120A 5181A 5247A
7.5 5015A 138A 5121A 5182A 5248A
8.2 5016A 5072A 5122A 5183A 5249A
8.7 5017A 5073A 5123A 5184A 5250A
9.1 5018A 139A 5124A 5185A 5251A
10.0 5019A 140A 5125A 5186A 5252A
11.0 5020A 5074A 5126A 5187A 5253A
11.5 - 141A - - -
Zener Diodes
(cont.)
Rated
Voltage
±5% PD
NTE Number Axial Leads
1/2 Watt 1 Watt 5 Watt 10 Watt 50 Watt
NTE Number Stud Mount
Package Type
Package Style DO35 DO41/DO15 DO4 DO5
Page 26-13
Semiconductors
12.0 5021A 142A 5127A 5188A 5254A
13.0 5022A 143A 5128A 5189A 5255A
14.0 5023A 144A 5129A 5190A 5256A
15.0 5024A 145A 5130A 5191A 5257A
16.0 5025A 5075A 5131A 5192A 5258A
17.0 5026A 5076A 5132A 5193A 5259A
18.0 5027A 5077A 5133A 5194A 5260A
19.0 5028A 5078A 5134A 5195A 5261A
20.0 5029A 5079A 5135A 5196A 5262A
22.0 5030A 5080A 5136A 5197A 5263A
24.0 5031A 5081A 5137A 5198A 5264A
25.0 5032A 5082A 5138A 5199A 5265A
27.0 5033A 146A 5139A 5200A 5266A
28.0 5034A 5083A 5140A 5201A 5267A
30.0 5035A 5084A 5141A 5202A 5268A
33.0 5036A 147A 5142A 5203A 5269A
36.0 5037A 5085A 5143A 5204A 5270A
39.0 5038A 5086A 5144A 5205A 5271A
43.0 5039A 5087A 5145A 5206A 5272A
45.0 - - - 5207A 5273A
47 5040A 5088A 5146A 5208A 5274A
50.0 - - - 5209A 5275A
51.0 5041A 5089A 5147A 5210A 5276A
Zener Diodes
(cont.)
Rated
Voltage
±5% PD
NTE Number Axial Leads
1/2 Watt 1 Watt 5 Watt 10 Watt 50 Watt
NTE Number Stud Mount
Package Type
Package Style DO35 DO41/DO15 DO4 DO5
Page 26-14
Semiconductors
52.0 - - - 5211A 5277A
55.0 - 148A - - -
56.0 5042A 5090A 5148A 5212A 5278A
60.0 5043A 5091A 5149A 5213A 5279A
62.0 5044A 149A 5150A 5214A 5280A
68.0 5045A 5092A 5151A 5215A 5281A
75.0 5046A 5093A 5152A 5216A 5282A
82.0 5047A 150A 5153A 5217A 5283A
87.0 5048A 5094A 5154A 5218A -
91.0 5049A 5095A 5155A 5219A 5284A
100.0 5050A 5096A 5156A 5220A 5285A
105.0 - - - 5221A 5286A
110.0 5051A 151A 5157A 5222A 5287A
120.0 5052A 5097A 5158A 5223A 5288A
130.0 5053A 5098A 5159A 5224A 5289A
140.0 5054A 5099A 5160A 5225A 5290A
150.0 5055A 5100A 5161A 5226A 5291A
160.0 5056A 5101A 5162A 5227A 5292A
170.0 5057A 5102A 5163A 5228A -
175.0 - - - 5229A 5293A
180.0 5058A 5103A 5164A 5230A 5294A
190.0 5059A 5104A 5165A 5231A 5295A
200.0 5060A 5105A 5166A 5232A 5296A
Zener Diodes
(cont.)
Rated
Voltage
±5% PD
NTE Number Axial Leads
1/2 Watt 1 Watt 5 Watt 10 Watt 50 Watt
NTE Number Stud Mount
Package Type
Package Style DO35 DO41/DO15 DO4 DO5
Page 26-15
Semiconductors
Part Number Case Style Description
NTE1961 TO220 (Isol) IC-Vltg Reg, Neg, -5V, 1A, Isol Tab
NTE1913 TO3 IC-Vltg Reg, Neg, -5V, 1.5A
NTE1917 TO92 IC-Vltg Reg, Neg, -5V, 100mA
NTE963 TO220 IC-Vltg Reg, Neg, -6V, 1A
NTE1963 TO220 (Isol) IC-Vltg Reg, Neg, -6V, 1A, Isol Tab
NTE965 TO220 IC-Vltg Reg, Neg, -8V, 1A
NTE961 TO220 IC-Vltg Reg, Neg, -5V, 1A
Part Number Case Style Description
NTE309K TO3 IC-Vltg Reg, Pos, 5V, 1A
NTE 1934 TO3P IC-Vltg Reg, Pos, 5V, 2A
NTE1934X TO3P IC-Vltg Reg, Pos, 5V, 2A
NTE931 TO3 IC-Vltg Reg, Pos 5V, 3A
NTE932 TO3 IC-Vltg Reg, Pos 5V, 5A
NTE960 TO220 IC-Vltg Reg, Pos, 5V, 1A
NTE 1960 TO220 (Isol) IC-Vltg Reg, Pos, 5V, 1A, Isol Tab
NTE977 TO92 IC-Vltg Reg, Pos, 5V, 100mA
NTE 1962 TO220 (Isol) IC-Vltg Reg, Pos, 6V, 1A, Isol Tab
NTE988 TO92 IC-Vltg Reg, Pos, 6.2V, 100mA
NTE964 TO220 IC-Vltg Reg, Pos, 8V, 1A
NTE1964 TO220 (isol) IC-Vltg Reg, Pos, 8V, 1A, Isol Tab
NTE981 TO92 IC-Vltg Reg, Pos, 8V, 100mA
NTE1902 TO92 IC-Vltg Reg, Pos, 9V, 100mA
NTE1910 TO220 IC-Vltg Reg, Pos, 9V, 1A
NTE 1966 TO220 (Isol) IC-Vltg Reg, Pos, 9V, 1A, Isol Tab
NTE1932 TO220 IC-Vltg Reg, Pos, 10V, 1A
NTE 1968 TO220 (Isol) IC0Vltg Reg, Pos, 10V, 1A, Isol Tab
NTE933 TO3 IC-Vltg Reg, Pos 12V, 5A
NTE1912 TO3 IC-Vltg Reg, Pos, 12V, 3A
NTE1914 TO3 IC-Vltg Reg, Pos, 12V, 1.5A
NTE1936 TO3P IC-Vltg Reg, Pos, 12V, 2A
NTE950 TO92 IC-Vltg Reg, Pos, 12V, 100mA
NTE966 TO220 IC-Vltg Reg, Pos, 12V, 1A
Voltage Regulators
Positive, 3 terminal, arranged by output voltage
TO3 TO3P TO220 TO220(Isol) TO92
Positive, 3 terminal, arranged by output voltage
(cont.)
Negative, 3 terminal, arranged by output voltage
Part Number Case Style Description
NTE1970 TO220 (Isol) IC-Vltg Reg, Pos, 12V, 1A, Isol Tab
NTE951 TO92 IC-Vltg Reg, Pos, 15V, 100mA
NTE968 TO220 IC-Vltg Reg, Pos, 15V, 1A
NTE1972 TO220 (Isol) IC-Vltg Reg, Pos, 15V, 1A, Isol Tab
NTE1938 TO3P IC-Vltg Reg, Pos, 15V, 2A
NTE1920 TO3 IC-Vltg Reg, Pos, 18V, 3A
NTE958 TO220 IC-Vltg Reg, Pos, 18V, 1A
NTE1974 TO220 (Isol) IC-Vltg Reg, Pos, 18V, 1A, Isol Tab
NTE1906 TO92 IC-Vltg Reg, Pos, 18V, 100mA
NTE1924 TO3 IC-Vltg Reg, Pos, 24V, 1.5A
NTE972 TO220 IC-Vltg Reg, Pos, 24V, 1A
NTE1976 TO220 (Isol) IC-Vltg Reg, Pos, 24V, 1A, Isol Tab
NTE1908 TO92 IC-Vltg, Pos, 24V, 100mA
NTE1940 TO3P IC-Vltg, Pos, 24V, 2A
IC-Vltg
Page 26-16
Semiconductors
Part Number Case Style Description
NTE935 TO3 IC-Vltg Reg, Pos Adj., 1.2V to 32V, 5A
NTE970 TO3 IC-Vltg Reg, Pos Adj., 1.2V to 33V, 3A
NTE956 TO220 IC-Vltg Reg, Pos Adj., 1.2V to 37V, 1.5A
NTE1900 TO92 IC-Vltg Reg, Pos Adj., 1.2V to 37V, 100mA
NTE1942 TO220 IC-Vltg Reg, Pos Adj., 2.85V to 36V, 2A
NTE1928 8-Lead Metal
Can IC-Vltg Reg, Pos Adj., 4.5 V to 40 V, 45mA
NTE953 4-Lead Power
Tab
IC-Vltg Reg, Pos Adj., 4-Terminal, 7.5V to
40V, 1A
Part Number Case Style Description
NTE1951 TO220 IC-Vltg Reg, Pos, 5V, 1A, Low Dropout
NTE1952 TO220 IC-Vltg Reg, Pos, 8V, 1A, Low Dropout
NTE1953 TO220 IC-Vltg Reg, Pos, 10V, 1A, Low Dropout
NTE1954 TO220 IC-Vltg Reg, Pos, 12V, 1A, Low Dropout
NTE1955 TO220 IC-Vltg Reg, Pos, 15V, 1A, Low Dropout
Part Number Case Style Description
NTE1965 TO220 (Isol) IC-Vltg Reg, Neg, -8V, 1A, Isol Tab
NTE1967 TO220 (Isol) IC-Vltg Reg, Neg, -9V, 1A, Isol Tab
NTE967 TO220 IC-Vltg Reg, Neg, -12V, 1A
NTE1971 TO220 (Isol) IC-Vltg Reg, Neg, -12V, 1A, Isol Tab
NTE1903 TO92 IC-Vltg Reg, Neg, -12V, 100mA
NTE1915 TO3 IC-Vltg Reg, Neg, -12V, 1.5A
NTE969 TO220 IC-Vltg Reg, Neg, -15V, 1A
NTE1973 TO220 (Isol) IC-Vltg Reg, Neg, -15V, 1A, Isol Tab
NTE1905 TO92 IC-Vltg Reg, Neg, -15V, 100mA
NTE1919 TO3 IC-Vltg Reg, Neg, -15V, 1.5A
NTE959 TO220 IC-Vltg Reg, Neg, -18V, 1A
NTE1975 TO220 (Isol) IC-Vltg Reg, Neg, -18V, 1A, Isol Tab
NTE1907 TO92 IC-Vltg Reg, Neg,-18V, 100mA
NTE1923 TO3 IC-Vltg Reg, Neg, -18V, 100mA
NTE971 TO220 IC-Vltg Reg, Neg, -24V, 1A
NTE1977 TO220 (Isol) IC-Vltg Reg, Neg, -24V, 1A, Isol Tab
NTE1909 TO92 IC-Vltg Reg, Neg, -24V, 100mA
NTE1925 TO3 IC-Vltg Reg, Neg, -24V, 1.5A
Voltage Regulators
(cont.)
Negative, 3 terminal, arranged by output voltage
(cont.) Positive, low dropout voltage, arranged by output voltage
8-Lead Metal Can 8-Lead Dip
4-Lead Power 4-Lead TO3 10-Lead Metal Can 14-Lead Dip Axial
TO3 TO220 TO92
Positive adjustable, arranged by output voltage
Page 26-17
Semiconductors
Part Number Output Configuration Viso Pt Ctr If Vf Vr Bvcbo Bvceo Ic
NTE3040 NPN Transistor 7500 250 20 80 1.5 3 70 30 100
NTE3041 NPN Transistor 7500 300 100 60 1.5 6 70 30 50
NTE3042 NPN Transistor 7500 250 20 60 1.5 3 70 30 50
NTE3043 NPN Transistor 3550 260 70 60 1.5 3 70 80 50
NTE3044 NPN Darlington 7500 250 300 80 2.0 3 - 80 1000
NTE3045 NPN Darlington 7500 250 500 80 2.0 3 - 80 1000
NTE3081 NPN Transistor 6000 250 20 60 1.7 4 - 30 100
NTE3082 NPN Darlington 6000 250 400 60 1.7 4 - 30 100
NTE3083 NPN Darlington 7500 250 200 60 1.5 3 - 30 100
NTE3084 NPN Darlington 7500 250 100 60 1.5 3 - 55 100
NTE3086 Dual NPN Transistor 7500 400 50 60 1.5 3 - 30 100
NTE3088 HV NPN Transistor 7500 300 20 60 1.5 6 300 300 (Vcer) 100
NTE3089 AC Input NPN Transistor 7500 250 20 60 1.5 - 70 30 100
NTE3096 Low LED Drive NPN
Transistor 7500 300 50 @ If = 1mA 60 1.4 6 70 30 25
NTE3098 NPN Transistor 5000 200 100 50 1.3 5 - 55 100
NTE3220 Dual NPN Transistor 5000 200 50 @ If = 5mA 50 1.2 6 - 35 50
NTE3221 Quad NPN Transistor 5000 200 50 @ If = 5mA 50 1.2 6 - 35 50
Part Number Case Style Description
NTE1927 4-Lead TO3 IC-Vltg Reg, Neg Adj., -2.2V to -30V, 1A
NTE957 TO220 IC-Vltg Reg, Neg Adj., - 1.2V to - 37V, 1.5A
NTE1901 TO92 IC-Vltg Reg, Neg Adj., -1.2V to -37V, 100mA
NTE1911 TO3 IC-Vltg Reg, Neg, Adj., -1.2V to -37V, 1.5A
Voltage Regulators
(cont.)
Negative adjustable, arranged by output voltage
Precision Voltage Regulators
0.01% line and load regulation, Positive or negative supply.
Reference Voltage Regulators
For electronic tuner.
Optoisolators Phototransitor Outputs
Part Number Case Style Description
NTE923 10-Lead Metal Can IC-Linear, Precision Voltage Regulator
NTE923D 14-Lead DIP IC-Linear, Precision Voltage Regulator
Part Number Case Style Description
NTE615 Axial Reference Voltage Regulator for Electronic Tuner
NTE615P TO92 Reference Voltage Regulator for Electronic Tuner
Page 26-18
Semiconductors
123AP 159 Amp, Gen Purpose 75/80 40/80 0.6/1 0.625 200/180 300 Min/200 TO92
46 - Darlington, Gen Purp Amp,
Preamp, Driver 100 100 0.5 0.625 10000 Min 200 TO92
289A 290A Audio Pwr Amp 100 80 0.5 0.6 100 Min 120 TO92
194 - Audio Pwr Amp 180 160 0.6 0.31 100 100 Min TO92
287 288 High Vltg, Gen Purp Amp 300 300 0.5 0.625 40 Min 50 Min TO92
192 193 Audio Pwr Amp, Gen Purp 70 70 (CES) 1 1* 150 120 Min TO92HS
192A 193A Audio Pwr Output 70 70 (CES) 0.5 0.6 120 Min 120 TO92HS
48 - Darlington, High Current,
Gen Purp Amp 60 50 (CES) 1 2.5* 25000 Min 100 Min Giant TO92
293 294 Audio Amp & Driver 60 50 1 1 120 Min 200 Giant TO92
297 298 Audio Amp Driver 80 80 0.5 0.75 130 Min 120 Giant TO92
90 91 Amp, High Vltg, High Gain 120 120 0.05 0.75/150 400 Min 350/20 Giant TO92
Part Number Output Configuration Viso Pt Ctr If Vf Vr Bvcbo Bvceo Ic
NTE3100 NPN Transistor 6 60 1.7 55 100 100 250 8 50
NTE3101 NPN Darlington 6 60 1.7 55 100 100 250 7 45
NTE3102 NPN Transistor 6 60 1.7 55 100 100 250 8 50
NTE3103 NPN Darlington 6 60 1.7 55 100 100 250 7 45
NTE3105 NPN Transistor 3 50 1.3 30 20 200 75 20 20
TO92 TO92HS Giant TO92
Silicone Transistor Selector Guide
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Diagram
Number
IC PD hFE fT
Maximum
Collector
Current
(Amps)
Typical
Forward
Current
Gain
Typical Freq
(MHZ)
Max.
Collector
Diss. (Watts)
Optoisolators Phototransitor Outputs
(cont.)
*Tc=25ºC
Page 26-19
Semiconductors
31 32 Sound/Vert Output 160 160 1 0.9 100 Min 20 Min/15
Min Giant TO92
399 - High Vltg Video Amp 300 300 0.1 0.9 100 Min 50 Min Giant TO92
108-1 - Amp, RF/IF Video 30 15 0.05 0.625 20 Min 800 TO106
75 - High Pwr Amp, Switch 100 80 5 50 40 Min 50 Min TO111
95 - High Vltg, Switch Isolated
Stud 250 250 3 40 90 Min 40 TO111
76 - Amp, Broad Band, CATV 50 30 0.4 5 30 Min 1500 TO117
2338 - Darlington Power Amp
w/Internal Damper 60±10 60±10 1.5 10 2000 Min - TO126
184 185 Amp, High Speed Switch 80 80 4 40 25 Min 2 Min TO126
253 254 Darlington Pwr Amp 80 80 4 40 2,500 - TO126
295 - RF Power Output/Driver 80 40 1.5 5 20 Min 150 Min TO126
- 374 Audio Amp, Gen Purp 180 160 1.5 20 190 140 TO126
157 39 High Vltg Amp, Gen Purp 325/300 300 0.5 20 90/92 10 Min TO126
2327 - High Vltg, High Speed Sw 1000 (CES) 450 0.5 20 50 20 TO126
2501 2502 HV for Video Output 300 300 0.1 1.5 100 Min 70 TO126ML
78 - RF Pwr Output 36 18 0.6 5 5 Min - TO220
152 153 Amp, Gen Purp 60 60 5 50 60 10 TO220
236 - Final RF Pwr Amp 60 25 6 1.5 15 - B26
TO106 TO111 TO117 TO126
Silicone Transistor Selector Guide
(cont.)
NTE Type
Number
Application Package
Style/Diagram
Number
Typical
Forward
Current Gain
Typical Freq
(MHZ)
NPN PNP BVCBO BVCEO IC PD hFE fT
Maximum Breakdown Voltage
(Volts)
Max. Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
*Tc=25ºC
Giant TO92 TO126ML TO220
Page 26-20
Semiconductors
2332 - Darlington w/Internal Damper &
Zener Diode 60±10 60±10 2 20 4000 - TO220
2334 - Darlington Driver w/Internal
Damper & Zener Diode 60±10 60±10 5 40 4000 20 TO220
235 - Final RF Pwr Amp 65 65(CER) 3 Pulse 12 80 300 TO220
241 242 Amp Gen Purp 80 80 4 60 25 Min 25 Min TO220
377 378 Pwr Amp, Pwr Driver, Switch 80 80 10 50 60 Min 50 TO220
196 197 Amp Gen Purp 90 80 (CER) 7 50* 20 Min 4 TO220
56 - High Gain Switch 100 80 3 30 500 Min 15 TO220
261 262 Darlington Pwr Amp 100 100 8 65 1000 Min - TO220
263 264 Darlington Pwr Amp 100 100 10 65 1000 Min - TO220
331 332 Audio Amp, Switch 100 100 15 90 40 Min 3 Min TO220
2343 2344 Darlington Audio Amp, Dr 100 100 12 80* 1000 Min - TO220
291 292 Amp, Gen Purp 130 120 4 40 70 4 Min/5 Min TO220
54 55 High Freq Audio Driver 150 150 8 50 100/120 30 Min TO220
375 398 Vert Deflection Amp 200 150 3/2 25 150/100 8/5 TO220
376 - TV Pwr Supply Driver 300 300 0.2 15* 100 70 TO220
2315 - Fast Switch Pwr Darlington 400 200 8 60 125 - TO220
198 - High Vltg Audio Output 500 500
(CES) 1 40* 80 10 Min TO220
51 - High Vltg, High Speed Sw 700 400 4 75 30 4 Min TO220
379 - High Vltg Switch 700 400 12 100 12 4 Min TO220
Silicone Transistor Selector Guide
(cont.)
TO220
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
IC PD hFE fT
Typical
Forward
Current
Gain
Typical Freq
(MHZ)
Max.
Collector
Current
(Amps)
Max.
Collector
Diss.
(Watts)
*Tc=25ºC
Page 26-21
Semiconductors
2312 - HV High Speed Switch 700 CEV 400 (SUS) 8 80 60 Max 4 Min TO220
2325 - High Voltage Switch 900 800 3 50 8 Min 15 TO220
2313 - High Speed Switch 1000
(CES) 450 2 40 50 20 TO220
2333 - High Vltg, High Speed Sw 1000
(CES) 450 8 100* 4 Min 10 TO220
2303 - High Vltg Horiz Output 1500 750 2.5 65 4.5 4 TO220
2336 - Darlington Switch w/Internal Damper &
Zener Diode 60±10 60±10 8 45 2000 Min - TO220 Isol Tab
2337 - High Vltg, High Speed Sw 900 500 7 2/45* 15 Min 20 TO220 Isol Tab
2339 - High Vltg, High Speed Sw 1100 800 3 30 20 Min 15 TO220 Isol Tab
216 - High Speed Switch 80 50 1 1.5 60 Min - TO237
128P 129P General Purp Amp 100 80 1 1/2 100 Min 150/125 TO237
24 25 General Purp Amp, Switch 100 80 1 2* 50 Min/40Min 150/125 TO237
227 - HV Amp Video Output 300 300 0.01 2* 40 Min 50 Min TO237
255 - Horiz Dr, Amp 325 300 0.5 2* 110 60 TO237
2340 - Darlington Sw w/Internal Damper Diode 60±10 60±10 8 45 2000 - "N" Pack
2351 2352 Darlington Pwr Amp, Sw 100 80 4 1 1000 Min - "N" Pack
2504 - High Gain Audio Amp 30 25 2 1.2 1500 260 TO126LP
182 183 High Speed Amp, Switch 70 60 10 90 20 min. 2 TO127
267 - Darlington Pwr Amp Switch 30 30 0.5 6.25 90000 min - TO202
265 - Darlington Pwr Amp Sw 50 50 0.5 6.25 10000 min - TO202
266 - Darlington Pwr Amp Switch 50 50 0.5 6.25 40000 min - TO202
- 269 Darlington Pwr Amp 50 50 2 10 1000 min - TO202
300 307 Audio Pwr Amp 50 40 1.5 7 90 min 65 TO202
186 187 Audio Driver, Output 70 60 3 12.5 100 min 50 TO202
299 - RF Pwr Amp Driver 75 35 1 4 70 min - TO202
Silicone Transistor Selector Guide
(cont.)
TO202
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Diagr
am
Number
IC PD hFE fT
Typical
Forward
Current
Gain
Typical
Freq
(MHZ)
“N” Pack TO126LP TO127
Max.
Collector
Current
(Amps)
Max.
Collector
Diss.
(Watts)
TO220 TO220 Isol Tab TO237
*Tc=25ºC
Page 26-22
Semiconductors
210 211 Gen Purp Output Driver 90 75 1 6.25 120 min 200/150
min TO202
49 50 High Vltg Amp, Driver 120 100 2 10 100 150 TO202
171 - Audio, Video Amp 300 300 0.5 6.25 30 min 75 TO202
78 - RF Pwr Output 36 18 0.6 5 5 min - TO202M
79 - RF Pwr Output 36 18 2 15 5 min - TO202M
186A 187A Med Audio Amp 40/50 50/40 3 10 120 150 TO202M
228A - HV Amp Video Output 450 350 0.5 2-10* 25 Min 45 Min TO202M
272 273 Darlington Pwr Amp, Switch 50 40 2 10* 25000 Min - TO202N
322 - RF Pwr Output 65 65 (CES) 0.5 10 10 Min 100 TO202N
188 189 High Vltg Amp 80 80 2 10 60 Min 100 TO202N
190 - High Vltg Amp 180 180 1 10 40 Min 100 TO202N
191 240 High Vltg Amp 300 300 0.5 10 45 min/70 40 min/60
min TO202N
270 271 Darlington Pwr Amp Switch 100 100 10 125 1000 min - TO218
390 391 Pwr Amp, Switch 100 100 10 80 40 min 3 TO218
392 393 Pwr Amp, Switch 100 100 25 125 25 min 3 TO218
2305 2306 High Pwr Audio Amp 160 160 16 125 35 1 min TO218
2316 - HV Pwr Darlington 500 450 10 120 130 - TO218
394 - Pwr Amp, High Speed Sw 500 400 3 100 30 min - TO218
2317 - High Vltg. Fast Switch, Power Darlington 500 (CES) 450 15 150 300 min - TO218
256 - Darlington with Damper Diode 600 400 28 150 30 min - TO218
2310 - High Vltg 1000 450 8 125 10 - TO218
2311 - High Vltg/Speed Sw 1000 450 15 150 10 - TO218
2300 - High Vltg, Horiz Output 1500 700 8 125 6 - TO218
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Dia.
Number
IC PD hFE fT
Typical
Forward
Current Gain
Typical
Freq
(MHZ)
Max.
Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
Silicone Transistor Selector Guide
(cont.)
TO202M TO202N
*Tc=25ºC
TO218
Page 26-23
Semiconductors
2301 - High Vltg Horiz Output 1500 750 5 100 5 4 TO218
2318 - HV Sw with Internal Damper Diode 1500(CES) 700 8 125 5 0.5 TO218
16002 - RF Power, Dr 65 40 3 23* 5 min 400 TO60
16003 - RF Power, Dr 65 40 1.5 11.6* 10 min 500 TO60
72 - High Current, Fast Switch 120 100 10 115 30 min 30 TO61
73 - High Vltg Switch 220 200 10 85 15 min 40 TO61
71 - High Current, Fast Switch 150 90 20 200 20 min 20 TO63
70 - Pwr Amp, High Vltg, Switch 180 150 50 250 30 min - TO63
274 275 Darlington Pwr Amp Switch 80 80 4 50 3000 - TO66
- 218 Audio Power Output 90 80 4 25 30 min 4 min TO66
124 - High Vltg, Gen Purpose 300 300 0.15 20 100 10 TO66
384 - High Vltg Pwr Amp/Switch 375 350 7 45 28 1 min TO66
175 38 Pwr Amp, Gen Purpose 500/400 300
(CER)/350 3/2 40/35 60/50 15/20 TO66
369 - Vert Deflection, Switch 800 400 3 Peak 40 30 min 7 TO66
319 - VHF Amp with AGC 20 20 0.05 0.26 80 300 min TO92
- 395 Wide Band Amp 30 25 0.05 0.36 80 2.3Ghz TO92
316 - High Gain, Lo Noise UHF Amp 30 15 0.05 0.2 25 min 1400 TO92
161 - VHF-UHF Amp, Mixer/OSC 45 45 (CES) 0.05 0.2 60 800 TO92
81 - Amp, Dual VHF, Switch 75/60 40/60 0.5/0.6 0.6/each 2
total 100 250/320 TO92
10 - UHF Low noise Amp 25 12 0.07 0.4 40 min 4.5GHz TO92
23 - Ultra High Freq Amp 30 14 0.05 0.25 80 2GHz TO92
107 - UHF OSC 30 15 0.05 0.2 75 1000 TO92
108 - RF-IF Amp 30 15 0.05 0.625 20 min. 800 TO92
Silicone Transistor Selector Guide
(cont.)
TO218 TO60 TO61 TO63 TO66
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Dia.
Number
IC PD hFE fT
Typical
Forward
Current Gain
Typical
Freq
(MHZ)
Max.
Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
*Tc=25ºC
TO92
Page 26-24
Semiconductors
233 - Video IF OSC 30 30 0.1 0.625 45 300 min TO92
- 232 Gen Purp Darlington Amp 30 30 0.3 0.625 50000 min 175 TO92
69 - UHF/VHF Amplifier 35 25 0.05 1 60 1100 TO92
289 290 Audio Amp, Switch 35 30 0.8 0.6 120 min 100/120 TO92
11 12 High Current Am 40/27 20/18 5 0.75 230 min/180
min 150/120 TO92
319P - VHF Amp with AGC Control 40 30 0.05 0.5 80 300 min TO92
172A - Darlington Pre-Amp 40 40 0.3 0.4 7000 min 60 min TO92
229 - VHF OSC, Mixer 40 40 0.05 0.425 30 min 500 min TO92
47 - High Gain, Low Noise Amp 45 45 0.2 0.625 1150 160 TO92
199 234 Amp, Gen Purpose 70/120 50/120 0.1 0.36/0.3 400 min/350
min 90 min/100 TO92
85 - Amp, Gen Purp Switch 70 70 (CES) 0.4 0.625 120 min 200 min TO92
20 21 AF PO, Dr, Series Pass 40 32 2 1 120 min 100 ATR
16 17 Gen Purp Sm Sig Amp, Low Noise 50 40 0.1 0.3 270 min 180/140 ATR
18 19 High Breakdown Voltage Large
Current Capacity Driver 80 80 0.7 1 120 min 120/100 ATR
22 - AF PO, Dr, Gen Purp Amp 100 80 1 0.9 120 min 100 ATR
302 - CB, Driver Switch 100 50 1.5 Peak 7.9 199 min 70 B2
306 - CB, Driver, Switch 100 50 1.5 Peak 7.9* 199 min 70 B2
15 - VHF Amp, Mixer, OSC, UHF OSC 30 19 50 0.3 39 min 1100 FTR
- 14 Low Freq, Driver 80 80 0.7 0.75 120 min 100 FTR
315 - Medium Pwr Audio Amp 100 50 1 0.75 199 min - R245
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Diagr
am
Number
IC PD hFE fT
Max.
Collector
Diss.
(Watts)
Max.
Collector
Current
(Amps)
Typical
Forward
Current
Gain
Typical
Freq
(MHZ)
Silicone Transistor Selector Guide
(cont.)
*Tc=25ºC
TO92 ATR B2 FTR R245
Page 26-25
Semiconductors
382 383 Audio Freq Driver 120 100 1 0.9 200 140 R245
42 43 Dual, Differential Amp, High Gain
Low Noise, Common Emitter 50 50 0.1 0.2/unit 0.4
total 400 min 100 min SIP-5
- 41 Dual, Differential Amp, High Gain
Low Noise, Common Emitter 100 100 0.05 0.2/unit 0.4
total 400 min 100 min SIP-5
44 45 Dual, High Gain, Low Noise, Bias
Amp, Common Base 100 100 0.1 0.2/unit 0.4
total 400 min 100 min SIP-5
2402 2403 Low Noise, UHF/VHF amp 20 15 0.025 0.2 90/50 5GHz SOT-23
- 2401 RF Stages in FM Front-Ends 30 30 0.025 0.3 - 450 SOT-23
2404 2405 Darlington 40 30 0.3 0.35 4000 min 220 SOT-23
2414 2415 Digital with 2 Built-in Bias 10k
Resistors 50 50 0.1 0.2 50 min 250 SOT-23
2416 2417 Digital with 2 Built-in Bais 22k
Resistors 50 50 0.1 0.2 50 min 250 SOT-23
2418 2419 Digital with 2 Built-in Bias 47k
Resistors 50 50 0.1 0.2 50 min 250 SOT-23
2406 2407 General Purpose Amp 75/60 40/60 0.6 0.35 100 min 300 min/200
min
SOT-23
2408 2409 Low Noise, Driver, Output 80 65 0.1 0.2 125 min/220
min 300/150 SOT-23
2410 2411 HV Amp/Dr 160 140/150 0.6/0.5 0.3/0.35 80 min/60 min 100 min SOT-23
2412 2413 General Purpose HV Amp 300 300 (CER) 0.05 0.31 50 min 60 min SOT-23
2345 2346 Dalington Power Amp 120 120 3 30 750 min - SOT-82
2426 2427 Darlington Switch 90 80 (CER) 0.5 1 2000 min - SOT-89
2428 2429 General Purpose Amp, SW 90 80 1 1 100 min 100 min SOT-89
2430 2431 HV Amp/Sw 400/350 350/300 1 1 30 min 15 min SOT-89
29 30 High Current Switch 80 80 50 300 25 2 TO3
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Dia.
Number
PD hFE fT
Typical
Forward
Current Gain
Typical
Freq
(MHZ)
IC
Silicone Transistor Selector Guide
(cont.)
*Tc=25ºC
Max.
Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
R245 SIP-5 SOT-23 SOT-82 SOT-89 TO3
Page 26-26
Semiconductors
243 244 Darlington Power Amp 80 80 8 150 2500 - TO3
245 246 Darlington Power Amp 80 80 10 150 4000 - TO3
247 248 Darlington Power Amp 100 100 12 150 3000 - TO3
249 250 Darlington Power Amp 100 100 16 150 4000 - TO3
251 252 Darlington Power Amp 100 100 20 160 2500 - TO3
130 219 Power Amp, Gen Purpose 100 70 (CER) 15 115 20 min 2.5 min TO3
181 180 High Power Audio Amp 100 100 (CER) 30 200 25 min 2 min TO3
2349 2350 High Current Darlington 120 120 50 300 2000 min - TO3
60 61 High Power Audio Amp 140 140 20 250 150 max 2 min TO3
280 281 Audio Power Amp 150 150 12 100 70 5/6 TO3
328 - Power Amp, Switch 150 130 (CER) 15 140 12 min 60 min TO3
284 285 Audio Amp Output 180 180 16 150 70 6 TO3
327 - Power Amp, Switch 180 150 25 200 30 min 40 min TO3
387 - Power Amp, Switch 180 150 50 250 80 30 min TO3
87 88 High Power AF, Switch 250 250 (CEX) 10 200 20 min. - TO3
94 - High Voltage Switch 300 300 5 100 40 2.5 min TO3
388 68 Power Amp, Gen Purpose 400 250 16 250 30/35 4 min TO3
162 - TV Vert Deflection 500 300 10 Peak 100 20 min. - TO3
97 - HV Darlington Pwr Amp, Fast Sw 500 400 10 150 40 min - TO3
385 - Audio Power Amp, Switch 550 350 10 150 17 - TO3
99 - HV Darlington Pwr Amp, Fast Sw 600 400 50 250 25 min - TO3
98 - HV Darlington Pwr Amp, Fast Sw 700 500 20 175 40 min - TO3
163A - TV Horiz Deflection 700 700 (CEV) 6 100 10 min - TO3
Silicone Transistor Selector Guide
(cont.)
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Dia.
Number
PD hFE fT
Typical
Forward
Current Gain
Typical
Freq
(MHZ)
IC
TO3
*Tc=25ºC
Max.
Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
Page 26-27
Semiconductors
52 - High Vltg, High Speed Sw 750 450 5 125 17 - TO3
386 - Audio Power Amp, Switch 800 500 20 175 20 - TO3
283 - Horiz Output, Switch 800 325 10 100 10 min 6 TO3
53 - High Vltg, High Speed, Sw 850 400 15 175 25 6 min TO3
2319 - High Vltg, High Speed, Sw 850
(CES) 450 15 Cont 175 5 min - TO3
89 - Horiz Output with Internal
Damper Diode 1500 600 7 50 8 min - TO3
164 - TV Vertical Output 1500 700 (CER) 1 50 30 min 3 TO3
389 - Horizontal Output 1500 1500
(CER) 4 100 10 min 4 min TO3
165 - TV Horizontal Output 1500 1400
(CES) 6 50 8 min 3 TO3
238 - TV Horizontal Output 1500 1500
(CEX) 8 100 8 - TO3
62 - Very High Vltg Horiz Output 2500 900 3 50 7 - TO3
2330 - High Gain Amp, with Internal
Zener Diode
55+15-
10 55+15-10 4 80 1000 - TO3P
2335 - Darlington with Internal Zener
Diode for Line Operated TV 60±15 60±15 5 80 2000 min - TO3P
2304 2314 High Current, Speed Switch 60 50 15 90 100 Min/ 70
Min 20 TO3P
214 - Darlington Driver 70 60 10 60* 5000 20 TO3P
215 - Darlington Driver 110 100 8 60* 4000 20 TO3P
36 37 Audio Power Amp 160 140 12 100 100 15 TO3P
Silicone Transistor Selector Guide
(cont.)
TO3P
NPN PNP
NTE Type
Number
Application
BVCBO BVCEO
Maximum Breakdown
Voltage (Volts)
Package
Style/Dia.
Number
PD hFE fT
Typical
Forward
Current Gain
Typical
Freq
(MHZ)
IC
Max. Collector
Current
(Amps)
Max. Collector
Diss. (Watts)
*Tc=25ºC
TO3
Page 26-28
Semiconductors
2307 - High Gain, Power Amp 200 180 5 80 500 Min - TO3P
2308 - High Voltage/Current Switch 500 400 12 100* 15 Min 20 TO3P
2309 - High Voltage/Speed Switch 900 800 6 100 10 min 15 TO3P
2348 - High Voltage/Speed Switch 1100 800 12 150 10 min 15 TO3P
2302 - High Voltage Output with Internal Damper
diode 1500 800 5 120 8 min 3 TO3P
2354 - High Vltg, Horiz Output for High Definition
CRT 1500 800 10 150* 8 min - TO3P
2353 - Color TV Horiz Deflection with Damper
Diode 1500 800 10 70* 5 min - TO3PML
2324 - High Voltage Switch 1500 800 8 70* 8 min - TO3PML
2331 - TV Horiz Deflection with Damper Diode 1500 800 6 60 8 min - TO3PML
16007 - Med Power Gen Purp 100 100
(CEV) 3 25 35 min 1.25 TO8
- 106 Amp, OSC, FM Mixer 35 15 0.05 0.35 50 min 650 min TO18
123A 159M General Purpose Amp 75/60 40/60 0.8/0.6 0.4 200/100 min 300/200
min TO18
278 - RF Amp, Broad Band 40 20 0.4 3.5 40 min 1400 TO39
346 - RF Driver, Predriver 40 20 0.4 1 10 min 500 min TO39
77 - Broad Band, CATV 50 30 0.4 3.5 30 min 1500 TO39
311 - Driver, VHF/UHF OSC 55 30 0.4 5 25 min 800 min TO39
329 - RF Power Amp - 30 1.5 Peak 5 - - TO39
195A - RF Pwr Amp, Driver 70 70 (CER) 1.5 8 30 min 150 TO39
123 - Amp, Gen Purpose 75 40 0.8 0.8 200 300 min TO39
Silicone Transistor Selector Guide
(cont.)
NPN PNP
NTE Type
Number
Application
BVCB
O
BVCEO
Maximum
Breakdown
Voltage (Volts)
Package
Style/Diagr
am
Number
IC PD hFE fT
Typical
Forward
Current
Gain
Typical
Freq
(MHZ)
Max.
Collector
Current
(Amps)
Max.
Collector
Diss. (Watts)
*Tc=25ºC
TO3P TO3PML TO8 TO18
Page 26-29
Semiconductors
282 - Final RF Powr Amp, Sw 100 60 4 10* 100 140 TO39
16005 16004 High Current Gen Purpose 100 75 2 10 30 min - TO39
128 129 Amp, Gen Purpose 120/90 80 1 1 90 min 100/150 min TO39
2347 - Med Power Gen Purp 120 80 5 4 40 min - TO39
324 323 Amp, Gen Purpose 120 100 1.5 0.8 90/80 20 min TO39
154 - High Vltg Video Output 300 300 0.2 1 100 80 TO39
396 397 Pwr Amp, High Vltg 450
350
350
300 1 10 40 min/30 min 15 min TO39
224 - Final RF Pwer Output 60 60 (CEV) 2 10 60 200 TO39 with Flange
225 - High Speed Sw Linear Amp 450 350 1 10 40 min 15 TO39 with Flange
237 - Final RF Pwr Out 80 40 3 Pulse 10 50 250 TO39HS
74 - Amp, Gen Purpose, Switch 100 100 7 60 60 min 30 TO59
96 - Switching Power Transistor 100 100 7 60 60 min 30 min TO59
95 - High Vltg, Switch Isolated Stud 250 250 3 40 90 min 40 TO59
2320 2320 Quad Gen Purp Sw Amp 60 30 0.5 0.65/Unit 1.25
total 100 min 350 14-Lead DIP
2321 - Quad Gen Purpose 60 40 0.5 0.65/Unit 1.25
total 100 min 350 14-Lead DIP
- 2322 Quad Gen Purpose 60 40 0.6 0.65/Unit 1.25
total 100 min 350 14-Lead DIP
2323 - Quad High Vltg Gen Purpose Amp 200 200 0.5 0.75/Unit 1.7
total 80 80 14-Lead DIP
Silicone Transistor Selector Guide
(cont.)
NPN PNP
NTE Type
Number
Application
BVCB
O
BVCE
O
Maximum
Breakdown
Voltage
(Volts)
Package
Style/Diagram
Number
IC PD hFE fT
Typical
Forward
Current
Gain
Typical
Freq
(MHZ)
*Tc=25ºC
Max.
Collector
Current
(Amps)
Max.
Collector
Diss.
(Watts)
TO39 TO39 w/Flange TO39HS TO59 14-Lead Dip
Page 26-30
Semiconductors
58 59 High Pwr Audio Output 200 200 17 200 30 min 20
92 93 Hi-Fi Pwr Amp, Audio Output 200 200 15 150 120 20
63 - High gain, Low Noise, Wide Band, Small Signal Amp 20 12 0.04 0.4 40 5GHz
64 - UHF/Microwave Amp/Hi Speed Sw 25 15 0.03 0.375 80 4.5GHz
313 - VHF Mixer and UHF/RF Amp, High Gain Low Noise 30 30 0.02 0.15 60 530
2363 2364 High Current Gen Purp Amp 60 50 2 1 200 min 150
315 - Medium Power Audio Amp 100 50 1 0.75 199 min -
344 - RF Power Output 35 17 7 50 50 -
65 - High Vltg, Low Noise for CATV, MATV 20 15 0.025 0.18 70 6GHz
26 - Low Noise Audio Amp 120 120 0.1 0.2 350 min 100
2355 2356 Digital with 2 Built-in Bias 10k Resistors 50 50 0.1 0.3 50 min 250
2357 2358 Digital with 2 Built-in Bias 22k Resistors 50 50 0.1 0.3 50 min 250
2359 2360 Digital with 2 Built-in Bias 47k Resistors 50 50 0.1 0.3 50 min 250
2367 2368 Digital with 2 Built-in Bias 4.7k Resistors 50 50 0.1 0.3/0.2 30 min 250/200
2369 2370 Digital with 2 Built-in Bias 4.7k/47k Resistors 50 50 0.1 0.3/0.2 80 min 250/200
2361 2362 High Speed Switch 60 50 0.5 0.3 200 min 300/200
13 - Low Vlt Output Amp 25 20 0.5 0.6 400 min 200
16006 - AF Amp 20 20 0.7 1 1000 min -
16001 - Video IF Amp 45 35 0.05 0.6 50 500
NPN PNP
NTE Type
Number
Application
BVCB
O
BVCE
O
Maximum
Breakdown
Voltage
(Volts)
Package Type
IC PD hFE fT
Typical
Forward
Current
Gain
Typical
Freq
(MHZ)
*Tc=25ºC
Max.
Collector
Current
(Amps)
Max.
Collector
Diss.
(Watts)
Silicone Transistor Selector Guide
(cont.)
Page 26-31
Semiconductors
50 5800 5830 5850 - 5870 - 5940 5892 5912 - 5980
50 - 5831* 5851* - 5871* - 5941* 5893* 5913* - 5981*
100 5801 5832 5852 5812 5872 - 5942 5894 5914 - 5982
100 - 5833* 5853* - 5873* - 5943* 5895* 5915* - 5893*
200 5802 5834 5854 - 5874 - 5944 5896 5916 - 5986
200 - 5835* 5855* - 5875* - 5945* 5897* 5917* - 5987*
300 5803 5836 5856 - 5876 - 5946 5898 5918 - 5988
300 - 5837* 5857* - 5877* - 5947* 5899* 5919* - 5989*
400 5804 5838 5858 5814 5878 - 5948 5900 5920 5962 5990
400 - 5839* 5859* - 5879* - 5949* 5901* 5921* 5963* 5991*
500 5805 5840 5860 - 5880 - 5950 5902 5922 - 5992
500 - 5841* 5861* - 5881* - 5951* 5903* 5923* - 5993*
600 5806 5842 5862 5815 5882 6013 5952 5904 5924 - 5994
600 - 5843* 5863* - 5883* - 5953* 5905* 5925* - 5995*
IFSM 200A 40A 150A 400A 250A 300A 250A 300A 400A 300A 500A
VF @ IF
1.2V max
0.9V Typ
1.1V Max
0.9V Typ
1.1V Max
0.9V Typ
0.9V Max
0.8V Typ
1.2V Max
1V TyP
1.6V Max
1V Typ
1.5V Max
1.1V Typ
1.2V Max
0.9V Typ
1.5V Max
1.1V Typ
107V Max
1V Typ
1.2V Max
1V Typ
TC @ IF (ºC) +105 (TL) +150 +150 +60 +150 - +150 +150 +150 +100 +150
Mtg Torque
inlb (mN) - 20 (2.22) 20 (2.22) - 20 92.22) - 30 (3.33) 20 (2.22) 20 (2.22) - 30 (3.33)
Thread Size - 10-32
NF-2A
10-32
NF-2A - 10-34
NF-2A - 1/4-28
UNF-2A
10-32
NF-2A
10-32
NF-2A - 1/4-28
UNF-2A
Industrial Rectifiers
Package
Type
Case Style Axial Lead TO220 DO5
PRV
Volts
Maximum Average Rectified Forward Current IF in Amperes
3A 6A 12A 12.7A 15A 16A 25A 40A
DO27 DO4 DO4
20A
DO4 Press Fit DO5
Page 26-32
Semiconductors
800 5808 5846 5866 - 5886 - - 5908 5928 5966 5998
800 - 5847* 5867* - 5887* - - 5909* 5929* 5967* 5999*
1000 5809 5848 5868 5817 5890 - - 5910 5932 - 6002
1000 - 5849* 5869* - 5891* - - 5911* 5933* - 6003*
IFSM 200A 40A 150A 400A 250A 300A 250A 300A 400A 300A 500A
VF @ IF
1.2V max
0.9V Typ
1.1V Max
0.9V Typ
1.1V Max
0.9V Typ
0.9V Max
0.8V Typ
1.2V Max
1V TyP
1.6V Max
1V Typ
1.5V Max
1.1V Typ
1.2V Max
0.9V Typ
1.5V Max
1.1V Typ
107V Max
1V Typ
1.2V Max
1V Typ
TC @ IF (ºC) +105 (TL) +150 +150 +60 +150 - +150 +150 +150 +100 +150
Mtg Torque
inlb (mN) - 20 (2.22) 20 (2.22) - 20 92.22) - 30 (3.33) 20 (2.22) 20 (2.22) - 30 (3.33)
Thread Size - 10-32
NF-2A
10-32
NF-2A - 10-34
NF-2A - 1/4-28
UNF-2A
10-32
NF-2A
10-32
NF-2A - 1/4-28
UNF-2A
Industrial Rectifiers
(cont.)
PRV
Volts
Maximum Average Rectified Forward Current IF in Amperes
3A 6A 12A 12.7A 15A 16A 20A 25A 40A
Package
Type
Case Style DO27 DO4 Axial Lead DO4 TO220 DO5 DO4 Press Fit DO5
Not only do we have local experts, but Edge members have
hundreds of specially trained professionals on staff who are experts
in providing answers and prompt solutions to all
your product needs.
Page 26-33
Semiconductors
PRV 1A 1.5A 2A 4A 4A 6A 8A 25A 40A 80A 100A
100 - - NTE166 - - - NTE5312 - - - -
200 - - NTE167 NTE5309 NTE5318 NTE5329 NTE5313 NTE5322 NTE5340 - -
400 - NTE5304 NTE168 - - - NTE5314 NTE5324 - - -
600 NTE5332 NTE5305 NTE169 NTE5310 NTE5319 NTE5330 NTE5315 NTE5326 NTE5342 NTE5346 NTE5348
800 - NTE5306 - - - - NTE5316 NTE5327 - - -
1000 NTE5334 NTE5307 NTE170 NTE5311 NTE5320 NTE5331 NTE5317 NTE5328 NTE5344 - -
IFSM
(AMP) 25 50 60 20 200 200 200 300 300 1000 1000
VF @ IF 1.2V @ 1A 1V @ 1A 1V @1A 1V @ 3A 1V @ 3A 1V @ 3A 1.1V @4A 1.2V @12.5A 1.2V @ 20A 1.3V @80A 1.3V @100A
Max
TA @ IF
ºC
+40 +30 +55 +50 +50 +50 +50 +55 +55 +150 +150
Single Phase Bridge Rectifiers
IF Averaged Rectified Forward Current
Maximum Average Rectified Current @ Half - Wave Resistive Load 60HZ
Package
Type
PRV
Volts
No part of this catalog may be reproduced without the express
written permission of Edge, Inc.
Page 26-34
Semiconductors
25 - - - NTE5600 - - - -
50 - - - NTE5601 - - - NTE5661
100 - NTE5640 NTE560 NTE5602 - - - -
200 NTE5655 NTE5641 NTE5651 NTE5603 - - - -
300 - - - NTE5604 - - - -
400 NTE5656 NTE5642 NTE5652 NTE5605 NTE5629 NTE5608 NTE5638 -
500 - - - NTE5606 - - - -
600 NTE5657 NTE5643 NTE5653 NTE5607 - NTE5609 - -
800 - - - - - NTE5610 NTE5620 -
IGT (mA) 5 Max 25/40 Max 3 Max 30 Max 3 Max 10 Max 10 Max 50/75 Max
VGT (V) 2 Max 2.2 Max 2.2 Max 2.5 Max 2 Max 2.5 Max 2 Max 2 Max
VFDN (V) 1.5 Max 1.8 Max 2.2Max 2 Max 1.6 Max 1.5 Max 1.6 Max 2 Max
ISURGE (A) 8 Max 25 Max 25 Max 30 Max 40 Max 80 Max 80 Max 100 Max
IHOLD (Ma) 20 Max 35 Max 5 Max 30 Max 5 Max 15 Max 15 Max 50 Max
Firing Quads ALL ALL ALL ALL ALL ALL ALL ALL
Triacs
VRRM
Dc or Pk
Volts
IT RMS Maximum Forward Current
0.8A 2.5A 4A 8A 10A
Package
Type
Package TO92 TO5 TO126 TO202 TO220 TO220 Full Pack TO64**
Page 26-35
Semiconductors
25 NTE5611 NTE5621 - - - - - NTE5680 - -
50 NTE5612 NTE5622 NTE5631 - - - - NTE5681 - -
100 NTE5613 NTE5623 NTE5632 - - - - MTE5682 - -
200 - - NTE5633 - NTE5673 NTE56004 - NTE5683 NTE56019 NTE56015
300 NTE5615 - NTE5634 - - - - NTE5684 - -
400 - - NTE5635 - NTE5675 NTE56006 - NTE5685 NTE56020 NTE56016
500 - - NTE5636 - NTE5676 - - NTE5686 - -
600 NTE5618 - NTE5637 NTE5645 NTE5677 NTE56008 - NTE5687 - NTE56017
800 - - - - - NTE56010 NTE5671 - - NTE56018
IGT (mA) 50/75 Max 50 Max 50 Max 25/50 Max 50/80 Max 40/75 Max 50/75 Max 75/100 Max 80 Max 50/100 Max
VGT (V) 2.5 Max 2 Max 2.5 Max 2.5 Max 2.5 Max 2.5 Max 2.5 Max 2.5 Max 2.5 Max 2.5 Max
VFON (V) 1.8 Max 1.8 Max 1.65 Max 1.6 Max 2.2 Max 1.6 Max 1.7 Max 1.8 Max 1.8 Max 1.8 Max
ISURGE (A) 100 Max 100 Max 100 Max 110 Max 150 Max 150 Max 150 Max 250 Max 250 Max 180 Max
IHOLD (Ma) 50 Max 50 Max 50 Max 50 Max 60 Max 40 Max 40 Max 80 Max 100 Max 50 Max
Firing Quads ALL I, II I, II, III ALL ALL ALL ALL ALL I, II, III ALL
Triacs
(cont.)
VRRM
Dc or Pk
Volts
IT RMS Maximum Forward Current
10A 15A 20A 25A
Package
Type
Package TO127 TO220 TO220
Full Pack
TO220
Isolated
TO48**
1/4-28
UNF-2A
TO220 TO48**
1/4-28
UNF-2A
TO220
Isolated
TO220
Page 26-36
Semiconductors
Package Type
Case Style TO92 TO5 TO126 TO202 TO64 TO66 TO5 TO220 TO127 TO220
Full Pack
TO64 TO220
25 NTE5480
30 NTE5400 NTE5411 NTE5452
50 NTE5453 NTE570 NTE5442 NTE5481 NTE5461
60 NTE5401 NTE5412
100 NTE5402 NTE5413 NTE5454 NTE5471 NTE5482 NTE5461
150 NTE5403
200 NTE5404 NTE5408 NTE5414 NTE5455 NTE5472 NTE5511 NTE5427 NTE5483 NTE5463
250
300 NTE5456 NTE5473 NTE5484
400 NTE5405 NTE5408 NTE5415 NTE5457 NTE5474 NTE5512 NTE5428 NTE5437 NTE5485 NTE5465
500 NTE5475 NTE5486
600 NTE5406 NTE5410 NTE5416 NTE5458 NTE5476 NTE5413 NTE5429 NTE5438 NTE5448 NTE5487 NTE5466
700
800 NTE5440 NTE5468
1200
IGT MAX 200 NA# 1mA# 200 NA# 200 NA# 10mA 15mA 25mA 200 NA# 30mA 30mA 15mA 15mA
VGT MAX (V) 0.8 1.0 1.0 1.5 1.5 2.0 1.5 0.08 1.5 1.5 1.5 1.5
IHOLD
MAX(ma) 5 10 5 3 25 20 50 3 40 30 20 20
VF(ON)(V) 1.7 1.2 2.0 2.2 2.0 2.8 2.6 1.6 1.5 2.0 1.75 2.0
Silicon Controlled Rectifiers
Dc or Pk
Volts
VDRM
IT RMS Maximum Forward Current (All Conducting Angles
4A
Sensitive Gate
0.8A
Sensitive
Gate
3A
Sensitive
Gate
5A 7A 8A
Sensitive
Gate
8A 10A
NTE5409
NTE5462
NTE5470
Page 26-37
Semiconductors
25 - - - - NTE5500 - NTE5520 - - - - -
30 - - - - - - - - - - - -
50 - - - - NTE5501 - NTE5521 NTE5550 - NTE5541 - -
100 - - NTE5491 - NTE5502 - NTE5522 - - NTE5542 - -
150 - - - - NTE5503 - NTE5523 - - - - -
200 NTE5417 - NTE5492 - NTE5504 NTE5514 NTE5524 NTE5552 NTE5543 NTE5517 NTE5-
562
250 - - - - NTE5505 - NTE5525 - - - - -
300 - - - - NTE5506 - NTE5526 - - NTE5544 - -
400 NTE5418 NTE5426 NTE5494 NTE314 NTE5507 NTE5515 NTE5527 NTE5554 - NTE5545 NTE5518 NTE5-
564
IGT MAX 15mA 200NA 15mA 40mA 30mA 15mA 40mA 30mA 40mA 30mA 30mA 30mA
VGT MAX 1.5 0.8 2 2 1.5 2 3 1.5 1.5 2 2 2
IHOLD MAX 30 3 20 50 40 20 50 40 40 50 50 50
VF(ON) 1.6 1.6 2.5 1.8 1.6 2.4 2 1.6 1.8 1.6 1.6 1.6
ISURGE(A) 100 100 100 200 150 200 150 300 300 300 300 300
VGFM(V) - - 10 - 10 10 10 - - 10 10 10
GRM(V) - - 10 - 5 5 5 - - 10 10 10
Mtg Torque - - 30(3.33) - 30(3.33) - 30(3.33) - - 30(3.33) - 30(3.3-
3)
Thread Size - - 1/4-28
UNF-2A - 1/4-28
UNF-2A - 1/4-28
UNF-2A - - 1/4-28
UNF-2A -
1/4-28
UNF-2-
A
Silicon Controlled Rectifiers
(cont.)
Dc or Pk
Volts+
VDRM
IT RMS Maximum Forward Current (All Conducting Angles
10A 10A 10A
Sensitive
Gate
12.5A 16A 20A 25A 35A 35A
Package
Type
Case Style TO220
Isolated
TO48 TO3 TO48 1/2”
Press Fit
TO48 TO220 TO220
Full Pack
TO48 1/2”
Press Fit
TO48
Isol Stud
Page 26-38
Semiconductors
500 - - - - NTE5508 - NTE5528 - - NTE5546 - -
600 NTE5419 NTE5496 - NTE5509 NTE5516 NTE5529 NTE5556 - NTE5547 NTE5-
519 NTE5566
700 - - - - - - NTE5530 - - - - -
800 - - - - - - NTE5531 NTE5558 NTE5460 NTE5548 - -
1200 - - - - - - - - - - - -
IGT MAX 15mA 200A 15mA 40mA 30mA 15mA 40mA 30mA 40mA 30mA 30mA 30mA
VGT MAX 1.5 0.8 2 2 1.5 2 3 1.5 1.5 2 2 2
IHOLD MAX 30 3 20 50 40 20 50 40 40 50 50 50
VF(ON) 1.6 1.6 2.5 1.8 1.6 2.4 .2 1.6 1.8 1.6 1.6 1.6
ISURGE(A) 100 100 100 200 150 200 150 300 300 300 300 300
VGFM(V) - - 10 - 10 10 10 - - 10 10 10
GRM(V) - - 10 - 50 5 5 - - 10 10 10
Mtg Torque - - 30(3.33) - 30 (3.33) - 30 (3.33) - - 30 93.33) - 30 (3.33)
Thread Size - - 1/4-28
UNF-2A - 1/4-28
UNF-28 - 1/4-28
UNF-28 - - 1/4-28
UNF-28 - 1/4-28
UNF-28
Silicon Controlled Rectifiers
(cont.)
Dc or Pk
Volts+
VDRM
IT RMS Maximum Forward Current (All Conducting Angles
10A 10A 10A
Sensitive
Gate
12.5A 16A 20A 25A 35A 35A
Package
Type
Case Style TO220
Isolated
TO48 TO3 TO48 1/2”
Press Fit
TO48 TO220 TO220
Full Pack
TO48 1/2”
Press Fit
TO48
Isol Stud
Page 26-39
Semiconductors
200 - - - - NTE5567 NTE5570 NTE5575 NTE5580 NTE5590 - NTE5594 -
250 - - - - - - - - - - - -
300 - - - - - - - - - - - -
400 - - - NTE5539 - - - - - - - -
500 - - - - - - - - - - - -
600 NTE5534A - - - NTE5568 NTE5572 NTE5577 NTE5582 NTE5591 NTE5587 NTE5595 NTE5598
700 - - - - - - - - - - - -
800 - NTE5536 NTE5538 NTE5540 - - - - - - - -
1200 - - - - NTE5569 NTE5574 NTE5579 NTE5584 NTE5592 NTE5589 NTE5596 NTE5599
IGT Max 80mA 50mA 80mA 40mA 100mA 150mA 150mA 150mA 150mA 150mA 150mA 200mA
VGT
Max 1.5 1.5 3 1.5 2.5 3 3 3 3 3 3 3
IHOLD
Max 150 60 150 60 200 - - - - - - -
VF(ON) 2.0 1.6 2 1.8 1.6 1.95 2.2 1.5 1.55 1.4 1.4 1.35
ISURGE
(A) 525 400 525 650 1255 1800 1600 5500 5500 10,000 10,000 27,000
VGFM
(V) - - 15 - 20 4 - 4 5 5 5 5
VGRM
(V) - - 5 - 5 5 5 5 5 5 5 5
Mtg
Torque - - - - 30 (3.33) 130
(14.46)
130
(14.46)
360
(40.06)
1400 Lbs
(6.2 KN)
360
(40.06)
2400 LBS
(10.7KN)
5500 Lbs
(24.5KN)
Thread
Size - - - - 1/4-28 1/2-20 1/2-20 3/4-16 - 3/4-16 - -
Silicon Controlled Rectifiers (For Phase Control Applications)
DC or Pk
Volts
VDRM
IT RMS Maximum Forward Current Amps (All Conducting Angles)
40A 50A 55A 80A 125A 275A 470A 550A 850A 1800A
Package
Type
Case
Style
TO3 Isolated
Flange
TO218
Isolated
TO220 TO218 TO65 TO94 TO83 TO93 Hockey
Puck 1.65”
Dia
TO118 Hockey
Puck 2.3”
Dia
Hockey
Puck 2.9”
Dia
Page 26-40
Semiconductors
600 5351 5360 5368 5371 5374 5380 5377 5386
1200 5369 5372 5375 5381 5378 5387
IGT Max 50mA 180mA 150mA 150mA 150mA 150mA 150mA 150mA
VGT Max (V) 2 3 3 3 3 3 3 3
IHOLDMax (mA) 100 150 - - - - - -
VF(on) Max (V) 2.06 2.05 3.2 3.3 1.85 1.85 1.45 1.45
ISURGE (A) 90 180 1400 1400 4500 4500 8000 8000
"Repetitive di/dt
Amps/us Max" - - 150 150 300 300 400 400
"Non-Repetitive
di/dt Amps/ns
Max"
500 400 800 800 800 800 500 800
dv/dt Volts/μs Max 400 (Typ) 200 200 200 300 300 300 300
Turn-Off tq/μs Max 2.9 (Typ) 10 10 10 10 15 25 25
"Mounting Torque
in.lb (m.N)" - 30 (3.33) 130 (14.46) 130 (14.46) 360 (40.06) 1400 lbs
(6.2 kN) 360 (40.06) 2400 lbs
(10.7 kN)
Thread Size - 1/4-28
UNF-2A
1/2-20
UNF-2A
1/2-20
UNF-2A
3/4-16
UNF-2A - 3/4-16
UNF-2A -
DC or Pk Volts
VDRM
IT RMS Maximum Forward Current Amps (All Conducting Angles)
5A 35A 125A 275A 400A 475A 700A
Package
Type
Case Style TO66 TO83 TO94 Hockey
Puck 1.65”
Dia
TO118 Hockey
Puck 2.3”
Dia
TO48 TO93
Silicon Controlled Rectifiers (For High Speed Switching)
Cross Reference NTE Semiconductors at:
http://nte01.nteinc.com/nte/NTExRefSemiProd.nsf/$$Search?OpenForm
Page 26-41
Semiconductors
1V010 8.5mm 10 12 0.8 250 18 45 0.25
2V010 16mm 10 12 3.5 1000 18 45 0.60
1V014 8.5mm 14 18 1.2 250 22 55 0.25
2V014 16mm 14 18 4.0 1000 22 55 0.60
1V015 8.5mm 15 20 1.0 250 24 52 0.25
2V015 16mm 15 20 4.5 1000 24 48 0.60
1V017 8.5mm 17 22 1.3 250 27 60 0.25
2V017 16mm 17 22 5.0 1000 27 60 0.60
1V020 8.5mm 20 26 1.5 250 33 70 0.25
2V020 16mm 20 26 6.0 1000 33 70 0.60
1V025 8.5mm 25 31 1.7 250 39 80 0.25
2V025 16mm 25 31 7.0 1000 39 80 0.60
1V030 8.5mm 30 38 2.3 250 47 95 0.25
230 Deflection Circuit of TV 700 8 90 2 50 1.8 100 - TO66
231 Deflection Circuit of TV 600 8 90 2 50 3.8 100 - TO66
314 Power Regulating Switch 400 12.5 200 2 40 20 Typ 50 5 TO3
Metal Oxide Varistor
TO66
Silicon Controlled Rectifiers (For High Speed Switching Applications)
TO3
NTE
Type
Number
VDRM
Description and Application
ITRMS ITSM
Package
Style/Diag.
Number
Repetitive
Peak
Forward
Off-State
Voltage (V)
RMS On-
State
Current
(Amps)
Peak
Forward
Surge
Current
(Amps)
Maximum Ratings
Gate
Trigger
Voltage
(Volts)
Gate
Trigger
Current
(mA)
VGT IGT
Turn-Off
Time
(μs)
toff
Holding
Current
(mA)
IHOLD
Typical
Reverse
Recovery
Time
(μs)
trr
NTE
Type
Number
Vm (AC)
Case Diameter
WTM
RMS Voltage
(Volts)
DC Voltage
(Volts)
Energy
(10/1000μs)
(Joules)
Maximum Ratings (TA=25ºC)
Peak Current
(8/20μs)
(Amps)
ITM
Nom. Varistor
Volt.@1 mA DC
Test Current (V)
VNOM
Max. Clamping
Volt.,Vc @Test
Current (8/20μs)(V)
Vm (DC) VCL PD
Continuous Transient
Characteristics
Transient Pwr.
Dissipation
(Watts)
Page 26-42
Semiconductors
2V030 16mm 30 38 8.5 1000 47 95 0.60
1V035 8.5mm 35 45 2.7 250 56 110 0.25
2V035 16mm 35 45 10.0 1000 56 110 0.60
1V040 8.5mm 43 55 3.2 250 68 135 0.25
2V040 16mm 43 55 13.0 1000 68 135 0.60
1V050 8.5mm 52 6 4.0 250 82 150 0.25
2V050 16mm 52 66 14.0 1000 82 150 0.60
1V060 8.5mm 63 80 6.0 1200 100 175 0.25
2V060 16mm 63 80 18.0 4500 100 175 0.60
1V075 8.5mm 75 95 5.0 1200 120 205 0.25
2V075 16mm 75 95 21.0 4500 120 205 0.60
1V095 8.5mm 95 125 7.0 1200 150 250 0.25
2V095 16mm 95 125 29.0 4500 150 250 0.60
1V115 8.5mm 115 150 10.0 1200 171 295 0.25
2V115 16mm 115 150 35.0 4500 171 300 0.60
1V130 8.5mm 135 180 10.0 1200 216 355 0.25
524V13 23mm 135 180 72.0 6500 216 355 1.00
1V150 8.5mm 160 210 10.0 1200 240 410 0.25
2V150 16mm 160 210 40.0 4500 240 410 0.60
524V15 23mm 160 210 80.0 6500 240 410 1.00
1V175 8.5mm 170 225 12.0 1200 270 450 0.25
524V17 23mm 170 225 90.0 6500 270 450 1.00
1V250 8.5mm 240 320 20.0 1200 390 630 0.25
2V250 16mm 240 320 70.0 4500 390 630 0.60
524V25 23mm 240 320 129.0 6500 390 630 1.00
1V275 8.5mm 260 330 20.0 1200 430 685 0.25
2V275 16mm 260 330 72.0 4500 430 685 0.60
524V27 23mm 260 330 135.0 6500 430 685 1.00
Metal Oxide Varistor
(cont.)
NTE
Type
Number
Vm (AC)
Case Diameter
WTM
RMS Voltage
(Volts)
DC Voltage
(Volts)
Energy
(10/1000μs)
(Joules)
Maximum Ratings (TA=25ºC)
Peak Current
(8/20μs)
(Amps)
ITM
Nom. Varistor
Volt.@1 mA DC
Test Current (V)
VNOM
Max. Clamping
Volt.,Vc @Test
Current
(8/20μs)(V)
Vm (DC) VCL PD
Continuous Transient
Characteristics
Transient Pwr.
Dissipation
(Watts)
Page 26-43
Semiconductors
IC Sockets (Stamp Pins)
Tin plated, stamped contacts. Pin spacing 0.1" (2.54mm).
Two different row widths. Narrow: A= 7.62mm (0.3"). Wide:
A= 15.20mm (0.6").
Multi Row Part #: SCS-38
Narrow (0.3") Part #’s: SCS-06, SCS-08, SCS-14, SCS-16, SCS-18, SCS-20,
SCS-22, SCS-24, SCS-28, SCS-34
Pin Sockets (Machined Pins)
Gold plated, 4 finger beryllium copper
contacts. Tin plated outer sleeve. Pin
spacing is 0.10" (2.54mm). Notched sides
for cleaner breaking.
Part #’s: HQ-1X16, HQ-1X20, HQ-1X30, HQ-1X40, HQ-2X30
Wire Wrap Pins Part #: HQA-1X40
IC Extractor Part #: SCS-IC-XTR
Dual Wipe Standard I.C. Sockets
30% glass filled polyester UL94V-0 insulator. Contacts are
phosphor bronze with 50 microinches hot tin
dip. Bulk.
Part Number Pins
39-008-0 8-position
39-014-0 14-position
39-016-0 16-position
39-018-0 18-position
39-024-0 24-position
39-028-0 28-position
39-020-0 20-position
39-032-0 32-position
Wide (0.6") Part #’s: SCL-24, SCL-32, SCL-28, SCL-40
Thru Holes Part #’s: PLCC-28, PLCC-32, PLCC-44, PLCC-52, PLCC-68, PLCC-
84
Tin Plated Contacts Part #: PLCC-28T
Chip Carriers
Gold plated contacts and solder post. Plastic leaded chip
carrier and surface mount chip carrier.
Surface Mount Part #’s: SMT-28 NT, SMT-32 NT, SMT-44 NT, SMT-52 NT, SMT-
68 NT, SMT-84 NT
Regular Part #’s: SQ-06, SQ-08, SQ-14, SQ-16, SQ-18, SQ-20, SQ-22,
SQ-24, SQ-24N, SQ-28, SQ-40
Wire Wrap Part #’s: SQA-06, SQA-08, SQA-14, SQA-16, SQA-18, SQA-20,
SQA-24, SQA-28, SQA-40
IC Socket (Machined Pins)
Gold plated, 4 finger beryllium copper contacts. Tin plated
outer sleeve. Pin spacing is 8-24 = 2.54mm x 7.62mm
(0.1" x 0.3") and 24-40 = 2.54mm x 15.24mm (0.1" x 0.6").
Machined Contact I.C. Sockets
94V-0 PBT insulator 15 micro inch gold plated contact area.
Part Number Type Pins
39-108-0 Bulk 8-position
39-114-0 Bulk 14-position
39-116-0 Bulk 16-position
39-140-0 Bulk 40-position
P.C. Board Mount Dip IC Sockets
Part Number Position
70-4608 8
70-4614 14
70-4616 16
70-4618 18
70-4620 20
70-4624 24
70-4628 28
70-4640 40
Features: 8, 14 ,16, 18, 20, 24, 28 and 40 contact available. Tin plated contact.
Industry standard spacing. Specification: Contact resistance: 30m ohm max. at
DC 100mA. Insulator resistance: 1000m ohm min. at DC 500V; Current rating: 1
amp dielectric withstanding. Voltage: AC 500V for one minute; Operating temperature:
-55°C to 105°C. Contact: Phosphor bronze. Housing: PBT and 30% glass
fiber (UL-94V-0).
39-040-0 40-position
© 2010 Microchip Technology Inc. DS51775B-page 1
Overview
The PIC32 USB Plug-In Module (PIM) demonstrates
the capabilities of PIC32MX460F512 and
PIC32MX795F512 microcontrollers using the Explorer
16 Development Board and the PICtail™ Plus Daughter
Boards. This PIM supports USB device, embedded
host, and On-The-Go (OTG) designs, when used in
conjunction with the Explorer 16 and the USB PICtail
Plus Daughter Board. The pinout for the PIC32 family
of USB On-The-Go microcontrollers varies slightly from
that of the General Purpose (GP) family.
Therefore, on the USB PIM (MA320002), signals from
the MCU are routed differently than those on the GP
PIM (MA320001). This routing is intended to maximize
the compatibility of the USB PIM with the Explorer 16
and its PICtail Plus daughter cards, therefore, some
signals have changed location. See Figure 1 and
Figure 3 for an overview of the PIM routing changes.
Refer the PIM schematics (see Figure 2 and Figure 4
and the PIC32MX4XX (DS61143) and PIC32MX5XX/
6XX/7XX (DS61156) family data sheets for additional
details.
FIGURE 1: USB PIM INTERCONNECT DIAGRAM FOR PIC32MX460F512 DEVICES
RA14/SCL1 (66)
*D-/RG3 (56)
*VBUS (54)
*USBID/RF3 (51)
RB8/AN8 (32)
*VBUSON/RB5 (20)
*D+/RG2 (57)
PIC32MX460F512 USB PICtail™ Plus
RG2/SCL1 (57)
D+
DVBUS
USBID
RA15/SDA1 (67) RA15 (67)
RG3/SDA1 (56)
RC4/*SDI1 (9) RC4 (9)
RF7/SDI1 (54)
RF8/*U1TX (53) U1TX/RF3 (51)
RE8/INT1 (18) RE8/INT1 (18)
RA14/INT3 (66)
(32)
[OVERCURRENT]
(96)
SHDN
Explorer 16
(95)
(89)
(90)
(1) (65)
(60)
(62)
(68)
(43)
(67)
J1/P1 P9/J4
RG15 (1) RD9 (69)
RB2/C2IN-/AN2 (23) RB5/C1IN+/AN5 (20)
RD9/SS1 (69) RB2/SS1 (23)
RD0/*SDO1 (72) RF8/SDO1 (53)
RD0 (72)
*VUSB (55) VDD
RG0 (90) NO CONNECT
RG1 (89) NO CONNECT
RG14 (95) NO CONNECT
RG12 (96) NO CONNECT
RD10/SCK1 (70) RD10 (70)
RF6/SCK1 (55)
RG13 (97) [PGOOD]
(97) (66)
RB6 (26) RB6 (26)
Explorer 16
USB PIM
RB0/CN2 (25)
J10
RB0 (25)
Legend:
*xxx - Pin function changed from the PIC32MX3XX family.
[xxx] - Pin function is optional, based on the USB PICtail™
Plus (xx) pin number.
Pins not listed are unchanged from the PIC32MX3XX family.
Revision History:
REVB: Initial release
REVC: Removed short between RB6 and RB8
REV1: Added Jumper J10 to allow CN2 to be used with PGOOD.
PIC32MX
PIC32 USB Plug-In Module for the
Explorer 16 Development Board
PIC32MX
DS51775B-page 2 © 2010 Microchip Technology Inc.
FIGURE 2: PIC32 USB PLUG-IN MODULE SCHEMATIC FOR PIC32MX460F512 DEVICES
U1
PIC32MX460F512L
© 2010 Microchip Technology Inc. DS51775B-page 3
PIC32MX
FIGURE 3: USB PIM INTERCONNECT DIAGRAM FOR PIC32MX795F512 DEVICES
RA14/SCL1 (66)
*D-/RG3 (56)
*VBUS (54)
*USBID/RF3 (51)
*RB8/AN8 (32)
*VBUSON/RB5 (20)
*D+/RG2 (57)
PIC32MX795F512 USB PICtail™ Plus
RG2/SCL1 (57)
D+
DVBUS
USBID
RA15/SDA1 (67) RA15 (67)
RG3/SDA1 (56)
RC4/*SDI1 (9) RC4 (9)
RF7/SDI1 (54)
RF8/*U1TX (53) U1TX/RF3 (51)
RE8/INT1 (18) RE8/INT1 (18)
RA14/INT3 (66)
(32)
[OVERCURRENT]
(96)
[SHDN]
Explorer 16
(95)
(89)
(90)
(1) (65)
(60)
(62)
(68)
(43)
(67)
J1/P1 P9/J4
RG15 (1) RD9 (69)
RB2/C2IN-/AN2 (23) RB5/C1IN+/AN5 (20)
RD9/SS1 (69) RB2/SS1 (23)
RD0/*SDO1 (72) RF8/SDO1 (53)
RD0 (72)
*VUSB (55) VDD
RG0/C2RX (90) NO CONNECT
RG1/C2TX (89) NO CONNECT
RG14 (95) NO CONNECT
RG12 (96) NO CONNECT
RD10/SCK1 (70) RD10 (70)
RF6/SCK1 (55)
*RG13 (97) [PGOOD]
(97) (66)
Explorer 16
USB PIM
RB0 (25)
J10
RB0 (25)
VCAP (85)
C6
10 μF
VCAP (85)
Legend:
*xxx - Pin function changed from the PIC32MX3XX family.
[xxx] - Pin function is optional, based on the USB PICtail™
Plus (xx) pin number.
Pins not listed are unchanged from the PIC32MX3XX family.
Revision History:
REV1: Initial release
PIC32MX
DS51775B-page 4 © 2010 Microchip Technology Inc.
FIGURE 4: PIC32 USB PLUG-IN MODULE SCHEMATIC FOR PIC32MX795F512 DEVICES
U1
PIC32MX795F512L
© 2010 Microchip Technology Inc. DS51775B-page 5
PIC32MX
REVISION HISTORY
Revision A (October 2008)
This is the original released version of the document.
Revision B (April 2010)
This revision includes the following updates:
• Revised the “Overview” section
• Updated Figure 1 and Figure 2
• Updated document to include information on the
PIC32MX795F512 device
• Added Figure 3 and Figure 4
PIC32MX
DS51775B-page 6 © 2010 Microchip Technology Inc.
NOTES:
© 2010 Microchip Technology Inc. DS51775B-page 7
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-60932-123-9
Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS51775B-page 8 © 2010 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Worldwide Sales and Service
01/05/10
EPCOS Sample Kit 2012
SMD NTC Thermistors
General-Use Components for Temperature
Measurement and Compensation
www.epcos.com
What are SMD NTC thermistors? As defined by IEC 60539, NTC (Negative Temperature Coefficient) thermistors are
thermally sensitive semiconductor resistors which show a decrease in resistance as
temperature increases.
SMD NTCs are designed for temperature measurement and compensation.
Benefits for customer applications
Available case sizes 0402, 0603 and 0805 (1206 upon request)
Resistance values 1 kV up to 680 kV
Operating temperature range: –55 … +125 °C
Excellent long-term aging stability in high-temperature environment
Nickel barrier termination and lead-free solderability
Important information: Some parts of this publication contain statements about the suitability of our products for certain areas of application. These
statements are based on our knowledge of typical requirements that are often placed on our products. We expressly point out that these statements
cannot be regarded as binding statements about the suitability of our products for a particular customer application. It is incumbent on the customer
to check and decide whether a product is suitable for use in a particular application. This publication is only a brief product survey which may be
changed from time to time. Our products are described in detail in our data sheets. The Important notes (www.epcos.com /ImportantNotes) and the
product-specific Cautions and warnings must be observed. All relevant information is available through our sales offices.
B57221
V2472J060
B57230
V2103F260
B57221
V2103J060
B57261
V2223J060
B57221
V2473J060
B57321
V2102J060
B57301
V2472J060
B57330
V2103F260
B57321
V2103J060
B57371
V2103J060
B57321
V2223J060
B57371
V2223J060
B57321
V2473J060
B57371
V2473J060
B57371
V2104J060
B57371
V2474J060
B57421
V2102J062
B57421
V2222J062
B57401
V2472J062
B57471
V2472J062
B57421
V2103J062
B57471
V2103J062
B57421
V2223J062
B57471
V2223J062
B57471
V2473J062
B57471
V2104J062
B57471
V2474J062
Components
Product range
Electrical specifications and ordering codes EIA R25 DRR B25/50 B25/85 B25/100 Ordering code
case
size [kV] % [K] [K] [K]
Case size 0402
0402 4.7 ±5 3940 3980 4000 ±3% B57221V2472J060
0402 10 ±1 3380 3435 3455 ±1% B57230V2103F260
0402 10 ±5 3940 3980 4000 ±3% B57221V2103J060
0402 22 ±5 4473 4548 4575 ±3% B57261V2223J060
0402 47 ±5 3940 3980 4000 ±3% B57221V2473J060
Case size 0603
0603 1 ±3, ±5 3940 3980 4000 ±3% B57321V2102+060
0603 4.7 ±3, ±5 3590 3635 3650 ±3% B57301V2472+060
0603 10 ±1 3380 3435 3455 ±1% B57330V2103F260
0603 10 ±3, ±5 3940 3980 4000 ±3% B57321V2103+060
0603 10 ±3, ±5 4386 4455 4480 ±3% B57371V2103+060
0603 22 ±3, ±5 3940 3980 4000 ±3% B57321V2223+060
0603 22 ±3, ±5 4386 4455 4480 ±3% B57371V2223+060
0603 47 ±3, ±5 3940 3980 4000 ±3% B57321V2473+060
0603 47 ±3, ±5 4386 4455 4480 ±3% B57371V2473+060
0603 100 ±3, ±5 4386 4455 4480 ±3% B57371V2104+060
0603 470 ±3, ±5 4386 4455 4480 ±3% B57371V2474+060
Case size 0805
0805 1 ±3, ±5 3940 3980 4000 ±3% B57421V2102+062
0805 2.2 ±3, ±5 3940 3980 4000 ±3% B57421V2222+062
0805 4.7 ±3, ±5 3590 3635 3650 ±3% B57401V2472+062
0805 4.7 ±3, ±5 4386 4455 4480 ±3% B57471V2472+062
0805 10 ±3, ±5 3940 3980 4000 ±3% B57421V2103+062
0805 10 ±3, ±5 4386 4455 4480 ±3% B57471V2103+062
0805 22 ±3, ±5 3940 3980 4000 ±3% B57421V2223+062
0805 22 ±3, ±5 4386 4455 4480 ±3% B57471V2223+062
0805 47 ±3, ±5 4386 4455 4480 ±3% B57471V2473+062
0805 100 ±3, ±5 4386 4455 4480 ±3% B57471V2104+062
0805 470 ±3, ±5 4386 4455 4480 ±3% B57471V2474+062
See enclosed CD-ROM for data sheets and further details. + = Resistance tolerance: H = ±3%, J = ±5%
Application examples for SMD NTC thermistors
Diagrams for LED, power amplifier and battery pack
LED
LED lifetime is extended if the current
through the LED is controlled by using a
NTC thermistor as temperature sensor.
10 kV ±5%
10 kV ±1%
100 kV ±5%
Power amplifier
Compensation circuit of a power
amplifier using a NTC thermistor as
temperature sensor.
Battery pack
Schematic drawing of the charging
control unit of a battery pack using NTC
thermistors as temperature sensors.
10 kV ±5%
10 kV ±1%
Further applications:
Temperature sensing and compensation in e.g.
Household electronics (refrigerators and deep-freezers,
washing machines, water boilers, LED lighting etc.)
Heating and air-conditioning
Industrial electronics
Computer and consumer electronics
Telecommunications
© EPCOS AG · A Member of TDK-EPC Corporation
Edition 07/2012 · Ordering No. B57999V2999J099 · Printed in Germany · SO 0712.5
1. General description
The PCA9555 is a 24-pin CMOS device that provides 16 bits of General Purpose parallel
Input/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed to
enhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvements
include higher drive capability, 5 V I/O tolerance, lower supply current, individual I/O
configuration, and smaller packaging. I/O expanders provide a simple solution when
additional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.
The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Output
and Polarity Inversion (active HIGH or active LOW operation) registers. The system
master can enable the I/Os as either inputs or outputs by writing to the I/O configuration
bits. The data for each Input or Output is kept in the corresponding Input or Output
register. The polarity of the read register can be inverted with the Polarity Inversion
register. All registers can be read by the system master. Although pin-to-pin and I2C-bus
address compatible with the PCF8575, software changes are required due to the
enhancements, and are discussed in Application Note AN469.
The PCA9555 open-drain interrupt output is activated when any input state differs from its
corresponding input port register state and is used to indicate to the system master that
an input state has changed. The power-on reset sets the registers to their default values
and initializes the device state machine.
Three hardware pins (A0, A1, A2) vary the fixed I2C-bus address and allow up to eight
devices to share the same I2C-bus/SMBus. The fixed I2C-bus address of the PCA9555 is
the same as the PCA9554, allowing up to eight of these devices in any combination to
share the same I2C-bus/SMBus.
2. Features
n Operating power supply voltage range of 2.3 V to 5.5 V
n 5 V tolerant I/Os
n Polarity Inversion register
n Active LOW interrupt output
n Low standby current
n Noise filter on SCL/SDA inputs
n No glitch on power-up
n Internal power-on reset
n 16 I/O pins which default to 16 inputs
n 0 Hz to 400 kHz clock frequency
n ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per
JESD22-A115, and 1000 V CDM per JESD22-C101
PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Rev. 08 — 22 October 2009 Product data sheet
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 2 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
n Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
n Six packages offered: DIP24, SO24, SSOP24, TSSOP24, HVQFN24 and HWQFN24
3. Ordering information
3.1 Ordering options
Table 1. Ordering information
Type number Package
Name Description Version
PCA9555N DIP24 plastic dual in-line package; 24 leads (600 mil) SOT101-1
PCA9555D SO24 plastic small outline package; 24 leads;
body width 7.5 mm
SOT137-1
PCA9555DB SSOP24 plastic shrink small outline package; 24 leads;
body width 5.3 mm
SOT340-1
PCA9555PW TSSOP24 plastic thin shrink small outline package; 24 leads;
body width 4.4 mm
SOT355-1
PCA9555BS HVQFN24 plastic thermal enhanced very thin quad flat package;
no leads; 24 terminals; body 4 ´ 4 ´ 0.85 mm
SOT616-1
PCA9555HF HWQFN24 plastic thermal enhanced very very thin quad flat
package; no leads; 24 terminals; body 4 ´ 4 ´ 0.75 mm
SOT994-1
Table 2. Ordering options
Type number Topside mark Temperature range
PCA9555N PCA9555 -40 °C to +85 °C
PCA9555D PCA9555D -40 °C to +85 °C
PCA9555DB PCA9555 -40 °C to +85 °C
PCA9555PW PCA9555 -40 °C to +85 °C
PCA9555BS 9555 -40 °C to +85 °C
PCA9555HF P55H -40 °C to +85 °C
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 3 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
4. Block diagram
5. Pinning information
5.1 Pinning
Remark: All I/Os are set to inputs at reset.
Fig 1. Block diagram of PCA9555
PCA9555
POWER-ON
RESET
002aac702
I2C-BUS/SMBus
CONTROL
INPUT
FILTER
SCL
SDA
VDD
INPUT/
OUTPUT
PORTS
IO0_0
VSS
8-bit
write pulse
read pulse
IO0_2
IO0_1
IO0_3
IO0_4
IO0_5
IO0_6
IO0_7
INPUT/
OUTPUT
PORTS
IO1_0
8-bit
write pulse
read pulse
IO1_2
IO1_1
IO1_3
IO1_4
IO1_5
IO1_6
IO1_7
INT
A1
A0
A2
LP filter
VDD
Fig 2. Pin configuration for DIP24 Fig 3. Pin configuration for SO24
VDD
SDA
SCL
A0
IO1_7
IO1_6
IO1_5
IO1_4
IO1_3
IO1_2
IO1_1
IO1_0
INT
A1
A2
IO0_0
IO0_1
IO0_2
IO0_3
IO0_4
IO0_5
IO0_6
IO0_7
VSS
PCA9555N
002aac697
1
2
3
4
5
6
7
8
9
10
11
12
14
13
16
15
18
17
20
19
22
21
24
23
INT VDD
A1 SDA
A2 SCL
IO0_0 A0
IO0_1 IO1_7
IO0_2 IO1_6
IO0_3 IO1_5
IO0_4 IO1_4
IO0_5 IO1_3
IO0_6 IO1_2
IO0_7 IO1_1
VSS IO1_0
PCA9555D
002aac698
1
2
3
4
5
6
7
8
9
10
11
12
14
13
16
15
18
17
20
19
22
21
24
23
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 4 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 4. Pin configuration for SSOP24 Fig 5. Pin configuration for TSSOP24
Fig 6. Pin configuration for HVQFN24 Fig 7. Pin configuration for HWQFN24
INT
A1
A2
IO0_0
IO0_1
IO0_2
IO0_3
IO0_4
IO0_5
IO0_6
IO0_7
VSS
PCA9555DB
002aac699
1
2
3
4
5
6
7
8
9
10
11
12
14
13
16
15
18
17
20
19
22
21
24
23
VDD
SDA
SCL
A0
IO1_7
IO1_6
IO1_5
IO1_4
IO1_3
IO1_2
IO1_1
IO1_0
VDD
SDA
SCL
A0
IO1_7
IO1_6
IO1_5
IO1_4
IO1_3
IO1_2
IO1_1
IO1_0
INT
A1
A2
IO0_0
IO0_1
IO0_2
IO0_3
IO0_4
IO0_5
IO0_6
IO0_7
VSS
PCA9555PW
002aac700
1
2
3
4
5
6
7
8
9
10
11
12
14
13
16
15
18
17
20
19
22
21
24
23
002aac701
PCA9555BS
Transparent top view
IO1_3
IO0_4
IO0_5
IO1_4
IO0_3 IO1_5
IO0_2 IO1_6
IO0_1 IO1_7
IO0_0 A0
IO0_6
IO0_7
VSS
IO1_0
IO1_1
IO1_2
A2
A1
VDD
SDA
SCL
terminal 1
index area
6 13
5 14
4 15
3 16
2 17
1 18
7
8
9
10
11
12
24
23
22
21
20
19
INT
002aac881
Transparent top view
IO1_3
IO0_4
IO0_5
IO1_4
IO0_3 IO1_5
IO0_2 IO1_6
IO0_1 IO1_7
IO0_0 A0
IO0_6
IO0_7
VSS
IO1_0
IO1_1
IO1_2
A2
A1
INT
VDD
SDA
SCL
terminal 1
index area
6 13
5 14
4 15
3 16
2 17
1 18
7
8
9
10
11
12
24
23
22
21
20
19
PCA9555HF
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 5 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
5.2 Pin description
[1] HVQFN and HWQFN package die supply ground is connected to both the VSS pin and the exposed center
pad. The VSS pin must be connected to supply ground for proper device operation. For enhanced thermal,
electrical, and board-level performance, the exposed pad needs to be soldered to the board using a
corresponding thermal pad on the board, and for proper heat conduction through the board thermal vias
need to be incorporated in the PCB in the thermal pad region.
Table 3. Pin description
Symbol Pin Description
DIP24, SO24,
SSOP24, TSSOP24
HVQFN24,
HWQFN24
INT 1 22 interrupt output (open-drain)
A1 2 23 address input 1
A2 3 24 address input 2
IO0_0 4 1 port 0 input/output
IO0_1 5 2
IO0_2 6 3
IO0_3 7 4
IO0_4 8 5
IO0_5 9 6
IO0_6 10 7
IO0_7 11 8
VSS 12 9[1] supply ground
IO1_0 13 10 port 1 input/output
IO1_1 14 11
IO1_2 15 12
IO1_3 16 13
IO1_4 17 14
IO1_5 18 15
IO1_6 19 16
IO1_7 20 17
A0 21 18 address input 0
SCL 22 19 serial clock line
SDA 23 20 serial data line
VDD 24 21 supply voltage
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 6 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6. Functional description
Refer to Figure 1 “Block diagram of PCA9555”.
6.1 Device address
6.2 Registers
6.2.1 Command byte
The command byte is the first byte to follow the address byte during a write transmission.
It is used as a pointer to determine which of the following registers will be written or read.
Fig 8. PCA9555 device address
R/W
002aac219
0 1 0 0 A2 A1 A0
programmable
slave address
fixed
Table 4. Command byte
Command Register
0 Input port 0
1 Input port 1
2 Output port 0
3 Output port 1
4 Polarity Inversion port 0
5 Polarity Inversion port 1
6 Configuration port 0
7 Configuration port 1
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 7 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6.2.2 Registers 0 and 1: Input port registers
This register is an input-only port. It reflects the incoming logic levels of the pins,
regardless of whether the pin is defined as an input or an output by Register 3. Writes to
this register have no effect.
The default value ‘X’ is determined by the externally applied logic level.
6.2.3 Registers 2 and 3: Output port registers
This register is an output-only port. It reflects the outgoing logic levels of the pins defined
as outputs by Registers 6 and 7. Bit values in this register have no effect on pins defined
as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling
the output selection, not the actual pin value.
6.2.4 Registers 4 and 5: Polarity Inversion registers
This register allows the user to invert the polarity of the Input port register data. If a bit in
this register is set (written with ‘1’), the Input port data polarity is inverted. If a bit in this
register is cleared (written with a ‘0’), the Input port data polarity is retained.
Table 5. Input port 0 Register
Bit 7 6 5 4 3 2 1 0
Symbol I0.7 I0.6 I0.5 I0.4 I0.3 I0.2 I0.1 I0.0
Default X X X X X X X X
Table 6. Input port 1 register
Bit 7 6 5 4 3 2 1 0
Symbol I1.7 I1.6 I1.5 I1.4 I1.3 I1.2 I1.1 I1.0
Default X X X X X X X X
Table 7. Output port 0 register
Bit 7 6 5 4 3 2 1 0
Symbol O0.7 O0.6 O0.5 O0.4 O0.3 O0.2 O0.1 O0.0
Default 1 1 1 1 1 1 1 1
Table 8. Output port 1 register
Bit 7 6 5 4 3 2 1 0
Symbol O1.7 O1.6 O1.5 O1.4 O1.3 O1.2 O1.1 O1.0
Default 1 1 1 1 1 1 1 1
Table 9. Polarity Inversion port 0 register
Bit 7 6 5 4 3 2 1 0
Symbol N0.7 N0.6 N0.5 N0.4 N0.3 N0.2 N0.1 N0.0
Default 0 0 0 0 0 0 0 0
Table 10. Polarity Inversion port 1 register
Bit 7 6 5 4 3 2 1 0
Symbol N1.7 N1.6 N1.5 N1.4 N1.3 N1.2 N1.1 N1.0
Default 0 0 0 0 0 0 0 0
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 8 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6.2.5 Registers 6 and 7: Configuration registers
This register configures the directions of the I/O pins. If a bit in this register is set (written
with ‘1’), the corresponding port pin is enabled as an input with high-impedance output
driver. If a bit in this register is cleared (written with ‘0’), the corresponding port pin is
enabled as an output. Note that there is a high value resistor tied to VDD at each pin. At
reset, the device's ports are inputs with a pull-up to VDD.
6.3 Power-on reset
When power is applied to VDD, an internal power-on reset holds the PCA9555 in a reset
condition until VDD has reached VPOR. At that point, the reset condition is released and the
PCA9555 registers and SMBus state machine will initialize to their default states. The
power-on reset typically completes the reset and enables the part by the time the power
supply is above VPOR. However, when it is required to reset the part by lowering the power
supply, it is necessary to lower it below 0.2 V.
6.4 I/O port
When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a
high-impedance input with a weak pull-up to VDD. The input voltage may be raised above
VDD to a maximum of 5.5 V.
If the I/O is configured as an output, then either Q1 or Q2 is on, depending on the state of
the Output Port register. Care should be exercised if an external voltage is applied to an
I/O configured as an output because of the low-impedance path that exists between the
pin and either VDD or VSS.
Table 11. Configuration port 0 register
Bit 7 6 5 4 3 2 1 0
Symbol C0.7 C0.6 C0.5 C0.4 C0.3 C0.2 C0.1 C0.0
Default 1 1 1 1 1 1 1 1
Table 12. Configuration port 1 register
Bit 7 6 5 4 3 2 1 0
Symbol C1.7 C1.6 C1.5 C1.4 C1.3 C1.2 C1.1 C1.0
Default 1 1 1 1 1 1 1 1
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 9 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6.5 Bus transactions
6.5.1 Writing to the port registers
Data is transmitted to the PCA9555 by sending the device address and setting the least
significant bit to a logic 0 (see Figure 8 “PCA9555 device address”). The command byte is
sent after the address and determines which register will receive the data following the
command byte.
The eight registers within the PCA9555 are configured to operate as four register pairs.
The four pairs are Input Ports, Output Ports, Polarity Inversion Ports, and Configuration
Ports. After sending data to one register, the next data byte will be sent to the other
register in the pair (see Figure 10 and Figure 11). For example, if the first byte is sent to
Output Port 1 (register 3), then the next byte will be stored in Output Port 0 (register 2).
There is no limitation on the number of data bytes sent in one write transmission. In this
way, each 8-bit register may be updated independently of the other registers.
At power-on reset, all registers return to default values.
Fig 9. Simplified schematic of I/Os
VDD
I/O pin
output port
configuration register data
register
D Q
CK Q
data from
shift register
write
configuration
pulse
output port
register
D Q
write pulse CK
polarity inversion
register
D Q
CK
data from
shift register
write polarity
pulse
input port
register
D Q
read pulse CK
input port
register data
polarity
inversion
register data
002aac703
FF
data from
shift register
FF
FF
FF
Q1
Q2
VSS
to INT
100 kW
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 10 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 10. Write to Output port registers
S 0 1 0 0 A2 A1 A0 0 A
START condition R/W acknowledge
from slave
002aac220
A
SCL
SDA A
write to port
data out
from port 0
P
tv(Q)
1 2 3 4 5 6 7 8 9
command byte data to port 0
DATA 0
slave address
0 0 0 0 0 0 1 0
STOP
condition
0.7 0.0
acknowledge
from slave
acknowledge
from slave
data to port 1
1.7 DATA 1 1.0 A
data out
from port 1
tv(Q)
DATA VALID
Fig 11. Write to Configuration registers
S 0 1 0 0 A2 A1 A0 0 A
START condition R/W acknowledge
from slave
002aac221
A
SCL
SDA A P
1 2 3 4 5 6 7 8 9
command byte
data to register
DATA 0
slave address
0 0 0 0 0 1 1 0
STOP
condition
MSB LSB
acknowledge
from slave
acknowledge
from slave
data to register
DATA 1
MSB LSB
A
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 11 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6.5.2 Reading the port registers
In order to read data from the PCA9555, the bus master must first send the PCA9555
address with the least significant bit set to a logic 0 (see Figure 8 “PCA9555 device
address”). The command byte is sent after the address and determines which register will
be accessed. After a restart, the device address is sent again, but this time the least
significant bit is set to a logic 1. Data from the register defined by the command byte will
then be sent by the PCA9555 (see Figure 12, Figure 13 and Figure 14). Data is clocked
into the register on the falling edge of the acknowledge clock pulse. After the first byte is
read, additional bytes may be read but the data will now reflect the information in the other
register in the pair. For example, if you read Input Port 1, then the next byte read would be
Input Port 0. There is no limitation on the number of data bytes received in one read
transmission but the final byte received, the bus master must not acknowledge the data.
Remark: Transfer can be stopped at any time by a STOP condition.
Fig 12. Read from register
S A
START condition R/W
acknowledge
from slave
002aac222
A
acknowledge
from slave
SDA
A P
acknowledge
from master
DATA (first byte)
slave address
STOP
condition
S
(repeated)
START condition
(cont.)
(cont.) 0 1 0 0 A2 A1 A0 1 A
R/W
acknowledge
from slave
slave address
at this moment master-transmitter becomes master-receiver
and slave-receiver becomes slave-transmitter
NA
no acknowledge
from master
0 1 0 0 A2 A1 A0 0 COMMAND BYTE
data from lower or
upper byte of register
MSB LSB
DATA (last byte)
data from upper or
lower byte of register
MSB LSB
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 12 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It
is assumed that the command byte has previously been set to ‘00’ (read Input Port register).
Fig 13. Read Input port register, scenario 1
S 0 1 0 0 A2 A1 A0 1 A
START condition
R/W
acknowledge
from slave
002aac223
A
SCL
SDA A
read from port 0
P
1 2 3 4 5 6 7 8 9
slave address I0.x
STOP condition
acknowledge
from master
I1.x
acknowledge
from master
A
I0.x
acknowledge
from master
1
I1.x
non acknowledge
from master
data into port 0
read from port 1
data into port 1
INT
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
tv(INT_N) trst(INT_N)
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 13 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It
is assumed that the command byte has previously been set to ‘00’ (read Input Port register).
Fig 14. Read Input port register, scenario 2
S 0 1 0 0 A2 A1 A0 1 A
START condition
R/W
acknowledge
from slave
002aac224
A
SCL
SDA A
read from port 0
P
1 2 3 4 5 6 7 8 9
slave address I0.x
STOP condition
acknowledge
from master
I1.x
acknowledge
from master
A
I0.x
acknowledge
from master
1
I1.x
non acknowledge
from master
data into port 0
read from port 1
data into port 1
INT
tv(INT_N) trst(INT_N)
DATA 00 DATA 10 DATA 03 DATA 12
DATA 00 DATA 01
th(D)
th(D)
DATA 02
tsu(D)
DATA 03
tsu(D)
DATA 10 DATA 11 DATA 12
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 14 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
6.5.3 Interrupt output
The open-drain interrupt output is activated when one of the port pins changes state and
the pin is configured as an input. The interrupt is deactivated when the input returns to its
previous state or the Input Port register is read (see Figure 13). A pin configured as an
output cannot cause an interrupt. Since each 8-bit port is read independently, the interrupt
caused by Port 0 will not be cleared by a read of Port 1 or the other way around.
Remark: Changing an I/O from an output to an input may cause a false interrupt to occur
if the state of the pin does not match the contents of the Input Port register.
7. Characteristics of the I2C-bus
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be
connected to a positive supply via a pull-up resistor when connected to the output stages
of a device. Data transfer may be initiated only when the bus is not busy.
7.1 Bit transfer
One data bit is transferred during each clock pulse. The data on the SDA line must remain
stable during the HIGH period of the clock pulse as changes in the data line at this time
will be interpreted as control signals (see Figure 15).
7.1.1 START and STOP conditions
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW
transition of the data line while the clock is HIGH is defined as the START condition (S). A
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP
condition (P) (see Figure 16).
Fig 15. Bit transfer
mba607
data line
stable;
data valid
change
of data
allowed
SDA
SCL
Fig 16. Definition of START and STOP conditions
mba608
SDA
SCL
P
STOP condition
S
START condition
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 15 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
7.2 System configuration
A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The
device that controls the message is the ‘master’ and the devices which are controlled by
the master are the ‘slaves’ (see Figure 17).
7.3 Acknowledge
The number of data bytes transferred between the START and the STOP conditions from
transmitter to receiver is not limited. Each byte of eight bits is followed by one
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,
whereas the master generates an extra acknowledge related clock pulse.
A slave receiver which is addressed must generate an acknowledge after the reception of
each byte. Also a master must generate an acknowledge after the reception of each byte
that has been clocked out of the slave transmitter. The device that acknowledges has to
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable
LOW during the HIGH period of the acknowledge related clock pulse; set-up time and hold
time must be taken into account.
A master receiver must signal an end of data to the transmitter by not generating an
acknowledge on the last byte that has been clocked out of the slave. In this event, the
transmitter must leave the data line HIGH to enable the master to generate a STOP
condition.
Fig 17. System configuration
002aaa966
MASTER
TRANSMITTER/
RECEIVER
SLAVE
RECEIVER
SLAVE
TRANSMITTER/
RECEIVER
MASTER
TRANSMITTER
MASTER
TRANSMITTER/
RECEIVER
SDA
SCL
I2C-BUS
MULTIPLEXER
SLAVE
Fig 18. Acknowledgement on the I2C-bus
002aaa987
S
START
condition
1 2 8 9
clock pulse for
acknowledgement
not acknowledge
acknowledge
data output
by transmitter
data output
by receiver
SCL from master
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 16 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
8. Application design-in information
Device address configured as 0100 000xb for this example.
IO0_0, IO0_2, IO0_3 configured as outputs.
IO0_1, IO0_4, IO0_5 configured as inputs.
IO0_6, IO0_7, and IO1_0 to IO1_7 configured as inputs.
Fig 19. Typical application
PCA9555
IO0_0
IO0_1
SCL
SDA
VDD
(5 V)
MASTER
CONTROLLER
SCL
SDA
INT
IO0_2
VDD
A2
A1
A0
VDD
GND
INT
10 kW
SUB-SYSTEM 1
(e.g., temp sensor)
IO0_3
INT
SUB-SYSTEM 2
(e.g., counter)
RESET
controlled
switch
(e.g., CBT device)
VDD
A
B
ENABLE
SUB-SYSTEM 3
(e.g., alarm system)
ALARM
IO0_4
IO0_5
IO0_6
10 DIGIT
NUMERIC
KEYPAD
VSS
002aac704
10 kW 10 kW 2 kW
IO0_7
IO1_0
IO1_1
IO1_2
IO1_3
IO1_4
IO1_5
IO1_6
IO1_7
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 17 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
9. Limiting values
Table 13. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDD supply voltage -0.5 +6.0 V
VI/O voltage on an input/output pin VSS - 0.5 6 V
IO output current on an I/O pin - ±50 mA
II input current - ±20 mA
IDD supply current - 160 mA
ISS ground supply current - 200 mA
Ptot total power dissipation - 200 mW
Tstg storage temperature -65 +150 °C
Tamb ambient temperature operating -40 +85 °C
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 18 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
10. Static characteristics
[1] VDD must be lowered to 0.2 V for at least 5 ms in order to reset part.
Table 14. Static characteristics
VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = -40 °C to +85 °C; unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Supplies
VDD supply voltage 2.3 - 5.5 V
IDD supply current Operating mode; VDD = 5.5 V; no load;
fSCL = 100 kHz
- 135 200 mA
Istb standby current Standby mode; VDD = 5.5 V; no load;
VI = VSS; fSCL = 0 kHz; I/O = inputs
- 1.1 1.5 mA
Standby mode; VDD = 5.5 V; no load;
VI = VDD; fSCL = 0 kHz; I/O = inputs
- 0.25 1 mA
VPOR power-on reset voltage[1] no load; VI = VDD or VSS - 1.5 1.65 V
Input SCL; input/output SDA
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
IOL LOW-level output current VOL = 0.4 V 3 - - mA
IL leakage current VI = VDD = VSS -1 - +1 mA
Ci input capacitance VI = VSS - 6 10 pF
I/Os
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
IOL LOW-level output current VDD = 2.3 V to 5.5 V; VOL = 0.5 V [2] 8 (8 to 20) - mA
VDD = 2.3 V to 5.5 V; VOL = 0.7 V [2] 10 (10 to 24) - mA
VOH HIGH-level output voltage IOH = -8 mA; VDD = 2.3 V [3] 1.8 - - V
IOH = -10 mA; VDD = 2.3 V [3] 1.7 - - V
IOH = -8 mA; VDD = 3.0 V [3] 2.6 - - V
IOH = -10 mA; VDD = 3.0 V [3] 2.5 - - V
IOH = -8 mA; VDD = 4.75 V [3] 4.1 - - V
IOH = -10 mA; VDD = 4.75 V [3] 4.0 - - V
ILIH HIGH-level input leakage
current
VDD = 5.5 V; VI = VDD - - 1 mA
ILIL LOW-level input leakage
current
VDD = 5.5 V; VI = VSS - - -100 mA
Ci input capacitance - 3.7 5 pF
Co output capacitance - 3.7 5 pF
Interrupt INT
IOL LOW-level output current VOL = 0.4 V 3 - - mA
Select inputs A0, A1, A2
VIL LOW-level input voltage -0.5 - +0.3VDD V
VIH HIGH-level input voltage 0.7VDD - 5.5 V
ILI input leakage current -1 - +1 mA
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 19 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
[2] Each I/O must be externally limited to a maximum of 25 mA and each octal (IO0_0 to IO0_7 and IO1_0 to IO1_7) must be limited to a
maximum current of 100 mA for a device total of 200 mA.
[3] The total current sourced by all I/Os must be limited to 160 mA.
(1) IOH = -8 mA
(2) IOH = -10 mA
(1) IOH = -8 mA
(2) IOH = -10 mA
Fig 20. VOH maximum Fig 21. VOH minimum
VDD = 5.5 V; VI/O = 5.5 V; A2, A1, A0 set to logic 0.
(1) Tamb = -40 °C
(2) Tamb = +25 °C
(3) Tamb = +85 °C
Fig 22. IDD versus number of I/Os held LOW
2.0
5.0
4.0
3.0
6.0
VOH
(V)
VDD (V)
2.7 3.6 5.5
002aac706
(1)
(2)
2.5
3.5
4.5
VOH
(V)
1.5
VDD (V)
2.3 3.0 4.75
002aac707
(1)
(2)
0
1.2
0.8
0.4
1.6
IDD
(mA)
number of I/Os
002aac705
all 1s one 0 three 0s all 0s
(1)
(2)
(3)
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 20 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
11. Dynamic characteristics
[1] tVD;ACK = time for acknowledgement signal from SCL LOW to SDA (out) LOW.
[2] tVD;DAT = minimum time for SDA data out to be valid following SCL LOW.
[3] Cb = total capacitance of one bus line in pF.
Table 15. Dynamic characteristics
Symbol Parameter Conditions Standard-mode
I2C-bus
Fast-mode I2C-bus Unit
Min Max Min Max
fSCL SCL clock frequency 0 100 0 400 kHz
tBUF bus free time between a STOP and
START condition
4.7 - 1.3 - ms
tHD;STA hold time (repeated) START condition 4.0 - 0.6 - ms
tSU;STA set-up time for a repeated START
condition
4.7 - 0.6 - ms
tSU;STO set-up time for STOP condition 4.0 - 0.6 - ms
tVD;ACK data valid acknowledge time [1] 0.3 3.45 0.1 0.9 ms
tHD;DAT data hold time 0 - 0 - ns
tVD;DAT data valid time [2] 300 - 50 - ns
tSU;DAT data set-up time 250 - 100 - ns
tLOW LOW period of the SCL clock 4.7 - 1.3 - ms
tHIGH HIGH period of the SCL clock 4.0 - 0.6 - ms
tf fall time of both SDA and SCL signals - 300 20 + 0.1Cb
[3] 300 ns
tr rise time of both SDA and SCL signals - 1000 20 + 0.1Cb
[3] 300 ns
tSP pulse width of spikes that must be
suppressed by the input filter
- 50 - 50 ns
Port timing
tv(Q) data output valid time - 200 - 200 ns
tsu(D) data input set-up time 150 - 150 - ns
th(D) data input hold time 1 - 1 - ms
Interrupt timing
tv(INT_N) valid time on pin INT - 4 - 4 ms
trst(INT_N) reset time on pin INT - 4 - 4 ms
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 21 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
12. Test information
Fig 23. Definition of timing on the I2C-bus
tBUF tSP
tHD;STA
P S P
tLOW
tr
tHD;DAT
tf
tHIGH tSU;DAT
tSU;STA
Sr
tHD;STA
tSU;STO
SDA
SCL
002aaa986
RL = load resistor.
CL = load capacitance includes jig and probe capacitance.
RT = termination resistance should be equal to the output impedance of Zo of the pulse generators.
Fig 24. Test circuitry for switching times
Fig 25. Load circuit
PULSE
GENERATOR
VO
CL
50 pF
RL
500 W
002aab284
RT
VI
VDD
DUT
VDD
open
GND
CL
50 pF
002aac226
RL
500 W
from output under test
2VDD
open
GND
RL S1
500 W
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 22 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
13. Package outline
Fig 26. Package outline SOT101-1 (DIP24)
UNIT A
max.
1 2 b1 c D E e MH L
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm
inches
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
SOT101-1
99-12-27
03-02-13
A
min.
A
max. b e1 ME w
1.7
1.3
0.53
0.38
0.32
0.23
32.0
31.4
14.1
13.7
3.9
3.4
2.54 15.24 0.25
15.80
15.24
17.15
15.90
5.1 0.51 4 2.2
0.066
0.051
0.021
0.015
0.013
0.009
1.26
1.24
0.56
0.54
0.15
0.13
0.1 0.6 0.01
0.62
0.60
0.68
0.63
0.2 0.02 0.16 0.087
051G02 MO-015 SC-509-24
MH
c
(e 1 )
ME
A
L
seating plane
A1
w M
b1
e
D
A2
Z
24
1
13
12
b
E
pin 1 index
0 5 10 mm
scale
Note
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
Z
max.
(1) (1) (1)
DIP24: plastic dual in-line package; 24 leads (600 mil) SOT101-1
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 23 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 27. Package outline SOT137-1 (SO24)
UNIT
A
max. A1 A2 A3 bp c D(1) E(1) e HE L Lp Q v w y Z (1) q
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm
inches
2.65 0.3
0.1
2.45
2.25
0.49
0.36
0.32
0.23
15.6
15.2
7.6
7.4
1.27
10.65
10.00
1.1
1.0
0.9
0.4 8
0
o
o
0.25 0.1
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
1.1
0.4
SOT137-1
X
12
24
w M
q
A
A1
A2
bp
D
HE
Lp
Q
detail X
E
Z
c
L
v M A
13
(A 3 )
A
y
0.25
075E05 MS-013
pin 1 index
0.1 0.012
0.004
0.096
0.089
0.019
0.014
0.013
0.009
0.61
0.60
0.30
0.29
0.05
1.4
0.055
0.419
0.394
0.043
0.039
0.035
0.016
0.01
0.25
0.01 0.004
0.043
0.016
0.01
e
1
0 5 10 mm
scale
SO24: plastic small outline package; 24 leads; body width 7.5 mm SOT137-1
99-12-27
03-02-19
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 24 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 28. Package outline SOT340-1 (SSOP24)
UNIT A1 A2 A3 bp c D(1) E(1) e HE L Lp Q v w y Z (1) q
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.21
0.05
1.80
1.65
0.38
0.25
0.20
0.09
8.4
8.0
5.4
5.2
0.65 1.25
7.9
7.6
0.9
0.7
0.8
0.4
8
0
o
0.2 0.13 0.1 o
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.
1.03
0.63
SOT340-1 MO-150
99-12-27
03-02-19
X
w M
q
A
A1
A2
bp
D
HE
Lp
Q
detail X
E
Z
e
c
L
v M A
(A 3 )
A
1 12
24 13
0.25
y
pin 1 index
0 2.5 5 mm
scale
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm SOT340-1
A
max.
2
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 25 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 29. Package outline SOT355-1 (TSSOP24)
UNIT A1 A2 A3 bp c D(1) E(2) e HE L Lp Q v w y Z (1) q
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.15
0.05
0.95
0.80
0.30
0.19
0.2
0.1
7.9
7.7
4.5
4.3
0.65
6.6
6.2
0.4
0.3
8
0
o
1 0.2 0.13 0.1 o
DIMENSIONS (mm are the original dimensions)
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
0.75
0.50
SOT355-1 MO-153
99-12-27
03-02-19
0.25
0.5
0.2
w M
bp
Z
e
1 12
24 13
pin 1 index
q
A
A1
A2
Lp
Q
detail X
L
(A 3 )
HE
E
c
v M A
X
D A
y
0 2.5 5 mm
scale
TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm SOT355-1
A
max.
1.1
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 26 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 30. Package outline SOT616-1 (HVQFN24)
1 0.2 0.5
UNIT A1 b Eh e y
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 4.1
3.9
Dh
2.25
1.95
y1
4.1
3.9
2.25
1.95
e1
2.5
e2
2.5
0.30
0.18
c
0.05
0.00
0.05 0.1
DIMENSIONS (mm are the original dimensions)
SOT616-1 - - - MO-220 - - -
0.5
0.3
L
0.1
v
0.05
w
0 2.5 5 mm
scale
SOT616-1
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;
24 terminals; body 4 x 4 x 0.85 mm
A(1)
max.
A
A1
c
detail X
y1 C y e
L
Eh
Dh
e
e1
b
7 12
24 19
18
13
6
1
X
D
E
C
B A
e2
01-08-08
02-10-22
terminal 1
index area
terminal 1
index area
C A
C
v M B
w M
1/2 e
1/2 e
E(1)
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
D(1)
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 27 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
Fig 31. Package outline SOT994-1 (HWQFN24)
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC JEITA
SOT994-1 - - - MO-220 - - -
SOT994-1
07-02-07
07-03-03
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
UNIT A(1)
max
mm 0.8 0.05
0.00
0.30
0.18
4.1
3.9
2.25
1.95
4.1
3.9
2.25
1.95 2.5 2.5 0.1
A1
DIMENSIONS (mm are the original dimensions)
HWQFN24: plastic thermal enhanced very very thin quad flat package; no leads;
24 terminals; body 4 x 4 x 0.75 mm
0 2.5 5 mm
scale
b c
0.2
D(1) Dh E(1) Eh e
0.5
e1 e2 L
0.5
0.3
v w
0.05
y
0.05
y1
0.1
B A
terminal 1
index area
E
D
detail X
A
A1
c
b
e2
e1
e
e
1/2 e
1/2 e
Æ v M C A B
Æ w M C
terminal 1
index area
6
13
7 12
18
24 19
1
L
Eh
Dh
C
y1 C y
X
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 28 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
14. Handling information
All input and output pins are protected against ElectroStatic Discharge (ESD) under
normal handling. When handling ensure that the appropriate precautions are taken as
described in JESD625-A or equivalent standards.
15. Soldering of SMD packages
This text provides a very brief insight into a complex technology. A more in-depth account
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow
soldering description”.
15.1 Introduction to soldering
Soldering is one of the most common methods through which packages are attached to
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both
the mechanical and the electrical connection. There is no single soldering method that is
ideal for all IC packages. Wave soldering is often preferred when through-hole and
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high
densities that come with increased miniaturization.
15.2 Wave and reflow soldering
Wave soldering is a joining technology in which the joints are made by solder coming from
a standing wave of liquid solder. The wave soldering process is suitable for the following:
• Through-hole components
• Leaded or leadless SMDs, which are glued to the surface of the printed circuit board
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless
packages which have solder lands underneath the body, cannot be wave soldered. Also,
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,
due to an increased probability of bridging.
The reflow soldering process involves applying solder paste to a board, followed by
component placement and exposure to a temperature profile. Leaded packages,
packages with solder balls, and leadless packages are all reflow solderable.
Key characteristics in both wave and reflow soldering are:
• Board specifications, including the board finish, solder masks and vias
• Package footprints, including solder thieves and orientation
• The moisture sensitivity level of the packages
• Package placement
• Inspection and repair
• Lead-free soldering versus SnPb soldering
15.3 Wave soldering
Key characteristics in wave soldering are:
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 29 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
• Process issues, such as application of adhesive and flux, clinching of leads, board
transport, the solder wave parameters, and the time during which components are
exposed to the wave
• Solder bath specifications, including temperature and impurities
15.4 Reflow soldering
Key characteristics in reflow soldering are:
• Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to
higher minimum peak temperatures (see Figure 32) than a SnPb process, thus
reducing the process window
• Solder paste printing issues including smearing, release, and adjusting the process
window for a mix of large and small components on one board
• Reflow temperature profile; this profile includes preheat, reflow (in which the board is
heated to the peak temperature) and cooling down. It is imperative that the peak
temperature is high enough for the solder to make reliable solder joints (a solder paste
characteristic). In addition, the peak temperature must be low enough that the
packages and/or boards are not damaged. The peak temperature of the package
depends on package thickness and volume and is classified in accordance with
Table 16 and 17
Moisture sensitivity precautions, as indicated on the packing, must be respected at all
times.
Studies have shown that small packages reach higher temperatures during reflow
soldering, see Figure 32.
Table 16. SnPb eutectic process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (°C)
Volume (mm3)
< 350 ³ 350
< 2.5 235 220
³ 2.5 220 220
Table 17. Lead-free process (from J-STD-020C)
Package thickness (mm) Package reflow temperature (°C)
Volume (mm3)
< 350 350 to 2000 > 2000
< 1.6 260 260 260
1.6 to 2.5 260 250 245
> 2.5 250 245 245
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 30 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
For further information on temperature profiles, refer to Application Note AN10365
“Surface mount reflow soldering description”.
16. Soldering of through-hole mount packages
16.1 Introduction to soldering through-hole mount packages
This text gives a very brief insight into wave, dip and manual soldering.
Wave soldering is the preferred method for mounting of through-hole mount IC packages
on a printed-circuit board.
16.2 Soldering by dipping or by solder wave
Driven by legislation and environmental forces the worldwide use of lead-free solder
pastes is increasing. Typical dwell time of the leads in the wave ranges from
3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb
or Pb-free respectively.
The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic
body must not exceed the specified maximum storage temperature (Tstg(max)). If the
printed-circuit board has been pre-heated, forced cooling may be necessary immediately
after soldering to keep the temperature within the permissible limit.
16.3 Manual soldering
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the
seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is
less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is
between 300 °C and 400 °C, contact may be up to 5 seconds.
MSL: Moisture Sensitivity Level
Fig 32. Temperature profiles for large and small components
001aac844
temperature
time
minimum peak temperature
= minimum soldering temperature
maximum peak temperature
= MSL limit, damage level
peak
temperature
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 31 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
16.4 Package related soldering information
[1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit
board.
[2] For PMFP packages hot bar soldering or manual soldering is suitable.
17. Abbreviations
Table 18. Suitability of through-hole mount IC packages for dipping and wave soldering
Package Soldering method
Dipping Wave
CPGA, HCPGA - suitable
DBS, DIP, HDIP, RDBS, SDIP, SIL suitable suitable[1]
PMFP[2] - not suitable
Table 19. Abbreviations
Acronym Description
CMOS Complementary Metal Oxide Semiconductor
GPIO General Purpose Input/Output
I2C-bus Inter-Integrated Circuit bus
SMBus System Management Bus
I/O Input/Output
ACPI Advanced Configuration and Power Interface
LED Light Emitting Diode
ESD ElectroStatic Discharge
HBM Human Body Model
MM Machine Model
CDM Charged Device Model
PCB Printed-Circuit Board
FET Field-Effect Transistor
MSB Most Significant Bit
LSB Least Significant Bit
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 32 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
18. Revision history
Table 20. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PCA9555_8 20091022 Product data sheet - PCA9555_7
Modifications: • Table 2 “Ordering options”, Topside mark for TSSOP24 package, PCA9555PW, is changed from
“PCA9555PW” to “PCA9555”
• Figure 13 “Read Input port register, scenario 1” modified
• Figure 14 “Read Input port register, scenario 2” modified
• Table 14 “Static characteristics”, Table note [1] modified (added phrase “for at least 5 ms”)
• updated soldering information
PCA9555_7 20070605 Product data sheet - PCA9555_6
PCA9555_6 20060825 Product data sheet - PCA9555_5
PCA9555_5
(9397 750 14125)
20040930 Product data sheet - PCA9555_4
PCA9555_4
(9397 750 13271)
20040727 Product data sheet - PCA9555_3
PCA9555_3
(9397 750 10164)
20020726 Product data 853-2252 28672 of
2002 July 26
PCA9555_2
PCA9555_2
(9397 750 09818)
20020513 Product data - PCA9555_1
PCA9555_1
(9397 750 08343)
20010507 Product data - -
PCA9555_8 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 08 — 22 October 2009 33 of 34
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
19. Legal information
19.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
19.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
19.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
at http://www.nxp.com/profile/terms, including those pertaining to warranty,
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
19.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
20. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
NXP Semiconductors PCA9555
16-bit I2C-bus and SMBus I/O port with interrupt
© NXP B.V. 2009. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 22 October 2009
Document identifier: PCA9555_8
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
21. Contents
1 General description . . . . . . . . . . . . . . . . . . . . . . 1
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information . . . . . . . . . . . . . . . . . . . . . 2
3.1 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5
6 Functional description . . . . . . . . . . . . . . . . . . . 6
6.1 Device address . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2.1 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2.2 Registers 0 and 1: Input port registers . . . . . . . 7
6.2.3 Registers 2 and 3: Output port registers. . . . . . 7
6.2.4 Registers 4 and 5: Polarity Inversion registers . 7
6.2.5 Registers 6 and 7: Configuration registers . . . . 8
6.3 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.4 I/O port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.5 Bus transactions . . . . . . . . . . . . . . . . . . . . . . . . 9
6.5.1 Writing to the port registers . . . . . . . . . . . . . . . 9
6.5.2 Reading the port registers . . . . . . . . . . . . . . . 11
6.5.3 Interrupt output . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Characteristics of the I2C-bus. . . . . . . . . . . . . 14
7.1 Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.1 START and STOP conditions . . . . . . . . . . . . . 14
7.2 System configuration . . . . . . . . . . . . . . . . . . . 15
7.3 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 15
8 Application design-in information . . . . . . . . . 16
9 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17
10 Static characteristics. . . . . . . . . . . . . . . . . . . . 18
11 Dynamic characteristics . . . . . . . . . . . . . . . . . 20
12 Test information . . . . . . . . . . . . . . . . . . . . . . . . 21
13 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 22
14 Handling information. . . . . . . . . . . . . . . . . . . . 28
15 Soldering of SMD packages . . . . . . . . . . . . . . 28
15.1 Introduction to soldering . . . . . . . . . . . . . . . . . 28
15.2 Wave and reflow soldering . . . . . . . . . . . . . . . 28
15.3 Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 28
15.4 Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 29
16 Soldering of through-hole mount packages . 30
16.1 Introduction to soldering through-hole mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
16.2 Soldering by dipping or by solder wave . . . . . 30
16.3 Manual soldering . . . . . . . . . . . . . . . . . . . . . . 30
16.4 Package related soldering information . . . . . . 31
17 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 31
18 Revision history . . . . . . . . . . . . . . . . . . . . . . . 32
19 Legal information . . . . . . . . . . . . . . . . . . . . . . 33
19.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 33
19.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
19.3 Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
19.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 33
20 Contact information . . . . . . . . . . . . . . . . . . . . 33
21 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Features
• High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 × 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
• High Endurance Non-volatile Memory segments
– 16 Kbytes of In-System Self-programmable Flash program memory
– 512 Bytes EEPROM
– 1 Kbytes Internal SRAM
– Write/Erase cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
• JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• Peripheral Features
– 4 × 25 Segment LCD Driver
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
• I/O and Packages
– 54 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN
• Speed Grade:
– ATmega169PV: 0 - 4 MHz @ 1.8V - 5.5V, 0 - 8 MHz @ 2.7V - 5.5V
– ATmega169P: 0 - 8 MHz @ 2.7V - 5.5V, 0 - 16 MHz @ 4.5V - 5.5V
• Temperature range:
– -40°C to 85°C Industrial
• Ultra-Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 330 μA
32 kHz, 1.8V: 10 μA (including Oscillator)
32 kHz, 1.8V: 25 μA (including Oscillator and LCD)
– Power-down Mode:
0.1 μA at 1.8V
– Power-save Mode:
0.6 μA at 1.8V (Including 32 kHz RTC)
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
ATmega169P
ATmega169PV
Preliminary
Summary
Rev. 8018PS–AVR–08/10
2
8018PS–AVR–08/10
ATmega169P
1. Pin Configurations
1.1 Pinout - TQFP/QFN/MLF
Figure 1-1. 64A (TQFP)and 64M1 (QFN/MLF) Pinout ATmega169P
Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered
or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen
from the board.
64
63
62
47
46
48
45
44
43
42
41
40
39
38
37
36
35
33
34
2
3
1
4
5
6
7
8
9
10
11
12
13
14
16
15
17
61
60
18
59
20
58
19
21
57
22
56
23
55
24
54
25
53
26
52
27
51
29
28
50
32 49
31
30
PC0 (SEG12)
VCC
GND
PF0 (ADC0)
PF7 (ADC7/TDI)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
AREF
GND
AVCC
(RXD/PCINT0) PE0
(TXD/PCINT1) PE1
LCDCAP
(XCK/AIN0/PCINT2) PE2
(AIN1/PCINT3) PE3
(USCK/SCL/PCINT4) PE4
(DI/SDA/PCINT5) PE5
(DO/PCINT6) PE6
(CLKO/PCINT7) PE7
(SS/PCINT8) PB0
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(MISO/PCINT11) PB3
(OC0A/PCINT12) PB4
(OC2A/PCINT15) PB7
(T1/SEG24) PG3
(OC1B/PCINT14) PB6
(T0/SEG23) PG4
(OC1A/PCINT13) PB5
PC1 (SEG11)
PG0 (SEG14)
(SEG15) PD7
PC2 (SEG10)
PC3 (SEG9)
PC4 (SEG8)
PC5 (SEG7)
PC6 (SEG6)
PC7 (SEG5)
PA7 (SEG3)
PG2 (SEG4)
PA6 (SEG2)
PA5 (SEG1)
PA4 (SEG0)
PA3 (COM3)
PA0 (COM0)
PA1 (COM1)
PA2 (COM2)
PG1 (SEG13)
(SEG16) PD6
(SEG17) PD5
(SEG18) PD4
(SEG19) PD3
(SEG20) PD2
(INT0/SEG21) PD1
(ICP1/SEG22) PD0
(TOSC1) XTAL1
(TOSC2) XTAL2
RESET/PG5
GND
VCC
INDEX CORNER
3
8018PS–AVR–08/10
ATmega169P
1.2 Pinout - DRQFN
Figure 1-2. 64MC (DRQFN) Pinout ATmega169P
Top view Bottom view
A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
A9
B8
A10
B9
A11
B10
A12
B11
A13
B12
A14
B13
A15
B14
A16
B15
A17
A25
B22
A24
B21
A23
B20
A22
B19
A21
B18
A20
B17
A19
B16
A18
A34
B30
A33
B29
A32
B28
A31
B27
A30
B26
A29
B25
A28
B24
A27
B23
A26
A1
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
A25
B22
A24
B21
A23
B20
A22
B19
A21
B18
A20
B17
A19
B16
A18
A17
B15
A16
B14
A15
B13
A14
B12
A13
B11
A12
B10
A11
B9
A10
B8
A9
A26
B23
A27
B24
A28
B25
A29
B26
A30
B27
A31
B28
A32
B29
A33
B30
A34
Table 1-1. DRQFN-64 Pinout ATmega169P.
A1 PE0 A9 PB7 A18 PG1 (SEG13) A26 PA2 (COM2)
B1 VLCDCAP B8 PB6 B16 PG0 (SEG14) B23 PA3 (COM3)
A2 PE1 A10 PG3 A19 PC0 (SEG12) A27 PA1 (COM1)
B2 PE2 B9 PG4 B17 PC1 (SEG11) B24 PA0 (COM0)
A3 PE3 A11 RESET A20 PC2 (SEG10) A28 VCC
B3 PE4 B10 VCC B18 PC3 (SEG9) B25 GND
A4 PE5 A12 GND A21 PC4 (SEG8) A29 PF7
B4 PE6 B11 XTAL2 (TOSC2) B19 PC5 (SEG7) B26 PF6
A5 PE7 A13 XTAL1 (TOSC1) A22 PC6 (SEG6) A30 PF5
B5 PB0 B12 PD0 (SEG22) B20 PC7 (SEG5) B27 PF4
A6 PB1 A14 PD1 (SEG21) A23 PG2 (SEG4) A31 PF3
B6 PB2 B13 PD2 (SEG20) B21 PA7 (SEG3) B28 PF2
A7 PB3 A15 PD3 (SEG19) A24 PA6 (SEG2) A32 PF1
B7 PB5 B14 PD4 (SEG18) B22 PA4 (SEG0) B29 PF0
A8 PB4 A16 PD5 (SEG17) A25 PA5 (SEG1) A33 AREF
B15 PD7 (SEG15) B30 AVCC
A17 PD6 (SEG16) A34 GND
4
8018PS–AVR–08/10
ATmega169P
2. Overview
The ATmega169P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega169P achieves throughputs approaching 1 MIPS per MHz
allowing the system designer to optimize power consumption versus processing speed.
2.1 Block Diagram
Figure 2-1. Block Diagram
PROGRAM
COUNTER
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
STACK
POINTER
PROGRAM
FLASH
MCU CONTROL
REGISTER
SRAM
GENERAL
PURPOSE
REGISTERS
INSTRUCTION
REGISTER
TIMER/
COUNTERS
INSTRUCTION
DECODER
DATA DIR.
REG. PORTB
DATA DIR.
REG. PORTE
DATA DIR.
REG. PORTA
DATA DIR.
REG. PORTD
DATA REGISTER
PORTB
DATA REGISTER
PORTE
DATA REGISTER
PORTA
DATA REGISTER
PORTD
TIMING AND
CONTROL
OSCILLATOR
INTERRUPT
UNIT
EEPROM
USART SPI
STATUS
REGISTER
Z
Y
X
ALU
PORTE DRIVERS PORTB DRIVERS
PORTF DRIVERS PORTA DRIVERS
PORTD DRIVERS
PORTC DRIVERS
PE0 - PE7 PB0 - PB7
PF0 - PF7 PA0 - PA7
VCC
GND
AREF
XTAL1
XTAL2
CONTROL
LINES
+
-
ANALOG
COMPARATOR
PC0 - PC7
8-BIT DATA BUS
RESET
AVCC CALIB. OSC
DATA DIR.
REG. PORTC
DATA REGISTER
PORTC
ON-CHIP DEBUG
JTAG TAP
PROGRAMMING
LOGIC
BOUNDARYSCAN
DATA DIR.
REG. PORTF
DATA REGISTER
PORTF
ADC
PD0 - PD7
DATA DIR.
REG. PORTG
DATA REG.
PORTG
PORTG DRIVERS
PG0 - PG4
UNIVERSAL
SERIAL INTERFACE
AVR CPU
LCD
CONTROLLER/
DRIVER
5
8018PS–AVR–08/10
ATmega169P
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional
CISC microcontrollers.
The ATmega169P provides the following features: 16 Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip
Debugging support and programming, a complete On-chip LCD controller with internal step-up
voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a
serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-
channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial
port, and five software selectable power saving modes. The Idle mode stops the CPU while
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous
timer and the LCD controller continues to run, allowing the user to maintain a timer base and
operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC,
to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator
Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined
with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program
running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flexible
and cost effective solution to many embedded control applications.
The ATmega169P AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
6
8018PS–AVR–08/10
ATmega169P
2.2 Pin Descriptions
2.2.1 VCC
Digital supply voltage.
2.2.2 GND
Ground.
2.2.3 Port A (PA7:PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATmega169P as listed on
”Alternate Functions of Port A” on page 73.
2.2.4 Port B (PB7:PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega169P as listed on
”Alternate Functions of Port B” on page 74.
2.2.5 Port C (PC7:PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of special features of the ATmega169P as listed on ”Alternate
Functions of Port C” on page 77.
2.2.6 Port D (PD7:PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega169P as listed on
”Alternate Functions of Port D” on page 79.
7
8018PS–AVR–08/10
ATmega169P
2.2.7 Port E (PE7:PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the ATmega169P as listed on
”Alternate Functions of Port E” on page 81.
2.2.8 Port F (PF7:PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical
drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.
Port F also serves the functions of the JTAG interface, see ”Alternate Functions of Port F” on
page 83.
2.2.9 Port G (PG5:PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port G also serves the functions of various special features of the ATmega169P as listed on
page 85.
2.2.10 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page
333. Shorter pulses are not guaranteed to generate a reset.
2.2.11 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.2.12 XTAL2
Output from the inverting Oscillator amplifier.
2.2.13 AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected
to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.
8
8018PS–AVR–08/10
ATmega169P
2.2.14 AREF
This is the analog reference pin for the A/D Converter.
2.2.15 LCDCAP
An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Figure
23-2 on page 236. This capacitor acts as a reservoir for LCD power (VLCD). A large
capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target value.
9
8018PS–AVR–08/10
ATmega169P
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
Note: 1.
4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
10
8018PS–AVR–08/10
ATmega169P
5. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xFF) Reserved – – – – – – – –
(0xFE) LCDDR18 – – – – – – – SEG324 250
(0xFD) LCDDR17 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 250
(0xFC) LCDDR16 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 250
(0xFB) LCDDR15 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 250
(0xFA) Reserved – – – – – – – –
(0xF9) LCDDR13 – – – – – – – SEG224 250
(0xF8) LCDDR12 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 250
(0xF7) LCDDR11 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 250
(0xF6) LCDDR10 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 250
(0xF5) Reserved – – – – – – – –
(0xF4) LCDDR8 – – – – – – – SEG124 250
(0xF3) LCDDR7 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 250
(0xF2) LCDDR6 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 250
(0xF1) LCDDR5 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 250
(0xF0) Reserved – – – – – – – –
(0xEF) LCDDR3 – – – – – – – SEG024 250
(0xEE) LCDDR2 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 250
(0xED) LCDDR1 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG09 SEG008 250
(0xEC) LCDDR0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 250
(0xEB) Reserved – – – – – – – –
(0xEA) Reserved – – – – – – – –
(0xE9) Reserved – – – – – – – –
(0xE8) Reserved – – – – – – – –
(0xE7) LCDCCR LCDDC2 LCDDC1 LCDDC0 LCDMDT LCDCC3 LCDCC2 LCDCC1 LCDCC0 249
(0xE6) LCDFRR – LCDPS2 LCDPS1 LCDPS0 – LCDCD2 LCDCD1 LCDCD0 247
(0xE5) LCDCRB LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 246
(0xE4) LCDCRA LCDEN LCDAB – LCDIF LCDIE LCDBD LCDCCD LCDBL 245
(0xE3) Reserved – – – – – – – –
(0xE2) Reserved – – – – – – – –
(0xE1) Reserved – – – – – – – –
(0xE0) Reserved – – – – – – – –
(0xDF) Reserved – – – – – – – –
(0xDE) Reserved – – – – – – – –
(0xDD) Reserved – – – – – – – –
(0xDC) Reserved – – – – – – – –
(0xDB) Reserved – – – – – – – –
(0xDA) Reserved – – – – – – – –
(0xD9) Reserved – – – – – – – –
(0xD8) Reserved – – – – – – – –
(0xD7) Reserved – – – – – – – –
(0xD6) Reserved – – – – – – – –
(0xD5) Reserved – – – – – – – –
(0xD4) Reserved – – – – – – – –
(0xD3) Reserved – – – – – – – –
(0xD2) Reserved – – – – – – – –
(0xD1) Reserved – – – – – – – –
(0xD0) Reserved – – – – – – – –
(0xCF) Reserved – – – – – – – –
(0xCE) Reserved – – – – – – – –
(0xCD) Reserved – – – – – – – –
(0xCC) Reserved – – – – – – – –
(0xCB) Reserved – – – – – – – –
(0xCA) Reserved – – – – – – – –
(0xC9) Reserved – – – – – – – –
(0xC8) Reserved – – – – – – – –
(0xC7) Reserved – – – – – – – –
(0xC6) UDR0 USART0 I/O Data Register 190
(0xC5) UBRRH0 USART0 Baud Rate Register High 194
(0xC4) UBRRL0 USART0 Baud Rate Register Low 194
(0xC3) Reserved – – – – – – – –
(0xC2) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 190
(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 190
(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 190
11
8018PS–AVR–08/10
ATmega169P
(0xBF) Reserved – – – – – – – –
(0xBE) Reserved – – – – – – – –
(0xBD) Reserved – – – – – – – –
(0xBC) Reserved – – – – – – – –
(0xBB) Reserved – – – – – – – –
(0xBA) USIDR USI Data Register 207
(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 207
(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 208
(0xB7) Reserved – – – – – – –
(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB 156
(0xB5) Reserved – – – – – – – –
(0xB4) Reserved – – – – – – – –
(0xB3) OCR2A Timer/Counter2 Output Compare Register A 155
(0xB2) TCNT2 Timer/Counter2 (8-bit) 155
(0xB1) Reserved – – – – – – – –
(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 153
(0xAF) Reserved – – – – – – – –
(0xAE) Reserved – – – – – – – –
(0xAD) Reserved – – – – – – – –
(0xAC) Reserved – – – – – – – –
(0xAB) Reserved – – – – – – – –
(0xAA) Reserved – – – – – – – –
(0xA9) Reserved – – – – – – – –
(0xA8) Reserved – – – – – – – –
(0xA7) Reserved – – – – – – – –
(0xA6) Reserved – – – – – – – –
(0xA5) Reserved – – – – – – – –
(0xA4) Reserved – – – – – – – –
(0xA3) Reserved – – – – – – – –
(0xA2) Reserved – – – – – – – –
(0xA1) Reserved – – – – – – – –
(0xA0) Reserved – – – – – – – –
(0x9F) Reserved – – – – – – – –
(0x9E) Reserved – – – – – – – –
(0x9D) Reserved – – – – – – – –
(0x9C) Reserved – – – – – – – –
(0x9B) Reserved – – – – – – – –
(0x9A) Reserved – – – – – – – –
(0x99) Reserved – – – – – – – –
(0x98) Reserved – – – – – – – –
(0x97) Reserved – – – – – – – –
(0x96) Reserved – – – – – – – –
(0x95) Reserved – – – – – – – –
(0x94) Reserved – – – – – – – –
(0x93) Reserved – – – – – – – –
(0x92) Reserved – – – – – – – –
(0x91) Reserved – – – – – – – –
(0x90) Reserved – – – – – – – –
(0x8F) Reserved – – – – – – – –
(0x8E) Reserved – – – – – – – –
(0x8D) Reserved – – – – – – – –
(0x8C) Reserved – – – – – – – –
(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 132
(0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 132
(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 132
(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 132
(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 133
(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 133
(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 132
(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 132
(0x83) Reserved – – – – – – – –
(0x82) TCCR1C FOC1A FOC1B – – – – – – 131
(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 130
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 128
(0x7F) DIDR1 – – – – – – AIN1D AIN0D 214
(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 232
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
12
8018PS–AVR–08/10
ATmega169P
(0x7D) Reserved – – – – – – – –
(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 228
(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 213, 232
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 230
(0x79) ADCH ADC Data Register High byte 231
(0x78) ADCL ADC Data Register Low byte 231
(0x77) Reserved – – – – – – – –
(0x76) Reserved – – – – – – – –
(0x75) Reserved – – – – – – – –
(0x74) Reserved – – – – – – – –
(0x73) Reserved – – – – – – – –
(0x72) Reserved – – – – – – – –
(0x71) Reserved – – – – – – – –
(0x70) TIMSK2 – – – – – – OCIE2A TOIE2 156
(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 133
(0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 104
(0x6D) Reserved – – – – – – – –
(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 63
(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 64
(0x6A) Reserved – – – – – – – –
(0x69) EICRA – – – – – – ISC01 ISC00 62
(0x68) Reserved – – – – – – – –
(0x67) Reserved – – – – – – – –
(0x66) OSCCAL Oscillator Calibration Register 38
(0x65) Reserved – – – – – – – –
(0x64) PRR – – – PRLCD PRTIM1 PRSPI PRUSART0 PRADC 45
(0x63) Reserved – – – – – – – –
(0x62) Reserved – – – – – – – –
(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 38
(0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 54
0x3F (0x5F) SREG I T H S V N Z C 13
0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 15
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 15
0x3C (0x5C) Reserved
0x3B (0x5B) Reserved
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 293
0x36 (0x56) Reserved – – – – – – – –
0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE 60, 88, 278
0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF 278
0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 45
0x32 (0x52) Reserved – – – – – – – –
0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 257
0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 213
0x2F (0x4F) Reserved – – – – – – – –
0x2E (0x4E) SPDR SPI Data Register 167
0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 166
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 165
0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 29
0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 29
0x29 (0x49) Reserved – – – – – – – –
0x28 (0x48) Reserved – – – – – – – –
0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 104
0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 104
0x25 (0x45) Reserved – – – – – – – –
0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 102
0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR10 137, 157
0x22 (0x42) EEARH – – – – – – – EEAR8 27
0x21 (0x41) EEARL EEPROM Address Register Low Byte 27
0x20 (0x40) EEDR EEPROM Data Register 27
0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE 27
0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 29
0x1D (0x3D) EIMSK PCIE1 PCIE0 – – – – – INT0 62
0x1C (0x3C) EIFR PCIF1 PCIF0 – – – – – INTF0 63
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
13
8018PS–AVR–08/10
ATmega169P
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
0x1B (0x3B) Reserved – – – – – – – –
0x1A (0x3A) Reserved – – – – – – – –
0x19 (0x39) Reserved – – – – – – – –
0x18 (0x38) Reserved – – – – – – – –
0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 156
0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 134
0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 105
0x14 (0x34) PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 90
0x13 (0x33) DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 90
0x12 (0x32) PING – – PING5 PING4 PING3 PING2 PING1 PING0 90
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 90
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 90
0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 90
0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 89
0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 89
0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 90
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 89
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 89
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 89
0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 89
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 89
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 89
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 88
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 88
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 88
0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 88
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
14
8018PS–AVR–08/10
ATmega169P
6. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Direct Jump PC ← k None 3
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Direct Subroutine Call PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
15
8018PS–AVR–08/10
ATmega169P
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (Z) ← R1:R0 None -
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
Mnemonics Operands Description Operation Flags #Clocks
16
8018PS–AVR–08/10
ATmega169P
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-chip Debug Only None N/A
Mnemonics Operands Description Operation Flags #Clocks
17
8018PS–AVR–08/10
ATmega169P
7. Ordering Information
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC, see Figure 28-1 on page 331 and Figure 28-2 on page 332.
Speed (MHz)(3) Power Supply Ordering Code Package(1)(2) Operation Range
8 1.8V - 5.5V
ATmega169PV-8AU
ATmega169PV-8MU
ATmega169PV-8MCH
64A
64M1
64MC
Industrial
(-40°C to 85°C)
16 2.7V - 5.5V
ATmega169P-16AU
ATmega169P-16MU
ATmega169P-16MCH
64A
64M1
64MC
Industrial
(-40°C to 85°C)
Package Type
64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
64M1 64-pad, 9 × 9 × 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
64MC 64-lead (2-row Staggered), 7 × 7 × 1.0 mm body, 4.0 × 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN)
18
8018PS–AVR–08/10
ATmega169P
8. Packaging Information
8.1 64A
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
64A B
10/5/2001
PIN 1 IDENTIFIER
0°~7°
PIN 1
L
C
A1 A2 A
D1
D
e E1 E
B
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes:
1.This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
A – – 1.20
A1 0.05 – 0.15
A2 0.95 1.00 1.05
D 15.75 16.00 16.25
D1 13.90 14.00 14.10 Note 2
E 15.75 16.00 16.25
E1 13.90 14.00 14.10 Note 2
B 0.30 – 0.45
C 0.09 – 0.20
L 0.45 – 0.75
e 0.80 TYP
19
8018PS–AVR–08/10
ATmega169P
8.2 64M1
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
64M1 G
5/25/06
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A 0.80 0.90 1.00
A1 – 0.02 0.05
b 0.18 0.25 0.30
D
D2 5.20 5.40 5.60
8.90 9.00 9.10
E 8.9 0 9.00 9.10
E2 5.20 5.40 5.60
e 0.50 BSC
L 0.35 0.40 0.45
Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
TOP VIEW
SIDE VIEW
BOTTOM VIEW
D
E
Marked Pin# 1 ID
SEATING PLANE
A1
C
A
0.08 C
1
2
3
K 1.25 1.40 1.55
E2
D2
b e
Pin #1 Corner
L
Pin #1
Triangle
Pin #1
Chamfer
(C 0.30)
Option A
Option B
Pin #1
Notch
(0.20 R)
Option C
K
K
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
20
8018PS–AVR–08/10
ATmega169P
8.3 64MC
TITLE GPC DRAWING NO. REV.
Package Drawing Contact:
packagedrawings@atmel.com ZXC 64MC A
64MC, 64QFN (2-Row Staggered),
7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad,
Quad Flat No Lead Package
10/3/07
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A 0.80 0.90 1.00
A1 0.00 0.02 0.05
b 0.18 0.23 0.28
C 0.20 REF
D 6.90 7.00 7.10
D2 3.95 4.00 4.05
E 6.90 7.00 7.10
E2 3.95 4.00 4.05
eT – 0.65 –
eR – 0.65 –
K 0.20 – – (REF)
L 0.35 0.40 0.45
y 0.00 – 0.075
SIDE VIEW
TOP VIEW
BOTTOM VIEW
Note: 1. The terminal #1 ID is a Laser-marked Feature.
Pin 1 ID
D
E
A1
A
y
C
eT/2
R0.20 0.40
B1
A1
B30
A34
b
A8
B7
eT
D2
B16
A18
B22
A25
E2 K (0.1) REF
B8
A9
(0.18) REF
L
B15
A17
L
eR
A26
B23
eT
21
8018PS–AVR–08/10
ATmega169P
9. Errata
9.1 ATmega169P Rev. G
No known errata.
9.2 ATmega169P Rev. A to F
Not sampled.
22
8018PS–AVR–08/10
ATmega169P
10. Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.
10.1 Rev. 8018P 08/10
10.2 Rev. 8018O 10/09
10.3 Rev. 8018N 08/09
10.4 Rev. 8018M 07/09
10.5 Rev. L 08/08
10.6 Rev. K 06/08
1. Status changed to active
2. EEPROM minimum wait delay, Table 27-15 on page 312, has been changed from 9.0
ms to 3.6 ms
3. Datasheet layout and technical terminology updated
1. Changed datasheet status to “Mature”
2. Added Capacitance for Low-frequency Crystal Oscillator, Table 8-5 on page 33.
1. Updated ”Ordering Information” on page 17, MCU replaced by MCH.
1. Updated the last page with new Atmel’s addresses.
1. Updated package information in ”Features” on page 1.
2. Added ”Pinout - DRQFN” on page 3:
• The Staggered QFN is named Dual Row QFN (DRQFN).
1. Updated package information in ”Features” on page 1.
2. Removed “Disclaimer” from section ”Pin Configurations” on page 2
3. Added ”64MC (DRQFN) Pinout ATmega169P” on page 3
4. Added ”Data Retention” on page 9.
5. Updated ”Stack Pointer” on page 13.
6. Updated ”Low-frequency Crystal Oscillator” on page 34.
7. Updated ”USART Register Description” on page 194, register descriptions and tables.
8. Updated ”UCSRnB – USART Control and Status Register n B” on page 195.
9. Updated VIL2 in ”DC Characteristics” on page 329, by removing 0.2VCC from the table.
23
8018PS–AVR–08/10
ATmega169P
10.7 Rev. J 08/07
10.8 Rev. I 11/06
10.9 Rev. H 09/06
10.10 Rev. G 08/06
10.11 Rev. F 08/06
10.12 Rev. E 08/06
10. Replaced Figure 29-36 on page 357 by a correct one.
11. Updated ”Ordering Information” on page 17.
12. Added ”64MC” on page 20 package to ”Packaging Information” on page 18.
1. Updated ”Features” on page 1.
2. Added ”Minimizing Power Consumption” on page 237 in the LCD section.
3. Updated ”System and Reset Characteristics” on page 333.
1. Updated ”Low-frequency Crystal Oscillator” on page 34.
2. Updated Table 8-8 on page 35, Table 8-9 on page 35, Table 8-10 on page 35, Table
28-7 on page 336.
3. Updated note in Table 28-7 on page 336.
1. All characterization data moved to ”Electrical Characteristics” on page 329.
2. Updated ”Calibrated Internal RC Oscillator” on page 32.
3. Updated ”System Control and Reset” on page 47.
4. Added note to Table 27-16 on page 314.
5. Updated ”LCD Controller Characteristics” on page 337.
1. Updated ”LCD Controller Characteristics” on page 337.
1. Updated ”DC Characteristics” on page 329.
2. Updated Table 13-19 on page 84.
1. Updated ”Low-frequency Crystal Oscillator” on page 34.
2. Updated ”Device Identification Register” on page 260.
3. Updated ”Signature Bytes” on page 299.
4. Added Table 27-6 on page 299.
24
8018PS–AVR–08/10
ATmega169P
10.13 Rev. D 07/06
10.14 Rev. C 06/06
10.15 Rev. B 04/06
10.16 Rev. A 03/06
1. Updated ”Register Description for I/O-Ports” on page 88.
2. Updated ”Fast PWM Mode” on page 97.
3. Updated ”Fast PWM Mode” on page 120.
4. Updated Table 14-2 on page 102, Table 14-4 on page 103, Table 15-3 on page 129,
Table 15-4 on page 130, Table 17-2 on page 153 and Table 17-4 on page 154.
5 Updated ”UCSRnC – USART Control and Status Register n C” on page 196.
6. Updated Features in ”USI – Universal Serial Interface” on page 199.
7. Added ”Clock speed considerations.” on page 206.
8. Updated Features in ”LCD Controller” on page 234.
9. Updated ”Register Summary” on page 10.
1. Updated typos.
2. Updated ”Calibrated Internal RC Oscillator” on page 32.
3. Updated ”OSCCAL – Oscillator Calibration Register” on page 38.
4. Added Table 28-2 on page 332.
1. Updated ”Calibrated Internal RC Oscillator” on page 32.
1. Initial revision.
8018PS–AVR–08/10
Headquarters International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Product Contact
Web Site
www.atmel.com
Technical Support
avr@atmel.com
Sales Contact
www.atmel.com/contacts
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS
OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL
DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, and others are registered trademarks
or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft® Corporation
in the US and/or other countries. Other terms and product names may be trademarks of others.
PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Rev. 04 — 9 March 2011 Product data sheet
LFPAK
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit
VDS drain-source voltage Tj ≥ 25 °C; Tj ≤175°C - - 30 V
ID drain current Tmb = 25 °C; VGS = 10 V;
see Figure 1
- - 76 A
Ptot total power
dissipation
Tmb = 25 °C; see Figure 2 - - 51 W
Tj junction temperature -55 - 175 °C
Static characteristics
RDSon drain-source on-state
resistance
VGS = 10 V; ID = 15 A;
Tj = 25 °C
- 4.92 7 mΩ
Dynamic characteristics
QGD gate-drain charge VGS = 4.5 V; ID = 10 A;
VDS = 12 V; see Figure 14;
see Figure 15
- 2.9 - nC
QG(tot) total gate charge - 10 - nC
Avalanche ruggedness
EDS(AL)S non-repetitive
drain-source
avalanche energy
VGS = 10 V; Tj(init) = 25 °C;
ID = 65 A; Vsup ≤ 30 V;
RGS = 50 Ω; unclamped
- - 21 mJ
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 2 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
2. Pinning information
3. Ordering information
4. Limiting values
Table 2. Pinning information
Pin Symbol Description Simplified outline Graphic symbol
1 S source
SOT669 (LFPAK)
2 S source
3 S source
4 G gate
mb D mounting base; connected to
drain
mb
1 2 3 4
S
D
G
mbb076
Table 3. Ordering information
Type number Package
Name Description Version
PSMN7R0-30YL LFPAK plastic single-ended surface-mounted package (LFPAK); 4 leads SOT669
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VDS drain-source voltage Tj ≥ 25 °C; Tj ≤ 175 °C - 30 V
VDSM peak drain-source voltage tp ≤ 25 ns; f ≤ 500 kHz; EDS(AL) ≤ 90 nJ;
pulsed
- 35 V
VDGR drain-gate voltage Tj ≥ 25 °C; Tj ≤ 175 °C; RGS = 20 kΩ - 30 V
VGS gate-source voltage -20 20 V
ID drain current VGS = 10 V; Tmb = 100 °C; see Figure 1 - 53 A
VGS = 10 V; Tmb = 25 °C; see Figure 1 - 76 A
IDM peak drain current pulsed; tp ≤ 10 μs; Tmb = 25 °C;
see Figure 3
- 260 A
Ptot total power dissipation Tmb = 25 °C; see Figure 2 - 51 W
Tstg storage temperature -55 175 °C
Tj junction temperature -55 175 °C
Source-drain diode
IS source current Tmb = 25 °C - 65 A
ISM peak source current pulsed; tp ≤ 10 μs; Tmb = 25 °C - 260 A
Avalanche ruggedness
EDS(AL)S non-repetitive drain-source
avalanche energy
VGS = 10 V; Tj(init) = 25 °C; ID = 65 A;
Vsup ≤ 30 V; RGS = 50 Ω; unclamped
- 21 mJ
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 3 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Fig 1. Continuous drain current as a function of
mounting base temperature
Fig 2. Normalized total power dissipation as a
function of mounting base temperature
Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage
003aac720
0
20
40
60
80
100
0 50 100 150 200
Tmb (°C)
ID
(A)
Tmb (°C)
0 50 100 150 200
03aa16
40
80
120
Pder
(%)
0
003aac732
10-1
1
10
102
103
10-1 1 10 102
VDS (V)
ID
(A)
DC
Limit RDSon = VDS / ID
100 ms
10 ms
1 ms
100 μs
10 μs
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 4 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
5. Thermal characteristics
Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Rth(j-mb) thermal resistance from
junction to mounting base
see Figure 4 - 1.4 2.45 K/W
Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration
003aac721
single shot
0.2
0.1
0.05
0.02
10-2
10-1
1
10
10-6 10-5 10-4 10-3 10-2 10-1 tp (s) 1
Zth(j-mb)
(K/W)
δ = 0.5
tp
T
P
t
tp
T
δ =
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 5 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
6. Characteristics
Table 6. Characteristics
Tested to JEDEC standards where applicable.
Symbol Parameter Conditions Min Typ Max Unit
Static characteristics
V(BR)DSS drain-source
breakdown voltage
ID = 250 μA; VGS = 0 V; Tj=25°C 30 - - V
ID = 250 μA; VGS = 0 V; Tj = -55 °C 27 - - V
VGS(th) gate-source threshold
voltage
ID = 1 mA; VDS = VGS; Tj = 25 °C;
see Figure 11; see Figure 12
1.3 1.7 2.15 V
ID = 1 mA; VDS = VGS; Tj = 150 °C;
see Figure 12
0.65 - - V
ID = 1 mA; VDS = VGS; Tj = -55 °C;
see Figure 12
- - 2.45 V
IDSS drain leakage current VDS = 30 V; VGS = 0 V; Tj=25°C - - 1 μA
VDS = 30 V; VGS = 0 V; Tj = 150 °C - - 100 μA
IGSS gate leakage current VGS = 16 V; VDS = 0 V; Tj = 25 °C - - 100 nA
VGS = -16 V; VDS = 0 V; Tj = 25 °C - - 100 nA
RDSon drain-source on-state
resistance
VGS = 4.5 V; ID = 15 A; Tj = 25 °C - 6.97 9.1 mΩ
VGS = 10 V; ID = 15 A; Tj = 150 °C;
see Figure 13
- - 12.2 mΩ
VGS = 10 V; ID = 15 A; Tj = 25 °C - 4.92 7 mΩ
RG gate resistance f = 1 MHz - 0.6 1.5 Ω
Dynamic characteristics
QG(tot) total gate charge ID = 10 A; VDS = 12 V; VGS = 4.5 V;
see Figure 14; see Figure 15
- 10 - nC
ID = 0 A; VDS = 0 V; VGS = 10 V - 20 - nC
ID = 10 A; VDS = 12 V; VGS = 10 V;
see Figure 14; see Figure 15
- 22 - nC
QGS gate-source charge ID = 10 A; VDS = 12 V; VGS = 4.5 V;
see Figure 14; see Figure 15
- 3.7 - nC
QGS(th) pre-threshold
gate-source charge
- 2.1 - nC
QGS(th-pl) post-threshold
gate-source charge
- 1.6 - nC
QGD gate-drain charge - 2.9 - nC
VGS(pl) gate-source plateau
voltage
VDS = 12 V; see Figure 14;
see Figure 15
- 2.6 - V
Ciss input capacitance VDS = 12 V; VGS = 0 V; f = 1 MHz;
Tj = 25 °C; see Figure 16
- 1270 - pF
Coss output capacitance - 255 - pF
Crss reverse transfer
capacitance
- 145 - pF
td(on) turn-on delay time VDS = 12 V; RL = 0.5 Ω; VGS = 4.5 V;
RG(ext) = 4.7 Ω
- 24 - ns
tr rise time - 39 - ns
td(off) turn-off delay time - 30 - ns
tf fall time - 11 - ns
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 6 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Source-drain diode
VSD source-drain voltage IS = 25 A; VGS = 0 V; Tj = 25 °C;
see Figure 17
- 0.88 1.2 V
trr reverse recovery time IS = 20 A; dIS/dt = -100 A/μs; VGS = 0 V;
VDS = 20 V
- 30 - ns
Qr recovered charge - 22 - nC
Table 6. Characteristics …continued
Tested to JEDEC standards where applicable.
Symbol Parameter Conditions Min Typ Max Unit
Fig 5. Transfer characteristics: drain current as a
function of gate-source voltage; typical values
Fig 6. Forward transconductance as a function of
drain current; typical values
Fig 7. Drain-source on-state resistance as a function
of gate-source voltage; typical values
Fig 8. Output characteristics: drain current as a
function of drain-source voltage; typical values
003aac729
0
20
40
60
80
0 1 2 3 VGS (V) 4
ID
(A)
Tj = 150 °C
25 °C
003aac728
30
40
50
60
0 10 20 30 I 40 D (A)
gfs
(S)
003aac727
4
6
8
10
12
14
2 4 6 8 V 10 GS (V)
RDSon
(mΩ)
003aac726
0
20
40
60
80
100
0 2 4 6 8 10
VDS (V)
ID
(A)
VGS (V) = 4.5
10
3.2
3
2.8
2.6
2.4
2.2
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 7 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Fig 9. Input and reverse transfer capacitances as a
function of gate-source voltage; typical values
Fig 10. Drain-source on-state resistance as a function
of drain current; typical values
Fig 11. Sub-threshold drain current as a function of
gate-source voltage
Fig 12. Gate-source threshold voltage as a function of
junction temperature
003aac724
0
500
1000
1500
2000
2500
0 2 4 6 8 10
VGS (V)
C
(pF) Ciss
Crss
003aac722
4
6
8
10
12
14
16
0 20 40 60 80 100
ID (A)
RDSon
(mΩ)
VGS (V) = 4.5
10
3.2
003aab271
10-6
10-5
10-4
10-3
10-2
10-1
0 1 2 VGS (V) 3
ID
(A)
min typ max
003aac337
0
1
2
3
-60 0 60 120 180
Tj (°C)
VGS(th)
(V)
max
typ
min
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 8 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Fig 13. Normalized drain-source on-state resistance
factor as a function of junction temperature
Fig 14. Gate charge waveform definitions
Fig 15. Gate-source voltage as a function of gate
charge; typical values
Fig 16. Input, output and reverse transfer capacitances
as a function of drain-source voltage; typical
values
03aa27
0
0.5
1
1.5
2
−60 0 60 120 180
Tj (°C)
a
003aaa508
VGS
VGS(th)
QGS1 QGS2
QGD
VDS
QG(tot)
ID
QGS
VGS(pl)
003aac725
0
2
4
6
8
10
0 5 10 15 20 25
QG (nC)
VGS
(V)
VDS = 19 (V)
VDS = 12 (V)
003aac723
0
400
800
1200
1600
10-1 1 10 102
VDS (V)
C
(pF)
Ciss
Coss
Crss
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 9 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
Fig 17. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values
003aac730
0
20
40
60
80
0.0 0.2 0.4 0.6 0.8 1.0
VSD (V)
IS
(A)
Tj = 150 °C
25 °C
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 10 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
7. Package outline
Fig 18. Package outline SOT669 (LFPAK)
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT669 MO-235
04-10-13
06-03-16
0 2.5 5 mm
scale
e
E1
b
c2
A2
UNIT A A2 b c e
DIMENSIONS (mm are the original dimensions)
mm 1.10
0.95
A1 A3
0.15
0.00
1.20
1.01
0.50
0.35
b2
4.41
3.62
b3
2.2
2.0
b4
0.9
0.7
0.25
0.19
c2
0.30
0.24
4.10
3.80
6.2
5.8
H
1.3
0.8
L2
0.85
0.40
L
1.3
0.8
L1
8°
0°
D(1) w y
5.0
4.8
E(1)
3.3
3.1
E1
D1 (1)
(1)
max
0.25 4.20 1.27 0.25 0.1
1 2 3 4
mounting
base
D1
c
Plastic single-ended surface-mounted package (LFPAK); 4 leads SOT669
E
b2
b3
b4
H D
L2
L1
A
w M A
C
C
X
1/2 e
y C
θ
θ
(A 3 )
L
A
A1
detail X
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 11 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
8. Revision history
Table 7. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PSMN7R0-30YL v.4 20110309 Product data sheet - PSMN7R0-30YL v.3
Modifications: • Various changes to content.
PSMN7R0-30YL v.3 20100104 Product data sheet - PSMN7R0-30YL v.2
PSMN7R0-30YL v.2 20090105 Product data sheet - PSMN7R0-30YL v.1
PSMN7R0-30YL v.1 20081015 Preliminary data sheet - -
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 12 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
9. Legal information
9.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product
status information is available on the Internet at URL http://www.nxp.com.
9.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
9.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
Document status [1] [2] Product status [3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
PSMN7R0-30YL All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 04 — 9 March 2011 13 of 14
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Export control — This document as well as the item(s) described herein may
be subject to export control regulations. Export might require a prior
authorization from national authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
9.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV,
FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE,
ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse,
QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET,
TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.
HD Radio and HD Radio logo — are trademarks of iBiquity Digital
Corporation.
10. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors PSMN7R0-30YL
N-channel 30 V 7 mΩ logic level MOSFET in LFPAK
© NXP B.V. 2011. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 9 March 2011
Document identifier: PSMN7R0-30YL
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
DPO4000 Series
Digital Phosphor Oscilloscopes
User Manual
www.tektronix.com
071-1785-00
Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by
national copyright laws and international treaty provisions.
Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously
published material. Specifications and price change privileges reserved.
TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.
e*Scope, iView, OpenChoice, TekSecure, and TekVPI are registered trademarks of Tektronix, Inc.
Wave Inspector is a trademark of Tektronix, Inc.
Contacting Tektronix
Tektronix, Inc.
14200 SW Karl Braun Drive
P.O. Box 500
Beaverton, OR 97077
USA
For product information, sales, service, and technical support:
In North America, call 1-800-833-9200.
Worldwide, visit www.tektronix.com to find contacts in your area.
Warranty 4
Tektronix warrants that this product will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment. If
any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts
and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for
warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix.
In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make
suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service
center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a
location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties,
taxes, and any other charges for products returned to any other locations.
This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix
shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix
representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to
repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with
other products when the effect of such modification or integration increases the time or difficulty of servicing the product.
THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR
IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY
PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
Table of Contents
Table of Contents
General Safety Summary ................................................................................................................... v
Environmental Considerations ............................................................................................................ viii
Preface....................................................................................................................................... x
Key Features........................................................................................................................... x
Where to Find More Information..................................................................................................... xii
Conventions Used in This Manual................................................................................................... xiii
Installation .................................................................................................................................. 1
Before Installation..................................................................................................................... 1
Operating Considerations ............................................................................................................ 6
Connecting Probes .................................................................................................................. 10
Powering On the Oscilloscope ...................................................................................................... 11
Powering Off the Oscilloscope ...................................................................................................... 14
Functional Check .................................................................................................................... 15
Compensating the Probe ............................................................................................................ 17
Installing an Application Module..................................................................................................... 19
Changing the User Interface Language ............................................................................................. 20
Changing the Date and Time ........................................................................................................ 23
Signal Path Compensation .......................................................................................................... 25
Upgrading Firmware ................................................................................................................. 28
Connecting Your Oscilloscope to a Computer ...................................................................................... 34
DPO4000 Series User Manual i
Table of Contents
Get Acquainted with the Instrument....................................................................................................... 45
Front-Panel Menus and Controls.................................................................................................... 45
Front-Panel Connectors ............................................................................................................. 66
Side-Panel Connector ............................................................................................................... 67
Rear-Panel Connectors.............................................................................................................. 68
Acquire the Signal ......................................................................................................................... 70
Setting Up Signal Input .............................................................................................................. 70
Using the Default Setup ............................................................................................................. 73
Using Autoset ........................................................................................................................ 74
Acquisition Concepts ................................................................................................................ 75
How the Acquisition Modes Work ................................................................................................... 78
Changing the Acquisition Mode and Record Length................................................................................ 80
Using Roll Mode ..................................................................................................................... 83
Defining a Serial Bus ................................................................................................................ 84
Trigger Setup and Run .................................................................................................................... 91
Triggering Concepts ................................................................................................................. 91
Choosing a Trigger................................................................................................................... 98
Selecting Triggers.................................................................................................................... 99
Triggering on Buses ................................................................................................................ 102
Checking Trigger Status ............................................................................................................ 107
Using A (Main) and B (Delayed) Triggers .......................................................................................... 107
Starting and Stopping an Acquisition............................................................................................... 111
ii DPO4000 Series User Manual
Table of Contents
Display Waveform Data .................................................................................................................. 112
Adding and Removing a Waveform ................................................................................................ 112
Setting the Display Style and Persistence ......................................................................................... 112
Setting Waveform and Graticule Intensity.......................................................................................... 115
Setting the Graticule Style .......................................................................................................... 117
Setting the LCD Backlight .......................................................................................................... 118
Scaling and Positioning a Waveform............................................................................................... 120
Setting Input Parameters ........................................................................................................... 122
Analyze Waveform Data.................................................................................................................. 129
Taking Automatic Measurements................................................................................................... 129
Selecting Automatic Measurements................................................................................................ 131
Customizing an Automatic Measurement .......................................................................................... 137
Taking Manual Measurements with Cursors ....................................................................................... 144
Using Math Waveforms ............................................................................................................. 150
Using FFT........................................................................................................................... 153
Using Advanced Math .............................................................................................................. 157
Using Reference Waveforms ....................................................................................................... 160
Managing Long Record Length Waveforms........................................................................................ 163
Save and Recall Information ............................................................................................................. 174
Saving a Screen Image............................................................................................................. 174
Saving and Recalling Waveform Data.............................................................................................. 176
Saving and Recalling Setups ....................................................................................................... 184
DPO4000 Series User Manual iii
Table of Contents
Saving with One Button Push ...................................................................................................... 187
Printing a Hard Copy................................................................................................................ 189
Erasing DPO4000 Memory ......................................................................................................... 196
Use Application Modules ................................................................................................................. 200
Application Examples..................................................................................................................... 201
Taking Simple Measurements ...................................................................................................... 201
Analyzing Signal Detail ............................................................................................................. 217
Triggering on a Video Signal ....................................................................................................... 226
Capturing a Single-Shot Signal..................................................................................................... 230
Correlating Data With a TLA5000 Logic Analyzer ................................................................................. 235
Tracking Down Bus Anomalies ..................................................................................................... 238
Index
iv DPO4000 Series User Manual
General Safety Summary
General Safety Summary
Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.
To avoid potential hazards, use this product only as specified.
Only qualified personnel should perform service procedures.
To Avoid Fire or Personal Injury
Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use.
Connect and Disconnect Properly. Do not connect or disconnect probes or test leads while they are connected to a voltage
source.
Connect and Disconnect Properly. De-energize the circuit under test before connecting or disconnecting the current probe.
Ground the Product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock,
the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of
the product, ensure that the product is properly grounded.
Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the
product manual for further ratings information before making connections to the product.
The inputs are not rated for connection to mains or Category II, III, or IV circuits.
Connect the probe reference lead to earth ground only.
Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.
DPO4000 Series User Manual v
General Safety Summary
Power Disconnect. The power switch disconnects the product from the power source. See instructions for the location. Do not
block the power switch; it must remain accessible to the user at all times.
Do Not Operate Without Covers. Do not operate this product with covers or panels removed.
Do Not Operate With Suspected Failures. If you suspect that there is damage to this product, have it inspected by qualified
service personnel.
Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.
Do Not Operate in Wet/Damp Conditions.
Do Not Operate in an Explosive Atmosphere.
Keep Product Surfaces Clean and Dry.
Provide Proper Ventilation. Refer to the manual’s installation instructions for details on installing the product so it has proper
ventilation.
Terms in this Manual
These terms may appear in this manual:
WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.
CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.
vi DPO4000 Series User Manual
General Safety Summary
Symbols and Terms on the Product
These terms may appear on the product:
DANGER indicates an injury hazard immediately accessible as you read the marking.
WARNING indicates an injury hazard not immediately accessible as you read the marking.
CAUTION indicates a hazard to property including the product.
The following symbols may appear on the product:
DPO4000 Series User Manual vii
Environmental Considerations
Environmental Considerations
This section provides information about the environmental impact of the product.
Product End-of-Life Handling
Observe the following guidelines when recycling an instrument or component:
Equipment Recycling. Production of this equipment required the extraction and use of natural resources. The equipment may
contain substances that could be harmful to the environment or human health if improperly handled at the product’s end of life. In
order to avoid release of such substances into the environment and to reduce the use of natural resources, we encourage you to
recycle this product in an appropriate system that will ensure that most of the materials are reused or recycled appropriately.
The symbol shown below indicates that this product complies with the European Union’s requirements according to Directive
2002/96/EC on waste electrical and electronic equipment (WEEE). For information about recycling options, check the
Support/Service section of the Tektronix Web site (www.tektronix.com).
Mercury Notification. This product uses an LCD backlight lamp that contains mercury. Disposal may be regulated due
to environmental considerations. Please contact your local authorities or, within the United States, the Electronics Industries
Alliance (www.eiae.org) for disposal or recycling information.
viii DPO4000 Series User Manual
Environmental Considerations
Restriction of Hazardous Substances
This product has been classified as Monitoring and Control equipment, and is outside the scope of the 2002/95/EC RoHS Directive.
This product is known to contain lead, cadmium, mercury, and hexavalent chromium.
DPO4000 Series User Manual ix
Preface
Preface
This manual describes the installation and operation of the following DPO4000 Series Instruments:
DPO4104 DPO4054 DPO4034 DPO4032
Key Features
DPO4000 Series instruments can help you verify, debug, and characterize electronic designs. Key features include:
1 GHz, 500 MHz, and 350 MHz bandwidths
2 and 4 channel models
Sample rates up to 5 GS/s on all channels
10 Megapoint record length on all channels
I2C, SPI, and CAN serial triggering and analysis
(Requires use of the DPO4EMBD (for I2C and SPI) or DPO4AUTO (for CAN) application modules)
Wave Inspector controls for managing long record lengths, with zoom and pan, play and pause, search and mark
10.4 inch (264 mm) XGA color display
Small footprint and lightweight, at 140 mm (5.5 inches) deep and 5 kg (11 pounds)
USB and CompactFlash available for quick and easy storage
Built-in Ethernet port
USB 2.0 device port for direct PC control of the oscilloscope using USBTMC protocol
x DPO4000 Series User Manual
Preface
OpenChoice documentation and analysis software
Remote viewing with control (e*Scope and OpenChoice connectivity)
TekVPI Versatile Probe Interface supports active, differential, and current probes for automatic scaling and units
DPO4000 Series User Manual xi
Preface
Where to Find More Information
The following information is available for your oscilloscope:
To read about Use these documents
Installation and Operation This DPO4000 User Manual
English: 071-1785-XX
French: 071-1799-XX
Italian: 071-1800-XX
German: 071-1801-XX
Spanish: 071-1802-XX
Japanese: 071-1803-XX
Portuguese: 071-1804-XX
Simplified Chinese: 071-1805-XX
Traditional Chinese: 071-1806-XX
Korean: 071-1807-XX
Russian: 071-1808-XX
Specifications and Performance
Verification
The DPO4000 Technical Reference (071-1843-XX) (PDF only)
Programmer Commands The DPO4000 Programmer Manual (071-1845-XX) (PDF only)
Analysis and Connectivity Tools The optional Getting Started with OpenChoice Solutions Manual (020-2514-XX) (includes
a CD)
xii DPO4000 Series User Manual
Preface
To read about Use these documents
Servicing and calibration The optional DPO4000 Service Manual (071-1844-XX)
Installing and testing application
modules
The DPO4000 Series Application Module Installation Instructions manual (071-1833-XX)
(11 languages)
Conventions Used in This Manual
The following icons are used throughout this manual.
Sequence Step Front panel power Connect power Network USB
DPO4000 Series User Manual xiii
Preface
xiv DPO4000 Series User Manual
Installation
Installation
Before Installation
Unpack the oscilloscope and check that you received all items listed as standard accessories. The following pages list
recommended accessories and probes, instrument options, and upgrades. Check the Tektronix Web site (www.tektronix.com) for
the most current information.
Standard Accessories
Accessory Tektronix part number
English (Option L0) 071-1785-XX
French (Option L1) 071-1799-XX
Italian (Option L2) 071-1800-XX
German (Option L3) 071-1801-XX
Spanish (Option L4) 071-1802-XX
Japanese (Option L5) 071-1803-XX
Portuguese (Option L6) 071-1804-XX
Simple Chinese (Option L7) 071-1805-XX
Traditional Chinese (Option L8) 071-1806-XX
Korean (Option L9) 071-1807-XX
DPO4000 User Manual
Russian (Option L10) 071-1808-XX
DPO4000 Series User Manual 1
Installation
Standard Accessories (cont.)
Accessory Tektronix part number
DPO4000 Documentation Browser CD Electronic versions of DPO4000 documents,
including the Programmer Manual and the
Technical Reference.
063-1810-XX
OpenChoice Desktop CD Applications that let you capture and transfer data
from your oscilloscope to an external PC. Use the
standalone OpenChoice Desktop, MS Word, or
MS Excel Toolbars.
020-2514-XX
Calibration certificate documenting traceability
to national metrology institute(s), and ISO9001
quality system registration.
——
One 500 MHz, 10x passive probe per channel P6139A
Front Cover Hard plastic cover to help protect the instrument 200-4908-00
CompactFlash memory card Extra storage 156-9413-00
2 DPO4000 Series User Manual
Installation
Standard Accessories (cont.)
Accessory Tektronix part number
North America (Option A0) 161-0104-00
Universal Euro (Option A1) 161-0104-06
United Kingdom (Option A2) 161-0104-07
Australia (Option A3) 161-0104-05
Switzerland (Option A5) 161-0167-00
Japan (Option A6) 161-A005-00
China (Option A10) 161-0306-00
India (Option A11) 161-0400-00
Power Cord
No power cord or AC adapter (Option A99) ——
DPO4000 Series User Manual 3
Installation
Optional Accessories
Accessory Tektronix Part Number
DPO4EMBD The embedded serial triggering and analysis
module enables triggering on packet level
information on I2C and SPI serial buses, as well
as digital views of the signal, bus views, bus
decoding, search tools, and packet decode tables
with timestamp information
DPO4EMBD
DPO4AUTO The embedding automotive serial triggering and
analysis module enables triggering on packet
level information on CAN serial buses, as well
as digital views of the signal, bus views, bus
decoding, search tools, and packet decode tables
with timestamp information
DPO4AUTO
TPA-BNC TekVPI to TekProbe 2 BNC Adapter TPA-BNC
TEK-USB-488 Adapter GPIB to USB Adapter TEK-USB-488
Getting Started with OpenChoice Solutions
Manual with CD
Describes ways to develop host-computer
software applications that work with your
oscilloscope
020-2513-XX
Rackmount kit Adds rackmount brackets RM4000
Soft transit case Case for carrying instrument AC4000
Hard transit case Traveling case, which requires use of the soft
transit case (AC4000)
HCTEK4321
4 DPO4000 Series User Manual
Installation
Optional Accessories (cont.)
Accessory Tektronix Part Number
CompactFlash memory card Extra storage 156-9413-00
CompactFlash to USB memory card reader Card reader 119-6827-00
DPO4000 Programmer Manual Describes commands for remote control of the
DPO4000 oscilloscope. Available electronically
on the Documentation Browser CD or for
download from www.tektronix.com.
071-1845-XX
DPO4000 Technical Reference Manual Describes the DPO4000 oscilloscope
specifications and performance verification
procedure. Available electronically on the
Documentation Browser CD or for download from
www.tektronix.com.
071-1809-XX
DPO4000 Service manual Service information 071-1844-XX
DPO4000 Module Installation Instructions Manual 071-1833-XX
The DPO4000 oscilloscope works with multiple optional probes. (See page 10, Connecting Probes.) Check the Tektronix Web
site (www.tektronix.com) for the most current information.
DPO4000 Series User Manual 5
Installation
Operating Considerations
DPO4000 Series Oscilloscope
Input Voltage: 100 V to 240 V ±10%
Input Power Frequency:
47 Hz to 66 Hz (100 V to 240 V)
400 Hz (100 V to 132 V)
Power Consumption: 250 W maximum
Weight: 5 kg (11 lbs), stand-alone instrument
Height, including feet but not handle:
229 mm (9.0 in)
Width, from handle hub to handle hub: 439 mm
(17.3 in)
Depth, from feet to front of knobs: 137 mm
(5.4 in)
Depth, from feet to front of front cover: 145 mm
(5.7 in)
Clearance: 51 mm (2 in)
Temperature:
Operating: +0 °C to +50 °C
Nonoperating: -20 °C to +60 °C
6 DPO4000 Series User Manual
Installation
Humidity:
Operating: High: 40 °C to 50 °C, 10% to 60% RH
Operating: Low: 0 °C to 40 °C, 10 to 90% RH
Non-operating: High: 40 °C to 60 °C, 5 to 60% RH
Non-operating: Low: 0 °C to 40 °C, 5 to 90% RH
Altitude:
Operating: 3,000 m (about 10,000 ft)
Nonoperating Altitude: 12,192 m (40,000 ft)
Random Vibration:
Operating: 0.31 GRMS, 5 – 500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
Non-operating: 2.46 GRMS, 5 – 500 Hz, 10 minutes per axis, 3 axes (30 minutes total)
Pollution Degree: 2, Indoor use only
Acquisition System: 1 MΩ
The maximum input voltage at the BNC, between center conductor and shield is 400 Vpeak (DF ≤ 39.2%), 250 VRMS to 130 kHz
derated to 2.6 V RMS at 500 MHz.
The maximum transient withstand voltage is ± 800 Vpeak.
For steady-state sinusoidal waveforms, derate at 20 dB/decade above 200 kHz to 13 Vpk at 3 MHz and above.
Acquisition System: 50Ω
The maximum input voltage at the BNC, between center conductor and shield is 5 VRMS, with peaks ≤ ±20 V (DF ≤ 6.25%)
DPO4000 Series User Manual 7
Installation
External Trigger: 1 MΩ
The maximum input voltage at the BNC, between center conductor and shield is 400 Vpeak (DF ≤ 39.2%), 250 VRMS to 2 MHz
derated to 5 VRMS at 500 MHz.
The maximum transient withstand voltage is ±800 Vpeak.
For steady-state sinosoidal waveforms, derate at 20 dB/decade above 200 kHz to 13 Vpeak at 3 MHz and above.
P6139A Passive Probe
Input Voltage:
400 VRMS or 400 V DC; CAT I (2,500 Vpeak transient)
300 VRMS or 300 V DC; CAT II (2,500 Vpeak transient
150 VRMS or 150 V DC; CAT III (2,500 Vpeak transient)
For steady-state, sinusoidal waveforms, derate at 20 dB/decade above 2.5 MHz to 50 VRMS at 20 MHz and above.
Output Voltage (terminated into 1 MΩ):
40 VRMS or 40 V DC; CAT I (2,500 Vpeak impulse)
30 VRMS or 30 V DC; CAT I (250 Vpeak impulse)
15 VRMS or 15 V DC; CAT I (250 Vpeak impulse)
Temperature:
Operating: -15 °C to +65 °C ( +5 °F to +149 °F)
Nonoperating: -62 °C to +85 °C ( -80 °F to +185 °F)
Altitude: ≤ 2,000 meters
8 DPO4000 Series User Manual
Installation
Pollution Degree: 2, Indoor use only
Humidity:
Operating: High: 40 °C to 50 °C, 10% to 60% RH
Operating: Low: 0 °C to 40 °C, 10 to 90% RH
CAUTION. To ensure proper cooling, keep the sides and rear of the instrument clear of obstructions.
Cleaning
Inspect the oscilloscope and probes as often as operating conditions require. To clean the exterior surface, perform the following
steps:
1. Remove loose dust on the outside of the oscilloscope and probes with a lint-free cloth. Use care to avoid scratching the clear
glass display filter.
2. Use a soft cloth dampened with water to clean the oscilloscope. Use an aqueous solution of 75% isopropyl alcohol for
more efficient cleaning.
CAUTION. To avoid damage to the surface of the oscilloscope or probes, do not use any abrasive or chemical cleaning agents.
DPO4000 Series User Manual 9
Installation
Connecting Probes
The DPO4000 oscilloscope supports probes with the following:
1. Tektronix Versatile Probe Interface
(TekVPI)
These probes support two-way
communication with the oscilloscope
through on-screen menus and remotely
through programmable support. The
remote control is useful in applications like
ATE where you want the system to preset
probe parameters.
2. TPA-BNC Adapter
The TPA-BNC Adapter allows you to use
TekProbe Level II probe capabilities, such
as providing probe power and passing
information to the oscilloscope on scaling
and whether the units are volts or amperes.
3. Plain BNC interfaces
These probes only pass the waveform
signal to the oscilloscope. There is no
other communication.
10 DPO4000 Series User Manual
Installation
For more information on the many probes available for use with DPO4000 oscilloscopes, refer to www.tektronix.com.
Powering On the Oscilloscope
Ground the Oscilloscope and Yourself
Before pushing the power switch, connect the oscilloscope to an electrically neutral reference point, such as earth ground. Do this
by plugging the three-pronged power cord into an outlet grounded to earth ground.
Grounding the oscilloscope is necessary for safety and to take accurate measurements. The oscilloscope needs to share the
same ground as any circuits that you are testing.
DPO4000 Series User Manual 11
Installation
If you are working with static sensitive
components, ground yourself. Static electricity
that builds up on your body can damage
static-sensitive components. Wearing a
grounding strap safely sends static charges on
your body to earth ground.
12 DPO4000 Series User Manual
Installation
To connect the power cord and power on the oscilloscope:
DPO4000 Series User Manual 13
Installation
Powering Off the Oscilloscope
To power off the oscilloscope and remove the power cord:
14 DPO4000 Series User Manual
Installation
Functional Check
Perform this quick functional check to verify that your oscilloscope is operating correctly.
1. Connect the oscilloscope power cable as
described above.
2. Power on the oscilloscope.
DPO4000 Series User Manual 15
Installation
3. Connect the oscilloscope P6139A probe tip
and reference lead to the PROBE COMP
connectors.
4. Press Default Setup.
16 DPO4000 Series User Manual
Installation
5. Push the Autoset button. The screen
should now display a square wave,
approximately 2.5 V at 1 kHz.
If the signal appears but is misshapen,
perform the procedures for compensating
the probe. (See page 17, Compensating
the Probe.)
If no signal appears, rerun the procedure.
If it no signal still appears, have the
instrument serviced by qualified service
personnel.
Compensating the Probe
Whenever you attach a passive voltage probe for the first time to any input channel, compensate the probe to match it to
the corresponding oscilloscope input channel.
To properly compensate your passive probe:
1. Follow the steps for the functional check.
(See page 15, Functional Check.)
DPO4000 Series User Manual 17
Installation
2. Check the shape of the displayed
waveform to determine if your probe is
properly compensated. Properly compensated Under compensated Over compensated
3. If necessary, adjust your probe. Repeat
as needed.
18 DPO4000 Series User Manual
Installation
Quick Tips
Use the shortest possible ground lead and signal
path to minimize probe-induced ringing and
distortion on the measured signal.
Short ground lead Long ground lead
Installing an Application Module
CAUTION. To avoid damage to the oscilloscope or application module, observe ESD precautions. (See page 11, Powering
On the Oscilloscope.)
Turn off the oscilloscope power while removing or adding an application module.
(See page 14, Powering Off the Oscilloscope.)
DPO4000 Series User Manual 19
Installation
Optional application module packages extend the capability of your oscilloscope. Install up to four application modules at one
time into the two slots with windows in the upper right corner of the front panel and the two additional slots hidden behind the two
you can see.
Refer to the DPO4000 Series Application Module Installation Instructions that came with your application module for instructions
on installing and testing an application module.
NOTE. If you remove an application module, the features provided by the application module become unavailable. To restore the
features, turn off the oscilloscope power, reinstall the module and turn on the oscilloscope power.
Changing the User Interface Language
To change the language of the oscilloscope user interface and the front-panel button labels:
1. Push Utility.
2. Push System repeatedly until you select
Config from the pop-up menu.
Config
20 DPO4000 Series User Manual
Installation
3. Push Language from the resulting lower-bezel
menu. System
Config
Language
English
Set Date &
Time
TekSecure
Erase
Memory
Version
v1.00
4. Push the side-bezel button corresponding
to the desired language. Choose among:
English, French, Italian, German, Spanish,
Japanese, Brazilian Portuguese, Simplified
Chinese, Traditional Chinese, Korean, and
Russian.
Language
English
Francais
Deutsch
Italiano
-more-
1 of 3
DPO4000 Series User Manual 21
Installation
5. If you choose to use English, be sure that the
plastic front-panel overlay is removed.
If you choose a language other than English,
place the plastic overlay for the language
that you desire over the front panel to display
labels in that language.
22 DPO4000 Series User Manual
Installation
Changing the Date and Time
To set the internal clock with the current date and time:
1. Push Utility.
2. Push System repeatedly until you select
Config from the pop-up menu.
Config
3. Push Set Date & Time.
System
Config
Language
English
Set Date &
Time
TekSecure
Erase
Memory
Version
DPO4000 Series User Manual 23
Installation
Date Time
Set
Display
Date/Time
ON OFF
4. Push the side-panel buttons and rotate both
multipurpose knobs (a and b) to set the time
and date values.
Hour: 4
Min: 1
Month: July
Day: 19
Year: 2005
OK Enter
Date &
Time
5. Push OK Enter Date & Time. OK Enter
Date &
Time
24 DPO4000 Series User Manual
Installation
Signal Path Compensation
Signal Path Compensation (SPC) corrects for DC inaccuracies caused by temperature variations and/or long-term drift. Run the
compensation whenever the ambient temperature has changed by more than 10 °C or once a week if you use vertical settings of
5 mV/division or less. Failure to do so may result in the instrument not meeting warranted performance levels at those volts/div
settings.
To compensate the signal path:
1. Warm up the oscilloscope for at least
20 minutes. Remove all input signals (probes
and cables) from channel inputs. Input signals
with AC components adversely affect SPC.
DPO4000 Series User Manual 25
Installation
2. Push Utility.
3. Push System repeatedly until you select
Calibration from the resulting pop-up menu.
Calibration
4. Push Signal Path from the lower-bezel menu.
System
Calibration
Signal Path
Pass
Factory
Pass
5. Push OK Compensate Signal path from the
resulting side-bezel menu.
OK Compensate
Signal Path
The calibration will take approximately
10 minutes to complete.
26 DPO4000 Series User Manual
Installation
6. After calibration, verify that the status indicator
on the lower-bezel menu displays Pass. System
Calibration
Signal Path
Pass
Factory
Pass
If it does not, then recalibrate the instrument
or have the instrument serviced by qualified
service personnel.
7. Service personnel use the factory calibration
functions to calibrate the internal voltage
references of the oscilloscope using external
sources. Refer to your Tektronix field office
or representative for assistance with factory
calibration.
NOTE. Signal Path Compensation does not include calibration to the probe tip. (See page 17, Compensating the Probe.)
DPO4000 Series User Manual 27
Installation
Upgrading Firmware
To upgrade the firmware of the oscilloscope:
1. Open up a Web browser and go to
www.tektronix.com. Proceed to the software
finder. Download the latest firmware for your
DPO4000 series oscilloscope onto a USB
storage device.
28 DPO4000 Series User Manual
Installation
2. Power off your DPO4000.
DPO4000 Series User Manual 29
Installation
3. Insert the USB storage device into the
front-panel USB port on your DPO4000.
30 DPO4000 Series User Manual
Installation
4. Power on the DPO4000. The instrument
automatically recognizes the replacement
firmware and installs it.
If the instrument does not install the firmware,
rerun the procedure. It the problem continues,
contact qualified service personnel.
CAUTION. Do not power off the oscilloscope
or remove the USB storage device until the
oscilloscope finishes installing the firmware.
DPO4000 Series User Manual 31
Installation
5. Power off the DPO4000 and remove the USB
storage device.
32 DPO4000 Series User Manual
Installation
6. Power on the DPO4000.
7. Push Utility.
DPO4000 Series User Manual 33
Installation
8. Push Version. The oscilloscope displays the
firmware version number. System
Config
Language
English
Set Date &
Time
TekSecure
Erase
Memory
Version
9. Confirm that the version number matches that
of the new firmware.
Connecting Your Oscilloscope to a Computer
You may want to document your work for future reference. Instead of saving screen images and waveform data to a CompactFlash
or USB storage device, and then generating a report later, you may want to send it directly to a remote PC for analysis. You may
also want to control an oscilloscope at a remote location from your computer.
Two ways to connect your oscilloscope to a computer are the TekVISA-based OpenChoice and the e*Scope Web-enabled tool.
Use OpenChoice to communicate with your oscilloscope from your computer through a software application. Use e*Scope to
communicate with your oscilloscope through a Web browser.
Using OpenChoice
OpenChoice lets you use your MS-Windows computer to acquire data from your oscilloscope for use in an analysis package that
runs on your PC, such as Microsoft Excel, National Instruments LabVIEW. or a program of your own creation. You can use a
common communications protocol, such as USB, Ethernet, or GPIB to connect the computer to the oscilloscope.
34 DPO4000 Series User Manual
Installation
To set up OpenChoice communications between your oscilloscope and a computer:
1. Load the TekVISA drivers on your computer.
Find these on the OpenChoice Desktop
CD or at the Tektronix software finder Web
page (www.tektronix.com). When done, the
TekVISA icon appears in the Windows System
Tray. Typically, this is the bottom right of
the Windows desktop on your MS-Windows
computer.
DPO4000 Series User Manual 35
Installation
2. Connect the DPO4000 to your computer with
the appropriate USB or Ethernet cable.
To communicate between the DPO4000 and a
GPIB system, connect the oscilloscope to the
TEK-USB-488 GPIB-to-USB Adapter with a
USB cable. Then connect the adapter to your
GPIB system with a GPIB cable.
36 DPO4000 Series User Manual
Installation
3. Push Utility.
4. Push System repeatedly to select I/O. I/O
5. To use Ethernet, push Ethernet Network
Settings. System
I/O
USB
Enabled
Ethernet
Network
Settings
GPIB
1
DPO4000 Series User Manual 37
Installation
Network
Configuration
Change
Instrument
Settings
DHCP/
BOOTP
On
Off
On the side-bezel menu, if you are on a DHCP
Ethernet network and using a through cable,
set DHCP to On. If you are using a cross-over
cable, set it to Off and set a hard coded TCPIP
address.
Test
Connection
6. If you are using GPIB, push GPIB.
7. Enter the GPIB address on the side-bezel
menu, using multipurpose knob a.
Talk/Listen
Address
a
1
This will set the GPIB address on an attached
TEK-USB-488 Adapter.
38 DPO4000 Series User Manual
Installation
8. If you are using USB, the system sets itself up
automatically for you, if USB is enabled.
Check USB on the bottom-bezel menu to
be sure that USB is enabled. If it is not
enabled, push USB. Then push Enabled on
the side-bezel menu.
9. Run your application software on your
computer.
10. In case of problems getting oscilloscope-to-PC
communications to work, refer to the
networking troubleshooter. To bring up the
troubleshooter, click the TekVISA icon on the
System Tray of your MS-Windows computer.
Then go to the online help.
Quick Tips
The DPO4000 comes with a variety of Windows-based software tools designed to ensure efficient connectivity between your
oscilloscope and your computer. There are tool bars that speed connectivity with Microsoft Excel and Word. There is also a
standalone acquisition program called the OpenChoice Desktop.
The rear-panel USB 2.0 device port is the correct USB port for computer connectivity. Use the rear- and front-panel USB 2.0
host ports to connect your oscilloscope to storage devices and printers.
DPO4000 Series User Manual 39
Installation
Using e*Scope
e*Scope lets you access any Internet-connected DPO4000 Series Oscilloscope from a browser on your workstation, PC, or laptop
computer. No matter where you are, your DPO4000 is as close as the nearest browser.
To set up e*Scope communications between your oscilloscope and a Web browser running on a remote computer:
1. Connect the DPO4000 to your computer
network with the appropriate Ethernet cable.
2. Push Utility.
40 DPO4000 Series User Manual
Installation
3. Push System repeatedly to select I/O. I/O
4. Push Ethernet Network Settings.
System
I/O
USB Ethernet
Network
Settings
GPIB
DPO4000 Series User Manual 41
Installation
Network
Configuration
5. Push Change Instrument Settings to
determine the Ethernet address and
instrument name.
On the side-bezel menu, if you are on a
DHCP Ethernet network and using dynamic
addressing, set DHCP to On. If you are using
static addressing, set it to Off.
Change
Instrument
Settings
DHCP/
BOOTP
On Off
Test
Connection
6. Start your browser on your remote computer.
In the browser address line, enter the IP
address or, if DHCP is set to On in the
oscilloscope, simply enter the instrument
name.
42 DPO4000 Series User Manual
Installation
7. You should now see the e*Scope screen, with
a copy of the oscilloscope display, on your
Web browser.
If e*Scope does not work, rerun the procedure.
If it still does not work, contact qualified service
personnel.
DPO4000 Series User Manual 43
Installation
44 DPO4000 Series User Manual
Get Acquainted with the Instrument
Get Acquainted with the Instrument
Front-Panel Menus and Controls
The front panel has buttons and controls for the functions that you use most often. Use the menu buttons to access more
specialized functions.
DPO4000 Series User Manual 45
Get Acquainted with the Instrument
Using the Menu System
To use the menu system:
1. Push a front-panel menu button to display
the menu that you want to use.
46 DPO4000 Series User Manual
Get Acquainted with the Instrument
2. Push a lower-bezel button to select a menu
item. If a pop-up menu appears, push the
lower-bezel button repeatedly to select the
desired choice.
3. Push a side-bezel button to choose a
side-bezel menu item.
If the menu item contains more than
one choice, push the side-bezel button
repeatedly to cycle through the choices.
DPO4000 Series User Manual 47
Get Acquainted with the Instrument
4. To remove a side-bezel menu, push the
lower-bezel button again or push Menu
Off.
5. Certain menu choices require you to set
a numerical value to complete the setup.
Use the upper and lower multipurpose
knobs a and b to adjust values.
6. Push Fine to turn off or on the ability to
make smaller adjustments.
48 DPO4000 Series User Manual
Get Acquainted with the Instrument
Using the Menu Buttons
Use the menu buttons to perform many functions in the oscilloscope.
1. Measure. Push to perform automated
measurements on waveforms or to
configure cursors.
2. Search. Push to search through an
acquisition for user-defined events/criteria.
3. Test. Push to activate advanced or
application-specific testing features.
4. Acquire. Push to set the acquisition mode
and adjust the record length.
5. Autoset. Push to perform an automatic
setup of oscilloscope settings.
6. Trigger Menu. Push to specify trigger
settings.
DPO4000 Series User Manual 49
Get Acquainted with the Instrument
7. Utility. Push to activate the system utility
functions, such as selecting a language or
setting the date/time.
8. Default Setup. Push to restore the
oscilloscope to the default settings.
9. Save / Recall Menu. Push to save
and recall setups, waveforms, and
screen images to internal memory, a
CompactFlash card, or a USB storage
device.
10. Channel 1,2,3, or 4. Push to set vertical
parameters for input waveforms and to
display or remove the corresponding
waveform from the display.
50 DPO4000 Series User Manual
Get Acquainted with the Instrument
11. B1 or B2. Push to define and display a
bus, if you have the appropriate module
application keys. The DPO4AUTO module
supports CAN. The DPO4EMBD module
supports I2C and SPI.
Also, push the B1 or B2 button to display
or remove the corresponding bus from the
display.
12. R. Push to manage reference waveforms,
including the display or removal of each
reference waveform from the display.
13. M. Push to manage the math waveform,
including the display or removal of the
math waveform from the display.
DPO4000 Series User Manual 51
Get Acquainted with the Instrument
Using Other Controls
These buttons and knobs control waveforms, cursors and other data input.
1. Turn the upper multipurpose knob a,
when activated, to move a cursor or set
a numerical parameter value for a menu
item. Push the nearby Fine button to toggle
between coarse and fine adjustment.
Screen icons tell you when a or b are
active.
2. Cursors. Push once to activate the two
vertical cursors. Push again to turn on the
two vertical and two horizontal cursors.
Push again to turn off all cursors.
When the cursors are on, you can turn
the multipurpose knobs to control their
position.
52 DPO4000 Series User Manual
Get Acquainted with the Instrument
3. Select. Push to activate special functions.
For example, when using the two vertical
cursors (and no horizontal ones are
visible), you can push this button to link or
unlink the cursors. When the two vertical
and two horizontal cursors are both visible,
you can push this button to make either
the vertical cursors or the horizontal ones
active.
4. Fine. Push to toggle between making
coarse and fine adjustments with the
vertical and horizontal position knobs, the
trigger level knob, and many operations of
multipurpose knobs a and b.
5. Waveform Intensity. Push to enable
multipurpose knob a to control waveform
display intensity and knob b to control
graticule intensity.
DPO4000 Series User Manual 53
Get Acquainted with the Instrument
6. Turn the lower multipurpose knob b,
when activated, to move a cursor or set
a numerical parameter value for a menu
item. Push Fine to make adjustments
more slowly.
7. Zoom button. Push to activate zoom mode.
8. Pan (outer knob). Turn to scroll the zoom
window through the acquired waveform.
9. Zoom (inner knob). Turn to control the
zoom factor. Turning it clockwise zooms in
further. Turning it counterclockwise zooms
out.
10. Play-pause button. Push to start or stop the
automatic panning of a waveform. Control
the speed and direction with the pan knob.
11. ← Prev. Push to jump to the previous
waveform mark.
54 DPO4000 Series User Manual
Get Acquainted with the Instrument
12. Set/Clear Mark. Push to establish or
delete a waveform mark.
13. → Next. Push to jump to the next
waveform mark.
14. Horizontal Position. Turn to adjust
the trigger point location relative to the
acquired waveforms. Push Fine to make
smaller adjustments.
15. Horizontal Scale. Turn to adjust the
horizontal scale (time/division).
DPO4000 Series User Manual 55
Get Acquainted with the Instrument
16. Run/Stop. Push to start or stop
acquisitions.
17. Single. Push to make a single acquisition.
18. Autoset. Push to automatically set the
vertical, horizontal, and trigger controls for
a usable, stable display.
19. Trigger Level. Turn to adjust the trigger
level.
20. Set to 50%. Push to set the trigger level to
the midpoint of the waveform.
21. Force Trig. Push to force an immediate
trigger event.
56 DPO4000 Series User Manual
Get Acquainted with the Instrument
22. Vertical Position. Turn to adjust the
vertical position of the corresponding
waveform. Push Fine to make smaller
adjustments.
23. 1, 2, 3, 4. Push to display or remove the
corresponding waveform from the display
and access the vertical menu.
24. Vertical Scale. Turn to adjust the vertical
scale factor of the corresponding waveform
(volts/division).
25. Print. Push to initiate a hard copy using the
printer selected in the Utility menu.
26. Power switch. Push to power on or off the
instrument.
DPO4000 Series User Manual 57
Get Acquainted with the Instrument
27. USB 2.0 host port. Insert a USB cable here
to connect peripherals, such as printers
and storage devices, to the oscilloscope.
There are also two more USB 2.0 host
ports on the rear panel.
28. CompactFlash Drive. Insert a
CompactFlash card here.
29. CompactFlash Eject. Pops the
CompactFlash card out of the
CompactFlash drive.
30. Save. Push to perform an immediate save
operation. The save operation uses the
current save parameters, as defined in the
Save / Recall menu.
31. Default Setup. Push to perform an
immediate restore of the oscilloscope to
the default settings.
32. Menu Off. Push to clear a displayed menu
from the screen.
58 DPO4000 Series User Manual
Get Acquainted with the Instrument
Identifying Items in the Display
The items shown to the right may appear in the
display. Not all of these items are visible at any
given time. Some readouts move outside the
graticule area when menus are turned off.
DPO4000 Series User Manual 59
Get Acquainted with the Instrument
1. The acquisition readout shows when an
acquisition is running, stopped, or when
acquisition preview is in effect. Icons are:
Run: Acquisitions enabled
Stop: Acquisitions not enabled
Roll: In roll mode (40 ms/div or slower)
PreVu: In this state, the oscilloscope
is stopped or between triggers. You
can change the horizontal or vertical
position or scale to see approximately
what the next acquisition will look like.
RUN
60 DPO4000 Series User Manual
Get Acquainted with the Instrument
2. The trigger position icon shows the trigger
position in the acquisition.
3. The expansion point icon (an orange
triangle) shows the point that the horizontal
scale expands and compresses around.
4. The waveform record view shows the
trigger location relative to the waveform
record. The line color corresponds to the
selected waveform color.
DPO4000 Series User Manual 61
Get Acquainted with the Instrument
5. The trigger status readout shows trigger
status. Status conditions are:
Trig’d: Triggered
Auto: Acquiring untriggered signal
PrTrig: Acquiring pretrigger data
Trig?: Waiting for trigger
Trig’d
6. The cursor readout shows time, amplitude,
and delta (Δ) values for each cursor.
For FFT measurements, it shows frequency
and magnitude.
62 DPO4000 Series User Manual
Get Acquainted with the Instrument
7. The trigger level icon shows the trigger
level on the waveform. The icon color
corresponds to the trigger source channel
color.
8. The edge trigger readout shows the trigger
source, slope, and level. The trigger
readouts for other trigger types show other
parameters.
9. The top line of the record length/sampling
rate readout shows the sampling rate
(adjust with the Horizontal Scale knob).
The bottom line shows the record length
(adjust with the Acquire menu).
DPO4000 Series User Manual 63
Get Acquainted with the Instrument
10. The horizontal position/scale readout
shows on the top line the horizontal scale
(adjust with the Horizontal Scale knob)
and on the bottom line the time from the T
symbol to the expansion point icon (adjust
with the Horizontal Position knob).
Use horizontal position to insert added
delay between when the trigger occurs and
when you actually capture the data. Insert
a negative time to capture more pretrigger
information.
11. The auxiliary waveform readouts show the
vertical and horizontal scale factors of the
math or reference waveforms.
12. The channel readout shows the channel
scale factor (per division), coupling, and
invert status. Adjust with the Vertical Scale
knob and the channel 1, 2, 3, or 4 menus.
64 DPO4000 Series User Manual
Get Acquainted with the Instrument
13. Measurement readouts show the selected
measurements. You can select up to four
measurements to display at one time.
A symbol appears instead of the
expected numerical measurement if a
vertical clipping condition exists. Part of the
waveform is above or below the display. To
obtain a proper numerical measurement,
turn the vertical scale and position knobs
to make all of the waveform appear in the
display.
14. The waveform baseline indicator shows
the zero-volt level of a waveform (ignoring
the effect of offset). The icon colors
correspond to the waveform colors.
DPO4000 Series User Manual 65
Get Acquainted with the Instrument
Front-Panel Connectors
1. Channel 1, 2, (3, 4). Channel inputs with
TekVPI Versatile Probe Interface.
2. Aux In. Trigger level range is adjustable
from +8 V to –8 V. The maximum input
voltage is 400V peak, 250V RMS. Input
resistance is 1 MΩ ± 1% in parallel with
13 pF ±2 pF.
3. PROBE COMP. Square wave signal
source to compensate probes. Output
voltage: 0 – 2.5V, amplitude ± 1% behind
1k Ω ±2%. Frequency: 1 kHz.
4. Ground.
5. Application Module Slots.
66 DPO4000 Series User Manual
Get Acquainted with the Instrument
Side-Panel Connector
1. Ground strap connector. This is a
receptacle for a grounding strap.
DPO4000 Series User Manual 67
Get Acquainted with the Instrument
Rear-Panel Connectors
1. Trigger Out. Use the trigger signal output
to synchronize other test equipment
with your oscilloscope. A LOW to HIGH
transition indicates the trigger occurred.
The logic level for Vout (HI) is ≥2.5V open
circuit; ≥1.0 V into a 50Ω load to ground.
The logic level for Vout (LO) is ≤0.7 V into
a load of ≤4 mA; ≤0.25 V into a 50Ω load
to ground.
2. XGA Out. Use the XGA Video port (DB-15
female connector) to show the oscilloscope
display on an external monitor or projector.
3. LAN. Use the LAN (Ethernet) port (RJ-45
connector) to connect the oscilloscope to a
10/100 Base-T local area network.
4. Device. Use the USB 2.0 High speed
device port to control the oscilloscope
through USBTMC or GPIB with a
TEK-USB-488 Adapter. The USBTMC
protocol allows USB devices to
communicate using IEEE488 style
messages. This lets you run your GPIB
software applications on USB hardware.
68 DPO4000 Series User Manual
Get Acquainted with the Instrument
5. Host. Use the USB 2.0 Full speed host
ports (two) to take advantage of USB mass
storage devices and printers.
6. Power input. Attach to an AC power line
with integral safety ground. (See page 6,
Operating Considerations.)
DPO4000 Series User Manual 69
Acquire the Signal
Acquire the Signal
This section describes concepts of and procedures for setting up the oscilloscope to acquire the signal as you want it to.
Setting Up Signal Input
Use front-panel buttons to set up your instrument to acquire the signal.
1. Connect the P6139A or VPI probe to the
input signal source.
70 DPO4000 Series User Manual
Acquire the Signal
2. Select the input channel by pushing the
front-panel buttons.
NOTE. If you are using a probe that does not
supply probe encoding (not a P6139A nor a
VPI probe), set the attenuation (probe factor)
on the oscilloscope side-bezel menu.
3. Push Autoset.
DPO4000 Series User Manual 71
Acquire the Signal
4. Push the desired channel button. Then
adjust the vertical position and scale.
5. Adjust the horizontal position and scale.
The horizontal position determines the
number of pretrigger and posttrigger
samples.
The horizontal scale determines the size
of the acquisition window relative to the
waveform. You can scale the window to
contain a waveform edge, a cycle, several
cycles, or thousands of cycles.
72 DPO4000 Series User Manual
Acquire the Signal
Quick Tip
Use the zoom feature to see multiple acquisition cycles in the upper part and a single cycle in the lower part of the display.
(See page 163, Managing Long Record Length Waveforms.)
Using the Default Setup
To return the oscilloscope to its default settings:
1. Push Default Setup.
2. If you change your mind, push Undo Default
Setup to undo the last default setup.
Undo
Default
Setup
Quick Tip
The DPO4000 Technical Reference describes the default setup settings in detail. This manual is available on the accompanying
CD or at www.tektronix.com.
DPO4000 Series User Manual 73
Acquire the Signal
Using Autoset
Autoset adjusts the instrument (acquisition, horizontal, trigger, and vertical controls) such that it displays two or three waveform
cycles with the trigger near the midlevel.
1. Connect the probe, and then select the input
channel. (See page 70, Setting Up Signal
Input.)
2. Push Autoset to execute an Autoset.
3. If desired, push Autoset Undo to undo the
last Autoset.
Undo
Autoset
74 DPO4000 Series User Manual
Acquire the Signal
Quick Tips
To position the waveform appropriately, Autoset may change the vertical position. Autoset always sets vertical offset to 0 V.
If you use Autoset when no channels are displayed, the instrument turns on channel one (1) and scales it.
Acquisition Concepts
Before a signal can be displayed, it must pass through the input channel where it is scaled and digitized. Each channel has a
dedicated input amplifier and digitizer. Each channel produces a stream of digital data from which the instrument extracts waveform
records.
Sampling Process
Acquisition is the process of sampling an
analog signal, converting it into digital data,
and assembling it into a waveform record,
which is then stored in acquisition memory.
Input signal Sampled points
Digital values
DPO4000 Series User Manual 75
Acquire the Signal
Real-time Sampling
Record points
DPO4000 series oscilloscopes use real-time
sampling. In real-time sampling, the instrument
digitizes all of the points it acquires using a
single trigger event.
Sampling rate
76 DPO4000 Series User Manual
Acquire the Signal
Waveform Record
The instrument builds the waveform record through use of the following parameters:
Sample interval: The time between
recorded sample points. Adjust this by
turning the Horizontal Scale knob.
Record length: The number of samples
required to fill a waveform record. Set this
by pushing the Acquire button and using
the resulting lower-bezel menu.
Trigger point: The zero time reference in a
waveform record. It is shown on the screen
by an orange T.
DPO4000 Series User Manual 77
Acquire the Signal
Horizontal position: The time from the
trigger point to the expansion point. Adjust
this by turning the Horizontal Position
knob.
Use a positive time to acquire the record
after the trigger point. Use a negative time
to acquire it before the trigger point.
Expansion point: The point that the
horizontal scale expands and contracts
around. It is shown by an orange triangle.
How the Acquisition Modes Work
Sample mode retains the first sampled point
from each acquisition interval. Sample is the
default mode.
78 DPO4000 Series User Manual
Acquire the Signal
Peak Detect mode uses the highest and lowest
of all the samples contained in two consecutive
acquisition intervals. This mode only works
with real-time, noninterpolated sampling and is
useful for catching high frequency glitches.
Hi Res mode calculates the average of all
the samples for each acquisition interval.
This mode also only works with real-time,
noninterpolated sampling. Hi-Res provides a
higher-resolution, lower-bandwidth waveform.
Envelope mode finds the highest and
lowest record points over all acquisitions.
Envelope uses Peak Detect for each individual
acquisition.
Average mode calculates the average value for
each record point over a user-specified number
of acquisitions. Average uses Sample mode for
each individual acquisition. Use average mode
to reduce random noise.
DPO4000 Series User Manual 79
Acquire the Signal
Changing the Acquisition Mode and Record Length
Use this procedure to change the acquisition mode.
1. Push Acquire.
2. Push Mode. Mode
Average
Record
Length
10k
Reset
Horizontal
Position
Waveform
Display
80 DPO4000 Series User Manual
Acquire the Signal
Acquisition
Mode
Sample
Peak
Detect
Hi Res
Envelope
3. Then choose the acquisition mode from
the side-bezel menu. You can chose from:
Sample, Peak Detect, Hi Res, Envelope, or
Average.
NOTE. Peak Detect and High Res require more
than one sample point per sample interval. If there
is only one sample point, these two modes will
appear the same as sample mode.
Average
16
DPO4000 Series User Manual 81
Acquire the Signal
4. If you chose Average, turn multipurpose knob
a to set the number of waveforms to average
over.
5. Push Record Length.
6. Push the side-bezel menu, record length
button.
1000 points
Choose between: 1000, 10 k, 100 k, 1 M, and
10 M points.
82 DPO4000 Series User Manual
Acquire the Signal
Using Roll Mode
Roll mode gives a display similar to a strip chart recorder for low-frequency signals. Roll mode lets you see acquired data points
without waiting for the acquisition of a complete waveform record.
Roll mode is enabled when the trigger mode is auto and the horizontal scale is set to 40 ms/div or slower.
Quick Tips
Switching to Envelope or Average acquisition mode, using math waveforms, or switching to normal trigger will disable Roll
mode.
Roll mode is disabled when you set the horizontal scale to 20 ms per division or faster.
Push Run/Stop to halt Roll mode.
DPO4000 Series User Manual 83
Acquire the Signal
Defining a Serial Bus
Your DPO4000 oscilloscope can trigger on I2C and SPI serial buses if the DPO4EMBD application module is installed. It can trigger
on CAN serial buses if the DPO4AUTO application module is installed. It can display the physical layer of a bus (as analog
waveforms), digital waveforms, and protocol level information (as symbolic waveforms). Plug in the DPO4EMBD application module
to use the I2C and SPI features. Plug in the DPO4AUTO application module to use the CAN features.
Using buses in two steps
To quickly use serial bus triggering:
1. Push B1 or B2 and enter parameters of the
bus to trigger on.
You can separately use B1 and B2 to view
two different buses.
2. Push Trigger Menu and enter trigger
parameters. (See page 98, Choosing a
Trigger.)
You can display bus information without
triggering on the bus signal.
84 DPO4000 Series User Manual
Acquire the Signal
Setting up serial bus parameters
To set up bus parameters:
1. Push B1 or B2 to bring up the lower-bezel bus
menu.
I2C
SPI
2. Push Bus as many times as needed to select
the desired bus (I2C, SPI, or CAN) from the
pop-up menu.
CAN
DPO4000 Series User Manual 85
Acquire the Signal
3. Push Define Inputs and use the side-bezel
buttons to assign oscilloscope channels to the
serial bus signal(s).
Bus
I2C
Define
Inputs
Thresholds Display As
Bus
Bus
Decode
Hex
For example, with an I2C bus, you might assign
channel 1 to supply the SCLK signal and
channel 2 to supply the SDA signal. You can
assign any channel to a predefined bus signal.
For all serial bus sources, use channel 1 to
channel 4. Do not use the Aux In input.
4. Push Thresholds.
Bus
I2C
Define
Inputs
Thresholds Display As Bus
Decode
86 DPO4000 Series User Manual
Acquire the Signal
For each signal that makes up the serial bus,
push the appropriate side-bezel menu button.
Then turn the appropriate multipurpose knob
to define the voltage level above which the
oscilloscope treats the signal as high and
below which as low.
5. If you selected CAN above, push Bit Rate and
the desired side-bezel menu choice.
Bus
CAN
Define
Inputs
Thresholds Bit Rate
500 Kbps
Display As
Bus
Bus
Decode
Hex
6. If you selected SPI above, push Polarity and
the desired side-bezel menu choice.
Bus
SPI
Define
Inputs
Thresholds Polarity Display As
Bus
Bus
Decode
Hex
Active High means when a signal is greater
than the threshold value, it is considered a
logical 1. Active Low means when the signal is
lower than the threshold value, it is considered
a logical 1.
DPO4000 Series User Manual 87
Acquire the Signal
7. Push Display As and use the side-bezel menu
to define how to display the serial bus.
Display As
Push Bus to display packet level
information decoded for easy visual
inspection, much like what you would see
on a logic analyzer.
Bus
Push Waveforms to display the digital
(high or low) representations of the
waveforms.
Waveforms
Push Bus and Waveforms to display both
views of the signal. Bus and
Waveforms
Push Event Table On to display a list of
packets in the bus.
Event Table
On Off
Sample bus information:
88 DPO4000 Series User Manual
Acquire the Signal
Sample waveforms:
Sample event table:
8. Push Bus Decode and the desired side-bezel
menu choice to display the bus data in
hexadecimal or binary format.
9. Turn multipurpose knob a to move the bus
display up or down on the screen.
DPO4000 Series User Manual 89
Acquire the Signal
You can also trigger on packet level information on your serial bus. (See page 102, Triggering on Buses.)
NOTE. To acquire signals from two buses simultaneously, use this procedure once to define the parameters of the B1 bus and
again to define the B2 bus.
90 DPO4000 Series User Manual
Trigger Setup and Run
Trigger Setup and Run
This section contains concepts and procedures for setting up the oscilloscope to trigger on your signal.
Triggering Concepts
Trigger Event
The trigger event establishes the time-reference point in the waveform record. All waveform record data is located in time with
respect to that point. The instrument continuously acquires and retains enough sample points to fill the pretrigger portion of the
waveform record. That is the part of the waveform that is displayed before, or to the left of, the triggering event on screen. When a
trigger event occurs, the instrument starts acquiring samples to build the posttrigger portion of the waveform record, that is, the part
displayed after or to the right of the trigger event. After a trigger is recognized, the instrument will not accept another trigger until
the acquisition is complete and the holdoff time has expired.
DPO4000 Series User Manual 91
Trigger Setup and Run
Untriggered display Triggered display
Trigger Modes
The trigger mode determines how the instrument behaves in the absence of a trigger event:
Normal trigger mode enables the instrument to acquire a waveform only when it is triggered. If no trigger occurs, the last
waveform record acquired remains on the display. If no last waveform exists, no waveform is displayed.
Auto trigger mode enables the instrument to acquire a waveform even if a trigger does not occur. Auto mode uses a timer that
starts when the acquisition is started, and the pretrigger information is obtained. If a trigger event is not detected before the
timer times out, the instrument forces a trigger. The length of time it waits for a trigger event depends on the time base setting.
92 DPO4000 Series User Manual
Trigger Setup and Run
Auto mode, when forcing triggers in the absence of valid triggering events, does not synchronize the waveform on the display. The
waveform will appear to roll across the screen. If valid triggers occur, the display will become stable.
You can also force the instrument to trigger by pushing the front-panel Force Trig button.
Trigger Holdoff
Adjust holdoff to obtain stable triggering when
the instrument is triggering on undesired trigger
events.
Trigger holdoff can help stabilize triggering,
since the oscilloscope does not recognize
new triggers during the holdoff time. When
the instrument recognizes a trigger event, it
disables the trigger system until acquisition
is complete. In addition, the trigger system
remains disabled during the holdoff period that
follows each acquisition. Holdoffs
DPO4000 Series User Manual 93
Trigger Setup and Run
Trigger Coupling
Trigger coupling determines what part of the
signal is passed to the trigger circuit. Edge
triggering can use all available coupling types:
DC, Low Frequency Rejection, High Frequency
Rejection, and Noise Rejection. All other
trigger types use DC coupling only.
Horizontal Position
Use horizontal position to acquire waveform
detail in a region that is separated from the
trigger location by a significant interval of time.
94 DPO4000 Series User Manual
Trigger Setup and Run
1. Adjust the position (delay) time by rotating
the Horizontal Position knob.
2. Turn horizontal SCALE to acquire the
detail that you need around the position
(delay) expansion point.
DPO4000 Series User Manual 95
Trigger Setup and Run
The part of the record that occurs before the trigger is the pretrigger portion. The part that occurs after the trigger is the posttrigger
portion. Pretrigger data can help you troubleshoot. For example, to find the cause of an unwanted glitch in your test circuit, you can
trigger on the glitch and make the pretrigger period large enough to capture data before the glitch. By analyzing what happens
before the glitch, you may uncover information that helps you find the source of the glitch. Alternatively, to see what is happening in
your system as a result of the trigger event, make the posttrigger period large enough to capture data after the trigger.
Slope and Level
The slope control determines whether the
instrument finds the trigger point on the rising
or the falling edge of a signal.
The level control determines where on that
edge the trigger point occurs.
The DPO4000 provides a long horizontal bar or
bars across the graticule to temporarily show
the trigger level.
96 DPO4000 Series User Manual
Trigger Setup and Run
1. Turn the front-panel Trigger Level knob to
adjust the trigger level without going to a
menu.
2. Push the front-panel Set to 50% button to
quickly set the trigger level to the midpoint
of the waveform.
Delayed Trigger System
Trigger with the A (Main) trigger system alone or, if using an edge trigger, combine the A (Main) trigger with the B (Delayed) trigger
to trigger on sequential events. When using sequential triggering, the A trigger event arms the trigger system, and the B trigger
event triggers the instrument when the B trigger conditions are met. A and B triggers can (and typically do) have separate
sources. The B trigger condition can be based on a time delay or a specified number of events. (See page 107, Using A (Main)
and B (Delayed) Triggers.)
DPO4000 Series User Manual 97
Trigger Setup and Run
Choosing a Trigger
To select a trigger:
1. Push Trigger Menu.
Edge
Pulse
Width
Runt
Logic
Setup &
Hold
Rise/Fall
Time
Video
2. Push Type repeatedly to select the trigger
type to use.
NOTE. The bus trigger requires use of the
DPO4EMBD or the DPO4AUTO application
module.
Bus
98 DPO4000 Series User Manual
Trigger Setup and Run
3. Complete the trigger setup using the
lower-bezel menu controls displayed for the
trigger type. The controls to set up the trigger
vary depending on the trigger type.
Type
Edge
Source
1
Coupling
DC
Slope Level
100 mV
Mode
Auto
& Holdoff
Configure
B Trigger
Selecting Triggers
Trigger Type Trigger Conditions
Edge Trigger on a rising or falling edge, as defined by the slope control.
Coupling choices are DC, LF Reject, HF Reject, and Noise Reject.
Edge triggers are the simplest and most commonly used trigger
type, with both analog and digital signals. An edge trigger event
occurs when the trigger source passes through a specified voltage
level in the specified direction.
DPO4000 Series User Manual 99
Trigger Setup and Run
Trigger Type Trigger Conditions
Pulse/Width Trigger on pulses that are less than, greater than, equal to, or not
equal to a specified time. You can trigger on positive or negative
pulses. Pulse/width triggers are primarily used on digital signals.
Runt Trigger on a pulse amplitude that crosses one threshold but fails
to cross a second threshold before recrossing the first. You can
detect positive or negative (or either) runts, or only those wider
than, less than, greater than, equal to, or not equal to a specified
width. Runt triggers are primarily used on digital signals.
Logic Logic triggers are primarily used with digital signals. You can set
each input to high, low, or don’t care. In addition, you can use one
channel as a clock source set to either the rising or falling edge.
Trigger when logic inputs cause the selected function to become
True or False. You can also specify that the logic conditions be
satisfied for a specific amount of time before triggering.
100 DPO4000 Series User Manual
Trigger Setup and Run
Trigger Type Trigger Conditions
Setup
and Hold
Violation
Trigger when a logic data input changes state inside of the setup
or hold time relative to a clock edge.
Setup is the amount of time that data should be stable and not
change before a clock edge occurs. Hold is the time that data
should be stable and not change after a clock edge occurs.
Rise/Fall
Time
Trigger on rise and fall times. Trigger on pulse edges that traverse
between two thresholds at faster or slower rates than the specified
time. Specify pulse edges as positive or negative or either.
Video Trigger on specified fields or lines of a composite video signal.
Only composite signal formats are supported.
Trigger on NTSC, PAL, or SECAM.Works with Macrovision signals.
DPO4000 Series User Manual 101
Trigger Setup and Run
Trigger Type Trigger Conditions
Bus Optional: Trigger on common, serial-bus, packet-level information
with the following application modules:
DPO4EMBD — I2C and SPI
DPO4AUTO — CAN
Triggering on Buses
You can use your DPO4000 oscilloscope to trigger on CAN, I2C, and SPI buses, if you have the DPO4AUTO or the DPO4EMBD
application module installed. The DPO4000 can display both physical layer (as analog waveforms ) and protocol level information
(as digital and symbolic waveforms).
To set up the bus trigger:
1. If you have not already defined your bus using
the front-panel B1 or B2 buttons, do so now.
(See page 84, Defining a Serial Bus.)
102 DPO4000 Series User Manual
Trigger Setup and Run
2. Push Trigger Menu.
Bus
3. Push and keep pushing the Type button of the
lower-bezel menu until you select Bus. Type
Bus
Source Bus
B1 (I2C)
Trigger On
Address
Address
07F
Direction
Write
Mode
Auto
& Holdoff
DPO4000 Series User Manual 103
Trigger Setup and Run
4. Push and keep pushing the Source Bus B1 (I2C)
button of the lower-bezel menu until you select
the bus that you want to trigger on.
B2 (I2C)
5. Push and keep pushing the lower-bezel menu
Trigger On button until you select the desired
trigger on feature.
If you are using the I2C bus trigger, you can
trigger on Start, Repeated Start, Stop, Missing
Ack, Address, Data, or Address/Data.
If you are using the SPI bus trigger, you can
trigger on SS Active, MOSI, MISO, or MOSI
& MISO.
If you are using the CAN bus trigger, you can
trigger on Start of Frame, Type of Frame,
Identifier, Data, Id & Data, End of Frame, and
Missing Ack.
104 DPO4000 Series User Manual
Trigger Setup and Run
6. If you are setting up an I2C trigger and have
selected a Trigger On selection of Address
or Address/Data, push the lower-bezel
menu Address button to access the Address
side-bezel menu. Press the side-bezel
menu Address button. Enter the address
parameters of interest with multipurpose knobs
a and b.
Then push the lower-bezel menu Direction
button to enter the direction of interest.
Choices are: Read, Write, and Read or Write.
DPO4000 Series User Manual 105
Trigger Setup and Run
Bus Trigger Data Matching
Rolling window byte matching for I2C and SPI. You can use a rolling window to trigger on data with SPI and I2C buses.
You define the number of bytes to match. Then the oscilloscope uses a rolling window to find any match within a packet, with the
window rolling one byte at a time.
For example, if the number of bytes is one, the oscilloscope will match the first byte, second byte, third, and so on within the packet.
If the number of bytes is two, the oscilloscope will try to match any two consecutive bytes, such as one and two, two and three,
three and four, and so on. If the oscilloscope finds a match, it will then trigger.
Specific byte matching (non-rolling window matching) for CAN, I2C, and SPI. You can trigger on a specific byte for SPI
and I2C in two ways:
For I2C and SPI, enter the number of bytes to match the number of bytes in the signal. Then use don’t cares (X) to mask the
bytes that you are not interested in.
For I2C, push the bottom-bezel Trigger On to trigger on Address/Data. Push Address. On the side-bezel menu, push
Address and rotate multipurpose knobs a and b as needed. Set the address to don’t cares (X) if you want to mask the address.
The data will be matched starting at the first byte without using a rolling window.
For CAN, triggering occurs when the user-selected data input matches the data and qualifier in the signal starting at the first
byte. Set the number of bytes to match the number of bytes of interest. Use the data qualifier to perform: =, !=, <, >, >=,
and <= operations. Triggering on identifier and data always matches the identifier and data selected by the user, with the
data starting at the first byte. No rolling window is used.
106 DPO4000 Series User Manual
Trigger Setup and Run
Checking Trigger Status
To quickly determine the settings of some key
trigger parameters, check the Trigger readout
at the bottom of the display. The readouts differ
for edge and the advanced triggers.
1. Trigger source = channel 1.
2. Trigger slope = rising.
3. Trigger level = 0.00 V.
Edge trigger readout
Using A (Main) and B (Delayed) Triggers
Combine an edge A Event (Main) trigger with the B Event (Delayed) trigger to capture more complex signals. After the A Event
occurs, the trigger system looks for the B Event before triggering and displaying the waveform.
To use the B trigger:
1. Push Trigger Menu.
DPO4000 Series User Manual 107
Trigger Setup and Run
2. Press Type repeatedly to select a trigger type
of Edge.
3. Push Configure B Trigger. This brings up the
B trigger menu.
The B Trigger Setup item only appears if the
A trigger is set to edge trigger.
Type
Edge
Source
1
Coupling
DC
Slope Level
0.00 V
Mode
Auto
& Holdoff
Configure
B Trigger
4. Set the B trigger parameters as defined in the
B trigger lower-bezel and side-bezel menu
items.
B Trigger
On
B Trigger
After A
Time
Source
1
Coupling
DC
Slope Level
0.00V
Configure
A Trigger
108 DPO4000 Series User Manual
Trigger Setup and Run
Trigger on B Event
The A trigger arms the instrument. Posttrigger
acquisition starts on the nth B event.
DPO4000 Series User Manual 109
Trigger Setup and Run
B Trigger After Delay Time
The A trigger arms the instrument. Posttrigger
acquisition starts on the first B edge after the
trigger delay time.
Quick Tips
B-trigger delay time and horizontal position are independent functions. When you establish a trigger condition using either
the A trigger alone or the A and B triggers together, you can also use horizontal position to delay the acquisition by an
additional amount.
When using the B trigger, the A and B trigger types can only be Edge.
110 DPO4000 Series User Manual
Trigger Setup and Run
Starting and Stopping an Acquisition
After you have defined the acquisition and trigger parameters, start the acquisition with Run/Stop or Single.
Push Run/Stop to start the acquisition.
Push it again to stop the acquisition.
Push Single to take a single acquisition.
Single sets the trigger mode to Normal for
the single acquisition.
DPO4000 Series User Manual 111
Display Waveform Data
Display Waveform Data
This section contains concepts and procedures for displaying the acquired waveform.
Adding and Removing a Waveform
1. To add or remove an active waveform from
the display, push the relevant front-panel
channel button.
You can use the channel as a trigger
source whether or not it is displayed.
Setting the Display Style and Persistence
1. To set the display style, push Acquire.
112 DPO4000 Series User Manual
Display Waveform Data
2. Push Waveform Display. Mode
Sample
Record
Length
10k
Reset
Horizontal
Position
Waveform
Display
DPO4000 Series User Manual 113
Display Waveform Data
3. Push Dots Only On Off from the side-bezel
menu. Dots on will display the waveform
record points as dots on the screen. Dots off
connects the dots with vectors.
Waveform
Display
Dots Only
On Off
4. Push Persist Time, and turn multipurpose
knob a to have waveform data remain on
screen for a user-specified amount of time.
Persist
Time
a Auto
5. Push Set to Auto to have the oscilloscope
automatically determine a persistence time for
you.
Set to Auto
6. Push Clear Persistence to reset the
persistence information.
Clear Persistence
114 DPO4000 Series User Manual
Display Waveform Data
Quick Tips
Variable persistence accumulates record points for a specified time interval. Each record point decays independently according
to the time interval. Use variable persistence for displaying infrequently appearing signal anomalies, such as glitches.
Infinite persistence continuously accumulates record points until you change one of the acquisition display settings. Use infinite
persistence for displaying unique signal anomalies, such as glitches.
Setting Waveform and Graticule Intensity
1. Push the front-panel Intensity button.
This will bring up the intensity readout on the
display.
DPO4000 Series User Manual 115
Display Waveform Data
2. Rotate multipurpose knob a to select the
desired waveform intensity.
3. Rotate multipurpose knob b to select the
desired intensity for the graticule and text.
4. Push Intensity again to clear the intensity
readout from the display.
116 DPO4000 Series User Manual
Display Waveform Data
Setting the Graticule Style
1. To set the graticule style, push Utility.
2. Push System repeatedly until you select
Display from the pop-up menu.
Display
3. Push Graticule from the lower-bezel menu.
System
Display
Backlight
Intensity
High
Graticule
Full
DPO4000 Series User Manual 117
Display Waveform Data
4. Select the desired style from the resulting
side-bezel menu.
Use the Full graticule for quick estimates of
waveform parameters.
Use the Grid graticule for full-screen
measurements with cursors and automatic
readouts when cross hairs are not needed.
Use the Cross Hair graticule for making quick
estimates of waveforms while leaving more
room for automatic readouts and other data.
Use the Frame graticule with automatic
readouts and other screen text when display
features are not needed.
Setting the LCD Backlight
1. Push Utility.
118 DPO4000 Series User Manual
Display Waveform Data
2. Push System repeatedly until you select
Display.
Display
3. Push Backlight Intensity.
System
Display
Backlight
Intensity
High
Graticule
Full
Backlight
Intensity
High
Medium
4. Select the intensity level from the resulting
side-bezel menu. Choices are: High, Medium,
and Low.
Low
DPO4000 Series User Manual 119
Display Waveform Data
Scaling and Positioning a Waveform
Use the horizontal controls to adjust the time base, adjust the trigger point, and to examine waveform details more closely.
Original waveform Scaled horizontally Positioned horizontally
120 DPO4000 Series User Manual
Display Waveform Data
Use the vertical controls to select waveforms, adjust the waveform vertical position and scale, and set input parameters. Push
a channel button (1, 2, 3, or 4), the MATH button, or the REF button or the B1 or B2 button as many times as needed and the
associated menu items to select, add, or remove a waveform.
Original waveform Scaled vertically Positioned vertically
Quick Tips
Preview. If you change the Position or Scale controls when the acquisition is stopped or when it is waiting for the next trigger,
the oscilloscope rescales and repositions the relevant waveforms in response to the new control settings. It simulates what you
will see when you next push the RUN button. The oscilloscope uses the new settings for the next acquisition.
You may see a clipped waveform if the original acquisition went off the screen.
The math waveform, cursors, and automatic measurements remain active and valid when using preview.
DPO4000 Series User Manual 121
Display Waveform Data
Setting Input Parameters
Use the vertical controls to select waveforms, adjust the waveform vertical position and scale, and set input parameters.
1. Push channel button 1, 2, 3, or 4 to bring up
the vertical menu for the designated waveform.
The vertical menu only affects the selected
waveform.
Pushing a channel button will also select or
cancel that waveform selection.
2. Push Coupling. Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1X
122 DPO4000 Series User Manual
Display Waveform Data
3. Push DC, AC, or GND (ground).
Use DC coupling to pass both AC and DC
components.
DC
Use AC coupling to block the DC component
and show only the AC signal.
AC
Use Ground (GND) to display the reference
potential.
GND
4. Push Ω. Ω
1M 50
Set the input impedance (termination) to 50 Ω
or 1 MΩ if using DC or Gnd coupling. Input
impedance is automatically set to 1 MΩ when
using AC coupling.
For more information on input impedance, see
Quick Tips below.
DPO4000 Series User Manual 123
Display Waveform Data
5. Push Invert to invert the signal. Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1X
Select Invert Off for normal operation and
Invert On to invert the polarity of the signal in
the preamplifier.
6. Push Bandwidth, and select the desired
bandwidth from the resulting side-bezel menu.
Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1 X
The set choices are: Full, 250 MHz, and
20 MHz. Additional choices may appear,
depending on the probe that you use.
Select Full to set the bandwidth to the full
oscilloscope bandwidth.
Select 250 MHz to set the bandwidth to
250 MHz.
Select 20 MHz to set the bandwidth to 20 MHz.
124 DPO4000 Series User Manual
Display Waveform Data
7. Push Fine Scale to enable multipurpose knob
a to make fine vertical scale adjustments.
Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1 X
8. Push Offset to enable multipurpose knob a to
make vertical offset adjustments.
Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1 X
On the side-bezel menu, choose Set to 0 V to
set the vertical offset to 0 V.
For more information on offset, see the Quick
Tips below.
DPO4000 Series User Manual 125
Display Waveform Data
9. Push Position to enable multipurpose knob a
to make vertical position adjustments.
Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1 X
NOTE. You can also use the position knob on the
front panel to do this.
On the side-bezel menu, choose Set to 0 divs
to set the vertical position to the center of the
screen.
For more information on vertical position, see
the Quick Tips below.
126 DPO4000 Series User Manual
Display Waveform Data
10. Push Probe Setup to define probe parameters. Coupling
DC
Invert
Off
Bandwidth
Full
Fine Scale
100mV/div
Offset
0.00V
Position
0.00 div
Probe
Setup
1 X
On the resulting side-bezel menu:
Select Voltage Probe or Current Probe
to set the probe gain or attenuation for
probes that do not have the TekProbe II
or TekVPI interface.
Push Deskew to set the time skew
correction to zero. Turn multipurpose
knob a to adjust the time skew (deskew)
correction for the probe attached to the
selected channel. This shifts acquisition
and display of the waveform left or right,
relative to the trigger time. Use this
to compensate for differences in cable
lengths or probe types.
Select Attenuation to choose the probe
attenuation.
DPO4000 Series User Manual 127
Display Waveform Data
Quick Tips
Using Probes with the TekProbe II and TekVPI Interfaces. When you attach a probe with the TekProbe II or the TekVPI
interface, the oscilloscope sets the channel sensitivity, coupling, and termination resistance automatically to match the probe
requirements. Tek Probe II probes require use of the TPA-BNC Adapter.
The Difference Between Vertical Position and Offset. Vertical position is a display function. Adjust the vertical position to
place the waveforms where you want to see them. The waveform baseline locations track adjustments made to their positions.
When you adjust vertical offset, you see a similar effect, but it is actually quite different. Vertical offset is applied before the
oscilloscope preamplifier and can be used to increase the effective dynamic range of the inputs. For example, you can use
vertical offset to look at small variations in a large DC voltage. Set the vertical offset to match the nominal DC voltage and
the signal appears in the center of the screen.
50 Ω Protection. If you select 50 Ω termination, the maximum vertical scale factor is limited to 1 V/div. If you apply excessive
input voltage, the oscilloscope automatically switches to 1 M Ω termination to protect the internal 50 Ω termination. For more
details, refer to the specifications in the DPO4000 Technical Reference.
128 DPO4000 Series User Manual
Analyze Waveform Data
Analyze Waveform Data
After having properly set up the acquisition, triggering, and display of your desired waveform, you can then analyze the results.
Select from features such as cursors, automatic measurements, statistics, math, and FFT.
Taking Automatic Measurements
To take an automatic measurement:
1. Push Measure.
2. Push Select Measurement. Select
Measurement
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
DPO4000 Series User Manual 129
Analyze Waveform Data
3. Turn multipurpose knob a to select the channel
from which you want to measure. This step is
only needed if you are acquiring data on more
than one channel.
4. Select the specific measurement or
measurements from the side-bezel menu.
5. To remove a measurement, push Remove
Measurement and the specific measurement
from the resulting side-bezel menu.
Quick Tips
To remove all measurements, select Remove All.
A symbol appears instead of the expected numerical measurement if a vertical clipping condition exists. Part of the
waveform is above or below the display. To obtain a proper numerical measurement, turn the vertical scale and position
knobs to make all of the waveform appear in the display.
130 DPO4000 Series User Manual
Analyze Waveform Data
Selecting Automatic Measurements
The following tables list each automatic measurement by category: amplitude or time. (See page 129, Taking Automatic
Measurements.)
Time Measurements
Measurement Description
Period The time required to complete the first cycle in a waveform or gated region. Period is the
reciprocal of frequency and is measured in seconds.
Frequency The first cycle in a waveform or gated region. Frequency is the reciprocal of the period; it is
measured in hertz (Hz) where one Hz is one cycle per second.
Delay The time between the mid reference (default 50%) amplitude point of two different waveforms.
See also Phase.
Rise Time The time required for the leading edge of the first pulse in the waveform or gated region
to rise from the low reference value (default = 10%) to the high reference value (default
= 90%) of the final value.
Fall Time The time required for the falling edge of the first pulse in the waveform or gated region to fall
from the high reference value (default = 90%) to the low reference value (default = 10%) of
the final value.
Positive Duty
Cycle
The ratio of the positive pulse width to the signal period expressed as a percentage. The duty
cycle is measured on the first cycle in the waveform or gated region.
DPO4000 Series User Manual 131
Analyze Waveform Data
Time Measurements (cont.)
Measurement Description
Negative Duty
Cycle
The ratio of the negative pulse width to the signal period expressed as a percentage. The
duty cycle is measured on the first cycle in the waveform or gated region.
Positive Pulse
Width
The distance (time) between the mid reference (default 50%) amplitude points of a positive
pulse. The measurement is made on the first pulse in the waveform or gated region.
Negative Pulse
Width
The distance (time) between the mid reference (default 50%) amplitude points of a negative
pulse. The measurement is made on the first pulse in the waveform or gated region.
Burst Width The duration of a burst (a series of transient events) and is measured over the entire
waveform or gated region.
Phase The amount of time that one waveform leads or lags another waveform, expressed in degrees
where 360° comprises one waveform cycle. See also Delay.
132 DPO4000 Series User Manual
Analyze Waveform Data
Amplitude Measurements
Measurement Description
Positive
Overshoot
This is measured over the entire waveform or gated region and is expressed as:
Positive Overshoot = (Maximum – High) / Amplitude x 100%.
Negative
Overshoot
This is measured over the entire waveform or gated region and is expressed as:
Negative Overshoot = (Low – Minimum) / Amplitude x 100%.
DPO4000 Series User Manual 133
Analyze Waveform Data
Amplitude Measurements (cont.)
Measurement Description
Pk-Pk The absolute difference between the maximum and minimum amplitude in the entire
waveform or gated region.
Amplitude The high value less the low value measured over the entire waveform or gated region.
High This value is used as 100% whenever high reference, mid reference, or low reference
values are needed, such as in fall time or rise time measurements. Calculate using either
the min/max or histogram method. The min/max method uses the maximum value found.
The histogram method uses the most common value found above the midpoint. This value is
measured over the entire waveform or gated region.
Low This value is used as 0% whenever high reference, mid reference, or low reference values are
needed, such as in fall time or rise time measurements. Calculate using either the min/max
or histogram method. The min/max method uses the minimum value found. The histogram
method uses the most common value found below the midpoint. This value is measured
over the entire waveform or gated region.
Max The most positive peak voltage. Max is measured over the entire waveform or gated region.
Min The most negative peak voltage. Min is measured over the entire waveform or gated region.
134 DPO4000 Series User Manual
Analyze Waveform Data
Amplitude Measurements (cont.)
Measurement Description
Mean The arithmetic mean over the entire waveform or gated region.
Cycle Mean The arithmetic mean over the first cycle in the waveform or the first cycle in the gated region.
RMS The true Root Mean Square voltage over the entire waveform or gated region.
Cycle RMS The true Root Mean Square voltage over the first cycle in the waveform or the first cycle
in the gated region.
DPO4000 Series User Manual 135
Analyze Waveform Data
Miscellaneous Measurements
Measurement Description
Area Area measurement is a voltage over time measurement. It returns the area over the entire
waveform or gated region in volt-seconds. Area measured above ground is positive; area
measured below ground is negative.
Cycle Area A voltage over time measurement. The measurement is the area over the first cycle in the
waveform or the first cycle in the gated region expressed in volt-seconds. The area above
the common reference point is positive while the area below the common reference point is
negative.
136 DPO4000 Series User Manual
Analyze Waveform Data
Customizing an Automatic Measurement
You can customize automatic measurements by using gating, modifying measurement statistics, adjusting the measurement
reference levels, or taking a snapshot.
Gating
Gating confines the measurement to a certain portion of a waveform. To use:
1. Push Measure.
2. Push Gating. Select
Measurement
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
DPO4000 Series User Manual 137
Analyze Waveform Data
3. Position the gates from the side-bezel menu
options.
Gating
Off
(Full
record)
Screen
Between
cursors
Bring
cursors on
screen
138 DPO4000 Series User Manual
Analyze Waveform Data
Statistics
Statistics characterize the stability of measurements. To adjust statistics:
1. Push Measure.
2. Push Statistics. Select
Measurement
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
DPO4000 Series User Manual 139
Analyze Waveform Data
Measurement
Statistics
On Off
Mean &
Std Dev
Samples
a 32
3. Push the side-bezel menu options. These
include whether to turn statistics on or off
and how many samples to use for mean and
standard deviation calculations.
Reset
Statistics
Snapshot
To see all the single-sourced measurements at one moment in time:
1. Push Measure.
140 DPO4000 Series User Manual
Analyze Waveform Data
2. Push Select Measurement. Select
measurement
Remove
Measurement
Gating Off Statistics
Off
High-Low
Setup
Reference
Levels
Indicators
Off
3. Push Snapshot All Measurements. Snapshot
All Measurements
4. View results. Snapshot on 1
Period: 588.0 ns Freq: 1.701 MHz
+Width: 529.7 ns -Width: 58.33 ns
BrstW: 39.91 μs
Rise: 2.014 μs Fall: 1.522 μs
... ... ... ...
DPO4000 Series User Manual 141
Analyze Waveform Data
Reference Levels
Reference levels determine how time-related
measurements are taken. For example, they are
used in calculating rise and fall times.
1. Push Measure.
2. Push Reference Levels. Select
Measurement
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
142 DPO4000 Series User Manual
Analyze Waveform Data
3. Set the levels from the side-bezel menu. Reference
Levels
Set Levels
in
% units
Use High and Low reference to calculate rise and
fall times.
High Ref
a 90.0 %
Use Mid reference primarily for measurements
between edges such as pulse widths.
Mid Ref
a 50.0 %
b 50.0 %
Low Ref
a 10.0 %
- more -
1 of 2
DPO4000 Series User Manual 143
Analyze Waveform Data
Taking Manual Measurements with Cursors
Cursors are on-screen markers that you position in the waveform display to take manual measurements on acquired data. They
appear as horizontal and/or as vertical lines. To use cursors:
1. Push Cursors.
This changes the cursor state. The three
states are:
No cursors appear on the screen,
Two vertical waveform cursors appear.
They are attached to the selected
waveform
Four screen cursors appear. Two are
vertical and two are horizontal. They
are no longer specifically attached to
a waveform
For example, the first time you push
Cursors the state might be off.
144 DPO4000 Series User Manual
Analyze Waveform Data
2. Push Cursors again.
In the example, two vertical cursors appear
on the selected screen waveform. As you
turn multipurpose knob a, you move one
cursor to the right or left. As you turn knob
b, you move the other cursor.
If you change the selected waveform by
pushing the front-panel 1, 2, 3, 4, M or
R button, both cursors jump to the new
selected waveform.
3. Push Select.
This turns the cursor linking on and off. If
linking is on, turning multipurpose knob a
moves the two cursors together. Turning
multipurpose knob b adjusts the time
between the cursors.
DPO4000 Series User Manual 145
Analyze Waveform Data
4. Push Fine to toggle between a coarse or
a fine adjustment for multipurpose knobs
a and b.
Pushing Fine also changes the sensitivity
of other knobs as well.
5. Push Cursors again.
This will put the cursors into screen mode.
Two horizontal bars and two vertical bars
span the graticule.
6. Turn multipurpose knobs a and b to move
the pair of horizontal cursors.
146 DPO4000 Series User Manual
Analyze Waveform Data
7. Push Select.
This makes the vertical cursors active and
the horizontal ones inactive. Now, as you
turn the multipurpose knobs, the vertical
cursors will move.
Push Select again to make the horizontal
cursors active again.
8. View the cursor and the cursor readout.
DPO4000 Series User Manual 147
Analyze Waveform Data
9. Push Cursors again. This will turn off the
cursor mode. The screen will no longer
display the cursors and the cursor readout.
148 DPO4000 Series User Manual
Analyze Waveform Data
Using cursor readouts
Cursor readouts supply textual and numeric information relating to the current cursor positions.
Readouts appear in the upper right corner of the graticule. If Zoom is on, the readout appears in the upper right corner of the
zoom window. The oscilloscope always shows the readouts when the cursors are turned on. When a bus is the currently selected
waveform, the readout is the decoded bus data in whatever format you have selected (hexadecimal or binary).
Δ Readout:
The Δ readouts indicate the difference between
the cursor positions.
a Readout:
Indicates the value is controlled by multipurpose
knob a.
b Readout:
Indicates the value is controlled by multipurpose
knob b.
The horizontal cursor lines on the display
measure the vertical parameters, typically
voltage.
DPO4000 Series User Manual 149
Analyze Waveform Data
The vertical cursor lines on the display measure
horizontal parameters, typically time.
Using Math Waveforms
Create math waveforms to support the analysis of your channel and reference waveforms. By combining and transforming source
waveforms and other data into math waveforms, you can derive the data view that your application requires.
Use the following procedure for executing simple (+, –, *, ÷) math operations on two waveforms:
1. Push Math.
150 DPO4000 Series User Manual
Analyze Waveform Data
2. Push Dual Wfm Math. Dual Wfm
Math
FFT Advanced
Math
3. On the side-bezel menu, set the sources
to either channel 1, 2, 3, 4, or reference
waveforms R1, 2, 3, or 4. Choose the +, –,
x, or ÷ operators.
4. For example, you might calculate power by
multiplying a voltage waveform and a current
waveform.
DPO4000 Series User Manual 151
Analyze Waveform Data
Quick Tips
Math waveforms can be created from channel or reference waveforms or a combination of them.
Measurements can be taken on math waveforms in the same way as on channel waveforms.
Math waveforms derive their horizontal scale and position from the sources in their math expressions. Adjusting these controls
for the source waveforms also adjusts the math waveform.
You can zoom in on math waveforms using the inner knob of the Pan-Zoom control. Use the outer knob for positioning the
zoomed area. (See page 163, Managing Long Record Length Waveforms.)
152 DPO4000 Series User Manual
Analyze Waveform Data
Using FFT
An FFT breaks down signals into component frequencies, which the oscilloscope uses to display a graph of the frequency domain
of a signal, as opposed to the oscilloscope’s standard time domain graph. You can match these frequencies with known system
frequencies, such as system clocks, oscillators, or power supplies.
1. Push Math.
2. Push FFT. Dual Wfm
Math
FFT Advanced
Math
DPO4000 Series User Manual 153
Analyze Waveform Data
3. Push the side-bezel menu FFT Source button
repeatedly to select the source to use. Choices
are: channels 1, 2, 3, 4, reference waveforms
1, 2, 3, and 4.
Math
Definition
FFT Source
1
4. Push the side-bezel Vertical Scale button
repeatedly to select either Linear RMS or dBV
RMS.
Vertical
Scale
Linear RMS
5. Push the side-bezel Window button repeatedly
to select the desired window.
Window choices are: Rectangular, Hamming,
Hanning, and Blackman-Harris.
Window
Hanning
6. Push the side-bezel Horizontal button to
activate multipurpose knobs a and b to pan
and zoom the FFT display.
Horizontal
0.00 Hz
40.0
154 DPO4000 Series User Manual
Analyze Waveform Data
7. The FFT will appear on the display.
Quick Tips
Use short record lengths for faster instrument response.
Use long record lengths to lower the noise relative to the signal and increase the frequency resolution.
DPO4000 Series User Manual 155
Analyze Waveform Data
If desired, use the zoom feature along with the horizontal Position and Scale controls to magnify and position the FFT
waveform.
Use the default dBV RMS scale to see a detailed view of multiple frequencies, even if they have very different amplitudes. Use
the linear RMS scale to see an overall view of how all frequencies compare to each other.
The FFT feature provides four windows. Each is a trade-off between frequency resolution and magnitude accuracy. What you
want to measure and your source signal characteristics help determine which window to use. Use the following guidelines
to select the best window.
Description Window
Rectangular
This is the best type of window for resolving frequencies that are very close to the same value but
worst for accurately measuring the amplitude of those frequencies. It is the best type for measuring
the frequency spectrum of nonrepetitive signals and measuring frequency components near DC.
Use Rectangular for measuring transients or bursts where the signal level before and after the
event are nearly equal. Also, use this window for equal-amplitude sine waves with frequencies that
are very close and for broadband random noise with a relatively slow varying spectrum.
Hamming
This is a very good window for resolving frequencies that are very close to the same value with
somewhat improved amplitude accuracy over the rectangular window. It has a slightly better
frequency resolution than the Hanning.
Use Hamming for measuring sine, periodic, and narrow band random noise. This window works
on transients or bursts where the signal levels before and after the event are significantly different.
156 DPO4000 Series User Manual
Analyze Waveform Data
Description Window
Hanning
This is a very good window for measuring amplitude accuracy but less so for resolving frequencies.
Use Hanning for measuring sine, periodic, and narrow band random noise. This window works on
transients or bursts where the signal levels before and after the event are significantly different.
Blackman-Harris:
This is the best window for measuring the amplitude of frequencies but worst at resolving
frequencies.
Use Blackman-Harris for measuring predominantly single frequency waveforms to look for higher
order harmonics.
Using Advanced Math
The advanced math feature lets you create a custom math waveform expression that can incorporate active and reference
waveforms, measurements, and/or numeric constants. To use this feature:
1. Push Math.
DPO4000 Series User Manual 157
Analyze Waveform Data
2. Push Advanced Math. Dual Wfm
Math
FFT Advanced
Math
3. Use the side-bezel menu buttons to create
custom expressions.
4. Push Edit Expression and use the
multipurpose knobs and the resulting
lower-bezel buttons to create an expression.
When done, push the side-bezel menu OK
Accept button.
158 DPO4000 Series User Manual
Analyze Waveform Data
For example, to use Edit Expression to take the integral of a square wave:
1. Push the lower-bezel Clear button
2. Turn multipurpose knob a to select INTG(
3. Push Enter Selection
4. Turn multipurpose knob a to select
channel 1
5. Push Enter Selection
6. Turn multipurpose knob a to select )
7. Push OK Accept.
DPO4000 Series User Manual 159
Analyze Waveform Data
Using Reference Waveforms
Create a reference waveform to store a waveform. For example, you might do this to set up a standard against which to compare
other waveforms. To use the reference waveforms:
1. Push Ref R. This brings up the lower-bezel
reference menu.
2. Use the resulting lower-bezel menu selections
to display or select a reference waveform.
R 1 (On)
25–Oct-
2006
R 2 (Off) R 3 (Off) R 4 (Off)
160 DPO4000 Series User Manual
Analyze Waveform Data
3. Use the side-bezel menu and the multipurpose
knobs to adjust the vertical and horizontal
settings of the reference waveform.
R1
Vertical
a 0.00 div
b
100 mV/div
Horizontal
0.00 s
4.00 μs/div
Quick Tips
Selecting and Displaying Reference Waveforms. You can display all the reference waveforms at the same time. Push
the appropriate screen button to select a particular reference waveform. The selected waveform appears brighter than
other displayed reference waveforms.
Removing Reference Waveforms from the Display. To remove a reference waveform from the display, push the front-panel
R button to access the lower-bezel menu. Then push the associated button from the lower-bezel menu to turn it off.
Scaling and Positioning a Reference Waveform. You can position and scale a reference waveform independently from
all other displayed waveforms. Select the reference waveform and then adjust it with a multipurpose knob. You can do this
whether acquisition is running or not.
DPO4000 Series User Manual 161
Analyze Waveform Data
If a reference waveform is selected, scaling and repositioning of the reference waveform operates the same way whether zoom
is turned on or off.
Saving 10M Reference Waveforms. 10M reference waveforms are volatile and not saved when the oscilloscope power is
turned off. To keep these waveforms, save them to external storage.
Recalling Reference Waveforms from External Storage.
162 DPO4000 Series User Manual
Analyze Waveform Data
Managing Long Record Length Waveforms
The DPO4000 Series Wave Inspector controls (zoom/pan, play/pause, marks, search) help you to efficiently work with long
record length waveforms. To magnify a waveform horizontally, rotate the Zoom knob. To scroll through a zoomed waveform,
rotate the Pan knob.
The Pan-Zoom Control consists of:
1. An outer pan knob
2. An inner zoom knob
DPO4000 Series User Manual 163
Analyze Waveform Data
Zooming a Waveform
To use zoom:
1. Rotate the inner knob on the Pan-Zoom
control clockwise to zoom in on a selected
portion of the waveform. Rotate the knob
counterclockwise to zoom back out.
2. Alternatively, enable or disable the zoom
mode by pushing the zoom button.
164 DPO4000 Series User Manual
Analyze Waveform Data
3. Examine the zoomed view of the waveform
that appears on the larger, lower portion
of the display. The upper portion of the
display will show the position and size of
the zoomed portion in the waveform, within
the context of the overall record.
DPO4000 Series User Manual 165
Analyze Waveform Data
Panning a Waveform
While the zoom feature is on, you can use the pan feature to quickly scroll through the waveform. To use pan:
1. Rotate the pan (outer) knob of the
pan-zoom controls to pan the waveform.
Turn the knob clockwise to pan
forward. Turn it counterclockwise to pan
backwards. The further you turn the
knob, the faster the zoom window pans.
166 DPO4000 Series User Manual
Analyze Waveform Data
Playing and Pausing a Waveform
Use the play-pause feature to automatically pan through a waveform record. To use it:
1. Enable the play-pause mode by pushing
the play-pause button.
2. Adjust the play speed by turning the pan
(outer) knob further. The further you turn
it, the faster it goes.
DPO4000 Series User Manual 167
Analyze Waveform Data
3. Change the play direction by reversing
the direction that you are turning the pan
knob.
4. During play, up to a point, the more you
turn the ring, the faster the waveform
accelerates. If you rotate the ring as far
as it can go, the play speed does not
change, but the zoom box quickly moves
in that direction. Use this maximum
rotation feature to replay a portion of the
waveform that you just saw and want to
see again.
5. Pause the play-pause feature by pushing
the play-pause button again.
168 DPO4000 Series User Manual
Analyze Waveform Data
Searching and Marking Waveforms
You can mark locations of interest in the acquired waveform. These marks help you limit your analysis to particular regions of the
waveform. You can mark areas of the waveform automatically, if they meet some special criteria, or you can manually mark each
item of interest. You can use arrow keys to jump from mark to mark (area of interest to area of interest). You can automatically
search and mark many of the same parameters that you can trigger on.
Search marks provide a way to mark a waveform region for reference. You can set marks automatically with search criteria. You
can search for and mark regions with particular edges, pulse widths, runts, logic states, rise/fall times, setup and hold, and bus
search types.
To manually set and clear (delete) marks:
1. Move (the zoom box) to the area on the
waveform where you want to set (or clear)
a search mark by turning the pan (outer)
knob.
Push the next ( →) or previous (←) arrow
button to jump to an existing mark.
2. Push Set/Clear.
If no search mark is at the screen center,
the oscilloscope will add one.
DPO4000 Series User Manual 169
Analyze Waveform Data
3. Now investigate your waveform by moving
from search mark to search mark. Use the
next ( →) or previous (←) arrow button to
jump from one marked location to another,
without adjusting any other controls.
4. Delete a mark. Push the next ( →) or
previous (←) arrow button to jump to the
mark you want to clear. To remove the
current, center-positioned mark, just push
Set/Clear. It works on both manually and
automatically created marks.
To automatically set and clear (delete) search marks:
1. Push Search.
170 DPO4000 Series User Manual
Analyze Waveform Data
2. Select the search type desired from the
lower-bezel menu.
Search
Off
Search
Type
Edge
Source
1
Slope Threshold
0.00V
The search menu is similar to the trigger menu.
3. From the side-bezel menu, turn on the search.
4. On the screen, hollow triangles show the
location of automatic marks and solid triangles
show the custom (user-defined) locations.
These appear on both normal and zoomed
waveform views.
DPO4000 Series User Manual 171
Analyze Waveform Data
5. Again, you can quickly investigate your
waveform by moving from search mark to
search mark with the next ( →) and previous
(←) arrow buttons. No other adjustments are
needed.
Quick Tips.
You can copy trigger settings to search for other locations in your acquired waveform that meet the trigger conditions.
You can also copy search settings to your trigger.
Custom (User) marks are saved with the waveform when the waveform is saved and when the setup is saved.
Automatic search marks are not saved with the waveform when the waveform is saved. However, you can easily recapture
them by re-using the search function.
The search criteria are saved in the saved setup.
With the optional DPO4EMBD and DPO4AUTO application modules installed, you can use the front-panel B1 and B2 buttons
to define a combination of inputs to be either I2C, SPI, or CAN serial bus. Once set up, you can trigger on user-specified packet
level content and have the DPO4000 automatically decode every packet in the acquisition into either binary or hex.
The Wave Inspector includes the following search capabilities:
Search Description
Edge Searches for edges (rising or falling) with a user-specified threshold level.
Pulse Width Searches for positive or negative pulse widths that are >, <, =, or ≠ a user specified pulse width.
172 DPO4000 Series User Manual
Analyze Waveform Data
Search Description
Runt Searches for positive or negative pulses that cross one amplitude threshold but fail to cross a
second threshold before crossing the first again. Search for all runt pulses or only those with a
duration >, <, =, or ≠ a user specified time.
Logic Search for a logic pattern (AND, OR, NAND, or NOR) across multiple waveforms with each input
set to either High, Low, or Don’t Care. Search for when the event goes true, goes false, or
stays valid for >, <, =, or ≠ a user specified time. Additionally, you can define one of the inputs
as a clock for synchronous (state) searches.
Setup & Hold Search for violations of user specified Setup and Hold times.
Rise/Fall Time Search for rising and/or falling edges that are >, <, =, or ≠ a user specified time.
Bus I2C: Search for Start, Repeated Start, Stop, Missing Ack, Address, Data, or Address and Data.
SPI: Search for SS Active, MOSI, MISO, or MOSI & MISO
CAN: Search for Start of Frame, Type of Frame (Data, Remote, Error, Overload), Identifier
(standard or extended), Data, Identifier and Data, End of Frame, or Missing Ack.
DPO4000 Series User Manual 173
Save and Recall Information
Save and Recall Information
The DPO4000 Series oscilloscope provides permanent storage for setups, waveforms, and screen images. Use the internal
storage of the oscilloscope to save setups and reference waveform data. Use external storage, such as CompactFlash media
and USB flash-memory storage devices to save setups, waveforms, and screen images. Use the external storage to carry data
to remote computers for further analysis and for archiving.
Saving a Screen Image
A screen image consists of a graphical image of the oscilloscope screen. This is different from waveform data, which consists of
numeric values for each point in the waveform. To save a screen image:
1. Push Save / Recall Menu.
Do not yet push the Save button.
2. Push Save Screen Image from the lower-bezel
menu.
Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Assign
Save to
Setup
File Utilities
174 DPO4000 Series User Manual
Save and Recall Information
Save
Screen
Image
3. From the side-bezel menu, push File Format
repeatedly to select among: .tif, .bmp, and
.png formats.
File Format
.png
4. Push Orientation to select between saving
the image in a landscape (horizontal) and a
portrait (vertical) orientation.
Orientation
5. Push Ink Saver to turn the Ink Saver mode on
or off. When on, this mode provides a white
background.
Ink Saver
On Off
6. Push Edit File Name to create a custom name
for the screen image file. Skip this step to use
a default name.
Edit File
Name
7. Push OK Save Screen Image to write the
image to the selected media.
OK Save
Screen
Image
DPO4000 Series User Manual 175
Save and Recall Information
For information on printing screen images of waveforms, go to Printing a Hardcopy. (See page 189, Printing a Hard Copy.)
Saving and Recalling Waveform Data
Waveform data consists of the numeric values for each point in the waveform. It copies the data, as opposed to a graphical image
of the screen. To save the current waveform data or to recall previously stored waveform data:
1. Push Save / Recall Menu.
2. Push Save Waveform or Recall Waveform
from the lower-bezel menu.
Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Assign
Save to
Waveform
File Utilities
176 DPO4000 Series User Manual
Save and Recall Information
3. From the resulting side-bezel menu, select the
location to save the waveform data to or to
recall it from.
Save the information externally to a file on
a CompactFlash card or USB memory stick.
Alternatively, save the information internally
to one of the four reference memories in the
oscilloscope.
4. Push To File to save to a CompactFlash card
or USB memory stick.
To File
This brings up the file manager screen. Use it
to define a custom file name. Skip this step to
use the default name and location.
Editing File, Directory, Reference Waveform, or Instrument Setup Names. Give files descriptive names that you can
recognize at a later date. To edit file names, directory names, reference waveform and instrument setup labels:
1. Push Save / Recall Menu.
DPO4000 Series User Manual 177
Save and Recall Information
2. Push Save Screen Image, Save Waveform,
or Save Setup.
Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Assign
Save to
Setup
File Utilities
3. Enter the file manager by pushing the
side-bezel menu To File item.
To File
4. Turn multipurpose knob a to scroll through the
file structure.
D: is the CompactFlash drive.
E: is the USB drive plugged into the USB port
on the front of the oscilloscope.
F: and G: are the USB drives plugged into the
USB host ports on the rear of the oscilloscope.
178 DPO4000 Series User Manual
Save and Recall Information
5. Push Select to open or close file folders.
6. Push the Menu Off button to cancel the save
operation, or push a side-bezel menu OK
Save. item to complete the operation.
OK Save
DPO4000 Series User Manual 179
Save and Recall Information
Naming Your File. The oscilloscope gives all files it creates the default name tekxxxxx where xxxxx is an integer from 00000 to
99999.
For example, the first time you save a file, that file is named tek00000. The next file is named tek00001.
To define a file name of your own choosing:
1. Push Save / Recall Menu.
2. Push Save Screen Image, Save Waveform,
or Save Setup.
Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Map Save
Button
File Utilities
3. Enter the file manager by pushing the
side-bezel menu To File item.
To File
180 DPO4000 Series User Manual
Save and Recall Information
4. Push the front-panel Select or the lower-bezel
menu Enter Character to select a character.
5. Push the Menu Off button to cancel the file
naming operation or push a side-bezel menu
Save to Selected File item to complete the
operation.
Save to
Selected
File
DPO4000 Series User Manual 181
Save and Recall Information
Saving a Waveform to File. When you push the To File side-bezel menu button, the oscilloscope changes the side- menu
contents. The following table describes these side-bezel menu items for saving data to a mass storage file.
Side-bezel menu button Description
Internal File Format (.ISF) Sets the oscilloscope to save waveform data in internal waveform save file (.isf) format. This format
is the fastest to write and creates the smallest-sized file. Use this format if you intend to recall a
waveform to reference memory for viewing or measuring.
Spreadsheet File Format
(.CSV)
Sets the oscilloscope to save waveform data as a comma-separated data file compatible with
popular spreadsheet programs. This file cannot be recalled to reference memory.
Saving a Waveform to Reference Memory. To save a waveform to nonvolatile memory inside the oscilloscope, first select the
waveform that you want to save. Push the Save Waveform screen button. Then select one of the reference waveform locations.
Four-channel models have four reference locations. Two-channel models have two reference locations.
Saved waveforms contain only the most current acquisition. Gray-scale information, if any, is not saved.
Displaying a Reference Waveform. To display a waveform stored in nonvolatile memory:
1. Push Ref R.
182 DPO4000 Series User Manual
Save and Recall Information
2. Push R1, R2, R3, or R4. R 1 (On) R 2 (Off) R 3 (Off) R 4 (Off)
Removing a Reference Waveform from the Display. To remove a reference waveform from the display:
1. Push Ref R.
2. Push the R1, R2, R3, or R4 screen button to
select a reference waveform.
R 1 (On) R 2 (Off) R 3 (Off) R 4 (Off)
3. Push the front-panel Ref or the appropriate
lower-bezel R button again to remove the
reference waveform from the display.
The reference waveform is still in nonvolatile
memory and can be displayed again.
DPO4000 Series User Manual 183
Save and Recall Information
Saving and Recalling Setups
Setup information includes acquisition information, such as vertical, horizontal, trigger, cursor, and measurement information. It
does not include communications information, such as GPIB addresses. To save the setup information:
1. Push Save / Recall Menu.
2. Push Save Setup or Recall Setup from the
lower-bezel menu.
Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Assign
Save to
Setup
File Utilities
184 DPO4000 Series User Manual
Save and Recall Information
Save Setup
To File
To Setup 1
3. From the resulting side-bezel menu, select the
location to save the setup to or to recall it from.
To save setup information to one of the ten
internal setup memories in the oscilloscope,
push the appropriate side-bezel button.
To save setup information to a CompactFlash
or USB file, push the To File button. To Setup 2
To Setup 3
– more –
DPO4000 Series User Manual 185
Save and Recall Information
4. If you are saving information to a CompactFlash
or USB memory device, turn multipurpose
knob a to scroll through the file structure.
D: is the CompactFlash drive.
E: is the USB drive plugged into the USB
port on the front of the oscilloscope.
F: and G: are the USB drives plugged
into the USB ports on the rear of the
oscilloscope.
Push Select to open or close file folders.
Push the Menu Off button to cancel the save
operation, or push a side-bezel menu Save to
Selected File item to complete the operation.
186 DPO4000 Series User Manual
Save and Recall Information
Save 1 to
Selected
File
Quick Tips
Recalling the Default Setup. Push the front-panel Default Setup button to initialize the oscilloscope to a known setup. (See
page 73, Using the Default Setup.)
Saving with One Button Push
After you have defined the save/recall parameters with the Save/Recall Menu button and menu, you can make saves to files with a
single push of the Save button. For example, if you have defined the save operation to save waveform data to a USB drive, then
each push of the Save button will save current waveform data to the defined USB drive.
1. To define the Save button behavior, push
Save/Recall Menu.
DPO4000 Series User Manual 187
Save and Recall Information
2. Push Assign Save button. Save
Screen
Image
Save
Waveform
Save Setup Recall
Waveform
Recall
Setup
Assign
Save to
Setup
File Utilities
3. Push the action to assign to the Save button. Assign
Save to
Screen
Image
Waveform
Setup
4. From now on, when you push Save the button
will perform the action that you just specified
rather than having to navigate menus each
time.
188 DPO4000 Series User Manual
Save and Recall Information
Printing a Hard Copy
To print an image of what appears on the oscilloscope screen, do the following procedure.
Connect a Printer to Your Oscilloscope
Connect your printer to a USB port on the rear or front panel of the oscilloscope.
Alternatively, you can print to networked printers through the Ethernet port.
Set Up Print Parameters
To set up the oscilloscope to print hard copies:
1. Push Utility.
2. Push System as many times as needed to
select Print Setup from the resulting pop-up
menu.
Print Setup
DPO4000 Series User Manual 189
Save and Recall Information
System
Print Setup
Select
Printer
N/A
Orientation
Landscape
Ink Saver
On
3. Push Select Printer if you are changing the
default printer.
Turn multipurpose knob a to scroll through the
list of available printers.
Push Select to choose the desired printer.
To add a USB printer to the list, plug the
printer into the USB slot. The oscilloscope will
automatically recognize it.
To add an Ethernet printer to the list, use the
instructions in the section titled Printing Over
Ethernet.
190 DPO4000 Series User Manual
Save and Recall Information
4. Select the image orientation (portrait or
landscape).
Landscape
Portrait
5. Choose Ink Saver On or Off.
The On selection will print out a copy with a
clear (white) background.
Ink Saver on Ink Saver off
DPO4000 Series User Manual 191
Save and Recall Information
Printing Over Ethernet
To set up the oscilloscope to print over Ethernet:
1. Connect an Ethernet cable to the rear-panel
Ethernet port.
2. Push Utility.
192 DPO4000 Series User Manual
Save and Recall Information
3. Push System repeatedly until you select Print
Setup.
Print Setup
4. Push Select Printer.
System
Print Setup
Select
Printer
(N/A)
Orientation
Landscape
Ink Saver
Off
Select
Printer
5. Push Add Network Printer. Add
Network
Printer
Rename
Printer
DPO4000 Series User Manual 193
Save and Recall Information
6. Turn multipurpose knob a to scroll through the
list of letters, numbers, and other characters to
find the first character in the printer name that
you want to enter.
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789_=+-!@#$%^&*()[]{}<>/~’”\|:,.?
7. Push Select or Enter Character to let the
oscilloscope know that you have picked the
proper character to use.
You can use the lower-bezel buttons to edit
the name, as needed.
Enter
Character
Back
Space
Delete Clear
8. Continue scrolling and pushing Select until
you have entered all the desired characters.
194 DPO4000 Series User Manual
Save and Recall Information
9. Push the down arrow key to move the
character cursor down a row to the Server
Name field.
10. Turn multipurpose knob a and push Select or
Enter Character as often as needed to enter
the name.
11. If desired, push the down arrow key to move
the character cursor down a row to the Server
IP Address: field.
12. Turn multipurpose knob a and push Select or
Enter Character as often as needed to enter
the name.
Add Printer
13. When done, push OK Accept. OK Accept
DPO4000 Series User Manual 195
Save and Recall Information
NOTE. If you have multiple printers connected to
the oscilloscope at the same time, the oscilloscope
will print to the printer listed in the Utility > System
> Print Setup > Select Printer menu item.
Print to a Printer
Once you have connected a printer to your oscilloscope and set up print parameters, you can print current screen images with
a single push of a button:
1. Push the printer icon button in the lower
left corner of the front panel.
Erasing DPO4000 Memory
You can erase all setup and waveform information saved in the nonvolatile memory with the TekSecure function. If you have
acquired confidential data on your oscilloscope, you may want to execute the TekSecure function before you return the oscilloscope
to general use. The TekSecure function:
Replaces all waveforms in all reference memories with null values
196 DPO4000 Series User Manual
Save and Recall Information
Replaces the current front-panel setup and all stored setups with the default setup
Displays a confirmation or warning message, depending on whether the verification is successful or unsuccessful
To use TekSecure:
1. Push Utility.
2. Push System repeatedly until you select
Config.
Config
3. Push TekSecure. System
Config
Language
English
Set Date &
Time
TekSecure
Erase
Memory
Version
v1.00
DPO4000 Series User Manual 197
Save and Recall Information
4. Push OK Erase Setup and Ref Memory from
the side-bezel menu.
OK
Erase
Setup
and Ref
Memory
To abort the procedure, push Menu Off.
198 DPO4000 Series User Manual
Save and Recall Information
5. Power off the oscilloscope, and then power it
back on to complete the process.
DPO4000 Series User Manual 199
Use Application Modules
Use Application Modules
Optional application module packages extend the capability of your oscilloscope. Install up to four application modules at one
time. Application modules go into the two slots with windows in the upper right corner of the front panel. Two additional slots
are directly behind the two that you can see.
Refer to the DPO4000 Series Application Module Installation Instructions that came with your application module for instructions
on installing and testing an application module. Some modules are described below. Additional packages may be available.
Contact your Tektronix representative or visit our Web site at www.tektronix.com for more information. Also, refer to Contacting
Tektronix at the beginning of the manual.
The DPO4EMBD Serial Triggering and Analysis Module adds triggering on packet level information in serial buses used in
embedded designs (I2C and SPI), as well as analytical tools to help you efficiently analyze your serial bus. These include digital
views of the signal, bus views, packet decoding, search tools, and event tables with timestamp information.
The DPO4AUTO Serial Triggering and Analysis Module adds triggering on packet level information in serial buses used in
automotive designs (CAN), as well as analytical tools to help you efficiently analyze your serial bus. These include digital views
of the signal, bus views, packet decoding, search tools, and event tables with timestamp information.
200 DPO4000 Series User Manual
Application Examples
Application Examples
This section contains ways to use your instrument in both common and advanced troubleshooting tasks.
Taking Simple Measurements
If you need to see a signal in a circuit, but
you do not know the signal amplitude or
frequency, connect the probe from channel 1
of the oscilloscope to the signal. Then display
the signal and measure its frequency and
peak-to-peak amplitude.
DPO4000 Series User Manual 201
Application Examples
Using Autoset
To quickly display a signal:
1. Push Autoset.
202 DPO4000 Series User Manual
Application Examples
The oscilloscope sets vertical, horizontal, and trigger controls automatically. You can manually adjust any of these controls if you
need to optimize the display of the waveform.
When you are using more than one channel, the autoset function sets the vertical controls for each channel and uses the
lowest-numbered active channel to set the horizontal and trigger controls.
Selecting Automatic Measurements
The oscilloscope can take automatic measurements of most displayed signals. To measure signal frequency and peak-to-peak
amplitude:
1. Push Measure.
2. Push Select Measurement. Select
Measurement
a 1
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
DPO4000 Series User Manual 203
Application Examples
3. Turn multipurpose knob a to select the channel
from which you want to measure. For example,
select channel 1. This step is only needed
if you are acquiring data on more than one
channel.
4. Select the Frequency measurement from the
side-bezel menu. Frequency
5. Push -more- until you can select the Pk-Pk
measurement.
-more-
6. Push Menu Off.
204 DPO4000 Series User Manual
Application Examples
7. Observe that the measurements appear on the
screen and update as the signal changes.
DPO4000 Series User Manual 205
Application Examples
Measuring Two Signals
In this example, you are testing a piece of
equipment and need to measure the gain of its
audio amplifier. You have an audio generator
that can inject a test signal at the amplifier
input. Connect two oscilloscope channels
to the amplifier input and output as shown.
Measure both signal levels and use these
measurements to calculate the gain.
206 DPO4000 Series User Manual
Application Examples
To display the signals connected to channels 1 and 2:
1. Push channel 1 and channel 2 to activate
both channels.
2. Push Autoset.
To select measurements for the two channels:
1. Push Measure to see the measurement menu.
DPO4000 Series User Manual 207
Application Examples
2. Push Select Measurement. Select
Measurement
a 1
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
3. Turn multipurpose knob a to select channel 1.
4. Page through the measurement menus until
you find Amplitude. Select Amplitude.
Amplitude
208 DPO4000 Series User Manual
Application Examples
5. Turn multipurpose knob a to select channel 2.
6. Select Amplitude. Amplitude
7. Calculate the amplifier gain using the following
equations:
Gain = (output amplitude ÷ input amplitude) =
(3.155 V ÷ 130.0 mV) = 24.27
Gain (dB) = 20 x log(24.27) = 27.7 dB
DPO4000 Series User Manual 209
Application Examples
Customizing Your Measurements
In this example, you want to verify that the
incoming signal to digital equipment meets its
specifications. Specifically, the transition time
from a low logic level (0.8 V) to a high logic
level (2.0 V) must be 10 ns or less.
To select the rise time measurement.
1. Push Measure.
210 DPO4000 Series User Manual
Application Examples
2. Push Select Measurement. Select
Measurement
a 1
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
3. Turn multipurpose knob a to select channel 1.
This step is only needed if you are acquiring
data on more channels than just channel 1.
4. Select the Rise Time measurement from the
side-bezel menu.
Rise Time
DPO4000 Series User Manual 211
Application Examples
5. Press Reference Levels.
Reference
Levels
6. Push Set Levels in to select units. Set Levels
in
% units
7. Push High Ref and turn multipurpose knob a
to enter 2.00 V. If needed, push Fine to change
the sensitivity of the multipurpose knob.
High Ref
a 2.00 V
Mid Ref
8. Push Low Ref and turn multipurpose knob a to
enter 800 mV. If needed, push Fine to change
the sensitivity of the multipurpose knob.
Low Ref
a 800 mV
212 DPO4000 Series User Manual
Application Examples
Rise time is typically measured between the 10% and 90% amplitude levels of a signal. These are the default reference levels
that the oscilloscope uses for rise time measurements, However, in this example, you need to measure the time that the signal
takes to pass between the 0.8 V and 2.0 V levels.
You can customize the rise time measurement to measure the signal transition time between any two reference levels. You
can set each of these reference levels to a specific percent of the signal amplitude or to a specific level in vertical units (such
as volts or amperes).
Measuring Specific Events. Next you want to see the pulses in the incoming digital signal, but the pulse widths vary so it is
hard to establish a stable trigger. To look at a snapshot of the digital signal, do this step:
1. Push Single to capture a single acquisition.
Now you want to measure the width of each displayed pulse. You can use measurement gating to select a specific pulse to
measure. To measure the second pulse:
1. Push Measure.
DPO4000 Series User Manual 213
Application Examples
2. Push Select Measurement. Select
measurement
a 1
Remove
Measurement
Gating Statistics Reference
Levels
Indicators Configure
Cursors
3. Turn multipurpose knob a to select channel 1.
4. Select Positive Pulse Width measurement.
Positive
Pulse
Width
214 DPO4000 Series User Manual
Application Examples
5. Push Gating. Select
Measurement
Remove
Measurement
Gating
Off
Statistics
Off
Reference
Levels
Indicators Configure
Cursors
6. Select Between Cursors from the side-bezel
menu to choose measurement gating using
cursors. Between
Cursors
7. Place one cursor to the left and one cursor to
the right of the second pulse.
DPO4000 Series User Manual 215
Application Examples
8. View the resulting width measurement
(160 ms) for the second pulse.
216 DPO4000 Series User Manual
Application Examples
Analyzing Signal Detail
In this example, you have a noisy signal
displayed on the oscilloscope, and you need
to know more about it. You suspect that the
signal contains much more detail than you can
currently see in the display.
DPO4000 Series User Manual 217
Application Examples
Looking at a Noisy Signal
The signal appears noisy. You suspect that noise is causing problems in your circuit. To better analyze the noise:
1. Push Acquire.
2. Push Mode on the lower-bezel menu. Mode Record
Length
10k
Reset
Horizontal
Position
Waveform
Display
218 DPO4000 Series User Manual
Application Examples
3. Push Peak Detect on the side-bezel menu.
Sample
Peak
Detect
Hi Res
Envelope
Average
4. Push Intensity and turn multipurpose knob a
to see the noise more easily.
DPO4000 Series User Manual 219
Application Examples
5. View the results on the display. Peak detect
emphasizes noise spikes and glitches in your
signal as narrow as 1 ns, even when the time
base is set to a slow setting.
220 DPO4000 Series User Manual
Application Examples
Peak-detect and the other acquisition modes are explained earlier in this manual. (See page 75, Acquisition Concepts.)
Separating the Signal from Noise
Now you want to analyze the signal shape and ignore the noise. To reduce random noise in the oscilloscope display:
1. Push Acquire.
2. Push Mode. Mode Record
Length
Reset
Horizontal
Position
Waveform
Display
3. Push Average on the side-bezel menu.
Average
DPO4000 Series User Manual 221
Application Examples
Averaging reduces random noise and makes it
easier to see detail in a signal. In the example
to the right, a ring shows on the rising and falling
edges of the signal when the noise is removed.
222 DPO4000 Series User Manual
Application Examples
Taking Cursor Measurements
You can use the cursors to take quick measurements on a waveform. To measure the ring frequency at the rising edge of the signal:
1. Push channel 1 to select the channel 1 signal.
2. Push Measure.
3. Push Configure Cursors. Select
Measurement
Remove
Measurement
Gating Statistics Reference
Levels
Indicators Configure
Cursors
DPO4000 Series User Manual 223
Application Examples
4. Push Vertical Bar Units repeatedly to select
Hz (1/s).
Vertical Bar
Units
Hz (1/s)
5. Push Cursors repeatedly until the two vertical
bar cursors appear on the selected waveform.
6. Place one cursor on the first peak of the ring
using multipurpose knob a.
7. If the cursor readout says that the cursors are
linked, push Select to unlink them.
224 DPO4000 Series User Manual
Application Examples
8. Place the other cursor on the next peak of the
ring using multipurpose knob b.
9. The cursor Δ readout shows the measured
ring frequency is 227 kHz.
DPO4000 Series User Manual 225
Application Examples
Triggering on a Video Signal
The DPO4000 Series of oscilloscopes supports triggering on NTSC, SECAM, and PAL signals.
In this example, you are testing the video circuit
in a piece of medical equipment and need to
display the video output signal. The video
output is an NTSC standard signal. Use the
video signal to obtain a stable display.
To trigger on the video fields:
1. Push Trigger Menu.
226 DPO4000 Series User Manual
Application Examples
2. Push Type repeatedly to select Video. Video
3. Push Standard repeatedly to select
525/NTSC. Type
Video
Standard
525/NTSC
Source
1
Trigger on
All Lines
Mode
Auto
& Holdoff
4. Push Trigger On.
5. Select Odd Fields. Odd Fields
If the signal had been noninterlaced, you could
choose to trigger on All Fields.
6. Turn the Horizontal Scale knob to see a
complete field across the screen.
DPO4000 Series User Manual 227
Application Examples
7. View results.
Triggering on Lines
Triggering on Lines. To look at the video lines in the field:
1. Push Trigger Menu.
228 DPO4000 Series User Manual
Application Examples
2. Push Type repeatedly to select Video. Video
Type
Video
Standard
525/NTSC
Source
1
Trigger On
All Lines
Mode
Auto
& Holdoff
3. Push Trigger On.
4. Select All Lines. All Lines
5. Adjust Horizontal Scale to see a complete
video line across the screen.
DPO4000 Series User Manual 229
Application Examples
6. Observe the results.
Capturing a Single-Shot Signal
In this example, the reliability of a reed relay in a piece of equipment has been poor, and you need to investigate the problem.
You suspect that the relay contacts arc when the relay opens. The fastest you can open and close the relay is about once per
minute, so you need to capture the voltage across the relay as a single-shot acquisition.
To set up for a single-shot acquisition:
1. Adjust the Vertical Scale and Horizontal Scale to appropriate ranges for the signal you expect to see.
230 DPO4000 Series User Manual
Application Examples
2. Push Acquire.
3. Push Mode.
4. Select Sample.
5. Push Trigger Menu.
6. Push Slope and .
7. Turn the Trigger Level knob to adjust the
trigger level to a voltage midway between
the open and closed voltages of the replay.
DPO4000 Series User Manual 231
Application Examples
8. Push Single (single sequence).
When the relay opens, the oscilloscope
triggers and captures the event.
The Single sequence button disables auto
triggering so that only a valid triggered
signal is acquired.
232 DPO4000 Series User Manual
Application Examples
Optimizing the Acquisition
The initial acquisition shows the relay contact
beginning to open at the trigger point. This is
followed by large spikes that indicate contact
bounce and inductance in the circuit. The
inductance can cause contact arcing and
premature relay failure.
Before you take the next acquisition, you can
adjust the vertical and horizontal controls to
give you a preview of how the next acquisition
might appear. As you adjust these controls, the
current acquisition is repositioned, expanded,
or compressed. This preview is useful to
optimize the settings before the next single-shot
event is captured.
When the next acquisition is captured with
the new vertical and horizontal settings, you
can see more detail about the relay contact
opening. You can now see that the contact
bounces several times as it opens.
DPO4000 Series User Manual 233
Application Examples
Using the Horizontal Zoom Function
To take a close look at a particular point on the acquired waveform, use the horizontal zoom function. To look closely at the
point where the relay contact first begins to open:
1. Turn the Zoom knob.
2. Turn the Pan knob to place the center of
the zoom box close to where the relay
contact begins to open.
3. Turn the Zoom knob to magnify the
waveform in the zoom window.
234 DPO4000 Series User Manual
Application Examples
The ragged waveform and the inductive load in
the circuit suggest that the relay contact may
be arcing as it opens.
The zoom function works equally well when the acquisition is running or is stopped. Horizontal position and scale changes
affect only the display, not the next acquisition.
Correlating Data With a TLA5000 Logic Analyzer
To troubleshoot designs with fast clock edges and data rates, it helps to view analog characteristics of digital signals in relation to
complex digital events in the circuit. You can do that with iView, which lets you transfer analog waveforms from the oscilloscope
to the logic analyzer display. You can then view time-correlated analog and digital signals side-by-side and use this to pinpoint
sources of glitches and other problems.
DPO4000 Series User Manual 235
Application Examples
The iView External Oscilloscope Cable allows you to connect your logic analyzer to a Tektronix oscilloscope. This enables
communication between the two instruments. The Add External Oscilloscope wizard, which is available from the TLA application
System menu, guides you through the process of connecting the iView cable between your logic analyzer and oscilloscope.
The TLA also provides a setup window to assist you in verifying, changing, and testing the oscilloscope settings. Before acquiring
and displaying a waveform you must establish a connection between your Tektronix logic analyzer and oscilloscope using the
Add External Oscilloscope wizard.
To do this:
1. Select Add iView External Oscilloscope
... from the logic analyzer System menu.
236 DPO4000 Series User Manual
Application Examples
2. Select your model of oscilloscope.
3. Follow the on-screen instructions, and then
click Next.
4. See your Tektronix Logic Analyzer
documentation for more information on
correlating data between a DPO4000
Series Oscilloscope and a Tektronix Logic
Analyzer.
DPO4000 Series User Manual 237
Application Examples
Tracking Down Bus Anomalies
In this example, you are testing your new I2C circuit. Something is not working. You tell the master IC to send a message to the
slave IC. Then you expect to receive data back and an LED to light. The light never goes on. Where in the ten or so commands that
were sent out did the problem occur? Once you locate the problem location, how do you determine what went wrong?
You can use your DPO4000 Series oscilloscope, with its serial triggering and long-record length management features, to track
down the problem in both the physical layer and in the protocol layer of the bus.
Basic strategy
First, you will display and acquire the bus signal by setting up the bus parameters and trigger. Then, you will search through each
packet with the search/mark functions.
NOTE. Triggering on bus signals requires use of the DPO4EMBD or the DPO4AUTO Serial Triggering and Analysis Module.
238 DPO4000 Series User Manual
Application Examples
1. Connect the channel 1 probe to the clock line.
2. Connect the channel 2 probe to the data line.
3. Push Autoset.
DPO4000 Series User Manual 239
Application Examples
4. Push the B1 button and enter the parameters
of your I2C bus in the resulting screen menus.
5. Push Trigger Menu.
6. Push Type to select Bus. Enter trigger
parameters in the resulting screen menus. Type
Bus
Source Bus
B1 (I2C)
Trigger On
Address
Address
07F
Direction
Read
Mode
Auto
& Holdoff
240 DPO4000 Series User Manual
Application Examples
7. Analyze the physical layer. For example, you
can use the cursors for manual measurements.
(See page 144, Taking Manual Measurements
with Cursors.) You can also use the automated
measurements. (See page 129, Taking
Automatic Measurements.)
8. Push Search. Set Search Marks to On. Enter
a search type, source, and other parameters
as relevant on the lower-bezel menu and
associated side-bezel menus. (See page 163,
Managing Long Record Length Waveforms.)
9. Jump ahead to the next search point by
pushing the right arrow key. Push it again and
again until you see all the events. Jump back
with the left arrow key. Do you have all the
packets that you expected to have? If not, at
least you have narrowed your search down to
the last packet sent.
DPO4000 Series User Manual 241
Application Examples
10. Analyze the decoded packets in the protocol
layer. Did you send the data bytes in the
correct order? Did you use the correct
address?
242 DPO4000 Series User Manual
Index
Index
Symbols and Numbers
50 Ω protection, 128
A
Accessories, 1
Acquire button, 49, 80, 112, 218, 221
Acquisition
input channels and digitizers, 75
modes defined, 78
readout, 60
sampling, 75
Adapter
TEK-USB-488, 4
TPA-BNC, 4, 10
Adding waveform, 112
Advanced math, 157
Altitude
DPO4000, 7
P6139A, 8
Analysis and Connectivity, xii
Application module
DPO4AUTO, 84
DPO4EMBD, 84
Application Module, xiii, 19
Applications modules, 200
Attenuation, 127
Auto trigger mode, 92
Autoset, 74, 202
Autoset button, 17, 49, 56, 71, 74,
202, 207
Autoset undo, 74
Auxiliary readout, 64
Average acquisition mode, 79
BB
Trigger, 109
B1 / B2 button, 51, 84, 85, 102
Backlight intensity, 119
Bandwidth, x
Before Installation, 1
Blackman-Harris FFT window, 157
BNC interface, 10
Bus
button, 84, 85, 102
menu, 51, 85
Bus trigger, defined, 102
Buses, 84, 102
Button
Acquire, 49, 80, 112, 218, 221
Autoset, 17, 49, 56, 71, 74, 202,
207
B1 / B2, 51, 84, 85, 102
bus, 84, 85, 102
Channel, 50
Cursors, 52, 144, 224
Default Setup, 50, 58, 73
Fine, 48, 52, 53, 54, 55, 57
Force Trig, 56, 93
hard copy, 57, 196
Intensity, 115
M, 51, 150, 153
Math, 51, 150, 153
Measure, 49, 129, 139, 140,
203, 207, 210, 213
Menu Off, 58, 204
Next, 55
play-pause, 167
Play-pause, 54
Previous, 54
printer icon, 57, 196
Ref, 51, 160, 182
DPO4000 Series User Manual 243
Index
Run/Stop, 56, 83, 111
Save / Recall, 50, 58, 174
Search, 49, 170
Select, 53, 224
Set / Clear Mark, 55, 169
Set to 50%, 56, 97
Single, 56, 111, 213, 232
Test, 49
Trigger, 49
Trigger level, 56
Trigger menu, 226
Trigger Menu, 98
Utility, 20, 23, 26, 50, 117, 118,
189
Vertical, 50
Zoom, 54
C
Calibration, 25, 27
Calibration certificate, 2
CAN, 51, 84, 102
Channel button, 50
Channel readout, 64
Clearance, DPO4000, 6
Communications, 35, 40
CompactFlash, x, 2, 5, 50, 58, 174
Compensate probe, 17
Compensate signal path, 25
Confidential data, 196
Connectivity, 2, 35, 40
Connector, side-panel, 67
Connectors
front-panel, 66
rear-panel, 68
Controls, 45
Coupling, trigger, 94
Cover, front, 2
Cross Hair graticule style, 118
Cursor readout, 62, 149
Cursor, measurements, 144
Cursors, 144
button, 52, 144, 224
linking, 145
Cursors menu, 144
D
Date and time, changing, 23
Default setup, 187
Default Setup, 73
button, 50, 58, 73
menu, 50
Undo, 73
Delayed trigger, 107
Depth, DPO4000, 6
Deskew, 127
Display
persistence, 112
style, 112
Displaying, reference waveforms, 182
Documentation, xii
DPO4AUTO, 84
DPO4EMBD, 84
Drivers, 35, 39
Dual waveform math, 150
Ee
*Scope, 40
Edge trigger, defined, 99
Envelope acquisition mode, 79
Erase setup and ref memory, 196
Ethernet, x, 37, 40, 41
port, 68
printing, 192
Event Table, 88, 89
Excel, 34
Expansion point icon, 61
244 DPO4000 Series User Manual
Index
FF
actory calibration, 27
FFT
Blackman-Harris, 157
controls, 153
Hamming, 156
Hanning, 157
Rectangular, 156
File format, 175
Internal File Format (ISF), 182
Spreadsheet file format
(.CSV), 182
File system, 174, 177, 180
Fine, 53
Fine button, 48, 52, 54, 55, 57
Firmware upgrade, 28
Force Trig button, 56, 93
Frame graticule style, 118
Frequency, Input power
DPO4000, 6
Front cover, 2
Front panel, 45
Front-panel connectors, 66
Front-panel overlay, 22
Full graticule style, 118
Functional check, 15
G
Gating, 137
GPIB, 36, 38, 68
GPIB address, 38
Graticule
Cross Hair, 118
Frame, 118
Full, 118
Grid, 118
intensity, 115
styles, 117
Grid graticule style, 118
Ground, 11
Ground lead, 19
Ground strap, 67
H
Hamming FFT window, 156
Hanning FFT window, 157
Hard copy, 57, 189
Height, DPO4000, 6
Hi Res acquisition mode, 79
Holdoff, trigger, 93
Horizontal delay, 94
Horizontal position, 55, 94, 95, 120,
156, 234, 235
and math waveforms, 152
defined, 72
Horizontal position/scale readout, 64
Horizontal scale, 55, 120, 156, 227,
229, 230, 234
and math waveforms, 152
defined, 72
How to
erase memory, 196
print a hard copy, 189
recall setups, 184
recall waveforms, 174
save screen images, 174
save setups, 184
save waveforms, 174
Humidity
DPO4000, 7
P6139A, 9
I
I2C, 51, 84, 102
DPO4000 Series User Manual 245
Index
Icon
Expansion point, 61
Trigger level, 63
Trigger position, 61
Image orientation, 175, 191
Impedance, 123
Indicator, waveform baseline, 65
Infinite persistence, 115
Ink Saver, 175, 191
Inner knob, 54, 152
Installing, application modules, xiii
Intensity button, 115
Internal File Format, 182
K
Knob
inner, 54, 152
Multipurpose, 24, 48, 53, 54, 80,
86, 177, 224, 225
outer, 54
pan, 54, 166, 169
Trigger level, 97
Vertical position, 57, 72
Vertical scale, 57, 72
zoom, 54, 152, 164
LL
abView, 34
Landscape, 175, 191
Language
change, 20
overlay, 22
Level, trigger, 96
Logic trigger, defined, 100
Long record length, 238
Long record length management, 163
MM
button, 51, 150, 153
Main trigger, 107
Mark, 169
Math
Advanced, 157
button, 51, 150, 153
Dual waveform, 150
FFT, 153
menu, 51
waveforms, 150
Measure button, 49, 129, 139, 140,
203, 207, 210, 213
Measurement menu, 49
Measurements
automatic, 129
cursor, 144
defined, 131
reference levels, 142
snapshot, 140
statistics, 139
Memory, erasure of, 196
Menu
Bus, 51, 85
Cursors, 144
Default Setup, 50
Math, 51
Measurement, 49
Reference, 51, 160, 161
Save / Recall, 50, 58, 174
Trigger, 49, 98, 108, 226
Utility, 20, 23, 50, 57, 117, 189
Vertical, 50, 122
Menu buttons, 49
Menu Off button, 58, 204
Menus, 45
Mode, roll, 83
Multipurpose knob, 48, 53, 54, 80, 86,
177, 224, 225
246 DPO4000 Series User Manual
Index
N
Network printing, 192
Next button, 55
Normal trigger mode, 92
O
Offset and position, 128
OpenChoice, 2, 35
Operating specifications, 6
Orientation of the image, 175, 191
Outer knob, 54
Overlay, 22
P
Pan, 164, 166
knob, 54, 166, 169
Pause, 166
Peak detect acquisition mode, 79
Performance verification, xii
Persistence
display, 112
infinite, 115
variable, 115
Play, 166
Play-pause button, 54, 167
Play-pause mode, 167
Pollution Degree
DPO4000, 7
P6139A, 9
Portrait, 175, 191
Position
Horizontal, 94, 95, 120, 156,
234, 235
Vertical, 121
Position and offset, 128
Posttrigger, 91, 96
Power
cord, 3
input, 69
off, 14
removing, 14
supply, 11
switch, 57
Power consumption, DPO4000, 6
Predefined math expressions, 150
Pretrigger, 91, 96
Previous button, 54
Print, 57, 189
Printing a hard copy, 189
Printing, Ethernet, 192
Probe Comp, 16
Probe compensation, 17
Probes
BNC, 10
connecting, 10
ground lead, 19
TEK-USB-488 Adapter, 4
TekVPI, 10
TPA-BNC Adapter, 4, 10
Programmer Commands, xii
Pulse/Width trigger, defined, 100
R
Rackmount, 4
Readout
Acquisition, 60
Auxiliary, 64
Channel, 64
Cursor, 62, 149
Horizontal position/scale, 64
Record length/sampling rate, 63
Trigger, 63, 107
Trigger status, 62
Rear-panel connectors, 68
Recalling
setups, 184
waveforms, 174
Record length, x
DPO4000 Series User Manual 247
Index
Record length/sampling rate
readout, 63
Rectangular FFT window, 156
Ref button, 51, 160
Ref R, 182
Reference button, 182
Reference levels, 142
Reference menu, 51, 160, 161
Reference waveforms, 160
displaying, 182
removing, 161, 183
saving, 182
saving 10M waveforms, 162
Related documents, xii
Removing
reference waveforms, 183
Removing reference waveforms, 161
Removing waveform, 112
Rise/Fall trigger, defined, 101
Roll mode, 83
Run/Stop button, 56, 83, 111
Runt trigger, defined, 100
SS
afety Summary, v
Sample acquisition mode, 78
Sample rates, x
Sampling process, defined, 75
Sampling, real-time, 76
Save / Recall menu, 50, 58, 174
Save / Recall Menu button, 50
Save / Recall Save button, 58, 174
Saving
reference waveforms, 182
screen images, 174
waveforms, 174
Saving and recalling Information, 174
Saving setups, 184
Scale
Horizontal, 55, 120, 156, 227,
229, 230, 234
Vertical, 121, 230
Search, 169
Search / Mark, 238
Search button, 49, 170
Securing DPO4000 memory, 196
Select button, 53, 224
Sequential triggering, 107
Serial, 84, 102, 238
Service information, xiii
Set / Clear Mark button, 55, 169
Set to 50% button, 56, 97
Setup
default, 58, 187
Default, 73
Setup and Hold trigger, defined, 101
Side panel connector, 67
Signal path compensation, 25
Single button, 56, 111, 213, 232
Single sequence, 83, 111
Slope, trigger, 96
Snapshot, 140
Software drivers, 35, 39
Software, optional, 200
SPC, 25
Specifications, xii
operating, 6
power supply, 11
SPI, 51, 84, 102
Spreadsheet file format (.CSV), 182
Start an acquisition, 111
Statistics, 139
Stop an acquisition, 111
Switch, power, 57
T Table, Event, 88, 89
TDSPCS1, 35
248 DPO4000 Series User Manual
Index
TEK-USB-488 Adapter, 36, 38, 68
TEK-USB–488 Adapter, 4
TekSecure, 196
TekVPI, 10
Temperature
DPO4000, 6
P6139A, 8
Termination, 123
Test button, 49
TPA-BNC Adapter, 4, 10
Transit case, 4
Transition trigger, defined, 101
Trigger
concepts, 91
coupling, 94
delayed, 107
event, defined, 91
forcing, 92
holdoff, 93
level, 96
modes, 92, 98
posttrigger, 91, 96
pretrigger, 91, 96
readout, 107
sequential, 107
Serial, 84, 102, 238
slope, 96
Trigger level
button, 56
Icon, 63
knob, 97
Trigger menu, 49, 98, 108, 226
Trigger menu button, 226
Trigger Menu button, 98
Trigger modes
Auto, 92
Normal, 92
Trigger position icon, 61
Trigger readout, 63
Trigger status
readout, 62
Trigger types, defined, 99
U
Undo
Autoset, 74
Default Setup, 73
Upgrading firmware, 28
USB, x, 5, 36, 39, 50, 58, 69, 174, 189
port, 68
USBTMC, 68
User marks, 169
Utility button, 20, 23, 26, 50, 117, 118,
189
Utility menu, 20, 23, 50, 57, 117
V Variable persistence, 115
Versatile Probe Interface, 10
Vertical
button, 50
menu, 50, 122
Position, 121
position and autoset, 75
position and offset, 128
Position knob, 57, 72
Scale, 121, 230
Scale knob, 57, 72
Vibration, DPO4000, 7
Video
lines, 228
port, 68
Video trigger, defined, 101
View
waveform record, 61
Voltage, Input
DPO4000, 6
P6139A, 8
DPO4000 Series User Manual 249
Index
Voltage, Output, P6139A, 8 W
Waveform
adding, 112
display style, 112
intensity, 115
pan, 164, 166
pause, 166
play, 166
play-pause, 167
record defined, 77
removing, 112
search and mark, 169
user marks, 169
zoom, 164
Waveform baseline indicator, 65
Waveform record, 77
Waveform record view, 61
Weight
DPO4000, 6
Width
DPO4000, 6
ZZ
oom, 164
button, 54
graticule size, 166
Horizontal, 234
knob, 54, 164
PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
Rev. 03 — 11 December 2009 Product data sheet
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit
VCEO collector-emitter voltage open base - - −100 V
IC collector current - - −1 A
ICM peak collector current single pulse;
tp ≤ 1 ms
- - −3 A
RCEsat collector-emitter
saturation resistance
IC = −1 A;
IB = −100 mA
[1] - 170 320 mΩ
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 2 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
2. Pinning information
3. Ordering information
4. Marking
5. Limiting values
Table 2. Pinning
Pin Description Simplified outline Symbol
1 base
2 collector
3 emitter
4 collector
1 2 3
4
sym028
2, 4
3
1
Table 3. Ordering information
Type number Package
Name Description Version
PBSS9110Z SC-73 plastic surface-mounted package with increased heat sink;
4 leads
SOT223
Table 4. Marking codes
Type number Marking code
PBSS9110Z PB9110
Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VCBO collector-base voltage open emitter - −120 V
VCEO collector-emitter voltage open base - −100 V
VEBO emitter-base voltage open collector - −5 V
IC collector current - −1 A
ICM peak collector current single pulse;
tp ≤ 1 ms
- −3 A
IB base current - −0.3 A
Ptot total power dissipation Tamb ≤ 25 °C [1] - 0.65 W
[2] - 1 W
[3] - 1.4 W
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 3 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1cm2.
[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6cm2.
6. Thermal characteristics
[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1cm2.
[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6cm2.
Tj junction temperature - 150 °C
Tamb ambient temperature −65 +150 °C
Tstg storage temperature −65 +150 °C
(1) FR4 PCB, mounting pad for collector 6cm2
(2) FR4 PCB, mounting pad for collector 1cm2
(3) FR4 PCB, standard footprint
Fig 1. Power derating curves
Table 5. Limiting values …continued
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
Tamb (°C)
0 40 80 120 160
001aaa508
0.8
0.4
1.2
1.6
Ptot
(W)
0
(1)
(2)
(3)
Table 6. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Rth(j-a) thermal resistance from
junction to ambient
in free air [1]- - 192 K/W
[2]- - 125 K/W
[3]- - 89 K/W
Rth(j-sp) thermal resistance from
junction to solder point
- - 17 K/W
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 4 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
FR4 PCB, standard footprint
Fig 2. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
FR4 PCB, mounting pad for collector 1cm2
Fig 3. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
006aaa819
10
1
102
103
Zth(j-a)
(K/W)
10−1
10−5 10−4 10−2 10−1 10 102
tp (s)
10−3 1 103
duty cycle =
1
0.75
0.5
0.33
0.2
0.1
0.05
0.02
0.01
0
006aaa820
10
1
102
103
Zth(j-a)
(K/W)
10−1
10−5 10−4 10−2 10−1 10 102
tp (s)
10−3 1 103
duty cycle =
0.75
0.5
0.33
0.2
0.1
0.05
0.02
0.01
0
1
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 5 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
FR4 PCB, mounting pad for collector 6cm2
Fig 4. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values
006aaa821
10
1
102
103
Zth(j-a)
(K/W)
10−1
10−5 10−4 10−2 10−1 10 102
tp (s)
10−3 1 103
duty cycle =
1
0.75
0.5
0.33
0.2
0.1
0.05
0.02
0.01
0
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 6 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
7. Characteristics
[1] Pulse test: tp ≤ 300 μs; δ ≤ 0.02.
Table 7. Characteristics
Tamb = 25°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
ICBO collector-base cut-off
current
VCB = −80 V; IE = 0 A - - −100 nA
VCB = −80 V; IE = 0 A;
Tj = 150 °C
- - −50 μA
ICES collector-emitter cut-off
current
VCE = −80 V;
VBE = 0 V
- - −100 nA
IEBO emitter-base cut-off
current
VEB = −4 V; IC = 0 A - - −100 nA
hFE DC current gain VCE = −5 V;
IC = −1 mA
150 - -
VCE = −5 V;
IC = −250 mA
150 - -
VCE = −5 V;
IC = −0.5 A
[1] 150 - 450
VCE = −5 V; IC = −1 A [1] 125 - -
VCEsat collector-emitter
saturation voltage
IC = −250 mA;
IB = −25 mA
- - −120 mV
IC = −500 mA;
IB = −50 mA
[1]- - −180 mV
IC = −1 A;
IB = −100 mA
[1]- - −320 mV
RCEsat collector-emitter
saturation resistance
IC = −1 A;
IB = −100 mA
[1] - 170 320 mΩ
VBEsat base-emitter saturation
voltage
IC = −1 A;
IB = −100 mA
[1]- - −1.1 V
VBEon base-emitter turn-on
voltage
VCE = −5 V; IC = −1 A [1]- - −1.0 V
td delay time VCC = −10 V;
IC = −0.5 A;
IBon = −0.025 A;
IBoff = 0.025 A
- 20 - ns
tr rise time - 60 - ns
ton turn-on time - 80 - ns
ts storage time - 290 - ns
tf fall time - 120 - ns
toff turn-off time - 410 - ns
fT transition frequency VCE = −10 V;
IC = −50 mA;
f = 100 MHz
100 - - MHz
Cc collector capacitance VCB = −10 V;
IE = ie = 0 A;
f = 1 MHz
- - 17 pF
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 7 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
VCE = −10 V
(1) Tamb = 100 °C
(2) Tamb = 25 °C
(3) Tamb = −55 °C
Tamb = 25 °C
Fig 5. DC current gain as a function of collector
current; typical values
Fig 6. Collector current as a function of
collector-emitter voltage; typical values
VCE = −10 V
(1) Tamb = −55 °C
(2) Tamb = 25 °C
(3) Tamb = 100 °C
IC/IB = 10
(1) Tamb = −55 °C
(2) Tamb = 25 °C
(3) Tamb = 100 °C
Fig 7. Base-emitter voltage as a function of collector
current; typical values
Fig 8. Base-emitter saturation voltage as a function
of collector current; typical values
001aaa376
200
400
600
hFE
0
IC (mA)
−10−1 −1 −10 −102 −103 −104
(1)
(2)
(3)
VCE (V)
0 −1 −2 −3 −4 −5
001aaa384
−0.8
−1.2
−0.4
−1.6
−2
IC
(A)
0
IB (mA) = −45
−40.5
−36
−31.5
−27
−22.5
−18
−13.5
−9
−4.5
001aaa377
−0.4
−0.8
−1.2
VBE
(V)
0
IC (mA)
−10−1 −1 −10 −102 −103 −104
(1)
(2)
(3)
001aaa381
IC (mA)
−10−1 −1 −10 −102 −103 −104
−1
−10
VBEsat
(V)
−10−1
(1)
(2)
(3)
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 8 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
IC/IB = 10
(1) Tamb = 100 °C
(2) Tamb = 25 °C
(3) Tamb = −55 °C
Tamb = 25 °C
(1) IC/IB = 50
(2) IC/IB = 20
Fig 9. Collector-emitter saturation voltage as a
function of collector current; typical values
Fig 10. Collector-emitter saturation voltage as a
function of collector current; typical values
IC/IB = 10
(1) Tamb = −55 °C
(2) Tamb = 25 °C
(3) Tamb = 100 °C
Tamb = 25 °C
(1) IC/IB = 50
(2) IC/IB = 20
Fig 11. Collector-emitter saturation resistance as a
function of collector current; typical values
Fig 12. Collector-emitter saturation resistance as a
function of collector current; typical values
001aaa378
IC (mA)
−10−1 −1 −10 −102 −103 −104
−10−1
−1
VCEsat
(V)
−10−2
(1)
(2)
(3)
001aaa380
IC (mA)
−10−1 −1 −10 −102 −103 −104
−10−1
−1
VCEsat
(V)
−10−2
(1)
(2)
001aaa382
IC (mA)
−10−1 −1 −10 −102 −103 −104
1
10
102
103
RCEsat
(Ω)
10−1
(1)
(2)
(3)
001aaa383
IC (mA)
−10−1 −1 −10 −102 −103 −104
1
10
102
103
RCEsat
(Ω)
10−1
(1)
(2)
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 9 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
8. Test information
Fig 13. BISS transistor switching time definition
VCC = −10 V; IC = −0.5 A; IBon = −0.025 A; IBoff = 0.025 A
Fig 14. Test circuit for switching times
006aaa266
−IBon (100 %)
−IB
input pulse
(idealized waveform)
−IBoff
90 %
10 %
−IC (100 %)
−IC
td
ton
90 %
10 %
tr
output pulse
(idealized waveform)
tf
t
ts
toff
RC
R2
R1
DUT
mgd624
Vo
RB
(probe)
450 Ω
(probe)
450 Ω
oscilloscope oscilloscope
VBB
VI
VCC
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 10 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
9. Package outline
10. Packing information
[1] For further information and the availability of packing methods, see Section 14.
Fig 15. Package outline SOT223 (SC-73)
Dimensions in mm 04-11-10
6.7
6.3
3.1
2.9
1.8
1.5
7.3
6.7
3.7
3.3
1.1
0.7
1 2 3
4
4.6
2.3 0.8
0.6
0.32
0.22
Table 8. Packing methods
The indicated -xxx are the last three digits of the 12NC ordering code.[1]
Type number Package Description Packing quantity
1000 4000
PBSS9110Z SOT223 8 mm pitch, 12 mm tape and reel -115 -135
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 11 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
11. Soldering
Fig 16. Reflow soldering footprint SOT223 (SC-73)
Fig 17. Wave soldering footprint SOT223 (SC-73)
sot223_fr
1.2
(4×)
1.2
(3×)
1.3
(4×)
1.3
(3×)
6.15
7
3.85
3.6
3.5
0.3
3.9 7.65
2.3 2.3
6.1
4
1 2 3
solder lands
solder resist
occupied area
solder paste
Dimensions in mm
sot223_fw
1.9
6.7
8.9
8.7
1.9
(3×)
1.9
1.1 (2×)
6.2
2.7 2.7
2
4
1 3
solder lands
solder resist
occupied area
preferred transport
direction during soldering
Dimensions in mm
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 12 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
12. Revision history
Table 9. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PBSS9110Z_3 20091211 Product data sheet - PBSS9110Z_2
Modifications: • This data sheet was changed to reflect the new company name NXP Semiconductors,
including new legal definitions and disclaimers. No changes were made to the technical
content.
• Figure 16 “Reflow soldering footprint SOT223 (SC-73)”: updated
• Figure 17 “Wave soldering footprint SOT223 (SC-73)”: updated
PBSS9110Z_2 20060724 Product data sheet - PBSS9110Z_1
PBSS9110Z_1 20040609 Product data sheet - -
PBSS9110Z_3 © NXP B.V. 2009. All rights reserved.
Product data sheet Rev. 03 — 11 December 2009 13 of 14
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
13. Legal information
13.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
13.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
13.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
at http://www.nxp.com/profile/terms, including those pertaining to warranty,
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
13.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
14. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] data sheet Qualification This document contains data from the preliminary specification.
Product [short] data sheet Production This document contains the product specification.
NXP Semiconductors PBSS9110Z
100 V, 1 A PNP low VCEsat (BISS) transistor
© NXP B.V. 2009. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 11 December 2009
Document identifier: PBSS9110Z_3
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 43020-1200
Status: Active
Overview: Micro-Fit 3.0™ Connectors
Description: Micro-Fit 3.0™ Plug Housing, Dual Row, with Panel Mount Ears, 12 Circuits
Documents:
3D Model Test Summary TS-43045-001 (PDF)
Drawing (PDF) RoHS Certificate of Compliance (PDF)
Product Specification PS-43045 (PDF) Product Literature (PDF)
Packaging Specification PK-43020-001 (PDF)
Agency Certification
CSA LR19980
TUV R72081037
UL E29179
General
Product Family Crimp Housings
Series 43020
Application Power, Wire-to-Wire
Comments Glow Wire Equivalent Part Number 43020-1208
Overview Micro-Fit 3.0™ Connectors
Product Literature Order No 987650-5984
Product Name Micro-Fit 3.0™
UPC 800754383530
Physical
Circuits (maximum) 12
Circuits Detail 12
Color - Resin Black
Flammability 94V-0
Gender Male
Glow-Wire Compliant No
Lock to Mating Part Yes
Material - Resin Polyester
Net Weight 1.476/g
Number of Rows 2
Packaging Type Bag
Panel Mount Yes
Pitch - Mating Interface 3.00mm
Pitch - Termination Interface 3.00mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -40°C to +105°C
Electrical
Current - Maximum per Contact 5A
Material Info
Reference - Drawing Numbers
Packaging Specification PK-43020-001
Product Specification PS-43045, RPS-43045-003, RPS-43045-004
Sales Drawing SDA-43020-****
Test Summary TS-43045-001
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
43020Series
Mates With
43025 Micro-Fit 3.0™ Receptacle Housing
Use With
Micro-Fit 3.0™ Crimp Terminal, MaleThis document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 07/03/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 87439-0800
Status: Active
Overview: Pico-Spox™
Description: 1.50mm Pitch Pico-SPOX™ Wire-to-Board Housing, 8 Circuits, Off-White Housing
Documents:
3D Model RoHS Certificate of Compliance (PDF)
Drawing (PDF) Product Literature (PDF)
Product Specification PS-87437 (PDF)
Agency Certification
CSA LR19980
UL E29179
General
Product Family Crimp Housings
Series 87439
Application Signal, Wire-to-Board
MolexKits Yes
Overview Pico-Spox™
Product Literature Order No USA-235
Product Name Pico-SPOX™
UPC 800754313278
Physical
Circuits (maximum) 8
Color - Resin Natural
Flammability 94V-0
Gender Female
Glow-Wire Compliant No
Lock to Mating Part Yes
Material - Resin Nylon
Net Weight 0.120/g
Number of Rows 1
Packaging Type Bag
Panel Mount No
Pitch - Mating Interface 1.50mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -55°C to +105°C
Electrical
Current - Maximum per Contact 2.5A
Material Info
Reference - Drawing Numbers
Product Specification PS-87437, RPS-87437, RPS-87437-001,
RPS-87437-200
Sales Drawing SD-87439-**00
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
87439Series
Mates With
Pico-SPOX™ Wire-to-Board Header 87437 ,
87438
Use With
87421 Pico-SPOX™ Crimp Terminal
This document was generated on 07/03/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 01/08/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 43160-3102
Status: Active
Overview: Sabre™ Power Connector
Description: 7.50mm Pitch Sabre™ Header, Right Angle, 2 Circuits, Glow Wire Compatible.
Recommended PCB Thickness 1.60mm, with Board Lock
Documents:
3D Model RoHS Certificate of Compliance (PDF)
Drawing (PDF) Product Literature (PDF)
Product Specification PSX-44441-9999 (PDF)
Agency Certification
CSA LR19980
TUV R72130381
UL E29179
General
Product Family PCB Headers
Series 43160
Application Power, Wire-to-Board
Comments "Fully Polarized, high power wire to board and
wire to wire connector systemThis Molex
product is manufactured from material that has the
following ratings, tested by independent agencies:.
a) A Glow Wire Ignition Temperature (GWIT) of at
least 775 deg C per IEC 60695-2-13.. b) A Glow
Wire Flammability Index (GWFI) above 850 deg C
per IEC 60695-2-12.and hence complies with the
requirements set out in the International Standard IEC
60335-1 5th edition - household and similar electrical
appliances - safety, section 30 Resistance to heat
and fire.
The customers using this product
must determine its suitability for use in their particular
application through testing or other acceptable means
as described in end-product glow-wire flammability test
standard IEC 60695-2-11 and any applicable product
end-use standard(s).
If it is determined during
the customer’s evaluation of suitability, that higher
performance is required, please contact Molex for
possible product options."
Overview Sabre™ Power Connector
Product Literature Order No 987650-5662
Product Name Sabre™
UPC 800754378185
Physical
Breakaway No
Circuits (Loaded) 2
Circuits (maximum) 2
Color - Resin Black
Durability (mating cycles max) 25
First Mate / Last Break No
Flammability 94V-0
Glow-Wire Compliant Yes
Guide to Mating Part No
Keying to Mating Part Yes
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Not Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
43160Series
Mates With
44441-2002 Sabre™ Receptacle Housing
Lock to Mating Part Yes
Material - Metal Brass
Material - Plating Mating Tin
Material - Plating Termination Tin
Material - Resin High Temperature Thermoplastic
Net Weight 3.331/g
Number of Rows 1
Orientation Right Angle
PC Tail Length 3.81mm
PCB Locator Yes
PCB Retention Yes
PCB Thickness - Recommended 1.60mm
Packaging Type Tray
Pitch - Mating Interface 7.50mm
Pitch - Termination Interface 7.50mm
Plating min - Mating 0.889μm
Plating min - Termination 0.889μm
Polarized to Mating Part Yes
Polarized to PCB Yes
Shrouded Fully
Stackable No
Surface Mount Compatible (SMC) No
Temperature Range - Operating -40°C to +75°C
Termination Interface: Style Through Hole
Electrical
Current - Maximum per Contact 18A
Voltage - Maximum 600V
Solder Process Data
Duration at Max. Process Temperature (seconds) 5
Lead-free Process Capability Wave Capable (TH only)
Max. Cycles at Max. Process Temperature 1
Process Temperature max. C 235
Material Info
Reference - Drawing Numbers
Product Specification PSX-44441-9999
Sales Drawing SDA-43160-****
This document was generated on 01/08/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 39-00-0038
Status: Active
Overview: Mini-Fit Jr.™ Power Connectors
Description: Mini-Fit® Female Crimp Terminal, Tin (Sn) over Copper (Cu) Plated Brass, 18-24
AWG, Reel
Documents:
Drawing (PDF) Product Specification PS-52034-003 (PDF)
Product Specification PS-51010-005 (PDF) Product Specification PS-52034-004 (PDF)
Product Specification PS-51010-006 (PDF) Product Specification PS-5556-001 (PDF)
Product Specification PS-51045-001 (PDF) Product Specification PS-5556-002 (PDF)
Product Specification PS-51045-002 (PDF) Packaging Specification PK-5556-001 (PDF)
Product Specification PS-51045-004 (PDF) Test Summary TS-5556-002 (PDF)
Product Specification PS-51096-001 (PDF) RoHS Certificate of Compliance (PDF)
General
Product Family Crimp Terminals
Series 5556
Application Power
Crimp Quality Equipment Yes
Overview Mini-Fit Jr.™ Power Connectors
Packaging Alternative 39-00-0039 (Loose)
Product Name Mini-Fit®
UPC 800753585010
Physical
Durability (mating cycles max) 30
Gender Receptacle
Material - Metal Brass
Material - Plating Mating Tin
Material - Plating Termination Tin
Net Weight 0.130/g
Packaging Type Reel
Plating min - Mating 0.889μm
Plating min - Termination 0.889μm
Termination Interface: Style Crimp or Compression
Wire Insulation Diameter 1.30-3.10mm
Wire Size AWG 18, 20, 22, 24
Wire Size mm² N/A
Electrical
Current - Maximum per Contact 9A
Voltage - Maximum 600V
Material Info
Old Part Number 5556T
Reference - Drawing Numbers
Packaging Specification PK-5556-001
Product Specification PS-51010-005, PS-51010-006, PS-51045-001,
PS-51045-002, PS-51045-004, PS-51096-001,
PS-52034-003, PS-52034-004, PS-5556-001,
PS-5556-002, RPS-30067-001, RPS-30067-002,
RPS-42474-001, RPS-51045-001, RPS-5557-008,
RPS-5557-024, RPS-5557-031, RPS-5557-036,
RPS-5557-037, RPS-5557-045, RPS-5557-046,
RPS-5566-002
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
5556Series
Mates With
5558 Mini-Fit® Crimp Male Terminals. Mini-
Fit Jr.™ Header, Dual Row, 5566 , 5569
Use With
5557 Mini-Fit Jr.™ Receptacle Housing,
30067 Mini-Fit® TPA, 42474 Mini-Fit®
BMI Panel Mount, 5559 Mini-Fit Jr.™ Plug
Housing, Dual Row
Application Tooling | FAQ
Tooling specifications and manuals are
found by selecting the products below.
Crimp Height Specifications are then
contained in the Application Tooling
Specification document.
Global
Description Product #
FineAdjust™
Applicator for
Insulation OD
0639023900
Sales Drawing SD-5556****
Test Summary TS-5556-002
1.40-1.70mm - 18-24
AWG
Extraction Tool 0011030044
Hand Crimp Tool for
Male and Female
Crimp Terminals,
16-24 AWG Wire
0638190900
FineAdjust™
Applicator for
Insulation OD
2.50-2.95mm - 18-24
AWG
0639002600
FineAdjust™
Applicator for
Insulation OD
1.65-2.05mm - 18-24
AWG
0639002900
FineAdjust™
Applicator for
Insulation OD
1.90-2.30mm - 18-24
AWG
0639015600
FineAdjust™
Applicator for
Insulation OD
2.50-2.95mm
Optimized for 18
AWG Only
0639024800
FineAdjust™
Applicator for
Insulation OD
2.30-2.60mm - 18-24
AWG
0639024900
T2 Terminator™
for insulation OD
2.50-2.95mm - 18-24
AWG
0639102600
T2 Terminator™ for
insulation OD 1.65
– 2.05mm – 18 – 24
AWG
0639102900
T2 Terminator™
for insulation OD
1.90-2.30mm - 18-24
AWG
0639115600
T2 Terminator™
for insulation OD
1.40-1.70mm - 18-24
AWG
0639123900
T2 Terminator™
for insulation OD
2.50-2.95mm
optimized for 18
AWG only
0639124800
T2 Terminator™
for insulation OD
2.30-2.60mm - 18-24
AWG
0639124900
Japan
Description Product #
Applicator for M211A
Bench Press, 18-24
AWG Wire
0570223000
Side-Feed Applicator
For Full-Auto
Machine
0570223200
Hand Extraction Tool 0570316000
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
For more complete information on any product, please visit our web site: www.aimtti.com
Measurably better value manual & bus programmable - Laboratory Power Supplies
Mixed-mode Regulation
Mixed-mode regulation with linear output stage
4 digit voltage and current meters on each output *
Constant voltage or constant current operation
Variable auxiliary output (1.5-5V@5A) on triple model
Switched remote sensing (not EX355P or EX752M)
Silent fan-free cooling **
DC output switches
Compact bench power supplies
Single, dual or triple outputs
Mixed-mode regulation
Power from 175W to 420W
Switched remote sense terminals
RS-232 interface model available
EX-R series
Model Outputs Voltage / Current Power Interfaces
EX355R One 0 to 35V / 0 to 5A 175W -
EX355P One 0 to 35V / 0 to 5A 175W RS232
EX355P-USB One 0 to 35V / 0 to 5A 175W USB
EX1810R One 0 to 18V / 0 to 10A 180W -
EX2020R One 0 to 20V / 0 to 20A 400W -
EX4210R One 0 to 42V / 0 to 10A 420W -
EX354RD Two 2 x (0 to 35V / 0 to 4A) 280W -
EX354RT Three 2 x (0 to 35V / 0 to 4A)
plus 1.5 to 5.0V @ 5A
305W
EX752M Two 2 x (0 to 75V / 0 to 2A)
or 0 to 75V / 0 to 4A
or 0 to 150V / 0 to 2A
300W
Brief specifications for main outputs:
Line & load regulation: <0.01%. Output noise: < 2mV rms.
Meter accuracies: voltage - 0.3% ± 1digit, current - 0.6% ± 1digit.
Sizes: singles - 140 x 160 x 295mm; dual/triple - 260 x 160 x 295mm (WxHxD)
The EX752M is a dual output 300
watt PSU with Multi-Mode capability.
This enables it to operate as a dual
power supply with two independent and
isolated outputs, or as a single power
supply of double the power.
As a dual, each output provides 0 to
75V at 0 to 2A (mode A). As a single,
the output can be selected as either 0
to 75V at 0 to 4A (mode B) or 0 to 150V
at 0 to 2A (mode C). In single modes,
the unused half of the unit becomes
completely inoperative and its displays
are blanked.
For those requiring a basic bus
controllable power supply, versions with
an RS-232 interface (EL302P) or a USB
interface (EL302P-USB) are available.
The EX series is the value-for-money
PSU for users who require higher power
levels. Mixed-mode regulation gives
excellent performance combined with
compact size and low weight.
Dual output and triple output models
are available in a similar casing style.
The EX354RT triple (illustrated) has a
variable voltage auxiliary output which
can be set using the digital displays.
** Note that the EX2020R and
EX4210R use fan assisted cooling.
All-linear regulation becomes impractical at higher
power levels, so Aim-TTi have developed a technology
that combines HF switch-mode pre-regulation with
linear final regulation.
This technique combines exceptional efficiency with
noise levels that are close to that of pure linears.
Mixed-mode regulation is used in the EX-R and TSX
series.
* Note that 3 digit current meters
are used on the EX355P and
EX752M and that voltmeter resolution
on the EX752M is 0.1V.
* Note that a 3 digit current
meters is used on the EL302P
& EL302P-USB, and that these
models do not have remote
sense terminals.
http://www.farnell.com/datasheets/1796748.pdf
SS-331
LCD Desoldering Station
User’s Manual
1st Edition,
©2014 Copyright by Prokit’s Industries Co., Ltd.
1
Description
SS‐331 designed for lead free desoldering especially. The quick heating and strong power are for convenient and clear soldering / desoldering all types of DIP components.
Reasonable structure, single hand operation and strong absorbing power can be easy removal of the residual solder from the one‐sided or two sided of the PCB.
This tool is used in the fields of electronic research, teaching and production, especially in the repairing and desoldering on the electronic appliances and communication equipments.
1.
Control Unit
The desoldering iron gun is controlled automatically by the micro‐processor. The digital control electronics and high‐quality sensor and heat exchange system guarantee precise temperature control at the soldering tip. The highest degree of temperature precision and optimal dynamic thermal behavior under load conditions is obtained by the quick and accurate recording of the measured values in a closed control circuit, and this design is especially for the lead‐free production techniques.
2.
Desoldering Iron gun
Desoldering iron gun with a power of 60W(Heat up rating 130W)and a wide spectrum of soldering tips can be used anywhere in the electronics field.
The high power and gun type design make this iron gun suitable for fine desoldering work. The heating element is made of ceramic and the sensor on the desoldering tip can control the desoldering temperature quickly and accurately.
2
Technical Specification
Voltage
220~240V AC
Power Consumption
140W
Temperature
160°C ~ 480°C
Vacuum Pressure
600mm Hg
Heating Element
Ceramic Heater
Accessories
Spare tip x 3 ( 0.8(on the gun)1.0/ 1.3mm) Cleaning tool x 3 (0.7/0.9/ 1.2mm) Filter sponge x 4 (φ20.8x1 +φ16.8x3)
Certificate
CE, GS, RoHS
Station Size (mm)
225 x 160 x 130
Weight (kgs)
2.5
Operating Instruction
Caution:Make sure that the four screws which are used to fasten the Diaphragm pump are removed from the control system before use. Otherwise serious damages may be caused to the user and the system.
1.
Place the desoldering iron gun in the holder separately. Then connect the plug to the receptacle on the station and turn clockwise to tighten the plug nut. Check that the power supply is corresponding to the specification on the type plate and the power switch is on the “OFF” position. Connect the control unit to the power supply and switch on the power. Then a self‐test is carried out in which all display elements are switched on briefly. The electronic system then switches on automatically to the set temperature and displays this value.
2.
The display and temperature setting
①.
Shows the actual temperature of the desoldering tip.
②.
Shows the setting temperature: Pressing the “UP” or “DOWN” button can switch the digital display to the set point display. The set‐point can be changed for ±1℃ by tapping the “UP” or “DOWN” button. Pressing the button will change the set‐point quickly. The digital display will return automatically to the actual value and the iron will reach to the setting temperature quickly.
③.
℃/℉ display: Switching the temperature display from ℃ to ℉ by pressing the “℃/℉”button and then the electronic system will display the actual temperature① and setting temperature② in ℉, and vice versa.
④.
When the actual temperature on the soldering tip is less than the set‐point, “HEAT ON” will display and make the desoldering tip heating up.
⑤.
When the absolute offset is more than ±10℃ between the actual temperature and the set‐point on the soldering tip or the nozzle, “WAIT” will display. It means that the temperature electronic control system is not in the stable situation, we should wait a moment to let the “WAIT” disappear.
⑥.
When “ERROR” display, there may be a trouble on the 3
4
Safety Instruction
1.
The manufacturer assumes no liability for uses other than those described in the operating instructions or for unauthorized alterations.
2.
The operating instructions and cautions should be read carefully and kept in an easily visible location in the vicinity of the control system. Non‐observance of the cautions will result in accidents, injury or risks to health.
Caution
1.
The power cord only can be inserted in approved power sockets or adapters.
2.
High Temperature
The temperature of the soldering tip will reach as high as around 400℃(752℉) when the power switch is on. Since mishandling may lead to burns and fire, be sure to comply with the following precautions:
①.
Do not touch metallic parts near the soldering tip/ nozzle.
②.
Do not use this system near the flammable items.
③.
Advise other people in the work area that the unit can reach a very high temperature and should be considered potentially dangerous.
④.
Turn off the power switch while taking breaks and when finishing using.
⑤.
Before replacing parts or storing the system, turn off the power and let it cool down to the room temperature.
⑥.
Warning: this tool must be placed on its stand when not in use.
5
⑦.
A fire may result if the appliance is not used with care, therefore:
1)
Be careful when using the appliance in places where there is combustible material.
2)
Do not apply to the same place for a long time.
3)
Do not use in presence of an explosive atmosphere.
4)
Be aware heat may be conducted to combustible materials that out of sight.
5)
Place the appliance on its stand after use and allow it to cool down before storage.
6)
Do not leave the appliance unattended when it is switched on.
3.
Take care of your tools
Do not use the tools for any applications other than soldering or desoldering.
Do not rap the iron against the work bench or otherwise subject the iron to severe shocks.
Do not file the soldering tip to remove the oxide, please wipe the tip on the cleaning sponge.
Use only accessories or attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury.
Please turn off the power before connecting or disconnecting the soldering iron.
4.
Maintenance
Before further use, safety devices or slightly damaged parts must be carefully checked for error‐free and intended operation. Inspect moving parts for error‐free operation and that they don’t bind, or whether any parts are damaged. Damaged safety devices and parts must be repaired or replaced by a qualified technician, so long as nothing else is indicated in the operation manual. Use only accessories or
6
attachments which are listed in the operation manual. Use of other tools and other accessories can lead to a danger of injury.
5.
Keep children at a distance
Warning: this appliance is not intended for use by young children and infirm persons unless they have been adequately supervised by a responsible person to ensure that they can use the appliance safely.
Warning: Young children should be supervised to ensure that they do not play with the appliance.
Unused soldering tools should be stored in a dry location which is out of the reach of children. Switch off all unused soldering tools.
6.
Protect yourself against electrical shocks
Avoid touching grounded parts with your body, e.g. pipes, heating radiators and so on. The grip of antistatic designed soldering tool is conductive.
7.
Work environment
Do not use the soldering tool in a moist or wet environment. The soldering iron should be placed on the holder after finished using.
8.
Observe the valid safety regulations at your work place.
SS-331數顯吸焊台
概述
SS-331 特別為無鉛吸焊而設計。快速升溫和大功率的特點使其可以方便快速的焊接/拆焊所有類型的DIP元器件。
合理的結構,單手操作和強大的吸焊功率能夠輕鬆的從PCB一面或兩面除去殘餘錫渣。
目前已廣泛的應用於電子科研,教學以及生產等單位,特別是家電維修和通訊器材維修人員所不可缺少的首選專用工具。
1.
控制單元
吸焊槍由微處理器自動控制。數位控制裝置和高品質的感測器及加熱交換系統保證對烙鐵頭的溫度進行精確的控制。通過快速準確的記錄閉和控制回路測量可以獲得作高的溫度精度和帶負載狀況下最佳熱量轉遞性能,特別適合用於無鉛制程工藝。
2.
吸焊槍 (5SS-331-DG)
吸焊槍的功率為 60W(額定加熱功率 130W),可以配各種尺寸的烙鐵頭(U系列),廣泛應用於電子領域。
大功率和細長外形設計使這個電烙鐵適合做精密的焊接操作,發熱芯採用陶瓷發熱材料製作,頂端溫度感測器設計其特點在於能夠快速並準確的控制焊接溫度。
7
技術規範.
電壓
220~240V AC
消耗功率
140W
溫度
160°C ~ 480°C
真空吸力
600mm Hg
發熱原件
陶磁發熱芯
配件
吸嘴 x 3(0.8(裝在吸槍上)1.0/ 1.3mm) 通針 x 3( 0.7/ 0.9/ 1.2mm) 過濾棉 x 4 ( 20.8mm x1 + 16.8mm x3)
認證
CE, GS, RoHS
尺寸(mm)
225 x 160 x 130
重量(kgs )
2.5
操作說明:
1
將吸焊槍放置在支架上。然後將插頭插入插座順時針方向鎖緊螺母。檢查供電電源符合本產品的規格並確認總電源開關處於OFF的位置。接通控制系統的電源並打開電源開關。系統進行自檢,所有的液晶顯示都暫時被點亮。電子系統自動打開並迅速達到設定的溫度值。
2
顯示幕和溫度設置:
數位顯示說明:
①
. 顯示吸焊烙鐵頭的實際溫度。
8
9
②
. 顯示的是設定溫度,通過按“UP"或“DOWN"鍵來改變設定值。輕壓單下“UP"或“DOWN"鍵設定值將以±1℃變化,持續按下“UP"或“DOWN"鍵設定值將會快速改變。改變設定值後,電子系統自動工作,顯示溫度會迅速到達設定值。
③
. ℃或℉溫度,通過按“℃/℉"按鈕切換攝氏或華氏溫度,切換後電子系統會自動顯示的攝氏或華氏實際溫度①和設定溫度②數值。
④
. 當烙鐵頭實際溫度小於設定溫度時顯示“HEAT ON"表示電子系統對烙鐵正在加熱。
⑤
. 當烙鐵頭實際溫度與設定溫度的絕對偏差大於±10℃時顯示“WAIT",表示電子控溫系統還沒到達穩定狀態,請稍做等待,待“WAIT"不顯示時即可正常使用了。
⑥
. 顯示“---"則表示系統有故障,或者是電烙鐵沒有正確連接到控制系統。
3
安全操作說明
3.1
製造商對於超出操作說明中所到的其他使用或未經授權的更改,不負任何責任。
3.2
應仔細閱讀操作說明及警告並將其放置在控制系統附近,如不遵守這些警告,將有可能發生意外事故,人體傷害或健康傷害。
4
警告及注意事項
4.1
電源線只能插入經認證過的電源插座或適配器中。
4.2
小心高溫:在開機狀態下,烙鐵頭或熱風槍焊嘴的溫度可以達到大約400℃(752℉)左右,由於不正確的操作可能會造成燒傷或引起火災,故應確保遵守以下預防措施:
不要讓金屬部件接觸到焊嘴和烙鐵頭;
不要在易燃物品附近使用該系統;
告知工作區域中的其他人員此設備會達到非常高的溫度應注意識別其潛在的危險性;
在休息及使用完後應關閉總電源
在更換零件或儲存前,應關閉總電源並讓其冷卻到
10
室溫
警告:不用時一定要將此工具放置在特定的支架上。
如使用不當可能會引起火災,因此
在有易燃物品的場所使用該設備一定要小心;
不要長時間在同一位置使用該設備;
不要在有爆炸性氣體的場所使用;
要知道熱量有可能會引燃不在視線範圍內的可燃物質;
使用完畢後要將器具放置在特定的支架上,且要在冷卻後方可收藏起來;
離開時必須要關閉電源開關。
4.3
愛護工具
不要將此設備用於焊接或脫焊以外的其他操作。
不要在工作臺上敲打電烙鐵或熱風筒或其他嚴重的撞擊。
不要銼烙鐵頭上的氧化層,請使用浸水的清潔棉擦除氧化層。
確保使用操作說明上列明的附件或配件,使用其他的工具或其他配件使本系統損壞或會有受傷的危險。
在接通或斷開錫槍前應先關閉電源。
4.4
工具保養 在使用前,應仔細檢查安全裝置或有輕微損害的零件無故障及在指定操作狀態。檢查活動的零件無故障操作,並且沒有繞線及零件損壞。已損壞的安全設備及零件都應由有資格的專業人員進行維修或更換。只使用操作說明中列出的配件。如果使用其他工具或配件有可能對操作人員造成傷害。
4.5
放置在兒童接觸不到的地方 警告:老人和兒童必須在監護人在場確保可安全使用的情況下方可使用該設備。警告:應確保兒童在沒有監護的情況下無法接觸到該設
備。
4.6
不用的焊接工具應存放在乾燥的,兒童接觸不到的地方。而且應該關閉所有未在使用狀態下的焊接工具的電源。
4.7
避免遭受電擊 避免用身體接觸接地零件,如:烙鐵管,散熱器等。抗靜電設計的焊接工具的把手是導電的。
4.8
工作環境 不要在潮濕的環境中使用焊接工具。電烙鐵及熱風槍用完後要放回到支架上。
4.9
遵守工作場所中的安全操作規定。
寶工實業股份有限公司
PROKIT’S INDUSTRIES CO., LTD.
http://www.prokits.com.tw
E-mail:pk@mail.prokits.com.tw
©2014 Prokit’s Industries Co., LTD. All rights reserved 2014001(C)
Connections to a Wider Range of Slaves Ensured by Upgraded Models
Master Conventional
models
New models
C200HW-SRM21
CQM1-SRM21
SRM1-C01
SRM1-C02
SRM1-C01-V1
SRM1-C02-V1
3G8B3-SRM00
3G8B3-SRM01
C200PC-ISA02-SRM
C200PC-ISA12-SRM
C200HW-SRM21-V1
CQM1-SRM21-V1
SRM1-C01-V2
SRM1-C02-V2
NKE-made Uniwire
C B /SS d
Communications mode
Slave
ade U e
CompoBus/S Send
Unit SDD-CS1
High-speed
communications
mode
Long-distance
communications
mode
SRT1 Series
FND-X-SRT
Yes
Yes
Yes
Yes
No
No
Products
from other
companies
SMC Solenoid valve
for SI manifold
use
VQ Series
SX Series
SY Series
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
CKD Solenoid valve
for saving wiring
effort
4TB1 and 4TB2 Series
4TB3 and 4TB4 Series
4G Series
MN4SO Series
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
Koganei Valve for saving
wiring effort
YS1A1, A2
YS2A1, A2
Yes
Yes
Yes
Yes
No
No
New product SRT2-AD02
SRT2-DA02
No
No
Yes
Yes
Yes
Yes
SRT2-VID08S(-1)
SRT2-VOD08S(-1)
SRT2-VID16ML(-1)
SRT2-VOD16ML(-1)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
SRT2-ID16(-1)
SRT2-OD16(-1)
SRT2-ID08(-1)
SRT2-OD08(-1)
SRT2-ROC16
SRT2-ROF16
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
CPM1A-SRT21 Yes Yes Yes
Products to be released soon SRT2-ID04(-1)
SRT2-OD04(-1)
SRT2-ID16T(-1)
SRT2-OD16T(-1)
SRT2-MD16T(-1)
SRT2-ROC08
SRT2-ROF08
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Note: 1. In high-speed communications mode, the maximum transmission distance is 100 m at a baud rate of 750 kbps. In long-distance
communications mode (i.e., a newly available mode), the maximum transmission distance is 500 m at a baud rate of 93.75 kbps.
2. The SRT2-AD04 and SRT2-DA02 are available for 16-bit synchronous communications.
11
Master Control Unit SRM1-C01-V2/C02-V2
Subminiature, Stand-alone Model with
CompoBus/S Master and SYSMAC
Controller Functions
Maximum number of Remote I/O points per Master:
256
Maximum number of Slaves per Master: 32
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Additional instructions (PID, SCL, NEG, ZCP)
ensure analog compatibility.
RS-232C port incorporated (SRM1-C02-V2).
RC
Ordering Information
Specifications Model
Buuilt-in sstaandd-aaloonee ccoontroolleer fuuncctioonss Without RS-232C SRM1-C01-V2
With RS-232C SRM1-C02-V2
Specifications
Master Specifications
Number of I/O points 256 points (128 inputs/128 outputs)
128 points (64 inputs/64 outputs)
Selectable by DM setting. The default setting is 256 points.
Max. number of Slaves per Master 256 points: 32
128 points: 16
I/O words Input words: 000 to 007
Output words: 010 to 017
Programming language Ladder diagram
Types of instruction 14 basic and 72 special instructions (123 instructions in total)
Execution time LD instruction: 0.97 ms
MOV instruction: 9.1 ms
Program capacity 4,096 words
Data memory 2,048 + 512 (read-only) words
Timers/Counters 128 timers/counters
Work bits 640 bits
Memory backup Flash memory (without battery): User programs
Super capacitor: Data memory (backed up for 20 days at an ambient temperature of 25°C)
Peripheral port 1 point
RS-232C port 1 point (SRM1-C02-V1 only)
Host Link, NT Link, 1:1 Link, or no protocol
Programming tool Programming Consoles: CQM1-PRO01-E, C200H-PRO27-E
SYSMAC-CPT: WS01-CPTB1-E (CD-ROM/FD)
SYSMAC Support Software (MS-DOS version): C500-ZL3AT1-E
Note: PID, SCL, NEG, and ZCP instructions are not supported by the SYSMAC-CPT.
SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2
12
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps/93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable:
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched using DM settings (default setting is 750,000 bps).
General Specifications
Supply voltage 24 VDC
Allowable supply voltage 20.4 to 26.4 VDC
Power consumption 3.5 W max.
Inrush current 12.0 A max.
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 57 Hz, 0.075-mm amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z
directions for 80 minutes each
(Time coefficient; 8 minutes × coefficient factor 10 = total time 80 minutes)
Shock resistance 147 m/s2 three times each in X, Y, and Z directions
Ambient temperature Operating: 0°C to 55°C
Storage: –20°C to 75°C
Humidity 10% to 90% (with no condensation)
Atmosphere Must be free from corrosive gas.
Terminal screw size M3
Power interrupt time DC type: 2 ms min.
Weight 150 g max.
SRM1-C01-V2/C02-V2 SRM1-C01-V2/C02-V2
13
Nomenclature
SRM1-C01-V2 SRM1-C02-V2
CPU Unit status indicator
CompoBus/S
communications status indicator
Indicates the status of the Compo-
Bus/S in operation and in communication
with Slaves.
Peripheral port
communications status indicator
Flashes when the peripheral port or
RS-232C port is in communication.
Connector cover
Peripheral port
Connect this port to programming
tools through dedicated cables.
Terminal block
Connector cover
RS-232C port
Connect this port to the
RS-232C interfaces of personal
computers and Programmable
Terminals.
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRM1-C01/C02-V2
The above dimensions apply to the SRM1-C02-V2. The SRM-C01-V2 has no RS-232C port.
14
Master Unit C200HW-SRM21-V1
Master Unit for CS1, C200HX, C200HG,
C200HE, and C200HS
A maximum of 256 I/O points available.
Connects to a maximum of 32 Slaves.
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Connection to Analog Terminals now supported.
RC
Ordering Information
PC Max. number of I/O points Model
C200HX (-Z), C200HG (-Z), C200HE (-Z),
C200HS, CS1
256 points (128 inputs/128 outputs) C200HW-SRM21-V1
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps, 93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable:
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched with the DIP switch.
C200HW-SRM21-V1 C200HW-SRM21-V1
15
Unit Specifications
Current consumption 150 mA max. at 5 VDC
Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs) (switchable)
Number of occupied words 256 points: 20 words (8 input words/8 output words, 4 status data)
128 points: 10 words (4 input words/4 output words, 2 status data)
PC CS1, C200HX (-ZE), C200HG (-ZE), C200HE (-ZE), C200HS
Number of points per node number 8 points
Max. number of Slaves per Master 32
Status data Communications Error Flag and Active Slave Node (see note)
Weight 200 g max.
Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460)
Note: These flags use the AR area.
Ratings
The ratings of the Unit are the same as those of the CS1, C200HX, C200HG, C200HE, and C200HS.
Nomenclature
Indicators
Indicates the operating status of the Master Unit and
the status of communications with the Slaves.
Rotary Switch
This switch sets the Master’s one-digit hexadecimal
unit number.
DIP Switch
These pins have the following functions:
Pin 1: Max. number of Slaves setting
Pin 2: Baud rate setting
Pins 3 to 4: Reserved (Always OFF.)
Communications Terminals
Connect the Slaves’ transmission cable to
these terminals.
C200HW-SRM21-V1 C200HW-SRM21-V1
16
Dimensions
Note: All units are in millimeters unless otherwise indicated.
C200HW-SRM21-V1
Note: Refer to the C200HX, C200HG, C200HE, C200HS, or CS1 Operation Manual for
details on the dimensions when the Master Unit is installed in the PC’s Backplane.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
17
Master Unit CQM1-SRM21-V1
Master Unit for CQM1
A maximum of 128 I/O points available (Possible to
set 32, 64, or 128 I/O points).
Connects to a maximum of 16/32 Slaves.
Communications cycle time: 0.5 ms max. (at baud
rate 750 kbps).
Communications distance: Extended to 500 m
max. (at baud rate 93.75 kbps).
Connection to Analog Terminals now supported.
RC
Ordering Information
PC Max. number of I/O points Model
CQM1-series PC 128 points (64 inputs/64 outputs) CQM1-SRM21-V1
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note 1)
Communications baud rate 750,000 bps, 93,750 bps (see note 2)
Communications
cycle time
High-speed
comm nications
0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Long-distance
comm nications
4.0 ms with 8 Slaves for inputs and 8 Slaves for outputs
communications
mode 6.0 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications
distance
High-speed
communications
mode
VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Long-distance
communications
mode
VCTF cable::
Main line length: 500 m max.
Branch line length: 6 m max.
Total branch line length: 120 m max.
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: 1. A terminator must be connected to the point in the system farthest from the Master.
2. The communications baud rate is switched with the DIP switch.
CQM1-SRM21-V1 CQM1-SRM21-V1
18
Unit Specifications
Current consumption 180 mA max. at 5 VDC
Number of I/O points 128 points (64 inputs/64 outputs), 64 points (32 inputs/32 outputs),
32 points (16 inputs/16 outputs) (switchable)
Number of occupied words 128 points: 4 input words/4 output words
64 points: 2 input words/2 output words
32 points: 1 input word/1 output word
PC 128 points: CQM1-CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
64 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
32 points: CQM1-CPU11-E/CPU21-E/CPU41-EV1/CPU42-EV1/CPU43-EV1/CPU44-EV1
Number of points per node number 4/8 points (switchable)
Max. number of Slaves per Master 32 (4 points per node number)
Status data Alarm terminal output
Weight 200 g max.
Approved standards UL 508 (E95399), CSA C22.2 No. 142 (LR51460)
Alarm Output Specifications
Maximum switching capacity 2 A at 24 VDC
Minimum switching capacity 10 mA at 5 VDC
Relay G6D-1A
Minimum ON time 100 ms
Circuit configuration
2 A at 24 VDC max.
Internal
circuit
CQM1-SRM21-V1
Ratings
The ratings of the Unit are the same as those for the CQM1.
Nomenclature
Indicators
Indicates the operating status of the Master Unit and
the status of communications with the Slaves.
DIP Switch
These pins have the following functions:
Pins 1 and 2: PC word allocation setting
Pin 3: Number of points setting
Pin 4: Baud rate setting
Pins 5 to 6: Reserved (Always OFF.)
Alarm Output Terminals
These terminals are shorted when an error occurs.
Connect to a warning device.
Communications Terminals
Connect the Slaves’ transmission cable to these
terminals.
Terminal block screws
These screws attach the terminal
block. The terminal block can be
removed when these screws are
loosened.
CQM1-SRM21-V1 CQM1-SRM21-V1
19
Dimensions
Note: All units are in millimeters unless otherwise indicated.
CQM1-SRM21-V1
Note: Refer to the CQM1 Operation Manual for details on the dimensions when
the Master Unit is installed in the PC’s Backplane.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
20
SYSMAC Board C200PC-ISA2-SRM
SYSMAC C200HX/HG/HE and
CompoBus/S Master Functions
Integrated into a Single PCB
Operates as a Programmable Controller to be built
into personal computers.
Programming is possible through Programming
Devices like the programming on C200HX/HG.
An optional Expansion Board is available for serial
communications.
Dedicated library in C is available for control.
Driver for Windows use is available.
Connects to a maximum of three Expansion I/O
Racks.
CompoBus/S Slave data is automatically read.
Ordering Information
PC Max. number of I/O points Model
C200HG-CPU43 256 points ( 128 inputs/128 outputs) C200PC-ISA02-SRM
C200HX-CPU64
56 o s 8 u s/ 8 ou u s)
C200PC-ISA12-SRM
Specifications
Communications Specifications
Communications method CompoBus/S protocol
Coding method Manchester coding method
Connection method Multi-drop method and T-branch method (see note)
Communications baud rate 750,000 bps
Communications cycle time 0.5 ms with 8 Slaves for inputs and 8 Slaves for outputs
0.8 ms with 16 Slaves for inputs and 16 Slaves for outputs
Communications cable 2-conductor VCTF cable (0.75 x 20)
Dedicated flat cable
Communications distance VCTF cable:
Main line length: 100 m max.
Branch line length: 3 m max.
Total branch line length: 50 m max.
Flat cable:
Main line length: 30 m max.
Branch line length: 3 m max.
Total branch line length: 30 m max.
(When flat cable is used to connect fewer than 16 Slaves, the main line can be up to
100 m long and the total branch line length can be up to 50 m.)
Max. number of connecting nodes 32
Error control checks Manchester code check, frame length check, and parity check
Note: A terminator must be connected to the point in the system farthest from the Master.
C200PC-ISA2-SRM C200PC-ISA2-SRM
21
Unit Specifications
Power supply voltage 4.875 to 5.25 VDC
Current consumption 0.5 A max. (see note 1)
Number of I/O points 256 points (128 inputs/128 outputs), 128 points (64 inputs/64 outputs), (switchable)
Number of occupied words 256 points: 20 words (8 input words, 8 output words, and 4 status data words) (see note 2)
128 points: 10 words (4 input words, 4 output words, and 2 status data words)
Number of points per node number 8 points
Max. number of Slaves per Master 32
Status data Communications Error Flag and Active Slave Node (see note 2)
Weight 200 g max.
Note: 1. The current consumption will be 0.8 A max. if the Programming Console is connected through the optional Expansion Board.
2. The occupied words are in the IR area.
22
I/O Link Unit CPM1A-SRT21
I/O Link Unit for CPM2A/CPM1A
Operates as a Slave of the CompoBus/S Master
Unit.
Exchanges eight inputs and eight outputs with the
Master.
Approved by UL and CSA standards, and bears the
CE marking.
RC
Ordering Information
CPU Units
I/O configuration Power supply Output method Input Output Model
30-point I/O model AC Relay 18 12
CPM1A-30CDR-A*
DC Relay
CPM1A-30CDR-D*
Transistor (sink) CPM1A-30CDT-D
Transistor (source) CPM1A-30CDT1-D
AC Relay CPM2A-30CDR-A
DC Relay CPM2A-30CDR-D
Transistor (sink) CPM2A-30CDT-D
Transistor (source) CPM2A-30CDT1-D
40-point I/O model AC Relay 24 16
CPM1A-40CDR-A*
DC Relay
CPM1A-40CDR-D*
Transistor (sink) CPM1A-40CDT-D
Transistor (source) CPM1A-40CDT1-D
AC Relay CPM2A-40CDR-A
DC Relay CPM2A-40CDR-D
Transistor (sink) CPM2A-40CDT-D
Transistor (source) CPM2A-40CDT1-D
60-point I/O model AC Relay 36 24
CPM2A-60CDR-A
DC Relay
CPM2A-60CDR-D
Transistor (sink) CPM2A-60CDT-D
Transistor (source) CPM2A-60CDT1-D
Note: Models marked with asterisks do not bear CE markings.
Expansion Units
Product Number of connectable
Units per CPU Unit
Output method Input Output Model
Expansion I/O Units 3 max. (see note) Relay 12 8
CPM1A-20EDR1
Transistor (sink)
CPM1A-20EDT
Transistor (source) CPM1A-20EDT1
--- 8 --- CPM1A-8ED
Relay --- 8 CPM1A-8ER
Transistor (sink) --- 8
CPM1A-8ET
Transistor (source)
CPM1A-8ET1
Analog I/O Unit 3 max. (see note) Analog 2 1 CPM1A-MAD01
CompoBus/S I/O Link Unit 3 max. (see note) --- 8 I/O link points 8 I/O link points CPM1A-SRT21
Note: Only a single Unit will be connectable if the NT-AL001 is connected to the RS-232C port.
CPM1A-SRT21 CPM1A-SRT21
23
Specifications
Slave CompoBus/S Slave
Number of I/O points 8 inputs and 8 outputs
Number of occupied I/O memory
words of CPM2A
1 input word and 1 output word (same as other Expansion Units in allocation)
Node address setting DIP switch
Dimensions
Note: All units are in millimeters unless otherwise indicated.
CPM1A-SRT21
Installation
Connection Examples
CompoBus/S Master Unit or
SRM1 CompoBus/S Master
Control Unit CPM1A or CPM2A CPU Unit
CPM1A-SRT21 CompoBus/S
I/O Link Unit
CS1
C200H
CQM1
SRM1
Dedicated flat cable or VCTF cable Connectable to 16 Units max.
(Eight CQM1-SRM21 Units max.)
Note: A single CompoBus/S I/O Link Unit together with a maximum of two other Expansion I/O Units can be connected to the CPM1A or
CPM2A CPU Unit.
24
Transistor Remote Terminal SRT-ID/OD
Long-distance Communications
Supported by SRT2 Models
(Long-distance/High-speed
Communications Selection)
SRT1 models support high-speed communications
only.
SRT2 models support long-distance communications
and high-speed communications.
Ultra-compact at 80 x 48 x 50 (W x H x D) mm for
4-point and 8-point terminals and 105 x 48 x 50 (W x
H x D) mm for 16-point terminals.
Two independent power supplies can be used
because the I/O terminals are insulated from the
internal circuits.
DIN track mounting and screw mounting are both
supported.
RC
Ordering Information
I/O classification Internal I/O circuit
common
I/O points Rated voltage I/O rated voltage Model
Input NPN (+ common) 4 24 VDC 24 VDC SRT1-ID04
PNP (– common)
C C
SRT1-ID04-1
Output NPN (– common) SRT1-OD04
PNP (+ common) SRT1-OD04-1
Input NPN (+ common) 8
SRT2-ID08
PNP (– common)
SRT2-ID08-1
Output NPN (– common) SRT2-OD08
PNP (+ common) SRT2-OD08-1
Input NPN (+ common) 16 SRT2-ID16
PNP (– common)
6
SRT2-ID16-1
Output NPN (– common) SRT2-OD16
PNP (+ common) SRT2-OD16-1
Note: For more details about connections supported by the Master Unit, refer to page 10.
Specifications
Ratings
Inputs
Input current 6 mA max./point
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. between each input terminal and V
OFF voltage 5 VDC max. between each input terminal and V
OFF current 1 mA max.
Insulation method Photocoupler
Input indicators LED (yellow)
SRT-ID/OD SRT-ID/OD
25
Outputs
Rated output current 0.3 A/point
Residual voltage 0.6 V max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
Output indicators LED (yellow)
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
I/O power supply current 1 A max.
Current consumption (see note) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 4-point and 8-point Terminals: 16 Input Terminals and 16 Output Terminals per Master
16-point Terminals: 8 Input Terminals and 8 Output Terminals per Master
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength No damage when 50 N pull load was applied for 10 s
Screw tightening torque 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 4-point and 8-point Terminals: 80 g max.
16-point Terminals: 110 g max.
Approved standards (4/8 points) UL 508, CSA C22.2 No. 14
Note: The above current consumption is the value with all 4 and 8 and 16 points turned ON excluding the current consumption of the external
sensor connected to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
SRT-ID/OD SRT-ID/OD
26
Nomenclature
I/O Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 14- to 26.4-VDC power supply.
CompoBus/S Terminal
Connect the CompoBus/S
DIP Switch communications cable.
Used for node number setting and holding or clearing outputs for communications error.
Refer to the Compobus/S Operation Manual (W266) for details on DIP switch settings.
Baud rate setting
0 to 7
ERR
COMM
PWR
Node Number Settings
Output HOLD/CLEAR settings (Output Terminals only)
Screw mounting hole
Indicators
Indicator Display Color Meaning
PWR Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Lit Yellow Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Lit Red A communications error has occurred.
Not lit Normal communications or the Unit is in standby status.
0 to 7 Lit Yellow The corresponding I/O signal is ON.
Not lit The corresponding I/O signal is OFF.
Output HOLD/CLEAR Mode
Mode Pin 1 Setting
HOLD ON Output status is maintained.
CLEAR OFF Output status is cleared when a communications error occurs.
Note: 1. Pin 1 is factory-set to OFF.
2. This function is available to Output Terminals only.
SRT-ID/OD SRT-ID/OD
27
Node Number Settings
Node number Pin 3 Pin 4 Pin 5 Pin 6
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
Note: 1. The node number is factory-set to 0.
2. For node number settings, refer to the CompoBus/S Operation Manual (W266).
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID04 (-1)
SRT1-OD04 (-1)
SRT2-ID08 (-1)
SRT2-OD08 (-1)
(54)
27
80
48
65
Two, 4.2 dia. or M4
Sixteen, M3
Mounting Holes
(20.5)
(11)
SRT-ID/OD SRT-ID/OD
28
SRT2-ID16 (-1)
SRT2-OD16 (-1)
48
Two, 4.2 dia. or M4
(50)
(28)
Mounting Holes
(54)
27
50
(20.5)
(11)
105
22–M3
Installation
Internal Circuit Configuration
SRT1-ID04 SRT1-ID04-1
Photocoupler
Photocoupler
Internal
circuit
Internal
circuit
24 VDC(+)
Photocoupler
Photocoupler
(–)
SRT1-OD04
Internal
circuit
24 VDC
Photocoupler
Photocoupler
Voltage
stepdown
SRT1-OD04-1
Internal
circuit
Photocoupler
Photocoupler
24 VDC (P)
(P)
24 VDC (P)
(P)
Voltage
stepdown
V
V
V
1
G
0
2
G
G
V
V
V
1
V
0
2
G
SRT-ID/OD SRT-ID/OD
29
SRT2-OD08-1
Internal
circuit
Photocoupler
Photocoupler
SRT2-ID08 SRT2-ID08-1
Photocoupler
Photocoupler
Internal
circuit
24 VDC(+)
Internal
circuit
Photocoupler
Photocoupler
(–)
SRT2-OD08
Internal
circuit
24 VDC
Photocoupler
Photocoupler
Voltage
stepdown
SRT2-ID16
Photocoupler
Internal Photocoupler
circuit
SRT2-ID16-1
Internal
circuit
Photocoupler
Photocoupler
Internal
circuit
SRT2-OD16
Photocoupler
Photocoupler
Voltage
stepdown
SRT2-OD16-1
Internal
circuit
Photocoupler
Photocoupler
Voltage
stepdown
24 VDC (P)
24 VDC (P)
(P)
Voltage
stepdown
(P)
24 VDC (P)
(P)
24 VDC (P)
(P)
V
V
1
0
2
G
G
V
V
1
0
2
G
V
V
1
0
2
G
SRT-ID/OD SRT-ID/OD
30
External Connections (NPN Models)
Input
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Three-wired Sensors
SRT1-ID04 with NPN Output SRT2-ID08 and SRT2-ID16 with NPN Output
Two-wired Sensors
SRT1-ID04 SRT2-ID08 and SRT2-ID16
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Output
SRT1-OD04 SRT2-OD08 and SRT2-ID16
L 1 L 2 L 1 L 2
Terminal Arrangement and I/O Device Connection Example (PNP Models)
Note: The connections examples shown are for PNP models.
Input
SRT1-ID04 SRT2-ID08
Output
SRT1-OD04 SRT2-OD08
Blue
Brown
Blue
Brown
Blue
Brown
Brown
Blue
Communications
path
Communications
power
supply
power
supply
power
supply
Communications
path
Communications
power
supply
Communications
path
Communications
power
supply
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
Solenoid, valve Solenoid
I/O Communications
path
Communications
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
Black
Black
SRT2-ID16
SRT2-OD16
Communications
path
Communications
power
supply
I/O
power
supply
Photoelectric sensor or
proximity sensor (threewired
sensor with a builtin-
amplifier)
Limit switch
(two-wired
sensor)
I/O
power
supply
Communications
path
Communications
power
supply Solenoid Valve Valve
power
supply
I/O
Blue
Brown
Blue
Brown
Black
I/O I/O
SRT-ID/OD SRT-ID/OD
31
External Connections (PNP Models)
Input
Three-wired Sensors
SRT1-ID04-1 with NPN Output SRT2-ID08-1 and SRT2-ID16-1 with NPN Output
Two-wired Sensors
SRT1-ID04-1 SRT2-ID08-1 and SRT2-ID16-1
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Black
Sensor 2
Blue
Brown
Black
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Sensor 1
Blue
Brown
Sensor 2
Blue
Brown
Output
SRT1-OD04-1 SRT2-OD08-1 and SRT2-ID16-1
L 1 L 2 L 1 L 2
Terminal Arrangement and I/O Device Connection Example (PNP Models)
Note: The connections examples shown are for NPN models.
Input
SRT1-ID04-1 SRT2-ID08-1
Output
SRT1-OD04-1 SRT2-OD08-1
Blue
Brown
Blue
Brown
Blue
Brown
Brown
Blue
Communications
path
Communications
power
supply
power
supply
power
supply
Communications
path
Communications
power
supply
Communications
path
Communications
power
supply
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
Solenoid, valve Solenoid
I/O Communications
path
Communications
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
Black
Black
SRT2-ID16-1
SRT2-OD16-1
Communications
path
Communications
power
supply
I/O
power
supply
Photoelectric sensor or proximity
sensor (three-wired sensor
with a built-in-amplifier)
Limit switch
(two-wired sensor)
I/O
power
supply
Communications
path
Communications
power
Valve supply Solenoid Valve
power
supply
I/O
Blue
Brown
Blue
Brown
Black
I/O I/O
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For general precautions refer to page 80.
32
Remote I/O Terminal SRT1-D16T(-1)
Models with 3-tier Terminals (16 Points)
are Added to the Remote I/O Terminal
Series.
Six Models are Available Depending on
the NPN or PNP Configuration, Input
Points, I/O Points, or Output Points.
Incorporates easy-to-wire terminals each connecting
to a single wire.
Reduces designing and wiring effort.
Incorporates a removable circuit block of cassette
construction.
Ordering Information
I/O classification Internal I/O circuit
common
I/O points I/O connection method Model
Digital input NPN (+ common) 16 M3 terminal block SRT1-ID16T
PNP (– common)
6 3 e a boc
SRT1-ID16T-1
Digital I/O NPN (+ common) SRT1-MD16T
PNP (– common) SRT1-MD16T-1
Digital output NPN (– common) SRT1-OD16T
PNP (+ common) SRT1-OD16T-1
Specifications
Ratings
Inputs
Input current 6 mA max./point at 24 V and 3 mA min./point at 17 V
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage NPN: 15 VDC min. between V terminals and each input terminal
PNP: 15 VDC min. between G terminals and each input terminal
OFF voltage NPN: 5 VDC max. between V terminals and each input terminal
PNP: 5 VDC max. between G terminals and each input terminal
OFF current 1 mA max.
Insulation method Photocoupler
Outputs
Rated output current 0.5 A max./point
Residual voltage 1.2 V max.
ON delay time 0.5 ms max.
OFF delay time 1.0 ms max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
SRT1-D16T(-1) SRT1-D16T(-1)
33
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
I/O power supply current 4 A max./common
Current consumption (see note) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC between insulated circuits
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage with 100 N pull load applied in all directions.
Terminal strength No damage with 100 N pull load applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight 300 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
Nomenclature
ERR Indicator: Indicates communications errors.
COMM Indicator: ON while the Unit is in data communication.
Power Indicator
HOLD/CLR DIP Switch
The DIP switch is on the
left-hand side under the cover
on the upper part of the Remote
I/O Terminal.
Holding or clearing output when a
communications error occurs.
Address Setting Switch
Set the rotary switch to the node
address by referring to the
following table.
I/O Indicators
M4 Mounting Screw
Terminal Cover
The Unit stops operating with the
cover opened.
I/O and I/O Device Power Supply Terminals 8 to 15
These terminals will be used as output terminals 0
through 7 if the connected device handles both input
and output signals.
I/O and I/O Device Power Supply Terminals 0 to 7
These terminals will be used as input terminals if the
connected device handles both input and output
signals.
I/O Power Supply Terminals
Connect 24-VDC I/O power supply
Fixture Track
Used for DIN track mounting.
CompoBus/S Internal Power Supply
Terminals (BS+ and BS–)
CompoBus/S Communications Cable
Terminals (BDH and BDL)
Address Setting Switch
Node address Setting (Hex)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
Node address Setting (Hex)
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
SRT1-D16T(-1) SRT1-D16T(-1)
34
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID16T (-1)
SRT1-MD16T (-1)
SRT1-OD16T (-1)
Mounting Holes
Two, 4.2 dia. or M4
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT1-ID16T SRT1-MD16T
SRT1-ID16T-1 SRT1-MD16T-1
SRT1-OD16T
SRT1-OD16T-1
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(0 to 7)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Inputs
(8 to 15)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Inputs
(0 to 7)
Outputs
(0 to 7)
DC-DC converter
(isolated type)
Photocoupler
Photocoupler
Outputs
(0 to 7)
Outputs
(8 to 15)
I/O
power
supply
I/O
power
supply
I/O
power
supply
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
SRT1-D16T(-1) SRT1-D16T(-1)
35
External Connections
Input (NPN Models)
SRT1-ID16T
SRT1-MD16T
Output (NPN Models)
SRT1-OD16T
SRT1-MD16T
Input (PNP Models)
SRT1-ID16T-1
SRT1-MD16T-1
Output (PNP Models)
SRT1-OD16T-1
SRT1-MD16T-1
Two-wired sensor Three-wired sensor Three-wired sensor
Solenoid, valve, etc. Solenoid, valve, etc.
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Black (Black)
Blue (Red)
Brown (White)
36
Relay-mounted Remote Terminal SRT-R
Ultra-miniature 8-point and 16-point
Relay-mounted Terminals
Ultra-compact
(8-point models: 101 x 51 x 51 mm (W x H x D);
16-point models: 156 x 51 x 51 mm (W x H x D))
Power MOS FET Relay and Relay models.
DIN track mounting and screw mounting are
available.
RC
Ordering Information
Classification I/O points Rated voltage Relay coil rating Model Applicable relay
Relay output 8 points 24 VDC 24 VDC SRT1-ROC08 G6D-1A
16 points SRT2-ROC16
Power MOS FET
l t t
o e OS 8 points SRT1-ROF08 G3DZ-2R6PL
relay output 16 points SRT2-ROF16
Note: For details about connections to the Master Unit, refer to page 10.
Specifications
Ratings
Relay Output
Item SRT1-ROC08, SRT2-ROC16
Applicable relay G6D-1A (one for each output point)
Rated load 3 A at 250 VAC, 3 A at 30 VDC (resistive load)
Rated carry current 3 A (see note 1)
Max. contact voltage 250 VAC, 30 VDC
Max. contact current 3 A
Max. switching capacity 730 VA (AC), 90 W (DC)
Min. permissible load (see note 2) 10 mA at 5 VDC
Life expectancy Electrical: 100,000 operations min. (rated load, at 1,800 operations/h)
Mechanical: 20,000,000 operations min. (at 18,000 operations/h)
Note: 1. The maximum permissible current of COM0 to COM7 is 3 A.
2. This value fulfills the P reference value of opening/closing at a rate of 120 times per min (ambient operating environment and determination
criteria according to JIS C5442).
Power MOS FET Relay Output
Item SRT1-ROF08, SRT2-ROF16
Applicable relay G3DZ-2R6PL (one for each output point)
Load voltage 3 to 264 VAC, 3 to 125 VDC
Load current 100 mA to 0.3 A
Inrush current 6 A (10 ms)
SRT-R SRT-R
37
Characteristics
Power supply voltage 24 VDC +10%/–15%
Current consumption (see note) 350 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 8-point Units: 16 per Master
16-point Units: 8 per Master
Dielectric strength 2,000 VAC for 1 min (1-mA sensing current) between all output terminals and power supply,
between communication terminals, and between contacts of different polarities
500 VAC for 1 min (1-mA sensing current) between all output terminals and power supply,
between communication terminals, and between all power supply terminals and
communications terminals
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 55 Hz, 0.75-mm double amplitude
Shock resistance Malfunction: 100 m/s2
Destruction: 300 m/s2
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
Terminal strength No damage when 50 N pull load was applied for 10 s
Screw tightening torque 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 8-point models: 145 g max., 16-point models: 240 g max.
Approved standards UL 508, CSA C22.2 No. 14
Note: The above current consumption is a value with all the points turned ON including the current consumption of the G6D coil for the
Remote Output Terminal.
SRT-R SRT-R
38
Nomenclature
SRT2-ROC16
SRT2-ROF16
SRT1-ROC08
SRT1-ROF08
Mounting Holes
Output Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 24-VDC power supply.
CompoBus/S Terminals
Connect the CompoBus/S communications cable.
Mounting Holes
DIP Switch
Used for node number setting and holding or
clearing outputs for communications error.
Note: Always turn off the Unit before changing DIP switch settings.
Mounting Holes
Output Terminals
I/O Power Supply Terminals
Connect 24-VDC power supply
Communications Power Supply Terminals
Connect 24-VDC power supply.
CompoBus/S Terminals
Connect the CompoBus/S communications cable.
Mounting Holes
DIP Switch
Used for node number setting and holding or clearing outputs for communications error.
0 to 15
ERR
COMM
PWR
Output HOLD/CLEAR setting (Output model only)
Baud rate setting
Node address setting
Indicators
Indicator Display Color Meaning
PWR Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Lit Yellow Normal communications
Not lit A communications error has occurred or
the Unit is in standby status.
ERR Lit Red A communications error has occurred.
Not lit Normal communications or the Unit is in
standby status.
0 to 15
(see
note)
Lit Yellow The corresponding I/O signal is ON.
Not lit The corresponding I/O signal is OFF.
Note: The SRT1-RO08 does not have indicators 8 to 15.
SRT-R SRT-R
39
Output HOLD/CLEAR Mode
Mode Pin 1 Setting
HOLD ON Output status is maintained when a communications error occurs.
CLEAR OFF Output status is cleared when a communications error occurs.
Note: 1. Pin 1 is factory-set to OFF.
2. This function is available to the Output Terminal only.
Node Number Settings
Node number Pin 3 Pin 4 Pin 5 Pin 6
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
Note: 1. The node number is factory-set to 0.
2. For node number setting, refer to the CompoBus/S Operation Manual (W266).
SRT-R SRT-R
40
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ROC08
SRT1-ROF08
Mounting Holes
SRT2-ROC16
SRT2-ROF16
Mounting Holes
100
50
Two, 4.2 dia. or M4
Two, 4.2 dia. or M4
50
50
155
Thirty two, M3
Sixteen, M3
50 50
50
80
40
135
40
SRT-R SRT-R
41
Installation
Internal Circuit Configuration
SRT1-ROC08
SRT2-ROC16
Note: The G3DZ-2R6PL Power MOS FET Relay is inserted into
this portion of the SRT1-ROF08 and SRT2-ROF16.
Relay driver
circuit
Internal
circuit
Later
blocks
(See
note)
*
Relay driver
circuit
Relay driver
circuit
Relay driver
circuit
External Connections
Lamp
Lamp
Lamp
Lamp
Load
power
supply
Terminal Arrangement and I/O Device Connection Example
Output
SRT2-ROC16
SRT2-ROF16
Note: 1. Dotted lines indicate internal connections.
SRT1-ROC08 and SRT1-ROF08 have the 0 to 7 and COM0 to COM3 terminals only.
2. The above is a connection example of the SRT2-ROC16 with G6D Relays mounted.
G3DZ Power MOS FET Relays are mounted to the SRT1-ROF08 and SRT2-ROF16.
24-VDC
power supply
Communications
path
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
Load
Power
supply
Load
Power
supply
Load
Load
*(see note 2)
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for details.
42
Connector Terminal SRT2-VID/VOD
Compact Connector Terminals Save
Wiring Effort and Enable Long-distance
Communications
Long-distance or high-speed communications
mode is selectable.
Incorporates I/O connectors making it possible to
minimize the size.
I/O connectors save wiring effort.
Flexible DIN track mounting is possible through a
DIN track attachment.
Eight-point sensor connector models and 16-point
MIL connector models are the same size.
Features
Vertical or horizontal DIN track mounting according to the available space is possible.
Saves space and easily connects to other devices without wiring effort.
Standard mounting
(Sensor connector model)
Mounting with DIN
track attachment
Standard mounting
(MIL connector model)
Communications and
power supply connector DIN track
G7TC
Sensor connector
Indicators
Setting switch
DIN track mounting hook
MIL connector
Ordering Information
I/O classification Internal I/O circuit
common
I/O points I/O connection method Model
Digital input NPN (+ common) 8 Sensor connector SRT2-VID08S
PNP (– common)
Se so co ec o
SRT2-VID08S-1
Digital output NPN (– common) SRT2-VOD08S
PNP (+ common) SRT2-VOD08S-1
Digital input NPN (+ common) 16 MIL connector SRT2-VID16ML
PNP (– common)
6 co ec o
SRT2-VID16ML-1
Digital output NPN (– common) SRT2-VOD16ML
PNP (+ common) SRT2-VOD16ML-1
Mounting hook A SRT2-ATT01
Mounting hook B SRT2-ATT02
Note: For details about connecting the SRT2-VID or SRT2-VOD to the Master Unit, refer to page 10.
SRT2-VID/VOD SRT2-VID/VOD
43
Specifications
Ratings
Inputs
Item SRT2-VID08S
SRT2-VID08S-1
SRT2-VID16ML
SRT2-VID16ML-1
Input current 6 mA max./point at 24 V, 3 mA max./point at 17 V
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. (Between each input terminal and V: NPN. Between each input and G: PNP.)
OFF voltage 5 VDC max. (Between each input terminal and V: NPN. Between each input and G: PNP.)
OFF current 1 mA max.
Insulation method Photocoupler
Maximum number of inputs 8 12
Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit
Outputs
Item SRT2-VID08S
SRT2-VID08S-1
SRT2-VID16ML
SRT2-VID16ML-1
Rated output current 0.3 A/point 0.3 A/point (2-A common) (See note.)
Residual voltage 1.2 V max.
ON delay time 0.5 ms max.
OFF delay time 1.5 ms max.
Leakage current 0.1 mA max.
Insulation method Photocoupler
Number of circuits 8 points/common, 1 circuit 16 points/common, 1 circuit
Note: When using V/G terminals in an MIL connector, ensure that the current per terminal for the V/G terminals does not exceed 1 A.
Characteristics
Communications power supply
voltage
14 to 26.4 VDC
I/O power supply voltage 20.4 to 26.4 VDC (24 VDC +10%/–15%)
I/O power supply current Sensor connector: 2.4 A max., MIL connector: 2.0 A max.
Current consumption (see note) 50 mA max. at 24 VDC
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2 (50 m/s2 for SRT2-ATT02)
Shock resistance 200 m/s2
Dielectric strength 500 VAC (between insulated circuits)
Ambient temperature Operating: –10°C to 55°C (with no icing or condensation)
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Storage: 25% to 85%
Mounting strength No damage when 100 N pull load was applied in all directions (40 N load for SRT2-ATT02)
Terminal strength No damage when the following loads were applied:
Communications connector: 100 N
Sensor connector: 40 N
MIL connector: 100 N
Screw tightening torque Communications connector: 0.25 N m
Node address setting Settings made at DIP switch (set before supplying power for Slave communications)
Weight Approx. 75 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input Remote Terminal and the current consumption of the load connected to the output Remote Terminal.
SRT2-VID/VOD SRT2-VID/VOD
44
Nomenclature
SRT2-VID08S/SRT2-VID08S-1
SRT2-VOD08S/SRT2-VOD08S-1
(Sensor Connector Models)
SRT2-VID16ML/SRT2-VID16ML-1
SRT2-VOD16ML/SRT2-VOD16ML-1
(MIL Connector Models)
Communications
Connectors
I/O Connectors Indicators
DIP Switch
Communications
Connectors
I/O Connectors
Output HOLD/CLEAR Mode Setting
Communications Mode Setting
Node Address Setting
Reserved for System Use (Always OFF)
Indicators
Indicator Color Display Meaning
PWR Green Lit The communications power
supply is ON.
Not lit The communications power
supply is OFF.
COMM Yellow Lit Normal communications
Not lit A communications error has
occurred or the Unit is in
standby status.
ERR Red Lit A communications error
has occurred.
Not lit Normal communications or
the Unit is in standby status.
0 to 7
(for
8-point
I/O)
0 to 15
(for
16-point
I/O)
Yellow Lit The corresponding I/O
signal is ON.
Not lit The corresponding I/O
signal is OFF.
Name
Power
Communications
Communications
error
Input
(output)
Output HOLD/CLEAR Mode
SW8 (HOLD) Setting
OFF Output status is cleared.
ON Output status is maintained.
Communications Mode
SW7 (HOLD) Setting
OFF High-speed communications mode
ON Long-distance communications mode
Node Number Settings
Node number Pin 4 Pin 3 Pin 2 Pin 1
8 4 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF OFF
14 ON ON ON OFF
15 ON ON ON ON
Note: Be sure to perform settings with the Slave
power supply OFF.
SRT2-VID/VOD SRT2-VID/VOD
45
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-VID08S
SRT2-VID08S-1
SRT2-VOD08S
SRT2-VOD08S-1
SRT2-VID16ML
SRT2-VID16ML-1
SRT2-VOD16ML
SRT2-VOD16ML-1
SRT2-ATT01
SRT2-ATT02
Dimensions when Unit is mounted.
SRT2-VID/VOD SRT2-VID/VOD
46
Installation
Internal Circuit Configuration
SRT2-VOD08S-1
SRT2-VID08S SRT2-VID08S-1
SRT2-VOD08S
SRT2-VID16ML SRT2-VID16ML-1
SRT2-VOD16ML SRT2-VOD16ML-1
Photocoupler
Photocoupler Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Photocoupler
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Internal circuit
Voltage
drop
Voltage
drop
Voltage
drop
Voltage
drop
SRT2-VID/VOD SRT2-VID/VOD
47
Terminal Arrangement and I/O Device Connection Examples
SRT2-VID08S SRT2-VID08S-1
SRT2-VID16ML SRT2-VID16ML-1
SRT2-VOD08S
SRT2-VOD16ML
SRT2-VOD08S-1
SRT2-VOD16ML-1
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications
CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
CompoBus/S
communications CompoBus/S
communications
power supply
I/O power
supply
Pin numbers
Sensor
Brown (Red)
Black (White)
Blue (Black)
Three-wired sensor
Sensor
Brown (White)
Blue (Black)
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Sensor
Three-wired sensor
Sensor
Two-wired sensor
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Output
device
Solenoid etc.
Output
device
Valve etc.
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Brown (Red)
Black (White)
Blue (Black)
Brown (White)
Blue (Black)
Note: 1. V terminals and G terminals are respectively connected internally.
When supplying power for I/O from communications connectors, power can be supplied to the sensor output devices from V and G
terminals.
2. When using an inductive load (solenoid, valve etc.), either use one with an internal reverse electromotive force absorption diode or
attach a diode externally.
SRT2-VID/VOD SRT2-VID/VOD
48
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for common precautions.
Communications Connector Pin Arrangement
24-VDC
communications
power supply
24-VDC I/O
power supply
CompoBus/S communications
The following solderless terminals are recommended.
• Manufacturer: Weidmuller
Sleeve (Part No. 046290)
Solderless
terminal
Cable
Two-wire insertion (Part No. 901851)
Solderless
terminal
Cable
The following product is a dedicated tool.
• Manufacturer: Weidmuller
PZ1.5 Crimper (Part No. 900599)
Sensor Connector Pin Arrangement
SRT2-VID08S/VID08S-1
SRT2-VOD08S/VOD08S-1
Model Cable conductor size
XS8A-0441 0.3 to 0.5 mm2
XS8A-0442 0.14 to 0.2 mm2
Note: The XS8A-0441 or XS8A-0442 Connector is not provided
with the SRT-VID or SRT2-VOD. Place an order for the connector
separately.
Calculate the cable conductor size as follows.
The following information is given on each sensor cable:
Cable dia. (Number of conductors/Conductor dia.)
Conductor size (mm2) =
(Conductor dia./2)2 x p x Number of conductors
Example: E3S-A
4 dia. (18/0.12)
Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 0.20
The conductor size is 0.2 mm2. Therefore, use the XS8A-0442.
MIL Connector Pin Arrangement
SRT2-VID16ML/VID16ML-1
Function Pin No.
Pin No.
OUT0
IN0
OUT1
IN1
OUT2
IN2
OUT3
IN3
OUT4
IN4
OUT5
IN5
OUT6
IN6
OUT7
IN7
G
G
V
V
20
20
18
18
16
16
14
14
12
12
10
10
8
8
6
6
4
4
2
2
Function
Function
Pin No.
Pin No.
OUT8
IN8
OUT9
IN9
OUT10
IN10
OUT11
IN11
OUT12
IN12
OUT13
IN13
OUT14
IN14
OUT15
IN15
G
G
V
V
19
19
17
17
15
15
13
13
11
11
9
9
7
7
5
5
3
3
1
1
SRT2-VOD16ML/VOD16ML-1
Function
Note: 1. No cable connector is provided. Order the connector
separately.
• Applicable Connector
XG4M-2030-T
• Applicable Connector Cables
G79-O50C
G79-O25C
G79-I50C
G79-I25C
2. Refer to the following table for ordering information on
the applicable Cables.
SRT2-VID/VOD SRT2-VID/VOD
49
Applicable Cables
Connectable product Model Applicable Cable
I/O Block G7TC-OC16
G7TC-OC08
G7TC-ID16-5
G7TC-IA16-5
G79-O50C (L = 500 mm)
G7TC IA16 G7VC Series
G70A Series
G70D Series
e G79-O25C (L = 250 mm)
Connector-Terminal Conversion Unit XW2B Series
Digital Display Unit M7F
I/O Block G7TC-ID16
G7TC-IA16
e
G79-I50C (L = 500 mm)
G7TC-OC16-1
G79-I25C (L = 250 mm)
50
Sensor Terminal SRT1-D08S
Connector Connection Models that
Allows Easy Connection to Sensors and
Output Devices
Sensors with easy-to-wire connectors are easily
attached or detached.
Connects to 2-wired sensors.
Remote teaching of the Sensor Terminal is possible
with the PC by using output signals of the Sensor
Terminal.
DIN track mounting and screw mounting are
available.
Ordering Information
Classification Internal I/O circuit common I/O points Model
For input NPN (– common) 8 input points SRT1-ID08S
For I/O NPN (– common) 4 input/4 output points SRT1-ND08S
For output NPN (– common) 8 output points SRT1-OD08S
Specifications
Ratings
Input
Item SRT1-ID08S/-ND08S
Input current 10 mA max./point
ON delay time 1 ms max.
OFF delay time 1.5 ms max.
ON voltage 12 VDC min. between each input terminal and VCC, the external sensor power supply
OFF voltage 4 VDC max. between each input terminal and VCC, the external sensor power supply
OFF current 1 mA max.
Insulation method Photocoupler
Input indicator LED (yellow)
Output
Item SRT1-ND08S SRT1-OD08S
Rated output current 20 mA/point 30 mA/point
Residual voltage 1 V max. 0.6 V max.
ON delay time 1 ms max. ---
OFF delay time 1.5 ms max. ---
Leakage current 0.1 mA max.
Insulation method Photocoupler
Output indicator LED (yellow)
SRT1-D08S SRT1-D08S
51
Characteristics
Communications power supply
voltage (see note 1)
14 to 26.4 VDC
Current consumption (see note 2) 50 mA max. at 24 VDC
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms
Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screw mounting or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions (except the DIN track
directions and a pulling force of 10 N
Terminal strength No damage when 50 N pull load was applied for 10 s in all directions
Tighten each screw to a torque of 0.6 to 1.18 N m
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight SRT1-ID08S/OD08S: 100 g max., SRT1-ND08S: 80 g max.
Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Unit is connected to 2-wired proximity sensors.
2. The above current consumption is a value with all the points turned OFF excluding the current consumption of the sensor connected
to the Sensor Terminal.
External Sensor Power Supply
Power supply voltage 13.5 to 26.4 VDC
Current consumption 500 mA max. in total
Nomenclature
SRT1-ID08S
SRT1-ND08S
CompoBus/S Terminals
Connect the CompoBus/S communications
cable.
Sensor Terminal
I/O Connectors
Connect the
cables from the
sensors here.
I/O Indicators
Indicate the status of each point.
(Lit when the input or output is ON.)
The SRT1-ID08S has 8 input indicators
and the SRT1-ND08S has 4
input indicators and 4 output indicators.
DIP Switch
The DIP switch’s pins have the
following functions:
Pins 1 to 4: Node number setting
Pin 5: Reserved (Always OFF.)
Pin 6: Hold/clear outputs for communications
error
DIN Track Mounting Hook
Used when mounting the Unit
to a DIN track.
CompoBus/S Indicators
Indicate the operating status of the Slave and the status
of communications.
Mounting Screw Holes
Used when screwing the Unit to
a control panel.
Indicators
PWR
COMM
ERR
IN0 to 3
IN0 to 7
OUT0 to 3
Communications Power
Supply Terminals
Connect the communications
power supply.
SRT1-D08S SRT1-D08S
52
Indicators
Indicator Name Display Color Meaning
PWR Power supply Lit Green The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Lit Yellow Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Lit Red A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
0 to 3
(4 inputs/outputs)
Input Lit Yellow The corresponding input is ON.
0 to 7 (8 inputs) Not lit The corresponding input is OFF or the Unit is in standby status.
0 to 3
(4i t / t t )
o Output Lit Yellow The corresponding output is ON.
4 inputs/outputs) Not lit The corresponding output is OFF or the Unit is in standby status.
Switch Setting
All pins are factory-set to OFF.
Hold/Clear outputs for
Node number communications error
settings
Reserved (OFF)
Pin 5 (Reserved)
Always set pin 5 to OFF.
Output HOLD/CLEAR Mode (SRT-ND16S)
HOLD Function
OFF Output status is cleared when a
communications error occurs.
ON Output status is maintained when a
communications error occurs.
Node Number Settings
Node number 1 2 4 8
0 OFF OFF OFF OFF
1 ON OFF OFF OFF
2 OFF ON OFF OFF
3 ON ON OFF OFF
4 OFF OFF ON OFF
5 ON OFF ON OFF
6 OFF ON ON OFF
7 ON ON ON OFF
8 OFF OFF OFF ON
9 ON OFF OFF ON
10 OFF ON OFF ON
11 ON ON OFF ON
12 OFF OFF ON ON
13 ON OFF ON ON
14 OFF ON ON ON
15 ON ON ON ON
SRT1-D08S SRT1-D08S
53
SRT1-OD08S
DIP Switch
Mounting Screw Holes
Used when screwing the Unit to a control panel.
CompoBus/S Indicators
Indicate the operating status of the Slave and the status of communications.
Output Indicators
Indicate the output status
of each channel.
Communications Terminals
Communications Power
Supply Terminals
Connect the communications
cable.
DIN Track
Mounting Hook
Used when mounting the Unit
to a DIN track.
Output Connectors
Connect the cables from
the output device.
Switch Setting
All pins are factory-set to OFF.
Hold/Clear outputs for
Node number communications error
settings
Reserved (OFF)
Pin 5 (Reserved)
Always set pin 5 to OFF.
Output HOLD/CLEAR Mode (SRT-ND16S)
HOLD Function
OFF Output status is cleared when a
communications error occurs.
ON Output status is maintained when a
communications error occurs.
Node Number Settings
Node number 4 3 2 1
0 OFF OFF OFF OFF
1 OFF OFF OFF ON
2 OFF OFF ON OFF
3 OFF OFF ON ON
4 OFF ON OFF OFF
5 OFF ON OFF ON
6 OFF ON ON OFF
7 OFF ON ON ON
8 ON OFF OFF OFF
9 ON OFF OFF ON
10 ON OFF ON OFF
11 ON OFF ON ON
12 ON ON OFF OFF
13 ON ON OFF ON
14 ON ON ON OFF
15 ON ON ON ON
SRT1-D08S SRT1-D08S
54
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID08S
Mounting Holes
SRT1-ND08S
Mounting Holes
100
Cover opening and
closing directions
Two, 4.2 dia or M4
Four, M3
50
50
70 max.
Four, M3
Cover opening and
closing directions
Two, 4.2 dia or M4
(75)
(75)
SRT1-D08S SRT1-D08S
55
SRT1-OD08S
100
Cover opening and
closing directions
(75)
2.8
37
Two, 4.2 dia. or M4
7 Four, M3
50
40
92
40±0.2
92±0.2
Mounting Holes
4
6
Cable Connector for SRT1-OD08S
Applicable conductor size (mm2) Model
0.3 to 0.5 XS8A-0441
0.14 to 0.2 XS8A-0442
0.3 to 0.5 XS8B-0443
XS8B-0443
(Relay Socket )
XS8A-044
(Cable Connector)
Plug
connector
Cover
Model number
Pin number
Check window
Calculate the cable conductor size as explained below.
The following information is given on each sensor cable:
Cable dia. (Number of conductors/Conductor dia.)
Conductor size (mm2) = (Conductor dia./2)2 x p x Number of conductors
Example: E3S-A
4 dia. (18/0.12)
Conductor size (mm2) = (0.12/2)2 x 3.14 x 18 0.20
The conductor size is 0.2 mm2. Therefore, use the XS8A-0442.
SRT1-D08S SRT1-D08S
56
Installation
Internal Circuit Configuration
SRT1-ID08S SRT1-ND08S
Internal
circuit
Photocoupler
Internal
circuit
Photocoupler
Photocoupler
SRT1-OD08S
Internal
circuit
For one output
External Connections
SRT1-ID08S SRT1-ND08S
Three-wired Sensor Two-wired Sensor Sensor with Teaching Function
Sensor with External Diagnostic function
Sensor with Bank-switching Function
Three-wired Sensor
Brown
Black
Blue
Sensor
Brown
Blue
Sensor
Brown
Black
Pink
Blue
Sensor
Brown
Black
Blue
Sensor
Two-wired Sensor
Brown
Blue
Sensor
SRT1-D08S SRT1-D08S
57
Terminal Arrangement and I/O Device Connection Example
Input
SRT1-ID08S
I/O
SRT1-ND08S
Photoelectric Sensor
Proximity Sensor
(Sensor with Teaching Function, Sensor with External Diagnostic
function, Sensor with Bank-switching Function)
24 VDC
Communications
power supply
CompoBus/S
communications
CompoBus/S
communications
Communications
power supply
Blue
Brown
Blue
Black
Brown
Photoelectric Sensor
Proximity Sensor
(3-wired Sensor)
Proximity Sensor
(2-wired Sensor)
CompoBus/S
communications
Communications
power supply
CompoBus/S
communications
Communications
power supply
Brown
Brown
Blue
24 VDC
Orange
CompoBus/S
CompoBus/S
Output
SRT1-OD08S CompoBus/S
SOURCE
24 VDC
BDL BDH – +
CompoBus/S
communications
Communications
power supply
Output connector
Pin number
Solenoid, etc. Valve, etc.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
General Safety Precautions
Installation Environment
Do not install the Unit in the following places.
• Places with water, oil, or chemical sprayed on the Unit.
• Places with rapid temperature changes.
• Places with high humidity resulting in condensation.
• Places with intense electric and magnetic fields.
• Places with excessive vibration or shock.
Wiring
To prevent inductive noise, do not wire power lines or high-tension
lines along with or near the cables.
Make sure that the polarity of each terminal is correct.
Make sure that the communications path and power line are connected
correctly.
Secure the cables properly. Do not pull the cables with strong force,
otherwise the cables may be disconnected from the terminals or
connectors of the Unit.
Do not touch the Unit when the Unit is used in places with high ambient
temperatures because the surface temperature of the Unit may
be high.
Do not use paint thinner to clean the surface of the Unit, otherwise
the surface will be damaged or discolored.
SRT1-D08S SRT1-D08S
58
Correct Use
Use the Unit under its rated conditions.
Mount the Unit with M4 screws or to DIN tracks securely.
Typical Causes of Communications Errors
• The cables are not connected correctly.
• The node number setting is incorrect.
• The baud rate setting is incorrect.
• There is a strong noise source, such as an inverter motor, near
the Unit. Install the Unit as far as possible from the noise source
or shield the noise source.
Others
Use OMRON’s XS8A-0441 or XS8A-0442 Connectors with the
Unit.
Insert each connector into the Unit until the connector snaps in
place. Make sure that terminal number 1 of the connector is on the
lock lever side when inserting the connector.
Refer to the CompoBus/S Operation Manual (W266) for wiring the
Unit.
59
Sensor Amplifier Terminal SRT1-D04S
Snap On to Connect and
Save Wiring Effort
The 4-channel fiber photoelectric amplifiers in
Terminals with connectors offer a low cost and
space savings.
The product lineup included Terminal Block Units
for easy connection to sensors with amplifiers, limit
switches, etc.
Connect to up to eight channels of sensors by using
Expansion Blocks.
Features
Low Cost and Space Savings with
Four-channel Fiber Connectors
Just Snap On to Connect
Connector Units
Fiber connector (1 channel)
Fiber connector (4 channels)
Terminal Block Unit
Photoelectric sensor
Various input units
can be connected.
Proximity sensor
Basic switch and limit switch
SRT1-D04S SRT1-D04S
60
Ordering Information
CompoBus/S Sensor Amplifier Terminals
Classification I/O points Model
Communications 4 SRT1-TID04S
SRT1-TKD04S
Expansion SRT1-XID04S
SRT1-XKD04S
Connector Units
Classification Specifications Model
E3X-N Connector Type General-purpose, 1 channel E3X-NT16
Multi-functional, 1 channel E3X-NT26
Long distance, high accuracy, 1 channel E3X-NH16
Multi-functional, 4 channels E3X-NM16
Terminal Block Unit One input point E39-JID01
SRT1-D04S SRT1-D04S
61
Specifications
Characteristics
CompoBus/S Sensor Amplifier Terminals
Item Communication Terminals Expansion Terminals
Model SRT1-TID04S SRT1-TKD04S SRT1-XID04S SRT1-XKD04S
Communications power
supply voltage
14 to 26.4 VDC (See note 1) --- ---
I/O points 4 input points
Connected sensors Total of four E3X-NT6
or E39-JID01
(See note 2)
One E3X-NM16
(See note 2)
Total of four E3X-NT6
or E39-JID01
One E3X-NM16
Current consumption 60 mA max. (See note 3) 10 mA max. (See note 3)
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
Noise immunity Power supply normal: ±600 V for 10 minutes with a pulse width of 100 ns to 1 ms
Power supply common: ±1,500 V for 10 minutes with a pulse width of 100 ns to 1 ms
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screw mounting or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
(except the DIN track directions and a pulling force of 10 N
Terminal strength No damage when 49 N pull load was applied for 10 s in all directions.
Tighten each screw to a torque of 0.6 to 1.18 N m.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 70 g max. 65 g max. 45 g max. 35 g max.
Note: 1. The communications power supply voltage must be 20.4 to 26.4 VDC if the Terminal is connected to 2-wired proximity sensors.
2. When adding Connector Units, use SRT1-XID04S or SRT1-XKD04S.
3. The value doesn’t include the current consumption of Connector Units.
With E3X-N Connectors
Model E3X-NH16 E3X-NT16 E3X-NT26 E3X-NM16
Current consumption 75 mA max. 50 mA max. 150 mA
Response time 1 ms max. (4.0 ms max.
when connected to the
SRM1-D04S)
500 mS max. (2.0 ms max. when connected to the SRT1-D04S)
Timer function Not available OFF-delay timer (fixed to 40 ms)
Remote teaching input Not available Available (Remote teaching disabled)
Indicator Orange LED: Lit during output operation
Green LED: Lit with stable light reception or no light
Teaching confirmation
function
Indicators (red/green LED) and buzzer
Output Light ON and Dark ON switch selectable
Ambient illumination Sunlight: 10,000 lux max.; incandescent lamp: 3,000 lux max.
Insulation resistance 20 MW max. (at 500 VDC)
Dielectric strength 1,000 VAC at 50/60 Hz for 1 min
Vibration resistance Destruction:10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Destruction:500 m/s2
Mounting method Connector connection to the SRT1-D04S
Mounting strength No damage when 49 N pull load was applied for 10 s in all directions
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 30 g max. 30 g max. 30 g max. 60 g max.
SRT1-D04S SRT1-D04S
62
Terminal Block Units
Model E39-JID01
Input current 10 mA max.
ON voltage 12 VDC min. between input terminal and external sensor power supply
OFF voltage 4 VDC max. between input terminal and external sensor power supply
OFF current 1 mA max.
ON delay time 1 ms max. (connected to SRT1-D04S)
OFF delay time 1.5 ms max. (connected to SRT1-D04S)
Input indicators LED (Orange)
External sensor current capacity 50 mA max.
Vibration resistance 10 to 55 Hz, 1.5-mm double amplitude
Shock resistance Malfunction: 200 m/s2
Destruction: 300 m/s2
Mounting method M4 screws or 35-mm DIN track mounting
Mounting strength No damage when 50 N pull load was applied for 10 s in all directions
(except the DIN track directions and a pulling force of 10 N
Terminal strength No damage when 49 N pull load was applied for 10 s in all directions.
Tighten each screw to a torque of 0.6 to 1.18 N m.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 25 g max.
SRT1-D04S SRT1-D04S
63
Nomenclature
SRT1-TID04S
SRT1-TKD04S
Mounting Screw Holes
Communications
Terminals
Communications Power Supply
Terminals
Contact 0
Contact 1
Contact 2
Contact 3
DIN Track Mounting Hook
Node Number Settings
Refer to the CompoBus/S Operation Manual (W266)
for details on DIP switch settings.
Mounting Screw Holes
DIN Track Mounting Hook
Contacts 0 to 3
Communications Power Supply
Terminals
Connect a 24-VDC power supply.
Communications
Terminals
Connect a communications
cable.
DIP Switch
Indicators
Indicator Name Display Color Meaning
PWR Power supply Lit Green The communications power supply is ON.
Not lit
G ee
The communications power supply is OFF.
COMM Communications Lit Yellow Normal communications.
Not lit
e o
A communications error has occurred or the Unit is in standby status.
ERR Communications Lit Red A communications error has occurred.
error Not lit
ed
Normal communications or the Unit is in standby status.
SRT1-D04S SRT1-D04S
64
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-TID04
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
Two, 4.2 dia. or M4
Two, 4.5 dia. SRT1-XID04S
Mounting Holes
(75)
3.4
SRT1-D04S SRT1-D04S
65
SRT1-TKD04S
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
SRT1-XKD04S
Two, 4.2 dia. or M4
Two, 4.5 dia.
Mounting Holes
(75)
3.4
SRT1-D04S SRT1-D04S
66
E3X-NM16
Output indicator Stability indicator
Eight, 2.4 dia.
E3X-NT6
Output indicator Stability indicator
Two, 2.4 dia.
SRT1-D04S SRT1-D04S
67
E3X-NH16
Light level indicators
Threshold indicators
Output indicator
Two, 2.4 dia.
E39-JID01 Output indicator
Installation
Internal Circuit Configuration
E39-JID01
Internal
circuit
SRT1-D04S SRT1-D04S
68
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Terminal.
Refer to page 80 for precautions common to all SRT1 Terminals.
General Safety Precautions
Connector Units
Use only the Connector Units listed in this data sheet for the Sensor
Amplifier Units.
E39-JID01 Terminal Block Unit
Do not apply any voltage to the Terminal Block Unit.
Correct Use
Expanding Sensor Amplifier Terminals
1. Remove the cover from the side of the SRT1-TD04S. (See
Figure 1.)
2. When the cover is removed, you can see the expansion
connector inside.
3. Connect this expansion connector to the connector located
on the side of the SRT1-XD04S. (See Figure 2.)
Figure 1
Cover
Figure 2
Connector
Attaching and Removing Connector Units
(SRT1-TID04S, SRT1-XID04S, E3X-NT6, E39-JID01)
Attaching Connector Units
1. Hook Section A of the Connector Unit onto Section B of the
Sensor Amplifier Terminal.
2. Push in the Connector Unit until Section C locks inside
Section D of the Sensor Amplifier Terminal.
Section C
Section D
Section A
Section B
Bottom View
Section A
Removing Connector Units
1. While pushing Section D, pull the Connector Unit in direction
E.
2. When Section D releases from the lock, the Connector Unit
can be removed.
Push here
Section D
SRT1-D04S SRT1-D04S
69
Attaching or Removing Connector Unit
(SRT1-TKD04S, SRT1-XKD04S, E3X-NM16)
Attaching Connector Unit
1. Hook Section A of the Connector Unit onto Section B of the
Sensor Amplifier Terminal.
2. Push in the Connector Unit until Section C locks inside
Section D of the Sensor Amplifier Terminal.
Bottom View
Section A
Section C
Section D
Section A
Section B
Removing Connector Unit
1. While pushing Section D, pull the Connector Unit in direction
E.
2. When Section D releases from the lock, the Connector Unit
can be removed.
Push here
Section D
Channel Numbers
Channel numbers 1 to 4 of the E3X-NM16 correspond to contact
numbers 0 to 3 of the SRT1-TKD04S, and to contact numbers 4 to 7
of the SRT1-XKD04S.
70
Analog Input Terminal SRT2-AD04
Compact Analog Input Model is the
Same Shape as 16-point Remote I/O
Terminals
Allows flexible input point settings up to a maximum
of four points.
Resolution: 1/6,000
Takes only 1 ms to exchange each input point.
Wide input ranges available.
105 x 48 x 50 (W x H x D)
Ordering Information
Classification I/O points Model
Analog Input Terminal 1 to 4 (selectable with DIP switch) SRT2-AD04
Note: For details about connecting the SRT2-AD04 to the Master Unit. Refer to page 10.
Specifications
Ratings
Input
Item Voltage input Current input
Max. signal input ±15 V ±30 mA
Input impedance 1 MW max. Approx. 250 W
Resolution 1/6,000 (FS)
Total 25°C ±0.3% FS ±0.4% FS
accuracy –10 to 55°C ±0.6% FS ±0.8% FS
Conversion time 4 ms/4 points, 3 ms/3 points, 2 ms/2 points, and 1 ms/1 point
Dielectric strength 500 VAC for 1 min between communications power supply, analog input, and communications terminals (see note)
Note: There is no insulation between analog inputs.
Characteristics
Communications power supply voltage 14 to 26.4 VDC (possible to provide through dedicated flat cable)
Current consumption 100 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC (between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage with 100 N pull load applied in all directions.
Terminal strength No damage with 100 N pull load applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight Approx. 120 g
SRT2-AD04 SRT2-AD04
71
Nomenclature
SRT2-AD04
Mounting Screw Holes
DIN Track Mounting Hook
Terminal Block
Indicators
Indicators
Indicator Name Color Display Meaning
PWR Power supply Green Lit The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Yellow Lit Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Red Lit A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
U.ERR Unit error Red Lit An error has occurred in the Unit.
Not lit Normal communications or the Unit is in standby status.
DIP Switch (SW101)
(Open cover to access.)
Pin 1 Pin 2 Input points
OFF OFF 4 points (default setting)
OFF ON 3 points (inputs 0 to 2 enabled)
ON OFF 2 points (inputs 0 and 2 enabled)
ON ON 1 point (input 0 enabled)
Pin 3 Communications mode
OFF High-speed communications (default setting)
ON Long-distance communications
Pin 4 Be sure to turn OFF.
Pin No. Node address
Pin 5 23
Pin 6 22
Pin 7 21
Pin 8 20
The default setting is for all of these pins to be OFF.
DIP Switch (SW102)
(Open cover to access.)
Pin 1 Pin 2 Pin 3 Range for inputs 0, 1
Pin 4 Pin 5 Pin 6 Range for inputs 2, 3
OFF OFF OFF 0 to 5 (V) (default setting)
ON OFF OFF 1 to 5 (V)
OFF ON OFF 0 to 10 (V)
ON ON OFF –10 to 10 (V)
OFF OFF ON 4 to 20 (mA)
ON OFF ON 0 to 20 (mA)
Do not make any settings other than the ones listed above.
Pin 7 Mean value processing
OFF Without mean value processing (default setting)
ON With mean value processing (mean for 8 operations)
Pin 8 Be sure to turn OFF.
SRT2-AD04 SRT2-AD04
72
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-AD04
Mounting Holes
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT2-AD04
Isolation
DC-DC static
converter
Internal circuit
Input 0
Input 1
Input 2
Input 3
Analog ground
Terminal Arrangement
SRT2-AD04
Note: When the input is current input, short-circuit the “V+” terminals
and the “I+” terminals. When short-circuiting, use the
short-circuiting tool provided as an accessory.
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For details about general precautions, refer to page 80.
Connections to the Master Unit
Connections cannot be made to the following Master Units. If the following
Master Units are connected, incorrect data may be transferred.
C200HW-SRM21 (-V1 and later versions supported)
CQM1-SRM21 (-V1 and later versions supported)
SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported)
C200PC-ISA2-SRM
3G8B3-SRM0
SDD-CS1 (made by NKE Ltd.)
73
Analog Output Terminal SRT2-DA02
Compact Analog Output Model is the
Same Shape as 16-point Remote I/O
Terminals
Two output points or 1 output point is selectable.
Resolution: 1/6,000
105 x 48 x 50 (W x H x D)
Ordering Information
Classification I/O points Model
Analog Output Terminal 1 or 2 (selectable with DIP switch) SRT2-DA02
Note: For details about connecting the SRT2-DA02 to the Master Unit, refer to page 10.
Specifications
Ratings
Output
Item Voltage output Current output
External output permissible
load resistance
5 kW min. 600 W max.
Output impedance 0.5 W max. ---
Resolution 1/6,000 (FS)
Total 25°C ±0.4% FS
accuracy –10 to 55°C ±0.8% FS
Conversion time 2 ms/2 points and 2 ms/1 point
Dielectric strength 500 VAC for 1 min between communications power supply, analog output, and communications terminals (see note)
Note: There is no insulation between analog outputs.
Characteristics
Communications power supply voltage 14 to 26.4 VDC (power supply possible from dedicated flat cable)
Current consumption (see note) 170 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Dielectric strength 500 VAC (between insulated circuits)
Noise immunity Conforms to IEC61000-4-4, 2 kV (power lines)
Vibration resistance 10 to 150 Hz, 1.0-mm double amplitude or 70 m/s2
Shock resistance 200 m/s2
Mounting strength No damage when 100 N pull load was applied in all directions
Terminal strength No damage when 100 N pull load was applied
Screw tightening torque 0.3 to 0.5 N m
Ambient temperature Operating: –10°C to 55°C
Storage: –25°C to 65°C
Ambient humidity Operating: 25% to 85% (with no condensation)
Weight Approx. 100 g
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external load.
SRT2-DA02 SRT2-DA02
74
Nomenclature
SRT2-DA02
Mounting Screw Holes
DIN Track Mounting Hook
Terminal Block
Indicators
Indicators
Indicator Name Color Display Meaning
PWR Power supply Green Lit The communications power supply is ON.
Not lit The communications power supply is OFF.
COMM Communication Yellow Lit Normal communications
Not lit A communications error has occurred or the Unit is in standby status.
ERR Communication Red Lit A communications error has occurred.
error Not lit Normal communications or the Unit is in standby status.
U.ERR Unit error Red Lit An error has occurred in the Unit.
Not lit A communications error has occurred or the Unit is in standby status.
DIP Switch (SW101)
(Open cover to access.)
Pin 1 Be sure to turn OFF.
Pin 2 Output points
OFF 2 points (default setting)
ON 1 point (output 0 enabled)
Pin 3 Communications mode
OFF High-speed communications (default setting)
ON Long-distance communications
Pin 4 Be sure to turn OFF.
Pin No. Node addresses
Pin 5 23
Pin 6 22
Pin 7 21
Pin 8 20
The default setting is for all of these switches to be OFF.
DIP Switch (SW102)
(Open cover to access.)
Pin 1 Pin 2 Pin 3 Range for output 0
Pin 4 Pin 5 Pin 6 Range for output 1
OFF OFF OFF 0 to 5 (V) (default setting)
ON OFF OFF 1 to 5 (V)
OFF ON OFF 0 to 10 (V)
ON ON OFF –10 to 10 (V)
OFF OFF ON 4 to 20 (mA)
Do not make any settings other than the ones listed above.
Pin 7 Pin 8 Output during communications error
OFF OFF Clear at the output lower limit when
communications error occurs. (default
setting)
OFF ON Clear at the output upper limit when
communications error occurs.
ON OFF Clear at the output lower limit when
communications error occurs (however, if
the range is –10 to 10 V, the output will be
0).
ON ON Output held when communications error
occurs.
SRT2-DA02 SRT2-DA02
75
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT2-DA02
Mounting Holes
Two, 4.2 dia. or M4
Installation
Internal Circuit Configuration
SRT2-DA02
Isolation
DC-DC
static
converter
Internal circuit
Output 0
Output 1
Analog ground
Terminal Arrangement
SRT2-DA02
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
For details about general precautions, refer to page 80.
Connections to the Master Unit
Connections cannot be made to the following Master Units. If the following
Master Units are connected, incorrect data may be transferred.
C200HW-SRM21 (-V1 and later versions supported)
CQM1-SRM21 (-V1 and later versions supported)
SRM1-C0, SRM1-C0-V1 (-V2 and later versions supported)
C200PC-ISA2-SRM
3G8B3-SRM0
SDD-CS1 (made by NKE Ltd.)
76
Remote I/O Module SRT1-IDP/ODP
Module Type that Allows PCB Mounting
Compact size at 60 x 16 x 35 (W x H x D)
Lineup now includes the 16-point input model and
16-point output model.
Ordering Information
I/O classification Internal I/O circuit
common
I/O points Rated voltage I/O rated voltage Model
Input NPN (+ common) 16 24 VDC 24 VDC SRT1-ID16P
Output NPN (– common) SRT1-OD16P
Specifications
Ratings
Input (SRT1-ID16P)
Input current 2 mA max./point
ON delay time 1.5 ms max.
OFF delay time 1.5 ms max.
ON voltage 15 VDC min. between each input terminal and BS+ terminal
OFF voltage 5 VDC max. between each input terminal and BS + terminal
Output (SRT1-OD16P)
Rated output current 0.2 A/point, 0.6 A/common
Residual voltage 0.6 V max. between each output terminal and G terminal at 0.2 A
Leakage current 0.1 mA max. between each output terminal and G terminal at 24 VDC
SRT1-IDP/ODP SRT1-IDP/ODP
77
Characteristics
Communications power supply
voltage
20.4 to 26.4 VDC
I/O power supply voltage 24 VDC +10%/–15%
Current consumption (see note) 60 mA max.
Connection method Multi-drop method and T-branch method
Secondary branches cannot be connected to T-branch lines.
Connecting Units 8 Input Terminals and 8 Output Terminals per Master
Dielectric strength 500 VAC for 1 min (1-mA sensing current between insulated circuits)
5-V output current 20 mA max. (5 V 0.5 V)
LED drive current (COMM, ERR) 10 mA max. (5 VDC)
SW carry current
(ADR0 to 3, HOLD)
1 mA max.
Ambient temperature Operating: 0°C to 55°C (with no icing or condensation)
Storage: –20°C to 65°C (with no icing or condensation)
Ambient humidity Operating: 35% to 85%
Weight 35 g max.
Note: The above current consumption is the value with all points turned ON excluding the current consumption of the external sensor connected
to the input model and the current consumption of the load connected to the output model.
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SRT1-ID16P
SRT1-OD16P
Incorrect insertion
prevention pin
PCB dimensions (top view)
No cumulative tolerance allowed
16
2.54x15=38.1
27.94±0.1
2.54±0.1
2.54x15=38.1 8.95±0.1
1.53±0.1
0.63
27.94±0.1
1.6
1.6 dia.
0.63
3.5
2.54
35
60
2.2 dia. +0.1
0
32-0.9 dia. +0.1
0
SRT1-IDP/ODP SRT1-IDP/ODP
78
Installation
Internal Circuit Configuration
SRT1-ID16P SRT1-OD16P
Internal circuit
Internal circuit
External Connections
Communications
Two-wired
proximity
sensor
BS– or G
Input Module (SRT1-ID16P) Output Module (SRT1-OD16P)
Communications
Relay
Internal circuit
Internal circuit
D1: Reverse voltage prevention diode
Note: NC in parentheses is for the Input Modules.
Node Number Settings and
Output HOLD/CLEAR Mode
Internal circuit
BS– or G
Note: Refer to the CompoBus/S Operation Manual (W266) for
details on the switch.
Indicators
R: LED current limiting resistor
LED1: LED for COMM
LED2: LED for ERR
The maximum current for LED1 and 2 is 10 mA.
Internal circuit
The 5-V Output Terminals have positive power supplies (maximum
output current of 20 mA) for the ERR and COMM LEDs. Recommended
LED colors are red for ERR and yellow for COMM.
SRT1-IDP/ODP SRT1-IDP/ODP
79
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Refer to page 80 for precautions common to all SRT1 Terminals.
Correct Use
Noise Protection Circuit
Add the following protection circuit if noise is generated from the
power supply, input section, or output section.
Power Supply Noise Protection Circuit
L: Coil for the common mode
Install the coil near the SRT1.
50 V
100 mF
50 V
0.1 mF
BS
L
V
BS
Input Section Noise Protection Circuit
C: 0.1 mF min.
R: Resistor for limiting current to PC
PC: Photocoupler
Input device
0 to 15
V
R
G
PC
C
Output Section Noise Protection Circuit
V1 and V2: Power supply.
R: Resistor for limiting current to PC
PC: Photocoupler
0 to 15 Load
G
V2
PC
R
V1
5-V Output Terminals
The 5-V Output Terminals have positive power supplies (maximum
output current of 20 mA) for the ERR and COMM LED. Use them as
shown below. Recommended LED colors are red for ERR and yellow
for COMM.
Wiring Method
R: LED current limiting resistor
LED1: LED for COMM
LED2: LED for ERR
The maximum current for the LED1 and 2 is 10 mA.
LED1
R R
5 VOUT
COMM
ERR
LED2
SRT SRT
80
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Terminal.
The following precautions are the same for all SRT1 Terminals.
Refer also to the precautions specified for individual Terminals.
General Safety Precautions
Wiring
Turn OFF the Unit before wiring the Unit and do not remove the terminal
block cover or touch the terminal block while the Unit is turned
ON, otherwise an electric shock may occur.
Do not impose any voltage other than the rated voltage on the input
terminal. Doing so may result in damage to the Unit or cause the Unit
to malfunction.
Relay I/O Type
SRT1-ROC08 and SRT2-ROC16
Do not connect the Unit to loads operating at any voltage or consuming
a total current exceeding the permissible switching voltage
or current of the Unit. Doing so may result in the faulty insulation,
contact weld, or faulty contact of the relays, or damage to the relays,
or cause the relays to malfunction or burn.
The life of a relay varies with the switching condition. Test the relays
under the actual operating conditions before using the relays within
the permissible switching frequency. The use of deteriorated relays
may result in the faulty insulation of the relays or cause the relays to
burn.
Do not use the Unit in places with inflammable gas. Doing so may
result in a fire or explosion due to the heat of the relays or a spark
from the relays when they are switched.
Transistor, Power MOS FET, and SSR I/O Types
SRT1-OD04, SRT2-OD08, SRT2-OD16, SRT1-OD16P,
SRT1-ROF08, and SRT2-ROF16
Do not connect the Unit to loads consuming a total current exceeding
the rated output current of the Unit. Doing so may damage the
output element and a short or open-circuit malfunction may result.
If the Unit is connected to a DC inductive load, connect a diode to the
Unit to protect the Unit from counter-electromotive voltage, otherwise
the counter-electromotive voltage may damage the output element
and a short or open-circuit malfunction may result.
Correct Use
Replacing Relays
Use the relay removal tool to the left of the screw terminals to
replace relays.
Turn OFF the Unit to replace relays, otherwise an electric shock
may occur or the Unit may malfunction.
Installation Environment
Do not install the Unit in the following places. Doing so may result in
damage to the Unit or cause the Unit to malfunction.
• Places with direct sunlight.
• Places with ambient temperature ranges not within 0°C to 55°C.
• Places with rapid temperature changes resulting in condensation
or relative humidity ranges not within 10% to 90%.
• Places with corrosive or inflammable gas.
• Places with excessive dust, salinity, or metal powder.
• Places with vibration or shock affecting the Unit.
• Places with water, oil, or chemical sprayed on the Unit.
Screw Tightening Torques
Tighten all screws of the Unit properly, otherwise the Unit may malfunction.
• Tighten each terminal screw to a torque of 0.6 to 1.18 N m (6.2
to 12.0 kgf cm).
• Tighten each mounting screw to a torque of 0.6 to 0.98 N m (6.2
to 10.0 kgf cm).
Terminal screws
Mounting screws
Cleaning
Use alcohol or benzine to clean the surface of the Unit. Do not use
paint thinner to clean the surface, otherwise the surface will be damaged
or discolored.
Handling
Do not drop the Unit or shock or vibrate the Unit excessively. Doing
so may result in damage to the Unit or cause the Unit to malfunction.
Disassembling, Repairing, and Modifying
Do not disassemble, repair, or modify the Unit, otherwise an electric
shock may occur or the Unit may malfunction.
81
Position Driver FND-X-SRT
Advanced Servodrivers with Positioner
Functions
DIO and CompoBus/S Models are Newly
Added
Servodriver and positioner are combined into one
Unit.
Conventional U-series, U-series UE type, H-series,
and M-series AC Servomotors can be used.
Feeder control/DTP control and single operation/
automatic incremental/continuous operation are
available.
Easy to set, operate, and adjust.
Ordering Information
Specifications Model
CCoompooBuuss//SS mooddeelss For 200-VAC input 6 A FND-X06H-SRT
12 A FND-X12H-SRT
25 A FND-X25H-SRT
50 A FND-X50H-SRT
For 100-VAC input 6 A FND-X06L-SRT
12 A FND-X12L-SRT
Note: For details, refer to OMNUC FND-X-series User’s Manual (I524).
Specifications
General Specifications
Ambient temperature Operating: 0°C to 55°C
Storage: –10°C to 70°C
Ambient humidity Operating: 35% to 90% (with no icing)
Storage: 35% to 90% (with no icing)
Operating atmosphere No corrosive gases
Dielectric strength 1,500 VACRMS for 1 min at 50/60 Hz
Insulation resistance 5 MW min. (at 500 VDC) between power input terminals and between the power terminal and
the case
Vibration resistance 10 to 150 Hz in X, Y, and Z directions with 0.10-mm single amplitude; acceleration: 9.8 m/s2
max.; time coefficient: 8 min; 4 sweeps
Shock resistance 98 m/s2 max., three times each in X, Y, and Z directions
Degree of protection Built into panel (IP00)
FND-X-SRT FND-X-SRT
82
Performance Specifications
Model (see note 1)
Item
FND-X06H-SRT FND-X12H-SRT FND-X25H-SRT FND-X06L-SRT FND-X12L-SRT
Continuous output current (0-P) 2.0 A 4.8 A 8.0 A 2.0 A 3.0 A
Momentary maximum output
current (0-P)
6.0 A 12 A 25 A 6.0 A 12 A
Input power supply Single-phase 200/240 VAC (170 to 264 V) 50/60 Hz Single-phase 100/115 VAC (85 to
127 V) 50/60 Hz
Position/speed
f db k
os o /U Series (INC) Optical Incremental encoder, 2,048 pulses/revolution
feedback U Series (ABS) Optical Absolute encoder, 1,024 pulses/revolution
U-UE Series Optical Incremental encoder, 1,024 pulses/revolution
H Series Magnetic Incremental encoder, 2,000 pulses/revolution
M Series Resolver, absolute accuracy 0.18° max.; ambient temperature 25°
Applicable load
inertia
U Series (INC) Maximum of 30 times motor’s rotor
inertia
Maximum of 20
times motor’s
rotor inertia
Maximum of 30 times motor’s rotor
inertia
U Series (ABS) Maximum of 20 times motor’s rotor
inertia
Maximum of 18
times motor’s
rotor inertia
Maximum of 20 times motor’s rotor
inertia
U-UE Series Maximum of 30 times motor’s rotor
inertia
Maximum of 20
times motor’s
rotor inertia
Maximum of 30 times motor’s rotor
inertia
H Series Maximum of 10 times motor’s rotor inertia
M Series Maximum of 10 times motor’s rotor inertia
Inverter method PWM method based on IGBT
PWM frequency 10 kHz
Weight Approx. 1.5 kg Approx. 2.5 kg Approx. 1.5 kg
Frequency response (speed
control)
100 Hz (at a load inertia equivalent to motor’s rotor inertia)
Position loop gain 1 to 200 (rad/s)
Feed forward 0% to 200% of speed reference
Pulse rate 1/32,767 (pulse rate 1 / pulse rate 2) 32,767/1
Positioning completion width 1 to 32,767 (pulses)
U Series (INC): 8,192 pulses/revolution; U Series (ABS): 4,096 pulses/revolution;
M Series 24,000 pulses/revolution
Acceleration/Deceleration time 0 to 9,999 (ms); acceleration and deceleration times set separately. Two types can be set for
each. S-curve acceleration/deceleration function available (filter time constant: 0.00 to 32.76 s).
Sequence input 19 pts. (limit inputs, origin proximity, RUN command, START, alarm reset, origin search, JOG
operation, teaching, point selection, position data, deceleration stop)
Photocoupler input: 24 VDC, 8 mA
External power supply: 24 VDC ±1 V, 150 mA min.
Sequence output 15 pts. (brake output, READY, origin search completion, origin, teaching, motor running,
positioning completion, alarm, point output, position selection, speed selection)
Open collector output: 24 VDC, 40 mA
Monitor output
(S t 2 )
o o ou pu Speed monitor 3 V/motor’s rated speed (output accuracy: approx. ±10%)
See note 2.) Current monitor 3 V/motor’s maximum current (output accuracy: approx. ±10%)
Regenerative absorption capacity 13 W + 17 J 24 W + 17 J 37 W + 22 J 13 W + 17 J 17 W + 17 J
Protective functions Overcurrent, overvoltage, voltage drop, resolver disconnection, power status error, clock
stopped, overcurrent (soft), speed amp saturation, motor overload, temporary overload,
resolver error, speed over, error counter over, parameter setting error, software limit over,
coordinate counter over, overrun, encoder disconnection, encoder communications error,
absolute encoder backup error, absolute encoder checksum error, absolute encoder absolute
error, absolute encoder over speed, encoder data not transmitted, BCD data error, present
value undetermined, PTP data not set
Note: 1. When using the 100-VAC-input Position Drivers in combination with the U-series or U-series UE type models, use 200-VAC Servomotors
(-HA, -TA , or -H models).
2. For the monitor output, the monitor items and voltage polarity can be set by parameter UP-25 (monitor output selection).
FND-X-SRT FND-X-SRT
83
Dimensions
Note: All units are in millimeters unless otherwise indicated.
200-VAC FND-X06H-SRT/-X12H-SRT
100-VAC FND-X06L-SRT/-X12L-SRT
200-VAC FND-X25H-SRT
80
68 150
158
170
Three, 6 dia.
158
68
Three, M5
Mounting Holes
Mounting Holes
119
150 107
158
170
Three, 6 dia.
158
Three, M5
107
Position Drivers
Item Model Continuous
output current
(0-P)
Momentary
maximum output
current (0-P)
Input power
supply
Inverter
method
PWM
frequency
Weight
200-VAC input FND-X06H-SRT 2.0 A 6.0 A Single-phase
200/240 VAC
PWM method
b d
10
kH
Approx.
1 5 k
00 C u
FND-X12H-SRT 4.8 A 12 A
S g e ase
(170 to 264 V)
e od
based on
IGBT
0
kHz
o
1.5 kg
FND-X25H-SRT 8.0 A 25 A
50/60 Hz
Approx.
2.5 kg
100-VAC input FND-X06L-SRT 2.0 A 6.0 A Single-phase
100/115 VAC (85
Approx.
1.5 kg
FND-X12L-SRT 3.0 A 12 A
to 127 V)
50/60 Hz
84
Peripheral Devices
Connectors, Cables, and
Terminal-block Terminator
Dedicated Flat Cable Allows
Communication Path Extension and
T-branching with Ease
Ordering Information
Product Appearance Model Specification
Branch Connector SCN1-TH4 ---
Extension Connector SCN1-TH4E ---
Connector Terminator SCN1-TH4T ---
Communications Cable SCA1-4F10 Flat cable, 100 m, 4 conductors
(0.75 mm2 each)
Terminal-block Terminator SRS1-T ---
Note: Branch Connectors and Extension Connectors are sold in blocks of 10 Units.
Peripheral Devices Peripheral Devices
85
Specifications
Ratings/Characteristics
Rated current 4 A
Contact resistance 20 mW max.
Insulation resistance 1,000 MW min. (at 500 VDC)
Withstand voltage 1,000 VAC for 1 min, leakage current: 1 mA max.
Cable pulling strength 50 N (5.1 kgf) min.
Operating temperature –20°C to 70°C
Materials
Housing PA66 resin (UL94V-2)
Branching and extension: Gray
Cover
Terminator: Black
Contact Phosphor bronze and nickel base, tin plated
Dimensions
Note: All units are in millimeters unless otherwise indicated.
SCN1-TH4 Branch Connector
SCN1-TH4E Extension Connector
SCN1-TH4T Connector Terminator
Peripheral Devices Peripheral Devices
86
SRS1-T Terminal-block Terminator
40
Two, 4.4 dia.
30±0.2
Two, 4.2 dia. or M4
20
20
Mounting Holes
Precautions
Refer to the CompoBus/S Operation Manual (W266) before using
the Unit.
Correct Use
The SCN1-TH4, SCN1-TH4E, and SCN1-TH4T are dedicated connectors
for CompoBus/S. Always use dedicated CompoBus/S
cables with these connectors.
Do not locate the cables in places where excessive force may be
imposed on the connectors of the cables such as an area where
cables may entangle feet.
These connectors cannot be reused once they have been attached
to cables. Use new connectors if they were not attached to cables
properly.
Refer to the CompoBus/S Operation Manual (W266) to assemble
the connectors.
CompoBus/S CompoBus/S
87
Ordering Information
Note: Abbreviations for standards: U: UL, C: CSA, CE: EC Directive
Product Appearance Model Specifications Standards
Master Control Units SRM1-C01-V2 Stand-alone model with built-in
controller functions (without
RS-232C)
UL
CSA
CE
(see
SRM1-C02-V2 Stand-alone model with built-in
controller functions and RS-232C
note 2)
Master Units C200HW-SRM21-V1 For C200HX (-ZE), C200HG (-ZE),
C200HE (-ZE), and C200HS
CQM1-SRM21-V1 For CQM1
SYSMAC Boards C200PC-ISA02-SRM
C200PC-ISA12-SRM
For C200HX/HG/HE ---
I/O Link Unit CPM1A-SRT21 8 inputs
8 outputs
UL
CSA
CE
(see
note 2)
Remote Terminals
(Transistor Models)
SRT1-ID04
SRT1-ID04-1
SRT2-ID08
SRT2-ID08-1
SRT2-ID16
SRT2-ID16-1
SRT1-OD04
SRT1-OD04-1
SRT2-OD08
SRT2-OD08-1
SRT2-OD16
SRT2-OD16-1
4 transistor input (NPN)
4 transistor inputs (PNP)
8 transistor inputs (NPN)
8 transistor inputs (PNP)
16 transistor inputs (NPN)
16 transistor inputs (PNP)
4 transistor outputs (NPN)
4 transistor outputs (PNP)
8 transistor outputs (NPN)
8 transistor outputs (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
Remote Terminals
(M3 Terminal Block Models)
SRT1-ID16T
SRT1-ID16T-1
SRT2-MD16T
SRT2-MD16T-1
SRT2-OD16T
SRT2-OD16T-1
16 transistor inputs (NPN)
16 transistor inputs (PNP)
16 transistor I/O points (NPN)
16 transistor I/O points (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
CE
(see
note 2)
Remote Terminals
(Relay-mounted Models)
SRT2-ROC08
SRT2-ROC16
SRT2-ROF08
SRT2-ROF16
8 relay outputs
16 relay outputs
8 power MOS FET relay outputs
16 power MOS FET relay outputs
UL
CSA
CE
(see
note 2)
Connector Terminals SRT2-VID08S
SRT2-VID08S-1
SRT2-VOD08S
SRT2-VOD08S-1
SRT2-VID16ML
SRT2-VID16ML-1
SRT2-VOD16ML
SRT2-VOD16ML-1
SRT2-ATT01
SRT2-ATT02
8 transistor input (NPN)
8 transistor inputs (PNP)
8 transistor outputs (NPN)
8 transistor outputs (PNP)
16 transistor inputs (NPN)
16 transistor inputs (PNP)
16 transistor outputs (NPN)
16 transistor outputs (PNP)
Mounting hook A
Mounting hook B
CE
(see
note 2)
Sensor Terminals SRT1-ID08S
SRT1-ND08S
SRT1-OD08S
8 inputs (NPN)
4 automatic teaching points (NPN)
8 outputs
---
CompoBus/S CompoBus/S
88
Product Standards
Appearance Model Specifications
Sensor Amplifier Terminals
for CompoBus/S
SRT1-TID04S
SRT1-TKD04S
SRT1-XID04S
SRT1-XKD04S
--- ---
E3X-N Connector Type E3X-NH16
E3X-NT16
E3X-NT26
Long-distance, high-precision, 1
channel
General-purpose, 1 channel
Multi-functional, 1 channel
E3X-NM16 Multi-functional, 4 channels
Terminal Block Unit E39-JID01 One input point
Analog Input Terminal SRT2-AD04 1 to 4 inputs (set with DIP switch) CE
(see
note 2)
Analog Output Terminal SRT2-DA02 1 or 2 outputs (set with DIP switch)
Remote I/O Modules SRT1-ID16P
SRT1-OD16P
--- ---
Position Drivers FND-X06H-SRT 200-VAC input, momentary maximum
output current: 6.0 A
FND-X12H-SRT 200-VAC input, momentary maximum
output current: 12 A
FND-X25H-SRT 200-VAC input, momentary maximum
output current: 25 A
FND-X06L-SRT 100-VAC input, momentary maximum
output current: 6.0 A
FND-X12L-SRT 100-VAC input, momentary maximum
output current: 12 A
Branch Connector
Extension Connector
Connector Terminator
SCN1-TH4
SCN1-TH4E
SCN1-TH4T
---
Flat Cable SCA1-4F10 100 m
Terminal-block Terminator SRS1-T ---
Note: 1. Refer to the C200HS Catalog (P32).
Refer to the C200HX/C200HG/C200HE (-ZE) Catalog
2. Information on EC Directives
Individual OMRON products that comply with EC Directives conform to the common emission standards of EMC Directives. However,
the emission characteristics of these products installed on customers’ equipment may vary depending on the configuration,
wiring, layout, and other conditions of the control panel used. For this reason, customers are requested to check whether the emission
characteristics of the entire machine or equipment comply with the EMC Directives.
CompoBus/S CompoBus/S
89
Model Number Legend
SRT-
2 3 4 5 6 7
-1
1
1. Communications Mode
1: High-speed communications mode
2: High-speed/Long-distance communications mode
2. I/O Module Replacement
None: Impossible
R: Possible (Relays and power MOS FET relays)
3. I/O Specifications
I: Input
O: Output
N: Input and output (with remote teaching)
AD: Analog input
DA: Analog output
4. I/O Voltage Specifications
D: DC
C: AC/DC (contact type)
F: AC/DC (power MOS FET type)
5. I/O Points
04: 4 points
08: 8 points
16: 16 points
6. I/O Connection Method
None: Screw terminals
S: Connector
P: PCB terminals
7.
None: NPN
-1: PNP
CompoBus/S CompoBus/S
90
Notes:
Cat. No. Q103-E1-6 Note: Specifications subject to change without notice. Printed in Japan
0200-8C (0796) a
Authorized Distributor:
OMRON Corporation
Systems Components Division
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)559-77-9633/Fax: (81)559-77-9097
Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ELECTRONICS, INC.
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)835-3011/Fax: (65)835-2711
The essential guide
Harmony
Control and Signalling units
2013
Control and
signalling units
Harmony, simple and innovative solutions
for your applications
World leader in control and signalling components, Schneider Electric continues
its policy of innovation within the Harmony ranges in order to perfect the efficiency
of your dialogue solutions.
Invest with complete
peace of mind!
The right solution for your application
An offer unrivalled in content and
complementarity
Optimised cost saving solutions due
to increased flexibility of the offers,
enabling multiple combinations and
full compatibility
Quality you can rely on
Robust products that comply to the
highest quality standards
Valuable time that you save
Simple selection and quick installation
for all Harmony components
This document is a selection
of the top selling products.
For more information:
http://www.schneider-electric.com
Contents
Pushbuttons, switches, pilot lights and control stations
Ø 16, plastic bezel, Harmony XB6 .......................................................................................... 2 to 4
Ø 8 and 12, pilot lights, Harmony XVL .......................................................................................... 5
Ø 22, metal bezel, Harmony XB4 / Control stations Harmony XAP ...................................... 6 to 9
Ø 22, plastic bezel, Harmony XB5 / Control stations Harmony XAL ................................. 10 to 13
Ø 22, plastic bezel, wireless and batteryless, Harmony XB5R ........................................... 14 to 15
Ø 22, plastic bezel - Monolithic, Harmony XB7 .................................................................. 16 to 17
Ø 30, metal and plastic bezel, Harmony 9001K, 9001SK .................................................. 18 to 20
Cam switches
Harmony K series ............................................................................................................... 21 to 22
Signalling solutions
Ø 40, 60, 100 mm monolithic tower lights, Harmony XVC ........................................................... 23
Ø 45 mm monolithic beacons and tower lights, accessories, Harmony XVDLS / XVC ............... 24
Ø 70 mm modular tower lights (IP 66), Harmony XVB ................................................................ 25
Ø 70 mm modular tower lights (up to IP 54), Harmony XVE ....................................................... 26
Ø 45, 50 mm modular tower lights (up to IP 54), Harmony XVM / XVP ...................................... 27
Modular tower lights accessories, Harmony XV .......................................................................... 28
Ø 84, 106, 120, 130 mm rotating mirror beacons, Harmony XVR ............................................... 29
Accessories for rotating mirror beacons, Harmony XVR ............................................................. 30
Electronic alarms and multisound sirens, Harmony XVS ............................................................ 30
Components for hoisting applications
Pendant control stations, Harmony XAC ............................................................................ 31 to 32
Illuminated pushbuttons
Type of head Flush push
Shape of head rectangular (2)
Degree of protection IP 65 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of push Spring return
Complete products
12 … 24 V AC/DC
Products for user assembly
References white NO XB6DW1B1B ZB6Ep1B (1) ZB6Z1B ZB6DW1
NO + NC XB6DW1B5B ZB6Ep1B (1) ZB6Z5B ZB6DW1
green NO XB6DW3B1B ZB6Ep3B (1) ZB6Z1B ZB6DW3
NO + NC XB6DW3B5B ZB6Ep3B (1) ZB6Z5B ZB6DW3
red NC XB6DW4B2B ZB6Ep4B (1) ZB6Z2B ZB6DW4
NO + NC XB6DW4B5B ZB6Ep4B (1) ZB6Z5B ZB6DW4
yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DW5
NO + NC XB6DW5B5B ZB6Ep5B (1) ZB6Z5B ZB6DW5
Type of push Latching
References white NO – ZB6Ep1B (1) ZB6Z1B ZB6DF1
NO + NC XB6DF1B5B ZB6Ep1B (1) ZB6Z5B ZB6DF1
green NO XB6DF3B1B ZB6Ep3B (1) ZB6Z1B ZB6DF3
NO + NC XB6DF3B5B ZB6Ep3B (1) ZB6Z5B ZB6DF3
red NC XB6DF4B2B ZB6Ep4B (1) ZB6Z2B ZB6DF4
NO + NC XB6DF4B5B ZB6Ep4B (1) ZB6Z5B ZB6DF4
yellow NO – ZB6Ep5B (1) ZB6Z1B ZB6DF5
NO + NC – ZB6Ep5B (1) ZB6Z5B ZB6DF5
Pilot lights
Type of head Smooth lens cap
Shape of head rectangular (2)
Complete products Products for user assembly
12 … 24 V AC/DC
References white XB6DV1BB ZB6Ep1B (1) ZB6DV1
green XB6DV3BB ZB6Ep3B (1) ZB6DV3
red XB6DV4BB ZB6Ep4B (1) ZB6DV4
yellow XB6DV5BB ZB6Ep5B (1) ZB6DV5
blue – ZB6Ep6B (1) ZB6DV6
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) For products with a square head, replace the letter D in the reference by the letter C (XB6DW1B1B becomes XB6CW1B1B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DW1B1B becomes XB6AW1B1B).
(3) Alternative connection: 1 x 0.5 pins for printed circuit boards.
Pushbuttons, switches and pilot lights Ø 16
with plastic bezel
Contact functions and light functions
with integral LED
(1):
Voltage Letter (p)
12…24 V AC/DC (15 mA) B
48…120 V AC (25 mA) G
230…240 V AC (25 mA) M
+ 0.2
0
Harmony
XB6
= + +
= +
Pushbuttons
Type of head Flush push
Shape of head rectangular (1)
Degree of protection IP 65 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (2) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of push Spring return
Complete products Products for user assembly
References white NO XB6DA11B ZB6Z1B ZB6DA1
NO + NC XB6DA15B ZB6Z5B ZB6DA1
black NO – ZB6Z1B ZB6DA2
NO + NC XB6DA25B ZB6Z5B ZB6DA2
green NO XB6DA31B ZB6Z2B ZB6DA3
NO + NC XB6DA35B ZB6Z5B ZB6DA3
red NO – ZB6Z1B ZB6DA4
NO + NC XB6DA45B ZB6Z5B ZB6DA4
(1) For products with a square head, replace the letter D in the reference by the letter C (XB6DA11B becomes XB6CA11B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DA11B becomes XB6AA11B).
(2) Alternative connection: 1 x 0.5 pins for printed circuit boards.
Ø 30 mushroom head Emergency stop pushbuttons (3)
Type of head Trigger action (EN/ISO 13850)
Shape of head cylindrical
Type of push Turn to release
Complete products Products for user assembly
References red 2 NC + 1 NO XB6AS8349B ZB6E2B ZB6Z5B ZB6AS834
Type of push Key release, 200
References red 2 NC + 1 NO XB6AS9349B ZB6E2B ZB6Z5B ZB6AS934
(3) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard
EN/IEC 60947-5-5.
+ 0.2
0
Contact functions
= +
= + +
Selector switches and key switches
Type of head Black handle
Shape of head rectangular (2)
Degree of protection IP 66 / Nema 4, 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 16.2
mounting centres 24 x 18 with rectangular head, 18 x 18 with square or circular head
Dimensions (mm) W x H x D (below head) 24 x 18 x 50 with rectangular head, 18 x 18 x 50 with square or circular head
Connection (3) Tags for 2.8 x 0.5 Faston connectors or for soldering
Type of operator Black handle
Complete products Products for user assembly
Number and type of positions 2 positions 2 positions 2 positions
stay put stay put spring return to centre
References NO XB6DD221B ZB6Z1B ZB6DD22 ZB6Z1B ZB6DD24
NO + NC XB6DD225B ZB6Z5B ZB6DD22 ZB6Z5B ZB6DD24
Number and type of positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre
References NO XB6DD235B ZB6Z5B ZB6DD23 ZB6Z5B ZB6DD25
Type of operator Key, n° 200
Complete products Products for user assembly
Number and type of positions 2 positions 2 positions 2 positions
stay put stay put spring return to centre
References NO + NC XB6DGC5B ZB6Z5B ZB6DGC ZB6Z5B ZB6DGB
Number and type of positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre
References NO + NC XB6DGH5B ZB6Z5B ZB6DGH ZB6Z5B ZB6DGS
Illuminated selector switches
Type of operator Coloured handle
Products for user assembly
Number and type of positions 2 positions 3 positions
stay put stay put
References white NO + NC ZB6Ep1B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK1
green NO + NC ZB6Ep3B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK3
red NO + NC ZB6Ep4B (1) ZB6Z5B ZB6DD02 ZB6DD03 ZB6YK4
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) For products with a square head, replace the letter D in the reference by the letter C (XB6DD221B becomes XB6CD221B).
For products with a circular head, replace the letter D in the reference by the letter A (XB6DD221B becomes XB6AD221B).
(3) Alternative connection: 1 x 0.5 pins for printed circuit boards.
(1):
Voltage Letter (p)
12…24 V AC/DC (15 mA) B
48…120 V AC (25 mA) G
230…240 V AC (25 mA) M
+ 0.2
0
Harmony
XB6
60° 60° 45°
60° 60° 60° 60° 45° 45°
70° 70° 45°
70° 70° 70° 70° 45° 45°
60° 60° 60°
Pushbuttons, switches and pilot lights Ø 16
with plastic bezel
Contact functions and light functions
with integral LED
= +
= +
= + +
LED pilot lights With black bezel With integral lens cap
Type of head Protruding LED, Ø 8 mm Covered LED, Ø 8 mm Covered LED, Ø 12 mm
Degree of protection IP 40, IP 65 with seal (2)
Mounting (mm) panel cut-out Ø 8.2 mm Ø 8.2 mm Ø 12.2 mm
mounting centres 12.5 x 12.5 mm 10.5 x 10.5 mm 16.5 x 16.5 mm
Dimensions (mm) Ø x Depth (below head) Ø 12 x 32 Ø 10 x 34 Ø 16 x 45
Connection Tags (3) Tags (3) Threaded connectors
References (1) green XVLA1p3 XVLA2p3 XVLA3p3
red XVLA1p4 XVLA2p4 XVLA3p4
yellow XVLA1p5 XVLA2p5 XVLA3p5
Tightening key For Ø 8 mm pilot lights For Ø 12 mm pilot lights
References XVLX08 XVLX12
(1) Basic reference, to be completed by the number 1, 2, 3 or 4 indicating the required voltage. See voltage table above.
(2) For an IP 65 degree of protection, include the seals: XVLZ911 for pilot lights XVLA1pp and XVLA2pp; XVLZ912 for pilot lights XVLA3pp.
(3) Tags for 2.8 x 0.5 Faston connectors or for soldering.
Sub-assemblies & accessories for Ø 16
plastic bezel control and signalling units
Sub-assemblies Bodies for pushbuttons and
selector switches
Bodies for pilot lights
Rated operational characteristics, AC-15: Ue = 240 V and Ie = 1.5 A or Ue = 120 V and Ie = 3 A Consumption
Positive operation of contacts conforming to IEC/EN 60947-5-1: NC contacts with positive opening operation, 15 mA 12…24 V AC/DC
positive opening force 20 N 25 mA 48…120 V AC
25 mA 230…240 V AC
Type of Fixing collar Contacts Pilot light 12 … 24 V 48 … 120 V 230 … 240 V
contact + contacts bodies
References NO ZB6Z1B ZB6E1B White ZB6EB1B ZB6EG1B ZB6EM1B
NC ZB6Z2B ZB6E2B Green ZB6EB3B ZB6EG3B ZB6EM3B
2 NO ZB6Z3B – Red ZB6EB4B ZB6EG4B ZB6EM4B
2 NC ZB6Z4B – Yellow ZB6EB5B ZB6EG5B ZB6EM5B
NO + NC ZB6Z5B – Blue ZB6EB6B ZB6EG6B ZB6EM6B
LED pilot lights Ø 8 and 12
(1):
Voltage Number (p)
5 V (25 mA) 1
12 V (18 mA) 2
24 V (18 mA) 3
48 V (10 mA) 4
Accessories
Legend holders 24 x 28 mm (8 x 21 mm legend) 24 x 36 mm (16 x 21 mm legend)
Blank legend Background colour without legend yellow or white black or red without legend yellow or white black or red
References (10)* ZB6YD20 ZB6YD21 ZB6YD22 ZB6YD30 ZB6YD31 ZB6YD32
Blank legends for legend holders 8 x 21 mm (24 x 28 mm legend holder) 16 x 21 mm (24 x 36 mm legend holder)
Background colour – yellow or white black or red – yellow or white black or red
References (20)* – ZB6Y1001 ZB6Y2001 – ZB6Y4001 ZB6Y3001
Ø 45 mm yellow legend for mushroom head Emergency stop pushbutton
Marking Blank, for engraving EMERGENCY STOP ARRET D’URGENCE
References ZB6Y7001 ZB6Y7330 ZB6Y7130
Body/fixing collar Plate Tightening tool Dismantling tool
anti-rotation and slackening, for fixing nut for removal of contact blocks
References ZB6Y009 (10)* ZB6Y003 (10)* ZB6Y905 (2)* ZB6Y018 (5)*
Protective shutter for pushbuttons and switches Connector Blanking plug
for rectangular heads for circular and square heads Faston, female IP 65
References ZB6YD001 ZB6YA001 ZB6Y004 (100)* ZB6Y005 (10)*
* sold in lots of
Harmony
XVL
Pushbuttons, spring return
Type of head Chromium plated circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of push Flush Flush, booted
Unmarked Products Complete For user assembly Complete For user assembly
References black NO XB4BA21 ZB4BZ101 ZB4BA2 XB4BP21 ZB4BZ101 ZB4BP2
green NO XB4BA31 ZB4BZ101 ZB4BA3 XB4BP31 ZB4BZ101 ZB4BP3
red NC XB4BA42 ZB4BZ102 ZB4BA4 XB4BP42 ZB4BZ102 ZB4BP4
yellow NO XB4BA51 ZB4BZ101 ZB4BA5 XB4BP51 ZB4BZ101 ZB4BP5
blue NO XB4BA61 ZB4BZ101 ZB4BA6 XB4BP61 ZB4BZ101 ZB4BP6
Type of push Flush
With international marking Products Complete For user assembly
References green NO XB4BA3311 ZB4BZ101 ZB4BA331 – – –
red NC XB4BA4322 ZB4BZ102 ZB4BA432 – – –
white NO XB4BA3341 ZB4BZ101 ZB4BA334 – – –
black NO XB4BA3351 ZB4BZ101 ZB4BA335 _ _ _
Type of push Projecting Mushroom head, Ø 40 mm
Unmarked Products Complete For user assembly Complete For user assembly
References black NO – – – XB4BC21 ZB4BZ101 ZB4BC2
red NC XB4BL42 ZB4BZ102 ZB4BL4 – – –
Type of push Double-headed pushbuttons Triple-headed pushbuttons
Degree of protection IP 66 - IP 69K IP 66 - IP 69K
With international marking Products Complete For user assembly Complete For user assembly
(A) (B)
References (A) NO + NC XB4BL73415 ZB4BZ105 ZB4BL7341 – – –
(B) NO + NC + NO – – – XB4BA711237 ZB4BZ103 +
ZBE102
ZB4BA71123
(1) Alternative connections: plug-in connector,
Faston connectors (6.35 and 2 x 2.8).
Ø 40 mm mushroom head Emergency stop pushbuttons (2)
Trigger action (EN/ISO 13850)
Type of push Push-pull NO + NC
Unmarked Products Complete For user assembly
References red NO + NC XB4BT845 ZB4BZ105 ZB4BT84
Type of push Turn to release NO + NC
References red NO + NC XB4BS8445 ZB4BZ105 ZB4BS844
Type of push Key release NO + NC
References red NO + NC XB4BS9445 ZB4BZ105 ZB4BS944
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard
EN/IEC 60947-5-5.
Harmony
XB4
+ 0.4
0
Pushbuttons, switches and pilot lights Ø 22
with metal bezel
Contact functions
+
= +
= +
Contact functions
Selector switches and key switches
Type of head Chromium plated circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of operator Key, n° 455
Products Complete For user assembly Complete For user assembly
Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions
stay put stay put stay put stay put
References black NO XB4BG21 ZB4BZ101 ZB4BG2 XB4BG41 ZB4BZ101 ZB4BG4
Number and type of positions 2 positions 2 positions 3 positions 3 positions
spring return to left spring return to left stay put stay put
References
black NO XB4BG61 ZB4BZ101 ZB4BG6 – – –
black NO + NO – – – XB4BG33 ZB4BZ103 ZB4BG3
+ 0.4
0
Type of operator Handle
Products Complete For user assembly Complete For user assembly
Number and type of positions 2 positions 2 positions 2 positions 2 positions
stay put stay put spring return to left spring return to left
References black NO XB4BD21 ZB4BZ101 ZB4BD2 XB4BD41 ZB4BZ101 ZB4BD4
Number and type of positions 3 positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre spring return to centre
References black NO + NO XB4BD33 ZB4BZ103 ZB4BD3 XB4BD53 ZB4BZ103 ZB4BD5
= +
= +
Type Double-headed pushbuttons with LED pilot light Illuminated selector switches
(1 flush green push, 1 projecting red push) (2 position stay put)
Degree of protection IP 66 - IP 69K IP 66
Light source Integral LED Integral LED
Products Complete Complete
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC
References green NO + NC – – – XB4BK123B5 XB4BK123G5 XB4BK123M5
red NO + NC – – – XB4BK124B5 XB4BK124G5 XB4BK124M5
orange NO + NC – – – XB4BK125B5 XB4BK125G5 XB4BK125M5
White NO + NC XB4BW73731B5 XB4BW73731G5 XB4BW73731M5 – – –
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
Harmony
XB4
Pushbuttons, switches and pilot lights Ø 22
with metal bezel
Light functions
Pilot lights
Type of head Circular bezel
Smooth lens cap
Degree of protection IP 66 / Nema 4X, 13 / Class I
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth below head 43
Connection (1) Screw clamp terminals
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white XB4BVB1 XB4BVG1 XB4BVM1 XB4BV61 ZB4BV6 ZB4BV01
green XB4BVB3 XB4BVG3 XB4BVM3 XB4BV63 ZB4BV6 ZB4BV03
red XB4BVB4 XB4BVG4 XB4BVM4 XB4BV64 ZB4BV6 ZB4BV04
yellow XB4BVB5 XB4BVG5 XB4BVM5 XB4BV65 ZB4BV6 ZB4BV05
blue XB4BVB6 XB4BVG6 XB4BVM6 – – –
+ 0.4
0
Illuminated pushbuttons and selector switches
Type Flush push, spring return, illuminated pushbuttons
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white NO + NC XB4BW31B5 XB4BW31G5 XB4BW31M5 XB4BW3165 ZB4BW065 ZB4BW31
green NO + NC XB4BW33B5 XB4BW33G5 XB4BW33M5 XB4BW3365 ZB4BW065 ZB4BW33
red NO + NC XB4BW34B5 XB4BW34G5 XB4BW34M5 XB4BW3465 ZB4BW065 ZB4BW34
orange NO + NC XB4BW35B5 XB4BW35G5 XB4BW35M5 XB4BW3565 ZB4BW065 ZB4BW35
blue NO + NC XB4BW36B5 XB4BW36G5 XB4BW36M5 – – –
= +
= +
Separate components and accessories
Electrical blocks (1) (2)
Single contact blocks Light blocks with integral LED Light block, direct supply
Rated operational characteristics
AC-15, 240 V - 3 A Consumption
18 mA 24 V AC/DC
Positive operation of contacts NC contacts with positive
opening operation
14 mA 120 V AC
conforming to IEC/EN 60947-5-1 14 mA 240 V AC
Screw clamp
terminal
Spring clamp
terminal
To combine with heads for integral LED For BA 9s bulb (not included)
24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References (5)* NC ZBE101 ZBE1015 white ZBVB1 ZBVG1 ZBVM1 ZBV6
NO ZBE102 ZBE1025 green ZBVB3 ZBVG3 ZBVM3 Colour provided by lens
red ZBVB4 ZBVG4 ZBVM4
orange ZBVB5 ZBVG5 ZBVM5
blue ZBVB6 ZBVG6 ZBVM6
Diecast metal enclosures
(Zinc alloy, usable depth 49 mm) 1 vertical row 2 vertical rows
Number of cut-outs Front face dimensions 1 2 3 4 2 4 6
References 80 x 80 mm XAPM1201 – – – XAPM1202 – –
80 x 130 mm – XAPM2202 XAPM2203 – – XAPM2204 –
80 x 175 mm – – XAPM3203 XAPM3204 – – XAPM3206
Accessories (2)
Legend holders, 30 x 40 mm, for 8 x 27 mm legends
Marking Background colour: black or red white or yellow
References (10)* Blank ZBY2101 ZBY4101
International 0 (red background) ZBY2931 I ZBY2147 AUTO ZBY2115 STOP ZBY2304 –
English OFF ZBY2312 ON ZBY2311 START ZBY2303 – –
French ARRET (red b/grnd) ZBY2104 ARRET-MARCHE ZBY2166 MARCHE ZBY2103 – –
German AUS ZBY2204 AUS-EIN ZBY2266 EIN ZBY2203 – –
Spanish PARADA (red b/grnd) ZBY2404 PARADA-MARCHA ZBY2466 MARCHA ZBY2403 – –
Legend holders, 30 x 50 mm, for 18 x 27 mm legends
Background colour black or red white or yellow
References (10)* Blank ZBY6101 ZBY6102
Ø 60 mm legend for mushroom head Emergency stop pushbutton
Background colour yellow
Marking Blank EMERGENCY STOP ARRET D’URGENCE NOT HALT PARADA DE EMERGENCIA
References ZBY9140 ZBY9330 ZBY9130 ZBY9230 ZBY9430
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
(2) Electrical blocks and accessories also for use with Harmony XB5 plastic range
* sold in lots of
Type of push Double-headed pushbuttons Triple-headed pushbuttons
Degree of protection IP 66 - IP 69K IP 66 - IP 69K
With international marking Products Complete
(A)
For user assembly Complete
(B)
For user assembly
References (A) NO + NC XB5AL73415 ZB5AZ105 ZB5AL7341 – – –
(B) NO + NC + NO – – – XB5AA711237 ZB5AZ103 +
ZBE102
ZB5AA71123
(1) Alternative connections: plug-in connector,
Faston connectors (6.35 and 2 x 2.8).
Harmony
XB5
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel
Contact functions
Pushbuttons, spring return
Type of head Circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
+ 0.4
0
Type of push Flush Flush, booted
Unmarked Products Complete For user assembly Complete For user assembly
References black NO XB5AA21 ZB5AZ101 ZB5AA2 XB5AP21 ZB5AZ101 ZB5AP2
green NO XB5AA31 ZB5AZ101 ZB5AA3 XB5AP31 ZB5AZ101 ZB5AP3
red NC XB5AA42 ZB5AZ102 ZB5AA4 XB5AP42 ZB5AZ102 ZB5AP4
yellow NO XB5AA51 ZB5AZ101 ZB5AA5 XB5AP51 ZB5AZ101 ZB5AP5
blue NO XB5AA61 ZB5AZ101 ZB5AA6 XB5AP61 ZB5AZ101 ZB5AP6
Type of push Flush
With international marking Products Complete For user assembly Complete For user assembly
References green NO XB5AA3311 ZB5AZ101 ZB5AA331 – – –
red NC XB5AA4322 ZB5AZ102 ZB5AA432 – – –
white NO XB5AA3341 ZB5AZ101 ZB5AA334 – – –
black NO XB5AA3351 ZB5AZ101 ZB5AA335 – – –
Type of push Projecting Mushroom head, Ø 40 mm
Unmarked Products Complete For user assembly Complete For user assembly
References black NO – – – XB5AC21 ZB5AZ101 ZB5AC2
red NC XB5AL42 ZB5AZ102 ZB5AL4 – – –
Ø 40 mm mushroom head Emergency stop pushbuttons (2)
Trigger action (EN/ISO 13850)
Type of push Push-pull NO + NC
Unmarked Products Complete For user assembly
References red NO + NC XB5AT845 ZB5AZ105 ZB5AT84
Type of push Turn to release NO + NC
References red NO + NC XB5AS8445 ZB5AZ105 ZB5AS844
Type of push Key release NO + NC
References red NO + NC XB5AS9445 ZB5AZ105 ZB5AS944
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850: to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5.
+
= +
= +
10
Contact functions
Selector switches and key switches
Type of head Circular bezel
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth (mm) below head 43
Connection (1) Screw clamp terminals
Type of operator Handle
Products Complete For user assembly Complete For user assembly
Number and type of positions 2 positions 2 positions 2 positions 2 positions
stay put stay put spring return to left spring return to left
References black NO XB5AD21 ZB5AZ101 ZB5AD2 XB5AD41 ZB5AZ101 ZB5AD4
Number and type of positions 3 positions 3 positions 3 positions 3 positions
stay put stay put spring return to centre spring return to centre
References black NO + NO XB5AD33 ZB5AZ103 ZB5AD3 XB5AD53 ZB5AZ103 ZB5AD5
Type of operator Key, n° 455
Number and type of positions (2) 2 positions 2 positions 2 positions 2 positions
stay put stay put stay put stay put
References black NO XB5AG21 ZB5AZ101 ZB5AG2 XB5AG41 ZB5AZ101 ZB5AG4
(2) The symbol indicates key withdrawal position.
+ 0.4
0
= +
11
Harmony
XB5
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel
Light functions
Pilot lights
Type of head Circular bezel
Smooth lens cap
Degree of protection IP 66 / Nema 4X, 13 / Class II
Mounting (mm) panel cut-out Ø 22.5 (22.4 recommended)
mounting centres 30 (horizontal) x 40 (vertical)
Depth below head 43
Connection (1) Screw clamp terminals
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white XB5AVB1 XB5AVG1 XB5AVM1 XB5AV61 ZB5AV6 ZB5AV01
green XB5AVB3 XB5AVG3 XB5AVM3 XB5AV63 ZB5AV6 ZB5AV03
red XB5AVB4 XB5AVG4 XB5AVM4 XB5AV64 ZB5AV6 ZB5AV04
orange XB5AVB5 XB5AVG5 XB5AVM5 XB5AV65 ZB5AV6 ZB5AV05
blue XB5AVB6 XB5AVG6 XB5AVM6 – – –
Illuminated pushbuttons and selector switches
Type Flush push, spring return, illuminated pushbuttons
Light source Integral LED Direct supply for BA 9s bulb (not included)
Products Complete Complete For user assembly
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 250 V max., 2.4 W max.
References white NO + NC XB5AW31B5 XB5AW31G5 XB5AW31M5 XB5AW3165 ZB5AW065 ZB5AW31
green NO + NC XB5AW33B5 XB5AW33G5 XB5AW33M5 XB5AW3365 ZB5AW065 ZB5AW33
red NO + NC XB5AW34B5 XB5AW34G5 XB5AW34M5 XB5AW3465 ZB5AW065 ZB5AW34
orange NO + NC XB5AW35B5 XB5AW35G5 XB5AW35M5 XB5AW3565 ZB5AW065 ZB5AW35
blue NO + NC XB5AW36B5 XB5AW36G5 XB5AW36M5 – – –
Type Double-headed pushbuttons with LED pilot light Illuminated selector switches
(1 flush green push, 1 projecting red push) (2 position stay put)
Degree of protection IP 66 - IP 69K IP 66
Light source Integral LED Integral LED
Products Complete Complete
Supply voltage 24 V AC/DC 110…120 V AC 230…240 V AC 24 V AC/DC 110…120 V AC 230…240 V AC
References green NO + NC – – – XB5AK123B5 XB5AK123G5 XB5AK123M5
red NO + NC – – – XB5AK124B5 XB5AK124G5 XB5AK124M5
orange NO + NC – – – XB5AK125B5 XB5AK125G5 XB5AK125M5
white NO + NC XB5AW73731B5 XB5AW73731G5 XB5AW73731M5 – – –
(1) Alternative connections: plug-in connector, Faston connectors (6.35 and 2 x 2.8), spring clamp terminal.
+ 0.4
0
= +
= +
12
Separate components and accessories: see page 9.
Control stations
For XB5 pushbuttons, switches and pilot lights
Ø 22 with plastic bezel
Harmony
XAL
(1) Empty enclosures:
Basic reference: XALK0p, replace the p
by the number of cut-outs required (see
cut-out table above)
(1):
Number of cut-outs Number (p)
1 1
2 2
3 3
4 4
5 5
Complete stations with 1 pushbutton, selector switch or key switch
(light grey RAL 7035 base with dark grey RAL 7016 lid)
Degree of protection IP 65 / Nema 4X and 13 / Class II
Dimensions (mm) W x H x D 68 x 68 x 113 max. (with key release Ø 40 mushroom head pushbutton)
Fixing (mm) 2 x Ø 4.3 on 54 mm centres
Function 1 Start or Stop function 1 Start-Stop function
Marking On spring return push On legend holder and legend below head
Number and type of pushbutton/selector switch/key switch 1 flush green p/b 1 flush red p/b 1 projecting red p/b 1 2 position stay put selector switch or key switch
Black handle Key n° 455 (key withdrawal LH pos.)
References NO I XALD102 – – – –
Start XALD103 – – – –
O - I – – – XALD134 XALD144
O – XALD112 XALD115 – –
Function Emergency stop (2) (light grey RAL 7035 base with yellow RAL 1012 lid)
Number and type of mushroom head pushbutton 1 red Ø 40 head, turn to release 1 red Ø 40 head, key release
Latching mechanism Trigger action (EN/ISO 13850) Trigger action (EN/ISO 13850)
References NC XALK178 XALK188
NC + NC XALK178F XALK188F
NO + NC XALK178E XALK188E
NC + NC + NO XALK178G XALK188G
(2) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5.
(1) Empty enclosures:
Basic reference: XALD0p, replace the p
by the number of cut-outs required (see
cut-out table above)
Complete stations with 2 and 3 pushbuttons or 2 pushbuttons + 1 pilot light
(light grey RAL 7035 base with dark grey RAL 7016 lid)
Dimensions (mm) W x H x D 2-way control stations: 68 x 106 x 62; 3-way control stations: 68 x 136 x 87
Fixing (mm) 2-way control stations: 2 x Ø 4.3 on 54 x 68 centres; 3-way control stations: 2 x Ø 4.3 on 54 x 98 centres
Function Start-Stop functions 2 functions 3 functions
Marking On spring return push
Number and type of pushbutton/pilot light 1 flush green p/b 1 flush green pushbutton 1 flush white p/b 1 flush white p/b 1 flush white p/b
1 flush red p/b 1 flush red pushbutton 1 flush black p/b 1 flush red p/b 1 Ø 30 red mush-
1 red pilot light with integral LED 1 flush black p/b room head p/b
1 flush black p/b
24 V AC/DC 230 V AC
References NO + NC I - O XALD213 XALD363B XALD363M – – –
Start - Stop XALD215 – – – – –
NO + NO – – – XALD222 – –
NO + NC + NO – – – – XALD324 XALD328
Accessories Standard contact blocks Light blocks with integral LED, colour red
Description NO contact NC contact 24 V AC/DC 230 V AC
References ZENL1111 ZENL1121 ZALVB4 ZALVM4
13
Harmony
XB5R
Wireless and batteryless pushbuttons
Packages and components
Ready to use packs Panel mounting Mobile application
Wireless and batteryless 22mm pushbutton assembled on fixing collar Plastic head Metal head Plastic head Metal head Plastic head in handy box
Caps 1 black cap 1 set of 10 different
coloured caps
1 black cap 1 set of 10 different
coloured caps
Receiver Non configurable Configurable functions:
monostable, bistable,
stop/start
Non configurable Configurable functions:
monostable, bistable,
stop/start
Relay output 1relay output type RT 3A 2 relays output type RT 3A 1relay output type RT 3A 2 relays output type RT 3A
Voltage receiver 24 VDC 24….240 AC/DC 24 VDC 24….240 AC/DC
References XB5RFB01 XB4RFB01 XB5RFA02 XB4RFA02 XB5RMB03 XB5RMA04
The pushbutton and receiver are factory paired
Transmitter components for wireless and
batteryless pushbuttons
Plastic mushroom head Plastic head Metal head
Wireless and batteryless pushbuttons including - a transmitter fitted with fixing collar
- a spring return pushbutton head with clipped-in cap
Reference Cap colour White – ZB5RTA1 ZB4RTA1
Black – ZB5RTA2 ZB4RTA2
Green – ZB5RTA3 ZB4RTA3
White I on green background – ZB5RTA331 ZB4RTA331
Red – ZB5RTA4 ZB4RTA4
White O on red background – ZB5RTA432 ZB4RTA432
Yellow – ZB5RTA5 ZB4RTA5
Blue – ZB5RTA6 ZB4RTA6
Black ZB5RTC2 – –
Transmitter components for wireless and
batteryless rope pull switch
Rope pull switch with wireless and batteryless transmitter
Reference ZBRP1
14
Components and accessories
Configurable receivers
Description - 2 buttons (learn, parameter setting)
- 6 indicating LEDs (power ON, outputs, signal strenght)
Output function Monostable Monostable, bistable Monostable, bistable, stop/start
Output type 4 PNP outputs 200 mA / 24V 2 relay outputs type RT 3A
Receiver voltage 24 VDC 24….240 AC/DC
References ZBRRC ZBRRD ZBRRA
Configurable access point (1)
Description - 7-segment display
- jog dial
- 8 indicating LEDs (power ON, functions mode, communication status, signal strength)
- external antenna connector and protective plug
Output function Monostable
Output type 2 RS485 for Modbus RS485 serial line 1 slot for communication module ZBRCETH
Receiver voltage 24….240 AC/DC
References ZBRN2 ZBRN1
(1) Available 1st quarter 2013.
Complementary accessories Relay antennas Communication
module
Plastic empty boxes
Description 1 power-ON LED
2 LEDs reception /
transmission
1 RF connector
Modbus/TCP protocol
2 RJ45 connectors
Handy,
1 cut-out 1 cut-out 2 cut-outs
Cable lenght 5m 2m
Voltage 24….240 AC/DC
Reference ZBRA1 ZBRA2 (1) ZBRCETH (1) ZBRM01 XALD01 XALD02
(1) Available 1st quarter 2013.
15
Pushbuttons
Type of head Flush or projecting push
circular
Degree of protection IP 65, class II, NEMA type 3 and 12
Mounting (mm) panel cut-out Ø 22.4 (0 +0.1)
mounting centres 30 (horizontal) x 40 (vertical)
Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5 (Ø 40 x 41.5 for Emergency stop)
Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2
Type of push Flush, spring return Flush, push and latching
References (10)* white NO XB7NA11 –
NO + NC XB7NA15 –
black NO XB7NA21 XB7NH21
NO + NC XB7NA25 XB7NH25
green NO XB7NA31 XB7NH31
NO + NC XB7NA35 XB7NH35
red NC XB7NA42 –
NO + NC XB7NA45 –
yellow NO XB7NA81 –
Type of push Flush, spring return Projecting, spring return
References green NO XB7NA3131 –
red NC – XB7NL4232
white NO XB7NA11341 –
black NO XB7NA21341 –
NO + NC XB7NA25341 –
Selector switches and key switches
Type of operator Black handle Key, n° 455
Number and
type of positions
2 positions 3 positions 2 positions 3 positions
stay put stay put stay put stay put
References (10*) NO XB7ND21 – XB7NG21 –
NO + NC XB7ND25 – – –
2 NO – XB7ND33 – XB7NG33
Ø 40mm Emmergency Stop trigger action and mechanical latching pushbuttons (EN/ISO 13850, UL) (1)
Type of push Turn to release Push, Pull Key release (n° 455)
References* red NC XB7 NS8442 XB7 NT842 -
red NO + NC XB7 NS8445 XB7 NT845 XB7 NS9445
red 2NC XB7 NS8444 XB7 NT844 XB7 NS9444
(1) Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to
standard EN/IEC 60947-5-5. Please consult your Customer Care Centre for a full explanation of these standards and directives.
* Sold in lots of 10.
Harmony
XB7
Pushbuttons, switches and pilot lights Ø 22
with plastic bezel - Monolithic
Contact functions
16
Illuminated pushbuttons
Type of head Projecting push
circular
Degree of protection IP 65, class II, NEMA type 12
Mounting (mm) panel cut-out Ø 22.4 (0 +0.1)
mounting centres 30 (horizontal) x 40 (vertical)
Dimensions (mm) Ø x Depth (below head) Ø 29 x 41.5, (Ø 40 x 41.5 for Emergency stop)
Connection Screw clamp terminals, 1 x 0.34 mm2 to 1 x 1.5 mm2
Light source Integral LED BA 9s base fitting Incandescent bulb
direct supply (bulb not included)
Type of push Spring return
References (10)* green NO XB7NW33p1 (1) XB7NW3361
red NO XB7NW34p1 (1) XB7NW3461
NC XB7NW34p2 (1) _
orange NO XB7NW35p1 (1) –
blue NO XB7NW36p1 (1) –
clear NO XB7NW37p1 (1) –
yellow NO XB7NW38p1 (1) XB7NW3561
Type of push Push and latching
References (10)* green NO XB7NH03p1 (1) XB7NH0361
red NO XB7NH04p1 (1) XB7NH0461
NC XB7NH04p2 (1) –
yellow NO XB7NH08p1 (1) XB7NH0861
Pilot lights (2)
Light source Integral LED Ba 9s base fitting incandescent bulb Incandescent bulb
direct supply direct through resistor
(bulb not included) (bulb included)
Supply voltage 24VAC/DC or 120VAC or 230…240VAC 6 or 24 V DC, or 130 V AC 230 V AC
References (10)* clear XB7EV07pP (1) XB7EV67P XB7EV77P
green XB7EV03pP (1) XB7EV63P XB7EV73P
red XB7EV04pP (1) XB7EV64P XB7EV74P
yellow XB7EV05pP (1) XB7EV65P XB7EV75P
blue XB7EV06pP (1) XB7EV66P XB7EV76P
orange XB7EV08pP (1) XB7EV68P XB7EV78P
Incandescent bulbs, long life
BA 9s base fitting, Ø 11 mm max., length 28 mm max.
6 V (1.2 W) 24 V (2 W) 130 V (2.4 W)
References DL1CB006 DL1CE024 DL1CE130
(1) Basic reference, to be completed by the letter B, G or M indicating the required voltage. See voltage table above.
(2) Alternative connection: 1 x 6.35 and 2 x 2.8 mm Faston connectors.
* sold in lots of 10
Contact functions and light functions
(1):
Supply voltage for integral LED light source only Letter (p)
24 V AC/DC B
120 V AC G
230 V AC M
17
Pushbuttons, spring return
Type of push Flush Projecting Projecting (high guard)
Colour of push Multi-colour (set of 7 clip-in coloured caps)
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
References CO 9001KR1UH13 9001KR3UH13 9001KR2UH13
NO 9001KR1UH5 9001KR3UH5 9001KR2UH5
Mushroom head pushbuttons, latching (1) Emergency switching off Emergency stop
Type of push Push-pull Turn-to-Release, trigger action
Ø 41 mushroom head Ø 35 mushroom head Ø 40 red mushroom head
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class III
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp),
57.2 x 50.8 (with legend 9001KN3pp)
57,2 x 44,5 (without legend plate),
100 x 100 ((with legend plate 9001KN8330) (2)
Depth below head (mm) 42 60
Connection Screw clamp terminals
References – – – 9001KR16
CO 9001KR9R94H13 9001KR9R20H13 –
NC 9001KR9RH6 9001KR9R20H6 –
2NO + 2NC – – 9001KR16H2
NO – – 9001KR16H13
(1) Mushroom head switching off mechanical latching pushbuttons conform to standard IEC 60364-5-53 and EN/IEC 60947-5-5. Mushroom head Emergency stop trigger action and
mechanical latching pushbuttons conforming to standard EN/IEC 60204‑1 and EN/ISO 13850, to Machinery directive 2006/42/EC and standard EN/IEC 60947-5-5.
Selector switches and key switches
Type of operator Long black handle Key, n° 455
positions (2) 3 - spring return 2 - stay put 2 - spring return 3 - stay put 2 - stay put
Number and type
of positions
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
References NO – 9001KS11FBH5 9001KS34FBH5 – –
CO 9001KS53FBH1 – – 9001KS43FBH1 9001KS11K1RH1
(2) The symbol indicates key withdrawal position.
Harmony
9001K/SK
Pushbuttons, switches and pilot lights Ø 30
with metal bezel
Contact functions
18
(2) For yellow circular Emergency Stop legend plates: see page 9
Pilot lights
Type of head Smooth lens cap
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC
References green 9001KP35LGG9 9001KP36LGG9 9001KP38LGG9 9001KP7G9
red 9001KP35LRR9 9001KP36LRR9 9001KP38LRR9 9001KP7R9
yellow 9001KP35LYA9 9001KP36LYA9 9001KP38LYA9 9001KP7A9
Illuminated pushbuttons, spring return
Type of head Spring return flush push
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC
References green CO 9001K3L35LGGH13 9001K3L36LGGH13 9001K3L38LGGH13 9001K2L7RH13
red CO 9001K3L35LRRH13 9001K3L36LRRH13 9001K3L38LRRH13 9001K2L7GH13
yellow CO 9001K3L35LYAH13 9001K3L36LYAH13 9001K3L38LYAH13 9001K2L7AH13
Illuminated Ø 41 mushroom head pushbuttons, latching, high luminosity LED
Degree of protection IP 66 / Nema 1, 2, 3, 3R, 4, 6, 12 and 13 / Class II
Mounting (mm) panel cut-out Ø 31
mounting centres 57.2 x 44.5 (with legend 9001KN2pp), 57.2 x 50.8 (with legend 9001KN3pp)
Depth below head (mm) 42
Connection Screw clamp terminals
Type of light block With high luminosity LED (included) Incandescent BA 9s bulb
(included)
24 V AC/DC 48 V AC/DC 120 V AC/DC 230 V AC/DC
Type of head 2 position, push-pull
References red CO 9001KR9P35RH13 9001KR9P36RH13 9001KR9P38RH13 9001KR9P7RH13
Type of head 3 position, push-pull (pull: spring return, centre: stay put, push: spring return)
References red NC + NC
late break
9001KR8P35RH25 9001KR8P36RH25 9001KR8P38RH25 9001KR8P7RH25
Light functions
19
Contact blocks with protected terminals
Type of contact Single contact blocks
Connection Screw clamp terminals
References CO 9001KA1
NO 9001KA2
NC 9001KA3
CO, late break 9001KA4
NC, late break 9001KA5
NO, early make 9001KA6
Enclosures
Type Number of Ø 30 mm cut-outs NEMA ratings Reference
Aluminium 1 1, 3, 4, 6, 12, 13 9001KY1
2 1, 3, 4, 6, 12, 13 9001KY2
3 1, 3, 4, 6, 12, 13 9001KY3
4 1, 3, 4, 6, 12, 13 9001KY4
Stainless steel 1 1, 3, 4, 4X, 13 9001KYSS1
2 1, 3, 4, 4X, 13 9001KYSS2
3 1, 3, 4, 4X, 13 9001KYSS3
Legends
44 x 43 mm 57 x 57 mm Ø 60 Ø 90
Type Aluminium Plastic Plastic
Colour of legend black background white background Yellow background
Marking Blank 9001KN200 9001KN100WP 9001KN9100 9001KN8100
START 9001KN201 9001KN101WP – –
STOP (red background) 9001KN202 9001KN102RP – –
FORWARD 9001KN206 9001KN106WP – –
REVERSE 9001KN207 9001KN107WP – –
RESET 9001KN223 9001KN123WP –
PULL TO START/ 9001KN379 9001KN179WP – –
PUSH TO STOP
EMERGENCY STOP – – 9001KN9330 9001KN8330
ARRET D’URGENCE – – 9001KN9330F 9001KN8330F
PARADA DE EMERGENCIA – – 9001KN9330S 9001KN8330S
Harmony
9001K/SK
Pushbuttons, switches and pilot lights Ø 30
with metal bezel
Accessories
20
Cam switches
12 and 20 A ratings
Harmony
K series
positions (°)
Cam switches, K1 / K2 series
Function Switches ON-OFF switches Stepping switches
45° switching angle 90° switching angle with “0” position
Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1)
Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 2 2 + “0” position
Number of poles 2 2 2
Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45
Front mounting method Multifixing plate, 45 x 45 mm K1B002ALH K2B 002ALH K1B1002HLH K2B 1002HLH K1D012QLH K2D012QLH
Plastic mounting plate for Ø 22 mm hole K1B002ACH K2B 002ACH K1B1002HCH K2B 1002HCH K1D012QCH K2D012QCH
positions (°)
Cam switches, K1 / K2 series
Function Changeover switches Ammeter switches Voltmeter switches
Degree of protection front face IP 65 (1) IP 65 (1) IP 65 (1)
Conventional thermal current (Ith) 12 A 20 A 12 A 20 A 12 A 20 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 + “0” position 3 + “0” position 6 + “0” position (measurements
(3 circuits + “0” position) between 3 phases & N + “0” pos.)
Number of poles 2 4 7
Dimensions of front plate (mm) 45 x 45 45 x 45 45 x 45
Front mounting method Multifixing plate, 45 x 45 mm K1D002ULH K2D002ULH K1F003MLH to be compiled * K1F027MLH to be compiled *
Plastic mounting plate for Ø 22 mm hole K1D002UCH K2D002UCH K1F003MCH to be compiled * K1F027MCH to be compiled *
(1) With seal KZ73 for switch with Multifixing plate, with seal KZ65 for Ø 22 mm hole mounting switches. Seal to be ordered separately.
(*) Please consult your Schneider Electric agency.
positions (°)
Cam switches with key operated lock, K1 series
Function Stepping switches Run switches Changeover switches + “0” pos.
Degree of protection front face IP 65 IP 65 IP 65
Conventional thermal current (Ith) 12 A 12 A 12 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V
Number of positions 2 + “0” position 3 + “0” position 2 + “0” position
Number of poles 3 2 2
Dimensions of front plate (mm) 55 x 100 55 x 100 55 x 100
Colour of handle red black red black red black
Front mounting method Ø 22 mm hole + Ø 43.5 mm hole K1F022QZ2 K1F022QZ4 K1G043RZ2 K1G043RZ4 K1D002UZ2 K1D002UZ4
12
0 45
34
1-pole
2-pole
12
0 90
34
2-pole
90
1
0 45
2345678
135 180 225
2-pole
45
1
315 0
2345678
1-pole
2-pole
180
1
234
0 90 270
56789
10
11
12
0
1
234
270 315
5678
225
9
10
45 90
11
12
135
0
1
23456789
10
11
12
60 120
123456789
10
11
12
13
14
0 60 120 180
300
1
2345678
0 60
21
positions (°)
Cam switches, K10 series
Function Switches Changeover switches Ammeter Voltmeter
60° switching angle with “0” position switches switches
Degree of protection front face IP 65 IP 65 IP 65 IP 65
Conventional thermal current (Ith) 10 A 10 A 10 A 10 A
Rated insulation voltage (Ui) conforming to IEC60947-1 440 V 440 V 440 V 440 V
Number of positions 2 2 + “0” position 3 + “0” pos. (1) 6 + “0” pos. (2)
Number of poles 1 2 3 2 3 3 3
Dimensions of front plate (mm) 30 x 30 30 x 30 30 x 30 30 x 30
Front mounting method By Ø 16 mm or 22 mm hole K10A001ACH K10B002ACH K10C003ACH K10D002UCH K10F003UCH K10F003MCH K10F027MCH
(1) (3 circuits + “0” position).
(2) (Measurements between 3 phases and N + “0” position).
positions (°)
Cam switches, K30 series
Function Switches Switches Changeover Starting Starting Reversing
ON-OFF with “0” position star-delta 2-speed
Degree of protection front face IP 40 IP 40 IP 40 IP 40 IP 40 IP 40
Conventional thermal current (Ith) 32 A 32 A 32 A 32 A 32 A 32 A
Rated insulation voltage (Ui) conforming to IEC60947-1 690 V 690 V 690 V 690 V 690 V 690 V
Number of positions 2 2 3 3 3 3
Number of poles 3 3 4 4 3 3 3
Dimensions of front plate (mm) 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64
Front mounting method Multifixing K30C003AP(3) K30C003HP(3) K30D004HP(3) K30H004UP(3) K30H001YP(3) K30H004PP(3) K30E003WP(3)
(3) To order switches with other thermal current ratings (50, 63, 115, 150 A): replace the number 30 in the reference by 50, 63, 115 or 150 respectively.
Example: a switch with a 32 A current rating, for example K30C003AP, becomes K50 C003AP for a current rating of 50 A.
Accessories for cam switches K1/K2
Rubber seals
for IP 65 degree of protection
For use with heads with 45 x 45 mm front plate with 60 x 60 mm front plate with 45 x 45 mm front plate
Ø 22 mm hole or 4 hole front mtg. Ø 22 mm hole or 4 hole front mtg. multifixing
References* KZ65 KZ66 KZ73
* Sold in lots of 5.
Cam switches
10 to 150 A ratings
Harmony
K series
0
1
23456
60
1-pole
2-pole
3-pole
0
1
2
60
34
300
56789
10
11
12
1-pole
2-pole
3-pole
90
1
2
180
34
0 270
56789
10
11
12
300
1
2
330
34
270 0 30 60 90
56789
10
11
12
0
1
23456
60
1-pole
2-pole
3-pole
0
1
2345678
90
1-pole
2-pole
0
12
60
34
1234
300
56789
10
11
12
13
14
15
16
1-pole
2-pole
3-pole
4-pole
0
12
60
34
1234
300
56789
10
11
12
13
14
15
16
0
1260
34 1234 300
56789
10
11
12
13
14
15
16
0
12
60
34
1234
300
56789
10
11
12
22
Monolithic tower lights
Ø 40, Ø 60, Ø 100 mm, complete, pre-wired
tower lights
Harmony
XVC
Ø 40 mm / Up to IP54
Complete, pre-wired tower lights Steady light Steady / Flashing light (1)
Light source (included) LEDs LEDs
Base mount Base mounting Support tube mounting, 17 mm Support tube mounting, 17 mm
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V AC/DC 24V AC/DC 100-240V AC 24V AC/DC 100 - 240V AC
References (2) Red XVC4B1K XVC4B1 XVC4M1 (4) XVC4B15S XVC4M15S (4)
Red / orange XVC4B2K XVC4B2 XVC4M2 XVC4B25S XVC4M25S
Red / Orange / green XVC4B3K XVC4B3 XVC4M3 XVC4B35S XVC4M35S
red / orange / green / blue XVC4B4K XVC4B4 XVC4M4 XVC4B45S XVC4M45S
red / orange / green / blue / Clear XVC4B5K XVC4B5 XVC4M5 XVC4B55S XVC4M55S
Ø 60 mm / Up to IP54
Complete, pre-wired tower lights Steady light Steady / Flashing light (1)
Light source (included) LEDs LEDs
Base mount Base mounting Support tube mounting, 22 mm Support tube mounting, 22 mm Base mounting
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V AC/DC 24V AC/DC 100-240 V AC (4) 24V AC/DC 100-240 V AC (4)
References (2) Red XVC6B1K XVC6B1 XVC6M1 (3) XVC6B15S (3) XVC6M15S XVC6M15SK
Red / orange XVC6B2K XVC6B2 XVC6M2 (3) XVC6B25S (3) XVC6M25S XVC6M25SK
Red / Orange / green XVC6B3K XVC6B3 XVC6M3 (3) XVC6B35S (3) XVC6M35S XVC6M35SK
red / orange / green / blue XVC6B4K XVC6B4 XVC6M4 (3) XVC6B45S (3) XVC6M45S XVC6M45SK
red / orange / green / blue / Clear XVC6B5K XVC6B5 XVC6M5 (3) XVC6B55S (3) XVC6M55S XVC6M55SK
Ø 100 mm / Up to IP54
Complete, pre-wired tower lights Steady / Flashing light (1)
Light source (included) LEDs
Base mount Base mounting
Buzzer Without buzzer With buzzer + flashing light
Degree of protection up to IP54 up to IP54
Voltage 24V DC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4) 24VDC (4) 100-240V AC (4)
References (2) Red XVC1B1K XVC1M1K XVC1B1SK XVC1M1SK XVC1B1HK XVC1M1HK
Red / orange XVC1B2K XVC1M2K XVC1B2SK XVC1M2SK XVC1B2HK XVC1M2HK
Red / Orange / green XVC1B3K XVC1M3K XVC1B3SK XVC1M3SK XVC1B3HK XVC1M3HK
red / orange / green / blue XVC1B4K XVC1M4K XVC1B4SK XVC1M4SK - -
red / orange / green / blue / Clear XVC1B5K XVC1M5K XVC1B5SK XVC1M5SK - -
(1) Flashing function can be simply selected/programmed by wiring
(2) The colours are listed in the same order as the mounting order of the illuminated units (from top to bottom)
(3) To order products for base mounting, add the letter K to the end of the reference (ex. XVC6M1K)
(4) NPN only
23
Monolithic tower lights and accessories
Ø 45 mm, complete illuminated beacons
Harmony
XVDLS / XVC
Ø 45 mm / IP40
Illuminated beacons XVDLS Steady light Flashing light
Light source Incandescent BA 15d bulb, 5 W max. (not included) “Flash” discharge tube, 0.5 J
Degree of protection IP 40
References (1) 24…230 V AC/DC XVDLS3p –
24 V AC/DC – XVDLS6Bp
120 V AC – XVDLS6Gp
230 V AC – XVDLS6Mp
(1) To obtain the complete reference, replace the p by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
Accessories
XVDLS
Incandescent bulbs, with BA 15d base Beacons XVDLS
Description 24 V, 4 W 120 V, 5 W 230 V, 5 W
References DL1BEBS DL1BEGS DL1BEMS
XVC4 / XVC6
Mounting accessories Tower lights Ø 40 mm, XVC4 Tower lights Ø 60 mm, XVC6
Description Support tube mounting Support tube
mounting
Base mounting Support tube
mounting
Diameter (mm) Ø 90 Ø 84 – Ø 100 Ø 84 –
For use with – – – XVC6ppand
XVC6pp5S
XVC6ppK and
XVC6pp5SK
XVC6Bpand
XVC6Bpp5S,
XVC6Mpand
XVC6Mp5S
Height to be added (mm) 32 24,5 82 30 21,6 82
References Metal fixing plate XVCZ11 – – XVCZ02 XVCZ12 –
Plastic fixing plate – XVCZ01 – – – –
Wall mounting bracket – – XVCZ31 – – XVCZ32
XVC1
Mounting accessories Tower lights Ø 100 mm, XVC1
Description Vertical support
Diameter (mm) Ø 140 Ø 140 – –
For use with XVC1ppK
and
XVC1ppSK
XVC1ppHK (with siren) XVC1ppK and XVC1ppSK XVC1ppHK
(with siren)
Height to be added (mm) 300 306 – –
References Metal fixing plate (2) XVCZ13 XVCZ14 – –
Metal fixing bracket – – XVCZ23 XVCZ24
(2) Chromium plated-steel extension tube
24
Modular tower lights
Ø 70 mm, for customer assembly
Harmony
XVB
Ø 70 mm / Up to IP66
Illuminated beacons XVBL Steady light Flashing light
Light source Incandescent BA 15d bulb, Protected BA 15d LED Protected BA 15d LED “Flash” discharge tube
10 W max. (not included) (included) (included) 5 J (2)
Degree of protection IP 66
References (1) 12…250 V AC/DC XVBL3p – – –
24 V AC/DC – XVBL0Bp XVBL1Bp XVBL6Bp
120 V AC – XVBL0Gp XVBL1Gp XVBL6Gp
230 V AC – XVBL0Mp XVBL1Mp XVBL6Mp
Ø 70 mm / Up to IP66
Tower lights XVBC
comprising 2 to 5 signalling units (3)
Base units Steady light Flashing
light
“Flash”
light
Audible
units (90 db
at 1 m)
Light source – Incandescent Integral Integral “Flash” –
BA 15d bulb, 10 W protected LED protected LED discharge tube
max. (not included) 5 J (2)
Degree of protection IP 66
Base unit references with cover XVBC21 (4) – – – – –
without cover XVBC07 (5) – – – – –
References (2) 12… 230 V AC/DC – XVBC3p – – – –
24 V AC/DC – – XVBC2Bp XVBC5Bp XVBC6Bp –
120 V AC – – XVBC2Gp XVBC5Gp XVBC6Gp –
230 V AC – – XVBC2Mp XVBC5Mp XVBC6Mp –
Audible unit references 12…48 V AC/DC – – – – – XVBC9B
unidirectional 120…230 V AC – – – – – XVBC9M
(1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
(2) To order a lens unit with a 10 J discharge tube, replace the number 6 by 8 in the reference (example: XVBL6Bp becomes XVBL8Bp).
(3) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
(4) For connection on AS-Interface, order base unit XVBC21A (side cable entry) or XVBC21B (bottom cable entry with M12 connector on flying lead).
(5) For indicator banks with “flash” discharge tube unit.
25
Modular tower lights
Ø 70 mm, for customer assembly
Harmony
XVE
Ø 70 mm / Up to IP54
Illuminated beacons XVEL Steady light Flashing light
Light source Incandescent Integral “Flash” discharge tube, 1 J
BA 15d bulb, 5 W max. LED
(not included)
Degree of protection IP 42/IP 54 (with sealing kit)
References (1) 24… 240 V AC/DC XVEL3p –
24 V AC/DC – XVEL2Bp XVEL6Bp
120 V AC – XVEL2Gp XVEL6Gp
230 V AC – XVEL2Mp XVEL6Mp
Ø 70 mm / Up to IP54
Indicator banks XVEC
comprising 2 to 5 signalling units (2)
Base units Steady light Flashing
light
“Flash”
light
Audible
units (85 db
at 1 m)
Light source – Incandescent Integral Integral “Flash” –
BA 15d bulb, 5 W LED LED discharge tube
max. (not included) 1 J
Degree of protection IP 42/IP 54 (with sealing kit)
Base unit references IP 42 XVEC21 – – – – –
IP 54 XVEC21P – – – – –
Lens unit references (1) 24…230 V AC/DC – XVEC3p –
24 V AC/DC – – XVEC2Bp XVEC5Bp XVEC6Bp XVEC9B
120 V AC – – XVEC2Gp XVEC5Gp XVEC6Gp XVEC9G
230 V AC – – XVEC2Mp XVEC5Mp XVEC6Mp XVEC9M
(1) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
(2) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
26
Modular tower lights
Ø 45, Ø 50 mm, complete or
for customer assembly
Harmony
XVM / XVP
Ø 45 mm / IP42
Complete, pre-wired tower light XVM (1) 2 sig. units + integral buzzer (2)
Steady light
3 signalling units + integral buzzer (2)
Steady light Steady light + “flash” (3)
Light source (included) Incandescent BA 15d Incandescent BA 15d Incandescent BA 15d
BA 15d bulb, 5 W “Super bright”
LED
BA 15d bulb, 5 W “Super bright”
LED
BA 15d bulb, 5 W “Super bright”
max. max. max. LED
Degree of protection IP 54
Signalling colours Red - Green Red - Orange - Green
References 24 V AC/DC XVMB1RGS XVMB2RGSSB XVMB1RAGS XVMB2RAGSSB XVMB1R6AGS XVMB2R6AGSSB
120 V AC/DC (bulb) - 120 V AC (LED) XVMG1RGS XVMG2RGSSB XVMG1RAGS XVMG2RAGSSB XVMG1R6AGS XVMG2R6AGSSB
230 V AC/DC (bulb) - 230 V AC (LED) XVMM1RGS XVMM2RGSSB XVMM1RAGS XVMM2RAGSSB XVMM1RA6GS XVMM2R6AGSSB
(1) Tower lights XVM are also available as separate components for customised assembly by the user: please refer to www.schneider-electric.com.
(2) To order products without an integral buzzer, delete the letter S at the end of the reference (example: XVMB2RGS becomes XVMB2RG, XVMB2RGSSB becomes XVMB2RGSB).
(3) Flash signalling colour: red - 0.8 J.
Ø 50 mm / IP65
Tower lights XVP
comprising 2 to 5 signalling units (4),
black clamping ring (5)
Base unit Steady or
flashing light
signalling
“Flash” light signalling Audible units
(55…85 dB
at 1 m)
Light source – Incandescent “Flash” “Flash” –
BA 15d bulb, 7 W discharge tube discharge tube
max. (not included) 0.3 J 0.6 J
Degree of protection IP 65
Base unit with cover XVPC21 – – – –
References (6) 250 V max. – XVPC3p – – –
24 V AC/DC (flash) - 24 V DC (buzzer) – – XVPC6Bp – XVPC09B
120 V AC – – – XVPC6Gp XVPC09G
230 V AC – – – XVPC6Mp XVPC09M
(4) A tower light comprises: 1 base unit + 1 to 5 signalling units maximum.
(5) To order products with a cream clamping ring, add the letter W to the end of the reference (example: base unit + green lens unit: XVPC21W + XVPC33W etc.).
(6) To obtain the complete reference, replace thep by the number designating the colour as follow: 3 = green , 4 = red , 5 = orange, 6 = blue, 7 = clear, 8 = yellow.
27
Bulbs Beacons and tower lights
XVB / XVP (1)
Type of light source Incandescent Incandescent LED (2) Flashing
BA 15d base BA 15d base BA 15d base LED (2)
7 W 10 W (not XVP) BA 15d base
References 12 V DL1BEJ DL1BLJ – –
24 V DL1BEB DL1BLB DL1BDBp DL1BKBp
48 V DL1BEE DL1BLE – –
120 V DL1BEG DL1BLG DL1BDGp DL1BKGp
230 V DL1BEM DL1BLM DL1BDMp DL1BKMp
(1) Tower lights XVP can be fitted with 5 W incandescent bulbs: see beacons XVDLS / XVE.
(2) To obtain the complete reference, replace the p by the number designating the colour as follow: 1 = white, 3 = green , 4 = red , 5 = orange, 6 = blue, 8 = yellow.
Bulbs Tower lights
XVM
Type of light source Incandescent LED (3) Flashing “Flash” discharge
BA 15d base BA 15d base LED (3) tube, 0.8 Joule
5 W BA 15d base BA 15d base
References 24 V DL1EDBS DL2EDBpSB DL1EKBpSB DL6BB
120 V DL1EDGS DL2EDGpSB DL1EKGpSB DL6BG
230 V DL1EDMS DL2EDMpSB DL1EKMpSB DL6BM
(3) To obtain the complete reference, replace the p by the number designating the colour as follows: 1 = white, 3 = green , 4 = red , 6 = blue, 8 = orange.
Mounting accessories Beacons and
tower lights
XVB / XVE
Tower lights Tower lights
XVP XVM
Description Aluminium tube Plastic tube Aluminium tube Aluminium tube Aluminium tube Aluminium tube
with integral black with integral black with integral black with steel fixing with integral cream with steel fixing
plastic fixing base plastic fixing base plastic fixing base bracket plastic fixing base bracket
Diameter (mm) Ø 25 Ø 25 Ø 20 Ø 20 Ø 20 Ø 20
Support tubes 60 mm XVEZ13 – – – – –
100 mm – – – XVPC02T XVMZ02 XVMZ02T
112 mm – – XVPC02 (4) – – –
120 mm XVBZ02 – – – – –
140 mm – XVDC02 – – – –
250 mm – – – XVPC03T XVMZ03 XVMZ03T
260 mm – – XVPC03 (4) – – –
400 mm – – – XVPC04T XVMZ04 XVMZ04T
410 mm – – XVPC04 (4) – – –
420 mm XVBZ03 – – – – –
820 mm XVBZ04 – – – – –
Fixing plates, for vertical support XVBC12 XVPC12 (4) –
for horizontal support XVBZ01 – XVMZ06
(4) To order an aluminium support tube with integral cream fixing base, add the letter W to the end of the reference (example: XVPC02W).
Modular tower lights accessories
For XVB, XVP, XVE, XVM
Harmony
XV
28
Rotating beacons
Ø 84, 106, 120, 130 mm rotating beacons
Harmony
XVR
Ø 84 / 106 mm
Complete, pre-wired rotating beacons Ø 84 mm Ø 106 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x Ø 05
Buzzer Without buzzer
Degree of protection IP23 (IP 65 with accessories) IP23 (IP 55 with accessories)
Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC
References Red XVR08J04 XVR08B04 XVR10J04 XVR10B04
Orange XVR08J05 XVR08B05 XVR10J05 XVR10B05
Green XVR08J03 XVR08B03 XVR10J03 XVR10B03
Blue XVR08J06 XVR08B06 XVR10J06 XVR10B06
Ø 120 mm
Complete, pre-wired rotating beacons Ø 120 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x M5
Buzzer Without buzzer With buzzer
Degree of protection IP23
Voltage 12V AC/DC 24V AC/DC 12V AC/DC 24V AC/DC
References Red XVR12J04 XVR12B04 XVR12J04S XVR12B04S
Orange XVR12J05 XVR12B05 XVR12J05S XVR12B05S
Green XVR12J03 XVR12B03 XVR12J03S XVR12B03S
Blue XVR12J06 XVR12B06 XVR12J06S XVR12B06S
Ø 130 mm
Complete, pre-wired rotating beacons Ø 130 mm
Light source (included) “ Super bright “ LEDs
Base mount 3 x Ø 09
Buzzer Without buzzer
Degree of protection IP66 - Resistant to vibration IP66 and IP67
Voltage 12V DC 24V DC 24V AC/DC 120V AC 230V AC
References Red XVR13J04 XVR13B04 XVR13B04L XVR13G04L XVR13M04L
Orange XVR13J05 XVR13B05 XVR13B05L XVR13G05L XVR13M05L
29
Accesories for rotating mirrors Reflecting prism Rubber base Metal angle
bracket
Metal fixing plate
To be used for/with – Increasing the IP degree Horizontal support Horizontal support
Height (mm) – – – 300
References Ø 84 mm XVRZR1 XVRZ081 XVCZ23 –
Ø 106 mm XVRZR2 XVRZ082 XVCZ23 XVCZ13
Ø 120 mm XVRZR3 – XVCZ23 XVCZ13
Ø 130 mm XVRZR3 – XVR012L –
Electronic alarms and multisound sirens
Sirens and electronic alarms Sirens Multisound
sirens
pre-wired
Electronic alarms
Panel Mount DIN72
Electronic alarms
Panel Mount DIN96
Sound level 106 dB 105 dB 90 dB 96 dB
Tones 2 43 16 16
Channels – 8 4 4
Degree of protection IP 53 IP53 IP 54 IP 54
Colors White White Black White Black White
References 12/24V AC/DC XVS10BMW – XVS72BMBp (1) XVS72BMWp (1) XVS96BMBp (1) XVS96BMWp (1)
12/24V DC – XVS14BMW – – – –
120V AC XVS10GMW XVS14GMW – – – –
230V AC XVS10MMW XVS14MMW – – – –
(1) To obtain a complete reference, replace the p by the letter as follow: P = PNP, N = NPN (ex. XVS72BMBP)
Rotating beacons accessories
and sound solutions
Accessories for rotating beacons
Harmony
XVR / XVS
30
Type XACA “Pistol grip”
Degree of protection IP 65 / Nema 4, 4X / Class II
Rated operational characteristics AC 15 (240 V 3 A), DC 13
Conventional thermal current Ithe 10 A
Connection Screw clamp terminals, 1 x 2.5 mm2 or 2 x 1.5 mm2
For control of single-speed motors 2-speed motors
Dimensions (mm) W x H x D 52 x 295 x 71 (x 85 with ZA2BS834) 52 x 295 x 71 (x 85 with ZA2BS834)
Number of operators mechanically interlocked 2 2
Emergency stop without ZA2BS834 without ZA2BS834
References XACA201 XACA2014 XACA207 XACA2074
Type XACA
For control of single-speed motors
Dimensions (mm) W x H x D 80 x 314 x 70 (x 90 with ZA2BS834) 80 x 440 x 70 (x 90 with ZA2BS844)
Number of operators mechanically interlocked between pairs 2 4
Emergency stop without ZA2BS834 without ZA2BS844
References XACA271 XACA2714 XACA471 XACA4714
For control of single-speed motors + I / O
Dimensions (mm) W x H x D 80 x 500 x 70 (x 90 with ZA2BS844) 80 x 560 x 70
Number of operators mechanically interlocked between pairs 6 8
Emergency stop without ZA2BS844 without
References XACA671 XACA6714 XACA871
Empty enclosures type XACA
Number of ways 2 3 4 5 6 8 12
References XACA02 XACA03 XACA04 XACA05 XACA06 XACA08 XACA12
Pendant control stations
for control circuits
Ready to use
Harmony
XAC
31
(1) Trigger action mechanically latching Emergency stop pushbuttons conform to standards EN/IEC 60204-32, EN/ISO 13850, Machinery directive 2006/42/EC and standard
EN/IEC 60947-5-5.
Legends, 30 x 40 mm With symbols conforming to NF E 52-124 With text
References ZB2BY4901 ZB2BY4903 ZB2BY4907 ZB2BY4909 ZB2BY4913 ZB2BY4915 ZB2BY4930 ZB2BY2303 ZB2BY2304
References ZB2BY2904 ZB2BY2906 ZB2BY2910 ZB2BY2912 ZB2BY2916 ZB2BY2918 ZB2BY2931 ZB2BY1W140
blank
white or yellow
background
Separate components (for mounting in enclosures XACA)
Booted operators
white XACA9411
black XACA9412
Mushroom head, latching, trigger action (1)
turn to release Ø 40 ZA2BS844
Ø 30 ZA2BS834
Mushroom head, latching, trigger action (1)
key release Ø 40 ZA2BS944
Ø 30 ZA2BS934
Selector switch
2 pos. stay put ZA2BD2
3 pos. stay put ZA2BD3
Key switch
key n° 455 2 pos. stay put ZA2BG4
3 pos. stay put ZA2BG5
Blanking plug
with seal and ZB2SZ3
fixing nut
Pilot light heads
white ZA2BV01
green ZA2BV03
red ZA2BV04
yellow ZA2BV05
Pilot light bodies
direct supply ZB2BV006
direct supply, through resistor ZB2BV007
Protective guard (for base mounted units)
For selector switch XACA982/983
For emergency stop pushbutton XACA984
Contact blocks
Single-speed NO ZB2BE101
Single-speed NC ZB2BE102
Contacts blocks for XACA941p
Single-speed NC+NO XENG1491
2-speed NC+NO+NO XENG1191
Contact blocks (for mounting in enclosure base)
NO XACS101
NC+NO XACS105
Isolating switch, slow break, for front mounting
Emergency stop NC+NC+NC
with positive opening operation
XENT1192
Double blocks latching, slow break
Single-speed NO+NO XENG3781
Single-speed NO+NC XENG3791
32
Notes
33
ART. 097419 01/2013 - V10.0
DIA4ED2040408EN
Head Office
35, rue Joseph Monier - CS 30323
F92500 Rueil-Malmaison Cedex
France
www.schneider-electric.com
The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein.
Design : IGS-CP
Photos : Schneider Electric
Print :
http://www.farnell.com/datasheets/1761538.pdf
This document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 39-01-2020
Status: Active
Overview: Mini-Fit Jr.™ Power Connectors
Description: Mini-Fit Jr.™ Receptacle Housing, Dual Row, UL 94V-2, 2 Circuits
Documents:
3D Model Product Specification PS-5556-001 (PDF)
Drawing (PDF) Test Summary TS-5556-002 (PDF)
Product Specification PS-45750-001 (PDF) RoHS Certificate of Compliance (PDF)
Agency Certification
CSA LR19980
UL E29179
General
Product Family Crimp Housings
Series 5557
Application Power, Wire-to-Wire
Comments Current = 13A max. per circuit when header is mated
to a receptacle loaded with 45750 series terminals
crimped to 16 AWG wire. . See Molex product
specification PS-45750-001 for additional current
derating information.. Glow Wire Equivalent Part.
MolexKits Yes
Overview Mini-Fit Jr.™ Power Connectors
Product Name Mini-Fit Jr.™
UPC 800753584259
Physical
Breakaway No
Circuits (maximum) 2
Color - Resin Natural
Flammability 94V-2
Gender Female
Glow-Wire Compliant No
Material - Resin Nylon
Net Weight 0.657/g
Number of Rows 2
Packaging Type Bag
Panel Mount No
Pitch - Mating Interface 4.20mm
Pitch - Termination Interface 4.20mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -40°C to +105°C
Electrical
Current - Maximum per Contact 13A
Material Info
Old Part Number 5557-02R
Reference - Drawing Numbers
Product Specification PS-45750-001, PS-5556-001, RPS-5557-046
Sales Drawing SD-5557-003
Test Summary TS-5556-002
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
5557Series
Mates With
5559 Dual Row, 5566 Vertical with Pegs,
5566 Vertical without Pegs, 5569 Right
Angle Dual Row with Flanges, 5569 Right
Angle Dual Row with Pegs, 43810 , 44068 ,
44281 , 87427 , 42404 , 42440
Use With
5556 Mini-Fit® Female Crimp Terminals,
45750 Mini-Fit® Plus HCS Crimp TerminalThis document was generated on 01/06/2014
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
This document was generated on 10/10/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
Part Number: 87439-0400
Status: Active
Overview: Pico-Spox™ Wire-to-Board Connector System
Description: 1.50mm Pitch Pico-SPOX™ Wire-to-Board Housing, 4 Circuits, Off-White Housing
Documents:
3D Model RoHS Certificate of Compliance (PDF)
Drawing (PDF) Product Literature (PDF)
Product Specification PS-87437 (PDF)
Agency Certification
CSA LR19980
UL E29179
General
Product Family Crimp Housings
Series 87439
Application Signal, Wire-to-Board
MolexKits Yes
Overview Pico-Spox™ Wire-to-Board Connector System
Product Literature Order No USA-235
Product Name Pico-SPOX™
UPC 800753537224
Physical
Circuits (maximum) 4
Color - Resin Natural
Flammability 94V-0
Gender Female
Glow-Wire Compliant No
Lock to Mating Part Yes
Material - Resin Nylon
Net Weight 55.000/mg
Number of Rows 1
Packaging Type Bag
Panel Mount No
Pitch - Mating Interface 1.50mm
Polarized to Mating Part Yes
Stackable No
Temperature Range - Operating -55°C to +105°C
Electrical
Current - Maximum per Contact 2.5A
Material Info
Reference - Drawing Numbers
Product Specification PS-87437, RPS-87437, RPS-87437-001,
RPS-87437-200, RPS-87438-002
Sales Drawing SD-87439-**00
Series
image - Reference only
EU RoHS China RoHS
ELV and RoHS
Compliant
REACH SVHC
Contains SVHC: No
Low-Halogen Status
Low-Halogen
Need more information on product
environmental compliance?
Email productcompliance@molex.com
For a multiple part number RoHS Certificate of
Compliance, click here
Please visit the Contact Us section for any
non-product compliance questions.
Search Parts in this Series
87439Series
Mates With
Pico-SPOX™ Wire-to-Board Header 87437 ,
87438
Use With
87421 Pico-SPOX™ Crimp Terminal
This document was generated on 10/10/2013
PLEASE CHECK WWW.MOLEX.COM FOR LATEST PART INFORMATION
PMBFJ620
Dual N-channel field-effect transistor
Rev. 2 — 15 September 2011 Product data sheet
CAUTION
This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken
during transport and handling.
Table 1. Quick reference data
Symbol Parameter Conditions Min Typ Max Unit
Per FET
VDS drain-source voltage - - 25 V
VGSoff gate-source cut-off
voltage
VDS = 10 V; ID = 1 A 2 - 6.5 V
IDSS drain current VGS = 0 V; VDS = 10 V 24 - 60 mA
Ptot total power
dissipation
Ts 90 C - - 190 mW
yfs forward transfer
admittance
VDS = 10 V;
ID = 10mA
10 - - mS
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 2 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
2. Pinning information
3. Ordering information
4. Marking
[1] * = p: made in Hong Kong.
* = t: made in Malaysia.
* = W: made in China.
Table 2. Discrete pinning information
Pin Description Simplified outline Symbol
1 source (1)
2 source (2)
3 gate (2)
4 drain (2)
5 drain (1)
6 gate (1)
1 2 3
6 5 4
sym034
6
3 2
4
1
5
Table 3. Ordering information
Type number Package
Name Description Version
PMBFJ620 - plastic surface mounted package; 6 leads SOT363
Table 4. Marking
Type number Marking code[1]
PMBFJ620 A8*
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 3 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
5. Limiting values
6. Thermal characteristics
[1] Ts is the temperature at the soldering point of the gate pins, see Figure 1.
Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
Per FET
VDS drain-source voltage - 25 V
VGSO gate-source voltage open drain - 25 V
VGDO drain-gate voltage open source - 25 V
IG forward gate current (DC) - 50 mA
Ptot total power dissipation Ts 90 C - 190 mW
Tstg storage temperature 65 +150 C
Tj junction temperature - 150 C
Table 6. Thermal characteristics
Symbol Parameter Conditions Typ Unit
Rth(j-s) thermal resistance from junction
to soldering points
single loaded [1] 315 K/W
double loaded [1] 160 K/W
(1) Double loaded.
(2) Single loaded.
Fig 1. Power derating curve.
Ts (°C)
0 50 100 150 200
001aaa742
200
100
300
400
Ptot
(mW)
0
(1)
(2)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 4 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
7. Static characteristics
8. Dynamic characteristics
Table 7. Characteristics
Tj = 25 C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Per FET
V(BR)GSS gate-source breakdown
voltage
IG = 1 A; VDS = 0 V 25 - - V
VGSoff gate-source cut-off voltage ID = 1 A; VDS = 10 V 2 - 6.5 V
VGSS gate-source forward voltage IG = 1 mA; VDS = 0 V - - 1 V
IDSS drain-source leakage current VDS = 10 V; VGS = 0 V 24 - 60 mA
IGSS gate-source leakage current VGS = 15 V; VDS = 0 V - - 1 nA
RDSon drain-source on-state
resistance
VGS = 0 V; VDS = 100mV - 50 -
yfs common source forward
transfer admittance
ID = 10 mA; VDS = 10 V 10 - - mS
yos common source output
admittance
ID = 10 mA; VDS = 10 V - - 250 S
Table 8. Characteristics
Tj = 25 C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
Per FET
Ciss input capacitance VDS = 10 V; VGS = 10 V; f =1 MHz - 3 5 pF
VDS = 10 V; VGS = 0 V; Tamb = 25 C - 6 - pF
Crss reverse transfer capacitance VDS = 0 V; VGS = 10 V; f = 1 MHz - 1.3 2.5 pF
gis common source input
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 200 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 3 - mS
gfs common source transfer
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 13 - mS
VDS = 10 V; ID = 10 mA; f = 450 MHz - 12 - mS
grs common source reverse
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 30 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 450 - S
gos common source output
conductance
VDS = 10 V; ID = 10 mA; f = 100 MHz - 150 - S
VDS = 10 V; ID = 10 mA; f = 450 MHz - 400 - S
Vn equivalent input noise voltage VDS = 10 V; ID = 10 mA; f = 100 Hz - 6 - nV/Hz
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 5 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; Tj = 25 C. VDS = 10 V; ID = 10 mA; Tj = 25 C.
Fig 2. Drain current as a function of gate-source
cut-off voltage; typical values.
Fig 3. Common source forward transfer admittance
as a function of gate-source cut-off voltage;
typical values.
VDS = 10 V; ID = 10 mA; Tj = 25 C. VDS = 100 mV; VGS = 0 V; Tj = 25 C.
Fig 4. Common-source output conductance as a
function of gate-source cut-off voltage; typical
values.
Fig 5. Drain-source on-state resistance as a function
of gate-source cut-off voltage; typical values.
VGSoff (V)
0 −1 −2 −3 −4
mcd220
20
30
10
40
50
IDSS
(mA)
0
0 −2 −4 −8
mcd219
−6
20
0
16
12
8
yfs
(mS)
4
VGSoff (V)
0
150
100
50
0
−1 −2 −4
mcd221
−3
gos
(μS)
VGSoff (V)
0 −1 −2 −4
80
60
20
0
40
mcd222
−3
RDSon
(Ω)
VGSoff (V)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 6 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
Tj = 25 C. VDS = 10 V; Tj = 25 C.
Fig 6. Typical output characteristics. Fig 7. Typical transfer characteristics.
VDS = 10 V; Tj = 25 C. VDS = 10 V; Tj = 25 C.
Fig 8. Reverse transfer capacitance as a function of
gate-source voltage; typical values.
Fig 9. Input capacitance as a function of gate-source
voltage; typical values.
VDS (V)
0 4 8 12 16
mcd217
20
10
30
40
ID
(mA)
0
(2)
(4)
(1)
(5)
(6)
(3)
−4 −3 −2 0
40
30
10
0
20
mcd214
−1
ID
(mA)
VGS (V)
−10 −4 0
4
3
1
0
2
mcd224
−8 −6 −2
Crs
(pF)
VGS (V)
−10 0
10
0
mcd223
−8 −6 −4 −2
8
6
4
2
Cis
(pF)
VGS (V)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 7 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; Tj = 25 C.
Fig 10. Drain current as a function of gate-source voltage; typical values.
Tj = 25 C.
Fig 11. Gate current as a function of drain-gate voltage; typical values.
mcd229
1
10−2
10−1
102
10
103
ID
(μA)
10−3
VGS (V)
−2.5 −2.0 −1.5 −1.0 −0.5 0
mcd230
−10
−1
−103
−102
−104
IGSS
(pA)
−10−1
VDG (V)
0 4 8 12 16
(1)
(2)
(3)
(4)
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 8 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
Fig 12. Gate current as a function of junction temperature; typical values.
mcd231
10
1
103
102
104
IGSS
(pA)
10−1
Tj (°C)
−25 25 75 125 175
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 9 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C.
Fig 13. Input admittance as a function of frequency;
typical values.
Fig 14. Forward transfer admittance as a function of
frequency; typical values.
VDS = 10 V; ID = 10 mA; Tamb = 25 C. VDS = 10 V; ID = 10 mA; Tamb = 25 C.
Fig 15. Reverse transfer admittance as a function of
frequency; typical values.
Fig 16. Output admittance as a function of frequency;
typical values.
mcd228
10
1
gis, bis
(mS)
10−1
102
f (MHz)
10 102 103
bis
gis
f (MHz)
10 102 103
mcd227
10
102
gfs,−bfs
(mS)
1
gfs
−bfs
mcd226
f (MHz)
10 102 103
−10−1
−1
−10
−102
brs, grs
(mS)
−10−2
brs
grs
mcd225
10
1
bos, gos
(mS)
10−1
102
f (MHz)
10 102 103
bos
gos
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 10 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
9. Package outline
Fig 17. Package outline.
OUTLINE REFERENCES
VERSION
EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
SOT363 SC-88
bp w M B
D
e1
e
pin 1
index A
A1
Lp
Q
detail X
HE
E
v M A
B A
y
0 1 2 mm
scale
c
X
1 2 3
6 5 4
Plastic surface-mounted package; 6 leads SOT363
UNIT
A1
max
bp c D E e1 HE Lp Q v w y
mm 0.1
0.30
0.20
2.2
1.8
0.25
0.10
1.35
1.15
0.65
e
1.3 2.2
2.0
0.2 0.2 0.1
DIMENSIONS (mm are the original dimensions)
0.45
0.15
0.25
0.15
A
1.1
0.8
04-11-08
06-03-16
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 11 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
10. Revision history
Table 9. Revision history
Document ID Release date Data sheet status Change notice Supersedes
PMBFJ620 v.2 20110915 Product data sheet - PMBFJ620 v.1
Modifications: • The format of this data sheet has been redesigned to comply with the new identity
guidelines of NXP Semiconductors.
• Legal texts have been adapted to the new company name where appropriate.
• Package outline drawings have been updated to the latest version.
PMBFJ620 v.1
(9397 750 13006)
20040511 Product data sheet - -
PMBFJ620 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 2 — 15 September 2011 12 of 14
NXP Semiconductors PMBFJ620
Dual N-channel field-effect transistor
11. Legal information
11.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
11.2 Definitions
Draft — The document is a draft ve