

iISeries
Communications APIs

Version 5 Release 4

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 319

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Communications APIs
APIs .
User-Defined Communrcatlons Support APIs
Disable Link (QOLDLINK) API .
Authorities and Locks .
Required Parameter Group
Return and Reason Codes .
Enable Link (QOLELINK) API
Authorities and Locks .
Required Parameter Group
Optional Parameter Group.
Return and Reason Codes .
Error Messages
Query Line Description (QOLQLIND) API
Authorities and Locks .
Required Parameter Group
Optional Parameter Group
Format of Data in the User Buffer
Return and Reason Codes
Error Messages . .
Receive Data (QOLRECV) API .
Authorities and Locks .
Required Parameter Group .
Format of Diagnostic Data Parameter
LAN Input Operations
X.25 SVC and PVC Input Operatlons
Return and Reason Codes
Error Messages .
Send Data (QOLSEND) API
Authorities and Locks .
Required Parameter Group .
Diagnostic Data Parameter Format
LAN Output Operations .
X.25 SVC and PVC Output Operatlons
Return and Reason Codes
Error Messages .
Set Filter (QOLSETF) API.
Authorities and Locks .
Required Parameter Group .
Format of Filter Information.
Return and Reason Codes
Error Messages .
Set Timer (QOLTIMER) API
Authorities and Locks .
Required Parameter Group .
Optional Parameter.
Return and Reason Codes
Error Messages .
Data Stream Translation APIs

End Data Stream Translation Session (QDOENDTS)

. 76
. 76
. 76
.77

API .

Authorities and Locks

Required Parameter Group .

Error Messages . .
Start Data Stream Translatlon Sessmn (QDOSTRTS)
API .

© Copyright IBM Corp. 1998, 2006

©OWOWO~NOORERDWWNNNRE R P

NNNNNN NN NP PR WWWWWNNMNNNMNDNONDN R P
OO IO, WWNPFPOOOUOOPRRWOUWRPR OOOORS~NOWNNERELORO

.17

Authorities and Locks .
Required Parameter Group .
Error Messages .

Translate Data Stream (QDOTRNDS) API
Authorities and Locks .

Required Parameter Group .
Error Messages .

OptiConnect APIs .

Close Path (demCIosePath) API .
Restrictions
Authorities and Locks
Required Parameter Group .
CPTHO0100 Format .

Field Descriptions
Error Messages .

Close Stream (demCIoseStream) API
Restrictions e
Authorities and Locks
Required Parameter Group .
CSTR0100 Format
Field Descriptions
Error Messages . . .

Open Path (demOpenPath) API .
Restrictions
Authorities and Locks
Required Parameter Group .
OPRCO0100 Format .

OPRQO0100 Format .
Field Descriptions
Error Messages . .

Open Stream (demOpenStream) API
Restrictions
Authorities and Locks
Required Parameter Group .
OSTRO0100 Format .

Field Descriptions
Error Messages .

Receive Control (demRecelveControI) API
Restrictions
Authorities and Locks
Required Parameter Group .
RCRCO0100 Format .

RCRQO0100 Format .
Field Descriptions
Error Messages .

Receive Request (demRecelveRequest) API
Restrictions
Authorities and Locks
Required Parameter Group .
RQRC0100 Format .

RQRQO0100 Format .
Field Descriptions
Error Messages .

Receive Response (demRecelveResponse) API
Restrictions
Authorities and Locks

.77
.17
. 18
.79
.79
.79
. 81
. 83
. 83
. 84
. 84
. 84
. 84
. 84
. 85
. 85
. 85
. 85
. 85
. 86
. 86
. 86
. 87
. 87
. 87
. 87
. 88
. 88
. 88
. 89
. 89
. 90
. 90
. 90
. 90
. 90
.91
.91
.91
.91
. 92
. 92
.92
. 93
. 93
. 93
. 94
. 94
. 94
. 95
. 95
. 95
. 96
.97
.97
. 97

Required Parameter Group .
RSRC0100 Format
RSRQO0100 Format .

Field Descriptions .

Error Messages .

Send Request (demSendRequest) API
Restrictions .

Authorities and Locks
Required Parameter Group .
SRRC0100 Format .
SRRQO0100 Format .

Field Descriptions .

Error Messages . .

Send Response (demSendResponse) API
Restrictions .

Authorities and Locks
Required Parameter Group .
SRSP0100 Format .

Field Descriptions .

Error Messages .

Wait Message (demWaltMessage) API
Restrictions .

Authorities and Locks
Required Parameter Group .
WMRCO0100 Format
WMRQO0100 Format .
Field Descriptions .

Error Messages .

TCP/IP Management.

Change Connection Attribute (QTOCCCNA) API

Authorities and Locks Coe
Required Parameter Group .
TCPAO0001 Format .
UDPAOQ001 Format.
Field Descriptions .
TCPA0101 Format .
UDPAO0101 Format.
Field Descriptions .
Error Messages .

Change IPv4 Interface (QTOCC4IF) API
Authorities and Locks
Required Parameter Group .
IFCHO0100 Format .

Format of Preferred Interface Llst Entry
Field Descriptions .

Usage Notes.

Error Messages .

Convert Interface ID (QtochtIfcID) API
Authorities and Locks
Required Parameter Group .

Format of Returned Interface Data

NCI10100 Format .

Field Descriptions .

NCI10200 Format .

Field Descriptions .

NCI110300 Format .

Field Descriptions .

Error Messages .
List Neighbor Cache Table (QtocLstNelghborTbI)
API.

Authorities and Locks

iV iSeries: Communications APIs

. 97
. 98
. 98
. 99
.. 99
. 100
. 100
. 100
. 100
. 101
. 101
. 102
. 103
. 103
. 103
. 103
. 104
. 104
. 104
. 105
. 105
. 106
. 106
. 106
. 107
. 107
. 107
. 107
. 108

109

. 109
. 110
. 110
. 110
11
111
111
. 112
. 112
. 113
. 113
. 113
. 113
. 114
. 114
. 115
. 115
. 115
. 115
. 115
. 117
. 117
. 117
. 117
. 118
. 118
. 118
. 119

. 119
. 119

Required Parameter Group . .
Format of Neighbor Cache Table Llsts .
Input Parameter Section .

Header Section .

NNCTO0100 Format

Field Descriptions .

Error Messages .

List Network Connections (QtocLstNetCnn) API

Authorities and Locks

Required Parameter Group .
Format of Connection Status Lists
Input Parameter Section .

Header Section .

NCLQO0100 Format

Field Descriptions .

NCLQO0200 Format

Field Descriptions . .
Format of Returned Connectlon Data
NCNNO0100 Format

Field Descriptions .

NCNNO0200 Format

Field Descriptions .

Error Messages .

List Network Interfaces (QtocLstNetIfc) API .

Authorities and Locks
Required Parameter Group .
Format of Interface Lists.
Input Parameter Section .
Header Section .
Format of Returned Connectlon Data
NIFCO0100 Format .
Format of Preferred Interface Llst Entry
Field Descriptions .
NIFC0200 Format .
Field Descriptions .
Error Messages.
List Network Routes (QtocLstNethe) API
Authorities and Locks
Required Parameter Group .
Format of Route Lists
Input Parameter Section .
Header Section .
Format of Returned Connectlon Data
NRTE0100 Format.
Field Descriptions .
NRTE0200 Format.
Field Descriptions .
Error Messages .
List Physical Interface ARP Table
(QtocLstPhylfcARPTDbI) API
Authorities and Locks
Required Parameter Group .
Format of ARP Table Lists .
Input Parameter Section .
Header Section .
ARPTO0100 Format .
Field Descriptions .
Error Messages .

List Physical Interface Data (QtocLstPhyIchta) API

Authorities and Locks
Required Parameter Group .

. 120
. 120
121
. 121
. 121
. 122
. 124

124

. 124
. 125
. 125
. 126
. 126
. 126
. 127
. 128
. 128
. 130
. 130
. 131
. 132
. 133
. 134
. 135
. 135
. 135
. 136
. 136
. 136
. 137
. 137
. 138
. 138
. 143
. 144
. 149
. 150
. 150
. 150
. 151
. 151
. 152
. 152
. 152
. 153
. 156
. 157
. 162

. 162
. 163
. 163
. 163
. 164
. 164
. 164
. 164

. 165
166

. 166
. 166

Format of Physical Interface Lists.

Input Parameter Section .

Header Section .

Format of Returned Connectlon Data

IFCDO0100 Format .

Field Descriptions .

IFCD0200 Format .

Field Descriptions .

IFCDO0300 Format .

Field Descriptions .

Error Messages .

List PPP Connection Proflles (QtocLstPPPCnnPrf)
API. .

Authorities and Locks

Required Parameter Group .

Format of Connection Profile Lists

Input Parameter Section .

Header Section .

PRFD0100 Format .

Field Descriptions .

Error Messages .

List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API

Authorities and Locks

Required Parameter Group .

Format of Point-to-Point Jobs List

Input Parameter Section .

Header Section .

PPPJ0100 Format .

Field Descriptions .

Error Messages . .

Remove ARP Table Entry (QtocRvaRPTbIE) API

Authorities and Locks

Required Parameter Group .

Error Messages . .
Retrieve Network Connectlon Data
(QtocRtvNetCnnDta) API

Authorities and Locks

Required Parameter Group .

Socket Connection Request Format

IPv4 connection (Protocol field value is l or 2)

IPv6 connection (Protocol field value is 3 or 4)

Field Descriptions .

Format of Returned Connectlon Data

NCNDO0100 Format

Field Descriptions .

NCNDO0200 Format

List of Socket Options. .

List of Jobs/Tasks Associated Wlth thls

Connection. .

Field Descriptions .

NCND1100 Format

Field Descriptions .

NCND1200 Format

List of Socket Options.

List of Jobs/Tasks Associated W|th thls

Connection. .

Field Descriptions .

Error Messages .

Retrieve PPP Connection Proflles
(QtocRtvPPPCnNPrf) API
Authorities and Locks

. 167
. 167
. 168
. 168
. 168
. 169
. 171
. 172
. 175
. 177
. 181

. 181
. 181
. 182
. 182
. 182
. 183
. 183
. 183
. 186

186

. 186
. 186
. 187
. 187
. 187
. 188
. 188
. 189

189

. 189
. 189
. 190

. 190
. 190
. 190
. 191

191
192

. 192
. 192
. 193
. 193
. 194
. 196

. 196
. 196
. 201
. 201
. 202
. 204

. 204
. 204
. 209

. 210
. 210

Required Parameter Group . .o
Format of Connection Profile Attributes
Information .
PRFR0100 Format .
Field Descriptions .
PRFR0200 Format .
Field Descriptions . .
Connection Profile Detalled Parameters.
Field Descriptions .
Remote Phone Numbers.
Field Descriptions .
Error Messages .
Retrieve TCP/IP Attributes (QtothvTCPA) API
Authorities and Locks
Required Parameter Group . .
Format of TCP/IP Attributes Informatlon .
TCPA0100 Format .
Field Descriptions .
TCPA0200 Format .
Field Descriptions .
TCPAO0300 Format .
Field Descriptions .
TCPA1100 Format .
Field Descriptions .
TCPA1200 Format .
Field Descriptions .
TCPA1300 Format .
Field Descriptions .
Error Messages . .
Update DNS API (QTOBUPDT)
Authorities and Locks
Required Parameter Group .
Update Instructions Syntax .
DNSAO0100 Format
Field Descriptions .
Error Messages .
CPI Communications (CPI- C)
Exit Programs .

Trace Exit Program for Trace TCP/IP Appllcatlon

command
Authorities and Locks
Required Parameter Group .
Field Descriptions .
Related Information
Exit Program for Watch for Trace Event
Authorities and Locks
Required Parameter Group .
Field Descriptions .
Related Information
Concepts .
User-Defined Communlcatlons
Overview.
User-Defined Communlcatlons Callable
Routines . .
Input/Output Buffers and Descnptors .
Queues
Terminology . .
Relationship to Communlcatlons Standards
Local Area Network (LAN) Considerations
X.25 Considerations

Contents

. 210

211
. 211
211
. 213
. 215
. 222
. 223
. 226
. 226
. 226

226

. 227
. 227
. 227
. 228
. 228
. 230
. 231
. 236
. 237
. 238
. 239
. 239
. 240
. 242
. 243
. 243
. 243
. 244
. 244
. 246
. 248
. 248
. 248
. 249
. 249

. 249
. 250
. 250
. 251
. 251
. 252
. 252
. 252
. 253
. 254
. 254
. 254
. 254

. 255
. 256
. 256
. 256
. 257
. 260
. 261

\

Programming Design Considerations for
Communications APls

Jobs .

Application Program Feedback

Synchronous and Asynchronous Operations .

Programming Languages .
Starting and Ending Communlcatlons .
Using Connection Identifiers
Incoming Connections
Closing Connections .
Programming Considerations for LAN
Applications.
Operations
Configuration
Inbound Routing Informatlon
End-to-End Connectivity
Sending and Receiving Data
Maximum Amount of Outstanding Data

Ethernet to Token-Ring Conversion and Routing

Performance Considerations

Programming Considerations for X.25 Appllcatlons

X.25 Packet Types Supported .

Operations

Connections .

Connection Identrfrers

Connection Information .

Switched Virtual Circuit (SVC) Connectrvrty
Inbound Routing Information .

End-to-End Connectivity

Permanent Virtual Circuit (PVC) Connectlwty

Inbound Routing Information .
End-to-End Connectivity
Sending and Receiving Data Packets
X.25 Call Control . .
Performance Considerations

Queue Considerations

VI iSeries: Communications APIs

. 262
. 262
. 265
. 265
. 265
. 265
. 266
. 277
. 282

. 283
. 284
. 284
. 284
. 284
. 285
. 285

285
. 285
286

. 286
. 287
. 288
. 288
. 289
. 289
. 289
. 290

290

. 290
. 290
. 291
. 292
. 292
. 293

User Space Considerations .
Return Codes and Reason Codes .
Messages .

Configuration and Queue Entrles

Configuring User-Defined Communlcatlons

Support

Links .

Queue.

Queue Entries .

General Format. .

Enable-Complete Entry .

Disable-Complete Entry .

Permanent-Link-Failure Entry .

Incoming-Data Entry .

Timer-Expired Entry . .
Debugging of User-Defined Communlcatrons
Applications. .

System Services and Tools .

Program Debug .

Work with Communrcatrons Status .

Display Job Log .

Display Connection Status . .

Display Inbound Routing Informatlon .

Work with Communications Trace

Work with Error Log . .

Dump System Object to View User Spaces.
Error Codes .

Local Area Network (LAN) Error Codes

X.25 Error Codes . .

Common Errors and Messages

Appendix. Notices .o
Programming Interface Information .
Trademarks . .

Terms and Conditions

. 296
. 298
. 298
. 299

. 299
. 299
. 300
. 300
. 300
. 301
. 302
. 302
. 303
. 303

. 304
. 304
. 304
. 304
. 305
. 305
. 305
. 305
. 305
. 306
. 312
. 312
. 313
. 316

. 319
. 320
. 321
. 322

Communications APIs

The Communications APIs provide the information needed to write user-defined communications
applications, programming examples, and debugging information. The Data Stream Translation APIs
allow a user-written application program that creates 3270 data streams to run on the an iSeries server
using 5250 data streams. The OptiConnect APIs can be used to move user data between two or more
systems that are connected by an OptiConnect fiber-optic bus. The TCP/IP Management APIs allow you
to retrieve information about your TCP/IP setup and status, and change certain system values related to
TCP/IP.

Communications APIs include the following:

* [“User-Defined Communications Support APIs”|
 [‘Data Stream Translation APIS” on page 76|

+ [*OptiConnect APIs” on page 83

 [“TCP/IP Management” on page 108|

+ [*CPI Communications (CPI-C)” on page 249

For information on user-defined communications support, read the following topics:
+ [“‘User-Defined Communications” on page 254|

+ [*Programming Design Considerations for Communications APIs” on page 262]

+ [“Configuration and Queue Entries” on page 299

+ [*Debugging of User-Defined Communications Applications” on page 304|

APIs by categoryj

APIs
These are the APIs for this category.

User-Defined Communications Support APIs

User-defined communications support is made up of seven callable APIs that provide services for a
user-defined communications application program.

The user-defined communications Support APls are:
« [‘Disable Link (QOLDLINK) API” on page 2 (QOLDLINK) disables one or all links.
* [‘Enable Link (QOLELINK) API” on page 3| (QOLELINK) enables link for input and output.

* [“Query Line Description (QOLQLIND) API” on page 9| (QOLQLIND) queries an existing line
description.

* [“Receive Data (QOLRECV) API” on page 21| (QOLRECYV) receives data from the link.
* [“Send Data (QOLSEND) API” on page 39| (QOLSEND) sends data from the link.

» [“Set Filter (QOLSETF) API” on page 64 (QOLSETF) activates or deactivates filters.

* [“Set Timer (QOLTIMER) API” on page 73| (QOLTIMER) sets or cancels a timer.

| [*Communications APIs”| | |APIs by category]

© Copyright IBM Corp. 1998, 2006

aplist.htm
#TOP_OF_PAGE
aplist.htm

Disable Link (QOLDLINK) AP

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Communications handle Input Char(10)
4 Vary option Input Char(1)

Default Public Authority: *USE
Threadsafe: No

The Disable Link (QOLDLINK) API disables one or all links that are currently enabled in the job in
which the application program is running. When a link is disabled, all system resources that the link is
using are released, the input and output buffers and descriptors for that link are deleted, and input or
output on that link is no longer possible.

In addition to an application program explicitly disabling a link by calling the QOLDLINK API,
user-defined communications support will implicitly disable a link in the following cases:

* When the network device associated with an enabled link is varied off from the job in which it was
enabled

* When a job ends in which one or more links were enabled

* When the application program that enabled the link ends abnormally
* When the Reclaim Resource (RCLRSC) command is used

* When an unmonitored escape message is received

For each link that is successfully disabled, either explicitly or implicitly, the disable-complete entry will be
sent to the data queue or user queue specified on the call to the QOLELINK API when the link was
enabled. See [‘Disable-Complete Entry” on page 302 for the format of the disable-complete entry.

Authorities and Locks
None.

Required Parameter Group

Return code
OUTPUT, BINARY(4)

The recovery action to take. See [‘Return and Reason Codes” on page 3

Reason code
OUTPUT; BINARY(4)

The error that occurred. See|[“Return and Reason Codes” on page 3/

Communications handle
INPUT; CHAR(10)

The name of the link to disable. The special value of *ALL (left-justified and padded on the right
with spaces) may be used to disable all links currently enabled in the job that the application
program is running in.

Vary option
INPUT; CHAR(1)

The vary option for the network device description associated with each link being disabled. The
valid values are as follows:

2 iSeries; Communications APls

X’00’ Do not vary off the network device description.
xX0r Vary off the network device description.

Return and Reason Codes
Return and Reason Codes for the QOLDLINK API

Return / Reason Code Meaning Recovery
0/0 Operation successful. Continue processing.
83/1004 Vary option not valid. Correct the vary option parameter. Then, try

the request again.

83/3001 Link not enabled. Correct the communications handle
parameter. Then, try the request again.

API introduced: V2R1

[fop| | [*Communications APIs,” on page 1 | [APIs by category]

Enable Link (QOLELINK) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Data unit size Output Binary(4)
4 Data units created Output Binary(4)
5 LAN user data size Output Binary(4)
6 X.25 data unit size Input Binary(4)
7 Input buffer Input Char(20)
8 Input buffer descriptor Input Char(20)
9 Output buffer Input Char(20)
10 Output buffer descriptor Input Char(20)
11 Key length Input Binary(4)
12 Key value Input Char(256)
13 Qualified queue name Input Char(20)
14 Line description Input Char(10)
15 Communications handle Input Char(10)

Optional Parameter Group:

16 Queue type Input Char(1)
17 Network interface description Input Char(10)
18 Extended operations Input Char(1)

Default Public Authority: *USE
Threadsafe: No

The Enable Link (QOLELINK) API enables a link for input and output on a communications line. The
communications line, described by the line description parameter, must be a token-ring, Ethernet,
wireless, FDDI, or X.25 line. The link being enabled can only be accessed within the job in which the
QOLELINK API was called.

Before calling the QOLELINK API to enable a link, you must configure the following objects:
* Token-ring, Ethernet, wireless, FDDI, or X.25 line description
« Data queue or user queue

Communications APIls

#TOP_OF_PAGE
aplist.htm

* Network interface description for X.25 networks running over ISDN

See [“Configuring User-Defined Communications Support” on page 299|for more information on
configuration.

The QOLELINK API creates the input and output buffers and buffer descriptors used for the link being
enabled. The network controller description and the network device description, associated with the link
being enabled, are also created, if necessary. In addition, the following are varied on, if necessary.

» Line description

* Network controller description

* Network device description

* Network interface descriptions used by the line description

If the X.25 switched network interface list has multiple network interface descriptions configured, all of
them can be varied on at one time. For more information on varying on network interface descriptions,

refer to the [Communications Management| @ book.

When the QOLELINK API returns, your application program should examine the codes to determine the
status of the link. Successful return and reason codes (both zero) indicate the link is being enabled and an
enable-complete entry will be sent to the data queue or user gueue specified on the call to the
QOLELINK API when the enable operation completes. See [“Enable-Complete Entry” on page 301 for
more information on the enable-complete entry. Unsuccessful return and reason codes indicate the link
could not be enabled and the enable-complete entry will not be sent to the data queue or user queue.
[“Return and Reason Codes” on page 7| provides more information on the QOLELINK API return and
reason codes.

Authorities and Locks

User Space Authority
*READ

User Space Library Authority
*USE and *ADD. *OBJOPR plus *READ is equivalent to *USE.

User Space Lock
*EXCL
Required Parameter Group

Return code
OUTPUT; BINARY(4)

The recovery action to take. See [‘Return and Reason Codes” on page 7.

Reason code
OUTPUT; BINARY(4)

The error that occurred. See|“Return and Reason Codes” on page 7

Data unit size
OUTPUT; BINARY(4)

The total number of bytes allocated for each data unit in the input and output buffers. For
token-ring links, this includes user data (LAN user data size parameter), general LAN header
information, and optional routing information. For Ethernet, wireless, and FDDI links, this
includes user data (LAN user data size parameter) and general LAN header information. For X.25
links, this includes user data (X.25 user data size parameter). For more information on the general
LAN header, see Return and Reason Codes for the QOLELINK API (page .

4 iSeries; Communications APIs

Data units created
OUTPUT; BINARY(4)

The number of data units created for the input buffer and the output buffer. This parameter also
specifies the number of elements created for the input buffer descriptor and the output buffer
descriptor. The only valid value is:

8 All protocols

Note: Because user-defined communications support always returns an 8, you should write your
application program to avoid having to recompile should this value ever change.

LAN user data size
OUTPUT; BINARY(4)

The number of bytes allocated for token ring, Ethernet, wireless, or FDDI in each data unit of the
input and output buffers. This does not include general LAN header information and optional
routing information.

The content of this parameter is only valid when enabling a token-ring, Ethernet, wireless, or
FDDI link.

Note: The maximum amount of token-ring, Ethernet, wireless, or FDDI user data that can be sent
or received in each data unit is determined on a service access point basis in the line description
or by the 1502 byte maximum for Ethernet Version 2 frames, and may be less than the LAN user
data size. See[“Query Line Description (QOLQLIND) API” on page 9|for information on
retrieving these values.

X.25 data unit size
INPUT; BINARY(4)

The number of bytes allocated for X.25 user data in each data unit of the input and output
buffers. This is equal to the maximum amount of X.25 user data that can be sent or received in
each data unit. The content of this parameter is only valid when enabling an X.25 link.

Range 512 bytes-4096 bytes

Input buffer
INPUT; CHAR(20)

The name and library of the input buffer that the QOLELINK API creates for this link. The first
10 characters specify the name for the input buffer and the second 10 characters specify the name
of an existing library that the input buffer will be created in. Both entries are left-justified. The
special values of *LIBL and *CURLIB can be used for the library name.

Note: A user space object with the same name as the input buffer must not already exist in the
specified library.

Input buffer descriptor
INPUT; CHAR(20)

The name and library of the input buffer descriptor that the QOLELINK API creates for this link.
The first 10 characters specify the name of the input buffer descriptor and the second 10
characters specify the name of an existing library that the input buffer descriptor will be created
in. Both entries are left-justified. The special values of *LIBL and *CURLIB can be used for the
library name.

Note: A user space object with the same name as the input buffer descriptor must not already
exist in the specified library.

Output buffer
INPUT; CHAR(20)

Communications APIs 5

The name and library of the output buffer that the QOLELINK API creates for this link. The first
10 characters specify the name of the output buffer and the second 10 characters specify the name
of an existing library that the output buffer will be created in. Both entries are left-justified. The
special values of *LIBL and *CURLIB can be used for the library name.

Note: A user space object with the same name as the output buffer must not already exist in the
specified library.

Output buffer descriptor
INPUT; CHAR(20)

The name and library of the output buffer descriptor that the QOLELINK API creates for this
link. The first 10 characters specify the name of the output buffer descriptor and the second 10
characters specify the name of an existing library that the output buffer descriptor will be created
in. Both entries are left-justified. The special values of *LIBL and *CURLIB can be used for the
library name.

Note: A user space object with the same name as the output buffer descriptor must not already
exist in the specified library.

Key length
INPUT: BINARY(4)

The key length when using a keyed data queue or user queue.

0 The data queue or user queue is not keyed.
Range 1-256
Key value

INPUT; CHAR(256)
The key value (left justified) when using a keyed data queue or user queue.

Qualified queue name
INPUT; CHAR(20)

The name and library of the data queue or user queue where the enable-complete,
disable-complete, permanent-link-failure, and incoming-data entries for this link will be sent. See
[“Queue Entries” on page 300| for more information about these queue entries. The first 10
characters specify the name of an existing queue and the second 10 characters specify the library
in which the queue is located. Both entries are left-justified. The special values of *LIBL and
*CURLIB can be used for the library name.

Line description
INPUT; CHAR(10)

The name of the line description that describes the communications line the link being enabled
will use. An existing token-ring, Ethernet, wireless, FDDI, or X.25 line description must be used.

Communications handle
INPUT; CHAR(10)

The name assigned to the link being enabled. Any name complying with system object naming
conventions may be used.

Optional Parameter Group

Queue type
INPUT; CHAR(1)

The type of queue you specified for the Queue name parameter.

D Data queue

6 iSeries: Communications APIs

U User queue

Network interface description

INPUT; CHAR(10)

The name of the network interface description. This value is specified if you are running X.25 and
need to specify a particular network interface to use. Otherwise, this value should be set to

blanks.

Note: This parameter along with the line description parameter causes only the network interface
description specified to be varied on. If this value is not specified and the line description

parameter contains a switched network interface list, all network interface descriptions within the
list are varied on when the QOLELINK API is called.

Specifying this parameter causes only the line and the network interface that are passed to be
varied on during enable processing.

Extended operations
INPUT; CHAR(1)

Indicates whether or not extended operations are supported.

Extended operations affect all connections (UCEPs, PCEPs) on the link. X’B311’ and X’B111’ are
receive extended operations. X’B110’ is a send extended operation.

1 Operations
0 Operations

supported
not supported

Return and Reason Codes
Return and Reason Codes for the QOLELINK API

Return / Reason Code Meaning Recovery
0/0 Operation successful, link enabling. Wait to receive the enable-complete entry
from the data queue or user queue before
doing input/output on this link.

81/9999 Internal system error detected. Escape | See messages in the job log for further
message CPF91F0 will be sent to the information. Then, report the problem using
application program when this return | the ANZPRB command.
and reason code is received.

8271000 User data size not valid for X.25 link. | Correct the X.25 user data size parameter.

Then, try the request again.

82/1001 Key length not valid. Correct the key length parameter. Then, try

the request again.

82/1002 Queue name not valid. Correct the queue name parameter. Then, try

the request again.

82/1003 Communications handle not valid. Correct the communications handle

parameter. Then, try the request again.

82/1012 Queue type not valid. Queue type must be D or U. Correct the

queue type and try the request again.

82/1013 Extended operations value not valid. Extended operations value must be 1 or 0.

Correct the extended operations value and
try the request again.

82/1020 Group parameters not valid (not all the | Pass all parameters within the group and try
parameters within a group were the operation again.
passed).

7

Communications APIls

Return / Reason Code

Meaning

Recovery

another link that is enabled in this job.

82/2000 Line name not valid or protocol is not | The line name specified must be for a line of

supported. type Ethernet, wireless, token ring, FDDI, or
X.25. Correct the line name and try the
request again.

82/2001 Line description, network controller See messages in the job log indicating the
description, or network device affected object and recommended recovery.
description not in a valid state. Do the recovery, and try the request again.

82/2002 Not authorized to the line description | See messages in the job log indicating the
or network controller description. affected object and get authorization to it.

Then, try the request again.

82/2003 Could not allocate the network device | Try the request again. If the problem

description. continues, report the problem using the
ANZPRB command.

82/2004 Could not create the network controller | See messages in the job log indicating the
description or network device affected object and recommended recovery.
description. Do the recovery, and try the request again.

82/2005 Could not vary on the network See messages in the job log indicating the
interface, line description, network affected object and recommended recovery.
controller description, or network Do the recovery, and try the request again.
device description.

82/2006 Line description not found. Correct the line description parameter. Then,

try the request again.

82/2007 Line description damaged. Delete and re-create the line description.

Then, try the request again.

82/2008 Unsupported interface. An error The network interface value is not correct for
occurred that indicated the network the line name value. Correct the
interface specified cannot be associated |configuration or your application.
with the line specified. For example,
you specified a network interface for a
token-ring, Ethernet, or wireless line.

82/2009 Network interface description not Specify the correct network interface name
found. and try the request again.

82/2010 Network interface description specified | Check the network interface description for
could not be used. possible errors. Correct any errors and try

the request again.

82/2400 An error occurred while creating the See messages in the job log indicating the
input buffer, input buffer descriptor, affected object and recommended recovery.
output buffer, or output buffer Do the recovery, and try the request again.
descriptor.

82/3000 Communications handle already Either disable the link that was assigned this
assigned to another link that is enabled | communications handle, or correct the
in this job. communications handle parameter so it does

not specify a communications handle that is
already assigned to a link enabled in this job.
Then, try the request again.

82/3005 Line description already in use by Disable the link that is using this line

description. Then, try the request again.

8 iseries: Communications APIs

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

| [FCommunications APIs,” on page 1] | [APIs by category]

Query Line Description (QOLQLIND) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Number of bytes Output Binary(4)
4 User buffer Output Char(*)
5 Line description Input Char(10)
6 Format Input Char(1)

Optional Parameter Group:

7 Length of user buffer Input Binary(4)
8 Bytes available Output Binary(4)

Default Public Authority: *USE
Threadsafe: No

The Query Line Description (QOLQLIND) API queries an existing token-ring, Ethernet, wireless, FDDI,
frame relay, or X.25 line description. The data received from the query is placed in the user buffer
parameter.

The line description to be queried does not have to be associated with any links the application program
has enabled. However, data in the line description may change after it is queried.

Authorities and Locks
None.

Required Parameter Group

Return code
OUTPUT; BINARY(4)

The recovery action to take. See |“Return and Reason Codes” on page 20.|

Reason code
OUTPUT; BINARY(4)

The error that occurred. See[“Return and Reason Codes” on page 20

Number of bytes
OUTPUT,; BINARY(4)

The number of bytes of data returned in the user buffer.

User buffer
OUTPUT; CHAR(*)

Communications APIs 9

#TOP_OF_PAGE
aplist.htm

The buffer where the data from the query will be received. Any unused space in the buffer will
be filled with X’00’. The length of this character structure is determined using User Buffer Format

(page [L0).

User Buffer Format

Format Group Parameter Length of Char(*)
Passed
1 No 256
lor2 Yes Specified by the length user buffer parameter.

Note: You are recommended to set the length user buffer value to a number large enough to hold

the system maximum values of virtual circuits, SAPs, and group addresses with additional space
left for future needs.

Line description
INPUT; CHAR(10)

The name of the line description to query. An existing token-ring, Ethernet, wireless, FDDI, frame
relay, or X.25 line description must be used.

Format
INPUT; CHAR(1)

The format of the data returned in the user buffer. The valid values are as follows:

X'01’ Use format 01.
X’'02’ Use format 02.

See [‘Format of Data in the User Buffer” on page 11| for more information.

Optional Parameter Group

Length of user buffer
INPUT:; BINARY(4)

The number of bytes available for the API to use in the user buffer parameter. The valid values
are from 0 to 32,767.

Notes:

1. This parameter is required if format 2 is specified in the format parameter. It is optional if
format 1 is specified.

2. If length user buffer is specified, bytes available must also be specified.

3. If additional information exists that could not be reported, the bytes available parameter will
contain a larger value than the bytes returned parameter.

Bytes available
OUTPUT; BINARY(4)
The total number of bytes of available information.
Notes:

1. This parameter is required if format 2 is specified in the format parameter. It is optional if
format 1 is specified.

2. If bytes available is specified, length user buffer must also be specified.

3. If the bytes available parameter contains a number larger than the bytes returned parameter,
there is additional information that the application cannot access.

4. If the return code parameter is nonzero, this value is set to zero.

10 iSeries: Communications APIs

Format of Data in the User Buffer

The data received in the user buffer from the query is made up of two parts. The first portion starts at
offset 0 from the top of the user buffer and contains general query data. The format of this data does not
depend on value of the format parameter supplied to the QOLQLIND API.

General Query Data

Field Type

Description

Line description | CHAR(10)

The name of the token-ring, Ethernet, wireless, FDDI, frame relay, or X.25 line
description that was queried.

Line type CHAR(1)

The type of line description that was queried. The valid values are as follows:

xX04’
X'05’
X'09’

X'0D’
X'0E’

X'10’

X.25
Token-ring
Ethernet
FDDI
Frame relay

Wireless

Status CHAR(1)

The current status of the line description. The valid values are as follows:

X00’
xXor
X02’
X'03’
xX04’
X'05’
X'06’
xX07
X'08’
X09’
X'FF

Varied off

Varied off pending
Varied on pending
Varied on

Active

Connect pending
Recovery pending
Recovery canceled
Failed

Diagnostic mode

Unknown

The second portion of the user buffer starts immediately after the general query data and contains data
specific to the type of line description that was queried. The format of this data depends on the value of
the format parameter supplied to the QOLQLIND API.

LAN Specific Data-Format 01

Field Type

Description

Local adapter
address

CHAR(6)

Specifies, in packed form, the local adapter address of this line. The special
value of X’000000000000’ indicates that the preset default address for the
adapter card was configured. However, the line description must be varied on
before this address can be retrieved.

Communications APIs 11

Field Type Description
Line speed CHAR(1) The speed of this line. The valid values are as follows:
X’01" 4 megabits/second
X’02" 10 megabits/second
X’03" 16 megabits/second
X’04” 100 megabits/second
Line capability |CHAR(1) The capability of this line. The valid values are as follows:
X’00" Non-Ethernet
xX0or’ Ethernet Version 2
X’02" Ethernet 802.3
X’03" Both Ethernet Version 2 and Ethernet 802.3
Line frame size |BINARY(2) The maximum frame size possible on this line.
Ethernet Version | BINARY(2) The maximum size for Ethernet Version 2 frames. This will be 1502 if the line
2 frame size is capable of Ethernet Version 2 traffic. Otherwise, it will be zero.
Number of BINARY(2) The number of source service access points (SSAPs) configured for this line.
SSAPs

Note: The followi

ng 3 rows are repe

ated for each SSAP configured for this line.

SSAP CHAR(1) The configured source service access point.
SSAP type CHAR(1) The SSAP type. The valid values are as follows:
X’00" Non-SNA SSAP
X’01’ SNA SSAP
SSAP frame size |BINARY(2) The maximum frame size allowed on this SSAP.
Number of BINARY(2) The number of group addresses configured for this line.

group addresses

Note: This will always be zero for a token-ring line description.

Note: The following row is repeated for each group address configured for this line.

Group address

CHAR(6)

Specifies a group address, in packed form.

LAN Specific D

ata-Format 02

Field Type Description
Local adapter CHAR(6) Specifies, in packed form, the local adapter address of this line. The special
address value of X’000000000000’ indicates that the preset default address for the

adapter card was configured. However, the line description must be varied on
before this address can be retrieved.

12

iSeries: Communications APls

Field Type Description
Line speed CHAR(1) The speed of this line. The valid values are as follows:
X’01" 4 megabits/second
X’02" 10 megabits/second
X’03" 16 megabits/second
X’04” 100 megabits/second
X’05" Frame relay (line speed is specified separately)
Line capability |CHAR(1) The capability of this line. The valid values are as follows:
X’00’ Non-Ethernet
X’01" Ethernet Version 2
X’02" Ethernet 802.3
X’03" Both Ethernet Version 2 and Ethernet 802.3
Line frame size |BINARY(2) The maximum frame size possible on this line.
Ethernet Version | BINARY(2) The maximum size for Ethernet Version 2 frames. This will be 1502 if the line
2 frame size is capable of Ethernet Version 2 traffic. Otherwise, it will be zero.
Functional CHAR(6) The hexadecimal functional address configured for the line. An address of

address field

X’000000000000’ indicates there are no functional addresses configured on this
line description.

Note: For additional information on functional addresses, refer to the Token-Ring Architecture Reference book,

SC30-3374.

Number of BINARY(2) The number of group addresses configured for this line. This value is valid for

group addresses Ethernet and wireless line descriptions only.

Offset to group | BINARY(2) Offset within this structure to the array of group addresses

addresses

Number of BINARY(2) The number of SSAPs configured for this line.

SSAPs

Offset to SSAPs | BINARY(2) Offset within this structure to the array of SSAPs

FR line speed BINARY (4) Frame relay line speed. This value is valid only when the line type field is set
to X’0E’.

Reserved CHAR(*) Reserved for extension

Note: The following row is duplicated by the number of group addresses.

Group address

CHAR(6)

Specifies a group address, in packed form.

Note: The following three rows are duplicated by the number of SSAPs.

SSAP CHAR(1) The configured source service access point.
SSAP type CHAR(1) The SSAP type. The valid values are as follows:
X’00" Non-SNA SSAP
X’01"’ SNA SSAP
SSAP frame size | BINARY(2) The maximum frame size allowed on this SSAP.

Communications APIs 13

X.25 Specific Data-Format 01

Field Type Description

Local network CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in
address length the local network address.

Local network CHAR(9) Specifies, in BCD, the local network address of this line.

address

Extended CHAR(1) Specifies whether network addressing is extended to permit the use of 17
network digits in an address. The valid values are as follows:

addressing

X’01’ Network addresses may be up to 15 digits
X’02" Network addresses may be up to 17 digits

Address CHAR(1) Specifies whether the system inserts the local network address in call request
insertion and call accept packets. The valid values are as follows:
Y’ The local network address is inserted in call request and call accept
packets.
"N’ The local network address is not inserted in call request and call

accept packets.

Modulus CHAR(1) The X.25 modulus value. The valid values are as follows:

X'or Modulus 8
X'02’ Modulus 128

X.25 DCE CHAR(1) Specifies whether the system communicates using the integrated X.25 DCE

support support. This allows the system, acting as the DCE, to communicate with
another system without going through an X.25 network. The valid values are
as follows:

X’01" The system does not communicate using the X.25 DCE support
X’02" The system does communicate using the X.25 DCE support

X’03" The system negotiates whether it communicates using the X.25 DCE

support.
Transmit BINARY(2) The transmit maximum packet size configured for this line.
maximum
packet size
Receive BINARY(2) The receive maximum packet size configured for this line.
maximum
packet size
Transmit default | BINARY(2) The transmit default packet size configured for this line.
packet size
Receive default |BINARY(2) The receive default packet size configured for this line.
packet size

14 iseries: Communications APIs

logical channels

Field Type Description

Transmit default | BINARY(1) The transmit default window size configured for this line.
window size

Receive default |BINARY(1) The receive default window size configured for this line.
window size

Number of BINARY(2) The number of logical channels configured for this line.

Note: The followi

ng 4 rows are repeated for each logical channel configured for this line

direction

Logical channel |CHAR(1) The logical channel group number. This together with the logical channel
group number number makes up the logical channel identifier.
Logical channel |CHAR(1) The logical channel number. This together with the logical channel group
number number makes up the logical channel identifier.
Logical channel |CHAR(1) The logical channel type. The valid values are as follows:
type
X’01" Switched virtual circuit (SVC).
X’02" Permanent virtual circuit (PVC) that is eligible for use by a network
controller.
Note: This does not necessarily mean that this PVC is available for
use. Another job running on the network controller attached to this
line may already have this PVC in use.
X’22" PVC that is not eligible for use by a network controller. For example,
a PVC that is already attached to an asynchronous controller
description.
Logical channel |CHAR(1) The direction of calls allowed on the logical channel. The valid values are as

follows:

X’00" Not applicable (PVC logical channel).

X’01" Only incoming calls are allowed on this logical channel.

X’02" Only outgoing calls are allowed on this logical channel.

X’03" Both incoming and outgoing calls are allowed on this logical channel.
X.25 Specific Data-Format 02
Field Type Description
Local network CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in
address length the local network address.
Local network CHAR(9) Specifies, in BCD, the local network address of this line.
address
Extended CHAR(1) Specifies whether network addressing is extended to permit the use of 17
network digits in an address. The valid values are as follows:
addressing

X01
X'02’

Network addresses may be up to 15 digits
Network addresses may be up to 17 digits

15

Communications APIls

size

Field Type Description
Address CHAR(1) Specifies whether the system inserts the local network address in call request
insertion and call accept packets. The valid values are as follows:
Y’ The local network address is inserted in call request and call accept
packets.
"N’ The local network address is not inserted in call request and call
accept packets.
Modulus CHAR(1) The X.25 modulus value. The valid values are as follows:
X0’ Modulus 8
X’02’ Modulus 128
X.25 DCE CHAR(1) Specifies whether the system communicates using the integrated X.25 DCE
support support. This allows the system, acting as a DCE, to communicate with
another system without going through an X.25 network. The valid values are
as follows:
X’01’ The system does not communicate using the X.25 DCE support
X’02" The system does communicate using the X.25 DCE support
X’03" The system negotiates whether it communicates using the X.25 DCE
support.
Transmit BINARY(2) The transmit maximum packet size configured for this line.
maximum
packet size
Receive BINARY(2) The receive maximum packet size configured for this line.
maximum
packet size
Transmit default | BINARY(2) The transmit default packet size configured for this line.
packet size
Receive default |BINARY(2) The receive default packet size configured for this line.
packet size
Transmit default | BINARY(1) The transmit default window size configured for this line.
window size
Receive default |BINARY(1) The receive default window size configured for this line.
window size
Number of BINARY(2) The number of logical channels configured for this line.
logical channels
Maximum frame | BINARY(2) The maximum frame size configured in the line description. The valid values

are as follows:
* 1024
+ 2048
* 4096

16 iSeries: Communications APIs

Field Type Description

ISDN interface | CHAR(1) Indicates if the line uses an ISDN interface. The valid values are as follows:

X’00’ X.25 line does not run over an ISDN interface.

X001’ X.25 line runs over an ISDN interface.

Note: The following section applies only if the ISDN interface is specified as X’01’. The sections of format 02 on the
call direction field to the offset to logical channel array field are not meaningful if an ISDN interface is not used and
will return zeros in these fields if an ISDN interface is not specified.

Call direction CHAR(1) The direction of the ISDN call. The valid values are as follows:

X’00’ Incoming switched call
X’01’ Outgoing switched call
X’02" Either a nonswitched call or not ISDN-capable.

Note: The following fields are only meaningful if the line description is switched.

Length of call ID | BINARY(2) Length includes type and plan, as described below, and the call identify
information information element.

Communications APIs 17

Field Type

Description

Type of number
and numbering
plan

BINARY(1)

Type and plan as represented by the following bit sequence: tttt pppp, where
tttt equals the category of the calling number and pppp equals the numbering
plan identification used when the calling party number was created.

Type 0000 xxxx’
Unknown number

Type "0001 xxxx’
International number

Type *0010 xxxx’
National number

Type '0011 xxxx’
Network specific number

Type "0100 xxxx’
Subscriber number

Type '0110 xxxx’
Abbreviated number

Type "0111 xxxx’
Reserved for extension

Plan "xxxx 0000’
Unknown

Plan "xxxx 0001’
ISDN/telephony numbering plan

Plan "xxxx 0011’
Data numbering plan

Plan "xxxx 0100’
Telex numbering plan

Plan ’xxxx 1000’
National standard numbering plan

Plan "xxxx 1001’
Private numbering plan

Plan "xxxx 1111’
Reserved for extension

Note: Refer to CCITT Recommendation Q.931 for more information.

Reserved BINARY(1)

Reserved for extension.

Call ID digits | CHAR(128)

Calling party number of remote system received off the D-channel, specified in
IA5 code (ASCII).

Length of
subaddress
information

BINARY(2)

Length includes type, odd-even indicator, and the subaddress information
element. Values can range from X’0001’ to X’00FF’. The user specified
subaddress is restricted to 20 bytes.

18 iSeries: Communications APIs

Field Type Description
Type of BINARY(1) Type and odd-even indicator as represented by the following bit sequence: tttt
subaddress and ixxx, where tttt equals the type of subaddress and i equals whether the address
odd-even has an even or odd number of digits.
indicator
Type "0000 xxxx’
NSAP
Type 0010 xxxx’
User specified
Type remaining
Reserved
Plan "xxxx 0xxx’
Even number of address digits
Plan "xxxx 1xxx’
Odd number of address digits
Note: Refer to CCITT Recommendation Q.931 for more information.
Reserved BINARY(1) Reserved for extension.
Subaddress CHAR(128) Calling party subaddress information, received from the D-channel, specified in
the IA5 code set (a superset of ASCII).
Offset to logical |BINARY(2) Offset within this structure to the array of logical channels
channel array
Reserved CHAR(¥) Reserved for extension

Note: The following 5 rows are repeated for each logical channel configured for this line. This section is not specific

to ISDN interfaces.

Logical channel |CHAR(1) The logical channel group number. This together with the logical channel
group number number makes up the logical channel identifier.
Logical channel |CHAR(1) The logical channel number. This together with the logical channel group
number number makes up the logical channel identifier.
Logical channel |CHAR(1) The logical channel type. The valid values are as follows:
type
X’01" Switched virtual circuit (SVC).
X’02" Permanent virtual circuit (PVC) that is eligible for use by a network
controller.
Note: This does not necessarily mean that this PVC is available for use.
Another job running on the network controller attached to this line may
already have this PVC in use.
Type of calls CHAR(1) Types of calls supported on the logical channel. The valid values are as
allowed follows:

X’00" Not applicable (PVC logical channel).
X’01" Only incoming calls are allowed on this logical channel.
X’02" Only outgoing calls are allowed on this logical channel.

X’03" Both incoming and outgoing calls are allowed on this logical channel.

Communications APIs 19

Field

Type

Description

Availability

CHAR(1)

X’00
X01

Specifies whether the virtual circuit is available or currently is in use. The valid
values are as follows:

Available

In use

Return and Reason Codes
Return and Reason Codes for the QOLQLIND API

Return / Reason
Code

Meaning

Recovery

too small.

00/0000 Operation successful. | Continue processing.
Notes:
1. When calling QOLQLIND (specifying an X.25 line description, format
1, and not specifying group parameters), up to 54 logical channels can
be contained in the user buffer because it is limited to a size of 256
bytes. To increase the size of the user buffer so that it is sufficient to
contain all of the logical channels, the group parameters should be
used. To determine if there are more than 54 logical channels
configured, use the Display Line Description (DSPLIND) command.
2. The application should check to ensure that the bytes available value
returned is less than or equal to the bytes returned value. If so, there
is additional information that the application may want to receive. To
receive this information, the application must re-issue the call,
specifying the length user buffer equal to or greater than the bytes
available value.
81/9999 Internal system error | See messages in the job log for further information. Report the problem
detected. Escape using the ANZPRB command.
message CPFI1F0 will
be sent to the
application program
when this return and
reason code is
received.
83/1005 Format not valid. Correct the format parameter. Try the request again.
8371014 Length user buffer Correct the length user buffer value to a zero or a positive value less than
value not valid. This |32K and try the operation again.
value cannot be
negative.
8371020 Group parameters not | All parameters within the group must be specified. Correct the parameter
valid. list and try the request again.
8371021 Required parameter Format 2 was requested and the required group parameters (length user
not specified. buffer and bytes available) were not specified. Correct the parameter list
and try the request again.
83/1998 User buffer parameter | Either the length user buffer value is negative or it contains a positive

value and the system was not able to put the data into the user buffer
provided by the application. Correct the application and try the request
again.

20

iSeries: Communications APls

Return / Reason
Code Meaning Recovery
8372000 Line description not | Correct the line description parameter. Try the request again.
configured for
token-ring, Ethernet,
wireless, or X.25.
8372002 Not authorized to line | Get authorization to the line description. Try the request again.
description.
83/2006 Line description not Correct the line description parameter. Try the request again.
found.
8372007 Line description Delete and re-create the line description. Try the request again.
damaged.

Error Messages

Message ID
CPF3C90 E
CPF91F0 E
CPF9872 E

Error Message Text

Literal value cannot be changed.

Internal system error.

Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

[Top] | [FCommunications APIs,” on page 1 | [APIs by category]

Receive Data (QOLRECV) API

Required Parameter Group:

Default Public Authority: *USE
Threadsafe: No

The Receive Data (QOLRECV) API performs an input operation on a link that is currently enabled in the
job in which the application program is running. The type of data received is returned in the operation
parameter. The data itself, is returned in the input buffer that was created when the link was enabled. For
X’0001’ operations, a description of that data is also be returned in the input buffer descriptor that is

created when the link was enabled.

The QOLRECV API can receive different types of data depending on the type of communications line the
link is using. See |“LAN Input Operations” on page 25| for more information on the types of data that can
be received on links using a token-ring, Ethernet, wireless, or FDDI communications line. See|“X.25 SVC|

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Existing user connection end point ID Output Binary(4)
4 New provider connection end point ID Output Binary(4)
5 Operation Output Char(2)

6 Number of data units Output Binary(4)
7 Data available Output Char(1)

8 Diagnostic data Output Char(40)
9 Communications handle Input Char(10)

land PVC Input Operations” on page 27| for more information on the types of data that can be received on

links using an X.25 communications line.

Communications APIls

#TOP_OF_PAGE
aplist.htm

Note: The QOLRECV API should only be called when the user-defined communications support has data
available to be received. This is indicated either by an incoming-data entry on the data queue or user
queue, or by the data available parameter on the QOLRECV API.

Authorities and Locks
None.

Required Parameter Group

Return code
OUTPUT, BINARY(4)

The recovery action to take. See [“Return and Reason Codes” on page 34

Reason code
OUTPUT, BINARY(4)

The error that occurred. See[“Return and Reason Codes” on page 34)

Existing user connection end point ID
OUTPUT,; BINARY(4)

The user connection end point (UCEP) ID that the data was received on. For links using a
token-ring, Ethernet, wireless, or FDDI communications line, the content of this parameter will
always be 1.

For links using an X.25 communications line, the content of this parameter is only valid when the
operation parameter is X’0001’, X’B001’, X’B101’, X’'B301’, or X’BF01’. It will contain the UCEP ID
that was provided in the new user connection end point ID parameter on the call to the
QOLSEND API with operation X’B000” or X’B400’.

Note: If an incoming X.25 SVC call is rejected by the user-defined communications application
program by calling the QOLSEND API with operation X’B100’, the content of this parameter will
be set to zero when notification of the completion of the X’B100’ operation is received from the
QOLRECV API (operation X’B101").

New provider connection end point ID
OUTPUT,; BINARY(4)

The provider connection end point (PCEP) ID for the connection that is to be established. This
identifier must be used on all subsequent calls to the QOLSEND API for this connection.

The content of this parameter is only valid for links using an X.25 communications line and when
the operation parameter is X’'B201’.

Operation
OUTPUT; CHAR(2)

The type of data received by the application program. With the exception of X’0001’, all values
are only valid for links using an X.25 communications line. The valid values are as follows:

X’0001’ User data.
X’'B001’ Completion of the X’B000’ output operation.
X’'B101’ Completion of the X’B100’ output operation.
X’'B111’ Completion of the X’B110’ output operation.
Cleanup of all connections complete. No data is associated with this operation.
X’'B201’ Incoming X.25 switched virtual circuit (SVC) call.
X’'B3071’ Connection failure or reset indication received.

22 iSeries; Communications APls

X'B31r’

X’BFO1’

Connection failure applying to all connections for this link.

This operation is only received when the extended operations parameter for the QOLELINK API
is set to operations supported.
Completion of the reset (X’BF00’) output operation.

Note: The special value of X’0000’ will be returned in the operation parameter to indicate no data
was received from the QOLRECV API. See [‘Return and Reason Codes” on page 34| for more
information.

Number of data units

OUTPUT; BINARY(4)

The number of data units in the input buffer that contain data. Any value between 1 and the
number of data units created in the input buffer may be returned when the operation parameter
is X’0001". Otherwise, any value between 0 and 1 may be returned.

Note: The number of data units created in the input buffer was returned in the data units created
parameter on the call to the QOLELINK API. See [“Enable Link (QOLELINK) API” on page 3| for
more information.

Data available

X’00°
X01

OUTPUT; CHAR(1)

Specifies whether more data is available for the user-defined communications application
program to receive. The valid values are as follows:

No more data is available for the user-defined communications application program to receive.
More data is available for the user-defined communications application program to receive. The
QOLRECV API must be called again prior to any other operations.

Note: An incoming-data entry will be sent to the data queue or user queue only when the
content of this parameter is X’00’ and then more data is subsequently available to be received.
See [“Incoming-Data Entry” on page 303|for more information.

Diagnostic data

OUTPUT; CHAR(40)

Specifies additional diagnostic data. See [‘Format of Diagnostic Data Parameter”| for more
information.

The content of this parameter is only valid when the operation parameter is X’B001’, X’'B101’,
X’B301’, X’B311’, or X'BF01".

Communications handle

INPUT; CHAR(10)

The name of the link on which to receive the data.

Format of Diagnostic Data Parameter

The format of the diagnostic data parameter is shown below. The contents of the fields within this
parameter are only valid on X’B001’, X’B101’, X’B301’, X’B311’, and X’BF01’ operations for the indicated
return and reason codes.

Field

Type Description

Reserved CHAR(2) Reserved for extension.

Communications APIs 23

Field

Type

Description

Error code

CHAR(4)

Specifies hexadecimal diagnostic information that can be used to
determine recovery actions.

The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

Time stamp

CHAR(8)

The time the error occurred.

The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

Error log identifier

CHAR(4)

The hexadecimal identifier that can be used for locating error
information in the error log.

The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

Reserved

CHAR(10)

Reserved for extension.

Indicators

CHAR()

The indicators that the user-defined communications application
program can use to diagnose a potential error condition. This is a
bit-sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

'0'B Either there is no message in the QSYSOPR message
queue, or there is a message and it does not have the
capability to run problem analysis report (PAR) to
determine the cause of the error.

'1'B There is a message in the QSYSOPR message queue for
this error, and it does have the capability to run problem
analysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:
'0’'B The line error can be retried.

'1’'B The line error is not able to be restarted.

The valid values for bit 2 are as follows:
'0'B The cause and diagnostic codes fields are not valid.

'1'B The cause and diagnostic codes fields are valid.

The valid values for bit 3 are as follows:

'0'B The error has not been reported to the system operator
message queue.

'1'B The error has been reported to the system operator
message queue.

The valid values for bit 4 are as follows:
'0'B A reset request packet was transmitted on the network

'1'B A reset confirmation packet was transmitted on the
network instead of a reset request packet.

The content of bit 4 is only valid for operation X’BF01’
with 0070000 return/reason codes.

The content of the indicators field is only valid for 83/4001,
8374002, and 83/3202 return/reason codes, and 00/0000
return/reason codes for operation X’BF01’.

24 iSeries: Communications APls

Field Type Description

X.25 cause code CHAR(1) Specifies additional information on the condition reported. See the

[X.25 Network Support] @‘ book for interpreting the values of this
field.

The content of this field is only valid for 83/4001, 8374002 and
8373202 return/reason codes.

X.25 diagnostic code |CHAR(1) Specifies additional information on the condition reported. See the

[X.25 Network Support] @‘ book for interpreting the values of this
field.

The content of this field is only valid for 83/4001, 83/4002 and
83/3202 return/reason codes.

Reserved CHAR(1) Reserved for extension.

Error offset BINARY (4) The offset from the top of the input buffer to the incorrect data in
the input buffer.

The content of this field is only valid for a 83/1999 return/reason
code.

Reserved CHAR(4) Reserved for extension.

LAN Input Operations

The only type of data that an application program can receive from the QOLRECV API on links using a
token-ring, Ethernet, wireless, or FDDI communications line is user data (operation X’0001’). User-defined
communications support returns the following information for each data frame received from the
QOLRECV API:

* One or more data units. The first data unit contains a general LAN header, routing information if a
token ring is used, and user data.

» Total length of the data unit. This information is reported in the corresponding input buffer descriptor
element.

For example, suppose two data frames came in from the network and the user-defined communications
application program was notified of this by an incoming-data entry on the data queue or user queue. On
return from the QOLRECV API, the information for the first frame would be in the first data unit of the
input buffer and described in the first element of the input buffer descriptor. The information for the
second frame would be in the second data unit of the input buffer and described in the second element
of the input buffer descriptor. The number of data units parameter would be set to 2.

Data Unit Format-LAN Operation X’0001’

Each data frame received from the QOLRECYV API corresponds to a data unit in the input buffer. The
information in each of these data units is made up of a general LAN header, routing information (for
token-ring links only), followed by user data.

The general LAN header is used to pass information about the frame to the communications support. The
fields in the general LAN header are used for all LAN link types, although some of them are link
specific. For example, routing information is only for token-ring links, and the length of routing
information is X’00’ to X’18’. For non-token-ring links, the length of the routing information is always
X’00’. Also, DSAP and SSAP are defined for protocols that use the 802.2 logical link control interface and
do not apply to Ethernet Version 2. A DSAP and SSAP of X’00’ tells the communications support that the
data frame is an Ethernet Version 2 frame.

Communications APIs 25

Format of the General LAN Information

Field

Type

Description

Length of general
LAN information

BINARY(2)

The length of the general LAN information in the data unit,
including this field. This field is always set to 16.

Sending adapter
address

CHAR(6)

Specifies, in packed form, the adapter address from which this
frame was sent. The possible values returned in this field depend
on the filters activated for this link. See [‘Set Filter (QOLSETF) API”|
on page 64 for more information.

Note: Because user-defined communications support only allows
connectionless service over LANSs, all frames received on a single
call to the QOLRECV API may not have the same source adapter
address.

DSAP address

CHAR()

The service access point on which the iSeries server received this
frame. The possible values returned in this field depend on the

filters activated for this link. See[“Set Filter (QOLSETF) API” on|
for more information.

Note: The Ethernet Version 2 standard does not define a DSAP
address in an Ethernet Version 2 frame. Therefore, when receiving
Ethernet Version 2 frames, the DSAP address will be null (X’00’).

SSAP address

CHAR(1)

The service access point on which the source system sent this
frame. The possible values returned in this field depend on the
filters activated for this link. See[*Set Filter (QOLSETF) API”” on|
for more information.

Note: The Ethernet Version 2 standard does not define a SSAP
address in an Ethernet Version 2 frame. Therefore, when receiving
Ethernet Version 2 frames, the SSAP address will be null (X’00°).

Reserved

CHAR(2)

Reserved for extension.

Length of token-ring
routing information

BINARY(2)

The length of the routing information in the data unit. For links
using a token-ring communications line, any value between 0 and
18 may be returned, where 0 indicates that there is no routing
information.

For links using an Ethernet, wireless, or FDDI communications line,
the content of this field is not applicable and will be set to 0
indicating that there is no routing information.

Length of user data

BINARY(2)

The length of the user data in the data unit. This will be less than
or equal to the maximum frame size allowed on the service access
point returned in the DSAP address field. See |“Query Line|
[Description (QOLQLIND) API”” on page 9 to determine the
maximum frame size allowed on the service access point returned
in the DSAP address field.

For Ethernet Version 2 frames, this will be at least 48 and not more
than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is
less than 46 bytes.

Token-ring routing information follows the general LAN header. The length of this field is specified by
the length of token-ring routing information field found in the general LAN header. If the length of the
routing information is nonzero, the user data follows the routing information header.

26 iSeries: Communications APIs

The following table shows the fields and offsets used for Ethernet 802.3, wireless, and token-ring frames
without routing information.

General LAN Header User Data

The length of the user data is described in the length of user data field in the general LAN header. For
Ethernet Version 2 frames, the first 2 bytes of user data are used for the frame type. The type field is a
2-byte field that specifies the upper layer protocol of the frame.

The adapter address, DSAP, SSAP, and frame type fields are all used to define inbound routing
information used by the QOLSETF API. Refer to |“Set Filter (QOLSETF) API” on page 64| for information
on the QOLSETF API and how inbound routing information is used to route inbound data to the
application program.

Note: Inbound routing information is not related to the token-ring routing information described in the
general LAN header.

The following table shows the fields and offsets used for token-ring frames with routing information.

General LAN Header Routing Information User Data

0 16 16 + Length of Routing Information

The following table shows the fields and offsets used for Ethernet Version 2 frames.

Note: For Ethernet Version 2, the frame type field is the first 2 bytes of user data, following the general
LAN information, with user data starting at offset 18.

User Data
General LAN Header

Frame Type Data

Input Buffer Descriptor Element Format-LAN Operation X’0001’

The information returned in each data unit of the input buffer will be described in the corresponding
element of the input buffer descriptor. The following table shows the format of each element in the input
buffer descriptor.

Field Type Description

Length BINARY(2) The number of bytes of information in the corresponding data unit
of the input buffer. This will be equal to the length of the general
LAN information with the length of the routing information and
the length of the user data. See Format of the General LAN
Information (page for general LAN information fields and
descriptions.

Reserved CHAR(30) Reserved for extension.

X.25 SVC and PVC Input Operations

The following table shows the types of data that can be received from the QOLRECYV API on links using
an X.25 communications line.

Communications APIs 27

Operation Meaning

X’0001’ User data (SVC or PVC).

X’B001’ Completion of the X’B000’ output operation (SVC or PVC).
X'B101’ Completion of the X’B100’ output operation (SVC or PVC).
X’B201’ Incoming X.25 call (SVC).

X'B301’ Connection failure or reset indication (SVC or PVC).
X'B311’ Connection failure applying to all connections for this link.
X'BFO1’ Completion of the X’BF00’ output operation (SVC or PVC).

X.25 Operation X’0001’

This operation indicates that user data was received on an X.25 SVC or PVC connection. User-defined
communications support will return the following information:

» User data in the next data unit of the input buffer, starting with the first data unit

» A description, in the corresponding element of the input buffer descriptor, of the user data in that data
unit

For example, suppose two data units of user data came in from the network and the application program
was notified of this by an incoming-data entry on the data queue or user queue. On return from the
QOLRECV API, the first portion of the user data would be in the first data unit of the input buffer and
described in the first element of the input buffer descriptor. The second portion of the user data would be
in the second data unit of the input buffer and described in the second element of the input buffer
descriptor. The number of data units parameter would be set to 2.

User-defined communications support will automatically reassemble the X.25 data packet(s) from a
complete packet sequence into the next data unit of the input buffer. If the amount of user data in a
complete packet sequence is more than what can fit into a data unit, the more data indicator field in the
corresponding element of the input buffer descriptor will be set to X’01’ and the next data unit will be
used for the remaining user data, and so on.

Data Unit Format-X.25 Operation X’0001’

Each data unit in the input buffer consists solely of user data and starts offset 0 from the top of the data
unit.

Input Buffer Descriptor Element Format-X.25 Operation X’0001’

The user data returned in each data unit of the input buffer will be described in the corresponding
element of the input buffer descriptor.

Field Type Description

Length BINARY(2) The number of bytes of user data in the corresponding data unit of
the input buffer. This will always be less than or equal to the X.25
user data size parameter that was specified on the call to the

QOLELINK API when the link was enabled. See [‘Enable Link

[(QOLELINK) API” on page 3| for more information.

Note: The maximum amount of user data in a data unit of the
input buffer may be further limited by the maximum data unit
assembly size for a connection. See[‘Send Data (QOLSEND) API”|
for more information.

28 iseries: Communications APIs

Field Type Description
More data indicator CHAR(1) Specifies whether the remaining amount of user data from a
complete X.25 packet sequence is more than can fit into the
corresponding data unit. The valid values are as follows:
X’00" The remaining amount of user data from a complete X.25
packet sequence fit into the corresponding data unit.
X’01" The remaining amount of user data from a complete X.25
packet sequence could not all fit into the corresponding
data unit. The next data unit will be used.
Qualified data CHAR(1) Specifies whether the X.25 qualifier bit (Q-bit) was set on or off in
indicator all X.25 packets reassembled into the corresponding data unit. The
valid values are as follows:
X’00° The Q-bit was set off in all X.25 packets reassembled into
the corresponding data unit.
X’01’ The Q-bit was set on in all X.25 packets reassembled into
the corresponding data unit.
Interrupt packet CHAR(1) Specifies whether the user data in the corresponding data unit was
indicator received in an X.25 interrupt packet. The valid values are as
follows:
X’00" The user data in the corresponding data unit was received
in one or more data packets.
X’01" The user data in the corresponding data unit was received
in an X.25 interrupt packet.
Delivery confirmation |CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set
indicator on or off in all X.25 packets reassembled into the corresponding
data unit. The valid values are as follows:
X’00° The D-bit was set off in all X.25 packets reassembled into
the corresponding data unit.
X’01" The D-bit was set on in all X.25 packets reassembled into
the corresponding data unit.
Note: A packet-level confirmation is sent by the
input/output processor (IOP) when a packet is received
with the X.25 D-bit set on.
Reserved CHAR(26) Reserved for extension.

X.25 Operation X’'B001’

This operation indicates that a X’B000’ output operation has completed. User-defined communications
support will return the data for this operation (if any) in the first data unit of the input buffer. The input
buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason codes:

0/0

Communications APIs 29

+ 8371999

» 8374002 (only when the number of data units parameter is set to one)

The format of the data returned in the input buffer for the X’B001’ operation depends on whether the
X’B000’ output operation was used to initiate an SVC call or to open a PVC connection. Each format will

be explained below.

Note: The formats below only apply to 070 and 8374002 return and reason codes. When the X’B001’
operation is received with a 83/1999 return and reason code, the data returned starts at offset 0 from the
top of the first data unit in the input buffer and contains the data specified in the output buffer on the
X’B000’ output operation. See |“Send Data (QOLSEND) API” on page 39| for more information.

Data Unit Format-X.25 Operation X’'B001’ (Completion of SVC Call)

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Field Type Description

Reserved CHAR(2) Reserved for extension.

Logical channel CHAR(2) The logical channel identifier assigned to the SVC connection.*

identifier

Transmit packet size BINARY(2) The negotiated transmit packet size for this connection.*

Transmit window size | BINARY(2) The negotiated transmit window size for this connection.

Receive packet size BINARY(2) The negotiated receive packet size for this connection.*

Receive window size |BINARY(2) The negotiated receive window size for this connection.*

Reserved CHAR(32) Reserved for extension.

Delivery confirmation |CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set

support on or off in the call connected packet. This also specifies the D-bit
support for this connection.* The valid values are as follows:

X’00° The D-bit was set off in the call connected packet. D-bit
will be supported for sending data but not for receiving
data.

Note: When this value is returned and an X.25 packet is
received with the D-bit set on, the input/output processor
(IOP) will send a reset packet.

X’01’ The D-bit was set on in the call connected packet. D-bit
will be supported for sending data and for receiving data.

Reserved CHAR(11) Reserved for extension.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Call/clear user data BINARY(2) The number of bytes of data in the call/clear user data field. Any

length value between 0 and 128 may be returned.

Call/clear user data CHAR(128) For a 0/0 return and reason code, this specifies the call user data.
For an 8374002 return and reason code, this specifies the clear user
data.

Reserved CHAR(168) Reserved for extension.

30 iseries: Communications APls

Field Type Description

1

The content of this field is only valid for a 0/0 return and reason code.

Data Unit Format-X.25 Operation X’B001’ (Completion of Open PVC)

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Field Type Description
Reserved CHAR(4) Reserved for extension.
Transmit packet size | BINARY(2) The negotiated transmit packet size for this connection.

Note: This will be the same as the requested transmit packet size
specified on the X’B000’ output operation.

Transmit window size |BINARY/(2) The negotiated transmit window size for this connection.

Note: This will be the same as the requested transmit window size
specified on the X’B000’ output operation.

Receive packet size BINARY(2) The negotiated receive packet size for this connection.

Note: This will be the same as the requested receive packet size
specified on the X’B000’ output operation.

Receive window size |BINARY(2) The negotiated receive window size for this connection.

Note: This will be the same as the requested receive window size
specified on the X’B000’ output operation.

Reserved CHAR(500) Reserved for extension.

X.25 Operation X’'B101’

This operation indicates that a X’B100’ output operation has completed. User-defined communications
support will return the data for this operation (if any) in the first data unit of the input buffer. The input
buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason codes:
* 0/0 (only when the number of data units parameter is set to one)
* 83/1999

Note: The format below only applies for a 0/0 return and reason code. When the X’B101’ operation is
received with an 83/1999 return and reason code, the data returned starts at offset 0 from the top of the
first data unit in the input buffer and contains the data specified in the output buffer on the X’B100’
output operation. See |“Send Data (QOLSEND) API” on page 351 for more information.

Data Unit Format-X.25 Operation X’'B101’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Communications APIs 31

Field Type Description

Clear type CHAR(2) The type of clear user data returned. The valid values are as
follows:

X’0001" Clear confirmation data included.

X’0002’ Clear indication data included.

Cause code CHAR(1) The X.25 cause code.

Diagnostic code CHAR(1) The X.25 diagnostic code.

Reserved CHAR(4) Reserved for extension.

X.25 facilities length BINARY (1) The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Clear user data length | BINARY(2) The number of bytes of data in the clear user data field. Any value
between 0 and 128 may be returned.

Clear user data CHAR(128) The clear user data.

Reserved CHAR(216) Reserved for extension.

X.25 Operation X’B111’

This operation indicates a X’B110’ output operation has completed. All connections have been closed and
the clean up of connection control information is complete. All UCEPs and PCEPs are freed. There is no
data associated with this operation.

X.25 Operation X’'B201’

This operation indicates that an incoming X.25 SVC call was received. User-defined communications
support returns the data for this operation in the first data unit of the input buffer. The input buffer

descriptor is not used.

Note: It is the responsibility of the application program to either accept or reject the incoming call. This is
done by calling the QOLSEND API with operation X’B400’ or X’B100’, respectively.

Data Unit Format-X.25 Operation X’'B201’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Field Type Description

Reserved CHAR(2) Reserved for extension.

Logical channel CHAR(2) The logical channel identifier assigned to the incoming SVC call.
identifier

Transmit packet size | BINARY(2) The requested transmit packet size for this connection.

Transmit window size | BINARY(2) The requested transmit window size for this connection.

Receive packet size BINARY(2) The requested receive packet size for this connection.

Receive window size |BINARY(2) The requested receive window size for this connection.

Reserved CHAR(7) Reserved for extension.

32 iSeries; Communications APls

Field Type Description
Calling DTE address |BINARY(1) The number of binary coded decimal (BCD) digits in the calling
length DTE address.
Calling DTE address | CHAR(16) Specifies, in binary coded decimal (BCD), the calling DTE address.
The address will be left justified and padded on the right with BCD
Zeros.
Reserved CHAR(8) Reserved for extension.
Delivery confirmation |CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set
support on or off in the incoming call packet. The valid values are as
follows:
X’00" The D-bit was set off in the incoming call packet.
X’01’ The D-bit was set on in the incoming call packet.
Reserved CHAR(9) Reserved for extension.
Reverse charging CHAR(1) Specifies reverse charging options. The valid values are as follows:
indicator
X’00" Reverse charging not requested.
X’01" Reverse charging requested.
Fast select indicator CHAR(1) Specifies fast select options. The valid values are as follows:
X’00" Fast select not requested.
X’01" Fast select with restriction requested.
X’02” Fast select without restriction requested.
X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be returned.
X.25 facilities CHAR(109) The X.25 facilities data.
Reserved CHAR(48) Reserved for extension.
Call user data length | BINARY(2) The number of bytes of data in the call user data field. Any value
between 0 and 128 may be returned.
Call user data CHAR(128) The call user data.
Note: The iSeries server treats the first byte of call user data as the
protocol identifier (PID).
Called DTE address BINARY(1) The number of binary coded decimal (BCD) digits in the called
length DTE address.
Called DTE address CHAR(16) Specifies, in binary coded decimal (BCD), the called DTE address.
The address will be left-justified and padded on the right with BCD
Zeros.
Reserved CHAR(111) Reserved for extension.

X.25 Operation X’B301’

Communications APIs 33

This operation indicates that a failure has occurred, or a reset indication has been received, on an X.25
SVC or PVC connection. User-defined communications support will return data for this operation in the
first data unit of the input buffer only on a 83/4002 return and reason code when the number of data
units parameter is set to one. The input buffer descriptor is not used.

Note: The diagnostic data parameter will contain the X.25 cause and diagnostic codes when a reset
indication is received.

Data Unit Format-X.25 Operation X’'B301’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Field Type Description

Reserved CHAR(8) Reserved for extension.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Clear user data length | BINARY(2) The number of bytes of data in the clear user data field. Any value
between 0 and 128 may be returned.

Clear user data CHAR(128) The clear user data.

Reserved CHAR(216) Reserved for extension.

X.25 Operation X’B311’

This operation indicates that an error has occurred that has caused the system to close all connections on
the link. The error may be a system error or a network error. The error information is returned in the
diagnostic data and no additional data is provided.

Note: This operation is only received when the extended operation parameter on the QOLELINK API is
set to operation supported. If the extended operations are not supported and an error occurs that will
close all connections, X’B301’ is received for each connection.

X.25 Operation X’'BF01’

This operation indicates that a X’BF00’ output operation has been completed. Neither the input buffer nor
the input buffer descriptor is used for this operation.

Note: When the X’BFO1’ operation is received with a 0/0 return and reason code, the diagnostic data
parameter will contain information indicating if a reset request or reset confirmation packet was sent.

Return and Reason Codes

The return and reason codes that can be returned from the QOLRECV API depend on the type of
communications line the link is using and on the type of data (operation) that was received.

LAN Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the
QOLRECV API.

Note: When these return and reason codes are returned, all output parameters except the return and
reason codes will contain hexadecimal zeros.

34 iseries: Communications APls

Return / Reason Code

Meaning

Recovery

0/3203 No data available to be received. Ensure that user-defined communications
support has data available to be received
before calling the QOLRECV API. Try the
request again.

80/2200 Queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the application in the job log for further information. Correct
program when this return and reason code is | the error, enable the link, and try the request
received. again.

80/2401 Input buffer or input buffer descriptor error |Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Correct
sent to the application program when this the error, enable the link, and try the request
return and reason code is received. again.

80/3002 A previous error occurred on this link that Ensure the link is disabled and see messages
was reported to the application program by |in the job log for further information. If
escape message CPFI91F0 or CPFI1F1. escape message CPF91F0 was sent to the
However, the application program has application program, then report the problem
attempted another operation. using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the
request again.

80/4000 Error recovery has been canceled for this Ensure the link is disabled and see messages
link. in the job log for further information. Correct

the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further
message CPF91F0 will be sent to the information. Report the problem using the
application program when this return and ANZPRB command.
reason code is received.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link
was successfully enabled, try the request
again.

Return and Reason Codes for LAN Operation X’0001’

Return / Reason Code

Meaning

Recovery

070

User data received successfully.

Continue processing.

X.25 Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the

QOLRECV API.

Note: When these return and reason codes are returned, all output parameters except the return and
reason codes will contain hexadecimal zeros.

Return / Reason Code

Meaning

Recovery

0/3203

No data available to be received.

Ensure that user-defined communications
support has data available to be received
before calling the QOLRECV API. Try the
request again.

35

Communications APIls

Return / Reason Code

Meaning

Recovery

80/2200 Queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the application in the job log for further information. Correct
program when this return and reason code is | the error, enable the link, and try the request
received. again.

80/2401 Input buffer or input buffer descriptor error |Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Correct
sent to the application program when this the error, enable the link, and try the request
return and reason code is received. again.

80/3002 A previous error occurred on this link that Ensure the link is disabled and see messages
was reported to the application program by |in the job log for further information. If
escape message CPFI91F0 or CPFI1F1. escape message CPF91F0 was sent to the
However, the application program has application program, then report the problem
attempted another operation. using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the
request again.

8074000 Error recovery has been canceled for this Ensure the link is disabled and see messages
link. in the job log for further information. Correct

the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further
message CPF91F0 will be sent to the information. Report the problem using the
application program when this return and ANZPRB command.
reason code is received.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link
was successfully enabled, try the request
again.

Return and Reason Codes for X.25 Operation X’0001’

Return / Reason Code

Meaning

Recovery

070

User data received successfully.

Continue processing.

Return and Reason Codes for X.25 Operation X’B001’

Return / Reason Code

Meaning

Recovery

for this link. The connection has ended.

0/0 The X’B000’ output operation was successful. | Continue processing.
83/1999 Incorrect data was specified in output buffer | Correct the incorrect data. Then, try the
when the X’B000’ output operation was X’B000’ output operation again.
issued.
Note: The data specified in the output buffer
will be copied into the input buffer and the
error offset field in the diagnostic data
parameter will point to the incorrect data.
83/3204 Connection ending because a X’B100’ output | Wait for notification of the completion of the
operation was issued. X’B100’ output operation from the
QOLRECV API (X’B101’ operation).
8374001 Link failure, system starting error recovery Wait for the link to recover. Then, try the

X’B000’ output operation again.

36

iSeries: Communications APls

Return / Reason Code

Meaning

Recovery

8374002 Connection failure. The connection has Correct any errors and try the X’B000” output
ended. The diagnostic data parameter will operation again.
contain more information on this error.

8374005 All SVC channels are currently in use, or the |Wait for a virtual circuit to become available.

requested PVC channel is already in use.

Then, try the X’B000’ output operation again.

Return and Reason Codes for X.25 Operation X'B101’

Return / Reason Code

Meaning

Recovery

0/0 The X’B100’ output operation was successful. | Continue processing.
The connection has ended.
83/1007 Connection identifier not valid because Continue processing.
connection has already ended.
83/1999 Incorrect data was specified in output buffer |Correct the incorrect data. Then, try the

when the X’B100’ output operation was
issued.

Note: The data specified in the output buffer
will be copied into the input buffer and the
error offset field in the diagnostic data
parameter will point to the incorrect data.

X’B100’ output operation again.

Return and Reason Codes for X.25 Operation X’B111’

Return / Reason Code

Meaning

Recovery

0/0 The X’B100’ output operation was successful. | Continue processing.
The connection has ended.
8371007 Connection identifier not valid because Continue processing.
connection has already ended.
83/3205 The X’B110’ operation is rejected because the |Correct the application.

application has not received the X’B311’
operation prior to requesting the X’B110’
operation.

Return and Reason Codes for X.25 Operation X’B201’

Return / Reason Code

Meaning

Recovery

0/0

Incoming X.25 SVC call received successfully.

Continue processing.

Return and Reason Codes for X.25 Operation X’B301’

Return / Reason Code

Meaning

Recovery

83/3201

The maximum amount of incoming user data
that can be held by user-defined
communications support for the application
program on this connection has been
exceeded.

Issue the X’B100’ output operation to end the
connection.

37

Communications APIls

Return / Reason Code

Meaning

Recovery

83/3202 A reset indication has been received on this | Issue the X’BFO0’ output operation to send a
connection. The X.25 cause and diagnostic reset confirmation packet.
code fields in the diagnostic data parameter
will contain the cause and diagnostic codes
of the reset indication.

8374001 Link failure, system starting error recovery Issue the X’B100’ output operation to end the
for this link. connection.

8374002 Connection failure. The diagnostic data Issue the X’B100’ output operation to end the

parameter will contain more information on
this error.

connection.

Return and Reason Codes for X.25 Operation X’B311’

Return / Reason Code

Meaning

Recovery

8374001 Link failure, system starting error recovery Issue the X’B110’ operation to free the
for this link. All connections that were active | connections.
on this link are closed or cleared.

8374002 A network error has occurred that affects all | Issue the X’B110’ operation to free the

connections on this link. All connections that
were active on this link are closed or cleared.
The diagnostic data contains more
information on this error.

connections.

Return and Reason Codes for X.25 Operation X’BF01’

Return / Reason Code

Meaning

Recovery

0/0 The X’BF00’ output operation was successful. | Continue processing.
The diagnostic data parameter will contain
information indicating if a reset request or
reset confirmation packet was sent.
83/1006 Operation not valid. Do not issue the X’BF00’ output operation on
connections that do not support resets.
83/3201 The maximum amount of incoming user data | Wait to receive a failure notification from the
that can be held by user-defined QOLRECV API indicating this condition
communications support for the application |(X’B301’ operation, 83/3201 return and
program on this connection has been reason code). Then issue the X’B100’ output
exceeded. operation to end the connection.
83/3204 Connection ending because a X’B100’ output | Wait for notification of the completion of the
operation was issued. X’B100’ output operation from the
QOLRECV API (X’B101’ operation).
8374001 Link failure, system starting error recovery Wait to receive a failure notification from the
for this link. QOLRECV API indicating this condition
(X’B301’ operation, 8374001 return and
reason code). Then, issue the X’B100’ output
operation to end the connection.
8374002 Connection failure. Wait to receive a failure notification from the

QOLRECV API indicating this condition
(X’B301’ operation, 8374002 return and
reason code). Then, issue the X’B100” output
operation to end the connection.

38

iSeries: Communications APls

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPFI1F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

| [FCommunications APIs,” on page 1] | [APIs by category]

Send Data (QOLSEND) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Diagnostic data Output Char(40)
4 New provider connection end point ID Output Binary(4)
5 New user end point connection 1D Input Binary(4)
6 Existing provider connection end point ID Input Binary(4)
7 Communications handle Input Char(10)
8 Operation Input Char(2)

9 Number of data units Input Binary(4)

Default Public Authority: *USE
Threadsafe: No

The Send Data (QOLSEND) API performs output on a link that is currently enabled in the job in which
the application program is running. The operation parameter allows you to specify the type of output
operation to perform. The application program must provide the data associated with the output
operation in the output buffer that was created when the link was enabled. For X’0000’ operations, the
application program must also provide a description of that data in the output buffer descriptor that was
created when the link was enabled.

The types of output operations that can be performed on a link depend on the type of communications
line that the link is using. See [‘LAN Output Operations” on page 43|for more information on output
operations that are supported on links using a token-ring, Ethernet, wireless, or FDDI communications
line. See[“X.25 SVC and PVC Output Operations” on page 45|for more information on output operations
that are supported on links using an X.25 communications line.

Authorities and Locks
None.

Required Parameter Group

Return code
OUTPUT; BINARY (4)

The recovery action to take. See [“Return and Reason Codes” on page 60

Reason code
OUTPUT; BINARY(4)

The error that occurred. See [“Return and Reason Codes” on page 60

Communications APIs 39

#TOP_OF_PAGE
aplist.htm

Diagnostic data

OUTPUT; CHAR(40)

Additional diagnostic data. See[“Diagnostic Data Parameter Format” on page 41| for more
information.

The content of this parameter is only valid when the operation parameter is set to X’0000’ or
X’B400’.

New provider connection end point ID

OUTPUT; BINARY(4)

The provider connection end point (PCEP) ID for the connection that is to be established. This
identifier must be used on all subsequent calls to the QOLSEND API for this connection.

The content of this parameter is only valid for links using an X.25 communications line and when
the operation parameter is set to X’B000’.

New user connection end point ID

INPUT; BINARY(4)

The user connection end point (UCEP) ID for the connection that is to be established. This is the
identifier on which all incoming data for this connection will be received. Any numeric value
except zero should be used. See [“Receive Data (QOLRECV) API” on page 21| for more
information.

The content of this parameter is only valid for links using an X.25 communications line and when
the operation parameter is set to X’B000’ or X’B400’.

Existing provider connection end point ID

INPUT; BINARY(4)

The PCEP ID for the connection on which this operation will be performed. For links using a
token-ring, Ethernet, or wireless communications line, the content of this parameter must always
be set to 1.

For links using an X.25 communications line, the content of this parameter is only valid when the
operation parameter is set to X’0000’, X’B100’, X’B400’, or X’BF0OQ’. It must contain the PCEP ID
that was returned in the new provider connection end point ID parameter from the call to the
QOLSEND API with operation X’B000’, or the PCEP ID that was returned in the new provider
connection end point ID parameter from the call to the QOLRECV API with operation X’B201’
(incoming call). See [‘Receive Data (QOLRECV) API” on page 21| for more information on
receiving X.25 calls.

Communications handle

INPUT; CHAR(10)

The name of the link on which to perform the output operation.

Operation

X’0000’
X’B000’
X’B100’
X’B110’

X’'B400’
X'BF0O0’

INPUT; CHAR(2)

The type of output operation to perform. With the exception of X’0000’, all values are only valid
for links using an X.25 communications line. The valid values are as follows:

Send data.

Send call request packet (SVC) or open PVC connection.

Send clear packet (SVC) or close PVC connection.

Initiate final cleanup of all connections that were closed by the system.

This operation is only valid when the application receives an X’B311’ operation to receive
connection failure data.

Send call accept packet (SVC).

Send reset request packet or reset confirmation packet (SVC or PVC).

40 iSeries: Communications APIs

Number of data units
INPUT,; BINARY(4)

The number of data units in the output buffer that contain data. Any value between 1 and the
number of data units created in the output buffer may be used.

The content of this parameter is only valid when the operation parameter is set to X’0000’.

Note: The number of data units created in the output buffer was returned in the data units
created parameter on the call to the QOLELINK API. See [“Enable Link (QOLELINK) API” on|
for more information.

Diagnostic Data Parameter Format

The format of the diagnostic data parameter is shown below. The contents of the fields within this
parameter are only valid on X’0000’ and X’B400’ operations for the indicated return and reason codes.

Field Type Description
Reserved CHAR(2) Reserved for extension.
Error code CHAR(4) Specifies hexadecimal diagnostic information that can be used to

information.

The content of this field is only valid for 83/4001, 83/4002, and
8374003 return/reason codes.

determine recovery actions. See [‘Error Codes” on page 312for more

Time stamp CHAR(8) The time the error occurred.

The content of this field is only valid for 83/4001, 83/4002, and
8374003 return/reason codes.

Error log identifier CHAR(4) The hexadecimal identifier that can be used for locating error
information in the error log.

The content of this field is only valid for 83/4001, 83/4002, and
8374003 return/reason codes.

Reserved CHAR(10) Reserved for extension.

Communications APIls

41

Field Type Description

Indicators CHAR(1) Specifies indicators the user-defined communications application
program can use for diagnosing a potential error condition. This is
a bit sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

'0'B Either there is no message in the QSYSOPR message
queue, or there is a message and it does not have the
capability to run problem analysis report (PAR) to
determine the cause of the error.

'1'B There is a message in the QSYSOPR message queue for
this error, and it does have the capability to run problem
analysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:

'0'B The line error can be retried.

'1'B The line error cannot be retried.

The valid values for bit 2 are as follows:

'0'B The cause and diagnostic codes fields are not valid.

'1'B The cause and diagnostic codes fields are valid.

The valid values for bit 3 are as follows:

'0'B The error has not been reported to the system operator
message queue.

'1'B The error has been reported to the system operator
message queue.

For example, consider the following values for the indicators field:
X’20° A condition has caused X.25 cause and diagnostic codes to
be passed to the application. This information can

determine the cause of the condition.

X’50" An error has occurred and been reported to the QSYSOPR
message queue. The error cannot be retried.

X’FO’ An error has occurred and been reported to the QSYSOPR
message queue. The error cannot be retried, and has X.25
cause and diagnostic codes associated with it. Also a
problem analysis report can be generated to determine the
probable cause.

The content of this field is valid only for 83/4001, 8374002, 83/3202

and 8374003 return/reason codes.

X.25 cause code CHAR(1) Specifies additional information on the condition reported. See the
[X.25 Network Support] @ book for interpreting the values of this
field.

The content of this field is only valid for 83/4001, 83/4002 and

83/3202 return/reason codes.

42

iSeries: Communications APls

Field Type Description

X.25 diagnostic code |CHAR(1) Specifies additional information on the condition reported. See the

[X.25 Network Support] @‘ book for interpreting the values of this
field.

The content of this field is only valid for 83/4001, 8374002 and
8373202 return/reason codes.

Reserved CHAR(1) Reserved for extension.

Error offset BINARY (4) The offset from the top of the output buffer to the incorrect data in
the output buffer.

The content of this field is only valid for a 83/1999 return/reason
code.

Reserved CHAR(4) Reserved for extension.

LAN Output Operations

The only output operation supported on links using a token-ring, Ethernet, wireless, or FDDI

communications line is X’0000’ (send user data). For each data frame to be sent on the network, the

application program must provide the following information:

* General LAN information, optional routing information, and user data in the next data unit of the
output buffer, starting with the first data unit

* A description, in the corresponding element of the output buffer descriptor, of the information in that
data unit.

For example, suppose a user-defined communications application program wants to send two data
frames. The information for the first frame would be placed in first data unit of the output buffer and
described in the first element of the output buffer descriptor. The information for the second frame would
be placed in the second data unit of the output buffer and described in the second element of the output
buffer descriptor. The number of data units parameter on the call to the QOLSEND API would be set to
2.

Note: The X’0000’ operation is synchronous. Control will not return from the QOLSEND API until the
operation completes.

Data Unit Format-LAN Operation X’0000’
Each data frame to be sent on the network corresponds to a data unit in the output buffer. The

information in each of these data units is made up of general LAN information, optional routing data,
and user data.

Field Type Description

Length of general BINARY(2) The length of the general LAN information in the data unit. This
LAN information must be set to 16.

Destination adapter CHAR(6) Specifies, in packed form, the adapter address to which this data
address frame will be sent.

Note: Because user-defined communications support only allows
connectionless service over LANSs, it is not necessary for all frames
being sent on a single output operation to have the same
destination adapter address.

Communications APIs 43

Field

Type

Description

DSAP address

CHAR()

The service access point on which the destination system will
receive this frame. Any value may be used.

Note: The Ethernet Version 2 standard does not use logical link
control, which utilizes SAPs. Therefore, to send Ethernet Version 2
frames, a null DSAP address (X’00’) must be specified in the DSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in
the Ethernet line description must be configured as either *ETHV2
or *ALL.

SSAP address

CHAR()

The service access point on which the iSeries server will send this
frame. Any service access point configured in the token-ring,
Ethernet, wireless, or FDDI line description may be used.

Note: The Ethernet Version 2 standard does not use logical link
control, which utilizes SAPs. Therefore, to send Ethernet Version 2
frames, a null SSAP address (X’00’) must be specified in the SSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in
the Ethernet line description must be configured as either *ETHV2
or *ALL.

Access control

CHAR(1)

Specifies outbound frame priority and is mapped to the access
priority bits in the access control field of 802.5 frames. For links
using a token-ring communications line, any value between X’00’
and X’07° may be used, where X’00’ is the lowest priority and X’07’
is the highest priority.

For links using an Ethernet or wireless communications line, the
content of this field is not applicable and must be set to X’00’.

Priority control

CHAR(Y)

Specifies how to interpret the value set in the access control field.
For links using a token-ring communications line, the valid values
are as follows:

X’00" Use any priority less than or equal to the value set in the
access control field.

X’01" Use the priority exactly equal to the value set in the access
control field.

X'FF* Use the iSeries server default priority.

For links using an Ethernet or wireless communications line, the
content of this field is not applicable and must be set to X’00’.

Length of routing
information

BINARY(2)

The length of the routing information in the data unit. For links
using a token-ring communications line, any value between 0 and
18 may be used, where 0 indicates that there is no routing
information.

For links using an Ethernet or wireless communications line, the
content of this field is not applicable and must be set to 0 indicating
that there is no routing information.

44 iseries: Communications APIs

Field

Type Description

Length of user data

The length of the user data in the data unit. This must be less than
or equal to the maximum frame size allowed on the service access
point specified in the SSAP address field. See |“Query Lina
[Description (QOLQLIND) API” on page 9 to determine the
maximum frame size allowed on the service access point specified
in the SSAP address field.

BINARY(2)

For Ethernet Version 2 frames, this must be at least 48 and not more
than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is
less than 46 bytes.

Output Buffer Descriptor Element Format-LAN Operation X’0000’

The information specified in each data unit of the output buffer must be described in the corresponding
element of the output buffer descriptor.

Field

Type Description

Length

The number of bytes of information in the corresponding data unit
of the output buffer. This must be equal to the length of the general
LAN information plus the length of the routing information plus
the length of the user data. See Format of the General LAN
Information (page in the Receive Data (QOLRECV) API for
more information on the format of the general LAN information.

BINARY(2)

Reserved

CHAR(30) Reserved for extension.

X.25 SVC and PVC Output Operations

The following table shows the output operations that are supported on links using an X.25

communications line.

Operation Meaning

X’0000’ Send user data (SVC or PVC).
Note: This is a synchronous operation. Control will not return from the QOLSEND API
until the operation completes.

X’B000’ Send a call request packet (SVC) or open the PVC connection.
Note: This is an asynchronous operation. Notification of the completion of this operation
will be returned from the QOLRECV API with operation X’B001’ only after control returns
from the QOLSEND API with a 0/0 return and reason code. See[“Receive Data (QOLRECV)|
API” on page 21f for more information.

X’B100’ Send a clear packet (SVC) or close the PVC connection.
Note: This is an asynchronous operation. Notification of the completion of this operation
will be returned from the QOLRECV API with operation X’B101’ only after control returns
from the QOLSEND API with a 0/0 return and reason code. See[“Receive Data (QOLRECV)|
API” on page 21f for more information.

45

Communications APIls

Operation Meaning

X'B110’ Close all connections which were cleared by the reason given in the connection failure date
received on X 'B311".

Note: This is an asynchronous operation. Notification of the completion of this operation
will be returned from the QOLRECV API with operation X’B111’ only after control returns

from the QOLSEND API with a 0/0 return and reason code. See[“Receive Data (QOLRECV)|
API” on page 21| for more information.

X’B400’ Send a call accept packet (SVC only).

Note: This is a synchronous operation. Control will not return from the QOLSEND API
until the operation completes.

X’BF00’ Send a reset request or reset confirmation packet (SVC or PVC).

Note: This is an asynchronous operation. Notification of the completion of this operation
will be returned from the QOLRECV API with operation X’BF01’ only after control returns
from the QOLSEND API with a 0/0 return and reason code. See|“Receive Data (QOLRECV)|

API” on page 21| for more information.

Note: The maximum number of outstanding asynchronous operations (notification of completion not yet received
from the QOLRECV API) is five. All calls made to the QOLSEND API or QOLSETF API under this condition will be
rejected with a return and reason code of 83/3200.

X.25 Operation X’0000’

This operation allows the application program to send user data on an SVC or PVC X.25 connection. The
application must provide the following information:

» User data in the next data unit of the output buffer, starting with the first data unit

* A description, in the corresponding element of the output buffer descriptor, of the user data in that
data unit.

For example, suppose a user-defined communications application program wants to send two data units
of user data. The first portion of the user data would be placed in first data unit of the output buffer and
described in the first element of the output buffer descriptor. The second portion of the user data would

be placed in the second data unit of the output buffer and described in the second element of the output
buffer descriptor. The number of data units parameter on the call to the QOLSEND API would be set to

2.

User-defined communications support automatically fragments the user data in each data unit into one or
more appropriately sized X.25 packets based on the negotiated transmit packet size for the connection.
All packets constructed for a data unit, except for the last (or only) packet, will always have the X.25
more data bit (M-bit) set on. See Output Buffer Descriptor Element Format-X.25 Operation X’0000’ (page

for more information on how to set the X.25 M-bit on or off in the last (or only) packet constructed
for a data unit.

Data Unit Format-X.25 Operation X’000’

Each data unit in the output buffer consists solely of user data and starts offset 0 from the top of the data
unit.

Output Buffer Descriptor Element Format-X.25 Operation X’0000’

The user data specified in each data unit of the output buffer must be described in the corresponding
element of the output buffer descriptor.

46 iSeries: Communications APIs

Field

Type

Description

Length

BINARY(2)

IAP1” on page 3|for more information.

The number of bytes of user data in the corresponding
data unit of the output buffer. This must always be less
than or equal to the X.25 user data size parameter that
was specified on the call to the QOLELINK API when
the link was enabled. See [‘Enable Link (QOLELINK)|

More data indicator

CHAR()

Specifies whether the X.25 more data bit (M-bit) should
be set on or off in the last (or only) X.25 packet
constructed for the corresponding data unit. The valid
values are as follows:

X’00" Set the M-bit off in the last (or only) X.25
packet constructed for the corresponding data
unit.

X’01" Set the M-bit on in the last (or only) X.25
packet constructed for the corresponding data
unit.

Note: When this value is selected, the length
field must be set to a multiple of the negotiated
transmit packet size for the connection.

Qualified data indicator

CHAR()

Specifies whether the X.25 qualifier bit (Q-bit) should be
set on or off in all X.25 packets constructed for the
corresponding data unit. The valid values are as follows:

X’00" Set the Q-bit off in all X.25 packets constructed
for the corresponding data unit.

X’01" Set the Q-bit on in all X.25 packets constructed
for the corresponding data unit.

Interrupt packet indicator

CHAR(1)

Specifies whether the user data in the corresponding
data unit should be sent in an X.25 interrupt packet. The
valid values are as follows:

X’00" Send the user data in the corresponding data
unit in one or more X.25 data packets.

X’01" Send the user data in the corresponding data
unit in an X.25 interrupt packet. An interrupt
packet causes the data to be expedited.

Note: When this value is selected, the length
field must be set to a value between 1 and 32,
and the number of data units parameter on the
call to the QOLSEND API must be set to 1.
Also, the contents of the more data indicator,
qualified data indicator, and delivery
confirmation indicator fields are ignored.

Communications APIs 47

Field Type Description

Delivery confirmation CHAR(1) Specifies whether the X.25 delivery confirmation bit
indicator (D-bit) should be set on or off in all X.25 packets
constructed for the corresponding data unit. The valid
values are as follows:

X’00" Set the D-bit off in all X.25 packets constructed
for the corresponding data unit.

X’01" Set the D-bit on in all X.25 packets constructed
for the corresponding data unit.

Note: The iSeries server does not fully support
delivery confirmation when sending user data.
Confirmation is from the local data circuit
equipment (DCE).

Reserved CHAR(26) Reserved for extension.

X.25 Operation X’B000’

This operation allows the application program to either initiate an SVC call or to open a PVC connection.
The application must provide the data for this operation in the first data unit of the output buffer. The
output buffer descriptor is not used.

The format of the data required for the X’B000’ operation depends on whether it is used to initiate an
SVC call or to open a PVC connection. Each format is explained in the following table.

Note: When initiating an SVC call, the iSeries server chooses an available SVC to use. The logical channel
identifier of the SVC that was chosen will be returned when notification of the completion of X’B000’ is
received from the QOLRECV API (operation X’B001’). See [“Receive Data (QOLRECV) API” on page 21
for more information.

Data Unit Format-X.25 Operation X’B000’ (Initiate an SVC Call)

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X’B000” operation when initiating an SVC
call.

Field Type Description

Reserved CHAR(1) This field must be set to X’02’.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Transmit packet size BINARY(2) The requested transmit packet size for this connection. The valid

values are 64, 128, 256, 512, 1024, 2048, and 4096. The value
specified must be less than or equal to the transmit maximum
packet size configured for this line. The special value of X’FFFF’
may be specified to use the transmit default packet size configured
for this line.

See|“Query Line Description (QOLQLIND) API” on page 9| for
information on determining the transmit maximum packet size and
the transmit default packet size configured for this line.

48 iSeries: Communications APIs

Field

Type

Description

Transmit window size

BINARY(2)

The requested transmit window size for this connection. The valid
values are as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

XFFFF
Use the transmit default window size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the modulus value and the transmit
default window size configured for this line.

Receive packet size

BINARY(2)

The requested receive packet size for this connection. The valid
values are 64, 128, 256, 512, 1024, 2048, and 4096. The value
specified must be less than or equal to the receive maximum packet
size configured for this line. The special value of X’FFFF’ may be
specified to use the receive default packet size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the receive maximum packet size and
the receive default packet size configured for this line.

Receive window size

BINARY(2)

The requested receive window size for this connection. The valid
values are as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

X'FFFF’
Use the receive default window size configured for this
line.

See|“Query Line Description (QOLOLIND) API” on page 9| for
information on determining the modulus value and the receive
default window size configured for this line.

Reserved

CHAR(7)

This field must be set to hexadecimal zeros.

DTE address length

BINARY(1)

The number of binary coded decimal (BCD) digits in the DTE
address to call. The valid values are as follows:

1-15 When extended network addressing is not configured for
this line.

1-17 When extended network addressing is configured in the
line description.

See[“Query Line Description (QOLQLIND) API” on page 9| to
determine if extended network addressing is configured for this
line.

DTE address

CHAR(16)

Specifies, in binary coded decimal (BCD), the DTE address to call.
The address must be left justified and padded on the right with
BCD zeros.

Reserved

CHAR(8)

This field must be set to hexadecimal zeros.

Communications APIs 49

Field Type Description
Delivery confirmation | CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) should
support be set on or off in the call request packet. The valid values are as
follows:
X'00" Set the D-bit off in the call request packet.
X'01" Set the D-bit on in the call request packet.
Reserved CHAR(7) This field must be set to hexadecimal zeros.
Closed user group CHAR(1) Specifies whether the closed user group (CUG) identifier should be
indicator included in the call packet. The valid values are as follows:
X'00’ Do not include the CUG identifier in the call packet.
xX’'01’ Include the CUG identifier in the call packet.
Closed user group CHAR(1) The CUG identifier to be included in the call packet. The valid
identifier values are as follows:
X’00" When the closed user group indicator field is set to X’00’
X’00’-X"99’
When the closed user group indicator field is set to X’01’
Reverse charging CHAR(1) Specifies reverse charging options. The valid values are as follows:
indicator
X'00’ Do not request reverse charging.
xX0r Request reverse charging.
Fast select indicator CHAR(1) Specifies fast select options. The valid values are as follows:

X’'00’ Do not request fast select.
X’01’ Request fast select with restriction.

X'02" Request fast select without restriction.

50 iseries: Communications APls

Field

Type

Description

X.25 facilities length

BINARY(1)

The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be used.

Note: The iSeries server codes the closed user group, reverse
charging, and fast select facilities in the X.25 facilities field, if the
user requested them in the above fields. Additionally, if the
network user identification parameter (NETUSRID) is specified in
the line description, the network user identification (NUI) facility is
coded in the field, following the other additional facilities, if
present. Finally, if the packet and window size values specified are
different than the network default, the facilities containing these
values are coded in the field as well. The system will update the
X.25 facilities length field appropriately for each facility to which
the iSeries server adds the X.25 facilities field. This length cannot
exceed 109 bytes.

X.25 facilities

CHAR(109)

Specifies additional X.25 facilities data requested.

Note: The application programmer should not code the facilities for
NUI, fast select, reverse charging, closed user group, packet size, or
window size in this field. By doing so, this field could contain
duplicate facilities, which may not be consistently supported by all
X.25 networks.

Reserved

CHAR(48)

This field must be set to hexadecimal zeros.

Call user data length

BINARY(2)

The number of bytes of data in the call user data field. The valid
values are as follows:

0-16 When the fast select indicator field is set to X’00’.
0-128 When the fast select indicator field is set to X’01’ or X’02’.

Call user data

CHAR(128)

The call user data.

Reserved

CHAR(128)

This field must be set to hexadecimal zeros.

Control information

CHAR(1)

Specifies control information for this connection. This is a
bit-sensitive field with bit 0 (leftmost bit) defined for reset support.
The remaining bits are undefined and should be set off ('0’B).

The valid values for bit 0 are as follows:
'0'B Resets are not supported on this connection.

When this value is selected, the X’BF00’ output operation
will not be valid on this connection. Also, a reset
indication packet received on this connection will cause the
connection to be ended.

'1'B Resets are supported on this connection.

When this value is selected, the X’BF00’ output operation
will be valid on this connection. Also, the user-defined
communications application program will be required to
handle reset indications received on this connection.

For example, consider the following values for the control
information field:

X’00" Resets are not supported on this connection.

X80 Resets are supported on this connection.

Communications APIs 51

Field

Type

Description

Reserved

CHAR(3)

This field must be set to hexadecimal zeros.

Maximum data unit
assembly size

BINARY(4)

The maximum number of bytes of user data that is received in a

complete X.25 packet sequence before passing the user data to the
application. Any value between 1024 and 32767 may be used, and
should be set to the largest value that the application will support.

Notes:

1. The system attempts to assemble the entire packet sequence
before passing the data to the application. The only exception to
this is when the size of the packet sequence exceeds the value
the user specified for this field.

2. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the
input buffer, the more data indicator field in the corresponding
element of the input buffer descriptor will be set to X’01’ and
the remaining user data will be filled in the next data unit. See
|“Receive Data (QOLRECV) API” on page 21| for more
information.

3. There is no limitation on the number of bytes of user data that
can be sent in a complete X.25 packet sequence. However, the
QOLSEND API may need to called more than once.

Automatic flow
control

BINARY(2)

Relates to the amount of data that will be held by user-defined
communications support before sending a receive not ready (RNR)
packet to the sending system. The recommended value for this field
is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the
user-defined communications application program receives some of
the data.

Reserved

CHAR(30)

This field must be set to hexadecimal zeros.

Data Unit Format-X.25 Operation X’B000’ (Open a PVC Connection)

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X’B000” operation when opening a PVC

connection.

Field Type Description

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Logical channel CHAR(2) The logical channel identifier of the PVC to open. Any PVC

identifier

configured for this line that is eligible to be used by the network
controller that the link is using may be specified and must be in the
range of X’0001’-X’0FFF’.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the PVCs configured for this line that
are eligible to be used by the network controller the link is using.

52 iSeries: Communications APIs

Field

Type

Description

Transmit packet size

BINARY(2)

The requested transmit packet size for this connection. The valid
values are 64, 128, 256, 512, 1024, 2048, and 4096. The value
specified must be less than or equal to the transmit maximum
packet size configured for this line. The special value of X'FFFF’
may be specified to use the transmit default packet size configured
for this line.

See|“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the transmit maximum packet size and
the transmit default packet size configured for this line.

Transmit window size

BINARY(2)

The requested transmit window size for this connection. The valid
values are as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

X’FFFF’
Use the transmit default window size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the modulus value and the transmit
default window size configured for this line.

Receive packet size

BINARY(2)

The requested receive packet size for this connection. The valid
values are 64, 128, 256, 512, 1024, 2048, and 4096. The value
specified must be less than or equal to the receive maximum packet
size configured for this line. The special value of X’FFFF’ may be
specified to use the receive default packet size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9| for
information on determining the receive maximum packet size and
the receive default packet size configured for this line.

Receive window size

BINARY(2)

The requested receive window size for this connection. The valid
values are as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

XFFFF’
Use the receive default window size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the modulus value and the receive
default window size configured for this line.

Reserved

CHAR(32)

This field must be set to hexadecimal zeros.

Communications APIs 53

Field Type Description
Delivery confirmation |CHAR(1) The X.25 delivery confirmation bit (D-bit) support for this
support connection. The valid values are as follows:
X’00’ D-bit will be supported for sending data but not for
receiving data.
Note: When this value is selected and an X.25 packet is
received with the D-bit set on, the input/output processor
(10P) will send a reset packet.
X'0r’ D-bit will be supported for sending data and for receiving
data.
Reserved CHAR(427) This field must be set to hexadecimal zeros.
Control information CHAR(1) Specifies control information for this connection. This is a
bit-sensitive field with bit 0 (leftmost bit) defined for reset support.
The remaining bits are undefined and should be set off ('0’B).
The valid values for bit 0 are as follows:
'0'B Resets are not supported on this connection.
When this value is selected, the X’BF00’ output operation
will not be valid on this connection. Also, a reset
indication packet received on this connection will cause the
connection to be ended.
'1'B Resets are supported on this connection.
When this value is selected, the X’BF00’ output operation
will be valid on this connection. Also, the user-defined
communications application program will be required to
handle reset indications received on this connection.
For example, consider the following values for the control
information field:
X’00" Resets are not supported on this connection.
X80 Resets are supported on this connection.
Reserved CHAR(3) This field must be set to hexadecimal zeros.

54 iSeries: Communications APIs

Field Type Description

Maximum data unit BINARY (4) The maximum number of bytes of user data that is received in a

assembly size complete X.25 packet sequence before passing the user data to the
application. Any value between 1024 and 32767 may be used, and
should be set to the largest value that the application will support.

Notes:

1. The system attempts to assemble the entire packet sequence
before passing the data to the application. The only exception to
this is when the size of the packet sequence exceeds the value
the user specified for this field.

2. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the
input buffer, the more data indicator field in the corresponding
element of the input buffer descriptor will be set to X’01’ and
the remaining user data will be filled in the next data unit. See
|“Receive Data (QOLRECV) API” on page 21| for more
information.

3. There is no limit of the number of bytes of user data that can be
sent in a complete X.25 packet sequence. However, the
QOLSEND API may need to called more than once.

Automatic flow BINARY(2) Relates to the amount of data that will be held by user-defined
control communications support before sending a receive not ready (RNR)
packet to the sending system. The recommended value for this field
is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the
user-defined communications application program receives some of
the data.

Reserved CHAR(30) This field must be set to hexadecimal zeros.

X.25 Operation X’B100’

This operation allows the application program to either send a clear packet on an SVC, close an SVC
connection that was cleared by the remote system, or to close a PVC connection. The application must
provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor
is not used.

The format of the data required for the X’B100’ operation is the same whether or not it is used to send a
clear packet on an SVC or to close a PVC connection. The format of the data required for the X’B100’
operation should be set to hexadecimal zeros if it is used to close an SVC connection that was previously
cleared by the remote system.

Notes:

1. The iSeries server provides the confirmation of the clear indication, however, the local user-defined
communications application must issue the X’B100’ operation to free the PCEP for the connection.

2. Closing a PVC connection will cause a reset packet to be sent to the remote system.
Data Unit Format-X.25 Operation X’B100’

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X’B100’ operation.

Field Type Description

Reserved CHAR(2) This field must be set to hexadecimal zeros.

Communications APIs 55

Field Type Description

Cause code CHAR(1) The X.25 cause code.

Diagnostic code CHAR(1) The X.25 diagnostic code.

Reserved CHAR(4) This field must be set to hexadecimal zeros.

X.25 facilities length® | BINARY/(1) The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be used.

X.25 facilities® CHAR(109) The X.25 facilities data.

Reserved CHAR(48) This field must be set to hexadecimal zeros.

Clear user data BINARY(2) The number of bytes of data in the clear user data field. Any value

length? between 0 and 128 may be used.

Clear user data® CHAR(128) The clear user data.
Note: The CCITT standard recommends that this field only be
present in conjunction with the fast select or call deflection selection
facility. The iSeries server does not enforce this restriction, however.

Reserved CHAR(216) This field must be set to hexadecimal zeros.

1 This field is not used for PVC connections and should be set to hexadecimal zeros.

X.25 Operation X’B110’

This operation allows the application program to clean up all internal control information on all the
connections over the link and free up all PCEPs and UCEPSs. This operation is only valid following the
receipt of the X’B311’ operation that reports the connection failure data to the application. There is no
data associated with this operation.

X.25 Operation X’B400’
This operation allows the application program to accept an incoming SVC call. The application must
provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor

is not used.

Note: Notification of incoming calls are received from the QOLRECV API with operation X’B201’. See
[‘Receive Data (QOLRECV) API” on page 21| for more information.

Data Unit Format-X.25 Operation X’B400’

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The
following table shows the format of the data required for the X’B400’ operation.

Field Type Description

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Transmit packet size BINARY(2) The transmit packet size for this connection. The valid values are

64, 128, 256, 512, 1024, 2048, and 4096. The value specified must be
less than or equal to the transmit maximum packet size configured
for this line. The special value of X’FFFF’ may be specified to use
the transmit default packet size configured for this line.

See[“Query Line Description (QOLQLIND) API” on page 9| for
information on determining the transmit maximum packet size and
the transmit default packet size configured for this line.

56 iseries: Communications APIs

Field Type Description

Transmit window size |BINARY/(2) The transmit window size for this connection. The valid values are
as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

XFFFF
Use the transmit default window size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the modulus value and the transmit
default window size configured for this line.

Receive packet size BINARY(2) The receive packet size for this connection. The valid values are 64,
128, 256, 512, 1024, 2048, and 4096. The value specified must be less
than or equal to the receive maximum packet size configured for
this line. The special value of X’FFFF’ may be specified to use the
receive default packet size configured for this line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the receive maximum packet size and
the receive default packet size configured for this line.

Receive window size | BINARY(2) The receive window size for this connection. The valid values are
as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.

X'FFFF’
Use the receive default window size configured for this
line.

See[“Query Line Description (QOLQLIND) API” on page 9|for
information on determining the modulus value and the receive
default window size configured for this line.

Reserved CHAR(32) This field must be set to hexadecimal zeros.
Delivery confirmation |CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) should
support be set on or off in the call accept packet. This also specifies the

D-bit support for this connection. The valid values are as follows:

X’00" Set the D-bit off in the call accept packet. D-bit will be
supported for sending data but not for receiving data.

Note: When this value is selected and an X.25 packet is
received with the D-bit set on, the input/output processor
(10P) will send a reset packet.

X’'01" Set the D-bit on in the call accept packet. D-bit will be
supported for sending data and for receiving data.

Reserved CHAR(11) This field must be set to hexadecimal zeros.

Communications APIs 57

Field

Type

Description

X.25 facilities length

BINARY(1)

The number of bytes of data in the X.25 facilities field. Any value
between 0 and 109 may be used.

Note: The iSeries server codes the packet and window size facilities
in this field, if necessary. The total length of all facilities cannot
exceed 109 bytes.

X.25 facilities

CHAR(109)

The X.25 facilities data.

Note: The application programmer should not code the facilities for
packet or window sizes in this field. By doing so, this field could
contain duplicate facilities, which may not be consistently
supported by all X.25 networks.

Reserved

CHAR(306)

This field must be set to hexadecimal zeros.

Control information

CHAR()

Specifies control information for this connection. This is a
bit-sensitive field with bit 0 (Ileftmost bit) defined for reset support.
The remaining bits are undefined and should be set off ('0’B).

The valid values for bit 0 are as follows:
'0'B Resets are not supported on this connection.

When this value is selected, the X’BF00’ output operation
will not be valid on this connection. Also, a reset
indication packet received on this connection will cause the
connection to be ended.

'1'B Resets are supported on this connection.

When this value is selected, the X’BF00’ output operation
will be valid on this connection. Also, the user-defined
communications application program will be required to
handle reset indications received on this connection.

For example, consider the following values for the control
information field:

X’00° Resets are not supported on this connection.

X’'80" Resets are supported on this connection.

Reserved

CHAR(3)

This field must be set to hexadecimal zeros.

Maximum data unit
assembly size

BINARY(4)

The maximum number of bytes of user data that can be received in
a complete X.25 packet sequence on this connection. If this limit is
exceeded, the connection will be ended. Any value between 1024
and 32767 may be used.

Notes:

1. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the
input buffer, the more data indicator field in the corresponding
element of the input buffer descriptor will be set to X’01’ and
the remaining user data will be filled in the next data unit. See
[“Receive Data (QOLRECV) API” on page 21| for more
information.

2. There is no limitation on the number of bytes of user data that

can be sent in a complete X.25 packet sequence. However, the
QOLSEND API may need to called more than once.

58 iseries: Communications APIs

Field Type Description

Automatic flow BINARY(2) Relates to the amount of data that will be held by user-defined
control communications support before sending a receive not ready (RNR)
packet to the sending system. The recommended value for this field
is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the
user-defined communications application program receives some of
the data.

Reserved CHAR(30) This field must be set to hexadecimal zeros.

X.25 Operation X’'BF00’

This operation allows an application program to send a reset request packet or a reset confirmation
packet on an X.25 SVC or PVC connection. The application must provide the X.25 cause and diagnostic
codes required for this operation in the first data unit of the output buffer. The output buffer descriptor is
not used.

Information indicating whether a reset request or reset confirmation packet was sent is returned when
notification of the completion of the X’BF00’” operation is received from the QOLRECV API (operation
X’BF01’). This information will be in the diagnostic data parameter of the QOLRECV API. See
[Data (QOLRECV) API” on page 21| for more information.

A reset confirmation packet will be sent under the following conditions:

» After a reset indication packet has been received on the connection and the application has received it
from the QOLRECV API (X’B301’ operation, 83/3202 return and reason code)

» After a reset indication packet has been received on the connection but before the application has
received it from the QOLRECV API

* When a reset indication packet is received on the connection at the same time the X’BF00’ output
operation is issued

This is known as a reset collision. In this case, user-defined communications support will discard the
reset indication and, therefore, the application program will not receive it from the QOLRECV API.
However, the cause and diagnostic codes from the reset indication are returned in the diagnostic data
parameter of the QOLRECV program when the application receives notification of the completion of
the X’BF00’ operation. See[“Receive Data (QOLRECV) API” on page 21| for more information.

A reset request packet will be sent when none of the above conditions are true.

Notes:

1. Data not yet received by the application program on a connection will not be deleted when a X’BF00’
operation is issued on that connection. This data will be received before the notification of the
completion of the X’BF00’ operation is received from the QOLRECV API (operation X’BF01’). Data
received after the notification of the completion of the X’BF00’ operation is received should be treated
as new data.

2. The X’BF00’ operation is only valid on connections that support resets. See X.25 Operation X’B000’
(page and X.25 Operation X’B400’ (page @b for more information on specifying reset support.

Data Unit Format-X.25 Operation X’'BF00’

The first 2 bytes of the data unit in the output buffer are used for this operation. The first byte contains
the X.25 cause code. The second byte contains the X.25 diagnostic code.

Communications APIs 59

Return and Reason Codes

The return and reason codes that can be returned from the QOLSEND API depend on the type of
communications line the link is using and on the operation that was requested.

Return and Reason Codes for LAN Operation X’0000’

Return / Reason Code | Meaning Recovery
0/0 Operation successful. Continue processing.

80/2200 Queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the application in the job log for further information. Then
program when this return and reason code is | correct the error, enable the link, and try the
received. request again.

80/2401 Output buffer or output buffer descriptor Ensure the link is disabled and see messages
error detected. Escape message CPF91F1 will |in the job log for further information. Then
be sent to the application program when this | correct the error, enable the link, and try the
return and reason code is received. request again.

80/3002 A previous error occurred on this link that Ensure the link is disabled and see messages
was reported to the application program by |in the job log for further information. If
escape message CPFI91F0 or CPFI1F1. escape message CPF91F0 was sent to the
However, the application program has application program, then report the problem
attempted another operation. using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the
request again.

8074000 Error recovery has been canceled for this Ensure the link is disabled and see messages
link. in the job log for further information. Correct

the condition, enable the link, and try the
request again.

8078000 The amount of user data in a data unit of the | Ensure the link is disabled. Correct the error,
output buffer is greater than the maximum enable the link, and try the request again.
frame size allowed on the communications
line the link is using. Escape message
CPF91F1 will be sent to the application
program when this return and reason code is
received.

80/9999 Internal system error detected. Escape See messages in the job log for further
message CPF91F0 will be sent to the information. Report the problem using the
application program when this return and ANZPRB command.
reason code is received.

83/1006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

8371008 Number of data units not valid. Correct the number of data units parameter.

Try the request again.

83/1998 The amount of data in a data unit of the Correct the amount of user data, or the total

output buffer is not correct. amount of generalLAN information, routing
information, and user data in the offending
data unit. Try the request again.

8371999 Incorrect data in a data unit of the output Correct the incorrect data. Try the request
buffer. The error offset field in the diagnostic |again.
data parameter will point to the incorrect
data.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

60

iSeries: Communications APls

Return / Reason Code

Meaning

Recovery

8373004 Link is enabling. Wait for the enable-complete entry to be sent
to the data queue or user queue. If the link
was successfully enabled, try the request
again.

8374001 Link failure, system starting error recovery Wait for the link to recover. Try the request

for this link. again.

8374003 Error detected by the input/output processor | Correct the error, and try the request again.

(10P). The diagnostic data parameter will
contain more information on this error.

General X.25 Return and Reason Codes

The following table shows the return and reason codes that can be received from the QOLSEND API for
any requested operation.

Return / Reason Code

Meaning

Recovery

80/2200 Queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the application in the job log for further information. Correct
program when this return and reason code is | the error, enable the link, and try the request
received. again.

80/2401 Output buffer or output buffer descriptor Ensure the link is disabled and see messages
error detected. Escape message CPF91F1 will |in the job log for further information. Correct
be sent to the application program when this | the error, enable the link, and try the request
return and reason code is received. again.

80/3002 A previous error occurred on this link that Ensure the link is disabled and see messages
was reported to the application program by |in the job log for further information. If
escape message CPF91F0 or CPFI1F1. escape message CPF91F0 was sent to the
However, the application has attempted application program, report the problem
another operation. using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the
request again.

80/4000 Error recovery has been canceled for this Ensure the link is disabled and see messages
link. in the job log for further information. Correct

the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further
message CPF91FO0 will be sent to the information. Report the problem using the
application program when this return and ANZPRB command.
reason code is received.

8371006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/3001 Link not enabled. Correct the communications handle
parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent
to the data queue or user queue. If the link
was successfully enabled, try the request
again.

83/3200 All resources are currently in use by Wait for at least one of the asynchronous

asynchronous operations that have not yet
completed.

operations to complete. Notification of
completion of these operations will be
received from the QOLRECV API. Try the
request again.

61

Communications APIls

Return and Reason Codes for X.25 Operation X'0000’

input/output processor.

Return / Reason Code | Meaning Recovery
0/0 Operation successful. Continue processing.

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/1008 Number of data units not valid. Correct the number of data units parameter.

Try the request again.

83/1997 The amount of user data in a data unit of the | Correct the amount of user data in the
output buffer is not a multiple of the offending data unit. Try the request again.
negotiated transmit packet size, and the
more data indicator in the corresponding
element of the output buffer descriptor is set
to X’01".

83/1998 The amount of user data in a data unit of the | Correct the amount of user data in the
output buffer is not correct. offending data unit. Try the request again.

83/3201 The maximum amount of incoming user data | Wait to receive a failure notification from the
that can be held by user-defined QOLRECV API indicating this condition
communications support for the application |(X’B301’ operation, 83/3201 return and
program on this connection has been reason code). Issue the X’B100’ output
exceeded. operation to end the connection.

83/3202 A reset indication has been received on this | Wait to receive notification from the
connection. The X.25 cause and diagnostic QOLRECV API indicating this condition
code fields in the diagnostic data parameter | (X’B301’ operation, 83/3202 return and
will contain the cause and diagnostic codes |reason code). Issue the X’BF00’ output
of the reset indication. operation to send a reset confirmation

packet.

8373205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

8374001 Link failure, system starting error recovery Wait to receive a failure notification from the
for this link. QOLRECV API indicating this condition

(X’B301’ or X’B311’ operation, 8374001 return
and reason code). Issue the X’B100’ output
operation to end the connection.

8374002 Connection failure. Wait to receive a failure notification from the

QOLRECV API indicating this condition
(X’B301’ operation, 83/4002 return and
reason code). Issue the X’B100’ output
operation to end the connection.

8374003 Data not sent. Error detected by Try the request again. If the error persists,

use the ANZPRB command to analyze and
report the problem.

Return and Reason Codes for X.25 Operation X’B000’

Return / Reason Code | Meaning Recovery
0/0 Operation initiated. Wait for notification of the completion of the
X’B000’ operation from the QOLRECV API
(X’B001’ operation).
8374005 All connections are currently in use. Wait for a connection to become available

and try the request again.

Return and Reason Codes for X.25 Operation X’B100’

62

iSeries: Communications APls

Return / Reason Code

Meaning

Recovery

0/0 Operation initiated. Wait for notification of the completion of the
X’B100’ operation from the QOLRECV API
(X’B101’ operation).
83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.
83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Return and Reason Codes for X.25 Operation X’B110’

Return / Reason Code

Meaning

Recovery

0/0

Operation initiated.

Wait for notification of the completion of the
X’B110’ operation from the QOLRECV API
(X’B111’ operation).

Return and Reason Codes for X.25 Operation X'B400’

Return / Reason Code

Meaning

Recovery

0/0 Operation successful. Continue processing.
83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.
83/1999 Incorrect data in a data unit of the output Correct the incorrect data. Try the request
buffer. The error offset field in the diagnostic |again.
data parameter will point to the incorrect
data.
83/3205 Connection not in a valid state. Ensure the connection is in a valid state for
this operation. Try the request again.
8374001 Link failure, system starting error recovery Issue the X’B100’ output operation to end the
for this link. connection.
8374004 Inbound call timed out. Issue the X’B100’ output operation to end the

connection.

Return and Reason Codes for X.25 Operation X’BF00’

Return / Reason Code | Meaning Recovery
0/0 Operation initiated. Wait for notification of the completion of the
X’BFO0’ operation from the QOLRECV API
(X’BF01’ operation).
8371007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.
83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Error Messages

Message ID Error Message Text

CPF3C90 E
CPFI1F0 E

Literal value cannot be changed.
Internal system error.

63

Communications APIls

Message ID Error Message Text
CPFI1F1 E User-defined communications application error.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

[Topl FCommunications APIs,” on page 1] | [APIs by category]

Set Filter (QOLSETF) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Error offset Output Binary(4)
4 Communications handle Input Char(10)

Threadsafe: No

The Set Filter (QOLSETF) API activates and/or deactivates one or more filters for a link that is currently
enabled in the job in which the application program is running. The application program must provide
the required filter information in the output buffer that was created when the link was enabled. The
output buffer descriptor is not used. See [“Format of Filter Information” on page 65 for details on the
format of the filter information in the output buffer.

Filters contain inbound routing information that user-defined communications support uses to route
incoming data to a link that is enabled by an application program. The incoming data that is routed
depends on the type of communications line the link is using. On an X.25 communications line, the
incoming data is an incoming switched virtual circuit (SVC) call. On a token-ring, Ethernet, wireless, or
FDDI communications line, the incoming data is the actual data frame.

The type of filters activated for a link determine the way incoming data is routed to that link.
Note: All active filters for a link must be of the same type.

For links using a token-ring, Ethernet, wireless, or FDDI communications line, there are three types of
filters. The following list of filters is from most to least restrictive:

» Destination service access point (DSAP), source service access point (SSAP), frame type, optional
sending adapter address, and protocol (or group) ID.

» Destination service access point (DSAP), source service access point (SSAP), optional frame type, and
sending adapter address

* DSAP, SSAP, and optional frame type
+ DSAP

For links using an X.25 communications line, there are two types of filters. The following list of filters is
from most to least restrictive:

* Protocol identifier (PID) and calling data terminal equipment (DTE) address
The iSeries server treats the first byte of call-user data in an X.25 call request packet as the PID.
* PID

The order for checking filters when multiple links are using the same communications line, is from most
to least restrictive. For example, suppose two user-defined communications application programs
(application program A and B) in different jobs each have a link enabled that use the same token-ring
communications line. Further suppose that application program A has activated a filter on DSAP X’22’

64 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

and application program B has activated a filter on DSAP X’22’ and SSAP X’22’. If a data frame comes in
with a DSAP of X’22’ and an SSAP of X’22’, application program B will receive the frame. If a data frame
comes in with a DSAP of X’22’ and an SSAP not equal to X’22’, application program A will receive the
frame.

Authorities and Locks
None.

Required Parameter Group

Return code
OUTPUT: BINARY(4)

The recovery action to take. See |“Return and Reason Codes” on page 71.|

Reason code
OUTPUT; BINARY(4)

The error that occurred. See[“Return and Reason Codes” on page 71)

Error offset
OUTPUT, BINARY(4)

The offset from the top of the output buffer to the incorrect filter header data or to the incorrect
filter in the filter list.

The content of this parameter is only valid for 83/1999 and 83/3003 return/reason codes.

Communications handle
INPUT; CHAR(10)

The name of the link on which to perform the filter operation.

Format of Filter Information

The application must provide all filter information in the output buffer that was created when the link
was enabled. The application should treat the output buffer as one large space with the size equal to the
number of data units created for the output buffer multiplied by the size of each data unit. This
information is returned by the QOLELINK APl when the link was enabled.

The filter information in the output buffer is made up of two parts. The first portion starts at offset 0
from the top of the output buffer and contains filter header data. The second portion of the filter
information starts immediately after the filter header data in the output buffer and contains the filters
that make up the filter list.

Filter Header Data

Field Type Description

Function CHAR(1) The filter function to perform. The valid values are as follows:

X’00’ Deactivate all filters that are currently active for this link and activate
the filters specified in the filter list for this link.

X’01" Activate the filters specified in the filter list for this link. All filters
currently active for this link will remain active.

X'02’ Deactivate the filters specified in the filter list that are currently active
for this link.

Communications APIs 65

Field Type Description

Filter type CHAR(1) The type of the filters in the filter list. All filters in the filter list must be of this
type. In addition, this must be the same type as the filters currently active for
this link, if any. The valid values are as follows:

X00" PID.

This filter type is only applicable for links using an X.25
communications line and only applies to incoming SVC calls.

X’01’ PID and calling DTE address.

This filter type is only applicable for links using an X.25
communications line and only applies to incoming SVC calls.

X'02" DSAP.

This filter type is only applicable for links using a token-ring,
Ethernet, wireless, or FDDI communications line.

X’03" DSAP, SSAP, and optional frame type.

This filter type is only applicable for links using a token-ring,
Ethernet, wireless, or FDDI communications line.

X’04" DSAP, SSAP, optional frame type, and sending adapter address.

This filter type is only applicable for links using a token-ring,
Ethernet, wireless, or FDDI communications line.

X’08" DSAP, SSAP, frame type, optional and sending adapter address, and
protocol identifier (or organization ID).

This filter type is only applicable for links using a LAN
communications line.

Note: The filter type field must be set even if there are no filters in the filter

list.
Number of BINARY(2) The number of filters in the filter list. Any value between 0 and 256 may be
filters used.

Note: The maximum number of filters that can be specified in the filter list is
also limited by the total size of the output buffer which may accommodate less
than 256 filters.

Filter length BINARY(2) The length of each filter in the filter list. This value must be 16 for filter types
X’00" and X’01’, and 14 for filter types X’02’, X’03’, and X’04’, and 25 for filter
type X'08’.

Note: The filter length field must be set even if there are no filters in the filter
list.

The format of each filter in the previous list of filters is described in the following table. All filters in the
list of filters must be contiguous with each other and be of the type specified in the filter type field in the
filter header data.

X.25 Filters (Filter Types X’00” and X’01’)

66 iSeries: Communications APIs

Field

Type

Description

PID length

CHAR(1)

The length of the PID on which to route incoming calls. The valid values are as
follows:

X’00" Route incoming calls with no PID specified. That is, with no call user
data in the call request packet.

X’01" Route incoming calls with the PID being treated as the first byte of
call user data in the call request packet.

PID

CHAR(1)

The PID on which to route incoming calls. This should be set to X’00" when the
PID length field is set to X’00’. Otherwise, any value may be used.

Note: Care should be taken when setting the PID field to an SNA PID (X’C3’,
X’C6’, X’CB’, X’CE’), asynchronous PID (X’01’, X’C0’), or TCP/IP PID (X’CC’).

See the [X.25 Network Support| @‘ book for more information.

Calling DTE
address length

CHAR(1)

Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in
the calling DTE address on which to route incoming calls. The valid values are
as follows:

X’00" For filter type X’00’.

X’01’-X"0F’
For filter type X'01" when extended network addressing is not
configured in the line description. See|“Query Line Description|
|(QOLQLIND) API” on page 9|to determine if extended network
addressing is configured for this line.

X'01-X"11’
For filter type X’01” when extended network addressing is configured
in the line description. See[*Query Line Description (QOLQLIND)|

to determine if extended network addressing is
configured for this line.

Calling DTE
address

CHAR(12)

Specifies, in binary coded decimal (BCD), the calling DTE address on which to
route incoming calls. This should be set to BCD zeros when the calling DTE
address length field is set to X’00’. Otherwise, any valid DTE address
left-justified and padded on the right with BCD zeros may be used.

Communications APIs 67

Field Type

Description

Additional CHAR(1)
routing data

Specifies additional data on which to route incoming calls. This field is
applicable for all X.25 filter types and is bit-sensitive with bit 0 (leftmost bit)
defined for reverse charging options and bit 1 defined for fast select options.
The remaining bits are undefined and should be set off (0'B).

The valid values for bit 0 are as follows:
‘0B Accept reverse charging.

T'B Do not accept reverse charging.

The valid values for bit 1 are as follows:
‘0B Accept fast select.

1'B Do not accept fast select.

For example, consider the following values for the additional routing data
field:

X’00" Accept reverse charging and accept fast select.
X’40 Accept reverse charging and do not accept fast select.
X80 Do not accept reverse charging and accept fast select.

X’CO" Do not accept reverse charging and do not accept fast select.

LAN Filters (Filter Types X’02’, X’03’, and X’04’)

Field Type

Description

DSAP address CHAR(1)
length

The length of the DSAP address on which to route incoming frames. This must
be set to X'01".

DSAP address CHAR(1)

The DSAP address on which to route incoming frames. The DSAP address is
the service access point on which the incoming frame arrived. Any service
access point configured in the token-ring, Ethernet, wireless, or FDDI line
description as *NONSNA may be used.

Note: The Ethernet Version 2 standard does not use logical link control, which
utilizes SAPs. Therefore, to receive Ethernet Version 2 frames, a null DSAP
address (X’00") must be specified in the DSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet line description must be
configured as either *ETHV2 or *ALL.

SSAP address CHAR(1)
length

The length of the SSAP address on which to route incoming frames. The valid
values are as follows:

X’00" For filter type X’02’.
X’'01" For filter types X'03’ and X’04’.

68 iseries: Communications APIs

Field

Type

Description

SSAP address

CHAR(1)

The SSAP address on which to route incoming frames. The SSAP address is the
service access point on which the incoming frame was sent. The valid values
are as follows:

X’00" For filter type X'02’.

X'00’-X'FF’
For filter types X’03’ and X’'04’.

Note: The Ethernet Version 2 standard does not use logical link
control, which utilizes SAPs. Therefore, to receive Ethernet Version 2
frames, a null SSAP address (X’00’) must be specified in the SSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in the
Ethernet line description must be configured as either *ETHV2 or
*ALL.

Frame type
length

CHAR(1)

The length of the frame type on which to route incoming frames. The valid
values are as follows:

X’00" For filter type X’02’. Also for filter types X’03’” and X’04’ when the
DSAP address and SSAP address fields are not both set to X’00’.

X’00’ or X’02’
For filter types X’03’ and X'04’ when the 'DSAP address’ and SSAP
address fields are both set to X’00’.

Frame type

CHAR(2)

The frame type on which to route incoming frames. The frame type is defined
in an Ethernet Version 2 frame to indicate the upper layer protocol being used.
This must be set to X’0000° when the frame type length field is set to X’00’.
Otherwise, any value except X’80D5’ (encapsulated LLC) may be used, but
should be in the range of X’05DD’-X’FFFF’.

Sending adapter
address length

CHAR(1)

Specifies, in hexadecimal, the length of the sending adapter address on which
to route incoming frames. The valid values are as follows:

X’00" For filter types X’02’ and X'03’.
X’06" For filter type X’04’.

Sending adapter
address

CHAR(6)

Specifies, in packed form, the sending adapter address on which to route
incoming frames. This must be set to X’000000000000’ when the sending
adapter address length field is set to X’00’. Otherwise, any valid adapter
address may be used.

LAN Filters (Filter Type X’08’)

Field

Type

Description

DSAP address
length

CHAR(1)

The length of the DSAP address on which to route incoming frames. This must
be set to X'01".

Communications APIs 69

Field

Type

Description

DSAP address

CHAR(1)

The DSAP address on which to route incoming frames. The DSAP address is
the service access point on which the incoming frame arrived. Any service
access point configured in the token-ring, Ethernet, wireless, or FDDI line
description as *NONSNA may be used.

Note: The Ethernet Version 2 standard does not use logical link control, which
utilizes SAPs. Therefore, to receive Ethernet Version 2 frames, a null DSAP
address (X’00") must be specified in the DSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet line description must be
configured as either *ETHV2 or *ALL.

SSAP address
length

CHAR(1)

The length of the SSAP address on which to route incoming frames. The valid
values are as follows:

X’'01" For filter type X'08'.

SSAP address

CHAR(1)

The SSAP address on which to route incoming frames. The SSAP address is the
service access point on which the incoming frame was sent. The valid values
are as follows:

X00’-X"FF’
For filter type X’08’.

Note: The Ethernet Version 2 standard does not use logical link
control, which utilizes SAPs. Therefore, to receive Ethernet \Version 2
frames, a null SSAP address (X’00’) must be specified in the SSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in the
Ethernet line description must be configured as either *ETHV2 or
*ALL.

Frame type
length

CHAR(1)

The length of the frame type on which to route incoming frames. The valid
values are as follows:

X’02" For filter type X’08’.

Frame type

CHAR(2)

The frame type on which to route incoming frames. The frame type is defined
in an Ethernet Version 2 frame to indicate the upper layer protocol being used.
This must be set to X’0000’ when the frame type length field is set to X’00".
Otherwise, any value except X’80D5’ (encapsulated LLC) may be used, but
should be in the range of X’05DD’-X’FFFF’.

Sending adapter
address length

CHAR(1)

In hexadecimal, the length of the sending adapter address on which to route
incoming frames. The valid values are as follows:

X’00’ or

X'06" For filter type X’'08".

Sending adapter
address

CHAR(6)

In packed form, the sending adapter address on which to route incoming
frames. This must be set to X’000000000000" when the sending adapter address
length field is set to X’00". Otherwise, any valid adapter address may be used.

70 iseries: Communications APls

Field Type Description

Protocol ID CHAR(1) In hexadecimal, the length of the protocol ID on which to route incoming
length frames. This must be set to X’03’.

Protocol ID CHAR(3) In hexadecimal, the protocol ID (or organization ID) to route incoming frames.
Reserved field CHAR(7) This field must be initialized to hexadecimal zeros, X’00000000000000’.

General Rules for Using Filters

The following is a list of rules for activating and deactivating filters:
» All active filters for a link must be of the same type
* Alink can have a maximum of 256 active filters

* The maximum number of filters that can be specified in the filter list can be no more than 256, and
may be less, depending on the size of the output buffer

* A request to activate a filter for a link that already has the same filter active will be successful, but the
filter will only be activated once

* A request to deactivate a filter for a link that has no such filter active will be successful

* If the return and reason code from the QOLSETF API is not 0/0, none of the specified filters were
activated or deactivated

* Once a filter is activated, it will remain active until one of the following occurs:
— It is deactivated by explicitly calling the QOLSETF API
— The link that the filter was active for is disabled

Return and Reason Codes
Return/Reason | Meaning Recovery
Code
0/0 Operation successful. Continue processing.

80/2200 Queue error detected. Escape message Ensure the link is disabled and see messages in the
CPF91F1 will be sent to the application job log for further information. Then correct the
program when this return and reason code is | error, enable the link, and try the request again.
received.

80/2401 Output buffer error detected. Escape Ensure the link is disabled and see messages in the
message CPFI1F1 will be sent to the job log for further information. Then correct the
application program when this return and error, enable the link, and try the request again.
reason code is received.

80/3002 A previous error occurred on this link that Ensure the link is disabled and see messages in the
was reported to the application program by |job log for further information. If escape message
escape message CPFI1F0 or CPF91F1. CPF91F0 was sent to the application program, then
However, the application program has report the problem using the ANZPRB command.
attempted another operation. Otherwise, correct the error, enable the link, and

try the request again.

8074000 Error recovery has been canceled for this Ensure the link is disabled and see messages in the
link. job log for further information. Then correct the

condition, enable the link, and try the request
again.

80/9999 Internal system error detected. Escape See messages in the job log for further
message CPF91F0 will be sent to the information. Then, report the problem using the
application program when this return and ANZPRB command.
reason code is received.

71

Communications APIls

Return/Reason
Code

Meaning

Recovery

for this link.

8371998 The size of the output buffer is not large Reduce the number of filters in the filter list so

enough for the specified number of filters. that the size of the filter list plus the size of the
filter header data is less than or equal to the size
of the output buffer. Try the request again.

83/1999 Incorrect filter header data or incorrect filter | Correct the incorrect filter header data or the
in the filter list. If the filter header data is incorrect filter in the filter list. Try the request
incorrect, the error offset parameter will again.
point to the field in error. If a filter in the
filter list is incorrect, the error offset
parameter will point to the beginning of the
incorrect filter.

83/3001 Link not enabled. Correct the communications handle parameter. Try

the request again.

83/3003 One of the following is true of a filter in the | Do one of the following, and try the request again:
filter list. The error offset parameter will + End the job that has already activated the filter
point to the beginning of the offending filter. . . -

» Configure the service access point in the

* The filter is already activated by another token-ring, Ethernet, wireless, or FDDI line
job using the same communications line description

* The service access point, specified in the |. pelete the Ethernet line description, and create
DSAP address field of the filter, is not another Ethernet line description specifying
configured in the token-ring, Ethernet, *ETHV?2 or *ALL in the Ethernet Standard
wireless, or FDDI line description (ETHSTD) parameter

* The DSAP address field of the filter « Change the service access point in the
contains the null DSAP address (X'00°), token-ring, Ethernet, or wireless line description
but the Ethernet Standard (ETHSTD) to non-SNA use (*NONSNA)
parameter in the Ethernet line description
is not configured as *ETHV2 or *ALL

* The service access point, specified in the
DSAP address field of the filter, is
configured in the token-ring, Ethernet,
wireless, or FDDI line description for SNA
use only (*SNA)

83/3004 Link is enabling. Wait for the enable-complete entry to be sent to
the data queue or user queue. If the link was
successfully enabled, try the request again.

83/3200 All resources are currently in use by Wait for at least one of the asynchronous
asynchronous operations that have not yet operations to complete. Notification of completion
completed. of these operations will be received from the

QOLRECV API. Try the request again.
Note: This return and reason code is only
possible for links using an X.25
communications line. See |“Send Dat5|
[(QOLSEND) API” on page 39|for more
information.
8374001 Link failure, system starting error recovery | Wait for the link to recover. Try the request again.

Error Messages

Message ID Error Message Text

CPF3C90 E
CPFI1F0 E

Literal value cannot be changed.
Internal system error.

72 iSeries: Communications APls

Message ID Error Message Text
CPFI1F1 E User-defined communications application error.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

| FCommunications APIs,” on page 1] | [APIs by category]

Set Timer (QOLTIMER) API

Required Parameter Group:

1 Return code Output Binary(4)
2 Reason code Output Binary(4)
3 Timer set Output Char(8)
4 Timer to cancel Input Char(8)
5 Qualified queue name Input Char(20)
6 Operation Input Char(1)
7 Interval Input Binary(4)
8 Establish count Input Binary(4)
9 Key length Input Binary(4)
10 Key value Input Char(256)
11 User data Input Char(60)

Optional Parameter:
12 Queue type Input Char(1)

Threadsafe: No

The Set Timer (QOLTIMER) API either sets or cancels a timer. Up to 128 timers, each uniquely identified
by a name (timer handle), can be set in the job in which the application program is running.

When the QOLTIMER API is called to set a timer, a timer handle (timer set parameter) is returned to the
application program. The timer handle, along with the user data supplied when the timer was set, is
included in the timer-expired entry that is sent to the data queue or user queue when the specified
amount of time for this timer has elapsed. The timer is then reestablished, if necessary.

For example, suppose a user-defined communications application program sets a timer with a five-second
interval to be established two times. After five seconds, the timer-expired entry for this timer will be sent
to the data queue or user queue specified when the timer was set. The timer will then be automatically
reestablished, and five seconds later, another timer-expired entry for this timer will be sent to the data
queue or user queue. See |“Timer-Expired Entry” on page 303| for the format of the timer-expired entry.

In addition to setting a timer, the application program can call the QOLTIMER API to cancel one or all
timers currently set in the job in which the application program is running. User-defined communications
support will implicitly cancel a timer in the following cases:

» After a timer has expired the specified number of times (establish count parameter)
* When a job ends that had one or more timers set

Note: User-defined communications support does not associate timers with links. If necessary, that
association must be done by the application.

Authorities and Locks
None.

Communications APIs 73

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Return code
OUTPUT; BINARY(4)

The recovery action to take. See |“Return and Reason Codes” on page 75.|

Reason code
OUTPUT; BINARY(4)

The error that occurred. See[“Return and Reason Codes” on page 75)

Timer set
OUTPUT; CHAR(8)

The name of the timer (timer handle) that was set. TIMERO001, TIMERQO2, ... , TIMER128 are the
possible values.

The content of this parameter is only valid when setting a timer.

Timer to cancel
INPUT:; CHAR(8)

The name of the timer (timer handle) to cancel. TIMEROO1, TIMERO002, ... , TIMER128 may be
used as values. The special value of *ALL (left-justified and padded on right with spaces) may be
used to cancel all timers currently set in the job in which the user-defined communications
application program is running.

The content of this parameter is only valid when canceling a timer.

Qualified queue name
INPUT; CHAR(20)

The name and library of the data queue or user queue where the timer-expired entry will be sent
when the timer expires. The first 10 characters specify the name of the data queue or user queue
and the second 10 characters specify the library in which the queue is located. Both entries are
left-justified. The special values of *LIBL and *CURLIB may be used for the library name.

The content of this parameter is only valid when setting a timer.

Operation
INPUT; CHAR(1)

The timer operation to perform. The valid values are as follows:

X'01’ Set a timer.
X'02’ Cancel a timer.
Interval

INPUT; BINARY(4)

The number of milliseconds for which to set this timer. Any value between 1,048 and 3,600,000
may be used.

The content of this parameter is only valid when setting a timer.

Establish count
INPUT; BINARY (4)

The number of times this timer will be established. Any value between 1 and 60 may be used.
The special value of -1 may be used to always have this timer established after it expires.

The content of this parameter is only valid when setting a timer.
Key length
INPUT:; BINARY(4)

74 iSeries: Communications APls

The key length when using a keyed data queue or user queue. Any value between 0 and 256 may
be used, where 0 indicates the data queue or user queue is not keyed.

The content of this parameter is only valid when setting a timer.

Key value
INPUT; CHAR(256)

The key value when using a keyed data queue or user queue.

The content of this parameter is only valid when setting a timer.

User data
INPUT; CHAR(60)

The user data that is to be included in the timer-expired entry when the timer expires.

The content of this parameter is only valid when setting a timer.

Note: This data is treated as character data only and should not contain pointers.

Optional Parameter

Queue type
INPUT; CHAR(1)

The type of queue you specified for the queue name parameter.

D Data queue
U User queue

Return and Reason Codes

Return/Reason Code | Meaning

Recovery

0/0 Operation successful.

Continue processing.

81/9999 Internal system error detected. Escape
message CPF91F0 will be sent to the
application program when this return and
reason code is received.

See messages in the job log for further
information. Report the problem using the
ANZPRB command.

set operation.

82/1011 Queue type not valid. Correct the queue type parameter. Try the
request again.

8371001 Key length not valid. Correct the key length parameter. Try the
request again.

8371009 Timer operation not valid. Correct the operation parameter. Try the
request again.

8371010 Timer interval not valid. Correct the interval parameter. Try the
request again.

83/1011 Number of times to establish timer not valid. | Correct the establish count parameter. Try
the request again.

8373400 Timer not valid on cancel operation. Correct the timer to cancel parameter. Try the
request again.

83/3401 All timers are currently set for the requested | Cancel a timer. Try the request again.

8373402 Timer not set on cancel operation.

Continue processing.

Communications APIs 75

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

| [FCommunications APIs,” on page 1] | [APIs by category]

Data Stream Translation APIs

The data stream translation APIs allow your user-written applications access to the data stream
translation routines for 5250, 3270, and formatted buffer display data streams. Only display device data
streams are supported by these APIs. For more information on display data streams using formatted

buffers, see the [SNA Upline Facility Programming| @‘ book.

For additional information, see|Using the Data Stream APIs|

The data stream translation APIs are:

+ [*End Data Stream Translation Session (QDOENDTS) API”| (QDOENDTS) ends a session for data stream
translation.

+ [‘Start Data Stream Translation Session (QDOSTRTS) API” on page 77| (QDOSTRTS) starts a session for
data stream translation.

+ [“Translate Data Stream (QDOTRNDS) API” on page 79 (QDOTRNDS) translates a data stream in one
format to another format.

[Top| | [*Communications APIs,” on page 1 | [APIs by category]

End Data Stream Translation Session (QDOENDTS) API
Required Parameter Group:

1 Translation session handle Input Char(16)
2 Error code 170 Char(*)

Threadsafe: No

The End Data Stream Translation Session (QDOENDTS) API ends a session for data stream translation.

Authorities and Locks
None.

Required Parameter Group

Translation session handle
INPUT, CHAR(16)

The name of the translation session. This name is returned to your application following the call
to the QDOSTRTS API.

Error code
170; CHAR(*)

76 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm
comm6a.htm
#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CFl E Error code parameter not valid.

CPF5D58 E Translation session handle parameter value not valid.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

ffop] | [*Communications APIs,” on page 1 | [APIs by category]

Start Data Stream Translation Session (QDOSTRTS) API

Required Parameter Group:

1 Translation session handle Output Char(16)
2 Display device name Input Char(10)
3 Default screen size Input Char(10)
4 Alternate screen size Input Char(10)
5 Error code 170 Char(*)

Threadsafe: No

The Start Data Stream Translation Session (QDOSTRTS) API initiates a session for data stream translation.
Your application can start as many translation sessions as you need.

Authorities and Locks

Device Authority
The user must have at least *USE authority to the device specified in the display device name
parameter.

Required Parameter Group

Translation session handle
OUTPUT; CHAR(16)

The name of the translation session. This name is supplied to your application so that you can
keep track of a particular session. It is also required that you pass this name to the other data
stream APIs.

Display device name
INPUT; CHAR(10)

The name of the 5250 device for which the translation is being done. The 5250 data stream that is
generated depends on the capabilities of the display device. You can specify the following values:

Name The name of a display device that is known to the system.

Note: An error will occur if the job you are using for data stream translation is not authorized to
the device you specify.

Communications APIs 77

#TOP_OF_PAGE
aplist.htm

*REQUESTER The display device that is associated with this job is to be used.

*BASIC

Note: An error will occur if there is no display device associated with this job. For example, the
job is a batch job.

The display device is assumed to have the lowest common characteristics. The following
characteristics are assumed:

e The display is monochrome.

* The display has a screen size of 24x80. If a larger screen size is specified when *BASIC is
specified for the display device name, an error occurs.

e Input in row 1, column 1 is not supported.

* The Home key does not work like the 3270 home key.

e The maximum number of input fields is 126.

e The language is defaulted to the Keyboard Type (QKBDTYPE) system value.
« The display does not support extended attributes.

Note: The full capabilities of the device can be determined only if a 5250 query has been sent to
the device. The 5250 query is sent the first time a user signs on after the device is varied on. The
results remain in effect until the device is varied off. If no one has signed on since the device was
varied on, some of the characteristics will default to those assumed for *BASIC display devices.

Default screen size

INPUT; CHAR(10)

The size of the screen for the selected display device. Either this value or the alternate screen size
value is used depending on the command used in the 3270 data stream. The possible screen sizes
are:

024X080 24 lines by 80 columns
027X132 27 lines by 132 columns
*DEVMAX The maximum screen size allowed by the device

Alternate screen size

INPUT; CHAR(10)

The alternate size of the screen for the selected display device. Either this value or the default
screen size value is used depending on the command used in the 3270 data stream. The possible
screen sizes are:

024X080 24 lines by 80 columns

027X132 27 lines by 132 columns

*DEVMAX The maximum screen size allowed by the device
Error code

1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.
CPF3CFl E Error code parameter not valid.
CPF5D50 E Display device description &1 not found.
CPF5D51 E Device &1 is not a display device.
CPF5D52 E Not authorized to display device &1.

78 iSeries: Communications APIs

Message ID Error Message Text

CPF5D5B E Value &1 for default screen size parameter not valid.

CPF5D61 E Value for display device parameter not valid.

CPF5D66 E Value for alternate screen size parameter not valid.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF5D68 E Default screen size parameter is not valid.

CPF5D69 E Alternate screen size parameter is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

| [FCommunications APIs,” on page 1] | [APIs by category]

Translate Data Stream (QDOTRNDS) API

Required Parameter Group:

1 Translation session handle Input Char(16)
2 To buffer Output Char(*)
3 To buffer output length Output Binary(4)
4 To buffer length Input Binary(4)
5 To buffer type Input Char(10)
6 From buffer Input Char(*)
7 From buffer length Input Binary(4)
8 From buffer type Input Char(10)
9 Operation Input Char(1)
10 Error code 170 Char(*)

Default Public Authority: *USE
Threadsafe: No

The Translate Data Stream (QDOTRNDS) API translates data from one format to another format. The data
formats depend on the parameter values you specify.

Authorities and Locks
None.

Required Parameter Group

Translation session handle
INPUT; CHAR(16)

The name of the translation session. This name is returned to your application following the call
to the QDOSTRTS API.

To buffer
OUTPUT; CHAR(¥)

The buffer used to contain the output of the data stream translation. This value should be large
enough to contain the expected results.

To buffer output length
OUTPUT; BINARY (4)

The length of the translated data that is placed in the to buffer parameter.

To buffer length
INPUT; BINARY(4)

Communications APIs 79

#TOP_OF_PAGE
aplist.htm

The length of the buffer that is available for output.

To buffer type
INPUT; CHAR(10)

The type of data to be put into the to buffer parameter. The possible values are:

5250 Create a 5250 data stream

3270 Create a 3270 data stream

3270RB Create a 3270 data stream for the data stream that is expected in response to a 3270 Read Buffer
command

*FORMAT Create a formatted buffer for the data. See the SNA Upline Facility Programming, SC41-5446, book

to determine the format of the buffer header.

See Valid Parameter Combinations (page for a list of the allowable combinations of this
parameter with the operations and from buffer type parameters.

From buffer
INPUT; CHAR(*)

The buffer that contains the data to be translated.

From buffer length
INPUT; BINARY (4)

The length of the data contained in the from buffer parameter.

From buffer type
INPUT; CHAR(10)

The type of data that is contained in the from buffer parameter. The possible values are:

5250 Contains a 5250 data stream

5250RS Contains a 5250 data stream that results from a 5250 Read Screen command

5250RSE Contains a 5250 data stream that results from a 5250 Read Screen with Extended Attributes
command

3270 Contains a 3270 data stream

*FORMAT Contains a formatted buffer for the data. See the SNA Upline Facility Programming book, SC41-5446,

to determine the format of the buffer header.

See Valid Parameter Combinations (page for a list of the allowable combinations of this
parameter with the operations and to buffer type parameters.

Operation
INPUT; CHAR(1)

Indicates whether the data to be translated is input or output data. You can specify the following
values:

| The data to be translated is for an input operation

(0] The data to be translated is for an output operation

See Valid Parameter Combinations (page for a list of the allowable combinations of this
parameter with the to buffer type and from buffer type parameters.

Error code
1/0; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

80 iseries: Communications APIs

The following table lists the valid combinations of the from buffer type, to buffer type, and operations

parameters.

Valid Parameter Combinations

Operation From BufferType To BufferType

@) 3270 *FORMAT
(@] 3270 5250

@) *FORMAT 5250

| 5250 *FORMAT

| 5250 3270

| *FORMAT 3270

| 5250RS 3270RB

| 5250RSE 3270RB

Error Messages

Message ID
CPF3C90 E
CPF3CF1 E
CPF5D53 E
CPF5D54 E
CPF5D55 E
CPF5D56 E
CPF5D57 E
CPF5D58 E
CPF5D59 E
CPF5D5A E
CPF5D5C E

Error Message Text

Literal value cannot be changed.

Error code parameter not valid.

To and from buffers overlap.

Value &1 for operation parameter not valid.

Value &1 is not valid for the To buffer type parameter.
Value &1 is not valid for the From buffer type parameter.
Combination of parameter values not valid.
Translation session handle parameter value not valid.
Value &1 for from buffer length parameter not valid.
Value &1 for the to buffer length parameter not valid.
3270 data stream in from buffer not valid.

An error was found while translating the 3270 data stream in the from buffer. The error code for
translation was &1.

X’0002°

X’0003’

X’0004’

X’0021’
X’0863’

A 3270 command or order that is not supported or not valid was detected in the data
stream.

A parameter or address that is not valid was detected in the 3270 data stream.

Excess fields were detected in the data stream. A certain number of these fields are
allowed based on the device specified on the QDOSTRTS call. This number of fields was
exceeded.

A set buffer address order is missing after a row-column AID code.

A character set attribute that is not valid was found in the data stream.

Communications APIs 81

Message 1D
CPF5D5D E

CPF5DSE E

CPF5D5F E

CPF5D60 E
CPF5D62 E
CPF5D63 E

CPF5D64 E
CPF5D65 E
CPF5D67 E
CPF9872 E

Error Message Text
5250 data stream in from buffer not valid.

An error was found while translating the 5250 data stream in the from buffer. The error code for
the translation was &1.

X’0001" A 5250 AID code that was not correct was found in the data stream.
X’0020° A cursor position that was not valid was detected in the 5250 data stream.
X’0021" A set buffer address order is missing after a row-column AID code.

X’0022" A set buffer address order that was not valid was found in the data stream.

X’'D030’
A data stream resulting from a Read Screen with Extended Attributes command was
specified for a display device that does not support extended attributes.

Return code in formatted buffer indicates error. Codes returned in this message are listed in SNA
Upline Facility Programming, SC41-5446.

Data integrity error in from buffer. The error code for the translation was &1. The possible error
codes are:

X’0023" Character not valid.

X’0050’ Shift out (X’0E’) and shift in (X’0F’) not correctly balanced in a DBCS session.
X’0051" Shift out (X’0E’) and shift in (X’0F’) in a DBCS field.

X’0052" The dead position in a DBCS field is not null.

X’0053" A DBCS character is not valid.

To buffer not large enough for translation output.

Error occurred in translation routines.

Data integrity error in formatted buffer. The error code for the translation was &1. The possible
error codes are:

X’0023" Character not valid.

X’0050" Shift out (X’0E’) and shift in (X’0F’) not correctly balanced in a DBCS session.
X’0051" Shift out (X’0E’) or shift in (X’0F’) in a DBCS field.

X’0052" The dead position in a DBCS field is not null.

X’0053" A DBCS character is not valid.

To buffer length not valid for to buffer.

From buffer length not valid for from buffer.

Severe error occurred while addressing parameter list.
Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

| ['Communications APIs,” on page 1 | [APIs by category]

82 iseries: Communications APIs

#TOP_OF_PAGE
aplist.htm

OptiConnect APIs

The OptiConnect APIs are used to move user data between two or more servers that are connected by the
OptiConnect fiber-optic bus. The OptiConnect APIs require that the OptiConnect hardware and software
products have been installed on all of the systems that will be used for communications. A maximum of
32KB (where KB equals 1024 bytes) of data may be transferred in a single send or receive function.

Note: To use these APIs, you need the OptiConnect for i5/0S® feature.

The OptiConnect APIs are;

» |“Close Path (QzdmClosePath) API”| (QzdmClosePath) closes an OptiConnect path.

* [“Close Stream (QzdmCloseStream) API” on page 85| (QzdmCloseStream) closes an OptiConnect stream.

* [“Open Path (QzdmOpenPath) API” on page 87| (QzdmOpenPath) opens an OptiConnect path.

* [“Open Stream (QzdmOpenStream) API” on page 89| (QzdmOpenStream) opens an OptiConnect stream.

* [“Receive Control (QzdmReceiveControl) API” on page 91| (QzdmReceiveControl) receives a control
message on an OptiConnect stream.

[‘Receive Request (QzdmReceiveRequest) API” on page 93| (QzdmReceiveRequest) receives a request or
a message over an OptiConnect path.

+ [‘Receive Response (QzdmReceiveResponse) API” on page 97| (QzdmReceiveResponse) receives an
acknowledgement and the response data over an OptiConnect path.

[‘Send Request (QzdmSendRequest) API” on page 100 (QzdmSendRequest) sends a request or a
message over an OptiConnect path.

+ [*Send Response (QzdmSendResponse) AP1” on page 103| (QzdmSendResponse) sends an
acknowledgement and the response data over an OptiConnect path.

[“Wait Message (QzdmWaitMessage) API” on page 105 (QzdmWaitMessage) waits for a message on an
OptiConnect stream.

[Top| | [FCommunications APIs,” on page 1 | [APIs by category]

Close Path (QzdmClosePath) API

Required Parameter Group:

1 Request variable Input Char(*)
2 Length of request variable Input Binary(4)
3 Format name of request variable Input Char(8)
4 Error code 170 Char(*)

Library Name / Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE
Threadsafe: No

The Close Path (QzdmClosePath) API is used to close an OptiConnect path. The Close Path
(QzdmClosePath) API should be performed after the path is no longer needed to free the system
resources associated with the path.

The system that initiated the last transaction, by using the Send Request (QzdmSendRequest) API, should
be the system that closes the path after the transaction is completed with the Receive Response
(QzdmReceiveResponse) API. If the system that received the request using the Receive Request
(QzdmReceiveRequest) API is the system that closes the path after issuing the Send Response
(QzdmSendResponse) API, then unpredictable results may occur. This is due to the Close Path
(QzdmClosePath) API being able to close the path before the response is actually received by the other
system that uses the Receive Response (QzdmReceiveResponse) API.

Communications APIs 83

#TOP_OF_PAGE
aplist.htm

After the Close Path (QzdmClosePath) API has been issued, the other system should complete the close
sequence by issuing the Receive Control (QzdmReceiveControl) API to receive the close path message
from the closing system.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

* A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Close Path (QzdmClosePath) API.

Length of request variable
INPUT: BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Close Path (QzdmClosePath) API.
The format CPTHO0100 is the only supported format used by this API for the request variable. See
[*CPTH0100 Format”|for more information on the CPTH0100 format.

Error code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

CPTHO0100 Format
The following table defines the information required for Format CPTHO0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 CHAR(8) Path identifier

Field Descriptions

Path identifier. The OptiConnect path that is to be closed. This field is provided as output with the Open
Path (QzdmOpenPath) API.

84 iseries: Communications APIs

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided
as output with the Open Stream (QzdmOpenStream) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.
CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

[fop] | [*Communications APIs,” on page 1 | [APIs by category]

Close Stream (QzdmCloseStream) API

Required Parameter Group:

1 Request variable Input Char(*)
2 Length of request variable Input Binary(4)
3 Format name of request variable Input Char(8)
4 Error code 170 Char(*)

Library Name 7/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE
Threadsafe: No

The Close Stream (QzdmCloseStream) API is used to close an OptiConnect stream. The Close Stream
(QzdmCloseStream) API should be performed after the stream is no longer needed to free the system
resources associated with the stream.

Restrictions
The following restrictions apply:
* The OptiConnect QSOC subsystem must be started on the system prior to calling this API.

« A stream must be opened to the OptiConnect device driver on the system by using the Open Stream
(QzdmOpenStream) API prior to calling this API.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Request variable
INPUT; CHAR(*)

Communications APIs 85

#TOP_OF_PAGE
aplist.htm

The request variable structure that describes the input for the Close Stream (QzdmCloseStream)
API.

Length of request variable
INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT;, CHAR(8)

The format of the information that is provided as input for the Close Stream (QzdmCloseStream)
API. The CSTR0100 format is used by this API for the request variable. See [‘CSTR0100 Format”|
for more information on the CSTR0100 format.

Error code
170; CHAR(*)
The structure in which to return error information. For the format of the structure, see

CSTRO0100 Format

The following table defines the information required for Format CSTR0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be closed. This field is provided as output with the
Open Stream (QzdmOpenStream) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.
CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

| [FCommunications APIs,” on page 1] | [APIs by category]

86 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Open Path (QzdmOpenPath) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Format name of request variable Input Char(8)
7 Error code 170 Char(*)

Library Name / Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE
Threadsafe: No

The Open Path (QzdmOpenPath) API is used to open an OptiConnect path. The Open Path
(QzdmOpenPath) API returns a path identifier that is then required as input for subsequent OptiConnect
APIs that require a path identifier.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystems must be started on both the local and remote systems prior to
calling this API.

* A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A user profile must exist on the remote system by the same name as the user profile that is running
the Open Path (QzdmOpenPath) API on the local system.

It is the responsibility of the user to verify that the user profile name on the remote system is the same
as the user profile name on the local system. The purpose of this verification is to ensure that the
user’s authority is the same on both systems.

» If a job description (*JOBD) is specified in the user profile on the remote system, the job description
must also reside on the remote system.

* A maximum of 256 path identifiers may be opened for a single job.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The receiver variable that is to receive the output control information from the Open Path
(QzdmOpenPath) API.

Length of receiver variable
INPUT; BINARY(4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

Communications APIs 87

The format of the information that is returned from the Open Path (QzdmOpenPath) API. The
OPRC0100 format is used by this API for the receiver variable. See [‘OPRC0100 Format”|for more
information on the OPRC0100 format.

Request variable
INPUT; CHAR(¥)

The request variable structure that describes the input for the Open Path (QzdmOpenPath) API.

Length of request variable
INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT, CHAR(8)

The format of the information that is provided as input for the Open Path (QzdmOpenPath) API.
The OPRQ0100 format is used by this API for the request variable. See [“OPRQ0100 Format”|for
more information on the OPRQO0100 format.

Error code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

OPRCO0100 Format

The following table defines the information returned for Format OPRC0100.

Offset

Dec Hex Type Field
0 0 CHAR(8) Path identifier

OPRQO0100 Format

The following table defines the information required for format OPRQ0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 CHAR(8) Remote system name
24 18 CHAR(10) Program name
34 22 CHAR(10) Program library name

Field Descriptions

Path identifier. The OptiConnect path that is to be used for communications. This field is provided as
output with the Open Path (QzdmOpenPath) API. This field must then be provided as input on all
subsequent OptiConnect APIs that require a path identifier.

The path identifier is associated with the stream identifier that is provided as input, as a stream-identifier
and path-identifier pair. For most applications, this stream-identifier and path-identifier pair needs to be
used for all subsequent OptiConnect APIs that are used to control communications on the local system.

88 iseries: Communications APIs

Remote system name. The name of the remote system to which the OptiConnect path is being opened.
This is the current system name as displayed on the Display Network Attributes (DSPNETA) display on
the remote system.

Program name. The program name on the remote system that controls communications on the remote
system. This program is called by the OptiConnect agent job (QZDMAGNT) on the remote system, and is
passed a stream-identifier and path-identifier pair.

For most applications, this stream-identifier and path-identifier pair needs to be used for all subsequent
OptiConnect APIs that are used to control communications on the remote system.

Program library name. The program library name on the remote system in which the program is
contained.

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided
as output on the Open Stream (QzdmOpenStream) API.

The stream identifier is associated with the path identifier that is provided as output, as a
stream-identifier and path-identifier pair. For most applications, this stream-identifier and path-identifier
pair needs to be used for all subsequent OptiConnect APIs that are used to control communications on
the local system.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF2 E OptiConnect path open error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.
CPFADF6 E Request variable not valid, reason code &1.

CPFADF7 E OptiConnect API open path error, function code &1, return code &2.
CPFADF8 E Program name not found.

CPFADF9 E Program library name not found.

CPFADFA E User not authorized to program.

CPFADFB E Open path rejected.

CPFADFD E Remote system &1 not found or not valid.

API introduced: V3R7

| [FCommunications APIs,” on page 1] | [APIs by category]

Open Stream (QzdmOpenStream) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Error code 170 Char(*)

Communications APIs 89

#TOP_OF_PAGE
aplist.htm

Library Name / Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE
Threadsafe: No

The Open Stream (QzdmOpenStream) API is used to open an OptiConnect stream. The Open Stream
(QzdmOpenStream) API returns a stream identifier, which is then required as input for subsequent
OptiConnect APIs that require a stream identifier.

Restrictions

The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on the local system prior to calling this API.
* A maximum of 256 stream identifiers may be opened for a single job.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The receiver variable that is to receive the output control information from the Open Stream
(QzdmOpenStream) API.

Length of receiver variable
INPUT: BINARY(4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Open Stream (QzdmOpenStream) API.
The OSTR0100 format is used by this API for the receiver variable. See [*OSTR0100 Format™| for
more information on the OSTR0100 format.

Error code
170; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

OSTRO0100 Format

The following table defines the information returned for Format OSTR0100.

Offset

Dec Hex Type Field
0 0 CHAR(16) Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided
as output with the Open Stream (QzdmOpenStream) API. This field must then be provided as input on
all subsequent OptiConnect API requests that require a stream identifier.

90 iseries: Communications APIs

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADF0O E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

API introduced: V3R7

ffop] | [*Communications APIs,” on page 1 | [APIs by category]

Receive Control (QzdmReceiveControl) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Format name of request variable Input Char(8)
7 Error code 170 Char(*)

Library Name 7/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXCLUDE
Threadsafe: No

The Receive Control (QzdmReceiveControl) API is used to receive a control message on an OptiConnect
stream.

When the Close Path (QzdmClosePath) API is issued on a system to close a path, the system that is at the
other end of the path must issue the Receive Control (QzdmReceiveControl) APl to complete the close
path sequence. If the Receive Control (QzdmReceiveControl) API is not issued, the stream identifier that
is associated with the path that is being closed is not available for subsequent communications until the
control message is received.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

* A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

Authorities and Locks

Service Program Authority
*EXECUTE

Communications APIs 91

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The receiver variable that is to receive the output control information from the Receive Control
(QzdmReceiveControl) API.

Length of receiver variable
INPUT: BINARY(4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from Receive Control(QzdmReceiveControl) API.
The RCRCO0100 format is used by this API for the receiver variable. See ['RCRC0100 Format™| for
more information on the RCRC0100 format.

Request variable
INPUT; CHAR(¥)

The request variable structure that describes the input for the Receive Control
(QzdmReceiveControl) API.

Length of request variable
INPUT; BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Receive Control
(QzdmReceiveControl) API. The RCRQO0100 format is used by this API for the request variable.
See [*‘RCRQ0100 Format™| for more information on the RCRQ0100 format.

Error code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

RCRCO0100 Format

The following table defines the information returned for Format RCRC0100.

Offset
Dec Hex Type Field
0 0 CHAR(1) Control message type
1 1 CHAR(8) Control message data

RCRQO0100 Format

The following table defines the information required for Format RCRQ0100.

92 iSeries: Communications APls

Offset

Dec

Hex Type Field

0 CHAR(16) Stream identifier

Field Descriptions

Control message data. The control message data returned for the control message type. For example, the
control message data for the close path message contains the path identifier of the path that is being

closed.

Control message type. The type of control message to be received. This field is provided as output on the
Receive Control (QzdmReceiveControl) API.

The possible value follows:

1

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

Close path message

output with the Open Stream (QzdmOpenStream) API.

Error Messages

Message 1D
CPF24B4 E
CPF3C1D E
CPF3C21 E
CPF3C90 E
CPF3CFl E
CPF9872 E
CPFADFO E
CPFADF1 E
CPFADF4 E
CPFADF5 E
CPFADF6 E

Error Message Text

Severe error while addressing parameter list.

Length specified in parameter &1 not valid.

Format name &1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code &3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect detected sequence error.

OptiConnect API internal error, function code &1, return code &2.
Request variable not valid, reason code &1.

API introduced: V3R7

| [*“Communications APIs,” on page 1| | [APIs by category|

Receive Request (QzdmReceiveRequest) API

Required Parameter Group:

1 Receiver variable Output
2 Length of receiver variable Input
3 Format name of receiver variable Input
4 Request variable Input
5 Length of request variable Input
6 Format name of request variable Input
7 Error code 170

Char(*)
Binary(4)
Char(8)
Char(*)
Binary(4)
Char(8)
Char(*)

Communications APIls

93

#TOP_OF_PAGE
aplist.htm

Library Name 7/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE
Threadsafe: No

The Receive Request (QzdmReceiveRequest) API is used to receive a request or a message over an
OptiConnect path. A maximum of 32KB of data may be transferred in a single receive request.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

* A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

» If the receiving system does not provide a large enough data buffer to receive all of the data, the data
that will fit into the data buffer is moved, but the remaining data is truncated. The user must then
increase the size of the data buffer and then retry the entire transaction.

* A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT,; CHAR(*)

The receiver variable that is to receive the output control information from the Receive Request
(QzdmReceiveRequest) API.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Receive Request (QzdmReceiveRequest)
API. The RQRCO0100 format is used by this API for the receiver variable. See[*“RQRC0100 Format”]|
on page 95 for more information on the RQRC0100 format.

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Receive Request
(QzdmReceiveRequest) API.

Length of request variable
INPUT: BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT, CHAR(8)

94 iseries: Communications APIs

The format of the information that is provided as input for the Receive Request
(QzdmReceiveRequest) APl. The RQRQO0100 format is used by this API for the request variable.
See [‘RQRQ0100 Format”| for more information on the RQRQ0100 format.

Error code
170; CHAR(¥)

The structure in which to return error information. For the format of the structure, see

RQRCO0100 Format

The following table defines the information returned for Format RQRC0100.

Offset
Dec Hex Type Field
0 0 CHAR(8) Transaction identifier
8 8 CHAR(8) Path identifier
16 10 BINARY(4) Total request data length
20 14 BINARY (4) Current output data length
24 18 BINARY (4) Maximum response data length

RQRQ0100 Format

The following table defines the information required for Format RQRQ0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 BINARY (4) Time-out value
20 14 BINARY(4) Offset to output descriptors
24 18 BINARY (4) Number of output descriptors
28 1C CHAR(4) Reserved
These fields repeat for | PTR(SPP) Data buffer pointer
each output descriptor g\ Apy(a) Data buffer length
CHAR(12) Reserved

Field Descriptions

Current output data length. The total data length of the request that was moved to the user’s data buffer
area. If the current output data length is less than the total request data length, then this indicates that
not all of the data was received. It is the responsibility of the user’s application program to retry the
entire transaction by using a larger data buffer size for the Receive Request (QzdmReceiveRequest) API to
receive all of the data.

Data buffer length. The length of the data buffer that is used for receiving data.

Data buffer pointer. The pointer to the data buffer that is used for receiving data.

Communications APIs 95

Maximum response data length. The maximum length that is allowed for the response data. This field is
provided by the user as input on the Send Request (QzdmSendRequest) API and indicates the maximum
response data length allowed for the Send Response (QzdmSendResponse) API.

Number of output descriptors. The number of output descriptors that are used. An output descriptor
describes where the output data may be found. The output descriptor consists of a space pointer to a
data buffer and the length of the data buffer. A maximum of three output descriptors may be specified.

Offset to output descriptors. The offset to the output descriptors.

Path identifier. The OptiConnect path that is to be used for communications. This field is provided as
output on the Receive Request (QzdmReceiveRequest) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field
must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Request (QzdmReceiveRequest)
API to complete. If the Receive Request (QzdmReceiveRequest) APl does not complete before the
specified time-out value, then the exception CPFADFE is returned. The user should then re-issue the
Receive Request (QzdmReceiveRequest) APl and specify the same time-out value or an increased
time-out value.

The Receive Request (QzdmReceiveRequest) APl remains outstanding, and control is not returned to the
user application until either of the following occurs:

* The request either completes successfully or unsuccessfully.
* The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Receive Request
(QzdmReceiveRequest) API to complete.

Total request data length. The total data length of the request that is available to be received. This field is
provided as output on the Receive Request (QzdmReceiveRequest) API.

Transaction identifier. The specific transaction associated with this Receive Request
(QzdmReceiveRequest) API. This field is provided as output on the Receive Request
(QzdmReceiveRequest) API. This field must then be provided as input on the corresponding Send
Response (QzdmSendResponse) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

96 iSeries: Communications APIs

Message ID Error Message Text

CPFADF6 E Request variable not valid, reason code &1.
CPFADFE E Time-out occurred.

CPFADFF E Transaction was terminated.

API introduced: V3R7

| FCommunications APIs,” on page 1] | [APIs by category]

Receive Response (QzdmReceiveResponse) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Format name of request variable Input Char(8)
7 Error code 170 Char(*)

Library Name / Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE
Threadsafe: No

The Receive Response (QzdmReceiveResponse) API is used to receive an acknowledgement and the
response data over an OptiConnect path. A maximum of 32KB of data may be received in a single receive
response.

The response data is received into the output buffers, which were previously defined in the output
descriptors on the Send Request (QzdmSendRequest) API.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

» A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

 If the receiving system does not provide a large enough data buffer to receive all of the data, the data
that will fit into the data buffer is moved, but the remaining data is truncated. The user must then
increase the size of the data buffer, and then retry the entire transaction.

* A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

Communications APIs 97

#TOP_OF_PAGE
aplist.htm

The receiver variable that is to receive the output control information from the Receive Response
(QzdmReceiveResponse) API.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Receive Response
(QzdmReceiveResponse) API. The RSRC0100 format is used by this API for the receiver variable.
See [*RSRC0100 Format”|for more information on the RSRC0100 format.

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Receive Response
(QzdmReceiveResponse) API.

Length of request variable
INPUT: BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Receive Response
(QzdmReceiveResponse) APIl. The RSRQ0100 format is used by this API for the request variable.
See [*RSRQ0100 Format”|for more information on the RSRQ0100 format.

Error code
1/0; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

RSRCO0100 Format

The following table defines the information returned for Format RSRC0100.

Offset
Dec Hex Type Field
0 0 CHAR(4) Acknowledgement data
4 4 BINARY (4) Actual response data length

RSRQ0100 Format
The following table defines the information required for Format RSRQ0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 CHAR(8) Path identifier
24 18 BINARY (4) Time-out value

98 iseries: Communications APIs

Offset

Dec Hex Type Field
28 1C CHAR(8) Transaction identifier

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. This field is provided as input on
the Send Response (QzdmSendResponse) API.

Actual response data length. The actual length that was received for the response data. If the response
data that was sent from the Send Response (QzdmSendResponse) API is larger than the buffer that was
provided with the Send Request (QzdmSendRequest) API, not all of the data was received. It is the
responsibility of the user’s application program to retry the entire transaction by using a larger data
buffer size for the Send Request (QzdmSendRequest) API to receive all of the data with the Receive
Response (QzdmReceiveResponse) API.

Path identifier. The OptiConnect path that is used for communications. This field is provided as output
on the Open Path (QzdmOpenPath) API.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Response
(QzdmReceiveResponse) API to complete. If the Receive Response (QzdmReceiveResponse) APl does not
complete before the specified time-out value, the exception CPFADFE is returned. The user should then
re-issue the Receive Response (QzdmReceiveResponse) APl and specify the same time-out value or an
increased time-out value.

The Receive Response (QzdmReceiveResponse) APl remains outstanding, and control is not returned to
the user application until either of the following occurs:

* The request either completes successfully or unsuccessfully.
* The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Receive Response
(QzdmReceiveResponse) API to complete.

Transaction identifier. The specific transaction associated with this Receive Response
(QzdmReceiveResponse) API. This field is provided as output on the Send Request (QzdmSendRequest)
API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADF0O E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

Communications APIs 99

Message ID Error Message Text

CPFADF6 E Request variable not valid, reason code &1.
CPFADFE E Time-out occurred.

CPFADFF E Transaction was terminated.

API introduced: V3R7

| FCommunications APIs,” on page 1] | [APIs by category]

Send Request (QzdmSendRequest) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Format name of request variable Input Char(8)
7 Error code 170 Char(*)

Library Name / Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE
Threadsafe: No

The Send Request (QzdmSendRequest) API is used to send a request or a message over an OptiConnect
path. A maximum of 32KB of data may be transferred in a single send request.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

» A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

* A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT,; CHAR(*)

The receiver variable that is to receive the output control information from the Send Request
(QzdmSendRequest) API.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

100 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Format name of receiver variable
INPUT:; CHAR(8)

The format of the information that is returned from the Send Request (QzdmSendRequest) API.
The SRRCO0100 format is used by this API for the receiver variable. See [*SRRC0100 Format”| for
more information on the SRRC0100 format.

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Send Request (QzdmSendRequest)
APL.

Length of request variable
INPUT; BINARY (4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Send Request (QzdmSendRequest)
API. The SRRQ0100 format is used by this API for the request variable. See [*SRRQ0100 Format”|
for more information on the SRRQ0100 format.

Error code
I70:; CHAR(*)
The structure in which to return error information. For the format of the structure, see

SRRC0100 Format

The following table defines the information returned for Format SRRC0100.

Offset

Dec Hex Type Field
0 0 CHAR(8) Transaction identifier

SRRQ0100 Format

The following table defines the information required for Format SRRQ0100.

Offset

Dec Hex Type Field

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Path identifier

24 18 BINARY (4) Maximum response data length
28 1C BINARY(4) Offset to input descriptors

32 20 BINARY(4) Number of input descriptors
36 24 BINARY(4) Offset to output descriptors

40 28 BINARY (4) Number of output descriptors
44 2C CHAR(4) Reserved

Communications APIs 101

Offset

Dec Hex Type Field
These fields repeat for |PTR(SPP) Data buffer pointer
each input descriptor g\ ARy () Data buffer length
CHAR(12) Reserved
These fields repeat for |PTR(SPP) Data buffer pointer
each output descriptor BINARY(4) Data buffer length
CHAR(12) Reserved

Field Descriptions
Data buffer length. The length of the data buffer that is used for the input or output data.

Data buffer pointer. The pointer to the input data buffer that is used for input or output data.

Maximum response data length. The maximum length that is allowed for the response data. This field is
provided as output on the Receive Request (QzdmReceiveRequest) APl and indicates the maximum
response data length allowed for the Send Response (QzdmSendResponse) API. If the response data that
is sent from the Send Response (QzdmSendResponse) API is larger than the buffer that is provided with
the Send Request (QzdmSendRequest) API, not all of the data is received. It is the responsibility of the
user’s application program to retry the entire transaction by using a larger data buffer size for the Send
Request (QzdmSendRequest) API to receive all of the data with the Receive Response
(QzdmReceiveResponse) API.

Number of output descriptors. The number of output descriptors that are used. An output descriptor
describes where the output data that is to be received from the remote system may be found. The output
descriptor consists of a space pointer to a data buffer and the length of the data buffer. A maximum of
three output descriptors may be specified. The total length of the output buffers must be equal to the
maximum response data length that is specified.

Number of input descriptors. The number of input descriptors that are used. An input descriptor
describes where the input data that is to be sent to the remote system may be found. The input descriptor
consists of a space pointer to a data buffer and the length of the data buffer. A maximum of three input
descriptors may be specified.

Offset to output descriptors. The offset to the output descriptors.

Offset to input descriptors. The offset to the input descriptors.

Path identifier. The OptiConnect path that is used for communications. This field is provided as output
on the Open Path (QzdmOpenPath) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field
must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as
output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Request. This field is provided

as output on the Send Request (QzdmSendRequest) API. This field must then be provided as input on
the corresponding Receive Response (QzdmReceiveResponse) API.

102 iSeries: Communications APIs

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADF0O E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.
CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

ffop] | [*Communications APIs,” on page 1 | [APIs by category]

Send Response (QzdmSendResponse) API

Required Parameter Group:

1 Request variable Input Char(*)
2 Length of request variable Input Binary(4)
3 Format name of request variable Input Char(8)
4 Error code 170 Char(*)

Library Name 7/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE
Threadsafe: No

The Send Response (QzdmSendResponse) API is used to send an acknowledgement and the response
data over an OptiConnect path. A maximum of 32KB of data may be transferred in a single send
response.

Restrictions
The following restrictions apply:

The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

If the receiving system does not provide a large enough data buffer to receive all of the data, the data
that will fit into the data buffer is moved, but the remaining data is truncated. The user must increase
the size of the data buffer and then retry the entire transaction.

A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority

*EXECUTE

Communications APIs 103

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Send Response
(QzdmSendResponse) API.

Length of request variable
INPUT: BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Send Response
(QzdmSendResponse) API. The SRSP0100 format is used by this API for the request variable. See
[“SRSP0100 Format’| for more information on the SRSP0100 format.

Error code
1/0; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

SRSPO0100 Format

The following table defines the information required for Format SRSP0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 CHAR(8) Transaction identifier
24 18 BINARY(4) Actual response data length
28 1C CHAR(4) Acknowledgement data
32 20 BINARY (4) Offset to input descriptors
36 24 BINARY (4) Number of input descriptors
40 28 CHAR(8) Reserved
These fields repeat for |PTR(SPP) Data buffer pointer
each input descriptor BINARY (4) Data buffer length
CHAR(12) Reserved

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. This field is provided as output on
the Receive Response (QzdmReceiveResponse) APl and indicates the acknowledgement data.

Actual response data length. The actual length that is sent for the response data. If the response data that
is sent is larger than the buffer that is provided on the Send Request (QzdmSendRequest) API, not all of
the data is sent. It is the responsibility of the user’s application program to retry the entire transaction by
using a larger data buffer size for the Send Request (QzdmSendRequest) API to receive all of the data
with the Receive Response (QzdmReceiveResponse) API.

104 iSeries: Communications APIs

Data buffer length. The length of the data buffer that is used for sending data.
Data buffer pointer. The pointer to the data buffer that is used for sending data.

Number of input descriptors. The number of input descriptors that are used. An input descriptor
describes where the input data may be found. The input descriptor consists of a space pointer to a data
buffer and the length of the data buffer. A maximum of three input descriptors may be specified.

Offset to input descriptors. The offset to the input descriptors.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field
must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as
output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Response (QzdmSendResponse)
API. This field is provided as output on the Receive Request (QzdmReceiveRequest) API.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFADFO E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.
CPFADF6 E Request variable not valid, reason code &1.

CPFADFF E Transaction was terminated.

API introduced: V3R7

I [*Communications APIs,” on page 1| | [APIs by category|

Wait Message (QzdmWaitMessage) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Request variable Input Char(*)
5 Length of request variable Input Binary(4)
6 Format name of request variable Input Char(8)
7 Error code 170 Char(*)

Library Name 7/ Service Program: QSOC/QZDMMDTA
Default Public Authority: *EXECUTE
Threadsafe: No

Communications APIs 105

#TOP_OF_PAGE
aplist.htm

The Wait Message (QzdmWaitMessage) API is used to wait for a message on an OptiConnect stream. The
message may be a request message, a response message, or a control message.

Restrictions
The following restrictions apply:

* The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to
calling this API.

* A stream must be opened to the OptiConnect device driver on the local system by using the Open
Stream (QzdmOpenStream) API prior to calling this API.

* A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to
calling this API.

Authorities and Locks

Service Program Authority
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT, CHAR(*)

The receiver variable that is to receive the output control information from the Wait Message
(QzdmWaitMessage) API.

Length of receiver variable
INPUT: BINARY(4)

The length of the receiver variable, in bytes. The length of the receiver variable must be at least
equal to or greater than the length of the output format.

Format name of receiver variable
INPUT; CHAR(8)

The format of the information that is returned from the Wait Message (QzdmWaitMessage) API.
The WMRCO0100 format is used by this API for the receiver variable. See|[*WMRC0100 Format” on|
page 107 for more information on the WMRCO0100 format.

Request variable
INPUT; CHAR(*)

The request variable structure that describes the input for the Wait Message (QzdmWaitMessage)
API.

Length of request variable
INPUT; BINARY(4)

The length of the request variable, in bytes. The length of the request variable must be at least
equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable
INPUT; CHAR(8)

The format of the information that is provided as input for the Wait Message
(QzdmWaitMessage) API. The WMRQO0100 format is used by this API for the request variable. See
|“WMRQ0100 Format” on page 107| for more information on the WMRQO0100 format.

Error code
I/0: CHAR(*)
The structure in which to return error information. For the format of the structure, see

106 iSeries: Communications APIs

WMRCO0100 Format
The following table defines the information returned for Format WMRC0100.

Offset
Dec Hex Type Field
0 0 CHAR(1) Message type

WMRQ0100 Format

The following table defines the information required for Format WMRQ0100.

Offset
Dec Hex Type Field
0 0 CHAR(16) Stream identifier
16 10 BINARY(4) Time-out value

Field Descriptions

Message type. The type of message that is received. This field is provided as output on the Wait Message
(QzdmWaitMessage) API.

Possible values follow:

1 Request message
2 Response message
3 Control message

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as
output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Wait Message (QzdmWaitMessage) API
to complete. If the Wait Message (QzdmWaitMessage) APl does not complete before the specified
time-out value, the exception CPFADFE is returned. The user should then re-issue the Wait Message
(QzdmWaitMessage) API and specify the same time-out value or an increased time-out value.

The Wait Message (QzdmWaitMessage) APl remains outstanding, and control is not returned to the user
application until either of the following occurs:

* The request either completes successfully or unsuccessfully.
* The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Wait Message (QzdmWaitMessage)
API to complete.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C1D E Length specified in parameter &1 not valid.
CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

Communications APIs 107

Message 1D
CPF3CF1 E
CPF9872 E

CPFADFO E
CPFADFL E
CPFADFS5 E
CPFADF6 E
CPFADFE E

Error Message Text

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code &3.
The OptiConnect QSOC subsystem must be active.

OptiConnect communication error.

OptiConnect API internal error, function code &1, return code &2.
Request variable not valid, reason code &1.

Time-out occurred.

API introduced: V3R7

| [FCommunications APIs,” on page 1] | [APIs by category]

TCP/IP Management

The TCP/IP Management APIs allow you to retrieve information about your TCP/IP setup and status,
and change certain system values related to TCP/IP.

The TCP/IP Management APlIs are:

+ [‘Change Connection Attribute (QTOCCCNA) API” on page 109 (QTOCCCNA) can change the

attribute of a socket or connection directly.

+ w[“Change IPv4 Interface (QTOCCA4IF) API” on page 113] (QTOCCAIF) can change selected parameters

for an IPv4 interface that is defined in the system’s TCP/IP configuration. <

 [“Convert Interface ID (QtocCvtlfcID) API” on page 115|(QtocCvtlfcID) retrieves the IP address of an

interface when given the name or the name of an interface when given the IP address. %

[“List Neighbor Cache Table (QtocLstNeighborTbl) API” on page 119 (QtocLstNeighborTbl) returns a

list of all entries in the IPv6 Neighbor Cache table for a specified line or for all lines.

[“List Network Connections (QtocLstNetCnn) API” on page 124 (QtocLstNetCnn) returns a non-detailed

list of all the network connections for a specified net connection type or a list of the subset of network
connections for a specified net connection.

[“List Network Interfaces (QtocLstNetlfc) API” on page 135|(QtocLstNetlfc) returns a detailed list of all

logical TCP/IP interfaces.

[“List Network Routes (QtocLstNetRte) API” on page 150| (QtocLstNetRte) returns a detailed list of all

routes.

« [“List Physical Interface ARP Table (QtocLstPhylfcARPTbI) API” on page 162 (QtocLstPhylfcARPTbI)

returns a list of all entries in the Address Resolution Protocol (ARP) table for the specified time.

[“List Physical Interface Data (QtocLstPhylfcDta) API” on page 166| (QtocLstPhylfcDta) returns a list of

physical interfaces and detailed information about TCP/IP-related data for each of the listed physical

interfaces.

|“List PPP Connection Profiles (QtocLstPPPCnnPrf) API” on page 18]] (QtocLstPPPCnNPrf) returns a list

of PPP connection profiles with some basic information about each profile.

|“List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API” on page 186| (QTOCLPP)) returns information

about each connection job currently associated with the specified point-to-point connection profile.

|“Remove ARP Table Entry (QtocRmvARPTbIE) API” on page 1891 (QtocRmVARPTbIE) removes one or

all dynamic entries from the ARP table for the specified line.

|“Retrieve Network Connection Data (QtocRtvNetCnnDta) API” on page 190| (QtocRtvNetCnnDta)

retrieves the details of any specified connection-including jobs using the connection.

|“Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API” on page 210| (QtocRtvPPPCNNPrf)

retrieves the details of a specific PPP connection job profile.

[Retrieve TCP/IP Attributes (QtocRtvTCPA) API” on page 226| (QtocRtvTCPA) retrieves TCP/IP

attributes.

108 iseries: Communications APIs

#TOP_OF_PAGE
aplist.htm

« [*Update DNS APl (QTOBUPDT)” on page 243[(QTOBUPDT) allows the caller to send one or more
update instructions to an iSeries dynamic DNS (Domain Name System) server.

See [Resource Reservation Setup Protocol APIs|for information on APIs that perform your integrated
services reservation.

The TCP/IP Management exit programs are:
» [FTP client request validation exit point| allows you to restrict operations performed by FTP users.

» [FTP server logon exit poind allows you to control the authentication of users to a TCP/IP application

server.

» |FTP server request validation exit point| allows you to restrict operations performed by FTP users.

* [REXEC server command processing selection (QIBM_QTMX_SVR_SELECT) exit point| allows you to
specify which command processor the REXEC server uses for interpreting and running commands.

. ITCP/IP request validation (QIBM_QTMX_ SERVER_REQ) exit point| allows you to restrict operations on
the REXEC server.

« [TCP/IP server logon (QIBM QTMX SVR LOGON) exit point|allows you to control the authentication
of users and setting up user environments for the REXEC server.

« [Telnet device initialization exit program|allows you to associate your custom exit program with exit
points on the iSeries Telnet server.

« [Telnet device termination exit program|allows you to log session termination information.

« [TETP request validation (QIBM QTOD SERVER REQ) exit point allows you to restrict operations on
the TFTP server.

[“Trace Exit Program for Trace TCP/IP Application command” on page 249|indicates if the trace should
stop or continue running.

[Exit Program for Watch for Trace Event” on page 252|is called while using commands to watch for
specific events, such as messages being sent to a particular queue.

[Top| | [FCommunications APIs,” on page 1 | [APIs by category]

Change Connection Attribute (QTOCCCNA) API

Required Parameter Group:

1 Change information Input Char(*)
2 Length of change information Input Binary(4)
3 Change information format Input Char(8)
4 Error code 170 Char(*)

Threadsafe: Yes
The Change Connection Attribute (QTOCCCNA) API can change the attribute of a socket or connection
directly. A valid socket descriptor is not required. Instead, the socket or connection to be changed is
identified by specifying the associated port and IP address information.
The SO_DEBUG socket option is the only attribute that can be changed.
Authorities and Locks

Default public authority
*EXCLUDE.

Communications APIs 109

unix15.htm
#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Change information
INPUT; CHAR(*)

The socket or connection that is changed.

Change information format
INPUT: CHAR(8)

The format of the change information input data. The possible values are:

TCPA0001 Change the connection attribute of a connection. The connection is identified by specifying the
local and remote values for the IP address and port number. See [“TCPA0001 Format™| below.

UDPA0001 Change the connection attribute of a socket. The socket is identified by specifying its local IP
address and local port number. See [“UDPAQ001 Format”|below.

4 TCPA0101 Change the connection attribute of a connection. The connection is identified by specifying the

local and remote values for the IPv6 address and port number. See TCPA0101 Format (page
[“TCPA0101 Format” on page 111) below.

UDPA0101 Change the connection attribute of a socket. The socket is identified by specifying its local IPv6
address and local port number. See[“UDPA0101 Format” on page 111| below. &

Length of change information
INPUT; BINARY (4)

The total length in bytes of the change information input variable.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
If this parameter is omitted, diagnostic and escape messages are issued to the
application.

TCPAOOO1 Format

Use this format when changing a connection. For detailed descriptions of the fields in this table, see
[“Field Descriptions” on page 111

Offset

Dec Hex Type Field

0 0 BINARY (4) Attribute to change

4 4 BINARY(4) Attribute value

8 8 BINARY (4) Local IP address binary
12 C BINARY (4) Local port number

16 10 BINARY (4) Remote IP address binary
20 14 BINARY(4) Remote port number

24 18

UDPAOOO1 Format

Use this format when changing a socket. For detailed descriptions of the fields in this table, see
[Descriptions” on page 111}

110 iseries: Communications APIs

Offset
Dec Hex Type Field
0 0 BINARY (4) Attribute to change
4 4 BINARY (4) Attribute value
8 8 BINARY(4) Local IP address binary
12 C BINARY (4) Local port number
16 10

Field Descriptions
Attribute to change. The possible value is:

1 Change the debug attribute (SO_DEBUG socket option) of the connection.

Attribute value. Possible values are:

0 The debug attribute is not set.
1 The debug attribute is set.

Local IP address. The local internet address used by the connection in binary form.

Local port number. The local system port number used by the connection.

Remote IP address. The remote internet address used by the connection in binary form.

Remote port number. The remote system port number used by the connection.

TCPAO101 Format

Use this format when changing an IPv6 connection. For detailed descriptions of the fields in this table,

see [“Field Descriptions” on page 112.|

Offset

Dec Hex Type Field

0 0 BINARY (4) Attribute to change

4 4 BINARY (4) Attribute value

8 8 CHAR(16) Local IPv6 address binary
24 18 BINARY(4) Local port number

28 1C CHAR(16) Remote IPv6 address binary
44 2C BINARY(4) Remote port number

48 30

UDPAO101 Format

Use this format when changing an IPv6 socket. For detailed descriptions of the fields in this table, see

[“Field Descriptions” on page 112

Communications APls

111

Offset
Dec Hex Type Field
0 0 BINARY (4) Attribute to change
4 4 BINARY(4) Attribute value
8 8 CHAR(16) Local IPv6 address binary
24 18 BINARY (4) Local port number
28 1C

Field Descriptions
Attribute to change. The possible value is:

1 Change the debug attribute (SO_DEBUG socket option) of the connection.

Attribute value. Possible values are:

0 The debug attribute is not set.
1 The debug attribute is set.

Local IPv6 address. The local IPv6 address used by the connection in binary form.
Local port number. The local system port number used by the connection.
Remote IPv6 address. The remote IPv6 address used by the connection in binary form.

Remote port number. The remote system port number used by the connection. <%

Error Messages

Message ID Error Message Text

CPF3C17 E Error occurred with input data parameter.
CPF3C21 E Format name &1 is not valid.

CPF3CIE E Required parameter &1 omitted.

CPF3CFl E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
TCP3842 E Error processing internal data request.
TCP3B03 E Connection &1:&2, &3:&4, not found.
TCP3B04 E Socket &1:&2, &3:&4, not found.

TCP84CO0 E TCP/IP stack not active.

TCP8AOB E IPv6 internal error - &1.

TCP923F E Value for parameter &2 for APl &1 not valid.

API introduced: V5R1

| [FCommunications APIs,” on page 1] | [APIs by category]

112 iseries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Change IPv4 Interface (QTOCCA4IF) API

Required Parameter Group:

1 Interface information Input Char(*)
2 Format name Input Char(8)
3 Error code 170 Char(*)

Default Public Authority: *USE
Threadsafe: Yes

The Change IPv4 Interface (QTOCCAIF) API is used to change selected parameters for an IPv4 interface
that is defined in the system’s TCP/IP configuration.

Authorities and Locks

Special Authority
The caller of this APl must be running under a user profile that has input/output system
configuration (*IOSYSCFG) special authority.

Required Parameter Group

Interface Information
INPUT; CHAR(*)

Contains the characteristics of the IPv4 interface being changed.

Format name
INPUT; CHAR(8)

The format of the interface information parameter. The format name supported is:

IFCHO0100
Format for adding or changing an IPv4 interface parameter. For the format of the
structure, see [*IFCH0100 Format.”|

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure refer to|Error
[Code Parameter]|

IFCHO0100 Format

For detailed descriptions of the fields in this table, see |“Fie|d Descriptions” on page 114.|

Offset
Dec Hex Type Field
0 0 BINARY (4) Length of fixed interface information
4 4 CHAR(15) Internet address
19 13 CHAR(1) Reserved
20 14 BINARY (4) Proxy ARP allowed
24 18 BINARY (4) Offset to preferred interface list
28 1C BINARY (4) Number of entries in preferred interface list

Communications APIs 113

Offset
Dec Hex Type Field
32 20 BINARY (4) Length of one preferred interface list entry
36 24 CHAR(24) Interface name
This field repeats for CHAR(*) Preferred interface list entry (See Format of Preferred Interface List
each preferred interface Entry for more information.)
list entry

Format of Preferred Interface List Entry

The preferred interface list entry describes the data specified for each entry in the preferred interface list
of the IFCHO0100 format. For detailed descriptions of the fields in the table, see Field Descriptions.

Offset
Dec Hex Type Field
0 0 CHAR(15) Preferred interface internet address
15 OF CHAR(1) Reserved

Field Descriptions

Interface name. Specifies a textual description of this interface. Up to 24 characters, padded with blanks,
may be specified. A value of *SAME means that the interface name does not change.

Internet address. The IPv4 internet address, in dotted decimal notation, of an interface.

Length of fixed interface information. This field contains the number of bytes specified in the fixed
portion of the interface information structure. The minimum value for this field is 24.

Length of one preferred interface list entry. The length of a preferred interface list entry. A value of zero
means that the list will be removed. A value greater than zero means that the list will be replaced. A
value of -1 means that the list does not change.

Number of entries in preferred interface list The number of entries in the preferred interface list. A
value of zero means that the list will be removed. A value greater than zero means that the list will be
replaced. A value of -1 means that the list does not change. The maximum value for this field is 10.

Offset to preferred interface list The offset from the start of the fixed interface information to the
beginning of the preferred interface list. A value of zero or greater means that the list will be replaced. A
value of -1 means that the list does not change.

Preferred interface internet address The internet address, in dotted decimal notation, of an interface in
the preferred interface list.

Preferred interface list entry. Specifies information about an interface in the preferred interface list. The
order in which the list entries are specified is also the order in which the system uses the interfaces as
Proxy Agents.

Proxy ARP allowed. This field applies to Opticonnect (*OPC) and Virtual Ethernet interfaces only. For

those types of interfaces, this field indicates whether Proxy (Address Resolution Protocol) ARP has been
configured to be allowed or not allowed.

114 iseries; Communications APIs

0 NO - Proxy ARP not allowed.
1 YES - Proxy ARP allowed.
-1 The value does not change.

Reserved. A reserved field. This field must be set to zero.

Usage Notes

Typically, if an error is detected during the change operation, a diagnostic message will be sent to the job
log. This diagnostic message will contain details about the error. The API will then either signal the error
message TCP2658 or return TCP2658 in the error code structure.

Error Messages

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
TCP2658 E &2 &1 not changed.

TCP923C E &1 special authority is required.

TCP923F E Value for parameter &2 for APl &1 not valid.

<¥ API introduced: V5R4

[fop] | [FCommunications APIs,” on page 1 | [APIs by category]

Convert Interface ID (QtocCvtlfcID) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Interface request Input Char(*)
5 Interface request CCSID Input Binary(4)
6 Error Code 170 Char(*)

Service Program Name: QTOCNETSTS
Default Public Authority: *USE
Threadsafe: Yes

The Convert Interface ID (QtocCvtlfcID) API retrieves the IP address of an interface when given the
name or the name of an interface when given the IP address.

Authorities and Locks
None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

The variable that is to receive the information requested. You can specify the size of this area to
be smaller than the format requested if you specify the length of receiver variable parameter
correctly. As a result, the API returns only the data that the area can hold.

Communications APIs 115

#TOP_OF_PAGE
aplist.htm

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If this value is larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)
The format of the information to be returned. The format names supported are:

NCI110100
Return the IP address associated with the name specified. Refer to [‘NCI10100 Format” on|
page 117|for details on the format.

NCI110200
Return the name associated with the IPv4 address specified. Refer to [*NCI110200 Format”]

on page 117| for details on the format.

NCI110300
Return the name associated with the IPv6 address specified. Refer to [‘NCI10300 Format’]

for details on the format.

Interface request

Input; CHAR(*)

The alias name or interface IP address for the interface to retrieve the mapping for. When format
NCII0100 is used, the Interface request parameter must be 50 characters long and the alias name
must be passed in with this parameter. When format NCI10200 is used, the Interface request
parameter must be 15 characters long. When format NCI10300 is used, the data must be specified:

Offset
Dec Hex Type Field
0 0 Char(45) Interface address
45 2D Char(3) Reserved
48 30 Char(10) Line description
58 3A Char(6) Reserved

Field Descriptions

Interface address.
The IP address of the interface that is associated with the specified name.

Line description.
The physical line the interface is associated with. This field must be set to all blanks
when the interface is not a multi-cast interface.

Reserved.
A reserved field. It must be x’00’".

Interface request CCSID

Input; Binary(4)

The coded character set ID for the Interface request. To specify the job CCSID, this field should be
set to 0. When using format NCI10200 or NCI110300, the CCSID is not applicable and must be set
to 0.

Note: In V5R4, only the job CCSID is supported so this field must always be set to 0.

116 iseries: Communications APIs

Error code

1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

Format of Returned Interface Data

NCII0100 Format

Format NCI110100 returns the IP address of the named interface. For detailed descriptions of the fields in
the table, see|“Field Descriptions”|

Offset
Dec Hex Type Field

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(45) Interface address
53 35 Char(3) Reserved

56 38 Char(10) Line Description
66 42 Char(6) Reserved

Field Descriptions

Bytes available.
The number of bytes of data available to be returned. All available data is returned if enough
space is provided.

Bytes returned.
The number of bytes of data returned.

Interface address.
The IP address of the interface that is associated with the specified name.

Line description.

The physical line the interface is associated with. This field is set to all blanks when the interface
is not a multi-cast interface.

Reserved.
An ignored field.

NCI10200 Format

Format NCI110200 returns the name for the interface specified by the IP address. For detailed descriptions
of the fields in the table, see |“Fie|d Descriptions” on page 118|

Offset
Dec Hex Type Field
0 0 Binary(4) Bytes returned
4 4 Binary(4) Bytes available

Communications APIs 117

Offset
Dec Hex Type Field
8 8 Char(50) Alias name
58 3A Char(6) Reserved
64 40 Binary(4) Alias name CCSID

Field Descriptions

Alias name.
The name that is defined for the interface.

Alias name CCSID.
The coded character set ID of the alias name.

Bytes available.
The number of bytes of data available to be returned. All available data is returned if enough
space is provided.

Bytes returned.
The number of bytes of data returned.

Reserved.
An ignored field.

NCII0300 Format

Format NCI10300 returns returns the name for the interface specified by the IP address. For detailed
descriptions of the fields in the table, see [‘Field Descriptions”]

Offset
Dec Hex Type Field
0 0 Binary(4) Bytes returned
4 4 Binary(4) Bytes available
8 8 Char(50) Alias name
58 3A Char(6) Reserved
64 40 Binary(4) Alias name CCSID

Field Descriptions

Alias name.
The name that is defined for the interface.

Alias name CCSID.
The coded character set ID of the alias name.

Bytes available.
The number of bytes of data available to be returned. All available data is returned if enough
space is provided.

Bytes returned.
The number of bytes of data returned.

118 iseries: Communications APIs

Reserved.
An ignored field.

Error Messages
The following messages may be sent from this function:

Message ID Error Message Text

TCP266B TCP/IP interface not found.

TCP1901 Internet address &1 not valid.

TCP1902 Internet address &1 not valid.

TCP1908 Internet address &1 not valid.

TCP84C6 Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
CPF24B4 Severe error while addressing parameter list.

CPF3C19 Error occurred with receiver variable specified.

CPF3C1E Required parameter &1 omitted.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF3C90 Literal value cannot be changed.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

CPF8100 All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

<% API introduced: V5R4

[Top] | [FCommunications APIs,” on page 1 | [APIs by category]

List Neighbor Cache Table (QtocLstNeighborTbl) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Line name Input Char(10)
4 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Neighbor Cache Table (QtocLstNeighborTbl) API returns a list of all entries in the IPv6 Neighbor
Cache table for a specified line or for all lines.

TCP/IP must be active on this system; otherwise, error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Communications APIs 119

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that receives the information, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The job’s current library.
*LIBL The library list.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

NNCTO0100 List of Neighbor Cache table entries for a specified line. Refer to [“NINCT0100 Format” on page 121
for details on the format.

Line name
INPUT; CHAR(10)

The name of the IPv6 enabled physical interface for which to retrieve Neighbor Cache table
entries. The following special value may be used:

*ALL Request all Neighbor Cache entries for all IPv6 enabled lines in the system.
Error Code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see

Format of Neighbor Cache Table Lists

To request a list of Neighbor Cache table entries for a line, use format NNCTO0100.

The Neighbor Cache table list consists of:
* A user area
* A generic header
* An input parameter section
* A header section
* A list data section:
— NNCTO0100 format.

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see API [Examples,

120 iSeries: Communications APIs

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C CHAR(10) Line name specified

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name
10 A CHAR(10) User space library name used
20 14 CHAR(10) Line name used

NNCTO0100 Format

The following information about an entry in the Neighbor Cache table is returned for the NNCT0100

format. For detailed descriptions of the fields in the table, see|“Field Descriptions” on page 122 .|

Offset

Dec Hex Type Field

0 0 CHAR(45) Internet IPv6 address

45 2D CHAR(3) Reserved

48 30 CHAR(16) Internet IPv6 address binary

64 40 CHAR(17) Link layer address

81 51 CHAR(7) Reserved

88 58 BINARY(8) Link layer address binary

96 60 CHAR(10) Line name
106 6A CHAR(2) Reserved
108 6C BINARY(4) Reachability state
112 70 CHAR(8) Reachability state change - date
120 78 CHAR(9) Reachability state change - time
129 81 CHAR(3) Reserved
132 84 BINARY (4) Reachability state error information
136 88 BINARY (4) Time in reachable state
140 8C BINARY(4) Is router
144 90 BINARY(4) Number of unicast neighbor solicitation packets sent
148 94 BINARY (4) Number of multicast neighbor solicitation packets sent
152 98 BINARY (4) Delay first probe time
156 9C BINARY (4) Max unicast solicits

Communications APls

121

Offset

Dec Hex Type Field
160 A0 BINARY (4) Max multicast solicits

Field Descriptions

Delay first probe time. The current value of the configured stack attribute named Neighbor solicitation
delay first probe time. This attribute controls how long a Neighbor Cache entry will stay in the DELAY
state before the stack will send another Neighbor Solicitation and move this Neighbor Cache entry’s
Reachability state to PROBE if reachability still has not been confirmed. Valid values range from 3
through 10 seconds.

Internet IPv6 address. The IPv6 address of the neighbor in IPv6 address format notation. This field is
NULL padded.

Internet IPv6 address binary. The binary representation of the neighbor’s IPv6 address. Even though this
field is defined as a character field, binary data will be returned in it.

Is router. Whether this neighbor is a router. Possible values are:

0 No, this neighbor is not a router.
1 Yes, this neighbor is a router.

Line name. The name of the communications line description that identifies the physical interface which
is directly connected to this neighbor.

Link layer address. The MAC address of the neighbor’s network interface. Format: XX:XX:XX:XX:XX:XX,
where each X’ is a hexadecimal digit.

Link layer address binary. The binary representation of the neighbor’s six byte link layer address.

Max multicast solicits. The current value of the configured Neighbor solicitation max multicast solicits
stack attribute. This attribute controls the maximum number of multicast Neighbor Solicitations which
will be sent out when the system is performing link-layer address resolution for another host (neighbor).
If no Neighbor Advertisement is received after the maximum number of Neighbor Solicitations have been
sent out, address resolution has failed, and an ICMPv6 error message will be returned to the application.
Valid values range from 1 through 5 transmissions.

Max unicast solicits. The current value of the configured Neighbor solicitation max unicast solicits stack
attribute. This attribute controls the maximum number of unicast Neighbor Solicitations which will be
sent out when the system is performing link-layer address resolution for another host with unicast
Neighbor Solicitations. Multicast is the normal way to perform Neighbor Discovery, but unicast Neighbor
Solicitations will be used if the local physical interface is not multicast-capable. If no Neighbor
Advertisement is received after the maximum number of Neighbor Solicitations have been sent out,
address resolution has failed, and an ICMPV6 error message will be returned to the application. Valid
values range from 1 through 5 transmissions.

Number of multicast neighbor solicitation packets sent. The total number of multicast Neighbor
Solicitations which have been sent from the local system to this neighbor.

Number of unicast neighbor solicitation packets sent. The total number of unicast Neighbor
Solicitations which have been sent from the local system to this neighbor.

122 iSeries: Communications APIs

Reserved. An ignored field.

Reachability state. The reachability state of this neighbor cache entry. Possible values are:

-1 ERROR - An error has occured while verifying the reachability of this neighbor. Use the returned Reachability
state error information field value for more information about this error.

1 INCOMPLETE - Address resolution is being performed on the entry. Specifically, a Neighbor Solicitation has
been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement
has not yet been received.

2 REACHABLE - Positive confirmation was received that the forward path to the neighbor was functioning
properly. While REACHABLE, no special action takes place as packets are sent.
3 STALE - The STALE state is entered upon receiving an unsolicited Neighbor Discovery message that updates

the cached link-layer address. Receipt of such a message does not confirm reachability, and entering the
STALE state insures reachability is verified quickly if the entry is actually being used. However, reachability is
not actually verified until the entry is actually used. While STALE, no action takes place until a packet is sent.

4 DELAY - This neighbor is assumed to be reachable, and the system is now trying to verify reachability.

5 PROBE - A reachability confirmation is actively being sought by retransmitting Neighbor Solicitations every
"Retransmit interval” seconds until a reachability confirmation is received.

6 DELETING - The TCP/IP stack is currently in the process of deleting this neighbor entry from the Neighbor
Cache.

Reachability state change - date. The date of the last change of this neighbor’s Reachability state. The
format of the characters in this field is "YYYYMMDD".

The meaning of those characters is as follows:

YYYY Year
MM Month
DD Day

Reachability state change - time. The time of the last change of this neighbor’s Reachability state. The
format of the characters in this field is "HHMMSSmmm".

The meaning of those characters is as follows:

HH Hours

MM Minutes

SS Seconds
mmm Milliseconds

Reachability state error information. The error code for this Neighbor Cache entry when the Reachability
state is ERROR. This value is only useful when the Reachability state field value is ERROR. Possible
values are:

0 No error.
1 Unknown. An unknown error has occurred.
Reserved. An ignored field.

Time in reachable state. The length of time, in seconds, that this neighbor has been in the Reachable
state. The following special value may be returned:

-1 This neighbor currently is not in the Reachable state.

Communications APIs 123

Error Messages

Message ID
TCP84CO E
TCP84C3 E
TCP84C5 E
TCP84C6 E
TCP84C9 |
TCP84CB E
TCP84CC E
CPF24B4 E
CPF3C21 E
CPF3C90 E
CPF3CF1 E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Error Message Text

TCP/IP stack not active.

The specified line name does not exist.

API error providing TCP/IP Network Status information.
Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &A4.
Information returned incomplete.

Specified line &1 not configured for IPv6.

Specified line &1 does not support Neighbor Discovery for IPv6.
Severe error while addressing parameter list.

Format name &1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx is from 01 to FF.
Object &2 in library &3 not found.

Not authorized to object &2 in &3.

Cannot allocate object &2 in library &3.

One or more libraries in library list deleted.

Cannot allocate one or more libraries on library list.

Library &1 not found.

Not authorized to use library &1.

Cannot assign library &1.

Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

[Top| | [FCommunications APIs,” on page 1 | [APIs by category]

List Network Connections (QtocLstNetCnn) API

Required Parameter Group:

o O WN -

Qualified user space name Input Char(20)
Format name Input Char(8)
Connection list qualifier Input Char(*)
Connection list qualifier size Input Binary(4)
Connection list qualifier format Input Char(8)
Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Network Connections (QtocLstNetCnn) API returns a non-detailed list of all network
connections, or a subset of all network connections for a specified network connection type. With each
call to this API you can request IPv4 or IPv6 connections, but not both at the same time.

TCP/IP must be active on this system; otherwise error message TCP84CO will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

124 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name; the second 10 characters contain the name of the library in which the user space is located.
You can use these special values for the library name:

*CURLIB The job’s current library
*LIBL The library list

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format name supported is:

NCNNO0100 Non-detailed list of selected TCP/IPv4 local system connections. Refer to|“NCNN0100 Format” on|
for details on the format.
NCNNO0200 Non-detailed list of selected TCP/IPv6 local system connections. Refer to|“NCNN0200 Format™ on|

for details on the format.

Connection list qualifier
INPUT; CHAR(*)

A restriction on the network connections to be listed.

Connection list qualifier size
INPUT; BINARY (4)

The size in bytes of the connection list qualifier parameter.

Connection list qualifier format
INPUT; CHAR(8)

The format of the connection list qualifier parameter. The format name supported is:

NCLQO0100 IPv4 connection list qualifier. Refer to|“NCLQ0100 Format” on page 126|for details on the format.
NCLQO0200 IPv6 connection list qualifier. Refer to|“NCLQ0200 Format” on page 128|for details on the format.
Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
[Parameter

Format of Connection Status Lists
To request a non-detailed list of local system connections, use format NCNNO0100.

The connection description list consists of:
* A user area

* A generic header

* An input parameter section

* A header section

A list data section:

Communications APIs 125

— NCNNO0100 format, or
— NCNNO0200 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see APl Examples,

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C CHAR(*) Connection list qualifier specified
BINARY (4) Connection list qualifier size specified
CHAR(8) Connection list qualifier format specified
Header Section
Offset
Dec Hex Type Field
0 0 CHAR(10) User space name used
10 A CHAR(10) User space library name used
20 14

NCLQO0100 Format

The following table shows the format of the IPv4 connection list qualifier input parameter, named the
NCLQO0100 format. For detailed descriptions of the fields in the table, see[‘Field Descriptions” on page|

127,
Offset
Dec Hex Type Field
0 0 CHAR(10) Net connection type
10 A CHAR(10) List request type
20 14 CHAR(12) Reserved
32 20 BINARY (4) Local internet address lower value
36 24 BINARY (4) Local internet address upper value
40 28 BINARY (4) Local port lower value
44 2C BINARY (4) Local port upper value
48 30 BINARY(4) Remote internet address lower value

126 iSeries: Communications APIs

Offset
Dec Hex Type Field
52 34 BINARY (4) Remote internet address upper value
56 38 BINARY (4) Remote port lower value
60 3C BINARY(4) Remote port upper value
64 40

Field Descriptions

List request type. The local internet address range, local port range, remote internet address range, and
remote port range for which information is requested. Possible values are:

*ALL All objects returned.
*SUBSET Restrict the objects returned in the list to a specified subset.

Local internet address lower value. The lower value of the local system internet address range, in dotted
decimal format, requested for subsetting the list. The following is a special value:

0 Request all local internet addresses.

Local internet address upper value. The upper value of the local system internet address range, in dotted
decimal format, requested for subsetting the list. The following is a special value:

0 Request only one local internet address specified by the local internet address lower value.

Local port lower value. The lower value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535. The following is a special value:

0 Request all local ports.

Local port upper value. The upper value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535. The following is a special value:

0 Request only one local port specified in local port lower value.

Net connection type. The type of connection or socket. Possible values are:

*ALL All connection types

*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

*1PI An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.

Note: As of V5R2, IP over IPX is no longer supported.
*IPS An Internet Protocol (IP) over SNA connection or socket.

Remote internet address lower value. The lower value of the remote system internet address range, in
dotted decimal format, requested for subsetting the list. The following is a special value:

0 Request all remote internet addresses.

Communications APIs 127

Remote internet address upper value. The upper value of the remote system internet address range, in
dotted decimal format, requested for subsetting the list. The following is a special value:

0 Request only one remote internet address specified by the remote internet address lower value.

Remote port lower value. The lower value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535. The following is a special value:

0 Request all remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535. The following is a special value:

0 Request only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x’00’.

NCLQO0200 Format

The following table shows the format of the IPv6 connection list qualifier input parameter, named the
NCLQO0200 format. For detailed descriptions of the fields in the table, see[Field Descriptions.”|

Offset

Dec Hex Type Field

0 0 CHAR(10) Net connection type

10 A CHAR(10) List request type

20 14 CHAR(12) Reserved

32 20 CHAR(16) Local internet IPv6 address lower value
48 30 CHAR(16) Local internet IPv6 address upper value
64 40 BINARY (4) Local port lower value

68 44 BINARY (4) Local port upper value

72 48 CHAR(16) Remote internet IPv6 address lower value
88 58 CHAR(16) Remote internet IPv6 address upper value
104 68 BINARY(4) Remote port lower value

108 6C BINARY (4) Remote port upper value

112 70

Field Descriptions

List request type. The local internet address range, local port range, remote internet address range, and
remote port range for which information is requested.

Possible values are:

*ALL All objects returned.
*SUBSET Restrict the objects returned in the list to a specified subset.

128 iSeries: Communications APIs

Local internet IPv6 address lower value. The lower value of the local system internet address range, in
IPv6 address format, requested for subsetting the list. Even though this field is defined as a character
field, it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

The following is a special value:

0 Request all local internet IPv6 addresses. Specify this value by filling the whole field with binary NULLs
(x’000000...").

Local internet IPv6 address upper value. The upper value of the local system internet address range, in
IPv6 address format, requested for subsetting the list. Even though this field is defined as a character
field, it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

The following is a special value:

0 Request only one local internet IPv6 address specified by the local internet IPv6 address lower value. Specify
this value by filling the whole field with binary NULLs (x’000000...").

Local port lower value. The lower value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535.

The following is a special value:

0 Request all local ports.

Local port upper value. The upper value of the local system port range requested for subsetting the list.
Valid values range from 1 to 65535.

The following is a special value:

0 Request only one local port specified in local port lower value.

Net connection type. The type of connection or socket.

Possible values are:

*ALL All connection types
*TCP A transmission control protocol (TCP) connection or socket.
*UDP A User Datagram Protocol (UDP) socket.

Remote internet IPv6 address lower value. The lower value of the remote system internet IPv6 address
range, in IPv6 address format, requested for subsetting the list. Even though this field is defined as a
character field, it must be stored in binary. It is recommended that you use the Sockets in6_addr
structure.

The following is a special value:

0 Request all remote internet IPv6 addresses. Specify this value by filling the whole field with binary NULLs
(x’000000...%).

Communications APIs 129

Remote internet IPv6 address upper value. The upper value of the remote system internet IPv6 address
range, in IPv6 address format, requested for subsetting the list. Even though this field is defined as a
character field, it must be stored in binary. It is recommended that you use the Sockets in6_addr
structure.

The following is a special value:

0 Request only one remote internet IPv6 address specified by the remote internet IPv6 address lower value.
Specify this value by filling the whole field with binary NULLs (x’000000...").

Remote port lower value. The lower value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535.

The following is a special value:

0 Request all remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the
list. Valid values range from 1 to 65535.

The following is a special value:

0 Request only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x’00’.

Format of Returned Connection Data

To retrieve the list of TCP/IPv4 connections, request format[“NCNNO0100 Format,”{and you will get a
repeating list of NCNNO0100 tables, each one returning information about a single IPv4 connection. To
retrieve the list of TCP/1Pv6 connections, request format|*NCNNO0200 Format” on page 132,/and you will
get a repeating list of NCNNO0200 tables, each one returning information about a single IPv6 connection.

NCNNO100 Format

The following information about a user space is returned for the NCNNO0100 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 131

Offset

Dec Hex Type Field

0 0 CHAR(15) Remote address

15 F CHAR(1) Reserved

16 10 BINARY (4) Remote address binary
20 14 CHAR(15) Local address

35 23 CHAR(1) Reserved

36 24 BINARY(4) Local address binary
40 28 BINARY (4) Remote port

44 2C BINARY(4) Local port

48 30 BINARY (4) TCP state

52 34 BINARY(4) Idle time in milliseconds
56 38 BINARY(8) Bytes in

130 iSeries: Communications APIs

Offset
Dec Hex Type Field
64 40 BINARY(8) Bytes out
72 48 BINARY (4) Connection open type
76 4C CHAR(10) Net connection type
86 56 CHAR(2) Reserved
88 58 CHAR(10) Associated user profile
98 62 CHAR(2) Reserved
100 64

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the
jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data
(QtocRtvNetCnnDta) API.

Bytes in. The number of bytes received from the remote host.

Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. This field only applies to
TCP connections.

Possible values are:

0 Passive. A remote host opens the connection.
1 Active. The local system opens the connection.
2 Not supported. Connection open type not supported by protocol.

Idle time in milliseconds. The length of time since the last activity on this connection. The length of time
is shown in milliseconds.

Local address. The local system internet address, in dotted decimal format, of the connection.

Local address binary. Binary representation of the local address.

Local port. The local system port number.

Net connection type. The type of connection or socket. Possible values are:

*TCP
*UDP
*IPI

*IPS

A transmission control protocol (TCP) connection or socket.
A User Datagram Protocol (UDP) socket.
An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.

Note: As of V5R2, IP over IPX is no longer supported.
An Internet Protocol (IP) over SNA connection or socket.

Remote address. The internet address, in dotted decimal format, of the remote host.

Communications APIs 131

The following special value may be returned:

0 This connection is a listening or UDP socket so this field does not apply. The “0” is returned as a left adjusted
“0” (x’F0404040...).

Remote address binary. Binary representation of the remote address.

The following special value may be returned:

0 This connection is a listening or UDP socket so this field does not apply.

Remote port. The remote host port number. Zero is shown if the list entry is for a UDP socket.
Reserved. An ignored field.

TCP state. A typical connection goes through the states:

0 Listen. Waiting for a connection request from any remote host.

1 SYN-sent. Waiting for a matching connection request after having sent connection request.

2 SYN-received. Waiting for a confirming connection request acknowledgement.

3 Established. The normal state in which data is transferred.

4 FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the connection.

5 FIN-wait-2. Waiting for the remote host request to end the connection.

6 Close-wait. Waiting for an end connection request from the local user.

7 Closing. Waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK. Waiting for the remote host to acknowledge an end connection request.

9 Time-wait. Waiting to allow the remote host enough time to receive the local system’s acknowledgement to
end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

NCNNO0200 Format

The following information about a TCP/IPv6 connection is returned for the NCNNO0200 format. For
detailed descriptions of the fields in the table, see [‘Field Descriptions” on page 133/

Offset

Dec Hex Type Field

0 0 CHAR(45) Remote IPv6 address

45 2D CHAR(®3) Reserved

48 30 CHAR(16) Remote IPv6 address binary
64 40 CHAR(45) Local IPv6 address
109 6D CHAR(3) Reserved
112 70 CHAR(16) Local IPv6 address binary
128 80 BINARY (4) Remote port
132 84 BINARY(4) Local port
136 88 BINARY (4) TCP state
140 8C BINARY(4) Idle time in milliseconds
144 90 BINARY(8) Bytes in
152 98 BINARY(8) Bytes out

132 iSeries: Communications APIs

Offset
Dec Hex Type Field
160 A0 BINARY (4) Connection open type
164 Ad CHAR(10) Net connection type
174 AE CHAR(10) Associated user profile
hiw 184 B8 CHAR(10) Line Description &
194 Cc2

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the
jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data
(QtocRtvNetCnnDta) API.

Bytes in. The number of bytes received from the remote host.

Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. This field only applies to
TCP connections.

Possible values are:

0 Passive. A remote host opens the connection.
1 Active. The local system opens the connection.
2 Not supported. Connection open type not supported by protocol.

Idle time in milliseconds. The length of time since the last activity on this connection. The length of time
is shown in milliseconds.

s Line Description. The local system line description associated with this connection. This field is only
filled for connections bound to link local unicast interfaces. <%

Local IPv6 address. The local system internet address, in IPv6 address format, of the connection. This
field is NULL padded.

Local IPv6 address binary. Binary representation of the local IPv6 address. Even though this field is
defined as a character field, a binary IPv6 address is returned in it.

Local port. The port number of the local end of the connection.
Net connection type. The type of connection or socket.

Possible values are:

*TCP A transmission control protocol (TCP) connection or socket.
*UDP A User Datagram Protocol (UDP) socket.

Communications APIs 133

Reserved. An ignored field.

Remote IPv6 address. The internet address, in IPv6 address format, of the remote host. This field is
NULL padded.

Special values are:

This connection is a listening socket so this field does not apply.

Remote IPv6 address binary. Binary representation of the remote address. Even though this field is
defined as a character field, a binary IPv6 address is returned in it.

A special value that may be returned is:

0 This connection is a listening socket so this field does not apply. This value is returned as a binary 0.

Remote port. The port number of the remote end of the connection.

Special values are:

0 This connection is a listening socket so this field does not apply.

TCP state. A typical connection goes through the states:

0 Listen. Waiting for a connection request from any remote host.

1 SYN-sent. Waiting for a matching connection request after having sent connection request.

2 SYN-received. Waiting for a confirming connection request acknowledgement.

3 Established. The normal state in which data is transferred.

4 FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the connection.

5 FIN-wait-2. Waiting for the remote host request to end the connection.

6 Close-wait. Waiting for an end connection request from the local user.

7 Closing. Waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK. Waiting for the remote host to acknowledge an end connection request.

9 Time-wait. Waiting to allow the remote host enough time to receive the local system’s acknowledgement to
end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

Error Messages

Message 1D Error Message Text

TCP84CO0 E TCP/IP stack not active.

TCP84C5 E Error providing TCP/IP Network Status list information.
TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C7 E Connections list qualifier parameter not valid.

CPFOFO3 E Error in retrieving the user space that was created by the caller.
CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CFl E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

134 iSeries: Communications APIs

Message ID Error Message Text

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

[Top| | [FCommunications APIs,” on page 1 | [APIs by category]

List Network Interfaces (QtocLstNetlfc) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Network Interfaces (QtocLstNetlfc) API returns a list of all logical TCP/IP interfaces with details.
This API returns all IPv4 logical interfaces using one output format name, and all IPv6 logical interfaces
using a different output format name.

TCP/IP must be active; otherwise error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP
Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library in which the user space is
located. You can use these special values for the library name:

*CURLIB The job’s current library
*LIBL The library list

Format name
INPUT; CHAR(8)

Communications APIs 135

#TOP_OF_PAGE
aplist.htm

The format of the logical interface information to be returned. The format names supported are;

NIFC0100 Detailed information about each TCP/1Pv4 network interface. Refer to[“NIFC0100 Format” on|
page 137 for details on the format.
NIFC0200 Detailed information about each TCP/IPv6 network interface. Refer to[*NIFC0200 Format” on|

page 143 for details on the format.

Error code
170; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Format of Interface Lists
To request a list of all logical interfaces, use format NIFC0100.

The interface description list consists of:
e A user area

* A generic header

* An input parameter section

* A header section

A list data section:

— NIFC0100 format, or

— NIFC0200 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see API .

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name used
10 A CHAR(10) User space library name used

136 iSeries: Communications APIs

Offset

Dec

Hex

Type

Field

20

14

Format of Returned Connection Data

To retrieve the list of TCP/IPv4 network interfaces, request format |“NIFCOlOO Format,”| and you will get
a repeating list of NIFC0100 tables, each one returning information about a single IPv4 network interface.
To retrieve the list of TCP/IPv6 network interfaces, request format |“NIFCOZOO Format” on page 143,| and
you will get a repeating list of NIFC0200 tables, each one returning information about a single IPv6
network interface.

NIFC0100 Format

The following information about each TCP/IPv4 logical interface is returned for the NIFC0100 format.

For detailed descriptions of the fields in the table, see [‘Field Descriptions” on page 138

Offset

Dec Hex Type Field

0 0 CHAR(15) Internet address

15 F CHAR(1) Reserved

16 10 BINARY (4) Internet address binary

20 14 CHAR(15) Network address

35 23 CHAR(1) Reserved

36 24 BINARY (4) Network address binary
40 28 CHAR(10) Network name

50 32 CHAR(10) Line description

60 3C CHAR(10) Interface name

70 46 CHAR(2) Reserved

72 48 BINARY (4) Interface status

76 4C BINARY (4) Interface type of service

80 50 BINARY (4) Interface MTU

84 54 BINARY (4) Interface line type

88 58 CHAR(15) Host address
103 67 CHAR(1) Reserved
104 68 BINARY (4) Host address binary
108 6C CHAR(15) Interface subnet mask
123 7B CHAR(1) Reserved
124 7C BINARY(4) Interface subnet mask binary
128 80 CHAR(15) Directed broadcast address
143 8F CHAR(1) Reserved
144 90 BINARY (4) Directed broadcast address binary
148 94 CHAR(8) Change date
156 9C CHAR(6) Change time
162 A2 CHAR(15) Associated local interface

Communications APls

137

Offset

each preferred interface
list entry

Dec Hex Type Field

177 Bl CHAR(3) Reserved

180 B4 BINARY(4) Associated local interface binary

184 B8 BINARY (4) Change status

188 BC BINARY (4) Packet rules

192 Cco BINARY(4) Automatic start

196 C4 BINARY(4) TRLAN bit sequencing

200 C8 BINARY (4) Interface type

204 CcC BINARY(4) Proxy ARP enabled

208 DO BINARY (4) Proxy ARP allowed

212 D4 BINARY (4) Configured MTU

216 D8 CHAR(24) Network name - full

240 FO CHAR(24) Interface name - full

s 264 108 CHAR(50) Alias name

314 13A CHAR(2) Reserved

316 13C BINARY(4) Alias name CCSID

320 140 BINARY (4) Offset to preferred interface list

324 144 BINARY (4) Number of entries in preferred interface list

328 148 BINARY (4) Length of one preferred interface list entry
This field repeats for CHAR(*) Preferred interface list entry (See Format of Preferred Interface List

Entry (page [‘Format of Preferred Interface List Entry”) for more
information.) <

Format of Preferred Interface List Entry

The preferred interface list entry describes the data returned for each entry in the preferred interface list
of the NIFC0100 format. For detailed descriptions of the fields in the table, see[“Field Descriptions.”|

Offset
Dec Hex Type Field
0 0 CHAR(15) Preferred interface internet address
15 F CHAR(1) Reserved
16 10 BINARY (4) Preferred interface internet address binary
20 14 CHAR() Reserved %

Field Descriptions
s Alias name. Name given to the interface to use as an alternate to the IP address.

Alias name CCSID. Coded character set ID for the alias name. <%

Associated local interface. The internet address, in dotted decimal notation, of the local interface that has
been associated with this interface. The following is a special value:

*NONE No association has been made between this interface and another local interface.

138 iSeries: Communications APIs

Associated local interface binary. Binary representation of the associated local interface. The following is
a special value:

0 No association has been made between this interface and another local interface.

Automatic start. Whether the interface is started automatically when the TCP/IP stack is activated.
Possible values are:

0 NO. This interface is not started automatically.
1 YES. This interface is started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the
TCP/IP protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

YYYY Year
MM Month
DD Day

Change status. The status of the most recent change to this interface in the dynamic tables used by the
TCP/IP protocol stack.

Add interface request processed
Change interface request processed
Start interface request processed
End interface request processed

AW N

Change time. The time of the most recent change to this interface in the dynamic tables used by the
TCP/IP protocol stack. It is returned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Configured MTU. The configured maximum transmission unit value specified for this interface. The
following is a special value:

0 LIND. The interface is not active currently and the MTU was specified as *LIND.

Directed broadcast address. The internet address, in dotted decimal notation, used to broadcast to all
systems attached to the same network or subnetwork as this interface. The following is a special value:

*NONE The interface is attached to a network that does not support a broadcast operation.

Directed broadcast address binary. Binary representation of the directed broadcast address. The
following is a special value:

0 The interface is attached to a network that does not support a broadcast operation.

Communications APIs 139

Host address. Host portion of the internet address, in dotted decimal notation, as determined by the
subnet mask specified for this interface.

Host address binary. Binary representation of the host address.

Interface line type. Type of line used by an interface. The following link protocols are supported:

-1 OTHER -
IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.
IPS - An Internet Protocol (IP) over SNA interface.
4% PPPOE - Point-to-Point over Ethernet protocol. <%

Note: As of V5R2, IP over IPX is no longer supported.

-2 NONE - Line is not defined. This is used for the following interfaces: *LOOPBACK, *VIRTUALIP, *OPC.
There is no line type value for these interfaces.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while
trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

ELAN - Ethernet local area network protocol.

TRLAN - Token-ring local area network protocol.

FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

X.25 - X.25 protocol.

DDI - Distributed Data Interface protocol.

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

© 00 N O Ol &~ WN -

=
o

Interface MTU. Maximum transmission unit value specified for this interface. The following are special
values:

-1 OTHER.
IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.
IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.
0 LIND - The interface is not active currently and the MTU was specified as *LIND.

Interface name. The first 10 characters of the name of this interface.
Interface name - full. The complete 24 character interface name.

Interface status. Current status of this logical interface.

0 Inactive - The interface has not been started. The interface is not active.

1 Active - The interface has been started and is running.

2 Starting - The system is processing the request to start this interface.

3 Ending - The system is processing the request to end this interface.

4 RCYPND - An error with the physical line associated with this interface was detected by the system. The line
description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the
recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

8 DOD - Point-to-Point (PPP) Dial-on-Demand.

140 iSeries: Communications APIs

Interface subnet mask. The subnet mask for the network, subnet, and host address fields of the internet
address, in dotted decimal notation, that defines the subnetwork for an interface.

Interface subnet mask binary. Binary representation of the interface subnet mask.

Interface type. The interface types are:

0 Broadcast capable
1 Non-broadcast capable
2 Unnumbered network

Interface type of service. The way in which the internet hosts and routers should make trade-offs
between throughput, delay, reliability and cost. The following are special values:

-1 OTHER -
IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.
IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

NORMAL - Used for delivery of datagrams.

MINDELAY - Prompt delivery of datagrams with the minimize delay indication.
MAXTHRPUT - Datagrams with maximize throughput indication.

MAXRLB - Datagrams with maximize reliability indication.

MINCOST - Datagram with minimize monetary cost indication.

a b~ wnN e

Internet address. The internet address, in dotted decimal notation, of an interface.
Internet address binary. Binary representation of the internet address.

“ Length of one preferred interface list entry. The length of a preferred interface list entry. For virtual
interfaces, a length of zero means that a preferred interface list is not being used. For other types of
interfaces, this field is set to zero. <

Line description Name of the communications line description that identifies the physical network
associated with an interface. The following are special values:

*1PI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX).

Note: As of V5R2, IP over IPX is no longer supported.

*IPS This interface is used by Internet Protocol (IP) over SNA.

*LOOPBACK This is a loopback interface. Processing associated with a loopback interface does not extend to a
physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local
interface (LCLIFC) when adding standard interfaces.

*OPC This interface is attached to the optical bus (OptiConnect).

Network address. Internet address, in dotted decimal notation, of the IP network or subnetwork to which
the interface is attached.

Network address binary. Binary representation of the network address.
Network name. The first 10 characters of the name of the network that this interface is a part of.

Network name - full. The complete 24 character name of the network that this interface is a part of.

Communications APIs 141

s Number of entries in preferred interface list. The number of entries in the preferred interface list. For
virtual interfaces, zero means that a preferred interface list is not being used. For other types of
interfaces, this field is set to zero.

Offset to preferred interface list. The offset from the start of the user space to the beginning of the
preferred interface list. For virtual interfaces, zero means that a preferred interface list is not being used.
For other types of interfaces, this field is set to zero. <%

Packet rules. The kind of packet rules data available for a particular line.

-1 OTHER - An unknown Packet rules value.

None - No filters and no NAT are loaded for the line specified.

NAT - NAT is enabled for this line.

Filters - Filters are defined for this line.

Filters and NAT - NAT enabled and filters defined.

Filters and IPSec - Filters and IPSec filters are defined for this line.

NAT and Filters and IPSec - NAT enabled and Filters and IPsec filters defined.

g W N EFE O

s Preferred interface list entry. Specifies information about an interface in the preferred interface list.
The order in which the list entries are returned is also the order in which the system uses the interfaces
as Proxy Agents.

Preferred interface internet address. The internet address, in dotted decimal notation, of an interface in
the preferred interface list.

Preferred interface internet address binary. The binary representation of an interface internet address in
the preferred interface list. %

Proxy ARP enabled. Whether Proxy ARP is currently active for this interface. Proxy ARP allows
physically distinct separate networks to appear as if they are a single logical network. It provides
connectivity between physically separate network without creating any new logical networks and without
updating any route tables.

0 NO - Proxy ARP not enabled.
1 YES - Proxy ARP enabled.

Proxy ARP allowed. This field applies to Opticonnect (*OPC) and Virtual interfaces only. For those types
of interfaces, this field indicates whether Proxy ARP has been configured to be allowed or not allowed.

0 NO - Proxy ARP not allowed.
1 YES - Proxy ARP allowed.
2 Unsupported - Proxy ARP allowed field is not supported by this interface.

Reserved. An ignored field.

TRLAN bit sequencing. The order the Address Resolution Protocol (ARP) puts bits into the hardware
address for Token Ring. Possible values are:

1 MSB - The most significant bit is placed first.
2 LSB - The least significant bit is placed first.

142 iSeries: Communications APIs

NIFC0200 Format

The following information about each TCP/IPVv6 logical interface is returned for the NIFC0200 format.

For detailed descriptions of the fields in the table, see [‘Field Descriptions” on page 144 |

Offset

Dec Hex Type Field

0 0 CHAR(45) Internet IPv6 address

45 2D CHAR(3) Reserved

48 30 CHAR(16) Internet IPv6 address binary

64 40 CHAR(3) Interface prefix length

67 43 CHAR(1) Reserved

68 44 BINARY (4) Interface prefix length binary

72 48 BINARY (4) Address type

76 4C BINARY (4) Address state

80 50 BINARY(8) Address preferred lifetime

88 58 CHAR(8) Address preferred lifetime expiration date
96 60 CHAR(6) Address preferred lifetime expiration time
102 66 CHAR(2) Reserved
104 68 BINARY(8) Address valid lifetime
112 70 CHAR(8) Address valid lifetime expiration date
120 78 CHAR(6) Address valid lifetime expiration time
126 7E CHAR(10) Line name
136 88 BINARY (4) Interface line type
140 8C CHAR(50) Interface description
190 BE CHAR(45) Network IPv6 address
235 EB CHAR(1) Reserved
236 EC CHAR(16) Network IPv6 address binary
252 FC CHAR(45) Host IPv6 address
297 129 CHAR(3) Reserved
300 12C CHAR(16) Host IPv6 address binary
316 13C BINARY (4) Interface status
320 140 BINARY (4) Automatic start
324 144 BINARY (4) Packet rules
328 148 BINARY(4) Interface source
332 14C BINARY(4) Duplicate address detection transmits
336 150 BINARY(4) Multicast - number of references
340 154 CHAR(4) Reserved
344 158 CHAR(8) Change date
352 160 CHARC(6) Change time
358 166 CHAR(2) Reserved

. 360 168 BINARY (4) Interface description CCSID

364 16C BINARY(4) MTU - configured
368 170 BINARY (4) MTU - current

Communications APls

143

Offset
Dec Hex Type Field
372 174 BINARY (4) Duplicate address detection maximum transmits
376 178 CHAR(50) Alias name
426 1AA CHAR(6) Reserved
432 1B0 BINARY (4) Alias Name CCSID
436 1B4

Field Descriptions

Address preferred lifetime. The length of time that a "valid” address is preferred, in seconds. When the
preferred lifetime expires, the address becomes Deprecated. See the Address State field description for
more information. Valid values range from 0 through 4294967295 seconds. Negative values indicate that
the Address preferred lifetime expired that number of seconds ago.

The following are special values:

-1000000000 Infinite - this address has an infinite preferred lifetime.
-1000000001 Not Applicable - this address is not in the Preferred address state, so this field does not apply.

Address preferred lifetime expiration date. The date when this address will no longer be preferred. If
the Address preferred lifetime expiration date and time are in the future, the address is still preferred. If
the Address preferred lifetime expiration date and time are in the past, then this address is no longer
preferred. The Address preferred lifetime expiration date is returned as 8 characters in the form
YYYYMMDD.

The meaning of the characters is as follows:

YYYY Year
MM Month
DD Day

The following are special values:

00000000 Infinite - this address has an infinite preferred lifetime which never expires.
00000001 Not Applicable - this address is not in the Preferred address state, so this field does not apply.

Address preferred lifetime expiration time. The time when this address will no longer be in the
preferred state. If the Address preferred lifetime expiration date and time are in the future, the address is
still preferred. If the Address preferred lifetime expiration date and time are in the past, then this address
is no longer preferred. The Address preferred lifetime expiration time is returned as 6 characters in the
form HHMMSS.

The meaning of the characters is as follows:

HH Hour
MM Minute
SS Second

The following are special values:

144 iseries: Communications APIs

000000 Infinite - this address has an infinite preferred lifetime which never expires.
000001 Not Applicable - this address is not in the preferred address state, so this field does not apply.

Address state. The current state of this IPv6 address. IPv6 addresses are in different states at different
times, due to Duplicate Address Detection (DAD) and address lifetimes. Unicast and Multicast addresses
have different possible states and the only state that applies to either type is Failed.

When a unicast address is one of the two "valid” states, Preferred and Deprecated, it may be used as the
source or destination address of a packet. When a unicast address is in one of the five "invalid” states it
may not be used as the source or destination address of a packet. The five "invalid” states are: Tentative,
Expired, Inactive, Duplicate and Failed.

When a multicast address is one of the two "valid” states, Idle Listener and Delaying Listener, it may be
used as the source or destination address of a packet. When a multicast address is in one of the two
"invalid” states, Non-listener and Failed, it may not be used as the source or destination address of a
packet.

Possible values are:

-1 Failed - while attempting to move this address from one state to another, an internal error occurred,
preventing completion of the action necessary to perform the state change.

1 Inactive - the interface has been ended by the user and no further communications will be performed using
this address. The address is available to be reassigned elsewhere.

2 Duplicate - A duplicate address was detected on the network during Duplicate Address Detection (DAD),
therefore this address was not moved to the Preferred state.

3 Tentative - an address whose uniqueness on a link is being verified, prior to its assignment to a physical

interface. A tentative address is not considered assigned to a physical interface in the usual sense. A physical
interface discards received packets addressed to a tentative address, but accepts Neighbor Discovery packets
related to Duplicate Address Detection for the tentative address.

4 Preferred - an address assigned to a physical interface whose use by upper layer protocols is unrestricted.
Preferred addresses may be used as the source (or destination) address of packets sent from (or to) the
physical interface.

5 Deprecated - an address assigned to a physical interface whose use is discouraged, but not forbidden. A
deprecated address should no longer be used as a source address in new communications, but packets sent
from or to deprecated addresses are delivered as expected. A deprecated address may continue to be used as
a source address in communications where switching to a preferred address causes hardship to a specific
upper-layer activity (for example, an existing TCP connection).

6 Expired - an address assigned to a physical interface whose use is forbidden. An address transitions to the
expired state when its valid lifetime expires. An IPv6 interface with an expired address will be removed after
a period of time.

11 Non-listener - the initial state of a multicast address when it first joins a multicast group and it is not yet
listening for any incoming Multicast Listener Discovery requests.

12 Idle listener - this multicast interface is listening for incoming Multicast Listener Discovery requests.

13 Delaying listener - this multicast interface has recieved an incoming Multicast Listener Discovery request and

has gone to sleep until it is time to wakeup and take action on that request.

s Note: As of V5R4, this field is no longer available and will always be set to 4. %
Address type. The type of IPv6 address that is assigned to this network interface.

Possible values are:

1 Unicast - an identifier for a single interface. A packet sent to a unicast address is delivered to the interface
identified by that address.
2 Multicast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a

multicast address is delivered to all interfaces identified by that address.

Communications APIs 145

3 Anycast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent to an
anycast address is delivered to one of the interfaces identified by that address (the "nearest” one, according to
the routing protocols’ measure of distance).

Address valid lifetime. The length of time, in seconds, that an address remains in a "valid” state
(Preferred or Deprecated). When the valid lifetime expires, the address becomes Expired. See the Address
State field description for more information. Valid values range from 0 through 4294967295 seconds.
Negative values indicate that the Address valid lifetime expired that number of seconds ago.

The following are special values:

-1000000000 Infinite - this address has an infinite valid lifetime.
-1000000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

Address valid lifetime expiration date. The date when this address will expire or did expire. If the
Address valid lifetime expiration date and time are in the future, the address has not expired yet. If the
Address valid lifetime expiration date and time are in the past, then this address has expired and is still
being returned for a short period of time to indicate that the interface ceased to function because its valid
lifetime expired. The Address valid lifetime expiration date is returned as 8 characters in the form
YYYYMMDD.

The meaning of the characters is as follows:

YYYY Year
MM Month
DD Day

The following are special values:

00000000 Infinite - this address has an infinite valid lifetime which never expires.
00000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

Address valid lifetime expiration time. The time when this address will expire or did expire. If the
Address valid lifetime expiration date and time are in the future, the address has not expired yet. If the
Address valid lifetime expiration date and time are in the past, then this address has expired and is still
being returned for a short period of time to indicate that the interface ceased to function because its valid
lifetime expired. The Address valid lifetime expiration time is returned as 6 characters in the form
HHMMSS.

The meaning of the characters is as follows:

HH Hour
MM Minute
SS Second

The following are special values:

000000 Infinite - this address has an infinite valid lifetime which never expires.
000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

«» Alias Name. Name given to interface to use as an alternate to the IP address.

146 iSeries: Communications APIs

Alias Name CCSID. Coded character set ID for the alias name. <%

Automatic start. Whether the interface is started automatically when the TCP/IPv6 stack is activated.
Possible values are:

0 NO. This interface is not started automatically.
1 YES. This interface is started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the
TCP/IPv6 protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

YYYY Year
MM Month
DD Day

Change time. The time of the most recent change to this interface in the dynamic tables used by the
TCP/IPv6 protocol stack. It is returned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

s Duplicate address detection maximum transmits. Specifies the maximum number of Duplicate
Address Detection (DAD) transmissions the stack will send out on the interface. %

Duplicate address detection transmits. Specifies the number of Duplicate Address Detection (DAD)
transmissions the stack has sent out on this interface.

4 Note: As of V5R4, this data is no longer available and is always set to 0. <%

Host IPv6 address. Host portion of the internet address, in IPv6 address format, as determined by the
prefix length configured for this interface. This field is NULL padded.

Host IPv6 address binary. Binary representation of the host IPv6 address. Even though this field is
defined as a character field, a binary IPv6 address is returned in it.

Interface description Configured free form comment field about this interface.
4 Interface description CCSID.Coded character set ID for the interface description field. €%

Interface line type. Type of line used by the interface. The following link protocols are supported:

-1 OTHER

-2 NONE - Line is not defined. This value is used for the following interfaces: *LOOPBACK. There is no line
type value for this interface.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while
trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.
PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

D OB WwN

Communications APIls

7 X.25 - X.25 protocol.

8 DDI - Distributed Data Interface protocol.

9 TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.
10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

11 IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

4 Note: As of V5R4, TRLAN, FR, ASYNC, PPP, WLS, X.25, DDI, TDLC, L2TP and IPv6 Tunneling Line values
are no longer supported. <%,

Interface prefix length. The prefix length defines how many bits of the interface IPv6 address are in the
prefix. It is a zoned decimal number which specifies how many of the left-most bits of the address make
up the prefix. The prefix length is used to generate network and host addresses. This field is NULL
padded.

Interface prefix length binary. Binary representation of the interface prefix length.

Interface source Specifies how this interface was added to the TCP/IPv6 stack.

Possible values are:

1 Stateless - the interface was added to the stack by the IPv6 stateless autoconfiguration mechanism.

2 Stateful - the interface was added to the stack by the IPv6 stateful configuration mechanism (that is,
DHCPV6).

3 Manual - the interface was added to the stack by manual configuration.

4 4% Loopback - the interface was added to the stack as the loopback interface. <%

Interface status. Current status of this logical interface.

Inactive - The interface has not been started. The interface is not active.

Active - The interface has been started and is running.

Starting - The system is processing the request to start this interface.

Ending - The system is processing the request to end this interface.

RCYPND - An error with the physical line associated with this interface was detected by the system. The line

description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the
recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

A w NN e O

Internet IPv6 address. The internet address, in IPv6 address format, of the interface.

Internet IPv6 address binary. Binary representation of the internet IPv6 address. Even though this field is
defined as a character field, a binary IPv6 address is returned in it.

Line name. Name of the communications line description that identifies the physical network associated
with an interface. This field is NULL padded.

The following are special values:

*LOOPBACK This is the IPv6 loopback interface. Processing associated with a loopback interface does not
extend to a physical line.
*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

% Note: As of V5R4, this value is no longer supported. <%

148 iSeries: Communications APIs

*OPC This interface is attached to the optical bus (OptiConnect).

% Note: As of V5R4, this value is no longer supported. ¢
*TNLCFG64 This interface is associated with a configured 6-4 tunneling line.

4 Note: As of V5R4, this value is no longer supported. ¢

4 MTU - configured. The configured maximum transmission unit (MTU) value specified for this
interface.

The following is a special value:

0 LIND - The MTU was configured as *LIND, the MTU size is the maximum frame size found in the line
description object associated with this interface.

MTU - current. Maximum transmission unit (MTU) value currently in effect for this interface.

The following is a special value:

0 LIND - The interface is not active currently and the MTU was configured as *LIND. %

Multicast - number of references. The number of Sockets clients that have joined this multicast group.

The following is a special value:

-1 This interface is not a Multicast address and this field does not apply.

x» Note: As of V5R4, this data is no longer available and is always set to 0. <%

Network IPv6 address. Internet address, in IPv6 address format, of the IPv6 network or subnetwork to
which the interface is attached. This field is NULL padded.

Network IPv6 address binary. Binary representation of the network IPv6 address. Even though this field
is defined as a character field, a binary IPv6 address is returned in it.

Packet rules. The kind of packet rules data available for the particular line this interface is associated
with.

-1 OTHER - An unknown Packet rules value.

None - No filters and no NAT are loaded for the line specified.

NAT - NAT is enabled for this line.

Filters - Filters are defined for this line.

Filters and NAT - NAT enabled and filters defined.

Filters and IPSec - Filters and IPSec filters are defined for this line.

NAT and Filters and IPSec - NAT enabled and Filters and IPsec filters defined.

g b~ w NN BEFE o

Reserved. An ignored field.

Error Messages

Message ID Error Message Text
TCP84CO E TCP/IP stack not active.
TCP84C5 E API error listing TCP/IP Network Status list information.

Communications APIs 149

Message 1D Error Message Text

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C9 | Information returned incomplete.

CPFOFO3 E Error in retrieving the user space that was created by the caller.
CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CFl E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

@ | [“Communications APIs,” on page 1] | APIs by categorxl

List Network Routes (QtocLstNetRte) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Network Routes (QtocLstNetRte) API returns a detailed list of all routes. This API returns all
IPv4 routes using one output format name, and all IPv6 routes using a different output format name.

TCP/IP must be active on this system; otherwise, a message will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP
Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library where the user space is

150 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

located. You can use these special values for the library name:

*CURLIB The job’s current library
*LIBL The library list

Format name
INPUT; CHAR(8)

The format of the route information to be returned. The format names supported are:

NRTEO0100 Detailed information about each TCP/IPv4 route. Refer to[*NRTE0100 Format” on page 152 for
details on the format.
NRTE0200 Detailed information about each TCP/1Pv6 route. Refer to[“NRTE0200 Format” on page 156 for

details on the format.

Error code
1/0; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

Format of Route Lists
To request a list of all routes, use format NRTE0100.

The route description list consists of:
* A user area
* A generic header
* An input parameter section
* A header section
» A list data section:
— NRTEO0100 format, or
— NRTE0200 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see API|Examples,

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C

Communications APIs 151

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name used
10 A CHAR(10) User space library name used
20 14

Format of Returned Connection Data

To retrieve the list of TCP/IPVv4 routes, request format |“NRTE0100 Format,”| and you will get a repeating
list of NRTEO100 tables, each one returning information about a single IPv4 route. To retrieve the list of
TCP/IPV6 routes, request format f‘NRTEOZOO Format” on page 156,| and you will get a repeating list of
NRTEO0200 tables, each one returning information about a single IPv6 route.

NRTEO100 Format

The following information about each TCP/IPv4 route is returned for the NRTE0100 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 153

Offset

Dec Hex Type Field

0 0 CHAR(15) Route destination

15 F CHAR(1) Reserved

16 10 BINARY (4) Route destination binary
20 14 CHAR(15) Subnet mask

35 23 CHAR(1) Reserved

36 24 BINARY (4) Subnet mask binary

40 28 CHAR(15) Next hop

55 37 CHAR(1) Reserved

56 38 BINARY (4) Next hop binary

60 3C BINARY(4) Route status

64 40 BINARY (4) Type of service

68 44 BINARY (4) Route MTU

72 48 BINARY(4) Route type

76 4C BINARY (4) Route source

80 50 BINARY(4) Route precedence

84 54 BINARY (4) Local binding interface status
88 58 BINARY (4) Local binding type

92 5C BINARY (4) Local binding line type

96 60 CHAR(15) Local binding interface

111 6F CHAR(1) Reserved
112 70 BINARY (4) Local binding interface binary
116 74 CHAR(15) Local binding subnet mask
131 83 CHAR(1) Reserved

152 iSeries: Communications APIs

Offset
Dec Hex Type Field
132 84 BINARY (4) Local binding subnet mask binary
136 88 CHAR(15) Local binding network address
151 97 CHAR(1) Reserved
152 98 BINARY (4) Local binding network address binary
156 9C CHAR(10) Local binding line description
166 A6 CHAR(8) Change date
174 AE CHAR(6) Change time
180 B4

Field Descriptions

Change date.The date of the most recent change to this route in the dynamic tables used by the TCP/IP
protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

YYYY Year
MM Month
DD Day

Change time.The time of the most recent change to this route in the dynamic tables used by the TCP/IP
protocol stack. It is returned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Local binding interface. The IP interface to bind to this route.
Local binding interface binary. Binary representation of the local binding interface.
Local binding interface status. The current status of this logical interface.

The possible values are:

0 Inactive - The interface has not been started. The interface is not active.

1 Active - The interface has been started and and is running.

2 Starting - The system is processing the request to start this interface.

3 Ending - The system is processing the request to end this interface.

4 RCYPND - An error with the physical line associated with this interface was detected by the system. The line
description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the
recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

8 DOD - Point-to-Point (PPP) Dial-on-Demand.

9 Active Duplicate IP Address Conflict - Another host on the LAN responded to a packet destined for this

logical interface.

Communications APIs 153

Local binding line description. Each TCP/IP interface is associated with a network. This field displays
the name of the communications line description or virtual line (L2TP) that identifies the network
associated with an interface. The following are special values:

*1PI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX)

Note: As of V5R2, IP over IPX is no longer supported.
This interface is used by Internet Protocol (IP) over SNA.

*LOOPBACK This is a loopback interface. Processing associated with a loopback interface does not extend to a
physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local
interface (LCLIFC) when adding standard interfaces.

*OPC This interface is attached to the optical bus (OptiConnect).

Local binding line type. Indicates the type of line used by an interface. The following link protocols are
supported:

-1 OTHER -
* IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX).
* IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

-2 NONE - Line is not defined. This is used for the following interfaces: *LOOPBACK, *VIRTUALIP, *OPC.
There is no line type value for these interfaces.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while
trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be

found.

ELAN - Ethernet local area network protocol.

TRLAN - Token-ring local area network protocol.

FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

X.25 - X.25 protocol.

DDI - Distributed Data Interface protocol.

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

© 0 N O Ol &~ WN -

Local binding network address. The internet address, in dotted decimal notation, of the IP network or
subnetwork that the interface is attached to.

Local binding network address binary. Binary representation of the local binding network address.

Local binding subnet mask. The subnet mask for the network, subnet, and host address fields of the
internet address, in dotted decimal notation, that defines the subnetwork for an interface.

Local binding subnet mask binary. Binary representation of the local binding subnet mask.

Local binding type. The possible values are:

0 Dynamic
1 Static

Next hop. The internet address of the first system on the path from your system to the route destination
in dotted decimal notation. The following are special values:

154 iseries: Communications APIs

*DIRECT

This is the next hop value of a route that is automatically created. When an interface is added to this
system, a route to the network the interface attaches to is also created.

Next hop binary. The binary represenation of the next hop. For *DIRECT this will be the local binding
network address.

Reserved. An ignored field.
Route destination. The Internet Protocol (IP) address, in dotted decimal notation, of the ultimate
destination reached by this route. When used in combination with the subnet mask and the type of

service values, the route destination identifies a route to a network or system.

Route destination binary. The binary representation of the route destination.

Route MTU. A number representing the maximum transmission unit (MTU) value for this route in bytes.

The following are special values:

-1 OTHER -
* IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.
e IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.
0 IFC - The route is not currently active and the MTU was specified as *IFC.

Route precedence. Identify priority of route, range 1-10. Lowest priority being 1.

Route source. Specifies how this route was added to the IP routing tables. The possible values are:

-1 OTHER - The route was added by a sockets input/output control (IOCtl) or other mechanism.
CFG - The route was added with system configuration commands.

ICMP - The route was added by the Internet Control Message Protocol (ICMP) redirect mechanism.
SNMP - The route was added by the Simple Network Management Protocol (SNMP).

RIP - The route was added by the Routing Information Protocol (RIP).

w N = O

Route status. Indicated whether this route is available.

1 YES - The router specified by the next hop value for this interface is available for use. This route is included
amoung the routes considered when datagram routing is performed by TCP/IP.

2 NO - The router specified by the next hop value for this interface is not available for use, interface is not
active. This route is not included amoung the routes considered when datagram routing is performed.

3 DOD - This route is used for Point-to-Point (PPP) Dial-on-Demand. Currently, this Dial-on-Demand route

is

not available. The route will become available when a Dial-on-Demand session is initiated for the interface

this route is associated with.

4 NO GATEWAY - The router specified by the next hop value for this interface is not available for use, the
router may be experiencing a problem.

Route type. The route types are:

DFTROUTE - A default route.

DIRECT - A route to a network or subnetwork to which this system has a direct physical connection.
HOST - A route to a specific remote host.

SUBNET - An indirect route to a remote subnetwork.

NET - An indirect route to a remote network.

A W N R O

Communications APIls

155

Subnet mask. The actual value of the subnet mask in dotted decimal notation.
Subnet mask binary. The binary representation of the subnet mask.

Type of service. Defines how the internet hosts and routers should make trade-offs between throughput,
delay, reliability and cost. The following are special values:

-1 OTHER -
* IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.
* IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

NORMAL - Used for delivery of datagrams.

MINDELAY - Prompt delivery of datagrams with the minimize delay indication.
MAXTHRPUT - Datagrams with maximize throughput indication.

MAXRLB - Datagrams with maximize reliability indication.

MINCOST - Datagrams with minimize monetary cost indication.

a b~ w N -

NRTEO200 Format

The following information about each TCP/IPv6 route is returned for the NRTE0200 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 157

Offset

Dec Hex Type Field

0 0 CHAR(45) Route destination

45 2D CHAR(3) Reserved

48 30 CHAR(16) Route destination binary
64 40 CHAR(3) Prefix length

67 43 CHAR(5) Reserved

72 48 BINARY (4) Prefix length binary

76 4C BINARY (4) Next hop address family
80 50 CHAR(45) Next hop IPv6
125 7D CHAR(3) Reserved
128 80 CHAR(16) Next hop IPv6 binary
144 90 CHAR(15) Next hop IPv4
159 9F CHAR(1) Reserved
160 A0 BINARY (4) Next hop IPv4 binary
164 Ad CHAR(10) Local binding line name
174 AE CHAR(2) Reserved
176 BO BINARY (4) Local binding line type
180 B4 BINARY (4) Local binding line status
184 B8 BINARY (4) Route status
188 BC BINARY(8) Route lifetime remaining
196 C4 BINARY (4) Route lifetime at creation
200 C8 BINARY(4) Route source

156 iSeries: Communications APIs

Offset
Dec Hex Type Field
204 CcC BINARY (4) Route type
208 DO BINARY (4) Configured route MTU
212 D4 BINARY(4) Actual route MTU
216 D8 BINARY (4) Is on-link
220 DC BINARY (4) Duplicate indicator
224 EO CHAR(8) Change date
232 E8 CHAR(6) Change time
238 EE CHAR(8) Expiration date
246 F6 CHARC(6) Expiration time
" 252 FC CHAR(50) Text description
302 12E CHAR(2) Reserved
304 130 BINARY(4) Text description CCSID %
308 134

Field Descriptions

Actual route MTU. A number representing the maximum transmission unit (MTU) value for this route in
bytes.

The following is a special value:

0 *IP6LINMTU - The route is not currently active and the MTU was specified as *IP6LINMTU, the MTU value
of the line to which this route is bound.

Change date. The date of the most recent change to this route in the dynamic tables used by the
TCP/IPv6 protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

YYYY Year
MM Month
DD Day

Change time. The time of the most recent change to this route in the dynamic tables used by the
TCP/IPv6 protocol stack. It is returned as 6 characters in the form HHMMSS, where:

HH Hour
MM Minute
SS Second

Configured route MTU. A number representing the configured maximum transmission unit (MTU) value
for this route in bytes.

The following is a special value:

0 *IP6LINMTU - The route MTU was specified as *IPELINMTU, the MTU value of the line to which this route
is bound.

Communications APIs 157

Duplicate indicator. Indicates whether this route is a duplicate of another route in the routing table or
not, and also whether there are any routes which are duplicates of this route. Use the Route status field
to determine whether the route is in use or not.

Possible values are:

1 This route is not a duplicate of another route and it does not have any duplicates.
2 This route is not a duplicate of another route but it does have duplicates.
3 This route is a duplicate of another route.

Expiration date. The date when this route will expire or did expire. If the Expiration date and time are in
the future, the route has not expired yet. If the Expiration date and time are in the past, then this route
has expired and is still being returned for a short period of time to indicate that the route ceased to
function because its lifetime expired. The Expiration date is returned as 8 characters in the form
YYYYMMDD.

The meaning of the characters is as follows:

YYYY Year
MM Month
DD Day

The following is a special value:

00000000 Infinite - this route has an infinite lifetime which never expires.

Expiration time. The time when this route will expire or has expired. If the Expiration date and time are
in the future, the route has not expired yet. If the Expiration date and time are in the past, then this route
has expired and is still being returned for a short period of time to indicate that the route ceased to
function because its lifetime expired. The Expiration time is returned as 6 characters in the form
HHMMSS.

The meaning of the characters is as follows:

HH Hour
MM Minute
SS Second

The following is a special value:

000000 Infinite - this route has an infinite lifetime which never expires.

Is on-link. Indicates whether this route is for a directly attached prefix (network) or not.

Possible values are:

0 Unknown, the on-link status of this route is undetermined.
1 Yes, this is a route to a directly attached prefix.

4 Note: As of V5R4, this field is no longer available and is always set to 0. €%

158 iSeries: Communications APIs

Local binding line name. The name of the communications line description to which this route is bound.
This field is NULL padded.

The following are special values:

*LOOPBACK This route is bound to the loopback interface. Processing associated with the loopback interface
does not extend to a physical line.
*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

% Note: As of V5R4, this value is no longer supported. <%
*OPC This interface is attached to the optical bus (OptiConnect).

% Note: As of V5R4, this value is no longer supported. <%
*TNLCFG64 This interface is bound to a configured 6-4 tunneling line.

% Note: As of V5R4, this value is no longer supported. <%

Local binding line status. The current operational status of the communications line to which this route
is bound.

Possible values are:

1 Active - The line is operational.
2 Inactive - The line is not operational.
3 Failed - The desired state of the line is Active, but it is currently in the Inactive state.

Local binding line type. Indicates the type of line to which this route is bound.

Possible values are:

-1 OTHER

-2 NONE - Line is not defined. This value is used for the following interface: *LOOPBACK. There is no line type
value for this interface.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while

trying to determine the link type for an interface.

NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

ELAN - Ethernet local area network protocol.

TRLAN - Token-ring local area network protocol.

FR - Frame relay network protocol.

ASYNC - Asynchronous communications protocol.

PPP - Point-to-point Protocol.

WLS - Wireless local area network protocol.

X.25 - X.25 protocol.

DDI - Distributed Data Interface protocol.

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

kom\l@(fl-bwl\)b—‘#

e
= o

" Note: As of V5R4, TRLAN, FR, ASYNC, PPP, WLS, X.25, DDI, TDLC, L2TP and IPv6 Tunneling Line values
are no longer supported. ¢

Next hop address family. The address family of the Next Hop address for this route. Use this field to
determine whether the IPv4 or IPv6 Next Hop field contains the value of the next hop.

Possible values are:

Communications APIs 159

1 AF_INET - The next hop is an IPv4 address. Use the Next hop IPv4 fields.
2 AF_INET6 - The next hop is an IPv6 address. Use the Next hop IPv6 fields.

x Note: As of V5R4, AF_INET is no longer supported for next hop address family. <&

Next hop IPv4. The IPv4 internet address of the first system on the path from this system to the route
destination in dotted-decimal format. The next hop will only be an IPv4 address when the route uses an
IPv6 over IPv4 tunnel. This field is only valid when the value of the Next hop address family field is
AF_INET. This field is NULL padded

x» Note: As of V5R4, this field is no longer available and is always set to 0. <%

Next hop IPv4 binary. The binary representation of the Next hop IPv4 field. This field is only valid when
the value of the Next hop address family field is AF_INET.

s Note: As of V5R4, AF_INET is no longer supported for a next hop address family. As a result, the
value in this field is no longer valid. <%

Next hop IPv6. The IPv6 internet address of the first system on the path from your system to the route
destination in IPv6 address format. This field is only valid when the value of the Next hop address
family field is AF_INET6. This field is NULL padded.

The following special value may be returned:

*DIRECT This is the next hop value of a route that is automatically created. When an interface is added to
this system, a route to the network the interface attaches to is also created.

Next hop IPv6 binary. The binary representation of the Next hop IPv6 field. Even though this field is
defined as a character field, a binary IPv6 address is returned in it except when the following special
character values are returned. This field is only valid when the value of the Next hop address family field
is AF_INET®6.

The following special value may be returned:

*DIRECT This is the next hop value of a route that is automatically created. When an interface is added to
this system, a route to the network the interface attaches to is also created.

Prefix length. The prefix length defines how many bits of the route destination IPv6 address are in the
prefix. It is a zoned decimal number which specifies how many of the left-most bits of the address make
up the prefix. The prefix length is used to generate network and host addresses. This field is NULL
padded.

Prefix length binary. Binary representation of the prefix length.

Reserved. An ignored field.

Route destination. The Internet Protocol version 6 (IPv6) address, in IPv6 address format, of the ultimate
destination reached by this route. When used in combination with the prefix length the route destination

identifies a route to a network or system. This field is NULL padded.

Route destination binary. The binary representation of the route destination. Even though this field is
defined as a character field, a binary IPv6 address is returned in it.

160 iSeries: Communications APIs

Route lifetime at creation. The route lifetime value which this route had when it was first created, either
automatically or by manual configuration. The route lifetime value is the length of time, in seconds, that
a route remains in the route table. Only routes which are discovered on the network will have route
lifetimes shorter than infinite. Valid values range from 1 through 4294967295 seconds.

The following is a special value:

0 Infinite - this route had an infinite lifetime when it was created.

4 Note: As of V5R4, the route lifetime at creation field is always set to infinite. €%

Route lifetime remaining. The length of time, in seconds, that a route remains in the route table. Only
routes which are discovered on the network will have route lifetimes shorter than infinite. Valid values
range from -31536000 through 4294967295 seconds. Negative values indicate that the route has expired,
but it is being retained for a short period of time to show why the route ceased to function.

The following is a special value:

-1000000000 Infinite - this route has an infinite lifetime.

s Note: As of V5R4, the route lifetime remaining field is always set to infinite. <%
Route source. Specifies how this route was added to the IPv6 routing table.

The possible values are:

0 Unknown

1 ICMPV6 Redirect - This route was added by the ICMPv6 redirect mechanism.

2 ICMPV6 Router Advertisement Router Lifetime - This route was added because of the presence of a non-zero
value in the Router Lifetime field in a Router Advertisement packet received by the system.

3 ICMPV6 Router Advertisement Prefix Information Option - This route was added because of the presence of a
Prefix Information Option on a Router Advertisement packet received by the system.

4 CFG RTE - This route was manually configured.

5 CFG IFC - This route was added when because of a manually configured interface.

6 Autoconfigured Interface - This route was added when because of an interface added by stateless
autoconfiguration.

7 RIP - This route was added by the Routing Information Protocol (RIP).

8 OSPF - This route was added by the Open Shortest Path First (OSPF) routing protocol.

9 ROUTING - This route was determined to be necessary and added by the TCP/IP stack on this system.

Route status. The current state of the route.

Possible values are:

0 Unknown
1 Active - This route is currently active and is in the current route search path.
3 Inactive - This route is not in the current route search path, and is not being used.

Route type. The type of route that this route is.

Possible values are:

0 Unknown
1 DFTROUTE - A default route.

Communications APIs 161

2 DIRECT - A route to a network to which this system has a direct physical connection.
3 HOST - A route to a specific remote host.
4 NET - An indirect route to a remote network.

s Text description. User added text description associated with the route.

Text description CCSID. Coded character set ID for the text description. <%

Error Messages

Message ID Error Message Text

TCP84CO E TCP/IP stack not active.

TCP84C5 E API error providing TCP/IP Network Status list information.
TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &A4.
TCP84C9 | Information returned incomplete.

CPFOFO3 E Error in retrieving the user space that was created by the caller.
CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

| [“Communications APIs,” on page 1| | |APIs by category|

List Physical Interface ARP Table (QtocLstPhylfcARPTDbI) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Line name Input Char(10)
4 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Physical Interface ARP Table (QtocLstPhyIlfcARPTbI) API returns a list of all entries in the ARP
(Address Resolution Protocol) table for the specified line.

TCP/IP must be active on this system; otherwise, error message TCP84CO0 will be issued.

162 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that receives the information, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The job’s current library.
*LIBL The library list.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:
ARPT0100

List of ARP table entries for a specified interface. Refer to [*ARPT0100 Format” on page 164] for
details on the format.

Line name
INPUT; CHAR(10)

The name of the physical interface to retrieve ARP table entries for.

Error Code
170; CHAR(*)
The structure in which to return error information. For the format of the structure, see

Format of ARP Table Lists

To request a list of ARP table entries for an interface, use format ARPT0100.

The ARP table list consists of:
e A user area
* A generic header
* An input parameter section
* A header section
* A list data section:

— ARPTO0100 format.

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

Communications APIs 163

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see API [Examples,

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C CHAR(10) Line name specified

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name
10 A CHAR(10) User space library name used
20 14 CHAR(10) Line name used

ARPTO0100 Format

The following information about an ARP table entry is returned for the ARPT0100 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions.’]

Offset

Dec Hex Type Field

0 0 CHAR(15) Internet address

15 F CHAR(1) Reserved

16 10 BINARY (4) Internet address binary

20 14 BINARY(4) Line type

24 18 BINARY (4) Ethernet type

28 1C BINARY(4) Type of entry

32 20 BINARY (4) Data link connection identifier (DLCI)
36 24 BINARY(4) Routing information field (RIF) valid mask
40 28 CHAR(18) Routing information field (RIF)

58 3A CHAR(17) Physical address

75 4B CHAR(1) Reserved

Field Descriptions

Data link connection identifier (DLCI). This field identifies a logical connection on a single physical
Frame Relay link. Each logical connection has a unique integer identifying it. Valid values range from 1
to 255, and this field is only valid when the line type field corresponds to Frame Relay.

164 iSeries: Communications APIs

Ethernet type. The type of Ethernet framing in use. ONLY valid if the interface is using an ELAN
(Ethernet) or WLS (Wireless) line.

-1
1
6

Both Ethernet Version 2 and IEEE 802.3 framing (only set for local or proxy entries)
Ethernet Version 2
IEEE 802.3

Internet address. The IP address of the interface in dotted-decimal notation.
Internet address binary. The binary representation of the IP address.

Line type. The type of physical line used by an interface. The possible values are:

ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.

WLS - Wireless local area network protocol.

DDI - Distributed Data Interface protocol.

0 OO WN -

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where "X’ is a
hexadecimal digit.

Reserved. An ignored field.

Routing information field (RIF). The architected token-ring or FDDI source routing information. Use the

RIF Valid Mask field to determine the validity of this field.

Routing information field (RIF) valid mask. Tells whether the RIF is valid for this ARP entry or not. The

possible values are:

0 The RIF is not valid.
1 The RIF is valid.

Type of entry. The type of ARP table entry. The possible values are:

1 Dynamic - A normal ARP table entry which will be removed automatically after a period of inactivity.
2 Local - This interface is local to this host. Static entry.
3 Proxy - This interface is proxying ARP requests/replies for other machines. Static entry.

Error Messages

TCP84CO E TCP/IP stack not active.

TCP84C3 E The specified line name does not exist.

TCP84C4 E The specified line name corresponds to a line type that does not support ARP.
TCP84C5 E API error providing TCP/IP Network Status information.
TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &A4.
TCP84C9 | Information returned incomplete.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CFLl E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9801 E Object &2 in library &3 not found.

Communications APIls

165

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

| [FCommunications APIs,” on page 1 | [APIs by category]

List Physical Interface Data (QtocLstPhylfcDta) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The List Physical Interface Data (QtocLstPhylfcDta) API returns a list of physical interfaces and detailed
information about TCP/IP related data for each one. Depending on which output format is requested,
IPv4 and also IPv6 information can be requested for each physical interface.

TCP/IP must be active on this system; otherwise error message TCP84CO0 will be issued.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock
*SHRNUP

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that receives the information, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The job’s current library.
*LIBL The library list.

Format name
INPUT; CHAR(8)

166 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

The format of the space information to be returned. The format names supported are:

IFCD0100 Basic physical interface data and detailed IPv4 specific data. Refer to [‘IFCD0100 Format” on pagﬁ
for details on the format.

IFCD0200 Filter and IPSec Physical interface data. Refer to|“IFCD0100 Format” on page 168 and [“IFCD0200|
[Format” on page 171|for details on the format.

IFCD0300 Detailed IPv6 specific physical interface data. Refer to[‘IFCD0100 Format” on page 168 and

[“IFCD0300 Format” on page 175|for details on the format.

Error Code
170; CHAR(¥)

The structure in which to return error information. For the format of the structure, see

Format of Physical Interface Lists

To request a list of TCP/IP data for all physical interfaces, use format IFCD0100. For detailed information
about Filter and IPSec physical interface data in addition to the IFCD0100 format data, use format
IFCD0200.

The physical interface description list consists of:
* A user area
* A generic header
* An input parameter section
* A header section
* A list data section:
— IFCD0100 format.
— IFCD0200 format.
— IFCD0300 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see API|{Examples,

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C

Communications APIs 167

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name
10 A CHAR(10) User space library name used
20 14

Format of Returned Connection Data

To retrieve basic Physical interface data, and IPv4 specific statistics about each physical interface, use
format [“IFCD0100 Format.”] To retrieve IPv4 Filter and IPSec statistics about each physical interface, in
addition to format IFCD0100 information, use format [{IFCD0200 Format” on page 171.|To retrieve IPv6
specific information and statistics about each physical interface, in addition to format IFCD0100
information, use format [*IFCD0300 Format” on page 175,

IFCD0100 Format

The following data about a physical interface is returned for the IFCD0100 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 169.

Offset

Dec Hex Type Field

0 0 BINARY (4) Line type

4 4 BINARY (4) Packet rules

8 8 BINARY(8) Total bytes received

16 10 BINARY(8) Total bytes sent

24 18 BINARY (4) Total unicast packets received

28 1C BINARY(4) Total non-unicast packets received
32 20 BINARY (4) Total inbound packets discarded
36 24 BINARY(4) Total unicast packets sent

40 28 BINARY (4) Total non-unicast packets sent
44 2C BINARY(4) Total outbound packets discarded
48 30 BINARY (4) Physical interface status

52 34 CHAR(10) Line description

62 3E CHAR(17) Physical address

79 4F CHAR(8) Date - retrieved

87 57 CHAR(6) Time - retrieved

93 5D CHAR(3) Reserved

96 60 BINARY(4) Offset to additional information
100 64 BINARY (4) Length of additional information
104 68 BINARY(4) Internet protocol version

108 6C

168 iSeries: Communications APIs

Field Descriptions
Date - retrieved. Date when information is retrieved and valid. Format: YYYYMMDD, where:

YYYY Year
MM Month
DD Day

Internet protocol version. The version of the Internet Protocol (IP) that is currently in use on this line.

Possible values are:

1 IPv4
2 IPv6
3 IPv4 & IPv6

Length of additional information. The length in bytes of additional information returned that is not part
of format IFCD0100.

Line description. Each TCP/IP interface is associated with a physical network. This field displays the
name of the communications line description that identifies the physical network associated with an
interface.

The following special values may also be displayed:

*1PI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX). A specific
physical line is not associated with an interface used by IP over IPX (IPI).

Note: As of V5R2, IP over IPX is no longer supported.

*IPS The interface is used by Internet Protocol (IP) over SNA. A specific physical line is not associated
with an interface used by IP over SNA (IPS).

*LOOPBACK The interface is a loopback interface. Processing associated with a loopback interface does not
extend to a physical line. There is no line description associated with a loopback address.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces. This special value is used to accommodate

any of the following cases:

1. Load balancing. This is the means of having a fixed source IP address regardless of which
interface the traffic is being distributed.

2. Frame-relay multi-access network to define the local network IP address. This allows for
multiple virtual circuits to share the same IP network.

3. Alternate method of network access translation (NAT). This eliminates the need for a NAT box
by assigning a globally unique single IP address directly to the box without the need to define
an entire network.

4. Unnumbered networks. This provides a means of associating a local source IP address for an
unnumbered point-to-point network.

*OPC This special value is used if you are adding an OptiConnect interface over TCP/IP. This interface
is attached to the optical bus (OptiConnect).
*TNLCFG64 This special value means this line description is a Configured 6-4 (IPv6 over IPv4) tunneling line.

IPv6 Neighbor Discovery does not work over a Configured tunnel, so you don’t get the benefit of
stateless autoconfiguration.

4 Note: As of V5R4, this value is no longer supported. <%

Line type. Type of line used by an interface. The following link protocols are supported:

Communications APIs 169

© 0 N O Ol &~ WN -

=
o

OTHER -

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX).
Note: As of V5R2, IP over IPX is no longer supported.
IPS - An Internet Protocol (IP) over SNA interface.

WLS - Wireless local area network protocol.
TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.
NONE - Line is not defined. There is no line type value for these interfaces.
ERROR - This value is displayed if any system errrors other than those for *NOTFND are received
while trying to determine the link type for an interface.
NOTFND - Not found. This value is displayed if the line description object for this interface
cannot be found.
ELAN - Ethernet local area network protocol.
TRLAN - Token-ring local area network protocol.
FR - Frame relay network protocol.
ASYNC - Asynchronous communications protocol.
PPP - Point-to-point Protocol.
X.25 - X.25 protocol.
DDI - Distributed Data Interface.
OPC - OptiConnect interface.
LOOPBACK - Loopback interface.
IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

4 Note: As of V5R4, this value is no longer supported. <%

Offset to additional information. The offset in bytes to the rest of the information if a format other than
IFCDO0100 is requested.

Packet rules.Indicates what kind of packet rules data is available for a particular line.

g b~ w NN EFE O

None - No NAT and no filters are loaded for the line specified.

NAT - NAT is enabled for this line.

Filters - Filters are defined for this line.

NAT and Filters - NAT enabled and Filters defined.

Filters and IPSec - Filters and IPSec filters are defined for this line.

NAT and Filters and IPSec - NAT enabled and Filters and IPSec filters defined.

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where ’X’ is a
hexadecimal digit.

Physical interface status. The current operational state of the physical interface (line).

D OB~ W NP O

Unknown - The status of this physical interface is unknown.

Active - The physical interface is operational.

Inactive - The physical interface is not operational.

Failed - The desired state of the physical interface is active, but it is currently in the inactive state.
Starting - The system is processing the request to start this physical interface.

Ending - The system is processing the request to start this physical interface.

Recovery Pending - An error has been detected with this physical interface and the system is
recovering.

Recovery Canceled - An error has been detected with this physical interface and system recovery
has been canceled.

Reserved. An ignored field.

170

iSeries: Communications APIs

Time - retrieved. Time when information is retrieved and valid. Format: HHMMSS, in 24 hour time,
where:

HH Hour
MM Minute
SS Second

Total bytes received. The total number of bytes received on the interface, including framing characters.
Total bytes sent. The total number of bytes transmitted out of the interface, including framing characters.

Total inbound packets discarded. The number of inbound packets which were chosen to be discarded
even though no errors had been detected to prevent their being deliverable to a higher-layer protocol.
One possible reason for discarding such a packet could be to free up buffer space.

Total non-unicast packets received. The number of non-unicast (that is, broadcast or multicast) packets
delivered to a higher-layer protocol.

Total non-unicast packets sent. The total number of packets that higher-level protocols requested be
transmitted to a non-unicast (that is, broadcast or multicast) address, including those that were discarded
or not sent.

Total outbound packets discarded. The number of outbound packets which were chosen to be discarded
even though no errors had been detected to prevent their being transmitted. One possible reason for
discarding such a packet could be to free up buffer space.

Total unicast packets received. The number of unicast packets delivered to a higher-layer protocol.

Total unicast packets sent. The total number of packets that higher-level protocols requested to be
transmitted to a unicast address, including those that were discarded or not sent.

IFCD0200 Format

This format returns detailed Filter and IPSec Physical interface data in addition to data about a physical
interface from the IFCD0100 format. For detailed descriptions of the fields in the table, see
[Descriptions” on page 172

Offset

Dec Hex Type Field

0 0 Returns everything from format IFCD0100.

Communications APIs 171

Offset

Dec Hex Type Field

Decimal and CHAR(8) Date - filter rules loaded or unloaded

hexadecimal O.ﬁSEtS are CHAR(6) Time - filter rules loaded or unloaded

reached by using the

offset to additional CHAR(2) Reserved

]icg';(:r';gﬁt;%r:)gil)%lin BINARY(8) Outbound filter packets discarded
BINARY(8) Outbound filter packets permitted
BINARY(8) Outbound packets non-filtered
BINARY(8) Outbound IPSec packets
BINARY(8) Outbound IPSec packets discarded - no connection
BINARY(8) Outbound IPSec packets discarded - ondemand
BINARY(8) Outbound IPSec packets discarded - VPN NAT
BINARY(8) Outbound IPSec packets discarded - other
BINARY(8) Outbound NAT packets
BINARY(8) Outbound NAT packets discarded
BINARY(8) Outbound packets discarded - other
BINARY(8) Outbound packets discarded - rule exception
BINARY(8) Inbound IPSec packets
BINARY(8) Inbound IPSec packets permitted
BINARY(8) Inbound IPSec packets discarded - no connection
BINARY(8) Inbound IPSec packets discarded - no AH/ESP
BINARY(8) Inbound IPSec packets discarded - ondemand
BINARY(8) Inbound IPSec packets discarded - VPN NAT
BINARY(8) Inbound IPSec packets discarded - anti-replay fail
BINARY(8) Inbound IPSec packets discarded - selector mismatch
BINARY(8) Inbound IPSec packets discarded - mode mismatch
BINARY(8) Inbound IPSec packets discarded - authentication error
BINARY(8) Inbound IPSec packets discarded - other
BINARY(8) Inbound NAT packets
BINARY(8) Inbound filter packets discarded
BINARY(8) Inbound filter packets permitted
BINARY(8) Inbound packets non-filtered
BINARY(8) Inbound packets discarded - other
BINARY(8) Inbound packets discarded - rule exception
BINARY (4) NAT rules
BINARY (4) Filter rules
BINARY (4) IPSec rules

Field Descriptions

Date - filter rules loaded or unloaded.

172 iSeries: Communications APIs

Date when the filter rules were most recently successfully loaded on or unloaded from this interface.
Format: YYYYMMDD, where:

YYYY Year
MM Month
DD Day

The following is a special value:

00000000 Rules have never been loaded since interface was loaded.

Filter rules. Indicates whether filter rules exist on the system. The possible values are:

0 No filter rules exist.
1 Filter rules exist.

Inbound IPSec packets. Total inbound IPSec packets (AH or ESP) processed without error.
Inbound IPSec packets permitted. Total inbound packets permitted by pre-IPSec filters.
Inbound IPSec packets discarded - authentication error. Authentication error or failed.

Inbound IPSec packets discarded - no connection. Total inbound packets discarded because a VPN
connection was not started.

Inbound IPSec packets discarded - no AH/ESP. Total inbound packets discarded because packet should
have had a AH or ESP header, and did not.

Inbound IPSec packets discarded - ondemand. Total inbound packets discarded due to a starting
on-demand VPN connection.

Inbound IPSec packets discarded - anti-replay fail. Total inbound packets discarded due to failed
anti-replay audit.

Inbound IPSec packets discarded - mode mismatch. Total inbound packets discarded because the mode
(tunnel or transport) of the packet did not match the mode of the VPN connection.

Inbound IPSec packets discarded - other. Total inbound packets discarded for other reasons, relating to
IPSec.

Inbound IPSec packets discarded - selector mismatch. Total inbound packets discarded because the
packet did not match the VPN connection (selectors).

Inbound IPSec packets discarded - VPN NAT. Total inbound packets that could not be NAT’d because
an IP address was not available from a VPN NAT pool.

Inbound NAT packets. Total inbound packets processed by conventional NAT.
Inbound filter packets discarded. Total inbound packets discarded by filter action = DENY.
Inbound filter packets permitted. Total inbound packets permitted by filter action = PERMIT.

Inbound packets non-filtered. Total inbound packets not filtered (occurs only when no filters exist).

Communications APIs 173

Inbound packets discarded - other. Total inbound packets discarded for some other reason.
Inbound packets discarded - rule exception. Total inbound packets discarded for exception reason.

IPSec rules. Indicates whether IPSec filter rules exist on the system. The possible values are:

0 No IPSec filter rules exist.
1 IPSec filter rules exist.

NAT rules. Indicates whether NAT rules exist on the system. The possible values are:

0 No NAT rules exist.

1 NAT rules exist.

Outbound filter packets discarded. Total outbound packets discarded by filter action = DENY.
Outbound filter packets permitted. Total outbound packets permitted by filter action = PERMIT.
Outbound packets non-filtered. Total outbound packets not filtered (occurs only when no filters exist).
Outbound IPSec packets. Total outbound IPSec packets (AH or ESP) processed without error.

Outbound IPSec packets discarded - no connection. Total outbound packets that could not be handled
by IPSec because a VPN connection was not started.

Outbound IPSec packets discarded - ondemand. Total outbound packets discarded due to a starting
on-demand VPN connection.

Outbound IPSec packets discarded - other. Total outbound packets that could not be handled for other
reasons.

Outbound IPSec packets discarded - VPN NAT. Total outbound packets that could not be NAT'd
because an IP address was not available from a VPN NAT pool.

Outbound NAT packets. Total outbound packets processed by conventional NAT.

Outbound NAT packets discarded. Total outbound packets that could not be handled by masquerade
NAT due to lack of available conversation.

Outbound packets discarded - other. Total outbound packets discarded for some other reason.
Outbound packets discarded - rule exception. Total outbound packets discarded for exception reason.
Reserved. An ignored field.

Time - filter rules loaded or unloaded. Time when the filter rules were most recently successfully loaded
on or unloaded from this interface. Format: HHMMSS, in 24 hour time, where:

HH Hour
MM Minute
SS Second

The following is a special value:

174 iseries: Communications APIs

000000

Rules have never been loaded since interface was loaded.

IFCD0300 Format

This format returns detailed 1Pv6 specific information and statistics for each Physical interface, in

addition to data about a physical interface from the IFCD0100 format. For detailed descriptions of the

fields in the table, see [“Field Descriptions” on page 177 |

Offset

Dec

Hex

Type

Field

0

0

Returns everything from format IFCD0100.

Communications APls

175

Offset

Dec Hex Type Field

Decimal and BINARY (4) Packet rules - IPv6

:‘::Ci](i?ig’ahgﬁsgeﬁ]:re BINARY(8) Total IPv6 bytes received

offset to additional BINARY(8) Total IPv6 bytes sent

:cg';(:r';gﬁt;%r:)gil)%lin BINARY (4) Total IPV6 unicast packets received
BINARY(4) Total IPv6 multicast packets received
BINARY(4) Total IPv6 anycast packets received
BINARY (4) Total inbound IPv6 packets discarded
BINARY(4) Total IPv6 unicast packets sent
BINARY (4) Total IPv6 multicast packets sent
BINARY(4) Total IPv6 anycast packets sent
BINARY (4) Total outbound IPv6 packets discarded
CHAR(25) IPv6 interface identifier
CHAR(7) Reserved
BINARY(8) IPv6 interface identifier binary
BINARY (4) MTU - configured
BINARY (4) MTU - current
BINARY (4) Hop limit - configured
BINARY (4) Hop limit - current
BINARY (4) Use stateless autoconfig
BINARY(4) Use stateful address configuration
BINARY (4) Use other stateful configuration
BINARY (4) Accept router advertisements
BINARY (4) Accept redirects
BINARY(4) Neighbor discovery base reachable time - configured
BINARY (4) Neighbor discovery base reachable time - current
BINARY (4) Neighbor discovery reachable time
BINARY(4) Neighbor solicitation retransmit interval - configured
BINARY (4) Neighbor solicitation retransmit interval - current
BINARY (4) Duplicate address detection max transmits
CHAR(15) Local tunnel endpoint IPv4 address
CHAR(1) Reserved
BINARY(4) Local tunnel endpoint IPv4 address binary
ws CHAR(50) Text description
CHAR(1) Reserved
BINARY (4) Text description CCSID
BINARY (4) Autoconfig line status ¥

176 iSeries: Communications APIs

Field Descriptions

Accept redirects. Whether the system is currently accepting and using ICMPVv6 Redirects that it receives
on this physical interface.

Possible values are:
0 No - this interface is not accepting redirects.

" Note: As of V5R4, the physical interface will always accept redirects. As a result, 0 will never be returned.

&

1 Yes - this interface is accepting redirects.

Accept router advertisements. Whether the system is currently accepting and using Router
Advertisements that it receives on this physical interface.

Possible values are:
0 No - this interface is not accepting router advertisements.

* Note: As of V5R4, the physical interface will always accept router advertisements. As a result, 0 will never
be returned. £

1 Yes - this interface is accepting router advertisements.

s Autoconfig line status. Whether this physical interface is currently using, not using, or is configured
for stateless autoconfig.

Possible values are:

0 Autoconfig is not active on this physical interface.
1 Autoconfig has been configured on this physical interface.
2 Autoconfig is active on this physical interface. ¥

Duplicate address detection max transmits. The maximum number of consecutive Neighbor Solicitation
messages which will be sent using this physical interface when TCP/IPv6 performs Duplicate Address
Detection (DAD) on a tentative address.

The following special value may be returned:

0 This physical interface is currently configured to not perform Duplicate Address Detection.

Hop limit - configured. The configured IPv6 Hop Limit value specified for this physical interface. The
Hop limit field is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop limit value
specifies a relative limit on the number of hops across which an IPv6 datagram remains active. The Hop
limit value is hop count that is decremented by each gateway to prevent internet routing loops. The
default Hop limit value is 64. Valid values range from 1 through 255 hops.

Hop limit - current. The IPv6 Hop Limit value currently in effect for this physical interface. The Hop
Limit field is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop Limit value specifies a
relative limit on the number of hops across which an IPv6 datagram remains active. The Hop Limit value
is hop count that is decremented by each gateway to prevent internet routing loops. The default Hop
Limit value is 64. If the current Hop Limit value differs from the configured Hop Limit value, then it has
been set by a Hop Limit value received in a Router Advertisement packet. Valid values range from 1
through 255 hops.

Communications APIs 177

IPVv6 interface identifier. A 64-bit number which is combined with prefixes to create complete IPv6
addresses for the physical interface. By default it is based on the link layer (MAC) address, if one exists.
The interface identifier is represented here in standard IPv6 address format notation. It does not include a
leading "::" for the first 64 bits of a full IPv6 address, and it may include an embedded IPv4 address at
the end. This field is NULL padded.

IPv6 interface identifier binary. Binary representation of the IPv6 interface identifier.

Local tunnel endpoint IPv4 address. The IPv4 address of the local tunnel endpoint of this tunnel,
returned in dotted decimal format. This field is NULL padded.

The following special value may be returned:
0.0.0.0 This physical interface is not a tunnel, so this field does not apply.

w» Note: As of V5R4, tunneling is not supported. As a result, this field is always set to 0.0.0.0. <%,

Local tunnel endpoint IPv4 address binary. Binary representation of the Local tunnel endpoint IPv4
address.

The following special value may be returned:
0 This physical interface is not a tunnel

% Note: As of V5R4, tunneling is not supported. As a result, this field is always set to 0. %

MTU - configured. The configured maximum transmission unit (MTU) value specified for this physical
interface.

The following is a special value:

0 LIND - The MTU was configured as *LIND, the MTU value from the line description.

MTU - current. Maximum transmission unit (MTU) value currently in effect for this physical interface.

The following is a special value:

0 LIND - The interface is not active currently and the MTU was configured as *LIND.

Neighbor discovery base reachable time - configured. The configured Neighbor Discovery (ND) Base
Reachable Time value, in seconds, specified for this physical interface. The ND Base Reachable Time
value is a base time value used for computing the random ND Reachable Time value. The default ND
Base Reachable Time is 30 seconds. Valid values range from 10 through 100 seconds.

s Note: As of V5R4, this field is always set to 30. <%

Neighbor discovery base reachable time - current. The Neighbor Discovery (ND) Base Reachable Time
value, in seconds, currently in effect for this physical interface. The ND Base Reachable Time value is a
base time value used for computing the random ND Reachable Time value. The default ND Base
Reachable Time is 30 seconds. If the current ND Base Reachable Time value differs from the configured
value, then it has been set by a ND Base Reachable Time value received in a Router Advertisement
packet. Valid values range from 10 through 100 seconds.

s Note: As of V5R4, this field is always set to 30. <%

178 iSeries: Communications APIs

Neighbor discovery reachable time. The current Neighbor Discovery (ND) Reachable Time value, in
seconds, for this physical interface. The ND Reachable Time value is the amount of time, in seconds, that
a neighbor is considered reachable after receiving a reachability confirmation. The ND Reachable Time
value is randomly calculated, using the ND Base Reachable Time and a couple constants. This calculation
is performed to prevent Neighbor Unreachability Detection (NUD) messages from synchronizing with
each other.

s Note: As of V5R4, this field is always set to 0. <%

Neighbor solicitation retransmit interval - configured. The configured Neighbor Solicitation (NS)
Retransmit Interval value, in seconds, specified for this physical interface. The NS Retransmit Interval is
the time, in seconds, between retransmissions of Neighbor Solicitation messages to a neighbor when
resolving the link-layer address, or when probing the reachability of a neighbor. The default NS
retransmit interval is 1 second. Valid values range from 1 through 10 seconds.

s+ Note: As of V5R4, this field is always set to 1. 4%

Neighbor solicitation retransmit interval - current. The Neighbor Solicitation (NS) Retransmit Interval
value currently in effect for this physical interface. The NS Retransmit Interval is the time, in seconds,
between retransmissions of Neighbor Solicitation messages to a neighbor when resolving the link-layer
address, or when probing the reachability of a neighbor. The default NS Retransmit Interval is 1 second.
If the current NS Retransmit Interval value differs from the configured value, then it has been set by a NS
Retransmit Interval value received in a Router Advertisement packet. Valid values range from 1 through
10 seconds.

s+ Note: As of V5R4, this field is always set to 1. 4%
Packet rules - IPv6. Indicates what kind of IPv6 packet rules are loaded on a particular line.

Possible values are:

-1 Other - An unknown Packet rules value.

0 None - No NAT and no filters are loaded for the line specified.

1 NAT - NAT is enabled for this line.

2 Filters - Filters are defined for this line.

3 NAT and Filters - NAT enabled and Filters defined for this line.

4 Filters and IPSec - Filters and IPSec filters are defined for this line.

5 NAT and Filters and IPSec - NAT enabled and Filters and IPSec filters defined for this line.

Reserved. An ignored field.

s Text description. User added text description associated with the physical interface.

Text description CCSID. Coded character set ID for the text description. <%

Total inbound IPv6 packets discarded. The number of inbound IPv6 packets which were chosen to be
discarded even though no errors had been detected to prevent their being deliverable to a higher-layer

protocol. One possible reason for discarding such a packet could be to free up buffer space.

Total IPv6 anycast packets received. The number of IPv6 anycast packets delivered to a higher-layer
protocol.

Total IPv6 anycast packets sent. The number of IPv6 anycast packets that higher-level protocols
requested be transmitted, including those that were discarded.

Communications APIs 179

Total IPv6 bytes received. The total number of IPv6 bytes received on the interface, including framing
characters.

Total IPv6 bytes sent. The total number of IPv6 bytes transmitted out of the interface, including framing
characters.

Total IPv6 multicast packets received. The number of IPv6 multicast packets delivered to a higher-layer
protocol.

Total IPv6 multicast packets sent. The number of IPv6 multcast packets that higher-level protocols
requested be transmitted, including those that were discarded.

Total IPv6 unicast packets received. The number of IPv6 unicast packets delivered to a higher-layer
protocol.

Total IPv6 unicast packets sent. The number of IPv6 unicast packets that higher-level protocols requested
be transmitted, including those that were discarded.

Total outbound IPv6 packets discarded. The number of outbound IPv6 packets which were chosen to be
discarded even though no errors had been detected to prevent their being transmitted. One possible
reason for discarding such a packet could be to free up buffer space.

Use other stateful configuration. Whether the TCP/1Pv6 stack has been informed by a Router
Advertisement to use non-address stateful (that is, DHCPv6) configuration information that it receives on
this physical interface.

Possible values are:

-1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use any non-address stateful configuration information that it
receives on this physical interface.

1 YES - The system has been informed to use any non-address stateful configuration information that it receives

on this physical interface.

s Note: As of V5R4, this field is always set to 0. <%

Use stateful address configuration. Whether the TCP/IPv6 stack has been informed by a Router
Advertisement to use stateful (that is, DHCPV6) configuration information that it receives on this physical
interface for the purpose of address autoconfiguration.

Possible values are:

-1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use stateful configuration information that it receives on this
physical interface for the purpose of address autoconfiguration.

1 YES - The system has been informed to use stateful configuration information that it receives on this physical

interface for the purpose of address autoconfiguration.

s Note: As of V5R4, this field is always set to 0. <%

Use stateless autoconfig. Whether the TCP/IPv6 stack performs stateless autoconfiguration on this
physical interface or not.

Possible values are:

180 iSeries: Communications APIs

0 NO - The system will not perform the stateless autoconfig algorithms on this physical interface.

1 YES - The system will perform the stateless autoconfig algorithms on this physical interface.

Error Messages

Message ID
TCP84CO E
TCP84C5 E
TCP84C6 E
CPF24B4 E
CPF3C21 E
CPF3C90 E
CPF3CF1 E
CPF8100 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Error Message Text

TCP/IP stack not active.

API error providing TCP/IP Network Status list information.
Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
Severe error while addressing parameter list.

Format name &1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx is from 01 to FF.
Object &2 in library &3 not found.

Not authorized to object &2 in &3.

Cannot allocate object &2 in library &3.

One or more libraries in library list deleted.

Cannot allocate one or more libraries on library list.

Library &1 not found.

Not authorized to use library &1.

Cannot assign library &1.

Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

[Top] | [FCommunications APIs,” on page 1 | [APIs by category]

List PPP Connection Profiles (QtocLstPPPCnnPrf) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error Code 170 Char(*)

Service Program: QTOCPPPAPI
Threadsafe: Yes

The List PPP Connection Profiles APl (QtocLstPPPCnnPrf) returns a list of PPP connection profiles with
some basic information about each profile.

Authorities and Locks

User Space Library Authority
*EXECUTE

User Space Authority
*CHANGE

User Space Lock

*SHRNUP

Communications APIls

181

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space for which you want to retrieve information, and the library in which it is located.
The first 10 characters contain the user space name, and the second 10 characters contain the
library name. You can use these special values for the library name:

*CURLIB The job’s current library
*LIBL The library list

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

PRFDO0100 Connection profile lists. Refer to [*PRFD0100 Format” on page 183 for details on the format.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Format of Connection Profile Lists
To request a list of PPP Connection Profiles, use format PRFD0100.

The PPP Connection Profile list consists of:
e A user area

* A generic header

* An input parameter section

* A header section

A list data section:

— PRFDO0100 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see APl [Examples,

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified

182 iSeries: Communications APIs

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name
10 A CHAR(10) User space library name used

PRFD0100 Format

The following data about a PPP Connection Profile is returned for the PRFD0100 format. For detailed

descriptions of the fields in the table, see [‘Field Descriptions.”]

Offset

Dec Hex Type Field

0 0 BINARY (4) Profile mode

4 4 BINARY (4) Connection protocol

8 8 BINARY (4) Connection status

12 C BINARY (4) Connection type

16 10 BINARY (4) Profile job type

20 14 BINARY (4) Multilink connection enabled
24 18 CHAR(10) Profile name

34 22 CHAR(10) Line name

44 2C CHAR(10) Line type

54 36 CHAR(10) Job name

64 40 CHAR(10) Job user profile

74 4A CHAR(6) Job number

80 50 CHAR(50) profile description

130 82 CHAR(10) Dial-on-demand peer answer profile
140 8C BINARY (4) Automatic start

144 90 % CHAR(8) Thread ID ¢

iy 152 98 CHAR(8) Reserved %

Field Descriptions

Automatic start. Whether the profile is started automatically when the TCP/IP stack is activated. Possible

values are:
0 NO. This profile is not started automatically.
1 YES. This profile is started automatically.

Connection protocol. The type of point-to-point connection provided by the profile job.

1 SLIP.
2 PPP.

Communications APls

183

Connection status. The current connection of job status of the profile job.Values are as follows:

1 Inactive

2 Session error

3 Ended - information available
4 Session start submitted

11 Session job starting

12 Session job ending

13 Session ended - job log pending

14 Adding TCP/IP configuration

15 Removing TCP/IP configuration

16 Message pending

17 Session error

18 Starting TCP/IP

19 Ending TCP/IP

21 Calling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand
28 Waiting for shared line resource

29 Requesting shared line resource

31 LCP initializing

32 LCP starting

33 LCP closing

34 LCP closed

35 LCP waiting for configuration request
36 LCP configuring

37 LCP authenticating

41 IPCP initializing

42 IPCP starting

43 IPCP ending

44 IPCP stopped

45 IPCP waiting for configuration request
46 IPCP configuring

47 IPCP opening

51 Multi-connection - waiting for incoming call(s)

52 Multi-connection L2TP initiator waiting for tunnel
53 Multi-connection - at least one connection active
54 Multi-hop terminator starting multi-hop initiator
55 Multi-hop initiator establishing second hop tunnel
56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection
59 Negotiating IPSEC SA
60 PPPOE discovery stage
61 PPPOE session stage

Connection type. The type of connection provided by the profile job. Values are:

Switched or dialed connection
Leased or non-switched connection
Virtual circuit connection

PPPoE

SNV ST

184 iseries: Communications APIs

Dial-on-demand peer answer profile. Specifies the name of the answer only profile that answers
incoming calls from the remote peer.

Job name. The job name of the job that currently or most recently executed this profile job description.
This field is blank if this connection profile job has not been run.

s+ Note that the connection job may not be unique. That is, multiple connections can share a single job
by running in separate threads. <%

Job number. The job number of the job that currently or most recently executed this profile job
description. This field is blank if this connection profile job has not been run.

Job user profile. The user profile of the job that currently or most recently executed this profile job
description. This field is blank if this connection profile job has not been run.

Line name. Each TCP/IP interface is associated with a physical network. This field displays the name of
the communications line description that identifies the physical network associated with an interface.
May be blank when Line type selection is *LINEPOOL and no member line has been selected.

Line type. The type of line connection defined in this connection profile. Possible values are:

*PPP PPP line description

*LINEPOOL Line name is a member of a line pool

*L2TP L2TP line description

*PPPOE PPPOE line description

*ERROR The selected line type is undefined or is improperly defined

Multilink connection enabled. Whether multilink connections are enabled for the profile. Values are:

0 No
1 Yes

Profile description. The text description of the function performed by this profile connection job.

Profile job type. The type of job support required for the profile.

1 Single connection profile
2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

Dial only.

Answer only.

Dial-on-demand.

Answer enabled dial-on-demand.
L2TP virtual Initiator.

Remote peer enabled dial-on-demand.
L2TP initiator-on-demand.

L2TP multihop initiator.

PPPOE initiator.

© 0 N OB~ WwN -

Profile name. The name of this connection profile description.

Reserved. An ignored field.

Communications APIs 185

% Thread ID.The thread id under which the connection is running in the point-to-point job. %

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3CAAE List is too large for user space &1.

CPF3CFl E Error code parameter not valid.

CPF811AE User space &4 in &9 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

ffop| | [*Communications APIs,” on page 1 | [APIs by category]

List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Point-to-point connection profile name Input Char(10)
4 Error code 170 Char(*)

Threadsafe: Yes

The List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API returns information about each connection job
currently associated with the specified point-to-point connection profile.
Authorities and Locks

User Space Authority
*CHANGE

Authority to Library Containing User Space
*EXECUTE

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The user space that receives the information and the library in which it is located. The first 10
characters contain the user space name. The second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job’s current library
*LIBL The library list

Format name
INPUT; CHAR(8)

The content and format of the list returned. The possible format name is:
PPPJ0100 Each entry in the list contains information about a point-to-point job associated with the specified

point-to-point connection profile name. The specified profile must be active for job information to
be returned. If the specified profile is not active, an empty list will be returned.

186 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

See [‘Format of Point-to-Point Jobs List”| for a description of the format.

Point-to-point connection profile name
INPUT; CHAR(10)

The name of the point-to-point connection profile for which connection job information is being
requested.

Error code
170; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Format of Point-to-Point Jobs List
The point-to-point jobs list consists of;

e A user area

* A generic header

* An input parameter section

* A header section

* A list data section:

— PPPJ0100 format

For details about the user area and generic header, see [User Space Format for List APIs| For details about
the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,
see [“Field Descriptions” on page 188.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the
result may not be valid. For examples of how to process lists, see

Input Parameter Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name specified
10 A CHAR(10) User space library name specified
20 14 CHAR(8) Format name specified
28 1C CHAR(10) Point-to-point connection profile name specified

Header Section

Offset
Dec Hex Type Field
0 0 CHAR(10) User space name used
10 A CHAR(10) User space library name used
20 14 CHAR(10) Point-to-point connection profile name

Communications APIs 187

PPPJ0100 Format

Offset

Dec Hex Type Field

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier
42 2A CHAR(10) Line name

52 34 BINARY (4) Connection status

56 38 CHAR(15) Local IP address

71 47 CHAR(15) Remote IP address
86 56 CHAR(48) Connected user name

Field Descriptions

Connection status. The current status of the connection.

Connected user name. The name of the user who initiated the point-to-point connection. The user name
is available only if authentication is enabled for the point-to-point connection profile; otherwise, *NONE
will be returned.

Format name. The name of the format used to list the point-to-point connection jobs associated with an
active point-to-point connection profile.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
The identifier is not valid following an initial program load (IPL). If you attempt to use it after an IPL, an
exception occurs.

Job name. The simple job name of the point-to-point job.

Job number. The system-assigned job number of the point-to-point job.

Job user name. The user name under which the point-to-point job is running. This will be defined as
QTCP for point-to-point connection profiles.

Line name. The name of the line associated with the point-to-point connection.

Local IP address. The IP address assigned to the local end of the point-to-point connection. The IP
address is in dotted decimal format.

Point-to-point connection profile name. The name of the point-to-point connection profile for which
connection job information is being requested.

Remote IP address. The IP address assigned to the remote end of the point-to-point connection. The IP
address is in dotted decimal format.

User space library name. The name of the library containing the user space.

188 iseries: Communications APIs

User space name. The user space used to return the list of point-to-point connection jobs associated with
an active point-to-point connection profile.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CFl E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
TCP8211 E Point-to-point profile &1 not found.

API introduced: V4R4

ffop] | [*Communications APIs,” on page 1 | [APIs by category]

Remove ARP Table Entry (QtocRmvARPTDIE) API

Required Parameter Group:

1 Line name Input Char(10)
2 Internet address Input Binary(4)
3 Entry type Input Char(10)
4 Error code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The Remove ARP Table Entry (QtocRmvARPTbIE) APl removes one or all dynamic entries from the ARP
(Address Resolution Protocol) table for the specified line. Local interface entries cannot be removed.

TCP/IP must be active on this system; otherwise, error message TCP84C0 is issued.

Authorities and Locks

Special Authority
*IOSYSCFG

Required Parameter Group

Line name
INPUT; CHAR(10)

The name of the physical interface corresponding to the ARP table from which to remove entries.

Internet address
INPUT; BINARY (4)

The IP address of the entry to remove from the ARP table. This must be 0 when trying to remove
all dynamic ARP entries.

Entry type
INPUT; CHAR(10)

Whether a single entry or all entries are removed from the ARP table. The possible types are:

*IPADDR The Internet address field corresponds to a single entry to be removed.

Communications APIs 189

#TOP_OF_PAGE
aplist.htm

*ALL The Internet address field must be 0 and all ARP table entries will be removed.

Error code
170; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message 1D Error Message Text

TCP84CO E TCP/IP stack not active.

TCP84C1 E The specified Internet address was not found in the ARP table.
TCP84C2 E ARP entry is local and cannot be deleted.

TCP84C3 E The specified line name does not exist.

TCP84C4 E The specified line name corresponds to a line type that does not support ARP.
TCP84C6 E Internal operations error.

TCP84C8 E ARP API parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CFl E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

[Top| | [*Communications APIs,” on page 1 | [APIs by category]

Retrieve Network Connection Data (QtocRtvNetCnnDta) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Socket connection request Input Char(*)
5 Error Code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

The Retrieve Network Connection Data (QtocRtvNetCnnDta) API retrieves detailed information about a
specified IPv4 or IPv6 network connection - including jobs using the connection. It also retrieves
information about IPv4 and IPv6 connection totals.

TCP/IP must be active on this system, otherwise TCP84C0 message will be issued.

Authorities and Locks
None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

190 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

The variable that is to receive the information requested. You can specify the size of this area to
be smaller than the format requested if you specify the length of receiver variable parameter
correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If this value is larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

NCNDO0100 TCP/IPV4 connection totals. Refer to [‘NCNDO0100 Format” on page 193/ for details on the format.
NCNDO0200 Detailed TCP or UDP connection status for a specific IPv4 socket connection in addition to
TCP/IPv4 connection totals. Refer to [*NCND0100 Format” on page 193 and[“NCND0200 Format’]
for details on the format.
NCND1100 TCP/IPV6 connection totals. Refer to [‘NCND1100 Format” on page 201|for details on the format.
NCND1200 Detailed TCP or UDP connection status for a specific IPv6 socket connection in addition to
TCP/IPv6 connection totals. Refer to [*NCND1100 Format” on page 201and [“NCND1200 Format”|
for details on the format.

Socket connection request
INPUT; CHAR(*)

The protocol, local address, local port, remote address and remote port identify the connection for
which information is to be retrieved. This parameter is ignored when format NCNDO0100 or
format NCND1100 is requested. Refer to[“Socket Connection Request Format™| for details on the
format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Socket Connection Request Format

Information passed in the socket connection request parameter must be in one of the following two
formats. The first format is for IPv4 connections, and the second is for IPv6 connections. The value of the
Protocol field determines the format of the rest of the Socket Connection Request. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 192

IPv4 connection (Protocol field value is 1 or 2)

Offset

Dec Hex Type Field

0 0 BINARY(4) Protocol

4 4 BINARY (4) Local IPv4 address

8 8 BINARY (4) Local port number
12 C BINARY (4) Remote IPv4 address
16 10 BINARY (4) Remote port number
20 14

Communications APIs 191

IPv6 connection (Protocol field value is 3 or 4)

Offset

Dec Hex Type Field

0 0 BINARY (4) Protocol

4 4 CHAR(16) Local IPv6 address
20 14 CHAR(4) Local port number
24 18 CHAR(16) Remote IPv6 address
40 28 BINARY(4) Remote port number
44 2C

Field Descriptions
Local IPv4 address. The IPv4 address of the host at the local end of the connection.

Local IPv6 address. The IPv6 address of the host at the local end of the connection. Even though this
field is defined as a character field, it must be stored in binary. It is recommended that you use the
Sockets in6_addr structure.

Local port number. The port number of the local end of the connection.
Protocol. The type and IP version of connection protocol.

Possible values are:

TCP/IP connection totals when using format NCNDO0100 or format NCND1100.

TCP/IPV4 - A Transmission Control Protocol (TCP) over IPv4 connection or socket request.
UDP/IPv4 - A User Datagram Protocol (UDP) over IPv4 socket request.

TCP/IPV6 - A Transmission Control Protocol (TCP) over IPv6 connection or socket request.
UDP/IPV6 - A User Datagram Protocol (UDP) over IPv6 socket request.

A~ w NN e O

Remote IPv4 address. The IPv4 address of the host at the remote end of the connection.

Remote IPv6 address. The IPv6 address of the host at the remote end of the connection. Even though this
field is defined as a character field, it must be stored in binary. It is recommended that you use the
Sockets in6_addr structure.

Remote port number. The port number of the remote end of the connection.

Format of Returned Connection Data
To retrieve the current TCP/IPv4 connection totals, use format [*NCNDO0100 Format” on page 193]

To retrieve the current TCP/IPv6 connection totals, use format [*NCND1100 Format” on page 201|

For detailed TCP and UDP connection status for a specific IPv4 socket connection in addition to the
TCP/1Pv4 connection totals, use format [“NCND0200 Format” on page 194|

For detailed TCP and UDP connection status for a specific IPv6 socket connection in addition to the
TCP/IPv6 connection totals, use format [“NCND1200 Format” on page 202.|

192 iSeries: Communications APIs

NCNDO0100 Format

Format NCNDO0100 returns information regarding the TCP/IPv4 connection totals. For detailed
descriptions of the fields in the table, see [‘Field Descriptions.’]

Offset

Dec Hex Type Field

0 0 BINARY (4) Bytes returned

4 4 BINARY (4) Bytes available

8 8 BINARY(4) TCP connections currently established
12 C BINARY(4) TCP active opens

16 10 BINARY (4) TCP passive opens

20 14 BINARY (4) TCP attempted opens that failed

24 18 BINARY (4) TCP established and then reset

28 1C BINARY (4) TCP segments sent

32 20 BINARY(4) TCP retransmitted segments

36 24 BINARY (4) TCP reset segments

40 28 BINARY(4) TCP segments received

44 2C BINARY (4) TCP segments received in error

48 30 BINARY (4) UDP datagrams sent

52 34 BINARY (4) UDP datagrams received

56 38 BINARY (4) UDP datagrams not delivered application port not found
60 3C BINARY (4) UDP datagrams not delivered other datagrams in error
64 40 BINARY (4) Offset to additional information

68 44 BINARY(4) Length of additional information

72 48

Field Descriptions
Bytes available. All of the available bytes for use in your application.

Bytes returned. The number of bytes returned to the user. This may be some but not all the bytes
available.

Length of Additional Information.The length in bytes of additional information returned that is not part
of format NCNDO0100.

Offset to Additional Information. The offset in bytes to the rest of the information if a format other than
NCNDO0100 is requested.

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT
state from the CLOSED state. This number is an indication of the number of times this local system
opened a connection to a remote system.

TCP attempted opens that failed. The sum of the number of times TCP connections have made a direct

transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or a LISTEN state
from the SYN-RCVD state.

Communications APIs 193

TCP connections currently established. The number if TCP connections for which the current state is
either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to
the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state. This number is an indication of the number of times a remote
system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more
previously transmitted octets.

TCP segments received. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

TCP segments received in error. The total number of segments received in error (for example, bad TCP
checksums).

TCP segments sent. The total number of segments sent, including those on current connections but
excluding those containing only retransmitted octets.

UDP datagrams not delivered application port not found. The total number of received UDP datagrams
for UDP users for which there was no application at the destination port.

UDP datagrams not delivered other datagrams in error. The number of received UDP datagrams that
could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagrams received. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity.

NCNDO0200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/IPv4
connection totals (format NCNDO0100). For detailed descriptions of the fields in the table, see
[Descriptions” on page 196

Offset
Dec Hex Type Field
0 0 Returns everything from format NCND0100
Decimal and BINARY (4) Protocol

hexadecimal offsets are
reached by using the
offset to additional
information field in
format NCNDO0100.
This applies to all
entries below.

BINARY (4) Local IP address

194 iSeries: Communications APIs

Offset

Dec Hex Type Field
BINARY (4) Local port number
BINARY (4) Remote IP address
BINARY(4) Remote port number
BINARY (4) Round-trip time
BINARY (4) Round-trip variance
BINARY(4) QOutgoing bytes buffered
BINARY(4) User send next
BINARY (4) Send next
BINARY (4) Send unacknowledged
BINARY (4) QOutgoing push number
BINARY (4) Outgoing urgency number
BINARY(4) QOutgoing window number
BINARY (4) Incoming bytes buffered
BINARY(4) Receive next
BINARY (4) User receive next
BINARY (4) Incoming push number
BINARY (4) Incoming urgency number
BINARY (4) Incoming window number
BINARY(4) Total retransmissions
BINARY (4) Current retransmissions
BINARY(4) Maximum window size
BINARY (4) Current window size
BINARY (4) Last update
BINARY (4) Last update acknowledged
BINARY (4) Congestion window
BINARY (4) Slow start threshold
BINARY (4) Maximum segment size
BINARY (4) Initial send sequence number
BINARY (4) Initial receive sequence number
BINARY (4) Connection transport layer
BINARY (4) TCP state
BINARY(4) Connection open type
BINARY(4) Idle time in milliseconds
CHAR(40) IP options
BINARY (4) Bytes in
BINARY (4) Bytes out
BINARY (4) Socket state
BINARY (4) Offset to list of socket options associated with connection
BINARY(4) Number of socket options associated with connection
BINARY (4) Entry length for list of socket options associated with connection

Communications APls

195

Offset

Dec Hex Type Field
BINARY (4) Offset to list of jobs associated with connection
BINARY(4) Number of jobs associated with connection
BINARY (4) Entry length for list of jobs associated with connection
CHAR(10) Associated user profile
CHAR(2) Reserved
List of Socket Options.
These fields repeat for each socket option.
Offset
Dec Hex Type Field
0 0 BINARY(4) Socket option
4 4 BINARY (4) Option value
8 8

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

Offset

Dec Hex Type Field

0 0 BINARY (4) Format entry

4 4 CHAR(16) Task name

20 14 CHAR(10) Job name

30 1E CHAR(10) Job user name

40 28 CHAR(6) Job number

46 2E CHAR(16) Internal job identifier
62 3E

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the
jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this

Connection.

Bytes in. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.

196 iSeries: Communications APIs

Congestion window. The number of segments that are sent on the next transmission. If an
acknowledgment is received, the number is increased. If an acknowledgment is not received, the number
is reset to the smallest allowable number. This field is only valid for TCP connections.

Connection open type. A TCP connection can be opened in the following ways:

0 Passive - A remote host opens the connection.
1 Active - The local system opens the connection.
2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that a connection is using:

0 IPS
1 IPX

Note: As of V5R2, IPX is no longer supported.
2 TCP/IP

Current retransmissions. The number of times the local system retransmitted the current segment
without receiving an acknowledgment. This is sometimes referred to as the ’backoff count. This field is
only valid for TCP connections.

Current window size. The current send window size in bytes. This field is only valid for TCP
connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the
list of job connections returned with this format. A value of zero is returned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each
element in the list of socket options returned with this format. A value of zero is returned if the list is
empty.

Format entry. Type of list format for job or task connections.

1 Represents a job format. For this format the task name will be blank.
2 Represents a task format. For this format the job name, username, number and internal identifier will be
blank.

Idle time. The length of time since the last activity on this connection. The length of time is returned in
milliseconds.

Incoming bytes buffered. The current number of bytes that are received and buffered by TCP. These
bytes are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed data in the incoming data
stream. This value is zero if no push data is in the incoming data stream. This field is only valid for TCP
connections.

Incoming urgency number. The sequence number of the last byte of urgent data in the incoming data
stream. This value is zero if no urgent data is in the incoming data stream. This field is only valid for
TCP connections.

Incoming window number. The largest sequence number in the incoming window of this connection.
Data bytes in the incoming stream having sequence numbers larger than this number are not accepted.
This field is only valid for TCP connections.

Communications APIs 197

Initial receive sequence number. The first sequence number received on this connection. This field is
only valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. This field is only valid
for TCP connections.

IP options. Used in displaying the IP datagram options that may have been specified for a connection.
Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
Job name. The simple job name as identified to the system.

Job number. System-assigned job or task number.

Job user name. The user name identifies the user profile under which the job is started. The following
special value may be returned:

*SIGNON This connection is a telnet connection and the system is performing sign-on processing or is
displaying a sign-on prompt on it. In this case the Job name field will contain the network device
name, the Job number and Internal job identifier fields will be empty.

Last update. The sequence number of the incoming segment used for the last window update that
occurred on the connection. This field is only valid for TCP connections.

Last update acknowledged. The acknowledgment number of the incoming segment used for the last
window update that occurred on the connection. This field is only valid for TCP connections.

Local IP address. The local address of this connection on this system.
Local port number. Your local system port number.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this
connection. This field is only valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the
connection has been active. This field is only valid for TCP connections.

Number of jobs associated with connection. The number of elements in the list of job connections
returned with this format. A value of zero is returned if the list is empty.

Number of socket options associated with connection. The number of elements in the list of socket
options returned with this format. A value of zero is returned if the list is empty.

Offset to list of jobs associated with connection. The offset in bytes to the first element in the list of job
connections returned with this format. A value of zero is returned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytes to the first element in the
list of socket options returned with this format. A value of zero is returned if the list is empty.

Option value. The value returned for a particular socket option. Option is set if a nonzero value is
returned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but

TCP has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an
acknowledgment, the bytes are considered 'not sent’. They are included in this count.

198 iSeries: Communications APIs

Outgoing push number. The sequence number of the last byte of push data in the outgoing stream. This
value is zero if no push data is in the outgoing data stream. This field is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent data in the outgoing data
stream. This value is zero if no urgent data is in the outgoing data stream. This field is only valid for
TCP connections.

Outgoing window number. The largest sequence number in the send window of the connection. The
local TCP application cannot send data bytes with sequence numbers greater than the outgoing window
number.

Protocol. Identifies the type of connection protocol.

1 TCP - A Transmission Control Protocol (TCP) connection or socket.
2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number the local TCP is expecting to receive.

Remote IP address. The internet address of the remote host. Zero is shown, if the list entry is for a UDP
socket.

Remote port number. The remote host port number. Zero is shown, if the list entry is for a UDP socket.

Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of the time
required for a segment on the connection to arrive at its destination, to be processed, and to return an
acknowledgment to the client. This field is only valid for TCP connections.

Round-trip variance.The variance in milliseconds from the previous round-trip time. This field is only
valid for TCP connections.

Send next. The sequence number of the next byte of data that the local TCP application sends to the
remote TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. This
is the smallest sequence number of the send window. This field is only valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are
indirect indicators of the flow of data through a TCP connection. These values are used by TCP as part of
a congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first.
After the first data has been successfully sent, the rate in which data is sent increases. This change is
made in a controlled manner that is dependent on the amount of congestion in the network. Congestion
control occurs both at connection start time and when congestion is detected. The values used for the
slow-start threshold and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

1 Socket broadcast option Determine if messages can be sent to the broadcast address. This option is only
supported for sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. Option is
set if a nonzero value is returned.

2 Socket bypass route option - Determine if the normal routing mechanism is being bypassed. This option is
only supported by sockets with an address family of AF_INET or AF_INET6. Option is set if a nonzero value
is returned.

3 Socket debug option - Determine if low-level debugging is active. Option is set if a nonzero value is
returned.

4 Socket error - Return any pending errors in the socket. The value returned corresponds to the standard error
codes.

Communications APIs 199

10

11

12
13

Socket keep alive option - Determine if the connection is being kept up by periodic transmissions. This
option is only supported for sockets with an address family of AF_INET or AF_INET6 and type
SOCK_STREAM. Option is set if a nonzero value is returned.

Socket linger option - Determine whether the system attempts to deliver any buffered data or if the system
discards it when a close() is issued. For sockets that are using a connection-oriented transport service with an
address family of AF_INET or AF_INETS6, the default is off (which means that the system attempts to send
any queued data, with an infinite wait-time).

Socket linger time - Determine how much time in seconds the system will wait to send buffered data.
Socket out-of-band data option - Determine if out-of-band data is received inline with normal data. This
option is only supported for sockets with an address family of AF_INET or AF_INET6. Option is set if a
nonzero value is returned.

Socket receive buffer size - Determine the size of the receive buffer.

Socket receive low-water mark size - Determine the size of the receive low-water mark. The default size is 1.
This option is only supported for sockets with type SOCK_STREAM.

Socket reuse address option - Determine if the local socket address can be reused. This option is only
supported by sockets with an address family of AF_INET or AF_INET6 and with type SOCK_STREAM or
SOCK_DGRAM. Option is set if a nonzero value is returned.

Socket send buffer size - Determine the size of the send buffer.

Socket type value - Determine the value for the socket type.

1 Stream type.

2 Datagram type.

3 Raw type.

4 Sequential packet type.

Socket state. The current state of the socket.

~No ok~ wWw N BE O

Uninitialized
Unbound
Bound
Listening
Connecting
Connected
Disconnected
Error

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

B~ w NN e O

© 0o N o O

11

200

Listen, waiting for a connection request from any remote host.

SYN-sent, waiting for a matching connection request after having sent connection request.
SYN-received, waiting for a confirming connection request acknowledgement.
Established, the normal state in which data is transferred.

FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the
connection.

FIN-wait-2, waiting for the remote host request to end the connection.

Close-wait, waiting for an end connection request from the local user.

Closing, waiting for an end connection request acknowledgement from the remote host.
Last-ACK, waiting for the remote host to acknowledge an end connection request.
Time-wait, waiting to allow the remote host enough time to receive the local system’s
acknowledgement to end the connection.

Closed, the connection has ended.

State value not supported by protocol.

iSeries: Communications APIs

Total retransmissions. The total number of times the local system retransmitted a segment because an
acknowledgment was not received. This is a cumulative count of all segments resent during the entire
time the connection has been active. This field is only valid for TCP connections.

User send next. The sequence number of the next byte of data to be sent by the client application. This
field is only valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.

NCND1100 Format

Format NCND1100 returns information regarding the TCP/IPv6 connection totals. For detailed
descriptions of the fields in the table, see [‘Field Descriptions.”]

Offset

Dec Hex Type Field

0 0 BINARY(4) Bytes returned

4 4 BINARY (4) Bytes available

8 8 BINARY (4) TCP connections currently established
12 C BINARY(4) TCP active opens

16 10 BINARY (4) TCP passive opens

20 14 BINARY (4) TCP attempted opens that failed

24 18 BINARY(4) TCP established and then reset

28 1C BINARY (4) TCP segments sent

32 20 BINARY (4) TCP retransmitted segments

36 24 BINARY (4) TCP reset segments

40 28 BINARY (4) TCP segments received

44 2C BINARY (4) TCP segments received in error

48 30 BINARY (4) UDP datagrams sent

52 34 BINARY (4) UDP datagrams received

56 38 BINARY (4) UDP datagrams not delivered - application port not found
60 3C BINARY(4) UDP datagrams not delivered - other datagrams in error
64 40 BINARY (4) Offset to additional information

68 44 BINARY(4) Length of additional information

72 48

Field Descriptions
Bytes available. All of the available bytes for use in your application.

Bytes returned. The number of bytes returned to the user. This may be some but not all the bytes
available.

Length of Additional Information.The length in bytes of additional information returned that is not part

of format NCNDO0100.

Offset to Additional Information. The offset in bytes to the rest of the information if a format other than

NCNDO0100 is requested.

Communications APIs 201

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT
state from the CLOSED state. This number is an indication of the number of times this local system
opened a connection to a remote system.

TCP attempted opens that failed. The sum of the number of times TCP connections have made a direct
transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or a LISTEN state
from the SYN-RCVD state.

TCP connections currently established. The number if TCP connections for which the current state is
either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to
the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state. This number is an indication of the number of times a remote
system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more
previously transmitted octets.

TCP segments received. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

TCP segments received in error. The total number of segments received in error (for example, bad TCP
checksums).

TCP segments sent. The total number of segments sent, including those on current connections but
excluding those containing only retransmitted octets.

UDP datagrams not delivered - application port not found. The total number of received UDP
datagrams for UDP users for which there was no application at the destination port.

UDP datagrams not delivered - other datagrams in error. The number of received UDP datagrams that
could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagrams received. The total number of segments received, including those received in error. This
count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity.

NCND1200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/I1Pv6
connection totals (format NCND1100). For detailed descriptions of the fields in the table, see
[Descriptions” on page 204/

Offset

Dec Hex Type Field

0 0 Returns everything from format NCND1100

202 iseries: Communications APls

Offset

Dec Hex Type Field

Decimal and BINARY (4) Protocol

hexadecimal offsets are

reached by using the

offset to additional

information field in

format NCND1100.

This applies to all

entries below.
CHAR(16) Local IPv6 address
BINARY (4) Local port number
CHAR(16) Remote IPv6 address
BINARY(4) Remote port number
BINARY (4) Round-trip time
BINARY (4) Round-trip variance
BINARY (4) QOutgoing bytes buffered
BINARY (4) User send next
BINARY(4) Send next
BINARY (4) Send unacknowledged
BINARY (4) Outgoing push number
BINARY (4) Outgoing urgency number
BINARY (4) Outgoing window number
BINARY(4) Incoming bytes buffered
BINARY (4) Receive next
BINARY (4) User receive next
BINARY (4) Incoming push number
BINARY (4) Incoming urgency number
BINARY (4) Incoming window number
BINARY (4) Total retransmissions
BINARY (4) Current retransmissions
BINARY (4) Maximum window size
BINARY (4) Current window size
BINARY (4) Last update
BINARY (4) Last update acknowledged
BINARY (4) Congestion window
BINARY (4) Slow start threshold
BINARY(4) Maximum segment size
BINARY(4) Initial send sequence number
BINARY (4) Initial receive sequence number
BINARY (4) Connection transport layer
BINARY (4) TCP state
BINARY (4) Connection open type
BINARY (4) Idle time

Communications APls

203

Offset

Dec Hex Type Field
BINARY(8) Bytes in
BINARY(8) Bytes out
BINARY (4) Socket state
CHAR(10) Associated user profile
CHAR(2) Reserved
BINARY(4) Offset to list of socket options associated with connection
BINARY (4) Number of socket options associated with connection
BINARY(4) Entry length for list of socket options associated with connection
BINARY (4) Offset to list of jobs associated with connection
BINARY(4) Number of jobs associated with connection
BINARY (4) Entry length for list of jobs associated with connection

List of Socket Options.

These fields repeat for each socket option.

Offset
Dec Hex Type Field
0 0 BINARY(4) Socket option
4 4 BINARY (4) Option value
8 8

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

Offset

Dec Hex Type Field

0 0 BINARY(4) Entry type

4 4 CHAR(16) Task name

20 14 CHAR(10) Job name

30 1E CHAR(10) Job user name

40 28 CHAR(6) Job number

46 2E CHAR(16) Internal job identifier
62 3E

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets
API bind() of the socket.

204 iseries: Communications APls

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the
jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this
Connection.

Bytes in. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.
Congestion window. The number of segments that are sent on the next transmission. If an
acknowledgment is received, the number is increased. If an acknowledgment is not received, the number
is reset to the smallest allowable number. This field is only valid for TCP connections.

Connection open type. The method in which the TCP connection was opened.

Possible values are:

0 Passive - A remote host opened the connection.
1 Active - The local system opened the connection.
2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that the connection is using.

Possible values are:

0 IPS
1 IPX

Note: As of V5R2, IPX is no longer supported.
2 TCP/IP

Current retransmissions. The number of times the local system retransmitted the current segment
without receiving an acknowledgment. This is sometimes referred to as the 'backoff count’. This field is
only valid for TCP connections.

Current window size. The current send window size in bytes. This field is only valid for TCP
connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the
list of job connections returned with this format. A value of zero is returned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each
element in the list of socket options returned with this format. A value of zero is returned if the list is
empty.

Entry type. Specifies whether this entry is a job or a task.

Possible values are:

1 Represents a job format. For this format the task name field is not applicable.
2 Represents a task format. For this format the job name, username, number and internal job identifier fields are
not applicable.

Idle time. The length of time since the last activity on this connection. The length of time is returned in
milliseconds.

Communications APIs 205

Incoming bytes buffered. The current number of bytes that are received and buffered by TCP. These
bytes are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed data in the incoming data
stream. This value is zero if no push data is in the incoming data stream. This field is only valid for TCP
connections.

Incoming urgency number. The sequence number of the last byte of urgent data in the incoming data
stream. This value is zero if no urgent data is in the incoming data stream. This field is only valid for
TCP connections.

Incoming window number. The largest sequence number in the incoming window of this connection.
Data bytes in the incoming stream having sequence numbers larger than this number are not accepted.
This field is only valid for TCP connections.

Initial receive sequence number. The first sequence number received on this connection. This field is
only valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. This field is only valid
for TCP connections.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
Job name. The simple job name as identified to the system.

Job number. System-assigned job or task number.

Job user name. The user name identifies the user profile under which the job is started.

The following special value may be returned:

*SIGNON This connection is a telnet connection and the system is performing sign-on processing or is
displaying a sign-on prompt on it. In this case the Job name field will contain the network device
name, and the Job number and Internal job identifier fields will be empty.

Last update. The sequence number of the incoming segment used for the last window update that
occurred on the connection. This field is only valid for TCP connections.

Last update acknowledged. The acknowledgment number of the incoming segment used for the last
window update that occurred on the connection. This field is only valid for TCP connections.

Local IPv6 address. The local system internet address, in IPv6 address format, of the connection. Even
though this field is defined as a character field, a binary IPv6 address is returned in it.

Local port number. The port number of the local end of the connection.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this
connection. This field is only valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the
connection has been active. This field is only valid for TCP connections.

Number of jobs associated with connection. The number of elements in the list of job connections
returned with this format. A value of zero is returned if the list is empty.

206 iSeries: Communications APIs

Number of socket options associated with connection. The number of elements in the list of socket
options returned with this format. A value of zero is returned if the list is empty.

Offset to list of jobs associated with connection. The offset in bytes to the first element in the list of job
connections returned with this format. A value of zero is returned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytes to the first element in the
list of socket options returned with this format. A value of zero is returned if the list is empty.

Option value. The value returned for a particular socket option. The socket option is set if a nonzero
value is returned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but
TCP has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an
acknowledgment, the bytes are considered 'not sent’. They are included in this count.

Outgoing push number. The sequence number of the last byte of push data in the outgoing stream. This
value is zero if no push data is in the outgoing data stream. This field is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent data in the outgoing data
stream. This value is zero if no urgent data is in the outgoing data stream. This field is only valid for
TCP connections.

Outgoing window number. The largest sequence number in the send window of the connection. The
local TCP application cannot send data bytes with sequence numbers greater than the outgoing window
number.

Protocol. Identifies the type of connection protocol.

1 TCP - A Transmission Control Protocol (TCP) connection or socket.
2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number that TCP is expecting to receive.

Remote IPv6 address. The local system internet address, in IPv6 address format, of the connection. Even
though this field is defined as a character field, a binary IPv6 address is returned in it.

The following special value may be returned:

0 This "connection” is a listening socket, and there is no remote IPv6 address. The zero is returned as a series of
binary NULLs (x’000000...")

Remote port number. The port number of the remote end of the connection.

The following special value may be returned:

0 This "connection” is a listening socket and there is no remote port number.

Reserved. An ignored field.
Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of the time

required for a segment on the connection to arrive at its destination, to be processed, and to return an
acknowledgment to the client. This field is only valid for TCP connections.

Communications APIs 207

Round-trip variance.The variance in milliseconds from the previous round-trip time. This field is only
valid for TCP connections.

Send next. The sequence number of the next byte of data that the local TCP application sends to the
remote TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. This
is the smallest sequence number of the send window. This field is only valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are
indirect indicators of the flow of data through a TCP connection. These values are used by TCP as part of
a congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first.
After the first data has been successfully sent, the rate in which data is sent increases. This change is
made in a controlled manner that is dependent on the amount of congestion in the network. Congestion
control occurs both at connection start time and when congestion is detected. The values used for the
slow-start threshold and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

1 Socket broadcast option Determine if messages can be sent to the broadcast address. This option is only
supported for sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. Option is
set if a nonzero value is returned.

2 Socket bypass route option - Determine if the normal routing mechanism is being bypassed. This option is
only supported by sockets with an address family of AF_INET or AF_INET6. Option is set if a nonzero value
is returned.

3 Socket debug option - Determine if low-level debugging is active. Option is set if a nonzero value is
returned.

4 Socket error - Return any pending errors in the socket. The value returned corresponds to the standard error
codes.

5 Socket keep alive option - Determine if the connection is being kept up by periodic transmissions. This

option is only supported for sockets with an address family of AF_INET or AF_INET6 and type
SOCK_STREAM. Option is set if a nonzero value is returned.

6 Socket linger option - Determine whether the system attempts to deliver any buffered data or if the system
discards it when a close() is issued. For sockets that are using a connection-oriented transport service with an
address family of AF_INET or AF_INETS, the default is off (which means that the system attempts to send
any queued data, with an infinite wait-time).

7 Socket linger time - Determine how much time in seconds the system will wait to send buffered data.

8 Socket out-of-band data option - Determine if out-of-band data is received inline with normal data. This
option is only supported for sockets with an address family of AF_INET or AF_INET6. Option is set if a
nonzero value is returned.

9 Socket receive buffer size - Determine the size of the receive buffer.

10 Socket receive low-water mark size - Determine the size of the receive low-water mark. The default size is 1.
This option is only supported for sockets with type SOCK_STREAM.

11 Socket reuse address option - Determine if the local socket address can be reused. This option is only

supported by sockets with an address family of AF_INET or AF_INET6 and with type SOCK_STREAM or
SOCK_DGRAM. Option is set if a nonzero value is returned.

12 Socket send buffer size - Determine the size of the send buffer.
13 Socket type value - Determine the value for the socket type.

1 Stream type.

2 Datagram type.

3 Raw type.

4 Sequential packet type.

Socket state. The current state of the socket.

208 iseries: Communications APls

Possible values are:

Uninitialized
Unbound
Bound
Listening
Connecting
Connected
Disconnected
Error

~No o b~ wN - o

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

0 Listen, waiting for a connection request from any remote host.

1 SYN-sent, waiting for a matching connection request after having sent connection request.

2 SYN-received, waiting for a confirming connection request acknowledgement.

3 Established, the normal state in which data is transferred.

4 FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the
connection.

5 FIN-wait-2, waiting for the remote host request to end the connection.

6 Close-wait, waiting for an end connection request from the local user.

7 Closing, waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK, waiting for the remote host to acknowledge an end connection request.

9 Time-wait, waiting to allow the remote host enough time to receive the local system’s
acknowledgement to end the connection.

10 Closed, the connection has ended.

11 State value not supported by protocol.

Total retransmissions. The total number of times the local system retransmitted a segment because an
acknowledgment was not received. This is a cumulative count of all segments resent during the entire
time the connection has been active. This field is only valid for TCP connections.

User send next. The sequence number of the next byte of data to be sent by the client application. This
field is only valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.

Error Messages

Message ID Error Message Text

TCP84CO0 E TCP/IP stack not active.

TCP84C5 E Error providing TCP/IP Network Status list information.
TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
TCP84C9 | Information returned incomplete.

TCP8ACA E Connection request parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3CIE E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CFl E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.

Communications APIs 209

Message 1D Error Message Text
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

| [FCommunications APIs,” on page 1 | [APIs by category]

Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Profile name Input Char(10)
4 Format name Input Char(8)
5 Error Code 170 Char(*)

Service Program: QTOCPPPAPI
Threadsafe: Yes

The Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API retrieves the details of a specific PPP
connection job profile. If the connection profile describes multiple connections, then details of each
connection are also retrieved.

Authorities and Locks
None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

The variable that is to receive the information requested. You can specify the size of this area to
be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Profile name
INPUT; CHAR(10)

The name of the PPP connection profile to be returned.

Format name
INPUT; CHAR(8)

The format of the retrieved profile to be returned. The format names supported are;

PRFR0100 Connection profile attributes. Refer to [“PRFR0100 Format” on page 211 for details on the format.

210 iSeries: Communications APls

#TOP_OF_PAGE
aplist.htm

PRFR0200 Connection profile static parameters. Refer to|*PRFR0100 Format’| and [‘PRFR0200 Format” on|
page 213 for details on the format.

Error code
170; CHAR(¥)

The structure in which to return error information. For the format of the structure, see

Format of Connection Profile Attributes Information

To retrieve the basic connection profile information and current profile job status, use format PRFR0100.
For more detailed profile and connection attributes, use format PRFR0200.

PRFR0100 Format

The following data about a connection profile is returned for the PRFR0100 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions.’]

Offset

Dec Hex Type Field

0 0 BINARY (4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY (4) Profile mode

12 C BINARY(4) Connection protocol

16 10 BINARY(4) Connection status

20 14 BINARY(4) Connection type

24 18 BINARY(4) Profile job type

28 1C BINARY (4) Automatic start

32 20 CHAR(10) Profile name

42 2A CHAR(50) Profile description

92 5C CHAR(16) Reserved

108 6C BINARY (4) Offset to additional information
112 70 BINARY (4) Length of additional information

Field Descriptions

Automatic start. Whether the profile is started automatically when the TCP/IP stack is activated. Possible
values are:

0 NO. This profile is not started automatically.
1 YES. This profile is started automatically.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.
Bytes returned. The number of bytes of data returned.

Connection protocol. The type of point-to-point connection provided by the profile job.

1 SLIP.

Communications APIs 211

2 PPP.

Connection status. The current connection of job status of the profile job.Values are as follows:

1 Inactive

2 Session error

3 Ended - information available

4 Session start submitted

11 Session job starting

12 Session job ending

13 Session ended - job log pending

14 Adding TCP/IP configuration

15 Removing TCP/IP configuration

16 Message pending

17 Session error

18 Starting TCP/IP

19 Ending TCP/IP

21 Calling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand
28 Waiting for shared line resource

29 Requesting shared line resource

31 LCP initializing

32 LCP starting

33 LCP closing

34 LCP closed

35 LCP waiting for configuration request

36 LCP configuring

37 LCP authenticating

41 IPCP initializing

42 IPCP starting

43 IPCP ending

44 IPCP stopped

45 IPCP waiting for configuration request

46 IPCP configuring

47 IPCP opening

51 Multi-connection - waiting for incoming call(s)
52 Multi-connection L2TP initiator waiting for tunnel
53 Multi-connection - at least one connection active
54 Multi-hop terminator starting multi-hop initiator
55 Multi-hop initiator establishing second hop tunnel
56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection

59 Negotiating IPSEC SA

60 PPPoOE discovery stage

61 PPPOE session stage

Connection type. The type of connection provided by the profile job. Values are:

1 Switched or dialed connection

212 iSeries: Communications APls

2 Leased or non-switched connection
3 Virtual circuit connection

Length of additional information. The length in bytes of additional information returned that is not part
of format PRFR0100.

Offset to additional information. The offset in bytes to the rest of the information if a format other than
PRFRO0100 is requested.

Profile description. The text description of the function performed by this profile connection job..

Profile job type. The type of job support required for the profile.

1 Single connection profile
2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

Dial only.

Answer only.

Dial-on-demand.

Answer enabled dial-on-demand.
L2TP virtual initiator.

Remote peer enabled dial-on-demand.
L2TP initiator-on-demand.

L2TP multihop initiator.

PPPoOE initiator.

© 00N Ol b WN -

Profile name. The name of this connection profile description.

PRFR0200 Format

The following data about a connection profile is returned for the PRFR0200 format. For detailed
descriptions of the fields in the table, see [‘Field Descriptions” on page 215

Offset
Dec Hex Type Field
0 0 Returns everything from format PRFR0100
Decimal and BINARY (4) Move current remote phone number if dial operation is successful

hexadecimal offsets are
reached by using the
offset to additional
information field in
format PRFR0100. This
applies to all entries

below.
BINARY (4) Redial when disconnected
BINARY (4) Number of dial attempts
BINARY(4) Delay between dial attempts
BINARY(4) Maximum number of connections
BINARY(4) Multilink connection enabled
BINARY (4) Maximum number of multilink connections

Communications APIs 213

Offset

Dec Hex Type Field

BINARY (4) Inactivity timeout
BINARY(4) Line definition
CHAR(10) Line name
CHAR(10) Line type
CHAR(15) L2TP tunnel end-point IP address
CHAR(5) Reserved
BINARY (4) Local user ID defined
BINARY(4) Local user ID encryption type
CHAR(10) Local user ID validation list name
CHAR(6) Reserved
BINARY (4) Remote user 1D required for logon
BINARY(4) Remote user ID authentication protocols allowed
BINARY (4) Remote user 1D validation method
BINARY(4) Use Radius for connection auditing and accounting
CHAR(10) Remote user ID validation list name
CHAR(6) Reserved
BINARY (4) ASCII CCSID of line data
BINARY (4) Connection script file defined
CHAR(10) Connection script library
CHAR(10) Connection script file
CHAR(10) Connection script member
CHAR(2) Reserved
BINARY (4) DNS definition
CHAR(15) DNS IP address
CHAR(5) Reserved
BINARY (4) Local IP address definition
CHAR(15) Local IP address
CHAR(5) Reserved
BINARY (4) Remote IP address definition
CHAR(15) Remote IP address (or start of range)
CHAR(5) Reserved
BINARY(4) Allow additional remote IP addresses by user 1D
BINARY(4) Allow remote system to assign the remote IP addres
BINARY (4) Allow IP datagram forwarding
BINARY (4) Request VJ header compression
BINARY (4) Routing definition
BINARY(4) Hide address (full masquerading)
BINARY (4) Number of remote IP addresses
CHAR(4) Reserved
CHAR(64) Line pool list name

214 iSeries: Communications APIs

Offset

Dec Hex Type Field
CHAR(10) Subsystem description
CHAR(6) Reserved
BINARY(4) Requires IP security protection
CHAR(40) IP security connection group
CHAR(10) Answer profile this dial-on-demand profile depends on
CHAR(6) Reserved
BINARY(4) Allow remote system to initate call
BINARY (4) Allow BACP
BINARY (4) Add link percentage
BINARY (4) Time to wait (in seconds) for adding a link
BINARY (4) Drop link percentage
BINARY(4) Time to wait (in seconds) for dropping a link
BINARY (4) Bandwidth test direction
BINARY(4) Use filter rule
CHAR(32) Filter rule name
BINARY (4) Allow L2TP Multihop connections
BINARY (4) Allow L2TP outgoing call connections
BINARY (4) L2TP outgoing call line definition
CHAR(10) L2TP outgoing call line name
CHAR(10) Reserved
BINARY(4) Offset to profile detailed connection parameter entries
BINARY (4) Number of profile detailed connection parameter entries
BINARY (4) Entry length of profile detailed connection parameters
BINARY (4) Offset to remote phone number entries
BINARY (4) Number of remote phone number entries
BINARY (4) Entry length of remote phone numbers
BINARY (4) PPPoOE server addressing
BINARY (4) Persistent PPPOE connection
CHAR(256) Requested PPPOE server name
CHAR(256) Requested PPPOE service

Field Descriptions

Add link percentage. The percentage utilization of the connection before adding another link to a
connection. Valid values are:

1
5
10
25
50
75

Communications APls

215

90 (default)
95
100

Allow additional remote IP addresses by user ID. Whether additional remote IP addresses may be
specified for specific user ID entries. Valid values are:

0 No
1 Yes

Allow BACP (Bandwidth Allocation Control Protocol). Whether BACP is allowed/required for this
connection. Valid values are:

0 No
1 Yes

Allow IP datagram forwarding. Whether IP datagrams not destined for this system should be forwarded.
Valid values are:

0 No
1 Yes

Allow L2TP Multihop connections. Whether L2TP multihop connections are allowed by this profile
connection job. Valid values are:

0 No
1 Yes

Allow L2TP outgoing call connections. Whether L2TP outgoing call connections are allowed by this
profile connection job. Valid values are:

0 No
1 Yes

Allow remote system to assign the remote IP address. Whether the remote system is allowed to specify
the remote IP address for the connection. Valid values are:

0 No
1 Yes

Allow remote system to initate call. The remote system is allowed to initate a call for an additional link
for the connection. Valid values are:

0 No
1 Yes

Answer profile this dial-on-demand profile depends on. The name of the answer profile (connection
job) that must be running to answer incoming connections before this profile connection job may be
started.

216 iSeries: Communications APls

ASCII CCSID of line data. The ASCII Coded Character Set ID of the line data for the connection that
will be used to translate connection dialog to and from the EBCDIC character set of the Connection Script
used by this profile connection job.

Bandwidth test direction. The data direction on the connection to test the bandwidth for adding and
removing links. Valid values are:

0 N/A
1 Inbound and outbound
2 Outbound only

Connection script file. The name of the connection script file that is used by this profile connection job.

Connection script file defined. The connection script file that describes dialog for establishing a
connection with the remote system. Valid values are:

0 No
1 Yes

Connection script library. The library containing a Connection Script file that is used by this profile
connection job.

Connection script member. The member name of the Connection Script file that is used by this profile
connection job.

Delay between dial attempts. The time (in seconds) to wait before next attempting to make a successful
dialed connection. Valid values are:

1-60 (default = 15)

DNS definition. Whether a Domain Name Server IP address is to be added to the DNS address list when
a connection is established for this profile connection job. Valid values are:

0 DNS not used - no address will be added
1 By IP address - the IP address is statically specified
2 Dynamic - the IP address will be supplied by the remote system

DNS IP address. The IP address of the Domain Name Server used by this profile connection job.

Drop link percentage. The percentage utilization of the connection before dropping a link of a
connection. Valid values are:

1

5

10

25

40 (default)
75

90

95

100

Communications APIs 217

Entry length of profile detailed connection parameters. The length in bytes of each profile detailed
connection parameter entry returned for this profile. A value of zero is returned if the list is empty.

Entry length of remote phone numbers. The length in bytes of each remote phone number entry
returned for this profile. A value of zerois returned if the list is empty.

Filter rule name.The name of the filter rule to be used by this connection profile.

Hide address (full masquerading). Whether all other IP addresses should be hidden by the IP address of
the PPP connections established by this profile connection job. Valid values are:

0 No
1 Yes

Inactivity timeout. The value used for the inactivity timeout in the line description. Valid values are 15 -
65535 seconds.

IP security connection group. The name of the connection group that describes the IP Security details for
connections established by this profile connection job.

L2TP outgoing call line definition. The line type to be used by this profile connection job for L2TP
outgoing calls. Valid values are:

1 Single line
2 LinePool (single line)
5 ISDN line

L2TP outgoing call line name. The name of the line to be used by this profile connection job for L2TP
outgoing calls.

L2TP tunnel end-point address. The IP address of the remote end of the tunnel for an L2TP initiator
profile or the IP address of the local end of the tunnel for an L2TP terminator profile.

Line definition. The line selection method used by this profile connection job. Valid values are:

Specified line name
LinePool (single line)
LinePool (all)

ISDN line

L2TP line

PPPOE virtual line

~N o Ol w N

Line name. Each TCP/IP interface is associated with a physical network. This field displays the name of
the communications line description that identifies the physical network associated with an interface.
May be blank when Line type selection is *LINEPOOL and no member line has been selected.

Line pool list name. The name of the Line Pool list that contains the names of line descriptions available
for use by this profile connection job.

Line type. The type of line connection defined in this connection profile. Possible values are:

*PPP PPP line description
*POOL Line name is a member of a line pool
*ISDN ISDN line description

218 iseries: Communications APls

*L2TP L2TP line description
*PPPOE PPPOE line description
*ERROR The selected line type is undefined or is improperly defined

Local IP address. The local IP address defined for connections established by this profile connection job.

Local IP address definition. How a local IP address is defined for connections established by this profile
connection job. Valid values are:

1 By IP address - the IP address is statically specified
2 Dynamic - the IP address will be negotiated with the remote system

Local user ID defined. The User ID that is defined if authentication is required by the remote system.
Valid values are:

0 No
1 Yes

Local user ID encryption type. The encryption method for the local system user name and password
when authenticating with the remote system. Valid values are;

Undefined
PAP only
CHAP only
EAP only

w N - O

Local user ID validation list name. The name of the validation list containing the local User ID and
password when authenticating with the remote system.

Maximum number of connections. The maximum number of connections supported by this PPP job
profile.

Maximum number of multilink connections. The maximum number of physical connections connections
that can be bundled into a single multi-linked connection.

Move current remote phone number if dial operation is successful. Whether the current remote phone
number should be moved if the call attempt is successful. Valid values are:

N/A

Do NOT move number (default for non-multilink connections)

Move number to the top of the list (default for multilink connections)
Move number to the bottom of the list

w N - O

Multilink connection enabled. Whether multilink connections are enabled for the profile. Values are:

0 No
1 Yes

Number of profile detailed connection parameter entries. The number of profile detailed connection
parameter entries returned for this profile. A value of zero is returned if the list is empty.

Communications APIs 219

Number of remote phone number entries. The number of remote phone number entries returned for this
profile. A value of zero is returned if the list is empty.

Number of remote IP addresses. The number of IP addresses derived from the Remote IP start address
defined for this profile connection job.

Number of dial attempts. The total number of dial attempts to achieve a successful connection.

Offset to profile detailed connection parameter entries. The offset from the beginning of the receiver
variable, in bytes, to the first element in the profile detailed connection parameter entries returned for
this profile. A value of zero is returned if the list is empty.

Offset to remote phone number entries. The offset from the beginning of the receiver variable, in bytes,
to the first element in the remote phone number entries returned for this profile. A value of zero is
returned if the list is empty.

Persistent PPPoE connection. Whether PPPoE connections for this profile are re-established when lost
unexpectedly. Values are:

0 No
1 Yes

PPPoE server addressing. Describes the method used to select a PPPOE server connection. Valid values
are:

Undefined

Connect to the default service of the first server that replies (default)
Connect to the default service of the requested server

Connect to the first server offering the requested service

Connect to the requested server offering the requested service

B~ w NN e O

Re-dial when disconnected. Whether a dialed connection established by this profile connection job will
be redialed if the connection is lost unexpectedly. Valid values are:

0 No
1 Yes

Remote IP address definition. How a remote IP address is defined for connections established by this
profile connection job. Valid values are:

By IP address - the IP address is statically specified

Dynamic - the IP address will be negotiated with the remote system
Route specified - the IP address is specified by remote user
Address pool - the IP address will be selected from the address pool
DHCP - the IP address will be supplied by the DHCP server

Radius - the IP address will be supplied by the Radius server

o Ol WwN B

Remote IP address (or start of IP address pool). The remote IP address (or starting IP address for
multi-connection profiles) defined for connections established by this profile connection job.

Remote user ID authentication protocols allowed. The allowable protocols for remote user ID
authentication. Valid values are:

0 N/A

220 iSeries: Communications APIs

CHAP and PA
CHAP only

PAP only

EAP only

EAP and PAP

EAP and CHAP

EAP, CHAP, and PAP

~No Ok, WN

Remote user ID required for logon. Remote User ID authentication is required for logon to the local
system. Valid values are:

0 No
1 Yes

Remote user ID validation method. The method for validation of the remote user ID. Valid values are:

0 N/A
1 Validation list
2 Radius

Remote user ID validation list name. The name of the Validation list containing the remote User ID and
password for authenticating the connection with the remote system.

Requested PPPOE server name. The PPPoOE server name requested for this PPPOE initiator profile to
negotiate the remote end of the connection.

Requested PPPOE service. The PPPoE service requested for this PPPoE initiator profile to negotiate with
the remote end of the connection.

Request VVJ header compression. Whether VJ header compression should be performed on IP datagrams.
Valid values are:

0 No
1 Yes

Requires IP security protection . Whether IP security is required for connections established by this
profile connection job. Valid values are:

0 No
1 Yes

Routing definition. The additional routing requested when activating this profile connection job. Valid
values are:

0 Not Used
1 Add default route
2 Additional static routes defined

Subsystem description. The name of the subsystem description in which the connection jobs for this
profile connection job will be run.

Communications APIs 221

Time to wait (in seconds) for adding a link. The time (in seconds) to wait before adding an additional
link after the connection utilization has exceeded the specified percentage. Valid values are:

5 - 3600 (in increments of 5, default = 15)

Time to wait (in seconds) for dropping a link. The time (in seconds) to wait before dropping a link after
the connection utilization has receeded below the specified percentage. Valid values are:

5 - 3600 (in increments of 5, default = 15)

Use filter rule. Whether a filter rule should be used by the profile connection job. Valid values are:

0 No
1 Yes

Use Radius for connection auditing and accounting. Whether Radius should be used for connection
auditing and accounting. Valid values are:

0 No
1 Yes

Connection Profile Detailed Parameters

The following data is returned for each profile detailed connection parameter entry, describing one
connection for a profile. Multiple connection profiles may have one entry for each connection. For
detailed descriptions of the fields in the table, see [‘Field Descriptions” on page 223

Offset

Dec Hex Type Field

0 0 BINARY (4) Connection status

4 4 BINARY(4) Maximum transmission unit (MTU)

8 8 BINARY (4) Maximum links per multilink connection bundle
12 C BINARY(4) Number of active links

16 10 BINARY (4) Line inactivity timeout

20 14 CHAR(4) Reserved

24 18 CHAR(6) Job number

30 1E CHAR(10) Job user

40 28 CHAR(10) Job name

50 32 CHAR(10) Line name

60 3C CHAR(15) Active local IP address (set when profile is active)
75 4B CHAR(15) Active remote IP address (set when profile is active)
90 5A CHAR(6) Reserved

96 60 CHAR(48) Remote user name

144 90 CHAR(64) Group access policy

208 DO CHAR(32) Filter rule name

240 FO CHAR(1) IP forwardin

241 F1 CHAR(1) Proxy ARP routing

222 iSeries: Communications APIs

Offset
Dec Hex Type Field
242 F2 CHAR(1) TCP/IP header compression
243 F3 CHAR(1) Full masquerading
244 F4 CHAR(1) Authentication protocol
245 F5 CHAR(1) Multilink protocol enabled
246 F6 CHAR(1) Multilink bandwidth utilization monitoring enabled
247 F7 CHAR(1) Reserved
248 F8 BINARY(4) Detailed connection status
252 FC % CHAR(8) Thread ID ¢

Field Descriptions

Active (binary) local IP address. The binary local IP address of the connection established by this profile
connection job.

Active (binary) remote IP address. The binary remote IP address of the connection established by this
profile connection job.

Authentication protocol. The authentication protocol that was negotiated for this profile connection.
Valid values are:

N/A

CHAP and PAP
CHAP only

PAP only

EAP only

EAP and PAP

EAP and CHAP

EAP, CHAP, and PAP

~N o o0k w N e O

Connection status. The current status of this profile connection. Valid values are:

N/A

Inactive or ended
Ending

Starting

Waiting for connection
Connecting

Active

o OBk W NN EFE O

Detailed connection status. Additional detail of the current status of this profile connection. Valid values
are:

0 No status set

256 Undefined

257 Connection operational

258 Initializing connection to modem

259 Initializing connection data structures
260 Selecting a line from a line pool

Communications APIs 223

261 Requesting a shared line from current owner

262 Waiting for shared line to be available

263 Initializing modem

264 Incoming call detected

265 Dial on-demand connection requested

266 Waiting for modem to connect

267 Redialing remote system

268 Modem connected

269 Modem disconnected

270 Authenticating remote user

271 Negotiating IP address

272 Activating IP address

273 Modem or resource failure

274 Connection profile setings failure

275 Authentication failure

276 Modem failure

277 Retry threshold failure

278 Remote phone number busy

279 No local dial tone detected

280 Remote modem did not answer

281 IP address activation failure

282 PPP protocol rejected

283 PPP connection inactivity timeout

300 Sent PPPOE initiation packet

301 Received PPPoE offer from peer

302 Sent PPPOE request packet to peer

303 Received PPPoE session-confirmation from peer
304 Sent PPPOE termination packet to peer

350 Received PPPOE termination from peer

351 No response from PPPoE peer

352 PPPOE peer response did not match request sent
353 Received error from PPPOE peer

354 Unable to open communication stream

355 Unable to send packet to PPPoE peer

356 Unable to convert packet data

357 PPPOE link error

400 Starting L2TP tunnel negotiation

401 L2TP tunnel negotiation in progress

402 L2TP tunnel established

403 Starting L2TP call negotiation

404 Starting L2TP remote call negotiation

405 L2TP call established

450 L2TP tunnel authentication failed

451 L2TP tunnel maximum connections exceeded
452 Sent stop L2TP tunnel message to peer

453 Received stop L2TP tunnel message from peer
454 L2TP call maximum connections exceeded
455 Sent stop L2TP call message to peer

456 Received stop L2TP call message from peer

Filter rule name. The name of the filter rule that is in effect for this profile connection. A value *NONE
means that no filter rule is in use.

Full masquerading. Whether full masquerading is in effect for this profile connection. Valid values are:

224 iSeries: Communications APls

1 Yes
Group access policy. The name of the group access policy that is in effect for this profile connection. A
value *NONE means that no group policy is in use.

IP forwarding. Whether IP forwarding is active for this profile connection. Valid values are:

0 No
1 Yes
Job name. The job name of this profile connection job.

*» Note that the connection job may not be unique. That is, multiple connections can share a single job by
running in separate threads. <

Job number. The job number of this profile connection job.
Job user. The job user name of this profile connection job.
Line name. The name of the line description used for this profile connection.

Line inactivity timeout. The value used for the inactivity timeout in the line description. Valid values are
15 - 65535 seconds.

Maximum links per multilink connection bundle. The maximum number of links allowed per bundle
for multilink connections for this profile.

Maximum transmission unit. The maximum size of IP datagrams that can be sent over connections
started by this profile connection job. This value is valid only when the profile is active.

Multilink protocol enabled. Whether multilink connections are allowed for this connection profile. Valid
values are:

0 No
1 Yes

Multilink bandwidth utilization monitoring enabled. Whether bandwidth utilization monitoring is
enabled for this profile connection. Valid values are:

0 No
1 Yes

Number of active links. The number of active links that constitute this profile connection.

Proxy ARP routing. Whether proxy ARP routing is in effect for this profile connection. Valid values are:

0 No
1 Yes

Remote user name. The name of the connected remote user that was authenticated for this profile
connection. This value is valid only when authentication is enabled for this connection profile.

Communications APIs 225

TCP/IP header compression. Whether TCP/IP header compression will be performed for this profile
connection. Valid values are:

s Thread ID.The thread id under which the connection is running in the point-to-point job. <%

0 No
1 Yes

Remote Phone Numbers

The following data is returned for each connection profile remote phone number entry. Multilink
connection profiles may have one entry for each connection in the link. Single connection profiles may
have more than one entry to provide backup phone numbers when the primary (first) number is
unavailable. For detailed descriptions of the fields in the table, see [‘Field Descriptions.”|

Offset
Dec Hex Type Field
0 0 CHAR(48) Remote phone number
48 30 CHAR(16) Reserved

Field Descriptions

Remote phone number. A phone number that will be used to attempt a switched connection with a
remote system. Valid for Dial profiles only.

Reserved. An ignored field.

Error Messages

Message ID Error Message Text

TCP8211 E Point-to-point profile &1 not found

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CFl E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended, reason code &3.

API introduced: V5R1

| [*“Communications APIs,” on page 1| | |APIs by category|

Retrieve TCP/IP Attributes (QtocRtvTCPA) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error code 170 Char(*)

Service Program: QTOCNETSTS
Threadsafe: Yes

226 iSeries: Communications APls

#TOP_OF_PAGE
aplist.htm

The Retrieve TCP/IP Attributes (QtocRtvTCPA) API retrieves TCP/IPv4 and TCP/IPv6 stack attributes.

Authorities and Locks
None.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(¥)

The variable that is to receive the information requested. You can specify the size of this area to
be smaller than the format requested if you specify the length of receiver variable parameter
correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable
OUTPUT; BINARY(4)

The length of the receiver variable. If this value is larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

TCPAO0100 TCP/IPv4 stack status. Refer to[“TCPA0100 Format” on page 228 for details on the format.

TCPAO0200 TCP/IPv4 stack attributes in addition to TCP/IPv4 stack status. Refer to[“TCPA0100 Format” on|
lpage 228 and [“TCPA0200 Format” on page 23(| for details on the format.

TCPA0300 TCP/IP domain attributes in addition to TCP/IPv4 stack status. Refer to[“TCPA0100 Format” on|
lpage 228 and [“TCPA0300 Format” on page 236 for details on the format.

TCPA1100 TCP/IPV6 stack status. Refer to[“TCPA1100 Format” on page 238|for details on the format.

TCPA1200 TCP/IPv6 stack attributes in addition to TCP/IPv6 stack status. Refer to[“TCPA1100 Format” on|

[page 23§ and [‘'TCPA1200 Format” on page 239 for details on the format. % As of V5R4, this
format is replaced with TCPA1300 and should no longer be used. ¥
4% TCPA1300 TCP/IPv6 stack attributes in addition to TCP/IPv6 stack status. Refer to[“TCPA1100 Format” on|

and TCPA1300 Format (page [‘TCPA1300 Format” on page 242) for details on the format.
This format replaces TCPA1200. &%

Error code
170; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

Format of TCP/IP Attributes Information
To retrieve the current TCP/IPv4 stack status, use format [“TCPA0100 Format” on page 228

For detailed TCP/IPv4 stack attributes in addition to the TCP/IPv4 stack status, use format [“TCPA0200
[Format” on page 230,

For domain name system information in addition to the TCP/IPv4 stack status, use format|“TCPA0300
[Format” on page 236

To retrieve the current TCP/IPV6 stack status, use format [*TCPA1100 Format” on page 238

“ For detailed TCP/IPV6 stack attributes in addition to the TCP/IPv6 stack status, use format TCPA1300
(page [‘TCPA1300 Format” on page 242). <&

Communications APIs 227

TCPAO0100 Format

This format returns information regarding the status of the TCP/IPv4 stack. For detailed descriptions of
the fields in the table, see[“Field Descriptions.”|

Offset

Dec Hex Type Field

0 0 BINARY (4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) TCP/IPv4 stack status

12 C BINARY (4) How long active

16 10 CHAR(8) When last started - date

24 18 CHAR(6) When last started - time

30 1E CHAR(8) When last ended - date

38 26 CHAR(6) When last ended - time

44 2C CHAR(10) Who last started - job name

54 36 CHAR(10) Who last started - job user name
64 40 CHARC(6) Who last started - job humber
70 46 CHAR(16) Who last started - internal job identifier
86 56 CHAR(10) Who last ended - job name

96 60 CHAR(10) Who last ended - job user name
106 6A CHAR(6) Who last ended - job number
112 70 CHAR(16) Who last ended - internal job identifier
128 80 BINARY(4) Offset to additional information
132 84 BINARY (4) Length of additional information
136 88 BINARY (4) Limited mode
140 8C

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

How long active. How long, in seconds, the TCP/IP stack has been active if it is active currently, or how
long it was active the last time it was up if it is currently inactive.

Length of additional information. The length in bytes of additional information returned that is not part
of format TCPA0100.

Limited mode. The current value of the TCP/IP Limited mode flag. TCP/IPv4 can operate while the
system is in the restricted state, with limited functionality.

Possible values are:

0 No - The system is not currently running TCP/IPv4 in limited mode.
1 Yes - The system is currently running TCP/IPv4 in limited mode.

228 iSeries: Communications APls

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the
start of the next format if a format other than TCPA0100 is requested. This field allows expansion of the
basic information. A value of zero is returned if only the TCPA0100 format is requested.

Reserved. An ignored field.

TCP/IPv4 stack status. The current status of the system TCP/IPv4 stack. Possible values are:

Inactive - The TCP/IPv4 stack is not operational.

Active - The TCP/IPv4 stack is operational.

Starting - The TCP/IPv4 stack not operational, but is in the process of starting.

Ending, immediate - The TCP/IPv4 stack is operational, but is in the process of ending.
Ending, controlled - The TCP/IPv4 stack is operational, but is in the process of ending.

A wpNME O

When last ended - date. The date when the TCP/IP stack was last ended. The format is YYYYMMDD,
where:

YYYY Year
MM Month
DD Day

When last ended - time. The time when the TCP/IP stack was last ended. The format is HHMMSS, in
24-hour time, where:

HH Hour
MM Minute
SS Second

When last started - date. The date when the TCP/IP stack was last started. The format is YYYYMMDD,
where:

YYYY Year
MM Month
DD Day

When last started - time. The time when the TCP/IP stack was last started. The format is HHMMSS, in
24-hour time, where:

HH Hour
MM Minute
SS Second

Who last ended - internal job identifier. A value sent to other APIs to speed the process of locating the
job on the system. Only OS/400 APIs use this identifier. This field is all NULLs if the TCP/IP stack has
not been ended since the last initial program load (IPL), or if the job that ended the TCP/IP stack is no

longer active.

Who last ended - job name. The name of the job responsible for ending the TCP/IP stack the last time it

was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this field is
all NULLs.

Communications APIs 229

Who last ended - job number. The job number responsible for ending the TCP/IP stack the last time it
was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this field is
all NULLs.

Who last ended - job user name. The name of the user responsible for ending the TCP/IP stack the last
time it was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this
field is all NULLSs.

Who last started - internal job identifier. A value sent to other APIs to speed the process of locating the
job on the system. Only OS/400 APIs use this identifier. This field is all NULLs if the TCP/IP stack has
not been started since the last initial program load (IPL), or if the job that started the TCP/IP stack is no
longer active.

Who last started - job name. The name of the job responsible for starting the TCP/IP stack the last time
it was started. If the TCP/IP stack has not been started since the last initial program load (IPL), this field
will be all NULLs.

Who last started - job number. The job number of the job responsible for starting the TCP/IP stack the
last time it was started. If the TCP/IP stack has not been started since the last initial program load (IPL),
this field will be all NULLSs.

Who last started - job user name. The user name of the job responsible for starting the TCP/IP stack the
last time it was started. If the TCP/IP stack has not been started since the last initial program load (IPL),
this field will be all NULLs.

TCPA0200 Format

This format returns detailed information about the TCP/IPv4 stack attributes in addition to the TCP/IPv4
stack status (format TCPA0100). For detailed descriptions of the fields in the table, see
[Descriptions” on page 231}

Offset

Dec Hex Type Field

0 0 Returns everything from format TCPA0100

230 iseries: Communications APls

Offset

Dec Hex Type Field
Decimal and BINARY (4) IP datagram forwarding
'r‘:;cﬁe;i&ahgﬁzeﬁ:re BINARY (4) UDP checksum
offset to additional BINARY(4) Log protocol errors
;gizga;ic(:)gpﬁ)ellgo,in BINARY (4) IP source routing
BINARY (4) TCP urgent pointer
BINARY(4) IP reassembly timeout
BINARY(4) IP time to live
BINARY (4) TCP keep alive
BINARY (4) TCP receive buffer
BINARY (4) TCP send buffer
BINARY (4) ARP cache timeout
BINARY(4) MTU path discovery
BINARY (4) MTU discovery interval
BINARY(4) QoS enablement
BINARY (4) QoS timer resolution
BINARY (4) QoS data path optimization
BINARY (4) Dead gateway detection enablement
BINARY (4) Dead gateway detection interval
BINARY (4) TCP time wait timeout
BINARY (4) TCP R1 retransmission count
BINARY(4) TCP R2 retransmission count
BINARY (4) TCP minimum retransmission timeout
BINARY (4) TCP close connection message
BINARY (4) Network file cache enablement
BINARY (4) Network file cache timeout
BINARY (4) Network file cache size
BINARY (4) Explicit congession notification

Field Descriptions

ARP cache timeout. The ARP cache time-out value, in minutes The purpose of the time-out value is to

flush out-of-date cache entries from the ARP cache.

The default ARP cache time-out interval is 5 minutes. Valid values range from 1 through 1440 minutes

(24 hours).

Dead gateway detection enablement. Whether dead gateway detection is turned on or off. Dead gateway
detection is a mechanism that involves polling all attached gateways. If no reply is received to the polls,

all routes using that gateway are inactivated. Possible values are:

0 Dead gateway detection is off.

1 Dead gateway detection is on. This is the default value.

Communications APls

Dead gateway detection interval. The amount of time, in minutes, between dead gateway detection
polls. When the time interval is exceeded, all attached gateways are polled to determine their availability.

The default dead gateway detection interval is 2 minutes. Valid values range from 1 through 60 minutes.

Explicit congession notification (ECN). If ECN is enabled routers can notify end-nodes of congestion
before queues overflow. Without ECN end-nodes can only detect congestion when packets are lost due to
queues overflowing.

0 ECN is not enabled for the system. This is the default value.
1 ECN is enabled for the system.

IP datagram forwarding. Whether the IP layer forwards Internet Protocol (IP) datagrams between
different networks. It specifies whether the IP layer is acting as a gateway.

Note: IP does not forward datagrams between interfaces on the same subnet.

The OS/400 implementation of TCP/IP does not include full gateway function as defined in RFC10009.
Subsets of the gateway functions are supported. One of the gateway functions supported is IP datagram
forwarding capabilities. The possible values are:

0 IP datagrams are not forwarded. This is the default value.
1 IP datagrams are forwarded.

IP reassembly timeout. The IP datagram reassembly time, in seconds. If this time is exceeded, a partially
reassembled datagram is discarded and an ICMP time exceeded message is sent to the source host.

The default IP reassembly timeout is 10 seconds. Valid values range from 5 through 120 seconds.

IP source routing. Whether IP source routing currently is on or off. If IP source routing is on, it means
that this system is specifying the route that outgoing IP packets take instead of allowing normal dynamic
routing to take place. Some firewalls will not pass datagrams that have IP source routing switched on.
The possible values are:

0 IP source routing is off.
1 IP source routing is on. This is the default value.

IP time to live. The current TTL value. The IP datagram time-to-live value specifies a relative limit on the
number of hops across which an IP datagram remains active. The time-to-live value acts as a hop count
that is decremented by each gateway to prevent internet routing loops.

Note: Even though this parameter is specified as a time-to-live value, it is not used as a time value. It is
used as a counter. The standard description is time to live as specified in RFCs.

Note: This IP datagram time-to-live value is not used for datagrams sent to an IP multicast group
address. The default IP datagram time-to-live value for datagram sent to an IP multicast group is always
1, as specified by the Internet standards. Individual multicast applications may override this default using
the IP_MULTICAST_TTL socket option.

The default time-to-live value is 64. Valid values range from 1 through 255.
Log protocol errors. Enables a user to log protocol errors that occur during the processing of TCP/IP

data. These TCP/IP stack layer functions use this parameter to determine if they log protocol-specific
errors: IP, ICMP, ARP, and NAM. TCP and UDP do not log protocol errors.

232 iSeries: Communications APIs

The 7004 error reference code is logged when the LOGPCLERR(*YES) option is specified and inbound
datagrams are silently discarded. Silently discarded means that an ICMP message is not returned to the
originating host when a datagram is discarded because of header errors. Examples of such datagrams
include those with invalid checksums and invalid destination addresses.

The error reference code is for information only. No action should be taken as a result of this error
reference code. It is generated to assist with remote device or TCP/IP network problem analysis.

Note: These error conditions cannot be processed using an APAR.

The log protocol errors parameter should be used when error conditions require the logging of TCP/IP
data, such as datagrams, to determine network problems.

The data is logged in the system error log. This error log is available through the Start System Service
Tools (STRSST) command. The possible values are:

0 Protocol errors are not logged.
1 Protocol errors are logged.

MTU discovery interval. The amount of time, in minutes, that the TCP/IP protocol stack will cache the
results of a path MTU discovery. When the time interval is exceeded, the path MTU is rediscovered.

The default path MTU discovery interval is 10 minutes. Valid values range from 5 through 40320 minutes
(28 days). A special value is:

-1 *ONCE - Means that path MTUs should not be recalculated after the first discovery.

MTU path discovery. Whether the Path Maximum Transmission Unit (MTU) discovery function is
enabled on this system.

0 MTU Path Discovery is disabled for this system.
1 MTU Path Discovery is enabled for this system. This is the default value.

Network file cache enablement. The current enablement status of the Network File Cache (NFC)
function. The Network File Cache is used for the support of FRCA (Fast Response Cache Accelerator).
FCRA dramatically improves the performance of serving non-secure static content by Web and other TCP
servers.

Possible values are:

0 *NO - Network file cache is currently disabled on this system.
1 *YES - Network file cache is currently enabled on this system.

Network file cache size. The maximum amount of storage that may be used by the Network File Cache
(NFC) for the entire system. This number is the total storage used by all TCP servers for caching files.
The storage being allocated is DASD or disk and is not directly allocated from main memory. Valid
values range from 10 through 100000 megabytes (100GB).

Network file cache timeout. The maximum amount of time in seconds that a file can be cached in the
Network File Cache (NFC). This attribute ensures that a file is refreshed at a regular interval. Valid values
range from 30 through 604800 seconds (one week).

Special values are:

Communications APIs 233

0 *NOMAX - Network file cache entries will not timeout.

QoS data path optimization. The type of data path optimization in use by Quality of Service (QoS). This
field indicates the extent which QoS will batch datagrams so as to optimize performance at the risk of
increasing jitter, or delay. The normal setting maximizes performance by doing more batching of
datagram packets. The MinDelay setting minimizes delay by doing less batching of datagram packets and
just sending them when they are ready. Possible values are:

1 *NORMAL - Maximize performance. This setting is the default.
2 *MINDELAY - Minimize delay.

QoS enablement. Whether Quality of Service (QoS), IP Type of Service (TOS), or neither of the two are in
use. Possible values are:

1 *TOS - Type of Service bytes in the IP headers are in use.
2 *YES - QoS is in use.
3 *NO - QoS is not in use and the Type of Service byte is not in use. This setting is the default.

QoS timer resolution. The Quality of Service (QoS) timer resolution value in milliseconds. This field
indicates the amount of control possible over delay variations. A higher timer resolution value contributes
to more jitter (delay), and a lower timer resolution uses more CPU time. The timer resolution value that
can be tolerated is very dependent on the application. For example, video is highly sensitive to large
delay variations. To achieve a smooth rate of flow, timers need to use small timer increments. The smaller
the resolution, the smoother the data flow, but at a higher cost in terms of system overhead to manage
timers.

The default QoS timer resolution is 100 milliseconds. Valid values range from 5 to 5000 milliseconds.

TCP close connection message. The value of the TCP close connection message attribute. The TCP close
connection message attribute specifies whether abnormally closed TCP connections will be logged by
messages to the QTCP message queue. TCP connections could be abnormally closed for the following
reasons:

* TCP connection closed due to the 10 minute Close_Wait time_out.
* TCP connection closed due to the R2 retry threshold being exceeded.
* TCP connection closed due to the keep alive time-out value being exceeded.

Possible values are:

1 *THRESHOLD - At most, one abnormally closed TCP connection message per minute will be logged. This
value is the default setting.

2 *ALL - All abnormally closed TCP connections will be loged. Note that there are some conditions that could
cause MANY closed connection messages to be logged at the same time.

3 *NONE - Abnormally closed TCP connections will not be logged.

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other
side of a connection. The probe is sent when the connection is otherwise idle, even when there is no data
to be sent.

The transmission of keep-alive packets is controlled by individual sockets applications through use of the
SO_KEEPALIVE socket option. For more information, |Sockets Programming| in the iSeries Information
Center.

234 iSeries: Communications APls

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28
days).

TCP minimum retransmission timeout. The current value of the configurable TCP minimum
retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will
wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an
acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum
retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.

TCP R1 retransmission count. The R1 retransmission count value. The default value is 3. Valid values
range from 1 to 15, and R1 must be less than R2.

TCP R2 retransmission count. The R2 retransmission count value. The default value is 16. Valid values
range from 2 to 16, and R2 must be greater than R1.

TCP receive buffer. What to allocate for the default receive buffer size. The TCP receive window size is

based on this value. Decreasing this value decreases the amount of data that the remote system can send
before being read by the local application. Decreasing this value may improve performance in situations
where many retransmissions occur due to the overrunning of a network adapter.

Notes:
1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.
2. This value is also used as the default receive buffer size by IP over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. This is the default buffer
size that is used for initial TCP connection negotiations. An individual application can override this
value by using the SO_RCVBUF socket option. For more information, see [Sockets Programming|in the
iSeries Information Center.

The default TCP receive buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608
(8MB) bytes.

TCP send buffer. The TCP send buffer size. This parameter informs TCP what to use for the default send
buffer size. The TCP send buffer size provides a limit on the number of outgoing bytes that are buffered
by TCP. Once this limit is reached, attempts to send additional bytes may result in the application
blocking until the number of outgoing bytes buffered drops below this limit. The number of outgoing
bytes buffered is decremented when the remote system acknowledges the data sent.

Notes:
1. This value is used also as the default send buffer size by IP over SNA processing.
2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. This is the default buffer
size that is used for initial TCP connection negotiations. An individual application can override this
value by using the SO_SNDBUF socket option. For more information, see|Sockets Programming| in the
iSeries Information Center.

The default TCP send buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608 (8M)
bytes.

TCP time wait timeout. The amount of time, in seconds, for which a socket pair (client IP address and
port, server IP address and port) cannot be reused after a connection is closed. The maximum value
possible is 2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from
0 (no timer) to 14400 seconds (240 minutes).

Communications APIs 235

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the
TCP header points to. The urgent pointer in the TCP header points to either the byte immediately
following the last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC
convention).

Note: This value must be consistent between the local and remote ends of a TCP connection. Socket
applications that use this value must use it consistently between the client and server applications. This
value is set on a system basis. All applications using this system will use this value. The possible values
are:

1 Use the BSD defined convention. The TCP urgent pointer points to the byte immediately following the last
byte of urgent data. This is the default value.

2 Use the RFC defined convention. The TCP urgent pointer points to the last byte of the urgent data.

UDP checksum. Whether UDP processing should generate and validate checksums. It is strongly
recommended that you use UDP checksum processing. If you are concerned about obtaining the best
possible performance and are not concerned with the protection provided by UDP checksum processing,
turn UDP checksum processing off. The possible values are:

0 Checksum protection is not provided for UDP data.
1 Checksum protection is provided for UDP data. This is the default value.

TCPAO300 Format

This format returns detailed information about the TCP/IP domain attributes, in addition to the
TCP/1Pv4 stack status (format TCPA0100). For detailed descriptions of the fields in the table, see

[Descriptions” on page 237

Offset
Dec Hex Type Field
0 0 Returns everything from format TCPA0100
Decimal and BINARY (4) Offset to list of internet addresses
hexadecimal o_f'fsets are BINARY(4) Number of internet addresses
reached by using the
offset to additional BINARY (4) Entry length for list of internet addresses
g‘r’; ;‘:aTti(‘ZJS’;:)*’l'gof” BINARY(4) DNS protocol
BINARY (4) Retries
BINARY (4) Time interval
BINARY (4) Search order
BINARY (4) Initial domain name server
BINARY (4) DNS listening port
CHAR(64) Host name
CHAR(255) Domain name
CHAR(1) Reserved
" CHAR(256) <% Domain search list

List of Internet Addresses. These fields repeat for each Domain Name Server (DNS) Internet address.

236 iSeries: Communications APIs

Offset
Dec Hex Type Field
0 0 CHAR(15) Internet address
15 F CHAR(1) Reserved
16 10 BINARY(4) Internet address binary
20 14

Field Descriptions

DNS listening port. The remote TCP/IP port number used to contact the Domain Name Server (DNS) or
Servers listed in the Internet address parameter. 53 is the well-known port used for this purpose.

Note: Use of a TCP/IP port number other than the well-known port 53 for use by the Domain Name
Server (DNS) can result in TCP/IP communication problems. You may inadvertently use a port number
that is reserved for use by another TCP/IP application.

The default DNS Listening port is 53. Valid values range from 1 to 65532.

DNS protocol. The TCP/IP protocol used to communicate with the Domain Name Server (DNS)
specified in the Internet address parameter. User Datagram Protocol (UDP) typically is used for this
purpose. Use TCP only if your Domain Name Server (DNS) is specifically configured to use the
Transmission Control Protocol (TCP). Possible values are:

1 Use of the User Datagram Protocol (UDP) to communicate with the Domain Name Server or Servers.
2 Use of the Transmission Control Protocol (TCP) to communicate with the Domain Name Server or Servers.

Domain name. The name of the TCP/IP domain of which this system is a member.

Domain search list. The TCP/IP domains to be searched whenever a host name is not given as a Fully
Qualified Domain Name (FQDN). Up to six domains may be specified, separated by spaces. The list is
null terminated.

Entry length for list of internet addresses. The entry length in bytes of each element in the list of
Domain Name Server (DNS) Internet addresses returned with this format. A value of zero is returned if
the list is empty.

Host name. The TCP/IP host name of this system. This field returns the value specified by the
CHGTCPDMN command, and is the preferred system name if the system has more than one name
corresponding to multiple interfaces.

Note: This system’s TCP/IP host name must also be defined in the local host table or the Domain Name
Server (DNS) specified in the Internet address parameter. If no Domain Name Server (DNS) is specified,
the local TCP/IP host table is used.

Initial domain name server. How the initial Domain Name Server (DNS) is chosen when doing a name
lookup. The first configured server can always be queried first, or TCP/IP can rotate through the
configured servers in a round-robin fashion to provide a form of load balancing on the servers. Possible
values are:

1 First. Do not rotate through the configured Domain Name Servers (DNS); always start with the first one. This
setting is the default.

Communications APIs 237

2 Rotate. Rotate through the configured Domain Name Servers (DNS) in a round-robin fashion to choose the
first one to query.

Internet address. The IP address of a Domain Name Server (DNS) to be used by this system. There may
be zero, one, two, or three Domain Name Server (DNS) Internet addresses.

If the first Domain Name Server (DNS) in the list does not respond, the second DNS server in the list will
be contacted. If the second DNS server does not respond, the third DNS server will contacted, and so on.

This field is specified in dotted-decimal form.
Internet address binary. The binary representation of a Domain Name Server (DNS) IP address.

Number of internet addresses. The number of elements in the list of Domain Name Server (DNS)
Internet addresses returned with this format. A value of zero is returned if the list is empty.

Offset to list of internet addresses. The offset from the beginning of the receiver variable, in bytes, to the
first element in the list of Domain Name Server (DNS) Internet addresses returned with this format. A
value of zero is returned if the list is empty.

Retries. The number of additional attempts made to establish communication with each Domain Name
Server (DNS), in the event the first attempt fails.

The default number of retries is 2. Valid values range from 0 to 99.

Search order. Whether to search a Domain Name Server (DNS) first to resolve a TCP/IP host name
conflict, or to search the local TCP/IP host table first.

1 Local - This system will first search the TCP/IP host table, located on this system, to resolve TCP/IP host
names.
2 Remote - This system will search a remote or local Domain Name Server (DNS) to resolve TCP/IP host names

before searching the local TCP/IP host table. The Domain Name Server (DNS) to use is specified by the
Internet Address parameter. This is the default value.

Time interval. The length of time in seconds this system will wait before initiating a retry attempt to
connect to a DNS server. The default time interval is 2 seconds. Valid values range from 0 to 99.

TCPA1100 Format

This format returns information regarding the status of the TCP/IPv6 stack. For detailed descriptions of
the fields in the table, see[‘Field Descriptions” on page 239

Offset

Dec Hex Type Field

0 0 BINARY (4) Bytes returned

4 4 BINARY (4) Bytes available

8 8 BINARY (4) TCP/IPV6 stack status

12 C BINARY (4) Offset to additional information
16 10 BINARY (4) Length of additional information
20 14

238 iseries: Communications APls

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Length of additional information. The length in bytes of additional information returned that is not part
of format TCPA1100.

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the

start of the next format if format TCPA1200 ¥ or format TCPA1300 €% is requested. This field allows

expansion of the basic information. A value of zero is returned if only the TCPA1100 format is requested.

TCP/IPV6 stack status. The current status of the system TCP/IPv6 stack. Possible values are:

A ow NN E O

TCPA1200 Format

This format returns detailed information about the TCP/IPv6 stack attributes in addition to the TCP/IPv6
stack status (format TCPA1100). For detailed descriptions of the fields in the table, see

Inactive - The TCP/IPv6 stack is not operational.

Active - The TCP/IPv6 stack is operational.

Starting - The TCP/IPVv6 stack not operational, but is in the process of starting.

Ending, immediate - The TCP/IPV6 stack is operational, but is in the process of ending.
Ending, controlled - The TCP/IPv6 stack is operational, but is in the process of ending.

[Descriptions” on page 240 As of V5R4, this format is being replaced with TCPA1300 and should no

longer be used. <%

Offset
Dec Hex Type Field
0 0 Returns everything from format TCPA1100

Decimal and BINARY (4) ICMP error message send rate time

:‘:;;i?ig aLSOii;]fze:;:re BINARY (4) Router solicitation max delay

offset to additional BINARY(4) Router solicitation interval

ig:‘:rz;rt‘a_lt_igg:ﬁlgo.in BINARY (4) Router solicitation max transmits
BINARY(4) Neighbor advertisement max transmits
BINARY (4) Neighbor solicitation delay first probe time
BINARY (4) Neighbor solicitation max unicast solicits
BINARY (4) Neighbor solicitation max multicast solicits
BINARY (4) TCP keep alive
BINARY (4) TCP urgent pointer
BINARY (4) TCP receive buffer size
BINARY (4) TCP send buffer size
BINARY (4) TCP R1 retransmission count
BINARY (4) TCP R2 retransmission count
BINARY(4) TCP closed timewait timeout
BINARY(4) TCP minimum retransmission timeout

Communications APls

239

Field Descriptions

ICMP error message send rate time. The current value of the ICMP error message send rate time
attribute, in milliseconds. The ICMP error message send rate time attribute controls how often ICMPV6
error messages will be sent out by the system. This control mechanism allows the bandwidth and
forwarding costs of sending ICMPV6 error messages to be limited, as in the case of many ICMPvV6 error
messages being generated in response to another host sending a stream of erroneous packets. The default
ICMP error message send rate time is 1000 milliseconds (1 second). Valid values range from 10 through
5000 milliseconds (5 seconds).

x Note: As of V5R4, this data is no longer available and is defaulted to 0. %

Neighbor advertisement max transmits. The current value of the TCP/IPv6 stack Neighbor
advertisement max transmits attribute. The Neighbor advertisement max transmits attribute is specified
as a number of transmissions, and is the maximum number of unsolicited Neighbor Advertisements that
the system will send at a time. The system might send unsolicited Neighbor Advertisements when one of
its link-layer addresses changes (for example, hot-swap of a physical interface card). The default value of
the Neighbor advertisement max transmits attribute is 3 transmissions. Valid values range from 1 through
5 transmissions.

x Note: As of V5R4, this data is no longer available and is defaulted to 0. %

Neighbor solicitation delay first probe time. The current value of the configured Neighbor solicitation
delay first probe time attribute. This attribute controls how long a Neighbor Cache entry will stay in the
DELAY state before the stack will send another Neighbor Solicitation and move the Neighbor Cache
entry’s Reachability state to PROBE if reachability still has not been confirmed. The default Neighbor
solicitation delay first probe time is 5 seconds. Valid values range from 3 through 10 seconds.

s Note: As of V5R4, this data is no longer available and is defaulted to 0. %

Neighbor solicitation max multicast solicits. The current value of the configured Neighbor solicitation
max multicast solicits stack attribute. This attribute controls the maximum number of multicast Neighbor
Solicitations which will be sent out when the system is performing link-layer address resolution for
another host (neighbor). If no Neighbor Advertisement is received after the maximum number of
Neighbor Solicitations have been sent out, address resolution has failed, and an ICMPV6 error message
will be returned to the application. The default value of the Neighbor solicitation max multicast solicits
attribute is 3 transmissions. Valid values range from 1 through 5 transmissions.

x» Note: As of V5R4, this data is no longer available and is defaulted to 0. %

Neighbor solicitation max unicast solicits. The current value of the configured Neighbor solicitation max
unicast solicits stack attribute. This attribute controls the maximum number of unicast Neighbor
Solicitations which will be sent out when the system is performing link-layer address resolution for
another host with unicast Neighbor Solicitations. Multicast is the normal way to perform Neighbor
Discovery, but unicast Neighbor Solicitations will be used if the local physical interface is not
multicast-capable. If no Neighbor Advertisement is received after the maximum number of Neighbor
Solicitations have been sent out, address resolution has failed, and an ICMPV6 error message will be
returned to the application. The default Neighbor solicitation max unicast solicits value is 3 transmissions.
Valid values range from 1 through 5 transmissions.

s Note: As of V5R4, this data is no longer available and is defaulted to 0. <%
Router solicitation interval. The Router solicitation interval is the amount of time, in seconds, to wait

between sending Router Solicitations while waiting for a Router Advertisement in reply. The default
Router solicitation interval is 4 seconds. Valid values range from 2 through 5 seconds.

240 iSeries: Communications APls

x» Note: As of V5R4, this data is no longer available and is defaulted to 0. %

Router solicitation max delay. The Router solicitation max delay attribute is the amount of time, in
milliseconds, to wait for a Router Advertisement reply after sending the last Router Solicitation. This
attribute is also used to calculate when to send the first Router Solicitation. To avoid congestion on a link
when many hosts start up at the same time (such as after a power failure), the system will wait Router
soliciation max delay seconds before sending the first Router Solicitation. The default Router soliciation
max delay is 1000 milliseconds. Valid values range from 500 through 3000 milliseconds.

x Note: As of V5R4, this data is no longer available and is defaulted to 0. <%

Router solicitation max transmits. The maximum number of Router Solicitations to transmit. If no Router
Advertisements are received in response to the transmitted Router Solicitations, the system concludes that
there is no IPv6 router on its link. The default Router solicitation max transmits value is 3 transmissions.
Valid values range from 1 through 5 transmissions.

s Note: As of V5R4, this data is no longer available and is defaulted to 0. <%,

TCP closed timewait timeout. The amount of time, in seconds, for which a socket pair (client IP address
and port, server IP address and port) cannot be reused after a connection is closed. The maximum value

possible is 2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from
0 (no timer) to 14400 seconds (240 minutes).

s Note: As of V5R4, this data is available through format TCPA0200. <%

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other
side of a connection. The probe is sent when the connection is otherwise idle, even when there is no data
to be sent.

The transmission of keep-alive packets is controlled by individual sockets applications through use of the
SO_KEEPALIVE socket option. For more information, [Sockets Programming]in the iSeries Information
Center.

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28
days).

4 Note: As of V5R4, this data is available through format TCPA0200. <%

TCP minimum retransmission timeout. The current value of the configurable TCP minimum
retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will
wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an
acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum
retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.

4 Note: As of V5R4, this data is available through format TCPA0200. <%

TCP R1 retransmission count. The R1 retransmission count value. The default value is 3. Valid values
range from 1 to 15, and R1 must be less than R2.

x» Note: As of V5R4, this data is available through format TCPA0200. <%,

TCP R2 retransmission count. The R2 retransmission count value. The default value is 16. Valid values
range from 2 to 16, and R2 must be greater than R1.

4 Note: As of V5R4, this data is available through format TCPA0200. <%

Communications APIs 241

TCP receive buffer size. The TCP receive buffer size in bytes. The TCP receive window size is based on
this value. Decreasing this value decreases the amount of data that the remote system can send before
being read by the local application. Decreasing this value may improve performance in situations where
many retransmissions occur due to the overrunning of a network adapter.

Notes:
1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.
2. This value is also used as the default receive buffer size by IP over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. This is the default buffer
size that is used for initial TCP connection negotiations. An individual application can override this
value by using the SO_RCVBUF socket option. For more information, see |[Sockets Programming| in the
iSeries Information Center.

The default TCP receive buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608
(8MB) bytes.

4. % As of V5R4, this data is available through format TCPA0200.4%

TCP send buffer size. The TCP send buffer size in bytes. This parameter informs TCP what to use for
the default send buffer size. The TCP send buffer size provides a limit on the number of outgoing bytes
that are buffered by TCP. Once this limit is reached, attempts to send additional bytes may result in the
application blocking until the number of outgoing bytes buffered drops below this limit. The number of
outgoing bytes buffered is decremented when the remote system acknowledges the data sent.

Notes:
1. This value is used also as the default send buffer size by IP over SNA processing.
2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. This is the default buffer
size that is used for initial TCP connection negotiations. An individual application can override this
value by using the SO_SNDBUF socket option. For more information, see [Sockets Programming|in the
iSeries Information Center.

The default TCP send buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608
(8M) bytes.
4. % As of V5R4, this data is available through format TCPA0200.4%

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the
TCP header points to. The urgent pointer in the TCP header points to either the byte immediately
following the last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC
convention).

Note: This value must be consistent between the local and remote ends of a TCP connection. Socket
applications that use this value must use it consistently between the client and server applications. This
value is set on a system basis. All applications using this system will use this value. The possible values
are:

1 Use the BSD defined convention. The TCP urgent pointer points to the byte immediately following the last
byte of urgent data. This is the default value.
2 Use the RFC defined convention. The TCP urgent pointer points to the last byte of the urgent data.

s As of V5R4, this data is available through format TCPA0200. <%

TCPA1300 Format

This format returns information regarding the status of the TCP/IPv6 stack. For detailed descriptions of
the fields in the table, see[“Field Descriptions” on page 243]

242 iSeries: Communications APls

Offset

offset to add

reached by using the BINARY (4)

information field in BINARY (4)
format TCPA1100.

Dec Hex Type Field
0 0 Returns everything from format TCPA1100
Decimal and BINARY (4) ICMP error message burst limit
hexadecimal offsets are

itional

ICMP error message send rate

Hop limit

Field Descriptions

Hop limit. The configured IPv6 Hop Limit value specified for all physical interfaces. The Hop limit field
is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop limit value specifies a relative limit
on the number of hops across which an IPv6 datagram remains active. The Hop limit value is hop count
that is decremented by each gateway to prevent internet routing loops. The default Hop limit value is 64.
Valid values range from 1 through 255 hops.

ICMP error message burst limit. The maximum number of ICMP error messages sent in a burst. The

default value is 10. Valid values range from 1 through 255.

ICMP error message send rate. The average rate limit of sending ICMP error messages in
packets/second. The default value is 10. Valid values range from 1 through 255. <%

Error Messages

Message ID
TCP84C6 E
CPF24B4 E
CPF3C19 E
CPF3C21 E
CPF3C24 E
CPF3C90 E
CPF3CF1 E
CPF8100 E
CPF9872 E

Error Message Text

Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.
Severe error while addressing parameter list.
Error occurred with receiver variable specified.

Format name &1 is not valid.
Length of the receiver variable

is not valid.

Literal value cannot be changed.

Error code parameter not valid

All CPF81xx messages could be returned. xx is from 01 to FF.
Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

| ['*Communications APIs,” on page 1| | [APIs by category]

Update
Required

© 0o N Ol WN P

DNS API (QTOBUPDT)
Parameter Group:

Update instructions

Length of update instructions
Format name of update instructions
Update key override

Length of update key override
Format name of update key override
Update key name

Length of update key name

IP address of DNS server

Input Char(*)
Input Binary(4)
Input Char(8)
Input Char(*)
Input Binary(4)
Input Char(8)
Input Char(*)
Input Binary(4)
Input Char(15)

Communications APIls

243

#TOP_OF_PAGE
aplist.htm

10 Miscellaneous attributes Input Char(*)

11 Length of miscellaneous attributes Input Binary(4)
12 Format name of miscellaneous attributes Input Char(8)
13 Result code Output Binary(4)
14 Error code 170 Char(*)

Program Name: QDNS/QTOBUPDT
Default Public Authority: *USE
Threadsafe: No

The Update DNS API (QTOBUPDT) allows the caller to send one or more update instructions to an
iSeries dynamic DNS (Domain Name System) server. The instructions allow for adding or deleting DNS
Resource Records (RRs). The instructions can optionally include any number of prerequisite conditions
that must be true for the actual updates to take place. This API is based on the Berkeley Internet Name
Domain (BIND) version 8.2.x implementation of dynamic DNS updates. Therefore, it also can be used to
send update requests to DNS servers running on other operating system platforms that conform to BIND
\ersion 8 update protocols.

i5/0S Option 31 (Domain Name System) must be installed to use this API.

Authorities and Locks

If an Integrated File System (IFS) stream file name is specified for any of the parameters that allow it,
then the user will need *R authority to the stream file and *X authority to the directories in the path of
the stream file.

Required Parameter Group

Update instructions
INPUT; CHAR(*)

One or more instructions that define which DNS resource records should be updated (added or
deleted) for a specific DNS domain, as well as any prerequistes that must be true for those
updates to take place. Depending on which format name for this parameter is chosen, this
parameter will either contain the actual update instructions themselves or the name of an
Integrated File System file that contains the update instructions.

The syntax for the update instructions themselves is the same as that defined by BIND 8.2.3 for
dynamic DNS updates, which it uses as input to its nsupdate program. Please see [‘Update
[Instructions Syntax” on page 246| for descriptions of the update instructions themselves.

Length of update instructions
INPUT: BINARY(4)

The length of the data passed in the Update instructions parameter. If the length is larger than
the size of the Update instructions parameter, the results may not be predictable.

Format name of update instructions
INPUT; CHAR(8)

The format of the data being passed in the Update instructions parameter.

DNSU0100 Data passed represents the actual data the API should use.

DNSU0200 Data passed represents the path name of an Integrated File System file that contains the data the
API should use.

DNSU0300 Data passed represents the name of a file that contains the data the API should use. The file nhame

is in an i5/0S API path name structure. For the format of this structure, see[Path name format]

Update key override
INPUT; CHAR(*)

244 iseries: Communications APIs

This API automatically searches the default DNS dynamic update directory
/QIBM/UserData/0S400/DNS/_DYN for a dynamic update transaction signature (TSIG) key for
the specific domain being updated. The caller can override the default logic and provide a
transaction signature key directly to the API by using this Update key override parameter.
Depending on which format name for this parameter is chosen, this parameter will either contain
the actual key itself or the path name of an Integrated File System file that contains the key.

Length of update key override
INPUT; BINARY(4)

The length of the data passed in the Update key override parameter. If the length is larger than
the size of the Update key override parameter, the results may not be predictable.

Format name of update key override
INPUT; CHAR(8)

The format of the data being passed in the Update key override parameter.

DNSU0100 Data passed represents the actual data the API should use.

DNSU0200 Data passed represents the path name of an Integrated File System (IFS) file that contains the data
the API should use.

DNSU0300 Data passed represents the name of a file that contains the data the API should use. The file name

is in an i5/0S API path name structure. For the format of this structure, see|Path name format]

Update key name
INPUT; CHAR(*)

If the caller is providing a transaction signature key in the update key override parameter, then
the update key name parameter must contain the name of the update key.

Length of update key name
INPUT; BINARY(4)

The length of the data passed in the Update key name parameter. If the length is larger than the
size of the Update key name parameter, the results may not be predictable.

IP address of DNS server
INPUT; CHAR(15)

The IP address, in dotted decimal form, of the DNS server where the API should start searching
for the primary master DNS server for the zone being updated. The parameter must be right
padded with blanks if the data does not take up the entire length.

If this parameter is all blanks on input, the API will automatically search the network to
determine where the primary master DNS server is located for the zone that contains the domain
being updated.

Miscellaneous attributes
INPUT; CHAR(*)

Optional miscellaneous runtime attributes.

Length of miscellaneous attributes
INPUT; BINARY (4)

The length of the data passed in the Miscellaneous attributes parameter. If the length is larger
than the size of the Miscellaneous attributes parameter, the results may not be predictable.

Format name of miscellaneous attributes
INPUT; CHAR(8)

Communications APIs 245

The format of the data being passed in the Miscellaneous attributes parameter.

DNSAO0100 Miscellaneous runtime attributes. Refer to[*“DNSA0100 Format” on page 248|for details on the
format.

Result code
OUTPUT; BINARY(4)

Whether the API processed successfully or not, and if not, what type of problem was
encountered. Any code that is not 0 means that the updates were not completely successful.

0 Successful.

1 Send error. The authoritative name server could not be reached.

2 Failed update packet. The name server has rejected the update, either because it does not support
dynamic update or due to an authentication failure.

3 Prerequisite failure. The update was successfully received and authenticated by the name server.

The prerequisites, however, prevented the update from actually being performed.

Error code
1/0: CHAR()
The structure in which to return error information. For the format of the structure, see

Update Instructions Syntax

The syntax of the update instructions for the QTOBUPDT API is the same as the syntax of the update
instructions that are input to the BIND (Berkeley Internet Name Domain) Version 8.2.x program known
as nsupdate. It is a stream file-based input format that requires carriage-return(<cr>) linefeed (<If>)
characters to define distinct “lines” of input.

In addition to accepting these instructions using stream files, like nsupdate, the QTOBUPDT API has
added the ability (by specifying format DNSUO0100) for an application program to build the lines of input
in memory and pass them directly to the APl without first having to write them to a file. It is important
to note, however, that this method still requires that you build the input lines exactly as you would if
you were going to write them to a stream file; that is, separated by the same <cr><If> characters that are
described below.

QTOBUPDT reads input records, one per line, each line contributing a resource record directive to a
single update request. As described below, the directives can be either prerequisite checks or actual
resource record (RR) data update directives. All domain names used in an update request must belong to
the same DNS zone. A blank line causes the accumulated records to be formatted into a single update
request and transmitted to the zone’s authoritative name servers. Additional records may follow, which
are formed into additional, completely independent, update requests for that domain. For any given call
to the API, multiple update requests can be made, but each group of lines belonging to each single
update request must be separated by a blank line. For the last request to be transmitted, you must
remember to include a blank line as the last line of your input.

Records take one of two general forms. Prerequisite records specify conditions that must be satisfied
before the request will be processed. Update records specify actual data changes to be made to the DNS
database. An “update request” consists of zero or more prerequisites, and one or more updates. Each
update request is processed atomically; that is, all prerequisites must be satisfied, then all updates are
performed. If any of the prerequisites within the specific update request fail, the actual data update
directives following them will not be attempted.

QTOBUPDT API understands the following input record formats:

246 iSeries: Communications APIs

prereq nxdomain
domain-name
<cr><If>

prereq yxdomain
domain-name
<cr><If>

prereq nxrrset
domain-name
[class] type
<cr><|f>

prereq yxrrset
domain-name
[class] type
[data...] <cr><If>
update delete
domain-name
[class] [type

[data...]] <cr><If>

update add
domain-name ttl
[class] type data...
<cr><If>

EXAMPLES

Requires that no RR of any type exists with name domain-name.

Requires that at least one RR named domain-name must exist.

Requires that no RR exists of the specified type and domain-name.

Requires that a RR exists of the specified type and domain-name. If data is specified, it must
match exactly.

Deletes RRs named domain-name. If type and/or data is specified, only completely matching
records are deleted.

Adds a new RR with specified ttl, type, and data.

1. The following example illustrates a set of update instructions that could be sent to the QTOBUPDT
API to change an IP address by deleting any existing A records for a domain name, and then inserting
a new A record. Since no prerequisites are specified, the new record will be added even if there were

no existing

e record 1:
e record 2:
e record 3:

records to delete. The trailing blank line is required to process the request.

update delete test.test.com A <cr><If>
update add test.test.com 3600 A 10.1.1.1 <cr><If>
<cr><|f>

2. In this example, a CNAME alias is added to the database only if there are no existing A or CNAME
records for the domain name.

* record 1:
* record 2:
* record 3:
* record 4:

prereq nxrrset www.test.com A <cr><If>

prereq nxrrset www.test.com CNAME <cr><If>

update add www.test.com 3600 CNAME test.test.com <cr><If>
<cr><If>

3. To accomplish both of the above independent update requests in a single call to the QTOBUPDT API,
the update instructions submitted would be:

* record 1:
* record 2:
* record 3:
* record 4:
* record 5:
* record 6:
* record 7:

update delete test.test.com A <cr><If>

update add test.test.com 3600 A 10.1.1.1 <cr><If>

<cr><|f>

prereq nxrrset www.test.com A <cr><|f>

prereq nxrrset www.test.com CNAME <cr><If>

update add www.test.com 3600 CNAME test.test.com <cr><If>
<cr><If>

Communications APIs 247

DNSAO0100 Format

The following is the format used for passing miscellaneous runtime attributes to the dynamic DNS
update API. For detailed descriptions of the fields in this table, see[“Field Descriptions.”]

Offset
Dec Hex Type Field
0 0 B Debug flag
4 4 B Virtual circuit flag
8 8 C Reserved for future use

Field Descriptions

Debug flag. If set on, tells the API to create a spooled print file (QPRINT) to the caller’s userid.

0
1

Debug tracing is off (default).
Debug tracing is on.

Reserved for future use. A reserved field that must be set to hexadecimal zeros.

Virtual circuit flag. If set on, tells the API to use a TCP connection instead of the default UDP packets.

0
1

Use UDP packets to communicate with the DNS server (default).
Use TCP to communicate with the DNS server.

Error Messages

Message ID
DNS0300 E
DNS0301 E
DNS0302 E
DNS0303 E
DNS0304 E
DNS0305 E
DNS0306 E
DNS0307 E
DNS0308 E
DNS0309 D
DNS0310 E
DNS0311 E
DNS0312 E
DNS0313 E
DNS0314 E
DNSO0315 E
DNSO030A D
DNS030B D
DNS030C D
DNS030D E
DNS030E E
DNSO030F E

Error Message Text

Incorrect number of parameters passed.

The update instructions parameter was null.

The length of the update instructions parameter is incorrect.

The format name of the update instructions parameter is incorrect.
The update key override parameter is null.

The format name of the update key override parameter is incorrect.
The IP address of the DNS server parameter is incorrect.

The miscellaneous attributes parameter is null.

The format name of the miscellaneous attributes parameter is incorrect.
The transaction signature key file could not be opened.

The length of miscellaneous attributes parameter is incorrect.

The miscellaneous attributes debug flag is incorrect.

The miscellaneous attributes virtual circuit flag is incorrect.

The key name parameter is null.

The length of the key name parameter is incorrect.

The transaction signature key file could not be read.

The update instructions parameter was incorrect.

The dynamic DNS update failed.

The dynamic DNS update partially failed.

The miscellaneous attributes reserved field was not zeros.

The length of the update key override parameter is incorrect.

The update instructions file could not be opened.

248 iseries: Communications APls

API introduced: V5R1

| ['*Communications APIs,” on page 1| | [APIs by category]

CPI Communications (CPI-C)

CPI Communications (CPI-C) provides a cross-system programming interface for applications that require

program-to-program communications. |CPI—C Referencel @* details CPI-C APIs and provides examples
for designing application programs using CPI-C concepts and calls.

| ['Communications APIs,” on page 1 | [APIs by category]

Exit Programs

These are the Exit Programs for this category.

Trace Exit Program for Trace TCP/IP Application command

Required Parameter Group:

1 Trace option setting Input Char(10)
2 Application Input Char(10)
3 Error detected Output Char(10)
4 Comparison data® (page 29 Input Char(*)

QSYSINC/H member name: ESCWCHT

Note 1: Valid only when watch for trace event facility is enabled (WCHMSG or WCHLICLOG parameters
were specified)

The Trace TCP/IP Application (TRCTCPAPP) command has the capability to call a user-written program,
if specified in the TRCPGM parameter. This user written program will be called in the following
circumstances:

For SET(*ON), the trace program will be called:
» Before the application trace starts.
» After the communications and Licensed Internal Code (LIC) traces, if requested, start.

For SET(*OFF), the trace program will be called:

» Before the LIC traces, if requested, end.

» After the communications trace, if requested, ends.
» After the application trace ends.

For SET(*END), the trace program will be called:
» After the LIC and communications traces, if requested, end.
» After the application trace ends.

Also, the Trace TCP/IP Application (TRCTCPAPP) command has the capability to watch for a specific
event and end the trace when this event occurs. An event can be a message being sent to a specific
message queue, history log or job log; or a LIClog. If specified in the TRCPGM parameter, the watch for
trace event facility will call a user-written program at the moments specified in the Trace option setting
parameter.

Communications APIs 249

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

See the online help for more information on the TRCTCPAPP command.

Authorities and Locks
None.

Required Parameter Group

Trace option setting
INPUT; CHAR(10)

The reason indicating the moment at which the user-written program was called. The possible

values are:

*ON - The collection of trace information is started, or
- The watch for trace facility is starting®.

*OFF The collection of trace information is stopped and the trace information is written to spooled
printer files of the user.

*END Tracing is ended and all trace information is deleted. No trace information output is created.

MSGID? A match on a message id specified on WCHMSG parameter occurred.

*LICLOG? A match on a LIC log specified on the WCHLICLOG parameter occurred.

CMPDATA The major and minor code of a LIC log matched, but the comparison data did not.

INTVAL The time interval specified on TRCPGMITV parameter is elapsed.

WCHTIMO! The length of time to watch specified on WCHTIMO is elapsed.

Application.
INPUT; CHAR(10)

The possible values for the "Application” parameter are the same as the values for the APP
parameter on the TRCTCPAPP command. Ignored by watch for trace event facility.

Error detected
OUTPUT; CHAR(10)

Indicates if the trace event facility should stop or continue running, or if an error on the
user-written program was found. The possible values are:

« *CONTINUE? - The trace and the watch for trace event facility.

+ *STOP? - The trace and the watch for trace event facility will be ended.

* *ERROR - Error detected by customer trace program.

Comparison data
INPUT; CHAR(*)

The format of the trace information depends on the Trace option setting causing the exit program
to be called. The format of the Comparison data is as follows if the Trace option setting is

*MSGID:
Offset
Dec Hex Type Field
0 0 BINARY(4) Length of trace information
4 4 CHAR(7) Message ID
11 B CHAR(9) Reserved
20 14 BINARY (4) Offset to comparison data
24 18 BINARY (4) Length of comparison data

250 iSeries: Communications APIs

Offset

Dec Hex Type Field
28 1C CHAR(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information
4 4 CHAR(4) LIC Log major code
8 8 CHAR(4) LIC Log minor code
12 C CHAR(8) LIC Log identifier
20 14 BINARY (4) Offset to comparison data
24 18 BINARY(4) Length of comparison data
28 1C CHAR(*) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written
exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.
LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the
watched for log entry.

Message ID. The identifier of the message that occurred.

Message comparison data. The user specified text string used to compare against the entry data of the
watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information
See the [Trace TCP/1P Application| (TRCTCPAPP) command for more information.

Communications APIs 251

Exit program introduced: V5R3

| FCommunications APIs,” on page 1] | [APIs by category]

Exit Program for Watch for Trace Event

Required Parameter Group:

1 Trace option setting Input Char(10)
2 Reserved Input Char(10)
3 Error detected Output Char(10)
4 Comparison data Input Char(*)

QSYSINC/H member name: ESCWCHT

The Trace commands such as STRCMNTRC, STRTRC, TRCINT and TRCCNN have the capability to
watch for a specific event and end the trace when this event occurs. An event can be a message being
sent to a specific message queue, history log, job log, or LIClog. If specified in the TRCPGM parameter,
the watch for trace event facility will call a user-written program in the cicumstances specified in the
Trace option setting parameter.

Authorities and Locks
None.

Required Parameter Group

Trace option setting
INPUT; CHAR(10)

The reason indicating the moment at which the user-written program was called. The possible

values are:
*ON The watch for trace facility is starting.
*MSGID A match on a message id specified on WCHMSG parameter occurred.
*LICLOG A match on a LIC log specified on the WCHLICLOG parameter occurred.
*CMPDATA The major and minor code of a LIC log matched, but the comparison data did not.
*INTVAL The time interval specified on TRCPGMITV parameter is elapsed.
*WCHTIMO The length of time to watch specified on WCHTIMO is elapsed.

Error detected
OUTPUT,; CHAR(10)

Indicates if the trace event facility should stop or continue running, or if an error on the
user-written program was found. The possible values are:

*CONTINUE The trace and the watch for trace event facility will continue running
*STOP The trace and the watch for trace event facility will be ended
*ERROR Error detected by customer trace program.

Comparison data
INPUT, CHAR(*)

The format of the trace information depends on the Trace option setting causing the exit program
to be called. The format of the Comparison data is as follows if the Trace option setting is

252 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

*MSGID:

Offset

Dec Hex Type Field

0 0 BINARY (4) Length of trace information
4 4 CHAR(7) Message ID

11 B CHAR(9) Reserved

20 14 BINARY(4) Offset to comparison data
24 18 BINARY (4) Length of comparison data
28 1C CHAR(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information
4 4 CHAR(4) LIC Log major code
8 8 CHAR(4) LIC Log minor code
12 C CHAR(8) LIC Log identifier
20 14 BINARY (4) Offset to comparison data
24 18 BINARY(4) Length of comparison data
28 1C CHAR(*) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:
Offset
Dec Hex Type Field
0 0 BINARY (4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written
exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.
LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the
watched for log entry.

Message ID. The identifier of the message that occurred.

Communications APIs 253

Message comparison data. The user specified text string used to compare against the entry data of the
watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information

See the following for more information:

* [Start Communications Trace| (STRCMNTRC) command
* [Start Trace| (STRTRC) command

. frrace Internal| (TRCINT) command

« [Trace Connection| (TRCCNN) command

Exit program introduced: V5R3

[fop| | [*Communications APIs,” on page 1 | [APIs by category]

Concepts

These are the concepts for this category.

User-Defined Communications

User-defined communications support is a set of application program interfaces (APIs) that are part of the
Operating System/400® (i5/0S®) licensed program. These callable routines allow customers to write
their own communications protocol stacks above the iSeries™ data link and physical layer support. The
term user-defined communications is used here to describe this communications protocol support. The
term application program refers to a user-supplied communications application program.

This article defines the user-defined communications support and describes how to write protocols using
the APIs. In addition, it provides two C language program examples that illustrate the use of the APIs
while performing a simple file transfer between two systems attached to an X.25 packet switched
network.

Overview

The user-defined communications APIs allow your application programs to send and receive data, and
do specialized functions such as setting timers.

Your application programs need to work with the following:
» User-defined communications support

* Input/output buffers and descriptors

* A queue

Figure 1-1 (page [254) shows an overview of the user-defined communications support.

Figure 1-1. User-Defined Communications Support

254 iseries: Communications APls

#TOP_OF_PAGE
aplist.htm

LI'ser-Defined Communications Application Prograrm

Input/Output Buffers CILELES

Lser-Defined Communications Support

Token-Ring Ethemet .23 FOOI WWireless
Support Support Support Support Support

v ' v v

To Token- To To FO O To
FHing Ethernet BMetwork Wireless
M etwork M etwork i i M etwork
To =25 To % 25
M etwork M etwork
(R (IS0
Hecammen-
dations)

FODI = fiber distributed data interface
|00 = integrated services digital netw ork
F% = an abbreviation forthe physical interface that

X .25 Can use:

F = R5-232 and R5-445 (Electronic Industries
Agsociation (ElA) types)

W =% .33 (International Telegraph and Telephone
Consultative Committee (CCITT) N series types)

¥ = %21 (CCITT X series types)

User-Defined Communications Callable Routines
The APIs provided by the i5/0S licensed program are callable routines that allow an application program

to start, perform, and end communications, and perform specialized functions such as setting timers.
These routines are listed below and are discussed in detail in [‘User-Defined Communications Support

IAPIs” on page 1]
» Disable Link (QOLDLINK) ends communications

Communications APIs 255

* Enable Link (QOLELINK) starts communications

* Query Line Description (QOLQLIND)

* Receive Data (QOLRECV)

* Send Data (QOLSEND)

» Set Filter (QOLSETF) for inbound routing information
» Set Timer (QOLTIMER) sets or cancels a timer

Input/Output Buffers and Descriptors

The input/output buffers and descriptors are user space objects (*USRSPC) that contain and describe the
data an application program is sending or receiving. There are separate buffers and descriptors for input
and output.

When an application program is ready to send data, it fills the output buffer with data and provides a
description of that data in the output buffer descriptor. Similarly, when an application program receives
data, the user-defined communications support fills the input buffer with data and provides a description
of that data in the input buffer descriptor.

The i5/0S licensed program also provides callable APIs to allow an application program to manipulate
the data in the user spaces. Some of these APIs are listed below.

* Change User Space (QUSCHGUS)
* Retrieve Pointer to User Space (QUSPTRUS)
* Retrieve User Space (QUSRTVUS)

See [User Space APIs|for more information.

Queues

A queue is used by the user-defined communications support to inform an application program of some
action to perform or of an activity that is complete.

The i5/0S licensed program provides APIs that allow your application programs to manipulate the data
and user queues. Some of these callable APIs are listed below.

» Clear Data Queue (QCLRDTAQ)

* Create User Queue (QUSCRTUQ)
* Delete User Queue (QUSDLTUQ)

* Receive Data Queue (QRCVDTAQ)
» Send Data Queue (QSNDDTAQ)

See the [CL Programming|topic for more information on data queues.

Terminology

Listed below are terms that are important in understanding the information contained in this part.
Communications handle. The name an application program assigns and uses to refer to a link.

Connection. The logical communication path from one computer system to another. For example, a
switched virtual circuit (SVC) connection on an X.25 network.

Connectionless service. A method of operation where data can be sent to and received from the remote
computer system without establishing a connection to it. User-defined communications support provides

256 iSeries: Communications APIs

obj5.htm

connectionless service over token-ring, Ethernet, fiber distributed data interface (FDDI), wireless and X.25
networks only. For a local area network (LAN) environment, connectionless service is also known as
unacknowledged service.

Connection-oriented service. A method of operation where a connection to the remote computer system
must first be established before data can be sent to it or received from it. User-defined communications
support provides connection-oriented service over X.25 networks only.

Connection identifier. A local identifier (ID) that a computer system uses to distinguish one connection
from another. When using the user-defined communications support on the server, a connection ID is
made up of a user connection end point ID and a provider connection end point ID.

Disable. The process of deactivating a link so that input and output operations are no longer possible on
a communications line.

Enable. The process of setting up and activating a link for input and output operations on a
communications line.

Filter. The technique used to route inbound data to a link that is enabled by an application program.

Link. The logical path between an application program and a communications line. A link is made up of
the following communications objects:

* Network interface description running X.25 over ISDN

» X.25, token-ring, fiber distributed data interface (FDDI), Ethernet, or wireless line description
* Network controller description

* Network device description of type *USRDFN

Provider connection end point ID (PCEP ID). The portion of the connection ID that the user-defined
communications support uses to identify the connection. For example, data sent by the application
program will be on the PCEP ID portion of the connection ID.

User connection end point ID (UCEP ID). The portion of the connection ID that the application program
uses to identify the connection. For example, data received by the application program is on the UCEP ID
portion of the connection ID.

Relationship to Communications Standards

Figure 1-2 (page shows the structure of advanced program-to-program communications (APPC) on
the sergver and its relationship to the International Standards Organization (ISO) protocol model. Note
that only the application layer above the APPC protocol code is available for definition. The APPC
functional equivalents of the ISO presentation, session, networking, transport, data link, and physical
layers are performed by the i5/0S operating system or Licensed Internal Code, and you cannot replace
or change them. Contrast this with Figure 1-3 (page which shows how much more of the protocol is
defined by the user-defined communications application than by the APPC application.

Figure 1-2. iSeries APPC versus ISO Model

Communications APIs 257

05/400 APPC
Proto col

Imtem ational Standards
COrganization hodel (1507

AP PC Applicat ons

Presentation
Services

Data Flow
Control

Transmission
Control

Fath Comtral

Data Link Control

Physical Control

(all layers except
application are 1Bh-
supplied licensed
intemal code)

Application

Presentation

Session

Tranzpart

Metw ork

Data Link

Physical

Figure 1-3 (page shows the structure for user-defined communications and its relationship to the
International Standards Organization (ISO) protocol model. Note that the available iSeries data links and
physical layers limit user-defined communications to run over LAN (token-ring, Ethernet, wireless, or
FDDI), or X.25 links, but the portion of the protocol above the data link layer is completely open to a
user-defined communications application. In addition, these same X.25 and LAN links may be shared
between the application program and other iSeries communications protocols that support X.25 and LAN
lines. Examples include Systems Network Architecture (SNA), asynchronous communications,
Transmission Control Protocol/Internet Protocol (TCP/IP), and Open Systems Interconnection (OSI).

Figure 1-3. iSeries User-Defined versus ISO Model

258

iSeries: Communications APIs

05400 User-Defined Imtem ational Standards

Communications Organization hdodel (1500
Application
Uzer-defined
communications
application Prezentation
This structure
is open tothe Session
application
architect. The

design will dictate

how the protocol Transport
is organized.
Metw ork
X.25, LAN Data Link Data Link
W24, BD2.3, ... Physical

You can write protocols that run over local area networks or X.25 networks completely in high-level
languages such as C, COBOL, or RPG. You can also write protocols currently running on other systems to
run on the iSeries. For example, you can write both non-SNA LAN or X.25 packet layer protocols on the
iSeries.

Configuration instructions also need to be supplied with the application program. User-defined
communications support simply opens a pathway to the system data links. It is up to you as a protocol
developer to supply any configuration instructions that are in addition to the data link or physical layer
definition. Data link and physical layer definitions are defined when you use the following commands:

* Create Line Description (DDI) (CRTLINDDI)

» Create Line Description (Ethernet) (CRTLINETH)

» Create Line Description (Token Ring) (CRTLINTRN)

* Create Line Description (Wireless) (CRTLINWLS)

» Create Line Description (X.25) (CRTLINX25)

» Create Network Interface Description (ISDN) (CRTNWIISDN)

Figure 1-4 (page [259) outlines the difference between standard iSeries communications configuration, such
as the iSeries APPC protocol, and user-defined communications configuration.

Figure 1-4. Comparison between User-Defined Communications and APPC Communications

Communications APIs 259

Object APPC Communications User-Defined Communications

Network ISDN basic rate interface (BRI). Describes the | Same as APPC. Only X.25 supported.

Interface physical attachment to an ISDN BRI. Only

Description used for ISDN. X.25 or IDLC protocols
supported.

Line Description SDLC, LAN, IDLC, X.25 lines supported. LAN, X.25 lines supported. Same as APPC
Contains local port information for iSeries except some of the information does not
communication IOP (hardware address, apply to user-defined communications.

maximum frame size, exchange identifier
(XID), local recovery information, ...).

Controller Description | APPC, host controllers supported. Describes | Network controller supported. Pathway into
remote system, and parameters must match | network. Only one specific parameter—X.25

the remote hardware (hardware address, time-out value.
XID, ...).

Device Description APPC device supported. Describes remote Network device supported. Only describes
logical unit (LU), and parameters must the communications method or type(for
match partner LU (remote location name, example, TCP/IP, OSI, or user-defined
local location name, ...). communications).

Mode Description and | Required. Not available.

Class-of-Service (COS)

Although an APPC network requires one APPC controller description to describe each remote system in
the network, user-defined communications only requires one network controller for communications with
an entire network of remote systems. Thus, LAN and X.25 lines can be shared between user-defined
communications support and any other protocols that support those same line types. For example, APPC
may run over a token-ring line and use the X’04’ Service Access Point (SAP). TCP/IP might run at the
same time using the X’AA’ SAP. You might write an application program to use the X’22" SAP, and run at
the same time as the first two. All three protocols can be active at the same time across the same physical
media.

Note: System-specific configuration information must be part of the application program and is not
supplied by IBM®),

Local Area Network (LAN) Considerations

User-defined communications supports these LAN types:
» Token ring (IEEE 802.5)

* Ethernet (IEEE 802.3)

* Ethernet Version 2

* Wireless

* FDDI

For token ring (802.5), Ethernet (802.3), and FDDI, user-defined communications uses the IEEE 802.2
logical link control (LLC) layer, which provides type 1 connectionless service. Connectionless service is
also known as unacknowledged service. The LLC layer provides for type 2 connection service as well.
For Ethernet Version 2, no 802.2 layer is available.

The wireless LAN type supports the characteristics of both Ethernet (802.3) and Ethernet Version 2.
Your application program has access to type 1 unnumbered information (Ul) frames. This connectionless

service is commonly referred to as datagram support where protocol data units are exchanged between
end points without establishing a data link connection first.

260 iSeries: Communications APIs

The type 1 operations, test and exchange identifier (XID) frames, are not supported in user-defined
communications. Any XID or test frames that the physical layer of the iSeries receives are processed by
the input/output processor (IOP) and never reach your application program.

LAN frames are routed by filtering incoming data using the inbound routing data defined by your
application program. The filters are hierarchical and are set up by your application program before
communications is started.

The following list shows the possible settings for LAN inbound routing data (filters) from least selective
to most selective.

» Destination Service Access Point (DSAP)
* DSAP, Source Service Access Point (SSAP), and optional Ethernet Version 2 frame type
* DSAP, SSAP, optional Ethernet Version 2 frame type, and adapter address

Because user-defined communications does not allow applications to define the data link and physical
layers, the entire token-ring or Ethernet frame is not available to your applications. The following fields
are the parts of the LAN frame that are available to the user-defined communications support:

+ DSAP
* SSAP
» Destination address (DA)

* Routing information (RI)
This field is available only when using token ring.

* Priority control
This field is available only when using token ring.

 Access control
This field is available only when using token ring.

e Data

For more information on local area networks, see the LAN, Frame-Relay and ATM Support] @ book.

X.25 Considerations

X.25 user-defined communications support includes access to both permanent virtual circuits (PVCs) and
switched virtual circuits (SVCs).

Over X.25 networks, including those using ISDN, your application program can initiate and accept X.25
calls, send and receive data, reset, and clear connections.

X.25 packets are routed by filtering the incoming call request using the inbound routing data that is
defined by your application program. The filters are hierarchical and are set up by the application
program before communications is started.

The following list shows the possible settings for X.25 inbound routing data (filters) from least selective to
most selective.

* Protocol identifier (PID)
* PID, and calling data terminal equipment (DTE) address

When X.25 networks are using ISDN, notification of incoming calls may be received on the D-channel.
You can decide whether these calls are accepted.

For more information on X.25 networks, see the [X.25 Network Support| @ book.

Communications APIs 261

[Top| | [FCommunications APIs,” on page 1 | [APIs by category]

Programming Design Considerations for Communications APIs

This document outlines concepts related to user-defined communications and how they might relate to
the design of a user-defined communications application. Topics covered are:

* Jobs

* Application program feedback

* Programming languages

» Connection identifiers

» Token-ring, Ethernet, and wireless networks
* X.25 networks

* Queues

» User spaces

Jobs

A fundamental concept in user-defined communications is the job. The concept of the job is important
because the user-defined communications support performs services for the job requesting the
communications support through one of the user-defined communications APIs. Information used by the
user-defined communications support is kept along with other information about the job. You can display
this information by using the Work with Job (WRKJOB) command and selecting the Work with
communications status option. The user-defined communications information for the job, such as the
communications handle name, last operation, and input and output counts are shown.

A user-defined communications application program (hereafter referred to as an application or
application program), always runs within a job. This job may be run interactively or in batch and always
represents a separate application to the user-defined communications support. This means that the same
protocol can be actively running in more than one job on the system. Also, more than one job can have
links that share the same line as other jobs running application programs.

Each link that is enabled by an application program logically consists of the line, network controller, and
network device description objects (plus the network interface description object for ISDN links). Many
applications can share the same line and controller description, provided the applications are running in
different jobs, but each application uses a different device description. Up to 256 device descriptions can
be attached to a controller description. This means that there can be a maximum of 256 jobs running
application programs that share the same line at one time. When an application program has finished
using a link and disabling it, the network device description used by the application becomes available to
another application.

For end-to-end communication to begin, the application programs on each system must be started. There
is no function equivalent to the intersystem communications function (ICF) program start request. Your
application program is responsible for providing this support, if needed. To provide this support, your
application can have a batch job servicing remote requests to start the user-defined communications
application program. This job can be created to run in any subsystem.

For more information on jobs and subsystems, see the Work Management] topic.

You can design your application programs so that the entire protocol resides within one job or separate
jobs where each job represents a portion of the protocol.

There is a one-to-one correspondence between a job and the user-defined communications support for
that job. The user-defined communications support for one job does not communicate with the

262 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

user-defined communications support for another job. If two applications wish to communicate between
themselves, a method such as a shared queue can be used. Also, the queue can be shared between the
two (or more) jobs and the user-defined communications support for those jobs.

Figure 1-1 (page[263) shows how user-defined communications relate to the i5/0S®™ job structure and
the data queue or user queue that provides the ability to communicate between your application and the
user-defined communications support.

In this figure, one interactive job is running over an X.25 line (X25USA) to a system in Rochester,
Minnesota, using the user-defined communications support. The link was enabled with communications
handle name ROCHESTER.

The user space application programming interfaces (APIs) that the application program is using are
shown, along with the programming interfaces for data and user queues and the user-defined

communications support APIs.

Figure 1-1. Overview of API Relationships

(ENG)

CIsMDDTAL
User-Defined Communications I =
Application Pragram QRCYDTAQ | HUEUE

(DEQ) Support
Job name: DSP0e QPGME 000125

A A
QUSPTRUS QIOLELIMK | (EMCQY QSMDDTAC

CIISCHGUS CIOLOLIN K
CIISETYUS CIOLSETE
CIOLRECY
CIOLSEND
CIOLCLIMD
CIOLTIMER
¥ h ¥
Lser-Defined ClLEeLe
LIser Space - _
Support, Communications Support Cbject
Four Lser .
Link by Handle:
spaces ROCHESTER

Line Description:
H2OUSEA

v

Communications APIs 263

Figure 1-2 (page [264) shows two jobs, A and B. Each job is using the user-defined communications
support to communicate with the networks attached to the iSeries™ server by the line description. The
figure shows the relationship between the different APls and the job which is running the application
program.

The lines between the jobs indicate that callable APIs that are used to communicate between the
application program and the system services shown.

Figure 1-2. Application Programming Interface to Job Structure

Job A Job B
UserDefined U serDefined
Communications Q Cammunications
N LIELIE L
Application Program __L Support || Application Pragram
lUserDefined Usger Sp?tce LIser-Derined
Communications Uppo Communicatons
Support Support
Wireless Ethernet LS Token-Ring
M ety Ork M etwork M etwork M etwork
| |
IS0M R

The following list pertains to Figure 1-2 (page [264).
* The applications use the data queue APIs, user space APIs, and user-defined communications APIs.

* An application can have more than one link enabled, and can use a separate queue for each link, or the
same queue for some or all the links that it has enabled.

* The two jobs can communicate with each other using a common queue. This queue can be the same
queue that is used for user-defined communications support or a different one.

» Both jobs (or any other job on the system) that has the proper authority to the user spaces, can access
the user spaces.

* The user-defined communications support uses the data in the output user spaces that are created
when the link is created. The application making the call to the Send Data (qolsend) API can fill the
output buffer and descriptor, or another application can do this.

* The user-defined communications support sends data to the application through the input buffer and
input descriptor that is created when the link on which the data is arriving was created. Either the
application making the call to the Receive Data (QOLRECV) API retrieves the data from the input
buffer and descriptor, or another application with access to the user spaces does this.

264 iSeries: Communications APIs

* The application supplies any communications handle (link name) to the link as long as this hame is
unique among all the other links that the job has enabled.

* An application can enable as many links as there are line descriptions that are supported (X.25,
token-ring, Ethernet, wireless, and FDDI) and that are able to be varied on.

* An application is able to run over X.25 and LAN links concurrently.

Application Program Feedback

The user-defined communications support uses return and reason codes to indicate the success or failure
of an operation, and provide suggested recovery information. In severe error conditions an escape
message is signaled to the application program. If a severe error occurs, user-defined communications is
no longer available to the application.

When the golsend and QOLRECV APIs return to the application and you are running to an X.25
network, the diagnostic field is filled in. The reason code indicates whether or not the application
program should look at the data returned in the diagnostic field. The diagnostic field contains additional
information on the error or condition that is reported.

Synchronous and Asynchronous Operations

Most operations that an application program requests on the call to the golsend API are synchronous
operations. Synchronous operations involve one step, which is to call the qolsend API, passing the
appropriate information. Synchronous operations complete when the golsend API returns to the
application program. The success or failure of the operation is reported in the return and reason codes by
the qolsend API.

Asynchronous operations do not complete when the golsend API returns to the application. There are
two steps for every asynchronous operation:

1. Call the qolsend API to initiate or request the operation.
2. Call the QOLRECV API to receive the results of the completed operation.

When the golsend API returns to the application program, the request for the operation is successfully
submitted. After the requested operation is complete, the user-defined communications support sends an
incoming data entry (if necessary) to the queue to instruct the application program to call the QOLRECV
API to receive the data. When this call to the QOLRECV API returns, the return and reason codes in the
parameter list contain the success or failure of the operation. If the operation was unsuccessful due to an
application template error in the user space used for output, the request data given to qolsend using the
output buffer and descriptor is copied into the input buffer and descriptor. The offset to the template
error detected is returned in the parameter list of the QOLRECV API. Asynchronous operations are only
used for open connection requests, close connection requests, and resets.

For either type of operation, the application program is allowed to use the output user spaces again as
soon as the call to the golsend API returns.

Programming Languages

Any program written in an i5/0S-supported language can call user-defined communications support.
One consideration for choosing one language over another, is that the programming language must have
the ability to set a byte field to any hexadecimal value. This does not restrict programming in the
different languages, but it does make some languages more appealing than others.

Starting and Ending Communications

Relatively little configuration is required by user-defined communications support to begin
communications to the network. For information on configuration, see |“Configuration and Queuel
[Entries” on page 299

Communications APIs 265

To start communications with a network, your user-defined communications application program enables
the link to the network by calling the Enable Link (QOLELINK) API. Once the link is enabled, the
application program can call any of the user-defined communications support APIs, and request any of
the operations supported for the link. When the application program completes communications with the
network, it disables the link by calling the Disable Link (QOLDLINK) API.

Note: Enabling the link does not result in any communications activity on the network. Disabling a link
may cause communications activity for X.25 links if connections are active when the link is disabled.

Using Connection ldentifiers

Connection identifiers are used for connection-oriented support over X.25 networks. The connectionless
connection identifiers (UCEP=1, PCEP=1) are used for local area networks. The following examples
(Figure 1-3 (page through Figure 1-14 (page) illustrate how to use connection identifiers (UCEP
and PCEP). They show how the two step operations, open connection request, and close connection
request relate to the UCEP and PCEP identifiers. Note the outstanding two-step operations. This is
important so that the application can correctly interpret the PCEP and reuse UCEPs.

The connections in each figure refer to SVC connections, and the examples use the Receive Data Queue
(QRCVDTAQ) API. The same principles apply when using PVC connections and user queues.

Figure 1-3. Example 1: Normal Connection Establishment

LIser-Defined

Application Program Communications Support

1. 5end open connec- 2. Application requests

tion regquest for Y C; connection (5WC)

use next available sends K. 248 call

UCEP, 7. QOLSEND | reguest, uses next | call REQUEST

available PCEFR 1, >
it and returnsto

3. Record new PCEFP application.

and walt for response. ‘C‘ﬂ" LL ACCERT

4. Call accept receied

A, Data queue entry for PCEF1. Send

indicates data to he entry to data queue.

received.

QOLRECY
—» B Fill in user space
irtr) with result of call
request for LICEP ¥

7. Dpen connection and return.

requestwas

successful. UCER

(71, PCEP (1)in

data state.

1. The application wants to open a connection, so it calls the golsend API passing it the UCEP it wants
to use for the connection. The application keeps track of the UCEP, PCEP pair. At this point, the
UCEP=7, and the PCEP is undefined.

266

iSeries: Communications APIs

. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

. The application records that the PCEP for UCEP=7 is 1. The UCEP=7, PCEP=1 connection is not yet
active. Next, the application calls the Receive Entry From Data Queue (QRCVDTAQ) API, to wait for
the incoming data entry. The application is expecting the open connection response.

. The X.25 call accept is received for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

. The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response operation, and determines the UCEP associated with the data by examining
the PCEP associated with the X.25 call accept. Because the call accept was received for PCEP=1, the
UCEP=7.

. The application’s call to the QOLRECV API returns with successful return and reason codes for the
open connection response operation. This operation was reported for UCEP 7; the UCEP=7, PCEP=1
connection is now active.

Figure 1-4. Example 2: Connection Request Cleared by Network/Remote System

LIser-Defined

Application Program Communications Support
1. 5end open connec- 2. Application requests
tion regquest for Y C; connection (5WC)
use next available send .25 call
UCEP, 7. QOLSEMD | reguests, uses next | cal | REQUEST
available PCEFR 1, >
it and returnsto
.Record new PCEP H—— application.
and walt for response. ‘CLEAH
4 Call was cleared
. [Data gqueue entry for PCEF 1. Send
indicates data to entry to data queue.
FECRIVE.
QO LRECY
—» B Fill in user space
irtr) with result of call
request for LICEP ¥
.Dpen cohnection and return.

requestwas not
successful. LCEP
7 availahle for reuse.

1. The application wishes to open a connection, so it calls the qolsend API, passing it the UCEP it wants

to use for the new connection. The application keeps track of the UCEP, PCEP pair. At this point, the
UCEP=7, and the PCEP is undefined.

Communications APIs 267

2. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open-connection response.

4. A clear is received for PCEP=1. To inform the application of the incoming data, an incoming data
entry is sent to the data queue.

5. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

6. The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response operation, and determines the UCEP for the data by using the PCEP for
which the X.25 call accept was received. Because the call was cleared for PCEP=1, the UCEP=7. The
PCEP=L1 is no longer active, and may be reused by the user-defined communications support.

7. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the
open connection response operation. Thus for the PCEP=1, the UCEP=7. The PCEP=1 is no longer
active, and the operation is for UCEP=7. Because the connection is not open, the user-defined
communications support’s PCEP=1 no longer implies UCEP=7, and the application’s UCEP=7 may be
reused.

Figure 1-5. Example 3: Request to Clear Connection with Outstanding Call (Unsuccessful)

268 iSeries: Communications APIs

Lser-Defined

Application Program Communications Support
1. 8end open connec- 2 Application requests
tion request for S, connection (5 C)
use next available send ¥.25 call
UCEP, 7. QOLSEND | reduest usesnext | ca)) REQUEST
available PCEP, 1, e
[t and returns to

.Record newy PCEP o—— application.
and wait for response.

A, Heceive request to
. Send close connec- w clear PCEF 1.
tion request for (rtri
FCEP 1. -
b. Llser space errar
found. Send entry
to data queue.
.[Data gueue indicates
datato be recei ed.
QOLRECY g. Fill in user space
with the close

. Closge connection (rtri connection regquest
requestwas not for UCEFP ¥ and
successful. LCER T, return.

FZEFR 1 remains
active.

. The application wishes to open a connection, so it calls the qolsend API passing it the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and
the PCEP is undefined.

. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open connection response.

. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application
no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to identify the
connection to be closed. Then the application calls the QRCVDTAQ API.

. The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

The user-defined communications support validates the request and finds an error.

. The user space error is found. A copy of the user space, which contained an error, is passed back to

the application. To inform the application of the unsuccessful close connection request, an incoming
data entry is sent to the data queue.

. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

Communications APIs 269

8.

The user-defined communications support fills in the input buffer and descriptor with data for the
unsuccessful close connection request operation, and determines the UCEP associated with the data
by examining the PCEP associated with the close connection. Because the close connection request
was for PCEP=1, the UCEP=7.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the
close connection response operation. This operation is for UCEP=7. The connection UCEP=7, PCEP=1
is still in use by both the application and the user-defined communications support. The application
can either correct the error and reissue the operation, or wait for the call to be accepted or rejected.

Figure 1-6. Unsuccessful Attempt to Clear Outstanding (Successful) Call

Lser-Defined

Application Program Communications Support

1. Send open connec- 2. Application regquests
fion request for SV, connection (3WC)
use next available send X245 call
UCEPR 7. QOLSEMD | reguest usesnext | call REQUEST

Tﬂ- wgilaetile F'C:tEF', 1, -

3. Record new PCEP N and returns to
and wait for e EE— application.
respanse. CALL ACCEPT

A, Call accepted for -
4. Send close connec- FPCEP 1. Send to
tion request far data queue.
FCEP 1. CIOLSEMD
—
(rtr) b. Receiwe request to

7. Data queue indicates | ——— clear PCEP 1.

data to be received. oo pECY
g. Fill in user space

4. Open connection (rtri with result of call
Fequest was SUCCeSS- | af—— request for LICEP ¥
ful. UCEP T, PCEFP1 and return.

i active.
10. LIser space errar.

11. Data gqueue indicates send entry to data
there is data to queue.
FECRIvE.

13. Cloge connection w 12 Fillin user space
request was not (rtr with close connec-
successful. UCERP | sp— tion request that
(71, PCEF (1) active. failed for LICEF 7

and return.

1.

270

The application wishes to open a connection, so it calls the golsend API, passing the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and
the PCEP is undefined.

iSeries: Communications APIs

10.

11.

12.

13.

The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open connection response.

QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application
no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to identify the
connection to be closed. Then the application calls the QRCVDTAQ API.

The X.25 call accept is received for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response, and determines the UCEP associated with the data by examining the
PCEP for the X.25 call accept. Because the call accept was received for PCEP=1, the UCEP=7.

The application’s call to the QOLRECV API returns with successful return and reason codes for the
open connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1
connection is now active with an outstanding close connection request. The application calls the
QRCVDTAQ API.

While processing the close connection request, the user-defined communications support detects an
error in the user space. The user space that is in error is copied into the input buffer and descriptor,
so the application is aware of the data in error. To inform the application of the unsuccessful close
connection request, an incoming data entry is sent to the data queue.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills the input buffer and descriptor with data for the
unsuccessful close connection request operation. By using the PCEP that was requested for the close
connection, the support determines the UCEP with which the data is associated. Because the close
connection request was for PCEP=1, the UCEP is 7. The PCEP=1 is still active.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,
PCEP=L1 is still in use by both the application and the user-defined communications support. The
application can either correct the error and reissue the operation, or wait for the call to be accepted
or rejected.

Figure 1-7. Example 5: Successful Attempt to Clear Outstanding (Successful) Call

Communications APIs 271

Application Program

Lser-Defined

Communications Support

1. Send aopen connec- 2 Application requests
fion request for SV, connection (5 C)
use next available send ¥.25 call
LICER 7. QOLSEMD request, usesnext | cal | REQLUEST
av ailahle PCER (1) e
3. Record new PCEP (rr and returns to
and wait for applic ation.
Fespanse. CALL ACCEPT
f. Call accepted for >
4. Send close connec- FCEF 1. Send
tion request far entry to data queue.
PCEP 1 QOLSEMD
W"‘ b. Receive request to
o clear PCEFR 1.
7. Data queue indicates CLEAR
datato be received. |gopecy | 8. Issue clear request >
> .
(rtri 9. Fillinuser space CLEAR
10. Dpen connection with result of call COMFIRM ED
request was suc- regquest for UCEP 7 pl
cessful. LICEP (7, and return.
FCEF (1) is active.
1. Clearis confirmed.
12. Data gqueue indicates Send entry to data
there is data to queue.
recelye, QO LRE O
——
14. Close connection (e 13, Fillin user space
request was g wyith close connec-
successful. LICER tion request
¥ nolonger active. response for LICEP
¥ and return.

272

. The application wishes to open a connection so it calls the qolsend API, passing it the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and
the PCEP is undefined.

. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open connection response.

. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application
no longer wants the UCEP=7 connection. It calls the golsend API passing the PCEP=1 to identify the
connection to be closed. The application calls the QRCVDTAQ API.

iSeries: Communications APIs

10.

11.

12.
13.

14.

The X.25 call-accept is received for PCEP=1. To inform the application of the incoming data, an
incoming data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request. The application calls QRCVDTAQ API.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to QOLRECV.

The user-defined communications support validates the close connection request, and issues an X.25
clear request.

The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the data is for by using the PCEP for the
X.25 call accept. Since the call accept was received for PCEP=1, the UCEP is 7.

The application’s call to QOLRECV returns with successful return and reason codes for the open
connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1
connection is now active with an outstanding close connection request.

The clear confirmation is received for PCEP=1. To inform the application of the successful close
connection request, an incoming data entry is sent to the data queue.

The application’s call to the QRCVDTAQ API returns indicating there is data to receive.

The user-defined communications support fills the input buffer and descriptor with data for the
successful close connection request operation, and determines the UCEP associated with the data by
examining the PCEP that was requested for the close connection. Because the close connection
request was for PCEP=1, the UCEP=7. The PCEP=L1 is no longer active.

The application’s call to the QOLRECV API returns with successful return and reason codes for the
close connection response operation. This operation is for UCEP 7. The UCEP=7, PCEP=1 connection
is no longer active.

Figure 1-8. Example 6: Successful Attempt to Clear Outstanding (Unsuccessful) Call

Communications APIs 273

Application Program

Communications Support

. 3end open connec-

tion regquest for Y C;
Use next available

Send close connec-

LOLSEND

Lser-Defined

2 Application requests

connection (W)
send ¥.25 call

. Zall cleared for

LICER, 7. request, usesnext | oAl | REQLUEST
available PCEP (1) -
3. Recard new PCEP () and returns to
and wai faor applic ation.
Fesponse. CLEAR
i

tion request for QOLSEND FCEF 1. send
FCEP 1. entry to data gueue.
irtny

7. Data gqueue indicates .‘7” . Fecewe request to
datato be recef ed. clear PCEFR 1.

O LRECY o
——— = | 5. Fillinuser space
frr with result of un-

8. Qpen connection successiul call
request was not suc- request for LICEP ¥
cessful. Cutstanding and return.
close request means
UCEP 7 still active. 10. Close is successiul

Send entry to data

11. Data gquede indicates queue.
there is data fo Q0 LRE Oy
FECEVE. —=| 12 Fillin user space

(rtr with close con-

13. Dutstanding close g nection response

connection returned
hot successiul.
LICEP ¥ no longer
active.

and return.

1. The application wishes to open a connection, so it calls the golsend API, passing it the UCEP for the
new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and
the PCEP is undefined.

2. The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP, which is 1, and returns to the application, acknowledging the
receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open connection response.

274

iSeries: Communications APIs

10.

11.

12.

13.

QRCVDTARQ API returns to the application (the dequeue time-out value has elapsed), and the
application no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to
identify the connection to be closed. Then the application calls the QRCVDTAQ API.

The X.25 clear is received for PCEP=1. To inform the application of the incoming data, an incoming
data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the data is for by using the PCEP that the
X.25 clear is for. Because the clear was received for PCEP=1, the UCEP is 7.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the open connection request operation. This operation is reported for UCEP=7. Because the close
connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The
application calls the QRCVDTAQ API.

The close connection request is validated, but no clear is sent because the connection was cleared
previously. The close is considered successful, and an entry is sent to the data queue.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills in the input buffer and descriptor with data for the
successful close connection request operation, and determines the UCEP that the data is for by using
the PCEP that the close connection was requested for. Since the close connection request was for
PCEP=1, and the UCEP is 7. The PCEP=L1 is no longer active.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,
PCEP=1 is no longer active.

Figure 1-9. Example 7: Unsuccessful Attempt to Clear Outstanding (Unsuccessful) Call

Communications APIs 275

Lser-Defined

Application Program Cammunications Support
1. Send open connec- 2 Application requests
tion regquest for Y C; connection (W)
use next available sends X258 call
LICER, 7. QOLSEMD reguest, usesnext | cal L REQUEST
availahle PCEP (1) -
3. Record new PCEP (rr and returns to
and wait for 4— application.
response, CLEAR
4. Send close connec- q. zall cleared for B
tion request for QOLSEND PZCEF 1. Send
FCEF 1. entry to data queue.
irtny
7. Data gqueue indicates .‘7” b. Hecewe request to
data to be received. clear PCEFR 1.
O LRECY o
——— = | 5. Fillinuser space
frr with result of un-
8. Qpen connection g successiul call
request was not suc- request for LICEP ¥
cessful. LICEP ¥ ostill and return. PCEP 1
active. ho longer active.
10. LIser space error
trying to cloge
11. Data gquede indicates LICERP 1. Send
there is data to entry to data
FECEiVE. EOLRECY QqueLle.
—»
13. Outstanding close (rtn) 12.Fill in user space
connection returned “ wiith close con-
unsuccessiul. nection request for
LICER ¥ no longer LICEP ¥ and
active. return.
1. The application wishes to open a connection, so it calls the golsend API passing it the UCEP for the

276

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and
the PCEP is undefined.

The user-defined communications support receives the request, stores the UCEP for the connection,
and uses the next available PCEP (1); and returns to the application, acknowledging the receipt of
the request.

The user-defined communications support validates the request and issues the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not
yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The
application is expecting the open connection response.

The application no longer wants the UCEP=7 connection. It calls the qolsend API passing the
PCEP=1 to identify the connection to be closed. The application calls the QRCVDTAQ API.

iSeries: Communications APIs

10.

11.

12.

13.

The X.25 Clear is received for PCEP=1. To inform the application of the incoming data, an incoming
data entry is sent to the data queue.

The user-defined communications support receives the close connection request, and returns to the
application, acknowledging the receipt of the request.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills in the input buffer and descriptor with data for the
open connection response, and determines the UCEP that the data is for by using the PCEP that the
X.25 clear is for. Because the clear was received for PCEP=1, the UCEP is 7.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the open connection request operation. This operation is reported for UCEP=7. Because the close
connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The
application calls the QRCVDTAQ API.

The close connection request is validated, and an error is found in the user space. An entry is sent to
the data queue.

The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
then issues a call to the QOLRECV API.

The user-defined communications support fills in the input buffer and descriptor with data for the
unsuccessful close connection request operation, and determines the UCEP that the data is for by
using the PCEP that the close connection was requested for. Since the close connection request was
for PCEP=1, the UCEP is 7. Because the connection was cleared prior to the close connection request,
the PCEP=1, UCEP=7 connection is considered no longer active to the user-defined communications
support.

The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for
the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,
PCEP=1 is no longer active.

Incoming Connections

The following figures show how the application program handles UCEPs and PCEPs for incoming
connections.

Figure 1-10. Example 1: Normal Connection Establishment

Communications APIs 277

Lser-Defined

Application Program Communications Support
CALL REQUEST
1. Incoming call .
Data gqueue indicates received. Llse next
data to receive. QOLRECY available PCEP 1,

and send entry to
the data queue.

{rtm .
Incoming call using | s——— 3. Fill user spaces
PCEF 1. Send call with incorming call
accept use next and return.

available UCEP (7).
CIOLSEMD) 5 Send call accept

for PCEF 1, and

(rin) return to the CALL ACCEPT
o, S
Call ac cept was application. -
successful. LCEP=T,
FCEP=1 active. CALL REQUEST
o

. An incoming call request is received by the communications support, which determines if there is an
application that has a filter satisfying this call request. The communications support uses the next
available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

. The application has been waiting for its call to the QRCVDTAQ API to complete. The call completes
indicating there is data to be received. The application calls the QOLRECV API.

. The input buffer and descriptor are filled with the incoming call request for PCEP=1, and the
QOLRECV API returns.

. The application looks at the operation, which indicates an incoming call indication. The PCEP
reported by the communications support is 1. The application chooses to accept this call, and passes
the UCEP to be used for this new connection. The call is made to the qolsend APl with PCEP=1,
UCEP=7.

. The call accept is received and sent for PCEP=1. The qolsend API returns to the application.
. The call accept request was successful for UCEP=7, PCEP=1. This connection is now active.

Figure 1-11. Example 2: Send Call Accept Not Valid

278 iSeries: Communications APIs

Lser-Defined

Application Program Communications Support
CALL REQUEST
1. Incoming call -
2. Data gueue indicates received. Llse next
data to receive. QOLRECY availahble FCEP 1,

and send entry to
the data queue.

rtn
(i 3. Fi_II User spaces
4. Incoming call using with incorming call
PCEP 1. Send call and return.

accept use next
available UCEP (7). | @OLSEND| 4. User space for call

accept notwvalid.

l (rin) Return to the
application.

6. Call accept was
hiot successiul,
LICEP=F iz not active
and incoming call is
still outstanding.

1. An incoming call request is received by the communications support, which determines if there is an
application that has a filter satisfying this call request. The communications support uses the next
available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It does, indicating
there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled with the incoming call request for PCEP=1, and the
QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP reported
by the communications support is 1. The application chooses to accept this call, and passes the UCEP
to be used for this new connection. The call is made to the golsend API with PCEP=1, UCEP=7.

5. The call accept is received and an error is found in the user space. The golsend API returns to the
application, reporting the error and offset. The incoming call is still outstanding for PCEP=L1.

The application checks the return and reason codes and finds that an error has occurred. The call
accept was not sent and the incoming call is still waiting for a response.

Figure 1-12. Example 3: Send Clear for Incoming Call

Communications APIs 279

Llser-Defined

Application Program communications Support
CALL REQLUEST
1. Incoming call -
Data queue indicates "E'?Ell‘-“gii F'UCSEFP(E;{}J[
data to be received. avaliable :
WOLRECY and send entry to
the data gqueue.
(rtny
3. Fill user spaces
Incaming call using with incoming call
PCEP 1. Request to and return.
clear this call. 2 Send Ol
. Sen gar
QDLSENE request. Return to CLEAR
(Hr) application. b
. . .
b Clear is confirmed. CLEAR
Data queue indicates Send entry to data | conFIRMATION
data to be rec eived. QDLHEC.,H quele. e
(rtr)
Clear regquest was #— 5 Fill user spaces with
successful. PCEP 1 clear confirmation
no langer active. data.

. An incoming call request is received by the communications support, which determines if there is an
application that has a filter satisfying this call request. The communications support uses the next
available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

. The application has been waiting for its call to the QRCVDTAQ API to complete. It does, indicating
there is data to be received. The application calls the QOLRECV API.

. The input buffer and descriptor are filled for the incoming call request for PCEP=1, and the
QOLRECV API returns.

. The application looks at the operation which indicates an incoming call indication. The PCEP reported
by the communications support is 1. The application does not wish to accept the call, so the user
space is filled in for a close connection request and the application calls the qolsend API. The
application calls the QRCVDTAQ API.

. The close connection request is received and the qolsend API returns to the application,
acknowledging the request.

The close connection request is validated and a clear is sent.

. The clear confirmation is received for PCEP=1 which has no UCEP. An incoming data entry is sent to
the data queue. The application calls the QRCVDTAQ API.

. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
calls the QOLRECV API to receive the data.

. The input buffer and descriptor are filled in with the clear confirmation data. Since the connection
was never established (and the application never assigned a UCEP to this connection), the QOLRECV
API returns to the application passing a UCEP=0.

. The close connection request was successful. PCEP=1 is no longer active.

280 iSeries: Communications APIs

Figure 1-13. Example 4: Send Clear for Incoming Call

Lzer-Defined

Application Program Communications Support
CALL REQLUEST
1. Incoming call -
2. Data gueue indicates fEElé_llifEiﬂ. F'UCSEPH{E;{}J[
data to he received. avallanle .
QOLRECY and send entry to
the data gqueue.
(riny
3. Fill user shaces
4. Incoming call using wﬁQ lﬂj[iﬂmlﬂg call
PCEF 1. Reguest to and return.
clear this c:alll.q QOLSEND _
—— | 5. Close connection
() request isreceived.
o,
B, Close connection
request is notvalid.
7. Data queue indicates Send entry to data
data to be received. QDLHEC.” fquele.
(rr) 2. Fill user spaces with
9. Clear request not 44— the close connection
successful. PCEP=1 request and return.
is still active.

1. An incoming call request is received by the communications support, which determines there is an
application that has a filter satisfying this call request. The communications support uses the next
available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It completes
indicating there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled for the incoming call request for PCEP=1, and the
QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP reported
by the communications support is 1. The application does not wish to accept the call, so the user
space is filled in for a close connection request and the golsend API. The application calls the
QRCVDTAQ API.

5. The close connection request is received and the golsend API returns to the application,
acknowledging the request.

6. The close connection request is validated and an error is found. An entry is sent to the data queue.

7. The application’s call to the QRCVDTAQ API return, with the incoming data entry. The application
calls the QOLRECV API to receive the data.

8. The input buffer and descriptor are filled in with the unsuccessful close request, and the QOLRECV
API returns to the application.

9. The close connection request was not successful. PCEP=1 is still active.

Communications APIs 281

Closing Connections

The following figures show how the application program closes a connection. The figures apply to both
incoming and outgoing connections.

The next two figures illustrate that a close connection request never completely guarantees the connection
will be closed.

Figure 1-14. Example 1: Close Connection Request Is Not Valid

ser-Defined
Application Program Communications Support

1. Connection is
established as UCER
(7, PCEP (1),

EOLSEMD
2. Bend Close con- ——— | 3. Receire close con-
hection request. rr hection reguest

g and return.

4. Llser spacewvalue
isincorrect. Send

a. Data gqueue indic ates entry to data
data to be received. @DLHECI“ qUELE.

(rth 6. Fill user space with
close connection
request and return.
7. Close request was
not successiul.
UCEP {7y, PCEP (1)
remains active.

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the golsend API to close the connection. The application calls the QRCVDTAQ
API.

3. The user-defined communications support receives the close connection request and returns to the
application, acknowledging the receipt of the request.

4. The value in the user space is not correct. An entry is sent to the data queue.

5. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
calls the QOLRECV API to receive the data.

6. The user-defined communications support fills the input user space with data for the close connection
request and determines the UCEP that the data is for by examining the PCEP that was requested for
the close connection.

7. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the
close connection response. This operation is for UCEP 7. The connection UCEP=7, PCEP=1 is still
active.

Figure 1-15. Example 2: Close Connection Request Is Valid

282 iSeries: Communications APIs

Uzer-Defined
Application Prograrm Communications Support

1. Connection is

established as LICEP CLEAR REQUEST
ir, PCEP (1) -
2. Bend Close con- 2. Recewe close con-
nection regquest. GIOLSEMND nection request CLEAR
—»| andretum CONFIRMATION

q& 4. Send clearrequest.*

6. Data gqueue indicates 8. Receie clear con-
data to he received. firmation ertry to
the data queue.
QI OLRECY
—> . :
7. Fill user space with
(rin) close connection
7. Close request was confirmmation and
successful. LICER (1), returm.
FCEP (1) no longer
active.

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the golsend API to close the connection. The application calls the QRCVDTAQ
API.

3. The user-defined communications support receives the close connection request and returns to the
application, acknowledging the receipt of the request.

4. The close connection request is received and the qolsend API returns to the application,
acknowledging the request. The close connection request is validated and a clear is sent.

5. The clear confirmation is received for PCEP=1, UCEP=7. An incoming data entry is sent to the data
queue.

6. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application
calls the QOLRECV API to receive the data.

7. The user-defined communications support fills the input user space with data for the close connection
confirmation and determines the UCEP that the data is for by examining the PCEP that was requested
for the close connection.

8. The application’s call to the QOLRECV API returns with successful return and reason codes for the
close connection response. This operation is for UCEP 7. The connection UCEP=7, PCEP=1 is no
longer active.

Programming Considerations for LAN Applications

User-defined communications over LANs use connectionless (unacknowledged) service. Unacknowledged
Information (Ul) frames are the only frames an application program can generate.

For a description of the frame formats for Ethernet Version 2, IEEE 802.3, IEEE 802.5, wireless, and FDDI,

refer to the |LAN, Frame-Relay and ATM Supportl '@' book. To determine how the format and the user
buffer are specified, see [‘User-Defined Communications Support APIs” on page 1)

Communications APIs 283

Operations

User-defined communications support defines many different operations. Not all operations are valid on
all data links. The operations which are valid for LAN links are:

» X’0000" and X’0001’. These operations together represent the send- and receive-data operations for any
of the LAN frames types.

Configuration

The service access point (SAP) that the application program uses to send and receive data must be
configured in the line description. The 04, 06, and AA SAPs are created if *SYSGEN is specified on the
CRTLINTRN, CRTLINETH, CRTLINWLS, or CRTLINDDI command. The 04 SAP is used by SNA, and
the 06 and AA SAPs are used by TCP/IP. An application can choose to use any SAP (including SAPs
defined by SNA or IEEE). The line description must be manually configured to include any other SAPs
the application uses. The SAPTYPE for each SAP used must be configured as *NONSNA to be used by
user-defined communications.

Although it is possible to use any SAP configurable on the iSeries server, it is not recommended to use
SNA SAPs for user-defined communications, because this may restrict the use of SNA on your iSeries
server. In the same manner, using the same SAP as other well-known protocols, such as TCP/IP, may
restrict the use of these protocols or the application program on the iSeries server.

Note: It is not possible to run an SNA application and a user-defined communications application
program over the same SAP concurrently. It is possible to run a TCP/IP application and a user-defined
communications application over the same SAP concurrently, provided the inbound routing information
is unique among all the non-SNA applications sharing the network controller.

Inbound Routing Information

For an application program to receive data from a LAN, it must inform the communications support of
how to filter the inbound data and route it to the application. This is accomplished by a program call to
the Set Filter (QOLSETF) API. The fields in the incoming frame that are used to route the data are DSAP,
SSAP, MAC address, and type.

The inbound routing information acts as a filter to allow the user-defined application to distinguish its
data from the rest of the data on the LAN. The more selective the inbound routing information is, the less
chance there is that the application will be processing unnecessary input requests. Also, more selective
inbound routing information allows multiple jobs running user-defined communications applications to
share the same SAP.

For example, if an application is using 92 SSAP and 92 DSAP but only talking to one remote system, it
may want to set a more selective filter which would include DSAP, SSAP, and the MAC address of the
remote system. Conversely, if an application accepts data on the 04 SAP from all systems sending data on
any SAP, then the application would set a filter for DSAP only, indicating that it will accept all data
arriving on the 04 SAP.

End-to-End Connectivity

Because user-defined communications on a LAN is connectionless, it is up to your application protocol to
define a method to reach the remote systems it communicates with. There are several ways to do this.
One way is to have each system configured in a database file on the iSeries server. Each system could
have a local name that the application program uses to correlate with the MAC address and routing
information. LANs provide a technique to broadcast, which can be used to retrieve this information as
well. An example of this is the Address Resolution Protocol (ARP) used by TCP/IP, which returns the
MAC address and routing information so that a system without that information can communicate with a
new remote system.

284 iseries: Communications APIs

Sending and Receiving Data
Maximum Frame Size

The user-defined communications support creates a data unit size which is always large enough to
contain the maximum frame size supported by any of the SAPs configured for non-SNA use,
(SAPTYPE(*NONSNA)). The data unit size is returned in the parameter list on the call to the QOLELINK
API. For Ethernet (802.3), token-ring, FDDI, and wireless LANSs, the maximum frame size that the
application can specify is the maximum frame size allowed by the SAP that the frame is sent on. There is
no minimum frame size for the Ethernet 802.3, token-ring, FDDI, or wireless LANS.

Ethernet Version 2 does not define SAPs for the higher-layer protocols. Therefore, the maximum frame
size is not determined by the maximum frame size for the SAP that the frame is sent on. The maximum
frame size for Ethernet Version 2 is 1502 bytes. The first 2 bytes are for the type field, and the last 1500
bytes are for user data. The minimum amount of data that can be sent is 48 bytes. The first 2 bytes are
for the type field, and the next 46 bytes are for user data. If the line is configured to handle both Ethernet
802.3 and Ethernet Version 2 data, the larger of the configured value or 1502 bytes is chosen and reported
to the application on the data unit size parameter returned from the QOLELINK API.

If your application program attempts to send data frames that are larger or smaller than those that are
supported, the output request completes with nonzero return and reason codes, and an error code is
returned to the application in the diagnostic information field.

Application programs access information that is contained in the line description through the Query Line
Description (QOLQLIND) API. It is best to call the QOLQLIND API after the link has been successfully
enabled because the information that the QOLQLIND API passes to the application is accurate for as long
as the link is enabled. The application uses the information on the frame size for the SAP to send the
correct amount of data over the SAP.

Maximum Amount of Outstanding Data

Most often, the data arrives at a slightly faster rate than the application program can receive it. The
communications support keeps data intended for an application so that the application can receive it.
However, there is a limit to the amount of data that can be kept for the application to use later. The limit
helps to avoid one system from overrunning another system’s resources. When this limit is reached, all
new incoming data frames for that application are discarded until the application picks up one third of
the data that was stored for the application. Because the data consists of unacknowledged information
frames, the higher-layer protocol within the application detects the loss of data, resends the data, or
performs other recovery actions.

Each time the data limit is exceeded, the communications support creates an error log entry and puts a
message in the QSYSOPR message queue, indicating that the unacknowledged service has temporarily
stopped receiving incoming frames.

Ethernet to Token-Ring Conversion and Routing

The 1IBM® 8209 Ethernet to token-ring bridge provides additional connectivity options for the iSeries
server. See the IBM 8209 LAN Bridge Customer Information book, SA21-9994, for more details.

Performance Considerations

The application program enables connectionless traffic to enter the iSeries server system from the LAN. In
the call to the QOLSETF API, the DSAP field indicates the SAP which will be activated on the iSeries
server. By activating traffic over a SAP, data is taken from the LAN and brought into the iSeries server.
Similarly, deactivating traffic over an SAP causes traffic intended for that SAP to be left at the 10P level
rather than to be processed on the iSeries server system.

Communications APIs 285

To minimize host processing, the SAP or SAPs that the application uses should be deactivated as soon as
the application no longer wants to receive traffic for the SAP. If the link is disabled and no other
applications are using the SAP(s), they are deactivated automatically by the user-defined communications
support.

Protocols that use broadcast frames as a discovery technique could flood the network with messages and
affect performance on all the systems attached to the network.

Programming Considerations for X.25 Applications

The user-defined communications support interface to an X.25 network is at the packet level, which is a
connection-oriented level. Your application program is responsible for ensuring reliable end-to-end
connectivity. End-to-end connectivity means that the application program can initiate, receive, and accept
X.25 calls and handle network errors reported to the application, as well as send and receive data.

Your application program has access to packets that flow over switched virtual circuits (SVCs) and
permanent virtual circuits (PVCs). The application can have SVC and PVC connections active
concurrently. You can configure up to 64 virtual circuits on an X.25 line description, depending on the

communications 170 processor used. The [X.25 Network Support] @ book provides more information
about configuration limitations.

The Display Connection Status (DSPCNNSTS) command shows the virtual circuits that are in use by a
network device, and the state of each connection. This command also displays the active inbound routing
information that the application program uses to route calls.

X.25 Packet Types Supported

A packet is the basic unit of information transmitted through an X.25 network. The following table lists
the X.25 packet types along with the type of service provided. Services for Switched Virtual Circuit (SVC)
and Permanent Virtual Circuit (PVC) connections are identified as well as services that are not accessible
(N/A) to an application program.

Packet Type Application Input or Access SvC PVC N/A

Data Q,D bits of the general format identifier (GFI) X X

Note: The modulus used is configured in the line description. The
open connection request allows the user-defined communications
support to set the actual window size used.

Interrupt 32 bytes of data X X

Note: On the iSeries server, the X.25 packet layer provides the
confirmation of the receipt of this packet. The call to the golsend
API does not return until the interrupt is confirmed by the remote
system.

Reset request Cause and diagnostic codes X X

Note: The application program provides the confirmation of this
packet.

Reset indication | Cause and diagnostic codes X X

Note: The application program provides the confirmation of this

packet.
Reset Note: User-defined communications support detects and reports X X
confirmation reset collisions to the application on the reset confirmation.

286 iSeries: Communications APls

confirmation

Packet Type Application Input or Access SVvC PVC N/A
Incoming Call Remote DTE, local virtual circuit, packet and window sizes, up to X
109 bytes of additional facilities, up to 128 bytes of bytes of call
user data
Call Request Remote DTE, local virtual circuit, packet and window sizes, up to X
109 bytes of additional facilities, up to 128 bytes of bytes of call
user data
Call Accept Packet and window sizes, up to 109 bytes of additional facilities X
Call Connected | Negotiated packet and window sizes, facilities X
Clear request Cause and diagnostic codes, facilities, up to 128 bytes of clear user X
data
Clear indication | Cause and diagnostic codes, facilities, up to 128 bytes of clear user X
data
Note: The X.25 packet layer support provides the confirmation on
this request.
Clear The X.25 packet layer support provides this support. X

Request and
Confirmation

supported by the iSeries server.

Receive Ready | The flow of RR and RNR packets is determined by the automatic X
(RR) flow control field of Format I, specified in the open connection
request.
Receive Not The flow of RR and RNR packets is determined by the automatic X
Ready (RNR) flow control field of Format I, specified in the open connection
request.
Reject (REJ) This packet is not necessarily available on all networks and is not X
supported by the iSeries server.
Restart Request, | These packets affect all virtual circuits on the line. X
Indication, and
Confirmation
Diagnostic This packet is not necessarily available on all networks and is not X
supported by the iSeries server.
Registration This packet is not necessarily available on all networks and is not X

Operations

User-defined communications support defines many different operations. The X’B000’ operation either
initiates an X.25 SVC call request, or a request to open a PVC. By using this operation, an application
program initiates an open connection request. The X’B100’ operation either initiates an X.25 SVC clear
request (or confirms the connection failure), or requests closing a PVC. By using this operation, an
application program initiates a close connection request. The application can use the X’BF00’ operation to
cause the SVC or PVC connection to be reset.

The open connection request, close connection request, and reset request (or response) operations are
two-step operations. See|“Synchronous and Asynchronous Operations” on page 265| for more information
on programming for two-step operations.

The X’B400’ operation initiates an X.25 SVC call accept. This operation is known as a call accept
operation. The X’0000’ operation initiates an X.25 Data packet for a SVC or PVC connection. This
operation is called a send data operation. The call accept and send data operations are one-step
operations. See [“Synchronous and Asynchronous Operations” on page 269 for more information on
programming for one step operations.

Communications APIs 287

The application program does not request the other available X.25 operations. These X.25 operations are
inbound packets for responses from the asynchronous operations that are reported to the application in
the parameter list of the QOLRECV API. The X’B201’ operation indicates an incoming X.25 SVC call and
is known as the call indication operation. The X’B301’ operation indicates that a temporary (reset) or
permanent (clear) connection failure has occurred. It is known as the connection failure indication
operation. Finally, the X’0000’ operation indicates incoming data. It is known as the receive data
operation.

Connections

User-defined communications support allows X.25 connections over both switched and permanent virtual
circuits. Your application program can have one or many connections active at once. They can be either
SVC, PVC, or both. The Display Connection Status (DSPCNNSTS) command shows the state of the
connection, logical channel identifier, virtual circuit type, and other information about the call. The states
of the connection include activate pending, active, deactivate pending.

When the open connection request or call accept operations are not yet complete, the connection state is
activate pending. Once the open connection request or call accept operations are complete with return
and reason codes of zero, the connection state is active. When the close connection request is not yet
complete, or if the connection is cleared by the network, but a close connection request has not been
issued by the application program, the connection state is deactivate pending.

Notes:

1. The connection enters the active state when the call accept packet is sent on the network, which is
independent of the application program receiving the results of the open connection request.
Likewise, a connection can become completely closed (deactivated, and no longer appears on the
DSPCNNSTS screen) independent of the application program receiving the results of the close
connection request. This closing occurs when the application confirms the connection failure.

2. A correctly encoded close connection request will always be successful. The only time a close
connection request is not successful is when the application program has coded the close connection
request incorrectly. See Using Connection Identifiers for more information.

Connection Identifiers

To differentiate between connections, user-defined communications support and an application program
both use connection identifiers from the time the connection is started to the time the connection has
successfully ended.

User-defined communications support assigns an identifier for each connection. This identifier is reported
back to your application program as the provider connection end point (PCEP). In the same manner, your
application program assigns an identifier for each connection and reports it to the communications
support as the user connection end point (UCEP). This exchange of identifiers allows both the
communications support and the application program to refer to a connection in a consistent manner. The
UCEP and PCEP are exchanged during the open connection request during the following operations:

* APVC is opened.
* An outgoing call is requested.
* The call indication is received and the call accept is accepted.

User-defined communications support identifies a connection only in terms of PCEP and UCEP. For
example, the user-defined communications support passes information to an application program and
reports the UCEP to which the information pertains. In the same manner the application program
initiates requests for a connection identified by the PCEP.

User-defined communications support uses PCEPs over again as they become free. PCEPs become free
when the application program receives notification that the open connection request never completed
successfully, or the close connection request completed successfully. This means that PCEPs are not used

288 iseries: Communications APls

over again until the application calls the QOLRECV API, which returns either the open connection
request or the close connection request. Until the PCEP is freed, the connection cannot be reused.

User-defined communications support places no restrictions on the value of the UCEP, and does not
verify its uniqueness. Because user-defined communications passes all incoming data and connection
failure indications to the application program using the UCEP connection identifier, the application
should ensure uniqueness of each UCEP. See |“Using Connection Identifiers” on page 266| for information
on how to reuse connection identifiers.

Connection Information

In order to ensure reliable end-to-end connectivity, an application program must keep track of the control
information for each connection it is responsible for. Some of this control information is shown in the
following list.

» State of the connection (activating, active, deactivating, reset)
* PCEP for this connection

* SVC or PVC connection indicator

* Negotiated frame sizes; maximum data unit size

» Connection is no longer active indicator or state

» Other application specific information

The application program can use the UCEP as an index into the program’s data structures, which keep
track of this control information.

Switched Virtual Circuit (SVC) Connectivity

Configuration

All the users of an X.25 line description share the SVCs that are configured for that line description.
These users are SNA, asynchronous X.25, OSl, TCP/IP, and user-defined communications. You should
define the line description with enough SVCs to accommodate all of the users of the X.25 line.

Any SVCs defined in the X.25 line description that are not in use by any controllers (including the
network controller) are available to an application program. The available SVCs are distributed as they
are requested by the users of the X.25 line description.

See the [X.25 Network Supportl @‘ book for more information on configuring X.25 line descriptions.

For user-defined communications, the application uses an SVC when it either initiates a call, or receives
an incoming call. The SVC is no longer in use when the application successfully initiates a clear request
to the SVC. Like PVCs, SVCs allow only one application program to have an active connection using the
virtual circuit at a time.

Inbound Routing Information

Before an application program can receive and accept an incoming call, it must first describe to the
user-defined communications support the X.25 calls that should be routed to the application. The
application does this by issuing a program call to the QOLSETF API, specifying the inbound routing
information in the filter.

The inbound routing information that an application program specifies is the first byte of call user data
called the protocol ID, or the protocol ID combined with the calling DTE address. In addition, the
application specifies whether it will accept calls with fast select and reverse charging indicated. The
application program can either accept or reject any calls of which it receives indications. The advantage of

Communications APIs 289

using filters to allow the system to reject some calls (based on protocol ID, calling DTE address, fast
select, and reverse charging indicated in the incoming call) is that the application is relieved of some of
the calls it would always reject.

Once the connection is active, data flows end-to-end between systems and does not need any other
technique to route it to the appropriate application.

End-to-End Connectivity

End-to-end connectivity is achieved when one system initiates a call and another accepts the call. When
this happens, a connection is established, and the state of the connection is active. It remains active until
either one of the application programs initiates a clear request, or the network (or system) clears the
connection due to an error condition.

Permanent Virtual Circuit (PVC) Connectivity
Configuration

SNA and asynchronous X.25 controllers use PVCs on the X.25 line by configuring the controller
description to logically attach to the PVC. This is not true for users of the network controller description.
When a PVC is in use by an application program, the system will logically attach the network controller
to the PVC. This means that any PVC defined in the X.25 line description and not attached to any
controller (including the network controller) is available for use by any application that has a link
enabled for the network to which the line is attached.

Because the attaching of PVCs to applications is programmable, one job can have an open connection
over the PVC, end the connection, and then another job can open a different connection over the same
PVC. Like SVCs, PVCs allow only one application program at a time to have an active connection using
the virtual circuit.

Inbound Routing Information

By definition, the PVC does not require a call to set up a path from one system to another system. As its
name suggests, this path always exists (permanent). Because there is no incoming call to route, the
application has no need to set a filter for the inbound routing information. Once the application has
opened the PVC, there is no other information needed for the system to route packets on the PVC to the
application.

End-to-End Connectivity

The application is responsible for opening and closing PVC connections. To open a PVC, the application
uses the open connection request operation, just as it does to initiate an X.25 SVC call. To close the PVC,
the application uses the close connection request just as it does to clear the SVC call.

Both systems that want to communicate end-to-end must first open the virtual circuit on the local system.
When the PVC is opened on the iSeries server it is considered active and in use by the application. This
is true even if the corresponding remote system doesn’t have the virtual circuit active. On the iSeries
server, an open connection request always completes with return and reason codes of zero as long as the
PVC is defined in the line description and is not in use by another application. There is no way to detect
whether true end-to-end connectivity exists on the PVC.

If the virtual circuit is not active on both systems, and one system attempts to communicate with the
other, the virtual circuit on the system with the open PVC connection is reset. An application that
supports X.25 resets, sees the reset arrive as a result of the attempt to send data. In order to continue, the
application responds to the reset. An application that does not support X.25 resets sees a connection
failure. The application closes the PVC and opens the PVC again in order to continue to use the PVC.

290 iseries: Communications APls

Similarly, when a PVC connection is closed from one system, the other system sees a reset (if reset is
supported by that application) or a connection failure if reset is not supported. If the application sees a
reset, it must respond to the reset before communications can continue on that connection.

Sending and Receiving Data Packets
Data Sizes

Data units larger and smaller than the negotiated transmit packet size can be sent by an application
program. Each data unit will be segmented into the appropriate packet sizes by the iSeries server.
Contiguous data larger than the negotiated packet size can also be sent. The data is divided into
individual packets and sent out with the more-data indicator on. The application program should request
that the data unit size be a multiple of the transmit and receive packet sizes configured in the line
description. The application program sets other important values that pertain to each connection. See
|“X.25 SVC and PVC Output Operations” on page 45| for information about these values.

The values your application supplies should be carefully determined and tailored to the needs of the
application. Similarly, your application uses the values returned from the system to ensure that the
application does not exceed negotiated limitations.

The application uses three values to determine how to fill the user-space output buffer. These values are:
* Data unit size

* Maximum data unit assembly size

* Negotiated transmit packet size

The data unit size is the value that an application specifies when the link is enabled. The maximum data
unit assembly size is the total length of contiguous input data that is assembled by the iSeries server
before passing it to the application. Contiguous data units have the more-data indicator set on in each
descriptor for all the data units in the sequence except the last data unit, which has the more-data
indicator set off. The application specifies the maximum data unit assembly size on the open connection
request. The maximum data unit assembly size should always be greater than the data unit size to make
full use of the user spaces. The negotiated transmit packet size is returned when the open connection
request completes. The application uses these values together to determine how to fill in the user space
output buffer.

Note: If the maximum data unit assembly size is exceeded, the data is passed up to the application
with the more-data indicator on. If the connection is abnormally reset or cleared, the application
may not receive the rest of the contiguous data, which was in progress during the connection
failure.

If the two applications remain without exceeding the maximum data unit assembly size supported
on the remote system, the system guarantees that the application receives the complete, contiguous
data packet sequence.

See Maximum Amount of Outstanding Data (page » for related information on incoming data
limitations.

Interrupts

The interrupt is a special data packet. The X.25 network imposes the restriction that a DTE cannot have
more than one outstanding interrupt on any virtual call in each direction. An application program issues
an interrupt by calling the qolsend API. The qolsend API does not return to the application program until
the interrupt confirmation has been received. It is important to understand the interrupt confirmation
procedures of the remote DTE and its implications to the local system and application.

Flow Control

Communications APIs 291

The iSeries server sends the Receive Ready (RR) and Receive Not Ready (RNR) packets on behalf of the

application program. The distribution of these packets is based on the automatic flow control field in the
open connection request operation. The automatic flow control (RR/RNR) is sent to prevent one system

from overrunning another system with data.

When the automatic flow control value is exceeded for a connection because a remote system is sending
data at a rate too fast for the local system, an RNR packet is sent on behalf of the application on that
local system. Once the application on the local system receives the data, an RR is sent to allow more data
to be received by the local system’s communications support.

The automatic flow control value should be set high enough so that RR/RNR processing does not affect

performance on the virtual circuit, and low enough that the application can process the data fast enough.
If an application is coded properly, the RR and RNR processing is not noticed by the application, just as

for other system users of X.25.

To avoid situations where the virtual circuit is not operational because an RNR was sent, or to avoid
excessive amounts of RR and RNR processing, the application program should always attempt to receive
all the data from the communications support. An application that is not coded correctly can cause
another application to wait indefinitely for an RR to open the virtual circuit for communications. When
the applications are coded correctly, the RR and RNR packet sequences are not noticed by the
applications.

Maximum Amount of Outstanding Data

The communications support sets aside a limited amount of data for the applications it is servicing. For
X.25, it is 128K for each connection. If the 128K limitation is met, an error log entry is created and the
connection is cleared (SVCs) or reset (PVCs) by the system. Before this limit is reached, the iSeries server
attempts to slow the incoming data traffic by issuing an RNR on behalf of the application. An RR is sent
after the application has received one-third of the amount of outstanding data.

Reset Support

When an application program initiates a reset, it is also responsible for discarding any data that the
user-defined communications support has received. The user-defined communications support only
discards data if the connection is closed.

X.25 Call Control

The X.25 support routes X.25 calls arriving to the iSeries server primarily based on the protocol ID field.
This field is the first byte of call-user data in the X.25 call packet. For more information on the X.25

support, see the [X.25 Network Supportl @ book.

Performance Considerations

The X’0000" operation is completely synchronous. This means that control is not returned to the
application until all the data passed in the data units are sent and confirmed by the DCE. Some
implications of this are:

 If the application sends data on a connection that has data flow turned off (the remote system sent an
RNR to the local iSeries server), a subsequent call to the qolsend API with operation X’0000" will not
return until the remote system sends the RR to turn flow back on for the connection.

* When transmitting Interrupt packets, control is not returned to the application until the interrupt is
confirmed by the remote DTE. If the remote DTE is an iSeries server, the interrupt is confirmed by the
iSeries server X.25 packet layer support. If the network is congested, the use of Interrupt packets may
cause a decrease in performance for the application.

In these situations, it may be appropriate to have one job for each connection (each virtual circuit).

292 iSeries: Communications APIs

Queue Considerations

An application program uses a data queue or user queue for communications between the application
and the communications support. The application should create the queue prior to the call to the
QOLELINK API. For more information on creating and using a queue, see the [CL Programming| topic.
The link will never be fully enabled if the queue does not exist. For example, in Figure 1-16 (page
communications is no longer available when the user-defined communications support detects that the
data queue has been deleted. The same is true for user queues.

Figure 1-16. Using the Data Queue

COMMUNICATIONS
AP PLICATICON SUPPORT

(Link is enabled, application is
successfully using the link.)

Incaming data from
the netwarl.

CaLL QoL (A call)

An atternpt is made to
send the incoming data
LSNDOTAL entry to the data queue.

Error:
data queue
not found. >

The link using this
data gueus will no longer
he usable.

Any subseduent CALL
A0/2200 Retum will return with

and Reason Codes return and reason codes
.‘ indicating a severe
application errar.

In addition to using a queue for communications between the application and the user-defined
communications support, the application can use the queue to provide communications with other
applications.

If multiple processes are using the same queue, the queue can be manipulated so that each process

receives queue entries based on the unique key for each application. This allows the jobs to put many
kinds of entries on the queue. For example, one key value is used for communications between the

Communications APIs 293

application and the system, and another key value is used for communications between the user-defined
communications applications and other applications. Key values can also serve as a way to prioritize
entries on the queue.

The content of the queue entries that the application defines and uses is not restricted by the user-defined
communications support. User-defined communications support never attempts to receive any entries
from the queue. It is the responsibility of the application to receive the entries from the queue and
perform the appropriate actions for an entry based on its handle (or timer handle).

This means that it might be necessary for the application to clear the old messages from the queue if it
has been used. For example, if a link is disabled, all communications entries for that link (denoted by the
communications handle) prior to the disable complete entry are no longer valid.

Note: Timer support does not depend on the user-defined communications support; therefore, timer
entries are still valid.

The following example shows an incoming data entry that the application receives is no longer valid
because the application made a request to disable the link.

Figure 1-17. Application Disables the Link

294 iseries: Communications APls

COMMUNICATIONS

AP PLICATICON

SUPPORT

(Link is enabled, application is
successtully using the link.)

CALL CIOLDLIMNK

Incoming data.

|

N

Fetum from CIOLDLMN K

.

The application will now
call QRCYDTAL waiting
to receive the disable
complete entry

The incoming data entry
will be recersed and
discarded by the
application

The application will now
call QRCYDTAD (again)
and receive the disable
complete entry,

Incoming data entry
added to data gueue
Incoming data is

discarded and disable
link is requested

Disable complete entry
added to data queue

Communications APIls

295

User Space Considerations

Your application uses user space objects (*USRSPC) to hold the input and output buffers and descriptors.
The iSeries server provides APIs you can use to manipulate the user spaces.

When you use the user-defined communications support, you create the user spaces, a total of four, as
part of an enable link request (the QOLELINK API). For each link, there is an input buffer, input buffer
descriptor, output buffer, and output buffer descriptor. The buffers and descriptors are used to pass
information to and from your application program. The buffers are used to contain user data. The
descriptors are used to describe the data (length and other qualifiers). If the enable link request is not
successful (return and reason codes are nonzero), the user spaces are not created.

Figure 1-18. User Spaces

lUser-Defined Communications
Application

—— output | | input ——|

Data Data Buffer| | Data Buffer Data
Descrptar Descrptor

lUser-Defined Communications
Support

The buffers are divided into equally sized, contiguous sections called data units. The output buffer
contains data to be sent on the network. The input buffer contains data received from the network. The
size of each data unit, as well as the number of data units created, is returned from the QOLELINK API
when the link is enabled.

The buffer descriptors are divided into equally sized, contiguous sections called descriptor elements. Each
descriptor element describes the data in the corresponding data unit of the buffer. For example,
descriptor element 1 describes the data in data unit 1 of the buffer. The size of each descriptor element is
32 bytes.

For complete and specific information about the input/output buffers, descriptors, data units, and data
elements, see the sections in |“User-Defined Communications Support APIs” on page J]describing the
individual APls.

Your application provides the library and name of the user space object that is created. The descriptive
text for the object always contains the name of the job that is using these spaces. Finally, when the link is
disabled (either explicitly or implicitly), these user spaces are deleted by the user-defined communications
support. See |“Disab|e Link (QOLDLINK) API” on page 2|for more information on disabling the link.

The application reads from the input buffer and descriptor, and writes to the output buffer and
descriptor. Similarly, the user-defined communications support reads from the output buffer
anddescriptor and writes to the input buffer and descriptor. As soon as the call to the qolsend API or the
QOLRECV API is complete, the application can access these user spaces.

296 iSeries: Communications APIs

If changes or deletions to the user spaces occur while they are in use by the user-defined communications
support, a severe application error is reported to the application, and communications over the link
associated with the user spaces is no longer possible.

Figure 1-19. Input/Output Operations

User-Defined Communicatons

Application o
A
Application Application
writes data reads data
to output frorm input
LISEF Spaces LSEr spaces.
v \d g
Data Diata Buffer| |Data Buffer Data
Descriptar D escriptor
Data is read from Data is written to
LSEF Spaces by LSEr Spaces by

User-Defined Communications
SUpport

The user-defined communications support defines logical views for the user spaces. These views are
sometimes called formats. There is a format for filters, sending and receiving LAN frames, and sending
and receiving X.25 packets. See [‘Send Data (QOLSEND) API” on page 39 and [‘Receive Data (QOLRECV)|
IAPI” on page 21| for details on these formats.

Your application must set all the data fields required for the format. There are two types of byte fields in
the buffer and descriptors, character (CHAR) and binary (BIN). Binary implies that the value is used as a
numeric value. Sometimes this might be a 1-byte numeric value; for example, 12 = X’0C’. If you write the
application in a language that is not capable of setting this type of binary field, the field should be
declared as character and set to X’0C’. The character type contains an EBCDIC value, printable or not
printable. In contrast, all parameter values are either character or 4-byte binary. See
|Languages" on page 265| for help in writing your application so that it can provide the expected input for
the user-defined communications support.

The communications support never changes the output buffer; therefore, your application is responsible
for initializing the buffer and descriptor for the next operation, if necessary. The data in the output buffer
can also be used to help determine why a particular operation is not successful.

For performance reasons, your application should attempt to fill the output buffer as completely as
possible.

Finally, for security reasons, your application chooses the library the user space object will reside in. The
library can be any system library, including QTEMP. The advantage (or disadvantage) of using QTEMP
for user space objects is that only the job which has enabled the links has access to the user spaces.This is

Communications APIs 297

because a QTEMP library exists for each job on the system. If the user space objects are in any other
library, any job having authority to the library that the user spaces are in can access them.

Return Codes and Reason Codes

When control returns from a user-defined communications API to your application program, the status of
the operation is located in the reason code and return code output parameters for each API.

Return codes are 4-byte numbers that determine the recovery action to take. They are grouped into the
following categories:

* 00 — Operation successful, no recovery needed

* 80 — Irrecoverable error, need to disable link

* 81 — Irrecoverable error, do not need to disable link
* 82 — Recoverable error, enable link failed

» 83 — Recoverable error, see recovery actions

Reason codes are 4-byte numbers that determine what error occurred. They are grouped into the
following categories:

* 0000 — No error

* 1xxx — Parameter validation or format error

* 20xx — Line, controller, or device description error
» 22xx — Data queue error

» 24xx — Buffer or buffer descriptor error

* 30xx — Link state error

* 32xx — Connection state error

* 34xx — Timer state error

* 4xxx — Communication error

* 8xxx — Application error

* 9999 — A condition in which an Authorized Program Analysis Report (APAR) may be submitted

Note: 'x’ represents any decimal number. For example, 1xxx represents the range 1000 - 1999.

For complete and specific information about the reason codes and return codes, see the sections in
[“User-Defined Communications Support APIs” on page 1] describing the individual APIs.

Messages

The following messages are used to signal the success or failure of operations performed by the
user-defined communications APIs:

e Information

Message ID Error Message Text

CPI91FO0 | X.25 network error occurred.
CPI91F1 | ISDN network error occurred.
» Escape

Message ID Error Message Text
CPFI1F0 E Internal system error.

298 iseries: Communications APIs

Message ID Error Message Text

CPFI1F1 E
CPF9872 E

* Diagnostic

User-defined communications application error.
Program or service program &1 in library &2 ended. Reason code &3

Message ID Error Message Text

CPD91F0 D Error detected in program &1. Condition code is &2.
CPD91F1 D Unexpected error detected in program &1. Condition code is &2.
CPD91F2 D User space &1 or &3 not accessible.

CPD91F3 D Data limit exceeded. Some data not sent.

CPD91F4 D Error while accessing queue &1 in library &2.
CPD91F5 D Error while accessing queue. Time &1 canceled.
CPD91F6 D Error occurred on line &1 while in use.

CPD91F7 D Recovery canceled for network interface &3 or line &1.
CPD91F8 D Error while accessing queue &1 in library &2.
CPD91F9 D Error while enabling line &1.

[Top] | [FCommunications APIs,” on page 1 | [APIs by category]

Configuration and Queue Entries

» Configure user-defined communications support
» Set up the entries that user-defined communications support can send to the queue

Configuring User-Defined Communications Support

This section describes what needs to be configured before your application program can use the
user-defined communications APIs. You can either use the system-supplied menus or the Control
Language (CL) commands to do this configuration. For more information on using queue APIs, see the

Object APIg in the Information Center.
Links

Links allow your application program to use a token-ring, Ethernet, FDDI, wireless, or X.25
communications line. A link is made up of the following communications objects:

* Token-ring, Ethernet, FDDI, wireless, or X.25 line description
* Network controller description

* Network device description of type *USRDFN

* Network interface description for ISDN (X.25 only)

You need to configure the line description; user-defined communications support automatically
configures a network controller and a network device description of type *USRDFN when the link is
enabled. If you are using X.25 over ISDN, the network interface description must also be configured. The
network interface, line, controller, and device descriptions are automatically varied on, if necessary.

Use the following commands to create or change line descriptions:
e CRTLINDDI — Create Line Description (DDI)

* CHGLINDDI — Change Line Description (DDI)

* CRTLINETH — Create Line Description (Ethernet)

* CHGLINETH — Change Line Description (Ethernet)

* CRTLINTRN — Create Line Description (Token-Ring)

Communications APIs 299

#TOP_OF_PAGE
aplist.htm
obj1.htm

* CHGLINTRN — Change Line Description (Token-Ring)
e CRTLINWLS — Create Line Description (Wireless)

* CHGLINWLS — Change Line Description (Wireless)

e CRTLINX25 — Create Line Description (X.25)

* CHGLINX25 — Change Line Description (X.25)

Use the following commands to create or change controller descriptions:
* CRTCTLNET — Create Controller Description (Network)
* CHGCTLNET — Change Controller Description (Network)

Use the following commands to create or change device descriptions:
* CRTDEVNET — Create Device Description (Network)
* CHGDEVNET — Change Device Description (Network)

Use the following commands to create or change network interface descriptions:
* CRTNWIISDN — Create Network Interface Description (ISDN)
* CHGNWIISDN — Change Network Interface Description (ISDN)

See the [Communications Configuration| @ book on the V5R1 Supplemental Manuals Web site for more
information on configuring communications.

Queue

User-defined communications support uses a queue to inform your application program of some action
to take or of an activity that is complete. You must create the queue before the link is enabled.

The size of each queue entry must be large enough to accommodate the user-defined communications
support entries. See the following [*Queue Entries’] for more information on the entries that user-defined
communications support can send to the queue.

Use the Create Data Queue (CRTDTAQ) command to create your data queues. Use the QUSCRTUQ and
QUSDLTUQ APIs to create and delete your user queues.

Queue Entries

This section describes the entries user-defined communications support can send to the queue.

General Format

The length of each entry is always at least 80 bytes. When using a keyed queue, however, each entry can
be as large as 336 bytes, depending on the size of the key value supplied to the user-defined
communications support.

Table 1 (page shows the general format of each user-defined communications support entry.

Table 1. Queue Entry General Format

Entry type Char(10) Entry ID Char(2) Entry data Char(68) Key CHAR(256)
Bytes 1-10 11-12 13-80 81-336
Entry type

300 iseries: Communications APIs

This indicates the type of entry on the queue and will be *USRDFN for all user-defined communications
support entries.

Entry ID

This uniquely identifies each entry within an entry type. User-defined communications support has five
entries defined:

* Enable-complete entry (entry ID = '00’)

* Disable-complete entry (entry ID = '01")

* Permanent-link-failure entry (entry ID =’02’)
* Incoming-data entry (entry ID = '03’)

* Timer-expired entry (entry ID = ’04")

Note: The entry type of *USRDFN and all associated entry IDs, either defined or undefined, are reserved
for user-defined communications support. Therefore, your application program should not define entries
using this entry type.

Entry data

This data is useful to your application program and varies according to the entry ID.

Key

When using a keyed queue, this is the key value supplied to the user-defined communications support.

Enable-Complete Entry

The enable-complete entry is sent to the queue when the enable link operation is complete. This entry is
only sent after the Enable Link (QOLELINK) API returns to your application program with a successful
return and reason code.

Note: The QOLELINK API only initiates the enabling of the link. Your application program must wait for
the enable-complete entry before attempting to perform input or output on the link.

Table 2 (page shows the format of the enable-complete entry.

Table 2. Enable-Complete Entry

*USRDFN 00’ Communications | Status Reserved Key
handle

Bytes 1-10 11-12 13-22 23 24-80 81-336

Communications handle

The name of the link that is being enabled. Your application program supplies this name when the
QOLELINK API is called.

Status

This indicates the outcome of the enable link operation. A character value of zero indicates the enable
link operation was successful and 170 is now possible on this link. A character value of one indicates the
enable link operation was not successful (the job log contains messages indicating the reason). The
user-defined communications support disables the link when the enable link operation does not complete
successfully and the disable-complete entry is not sent to the queue.

Communications APIs 301

Key

The key value associated with the enable-complete entry when using a keyed queue. Your application
program supplies this key value when the QOLELINK API is called. When using a non-keyed queue
(indicated by supplying a key length of zero to the QOLELINK API) this field is not present.

Disable-Complete Entry

The disable-complete entry is sent to the queue when a link is successfully disabled. This entry is always
the last entry sent by the user-defined communications support on this link and, therefore, provides a
way for your application program to remove any enable-complete, incoming-data, or
permanent-link-failure entries previously sent to the queue.

Note: User-defined communications support does not associate timers with links. Therefore, it is
possible for a timer-expired entry to be sent to the queue after the link is disabled. Your
user-defined communications application program is responsible for handling this.

Table 3 (page shows the format of the disable-complete entry.

Table 3. Disable-Complete Entry

*USRDFN 0L’ Communications Reserved Key
handle

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link that has been disabled. Your application program supplies this name when the
QOLELINK API is called to enable the link.

Key
The key value associated with the disable-complete entry, when using a keyed queue. Your application
program supplies this key value when the QOLELINK API is called to enable the link. When using a

non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field is not
present.

Permanent-Link-Failure Entry

The permanent-link-failure entry is sent to the queue when error recovery is canceled on a link. You must
disable and then enable the link to recover.

Table 4 (page shows the format of the permanent-link-failure entry.

Table 4. Permanent-Link-Failure Entry

*USRDFN 02’ Communications Reserved Key
handle

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link on which the failure has occurred. Your application program supplies this name
when the QOLELINK API is called to enable the link.

302 iseries: Communications APls

Key

The key value associated with the permanent-link-failure entry, when using a keyed queue. Your
application program supplies this key value when the QOLELINK API is called to enable the link. When
using a non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field
is not present.

Incoming-Data Entry

The incoming-data entry is sent to the queue when the user-defined communications support has data for
your application program to receive. Your application program should call the Receive Data (QOLRECV)
API to pick up the data when this entry is received.

Note: Another incoming-data entry is not sent to the queue until your application program picks up all
the data from the user-defined communications support. The data available parameter on the call to the
QOLRECV API indicates that the receipt of data is not complete.
Table 5 (page shows the format of the incoming-data entry.

Table 5. Incoming-Data Entry

*USRDFN 03’ Communications Reserved Key
handle

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link on which the data has come in. Your application program supplies this name when
the QOLELINK API is called to enable the link.

Key
The key value associated with the incoming-data entry, when using a keyed queue. Your application
program supplies this key value when the QOLELINK API is called to enable the link. When using a

non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field is not
present.

Timer-Expired Entry

The timer-expired entry is sent to the queue when a timer, previously set by your application program,
ends.

Table 6 (page shows the format of the timer-expired entry.

Table 6. Timer-Expired Entry

*USRDFN 04’ Timer handle User data Key
Bytes 1-10 11-12 13-20 21-80 81-336

Timer handle

The name of the expired (ended) timer. Your application program returns this name when the Set or
Cancel Timer (QOLTIMER) API is called to set the timer.

User data

Communications APIs 303

The data associated with the expired timer. Your application program supplies this data when the
QOLTIMER API is called to set the timer.

Key

The key value associated with the timer-expired entry, when using a keyed queue. Your application
program supplies this key value when the QOLTIMER API is called to set the timer. When using a
non-keyed queue (indicated by supplying a key length of zero to the QOLTIMER API) this field is not
present.

| FCommunications APIs,” on page 1] | [APIs by category]

Debugging of User-Defined Communications Applications

This section is intended to help you debug your user-defined communications applications. It contains
information about:

» System services and tools

» Error codes reported to the application program and QSYSOPR operation

* Common error list

System Services and Tools

There are several tools on the iSeries™ server you can use to debug your user-defined communications
application. Some of the system provided tools that are useful for developing user-defined
communications applications include the following CL commands:

* Program Debug (STRDBG)

* Work with Job, Work with Communications Status (WRKJOB OPTION(*CMNSTS))
* Work with Job, Display Job Log (WRKJOB OPTION(*JOBLOG))

» Display Connection Status (DSPCNNSTS)

» Display Inbound Routing Data (press F6 (Display inbound routing information) following the
DSPCNNSTS command)

* Check Communications Trace (CHKCMNTRC)
* Delete Communications Trace (DLTCMNTRC)
* End Communications Trace (ENDCMNTRC)
* Print Communications Trace (PRTCMNTRC)
» Start Communications Trace (STRCMNTRC)
» Start System Service Tools (STRSST)
— Work with communications trace
— Work with error log
* Dump System Object (DMPSYSOB)J)

Program Debug

Program debug (STRDBG) allows you to trace the program and variables, set stops, change variables, and
display variables. You can use this function to verify that the parameters are passed correctly.

Work with Communications Status

The Work with Job command, Work with Communications Status option, (WRKJOB OPTION(*CMNSTYS))
shows the enabled links and operation counts for each link. It also reports information such as the
communications handle the last operation requested, and the total input, output, and other operations
requested. This information is shown for every link enabled by the job.

304 iseries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Display Job Log
The Work with Job command, selecting the Display job log option (WRKJOB OPTION(*JOBLOG)) allows
you to view the messages in the job log that help determine the exact cause of the problem.

Display Connection Status

The Display Connection Status (DSPCNNSTS) command shows information about the switched virtual
circuits (SVCs) and permanent virtual circuits (PVCs) that are in use by the application using the device
description.

Note: The Display Line Description (DSPLIND) command also shows for each line, the SVCs that are in
use, available, or attached to a controller description. This is not true for PVCs.

Display Inbound Routing Information

Pressing F6 (Display inbound routing information) when the Display Connection Status display is shown
(DSPCNNSTS command) shows the results of the calls to the Set Filter (QOLSETF) API. It also helps to
determine which device description has set a filter with duplicate inbound routing information.

Work with Communications Trace

Using the communications trace function you can obtain information about a communications line. You
can access the communications trace function through the following CL commands:

* Check Communications Trace (CHKCMNTRC)
* Delete Communications Trace (DLTCMNTRC)
* End Communications Trace (ENDCMNTRC)
* Print Communications Trace (PRTCMNTRC)
» Start Communications Trace (STRCMNTRC)

For more information on using the communications trace CL commands, see the [Communications|

[Managemen] # book.

You can also access the communications trace function through the system service tools. You can use this
function by entering the Start System Service Tools (STRSST) command and selecting the option to start a
service tool.

Using the option to Work with communications trace shows data just as it appears to the network. If the
application requests that data be sent and the request does not appear in the communications trace, the
request is rejected. The return and reason codes, and the error code reported in the parameter list for the
Send Data (QOLSEND) API indicates the reason the request was rejected.

Work with Error Log

The error log utility is part of the system service tools. You can use it by entering the Start System Service
Tools (STRSST) command and selecting the option to start a service tool.

Some communications errors are reported by the system to the error log. A remote application that is
communicating with a user-defined communications application on the local system, could cause an entry
to be generated in the error log if one of the following conditions are met:

* When using a LAN, data is not received by the application and exceeds internal threshold values (3
MB).

* When using an X.25 network, data is not received by the application and exceeds internal threshold
values (128KB).

Communications APIs 305

For both cases, the associated message in QSYSOPR identifies the error log that contains the error log
entry. The error log entry contains information only.

Dump System Object to View User Spaces

The Dump System Object (DMPSYSOBJ) command is used to inspect the user spaces after they are filled
in by your application. The following examples indicate what the user spaces look like for some of the
operations.

User Space to Set a Filter to Route Inbound Data

This user space is filled in to activate two X.25 filters which will route any X.25 call containing X’BB’, or
X’DD’ in the first byte of call user data (protocol ID byte).

Figure 1-1. User Space to Set a Filter to Route Incoming X.25 Calls

5738SS1 V2RIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001
DMPSYSOBJ PARAMETERS
0BJ- OUTBUFFER
OBJTYPE- *USRSPC

12/21/90 12:42:07 PAGE 1

CONTEXT-USRDFNCMN

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/96 12:40:03 SIZE- 00002200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- O0AOOAOO 0000

SPACE ATTRIBUTES-
000000 00000080 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 + - OUTBUFFER *
000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 * \ *
000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a

SPACE-
000000 01000002 ©001001BB 00000000 00000000 00000000 000001DD OO0 00000000 * Y t
000020 00000000 00000000 00000000 06000000 00000000 00000000 00000000 00000000 *

LINES 000040 T0 O01FFF SAME AS ABOVE

POINTERS-
NONE

OIR DATA-

TEXT-
000000 D8D7C1C4 C5E5FOFO FOF1D8E2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 *QPADEVOOO1QSECOFR 006625 *

SERVICE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 = 1 *
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F4FO FOF44040 +V2RIM00901221124004 =
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 = *
000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 = *
000080 00000000 00000000 000OOOOO 00000000 0OOOOO00 00000000 40400000 00000000 = *
0000A0 00000000 00000000 * *

END OF DuUMP

* k Kk *x %

END OF LISTING

*x k Kk * %

User Space for X’B000’ Operation, Initiating an SVC Call

The user space below has been filled in to initiate an SVC call specifying the following:
» Default packet and window sizes

» D-bit (not selected)

* Reverse charging (not selected)

» Fast select (not selected)

* Closed user group (not selected)

» Other facilities (not selected)

* One byte of call user data, X’BB’, which is the protocol identifier

» X.25 reset not supported by the user-defined communications application program

* 16KB is the maximum amount of contiguous data to be received

306

iSeries: Communications APIs

e Automatic flow control value of 32

Figure 1-2. User Space to Send an SVC Call

5738SS1 VZ2RIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:47:42 PAGE 1
DMPSYSOBJ PARAMETERS

0BJ- OUTPUTBUF CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/96 12:36:28 SIZE- 00001200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00100 0000

SPACE ATTRIBUTES-

000000 00000080 00000060 1934D6E4 E3D7E4E3 C2EAC640 40404040 40404040 40404040 + - OUTPUTBUF =

000020 40404040 40404040 EOO00000 00000000 00001000 00800000 00000000 00000000 = \ *

000040 00000000 00000000 0005004D 42000400 00000000 00OOOOOO 00000000 00000000 = (a *

SPACE-

000000 02000000 FFFFFFFF FFFFFFFF 00000000 00000008 40100001 00000000 00000000 = *

000020 00000000 00000000 OOOOOOOO 00000000 00600000 0000 00000000 00000000 = *
LINES 000040 TO 0000BF SAME AS ABOVE

0000CO 00000000 00000000 OOOOOO00 00000000 00000000 0000001 BBOOOOOO 00000000 = Y *

0000EO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 = *
LINES 000100 TO 0001BF SAME AS ABOVE

0001CO 00000000 00000000 OOOOOOOO 00000000 00000000 OO0 00000000 00004000 = *

0001EQ 00200000 00000000 00000000 00000000 00000000 0000 00000000 00000000
000200 00000000 00000000 0OOOOOOO OOOO0OOO 0OOO0O0O 0OOCOO0O 00000 06000000
LINES 000220 T0 000FFF SAME AS ABOVE

POINTERS-

NONE
OIR DATA-
TEXT-

000000 D8D7C1C4 C5E5FOFO FOF2D8E2 C5C3D6C6 ~ D9404040 FOFOF6F6 F2F7 =QPADEVOOO2QSECOFR 006627
SERVICE-

*

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 = 1 *

000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F3F6 F2F84040 +V2R1IMO0901221123628 *

000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 = *

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 = *

000080 00000000 00000000 OOOOOOOO 00000000 00000000 000000 40400000 00000000 = *

0000A0 00000000 00000000 * *
END OF DUMP

*xxxx END OF LISTING # % % % *
User Space Containing an Incoming X.25 Call, Operation X’'B201’

This user space shows the following:

* The call is using SVC 005

* Both transmit and receive packet sizes are 128

* Both transmit and receive window sizes are 7

* The calling DTE address is 40100000

* The called DTE address is 40200000

* No other facilities are requested

* One byte of call user data, X’BB’, which is the protocol identifier

The application received this call because it had set a filter to indicate to the system that it should route
incoming X.25 calls that have the first byte of call user data (the protocol identifier) equal to X’BB’ to the
application.

Figure 1-3. User Space Containing an Incoming X.25 Call

5763SS1 V3RIMO 940909 i5/0S DUMP 023099/QSYSOPR/QPADEVOO14 03/07/94 11:57:24 PAGE 1
DMPSYSOBJ PARAMETERS
0BJ- INBUFFER CONTEXT- USRDFNCMN

Communications APIs 307

TYPE- *ALL SUBTYPE-*ALL

OBJECT TYPE- SPACE
NAME- INBUFFER
LIBRARY- USRDFNCMN
CREATION- 03/67/94 11:53:
OWNER- QSYSOPR
ATTRIBUTES- 0800
SPACE ATTRIBUTES-
000000 OOFFFFOO 00000060
000020 40404040 40404040
000040 00000000 00000000
SPACE-
000000 00000005 00800007
000020 00000000 00000000
LINES 000040 T0
0000CO 00000000 00000000
O000OEO 00000000 00000000
LINES 000100 T0
000140 00000000 00000000
000160 00000000 00000000
LINES 000180 T0
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5E5FOFO
SERVICE-
000000 40404040 40404040
000020 40404040 40404040
000040 40404040 40404040
000060 40404040 40404040
000080 00000000 00000000
0000A0 00000000 00000000
USAGE-
000000 DBE2E8E2 D6D7D940
END OF DUMP

15

1934C9D5
E0000000
00D601DE

00800007
00000000
0000BF
00000000
00000000
00013F
00000000
00000000
001FFF

F1F4D8E2

40404040
404040E5
40404040
40404040
00000000

4040D9C3

TYPE-

TYPE-

SIZE-

TYPE-

ADDRESS-
C2E4C6C6 C5D94040
00000000 00002000
73000400 00000000
00000000 00000008
00000000 00000000
SAME AS ABOVE
00000000 00000000
00000000 00000000
SAME AS ABOVE
00000000 00000000
00000000 00000000
SAME AS ABOVE
EBE2D6D7 D9404040
40404040 40404040
F3D9F1D4 FOFOF9F4
40404040 40404040
40404040 40404040
00000000 00000000
C8CIE2F3 F2FO

* K% % Kk %

19
04

SUBTYPE-
SUBTYPE-

«USRSPC
34
01

0000002200

08

40404040
00810000
00000000

40100000
00000000

00000001
00000000

00000000
00000000

FOF2F3FO

40F14040
FOF3FOF7
40404040
40404040
00000000

END OF LISTING

SUBTYPE-
000001DE7A0O

01
0000

40404040
00000000
00000000

40404040
00000000
00000000

00000000
00000000

00000000
00000000

BBOOOOOO
00000000

00000000
00000000

08402000
00000000

00000000
00000000

FOF9

40404040 40404040
F1F1F5F3 F1F54040
40404040 40404040
00000000 00000000
40400000 00000000

*QSYSOPR

* *x %

User Space to Accept an Incoming X.25 Call, Operation X’B400’

*QPADEVOO14QSYSOPR

x - INBUFFER *
* \ a *
* 0 £ *

*
*

023099

*

* 1 *

*V3R1IM00940307115315 =

*

EE

*
*
*

RCHAS320

*

* *

This user space was filled in to accept the incoming call, request default packet and window sizes, and
no other additional facilities. The a maximum amount of contiguous data is set at 16KB and the
automatic flow control is set at 32.

Figure 1-4. User Space to Accept an Incoming X.25 Call
006625/QSECOFR/QPADEV0001

5738SS1 V2RIMO 910524 i5/0S DUMP

DMPSYSOBJ PARAMETERS

0BJ- OUTBUFFER

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE

NAME- OUTBUFFER

LIBRARY- USRDFNCMN

CREATION- 12/21/90 12:40:03

OWNER- QSECOFR

ATTRIBUTES- 0800

SPACE ATTRIBUTES-
000000 00000080 00000060 1934D6E4
000020 40404040 40404040 EOO00000
000040 00000000 00000000 0005004D

SPACE-
000000 00000000 FFFFFFFF FFFFFFFF
000020 00000000 00000000 00000000

LINES 000040 TO 0001BF
0001CO 00000000 06000000 0OOOOOOO
0001EO0 00200000 00000000 00000000
000200 00000000 00000000 0OOOOOOO
LINES 000220 TO0 001FFF

308

iSeries: Communications APIs

CONTEXT-USRDFNCMN

TYPE-
TYPE-
SIZE-
TYPE-
ADDRESS-

E3C2E4C6
00000000
42000400

00000000
00000000
SAME AS
00000000
00000000
00000000
SAME AS

C6C5D940
00002000
00000000

00000000
00000000
ABOVE
00000000
00000000
00000000
ABOVE

19
04

SUBTYPE-
SUBTYPE-

12/21/90 12:48:06

*USRSPC
34
01

00002200

08

40404040
00800000
00000000

00000000
00000000

00000000
00000000
00000000

SUBTYPE-
00AO0OA0O

01
0000

40404040
00000000
00000000

40404040
00000000
00000000

00000000
00000000

00000000
00000000

00000000
00000000
00000000

00004000
00000000
00000000

PAGE 1
* - QUTBUFFER *
* \ *
* (a *
* *
*
*
*
* *

POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5E5FOFO FOF1D8EZ C5C3D6C6 D9404040 FOFOF6F6 F2F *QPADEVOOO1QSECOFR 006625 *
SERVICE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 = 1 *
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F4AFO FOF44040 +V2R1IMO0901221124004 *
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 = *

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 =

000080 00000000 00000000 OOOOOOOO 000000 00600000 00000 40400000 00000000 =

0000A0 00000000 00000000 *
END OF DUMP

* * X

*xxxx END OF LISTING # % % % *
User Spaces for Sending Data, Operation X’0000’

Two user spaces are shown below. The first is the output buffer and the second is the output buffer
descriptor.

The user spaces below are filled in to send three data units of 512 bytes each. The first two data units
have the more data indicator turned on, indicating that all the data units are contiguous.

Note: This link was enabled, specifying a data unit size of 512 bytes.

Figure 1-5. User Space (Buffer) to Send Three Data Units

5738SS1 V2RIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001 12/21/96 12:55:19 PAGE 1
DMPSYSOBJ PARAMETERS
0BJ- OUTPUTBUF CONTEXT-USRDFNCMN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE *USRSPC
NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34
LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01
CREATION- 12/21/906 12:36:28 SIZE- 00001200
OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 00A00100 0000
SPACE ATTRIBUTES-
000000 00000080 00000060 1934D6E4 E3D7E4E3 C2E4AC640 40404040 40404040 40404040 =+ - OUTPUTBUF *
000020 40404040 40404040 EOO00000 00000000 00001000 00800000 00000000 00OOOOOO = \ *
000040 00000000 00000000 OOO5004D 42000400 00000000 OOOOOOOO 00000000 00000060 = (a *
SPACE-
000000 FOF10000 00000000 00000000 00000000 00000000 0000000 0000000 00000000 +01
000020 00000000 00000000 OOOOOO00 00000000 00000000 00000 00000000 00000000 =
LINES 000040 TO 0001FF SAME AS ABOVE
000200 FOFZ20000 00000000 00000000 00000000 00000000 0000000 0000000 00000000 *02 *
000220 00000000 00000000 OOOOCO00 00000000 00000000 OO0 00000000 00000000 = *
LINES 000240 TO 0003FF SAME AS ABOVE
000400 FOF30000 00000000 00000000 00000000 00000000 0000000 0000000 00000000 +03 *
000420 00000000 00000000 OOOOOO0O 00000000 00000000 OO0 00000000 00000000 = *

LINES 000440 TO 000FFF SAME AS ABOVE
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5E5FOFO FOF2D8EZ C5C3D6C6 D9404040 FOFOF6F6 F2F7 *QPADEVOOO2QSECOFR 006627 *
SERVICE-

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 = 1 *
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F3F6 F2F84040 +V2RIM00901221123628 *
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 = *

000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 =

000080 00000000 00000000 0OOOOOOO 000000 00000000 00000000 40400000 00000000 *

0000A0 00000000 00000000 *
END OF DUMP

EE

% xx% END OF LISTING * % % % %

Communications APIs 309

Figure 1-6. User Space (Descriptor Element) to Describe the Three Data Units

5738SS1 VZRIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001 12/21/96 12:55:58 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTPUTBUFD CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUFD TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/96 12:36:27 SIZE- 00000400

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- O009FFEGO 0000

SPACE ATTRIBUTES-
000000 00000080 00000060 1934D6E4 E3D7E4E3 C2E4C6C4 40404040 40404040 40404040 - OUTPUTBUFD *
000020 40404040 40404040 EOOOO000 00000000 00000200 00800000 0000 00000000 * \ *
000040 00000000 00000000 0005004D 42000400 00000000 00000000 0000000 0000000 = (a *

SPACE-
000000 02000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000020 02000100 00000000 00000000 000000 0OOOO00O OOOOOOOO 0000000 00000000 = *
000040 02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000060 00000000 06000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

LINES 000080 TO0 0001FF SAME AS ABOVE

POINTERS-
NONE

OIR DATA-

TEXT-
000000 D8D7C1C4 C5E5FOFO FOF2D8E2 C5C3D6C6 D9404040 FOFOF6F6 F2F7 +~QPADEVOOO2QSECOFR 006627 =

SERVICE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 = 1 *
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F3F6 F2F74040 =+ V2RIMO0901221123627 =
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 = *
000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 = *
000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 = *
0000A0 00000000 00000000 * *

END OF DuUMP

%x %% END OF LISTING # % % *

User Spaces for Receiving Data, Operation X’0001’

Two user spaces are shown below. The first is the input buffer and the second is the input buffer
descriptor.

The user spaces below are filled in showing that 2 data units were received. The first data unit has the
more data indicator turned on in the buffer descriptor for the data unit. This means that the X.25 more
indicator was turned on in all the X.25 packets that this data unit contains. The second data unit does not
have the more data indicator turned on, indicating that the last X.25 packet in the data unit had the X.25
more indicator turned off. The first and second data unit are considered to be logically contiguous to the
application program.

Note: This link was enabled specifying a data unit size of 1024 bytes. The sending system sent the data in
data unit sizes of 512 bytes and they were combined into the 1024 byte data unit size by the local system.
The data unit size is not negotiated end-to-end, neither is the maximum amount of contiguous data or
the automatic flow control. Because the values are important, each application should be aware of what
the other application has specified for each value. Refer to [Sending and Receiving Data Packets| for more
information.

Figure 1-7. User Space (Buffer) Containing the Three Data Units

5738SS1 VZRIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001
DMPSYSOBJ PARAMETERS
0BJ- INBUFFER
OBJTYPE- *USRSPC

12/21/90 12:59:33 PAGE 1

CONTEXT-USRDFNCMN

OBJECT TYPE- SPACE *USRSPC
NAME- INBUFFER TYPE- 19 SUBTYPE- 34
LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

310

iSeries: Communications APIs

comm2.htm#HDRPIUCONS

CREATION- 12/21/96 12:40:03 SIZE- 00002200
OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 00A00400 0000
SPACE ATTRIBUTES-
000000 00000080 00000060 1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040
000020 40404040 40404040 EOO00000 00000000 00002000 00800000 00000000 0OOOOOOO
000040 00000000 00000000 OOO5004D 42000400 00000000 OO0 00000000 00000000
SPACE-
000000 FOF10000 00000000 00000000 00000000 00000000 0OOOOEEO 00000000 0OOOOOOO
000020 00000000 00000000 OOOOOOOO0 00000000 00000000 OO0 00000000 00000000
LINES 000040 TO 0001FF SAME AS ABOVE
000200 FOFZ20000 00000000 00000000 00000000 00000000 0OOOCOO0O OOOOOOO 06000000
000220 00000000 00000000 OOOOOO00 00000000 00000000 OO0 00000000 00000000
LINES 000240 TO 0003FF SAME AS ABOVE
000400 FOF30000 00000000 00000000 00000000 0OOOOOOO 000000 0OOOOOOO 06000000
000420 00000000 00000000 OOOOOOOO 00000000 00000000 OO 00000000 0OOOOOOO
LINES 000440 TO O01FFF SAME AS ABOVE
POINTERS-
NONE
OIR DATA-
TEXT-

000000 D8D7C1C4 C5E5FOFO FOF1D8E2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 ~QPADEVOOOIQSECOFR 006625

SERVICE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2FAFO FOF34040
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000
000080 00000000 00000000 0OOOOOOO 0000000 0OO00O0O0 00000000 40400000 00000000
0000A0 00000000 00000000

END OF DUMP

*%x %% END OF LISTING = **

Figure 1-8. User Space (Descriptor Element) Describing the Three Data Units

5738SS1 V2RIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001 12/21/96 12:59:41
DMPSYSOBJ PARAMETERS

0BJ- INBUFFERD CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- INBUFFERD TYPE- 19 SUBTYPE- 34
LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01
CREATION- 12/21/96 12:40:03 SIZE- 00000400

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 00A00200 0000

SPACE ATTRIBUTES-
000000 00000080 00000060 1934C9D5 C2E4C6C6 ~ C5D9C440 40404040 40404040 40404040
000020 40404040 40404040 EOO00000 00000000 00000200 00800000 00000000 00000000
000040 00000000 00000000 0005004D 42000400 00000000 0OOCOO0O OOOOOOOO OOOOOOOO

SPACE-
000000 04000100 00000000 00000000 00000000 00000000 OOOOOOOO 00000000 00000000
000020 02000000 00000000 00000000 OOOO0OOO OOOOOOOO 0OOEOO0O 00000 OO0
000040 00000000 00000000 0OOOOOOO OOOO0O0O 0OOOOOOO OOOOO00O OOOOOOO 00000000

LINES 000060 TO 0001FF SAME AS ABOVE

POINTERS-
NONE

OIR DATA-

TEXT-

000000 D8D7C1C4 C5E5FOFO FOF1D8EZ2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 «QPADEVOOO1QSECOFR 006625

SERVICE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2FAFO FOF34040
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000
000080 00000000 00000000 0OOOOOOO OOOO0OOO 0OOOOOOO 000000 40400000 0600000
0000A0 00000000 00000000

END OF DUMP

*%%x %% END OF LISTING * **

User Space to Clear a Connection or Call, Operation X’B100’

* - INBUFFER *
* \ *
* (a *
*01 *
* *
*02 *
* *
*03 *
* *

EE I

* X X

* ok X X ok X

Communications APls

*

1 *
V2R1M00901221124003 *

*

*
*
*
*
PAGE 1
- INBUFFERD *
\ *
(a *
*
*
*
*
1 *

V2R1M00901221124003 *

*

*
*
*

311

This user space was filled in to end an SVC connection or clear an incoming call. No facilities or clear
user data are requested with this, but cause and diagnostic codes are specified (these are not ISO or SNA
codes).

Figure 1-9. User Space to Send an SVC Clear

5738SS1 V2RIMO 910524 i5/0S DUMP 006625/QSECOFR/QPADEV0001 12/21/90 13:14:48 PAGE 1
DMPSYSOBJ PARAMETERS

0BJ- OUTBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 000022000WNER- QSECOFR

ATTRIBUTES- 0800 ADDRESS- 00AOOAGO 0000

SPACE ATTRIBUTES-
000000 00000080 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 = - OUTBUFFER

*

000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 = \ *

000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a =
SPACE-

000000 OOOOBEBE 00000000 00000000 00000000 00000000 00000000 0OOOOOOO 00000000 =+ XX *

000020 00000000 00000000 00000000 00000000 000000 00000000 00000000 00000000 * *

LINES 000040 TO 001FFF SAME AS ABOVE
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5E5FOFO FOF1D8E2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 *QPADEVOOO1QSECOFR 006625 =
SERVICE-
000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F4FO FOF44040
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000
000080 00000000 00000000 O0OOOOOOO 0OOOO00O OOOOOOOO 00000000 40400000 0000000
0000A0 00000000 00000000
END OF DUMP

1 *
VZ2R1M00901221124004 =

*

* % X X ok X

*
*
*

% xx% END OF LISTING * % % % %

Error Codes

The system and user-defined communications support reports important information that is useful for
determining recovery actions when an error occurs. This information is referred to as error codes that are
reported either to the job log or to the QSYSOPR message queue. For a complete list of the messages that
are signaled by the user-defined communications APIs, see [‘Messages” on page 298.|

In some cases error codes are reported to your application in the error specific parameter. The following
sections list the valid error codes. Some of the error codes represent actual coding errors, others only
report additional information. For information about the error codes for the individual user-defined
communications APIs, see|User-Defined Communications Support APId,

Local Area Network (LAN) Error Codes

Figure 1-10 (page shows the valid hexadecimal codes your application can receive as a result of a
call to the QOLSEND API using operation code X’0000’. The codes indicate that the data was never sent
on the line. Associated with these error codes is a message in QSYSOPR, indicating the device description
that caused the error, and the error code. After receiving the error code, the link will still be enabled and
usable.

These error codes indicate to your application that a coding error was made and should be corrected.

Figure 1-10. Error Codes Received While Sending Data over LAN

312 iSeries: Communications APls

TYPE-

comm4.htm#HDRCOMMC4

Error Code Description Cause
3300 2A55 Routing length not valid Routing length is not valid, or length does not
equal length in routing field.
3300 2A5D Maximum frame size limit exceeded Length of data is greater than maximum frame
size supported by the source SAP
5300 2A7B Access Control not valid Access Control specified is not supported
3300 2AA9 SAP address not valid SAP address is not configured in the line
description
3300 2AA9 SAP address not valid SAP address is not configured in the line
description
3300 2AD4 Data length too small (Ethernet Version 2 Data must be at least 48 bytes long (46 bytes of
only) data, plus 2 bytes for the Ethernet type field)
3300 2AD5 Ethernet type field is not valid (Ethernet Ethernet type field (first two bytes of data)
Version 2 only)

X.25 Error Codes
Figure 1-11 (page shows the valid error codes your application can receive as a result of
* A call to the QOLSEND API with operation X'B400’ to accept an SVC call

* A call to the Receive Data (QOLRECV) API which returns the results of the open connection request
operation, X’B101’

» The connection failure indication, reported by operation X’B301’

These error codes indicate to your application that a coding error was made, or a failure condition

occurred.

Figure 1-11. Error Codes Reported on X’B001’, X’B301’, and X’B400’ Operations

Error Code Description Cause

1200 3122 Outgoing channel not available The logical channel is still active and in the
process of being deactivated

3200 3050 Restart in progress Temporary condition; retry operation

3200 3172 Outgoing channel not available Temporary condition; retry operation

3200 3368 Remote address length not valid Remote address length not supported by the
network

3200 3384 Facility field error A facility was encoded incorrectly or a duplicate
facility was encoded

3200 3388 Facility field too long The total length of the facilities, which includes
user-specified facilities, the NUI facility from the
line description, and system generated facilities,
exceeded X.25 limits (109 bytes)

3200 338C Response restricted by fast select User data is not allowed with restriction

3200 3394 User data not allowed User data is not allowed on the call accept if fast
select was not requested.

3200 33CC Call user data length not valid The length of call user data is greater than 16 and
fast select is not selected.

4200 3210 Reset request transmitted The virtual circuit was reset by the local system.

Refer to cause and diagnostic codes to determine
recovery.

Communications APIs 313

Error Code Description Cause

4200 3220 Clear request transmitted The virtual circuit was cleared by the local system.
Refer to cause and diagnostic codes to determine
recovery.

4200 3222 Clear request transmitted The virtual circuit was cleared by the local system

because there was a problem with the packet size
in the call accept. This is either a configuration
problem or a network problem. Verify that the
default packet size in the line description is
correct.

4200 3224 Clear request transmitted The virtual circuit was cleared by the local system
because there was a problem with the window
size in the call accept. This is either a
configuration problem or a network problem.
Verify that the default window size in the line
description is correct.

4200 3230 Restart request transmitted The virtual circuit was cleared by the local system.
Refer to cause and diagnostic codes for more
information.

4200 3280 Time-out on call Call timed out

4600 3134 Clear indication was received The virtual circuit was cleared by either the

remote system or the network. Refer to cause and
diagnostic codes for more information.

4600 3138 Restart indication received Temporary condition; refer to the cause and
diagnostic codes reported to correct the problem,
then retry the operation

Figure 1-12 (page [314) shows the valid error codes your application can receive as a result of a call to the
QOLRECV API with an operation code returned as X’B101’.

These error codes indicate to your application that the connection was cleared or reset for the following
reasons.

Figure 1-12. Error Codes Reported on the X’B101’ Operation

Error Code Description Cause

3200 3388 Facility field too long The total length of the facilities, which includes

user-specified facilities, the NUI facility from the
line description, and system generated facilities,

exceeded X.25 limits (109 bytes)

3200 3394 User data not allowed User data is not allowed when fast select is not
selected.

3200 33CC Call user data length not valid The length of call user data is greater than 16 and
fast select is not selected.

4200 3240 Time-out on reset The clear request resulted in an X.25 reset, which
timed out

4200 3284 Time-out on clear The remote system did not respond to the CLEAR

within the time-out value

4600 3134 Clear indication was received The virtual circuit was cleared by either the
remote system or the network. Refer to cause and
diagnostic codes for more information.

314 iseries: Communications APls

Figure 1-13 (page [315) shows the valid error codes your application can receive as a result of a call to the

QOLRECV API, returning the operation code, X’'BF01’.

These error codes indicate to your application that the connection was cleared or reset for the following

reasons.

Figure 1-13. Error Codes Reported on the X’BF01’ Operation

Error Code Description Cause

3200 3050 Network Restart in progress Temporary condition; connection is no longer
active.

3200 3A0C Close pending The virtual circuit is being closed.

3200 3A0D Reset pending The virtual circuit is in the process of being reset
by either the remote system or the network.

4200 3210 Reset packet transmitted A Reset packet was transmitted from the local
system.

4200 3240 Time-out on reset The clear request resulted in an X.25 reset, which
timed out

4600 3130 Reset indication was received The virtual circuit received a reset by either the
remote system or the network. Refer to cause and
diagnostic codes for more information.

4600 3134 Clear indication was received The virtual circuit was cleared by either the
remote system or the network. Refer to cause and
diagnostic codes for more information.

Figure 1-14 (page [315) shows the valid error codes your application can receive as a result of a call to the
QOLSEND API with an operation code returned as X’0000’.

These error codes indicate to your application that the connection was cleared or reset for the following

reasons.

Figure 1-14. Error Codes Resulting from a X’0000" Operation

Error Code Description Cause

3200 3050 Network restart in progress Temporary condition; connection is no longer
active.

3200 336A Q/M bit sequence not valid If the data is qualified, the Q bit must be set for all
data units.

3200 33C8 Data length not valid The length of the packet is not supported for this
virtual circuit.

3200 3A0C Close pending The virtual circuit is being closed.

3200 3A0D Reset pending The virtual circuit is in the process of being reset
by either the remote system or the network.

4200 3284 Interrupt timed out The local DTE sent an interrupt packet. The
response to this packet was not received within
the time-out period, and the connection has been
reset by the iSeries server.

4600 3130 Reset indication was received The virtual circuit received a reset by either the

remote system or the network. Refer to cause and
diagnostic codes for more information.

Communications APIs 315

Error Code Description Cause

4600 3134 Clear indication was received The virtual circuit was cleared by either the
remote system or the network. Refer to cause and
diagnostic codes for more information.

Common Errors and Messages

This section shows some of the common errors that you or your application programmer may encounter.
Some of these errors are detected by the APIs and reported to the application by the unsuccessful return
and reason codes returned on each API. Other errors are program design errors, that your application
programmer must detect and correct. The errors are listed by category:

Parameter Errors

» Switching use of connection identifiers (PCEP and UCEP)
» Switching use of timer handles

* Not encoding parameters if not used

* Operation code not in hexadecimal format

» Parameter not declared with proper length

User Space Errors
* Not encoding reserved space for fields not used
* Not initializing user space fields as necessary.

The output user spaces can only be changed by the user-defined communications application.
Operations are validated on each request. If there are fields that the current operation does not use,
they should be set to contain zeros with X’00’, to prevent a template error resulting from information
on the previous operation still being in the user space. Not resetting the indicators in the output buffer
descriptors on each operation and not zeroing out fields before making a call request may result in
template errors.

Queue Errors
* Queue not created

* Queue created with different key length than specified in the parameter list of the Enable Link
(QOLELINK) API

Receive Data (QOLRECV) API Errors

* Not checking the more data output parameter and issuing another call to the QOLRECV API
* Not calling the QOLSETF API to set the filter to route inbound data to the application

» Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)

Send Data (QOLSEND) API Errors

» After a call to the QOLSEND API with an operation code of X’B000’, X’B100’, or X’BF00’, the
application should then call the QRCVDTAQ API and wait for incoming data to be placed on the
queues. The success or failure of these operations is reported through the QOLRECV API with
operation codes of X’B001’, X’B101’ and X’BF01’, respectively.

» Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)

Enable Link (QOLELINK) API Errors
» User space names not unique
* Queue not created before program call

316 iSeries: Communications APls

» Line description not created or incorrect prior to program call

Query Line Description (QOLQLIND) API Errors
» Parameter buffer not large enough

| [*“Communications APIs,” on page 1| | [APIs by category|

Communications APIs 317

#TOP_OF_PAGE
aplist.htm

318 iseries: Communications APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 319

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-1BM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM
Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appeatr.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of IBM i5/0S.

320 iseries: Communications APls

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:
Advanced 36

Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP

AIX

AS/400

COBOL/400

CUA

DB2

DB2 Universal Database
Distributed Relational Database Architecture
Domino

DPI

DRDA

eServer

GDDM

IBM

Integrated Language Environment
Intelligent Printer Data Stream
IPDS

i5/0S

iSeries

Lotus Notes

MVS

Netfinity

Net.Data

NetView

Notes

OfficeVision

Operating System/2
Operating System/400
0s/2

0S/400

PartnerWorld

PowerPC

PrintManager

Print Services Facility

RISC System/6000
RPG/400

RS/6000

SAA

SecureWay

System/36

System/370

System/38

System/390

VisualAge

WebSphere

xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Appendix. Notices 321

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these Publications, or reproduce, distribute or display these Publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the Publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations. IBM MAKES NO
GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

322 iSeries: Communications APIs

Printed in USA

	Contents
	Communications APIs
	APIs
	User-Defined Communications Support APIs
	Disable Link (QOLDLINK) API
	Authorities and Locks
	Required Parameter Group
	Return and Reason Codes

	Enable Link (QOLELINK) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Return and Reason Codes
	Error Messages

	Query Line Description (QOLQLIND) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data in the User Buffer
	Return and Reason Codes
	Error Messages

	Receive Data (QOLRECV) API
	Authorities and Locks
	Required Parameter Group
	Format of Diagnostic Data Parameter
	LAN Input Operations
	X.25 SVC and PVC Input Operations
	Return and Reason Codes
	Error Messages

	Send Data (QOLSEND) API
	Authorities and Locks
	Required Parameter Group
	Diagnostic Data Parameter Format
	LAN Output Operations
	X.25 SVC and PVC Output Operations
	Return and Reason Codes
	Error Messages

	Set Filter (QOLSETF) API
	Authorities and Locks
	Required Parameter Group
	Format of Filter Information
	Return and Reason Codes
	Error Messages

	Set Timer (QOLTIMER) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Return and Reason Codes
	Error Messages

	Data Stream Translation APIs
	End Data Stream Translation Session (QD0ENDTS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start Data Stream Translation Session (QD0STRTS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Translate Data Stream (QD0TRNDS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	OptiConnect APIs
	Close Path (QzdmClosePath) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	CPTH0100 Format
	Field Descriptions
	Error Messages

	Close Stream (QzdmCloseStream) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	CSTR0100 Format
	Field Descriptions
	Error Messages

	Open Path (QzdmOpenPath) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	OPRC0100 Format
	OPRQ0100 Format
	Field Descriptions
	Error Messages

	Open Stream (QzdmOpenStream) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	OSTR0100 Format
	Field Descriptions
	Error Messages

	Receive Control (QzdmReceiveControl) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RCRC0100 Format
	RCRQ0100 Format
	Field Descriptions
	Error Messages

	Receive Request (QzdmReceiveRequest) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RQRC0100 Format
	RQRQ0100 Format
	Field Descriptions
	Error Messages

	Receive Response (QzdmReceiveResponse) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RSRC0100 Format
	RSRQ0100 Format
	Field Descriptions
	Error Messages

	Send Request (QzdmSendRequest) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	SRRC0100 Format
	SRRQ0100 Format
	Field Descriptions
	Error Messages

	Send Response (QzdmSendResponse) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	SRSP0100 Format
	Field Descriptions
	Error Messages

	Wait Message (QzdmWaitMessage) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	WMRC0100 Format
	WMRQ0100 Format
	Field Descriptions
	Error Messages

	TCP/IP Management
	Change Connection Attribute (QTOCCCNA) API
	Authorities and Locks
	Required Parameter Group
	TCPA0001 Format
	UDPA0001 Format
	Field Descriptions
	TCPA0101 Format
	UDPA0101 Format
	Field Descriptions
	Error Messages

	Change IPv4 Interface (QTOCC4IF) API
	Authorities and Locks
	Required Parameter Group
	IFCH0100 Format
	Format of Preferred Interface List Entry
	Field Descriptions
	Usage Notes
	Error Messages

	Convert Interface ID (QtocCvtIfcID) API
	Authorities and Locks
	Required Parameter Group
	Format of Returned Interface Data
	NCII0100 Format
	Field Descriptions
	NCII0200 Format
	Field Descriptions
	NCII0300 Format
	Field Descriptions
	Error Messages

	List Neighbor Cache Table (QtocLstNeighborTbl) API
	Authorities and Locks
	Required Parameter Group
	Format of Neighbor Cache Table Lists
	Input Parameter Section
	Header Section
	NNCT0100 Format
	Field Descriptions
	Error Messages

	List Network Connections (QtocLstNetCnn) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Status Lists
	Input Parameter Section
	Header Section
	NCLQ0100 Format
	Field Descriptions
	NCLQ0200 Format
	Field Descriptions
	Format of Returned Connection Data
	NCNN0100 Format
	Field Descriptions
	NCNN0200 Format
	Field Descriptions
	Error Messages

	List Network Interfaces (QtocLstNetIfc) API
	Authorities and Locks
	Required Parameter Group
	Format of Interface Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	NIFC0100 Format
	Format of Preferred Interface List Entry
	Field Descriptions
	NIFC0200 Format
	Field Descriptions
	Error Messages

	List Network Routes (QtocLstNetRte) API
	Authorities and Locks
	Required Parameter Group
	Format of Route Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	NRTE0100 Format
	Field Descriptions
	NRTE0200 Format
	Field Descriptions
	Error Messages

	List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API
	Authorities and Locks
	Required Parameter Group
	Format of ARP Table Lists
	Input Parameter Section
	Header Section
	ARPT0100 Format
	Field Descriptions
	Error Messages

	List Physical Interface Data (QtocLstPhyIfcDta) API
	Authorities and Locks
	Required Parameter Group
	Format of Physical Interface Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	IFCD0100 Format
	Field Descriptions
	IFCD0200 Format
	Field Descriptions
	IFCD0300 Format
	Field Descriptions
	Error Messages

	List PPP Connection Profiles (QtocLstPPPCnnPrf) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Profile Lists
	Input Parameter Section
	Header Section
	PRFD0100 Format
	Field Descriptions
	Error Messages

	List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API
	Authorities and Locks
	Required Parameter Group
	Format of Point-to-Point Jobs List
	Input Parameter Section
	Header Section
	PPPJ0100 Format
	Field Descriptions
	Error Messages

	Remove ARP Table Entry (QtocRmvARPTblE) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Network Connection Data (QtocRtvNetCnnDta) API
	Authorities and Locks
	Required Parameter Group
	Socket Connection Request Format
	IPv4 connection (Protocol field value is 1 or 2)
	IPv6 connection (Protocol field value is 3 or 4)
	Field Descriptions
	Format of Returned Connection Data
	NCND0100 Format
	Field Descriptions
	NCND0200 Format
	List of Socket Options.
	List of Jobs/Tasks Associated with this Connection.
	Field Descriptions
	NCND1100 Format
	Field Descriptions
	NCND1200 Format
	List of Socket Options.
	List of Jobs/Tasks Associated with this Connection.
	Field Descriptions
	Error Messages

	Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Profile Attributes Information
	PRFR0100 Format
	Field Descriptions
	PRFR0200 Format
	Field Descriptions
	Connection Profile Detailed Parameters
	Field Descriptions
	Remote Phone Numbers
	Field Descriptions
	Error Messages

	Retrieve TCP/IP Attributes (QtocRtvTCPA) API
	Authorities and Locks
	Required Parameter Group
	Format of TCP/IP Attributes Information
	TCPA0100 Format
	Field Descriptions
	TCPA0200 Format
	Field Descriptions
	TCPA0300 Format
	Field Descriptions
	TCPA1100 Format
	Field Descriptions
	TCPA1200 Format
	Field Descriptions
	TCPA1300 Format
	Field Descriptions
	Error Messages

	Update DNS API (QTOBUPDT)
	Authorities and Locks
	Required Parameter Group
	Update Instructions Syntax
	DNSA0100 Format
	Field Descriptions
	Error Messages

	CPI Communications (CPI-C)
	Exit Programs
	Trace Exit Program for Trace TCP/IP Application command
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Exit Program for Watch for Trace Event
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Concepts
	User-Defined Communications
	Overview
	User-Defined Communications Callable Routines
	Input/Output Buffers and Descriptors
	Queues

	Terminology
	Relationship to Communications Standards
	Local Area Network (LAN) Considerations
	X.25 Considerations
	Programming Design Considerations for Communications APIs
	Jobs
	Application Program Feedback
	Synchronous and Asynchronous Operations
	Programming Languages
	Starting and Ending Communications
	Using Connection Identifiers
	Incoming Connections
	Closing Connections

	Programming Considerations for LAN Applications
	Operations
	Configuration
	Inbound Routing Information
	End-to-End Connectivity
	Sending and Receiving Data
	Maximum Amount of Outstanding Data
	Ethernet to Token-Ring Conversion and Routing
	Performance Considerations

	Programming Considerations for X.25 Applications
	X.25 Packet Types Supported
	Operations
	Connections
	Connection Identifiers
	Connection Information
	Switched Virtual Circuit (SVC) Connectivity
	Inbound Routing Information
	End-to-End Connectivity
	Permanent Virtual Circuit (PVC) Connectivity
	Inbound Routing Information
	End-to-End Connectivity
	Sending and Receiving Data Packets
	X.25 Call Control
	Performance Considerations

	Queue Considerations
	User Space Considerations
	Return Codes and Reason Codes
	Messages
	Configuration and Queue Entries
	Configuring User-Defined Communications Support
	Links
	Queue

	Queue Entries
	General Format
	Enable-Complete Entry
	Disable-Complete Entry
	Permanent-Link-Failure Entry
	Incoming-Data Entry
	Timer-Expired Entry

	Debugging of User-Defined Communications Applications
	System Services and Tools
	Program Debug
	Work with Communications Status
	Display Job Log
	Display Connection Status
	Display Inbound Routing Information
	Work with Communications Trace
	Work with Error Log
	Dump System Object to View User Spaces

	Error Codes
	Local Area Network (LAN) Error Codes
	X.25 Error Codes

	Common Errors and Messages

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

