
iSeries

Communications APIs

Version 5 Release 4

���

iSeries

Communications APIs

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 319.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Communications APIs 1

APIs 1

User-Defined Communications Support APIs . . . 1

Disable Link (QOLDLINK) API 2

Authorities and Locks 2

Required Parameter Group 2

Return and Reason Codes 3

Enable Link (QOLELINK) API 3

Authorities and Locks 4

Required Parameter Group 4

Optional Parameter Group 6

Return and Reason Codes 7

Error Messages 9

Query Line Description (QOLQLIND) API 9

Authorities and Locks 9

Required Parameter Group 9

Optional Parameter Group 10

Format of Data in the User Buffer 11

Return and Reason Codes 20

Error Messages 21

Receive Data (QOLRECV) API 21

Authorities and Locks 22

Required Parameter Group 22

Format of Diagnostic Data Parameter 23

LAN Input Operations 25

X.25 SVC and PVC Input Operations 27

Return and Reason Codes 34

Error Messages 39

Send Data (QOLSEND) API 39

Authorities and Locks 39

Required Parameter Group 39

Diagnostic Data Parameter Format 41

LAN Output Operations 43

X.25 SVC and PVC Output Operations 45

Return and Reason Codes 60

Error Messages 63

Set Filter (QOLSETF) API 64

Authorities and Locks 65

Required Parameter Group 65

Format of Filter Information 65

Return and Reason Codes 71

Error Messages 72

Set Timer (QOLTIMER) API 73

Authorities and Locks 73

Required Parameter Group 74

Optional Parameter 75

Return and Reason Codes 75

Error Messages 76

Data Stream Translation APIs 76

End Data Stream Translation Session (QD0ENDTS)

API 76

Authorities and Locks 76

Required Parameter Group 76

Error Messages 77

Start Data Stream Translation Session (QD0STRTS)

API 77

Authorities and Locks 77

Required Parameter Group 77

Error Messages 78

Translate Data Stream (QD0TRNDS) API 79

Authorities and Locks 79

Required Parameter Group 79

Error Messages 81

OptiConnect APIs 83

Close Path (QzdmClosePath) API 83

Restrictions 84

Authorities and Locks 84

Required Parameter Group 84

CPTH0100 Format 84

Field Descriptions 84

Error Messages 85

Close Stream (QzdmCloseStream) API 85

Restrictions 85

Authorities and Locks 85

Required Parameter Group 85

CSTR0100 Format 86

Field Descriptions 86

Error Messages 86

Open Path (QzdmOpenPath) API 87

Restrictions 87

Authorities and Locks 87

Required Parameter Group 87

OPRC0100 Format 88

OPRQ0100 Format 88

Field Descriptions 88

Error Messages 89

Open Stream (QzdmOpenStream) API 89

Restrictions 90

Authorities and Locks 90

Required Parameter Group 90

OSTR0100 Format 90

Field Descriptions 90

Error Messages 91

Receive Control (QzdmReceiveControl) API . . . 91

Restrictions 91

Authorities and Locks 91

Required Parameter Group 92

RCRC0100 Format 92

RCRQ0100 Format 92

Field Descriptions 93

Error Messages 93

Receive Request (QzdmReceiveRequest) API . . . 93

Restrictions 94

Authorities and Locks 94

Required Parameter Group 94

RQRC0100 Format 95

RQRQ0100 Format 95

Field Descriptions 95

Error Messages 96

Receive Response (QzdmReceiveResponse) API . . 97

Restrictions 97

Authorities and Locks 97

© Copyright IBM Corp. 1998, 2006 iii

Required Parameter Group 97

RSRC0100 Format 98

RSRQ0100 Format 98

Field Descriptions 99

Error Messages 99

Send Request (QzdmSendRequest) API 100

Restrictions 100

Authorities and Locks 100

Required Parameter Group 100

SRRC0100 Format 101

SRRQ0100 Format 101

Field Descriptions 102

Error Messages 103

Send Response (QzdmSendResponse) API 103

Restrictions 103

Authorities and Locks 103

Required Parameter Group 104

SRSP0100 Format 104

Field Descriptions 104

Error Messages 105

Wait Message (QzdmWaitMessage) API 105

Restrictions 106

Authorities and Locks 106

Required Parameter Group 106

WMRC0100 Format 107

WMRQ0100 Format 107

Field Descriptions 107

Error Messages 107

TCP/IP Management 108

Change Connection Attribute (QTOCCCNA) API 109

Authorities and Locks 109

Required Parameter Group 110

TCPA0001 Format 110

UDPA0001 Format 110

Field Descriptions 111

TCPA0101 Format 111

UDPA0101 Format 111

Field Descriptions 112

Error Messages 112

Change IPv4 Interface (QTOCC4IF) API 113

Authorities and Locks 113

Required Parameter Group 113

IFCH0100 Format 113

Format of Preferred Interface List Entry . . . 114

Field Descriptions 114

Usage Notes 115

Error Messages 115

Convert Interface ID (QtocCvtIfcID) API 115

Authorities and Locks 115

Required Parameter Group 115

Format of Returned Interface Data 117

NCII0100 Format 117

Field Descriptions 117

NCII0200 Format 117

Field Descriptions 118

NCII0300 Format 118

Field Descriptions 118

Error Messages 119

List Neighbor Cache Table (QtocLstNeighborTbl)

API 119

Authorities and Locks 119

Required Parameter Group 120

Format of Neighbor Cache Table Lists 120

Input Parameter Section 121

Header Section 121

NNCT0100 Format 121

Field Descriptions 122

Error Messages 124

List Network Connections (QtocLstNetCnn) API 124

Authorities and Locks 124

Required Parameter Group 125

Format of Connection Status Lists 125

Input Parameter Section 126

Header Section 126

NCLQ0100 Format 126

Field Descriptions 127

NCLQ0200 Format 128

Field Descriptions 128

Format of Returned Connection Data 130

NCNN0100 Format 130

Field Descriptions 131

NCNN0200 Format 132

Field Descriptions 133

Error Messages 134

List Network Interfaces (QtocLstNetIfc) API . . . 135

Authorities and Locks 135

Required Parameter Group 135

Format of Interface Lists 136

Input Parameter Section 136

Header Section 136

Format of Returned Connection Data 137

NIFC0100 Format 137

Format of Preferred Interface List Entry . . . 138

Field Descriptions 138

NIFC0200 Format 143

Field Descriptions 144

Error Messages 149

List Network Routes (QtocLstNetRte) API 150

Authorities and Locks 150

Required Parameter Group 150

Format of Route Lists 151

Input Parameter Section 151

Header Section 152

Format of Returned Connection Data 152

NRTE0100 Format 152

Field Descriptions 153

NRTE0200 Format 156

Field Descriptions 157

Error Messages 162

List Physical Interface ARP Table

(QtocLstPhyIfcARPTbl) API 162

Authorities and Locks 163

Required Parameter Group 163

Format of ARP Table Lists 163

Input Parameter Section 164

Header Section 164

ARPT0100 Format 164

Field Descriptions 164

Error Messages 165

List Physical Interface Data (QtocLstPhyIfcDta) API 166

Authorities and Locks 166

Required Parameter Group 166

iv iSeries: Communications APIs

Format of Physical Interface Lists 167

Input Parameter Section 167

Header Section 168

Format of Returned Connection Data 168

IFCD0100 Format 168

Field Descriptions 169

IFCD0200 Format 171

Field Descriptions 172

IFCD0300 Format 175

Field Descriptions 177

Error Messages 181

List PPP Connection Profiles (QtocLstPPPCnnPrf)

API 181

Authorities and Locks 181

Required Parameter Group 182

Format of Connection Profile Lists 182

Input Parameter Section 182

Header Section 183

PRFD0100 Format 183

Field Descriptions 183

Error Messages 186

List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API 186

Authorities and Locks 186

Required Parameter Group 186

Format of Point-to-Point Jobs List 187

Input Parameter Section 187

Header Section 187

PPPJ0100 Format 188

Field Descriptions 188

Error Messages 189

Remove ARP Table Entry (QtocRmvARPTblE) API 189

Authorities and Locks 189

Required Parameter Group 189

Error Messages 190

Retrieve Network Connection Data

(QtocRtvNetCnnDta) API 190

Authorities and Locks 190

Required Parameter Group 190

Socket Connection Request Format 191

IPv4 connection (Protocol field value is 1 or 2) 191

IPv6 connection (Protocol field value is 3 or 4) 192

Field Descriptions 192

Format of Returned Connection Data 192

NCND0100 Format 193

Field Descriptions 193

NCND0200 Format 194

List of Socket Options. 196

List of Jobs/Tasks Associated with this

Connection. 196

Field Descriptions 196

NCND1100 Format 201

Field Descriptions 201

NCND1200 Format 202

List of Socket Options. 204

List of Jobs/Tasks Associated with this

Connection. 204

Field Descriptions 204

Error Messages 209

Retrieve PPP Connection Profiles

(QtocRtvPPPCnnPrf) API 210

Authorities and Locks 210

Required Parameter Group 210

Format of Connection Profile Attributes

Information 211

PRFR0100 Format 211

Field Descriptions 211

PRFR0200 Format 213

Field Descriptions 215

Connection Profile Detailed Parameters 222

Field Descriptions 223

Remote Phone Numbers 226

Field Descriptions 226

Error Messages 226

Retrieve TCP/IP Attributes (QtocRtvTCPA) API 226

Authorities and Locks 227

Required Parameter Group 227

Format of TCP/IP Attributes Information . . . 227

TCPA0100 Format 228

Field Descriptions 228

TCPA0200 Format 230

Field Descriptions 231

TCPA0300 Format 236

Field Descriptions 237

TCPA1100 Format 238

Field Descriptions 239

TCPA1200 Format 239

Field Descriptions 240

TCPA1300 Format 242

Field Descriptions 243

Error Messages 243

Update DNS API (QTOBUPDT) 243

Authorities and Locks 244

Required Parameter Group 244

Update Instructions Syntax 246

DNSA0100 Format 248

Field Descriptions 248

Error Messages 248

CPI Communications (CPI-C) 249

Exit Programs 249

Trace Exit Program for Trace TCP/IP Application

command 249

Authorities and Locks 250

Required Parameter Group 250

Field Descriptions 251

Related Information 251

Exit Program for Watch for Trace Event 252

Authorities and Locks 252

Required Parameter Group 252

Field Descriptions 253

Related Information 254

Concepts 254

User-Defined Communications 254

Overview 254

User-Defined Communications Callable

Routines 255

Input/Output Buffers and Descriptors 256

Queues 256

Terminology 256

Relationship to Communications Standards . . . 257

Local Area Network (LAN) Considerations . . . 260

X.25 Considerations 261

Contents v

Programming Design Considerations for

Communications APIs 262

Jobs 262

Application Program Feedback 265

Synchronous and Asynchronous Operations . . 265

Programming Languages 265

Starting and Ending Communications 265

Using Connection Identifiers 266

Incoming Connections 277

Closing Connections 282

Programming Considerations for LAN

Applications 283

Operations 284

Configuration 284

Inbound Routing Information 284

End-to-End Connectivity 284

Sending and Receiving Data 285

Maximum Amount of Outstanding Data . . . 285

Ethernet to Token-Ring Conversion and Routing 285

Performance Considerations 285

Programming Considerations for X.25 Applications 286

X.25 Packet Types Supported 286

Operations 287

Connections 288

Connection Identifiers 288

Connection Information 289

Switched Virtual Circuit (SVC) Connectivity . . 289

Inbound Routing Information 289

End-to-End Connectivity 290

Permanent Virtual Circuit (PVC) Connectivity 290

Inbound Routing Information 290

End-to-End Connectivity 290

Sending and Receiving Data Packets 291

X.25 Call Control 292

Performance Considerations 292

Queue Considerations 293

User Space Considerations 296

Return Codes and Reason Codes 298

Messages 298

Configuration and Queue Entries 299

Configuring User-Defined Communications

Support 299

Links 299

Queue 300

Queue Entries 300

General Format 300

Enable-Complete Entry 301

Disable-Complete Entry 302

Permanent-Link-Failure Entry 302

Incoming-Data Entry 303

Timer-Expired Entry 303

Debugging of User-Defined Communications

Applications 304

System Services and Tools 304

Program Debug 304

Work with Communications Status 304

Display Job Log 305

Display Connection Status 305

Display Inbound Routing Information 305

Work with Communications Trace 305

Work with Error Log 305

Dump System Object to View User Spaces . . . 306

Error Codes 312

Local Area Network (LAN) Error Codes . . . 312

X.25 Error Codes 313

Common Errors and Messages 316

Appendix. Notices 319

Programming Interface Information 320

Trademarks 321

Terms and Conditions 322

vi iSeries: Communications APIs

Communications APIs

The Communications APIs provide the information needed to write user-defined communications

applications, programming examples, and debugging information. The Data Stream Translation APIs

allow a user-written application program that creates 3270 data streams to run on the an iSeries server

using 5250 data streams. The OptiConnect APIs can be used to move user data between two or more

systems that are connected by an OptiConnect fiber-optic bus. The TCP/IP Management APIs allow you

to retrieve information about your TCP/IP setup and status, and change certain system values related to

TCP/IP.

Communications APIs include the following:

v “User-Defined Communications Support APIs”

v “Data Stream Translation APIs” on page 76

v “OptiConnect APIs” on page 83

v “TCP/IP Management” on page 108

v “CPI Communications (CPI-C)” on page 249

For information on user-defined communications support, read the following topics:

v “User-Defined Communications” on page 254

v “Programming Design Considerations for Communications APIs” on page 262

v “Configuration and Queue Entries” on page 299

v “Debugging of User-Defined Communications Applications” on page 304

 APIs by category

APIs

These are the APIs for this category.

User-Defined Communications Support APIs

User-defined communications support is made up of seven callable APIs that provide services for a

user-defined communications application program.

The user-defined communications Support APIs are:

v “Disable Link (QOLDLINK) API” on page 2 (QOLDLINK) disables one or all links.

v “Enable Link (QOLELINK) API” on page 3 (QOLELINK) enables link for input and output.

v “Query Line Description (QOLQLIND) API” on page 9 (QOLQLIND) queries an existing line

description.

v “Receive Data (QOLRECV) API” on page 21 (QOLRECV) receives data from the link.

v “Send Data (QOLSEND) API” on page 39 (QOLSEND) sends data from the link.

v “Set Filter (QOLSETF) API” on page 64 (QOLSETF) activates or deactivates filters.

v “Set Timer (QOLTIMER) API” on page 73 (QOLTIMER) sets or cancels a timer.

 Top | “Communications APIs” | APIs by category

© Copyright IBM Corp. 1998, 2006 1

aplist.htm
#TOP_OF_PAGE
aplist.htm

Disable Link (QOLDLINK) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Communications handle Input Char(10)

4 Vary option Input Char(1)

 Default Public Authority: *USE

 Threadsafe: No

The Disable Link (QOLDLINK) API disables one or all links that are currently enabled in the job in

which the application program is running. When a link is disabled, all system resources that the link is

using are released, the input and output buffers and descriptors for that link are deleted, and input or

output on that link is no longer possible.

In addition to an application program explicitly disabling a link by calling the QOLDLINK API,

user-defined communications support will implicitly disable a link in the following cases:

v When the network device associated with an enabled link is varied off from the job in which it was

enabled

v When a job ends in which one or more links were enabled

v When the application program that enabled the link ends abnormally

v When the Reclaim Resource (RCLRSC) command is used

v When an unmonitored escape message is received

For each link that is successfully disabled, either explicitly or implicitly, the disable-complete entry will be

sent to the data queue or user queue specified on the call to the QOLELINK API when the link was

enabled. See “Disable-Complete Entry” on page 302 for the format of the disable-complete entry.

Authorities and Locks

None.

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 3.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 3.

Communications handle

INPUT; CHAR(10)

 The name of the link to disable. The special value of *ALL (left-justified and padded on the right

with spaces) may be used to disable all links currently enabled in the job that the application

program is running in.

Vary option

INPUT; CHAR(1)

 The vary option for the network device description associated with each link being disabled. The

valid values are as follows:

2 iSeries: Communications APIs

X’00’ Do not vary off the network device description.

X’01’ Vary off the network device description.

Return and Reason Codes

Return and Reason Codes for the QOLDLINK API

 Return / Reason Code Meaning Recovery

0/0 Operation successful. Continue processing.

83/1004 Vary option not valid. Correct the vary option parameter. Then, try

the request again.

83/3001 Link not enabled. Correct the communications handle

parameter. Then, try the request again.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Enable Link (QOLELINK) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Data unit size Output Binary(4)

4 Data units created Output Binary(4)

5 LAN user data size Output Binary(4)

6 X.25 data unit size Input Binary(4)

7 Input buffer Input Char(20)

8 Input buffer descriptor Input Char(20)

9 Output buffer Input Char(20)

10 Output buffer descriptor Input Char(20)

11 Key length Input Binary(4)

12 Key value Input Char(256)

13 Qualified queue name Input Char(20)

14 Line description Input Char(10)

15 Communications handle Input Char(10)

 Optional Parameter Group:

 16 Queue type Input Char(1)

17 Network interface description Input Char(10)

18 Extended operations Input Char(1)

 Default Public Authority: *USE

 Threadsafe: No

The Enable Link (QOLELINK) API enables a link for input and output on a communications line. The

communications line, described by the line description parameter, must be a token-ring, Ethernet,

wireless, FDDI, or X.25 line. The link being enabled can only be accessed within the job in which the

QOLELINK API was called.

Before calling the QOLELINK API to enable a link, you must configure the following objects:

v Token-ring, Ethernet, wireless, FDDI, or X.25 line description

v Data queue or user queue

Communications APIs 3

#TOP_OF_PAGE
aplist.htm

v Network interface description for X.25 networks running over ISDN

See “Configuring User-Defined Communications Support” on page 299 for more information on

configuration.

The QOLELINK API creates the input and output buffers and buffer descriptors used for the link being

enabled. The network controller description and the network device description, associated with the link

being enabled, are also created, if necessary. In addition, the following are varied on, if necessary.

v Line description

v Network controller description

v Network device description

v Network interface descriptions used by the line description

If the X.25 switched network interface list has multiple network interface descriptions configured, all of

them can be varied on at one time. For more information on varying on network interface descriptions,

refer to the Communications Management

book.

When the QOLELINK API returns, your application program should examine the codes to determine the

status of the link. Successful return and reason codes (both zero) indicate the link is being enabled and an

enable-complete entry will be sent to the data queue or user queue specified on the call to the

QOLELINK API when the enable operation completes. See “Enable-Complete Entry” on page 301 for

more information on the enable-complete entry. Unsuccessful return and reason codes indicate the link

could not be enabled and the enable-complete entry will not be sent to the data queue or user queue.

“Return and Reason Codes” on page 7 provides more information on the QOLELINK API return and

reason codes.

Authorities and Locks

User Space Authority

*READ

User Space Library Authority

*USE and *ADD. *OBJOPR plus *READ is equivalent to *USE.

User Space Lock

*EXCL

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 7.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 7.

Data unit size

OUTPUT; BINARY(4)

 The total number of bytes allocated for each data unit in the input and output buffers. For

token-ring links, this includes user data (LAN user data size parameter), general LAN header

information, and optional routing information. For Ethernet, wireless, and FDDI links, this

includes user data (LAN user data size parameter) and general LAN header information. For X.25

links, this includes user data (X.25 user data size parameter). For more information on the general

LAN header, see Return and Reason Codes for the QOLELINK API (page 26).

4 iSeries: Communications APIs

Data units created

OUTPUT; BINARY(4)

 The number of data units created for the input buffer and the output buffer. This parameter also

specifies the number of elements created for the input buffer descriptor and the output buffer

descriptor. The only valid value is:

 8 All protocols

Note: Because user-defined communications support always returns an 8, you should write your

application program to avoid having to recompile should this value ever change.

LAN user data size

OUTPUT; BINARY(4)

 The number of bytes allocated for token ring, Ethernet, wireless, or FDDI in each data unit of the

input and output buffers. This does not include general LAN header information and optional

routing information.

 The content of this parameter is only valid when enabling a token-ring, Ethernet, wireless, or

FDDI link.

 Note: The maximum amount of token-ring, Ethernet, wireless, or FDDI user data that can be sent

or received in each data unit is determined on a service access point basis in the line description

or by the 1502 byte maximum for Ethernet Version 2 frames, and may be less than the LAN user

data size. See “Query Line Description (QOLQLIND) API” on page 9 for information on

retrieving these values.

X.25 data unit size

INPUT; BINARY(4)

 The number of bytes allocated for X.25 user data in each data unit of the input and output

buffers. This is equal to the maximum amount of X.25 user data that can be sent or received in

each data unit. The content of this parameter is only valid when enabling an X.25 link.

 Range 512 bytes-4096 bytes

Input buffer

INPUT; CHAR(20)

 The name and library of the input buffer that the QOLELINK API creates for this link. The first

10 characters specify the name for the input buffer and the second 10 characters specify the name

of an existing library that the input buffer will be created in. Both entries are left-justified. The

special values of *LIBL and *CURLIB can be used for the library name.

 Note: A user space object with the same name as the input buffer must not already exist in the

specified library.

Input buffer descriptor

INPUT; CHAR(20)

 The name and library of the input buffer descriptor that the QOLELINK API creates for this link.

The first 10 characters specify the name of the input buffer descriptor and the second 10

characters specify the name of an existing library that the input buffer descriptor will be created

in. Both entries are left-justified. The special values of *LIBL and *CURLIB can be used for the

library name.

 Note: A user space object with the same name as the input buffer descriptor must not already

exist in the specified library.

Output buffer

INPUT; CHAR(20)

Communications APIs 5

The name and library of the output buffer that the QOLELINK API creates for this link. The first

10 characters specify the name of the output buffer and the second 10 characters specify the name

of an existing library that the output buffer will be created in. Both entries are left-justified. The

special values of *LIBL and *CURLIB can be used for the library name.

 Note: A user space object with the same name as the output buffer must not already exist in the

specified library.

Output buffer descriptor

INPUT; CHAR(20)

 The name and library of the output buffer descriptor that the QOLELINK API creates for this

link. The first 10 characters specify the name of the output buffer descriptor and the second 10

characters specify the name of an existing library that the output buffer descriptor will be created

in. Both entries are left-justified. The special values of *LIBL and *CURLIB can be used for the

library name.

 Note: A user space object with the same name as the output buffer descriptor must not already

exist in the specified library.

Key length

INPUT; BINARY(4)

 The key length when using a keyed data queue or user queue.

 0 The data queue or user queue is not keyed.

Range 1-256

Key value

INPUT; CHAR(256)

 The key value (left justified) when using a keyed data queue or user queue.

Qualified queue name

INPUT; CHAR(20)

 The name and library of the data queue or user queue where the enable-complete,

disable-complete, permanent-link-failure, and incoming-data entries for this link will be sent. See

“Queue Entries” on page 300 for more information about these queue entries. The first 10

characters specify the name of an existing queue and the second 10 characters specify the library

in which the queue is located. Both entries are left-justified. The special values of *LIBL and

*CURLIB can be used for the library name.

Line description

INPUT; CHAR(10)

 The name of the line description that describes the communications line the link being enabled

will use. An existing token-ring, Ethernet, wireless, FDDI, or X.25 line description must be used.

Communications handle

INPUT; CHAR(10)

 The name assigned to the link being enabled. Any name complying with system object naming

conventions may be used.

Optional Parameter Group

Queue type

INPUT; CHAR(1)

 The type of queue you specified for the Queue name parameter.

 D Data queue

6 iSeries: Communications APIs

U User queue

Network interface description

INPUT; CHAR(10)

 The name of the network interface description. This value is specified if you are running X.25 and

need to specify a particular network interface to use. Otherwise, this value should be set to

blanks.

 Note: This parameter along with the line description parameter causes only the network interface

description specified to be varied on. If this value is not specified and the line description

parameter contains a switched network interface list, all network interface descriptions within the

list are varied on when the QOLELINK API is called.

 Specifying this parameter causes only the line and the network interface that are passed to be

varied on during enable processing.

Extended operations

INPUT; CHAR(1)

 Indicates whether or not extended operations are supported.

 Extended operations affect all connections (UCEPs, PCEPs) on the link. X’B311’ and X’B111’ are

receive extended operations. X’B110’ is a send extended operation.

 1 Operations supported

0 Operations not supported

Return and Reason Codes

Return and Reason Codes for the QOLELINK API

 Return / Reason Code Meaning Recovery

0/0 Operation successful, link enabling. Wait to receive the enable-complete entry

from the data queue or user queue before

doing input/output on this link.

81/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return

and reason code is received.

See messages in the job log for further

information. Then, report the problem using

the ANZPRB command.

82/1000 User data size not valid for X.25 link. Correct the X.25 user data size parameter.

Then, try the request again.

82/1001 Key length not valid. Correct the key length parameter. Then, try

the request again.

82/1002 Queue name not valid. Correct the queue name parameter. Then, try

the request again.

82/1003 Communications handle not valid. Correct the communications handle

parameter. Then, try the request again.

82/1012 Queue type not valid. Queue type must be D or U. Correct the

queue type and try the request again.

82/1013 Extended operations value not valid. Extended operations value must be 1 or 0.

Correct the extended operations value and

try the request again.

82/1020 Group parameters not valid (not all the

parameters within a group were

passed).

Pass all parameters within the group and try

the operation again.

Communications APIs 7

Return / Reason Code Meaning Recovery

82/2000 Line name not valid or protocol is not

supported.

The line name specified must be for a line of

type Ethernet, wireless, token ring, FDDI, or

X.25. Correct the line name and try the

request again.

82/2001 Line description, network controller

description, or network device

description not in a valid state.

See messages in the job log indicating the

affected object and recommended recovery.

Do the recovery, and try the request again.

82/2002 Not authorized to the line description

or network controller description.

See messages in the job log indicating the

affected object and get authorization to it.

Then, try the request again.

82/2003 Could not allocate the network device

description.

Try the request again. If the problem

continues, report the problem using the

ANZPRB command.

82/2004 Could not create the network controller

description or network device

description.

See messages in the job log indicating the

affected object and recommended recovery.

Do the recovery, and try the request again.

82/2005 Could not vary on the network

interface, line description, network

controller description, or network

device description.

See messages in the job log indicating the

affected object and recommended recovery.

Do the recovery, and try the request again.

82/2006 Line description not found. Correct the line description parameter. Then,

try the request again.

82/2007 Line description damaged. Delete and re-create the line description.

Then, try the request again.

82/2008 Unsupported interface. An error

occurred that indicated the network

interface specified cannot be associated

with the line specified. For example,

you specified a network interface for a

token-ring, Ethernet, or wireless line.

The network interface value is not correct for

the line name value. Correct the

configuration or your application.

82/2009 Network interface description not

found.

Specify the correct network interface name

and try the request again.

82/2010 Network interface description specified

could not be used.

Check the network interface description for

possible errors. Correct any errors and try

the request again.

82/2400 An error occurred while creating the

input buffer, input buffer descriptor,

output buffer, or output buffer

descriptor.

See messages in the job log indicating the

affected object and recommended recovery.

Do the recovery, and try the request again.

82/3000 Communications handle already

assigned to another link that is enabled

in this job.

Either disable the link that was assigned this

communications handle, or correct the

communications handle parameter so it does

not specify a communications handle that is

already assigned to a link enabled in this job.

Then, try the request again.

82/3005 Line description already in use by

another link that is enabled in this job.

Disable the link that is using this line

description. Then, try the request again.

8 iSeries: Communications APIs

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Query Line Description (QOLQLIND) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Number of bytes Output Binary(4)

4 User buffer Output Char(*)

5 Line description Input Char(10)

6 Format Input Char(1)

 Optional Parameter Group:

 7 Length of user buffer Input Binary(4)

8 Bytes available Output Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Query Line Description (QOLQLIND) API queries an existing token-ring, Ethernet, wireless, FDDI,

frame relay, or X.25 line description. The data received from the query is placed in the user buffer

parameter.

The line description to be queried does not have to be associated with any links the application program

has enabled. However, data in the line description may change after it is queried.

Authorities and Locks

None.

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 20.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 20.

Number of bytes

OUTPUT; BINARY(4)

 The number of bytes of data returned in the user buffer.

User buffer

OUTPUT; CHAR(*)

Communications APIs 9

#TOP_OF_PAGE
aplist.htm

The buffer where the data from the query will be received. Any unused space in the buffer will

be filled with X’00’. The length of this character structure is determined using User Buffer Format

(page 10).

 User Buffer Format

 Format Group Parameter

Passed

Length of Char(*)

1 No 256

1 or 2 Yes Specified by the length user buffer parameter.

Note: You are recommended to set the length user buffer value to a number large enough to hold

the system maximum values of virtual circuits, SAPs, and group addresses with additional space

left for future needs.

Line description

INPUT; CHAR(10)

 The name of the line description to query. An existing token-ring, Ethernet, wireless, FDDI, frame

relay, or X.25 line description must be used.

Format

INPUT; CHAR(1)

 The format of the data returned in the user buffer. The valid values are as follows:

 X’01’ Use format 01.

X’02’ Use format 02.

See “Format of Data in the User Buffer” on page 11 for more information.

Optional Parameter Group

Length of user buffer

INPUT; BINARY(4)

 The number of bytes available for the API to use in the user buffer parameter. The valid values

are from 0 to 32,767.

 Notes:

1. This parameter is required if format 2 is specified in the format parameter. It is optional if

format 1 is specified.

2. If length user buffer is specified, bytes available must also be specified.

3. If additional information exists that could not be reported, the bytes available parameter will

contain a larger value than the bytes returned parameter.

Bytes available

OUTPUT; BINARY(4)

 The total number of bytes of available information.

 Notes:

1. This parameter is required if format 2 is specified in the format parameter. It is optional if

format 1 is specified.

2. If bytes available is specified, length user buffer must also be specified.

3. If the bytes available parameter contains a number larger than the bytes returned parameter,

there is additional information that the application cannot access.

4. If the return code parameter is nonzero, this value is set to zero.

10 iSeries: Communications APIs

Format of Data in the User Buffer

The data received in the user buffer from the query is made up of two parts. The first portion starts at

offset 0 from the top of the user buffer and contains general query data. The format of this data does not

depend on value of the format parameter supplied to the QOLQLIND API.

General Query Data

 Field Type Description

Line description CHAR(10) The name of the token-ring, Ethernet, wireless, FDDI, frame relay, or X.25 line

description that was queried.

Line type CHAR(1) The type of line description that was queried. The valid values are as follows:

X’04’ X.25

X’05’ Token-ring

X’09’ Ethernet

X’0D’ FDDI

X’0E’ Frame relay

X’10’ Wireless

Status CHAR(1) The current status of the line description. The valid values are as follows:

X’00’ Varied off

X’01’ Varied off pending

X’02’ Varied on pending

X’03’ Varied on

X’04’ Active

X’05’ Connect pending

X’06’ Recovery pending

X’07’ Recovery canceled

X’08’ Failed

X’09’ Diagnostic mode

X’FF’ Unknown

The second portion of the user buffer starts immediately after the general query data and contains data

specific to the type of line description that was queried. The format of this data depends on the value of

the format parameter supplied to the QOLQLIND API.

LAN Specific Data-Format 01

 Field Type Description

Local adapter

address

CHAR(6) Specifies, in packed form, the local adapter address of this line. The special

value of X’000000000000’ indicates that the preset default address for the

adapter card was configured. However, the line description must be varied on

before this address can be retrieved.

Communications APIs 11

Field Type Description

Line speed CHAR(1) The speed of this line. The valid values are as follows:

X’01’ 4 megabits/second

X’02’ 10 megabits/second

X’03’ 16 megabits/second

X’04’ 100 megabits/second

Line capability CHAR(1) The capability of this line. The valid values are as follows:

X’00’ Non-Ethernet

X’01’ Ethernet Version 2

X’02’ Ethernet 802.3

X’03’ Both Ethernet Version 2 and Ethernet 802.3

Line frame size BINARY(2) The maximum frame size possible on this line.

Ethernet Version

2 frame size

BINARY(2) The maximum size for Ethernet Version 2 frames. This will be 1502 if the line

is capable of Ethernet Version 2 traffic. Otherwise, it will be zero.

Number of

SSAPs

BINARY(2) The number of source service access points (SSAPs) configured for this line.

Note: The following 3 rows are repeated for each SSAP configured for this line.

SSAP CHAR(1) The configured source service access point.

SSAP type CHAR(1) The SSAP type. The valid values are as follows:

X’00’ Non-SNA SSAP

X’01’ SNA SSAP

SSAP frame size BINARY(2) The maximum frame size allowed on this SSAP.

Number of

group addresses

BINARY(2) The number of group addresses configured for this line.

Note: This will always be zero for a token-ring line description.

Note: The following row is repeated for each group address configured for this line.

Group address CHAR(6) Specifies a group address, in packed form.

LAN Specific Data-Format 02

 Field Type Description

Local adapter

address

CHAR(6) Specifies, in packed form, the local adapter address of this line. The special

value of X’000000000000’ indicates that the preset default address for the

adapter card was configured. However, the line description must be varied on

before this address can be retrieved.

12 iSeries: Communications APIs

Field Type Description

Line speed CHAR(1) The speed of this line. The valid values are as follows:

X’01’ 4 megabits/second

X’02’ 10 megabits/second

X’03’ 16 megabits/second

X’04’ 100 megabits/second

X’05’ Frame relay (line speed is specified separately)

Line capability CHAR(1) The capability of this line. The valid values are as follows:

X’00’ Non-Ethernet

X’01’ Ethernet Version 2

X’02’ Ethernet 802.3

X’03’ Both Ethernet Version 2 and Ethernet 802.3

Line frame size BINARY(2) The maximum frame size possible on this line.

Ethernet Version

2 frame size

BINARY(2) The maximum size for Ethernet Version 2 frames. This will be 1502 if the line

is capable of Ethernet Version 2 traffic. Otherwise, it will be zero.

Functional

address field

CHAR(6) The hexadecimal functional address configured for the line. An address of

X’000000000000’ indicates there are no functional addresses configured on this

line description.

Note: For additional information on functional addresses, refer to the Token-Ring Architecture Reference book,

SC30-3374.

Number of

group addresses

BINARY(2) The number of group addresses configured for this line. This value is valid for

Ethernet and wireless line descriptions only.

Offset to group

addresses

BINARY(2) Offset within this structure to the array of group addresses

Number of

SSAPs

BINARY(2) The number of SSAPs configured for this line.

Offset to SSAPs BINARY(2) Offset within this structure to the array of SSAPs

FR line speed BINARY(4) Frame relay line speed. This value is valid only when the line type field is set

to X’0E’.

Reserved CHAR(*) Reserved for extension

Note: The following row is duplicated by the number of group addresses.

Group address CHAR(6) Specifies a group address, in packed form.

Note: The following three rows are duplicated by the number of SSAPs.

SSAP CHAR(1) The configured source service access point.

SSAP type CHAR(1) The SSAP type. The valid values are as follows:

X’00’ Non-SNA SSAP

X’01’ SNA SSAP

SSAP frame size BINARY(2) The maximum frame size allowed on this SSAP.

Communications APIs 13

X.25 Specific Data-Format 01

 Field Type Description

Local network

address length

CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in

the local network address.

Local network

address

CHAR(9) Specifies, in BCD, the local network address of this line.

Extended

network

addressing

CHAR(1) Specifies whether network addressing is extended to permit the use of 17

digits in an address. The valid values are as follows:

X’01’ Network addresses may be up to 15 digits

X’02’ Network addresses may be up to 17 digits

Address

insertion

CHAR(1) Specifies whether the system inserts the local network address in call request

and call accept packets. The valid values are as follows:

’Y’ The local network address is inserted in call request and call accept

packets.

’N’ The local network address is not inserted in call request and call

accept packets.

Modulus CHAR(1) The X.25 modulus value. The valid values are as follows:

X’01’ Modulus 8

X’02’ Modulus 128

X.25 DCE

support

CHAR(1) Specifies whether the system communicates using the integrated X.25 DCE

support. This allows the system, acting as the DCE, to communicate with

another system without going through an X.25 network. The valid values are

as follows:

X’01’ The system does not communicate using the X.25 DCE support

X’02’ The system does communicate using the X.25 DCE support

X’03’ The system negotiates whether it communicates using the X.25 DCE

support.

Transmit

maximum

packet size

BINARY(2) The transmit maximum packet size configured for this line.

Receive

maximum

packet size

BINARY(2) The receive maximum packet size configured for this line.

Transmit default

packet size

BINARY(2) The transmit default packet size configured for this line.

Receive default

packet size

BINARY(2) The receive default packet size configured for this line.

14 iSeries: Communications APIs

Field Type Description

Transmit default

window size

BINARY(1) The transmit default window size configured for this line.

Receive default

window size

BINARY(1) The receive default window size configured for this line.

Number of

logical channels

BINARY(2) The number of logical channels configured for this line.

Note: The following 4 rows are repeated for each logical channel configured for this line

Logical channel

group number

CHAR(1) The logical channel group number. This together with the logical channel

number makes up the logical channel identifier.

Logical channel

number

CHAR(1) The logical channel number. This together with the logical channel group

number makes up the logical channel identifier.

Logical channel

type

CHAR(1) The logical channel type. The valid values are as follows:

X’01’ Switched virtual circuit (SVC).

X’02’ Permanent virtual circuit (PVC) that is eligible for use by a network

controller.

 Note: This does not necessarily mean that this PVC is available for

use. Another job running on the network controller attached to this

line may already have this PVC in use.

X’22’ PVC that is not eligible for use by a network controller. For example,

a PVC that is already attached to an asynchronous controller

description.

Logical channel

direction

CHAR(1) The direction of calls allowed on the logical channel. The valid values are as

follows:

X’00’ Not applicable (PVC logical channel).

X’01’ Only incoming calls are allowed on this logical channel.

X’02’ Only outgoing calls are allowed on this logical channel.

X’03’ Both incoming and outgoing calls are allowed on this logical channel.

X.25 Specific Data-Format 02

 Field Type Description

Local network

address length

CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in

the local network address.

Local network

address

CHAR(9) Specifies, in BCD, the local network address of this line.

Extended

network

addressing

CHAR(1) Specifies whether network addressing is extended to permit the use of 17

digits in an address. The valid values are as follows:

X’01’ Network addresses may be up to 15 digits

X’02’ Network addresses may be up to 17 digits

Communications APIs 15

Field Type Description

Address

insertion

CHAR(1) Specifies whether the system inserts the local network address in call request

and call accept packets. The valid values are as follows:

’Y’ The local network address is inserted in call request and call accept

packets.

’N’ The local network address is not inserted in call request and call

accept packets.

Modulus CHAR(1) The X.25 modulus value. The valid values are as follows:

X’01’ Modulus 8

X’02’ Modulus 128

X.25 DCE

support

CHAR(1) Specifies whether the system communicates using the integrated X.25 DCE

support. This allows the system, acting as a DCE, to communicate with

another system without going through an X.25 network. The valid values are

as follows:

X’01’ The system does not communicate using the X.25 DCE support

X’02’ The system does communicate using the X.25 DCE support

X’03’ The system negotiates whether it communicates using the X.25 DCE

support.

Transmit

maximum

packet size

BINARY(2) The transmit maximum packet size configured for this line.

Receive

maximum

packet size

BINARY(2) The receive maximum packet size configured for this line.

Transmit default

packet size

BINARY(2) The transmit default packet size configured for this line.

Receive default

packet size

BINARY(2) The receive default packet size configured for this line.

Transmit default

window size

BINARY(1) The transmit default window size configured for this line.

Receive default

window size

BINARY(1) The receive default window size configured for this line.

Number of

logical channels

BINARY(2) The number of logical channels configured for this line.

Maximum frame

size

BINARY(2) The maximum frame size configured in the line description. The valid values

are as follows:

v 1024

v 2048

v 4096

16 iSeries: Communications APIs

Field Type Description

ISDN interface CHAR(1) Indicates if the line uses an ISDN interface. The valid values are as follows:

X’00’ X.25 line does not run over an ISDN interface.

X’01’ X.25 line runs over an ISDN interface.

Note: The following section applies only if the ISDN interface is specified as X’01’. The sections of format 02 on the

call direction field to the offset to logical channel array field are not meaningful if an ISDN interface is not used and

will return zeros in these fields if an ISDN interface is not specified.

Call direction CHAR(1) The direction of the ISDN call. The valid values are as follows:

X’00’ Incoming switched call

X’01’ Outgoing switched call

X’02’ Either a nonswitched call or not ISDN-capable.

Note: The following fields are only meaningful if the line description is switched.

Length of call ID

information

BINARY(2) Length includes type and plan, as described below, and the call identify

information element.

Communications APIs 17

Field Type Description

Type of number

and numbering

plan

BINARY(1) Type and plan as represented by the following bit sequence: tttt pppp, where

tttt equals the category of the calling number and pppp equals the numbering

plan identification used when the calling party number was created.

Type ’0000 xxxx’

Unknown number

Type ’0001 xxxx’

International number

Type ’0010 xxxx’

National number

Type ’0011 xxxx’

Network specific number

Type ’0100 xxxx’

Subscriber number

Type ’0110 xxxx’

Abbreviated number

Type ’0111 xxxx’

Reserved for extension

Plan ’xxxx 0000’

Unknown

Plan ’xxxx 0001’

ISDN/telephony numbering plan

Plan ’xxxx 0011’

Data numbering plan

Plan ’xxxx 0100’

Telex numbering plan

Plan ’xxxx 1000’

National standard numbering plan

Plan ’xxxx 1001’

Private numbering plan

Plan ’xxxx 1111’

Reserved for extension

Note: Refer to CCITT Recommendation Q.931 for more information.

Reserved BINARY(1) Reserved for extension.

Call ID digits CHAR(128) Calling party number of remote system received off the D-channel, specified in

IA5 code (ASCII).

Length of

subaddress

information

BINARY(2) Length includes type, odd-even indicator, and the subaddress information

element. Values can range from X’0001’ to X’00FF’. The user specified

subaddress is restricted to 20 bytes.

18 iSeries: Communications APIs

Field Type Description

Type of

subaddress and

odd-even

indicator

BINARY(1) Type and odd-even indicator as represented by the following bit sequence: tttt

ixxx, where tttt equals the type of subaddress and i equals whether the address

has an even or odd number of digits.

Type ’0000 xxxx’

NSAP

Type ’0010 xxxx’

User specified

Type remaining

Reserved

Plan ’xxxx 0xxx’

Even number of address digits

Plan ’xxxx 1xxx’

Odd number of address digits

Note: Refer to CCITT Recommendation Q.931 for more information.

Reserved BINARY(1) Reserved for extension.

Subaddress CHAR(128) Calling party subaddress information, received from the D-channel, specified in

the IA5 code set (a superset of ASCII).

Offset to logical

channel array

BINARY(2) Offset within this structure to the array of logical channels

Reserved CHAR(*) Reserved for extension

Note: The following 5 rows are repeated for each logical channel configured for this line. This section is not specific

to ISDN interfaces.

Logical channel

group number

CHAR(1) The logical channel group number. This together with the logical channel

number makes up the logical channel identifier.

Logical channel

number

CHAR(1) The logical channel number. This together with the logical channel group

number makes up the logical channel identifier.

Logical channel

type

CHAR(1) The logical channel type. The valid values are as follows:

X’01’ Switched virtual circuit (SVC).

X’02’ Permanent virtual circuit (PVC) that is eligible for use by a network

controller.
Note: This does not necessarily mean that this PVC is available for use.

Another job running on the network controller attached to this line may

already have this PVC in use.

Type of calls

allowed

CHAR(1) Types of calls supported on the logical channel. The valid values are as

follows:

X’00’ Not applicable (PVC logical channel).

X’01’ Only incoming calls are allowed on this logical channel.

X’02’ Only outgoing calls are allowed on this logical channel.

X’03’ Both incoming and outgoing calls are allowed on this logical channel.

Communications APIs 19

Field Type Description

Availability CHAR(1) Specifies whether the virtual circuit is available or currently is in use. The valid

values are as follows:

X’00’ Available

X’01’ In use

Return and Reason Codes

Return and Reason Codes for the QOLQLIND API

 Return / Reason

Code Meaning Recovery

00/0000 Operation successful. Continue processing.

Notes:

1. When calling QOLQLIND (specifying an X.25 line description, format

1, and not specifying group parameters), up to 54 logical channels can

be contained in the user buffer because it is limited to a size of 256

bytes. To increase the size of the user buffer so that it is sufficient to

contain all of the logical channels, the group parameters should be

used. To determine if there are more than 54 logical channels

configured, use the Display Line Description (DSPLIND) command.

2. The application should check to ensure that the bytes available value

returned is less than or equal to the bytes returned value. If so, there

is additional information that the application may want to receive. To

receive this information, the application must re-issue the call,

specifying the length user buffer equal to or greater than the bytes

available value.

81/9999 Internal system error

detected. Escape

message CPF91F0 will

be sent to the

application program

when this return and

reason code is

received.

See messages in the job log for further information. Report the problem

using the ANZPRB command.

83/1005 Format not valid. Correct the format parameter. Try the request again.

83/1014 Length user buffer

value not valid. This

value cannot be

negative.

Correct the length user buffer value to a zero or a positive value less than

32K and try the operation again.

83/1020 Group parameters not

valid.

All parameters within the group must be specified. Correct the parameter

list and try the request again.

83/1021 Required parameter

not specified.

Format 2 was requested and the required group parameters (length user

buffer and bytes available) were not specified. Correct the parameter list

and try the request again.

83/1998 User buffer parameter

too small.

Either the length user buffer value is negative or it contains a positive

value and the system was not able to put the data into the user buffer

provided by the application. Correct the application and try the request

again.

20 iSeries: Communications APIs

Return / Reason

Code Meaning Recovery

83/2000 Line description not

configured for

token-ring, Ethernet,

wireless, or X.25.

Correct the line description parameter. Try the request again.

83/2002 Not authorized to line

description.

Get authorization to the line description. Try the request again.

83/2006 Line description not

found.

Correct the line description parameter. Try the request again.

83/2007 Line description

damaged.

Delete and re-create the line description. Try the request again.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Receive Data (QOLRECV) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Existing user connection end point ID Output Binary(4)

4 New provider connection end point ID Output Binary(4)

5 Operation Output Char(2)

6 Number of data units Output Binary(4)

7 Data available Output Char(1)

8 Diagnostic data Output Char(40)

9 Communications handle Input Char(10)

 Default Public Authority: *USE

 Threadsafe: No

The Receive Data (QOLRECV) API performs an input operation on a link that is currently enabled in the

job in which the application program is running. The type of data received is returned in the operation

parameter. The data itself, is returned in the input buffer that was created when the link was enabled. For

X’0001’ operations, a description of that data is also be returned in the input buffer descriptor that is

created when the link was enabled.

The QOLRECV API can receive different types of data depending on the type of communications line the

link is using. See “LAN Input Operations” on page 25 for more information on the types of data that can

be received on links using a token-ring, Ethernet, wireless, or FDDI communications line. See “X.25 SVC

and PVC Input Operations” on page 27 for more information on the types of data that can be received on

links using an X.25 communications line.

Communications APIs 21

#TOP_OF_PAGE
aplist.htm

Note: The QOLRECV API should only be called when the user-defined communications support has data

available to be received. This is indicated either by an incoming-data entry on the data queue or user

queue, or by the data available parameter on the QOLRECV API.

Authorities and Locks

None.

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 34.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 34.

Existing user connection end point ID

OUTPUT; BINARY(4)

 The user connection end point (UCEP) ID that the data was received on. For links using a

token-ring, Ethernet, wireless, or FDDI communications line, the content of this parameter will

always be 1.

 For links using an X.25 communications line, the content of this parameter is only valid when the

operation parameter is X’0001’, X’B001’, X’B101’, X’B301’, or X’BF01’. It will contain the UCEP ID

that was provided in the new user connection end point ID parameter on the call to the

QOLSEND API with operation X’B000’ or X’B400’.

 Note: If an incoming X.25 SVC call is rejected by the user-defined communications application

program by calling the QOLSEND API with operation X’B100’, the content of this parameter will

be set to zero when notification of the completion of the X’B100’ operation is received from the

QOLRECV API (operation X’B101’).

New provider connection end point ID

OUTPUT; BINARY(4)

 The provider connection end point (PCEP) ID for the connection that is to be established. This

identifier must be used on all subsequent calls to the QOLSEND API for this connection.

 The content of this parameter is only valid for links using an X.25 communications line and when

the operation parameter is X’B201’.

Operation

OUTPUT; CHAR(2)

 The type of data received by the application program. With the exception of X’0001’, all values

are only valid for links using an X.25 communications line. The valid values are as follows:

 X’0001’ User data.

X’B001’ Completion of the X’B000’ output operation.

X’B101’ Completion of the X’B100’ output operation.

X’B111’ Completion of the X’B110’ output operation.

Cleanup of all connections complete. No data is associated with this operation.

X’B201’ Incoming X.25 switched virtual circuit (SVC) call.

X’B301’ Connection failure or reset indication received.

22 iSeries: Communications APIs

X’B311’ Connection failure applying to all connections for this link.

This operation is only received when the extended operations parameter for the QOLELINK API

is set to operations supported.

X’BF01’ Completion of the reset (X’BF00’) output operation.

Note: The special value of X’0000’ will be returned in the operation parameter to indicate no data

was received from the QOLRECV API. See “Return and Reason Codes” on page 34 for more

information.

Number of data units

OUTPUT; BINARY(4)

 The number of data units in the input buffer that contain data. Any value between 1 and the

number of data units created in the input buffer may be returned when the operation parameter

is X’0001’. Otherwise, any value between 0 and 1 may be returned.

 Note: The number of data units created in the input buffer was returned in the data units created

parameter on the call to the QOLELINK API. See “Enable Link (QOLELINK) API” on page 3 for

more information.

Data available

OUTPUT; CHAR(1)

 Specifies whether more data is available for the user-defined communications application

program to receive. The valid values are as follows:

 X’00’ No more data is available for the user-defined communications application program to receive.

X’01’ More data is available for the user-defined communications application program to receive. The

QOLRECV API must be called again prior to any other operations.

Note: An incoming-data entry will be sent to the data queue or user queue only when the

content of this parameter is X’00’ and then more data is subsequently available to be received.

See “Incoming-Data Entry” on page 303 for more information.

Diagnostic data

OUTPUT; CHAR(40)

 Specifies additional diagnostic data. See “Format of Diagnostic Data Parameter” for more

information.

 The content of this parameter is only valid when the operation parameter is X’B001’, X’B101’,

X’B301’, X’B311’, or X’BF01’.

Communications handle

INPUT; CHAR(10)

 The name of the link on which to receive the data.

Format of Diagnostic Data Parameter

The format of the diagnostic data parameter is shown below. The contents of the fields within this

parameter are only valid on X’B001’, X’B101’, X’B301’, X’B311’, and X’BF01’ operations for the indicated

return and reason codes.

 Field Type Description

Reserved CHAR(2) Reserved for extension.

Communications APIs 23

Field Type Description

Error code CHAR(4) Specifies hexadecimal diagnostic information that can be used to

determine recovery actions.

The content of this field is only valid for 83/4001 and 83/4002

return/reason codes.

Time stamp CHAR(8) The time the error occurred.

The content of this field is only valid for 83/4001 and 83/4002

return/reason codes.

Error log identifier CHAR(4) The hexadecimal identifier that can be used for locating error

information in the error log.

The content of this field is only valid for 83/4001 and 83/4002

return/reason codes.

Reserved CHAR(10) Reserved for extension.

Indicators CHAR(1) The indicators that the user-defined communications application

program can use to diagnose a potential error condition. This is a

bit-sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

’0’B Either there is no message in the QSYSOPR message

queue, or there is a message and it does not have the

capability to run problem analysis report (PAR) to

determine the cause of the error.

’1’B There is a message in the QSYSOPR message queue for

this error, and it does have the capability to run problem

analysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:

’0’B The line error can be retried.

’1’B The line error is not able to be restarted.

The valid values for bit 2 are as follows:

’0’B The cause and diagnostic codes fields are not valid.

’1’B The cause and diagnostic codes fields are valid.

The valid values for bit 3 are as follows:

’0’B The error has not been reported to the system operator

message queue.

’1’B The error has been reported to the system operator

message queue.

The valid values for bit 4 are as follows:

’0’B A reset request packet was transmitted on the network

’1’B A reset confirmation packet was transmitted on the

network instead of a reset request packet.

 The content of bit 4 is only valid for operation X’BF01’

with 00/0000 return/reason codes.

The content of the indicators field is only valid for 83/4001,

83/4002, and 83/3202 return/reason codes, and 00/0000

return/reason codes for operation X’BF01’.

24 iSeries: Communications APIs

Field Type Description

X.25 cause code CHAR(1) Specifies additional information on the condition reported. See the

X.25 Network Support

book for interpreting the values of this

field.

The content of this field is only valid for 83/4001, 83/4002 and

83/3202 return/reason codes.

X.25 diagnostic code CHAR(1) Specifies additional information on the condition reported. See the

X.25 Network Support

book for interpreting the values of this

field.

The content of this field is only valid for 83/4001, 83/4002 and

83/3202 return/reason codes.

Reserved CHAR(1) Reserved for extension.

Error offset BINARY(4) The offset from the top of the input buffer to the incorrect data in

the input buffer.

The content of this field is only valid for a 83/1999 return/reason

code.

Reserved CHAR(4) Reserved for extension.

LAN Input Operations

The only type of data that an application program can receive from the QOLRECV API on links using a

token-ring, Ethernet, wireless, or FDDI communications line is user data (operation X’0001’). User-defined

communications support returns the following information for each data frame received from the

QOLRECV API:

v One or more data units. The first data unit contains a general LAN header, routing information if a

token ring is used, and user data.

v Total length of the data unit. This information is reported in the corresponding input buffer descriptor

element.

For example, suppose two data frames came in from the network and the user-defined communications

application program was notified of this by an incoming-data entry on the data queue or user queue. On

return from the QOLRECV API, the information for the first frame would be in the first data unit of the

input buffer and described in the first element of the input buffer descriptor. The information for the

second frame would be in the second data unit of the input buffer and described in the second element

of the input buffer descriptor. The number of data units parameter would be set to 2.

Data Unit Format-LAN Operation X’0001’

Each data frame received from the QOLRECV API corresponds to a data unit in the input buffer. The

information in each of these data units is made up of a general LAN header, routing information (for

token-ring links only), followed by user data.

The general LAN header is used to pass information about the frame to the communications support. The

fields in the general LAN header are used for all LAN link types, although some of them are link

specific. For example, routing information is only for token-ring links, and the length of routing

information is X’00’ to X’18’. For non-token-ring links, the length of the routing information is always

X’00’. Also, DSAP and SSAP are defined for protocols that use the 802.2 logical link control interface and

do not apply to Ethernet Version 2. A DSAP and SSAP of X’00’ tells the communications support that the

data frame is an Ethernet Version 2 frame.

Communications APIs 25

Format of the General LAN Information

 Field Type Description

Length of general

LAN information

BINARY(2) The length of the general LAN information in the data unit,

including this field. This field is always set to 16.

Sending adapter

address

CHAR(6) Specifies, in packed form, the adapter address from which this

frame was sent. The possible values returned in this field depend

on the filters activated for this link. See “Set Filter (QOLSETF) API”

on page 64 for more information.

Note: Because user-defined communications support only allows

connectionless service over LANs, all frames received on a single

call to the QOLRECV API may not have the same source adapter

address.

DSAP address CHAR(1) The service access point on which the iSeries server received this

frame. The possible values returned in this field depend on the

filters activated for this link. See “Set Filter (QOLSETF) API” on

page 64 for more information.

Note: The Ethernet Version 2 standard does not define a DSAP

address in an Ethernet Version 2 frame. Therefore, when receiving

Ethernet Version 2 frames, the DSAP address will be null (X’00’).

SSAP address CHAR(1) The service access point on which the source system sent this

frame. The possible values returned in this field depend on the

filters activated for this link. See “Set Filter (QOLSETF) API” on

page 64 for more information.

Note: The Ethernet Version 2 standard does not define a SSAP

address in an Ethernet Version 2 frame. Therefore, when receiving

Ethernet Version 2 frames, the SSAP address will be null (X’00’).

Reserved CHAR(2) Reserved for extension.

Length of token-ring

routing information

BINARY(2) The length of the routing information in the data unit. For links

using a token-ring communications line, any value between 0 and

18 may be returned, where 0 indicates that there is no routing

information.

For links using an Ethernet, wireless, or FDDI communications line,

the content of this field is not applicable and will be set to 0

indicating that there is no routing information.

Length of user data BINARY(2) The length of the user data in the data unit. This will be less than

or equal to the maximum frame size allowed on the service access

point returned in the DSAP address field. See “Query Line

Description (QOLQLIND) API” on page 9 to determine the

maximum frame size allowed on the service access point returned

in the DSAP address field.

For Ethernet Version 2 frames, this will be at least 48 and not more

than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is

less than 46 bytes.

Token-ring routing information follows the general LAN header. The length of this field is specified by

the length of token-ring routing information field found in the general LAN header. If the length of the

routing information is nonzero, the user data follows the routing information header.

26 iSeries: Communications APIs

The following table shows the fields and offsets used for Ethernet 802.3, wireless, and token-ring frames

without routing information.

 General LAN Header User Data

0 16

The length of the user data is described in the length of user data field in the general LAN header. For

Ethernet Version 2 frames, the first 2 bytes of user data are used for the frame type. The type field is a

2-byte field that specifies the upper layer protocol of the frame.

The adapter address, DSAP, SSAP, and frame type fields are all used to define inbound routing

information used by the QOLSETF API. Refer to “Set Filter (QOLSETF) API” on page 64 for information

on the QOLSETF API and how inbound routing information is used to route inbound data to the

application program.

Note: Inbound routing information is not related to the token-ring routing information described in the

general LAN header.

The following table shows the fields and offsets used for token-ring frames with routing information.

 General LAN Header Routing Information User Data

0 16 16 + Length of Routing Information

The following table shows the fields and offsets used for Ethernet Version 2 frames.

Note: For Ethernet Version 2, the frame type field is the first 2 bytes of user data, following the general

LAN information, with user data starting at offset 18.

General LAN Header

User Data

Frame Type Data

0 16 18

Input Buffer Descriptor Element Format-LAN Operation X’0001’

The information returned in each data unit of the input buffer will be described in the corresponding

element of the input buffer descriptor. The following table shows the format of each element in the input

buffer descriptor.

 Field Type Description

Length BINARY(2) The number of bytes of information in the corresponding data unit

of the input buffer. This will be equal to the length of the general

LAN information with the length of the routing information and

the length of the user data. See Format of the General LAN

Information (page 26) for general LAN information fields and

descriptions.

Reserved CHAR(30) Reserved for extension.

X.25 SVC and PVC Input Operations

The following table shows the types of data that can be received from the QOLRECV API on links using

an X.25 communications line.

Communications APIs 27

Operation Meaning

X’0001’ User data (SVC or PVC).

X’B001’ Completion of the X’B000’ output operation (SVC or PVC).

X’B101’ Completion of the X’B100’ output operation (SVC or PVC).

X’B201’ Incoming X.25 call (SVC).

X’B301’ Connection failure or reset indication (SVC or PVC).

X’B311’ Connection failure applying to all connections for this link.

X’BF01’ Completion of the X’BF00’ output operation (SVC or PVC).

X.25 Operation X’0001’

This operation indicates that user data was received on an X.25 SVC or PVC connection. User-defined

communications support will return the following information:

v User data in the next data unit of the input buffer, starting with the first data unit

v A description, in the corresponding element of the input buffer descriptor, of the user data in that data

unit

For example, suppose two data units of user data came in from the network and the application program

was notified of this by an incoming-data entry on the data queue or user queue. On return from the

QOLRECV API, the first portion of the user data would be in the first data unit of the input buffer and

described in the first element of the input buffer descriptor. The second portion of the user data would be

in the second data unit of the input buffer and described in the second element of the input buffer

descriptor. The number of data units parameter would be set to 2.

User-defined communications support will automatically reassemble the X.25 data packet(s) from a

complete packet sequence into the next data unit of the input buffer. If the amount of user data in a

complete packet sequence is more than what can fit into a data unit, the more data indicator field in the

corresponding element of the input buffer descriptor will be set to X’01’ and the next data unit will be

used for the remaining user data, and so on.

Data Unit Format-X.25 Operation X’0001’

Each data unit in the input buffer consists solely of user data and starts offset 0 from the top of the data

unit.

Input Buffer Descriptor Element Format-X.25 Operation X’0001’

The user data returned in each data unit of the input buffer will be described in the corresponding

element of the input buffer descriptor.

 Field Type Description

Length BINARY(2) The number of bytes of user data in the corresponding data unit of

the input buffer. This will always be less than or equal to the X.25

user data size parameter that was specified on the call to the

QOLELINK API when the link was enabled. See “Enable Link

(QOLELINK) API” on page 3 for more information.

Note: The maximum amount of user data in a data unit of the

input buffer may be further limited by the maximum data unit

assembly size for a connection. See “Send Data (QOLSEND) API”

on page 39 for more information.

28 iSeries: Communications APIs

Field Type Description

More data indicator CHAR(1) Specifies whether the remaining amount of user data from a

complete X.25 packet sequence is more than can fit into the

corresponding data unit. The valid values are as follows:

X’00’ The remaining amount of user data from a complete X.25

packet sequence fit into the corresponding data unit.

X’01’ The remaining amount of user data from a complete X.25

packet sequence could not all fit into the corresponding

data unit. The next data unit will be used.

Qualified data

indicator

CHAR(1) Specifies whether the X.25 qualifier bit (Q-bit) was set on or off in

all X.25 packets reassembled into the corresponding data unit. The

valid values are as follows:

X’00’ The Q-bit was set off in all X.25 packets reassembled into

the corresponding data unit.

X’01’ The Q-bit was set on in all X.25 packets reassembled into

the corresponding data unit.

Interrupt packet

indicator

CHAR(1) Specifies whether the user data in the corresponding data unit was

received in an X.25 interrupt packet. The valid values are as

follows:

X’00’ The user data in the corresponding data unit was received

in one or more data packets.

X’01’ The user data in the corresponding data unit was received

in an X.25 interrupt packet.

Delivery confirmation

indicator

CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set

on or off in all X.25 packets reassembled into the corresponding

data unit. The valid values are as follows:

X’00’ The D-bit was set off in all X.25 packets reassembled into

the corresponding data unit.

X’01’ The D-bit was set on in all X.25 packets reassembled into

the corresponding data unit.

 Note: A packet-level confirmation is sent by the

input/output processor (IOP) when a packet is received

with the X.25 D-bit set on.

Reserved CHAR(26) Reserved for extension.

X.25 Operation X’B001’

This operation indicates that a X’B000’ output operation has completed. User-defined communications

support will return the data for this operation (if any) in the first data unit of the input buffer. The input

buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason codes:

v 0/0

Communications APIs 29

v 83/1999

v 83/4002 (only when the number of data units parameter is set to one)

The format of the data returned in the input buffer for the X’B001’ operation depends on whether the

X’B000’ output operation was used to initiate an SVC call or to open a PVC connection. Each format will

be explained below.

Note: The formats below only apply to 0/0 and 83/4002 return and reason codes. When the X’B001’

operation is received with a 83/1999 return and reason code, the data returned starts at offset 0 from the

top of the first data unit in the input buffer and contains the data specified in the output buffer on the

X’B000’ output operation. See “Send Data (QOLSEND) API” on page 39 for more information.

Data Unit Format-X.25 Operation X’B001’ (Completion of SVC Call)

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

 Field Type Description

Reserved CHAR(2) Reserved for extension.

Logical channel

identifier

CHAR(2) The logical channel identifier assigned to the SVC connection.1

Transmit packet size BINARY(2) The negotiated transmit packet size for this connection.1

Transmit window size BINARY(2) The negotiated transmit window size for this connection.1

Receive packet size BINARY(2) The negotiated receive packet size for this connection.1

Receive window size BINARY(2) The negotiated receive window size for this connection.1

Reserved CHAR(32) Reserved for extension.

Delivery confirmation

support

CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set

on or off in the call connected packet. This also specifies the D-bit

support for this connection.1 The valid values are as follows:

X’00’ The D-bit was set off in the call connected packet. D-bit

will be supported for sending data but not for receiving

data.

 Note: When this value is returned and an X.25 packet is

received with the D-bit set on, the input/output processor

(IOP) will send a reset packet.

X’01’ The D-bit was set on in the call connected packet. D-bit

will be supported for sending data and for receiving data.

Reserved CHAR(11) Reserved for extension.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Call/clear user data

length

BINARY(2) The number of bytes of data in the call/clear user data field. Any

value between 0 and 128 may be returned.

Call/clear user data CHAR(128) For a 0/0 return and reason code, this specifies the call user data.

For an 83/4002 return and reason code, this specifies the clear user

data.

Reserved CHAR(168) Reserved for extension.

30 iSeries: Communications APIs

Field Type Description

1 The content of this field is only valid for a 0/0 return and reason code.

Data Unit Format-X.25 Operation X’B001’ (Completion of Open PVC)

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

 Field Type Description

Reserved CHAR(4) Reserved for extension.

Transmit packet size BINARY(2) The negotiated transmit packet size for this connection.

Note: This will be the same as the requested transmit packet size

specified on the X’B000’ output operation.

Transmit window size BINARY(2) The negotiated transmit window size for this connection.

Note: This will be the same as the requested transmit window size

specified on the X’B000’ output operation.

Receive packet size BINARY(2) The negotiated receive packet size for this connection.

Note: This will be the same as the requested receive packet size

specified on the X’B000’ output operation.

Receive window size BINARY(2) The negotiated receive window size for this connection.

Note: This will be the same as the requested receive window size

specified on the X’B000’ output operation.

Reserved CHAR(500) Reserved for extension.

X.25 Operation X’B101’

This operation indicates that a X’B100’ output operation has completed. User-defined communications

support will return the data for this operation (if any) in the first data unit of the input buffer. The input

buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason codes:

v 0/0 (only when the number of data units parameter is set to one)

v 83/1999

Note: The format below only applies for a 0/0 return and reason code. When the X’B101’ operation is

received with an 83/1999 return and reason code, the data returned starts at offset 0 from the top of the

first data unit in the input buffer and contains the data specified in the output buffer on the X’B100’

output operation. See “Send Data (QOLSEND) API” on page 39 for more information.

Data Unit Format-X.25 Operation X’B101’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

Communications APIs 31

Field Type Description

Clear type CHAR(2) The type of clear user data returned. The valid values are as

follows:

X’0001’ Clear confirmation data included.

X’0002’ Clear indication data included.

Cause code CHAR(1) The X.25 cause code.

Diagnostic code CHAR(1) The X.25 diagnostic code.

Reserved CHAR(4) Reserved for extension.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Clear user data length BINARY(2) The number of bytes of data in the clear user data field. Any value

between 0 and 128 may be returned.

Clear user data CHAR(128) The clear user data.

Reserved CHAR(216) Reserved for extension.

X.25 Operation X’B111’

This operation indicates a X’B110’ output operation has completed. All connections have been closed and

the clean up of connection control information is complete. All UCEPs and PCEPs are freed. There is no

data associated with this operation.

X.25 Operation X’B201’

This operation indicates that an incoming X.25 SVC call was received. User-defined communications

support returns the data for this operation in the first data unit of the input buffer. The input buffer

descriptor is not used.

Note: It is the responsibility of the application program to either accept or reject the incoming call. This is

done by calling the QOLSEND API with operation X’B400’ or X’B100’, respectively.

Data Unit Format-X.25 Operation X’B201’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

 Field Type Description

Reserved CHAR(2) Reserved for extension.

Logical channel

identifier

CHAR(2) The logical channel identifier assigned to the incoming SVC call.

Transmit packet size BINARY(2) The requested transmit packet size for this connection.

Transmit window size BINARY(2) The requested transmit window size for this connection.

Receive packet size BINARY(2) The requested receive packet size for this connection.

Receive window size BINARY(2) The requested receive window size for this connection.

Reserved CHAR(7) Reserved for extension.

32 iSeries: Communications APIs

Field Type Description

Calling DTE address

length

BINARY(1) The number of binary coded decimal (BCD) digits in the calling

DTE address.

Calling DTE address CHAR(16) Specifies, in binary coded decimal (BCD), the calling DTE address.

The address will be left justified and padded on the right with BCD

zeros.

Reserved CHAR(8) Reserved for extension.

Delivery confirmation

support

CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) was set

on or off in the incoming call packet. The valid values are as

follows:

X’00’ The D-bit was set off in the incoming call packet.

X’01’ The D-bit was set on in the incoming call packet.

Reserved CHAR(9) Reserved for extension.

Reverse charging

indicator

CHAR(1) Specifies reverse charging options. The valid values are as follows:

X’00’ Reverse charging not requested.

X’01’ Reverse charging requested.

Fast select indicator CHAR(1) Specifies fast select options. The valid values are as follows:

X’00’ Fast select not requested.

X’01’ Fast select with restriction requested.

X’02’ Fast select without restriction requested.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Call user data length BINARY(2) The number of bytes of data in the call user data field. Any value

between 0 and 128 may be returned.

Call user data CHAR(128) The call user data.

Note: The iSeries server treats the first byte of call user data as the

protocol identifier (PID).

Called DTE address

length

BINARY(1) The number of binary coded decimal (BCD) digits in the called

DTE address.

Called DTE address CHAR(16) Specifies, in binary coded decimal (BCD), the called DTE address.

The address will be left-justified and padded on the right with BCD

zeros.

Reserved CHAR(111) Reserved for extension.

X.25 Operation X’B301’

Communications APIs 33

This operation indicates that a failure has occurred, or a reset indication has been received, on an X.25

SVC or PVC connection. User-defined communications support will return data for this operation in the

first data unit of the input buffer only on a 83/4002 return and reason code when the number of data

units parameter is set to one. The input buffer descriptor is not used.

Note: The diagnostic data parameter will contain the X.25 cause and diagnostic codes when a reset

indication is received.

Data Unit Format-X.25 Operation X’B301’

The data returned starts at offset 0 from the top of the first data unit in the input buffer.

 Field Type Description

Reserved CHAR(8) Reserved for extension.

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be returned.

X.25 facilities CHAR(109) The X.25 facilities data.

Reserved CHAR(48) Reserved for extension.

Clear user data length BINARY(2) The number of bytes of data in the clear user data field. Any value

between 0 and 128 may be returned.

Clear user data CHAR(128) The clear user data.

Reserved CHAR(216) Reserved for extension.

X.25 Operation X’B311’

This operation indicates that an error has occurred that has caused the system to close all connections on

the link. The error may be a system error or a network error. The error information is returned in the

diagnostic data and no additional data is provided.

Note: This operation is only received when the extended operation parameter on the QOLELINK API is

set to operation supported. If the extended operations are not supported and an error occurs that will

close all connections, X’B301’ is received for each connection.

X.25 Operation X’BF01’

This operation indicates that a X’BF00’ output operation has been completed. Neither the input buffer nor

the input buffer descriptor is used for this operation.

Note: When the X’BF01’ operation is received with a 0/0 return and reason code, the diagnostic data

parameter will contain information indicating if a reset request or reset confirmation packet was sent.

Return and Reason Codes

The return and reason codes that can be returned from the QOLRECV API depend on the type of

communications line the link is using and on the type of data (operation) that was received.

LAN Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the

QOLRECV API.

Note: When these return and reason codes are returned, all output parameters except the return and

reason codes will contain hexadecimal zeros.

34 iSeries: Communications APIs

Return / Reason Code Meaning Recovery

0/3203 No data available to be received. Ensure that user-defined communications

support has data available to be received

before calling the QOLRECV API. Try the

request again.

80/2200 Queue error detected. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/2401 Input buffer or input buffer descriptor error

detected. Escape message CPF91F1 will be

sent to the application program when this

return and reason code is received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/3002 A previous error occurred on this link that

was reported to the application program by

escape message CPF91F0 or CPF91F1.

However, the application program has

attempted another operation.

Ensure the link is disabled and see messages

in the job log for further information. If

escape message CPF91F0 was sent to the

application program, then report the problem

using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the

request again.

80/4000 Error recovery has been canceled for this

link.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the condition, enable the link, and try the

request again.

80/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Report the problem using the

ANZPRB command.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link

was successfully enabled, try the request

again.

Return and Reason Codes for LAN Operation X’0001’

 Return / Reason Code Meaning Recovery

0/0 User data received successfully. Continue processing.

X.25 Return and Reason Codes

The following table shows the return and reason codes that indicate data could not be received from the

QOLRECV API.

Note: When these return and reason codes are returned, all output parameters except the return and

reason codes will contain hexadecimal zeros.

 Return / Reason Code Meaning Recovery

0/3203 No data available to be received. Ensure that user-defined communications

support has data available to be received

before calling the QOLRECV API. Try the

request again.

Communications APIs 35

Return / Reason Code Meaning Recovery

80/2200 Queue error detected. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/2401 Input buffer or input buffer descriptor error

detected. Escape message CPF91F1 will be

sent to the application program when this

return and reason code is received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/3002 A previous error occurred on this link that

was reported to the application program by

escape message CPF91F0 or CPF91F1.

However, the application program has

attempted another operation.

Ensure the link is disabled and see messages

in the job log for further information. If

escape message CPF91F0 was sent to the

application program, then report the problem

using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the

request again.

80/4000 Error recovery has been canceled for this

link.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the condition, enable the link, and try the

request again.

80/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Report the problem using the

ANZPRB command.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link

was successfully enabled, try the request

again.

Return and Reason Codes for X.25 Operation X’0001’

 Return / Reason Code Meaning Recovery

0/0 User data received successfully. Continue processing.

Return and Reason Codes for X.25 Operation X’B001’

 Return / Reason Code Meaning Recovery

0/0 The X’B000’ output operation was successful. Continue processing.

83/1999 Incorrect data was specified in output buffer

when the X’B000’ output operation was

issued.

Note: The data specified in the output buffer

will be copied into the input buffer and the

error offset field in the diagnostic data

parameter will point to the incorrect data.

Correct the incorrect data. Then, try the

X’B000’ output operation again.

83/3204 Connection ending because a X’B100’ output

operation was issued.

Wait for notification of the completion of the

X’B100’ output operation from the

QOLRECV API (X’B101’ operation).

83/4001 Link failure, system starting error recovery

for this link. The connection has ended.

Wait for the link to recover. Then, try the

X’B000’ output operation again.

36 iSeries: Communications APIs

Return / Reason Code Meaning Recovery

83/4002 Connection failure. The connection has

ended. The diagnostic data parameter will

contain more information on this error.

Correct any errors and try the X’B000’ output

operation again.

83/4005 All SVC channels are currently in use, or the

requested PVC channel is already in use.

Wait for a virtual circuit to become available.

Then, try the X’B000’ output operation again.

Return and Reason Codes for X.25 Operation X’B101’

 Return / Reason Code Meaning Recovery

0/0 The X’B100’ output operation was successful.

The connection has ended.

Continue processing.

83/1007 Connection identifier not valid because

connection has already ended.

Continue processing.

83/1999 Incorrect data was specified in output buffer

when the X’B100’ output operation was

issued.

Note: The data specified in the output buffer

will be copied into the input buffer and the

error offset field in the diagnostic data

parameter will point to the incorrect data.

Correct the incorrect data. Then, try the

X’B100’ output operation again.

Return and Reason Codes for X.25 Operation X’B111’

 Return / Reason Code Meaning Recovery

0/0 The X’B100’ output operation was successful.

The connection has ended.

Continue processing.

83/1007 Connection identifier not valid because

connection has already ended.

Continue processing.

83/3205 The X’B110’ operation is rejected because the

application has not received the X’B311’

operation prior to requesting the X’B110’

operation.

Correct the application.

Return and Reason Codes for X.25 Operation X’B201’

 Return / Reason Code Meaning Recovery

0/0 Incoming X.25 SVC call received successfully. Continue processing.

Return and Reason Codes for X.25 Operation X’B301’

 Return / Reason Code Meaning Recovery

83/3201 The maximum amount of incoming user data

that can be held by user-defined

communications support for the application

program on this connection has been

exceeded.

Issue the X’B100’ output operation to end the

connection.

Communications APIs 37

Return / Reason Code Meaning Recovery

83/3202 A reset indication has been received on this

connection. The X.25 cause and diagnostic

code fields in the diagnostic data parameter

will contain the cause and diagnostic codes

of the reset indication.

Issue the X’BF00’ output operation to send a

reset confirmation packet.

83/4001 Link failure, system starting error recovery

for this link.

Issue the X’B100’ output operation to end the

connection.

83/4002 Connection failure. The diagnostic data

parameter will contain more information on

this error.

Issue the X’B100’ output operation to end the

connection.

Return and Reason Codes for X.25 Operation X’B311’

 Return / Reason Code Meaning Recovery

83/4001 Link failure, system starting error recovery

for this link. All connections that were active

on this link are closed or cleared.

Issue the X’B110’ operation to free the

connections.

83/4002 A network error has occurred that affects all

connections on this link. All connections that

were active on this link are closed or cleared.

The diagnostic data contains more

information on this error.

Issue the X’B110’ operation to free the

connections.

Return and Reason Codes for X.25 Operation X’BF01’

 Return / Reason Code Meaning Recovery

0/0 The X’BF00’ output operation was successful.

The diagnostic data parameter will contain

information indicating if a reset request or

reset confirmation packet was sent.

Continue processing.

83/1006 Operation not valid. Do not issue the X’BF00’ output operation on

connections that do not support resets.

83/3201 The maximum amount of incoming user data

that can be held by user-defined

communications support for the application

program on this connection has been

exceeded.

Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/3201 return and

reason code). Then issue the X’B100’ output

operation to end the connection.

83/3204 Connection ending because a X’B100’ output

operation was issued.

Wait for notification of the completion of the

X’B100’ output operation from the

QOLRECV API (X’B101’ operation).

83/4001 Link failure, system starting error recovery

for this link.

Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/4001 return and

reason code). Then, issue the X’B100’ output

operation to end the connection.

83/4002 Connection failure. Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/4002 return and

reason code). Then, issue the X’B100’ output

operation to end the connection.

38 iSeries: Communications APIs

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF91F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Send Data (QOLSEND) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Diagnostic data Output Char(40)

4 New provider connection end point ID Output Binary(4)

5 New user end point connection ID Input Binary(4)

6 Existing provider connection end point ID Input Binary(4)

7 Communications handle Input Char(10)

8 Operation Input Char(2)

9 Number of data units Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Send Data (QOLSEND) API performs output on a link that is currently enabled in the job in which

the application program is running. The operation parameter allows you to specify the type of output

operation to perform. The application program must provide the data associated with the output

operation in the output buffer that was created when the link was enabled. For X’0000’ operations, the

application program must also provide a description of that data in the output buffer descriptor that was

created when the link was enabled.

The types of output operations that can be performed on a link depend on the type of communications

line that the link is using. See “LAN Output Operations” on page 43 for more information on output

operations that are supported on links using a token-ring, Ethernet, wireless, or FDDI communications

line. See “X.25 SVC and PVC Output Operations” on page 45 for more information on output operations

that are supported on links using an X.25 communications line.

Authorities and Locks

None.

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 60.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 60.

Communications APIs 39

#TOP_OF_PAGE
aplist.htm

Diagnostic data

OUTPUT; CHAR(40)

 Additional diagnostic data. See “Diagnostic Data Parameter Format” on page 41 for more

information.

 The content of this parameter is only valid when the operation parameter is set to X’0000’ or

X’B400’.

New provider connection end point ID

OUTPUT; BINARY(4)

 The provider connection end point (PCEP) ID for the connection that is to be established. This

identifier must be used on all subsequent calls to the QOLSEND API for this connection.

 The content of this parameter is only valid for links using an X.25 communications line and when

the operation parameter is set to X’B000’.

New user connection end point ID

INPUT; BINARY(4)

 The user connection end point (UCEP) ID for the connection that is to be established. This is the

identifier on which all incoming data for this connection will be received. Any numeric value

except zero should be used. See “Receive Data (QOLRECV) API” on page 21 for more

information.

 The content of this parameter is only valid for links using an X.25 communications line and when

the operation parameter is set to X’B000’ or X’B400’.

Existing provider connection end point ID

INPUT; BINARY(4)

 The PCEP ID for the connection on which this operation will be performed. For links using a

token-ring, Ethernet, or wireless communications line, the content of this parameter must always

be set to 1.

 For links using an X.25 communications line, the content of this parameter is only valid when the

operation parameter is set to X’0000’, X’B100’, X’B400’, or X’BF00’. It must contain the PCEP ID

that was returned in the new provider connection end point ID parameter from the call to the

QOLSEND API with operation X’B000’, or the PCEP ID that was returned in the new provider

connection end point ID parameter from the call to the QOLRECV API with operation X’B201’

(incoming call). See “Receive Data (QOLRECV) API” on page 21 for more information on

receiving X.25 calls.

Communications handle

INPUT; CHAR(10)

 The name of the link on which to perform the output operation.

Operation

INPUT; CHAR(2)

 The type of output operation to perform. With the exception of X’0000’, all values are only valid

for links using an X.25 communications line. The valid values are as follows:

 X’0000’ Send data.

X’B000’ Send call request packet (SVC) or open PVC connection.

X’B100’ Send clear packet (SVC) or close PVC connection.

X’B110’ Initiate final cleanup of all connections that were closed by the system.

This operation is only valid when the application receives an X’B311’ operation to receive

connection failure data.

X’B400’ Send call accept packet (SVC).

X’BF00’ Send reset request packet or reset confirmation packet (SVC or PVC).

40 iSeries: Communications APIs

Number of data units

INPUT; BINARY(4)

 The number of data units in the output buffer that contain data. Any value between 1 and the

number of data units created in the output buffer may be used.

 The content of this parameter is only valid when the operation parameter is set to X’0000’.

 Note: The number of data units created in the output buffer was returned in the data units

created parameter on the call to the QOLELINK API. See “Enable Link (QOLELINK) API” on

page 3 for more information.

Diagnostic Data Parameter Format

The format of the diagnostic data parameter is shown below. The contents of the fields within this

parameter are only valid on X’0000’ and X’B400’ operations for the indicated return and reason codes.

 Field Type Description

Reserved CHAR(2) Reserved for extension.

Error code CHAR(4) Specifies hexadecimal diagnostic information that can be used to

determine recovery actions. See “Error Codes” on page 312for more

information.

The content of this field is only valid for 83/4001, 83/4002, and

83/4003 return/reason codes.

Time stamp CHAR(8) The time the error occurred.

The content of this field is only valid for 83/4001, 83/4002, and

83/4003 return/reason codes.

Error log identifier CHAR(4) The hexadecimal identifier that can be used for locating error

information in the error log.

The content of this field is only valid for 83/4001, 83/4002, and

83/4003 return/reason codes.

Reserved CHAR(10) Reserved for extension.

Communications APIs 41

Field Type Description

Indicators CHAR(1) Specifies indicators the user-defined communications application

program can use for diagnosing a potential error condition. This is

a bit sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

’0’B Either there is no message in the QSYSOPR message

queue, or there is a message and it does not have the

capability to run problem analysis report (PAR) to

determine the cause of the error.

’1’B There is a message in the QSYSOPR message queue for

this error, and it does have the capability to run problem

analysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:

’0’B The line error can be retried.

’1’B The line error cannot be retried.

The valid values for bit 2 are as follows:

’0’B The cause and diagnostic codes fields are not valid.

’1’B The cause and diagnostic codes fields are valid.

The valid values for bit 3 are as follows:

’0’B The error has not been reported to the system operator

message queue.

’1’B The error has been reported to the system operator

message queue.

For example, consider the following values for the indicators field:

X’20’ A condition has caused X.25 cause and diagnostic codes to

be passed to the application. This information can

determine the cause of the condition.

X’50’ An error has occurred and been reported to the QSYSOPR

message queue. The error cannot be retried.

X’F0’ An error has occurred and been reported to the QSYSOPR

message queue. The error cannot be retried, and has X.25

cause and diagnostic codes associated with it. Also a

problem analysis report can be generated to determine the

probable cause.

The content of this field is valid only for 83/4001, 83/4002, 83/3202

and 83/4003 return/reason codes.

X.25 cause code CHAR(1) Specifies additional information on the condition reported. See the

X.25 Network Support

book for interpreting the values of this

field.

The content of this field is only valid for 83/4001, 83/4002 and

83/3202 return/reason codes.

42 iSeries: Communications APIs

Field Type Description

X.25 diagnostic code CHAR(1) Specifies additional information on the condition reported. See the

X.25 Network Support

book for interpreting the values of this

field.

The content of this field is only valid for 83/4001, 83/4002 and

83/3202 return/reason codes.

Reserved CHAR(1) Reserved for extension.

Error offset BINARY(4) The offset from the top of the output buffer to the incorrect data in

the output buffer.

The content of this field is only valid for a 83/1999 return/reason

code.

Reserved CHAR(4) Reserved for extension.

LAN Output Operations

The only output operation supported on links using a token-ring, Ethernet, wireless, or FDDI

communications line is X’0000’ (send user data). For each data frame to be sent on the network, the

application program must provide the following information:

v General LAN information, optional routing information, and user data in the next data unit of the

output buffer, starting with the first data unit

v A description, in the corresponding element of the output buffer descriptor, of the information in that

data unit.

For example, suppose a user-defined communications application program wants to send two data

frames. The information for the first frame would be placed in first data unit of the output buffer and

described in the first element of the output buffer descriptor. The information for the second frame would

be placed in the second data unit of the output buffer and described in the second element of the output

buffer descriptor. The number of data units parameter on the call to the QOLSEND API would be set to

2.

Note: The X’0000’ operation is synchronous. Control will not return from the QOLSEND API until the

operation completes.

Data Unit Format-LAN Operation X’0000’

Each data frame to be sent on the network corresponds to a data unit in the output buffer. The

information in each of these data units is made up of general LAN information, optional routing data,

and user data.

 Field Type Description

Length of general

LAN information

BINARY(2) The length of the general LAN information in the data unit. This

must be set to 16.

Destination adapter

address

CHAR(6) Specifies, in packed form, the adapter address to which this data

frame will be sent.

Note: Because user-defined communications support only allows

connectionless service over LANs, it is not necessary for all frames

being sent on a single output operation to have the same

destination adapter address.

Communications APIs 43

Field Type Description

DSAP address CHAR(1) The service access point on which the destination system will

receive this frame. Any value may be used.

Note: The Ethernet Version 2 standard does not use logical link

control, which utilizes SAPs. Therefore, to send Ethernet Version 2

frames, a null DSAP address (X’00’) must be specified in the DSAP

address field. Also, the Ethernet Standard (ETHSTD) parameter in

the Ethernet line description must be configured as either *ETHV2

or *ALL.

SSAP address CHAR(1) The service access point on which the iSeries server will send this

frame. Any service access point configured in the token-ring,

Ethernet, wireless, or FDDI line description may be used.

Note: The Ethernet Version 2 standard does not use logical link

control, which utilizes SAPs. Therefore, to send Ethernet Version 2

frames, a null SSAP address (X’00’) must be specified in the SSAP

address field. Also, the Ethernet Standard (ETHSTD) parameter in

the Ethernet line description must be configured as either *ETHV2

or *ALL.

Access control CHAR(1) Specifies outbound frame priority and is mapped to the access

priority bits in the access control field of 802.5 frames. For links

using a token-ring communications line, any value between X’00’

and X’07’ may be used, where X’00’ is the lowest priority and X’07’

is the highest priority.

For links using an Ethernet or wireless communications line, the

content of this field is not applicable and must be set to X’00’.

Priority control CHAR(1) Specifies how to interpret the value set in the access control field.

For links using a token-ring communications line, the valid values

are as follows:

X’00’ Use any priority less than or equal to the value set in the

access control field.

X’01’ Use the priority exactly equal to the value set in the access

control field.

X’FF’ Use the iSeries server default priority.

For links using an Ethernet or wireless communications line, the

content of this field is not applicable and must be set to X’00’.

Length of routing

information

BINARY(2) The length of the routing information in the data unit. For links

using a token-ring communications line, any value between 0 and

18 may be used, where 0 indicates that there is no routing

information.

For links using an Ethernet or wireless communications line, the

content of this field is not applicable and must be set to 0 indicating

that there is no routing information.

44 iSeries: Communications APIs

Field Type Description

Length of user data BINARY(2) The length of the user data in the data unit. This must be less than

or equal to the maximum frame size allowed on the service access

point specified in the SSAP address field. See “Query Line

Description (QOLQLIND) API” on page 9 to determine the

maximum frame size allowed on the service access point specified

in the SSAP address field.

For Ethernet Version 2 frames, this must be at least 48 and not more

than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is

less than 46 bytes.

Output Buffer Descriptor Element Format-LAN Operation X’0000’

The information specified in each data unit of the output buffer must be described in the corresponding

element of the output buffer descriptor.

 Field Type Description

Length BINARY(2) The number of bytes of information in the corresponding data unit

of the output buffer. This must be equal to the length of the general

LAN information plus the length of the routing information plus

the length of the user data. See Format of the General LAN

Information (page 26) in the Receive Data (QOLRECV) API for

more information on the format of the general LAN information.

Reserved CHAR(30) Reserved for extension.

X.25 SVC and PVC Output Operations

The following table shows the output operations that are supported on links using an X.25

communications line.

 Operation Meaning

X’0000’ Send user data (SVC or PVC).

Note: This is a synchronous operation. Control will not return from the QOLSEND API

until the operation completes.

X’B000’ Send a call request packet (SVC) or open the PVC connection.

Note: This is an asynchronous operation. Notification of the completion of this operation

will be returned from the QOLRECV API with operation X’B001’ only after control returns

from the QOLSEND API with a 0/0 return and reason code. See “Receive Data (QOLRECV)

API” on page 21 for more information.

X’B100’ Send a clear packet (SVC) or close the PVC connection.

Note: This is an asynchronous operation. Notification of the completion of this operation

will be returned from the QOLRECV API with operation X’B101’ only after control returns

from the QOLSEND API with a 0/0 return and reason code. See “Receive Data (QOLRECV)

API” on page 21 for more information.

Communications APIs 45

Operation Meaning

X’B110’ Close all connections which were cleared by the reason given in the connection failure date

received on X ’B311’.

Note: This is an asynchronous operation. Notification of the completion of this operation

will be returned from the QOLRECV API with operation X’B111’ only after control returns

from the QOLSEND API with a 0/0 return and reason code. See “Receive Data (QOLRECV)

API” on page 21 for more information.

X’B400’ Send a call accept packet (SVC only).

Note: This is a synchronous operation. Control will not return from the QOLSEND API

until the operation completes.

X’BF00’ Send a reset request or reset confirmation packet (SVC or PVC).

Note: This is an asynchronous operation. Notification of the completion of this operation

will be returned from the QOLRECV API with operation X’BF01’ only after control returns

from the QOLSEND API with a 0/0 return and reason code. See “Receive Data (QOLRECV)

API” on page 21 for more information.

Note: The maximum number of outstanding asynchronous operations (notification of completion not yet received

from the QOLRECV API) is five. All calls made to the QOLSEND API or QOLSETF API under this condition will be

rejected with a return and reason code of 83/3200.

X.25 Operation X’0000’

This operation allows the application program to send user data on an SVC or PVC X.25 connection. The

application must provide the following information:

v User data in the next data unit of the output buffer, starting with the first data unit

v A description, in the corresponding element of the output buffer descriptor, of the user data in that

data unit.

For example, suppose a user-defined communications application program wants to send two data units

of user data. The first portion of the user data would be placed in first data unit of the output buffer and

described in the first element of the output buffer descriptor. The second portion of the user data would

be placed in the second data unit of the output buffer and described in the second element of the output

buffer descriptor. The number of data units parameter on the call to the QOLSEND API would be set to

2.

User-defined communications support automatically fragments the user data in each data unit into one or

more appropriately sized X.25 packets based on the negotiated transmit packet size for the connection.

All packets constructed for a data unit, except for the last (or only) packet, will always have the X.25

more data bit (M-bit) set on. See Output Buffer Descriptor Element Format-X.25 Operation X’0000’ (page

46) for more information on how to set the X.25 M-bit on or off in the last (or only) packet constructed

for a data unit.

Data Unit Format-X.25 Operation X’000’

Each data unit in the output buffer consists solely of user data and starts offset 0 from the top of the data

unit.

Output Buffer Descriptor Element Format-X.25 Operation X’0000’

The user data specified in each data unit of the output buffer must be described in the corresponding

element of the output buffer descriptor.

46 iSeries: Communications APIs

Field Type Description

Length BINARY(2) The number of bytes of user data in the corresponding

data unit of the output buffer. This must always be less

than or equal to the X.25 user data size parameter that

was specified on the call to the QOLELINK API when

the link was enabled. See “Enable Link (QOLELINK)

API” on page 3 for more information.

More data indicator CHAR(1) Specifies whether the X.25 more data bit (M-bit) should

be set on or off in the last (or only) X.25 packet

constructed for the corresponding data unit. The valid

values are as follows:

X’00’ Set the M-bit off in the last (or only) X.25

packet constructed for the corresponding data

unit.

X’01’ Set the M-bit on in the last (or only) X.25

packet constructed for the corresponding data

unit.

 Note: When this value is selected, the length

field must be set to a multiple of the negotiated

transmit packet size for the connection.

Qualified data indicator CHAR(1) Specifies whether the X.25 qualifier bit (Q-bit) should be

set on or off in all X.25 packets constructed for the

corresponding data unit. The valid values are as follows:

X’00’ Set the Q-bit off in all X.25 packets constructed

for the corresponding data unit.

X’01’ Set the Q-bit on in all X.25 packets constructed

for the corresponding data unit.

Interrupt packet indicator CHAR(1) Specifies whether the user data in the corresponding

data unit should be sent in an X.25 interrupt packet. The

valid values are as follows:

X’00’ Send the user data in the corresponding data

unit in one or more X.25 data packets.

X’01’ Send the user data in the corresponding data

unit in an X.25 interrupt packet. An interrupt

packet causes the data to be expedited.

 Note: When this value is selected, the length

field must be set to a value between 1 and 32,

and the number of data units parameter on the

call to the QOLSEND API must be set to 1.

Also, the contents of the more data indicator,

qualified data indicator, and delivery

confirmation indicator fields are ignored.

Communications APIs 47

Field Type Description

Delivery confirmation

indicator

CHAR(1) Specifies whether the X.25 delivery confirmation bit

(D-bit) should be set on or off in all X.25 packets

constructed for the corresponding data unit. The valid

values are as follows:

X’00’ Set the D-bit off in all X.25 packets constructed

for the corresponding data unit.

X’01’ Set the D-bit on in all X.25 packets constructed

for the corresponding data unit.

 Note: The iSeries server does not fully support

delivery confirmation when sending user data.

Confirmation is from the local data circuit

equipment (DCE).

Reserved CHAR(26) Reserved for extension.

X.25 Operation X’B000’

This operation allows the application program to either initiate an SVC call or to open a PVC connection.

The application must provide the data for this operation in the first data unit of the output buffer. The

output buffer descriptor is not used.

The format of the data required for the X’B000’ operation depends on whether it is used to initiate an

SVC call or to open a PVC connection. Each format is explained in the following table.

Note: When initiating an SVC call, the iSeries server chooses an available SVC to use. The logical channel

identifier of the SVC that was chosen will be returned when notification of the completion of X’B000’ is

received from the QOLRECV API (operation X’B001’). See “Receive Data (QOLRECV) API” on page 21

for more information.

Data Unit Format-X.25 Operation X’B000’ (Initiate an SVC Call)

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The

following table shows the format of the data required for the X’B000’ operation when initiating an SVC

call.

 Field Type Description

Reserved CHAR(1) This field must be set to X’02’.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Transmit packet size BINARY(2) The requested transmit packet size for this connection. The valid

values are 64, 128, 256, 512, 1024, 2048, and 4096. The value

specified must be less than or equal to the transmit maximum

packet size configured for this line. The special value of X’FFFF’

may be specified to use the transmit default packet size configured

for this line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the transmit maximum packet size and

the transmit default packet size configured for this line.

48 iSeries: Communications APIs

Field Type Description

Transmit window size BINARY(2) The requested transmit window size for this connection. The valid

values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the transmit default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the transmit

default window size configured for this line.

Receive packet size BINARY(2) The requested receive packet size for this connection. The valid

values are 64, 128, 256, 512, 1024, 2048, and 4096. The value

specified must be less than or equal to the receive maximum packet

size configured for this line. The special value of X’FFFF’ may be

specified to use the receive default packet size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the receive maximum packet size and

the receive default packet size configured for this line.

Receive window size BINARY(2) The requested receive window size for this connection. The valid

values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the receive default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the receive

default window size configured for this line.

Reserved CHAR(7) This field must be set to hexadecimal zeros.

DTE address length BINARY(1) The number of binary coded decimal (BCD) digits in the DTE

address to call. The valid values are as follows:

1-15 When extended network addressing is not configured for

this line.

1-17 When extended network addressing is configured in the

line description.

See “Query Line Description (QOLQLIND) API” on page 9 to

determine if extended network addressing is configured for this

line.

DTE address CHAR(16) Specifies, in binary coded decimal (BCD), the DTE address to call.

The address must be left justified and padded on the right with

BCD zeros.

Reserved CHAR(8) This field must be set to hexadecimal zeros.

Communications APIs 49

Field Type Description

Delivery confirmation

support

CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) should

be set on or off in the call request packet. The valid values are as

follows:

X’00’ Set the D-bit off in the call request packet.

X’01’ Set the D-bit on in the call request packet.

Reserved CHAR(7) This field must be set to hexadecimal zeros.

Closed user group

indicator

CHAR(1) Specifies whether the closed user group (CUG) identifier should be

included in the call packet. The valid values are as follows:

X’00’ Do not include the CUG identifier in the call packet.

X’01’ Include the CUG identifier in the call packet.

Closed user group

identifier

CHAR(1) The CUG identifier to be included in the call packet. The valid

values are as follows:

X’00’ When the closed user group indicator field is set to X’00’

X’00’-X’99’

When the closed user group indicator field is set to X’01’

Reverse charging

indicator

CHAR(1) Specifies reverse charging options. The valid values are as follows:

X’00’ Do not request reverse charging.

X’01’ Request reverse charging.

Fast select indicator CHAR(1) Specifies fast select options. The valid values are as follows:

X’00’ Do not request fast select.

X’01’ Request fast select with restriction.

X’02’ Request fast select without restriction.

50 iSeries: Communications APIs

Field Type Description

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be used.

Note: The iSeries server codes the closed user group, reverse

charging, and fast select facilities in the X.25 facilities field, if the

user requested them in the above fields. Additionally, if the

network user identification parameter (NETUSRID) is specified in

the line description, the network user identification (NUI) facility is

coded in the field, following the other additional facilities, if

present. Finally, if the packet and window size values specified are

different than the network default, the facilities containing these

values are coded in the field as well. The system will update the

X.25 facilities length field appropriately for each facility to which

the iSeries server adds the X.25 facilities field. This length cannot

exceed 109 bytes.

X.25 facilities CHAR(109) Specifies additional X.25 facilities data requested.

Note: The application programmer should not code the facilities for

NUI, fast select, reverse charging, closed user group, packet size, or

window size in this field. By doing so, this field could contain

duplicate facilities, which may not be consistently supported by all

X.25 networks.

Reserved CHAR(48) This field must be set to hexadecimal zeros.

Call user data length BINARY(2) The number of bytes of data in the call user data field. The valid

values are as follows:

0-16 When the fast select indicator field is set to X’00’.

0-128 When the fast select indicator field is set to X’01’ or X’02’.

Call user data CHAR(128) The call user data.

Reserved CHAR(128) This field must be set to hexadecimal zeros.

Control information CHAR(1) Specifies control information for this connection. This is a

bit-sensitive field with bit 0 (leftmost bit) defined for reset support.

The remaining bits are undefined and should be set off (’0’B).

The valid values for bit 0 are as follows:

’0’B Resets are not supported on this connection.

 When this value is selected, the X’BF00’ output operation

will not be valid on this connection. Also, a reset

indication packet received on this connection will cause the

connection to be ended.

’1’B Resets are supported on this connection.

 When this value is selected, the X’BF00’ output operation

will be valid on this connection. Also, the user-defined

communications application program will be required to

handle reset indications received on this connection.

For example, consider the following values for the control

information field:

X’00’ Resets are not supported on this connection.

X’80’ Resets are supported on this connection.

Communications APIs 51

Field Type Description

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Maximum data unit

assembly size

BINARY(4) The maximum number of bytes of user data that is received in a

complete X.25 packet sequence before passing the user data to the

application. Any value between 1024 and 32767 may be used, and

should be set to the largest value that the application will support.

Notes:

1. The system attempts to assemble the entire packet sequence

before passing the data to the application. The only exception to

this is when the size of the packet sequence exceeds the value

the user specified for this field.

2. If the number of bytes of user data received in a complete X.25

packet sequence is more than can fit into one data unit of the

input buffer, the more data indicator field in the corresponding

element of the input buffer descriptor will be set to X’01’ and

the remaining user data will be filled in the next data unit. See

“Receive Data (QOLRECV) API” on page 21 for more

information.

3. There is no limitation on the number of bytes of user data that

can be sent in a complete X.25 packet sequence. However, the

QOLSEND API may need to called more than once.

Automatic flow

control

BINARY(2) Relates to the amount of data that will be held by user-defined

communications support before sending a receive not ready (RNR)

packet to the sending system. The recommended value for this field

is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the

user-defined communications application program receives some of

the data.

Reserved CHAR(30) This field must be set to hexadecimal zeros.

Data Unit Format-X.25 Operation X’B000’ (Open a PVC Connection)

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The

following table shows the format of the data required for the X’B000’ operation when opening a PVC

connection.

 Field Type Description

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Logical channel

identifier

CHAR(2) The logical channel identifier of the PVC to open. Any PVC

configured for this line that is eligible to be used by the network

controller that the link is using may be specified and must be in the

range of X’0001’-X’0FFF’.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the PVCs configured for this line that

are eligible to be used by the network controller the link is using.

52 iSeries: Communications APIs

Field Type Description

Transmit packet size BINARY(2) The requested transmit packet size for this connection. The valid

values are 64, 128, 256, 512, 1024, 2048, and 4096. The value

specified must be less than or equal to the transmit maximum

packet size configured for this line. The special value of X’FFFF’

may be specified to use the transmit default packet size configured

for this line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the transmit maximum packet size and

the transmit default packet size configured for this line.

Transmit window size BINARY(2) The requested transmit window size for this connection. The valid

values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the transmit default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the transmit

default window size configured for this line.

Receive packet size BINARY(2) The requested receive packet size for this connection. The valid

values are 64, 128, 256, 512, 1024, 2048, and 4096. The value

specified must be less than or equal to the receive maximum packet

size configured for this line. The special value of X’FFFF’ may be

specified to use the receive default packet size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the receive maximum packet size and

the receive default packet size configured for this line.

Receive window size BINARY(2) The requested receive window size for this connection. The valid

values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the receive default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the receive

default window size configured for this line.

Reserved CHAR(32) This field must be set to hexadecimal zeros.

Communications APIs 53

Field Type Description

Delivery confirmation

support

CHAR(1) The X.25 delivery confirmation bit (D-bit) support for this

connection. The valid values are as follows:

X’00’ D-bit will be supported for sending data but not for

receiving data.

 Note: When this value is selected and an X.25 packet is

received with the D-bit set on, the input/output processor

(IOP) will send a reset packet.

X’01’ D-bit will be supported for sending data and for receiving

data.

Reserved CHAR(427) This field must be set to hexadecimal zeros.

Control information CHAR(1) Specifies control information for this connection. This is a

bit-sensitive field with bit 0 (leftmost bit) defined for reset support.

The remaining bits are undefined and should be set off (’0’B).

The valid values for bit 0 are as follows:

’0’B Resets are not supported on this connection.

 When this value is selected, the X’BF00’ output operation

will not be valid on this connection. Also, a reset

indication packet received on this connection will cause the

connection to be ended.

’1’B Resets are supported on this connection.

 When this value is selected, the X’BF00’ output operation

will be valid on this connection. Also, the user-defined

communications application program will be required to

handle reset indications received on this connection.

For example, consider the following values for the control

information field:

X’00’ Resets are not supported on this connection.

X’80’ Resets are supported on this connection.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

54 iSeries: Communications APIs

Field Type Description

Maximum data unit

assembly size

BINARY(4) The maximum number of bytes of user data that is received in a

complete X.25 packet sequence before passing the user data to the

application. Any value between 1024 and 32767 may be used, and

should be set to the largest value that the application will support.

Notes:

1. The system attempts to assemble the entire packet sequence

before passing the data to the application. The only exception to

this is when the size of the packet sequence exceeds the value

the user specified for this field.

2. If the number of bytes of user data received in a complete X.25

packet sequence is more than can fit into one data unit of the

input buffer, the more data indicator field in the corresponding

element of the input buffer descriptor will be set to X’01’ and

the remaining user data will be filled in the next data unit. See

“Receive Data (QOLRECV) API” on page 21 for more

information.

3. There is no limit of the number of bytes of user data that can be

sent in a complete X.25 packet sequence. However, the

QOLSEND API may need to called more than once.

Automatic flow

control

BINARY(2) Relates to the amount of data that will be held by user-defined

communications support before sending a receive not ready (RNR)

packet to the sending system. The recommended value for this field

is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the

user-defined communications application program receives some of

the data.

Reserved CHAR(30) This field must be set to hexadecimal zeros.

X.25 Operation X’B100’

This operation allows the application program to either send a clear packet on an SVC, close an SVC

connection that was cleared by the remote system, or to close a PVC connection. The application must

provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor

is not used.

The format of the data required for the X’B100’ operation is the same whether or not it is used to send a

clear packet on an SVC or to close a PVC connection. The format of the data required for the X’B100’

operation should be set to hexadecimal zeros if it is used to close an SVC connection that was previously

cleared by the remote system.

Notes:

1. The iSeries server provides the confirmation of the clear indication, however, the local user-defined

communications application must issue the X’B100’ operation to free the PCEP for the connection.

2. Closing a PVC connection will cause a reset packet to be sent to the remote system.

Data Unit Format-X.25 Operation X’B100’

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The

following table shows the format of the data required for the X’B100’ operation.

 Field Type Description

Reserved CHAR(2) This field must be set to hexadecimal zeros.

Communications APIs 55

Field Type Description

Cause code CHAR(1) The X.25 cause code.

Diagnostic code CHAR(1) The X.25 diagnostic code.

Reserved CHAR(4) This field must be set to hexadecimal zeros.

X.25 facilities length1 BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be used.

X.25 facilities1 CHAR(109) The X.25 facilities data.

Reserved CHAR(48) This field must be set to hexadecimal zeros.

Clear user data

length1

BINARY(2) The number of bytes of data in the clear user data field. Any value

between 0 and 128 may be used.

Clear user data1 CHAR(128) The clear user data.

Note: The CCITT standard recommends that this field only be

present in conjunction with the fast select or call deflection selection

facility. The iSeries server does not enforce this restriction, however.

Reserved CHAR(216) This field must be set to hexadecimal zeros.

1 This field is not used for PVC connections and should be set to hexadecimal zeros.

X.25 Operation X’B110’

This operation allows the application program to clean up all internal control information on all the

connections over the link and free up all PCEPs and UCEPs. This operation is only valid following the

receipt of the X’B311’ operation that reports the connection failure data to the application. There is no

data associated with this operation.

X.25 Operation X’B400’

This operation allows the application program to accept an incoming SVC call. The application must

provide the data for this operation in the first data unit of the output buffer. The output buffer descriptor

is not used.

Note: Notification of incoming calls are received from the QOLRECV API with operation X’B201’. See

“Receive Data (QOLRECV) API” on page 21 for more information.

Data Unit Format-X.25 Operation X’B400’

The data for this operation starts at offset 0 from the top of the first data unit in the output buffer. The

following table shows the format of the data required for the X’B400’ operation.

 Field Type Description

Reserved CHAR(1) This field must be set to hexadecimal zeros.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Transmit packet size BINARY(2) The transmit packet size for this connection. The valid values are

64, 128, 256, 512, 1024, 2048, and 4096. The value specified must be

less than or equal to the transmit maximum packet size configured

for this line. The special value of X’FFFF’ may be specified to use

the transmit default packet size configured for this line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the transmit maximum packet size and

the transmit default packet size configured for this line.

56 iSeries: Communications APIs

Field Type Description

Transmit window size BINARY(2) The transmit window size for this connection. The valid values are

as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the transmit default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the transmit

default window size configured for this line.

Receive packet size BINARY(2) The receive packet size for this connection. The valid values are 64,

128, 256, 512, 1024, 2048, and 4096. The value specified must be less

than or equal to the receive maximum packet size configured for

this line. The special value of X’FFFF’ may be specified to use the

receive default packet size configured for this line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the receive maximum packet size and

the receive default packet size configured for this line.

Receive window size BINARY(2) The receive window size for this connection. The valid values are

as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X’FFFF’

Use the receive default window size configured for this

line.

See “Query Line Description (QOLQLIND) API” on page 9 for

information on determining the modulus value and the receive

default window size configured for this line.

Reserved CHAR(32) This field must be set to hexadecimal zeros.

Delivery confirmation

support

CHAR(1) Specifies whether the X.25 delivery confirmation bit (D-bit) should

be set on or off in the call accept packet. This also specifies the

D-bit support for this connection. The valid values are as follows:

X’00’ Set the D-bit off in the call accept packet. D-bit will be

supported for sending data but not for receiving data.

 Note: When this value is selected and an X.25 packet is

received with the D-bit set on, the input/output processor

(IOP) will send a reset packet.

X’01’ Set the D-bit on in the call accept packet. D-bit will be

supported for sending data and for receiving data.

Reserved CHAR(11) This field must be set to hexadecimal zeros.

Communications APIs 57

Field Type Description

X.25 facilities length BINARY(1) The number of bytes of data in the X.25 facilities field. Any value

between 0 and 109 may be used.

Note: The iSeries server codes the packet and window size facilities

in this field, if necessary. The total length of all facilities cannot

exceed 109 bytes.

X.25 facilities CHAR(109) The X.25 facilities data.

Note: The application programmer should not code the facilities for

packet or window sizes in this field. By doing so, this field could

contain duplicate facilities, which may not be consistently

supported by all X.25 networks.

Reserved CHAR(306) This field must be set to hexadecimal zeros.

Control information CHAR(1) Specifies control information for this connection. This is a

bit-sensitive field with bit 0 (leftmost bit) defined for reset support.

The remaining bits are undefined and should be set off (’0’B).

The valid values for bit 0 are as follows:

’0’B Resets are not supported on this connection.

 When this value is selected, the X’BF00’ output operation

will not be valid on this connection. Also, a reset

indication packet received on this connection will cause the

connection to be ended.

’1’B Resets are supported on this connection.

 When this value is selected, the X’BF00’ output operation

will be valid on this connection. Also, the user-defined

communications application program will be required to

handle reset indications received on this connection.

For example, consider the following values for the control

information field:

X’00’ Resets are not supported on this connection.

X’80’ Resets are supported on this connection.

Reserved CHAR(3) This field must be set to hexadecimal zeros.

Maximum data unit

assembly size

BINARY(4) The maximum number of bytes of user data that can be received in

a complete X.25 packet sequence on this connection. If this limit is

exceeded, the connection will be ended. Any value between 1024

and 32767 may be used.

Notes:

1. If the number of bytes of user data received in a complete X.25

packet sequence is more than can fit into one data unit of the

input buffer, the more data indicator field in the corresponding

element of the input buffer descriptor will be set to X’01’ and

the remaining user data will be filled in the next data unit. See

“Receive Data (QOLRECV) API” on page 21 for more

information.

2. There is no limitation on the number of bytes of user data that

can be sent in a complete X.25 packet sequence. However, the

QOLSEND API may need to called more than once.

58 iSeries: Communications APIs

Field Type Description

Automatic flow

control

BINARY(2) Relates to the amount of data that will be held by user-defined

communications support before sending a receive not ready (RNR)

packet to the sending system. The recommended value for this field

is 32, but any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the

user-defined communications application program receives some of

the data.

Reserved CHAR(30) This field must be set to hexadecimal zeros.

X.25 Operation X’BF00’

This operation allows an application program to send a reset request packet or a reset confirmation

packet on an X.25 SVC or PVC connection. The application must provide the X.25 cause and diagnostic

codes required for this operation in the first data unit of the output buffer. The output buffer descriptor is

not used.

Information indicating whether a reset request or reset confirmation packet was sent is returned when

notification of the completion of the X’BF00’ operation is received from the QOLRECV API (operation

X’BF01’). This information will be in the diagnostic data parameter of the QOLRECV API. See “Receive

Data (QOLRECV) API” on page 21 for more information.

A reset confirmation packet will be sent under the following conditions:

v After a reset indication packet has been received on the connection and the application has received it

from the QOLRECV API (X’B301’ operation, 83/3202 return and reason code)

v After a reset indication packet has been received on the connection but before the application has

received it from the QOLRECV API

v When a reset indication packet is received on the connection at the same time the X’BF00’ output

operation is issued

This is known as a reset collision. In this case, user-defined communications support will discard the

reset indication and, therefore, the application program will not receive it from the QOLRECV API.

However, the cause and diagnostic codes from the reset indication are returned in the diagnostic data

parameter of the QOLRECV program when the application receives notification of the completion of

the X’BF00’ operation. See “Receive Data (QOLRECV) API” on page 21 for more information.

A reset request packet will be sent when none of the above conditions are true.

Notes:

1. Data not yet received by the application program on a connection will not be deleted when a X’BF00’

operation is issued on that connection. This data will be received before the notification of the

completion of the X’BF00’ operation is received from the QOLRECV API (operation X’BF01’). Data

received after the notification of the completion of the X’BF00’ operation is received should be treated

as new data.

2. The X’BF00’ operation is only valid on connections that support resets. See X.25 Operation X’B000’

(page 48) and X.25 Operation X’B400’ (page 56) for more information on specifying reset support.

Data Unit Format-X.25 Operation X’BF00’

The first 2 bytes of the data unit in the output buffer are used for this operation. The first byte contains

the X.25 cause code. The second byte contains the X.25 diagnostic code.

Communications APIs 59

Return and Reason Codes

The return and reason codes that can be returned from the QOLSEND API depend on the type of

communications line the link is using and on the operation that was requested.

Return and Reason Codes for LAN Operation X’0000’

 Return / Reason Code Meaning Recovery

0/0 Operation successful. Continue processing.

80/2200 Queue error detected. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled and see messages

in the job log for further information. Then

correct the error, enable the link, and try the

request again.

80/2401 Output buffer or output buffer descriptor

error detected. Escape message CPF91F1 will

be sent to the application program when this

return and reason code is received.

Ensure the link is disabled and see messages

in the job log for further information. Then

correct the error, enable the link, and try the

request again.

80/3002 A previous error occurred on this link that

was reported to the application program by

escape message CPF91F0 or CPF91F1.

However, the application program has

attempted another operation.

Ensure the link is disabled and see messages

in the job log for further information. If

escape message CPF91F0 was sent to the

application program, then report the problem

using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the

request again.

80/4000 Error recovery has been canceled for this

link.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the condition, enable the link, and try the

request again.

80/8000 The amount of user data in a data unit of the

output buffer is greater than the maximum

frame size allowed on the communications

line the link is using. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled. Correct the error,

enable the link, and try the request again.

80/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Report the problem using the

ANZPRB command.

83/1006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/1008 Number of data units not valid. Correct the number of data units parameter.

Try the request again.

83/1998 The amount of data in a data unit of the

output buffer is not correct.

Correct the amount of user data, or the total

amount of generalLAN information, routing

information, and user data in the offending

data unit. Try the request again.

83/1999 Incorrect data in a data unit of the output

buffer. The error offset field in the diagnostic

data parameter will point to the incorrect

data.

Correct the incorrect data. Try the request

again.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

60 iSeries: Communications APIs

Return / Reason Code Meaning Recovery

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link

was successfully enabled, try the request

again.

83/4001 Link failure, system starting error recovery

for this link.

Wait for the link to recover. Try the request

again.

83/4003 Error detected by the input/output processor

(IOP). The diagnostic data parameter will

contain more information on this error.

Correct the error, and try the request again.

General X.25 Return and Reason Codes

The following table shows the return and reason codes that can be received from the QOLSEND API for

any requested operation.

 Return / Reason Code Meaning Recovery

80/2200 Queue error detected. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/2401 Output buffer or output buffer descriptor

error detected. Escape message CPF91F1 will

be sent to the application program when this

return and reason code is received.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the error, enable the link, and try the request

again.

80/3002 A previous error occurred on this link that

was reported to the application program by

escape message CPF91F0 or CPF91F1.

However, the application has attempted

another operation.

Ensure the link is disabled and see messages

in the job log for further information. If

escape message CPF91F0 was sent to the

application program, report the problem

using the ANZPRB command. Otherwise,

correct the error, enable the link, and try the

request again.

80/4000 Error recovery has been canceled for this

link.

Ensure the link is disabled and see messages

in the job log for further information. Correct

the condition, enable the link, and try the

request again.

80/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Report the problem using the

ANZPRB command.

83/1006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/3001 Link not enabled. Correct the communications handle

parameter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue or user queue. If the link

was successfully enabled, try the request

again.

83/3200 All resources are currently in use by

asynchronous operations that have not yet

completed.

Wait for at least one of the asynchronous

operations to complete. Notification of

completion of these operations will be

received from the QOLRECV API. Try the

request again.

Communications APIs 61

Return and Reason Codes for X.25 Operation X’0000’

 Return / Reason Code Meaning Recovery

0/0 Operation successful. Continue processing.

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/1008 Number of data units not valid. Correct the number of data units parameter.

Try the request again.

83/1997 The amount of user data in a data unit of the

output buffer is not a multiple of the

negotiated transmit packet size, and the

more data indicator in the corresponding

element of the output buffer descriptor is set

to X’01’.

Correct the amount of user data in the

offending data unit. Try the request again.

83/1998 The amount of user data in a data unit of the

output buffer is not correct.

Correct the amount of user data in the

offending data unit. Try the request again.

83/3201 The maximum amount of incoming user data

that can be held by user-defined

communications support for the application

program on this connection has been

exceeded.

Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/3201 return and

reason code). Issue the X’B100’ output

operation to end the connection.

83/3202 A reset indication has been received on this

connection. The X.25 cause and diagnostic

code fields in the diagnostic data parameter

will contain the cause and diagnostic codes

of the reset indication.

Wait to receive notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/3202 return and

reason code). Issue the X’BF00’ output

operation to send a reset confirmation

packet.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

83/4001 Link failure, system starting error recovery

for this link.

Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ or X’B311’ operation, 83/4001 return

and reason code). Issue the X’B100’ output

operation to end the connection.

83/4002 Connection failure. Wait to receive a failure notification from the

QOLRECV API indicating this condition

(X’B301’ operation, 83/4002 return and

reason code). Issue the X’B100’ output

operation to end the connection.

83/4003 Data not sent. Error detected by

input/output processor.

Try the request again. If the error persists,

use the ANZPRB command to analyze and

report the problem.

Return and Reason Codes for X.25 Operation X’B000’

 Return / Reason Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the

X’B000’ operation from the QOLRECV API

(X’B001’ operation).

83/4005 All connections are currently in use. Wait for a connection to become available

and try the request again.

Return and Reason Codes for X.25 Operation X’B100’

62 iSeries: Communications APIs

Return / Reason Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the

X’B100’ operation from the QOLRECV API

(X’B101’ operation).

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Return and Reason Codes for X.25 Operation X’B110’

 Return / Reason Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the

X’B110’ operation from the QOLRECV API

(X’B111’ operation).

Return and Reason Codes for X.25 Operation X’B400’

 Return / Reason Code Meaning Recovery

0/0 Operation successful. Continue processing.

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/1999 Incorrect data in a data unit of the output

buffer. The error offset field in the diagnostic

data parameter will point to the incorrect

data.

Correct the incorrect data. Try the request

again.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

83/4001 Link failure, system starting error recovery

for this link.

Issue the X’B100’ output operation to end the

connection.

83/4004 Inbound call timed out. Issue the X’B100’ output operation to end the

connection.

Return and Reason Codes for X.25 Operation X’BF00’

 Return / Reason Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the

X’BF00’ operation from the QOLRECV API

(X’BF01’ operation).

83/1007 Connection identifier not valid. Correct the existing provider connection end

point ID parameter. Try the request again.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

Communications APIs 63

Message ID Error Message Text

CPF91F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top| “Communications APIs,” on page 1 | APIs by category

Set Filter (QOLSETF) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Error offset Output Binary(4)

4 Communications handle Input Char(10)

 Threadsafe: No

The Set Filter (QOLSETF) API activates and/or deactivates one or more filters for a link that is currently

enabled in the job in which the application program is running. The application program must provide

the required filter information in the output buffer that was created when the link was enabled. The

output buffer descriptor is not used. See “Format of Filter Information” on page 65 for details on the

format of the filter information in the output buffer.

Filters contain inbound routing information that user-defined communications support uses to route

incoming data to a link that is enabled by an application program. The incoming data that is routed

depends on the type of communications line the link is using. On an X.25 communications line, the

incoming data is an incoming switched virtual circuit (SVC) call. On a token-ring, Ethernet, wireless, or

FDDI communications line, the incoming data is the actual data frame.

The type of filters activated for a link determine the way incoming data is routed to that link.

Note: All active filters for a link must be of the same type.

For links using a token-ring, Ethernet, wireless, or FDDI communications line, there are three types of

filters. The following list of filters is from most to least restrictive:

v Destination service access point (DSAP), source service access point (SSAP), frame type, optional

sending adapter address, and protocol (or group) ID.

v Destination service access point (DSAP), source service access point (SSAP), optional frame type, and

sending adapter address

v DSAP, SSAP, and optional frame type

v DSAP

For links using an X.25 communications line, there are two types of filters. The following list of filters is

from most to least restrictive:

v Protocol identifier (PID) and calling data terminal equipment (DTE) address

The iSeries server treats the first byte of call-user data in an X.25 call request packet as the PID.

v PID

The order for checking filters when multiple links are using the same communications line, is from most

to least restrictive. For example, suppose two user-defined communications application programs

(application program A and B) in different jobs each have a link enabled that use the same token-ring

communications line. Further suppose that application program A has activated a filter on DSAP X’22’

64 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

and application program B has activated a filter on DSAP X’22’ and SSAP X’22’. If a data frame comes in

with a DSAP of X’22’ and an SSAP of X’22’, application program B will receive the frame. If a data frame

comes in with a DSAP of X’22’ and an SSAP not equal to X’22’, application program A will receive the

frame.

Authorities and Locks

None.

Required Parameter Group

Return code

OUTPUT: BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 71.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 71.

Error offset

OUTPUT; BINARY(4)

 The offset from the top of the output buffer to the incorrect filter header data or to the incorrect

filter in the filter list.

 The content of this parameter is only valid for 83/1999 and 83/3003 return/reason codes.

Communications handle

INPUT; CHAR(10)

 The name of the link on which to perform the filter operation.

Format of Filter Information

The application must provide all filter information in the output buffer that was created when the link

was enabled. The application should treat the output buffer as one large space with the size equal to the

number of data units created for the output buffer multiplied by the size of each data unit. This

information is returned by the QOLELINK API when the link was enabled.

The filter information in the output buffer is made up of two parts. The first portion starts at offset 0

from the top of the output buffer and contains filter header data. The second portion of the filter

information starts immediately after the filter header data in the output buffer and contains the filters

that make up the filter list.

Filter Header Data

 Field Type Description

Function CHAR(1) The filter function to perform. The valid values are as follows:

X’00’ Deactivate all filters that are currently active for this link and activate

the filters specified in the filter list for this link.

X’01’ Activate the filters specified in the filter list for this link. All filters

currently active for this link will remain active.

X’02’ Deactivate the filters specified in the filter list that are currently active

for this link.

Communications APIs 65

Field Type Description

Filter type CHAR(1) The type of the filters in the filter list. All filters in the filter list must be of this

type. In addition, this must be the same type as the filters currently active for

this link, if any. The valid values are as follows:

X’00’ PID.

 This filter type is only applicable for links using an X.25

communications line and only applies to incoming SVC calls.

X’01’ PID and calling DTE address.

 This filter type is only applicable for links using an X.25

communications line and only applies to incoming SVC calls.

X’02’ DSAP.

 This filter type is only applicable for links using a token-ring,

Ethernet, wireless, or FDDI communications line.

X’03’ DSAP, SSAP, and optional frame type.

 This filter type is only applicable for links using a token-ring,

Ethernet, wireless, or FDDI communications line.

X’04’ DSAP, SSAP, optional frame type, and sending adapter address.

 This filter type is only applicable for links using a token-ring,

Ethernet, wireless, or FDDI communications line.

X’08’ DSAP, SSAP, frame type, optional and sending adapter address, and

protocol identifier (or organization ID).

 This filter type is only applicable for links using a LAN

communications line.

Note: The filter type field must be set even if there are no filters in the filter

list.

Number of

filters

BINARY(2) The number of filters in the filter list. Any value between 0 and 256 may be

used.

Note: The maximum number of filters that can be specified in the filter list is

also limited by the total size of the output buffer which may accommodate less

than 256 filters.

Filter length BINARY(2) The length of each filter in the filter list. This value must be 16 for filter types

X’00’ and X’01’, and 14 for filter types X’02’, X’03’, and X’04’, and 25 for filter

type X’08’.

Note: The filter length field must be set even if there are no filters in the filter

list.

The format of each filter in the previous list of filters is described in the following table. All filters in the

list of filters must be contiguous with each other and be of the type specified in the filter type field in the

filter header data.

X.25 Filters (Filter Types X’00’ and X’01’)

66 iSeries: Communications APIs

Field Type Description

PID length CHAR(1) The length of the PID on which to route incoming calls. The valid values are as

follows:

X’00’ Route incoming calls with no PID specified. That is, with no call user

data in the call request packet.

X’01’ Route incoming calls with the PID being treated as the first byte of

call user data in the call request packet.

PID CHAR(1) The PID on which to route incoming calls. This should be set to X’00’ when the

PID length field is set to X’00’. Otherwise, any value may be used.

Note: Care should be taken when setting the PID field to an SNA PID (X’C3’,

X’C6’, X’CB’, X’CE’), asynchronous PID (X’01’, X’C0’), or TCP/IP PID (X’CC’).

See the X.25 Network Support

book for more information.

Calling DTE

address length

CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD) digits in

the calling DTE address on which to route incoming calls. The valid values are

as follows:

X’00’ For filter type X’00’.

X’01’-X’0F’

For filter type X’01’ when extended network addressing is not

configured in the line description. See “Query Line Description

(QOLQLIND) API” on page 9 to determine if extended network

addressing is configured for this line.

X’01’-X’11’

For filter type X’01’ when extended network addressing is configured

in the line description. See “Query Line Description (QOLQLIND)

API” on page 9 to determine if extended network addressing is

configured for this line.

Calling DTE

address

CHAR(12) Specifies, in binary coded decimal (BCD), the calling DTE address on which to

route incoming calls. This should be set to BCD zeros when the calling DTE

address length field is set to X’00’. Otherwise, any valid DTE address

left-justified and padded on the right with BCD zeros may be used.

Communications APIs 67

Field Type Description

Additional

routing data

CHAR(1) Specifies additional data on which to route incoming calls. This field is

applicable for all X.25 filter types and is bit-sensitive with bit 0 (leftmost bit)

defined for reverse charging options and bit 1 defined for fast select options.

The remaining bits are undefined and should be set off (’0’B).

The valid values for bit 0 are as follows:

’0’B Accept reverse charging.

’1’B Do not accept reverse charging.

The valid values for bit 1 are as follows:

’0’B Accept fast select.

’1’B Do not accept fast select.

For example, consider the following values for the additional routing data

field:

X’00’ Accept reverse charging and accept fast select.

X’40’ Accept reverse charging and do not accept fast select.

X’80’ Do not accept reverse charging and accept fast select.

X’C0’ Do not accept reverse charging and do not accept fast select.

LAN Filters (Filter Types X’02’, X’03’, and X’04’)

 Field Type Description

DSAP address

length

CHAR(1) The length of the DSAP address on which to route incoming frames. This must

be set to X’01’.

DSAP address CHAR(1) The DSAP address on which to route incoming frames. The DSAP address is

the service access point on which the incoming frame arrived. Any service

access point configured in the token-ring, Ethernet, wireless, or FDDI line

description as *NONSNA may be used.

Note: The Ethernet Version 2 standard does not use logical link control, which

utilizes SAPs. Therefore, to receive Ethernet Version 2 frames, a null DSAP

address (X’00’) must be specified in the DSAP address field. Also, the Ethernet

Standard (ETHSTD) parameter in the Ethernet line description must be

configured as either *ETHV2 or *ALL.

SSAP address

length

CHAR(1) The length of the SSAP address on which to route incoming frames. The valid

values are as follows:

X’00’ For filter type X’02’.

X’01’ For filter types X’03’ and X’04’.

68 iSeries: Communications APIs

Field Type Description

SSAP address CHAR(1) The SSAP address on which to route incoming frames. The SSAP address is the

service access point on which the incoming frame was sent. The valid values

are as follows:

X’00’ For filter type X’02’.

X’00’-X’FF’

For filter types X’03’ and X’04’.

 Note: The Ethernet Version 2 standard does not use logical link

control, which utilizes SAPs. Therefore, to receive Ethernet Version 2

frames, a null SSAP address (X’00’) must be specified in the SSAP

address field. Also, the Ethernet Standard (ETHSTD) parameter in the

Ethernet line description must be configured as either *ETHV2 or

*ALL.

Frame type

length

CHAR(1) The length of the frame type on which to route incoming frames. The valid

values are as follows:

X’00’ For filter type X’02’. Also for filter types X’03’ and X’04’ when the

DSAP address and SSAP address fields are not both set to X’00’.

X’00’ or X’02’

For filter types X’03’ and X’04’ when the ’DSAP address’ and SSAP

address fields are both set to X’00’.

Frame type CHAR(2) The frame type on which to route incoming frames. The frame type is defined

in an Ethernet Version 2 frame to indicate the upper layer protocol being used.

This must be set to X’0000’ when the frame type length field is set to X’00’.

Otherwise, any value except X’80D5’ (encapsulated LLC) may be used, but

should be in the range of X’05DD’-X’FFFF’.

Sending adapter

address length

CHAR(1) Specifies, in hexadecimal, the length of the sending adapter address on which

to route incoming frames. The valid values are as follows:

X’00’ For filter types X’02’ and X’03’.

X’06’ For filter type X’04’.

Sending adapter

address

CHAR(6) Specifies, in packed form, the sending adapter address on which to route

incoming frames. This must be set to X’000000000000’ when the sending

adapter address length field is set to X’00’. Otherwise, any valid adapter

address may be used.

LAN Filters (Filter Type X’08’)

 Field Type Description

DSAP address

length

CHAR(1) The length of the DSAP address on which to route incoming frames. This must

be set to X’01’.

Communications APIs 69

Field Type Description

DSAP address CHAR(1) The DSAP address on which to route incoming frames. The DSAP address is

the service access point on which the incoming frame arrived. Any service

access point configured in the token-ring, Ethernet, wireless, or FDDI line

description as *NONSNA may be used.

Note: The Ethernet Version 2 standard does not use logical link control, which

utilizes SAPs. Therefore, to receive Ethernet Version 2 frames, a null DSAP

address (X’00’) must be specified in the DSAP address field. Also, the Ethernet

Standard (ETHSTD) parameter in the Ethernet line description must be

configured as either *ETHV2 or *ALL.

SSAP address

length

CHAR(1) The length of the SSAP address on which to route incoming frames. The valid

values are as follows:

X’01’ For filter type X’08’.

SSAP address CHAR(1) The SSAP address on which to route incoming frames. The SSAP address is the

service access point on which the incoming frame was sent. The valid values

are as follows:

X’00’-X’FF’

For filter type X’08’.

 Note: The Ethernet Version 2 standard does not use logical link

control, which utilizes SAPs. Therefore, to receive Ethernet Version 2

frames, a null SSAP address (X’00’) must be specified in the SSAP

address field. Also, the Ethernet Standard (ETHSTD) parameter in the

Ethernet line description must be configured as either *ETHV2 or

*ALL.

Frame type

length

CHAR(1) The length of the frame type on which to route incoming frames. The valid

values are as follows:

X’02’ For filter type X’08’.

Frame type CHAR(2) The frame type on which to route incoming frames. The frame type is defined

in an Ethernet Version 2 frame to indicate the upper layer protocol being used.

This must be set to X’0000’ when the frame type length field is set to X’00’.

Otherwise, any value except X’80D5’ (encapsulated LLC) may be used, but

should be in the range of X’05DD’-X’FFFF’.

Sending adapter

address length

CHAR(1) In hexadecimal, the length of the sending adapter address on which to route

incoming frames. The valid values are as follows:

X’00’ or

X’06’ For filter type X’08’.

Sending adapter

address

CHAR(6) In packed form, the sending adapter address on which to route incoming

frames. This must be set to X’000000000000’ when the sending adapter address

length field is set to X’00’. Otherwise, any valid adapter address may be used.

70 iSeries: Communications APIs

Field Type Description

Protocol ID

length

CHAR(1) In hexadecimal, the length of the protocol ID on which to route incoming

frames. This must be set to X’03’.

Protocol ID CHAR(3) In hexadecimal, the protocol ID (or organization ID) to route incoming frames.

Reserved field CHAR(7) This field must be initialized to hexadecimal zeros, X’00000000000000’.

General Rules for Using Filters

The following is a list of rules for activating and deactivating filters:

v All active filters for a link must be of the same type

v A link can have a maximum of 256 active filters

v The maximum number of filters that can be specified in the filter list can be no more than 256, and

may be less, depending on the size of the output buffer

v A request to activate a filter for a link that already has the same filter active will be successful, but the

filter will only be activated once

v A request to deactivate a filter for a link that has no such filter active will be successful

v If the return and reason code from the QOLSETF API is not 0/0, none of the specified filters were

activated or deactivated

v Once a filter is activated, it will remain active until one of the following occurs:

– It is deactivated by explicitly calling the QOLSETF API

– The link that the filter was active for is disabled

Return and Reason Codes

 Return/Reason

Code

Meaning Recovery

0/0 Operation successful. Continue processing.

80/2200 Queue error detected. Escape message

CPF91F1 will be sent to the application

program when this return and reason code is

received.

Ensure the link is disabled and see messages in the

job log for further information. Then correct the

error, enable the link, and try the request again.

80/2401 Output buffer error detected. Escape

message CPF91F1 will be sent to the

application program when this return and

reason code is received.

Ensure the link is disabled and see messages in the

job log for further information. Then correct the

error, enable the link, and try the request again.

80/3002 A previous error occurred on this link that

was reported to the application program by

escape message CPF91F0 or CPF91F1.

However, the application program has

attempted another operation.

Ensure the link is disabled and see messages in the

job log for further information. If escape message

CPF91F0 was sent to the application program, then

report the problem using the ANZPRB command.

Otherwise, correct the error, enable the link, and

try the request again.

80/4000 Error recovery has been canceled for this

link.

Ensure the link is disabled and see messages in the

job log for further information. Then correct the

condition, enable the link, and try the request

again.

80/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Then, report the problem using the

ANZPRB command.

Communications APIs 71

Return/Reason

Code

Meaning Recovery

83/1998 The size of the output buffer is not large

enough for the specified number of filters.

Reduce the number of filters in the filter list so

that the size of the filter list plus the size of the

filter header data is less than or equal to the size

of the output buffer. Try the request again.

83/1999 Incorrect filter header data or incorrect filter

in the filter list. If the filter header data is

incorrect, the error offset parameter will

point to the field in error. If a filter in the

filter list is incorrect, the error offset

parameter will point to the beginning of the

incorrect filter.

Correct the incorrect filter header data or the

incorrect filter in the filter list. Try the request

again.

83/3001 Link not enabled. Correct the communications handle parameter. Try

the request again.

83/3003 One of the following is true of a filter in the

filter list. The error offset parameter will

point to the beginning of the offending filter.

v The filter is already activated by another

job using the same communications line

v The service access point, specified in the

DSAP address field of the filter, is not

configured in the token-ring, Ethernet,

wireless, or FDDI line description

v The DSAP address field of the filter

contains the null DSAP address (X’00’),

but the Ethernet Standard (ETHSTD)

parameter in the Ethernet line description

is not configured as *ETHV2 or *ALL

v The service access point, specified in the

DSAP address field of the filter, is

configured in the token-ring, Ethernet,

wireless, or FDDI line description for SNA

use only (*SNA)

Do one of the following, and try the request again:

v End the job that has already activated the filter

v Configure the service access point in the

token-ring, Ethernet, wireless, or FDDI line

description

v Delete the Ethernet line description, and create

another Ethernet line description specifying

*ETHV2 or *ALL in the Ethernet Standard

(ETHSTD) parameter

v Change the service access point in the

token-ring, Ethernet, or wireless line description

to non-SNA use (*NONSNA)

83/3004 Link is enabling. Wait for the enable-complete entry to be sent to

the data queue or user queue. If the link was

successfully enabled, try the request again.

83/3200 All resources are currently in use by

asynchronous operations that have not yet

completed.

Note: This return and reason code is only

possible for links using an X.25

communications line. See “Send Data

(QOLSEND) API” on page 39 for more

information.

Wait for at least one of the asynchronous

operations to complete. Notification of completion

of these operations will be received from the

QOLRECV API. Try the request again.

83/4001 Link failure, system starting error recovery

for this link.

Wait for the link to recover. Try the request again.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

72 iSeries: Communications APIs

Message ID Error Message Text

CPF91F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Set Timer (QOLTIMER) API

 Required Parameter Group:

 1 Return code Output Binary(4)

2 Reason code Output Binary(4)

3 Timer set Output Char(8)

4 Timer to cancel Input Char(8)

5 Qualified queue name Input Char(20)

6 Operation Input Char(1)

7 Interval Input Binary(4)

8 Establish count Input Binary(4)

9 Key length Input Binary(4)

10 Key value Input Char(256)

11 User data Input Char(60)

 Optional Parameter:

 12 Queue type Input Char(1)

 Threadsafe: No

The Set Timer (QOLTIMER) API either sets or cancels a timer. Up to 128 timers, each uniquely identified

by a name (timer handle), can be set in the job in which the application program is running.

When the QOLTIMER API is called to set a timer, a timer handle (timer set parameter) is returned to the

application program. The timer handle, along with the user data supplied when the timer was set, is

included in the timer-expired entry that is sent to the data queue or user queue when the specified

amount of time for this timer has elapsed. The timer is then reestablished, if necessary.

For example, suppose a user-defined communications application program sets a timer with a five-second

interval to be established two times. After five seconds, the timer-expired entry for this timer will be sent

to the data queue or user queue specified when the timer was set. The timer will then be automatically

reestablished, and five seconds later, another timer-expired entry for this timer will be sent to the data

queue or user queue. See “Timer-Expired Entry” on page 303 for the format of the timer-expired entry.

In addition to setting a timer, the application program can call the QOLTIMER API to cancel one or all

timers currently set in the job in which the application program is running. User-defined communications

support will implicitly cancel a timer in the following cases:

v After a timer has expired the specified number of times (establish count parameter)

v When a job ends that had one or more timers set

Note: User-defined communications support does not associate timers with links. If necessary, that

association must be done by the application.

Authorities and Locks

None.

Communications APIs 73

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Return code

OUTPUT; BINARY(4)

 The recovery action to take. See “Return and Reason Codes” on page 75.

Reason code

OUTPUT; BINARY(4)

 The error that occurred. See “Return and Reason Codes” on page 75.

Timer set

OUTPUT; CHAR(8)

 The name of the timer (timer handle) that was set. TIMER001, TIMER002, ... , TIMER128 are the

possible values.

 The content of this parameter is only valid when setting a timer.

Timer to cancel

INPUT; CHAR(8)

 The name of the timer (timer handle) to cancel. TIMER001, TIMER002, ... , TIMER128 may be

used as values. The special value of *ALL (left-justified and padded on right with spaces) may be

used to cancel all timers currently set in the job in which the user-defined communications

application program is running.

 The content of this parameter is only valid when canceling a timer.

Qualified queue name

INPUT; CHAR(20)

 The name and library of the data queue or user queue where the timer-expired entry will be sent

when the timer expires. The first 10 characters specify the name of the data queue or user queue

and the second 10 characters specify the library in which the queue is located. Both entries are

left-justified. The special values of *LIBL and *CURLIB may be used for the library name.

 The content of this parameter is only valid when setting a timer.

Operation

INPUT; CHAR(1)

 The timer operation to perform. The valid values are as follows:

 X’01’ Set a timer.

X’02’ Cancel a timer.

Interval

INPUT; BINARY(4)

 The number of milliseconds for which to set this timer. Any value between 1,048 and 3,600,000

may be used.

 The content of this parameter is only valid when setting a timer.

Establish count

INPUT; BINARY(4)

 The number of times this timer will be established. Any value between 1 and 60 may be used.

The special value of -1 may be used to always have this timer established after it expires.

 The content of this parameter is only valid when setting a timer.

Key length

INPUT; BINARY(4)

74 iSeries: Communications APIs

The key length when using a keyed data queue or user queue. Any value between 0 and 256 may

be used, where 0 indicates the data queue or user queue is not keyed.

 The content of this parameter is only valid when setting a timer.

Key value

INPUT; CHAR(256)

 The key value when using a keyed data queue or user queue.

 The content of this parameter is only valid when setting a timer.

User data

INPUT; CHAR(60)

 The user data that is to be included in the timer-expired entry when the timer expires.

 The content of this parameter is only valid when setting a timer.

 Note: This data is treated as character data only and should not contain pointers.

Optional Parameter

Queue type

INPUT; CHAR(1)

 The type of queue you specified for the queue name parameter.

 D Data queue

U User queue

Return and Reason Codes

 Return/Reason Code Meaning Recovery

0/0 Operation successful. Continue processing.

81/9999 Internal system error detected. Escape

message CPF91F0 will be sent to the

application program when this return and

reason code is received.

See messages in the job log for further

information. Report the problem using the

ANZPRB command.

82/1011 Queue type not valid. Correct the queue type parameter. Try the

request again.

83/1001 Key length not valid. Correct the key length parameter. Try the

request again.

83/1009 Timer operation not valid. Correct the operation parameter. Try the

request again.

83/1010 Timer interval not valid. Correct the interval parameter. Try the

request again.

83/1011 Number of times to establish timer not valid. Correct the establish count parameter. Try

the request again.

83/3400 Timer not valid on cancel operation. Correct the timer to cancel parameter. Try the

request again.

83/3401 All timers are currently set for the requested

set operation.

Cancel a timer. Try the request again.

83/3402 Timer not set on cancel operation. Continue processing.

Communications APIs 75

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF91F0 E Internal system error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Communications APIs,” on page 1 | APIs by category

Data Stream Translation APIs

The data stream translation APIs allow your user-written applications access to the data stream

translation routines for 5250, 3270, and formatted buffer display data streams. Only display device data

streams are supported by these APIs. For more information on display data streams using formatted

buffers, see the SNA Upline Facility Programming

book.

For additional information, see Using the Data Stream APIs.

The data stream translation APIs are:

v “End Data Stream Translation Session (QD0ENDTS) API” (QD0ENDTS) ends a session for data stream

translation.

v “Start Data Stream Translation Session (QD0STRTS) API” on page 77 (QD0STRTS) starts a session for

data stream translation.

v “Translate Data Stream (QD0TRNDS) API” on page 79 (QD0TRNDS) translates a data stream in one

format to another format.

 Top | “Communications APIs,” on page 1 | APIs by category

End Data Stream Translation Session (QD0ENDTS) API

 Required Parameter Group:

 1 Translation session handle Input Char(16)

2 Error code I/O Char(*)

 Threadsafe: No

The End Data Stream Translation Session (QD0ENDTS) API ends a session for data stream translation.

Authorities and Locks

None.

Required Parameter Group

Translation session handle

INPUT; CHAR(16)

 The name of the translation session. This name is returned to your application following the call

to the QD0STRTS API.

Error code

I/O; CHAR(*)

76 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm
comm6a.htm
#TOP_OF_PAGE
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF5D58 E Translation session handle parameter value not valid.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Communications APIs,” on page 1 | APIs by category

Start Data Stream Translation Session (QD0STRTS) API

 Required Parameter Group:

 1 Translation session handle Output Char(16)

2 Display device name Input Char(10)

3 Default screen size Input Char(10)

4 Alternate screen size Input Char(10)

5 Error code I/O Char(*)

 Threadsafe: No

The Start Data Stream Translation Session (QD0STRTS) API initiates a session for data stream translation.

Your application can start as many translation sessions as you need.

Authorities and Locks

Device Authority

The user must have at least *USE authority to the device specified in the display device name

parameter.

Required Parameter Group

Translation session handle

OUTPUT; CHAR(16)

 The name of the translation session. This name is supplied to your application so that you can

keep track of a particular session. It is also required that you pass this name to the other data

stream APIs.

Display device name

INPUT; CHAR(10)

 The name of the 5250 device for which the translation is being done. The 5250 data stream that is

generated depends on the capabilities of the display device. You can specify the following values:

 Name The name of a display device that is known to the system.

Note: An error will occur if the job you are using for data stream translation is not authorized to

the device you specify.

Communications APIs 77

#TOP_OF_PAGE
aplist.htm

*REQUESTER The display device that is associated with this job is to be used.

Note: An error will occur if there is no display device associated with this job. For example, the

job is a batch job.

*BASIC The display device is assumed to have the lowest common characteristics. The following

characteristics are assumed:

v The display is monochrome.

v The display has a screen size of 24x80. If a larger screen size is specified when *BASIC is

specified for the display device name, an error occurs.

v Input in row 1, column 1 is not supported.

v The Home key does not work like the 3270 home key.

v The maximum number of input fields is 126.

v The language is defaulted to the Keyboard Type (QKBDTYPE) system value.

v The display does not support extended attributes.

Note: The full capabilities of the device can be determined only if a 5250 query has been sent to

the device. The 5250 query is sent the first time a user signs on after the device is varied on. The

results remain in effect until the device is varied off. If no one has signed on since the device was

varied on, some of the characteristics will default to those assumed for *BASIC display devices.

Default screen size

INPUT; CHAR(10)

 The size of the screen for the selected display device. Either this value or the alternate screen size

value is used depending on the command used in the 3270 data stream. The possible screen sizes

are:

 024X080 24 lines by 80 columns

027X132 27 lines by 132 columns

*DEVMAX The maximum screen size allowed by the device

Alternate screen size

INPUT; CHAR(10)

 The alternate size of the screen for the selected display device. Either this value or the default

screen size value is used depending on the command used in the 3270 data stream. The possible

screen sizes are:

 024X080 24 lines by 80 columns

027X132 27 lines by 132 columns

*DEVMAX The maximum screen size allowed by the device

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF5D50 E Display device description &1 not found.

CPF5D51 E Device &1 is not a display device.

CPF5D52 E Not authorized to display device &1.

78 iSeries: Communications APIs

Message ID Error Message Text

CPF5D5B E Value &1 for default screen size parameter not valid.

CPF5D61 E Value for display device parameter not valid.

CPF5D66 E Value for alternate screen size parameter not valid.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF5D68 E Default screen size parameter is not valid.

CPF5D69 E Alternate screen size parameter is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Communications APIs,” on page 1 | APIs by category

Translate Data Stream (QD0TRNDS) API

 Required Parameter Group:

 1 Translation session handle Input Char(16)

2 To buffer Output Char(*)

3 To buffer output length Output Binary(4)

4 To buffer length Input Binary(4)

5 To buffer type Input Char(10)

6 From buffer Input Char(*)

7 From buffer length Input Binary(4)

8 From buffer type Input Char(10)

9 Operation Input Char(1)

10 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Translate Data Stream (QD0TRNDS) API translates data from one format to another format. The data

formats depend on the parameter values you specify.

Authorities and Locks

None.

Required Parameter Group

Translation session handle

INPUT; CHAR(16)

 The name of the translation session. This name is returned to your application following the call

to the QD0STRTS API.

To buffer

OUTPUT; CHAR(*)

 The buffer used to contain the output of the data stream translation. This value should be large

enough to contain the expected results.

To buffer output length

OUTPUT; BINARY(4)

 The length of the translated data that is placed in the to buffer parameter.

To buffer length

INPUT; BINARY(4)

Communications APIs 79

#TOP_OF_PAGE
aplist.htm

The length of the buffer that is available for output.

To buffer type

INPUT; CHAR(10)

 The type of data to be put into the to buffer parameter. The possible values are:

 5250 Create a 5250 data stream

3270 Create a 3270 data stream

3270RB Create a 3270 data stream for the data stream that is expected in response to a 3270 Read Buffer

command

*FORMAT Create a formatted buffer for the data. See the SNA Upline Facility Programming, SC41-5446, book

to determine the format of the buffer header.

See Valid Parameter Combinations (page 81) for a list of the allowable combinations of this

parameter with the operations and from buffer type parameters.

From buffer

INPUT; CHAR(*)

 The buffer that contains the data to be translated.

From buffer length

INPUT; BINARY(4)

 The length of the data contained in the from buffer parameter.

From buffer type

INPUT; CHAR(10)

 The type of data that is contained in the from buffer parameter. The possible values are:

 5250 Contains a 5250 data stream

5250RS Contains a 5250 data stream that results from a 5250 Read Screen command

5250RSE Contains a 5250 data stream that results from a 5250 Read Screen with Extended Attributes

command

3270 Contains a 3270 data stream

*FORMAT Contains a formatted buffer for the data. See the SNA Upline Facility Programming book, SC41-5446,

to determine the format of the buffer header.

See Valid Parameter Combinations (page 81) for a list of the allowable combinations of this

parameter with the operations and to buffer type parameters.

Operation

INPUT; CHAR(1)

 Indicates whether the data to be translated is input or output data. You can specify the following

values:

 I The data to be translated is for an input operation

O The data to be translated is for an output operation

See Valid Parameter Combinations (page 81) for a list of the allowable combinations of this

parameter with the to buffer type and from buffer type parameters.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

80 iSeries: Communications APIs

The following table lists the valid combinations of the from buffer type, to buffer type, and operations

parameters.

Valid Parameter Combinations

 Operation From BufferType To BufferType

O 3270 *FORMAT

O 3270 5250

O *FORMAT 5250

I 5250 *FORMAT

I 5250 3270

I *FORMAT 3270

I 5250RS 3270RB

I 5250RSE 3270RB

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF5D53 E To and from buffers overlap.

CPF5D54 E Value &1 for operation parameter not valid.

CPF5D55 E Value &1 is not valid for the To buffer type parameter.

CPF5D56 E Value &1 is not valid for the From buffer type parameter.

CPF5D57 E Combination of parameter values not valid.

CPF5D58 E Translation session handle parameter value not valid.

CPF5D59 E Value &1 for from buffer length parameter not valid.

CPF5D5A E Value &1 for the to buffer length parameter not valid.

CPF5D5C E 3270 data stream in from buffer not valid.

An error was found while translating the 3270 data stream in the from buffer. The error code for

translation was &1.

X’0002’ A 3270 command or order that is not supported or not valid was detected in the data

stream.

X’0003’ A parameter or address that is not valid was detected in the 3270 data stream.

X’0004’ Excess fields were detected in the data stream. A certain number of these fields are

allowed based on the device specified on the QD0STRTS call. This number of fields was

exceeded.

X’0021’ A set buffer address order is missing after a row-column AID code.

X’0863’ A character set attribute that is not valid was found in the data stream.

Communications APIs 81

Message ID Error Message Text

CPF5D5D E 5250 data stream in from buffer not valid.

An error was found while translating the 5250 data stream in the from buffer. The error code for

the translation was &1.

X’0001’ A 5250 AID code that was not correct was found in the data stream.

X’0020’ A cursor position that was not valid was detected in the 5250 data stream.

X’0021’ A set buffer address order is missing after a row-column AID code.

X’0022’ A set buffer address order that was not valid was found in the data stream.

X’D030’

A data stream resulting from a Read Screen with Extended Attributes command was

specified for a display device that does not support extended attributes.

CPF5D5E E Return code in formatted buffer indicates error. Codes returned in this message are listed in SNA

Upline Facility Programming, SC41-5446.

CPF5D5F E Data integrity error in from buffer. The error code for the translation was &1. The possible error

codes are:

X’0023’ Character not valid.

X’0050’ Shift out (X’0E’) and shift in (X’0F’) not correctly balanced in a DBCS session.

X’0051’ Shift out (X’0E’) and shift in (X’0F’) in a DBCS field.

X’0052’ The dead position in a DBCS field is not null.

X’0053’ A DBCS character is not valid.

CPF5D60 E To buffer not large enough for translation output.

CPF5D62 E Error occurred in translation routines.

CPF5D63 E Data integrity error in formatted buffer. The error code for the translation was &1. The possible

error codes are:

X’0023’ Character not valid.

X’0050’ Shift out (X’0E’) and shift in (X’0F’) not correctly balanced in a DBCS session.

X’0051’ Shift out (X’0E’) or shift in (X’0F’) in a DBCS field.

X’0052’ The dead position in a DBCS field is not null.

X’0053’ A DBCS character is not valid.

CPF5D64 E To buffer length not valid for to buffer.

CPF5D65 E From buffer length not valid for from buffer.

CPF5D67 E Severe error occurred while addressing parameter list.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Communications APIs,” on page 1 | APIs by category

82 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

OptiConnect APIs

The OptiConnect APIs are used to move user data between two or more servers that are connected by the

OptiConnect fiber-optic bus. The OptiConnect APIs require that the OptiConnect hardware and software

products have been installed on all of the systems that will be used for communications. A maximum of

32KB (where KB equals 1024 bytes) of data may be transferred in a single send or receive function.

Note: To use these APIs, you need the OptiConnect for i5/OS(R) feature.

The OptiConnect APIs are:

v “Close Path (QzdmClosePath) API” (QzdmClosePath) closes an OptiConnect path.

v “Close Stream (QzdmCloseStream) API” on page 85 (QzdmCloseStream) closes an OptiConnect stream.

v “Open Path (QzdmOpenPath) API” on page 87 (QzdmOpenPath) opens an OptiConnect path.

v “Open Stream (QzdmOpenStream) API” on page 89 (QzdmOpenStream) opens an OptiConnect stream.

v “Receive Control (QzdmReceiveControl) API” on page 91 (QzdmReceiveControl) receives a control

message on an OptiConnect stream.

v “Receive Request (QzdmReceiveRequest) API” on page 93 (QzdmReceiveRequest) receives a request or

a message over an OptiConnect path.

v “Receive Response (QzdmReceiveResponse) API” on page 97 (QzdmReceiveResponse) receives an

acknowledgement and the response data over an OptiConnect path.

v “Send Request (QzdmSendRequest) API” on page 100 (QzdmSendRequest) sends a request or a

message over an OptiConnect path.

v “Send Response (QzdmSendResponse) API” on page 103 (QzdmSendResponse) sends an

acknowledgement and the response data over an OptiConnect path.

v “Wait Message (QzdmWaitMessage) API” on page 105 (QzdmWaitMessage) waits for a message on an

OptiConnect stream.

 Top | “Communications APIs,” on page 1 | APIs by category

Close Path (QzdmClosePath) API

 Required Parameter Group:

 1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request variable Input Char(8)

4 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Close Path (QzdmClosePath) API is used to close an OptiConnect path. The Close Path

(QzdmClosePath) API should be performed after the path is no longer needed to free the system

resources associated with the path.

The system that initiated the last transaction, by using the Send Request (QzdmSendRequest) API, should

be the system that closes the path after the transaction is completed with the Receive Response

(QzdmReceiveResponse) API. If the system that received the request using the Receive Request

(QzdmReceiveRequest) API is the system that closes the path after issuing the Send Response

(QzdmSendResponse) API, then unpredictable results may occur. This is due to the Close Path

(QzdmClosePath) API being able to close the path before the response is actually received by the other

system that uses the Receive Response (QzdmReceiveResponse) API.

Communications APIs 83

#TOP_OF_PAGE
aplist.htm

After the Close Path (QzdmClosePath) API has been issued, the other system should complete the close

sequence by issuing the Receive Control (QzdmReceiveControl) API to receive the close path message

from the closing system.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Close Path (QzdmClosePath) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Close Path (QzdmClosePath) API.

The format CPTH0100 is the only supported format used by this API for the request variable. See

“CPTH0100 Format” for more information on the CPTH0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CPTH0100 Format

The following table defines the information required for Format CPTH0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Path identifier

Field Descriptions

Path identifier. The OptiConnect path that is to be closed. This field is provided as output with the Open

Path (QzdmOpenPath) API.

84 iSeries: Communications APIs

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided

as output with the Open Stream (QzdmOpenStream) API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Close Stream (QzdmCloseStream) API

 Required Parameter Group:

 1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request variable Input Char(8)

4 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Close Stream (QzdmCloseStream) API is used to close an OptiConnect stream. The Close Stream

(QzdmCloseStream) API should be performed after the stream is no longer needed to free the system

resources associated with the stream.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on the system prior to calling this API.

v A stream must be opened to the OptiConnect device driver on the system by using the Open Stream

(QzdmOpenStream) API prior to calling this API.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Request variable

INPUT; CHAR(*)

Communications APIs 85

#TOP_OF_PAGE
aplist.htm

The request variable structure that describes the input for the Close Stream (QzdmCloseStream)

API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Close Stream (QzdmCloseStream)

API. The CSTR0100 format is used by this API for the request variable. See “CSTR0100 Format”

for more information on the CSTR0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

CSTR0100 Format

The following table defines the information required for Format CSTR0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be closed. This field is provided as output with the

Open Stream (QzdmOpenStream) API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

86 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Open Path (QzdmOpenPath) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Open Path (QzdmOpenPath) API is used to open an OptiConnect path. The Open Path

(QzdmOpenPath) API returns a path identifier that is then required as input for subsequent OptiConnect

APIs that require a path identifier.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystems must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A user profile must exist on the remote system by the same name as the user profile that is running

the Open Path (QzdmOpenPath) API on the local system.

It is the responsibility of the user to verify that the user profile name on the remote system is the same

as the user profile name on the local system. The purpose of this verification is to ensure that the

user’s authority is the same on both systems.

v If a job description (*JOBD) is specified in the user profile on the remote system, the job description

must also reside on the remote system.

v A maximum of 256 path identifiers may be opened for a single job.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Open Path

(QzdmOpenPath) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

Communications APIs 87

The format of the information that is returned from the Open Path (QzdmOpenPath) API. The

OPRC0100 format is used by this API for the receiver variable. See “OPRC0100 Format” for more

information on the OPRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Open Path (QzdmOpenPath) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Open Path (QzdmOpenPath) API.

The OPRQ0100 format is used by this API for the request variable. See “OPRQ0100 Format” for

more information on the OPRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

OPRC0100 Format

The following table defines the information returned for Format OPRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Path identifier

OPRQ0100 Format

The following table defines the information required for format OPRQ0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Remote system name

24 18 CHAR(10) Program name

34 22 CHAR(10) Program library name

Field Descriptions

Path identifier. The OptiConnect path that is to be used for communications. This field is provided as

output with the Open Path (QzdmOpenPath) API. This field must then be provided as input on all

subsequent OptiConnect APIs that require a path identifier.

The path identifier is associated with the stream identifier that is provided as input, as a stream-identifier

and path-identifier pair. For most applications, this stream-identifier and path-identifier pair needs to be

used for all subsequent OptiConnect APIs that are used to control communications on the local system.

88 iSeries: Communications APIs

Remote system name. The name of the remote system to which the OptiConnect path is being opened.

This is the current system name as displayed on the Display Network Attributes (DSPNETA) display on

the remote system.

Program name. The program name on the remote system that controls communications on the remote

system. This program is called by the OptiConnect agent job (QZDMAGNT) on the remote system, and is

passed a stream-identifier and path-identifier pair.

For most applications, this stream-identifier and path-identifier pair needs to be used for all subsequent

OptiConnect APIs that are used to control communications on the remote system.

Program library name. The program library name on the remote system in which the program is

contained.

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided

as output on the Open Stream (QzdmOpenStream) API.

The stream identifier is associated with the path identifier that is provided as output, as a

stream-identifier and path-identifier pair. For most applications, this stream-identifier and path-identifier

pair needs to be used for all subsequent OptiConnect APIs that are used to control communications on

the local system.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF2 E OptiConnect path open error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

CPFADF7 E OptiConnect API open path error, function code &1, return code &2.

CPFADF8 E Program name not found.

CPFADF9 E Program library name not found.

CPFADFA E User not authorized to program.

CPFADFB E Open path rejected.

CPFADFD E Remote system &1 not found or not valid.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Open Stream (QzdmOpenStream) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Error code I/O Char(*)

Communications APIs 89

#TOP_OF_PAGE
aplist.htm

Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Open Stream (QzdmOpenStream) API is used to open an OptiConnect stream. The Open Stream

(QzdmOpenStream) API returns a stream identifier, which is then required as input for subsequent

OptiConnect APIs that require a stream identifier.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on the local system prior to calling this API.

v A maximum of 256 stream identifiers may be opened for a single job.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Open Stream

(QzdmOpenStream) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from the Open Stream (QzdmOpenStream) API.

The OSTR0100 format is used by this API for the receiver variable. See “OSTR0100 Format” for

more information on the OSTR0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

OSTR0100 Format

The following table defines the information returned for Format OSTR0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

Field Descriptions

Stream identifier. The OptiConnect stream that is to be used for communications. This field is provided

as output with the Open Stream (QzdmOpenStream) API. This field must then be provided as input on

all subsequent OptiConnect API requests that require a stream identifier.

90 iSeries: Communications APIs

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Receive Control (QzdmReceiveControl) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Receive Control (QzdmReceiveControl) API is used to receive a control message on an OptiConnect

stream.

When the Close Path (QzdmClosePath) API is issued on a system to close a path, the system that is at the

other end of the path must issue the Receive Control (QzdmReceiveControl) API to complete the close

path sequence. If the Receive Control (QzdmReceiveControl) API is not issued, the stream identifier that

is associated with the path that is being closed is not available for subsequent communications until the

control message is received.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

Authorities and Locks

Service Program Authority

*EXECUTE

Communications APIs 91

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Receive Control

(QzdmReceiveControl) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from Receive Control(QzdmReceiveControl) API.

The RCRC0100 format is used by this API for the receiver variable. See “RCRC0100 Format” for

more information on the RCRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Receive Control

(QzdmReceiveControl) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Receive Control

(QzdmReceiveControl) API. The RCRQ0100 format is used by this API for the request variable.

See “RCRQ0100 Format” for more information on the RCRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RCRC0100 Format

The following table defines the information returned for Format RCRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Control message type

1 1 CHAR(8) Control message data

RCRQ0100 Format

The following table defines the information required for Format RCRQ0100.

92 iSeries: Communications APIs

Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

Field Descriptions

Control message data. The control message data returned for the control message type. For example, the

control message data for the close path message contains the path identifier of the path that is being

closed.

Control message type. The type of control message to be received. This field is provided as output on the

Receive Control (QzdmReceiveControl) API.

The possible value follows:

 1 Close path message

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output with the Open Stream (QzdmOpenStream) API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Receive Request (QzdmReceiveRequest) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

Communications APIs 93

#TOP_OF_PAGE
aplist.htm

Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXECUTE

 Threadsafe: No

The Receive Request (QzdmReceiveRequest) API is used to receive a request or a message over an

OptiConnect path. A maximum of 32KB of data may be transferred in a single receive request.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

v If the receiving system does not provide a large enough data buffer to receive all of the data, the data

that will fit into the data buffer is moved, but the remaining data is truncated. The user must then

increase the size of the data buffer and then retry the entire transaction.

v A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Receive Request

(QzdmReceiveRequest) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from the Receive Request (QzdmReceiveRequest)

API. The RQRC0100 format is used by this API for the receiver variable. See “RQRC0100 Format”

on page 95 for more information on the RQRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Receive Request

(QzdmReceiveRequest) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

94 iSeries: Communications APIs

The format of the information that is provided as input for the Receive Request

(QzdmReceiveRequest) API. The RQRQ0100 format is used by this API for the request variable.

See “RQRQ0100 Format” for more information on the RQRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RQRC0100 Format

The following table defines the information returned for Format RQRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Transaction identifier

8 8 CHAR(8) Path identifier

16 10 BINARY(4) Total request data length

20 14 BINARY(4) Current output data length

24 18 BINARY(4) Maximum response data length

RQRQ0100 Format

The following table defines the information required for Format RQRQ0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 BINARY(4) Time-out value

20 14 BINARY(4) Offset to output descriptors

24 18 BINARY(4) Number of output descriptors

28 1C CHAR(4) Reserved

These fields repeat for

each output descriptor

PTR(SPP) Data buffer pointer

BINARY(4) Data buffer length

CHAR(12) Reserved

Field Descriptions

Current output data length. The total data length of the request that was moved to the user’s data buffer

area. If the current output data length is less than the total request data length, then this indicates that

not all of the data was received. It is the responsibility of the user’s application program to retry the

entire transaction by using a larger data buffer size for the Receive Request (QzdmReceiveRequest) API to

receive all of the data.

Data buffer length. The length of the data buffer that is used for receiving data.

Data buffer pointer. The pointer to the data buffer that is used for receiving data.

Communications APIs 95

Maximum response data length. The maximum length that is allowed for the response data. This field is

provided by the user as input on the Send Request (QzdmSendRequest) API and indicates the maximum

response data length allowed for the Send Response (QzdmSendResponse) API.

Number of output descriptors. The number of output descriptors that are used. An output descriptor

describes where the output data may be found. The output descriptor consists of a space pointer to a

data buffer and the length of the data buffer. A maximum of three output descriptors may be specified.

Offset to output descriptors. The offset to the output descriptors.

Path identifier. The OptiConnect path that is to be used for communications. This field is provided as

output on the Receive Request (QzdmReceiveRequest) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field

must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Request (QzdmReceiveRequest)

API to complete. If the Receive Request (QzdmReceiveRequest) API does not complete before the

specified time-out value, then the exception CPFADFE is returned. The user should then re-issue the

Receive Request (QzdmReceiveRequest) API and specify the same time-out value or an increased

time-out value.

The Receive Request (QzdmReceiveRequest) API remains outstanding, and control is not returned to the

user application until either of the following occurs:

v The request either completes successfully or unsuccessfully.

v The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Receive Request

(QzdmReceiveRequest) API to complete.

Total request data length. The total data length of the request that is available to be received. This field is

provided as output on the Receive Request (QzdmReceiveRequest) API.

Transaction identifier. The specific transaction associated with this Receive Request

(QzdmReceiveRequest) API. This field is provided as output on the Receive Request

(QzdmReceiveRequest) API. This field must then be provided as input on the corresponding Send

Response (QzdmSendResponse) API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

96 iSeries: Communications APIs

Message ID Error Message Text

CPFADF6 E Request variable not valid, reason code &1.

CPFADFE E Time-out occurred.

CPFADFF E Transaction was terminated.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Receive Response (QzdmReceiveResponse) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXECUTE

 Threadsafe: No

The Receive Response (QzdmReceiveResponse) API is used to receive an acknowledgement and the

response data over an OptiConnect path. A maximum of 32KB of data may be received in a single receive

response.

The response data is received into the output buffers, which were previously defined in the output

descriptors on the Send Request (QzdmSendRequest) API.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

v If the receiving system does not provide a large enough data buffer to receive all of the data, the data

that will fit into the data buffer is moved, but the remaining data is truncated. The user must then

increase the size of the data buffer, and then retry the entire transaction.

v A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

Communications APIs 97

#TOP_OF_PAGE
aplist.htm

The receiver variable that is to receive the output control information from the Receive Response

(QzdmReceiveResponse) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from the Receive Response

(QzdmReceiveResponse) API. The RSRC0100 format is used by this API for the receiver variable.

See “RSRC0100 Format” for more information on the RSRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Receive Response

(QzdmReceiveResponse) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Receive Response

(QzdmReceiveResponse) API. The RSRQ0100 format is used by this API for the request variable.

See “RSRQ0100 Format” for more information on the RSRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RSRC0100 Format

The following table defines the information returned for Format RSRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(4) Acknowledgement data

4 4 BINARY(4) Actual response data length

RSRQ0100 Format

The following table defines the information required for Format RSRQ0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Path identifier

24 18 BINARY(4) Time-out value

98 iSeries: Communications APIs

Offset

Type Field Dec Hex

28 1C CHAR(8) Transaction identifier

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. This field is provided as input on

the Send Response (QzdmSendResponse) API.

Actual response data length. The actual length that was received for the response data. If the response

data that was sent from the Send Response (QzdmSendResponse) API is larger than the buffer that was

provided with the Send Request (QzdmSendRequest) API, not all of the data was received. It is the

responsibility of the user’s application program to retry the entire transaction by using a larger data

buffer size for the Send Request (QzdmSendRequest) API to receive all of the data with the Receive

Response (QzdmReceiveResponse) API.

Path identifier. The OptiConnect path that is used for communications. This field is provided as output

on the Open Path (QzdmOpenPath) API.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Receive Response

(QzdmReceiveResponse) API to complete. If the Receive Response (QzdmReceiveResponse) API does not

complete before the specified time-out value, the exception CPFADFE is returned. The user should then

re-issue the Receive Response (QzdmReceiveResponse) API and specify the same time-out value or an

increased time-out value.

The Receive Response (QzdmReceiveResponse) API remains outstanding, and control is not returned to

the user application until either of the following occurs:

v The request either completes successfully or unsuccessfully.

v The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Receive Response

(QzdmReceiveResponse) API to complete.

Transaction identifier. The specific transaction associated with this Receive Response

(QzdmReceiveResponse) API. This field is provided as output on the Send Request (QzdmSendRequest)

API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

Communications APIs 99

Message ID Error Message Text

CPFADF6 E Request variable not valid, reason code &1.

CPFADFE E Time-out occurred.

CPFADFF E Transaction was terminated.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Send Request (QzdmSendRequest) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXECUTE

 Threadsafe: No

The Send Request (QzdmSendRequest) API is used to send a request or a message over an OptiConnect

path. A maximum of 32KB of data may be transferred in a single send request.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

v A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Send Request

(QzdmSendRequest) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

100 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from the Send Request (QzdmSendRequest) API.

The SRRC0100 format is used by this API for the receiver variable. See “SRRC0100 Format” for

more information on the SRRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Send Request (QzdmSendRequest)

API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Send Request (QzdmSendRequest)

API. The SRRQ0100 format is used by this API for the request variable. See “SRRQ0100 Format”

for more information on the SRRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

SRRC0100 Format

The following table defines the information returned for Format SRRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Transaction identifier

SRRQ0100 Format

The following table defines the information required for Format SRRQ0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Path identifier

24 18 BINARY(4) Maximum response data length

28 1C BINARY(4) Offset to input descriptors

32 20 BINARY(4) Number of input descriptors

36 24 BINARY(4) Offset to output descriptors

40 28 BINARY(4) Number of output descriptors

44 2C CHAR(4) Reserved

Communications APIs 101

Offset

Type Field Dec Hex

These fields repeat for

each input descriptor

PTR(SPP) Data buffer pointer

BINARY(4) Data buffer length

CHAR(12) Reserved

These fields repeat for

each output descriptor

PTR(SPP) Data buffer pointer

BINARY(4) Data buffer length

CHAR(12) Reserved

Field Descriptions

Data buffer length. The length of the data buffer that is used for the input or output data.

Data buffer pointer. The pointer to the input data buffer that is used for input or output data.

Maximum response data length. The maximum length that is allowed for the response data. This field is

provided as output on the Receive Request (QzdmReceiveRequest) API and indicates the maximum

response data length allowed for the Send Response (QzdmSendResponse) API. If the response data that

is sent from the Send Response (QzdmSendResponse) API is larger than the buffer that is provided with

the Send Request (QzdmSendRequest) API, not all of the data is received. It is the responsibility of the

user’s application program to retry the entire transaction by using a larger data buffer size for the Send

Request (QzdmSendRequest) API to receive all of the data with the Receive Response

(QzdmReceiveResponse) API.

Number of output descriptors. The number of output descriptors that are used. An output descriptor

describes where the output data that is to be received from the remote system may be found. The output

descriptor consists of a space pointer to a data buffer and the length of the data buffer. A maximum of

three output descriptors may be specified. The total length of the output buffers must be equal to the

maximum response data length that is specified.

Number of input descriptors. The number of input descriptors that are used. An input descriptor

describes where the input data that is to be sent to the remote system may be found. The input descriptor

consists of a space pointer to a data buffer and the length of the data buffer. A maximum of three input

descriptors may be specified.

Offset to output descriptors. The offset to the output descriptors.

Offset to input descriptors. The offset to the input descriptors.

Path identifier. The OptiConnect path that is used for communications. This field is provided as output

on the Open Path (QzdmOpenPath) API.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field

must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Request. This field is provided

as output on the Send Request (QzdmSendRequest) API. This field must then be provided as input on

the corresponding Receive Response (QzdmReceiveResponse) API.

102 iSeries: Communications APIs

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Send Response (QzdmSendResponse) API

 Required Parameter Group:

 1 Request variable Input Char(*)

2 Length of request variable Input Binary(4)

3 Format name of request variable Input Char(8)

4 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXECUTE

 Threadsafe: No

The Send Response (QzdmSendResponse) API is used to send an acknowledgement and the response

data over an OptiConnect path. A maximum of 32KB of data may be transferred in a single send

response.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

v If the receiving system does not provide a large enough data buffer to receive all of the data, the data

that will fit into the data buffer is moved, but the remaining data is truncated. The user must increase

the size of the data buffer and then retry the entire transaction.

v A maximum of 16 transactions may be in progress for a stream-identifier and path-identifier pair.

Authorities and Locks

Service Program Authority

*EXECUTE

Communications APIs 103

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Send Response

(QzdmSendResponse) API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Send Response

(QzdmSendResponse) API. The SRSP0100 format is used by this API for the request variable. See

“SRSP0100 Format” for more information on the SRSP0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

SRSP0100 Format

The following table defines the information required for Format SRSP0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 CHAR(8) Transaction identifier

24 18 BINARY(4) Actual response data length

28 1C CHAR(4) Acknowledgement data

32 20 BINARY(4) Offset to input descriptors

36 24 BINARY(4) Number of input descriptors

40 28 CHAR(8) Reserved

These fields repeat for

each input descriptor

PTR(SPP) Data buffer pointer

BINARY(4) Data buffer length

CHAR(12) Reserved

Field Descriptions

Acknowledgement data. The acknowledgement data for the request. This field is provided as output on

the Receive Response (QzdmReceiveResponse) API and indicates the acknowledgement data.

Actual response data length. The actual length that is sent for the response data. If the response data that

is sent is larger than the buffer that is provided on the Send Request (QzdmSendRequest) API, not all of

the data is sent. It is the responsibility of the user’s application program to retry the entire transaction by

using a larger data buffer size for the Send Request (QzdmSendRequest) API to receive all of the data

with the Receive Response (QzdmReceiveResponse) API.

104 iSeries: Communications APIs

Data buffer length. The length of the data buffer that is used for sending data.

Data buffer pointer. The pointer to the data buffer that is used for sending data.

Number of input descriptors. The number of input descriptors that are used. An input descriptor

describes where the input data may be found. The input descriptor consists of a space pointer to a data

buffer and the length of the data buffer. A maximum of three input descriptors may be specified.

Offset to input descriptors. The offset to the input descriptors.

Reserved. A reserved space for the purpose of aligning pointer values on a 16-byte boundary. This field

must be initialized to binary 0.

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output on the Open Stream (QzdmOpenStream) API.

Transaction identifier. The specific transaction associated with this Send Response (QzdmSendResponse)

API. This field is provided as output on the Receive Request (QzdmReceiveRequest) API.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF3 E OptiConnect path not valid or closed.

CPFADF4 E OptiConnect detected sequence error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

CPFADFF E Transaction was terminated.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

Wait Message (QzdmWaitMessage) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name of receiver variable Input Char(8)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Format name of request variable Input Char(8)

7 Error code I/O Char(*)

 Library Name / Service Program: QSOC/QZDMMDTA

 Default Public Authority: *EXECUTE

 Threadsafe: No

Communications APIs 105

#TOP_OF_PAGE
aplist.htm

The Wait Message (QzdmWaitMessage) API is used to wait for a message on an OptiConnect stream. The

message may be a request message, a response message, or a control message.

Restrictions

The following restrictions apply:

v The OptiConnect QSOC subsystem must be started on both the local and remote systems prior to

calling this API.

v A stream must be opened to the OptiConnect device driver on the local system by using the Open

Stream (QzdmOpenStream) API prior to calling this API.

v A path must be opened to the remote system by using the Open Path (QzdmOpenPath) API prior to

calling this API.

Authorities and Locks

Service Program Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that is to receive the output control information from the Wait Message

(QzdmWaitMessage) API.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable, in bytes. The length of the receiver variable must be at least

equal to or greater than the length of the output format.

Format name of receiver variable

INPUT; CHAR(8)

 The format of the information that is returned from the Wait Message (QzdmWaitMessage) API.

The WMRC0100 format is used by this API for the receiver variable. See “WMRC0100 Format” on

page 107 for more information on the WMRC0100 format.

Request variable

INPUT; CHAR(*)

 The request variable structure that describes the input for the Wait Message (QzdmWaitMessage)

API.

Length of request variable

INPUT; BINARY(4)

 The length of the request variable, in bytes. The length of the request variable must be at least

equal to the length of the input format, and less than or equal to the maximum length of 4KB.

Format name of request variable

INPUT; CHAR(8)

 The format of the information that is provided as input for the Wait Message

(QzdmWaitMessage) API. The WMRQ0100 format is used by this API for the request variable. See

“WMRQ0100 Format” on page 107 for more information on the WMRQ0100 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

106 iSeries: Communications APIs

WMRC0100 Format

The following table defines the information returned for Format WMRC0100.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Message type

WMRQ0100 Format

The following table defines the information required for Format WMRQ0100.

 Offset

Type Field Dec Hex

0 0 CHAR(16) Stream identifier

16 10 BINARY(4) Time-out value

Field Descriptions

Message type. The type of message that is received. This field is provided as output on the Wait Message

(QzdmWaitMessage) API.

Possible values follow:

 1 Request message

2 Response message

3 Control message

Stream identifier. The OptiConnect stream that is used for communications. This field is provided as

output on the Open Stream (QzdmOpenStream) API.

Time-out value. A length of time, in milliseconds, to wait for the Wait Message (QzdmWaitMessage) API

to complete. If the Wait Message (QzdmWaitMessage) API does not complete before the specified

time-out value, the exception CPFADFE is returned. The user should then re-issue the Wait Message

(QzdmWaitMessage) API and specify the same time-out value or an increased time-out value.

The Wait Message (QzdmWaitMessage) API remains outstanding, and control is not returned to the user

application until either of the following occurs:

v The request either completes successfully or unsuccessfully.

v The time-out value has been exceeded.

A value of -1 may be specified, which indicates to wait forever for the Wait Message (QzdmWaitMessage)

API to complete.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

Communications APIs 107

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFADF0 E The OptiConnect QSOC subsystem must be active.

CPFADF1 E OptiConnect communication error.

CPFADF5 E OptiConnect API internal error, function code &1, return code &2.

CPFADF6 E Request variable not valid, reason code &1.

CPFADFE E Time-out occurred.

API introduced: V3R7

 Top | “Communications APIs,” on page 1 | APIs by category

TCP/IP Management

The TCP/IP Management APIs allow you to retrieve information about your TCP/IP setup and status,

and change certain system values related to TCP/IP.

The TCP/IP Management APIs are:

v “Change Connection Attribute (QTOCCCNA) API” on page 109 (QTOCCCNA) can change the

attribute of a socket or connection directly.

v

“Change IPv4 Interface (QTOCC4IF) API” on page 113 (QTOCC4IF) can change selected parameters

for an IPv4 interface that is defined in the system’s TCP/IP configuration.

v

“Convert Interface ID (QtocCvtIfcID) API” on page 115 (QtocCvtIfcID) retrieves the IP address of an

interface when given the name or the name of an interface when given the IP address.

v “List Neighbor Cache Table (QtocLstNeighborTbl) API” on page 119 (QtocLstNeighborTbl) returns a

list of all entries in the IPv6 Neighbor Cache table for a specified line or for all lines.

v “List Network Connections (QtocLstNetCnn) API” on page 124 (QtocLstNetCnn) returns a non-detailed

list of all the network connections for a specified net connection type or a list of the subset of network

connections for a specified net connection.

v “List Network Interfaces (QtocLstNetIfc) API” on page 135 (QtocLstNetIfc) returns a detailed list of all

logical TCP/IP interfaces.

v “List Network Routes (QtocLstNetRte) API” on page 150 (QtocLstNetRte) returns a detailed list of all

routes.

v “List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API” on page 162 (QtocLstPhyIfcARPTbl)

returns a list of all entries in the Address Resolution Protocol (ARP) table for the specified time.

v “List Physical Interface Data (QtocLstPhyIfcDta) API” on page 166 (QtocLstPhyIfcDta) returns a list of

physical interfaces and detailed information about TCP/IP-related data for each of the listed physical

interfaces.

v “List PPP Connection Profiles (QtocLstPPPCnnPrf) API” on page 181 (QtocLstPPPCnnPrf) returns a list

of PPP connection profiles with some basic information about each profile.

v “List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API” on page 186 (QTOCLPPJ) returns information

about each connection job currently associated with the specified point-to-point connection profile.

v “Remove ARP Table Entry (QtocRmvARPTblE) API” on page 189 (QtocRmvARPTblE) removes one or

all dynamic entries from the ARP table for the specified line.

v “Retrieve Network Connection Data (QtocRtvNetCnnDta) API” on page 190 (QtocRtvNetCnnDta)

retrieves the details of any specified connection-including jobs using the connection.

v “Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API” on page 210 (QtocRtvPPPCnnPrf)

retrieves the details of a specific PPP connection job profile.

v “Retrieve TCP/IP Attributes (QtocRtvTCPA) API” on page 226 (QtocRtvTCPA) retrieves TCP/IP

attributes.

108 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

v “Update DNS API (QTOBUPDT)” on page 243 (QTOBUPDT) allows the caller to send one or more

update instructions to an iSeries dynamic DNS (Domain Name System) server.

See Resource Reservation Setup Protocol APIs for information on APIs that perform your integrated

services reservation.

The TCP/IP Management exit programs are:

v FTP client request validation exit point allows you to restrict operations performed by FTP users.

v FTP server logon exit point allows you to control the authentication of users to a TCP/IP application

server.

v FTP server request validation exit point allows you to restrict operations performed by FTP users.

v REXEC server command processing selection (QIBM_QTMX_SVR_SELECT) exit point allows you to

specify which command processor the REXEC server uses for interpreting and running commands.

v TCP/IP request validation (QIBM_QTMX_SERVER_REQ) exit point allows you to restrict operations on

the REXEC server.

v TCP/IP server logon (QIBM_QTMX_SVR_LOGON) exit point allows you to control the authentication

of users and setting up user environments for the REXEC server.

v Telnet device initialization exit program allows you to associate your custom exit program with exit

points on the iSeries Telnet server.

v Telnet device termination exit program allows you to log session termination information.

v TFTP request validation (QIBM_QTOD_SERVER_REQ) exit point allows you to restrict operations on

the TFTP server.

v “Trace Exit Program for Trace TCP/IP Application command” on page 249 indicates if the trace should

stop or continue running.

v “Exit Program for Watch for Trace Event” on page 252 is called while using commands to watch for

specific events, such as messages being sent to a particular queue.

 Top | “Communications APIs,” on page 1 | APIs by category

Change Connection Attribute (QTOCCCNA) API

 Required Parameter Group:

 1 Change information Input Char(*)

2 Length of change information Input Binary(4)

3 Change information format Input Char(8)

4 Error code I/O Char(*)

 Threadsafe: Yes

The Change Connection Attribute (QTOCCCNA) API can change the attribute of a socket or connection

directly. A valid socket descriptor is not required. Instead, the socket or connection to be changed is

identified by specifying the associated port and IP address information.

The SO_DEBUG socket option is the only attribute that can be changed.

Authorities and Locks

Default public authority

*EXCLUDE.

Communications APIs 109

unix15.htm
#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Change information

INPUT; CHAR(*)

 The socket or connection that is changed.

Change information format

INPUT; CHAR(8)

 The format of the change information input data. The possible values are:

 TCPA0001 Change the connection attribute of a connection. The connection is identified by specifying the

local and remote values for the IP address and port number. See “TCPA0001 Format” below.

UDPA0001 Change the connection attribute of a socket. The socket is identified by specifying its local IP

address and local port number. See “UDPA0001 Format” below.

TCPA0101 Change the connection attribute of a connection. The connection is identified by specifying the

local and remote values for the IPv6 address and port number. See TCPA0101 Format (page

“TCPA0101 Format” on page 111) below.

UDPA0101 Change the connection attribute of a socket. The socket is identified by specifying its local IPv6

address and local port number. See “UDPA0101 Format” on page 111 below.

Length of change information

INPUT; BINARY(4)

 The total length in bytes of the change information input variable.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

TCPA0001 Format

Use this format when changing a connection. For detailed descriptions of the fields in this table, see

“Field Descriptions” on page 111.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Attribute to change

4 4 BINARY(4) Attribute value

8 8 BINARY(4) Local IP address binary

12 C BINARY(4) Local port number

16 10 BINARY(4) Remote IP address binary

20 14 BINARY(4) Remote port number

24 18

UDPA0001 Format

Use this format when changing a socket. For detailed descriptions of the fields in this table, see “Field

Descriptions” on page 111.

110 iSeries: Communications APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Attribute to change

4 4 BINARY(4) Attribute value

8 8 BINARY(4) Local IP address binary

12 C BINARY(4) Local port number

16 10

Field Descriptions

Attribute to change. The possible value is:

 1 Change the debug attribute (SO_DEBUG socket option) of the connection.

Attribute value. Possible values are:

 0 The debug attribute is not set.

1 The debug attribute is set.

Local IP address. The local internet address used by the connection in binary form.

Local port number. The local system port number used by the connection.

Remote IP address. The remote internet address used by the connection in binary form.

Remote port number. The remote system port number used by the connection.

TCPA0101 Format

Use this format when changing an IPv6 connection. For detailed descriptions of the fields in this table,

see “Field Descriptions” on page 112.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Attribute to change

4 4 BINARY(4) Attribute value

8 8 CHAR(16) Local IPv6 address binary

24 18 BINARY(4) Local port number

28 1C CHAR(16) Remote IPv6 address binary

44 2C BINARY(4) Remote port number

48 30

UDPA0101 Format

Use this format when changing an IPv6 socket. For detailed descriptions of the fields in this table, see

“Field Descriptions” on page 112.

Communications APIs 111

Offset

Type Field Dec Hex

0 0 BINARY(4) Attribute to change

4 4 BINARY(4) Attribute value

8 8 CHAR(16) Local IPv6 address binary

24 18 BINARY(4) Local port number

28 1C

Field Descriptions

Attribute to change. The possible value is:

 1 Change the debug attribute (SO_DEBUG socket option) of the connection.

Attribute value. Possible values are:

 0 The debug attribute is not set.

1 The debug attribute is set.

Local IPv6 address. The local IPv6 address used by the connection in binary form.

Local port number. The local system port number used by the connection.

Remote IPv6 address. The remote IPv6 address used by the connection in binary form.

Remote port number. The remote system port number used by the connection.

Error Messages

 Message ID Error Message Text

CPF3C17 E Error occurred with input data parameter.

CPF3C21 E Format name &1 is not valid.

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

TCP3842 E Error processing internal data request.

TCP3B03 E Connection &1:&2, &3:&4, not found.

TCP3B04 E Socket &1:&2, &3:&4, not found.

TCP84C0 E TCP/IP stack not active.

TCP8A0B E IPv6 internal error - &1.

TCP923F E Value for parameter &2 for API &1 not valid.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

112 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Change IPv4 Interface (QTOCC4IF) API

 Required Parameter Group:

 1 Interface information Input Char(*)

2 Format name Input Char(8)

3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change IPv4 Interface (QTOCC4IF) API is used to change selected parameters for an IPv4 interface

that is defined in the system’s TCP/IP configuration.

Authorities and Locks

Special Authority

The caller of this API must be running under a user profile that has input/output system

configuration (*IOSYSCFG) special authority.

Required Parameter Group

Interface Information

INPUT; CHAR(*)

 Contains the characteristics of the IPv4 interface being changed.

Format name

INPUT; CHAR(8)

 The format of the interface information parameter. The format name supported is:

IFCH0100

Format for adding or changing an IPv4 interface parameter. For the format of the

structure, see “IFCH0100 Format.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure refer to Error

Code Parameter.

IFCH0100 Format

For detailed descriptions of the fields in this table, see “Field Descriptions” on page 114.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of fixed interface information

4 4 CHAR(15) Internet address

19 13 CHAR(1) Reserved

20 14 BINARY(4) Proxy ARP allowed

24 18 BINARY(4) Offset to preferred interface list

28 1C BINARY(4) Number of entries in preferred interface list

Communications APIs 113

Offset

Type Field Dec Hex

32 20 BINARY(4) Length of one preferred interface list entry

36 24 CHAR(24) Interface name

This field repeats for

each preferred interface

list entry

CHAR(*) Preferred interface list entry (See Format of Preferred Interface List

Entry for more information.)

Format of Preferred Interface List Entry

The preferred interface list entry describes the data specified for each entry in the preferred interface list

of the IFCH0100 format. For detailed descriptions of the fields in the table, see Field Descriptions.

 Offset

Type Field Dec Hex

0 0 CHAR(15) Preferred interface internet address

15 0F CHAR(1) Reserved

Field Descriptions

Interface name. Specifies a textual description of this interface. Up to 24 characters, padded with blanks,

may be specified. A value of *SAME means that the interface name does not change.

Internet address. The IPv4 internet address, in dotted decimal notation, of an interface.

Length of fixed interface information. This field contains the number of bytes specified in the fixed

portion of the interface information structure. The minimum value for this field is 24.

Length of one preferred interface list entry. The length of a preferred interface list entry. A value of zero

means that the list will be removed. A value greater than zero means that the list will be replaced. A

value of -1 means that the list does not change.

Number of entries in preferred interface list The number of entries in the preferred interface list. A

value of zero means that the list will be removed. A value greater than zero means that the list will be

replaced. A value of -1 means that the list does not change. The maximum value for this field is 10.

Offset to preferred interface list The offset from the start of the fixed interface information to the

beginning of the preferred interface list. A value of zero or greater means that the list will be replaced. A

value of -1 means that the list does not change.

Preferred interface internet address The internet address, in dotted decimal notation, of an interface in

the preferred interface list.

Preferred interface list entry. Specifies information about an interface in the preferred interface list. The

order in which the list entries are specified is also the order in which the system uses the interfaces as

Proxy Agents.

Proxy ARP allowed. This field applies to Opticonnect (*OPC) and Virtual Ethernet interfaces only. For

those types of interfaces, this field indicates whether Proxy (Address Resolution Protocol) ARP has been

configured to be allowed or not allowed.

114 iSeries: Communications APIs

0 NO - Proxy ARP not allowed.

1 YES - Proxy ARP allowed.

-1 The value does not change.

Reserved. A reserved field. This field must be set to zero.

Usage Notes

Typically, if an error is detected during the change operation, a diagnostic message will be sent to the job

log. This diagnostic message will contain details about the error. The API will then either signal the error

message TCP2658 or return TCP2658 in the error code structure.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

TCP2658 E &2 &1 not changed.

TCP923C E &1 special authority is required.

TCP923F E Value for parameter &2 for API &1 not valid.

 API introduced: V5R4

 Top | “Communications APIs,” on page 1 | APIs by category

Convert Interface ID (QtocCvtIfcID) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Interface request Input Char(*)

5 Interface request CCSID Input Binary(4)

6 Error Code I/O Char(*)

 Service Program Name: QTOCNETSTS

 Default Public Authority: *USE

 Threadsafe: Yes

The Convert Interface ID (QtocCvtIfcID) API retrieves the IP address of an interface when given the

name or the name of an interface when given the IP address.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold.

Communications APIs 115

#TOP_OF_PAGE
aplist.htm

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If this value is larger than the actual size of the receiver

variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned. The format names supported are:

NCII0100

Return the IP address associated with the name specified. Refer to “NCII0100 Format” on

page 117 for details on the format.

NCII0200

Return the name associated with the IPv4 address specified. Refer to “NCII0200 Format”

on page 117 for details on the format.

NCII0300

Return the name associated with the IPv6 address specified. Refer to “NCII0300 Format”

on page 118 for details on the format.

Interface request

Input; CHAR(*)

 The alias name or interface IP address for the interface to retrieve the mapping for. When format

NCII0100 is used, the Interface request parameter must be 50 characters long and the alias name

must be passed in with this parameter. When format NCII0200 is used, the Interface request

parameter must be 15 characters long. When format NCII0300 is used, the data must be specified:

 Offset

Type Field Dec Hex

0 0 Char(45) Interface address

45 2D Char(3) Reserved

48 30 Char(10) Line description

58 3A Char(6) Reserved

Field Descriptions

Interface address.

The IP address of the interface that is associated with the specified name.

Line description.

The physical line the interface is associated with. This field must be set to all blanks

when the interface is not a multi-cast interface.

Reserved.

A reserved field. It must be x’00’.

Interface request CCSID

Input; Binary(4)

 The coded character set ID for the Interface request. To specify the job CCSID, this field should be

set to 0. When using format NCII0200 or NCII0300, the CCSID is not applicable and must be set

to 0.

 Note: In V5R4, only the job CCSID is supported so this field must always be set to 0.

116 iSeries: Communications APIs

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Returned Interface Data

NCII0100 Format

Format NCII0100 returns the IP address of the named interface. For detailed descriptions of the fields in

the table, see “Field Descriptions”

.

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(45) Interface address

53 35 Char(3) Reserved

56 38 Char(10) Line Description

66 42 Char(6) Reserved

Field Descriptions

Bytes available.

The number of bytes of data available to be returned. All available data is returned if enough

space is provided.

Bytes returned.

The number of bytes of data returned.

Interface address.

The IP address of the interface that is associated with the specified name.

Line description.

The physical line the interface is associated with. This field is set to all blanks when the interface

is not a multi-cast interface.

Reserved.

An ignored field.

NCII0200 Format

Format NCII0200 returns the name for the interface specified by the IP address. For detailed descriptions

of the fields in the table, see “Field Descriptions” on page 118

.

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

Communications APIs 117

Offset

Type Field Dec Hex

8 8 Char(50) Alias name

58 3A Char(6) Reserved

64 40 Binary(4) Alias name CCSID

Field Descriptions

Alias name.

The name that is defined for the interface.

Alias name CCSID.

The coded character set ID of the alias name.

Bytes available.

The number of bytes of data available to be returned. All available data is returned if enough

space is provided.

Bytes returned.

The number of bytes of data returned.

Reserved.

An ignored field.

NCII0300 Format

Format NCII0300 returns returns the name for the interface specified by the IP address. For detailed

descriptions of the fields in the table, see “Field Descriptions”

.

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(50) Alias name

58 3A Char(6) Reserved

64 40 Binary(4) Alias name CCSID

Field Descriptions

Alias name.

The name that is defined for the interface.

Alias name CCSID.

The coded character set ID of the alias name.

Bytes available.

The number of bytes of data available to be returned. All available data is returned if enough

space is provided.

Bytes returned.

The number of bytes of data returned.

118 iSeries: Communications APIs

Reserved.

An ignored field.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

TCP266B TCP/IP interface not found.

TCP1901 Internet address &1 not valid.

TCP1902 Internet address &1 not valid.

TCP1908 Internet address &1 not valid.

TCP84C6 Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

CPF24B4 Severe error while addressing parameter list.

CPF3C19 Error occurred with receiver variable specified.

CPF3C1E Required parameter &1 omitted.

CPF3C21 Format name &1 is not valid.

CPF3C24 Length of the receiver variable is not valid.

CPF3C90 Literal value cannot be changed.

CPF3CF1 Error code parameter not valid.

CPF3CF2 Error(s) occurred during running of &1 API.

CPF8100 All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9872 Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R4

 Top | “Communications APIs,” on page 1 | APIs by category

List Neighbor Cache Table (QtocLstNeighborTbl) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Line name Input Char(10)

4 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Neighbor Cache Table (QtocLstNeighborTbl) API returns a list of all entries in the IPv6 Neighbor

Cache table for a specified line or for all lines.

TCP/IP must be active on this system; otherwise, error message TCP84C0 will be issued.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Communications APIs 119

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the information, and the library in which it is located. The first 10

characters contain the user space name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library.

*LIBL The library list.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 NNCT0100 List of Neighbor Cache table entries for a specified line. Refer to “NNCT0100 Format” on page 121

for details on the format.

Line name

INPUT; CHAR(10)

 The name of the IPv6 enabled physical interface for which to retrieve Neighbor Cache table

entries. The following special value may be used:

 *ALL Request all Neighbor Cache entries for all IPv6 enabled lines in the system.

Error Code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Neighbor Cache Table Lists

To request a list of Neighbor Cache table entries for a line, use format NNCT0100.

The Neighbor Cache table list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– NNCT0100 format.

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

120 iSeries: Communications APIs

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Line name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name used

20 14 CHAR(10) Line name used

NNCT0100 Format

The following information about an entry in the Neighbor Cache table is returned for the NNCT0100

format. For detailed descriptions of the fields in the table, see “Field Descriptions” on page 122.

 Offset

Type Field Dec Hex

0 0 CHAR(45) Internet IPv6 address

45 2D CHAR(3) Reserved

48 30 CHAR(16) Internet IPv6 address binary

64 40 CHAR(17) Link layer address

81 51 CHAR(7) Reserved

88 58 BINARY(8) Link layer address binary

96 60 CHAR(10) Line name

106 6A CHAR(2) Reserved

108 6C BINARY(4) Reachability state

112 70 CHAR(8) Reachability state change - date

120 78 CHAR(9) Reachability state change - time

129 81 CHAR(3) Reserved

132 84 BINARY(4) Reachability state error information

136 88 BINARY(4) Time in reachable state

140 8C BINARY(4) Is router

144 90 BINARY(4) Number of unicast neighbor solicitation packets sent

148 94 BINARY(4) Number of multicast neighbor solicitation packets sent

152 98 BINARY(4) Delay first probe time

156 9C BINARY(4) Max unicast solicits

Communications APIs 121

Offset

Type Field Dec Hex

160 A0 BINARY(4) Max multicast solicits

Field Descriptions

Delay first probe time. The current value of the configured stack attribute named Neighbor solicitation

delay first probe time. This attribute controls how long a Neighbor Cache entry will stay in the DELAY

state before the stack will send another Neighbor Solicitation and move this Neighbor Cache entry’s

Reachability state to PROBE if reachability still has not been confirmed. Valid values range from 3

through 10 seconds.

Internet IPv6 address. The IPv6 address of the neighbor in IPv6 address format notation. This field is

NULL padded.

Internet IPv6 address binary. The binary representation of the neighbor’s IPv6 address. Even though this

field is defined as a character field, binary data will be returned in it.

Is router. Whether this neighbor is a router. Possible values are:

 0 No, this neighbor is not a router.

1 Yes, this neighbor is a router.

Line name. The name of the communications line description that identifies the physical interface which

is directly connected to this neighbor.

Link layer address. The MAC address of the neighbor’s network interface. Format: XX:XX:XX:XX:XX:XX,

where each ’X’ is a hexadecimal digit.

Link layer address binary. The binary representation of the neighbor’s six byte link layer address.

Max multicast solicits. The current value of the configured Neighbor solicitation max multicast solicits

stack attribute. This attribute controls the maximum number of multicast Neighbor Solicitations which

will be sent out when the system is performing link-layer address resolution for another host (neighbor).

If no Neighbor Advertisement is received after the maximum number of Neighbor Solicitations have been

sent out, address resolution has failed, and an ICMPv6 error message will be returned to the application.

Valid values range from 1 through 5 transmissions.

Max unicast solicits. The current value of the configured Neighbor solicitation max unicast solicits stack

attribute. This attribute controls the maximum number of unicast Neighbor Solicitations which will be

sent out when the system is performing link-layer address resolution for another host with unicast

Neighbor Solicitations. Multicast is the normal way to perform Neighbor Discovery, but unicast Neighbor

Solicitations will be used if the local physical interface is not multicast-capable. If no Neighbor

Advertisement is received after the maximum number of Neighbor Solicitations have been sent out,

address resolution has failed, and an ICMPv6 error message will be returned to the application. Valid

values range from 1 through 5 transmissions.

Number of multicast neighbor solicitation packets sent. The total number of multicast Neighbor

Solicitations which have been sent from the local system to this neighbor.

Number of unicast neighbor solicitation packets sent. The total number of unicast Neighbor

Solicitations which have been sent from the local system to this neighbor.

122 iSeries: Communications APIs

Reserved. An ignored field.

Reachability state. The reachability state of this neighbor cache entry. Possible values are:

 -1 ERROR - An error has occured while verifying the reachability of this neighbor. Use the returned Reachability

state error information field value for more information about this error.

1 INCOMPLETE - Address resolution is being performed on the entry. Specifically, a Neighbor Solicitation has

been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement

has not yet been received.

2 REACHABLE - Positive confirmation was received that the forward path to the neighbor was functioning

properly. While REACHABLE, no special action takes place as packets are sent.

3 STALE - The STALE state is entered upon receiving an unsolicited Neighbor Discovery message that updates

the cached link-layer address. Receipt of such a message does not confirm reachability, and entering the

STALE state insures reachability is verified quickly if the entry is actually being used. However, reachability is

not actually verified until the entry is actually used. While STALE, no action takes place until a packet is sent.

4 DELAY - This neighbor is assumed to be reachable, and the system is now trying to verify reachability.

5 PROBE - A reachability confirmation is actively being sought by retransmitting Neighbor Solicitations every

″Retransmit interval″ seconds until a reachability confirmation is received.

6 DELETING - The TCP/IP stack is currently in the process of deleting this neighbor entry from the Neighbor

Cache.

Reachability state change - date. The date of the last change of this neighbor’s Reachability state. The

format of the characters in this field is ″YYYYMMDD″.

The meaning of those characters is as follows:

 YYYY Year

MM Month

DD Day

Reachability state change - time. The time of the last change of this neighbor’s Reachability state. The

format of the characters in this field is ″HHMMSSmmm″.

The meaning of those characters is as follows:

 HH Hours

MM Minutes

SS Seconds

mmm Milliseconds

Reachability state error information. The error code for this Neighbor Cache entry when the Reachability

state is ERROR. This value is only useful when the Reachability state field value is ERROR. Possible

values are:

 0 No error.

1 Unknown. An unknown error has occurred.

Reserved. An ignored field.

Time in reachable state. The length of time, in seconds, that this neighbor has been in the Reachable

state. The following special value may be returned:

 -1 This neighbor currently is not in the Reachable state.

Communications APIs 123

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C3 E The specified line name does not exist.

TCP84C5 E API error providing TCP/IP Network Status information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C9 I Information returned incomplete.

TCP84CB E Specified line &1 not configured for IPv6.

TCP84CC E Specified line &1 does not support Neighbor Discovery for IPv6.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | “Communications APIs,” on page 1 | APIs by category

List Network Connections (QtocLstNetCnn) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Connection list qualifier Input Char(*)

4 Connection list qualifier size Input Binary(4)

5 Connection list qualifier format Input Char(8)

6 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Network Connections (QtocLstNetCnn) API returns a non-detailed list of all network

connections, or a subset of all network connections for a specified network connection type. With each

call to this API you can request IPv4 or IPv6 connections, but not both at the same time.

TCP/IP must be active on this system; otherwise error message TCP84C0 will be issued.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

124 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that is to receive the created list. The first 10 characters contain the user space

name; the second 10 characters contain the name of the library in which the user space is located.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format name supported is:

 NCNN0100 Non-detailed list of selected TCP/IPv4 local system connections. Refer to “NCNN0100 Format” on

page 130 for details on the format.

NCNN0200 Non-detailed list of selected TCP/IPv6 local system connections. Refer to “NCNN0200 Format” on

page 132 for details on the format.

Connection list qualifier

INPUT; CHAR(*)

 A restriction on the network connections to be listed.

Connection list qualifier size

INPUT; BINARY(4)

 The size in bytes of the connection list qualifier parameter.

Connection list qualifier format

INPUT; CHAR(8)

 The format of the connection list qualifier parameter. The format name supported is:

 NCLQ0100 IPv4 connection list qualifier. Refer to “NCLQ0100 Format” on page 126 for details on the format.

NCLQ0200 IPv6 connection list qualifier. Refer to “NCLQ0200 Format” on page 128 for details on the format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Connection Status Lists

To request a non-detailed list of local system connections, use format NCNN0100.

The connection description list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

Communications APIs 125

– NCNN0100 format, or

– NCNN0200 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(*) Connection list qualifier specified

BINARY(4) Connection list qualifier size specified

CHAR(8) Connection list qualifier format specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14

NCLQ0100 Format

The following table shows the format of the IPv4 connection list qualifier input parameter, named the

NCLQ0100 format. For detailed descriptions of the fields in the table, see “Field Descriptions” on page

127.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Net connection type

10 A CHAR(10) List request type

20 14 CHAR(12) Reserved

32 20 BINARY(4) Local internet address lower value

36 24 BINARY(4) Local internet address upper value

40 28 BINARY(4) Local port lower value

44 2C BINARY(4) Local port upper value

48 30 BINARY(4) Remote internet address lower value

126 iSeries: Communications APIs

Offset

Type Field Dec Hex

52 34 BINARY(4) Remote internet address upper value

56 38 BINARY(4) Remote port lower value

60 3C BINARY(4) Remote port upper value

64 40

Field Descriptions

List request type. The local internet address range, local port range, remote internet address range, and

remote port range for which information is requested. Possible values are:

 *ALL All objects returned.

*SUBSET Restrict the objects returned in the list to a specified subset.

Local internet address lower value. The lower value of the local system internet address range, in dotted

decimal format, requested for subsetting the list. The following is a special value:

 0 Request all local internet addresses.

Local internet address upper value. The upper value of the local system internet address range, in dotted

decimal format, requested for subsetting the list. The following is a special value:

 0 Request only one local internet address specified by the local internet address lower value.

Local port lower value. The lower value of the local system port range requested for subsetting the list.

Valid values range from 1 to 65535. The following is a special value:

 0 Request all local ports.

Local port upper value. The upper value of the local system port range requested for subsetting the list.

Valid values range from 1 to 65535. The following is a special value:

 0 Request only one local port specified in local port lower value.

Net connection type. The type of connection or socket. Possible values are:

 *ALL All connection types

*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

*IPI An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.

Note: As of V5R2, IP over IPX is no longer supported.

*IPS An Internet Protocol (IP) over SNA connection or socket.

Remote internet address lower value. The lower value of the remote system internet address range, in

dotted decimal format, requested for subsetting the list. The following is a special value:

 0 Request all remote internet addresses.

Communications APIs 127

Remote internet address upper value. The upper value of the remote system internet address range, in

dotted decimal format, requested for subsetting the list. The following is a special value:

 0 Request only one remote internet address specified by the remote internet address lower value.

Remote port lower value. The lower value of the remote system port range requested for subsetting the

list. Valid values range from 1 to 65535. The following is a special value:

 0 Request all remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the

list. Valid values range from 1 to 65535. The following is a special value:

 0 Request only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x’00’.

NCLQ0200 Format

The following table shows the format of the IPv6 connection list qualifier input parameter, named the

NCLQ0200 format. For detailed descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Net connection type

10 A CHAR(10) List request type

20 14 CHAR(12) Reserved

32 20 CHAR(16) Local internet IPv6 address lower value

48 30 CHAR(16) Local internet IPv6 address upper value

64 40 BINARY(4) Local port lower value

68 44 BINARY(4) Local port upper value

72 48 CHAR(16) Remote internet IPv6 address lower value

88 58 CHAR(16) Remote internet IPv6 address upper value

104 68 BINARY(4) Remote port lower value

108 6C BINARY(4) Remote port upper value

112 70

Field Descriptions

List request type. The local internet address range, local port range, remote internet address range, and

remote port range for which information is requested.

Possible values are:

 *ALL All objects returned.

*SUBSET Restrict the objects returned in the list to a specified subset.

128 iSeries: Communications APIs

Local internet IPv6 address lower value. The lower value of the local system internet address range, in

IPv6 address format, requested for subsetting the list. Even though this field is defined as a character

field, it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

The following is a special value:

 0 Request all local internet IPv6 addresses. Specify this value by filling the whole field with binary NULLs

(x’000000...’).

Local internet IPv6 address upper value. The upper value of the local system internet address range, in

IPv6 address format, requested for subsetting the list. Even though this field is defined as a character

field, it must be stored in binary. It is recommended that you use the Sockets in6_addr structure.

The following is a special value:

 0 Request only one local internet IPv6 address specified by the local internet IPv6 address lower value. Specify

this value by filling the whole field with binary NULLs (x’000000...’).

Local port lower value. The lower value of the local system port range requested for subsetting the list.

Valid values range from 1 to 65535.

The following is a special value:

 0 Request all local ports.

Local port upper value. The upper value of the local system port range requested for subsetting the list.

Valid values range from 1 to 65535.

The following is a special value:

 0 Request only one local port specified in local port lower value.

Net connection type. The type of connection or socket.

Possible values are:

 *ALL All connection types

*TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

Remote internet IPv6 address lower value. The lower value of the remote system internet IPv6 address

range, in IPv6 address format, requested for subsetting the list. Even though this field is defined as a

character field, it must be stored in binary. It is recommended that you use the Sockets in6_addr

structure.

The following is a special value:

 0 Request all remote internet IPv6 addresses. Specify this value by filling the whole field with binary NULLs

(x’000000...’).

Communications APIs 129

Remote internet IPv6 address upper value. The upper value of the remote system internet IPv6 address

range, in IPv6 address format, requested for subsetting the list. Even though this field is defined as a

character field, it must be stored in binary. It is recommended that you use the Sockets in6_addr

structure.

The following is a special value:

 0 Request only one remote internet IPv6 address specified by the remote internet IPv6 address lower value.

Specify this value by filling the whole field with binary NULLs (x’000000...’).

Remote port lower value. The lower value of the remote system port range requested for subsetting the

list. Valid values range from 1 to 65535.

The following is a special value:

 0 Request all remote ports.

Remote port upper value. The upper value of the remote system port range requested for subsetting the

list. Valid values range from 1 to 65535.

The following is a special value:

 0 Request only one remote port specified in remote port lower value.

Reserved. A reserved field. It must be x’00’.

Format of Returned Connection Data

To retrieve the list of TCP/IPv4 connections, request format “NCNN0100 Format,” and you will get a

repeating list of NCNN0100 tables, each one returning information about a single IPv4 connection. To

retrieve the list of TCP/IPv6 connections, request format “NCNN0200 Format” on page 132, and you will

get a repeating list of NCNN0200 tables, each one returning information about a single IPv6 connection.

NCNN0100 Format

The following information about a user space is returned for the NCNN0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 131.

 Offset

Type Field Dec Hex

0 0 CHAR(15) Remote address

15 F CHAR(1) Reserved

16 10 BINARY(4) Remote address binary

20 14 CHAR(15) Local address

35 23 CHAR(1) Reserved

36 24 BINARY(4) Local address binary

40 28 BINARY(4) Remote port

44 2C BINARY(4) Local port

48 30 BINARY(4) TCP state

52 34 BINARY(4) Idle time in milliseconds

56 38 BINARY(8) Bytes in

130 iSeries: Communications APIs

Offset

Type Field Dec Hex

64 40 BINARY(8) Bytes out

72 48 BINARY(4) Connection open type

76 4C CHAR(10) Net connection type

86 56 CHAR(2) Reserved

88 58 CHAR(10) Associated user profile

98 62 CHAR(2) Reserved

100 64

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets

API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the

jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data

(QtocRtvNetCnnDta) API.

Bytes in. The number of bytes received from the remote host.

Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. This field only applies to

TCP connections.

Possible values are:

 0 Passive. A remote host opens the connection.

1 Active. The local system opens the connection.

2 Not supported. Connection open type not supported by protocol.

Idle time in milliseconds. The length of time since the last activity on this connection. The length of time

is shown in milliseconds.

Local address. The local system internet address, in dotted decimal format, of the connection.

Local address binary. Binary representation of the local address.

Local port. The local system port number.

Net connection type. The type of connection or socket. Possible values are:

 *TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

*IPI An Internet Protocol (IP) over Internetwork Packet Exchange (IPX) connection or socket.

Note: As of V5R2, IP over IPX is no longer supported.

*IPS An Internet Protocol (IP) over SNA connection or socket.

Remote address. The internet address, in dotted decimal format, of the remote host.

Communications APIs 131

The following special value may be returned:

 0 This connection is a listening or UDP socket so this field does not apply. The “0” is returned as a left adjusted

“0” (x’F0404040...’).

Remote address binary. Binary representation of the remote address.

The following special value may be returned:

 0 This connection is a listening or UDP socket so this field does not apply.

Remote port. The remote host port number. Zero is shown if the list entry is for a UDP socket.

Reserved. An ignored field.

TCP state. A typical connection goes through the states:

 0 Listen. Waiting for a connection request from any remote host.

1 SYN-sent. Waiting for a matching connection request after having sent connection request.

2 SYN-received. Waiting for a confirming connection request acknowledgement.

3 Established. The normal state in which data is transferred.

4 FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the connection.

5 FIN-wait-2. Waiting for the remote host request to end the connection.

6 Close-wait. Waiting for an end connection request from the local user.

7 Closing. Waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK. Waiting for the remote host to acknowledge an end connection request.

9 Time-wait. Waiting to allow the remote host enough time to receive the local system’s acknowledgement to

end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

NCNN0200 Format

The following information about a TCP/IPv6 connection is returned for the NCNN0200 format. For

detailed descriptions of the fields in the table, see “Field Descriptions” on page 133.

 Offset

Type Field Dec Hex

0 0 CHAR(45) Remote IPv6 address

45 2D CHAR(3) Reserved

48 30 CHAR(16) Remote IPv6 address binary

64 40 CHAR(45) Local IPv6 address

109 6D CHAR(3) Reserved

112 70 CHAR(16) Local IPv6 address binary

128 80 BINARY(4) Remote port

132 84 BINARY(4) Local port

136 88 BINARY(4) TCP state

140 8C BINARY(4) Idle time in milliseconds

144 90 BINARY(8) Bytes in

152 98 BINARY(8) Bytes out

132 iSeries: Communications APIs

Offset

Type Field Dec Hex

160 A0 BINARY(4) Connection open type

164 A4 CHAR(10) Net connection type

174 AE CHAR(10) Associated user profile

184 B8 CHAR(10) Line Description

194 C2

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets

API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the

jobs or tasks currently using a connection or socket, use the Retrieve Network Connection Data

(QtocRtvNetCnnDta) API.

Bytes in. The number of bytes received from the remote host.

Bytes out. The number of bytes sent to the remote host.

Connection open type. The type of open that was done to start this connection. This field only applies to

TCP connections.

Possible values are:

 0 Passive. A remote host opens the connection.

1 Active. The local system opens the connection.

2 Not supported. Connection open type not supported by protocol.

Idle time in milliseconds. The length of time since the last activity on this connection. The length of time

is shown in milliseconds.

Line Description. The local system line description associated with this connection. This field is only

filled for connections bound to link local unicast interfaces.

Local IPv6 address. The local system internet address, in IPv6 address format, of the connection. This

field is NULL padded.

Local IPv6 address binary. Binary representation of the local IPv6 address. Even though this field is

defined as a character field, a binary IPv6 address is returned in it.

Local port. The port number of the local end of the connection.

Net connection type. The type of connection or socket.

Possible values are:

 *TCP A transmission control protocol (TCP) connection or socket.

*UDP A User Datagram Protocol (UDP) socket.

Communications APIs 133

Reserved. An ignored field.

Remote IPv6 address. The internet address, in IPv6 address format, of the remote host. This field is

NULL padded.

Special values are:

 :: This connection is a listening socket so this field does not apply.

Remote IPv6 address binary. Binary representation of the remote address. Even though this field is

defined as a character field, a binary IPv6 address is returned in it.

A special value that may be returned is:

 0 This connection is a listening socket so this field does not apply. This value is returned as a binary 0.

Remote port. The port number of the remote end of the connection.

Special values are:

 0 This connection is a listening socket so this field does not apply.

TCP state. A typical connection goes through the states:

 0 Listen. Waiting for a connection request from any remote host.

1 SYN-sent. Waiting for a matching connection request after having sent connection request.

2 SYN-received. Waiting for a confirming connection request acknowledgement.

3 Established. The normal state in which data is transferred.

4 FIN-wait-1. Waiting for the remote host to acknowledge the local system request to end the connection.

5 FIN-wait-2. Waiting for the remote host request to end the connection.

6 Close-wait. Waiting for an end connection request from the local user.

7 Closing. Waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK. Waiting for the remote host to acknowledge an end connection request.

9 Time-wait. Waiting to allow the remote host enough time to receive the local system’s acknowledgement to

end the connection.

10 Closed. The connection has ended.

11 State value not supported by protocol.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C5 E Error providing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C7 E Connections list qualifier parameter not valid.

CPF0F03 E Error in retrieving the user space that was created by the caller.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

134 iSeries: Communications APIs

Message ID Error Message Text

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List Network Interfaces (QtocLstNetIfc) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Network Interfaces (QtocLstNetIfc) API returns a list of all logical TCP/IP interfaces with details.

This API returns all IPv4 logical interfaces using one output format name, and all IPv6 logical interfaces

using a different output format name.

TCP/IP must be active; otherwise error message TCP84C0 will be issued.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that is to receive the created list. The first 10 characters contain the user space

name, and the second 10 characters contain the name of the library in which the user space is

located. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

Communications APIs 135

#TOP_OF_PAGE
aplist.htm

The format of the logical interface information to be returned. The format names supported are:

 NIFC0100 Detailed information about each TCP/IPv4 network interface. Refer to “NIFC0100 Format” on

page 137 for details on the format.

NIFC0200 Detailed information about each TCP/IPv6 network interface. Refer to “NIFC0200 Format” on

page 143 for details on the format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Interface Lists

To request a list of all logical interfaces, use format NIFC0100.

The interface description list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– NIFC0100 format, or

– NIFC0200 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

136 iSeries: Communications APIs

Offset

Type Field Dec Hex

20 14

Format of Returned Connection Data

To retrieve the list of TCP/IPv4 network interfaces, request format “NIFC0100 Format,” and you will get

a repeating list of NIFC0100 tables, each one returning information about a single IPv4 network interface.

To retrieve the list of TCP/IPv6 network interfaces, request format “NIFC0200 Format” on page 143, and

you will get a repeating list of NIFC0200 tables, each one returning information about a single IPv6

network interface.

NIFC0100 Format

The following information about each TCP/IPv4 logical interface is returned for the NIFC0100 format.

For detailed descriptions of the fields in the table, see “Field Descriptions” on page 138.

 Offset

Type Field Dec Hex

0 0 CHAR(15) Internet address

15 F CHAR(1) Reserved

16 10 BINARY(4) Internet address binary

20 14 CHAR(15) Network address

35 23 CHAR(1) Reserved

36 24 BINARY(4) Network address binary

40 28 CHAR(10) Network name

50 32 CHAR(10) Line description

60 3C CHAR(10) Interface name

70 46 CHAR(2) Reserved

72 48 BINARY(4) Interface status

76 4C BINARY(4) Interface type of service

80 50 BINARY(4) Interface MTU

84 54 BINARY(4) Interface line type

88 58 CHAR(15) Host address

103 67 CHAR(1) Reserved

104 68 BINARY(4) Host address binary

108 6C CHAR(15) Interface subnet mask

123 7B CHAR(1) Reserved

124 7C BINARY(4) Interface subnet mask binary

128 80 CHAR(15) Directed broadcast address

143 8F CHAR(1) Reserved

144 90 BINARY(4) Directed broadcast address binary

148 94 CHAR(8) Change date

156 9C CHAR(6) Change time

162 A2 CHAR(15) Associated local interface

Communications APIs 137

Offset

Type Field Dec Hex

177 B1 CHAR(3) Reserved

180 B4 BINARY(4) Associated local interface binary

184 B8 BINARY(4) Change status

188 BC BINARY(4) Packet rules

192 C0 BINARY(4) Automatic start

196 C4 BINARY(4) TRLAN bit sequencing

200 C8 BINARY(4) Interface type

204 CC BINARY(4) Proxy ARP enabled

208 D0 BINARY(4) Proxy ARP allowed

212 D4 BINARY(4) Configured MTU

216 D8 CHAR(24) Network name - full

240 F0 CHAR(24) Interface name - full

264 108 CHAR(50) Alias name

314 13A CHAR(2) Reserved

316 13C BINARY(4) Alias name CCSID

320 140 BINARY(4) Offset to preferred interface list

324 144 BINARY(4) Number of entries in preferred interface list

328 148 BINARY(4) Length of one preferred interface list entry

This field repeats for

each preferred interface

list entry

CHAR(*) Preferred interface list entry (See Format of Preferred Interface List

Entry (page “Format of Preferred Interface List Entry”) for more

information.)

Format of Preferred Interface List Entry

The preferred interface list entry describes the data returned for each entry in the preferred interface list

of the NIFC0100 format. For detailed descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(15) Preferred interface internet address

15 F CHAR(1) Reserved

16 10 BINARY(4) Preferred interface internet address binary

20 14 CHAR(*) Reserved

Field Descriptions

Alias name. Name given to the interface to use as an alternate to the IP address.

Alias name CCSID. Coded character set ID for the alias name.

Associated local interface. The internet address, in dotted decimal notation, of the local interface that has

been associated with this interface. The following is a special value:

 *NONE No association has been made between this interface and another local interface.

138 iSeries: Communications APIs

Associated local interface binary. Binary representation of the associated local interface. The following is

a special value:

 0 No association has been made between this interface and another local interface.

Automatic start. Whether the interface is started automatically when the TCP/IP stack is activated.

Possible values are:

 0 NO. This interface is not started automatically.

1 YES. This interface is started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the

TCP/IP protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

Change status. The status of the most recent change to this interface in the dynamic tables used by the

TCP/IP protocol stack.

 1 Add interface request processed

2 Change interface request processed

3 Start interface request processed

4 End interface request processed

Change time. The time of the most recent change to this interface in the dynamic tables used by the

TCP/IP protocol stack. It is returned as 6 characters in the form HHMMSS, where:

 HH Hour

MM Minute

SS Second

Configured MTU. The configured maximum transmission unit value specified for this interface. The

following is a special value:

 0 LIND. The interface is not active currently and the MTU was specified as *LIND.

Directed broadcast address. The internet address, in dotted decimal notation, used to broadcast to all

systems attached to the same network or subnetwork as this interface. The following is a special value:

 *NONE The interface is attached to a network that does not support a broadcast operation.

Directed broadcast address binary. Binary representation of the directed broadcast address. The

following is a special value:

 0 The interface is attached to a network that does not support a broadcast operation.

Communications APIs 139

Host address. Host portion of the internet address, in dotted decimal notation, as determined by the

subnet mask specified for this interface.

Host address binary. Binary representation of the host address.

Interface line type. Type of line used by an interface. The following link protocols are supported:

 -1 OTHER -

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.

IPS - An Internet Protocol (IP) over SNA interface.

PPPoE - Point-to-Point over Ethernet protocol.

Note: As of V5R2, IP over IPX is no longer supported.

-2 NONE - Line is not defined. This is used for the following interfaces: *LOOPBACK, *VIRTUALIP, *OPC.

There is no line type value for these interfaces.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while

trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

4 ASYNC - Asynchronous communications protocol.

5 PPP - Point-to-point Protocol.

6 WLS - Wireless local area network protocol.

7 X.25 - X.25 protocol.

8 DDI - Distributed Data Interface protocol.

9 TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

Interface MTU. Maximum transmission unit value specified for this interface. The following are special

values:

 -1 OTHER.

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.

IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

0 LIND - The interface is not active currently and the MTU was specified as *LIND.

Interface name. The first 10 characters of the name of this interface.

Interface name - full. The complete 24 character interface name.

Interface status. Current status of this logical interface.

 0 Inactive - The interface has not been started. The interface is not active.

1 Active - The interface has been started and is running.

2 Starting - The system is processing the request to start this interface.

3 Ending - The system is processing the request to end this interface.

4 RCYPND - An error with the physical line associated with this interface was detected by the system. The line

description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the

recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

8 DOD - Point-to-Point (PPP) Dial-on-Demand.

140 iSeries: Communications APIs

Interface subnet mask. The subnet mask for the network, subnet, and host address fields of the internet

address, in dotted decimal notation, that defines the subnetwork for an interface.

Interface subnet mask binary. Binary representation of the interface subnet mask.

Interface type. The interface types are:

 0 Broadcast capable

1 Non-broadcast capable

2 Unnumbered network

Interface type of service. The way in which the internet hosts and routers should make trade-offs

between throughput, delay, reliability and cost. The following are special values:

 -1 OTHER -

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.

IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

1 NORMAL - Used for delivery of datagrams.

2 MINDELAY - Prompt delivery of datagrams with the minimize delay indication.

3 MAXTHRPUT - Datagrams with maximize throughput indication.

4 MAXRLB - Datagrams with maximize reliability indication.

5 MINCOST - Datagram with minimize monetary cost indication.

Internet address. The internet address, in dotted decimal notation, of an interface.

Internet address binary. Binary representation of the internet address.

Length of one preferred interface list entry. The length of a preferred interface list entry. For virtual

interfaces, a length of zero means that a preferred interface list is not being used. For other types of

interfaces, this field is set to zero.

Line description Name of the communications line description that identifies the physical network

associated with an interface. The following are special values:

 *IPI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX).

Note: As of V5R2, IP over IPX is no longer supported.

*IPS This interface is used by Internet Protocol (IP) over SNA.

*LOOPBACK This is a loopback interface. Processing associated with a loopback interface does not extend to a

physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

*OPC This interface is attached to the optical bus (OptiConnect).

Network address. Internet address, in dotted decimal notation, of the IP network or subnetwork to which

the interface is attached.

Network address binary. Binary representation of the network address.

Network name. The first 10 characters of the name of the network that this interface is a part of.

Network name - full. The complete 24 character name of the network that this interface is a part of.

Communications APIs 141

Number of entries in preferred interface list. The number of entries in the preferred interface list. For

virtual interfaces, zero means that a preferred interface list is not being used. For other types of

interfaces, this field is set to zero.

Offset to preferred interface list. The offset from the start of the user space to the beginning of the

preferred interface list. For virtual interfaces, zero means that a preferred interface list is not being used.

For other types of interfaces, this field is set to zero.

Packet rules. The kind of packet rules data available for a particular line.

 -1 OTHER - An unknown Packet rules value.

0 None - No filters and no NAT are loaded for the line specified.

1 NAT - NAT is enabled for this line.

2 Filters - Filters are defined for this line.

3 Filters and NAT - NAT enabled and filters defined.

4 Filters and IPSec - Filters and IPSec filters are defined for this line.

5 NAT and Filters and IPSec - NAT enabled and Filters and IPsec filters defined.

Preferred interface list entry. Specifies information about an interface in the preferred interface list.

The order in which the list entries are returned is also the order in which the system uses the interfaces

as Proxy Agents.

Preferred interface internet address. The internet address, in dotted decimal notation, of an interface in

the preferred interface list.

Preferred interface internet address binary. The binary representation of an interface internet address in

the preferred interface list.

Proxy ARP enabled. Whether Proxy ARP is currently active for this interface. Proxy ARP allows

physically distinct separate networks to appear as if they are a single logical network. It provides

connectivity between physically separate network without creating any new logical networks and without

updating any route tables.

 0 NO - Proxy ARP not enabled.

1 YES - Proxy ARP enabled.

Proxy ARP allowed. This field applies to Opticonnect (*OPC) and Virtual interfaces only. For those types

of interfaces, this field indicates whether Proxy ARP has been configured to be allowed or not allowed.

 0 NO - Proxy ARP not allowed.

1 YES - Proxy ARP allowed.

2 Unsupported - Proxy ARP allowed field is not supported by this interface.

Reserved. An ignored field.

TRLAN bit sequencing. The order the Address Resolution Protocol (ARP) puts bits into the hardware

address for Token Ring. Possible values are:

 1 MSB - The most significant bit is placed first.

2 LSB - The least significant bit is placed first.

142 iSeries: Communications APIs

NIFC0200 Format

The following information about each TCP/IPv6 logical interface is returned for the NIFC0200 format.

For detailed descriptions of the fields in the table, see “Field Descriptions” on page 144.

 Offset

Type Field Dec Hex

0 0 CHAR(45) Internet IPv6 address

45 2D CHAR(3) Reserved

48 30 CHAR(16) Internet IPv6 address binary

64 40 CHAR(3) Interface prefix length

67 43 CHAR(1) Reserved

68 44 BINARY(4) Interface prefix length binary

72 48 BINARY(4) Address type

76 4C BINARY(4) Address state

80 50 BINARY(8) Address preferred lifetime

88 58 CHAR(8) Address preferred lifetime expiration date

96 60 CHAR(6) Address preferred lifetime expiration time

102 66 CHAR(2) Reserved

104 68 BINARY(8) Address valid lifetime

112 70 CHAR(8) Address valid lifetime expiration date

120 78 CHAR(6) Address valid lifetime expiration time

126 7E CHAR(10) Line name

136 88 BINARY(4) Interface line type

140 8C CHAR(50) Interface description

190 BE CHAR(45) Network IPv6 address

235 EB CHAR(1) Reserved

236 EC CHAR(16) Network IPv6 address binary

252 FC CHAR(45) Host IPv6 address

297 129 CHAR(3) Reserved

300 12C CHAR(16) Host IPv6 address binary

316 13C BINARY(4) Interface status

320 140 BINARY(4) Automatic start

324 144 BINARY(4) Packet rules

328 148 BINARY(4) Interface source

332 14C BINARY(4) Duplicate address detection transmits

336 150 BINARY(4) Multicast - number of references

340 154 CHAR(4) Reserved

344 158 CHAR(8) Change date

352 160 CHAR(6) Change time

358 166 CHAR(2) Reserved

360 168 BINARY(4) Interface description CCSID

364 16C BINARY(4) MTU - configured

368 170 BINARY(4) MTU - current

Communications APIs 143

Offset

Type Field Dec Hex

372 174 BINARY(4) Duplicate address detection maximum transmits

376 178 CHAR(50) Alias name

426 1AA CHAR(6) Reserved

432 1B0 BINARY(4) Alias Name CCSID

436 1B4

Field Descriptions

Address preferred lifetime. The length of time that a ″valid″ address is preferred, in seconds. When the

preferred lifetime expires, the address becomes Deprecated. See the Address State field description for

more information. Valid values range from 0 through 4294967295 seconds. Negative values indicate that

the Address preferred lifetime expired that number of seconds ago.

The following are special values:

 -1000000000 Infinite - this address has an infinite preferred lifetime.

-1000000001 Not Applicable - this address is not in the Preferred address state, so this field does not apply.

Address preferred lifetime expiration date. The date when this address will no longer be preferred. If

the Address preferred lifetime expiration date and time are in the future, the address is still preferred. If

the Address preferred lifetime expiration date and time are in the past, then this address is no longer

preferred. The Address preferred lifetime expiration date is returned as 8 characters in the form

YYYYMMDD.

The meaning of the characters is as follows:

 YYYY Year

MM Month

DD Day

The following are special values:

 00000000 Infinite - this address has an infinite preferred lifetime which never expires.

00000001 Not Applicable - this address is not in the Preferred address state, so this field does not apply.

Address preferred lifetime expiration time. The time when this address will no longer be in the

preferred state. If the Address preferred lifetime expiration date and time are in the future, the address is

still preferred. If the Address preferred lifetime expiration date and time are in the past, then this address

is no longer preferred. The Address preferred lifetime expiration time is returned as 6 characters in the

form HHMMSS.

The meaning of the characters is as follows:

 HH Hour

MM Minute

SS Second

The following are special values:

144 iSeries: Communications APIs

000000 Infinite - this address has an infinite preferred lifetime which never expires.

000001 Not Applicable - this address is not in the preferred address state, so this field does not apply.

Address state. The current state of this IPv6 address. IPv6 addresses are in different states at different

times, due to Duplicate Address Detection (DAD) and address lifetimes. Unicast and Multicast addresses

have different possible states and the only state that applies to either type is Failed.

When a unicast address is one of the two ″valid″ states, Preferred and Deprecated, it may be used as the

source or destination address of a packet. When a unicast address is in one of the five ″invalid″ states it

may not be used as the source or destination address of a packet. The five ″invalid″ states are: Tentative,

Expired, Inactive, Duplicate and Failed.

When a multicast address is one of the two ″valid″ states, Idle Listener and Delaying Listener, it may be

used as the source or destination address of a packet. When a multicast address is in one of the two

″invalid″ states, Non-listener and Failed, it may not be used as the source or destination address of a

packet.

Possible values are:

 -1 Failed - while attempting to move this address from one state to another, an internal error occurred,

preventing completion of the action necessary to perform the state change.

1 Inactive - the interface has been ended by the user and no further communications will be performed using

this address. The address is available to be reassigned elsewhere.

2 Duplicate - A duplicate address was detected on the network during Duplicate Address Detection (DAD),

therefore this address was not moved to the Preferred state.

3 Tentative - an address whose uniqueness on a link is being verified, prior to its assignment to a physical

interface. A tentative address is not considered assigned to a physical interface in the usual sense. A physical

interface discards received packets addressed to a tentative address, but accepts Neighbor Discovery packets

related to Duplicate Address Detection for the tentative address.

4 Preferred - an address assigned to a physical interface whose use by upper layer protocols is unrestricted.

Preferred addresses may be used as the source (or destination) address of packets sent from (or to) the

physical interface.

5 Deprecated - an address assigned to a physical interface whose use is discouraged, but not forbidden. A

deprecated address should no longer be used as a source address in new communications, but packets sent

from or to deprecated addresses are delivered as expected. A deprecated address may continue to be used as

a source address in communications where switching to a preferred address causes hardship to a specific

upper-layer activity (for example, an existing TCP connection).

6 Expired - an address assigned to a physical interface whose use is forbidden. An address transitions to the

expired state when its valid lifetime expires. An IPv6 interface with an expired address will be removed after

a period of time.

11 Non-listener - the initial state of a multicast address when it first joins a multicast group and it is not yet

listening for any incoming Multicast Listener Discovery requests.

12 Idle listener - this multicast interface is listening for incoming Multicast Listener Discovery requests.

13 Delaying listener - this multicast interface has recieved an incoming Multicast Listener Discovery request and

has gone to sleep until it is time to wakeup and take action on that request.

Note: As of V5R4, this field is no longer available and will always be set to 4.

Address type. The type of IPv6 address that is assigned to this network interface.

Possible values are:

 1 Unicast - an identifier for a single interface. A packet sent to a unicast address is delivered to the interface

identified by that address.

2 Multicast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a

multicast address is delivered to all interfaces identified by that address.

Communications APIs 145

3 Anycast - an identifier for a set of interfaces (typically belonging to different nodes). A packet sent to an

anycast address is delivered to one of the interfaces identified by that address (the ″nearest″ one, according to

the routing protocols’ measure of distance).

Address valid lifetime. The length of time, in seconds, that an address remains in a ″valid″ state

(Preferred or Deprecated). When the valid lifetime expires, the address becomes Expired. See the Address

State field description for more information. Valid values range from 0 through 4294967295 seconds.

Negative values indicate that the Address valid lifetime expired that number of seconds ago.

The following are special values:

 -1000000000 Infinite - this address has an infinite valid lifetime.

-1000000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

Address valid lifetime expiration date. The date when this address will expire or did expire. If the

Address valid lifetime expiration date and time are in the future, the address has not expired yet. If the

Address valid lifetime expiration date and time are in the past, then this address has expired and is still

being returned for a short period of time to indicate that the interface ceased to function because its valid

lifetime expired. The Address valid lifetime expiration date is returned as 8 characters in the form

YYYYMMDD.

The meaning of the characters is as follows:

 YYYY Year

MM Month

DD Day

The following are special values:

 00000000 Infinite - this address has an infinite valid lifetime which never expires.

00000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

Address valid lifetime expiration time. The time when this address will expire or did expire. If the

Address valid lifetime expiration date and time are in the future, the address has not expired yet. If the

Address valid lifetime expiration date and time are in the past, then this address has expired and is still

being returned for a short period of time to indicate that the interface ceased to function because its valid

lifetime expired. The Address valid lifetime expiration time is returned as 6 characters in the form

HHMMSS.

The meaning of the characters is as follows:

 HH Hour

MM Minute

SS Second

The following are special values:

 000000 Infinite - this address has an infinite valid lifetime which never expires.

000001 Not Applicable - this address is not in a valid address state, so this field does not apply.

Alias Name. Name given to interface to use as an alternate to the IP address.

146 iSeries: Communications APIs

Alias Name CCSID. Coded character set ID for the alias name.

Automatic start. Whether the interface is started automatically when the TCP/IPv6 stack is activated.

Possible values are:

 0 NO. This interface is not started automatically.

1 YES. This interface is started automatically.

Change date. The date of the most recent change to this interface in the dynamic tables used by the

TCP/IPv6 protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

Change time. The time of the most recent change to this interface in the dynamic tables used by the

TCP/IPv6 protocol stack. It is returned as 6 characters in the form HHMMSS, where:

 HH Hour

MM Minute

SS Second

Duplicate address detection maximum transmits. Specifies the maximum number of Duplicate

Address Detection (DAD) transmissions the stack will send out on the interface.

Duplicate address detection transmits. Specifies the number of Duplicate Address Detection (DAD)

transmissions the stack has sent out on this interface.

Note: As of V5R4, this data is no longer available and is always set to 0.

Host IPv6 address. Host portion of the internet address, in IPv6 address format, as determined by the

prefix length configured for this interface. This field is NULL padded.

Host IPv6 address binary. Binary representation of the host IPv6 address. Even though this field is

defined as a character field, a binary IPv6 address is returned in it.

Interface description Configured free form comment field about this interface.

Interface description CCSID.Coded character set ID for the interface description field.

Interface line type. Type of line used by the interface. The following link protocols are supported:

 -1 OTHER

-2 NONE - Line is not defined. This value is used for the following interfaces: *LOOPBACK. There is no line

type value for this interface.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while

trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

4 ASYNC - Asynchronous communications protocol.

5 PPP - Point-to-point Protocol.

6 WLS - Wireless local area network protocol.

Communications APIs 147

7 X.25 - X.25 protocol.

8 DDI - Distributed Data Interface protocol.

9 TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

11 IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

Note: As of V5R4, TRLAN, FR, ASYNC, PPP, WLS, X.25, DDI, TDLC, L2TP and IPv6 Tunneling Line values

are no longer supported.

Interface prefix length. The prefix length defines how many bits of the interface IPv6 address are in the

prefix. It is a zoned decimal number which specifies how many of the left-most bits of the address make

up the prefix. The prefix length is used to generate network and host addresses. This field is NULL

padded.

Interface prefix length binary. Binary representation of the interface prefix length.

Interface source Specifies how this interface was added to the TCP/IPv6 stack.

Possible values are:

 1 Stateless - the interface was added to the stack by the IPv6 stateless autoconfiguration mechanism.

2 Stateful - the interface was added to the stack by the IPv6 stateful configuration mechanism (that is,

DHCPv6).

3 Manual - the interface was added to the stack by manual configuration.

4

Loopback - the interface was added to the stack as the loopback interface.

Interface status. Current status of this logical interface.

 0 Inactive - The interface has not been started. The interface is not active.

1 Active - The interface has been started and is running.

2 Starting - The system is processing the request to start this interface.

3 Ending - The system is processing the request to end this interface.

4 RCYPND - An error with the physical line associated with this interface was detected by the system. The line

description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the

recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

Internet IPv6 address. The internet address, in IPv6 address format, of the interface.

Internet IPv6 address binary. Binary representation of the internet IPv6 address. Even though this field is

defined as a character field, a binary IPv6 address is returned in it.

Line name. Name of the communications line description that identifies the physical network associated

with an interface. This field is NULL padded.

The following are special values:

 *LOOPBACK This is the IPv6 loopback interface. Processing associated with a loopback interface does not

extend to a physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

Note: As of V5R4, this value is no longer supported.

148 iSeries: Communications APIs

*OPC This interface is attached to the optical bus (OptiConnect).

Note: As of V5R4, this value is no longer supported.

*TNLCFG64 This interface is associated with a configured 6-4 tunneling line.

Note: As of V5R4, this value is no longer supported.

MTU - configured. The configured maximum transmission unit (MTU) value specified for this

interface.

The following is a special value:

 0 LIND - The MTU was configured as *LIND, the MTU size is the maximum frame size found in the line

description object associated with this interface.

MTU - current. Maximum transmission unit (MTU) value currently in effect for this interface.

The following is a special value:

 0 LIND - The interface is not active currently and the MTU was configured as *LIND.

Multicast - number of references. The number of Sockets clients that have joined this multicast group.

The following is a special value:

 -1 This interface is not a Multicast address and this field does not apply.

Note: As of V5R4, this data is no longer available and is always set to 0.

Network IPv6 address. Internet address, in IPv6 address format, of the IPv6 network or subnetwork to

which the interface is attached. This field is NULL padded.

Network IPv6 address binary. Binary representation of the network IPv6 address. Even though this field

is defined as a character field, a binary IPv6 address is returned in it.

Packet rules. The kind of packet rules data available for the particular line this interface is associated

with.

 -1 OTHER - An unknown Packet rules value.

0 None - No filters and no NAT are loaded for the line specified.

1 NAT - NAT is enabled for this line.

2 Filters - Filters are defined for this line.

3 Filters and NAT - NAT enabled and filters defined.

4 Filters and IPSec - Filters and IPSec filters are defined for this line.

5 NAT and Filters and IPSec - NAT enabled and Filters and IPsec filters defined.

Reserved. An ignored field.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C5 E API error listing TCP/IP Network Status list information.

Communications APIs 149

Message ID Error Message Text

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C9 I Information returned incomplete.

CPF0F03 E Error in retrieving the user space that was created by the caller.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List Network Routes (QtocLstNetRte) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Network Routes (QtocLstNetRte) API returns a detailed list of all routes. This API returns all

IPv4 routes using one output format name, and all IPv6 routes using a different output format name.

TCP/IP must be active on this system; otherwise, a message will be issued.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that is to receive the created list. The first 10 characters contain the user space

name, and the second 10 characters contain the name of the library where the user space is

150 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

located. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the route information to be returned. The format names supported are:

 NRTE0100 Detailed information about each TCP/IPv4 route. Refer to “NRTE0100 Format” on page 152 for

details on the format.

NRTE0200 Detailed information about each TCP/IPv6 route. Refer to “NRTE0200 Format” on page 156 for

details on the format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Route Lists

To request a list of all routes, use format NRTE0100.

The route description list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– NRTE0100 format, or

– NRTE0200 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C

Communications APIs 151

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14

Format of Returned Connection Data

To retrieve the list of TCP/IPv4 routes, request format “NRTE0100 Format,” and you will get a repeating

list of NRTE0100 tables, each one returning information about a single IPv4 route. To retrieve the list of

TCP/IPv6 routes, request format “NRTE0200 Format” on page 156, and you will get a repeating list of

NRTE0200 tables, each one returning information about a single IPv6 route.

NRTE0100 Format

The following information about each TCP/IPv4 route is returned for the NRTE0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 153.

 Offset

Type Field Dec Hex

0 0 CHAR(15) Route destination

15 F CHAR(1) Reserved

16 10 BINARY(4) Route destination binary

20 14 CHAR(15) Subnet mask

35 23 CHAR(1) Reserved

36 24 BINARY(4) Subnet mask binary

40 28 CHAR(15) Next hop

55 37 CHAR(1) Reserved

56 38 BINARY(4) Next hop binary

60 3C BINARY(4) Route status

64 40 BINARY(4) Type of service

68 44 BINARY(4) Route MTU

72 48 BINARY(4) Route type

76 4C BINARY(4) Route source

80 50 BINARY(4) Route precedence

84 54 BINARY(4) Local binding interface status

88 58 BINARY(4) Local binding type

92 5C BINARY(4) Local binding line type

96 60 CHAR(15) Local binding interface

111 6F CHAR(1) Reserved

112 70 BINARY(4) Local binding interface binary

116 74 CHAR(15) Local binding subnet mask

131 83 CHAR(1) Reserved

152 iSeries: Communications APIs

Offset

Type Field Dec Hex

132 84 BINARY(4) Local binding subnet mask binary

136 88 CHAR(15) Local binding network address

151 97 CHAR(1) Reserved

152 98 BINARY(4) Local binding network address binary

156 9C CHAR(10) Local binding line description

166 A6 CHAR(8) Change date

174 AE CHAR(6) Change time

180 B4

Field Descriptions

Change date.The date of the most recent change to this route in the dynamic tables used by the TCP/IP

protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

Change time.The time of the most recent change to this route in the dynamic tables used by the TCP/IP

protocol stack. It is returned as 6 characters in the form HHMMSS, where:

 HH Hour

MM Minute

SS Second

Local binding interface. The IP interface to bind to this route.

Local binding interface binary. Binary representation of the local binding interface.

Local binding interface status. The current status of this logical interface.

The possible values are:

 0 Inactive - The interface has not been started. The interface is not active.

1 Active - The interface has been started and and is running.

2 Starting - The system is processing the request to start this interface.

3 Ending - The system is processing the request to end this interface.

4 RCYPND - An error with the physical line associated with this interface was detected by the system. The line

description associated with this interface is in the recovery pending (RCYPND) state.

5 RCYCNL - A hardware failure has occurred and the line description associated with this interface is in the

recovery canceled (RCYCNL) state.

6 Failed - The line description associated with this interface has entered the failed state.

7 Failed (TCP) - An error was detected in the IBM TCP/IP Vertical Licensed Internal Code.

8 DOD - Point-to-Point (PPP) Dial-on-Demand.

9 Active Duplicate IP Address Conflict - Another host on the LAN responded to a packet destined for this

logical interface.

Communications APIs 153

Local binding line description. Each TCP/IP interface is associated with a network. This field displays

the name of the communications line description or virtual line (L2TP) that identifies the network

associated with an interface. The following are special values:

 *IPI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX)

Note: As of V5R2, IP over IPX is no longer supported.

 This interface is used by Internet Protocol (IP) over SNA.

*LOOPBACK This is a loopback interface. Processing associated with a loopback interface does not extend to a

physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

*OPC This interface is attached to the optical bus (OptiConnect).

Local binding line type. Indicates the type of line used by an interface. The following link protocols are

supported:

 -1 OTHER -

v IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX).

v IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

-2 NONE - Line is not defined. This is used for the following interfaces: *LOOPBACK, *VIRTUALIP, *OPC.

There is no line type value for these interfaces.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while

trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be

found.

1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

4 ASYNC - Asynchronous communications protocol.

5 PPP - Point-to-point Protocol.

6 WLS - Wireless local area network protocol.

7 X.25 - X.25 protocol.

8 DDI - Distributed Data Interface protocol.

9 TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

Local binding network address. The internet address, in dotted decimal notation, of the IP network or

subnetwork that the interface is attached to.

Local binding network address binary. Binary representation of the local binding network address.

Local binding subnet mask. The subnet mask for the network, subnet, and host address fields of the

internet address, in dotted decimal notation, that defines the subnetwork for an interface.

Local binding subnet mask binary. Binary representation of the local binding subnet mask.

Local binding type. The possible values are:

 0 Dynamic

1 Static

Next hop. The internet address of the first system on the path from your system to the route destination

in dotted decimal notation. The following are special values:

154 iSeries: Communications APIs

*DIRECT

This is the next hop value of a route that is automatically created. When an interface is added to this

system, a route to the network the interface attaches to is also created.

Next hop binary. The binary represenation of the next hop. For *DIRECT this will be the local binding

network address.

Reserved. An ignored field.

Route destination. The Internet Protocol (IP) address, in dotted decimal notation, of the ultimate

destination reached by this route. When used in combination with the subnet mask and the type of

service values, the route destination identifies a route to a network or system.

Route destination binary. The binary representation of the route destination.

Route MTU. A number representing the maximum transmission unit (MTU) value for this route in bytes.

The following are special values:

 -1 OTHER -

v IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.

v IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

0 IFC - The route is not currently active and the MTU was specified as *IFC.

Route precedence. Identify priority of route, range 1-10. Lowest priority being 1.

Route source. Specifies how this route was added to the IP routing tables. The possible values are:

 -1 OTHER - The route was added by a sockets input/output control (IOCtl) or other mechanism.

0 CFG - The route was added with system configuration commands.

1 ICMP - The route was added by the Internet Control Message Protocol (ICMP) redirect mechanism.

2 SNMP - The route was added by the Simple Network Management Protocol (SNMP).

3 RIP - The route was added by the Routing Information Protocol (RIP).

Route status. Indicated whether this route is available.

 1 YES - The router specified by the next hop value for this interface is available for use. This route is included

amoung the routes considered when datagram routing is performed by TCP/IP.

2 NO - The router specified by the next hop value for this interface is not available for use, interface is not

active. This route is not included amoung the routes considered when datagram routing is performed.

3 DOD - This route is used for Point-to-Point (PPP) Dial-on-Demand. Currently, this Dial-on-Demand route is

not available. The route will become available when a Dial-on-Demand session is initiated for the interface

this route is associated with.

4 NO GATEWAY - The router specified by the next hop value for this interface is not available for use, the

router may be experiencing a problem.

Route type. The route types are:

 0 DFTROUTE - A default route.

1 DIRECT - A route to a network or subnetwork to which this system has a direct physical connection.

2 HOST - A route to a specific remote host.

3 SUBNET - An indirect route to a remote subnetwork.

4 NET - An indirect route to a remote network.

Communications APIs 155

Subnet mask. The actual value of the subnet mask in dotted decimal notation.

Subnet mask binary. The binary representation of the subnet mask.

Type of service. Defines how the internet hosts and routers should make trade-offs between throughput,

delay, reliability and cost. The following are special values:

 -1 OTHER -

v IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX) interface.

v IPS - An Internet Protocol (IP) over SNA interface.

Note: As of V5R2, IP over IPX is no longer supported.

1 NORMAL - Used for delivery of datagrams.

2 MINDELAY - Prompt delivery of datagrams with the minimize delay indication.

3 MAXTHRPUT - Datagrams with maximize throughput indication.

4 MAXRLB - Datagrams with maximize reliability indication.

5 MINCOST - Datagrams with minimize monetary cost indication.

NRTE0200 Format

The following information about each TCP/IPv6 route is returned for the NRTE0200 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 157.

 Offset

Type Field Dec Hex

0 0 CHAR(45) Route destination

45 2D CHAR(3) Reserved

48 30 CHAR(16) Route destination binary

64 40 CHAR(3) Prefix length

67 43 CHAR(5) Reserved

72 48 BINARY(4) Prefix length binary

76 4C BINARY(4) Next hop address family

80 50 CHAR(45) Next hop IPv6

125 7D CHAR(3) Reserved

128 80 CHAR(16) Next hop IPv6 binary

144 90 CHAR(15) Next hop IPv4

159 9F CHAR(1) Reserved

160 A0 BINARY(4) Next hop IPv4 binary

164 A4 CHAR(10) Local binding line name

174 AE CHAR(2) Reserved

176 B0 BINARY(4) Local binding line type

180 B4 BINARY(4) Local binding line status

184 B8 BINARY(4) Route status

188 BC BINARY(8) Route lifetime remaining

196 C4 BINARY(4) Route lifetime at creation

200 C8 BINARY(4) Route source

156 iSeries: Communications APIs

Offset

Type Field Dec Hex

204 CC BINARY(4) Route type

208 D0 BINARY(4) Configured route MTU

212 D4 BINARY(4) Actual route MTU

216 D8 BINARY(4) Is on-link

220 DC BINARY(4) Duplicate indicator

224 E0 CHAR(8) Change date

232 E8 CHAR(6) Change time

238 EE CHAR(8) Expiration date

246 F6 CHAR(6) Expiration time

252 FC CHAR(50) Text description

302 12E CHAR(2) Reserved

304 130 BINARY(4) Text description CCSID

308 134

Field Descriptions

Actual route MTU. A number representing the maximum transmission unit (MTU) value for this route in

bytes.

The following is a special value:

 0 *IP6LINMTU - The route is not currently active and the MTU was specified as *IP6LINMTU, the MTU value

of the line to which this route is bound.

Change date. The date of the most recent change to this route in the dynamic tables used by the

TCP/IPv6 protocol stack. It is returned as 8 characters in the form YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

Change time. The time of the most recent change to this route in the dynamic tables used by the

TCP/IPv6 protocol stack. It is returned as 6 characters in the form HHMMSS, where:

 HH Hour

MM Minute

SS Second

Configured route MTU. A number representing the configured maximum transmission unit (MTU) value

for this route in bytes.

The following is a special value:

 0 *IP6LINMTU - The route MTU was specified as *IP6LINMTU, the MTU value of the line to which this route

is bound.

Communications APIs 157

Duplicate indicator. Indicates whether this route is a duplicate of another route in the routing table or

not, and also whether there are any routes which are duplicates of this route. Use the Route status field

to determine whether the route is in use or not.

Possible values are:

 1 This route is not a duplicate of another route and it does not have any duplicates.

2 This route is not a duplicate of another route but it does have duplicates.

3 This route is a duplicate of another route.

Expiration date. The date when this route will expire or did expire. If the Expiration date and time are in

the future, the route has not expired yet. If the Expiration date and time are in the past, then this route

has expired and is still being returned for a short period of time to indicate that the route ceased to

function because its lifetime expired. The Expiration date is returned as 8 characters in the form

YYYYMMDD.

The meaning of the characters is as follows:

 YYYY Year

MM Month

DD Day

The following is a special value:

 00000000 Infinite - this route has an infinite lifetime which never expires.

Expiration time. The time when this route will expire or has expired. If the Expiration date and time are

in the future, the route has not expired yet. If the Expiration date and time are in the past, then this route

has expired and is still being returned for a short period of time to indicate that the route ceased to

function because its lifetime expired. The Expiration time is returned as 6 characters in the form

HHMMSS.

The meaning of the characters is as follows:

 HH Hour

MM Minute

SS Second

The following is a special value:

 000000 Infinite - this route has an infinite lifetime which never expires.

Is on-link. Indicates whether this route is for a directly attached prefix (network) or not.

Possible values are:

 0 Unknown, the on-link status of this route is undetermined.

1 Yes, this is a route to a directly attached prefix.

Note: As of V5R4, this field is no longer available and is always set to 0.

158 iSeries: Communications APIs

Local binding line name. The name of the communications line description to which this route is bound.

This field is NULL padded.

The following are special values:

 *LOOPBACK This route is bound to the loopback interface. Processing associated with the loopback interface

does not extend to a physical line.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces.

Note: As of V5R4, this value is no longer supported.

*OPC This interface is attached to the optical bus (OptiConnect).

Note: As of V5R4, this value is no longer supported.

*TNLCFG64 This interface is bound to a configured 6-4 tunneling line.

Note: As of V5R4, this value is no longer supported.

Local binding line status. The current operational status of the communications line to which this route

is bound.

Possible values are:

 1 Active - The line is operational.

2 Inactive - The line is not operational.

3 Failed - The desired state of the line is Active, but it is currently in the Inactive state.

Local binding line type. Indicates the type of line to which this route is bound.

Possible values are:

 -1 OTHER

-2 NONE - Line is not defined. This value is used for the following interface: *LOOPBACK. There is no line type

value for this interface.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received while

trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface cannot be found.

1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

4 ASYNC - Asynchronous communications protocol.

5 PPP - Point-to-point Protocol.

6 WLS - Wireless local area network protocol.

7 X.25 - X.25 protocol.

8 DDI - Distributed Data Interface protocol.

9 TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

10 L2TP (Virtual PPP) - Layer Two Tunneling Protocol.

11 IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

Note: As of V5R4, TRLAN, FR, ASYNC, PPP, WLS, X.25, DDI, TDLC, L2TP and IPv6 Tunneling Line values

are no longer supported.

Next hop address family. The address family of the Next Hop address for this route. Use this field to

determine whether the IPv4 or IPv6 Next Hop field contains the value of the next hop.

Possible values are:

Communications APIs 159

1 AF_INET - The next hop is an IPv4 address. Use the Next hop IPv4 fields.

2 AF_INET6 - The next hop is an IPv6 address. Use the Next hop IPv6 fields.

Note: As of V5R4, AF_INET is no longer supported for next hop address family.

Next hop IPv4. The IPv4 internet address of the first system on the path from this system to the route

destination in dotted-decimal format. The next hop will only be an IPv4 address when the route uses an

IPv6 over IPv4 tunnel. This field is only valid when the value of the Next hop address family field is

AF_INET. This field is NULL padded

Note: As of V5R4, this field is no longer available and is always set to 0.

Next hop IPv4 binary. The binary representation of the Next hop IPv4 field. This field is only valid when

the value of the Next hop address family field is AF_INET.

Note: As of V5R4, AF_INET is no longer supported for a next hop address family. As a result, the

value in this field is no longer valid.

Next hop IPv6. The IPv6 internet address of the first system on the path from your system to the route

destination in IPv6 address format. This field is only valid when the value of the Next hop address

family field is AF_INET6. This field is NULL padded.

The following special value may be returned:

 *DIRECT This is the next hop value of a route that is automatically created. When an interface is added to

this system, a route to the network the interface attaches to is also created.

Next hop IPv6 binary. The binary representation of the Next hop IPv6 field. Even though this field is

defined as a character field, a binary IPv6 address is returned in it except when the following special

character values are returned. This field is only valid when the value of the Next hop address family field

is AF_INET6.

The following special value may be returned:

 *DIRECT This is the next hop value of a route that is automatically created. When an interface is added to

this system, a route to the network the interface attaches to is also created.

Prefix length. The prefix length defines how many bits of the route destination IPv6 address are in the

prefix. It is a zoned decimal number which specifies how many of the left-most bits of the address make

up the prefix. The prefix length is used to generate network and host addresses. This field is NULL

padded.

Prefix length binary. Binary representation of the prefix length.

Reserved. An ignored field.

Route destination. The Internet Protocol version 6 (IPv6) address, in IPv6 address format, of the ultimate

destination reached by this route. When used in combination with the prefix length the route destination

identifies a route to a network or system. This field is NULL padded.

Route destination binary. The binary representation of the route destination. Even though this field is

defined as a character field, a binary IPv6 address is returned in it.

160 iSeries: Communications APIs

Route lifetime at creation. The route lifetime value which this route had when it was first created, either

automatically or by manual configuration. The route lifetime value is the length of time, in seconds, that

a route remains in the route table. Only routes which are discovered on the network will have route

lifetimes shorter than infinite. Valid values range from 1 through 4294967295 seconds.

The following is a special value:

 0 Infinite - this route had an infinite lifetime when it was created.

Note: As of V5R4, the route lifetime at creation field is always set to infinite.

Route lifetime remaining. The length of time, in seconds, that a route remains in the route table. Only

routes which are discovered on the network will have route lifetimes shorter than infinite. Valid values

range from -31536000 through 4294967295 seconds. Negative values indicate that the route has expired,

but it is being retained for a short period of time to show why the route ceased to function.

The following is a special value:

 -1000000000 Infinite - this route has an infinite lifetime.

Note: As of V5R4, the route lifetime remaining field is always set to infinite.

Route source. Specifies how this route was added to the IPv6 routing table.

The possible values are:

 0 Unknown

1 ICMPv6 Redirect - This route was added by the ICMPv6 redirect mechanism.

2 ICMPv6 Router Advertisement Router Lifetime - This route was added because of the presence of a non-zero

value in the Router Lifetime field in a Router Advertisement packet received by the system.

3 ICMPv6 Router Advertisement Prefix Information Option - This route was added because of the presence of a

Prefix Information Option on a Router Advertisement packet received by the system.

4 CFG RTE - This route was manually configured.

5 CFG IFC - This route was added when because of a manually configured interface.

6 Autoconfigured Interface - This route was added when because of an interface added by stateless

autoconfiguration.

7 RIP - This route was added by the Routing Information Protocol (RIP).

8 OSPF - This route was added by the Open Shortest Path First (OSPF) routing protocol.

9 ROUTING - This route was determined to be necessary and added by the TCP/IP stack on this system.

Route status. The current state of the route.

Possible values are:

 0 Unknown

1 Active - This route is currently active and is in the current route search path.

3 Inactive - This route is not in the current route search path, and is not being used.

Route type. The type of route that this route is.

Possible values are:

 0 Unknown

1 DFTROUTE - A default route.

Communications APIs 161

2 DIRECT - A route to a network to which this system has a direct physical connection.

3 HOST - A route to a specific remote host.

4 NET - An indirect route to a remote network.

Text description. User added text description associated with the route.

Text description CCSID. Coded character set ID for the text description.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C5 E API error providing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C9 I Information returned incomplete.

CPF0F03 E Error in retrieving the user space that was created by the caller.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Line name Input Char(10)

4 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API returns a list of all entries in the ARP

(Address Resolution Protocol) table for the specified line.

TCP/IP must be active on this system; otherwise, error message TCP84C0 will be issued.

162 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the information, and the library in which it is located. The first 10

characters contain the user space name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library.

*LIBL The library list.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 ARPT0100

 List of ARP table entries for a specified interface. Refer to “ARPT0100 Format” on page 164 for

details on the format.

Line name

INPUT; CHAR(10)

 The name of the physical interface to retrieve ARP table entries for.

Error Code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of ARP Table Lists

To request a list of ARP table entries for an interface, use format ARPT0100.

The ARP table list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– ARPT0100 format.

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

Communications APIs 163

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Line name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name used

20 14 CHAR(10) Line name used

ARPT0100 Format

The following information about an ARP table entry is returned for the ARPT0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(15) Internet address

15 F CHAR(1) Reserved

16 10 BINARY(4) Internet address binary

20 14 BINARY(4) Line type

24 18 BINARY(4) Ethernet type

28 1C BINARY(4) Type of entry

32 20 BINARY(4) Data link connection identifier (DLCI)

36 24 BINARY(4) Routing information field (RIF) valid mask

40 28 CHAR(18) Routing information field (RIF)

58 3A CHAR(17) Physical address

75 4B CHAR(1) Reserved

Field Descriptions

Data link connection identifier (DLCI). This field identifies a logical connection on a single physical

Frame Relay link. Each logical connection has a unique integer identifying it. Valid values range from 1

to 255, and this field is only valid when the line type field corresponds to Frame Relay.

164 iSeries: Communications APIs

Ethernet type. The type of Ethernet framing in use. ONLY valid if the interface is using an ELAN

(Ethernet) or WLS (Wireless) line.

 -1 Both Ethernet Version 2 and IEEE 802.3 framing (only set for local or proxy entries)

1 Ethernet Version 2

6 IEEE 802.3

Internet address. The IP address of the interface in dotted-decimal notation.

Internet address binary. The binary representation of the IP address.

Line type. The type of physical line used by an interface. The possible values are:

 1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

6 WLS - Wireless local area network protocol.

8 DDI - Distributed Data Interface protocol.

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where ’X’ is a

hexadecimal digit.

Reserved. An ignored field.

Routing information field (RIF). The architected token-ring or FDDI source routing information. Use the

RIF Valid Mask field to determine the validity of this field.

Routing information field (RIF) valid mask. Tells whether the RIF is valid for this ARP entry or not. The

possible values are:

 0 The RIF is not valid.

1 The RIF is valid.

Type of entry. The type of ARP table entry. The possible values are:

 1 Dynamic - A normal ARP table entry which will be removed automatically after a period of inactivity.

2 Local - This interface is local to this host. Static entry.

3 Proxy - This interface is proxying ARP requests/replies for other machines. Static entry.

Error Messages

 TCP84C0 E TCP/IP stack not active.

TCP84C3 E The specified line name does not exist.

TCP84C4 E The specified line name corresponds to a line type that does not support ARP.

TCP84C5 E API error providing TCP/IP Network Status information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C9 I Information returned incomplete.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

Communications APIs 165

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List Physical Interface Data (QtocLstPhyIfcDta) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The List Physical Interface Data (QtocLstPhyIfcDta) API returns a list of physical interfaces and detailed

information about TCP/IP related data for each one. Depending on which output format is requested,

IPv4 and also IPv6 information can be requested for each physical interface.

TCP/IP must be active on this system; otherwise error message TCP84C0 will be issued.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the information, and the library in which it is located. The first 10

characters contain the user space name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library.

*LIBL The library list.

Format name

INPUT; CHAR(8)

166 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

The format of the space information to be returned. The format names supported are:

 IFCD0100 Basic physical interface data and detailed IPv4 specific data. Refer to “IFCD0100 Format” on page

168 for details on the format.

IFCD0200 Filter and IPSec Physical interface data. Refer to “IFCD0100 Format” on page 168 and “IFCD0200

Format” on page 171 for details on the format.

IFCD0300 Detailed IPv6 specific physical interface data. Refer to “IFCD0100 Format” on page 168 and

“IFCD0300 Format” on page 175 for details on the format.

Error Code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Physical Interface Lists

To request a list of TCP/IP data for all physical interfaces, use format IFCD0100. For detailed information

about Filter and IPSec physical interface data in addition to the IFCD0100 format data, use format

IFCD0200.

The physical interface description list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– IFCD0100 format.

– IFCD0200 format.

– IFCD0300 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C

Communications APIs 167

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name used

20 14

Format of Returned Connection Data

To retrieve basic Physical interface data, and IPv4 specific statistics about each physical interface, use

format “IFCD0100 Format.” To retrieve IPv4 Filter and IPSec statistics about each physical interface, in

addition to format IFCD0100 information, use format “IFCD0200 Format” on page 171. To retrieve IPv6

specific information and statistics about each physical interface, in addition to format IFCD0100

information, use format “IFCD0300 Format” on page 175.

IFCD0100 Format

The following data about a physical interface is returned for the IFCD0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 169.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Line type

4 4 BINARY(4) Packet rules

8 8 BINARY(8) Total bytes received

16 10 BINARY(8) Total bytes sent

24 18 BINARY(4) Total unicast packets received

28 1C BINARY(4) Total non-unicast packets received

32 20 BINARY(4) Total inbound packets discarded

36 24 BINARY(4) Total unicast packets sent

40 28 BINARY(4) Total non-unicast packets sent

44 2C BINARY(4) Total outbound packets discarded

48 30 BINARY(4) Physical interface status

52 34 CHAR(10) Line description

62 3E CHAR(17) Physical address

79 4F CHAR(8) Date - retrieved

87 57 CHAR(6) Time - retrieved

93 5D CHAR(3) Reserved

96 60 BINARY(4) Offset to additional information

100 64 BINARY(4) Length of additional information

104 68 BINARY(4) Internet protocol version

108 6C

168 iSeries: Communications APIs

Field Descriptions

Date - retrieved. Date when information is retrieved and valid. Format: YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

Internet protocol version. The version of the Internet Protocol (IP) that is currently in use on this line.

Possible values are:

 1 IPv4

2 IPv6

3 IPv4 & IPv6

Length of additional information. The length in bytes of additional information returned that is not part

of format IFCD0100.

Line description. Each TCP/IP interface is associated with a physical network. This field displays the

name of the communications line description that identifies the physical network associated with an

interface.

The following special values may also be displayed:

 *IPI This interface is used by Internet Protocol (IP) over Internetwork Packet Exchange (IPX). A specific

physical line is not associated with an interface used by IP over IPX (IPI).

Note: As of V5R2, IP over IPX is no longer supported.

*IPS The interface is used by Internet Protocol (IP) over SNA. A specific physical line is not associated

with an interface used by IP over SNA (IPS).

*LOOPBACK The interface is a loopback interface. Processing associated with a loopback interface does not

extend to a physical line. There is no line description associated with a loopback address.

*VIRTUALIP The virtual interface is a circuitless interface. It is used in conjunction with the associated local

interface (LCLIFC) when adding standard interfaces. This special value is used to accommodate

any of the following cases:

1. Load balancing. This is the means of having a fixed source IP address regardless of which

interface the traffic is being distributed.

2. Frame-relay multi-access network to define the local network IP address. This allows for

multiple virtual circuits to share the same IP network.

3. Alternate method of network access translation (NAT). This eliminates the need for a NAT box

by assigning a globally unique single IP address directly to the box without the need to define

an entire network.

4. Unnumbered networks. This provides a means of associating a local source IP address for an

unnumbered point-to-point network.

*OPC This special value is used if you are adding an OptiConnect interface over TCP/IP. This interface

is attached to the optical bus (OptiConnect).

*TNLCFG64 This special value means this line description is a Configured 6-4 (IPv6 over IPv4) tunneling line.

IPv6 Neighbor Discovery does not work over a Configured tunnel, so you don’t get the benefit of

stateless autoconfiguration.

Note: As of V5R4, this value is no longer supported.

Line type. Type of line used by an interface. The following link protocols are supported:

Communications APIs 169

-1 OTHER -

IPI - An Internet Protocol (IP) over Internetwork Pack Exchange (IPX).

Note: As of V5R2, IP over IPX is no longer supported.

IPS - An Internet Protocol (IP) over SNA interface.

WLS - Wireless local area network protocol.

TDLC - Twinaxial Datalink Control. Used for TCP/IP over Twinax.

-2 NONE - Line is not defined. There is no line type value for these interfaces.

-3 ERROR - This value is displayed if any system errrors other than those for *NOTFND are received

while trying to determine the link type for an interface.

-4 NOTFND - Not found. This value is displayed if the line description object for this interface

cannot be found.

1 ELAN - Ethernet local area network protocol.

2 TRLAN - Token-ring local area network protocol.

3 FR - Frame relay network protocol.

4 ASYNC - Asynchronous communications protocol.

5 PPP - Point-to-point Protocol.

6 X.25 - X.25 protocol.

7 DDI - Distributed Data Interface.

8 OPC - OptiConnect interface.

9 LOOPBACK - Loopback interface.

10 IPv6 Tunneling Line - Any kind of IPv6 over IPv4 tunnel.

Note: As of V5R4, this value is no longer supported.

Offset to additional information. The offset in bytes to the rest of the information if a format other than

IFCD0100 is requested.

Packet rules.Indicates what kind of packet rules data is available for a particular line.

 0 None - No NAT and no filters are loaded for the line specified.

1 NAT - NAT is enabled for this line.

2 Filters - Filters are defined for this line.

3 NAT and Filters - NAT enabled and Filters defined.

4 Filters and IPSec - Filters and IPSec filters are defined for this line.

5 NAT and Filters and IPSec - NAT enabled and Filters and IPSec filters defined.

Physical address. The MAC address of the interface. Format: XX:XX:XX:XX:XX:XX, where ’X’ is a

hexadecimal digit.

Physical interface status. The current operational state of the physical interface (line).

 0 Unknown - The status of this physical interface is unknown.

1 Active - The physical interface is operational.

2 Inactive - The physical interface is not operational.

3 Failed - The desired state of the physical interface is active, but it is currently in the inactive state.

4 Starting - The system is processing the request to start this physical interface.

5 Ending - The system is processing the request to start this physical interface.

6 Recovery Pending - An error has been detected with this physical interface and the system is

recovering.

7 Recovery Canceled - An error has been detected with this physical interface and system recovery

has been canceled.

Reserved. An ignored field.

170 iSeries: Communications APIs

Time - retrieved. Time when information is retrieved and valid. Format: HHMMSS, in 24 hour time,

where:

 HH Hour

MM Minute

SS Second

Total bytes received. The total number of bytes received on the interface, including framing characters.

Total bytes sent. The total number of bytes transmitted out of the interface, including framing characters.

Total inbound packets discarded. The number of inbound packets which were chosen to be discarded

even though no errors had been detected to prevent their being deliverable to a higher-layer protocol.

One possible reason for discarding such a packet could be to free up buffer space.

Total non-unicast packets received. The number of non-unicast (that is, broadcast or multicast) packets

delivered to a higher-layer protocol.

Total non-unicast packets sent. The total number of packets that higher-level protocols requested be

transmitted to a non-unicast (that is, broadcast or multicast) address, including those that were discarded

or not sent.

Total outbound packets discarded. The number of outbound packets which were chosen to be discarded

even though no errors had been detected to prevent their being transmitted. One possible reason for

discarding such a packet could be to free up buffer space.

Total unicast packets received. The number of unicast packets delivered to a higher-layer protocol.

Total unicast packets sent. The total number of packets that higher-level protocols requested to be

transmitted to a unicast address, including those that were discarded or not sent.

IFCD0200 Format

This format returns detailed Filter and IPSec Physical interface data in addition to data about a physical

interface from the IFCD0100 format. For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 172.

 Offset

Type Field Dec Hex

0 0 Returns everything from format IFCD0100.

Communications APIs 171

Offset

Type Field Dec Hex

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format IFCD0100.

CHAR(8) Date - filter rules loaded or unloaded

CHAR(6) Time - filter rules loaded or unloaded

CHAR(2) Reserved

BINARY(8) Outbound filter packets discarded

BINARY(8) Outbound filter packets permitted

BINARY(8) Outbound packets non-filtered

BINARY(8) Outbound IPSec packets

BINARY(8) Outbound IPSec packets discarded - no connection

BINARY(8) Outbound IPSec packets discarded - ondemand

BINARY(8) Outbound IPSec packets discarded - VPN NAT

BINARY(8) Outbound IPSec packets discarded - other

BINARY(8) Outbound NAT packets

BINARY(8) Outbound NAT packets discarded

BINARY(8) Outbound packets discarded - other

BINARY(8) Outbound packets discarded - rule exception

BINARY(8) Inbound IPSec packets

BINARY(8) Inbound IPSec packets permitted

BINARY(8) Inbound IPSec packets discarded - no connection

BINARY(8) Inbound IPSec packets discarded - no AH/ESP

BINARY(8) Inbound IPSec packets discarded - ondemand

BINARY(8) Inbound IPSec packets discarded - VPN NAT

BINARY(8) Inbound IPSec packets discarded - anti-replay fail

BINARY(8) Inbound IPSec packets discarded - selector mismatch

BINARY(8) Inbound IPSec packets discarded - mode mismatch

BINARY(8) Inbound IPSec packets discarded - authentication error

BINARY(8) Inbound IPSec packets discarded - other

BINARY(8) Inbound NAT packets

BINARY(8) Inbound filter packets discarded

BINARY(8) Inbound filter packets permitted

BINARY(8) Inbound packets non-filtered

BINARY(8) Inbound packets discarded - other

BINARY(8) Inbound packets discarded - rule exception

BINARY(4) NAT rules

BINARY(4) Filter rules

BINARY(4) IPSec rules

Field Descriptions

Date - filter rules loaded or unloaded.

172 iSeries: Communications APIs

Date when the filter rules were most recently successfully loaded on or unloaded from this interface.

Format: YYYYMMDD, where:

 YYYY Year

MM Month

DD Day

The following is a special value:

 00000000 Rules have never been loaded since interface was loaded.

Filter rules. Indicates whether filter rules exist on the system. The possible values are:

 0 No filter rules exist.

1 Filter rules exist.

Inbound IPSec packets. Total inbound IPSec packets (AH or ESP) processed without error.

Inbound IPSec packets permitted. Total inbound packets permitted by pre-IPSec filters.

Inbound IPSec packets discarded - authentication error. Authentication error or failed.

Inbound IPSec packets discarded - no connection. Total inbound packets discarded because a VPN

connection was not started.

Inbound IPSec packets discarded - no AH/ESP. Total inbound packets discarded because packet should

have had a AH or ESP header, and did not.

Inbound IPSec packets discarded - ondemand. Total inbound packets discarded due to a starting

on-demand VPN connection.

Inbound IPSec packets discarded - anti-replay fail. Total inbound packets discarded due to failed

anti-replay audit.

Inbound IPSec packets discarded - mode mismatch. Total inbound packets discarded because the mode

(tunnel or transport) of the packet did not match the mode of the VPN connection.

Inbound IPSec packets discarded - other. Total inbound packets discarded for other reasons, relating to

IPSec.

Inbound IPSec packets discarded - selector mismatch. Total inbound packets discarded because the

packet did not match the VPN connection (selectors).

Inbound IPSec packets discarded - VPN NAT. Total inbound packets that could not be NAT’d because

an IP address was not available from a VPN NAT pool.

Inbound NAT packets. Total inbound packets processed by conventional NAT.

Inbound filter packets discarded. Total inbound packets discarded by filter action = DENY.

Inbound filter packets permitted. Total inbound packets permitted by filter action = PERMIT.

Inbound packets non-filtered. Total inbound packets not filtered (occurs only when no filters exist).

Communications APIs 173

Inbound packets discarded - other. Total inbound packets discarded for some other reason.

Inbound packets discarded - rule exception. Total inbound packets discarded for exception reason.

IPSec rules. Indicates whether IPSec filter rules exist on the system. The possible values are:

 0 No IPSec filter rules exist.

1 IPSec filter rules exist.

NAT rules. Indicates whether NAT rules exist on the system. The possible values are:

 0 No NAT rules exist.

1 NAT rules exist.

Outbound filter packets discarded. Total outbound packets discarded by filter action = DENY.

Outbound filter packets permitted. Total outbound packets permitted by filter action = PERMIT.

Outbound packets non-filtered. Total outbound packets not filtered (occurs only when no filters exist).

Outbound IPSec packets. Total outbound IPSec packets (AH or ESP) processed without error.

Outbound IPSec packets discarded - no connection. Total outbound packets that could not be handled

by IPSec because a VPN connection was not started.

Outbound IPSec packets discarded - ondemand. Total outbound packets discarded due to a starting

on-demand VPN connection.

Outbound IPSec packets discarded - other. Total outbound packets that could not be handled for other

reasons.

Outbound IPSec packets discarded - VPN NAT. Total outbound packets that could not be NAT’d

because an IP address was not available from a VPN NAT pool.

Outbound NAT packets. Total outbound packets processed by conventional NAT.

Outbound NAT packets discarded. Total outbound packets that could not be handled by masquerade

NAT due to lack of available conversation.

Outbound packets discarded - other. Total outbound packets discarded for some other reason.

Outbound packets discarded - rule exception. Total outbound packets discarded for exception reason.

Reserved. An ignored field.

Time - filter rules loaded or unloaded. Time when the filter rules were most recently successfully loaded

on or unloaded from this interface. Format: HHMMSS, in 24 hour time, where:

 HH Hour

MM Minute

SS Second

The following is a special value:

174 iSeries: Communications APIs

000000 Rules have never been loaded since interface was loaded.

IFCD0300 Format

This format returns detailed IPv6 specific information and statistics for each Physical interface, in

addition to data about a physical interface from the IFCD0100 format. For detailed descriptions of the

fields in the table, see “Field Descriptions” on page 177.

 Offset

Type Field Dec Hex

0 0 Returns everything from format IFCD0100.

Communications APIs 175

Offset

Type Field Dec Hex

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format IFCD0100.

BINARY(4) Packet rules - IPv6

BINARY(8) Total IPv6 bytes received

BINARY(8) Total IPv6 bytes sent

BINARY(4) Total IPv6 unicast packets received

BINARY(4) Total IPv6 multicast packets received

BINARY(4) Total IPv6 anycast packets received

BINARY(4) Total inbound IPv6 packets discarded

BINARY(4) Total IPv6 unicast packets sent

BINARY(4) Total IPv6 multicast packets sent

BINARY(4) Total IPv6 anycast packets sent

BINARY(4) Total outbound IPv6 packets discarded

CHAR(25) IPv6 interface identifier

CHAR(7) Reserved

BINARY(8) IPv6 interface identifier binary

BINARY(4) MTU - configured

BINARY(4) MTU - current

BINARY(4) Hop limit - configured

BINARY(4) Hop limit - current

BINARY(4) Use stateless autoconfig

BINARY(4) Use stateful address configuration

BINARY(4) Use other stateful configuration

BINARY(4) Accept router advertisements

BINARY(4) Accept redirects

BINARY(4) Neighbor discovery base reachable time - configured

BINARY(4) Neighbor discovery base reachable time - current

BINARY(4) Neighbor discovery reachable time

BINARY(4) Neighbor solicitation retransmit interval - configured

BINARY(4) Neighbor solicitation retransmit interval - current

BINARY(4) Duplicate address detection max transmits

CHAR(15) Local tunnel endpoint IPv4 address

CHAR(1) Reserved

BINARY(4) Local tunnel endpoint IPv4 address binary

CHAR(50) Text description

CHAR(1) Reserved

BINARY(4) Text description CCSID

BINARY(4) Autoconfig line status

176 iSeries: Communications APIs

Field Descriptions

Accept redirects. Whether the system is currently accepting and using ICMPv6 Redirects that it receives

on this physical interface.

Possible values are:

 0 No - this interface is not accepting redirects.

Note: As of V5R4, the physical interface will always accept redirects. As a result, 0 will never be returned.

1 Yes - this interface is accepting redirects.

Accept router advertisements. Whether the system is currently accepting and using Router

Advertisements that it receives on this physical interface.

Possible values are:

 0 No - this interface is not accepting router advertisements.

Note: As of V5R4, the physical interface will always accept router advertisements. As a result, 0 will never

be returned.

1 Yes - this interface is accepting router advertisements.

Autoconfig line status. Whether this physical interface is currently using, not using, or is configured

for stateless autoconfig.

Possible values are:

 0 Autoconfig is not active on this physical interface.

1 Autoconfig has been configured on this physical interface.

2 Autoconfig is active on this physical interface.

Duplicate address detection max transmits. The maximum number of consecutive Neighbor Solicitation

messages which will be sent using this physical interface when TCP/IPv6 performs Duplicate Address

Detection (DAD) on a tentative address.

The following special value may be returned:

 0 This physical interface is currently configured to not perform Duplicate Address Detection.

Hop limit - configured. The configured IPv6 Hop Limit value specified for this physical interface. The

Hop limit field is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop limit value

specifies a relative limit on the number of hops across which an IPv6 datagram remains active. The Hop

limit value is hop count that is decremented by each gateway to prevent internet routing loops. The

default Hop limit value is 64. Valid values range from 1 through 255 hops.

Hop limit - current. The IPv6 Hop Limit value currently in effect for this physical interface. The Hop

Limit field is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop Limit value specifies a

relative limit on the number of hops across which an IPv6 datagram remains active. The Hop Limit value

is hop count that is decremented by each gateway to prevent internet routing loops. The default Hop

Limit value is 64. If the current Hop Limit value differs from the configured Hop Limit value, then it has

been set by a Hop Limit value received in a Router Advertisement packet. Valid values range from 1

through 255 hops.

Communications APIs 177

IPv6 interface identifier. A 64-bit number which is combined with prefixes to create complete IPv6

addresses for the physical interface. By default it is based on the link layer (MAC) address, if one exists.

The interface identifier is represented here in standard IPv6 address format notation. It does not include a

leading ″::″ for the first 64 bits of a full IPv6 address, and it may include an embedded IPv4 address at

the end. This field is NULL padded.

IPv6 interface identifier binary. Binary representation of the IPv6 interface identifier.

Local tunnel endpoint IPv4 address. The IPv4 address of the local tunnel endpoint of this tunnel,

returned in dotted decimal format. This field is NULL padded.

The following special value may be returned:

 0.0.0.0 This physical interface is not a tunnel, so this field does not apply.

Note: As of V5R4, tunneling is not supported. As a result, this field is always set to 0.0.0.0.

Local tunnel endpoint IPv4 address binary. Binary representation of the Local tunnel endpoint IPv4

address.

The following special value may be returned:

 0 This physical interface is not a tunnel

Note: As of V5R4, tunneling is not supported. As a result, this field is always set to 0.

MTU - configured. The configured maximum transmission unit (MTU) value specified for this physical

interface.

The following is a special value:

 0 LIND - The MTU was configured as *LIND, the MTU value from the line description.

MTU - current. Maximum transmission unit (MTU) value currently in effect for this physical interface.

The following is a special value:

 0 LIND - The interface is not active currently and the MTU was configured as *LIND.

Neighbor discovery base reachable time - configured. The configured Neighbor Discovery (ND) Base

Reachable Time value, in seconds, specified for this physical interface. The ND Base Reachable Time

value is a base time value used for computing the random ND Reachable Time value. The default ND

Base Reachable Time is 30 seconds. Valid values range from 10 through 100 seconds.

Note: As of V5R4, this field is always set to 30.

Neighbor discovery base reachable time - current. The Neighbor Discovery (ND) Base Reachable Time

value, in seconds, currently in effect for this physical interface. The ND Base Reachable Time value is a

base time value used for computing the random ND Reachable Time value. The default ND Base

Reachable Time is 30 seconds. If the current ND Base Reachable Time value differs from the configured

value, then it has been set by a ND Base Reachable Time value received in a Router Advertisement

packet. Valid values range from 10 through 100 seconds.

Note: As of V5R4, this field is always set to 30.

178 iSeries: Communications APIs

Neighbor discovery reachable time. The current Neighbor Discovery (ND) Reachable Time value, in

seconds, for this physical interface. The ND Reachable Time value is the amount of time, in seconds, that

a neighbor is considered reachable after receiving a reachability confirmation. The ND Reachable Time

value is randomly calculated, using the ND Base Reachable Time and a couple constants. This calculation

is performed to prevent Neighbor Unreachability Detection (NUD) messages from synchronizing with

each other.

Note: As of V5R4, this field is always set to 0.

Neighbor solicitation retransmit interval - configured. The configured Neighbor Solicitation (NS)

Retransmit Interval value, in seconds, specified for this physical interface. The NS Retransmit Interval is

the time, in seconds, between retransmissions of Neighbor Solicitation messages to a neighbor when

resolving the link-layer address, or when probing the reachability of a neighbor. The default NS

retransmit interval is 1 second. Valid values range from 1 through 10 seconds.

Note: As of V5R4, this field is always set to 1.

Neighbor solicitation retransmit interval - current. The Neighbor Solicitation (NS) Retransmit Interval

value currently in effect for this physical interface. The NS Retransmit Interval is the time, in seconds,

between retransmissions of Neighbor Solicitation messages to a neighbor when resolving the link-layer

address, or when probing the reachability of a neighbor. The default NS Retransmit Interval is 1 second.

If the current NS Retransmit Interval value differs from the configured value, then it has been set by a NS

Retransmit Interval value received in a Router Advertisement packet. Valid values range from 1 through

10 seconds.

Note: As of V5R4, this field is always set to 1.

Packet rules - IPv6. Indicates what kind of IPv6 packet rules are loaded on a particular line.

Possible values are:

 -1 Other - An unknown Packet rules value.

0 None - No NAT and no filters are loaded for the line specified.

1 NAT - NAT is enabled for this line.

2 Filters - Filters are defined for this line.

3 NAT and Filters - NAT enabled and Filters defined for this line.

4 Filters and IPSec - Filters and IPSec filters are defined for this line.

5 NAT and Filters and IPSec - NAT enabled and Filters and IPSec filters defined for this line.

Reserved. An ignored field.

Text description. User added text description associated with the physical interface.

Text description CCSID. Coded character set ID for the text description.

Total inbound IPv6 packets discarded. The number of inbound IPv6 packets which were chosen to be

discarded even though no errors had been detected to prevent their being deliverable to a higher-layer

protocol. One possible reason for discarding such a packet could be to free up buffer space.

Total IPv6 anycast packets received. The number of IPv6 anycast packets delivered to a higher-layer

protocol.

Total IPv6 anycast packets sent. The number of IPv6 anycast packets that higher-level protocols

requested be transmitted, including those that were discarded.

Communications APIs 179

Total IPv6 bytes received. The total number of IPv6 bytes received on the interface, including framing

characters.

Total IPv6 bytes sent. The total number of IPv6 bytes transmitted out of the interface, including framing

characters.

Total IPv6 multicast packets received. The number of IPv6 multicast packets delivered to a higher-layer

protocol.

Total IPv6 multicast packets sent. The number of IPv6 multcast packets that higher-level protocols

requested be transmitted, including those that were discarded.

Total IPv6 unicast packets received. The number of IPv6 unicast packets delivered to a higher-layer

protocol.

Total IPv6 unicast packets sent. The number of IPv6 unicast packets that higher-level protocols requested

be transmitted, including those that were discarded.

Total outbound IPv6 packets discarded. The number of outbound IPv6 packets which were chosen to be

discarded even though no errors had been detected to prevent their being transmitted. One possible

reason for discarding such a packet could be to free up buffer space.

Use other stateful configuration. Whether the TCP/IPv6 stack has been informed by a Router

Advertisement to use non-address stateful (that is, DHCPv6) configuration information that it receives on

this physical interface.

Possible values are:

 -1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use any non-address stateful configuration information that it

receives on this physical interface.

1 YES - The system has been informed to use any non-address stateful configuration information that it receives

on this physical interface.

Note: As of V5R4, this field is always set to 0.

Use stateful address configuration. Whether the TCP/IPv6 stack has been informed by a Router

Advertisement to use stateful (that is, DHCPv6) configuration information that it receives on this physical

interface for the purpose of address autoconfiguration.

Possible values are:

 -1 UNKNOWN - The system has not received any Router Advertisements on this physical interface.

0 NO - The system has been informed to not use stateful configuration information that it receives on this

physical interface for the purpose of address autoconfiguration.

1 YES - The system has been informed to use stateful configuration information that it receives on this physical

interface for the purpose of address autoconfiguration.

Note: As of V5R4, this field is always set to 0.

Use stateless autoconfig. Whether the TCP/IPv6 stack performs stateless autoconfiguration on this

physical interface or not.

Possible values are:

180 iSeries: Communications APIs

0 NO - The system will not perform the stateless autoconfig algorithms on this physical interface.

1 YES - The system will perform the stateless autoconfig algorithms on this physical interface.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C5 E API error providing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List PPP Connection Profiles (QtocLstPPPCnnPrf) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Error Code I/O Char(*)

 Service Program: QTOCPPPAPI

 Threadsafe: Yes

The List PPP Connection Profiles API (QtocLstPPPCnnPrf) returns a list of PPP connection profiles with

some basic information about each profile.

Authorities and Locks

User Space Library Authority

*EXECUTE

User Space Authority

*CHANGE

User Space Lock

*SHRNUP

Communications APIs 181

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space for which you want to retrieve information, and the library in which it is located.

The first 10 characters contain the user space name, and the second 10 characters contain the

library name. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 PRFD0100 Connection profile lists. Refer to “PRFD0100 Format” on page 183 for details on the format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of Connection Profile Lists

To request a list of PPP Connection Profiles, use format PRFD0100.

The PPP Connection Profile list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– PRFD0100 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

182 iSeries: Communications APIs

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name used

PRFD0100 Format

The following data about a PPP Connection Profile is returned for the PRFD0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Profile mode

4 4 BINARY(4) Connection protocol

8 8 BINARY(4) Connection status

12 C BINARY(4) Connection type

16 10 BINARY(4) Profile job type

20 14 BINARY(4) Multilink connection enabled

24 18 CHAR(10) Profile name

34 22 CHAR(10) Line name

44 2C CHAR(10) Line type

54 36 CHAR(10) Job name

64 40 CHAR(10) Job user profile

74 4A CHAR(6) Job number

80 50 CHAR(50) profile description

130 82 CHAR(10) Dial-on-demand peer answer profile

140 8C BINARY(4) Automatic start

144 90

CHAR(8) Thread ID

152 98 CHAR(8) Reserved

Field Descriptions

Automatic start. Whether the profile is started automatically when the TCP/IP stack is activated. Possible

values are:

 0 NO. This profile is not started automatically.

1 YES. This profile is started automatically.

Connection protocol. The type of point-to-point connection provided by the profile job.

 1 SLIP.

2 PPP.

Communications APIs 183

Connection status. The current connection of job status of the profile job.Values are as follows:

 1 Inactive

2 Session error

3 Ended - information available

4 Session start submitted

11 Session job starting

12 Session job ending

13 Session ended - job log pending

14 Adding TCP/IP configuration

15 Removing TCP/IP configuration

16 Message pending

17 Session error

18 Starting TCP/IP

19 Ending TCP/IP

21 Calling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand

28 Waiting for shared line resource

29 Requesting shared line resource

31 LCP initializing

32 LCP starting

33 LCP closing

34 LCP closed

35 LCP waiting for configuration request

36 LCP configuring

37 LCP authenticating

41 IPCP initializing

42 IPCP starting

43 IPCP ending

44 IPCP stopped

45 IPCP waiting for configuration request

46 IPCP configuring

47 IPCP opening

51 Multi-connection - waiting for incoming call(s)

52 Multi-connection L2TP initiator waiting for tunnel

53 Multi-connection - at least one connection active

54 Multi-hop terminator starting multi-hop initiator

55 Multi-hop initiator establishing second hop tunnel

56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection

59 Negotiating IPSEC SA

60 PPPoE discovery stage

61 PPPoE session stage

Connection type. The type of connection provided by the profile job. Values are:

 1 Switched or dialed connection

2 Leased or non-switched connection

3 Virtual circuit connection

4 PPPoE

184 iSeries: Communications APIs

Dial-on-demand peer answer profile. Specifies the name of the answer only profile that answers

incoming calls from the remote peer.

Job name. The job name of the job that currently or most recently executed this profile job description.

This field is blank if this connection profile job has not been run.

Note that the connection job may not be unique. That is, multiple connections can share a single job

by running in separate threads.

Job number. The job number of the job that currently or most recently executed this profile job

description. This field is blank if this connection profile job has not been run.

Job user profile. The user profile of the job that currently or most recently executed this profile job

description. This field is blank if this connection profile job has not been run.

Line name. Each TCP/IP interface is associated with a physical network. This field displays the name of

the communications line description that identifies the physical network associated with an interface.

May be blank when Line type selection is *LINEPOOL and no member line has been selected.

Line type. The type of line connection defined in this connection profile. Possible values are:

 *PPP PPP line description

*LINEPOOL Line name is a member of a line pool

*L2TP L2TP line description

*PPPOE PPPoE line description

*ERROR The selected line type is undefined or is improperly defined

Multilink connection enabled. Whether multilink connections are enabled for the profile. Values are:

 0 No

1 Yes

Profile description. The text description of the function performed by this profile connection job.

Profile job type. The type of job support required for the profile.

 1 Single connection profile

2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

 1 Dial only.

2 Answer only.

3 Dial-on-demand.

4 Answer enabled dial-on-demand.

5 L2TP virtual Initiator.

6 Remote peer enabled dial-on-demand.

7 L2TP initiator-on-demand.

8 L2TP multihop initiator.

9 PPPoE initiator.

Profile name. The name of this connection profile description.

Reserved. An ignored field.

Communications APIs 185

Thread ID.The thread id under which the connection is running in the point-to-point job.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF811A E User space &4 in &9 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API

 Required Parameter Group:

 1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Point-to-point connection profile name Input Char(10)

4 Error code I/O Char(*)

 Threadsafe: Yes

The List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API returns information about each connection job

currently associated with the specified point-to-point connection profile.

Authorities and Locks

User Space Authority

*CHANGE

Authority to Library Containing User Space

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the information and the library in which it is located. The first 10

characters contain the user space name. The second 10 characters contain the library name. You

can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The content and format of the list returned. The possible format name is:

 PPPJ0100 Each entry in the list contains information about a point-to-point job associated with the specified

point-to-point connection profile name. The specified profile must be active for job information to

be returned. If the specified profile is not active, an empty list will be returned.

186 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

See “Format of Point-to-Point Jobs List” for a description of the format.

Point-to-point connection profile name

INPUT; CHAR(10)

 The name of the point-to-point connection profile for which connection job information is being

requested.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Point-to-Point Jobs List

The point-to-point jobs list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– PPPJ0100 format

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,

see “Field Descriptions” on page 188.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Point-to-point connection profile name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14 CHAR(10) Point-to-point connection profile name

Communications APIs 187

PPPJ0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(10) Line name

52 34 BINARY(4) Connection status

56 38 CHAR(15) Local IP address

71 47 CHAR(15) Remote IP address

86 56 CHAR(48) Connected user name

Field Descriptions

Connection status. The current status of the connection.

Connected user name. The name of the user who initiated the point-to-point connection. The user name

is available only if authentication is enabled for the point-to-point connection profile; otherwise, *NONE

will be returned.

Format name. The name of the format used to list the point-to-point connection jobs associated with an

active point-to-point connection profile.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.

The identifier is not valid following an initial program load (IPL). If you attempt to use it after an IPL, an

exception occurs.

Job name. The simple job name of the point-to-point job.

Job number. The system-assigned job number of the point-to-point job.

Job user name. The user name under which the point-to-point job is running. This will be defined as

QTCP for point-to-point connection profiles.

Line name. The name of the line associated with the point-to-point connection.

Local IP address. The IP address assigned to the local end of the point-to-point connection. The IP

address is in dotted decimal format.

Point-to-point connection profile name. The name of the point-to-point connection profile for which

connection job information is being requested.

Remote IP address. The IP address assigned to the remote end of the point-to-point connection. The IP

address is in dotted decimal format.

User space library name. The name of the library containing the user space.

188 iSeries: Communications APIs

User space name. The user space used to return the list of point-to-point connection jobs associated with

an active point-to-point connection profile.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

TCP8211 E Point-to-point profile &1 not found.

API introduced: V4R4

 Top | “Communications APIs,” on page 1 | APIs by category

Remove ARP Table Entry (QtocRmvARPTblE) API

 Required Parameter Group:

 1 Line name Input Char(10)

2 Internet address Input Binary(4)

3 Entry type Input Char(10)

4 Error code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The Remove ARP Table Entry (QtocRmvARPTblE) API removes one or all dynamic entries from the ARP

(Address Resolution Protocol) table for the specified line. Local interface entries cannot be removed.

TCP/IP must be active on this system; otherwise, error message TCP84C0 is issued.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

Line name

INPUT; CHAR(10)

 The name of the physical interface corresponding to the ARP table from which to remove entries.

Internet address

INPUT; BINARY(4)

 The IP address of the entry to remove from the ARP table. This must be 0 when trying to remove

all dynamic ARP entries.

Entry type

INPUT; CHAR(10)

 Whether a single entry or all entries are removed from the ARP table. The possible types are:

 *IPADDR The Internet address field corresponds to a single entry to be removed.

Communications APIs 189

#TOP_OF_PAGE
aplist.htm

*ALL The Internet address field must be 0 and all ARP table entries will be removed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C1 E The specified Internet address was not found in the ARP table.

TCP84C2 E ARP entry is local and cannot be deleted.

TCP84C3 E The specified line name does not exist.

TCP84C4 E The specified line name corresponds to a line type that does not support ARP.

TCP84C6 E Internal operations error.

TCP84C8 E ARP API parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

Retrieve Network Connection Data (QtocRtvNetCnnDta) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Socket connection request Input Char(*)

5 Error Code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

The Retrieve Network Connection Data (QtocRtvNetCnnDta) API retrieves detailed information about a

specified IPv4 or IPv6 network connection - including jobs using the connection. It also retrieves

information about IPv4 and IPv6 connection totals.

TCP/IP must be active on this system, otherwise TCP84C0 message will be issued.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

190 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If this value is larger than the actual size of the receiver

variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 NCND0100 TCP/IPv4 connection totals. Refer to “NCND0100 Format” on page 193 for details on the format.

NCND0200 Detailed TCP or UDP connection status for a specific IPv4 socket connection in addition to

TCP/IPv4 connection totals. Refer to “NCND0100 Format” on page 193 and “NCND0200 Format”

on page 194 for details on the format.

NCND1100 TCP/IPv6 connection totals. Refer to “NCND1100 Format” on page 201 for details on the format.

NCND1200 Detailed TCP or UDP connection status for a specific IPv6 socket connection in addition to

TCP/IPv6 connection totals. Refer to “NCND1100 Format” on page 201 and “NCND1200 Format”

on page 202 for details on the format.

Socket connection request

INPUT; CHAR(*)

 The protocol, local address, local port, remote address and remote port identify the connection for

which information is to be retrieved. This parameter is ignored when format NCND0100 or

format NCND1100 is requested. Refer to “Socket Connection Request Format” for details on the

format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Socket Connection Request Format

Information passed in the socket connection request parameter must be in one of the following two

formats. The first format is for IPv4 connections, and the second is for IPv6 connections. The value of the

Protocol field determines the format of the rest of the Socket Connection Request. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 192.

IPv4 connection (Protocol field value is 1 or 2)

 Offset

Type Field Dec Hex

0 0 BINARY(4) Protocol

4 4 BINARY(4) Local IPv4 address

8 8 BINARY(4) Local port number

12 C BINARY(4) Remote IPv4 address

16 10 BINARY(4) Remote port number

20 14

Communications APIs 191

IPv6 connection (Protocol field value is 3 or 4)

 Offset

Type Field Dec Hex

0 0 BINARY(4) Protocol

4 4 CHAR(16) Local IPv6 address

20 14 CHAR(4) Local port number

24 18 CHAR(16) Remote IPv6 address

40 28 BINARY(4) Remote port number

44 2C

Field Descriptions

Local IPv4 address. The IPv4 address of the host at the local end of the connection.

Local IPv6 address. The IPv6 address of the host at the local end of the connection. Even though this

field is defined as a character field, it must be stored in binary. It is recommended that you use the

Sockets in6_addr structure.

Local port number. The port number of the local end of the connection.

Protocol. The type and IP version of connection protocol.

Possible values are:

 0 TCP/IP connection totals when using format NCND0100 or format NCND1100.

1 TCP/IPv4 - A Transmission Control Protocol (TCP) over IPv4 connection or socket request.

2 UDP/IPv4 - A User Datagram Protocol (UDP) over IPv4 socket request.

3 TCP/IPv6 - A Transmission Control Protocol (TCP) over IPv6 connection or socket request.

4 UDP/IPv6 - A User Datagram Protocol (UDP) over IPv6 socket request.

Remote IPv4 address. The IPv4 address of the host at the remote end of the connection.

Remote IPv6 address. The IPv6 address of the host at the remote end of the connection. Even though this

field is defined as a character field, it must be stored in binary. It is recommended that you use the

Sockets in6_addr structure.

Remote port number. The port number of the remote end of the connection.

Format of Returned Connection Data

To retrieve the current TCP/IPv4 connection totals, use format “NCND0100 Format” on page 193.

To retrieve the current TCP/IPv6 connection totals, use format “NCND1100 Format” on page 201.

For detailed TCP and UDP connection status for a specific IPv4 socket connection in addition to the

TCP/IPv4 connection totals, use format “NCND0200 Format” on page 194.

For detailed TCP and UDP connection status for a specific IPv6 socket connection in addition to the

TCP/IPv6 connection totals, use format “NCND1200 Format” on page 202.

192 iSeries: Communications APIs

NCND0100 Format

Format NCND0100 returns information regarding the TCP/IPv4 connection totals. For detailed

descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) TCP connections currently established

12 C BINARY(4) TCP active opens

16 10 BINARY(4) TCP passive opens

20 14 BINARY(4) TCP attempted opens that failed

24 18 BINARY(4) TCP established and then reset

28 1C BINARY(4) TCP segments sent

32 20 BINARY(4) TCP retransmitted segments

36 24 BINARY(4) TCP reset segments

40 28 BINARY(4) TCP segments received

44 2C BINARY(4) TCP segments received in error

48 30 BINARY(4) UDP datagrams sent

52 34 BINARY(4) UDP datagrams received

56 38 BINARY(4) UDP datagrams not delivered application port not found

60 3C BINARY(4) UDP datagrams not delivered other datagrams in error

64 40 BINARY(4) Offset to additional information

68 44 BINARY(4) Length of additional information

72 48

Field Descriptions

Bytes available. All of the available bytes for use in your application.

Bytes returned. The number of bytes returned to the user. This may be some but not all the bytes

available.

Length of Additional Information.The length in bytes of additional information returned that is not part

of format NCND0100.

Offset to Additional Information. The offset in bytes to the rest of the information if a format other than

NCND0100 is requested.

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT

state from the CLOSED state. This number is an indication of the number of times this local system

opened a connection to a remote system.

TCP attempted opens that failed. The sum of the number of times TCP connections have made a direct

transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or a LISTEN state

from the SYN-RCVD state.

Communications APIs 193

TCP connections currently established. The number if TCP connections for which the current state is

either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to

the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the

SYN-RCVD state from the LISTEN state. This number is an indication of the number of times a remote

system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more

previously transmitted octets.

TCP segments received. The total number of segments received, including those received in error. This

count includes segments received on currently established connections.

TCP segments received in error. The total number of segments received in error (for example, bad TCP

checksums).

TCP segments sent. The total number of segments sent, including those on current connections but

excluding those containing only retransmitted octets.

UDP datagrams not delivered application port not found. The total number of received UDP datagrams

for UDP users for which there was no application at the destination port.

UDP datagrams not delivered other datagrams in error. The number of received UDP datagrams that

could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagrams received. The total number of segments received, including those received in error. This

count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity.

NCND0200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/IPv4

connection totals (format NCND0100). For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 196.

 Offset

Type Field Dec Hex

0 0 Returns everything from format NCND0100

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format NCND0100.

This applies to all

entries below.

BINARY(4) Protocol

 BINARY(4) Local IP address

194 iSeries: Communications APIs

Offset

Type Field Dec Hex

 BINARY(4) Local port number

 BINARY(4) Remote IP address

 BINARY(4) Remote port number

 BINARY(4) Round-trip time

 BINARY(4) Round-trip variance

 BINARY(4) Outgoing bytes buffered

 BINARY(4) User send next

 BINARY(4) Send next

 BINARY(4) Send unacknowledged

 BINARY(4) Outgoing push number

 BINARY(4) Outgoing urgency number

 BINARY(4) Outgoing window number

 BINARY(4) Incoming bytes buffered

 BINARY(4) Receive next

 BINARY(4) User receive next

 BINARY(4) Incoming push number

 BINARY(4) Incoming urgency number

 BINARY(4) Incoming window number

 BINARY(4) Total retransmissions

 BINARY(4) Current retransmissions

 BINARY(4) Maximum window size

 BINARY(4) Current window size

 BINARY(4) Last update

 BINARY(4) Last update acknowledged

 BINARY(4) Congestion window

 BINARY(4) Slow start threshold

 BINARY(4) Maximum segment size

 BINARY(4) Initial send sequence number

 BINARY(4) Initial receive sequence number

 BINARY(4) Connection transport layer

 BINARY(4) TCP state

 BINARY(4) Connection open type

 BINARY(4) Idle time in milliseconds

 CHAR(40) IP options

 BINARY(4) Bytes in

 BINARY(4) Bytes out

 BINARY(4) Socket state

 BINARY(4) Offset to list of socket options associated with connection

 BINARY(4) Number of socket options associated with connection

 BINARY(4) Entry length for list of socket options associated with connection

Communications APIs 195

Offset

Type Field Dec Hex

 BINARY(4) Offset to list of jobs associated with connection

 BINARY(4) Number of jobs associated with connection

 BINARY(4) Entry length for list of jobs associated with connection

 CHAR(10) Associated user profile

 CHAR(2) Reserved

List of Socket Options.

These fields repeat for each socket option.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Socket option

4 4 BINARY(4) Option value

8 8

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Format entry

4 4 CHAR(16) Task name

20 14 CHAR(10) Job name

30 1E CHAR(10) Job user name

40 28 CHAR(6) Job number

46 2E CHAR(16) Internal job identifier

62 3E

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets

API bind() of the socket.

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the

jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this

Connection.

Bytes in. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.

196 iSeries: Communications APIs

Congestion window. The number of segments that are sent on the next transmission. If an

acknowledgment is received, the number is increased. If an acknowledgment is not received, the number

is reset to the smallest allowable number. This field is only valid for TCP connections.

Connection open type. A TCP connection can be opened in the following ways:

 0 Passive - A remote host opens the connection.

1 Active - The local system opens the connection.

2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that a connection is using:

 0 IPS

1 IPX

Note: As of V5R2, IPX is no longer supported.

2 TCP/IP

Current retransmissions. The number of times the local system retransmitted the current segment

without receiving an acknowledgment. This is sometimes referred to as the ’backoff count. This field is

only valid for TCP connections.

Current window size. The current send window size in bytes. This field is only valid for TCP

connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the

list of job connections returned with this format. A value of zero is returned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each

element in the list of socket options returned with this format. A value of zero is returned if the list is

empty.

Format entry. Type of list format for job or task connections.

 1 Represents a job format. For this format the task name will be blank.

2 Represents a task format. For this format the job name, username, number and internal identifier will be

blank.

Idle time. The length of time since the last activity on this connection. The length of time is returned in

milliseconds.

Incoming bytes buffered. The current number of bytes that are received and buffered by TCP. These

bytes are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed data in the incoming data

stream. This value is zero if no push data is in the incoming data stream. This field is only valid for TCP

connections.

Incoming urgency number. The sequence number of the last byte of urgent data in the incoming data

stream. This value is zero if no urgent data is in the incoming data stream. This field is only valid for

TCP connections.

Incoming window number. The largest sequence number in the incoming window of this connection.

Data bytes in the incoming stream having sequence numbers larger than this number are not accepted.

This field is only valid for TCP connections.

Communications APIs 197

Initial receive sequence number. The first sequence number received on this connection. This field is

only valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. This field is only valid

for TCP connections.

IP options. Used in displaying the IP datagram options that may have been specified for a connection.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.

Job name. The simple job name as identified to the system.

Job number. System-assigned job or task number.

Job user name. The user name identifies the user profile under which the job is started. The following

special value may be returned:

 *SIGNON This connection is a telnet connection and the system is performing sign-on processing or is

displaying a sign-on prompt on it. In this case the Job name field will contain the network device

name, the Job number and Internal job identifier fields will be empty.

Last update. The sequence number of the incoming segment used for the last window update that

occurred on the connection. This field is only valid for TCP connections.

Last update acknowledged. The acknowledgment number of the incoming segment used for the last

window update that occurred on the connection. This field is only valid for TCP connections.

Local IP address. The local address of this connection on this system.

Local port number. Your local system port number.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this

connection. This field is only valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the

connection has been active. This field is only valid for TCP connections.

Number of jobs associated with connection. The number of elements in the list of job connections

returned with this format. A value of zero is returned if the list is empty.

Number of socket options associated with connection. The number of elements in the list of socket

options returned with this format. A value of zero is returned if the list is empty.

Offset to list of jobs associated with connection. The offset in bytes to the first element in the list of job

connections returned with this format. A value of zero is returned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytes to the first element in the

list of socket options returned with this format. A value of zero is returned if the list is empty.

Option value. The value returned for a particular socket option. Option is set if a nonzero value is

returned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but

TCP has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an

acknowledgment, the bytes are considered ’not sent’. They are included in this count.

198 iSeries: Communications APIs

Outgoing push number. The sequence number of the last byte of push data in the outgoing stream. This

value is zero if no push data is in the outgoing data stream. This field is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent data in the outgoing data

stream. This value is zero if no urgent data is in the outgoing data stream. This field is only valid for

TCP connections.

Outgoing window number. The largest sequence number in the send window of the connection. The

local TCP application cannot send data bytes with sequence numbers greater than the outgoing window

number.

Protocol. Identifies the type of connection protocol.

 1 TCP - A Transmission Control Protocol (TCP) connection or socket.

2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number the local TCP is expecting to receive.

Remote IP address. The internet address of the remote host. Zero is shown, if the list entry is for a UDP

socket.

Remote port number. The remote host port number. Zero is shown, if the list entry is for a UDP socket.

Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of the time

required for a segment on the connection to arrive at its destination, to be processed, and to return an

acknowledgment to the client. This field is only valid for TCP connections.

Round-trip variance.The variance in milliseconds from the previous round-trip time. This field is only

valid for TCP connections.

Send next. The sequence number of the next byte of data that the local TCP application sends to the

remote TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. This

is the smallest sequence number of the send window. This field is only valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are

indirect indicators of the flow of data through a TCP connection. These values are used by TCP as part of

a congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first.

After the first data has been successfully sent, the rate in which data is sent increases. This change is

made in a controlled manner that is dependent on the amount of congestion in the network. Congestion

control occurs both at connection start time and when congestion is detected. The values used for the

slow-start threshold and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

 1 Socket broadcast option Determine if messages can be sent to the broadcast address. This option is only

supported for sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. Option is

set if a nonzero value is returned.

2 Socket bypass route option - Determine if the normal routing mechanism is being bypassed. This option is

only supported by sockets with an address family of AF_INET or AF_INET6. Option is set if a nonzero value

is returned.

3 Socket debug option - Determine if low-level debugging is active. Option is set if a nonzero value is

returned.

4 Socket error - Return any pending errors in the socket. The value returned corresponds to the standard error

codes.

Communications APIs 199

5 Socket keep alive option - Determine if the connection is being kept up by periodic transmissions. This

option is only supported for sockets with an address family of AF_INET or AF_INET6 and type

SOCK_STREAM. Option is set if a nonzero value is returned.

6 Socket linger option - Determine whether the system attempts to deliver any buffered data or if the system

discards it when a close() is issued. For sockets that are using a connection-oriented transport service with an

address family of AF_INET or AF_INET6, the default is off (which means that the system attempts to send

any queued data, with an infinite wait-time).

7 Socket linger time - Determine how much time in seconds the system will wait to send buffered data.

8 Socket out-of-band data option - Determine if out-of-band data is received inline with normal data. This

option is only supported for sockets with an address family of AF_INET or AF_INET6. Option is set if a

nonzero value is returned.

9 Socket receive buffer size - Determine the size of the receive buffer.

10 Socket receive low-water mark size - Determine the size of the receive low-water mark. The default size is 1.

This option is only supported for sockets with type SOCK_STREAM.

11 Socket reuse address option - Determine if the local socket address can be reused. This option is only

supported by sockets with an address family of AF_INET or AF_INET6 and with type SOCK_STREAM or

SOCK_DGRAM. Option is set if a nonzero value is returned.

12 Socket send buffer size - Determine the size of the send buffer.

13 Socket type value - Determine the value for the socket type.

1 Stream type.

2 Datagram type.

3 Raw type.

4 Sequential packet type.

Socket state. The current state of the socket.

 0 Uninitialized

1 Unbound

2 Bound

3 Listening

4 Connecting

5 Connected

6 Disconnected

7 Error

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

 0 Listen, waiting for a connection request from any remote host.

1 SYN-sent, waiting for a matching connection request after having sent connection request.

2 SYN-received, waiting for a confirming connection request acknowledgement.

3 Established, the normal state in which data is transferred.

4 FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the

connection.

5 FIN-wait-2, waiting for the remote host request to end the connection.

6 Close-wait, waiting for an end connection request from the local user.

7 Closing, waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK, waiting for the remote host to acknowledge an end connection request.

9 Time-wait, waiting to allow the remote host enough time to receive the local system’s

acknowledgement to end the connection.

10 Closed, the connection has ended.

11 State value not supported by protocol.

200 iSeries: Communications APIs

Total retransmissions. The total number of times the local system retransmitted a segment because an

acknowledgment was not received. This is a cumulative count of all segments resent during the entire

time the connection has been active. This field is only valid for TCP connections.

User send next. The sequence number of the next byte of data to be sent by the client application. This

field is only valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.

NCND1100 Format

Format NCND1100 returns information regarding the TCP/IPv6 connection totals. For detailed

descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) TCP connections currently established

12 C BINARY(4) TCP active opens

16 10 BINARY(4) TCP passive opens

20 14 BINARY(4) TCP attempted opens that failed

24 18 BINARY(4) TCP established and then reset

28 1C BINARY(4) TCP segments sent

32 20 BINARY(4) TCP retransmitted segments

36 24 BINARY(4) TCP reset segments

40 28 BINARY(4) TCP segments received

44 2C BINARY(4) TCP segments received in error

48 30 BINARY(4) UDP datagrams sent

52 34 BINARY(4) UDP datagrams received

56 38 BINARY(4) UDP datagrams not delivered - application port not found

60 3C BINARY(4) UDP datagrams not delivered - other datagrams in error

64 40 BINARY(4) Offset to additional information

68 44 BINARY(4) Length of additional information

72 48

Field Descriptions

Bytes available. All of the available bytes for use in your application.

Bytes returned. The number of bytes returned to the user. This may be some but not all the bytes

available.

Length of Additional Information.The length in bytes of additional information returned that is not part

of format NCND0100.

Offset to Additional Information. The offset in bytes to the rest of the information if a format other than

NCND0100 is requested.

Communications APIs 201

TCP active opens. The number of times TCP connections have made a direct transition to the SYN-SENT

state from the CLOSED state. This number is an indication of the number of times this local system

opened a connection to a remote system.

TCP attempted opens that failed. The sum of the number of times TCP connections have made a direct

transition to a, CLOSED state from either the SYN-SENT state or the SYN-RCVD state, or a LISTEN state

from the SYN-RCVD state.

TCP connections currently established. The number if TCP connections for which the current state is

either ESTABLISHED or CLOSE-WAIT.

TCP established and then reset. The number of times TCP connections have made a direct transition to

the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

TCP passive opens. The number of times TCP connections have made a direct transition to the

SYN-RCVD state from the LISTEN state. This number is an indication of the number of times a remote

system opened a connection to this system.

TCP reset segments. The number of TCP segments sent containing the RST flag.

TCP retransmitted segments. The number of TCP segments transmitted containing one or more

previously transmitted octets.

TCP segments received. The total number of segments received, including those received in error. This

count includes segments received on currently established connections.

TCP segments received in error. The total number of segments received in error (for example, bad TCP

checksums).

TCP segments sent. The total number of segments sent, including those on current connections but

excluding those containing only retransmitted octets.

UDP datagrams not delivered - application port not found. The total number of received UDP

datagrams for UDP users for which there was no application at the destination port.

UDP datagrams not delivered - other datagrams in error. The number of received UDP datagrams that

could not be delivered for reasons other than the lack of an application at the destination port.

UDP datagrams received. The total number of segments received, including those received in error. This

count includes segments received on currently established connections.

UDP datagrams sent. The total number of UDP datagrams sent from this entity.

NCND1200 Format

This format returns detailed information about the TCP connection status in addition to the TCP/IPv6

connection totals (format NCND1100). For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 204.

 Offset

Type Field Dec Hex

0 0 Returns everything from format NCND1100

202 iSeries: Communications APIs

Offset

Type Field Dec Hex

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format NCND1100.

This applies to all

entries below.

BINARY(4) Protocol

 CHAR(16) Local IPv6 address

 BINARY(4) Local port number

 CHAR(16) Remote IPv6 address

 BINARY(4) Remote port number

 BINARY(4) Round-trip time

 BINARY(4) Round-trip variance

 BINARY(4) Outgoing bytes buffered

 BINARY(4) User send next

 BINARY(4) Send next

 BINARY(4) Send unacknowledged

 BINARY(4) Outgoing push number

 BINARY(4) Outgoing urgency number

 BINARY(4) Outgoing window number

 BINARY(4) Incoming bytes buffered

 BINARY(4) Receive next

 BINARY(4) User receive next

 BINARY(4) Incoming push number

 BINARY(4) Incoming urgency number

 BINARY(4) Incoming window number

 BINARY(4) Total retransmissions

 BINARY(4) Current retransmissions

 BINARY(4) Maximum window size

 BINARY(4) Current window size

 BINARY(4) Last update

 BINARY(4) Last update acknowledged

 BINARY(4) Congestion window

 BINARY(4) Slow start threshold

 BINARY(4) Maximum segment size

 BINARY(4) Initial send sequence number

 BINARY(4) Initial receive sequence number

 BINARY(4) Connection transport layer

 BINARY(4) TCP state

 BINARY(4) Connection open type

 BINARY(4) Idle time

Communications APIs 203

Offset

Type Field Dec Hex

 BINARY(8) Bytes in

 BINARY(8) Bytes out

 BINARY(4) Socket state

 CHAR(10) Associated user profile

 CHAR(2) Reserved

 BINARY(4) Offset to list of socket options associated with connection

 BINARY(4) Number of socket options associated with connection

 BINARY(4) Entry length for list of socket options associated with connection

 BINARY(4) Offset to list of jobs associated with connection

 BINARY(4) Number of jobs associated with connection

 BINARY(4) Entry length for list of jobs associated with connection

List of Socket Options.

These fields repeat for each socket option.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Socket option

4 4 BINARY(4) Option value

8 8

List of Jobs/Tasks Associated with this Connection.

These fields repeat for each job or task.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Entry type

4 4 CHAR(16) Task name

20 14 CHAR(10) Job name

30 1E CHAR(10) Job user name

40 28 CHAR(6) Job number

46 2E CHAR(16) Internal job identifier

62 3E

Field Descriptions

Associated user profile. The user profile of the job on the local system which first performed a sockets

API bind() of the socket.

204 iSeries: Communications APIs

Note: This field does not reliably indicate the current user of a connection or socket. To see a list of the

jobs or tasks currently using a connection or socket, use the List of Jobs/Tasks Associated with this

Connection.

Bytes in. The total number of bytes received on the connection, including framing characters.

Bytes out. The total number of bytes transmitted on the connection, including framing characters.

Congestion window. The number of segments that are sent on the next transmission. If an

acknowledgment is received, the number is increased. If an acknowledgment is not received, the number

is reset to the smallest allowable number. This field is only valid for TCP connections.

Connection open type. The method in which the TCP connection was opened.

Possible values are:

 0 Passive - A remote host opened the connection.

1 Active - The local system opened the connection.

2 Unsupported - Connection open type not supported by protocol.

Connection transport layer. The transport that the connection is using.

Possible values are:

 0 IPS

1 IPX

Note: As of V5R2, IPX is no longer supported.

2 TCP/IP

Current retransmissions. The number of times the local system retransmitted the current segment

without receiving an acknowledgment. This is sometimes referred to as the ’backoff count’. This field is

only valid for TCP connections.

Current window size. The current send window size in bytes. This field is only valid for TCP

connections.

Entry length for list of jobs associated with connection. The entry length in bytes of each element in the

list of job connections returned with this format. A value of zero is returned if the list is empty.

Entry length for list of socket options associated with connection. The entry length in bytes of each

element in the list of socket options returned with this format. A value of zero is returned if the list is

empty.

Entry type. Specifies whether this entry is a job or a task.

Possible values are:

 1 Represents a job format. For this format the task name field is not applicable.

2 Represents a task format. For this format the job name, username, number and internal job identifier fields are

not applicable.

Idle time. The length of time since the last activity on this connection. The length of time is returned in

milliseconds.

Communications APIs 205

Incoming bytes buffered. The current number of bytes that are received and buffered by TCP. These

bytes are available to be read by an application.

Incoming push number. The sequence number of the last byte of pushed data in the incoming data

stream. This value is zero if no push data is in the incoming data stream. This field is only valid for TCP

connections.

Incoming urgency number. The sequence number of the last byte of urgent data in the incoming data

stream. This value is zero if no urgent data is in the incoming data stream. This field is only valid for

TCP connections.

Incoming window number. The largest sequence number in the incoming window of this connection.

Data bytes in the incoming stream having sequence numbers larger than this number are not accepted.

This field is only valid for TCP connections.

Initial receive sequence number. The first sequence number received on this connection. This field is

only valid for TCP connections.

Initial send sequence number. The first sequence number sent on this connection. This field is only valid

for TCP connections.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.

Job name. The simple job name as identified to the system.

Job number. System-assigned job or task number.

Job user name. The user name identifies the user profile under which the job is started.

The following special value may be returned:

 *SIGNON This connection is a telnet connection and the system is performing sign-on processing or is

displaying a sign-on prompt on it. In this case the Job name field will contain the network device

name, and the Job number and Internal job identifier fields will be empty.

Last update. The sequence number of the incoming segment used for the last window update that

occurred on the connection. This field is only valid for TCP connections.

Last update acknowledged. The acknowledgment number of the incoming segment used for the last

window update that occurred on the connection. This field is only valid for TCP connections.

Local IPv6 address. The local system internet address, in IPv6 address format, of the connection. Even

though this field is defined as a character field, a binary IPv6 address is returned in it.

Local port number. The port number of the local end of the connection.

Maximum segment size. The size in bytes of the largest segment that may be transmitted on this

connection. This field is only valid for TCP connections.

Maximum window size. The largest size of the send window, in bytes, during the entire time the

connection has been active. This field is only valid for TCP connections.

Number of jobs associated with connection. The number of elements in the list of job connections

returned with this format. A value of zero is returned if the list is empty.

206 iSeries: Communications APIs

Number of socket options associated with connection. The number of elements in the list of socket

options returned with this format. A value of zero is returned if the list is empty.

Offset to list of jobs associated with connection. The offset in bytes to the first element in the list of job

connections returned with this format. A value of zero is returned if the list is empty.

Offset to list of socket options associated with connection. The offset in bytes to the first element in the

list of socket options returned with this format. A value of zero is returned if the list is empty.

Option value. The value returned for a particular socket option. The socket option is set if a nonzero

value is returned.

Outgoing bytes buffered. The current number of bytes that an application has requested to send, but

TCP has not yet sent. If TCP has sent the bytes to the remote system but has not yet received an

acknowledgment, the bytes are considered ’not sent’. They are included in this count.

Outgoing push number. The sequence number of the last byte of push data in the outgoing stream. This

value is zero if no push data is in the outgoing data stream. This field is only valid for TCP connections.

Outgoing urgency number. The sequence number of the last byte of urgent data in the outgoing data

stream. This value is zero if no urgent data is in the outgoing data stream. This field is only valid for

TCP connections.

Outgoing window number. The largest sequence number in the send window of the connection. The

local TCP application cannot send data bytes with sequence numbers greater than the outgoing window

number.

Protocol. Identifies the type of connection protocol.

 1 TCP - A Transmission Control Protocol (TCP) connection or socket.

2 UDP - A User Datagram Protocol (UDP) socket.

Receive next. The next sequence number that TCP is expecting to receive.

Remote IPv6 address. The local system internet address, in IPv6 address format, of the connection. Even

though this field is defined as a character field, a binary IPv6 address is returned in it.

The following special value may be returned:

 0 This ″connection″ is a listening socket, and there is no remote IPv6 address. The zero is returned as a series of

binary NULLs (x’000000...’)

Remote port number. The port number of the remote end of the connection.

The following special value may be returned:

 0 This ″connection″ is a listening socket and there is no remote port number.

Reserved. An ignored field.

Round-trip time. The smoothed round-trip time interval in milliseconds. This is a measure of the time

required for a segment on the connection to arrive at its destination, to be processed, and to return an

acknowledgment to the client. This field is only valid for TCP connections.

Communications APIs 207

Round-trip variance.The variance in milliseconds from the previous round-trip time. This field is only

valid for TCP connections.

Send next. The sequence number of the next byte of data that the local TCP application sends to the

remote TCP application.

Send unacknowledged. The sequence number of the last segment sent that was not acknowledged. This

is the smallest sequence number of the send window. This field is only valid for TCP connections.

Slow start threshold. The current values for the slow-start threshold and the congestion window are

indirect indicators of the flow of data through a TCP connection. These values are used by TCP as part of

a congestion control algorithm. This algorithm ensures that this system sends data at a slow rate at first.

After the first data has been successfully sent, the rate in which data is sent increases. This change is

made in a controlled manner that is dependent on the amount of congestion in the network. Congestion

control occurs both at connection start time and when congestion is detected. The values used for the

slow-start threshold and the congestion window are determined by TCP and cannot be set by the user.

Socket option. Socket options for this connection.

 1 Socket broadcast option Determine if messages can be sent to the broadcast address. This option is only

supported for sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. Option is

set if a nonzero value is returned.

2 Socket bypass route option - Determine if the normal routing mechanism is being bypassed. This option is

only supported by sockets with an address family of AF_INET or AF_INET6. Option is set if a nonzero value

is returned.

3 Socket debug option - Determine if low-level debugging is active. Option is set if a nonzero value is

returned.

4 Socket error - Return any pending errors in the socket. The value returned corresponds to the standard error

codes.

5 Socket keep alive option - Determine if the connection is being kept up by periodic transmissions. This

option is only supported for sockets with an address family of AF_INET or AF_INET6 and type

SOCK_STREAM. Option is set if a nonzero value is returned.

6 Socket linger option - Determine whether the system attempts to deliver any buffered data or if the system

discards it when a close() is issued. For sockets that are using a connection-oriented transport service with an

address family of AF_INET or AF_INET6, the default is off (which means that the system attempts to send

any queued data, with an infinite wait-time).

7 Socket linger time - Determine how much time in seconds the system will wait to send buffered data.

8 Socket out-of-band data option - Determine if out-of-band data is received inline with normal data. This

option is only supported for sockets with an address family of AF_INET or AF_INET6. Option is set if a

nonzero value is returned.

9 Socket receive buffer size - Determine the size of the receive buffer.

10 Socket receive low-water mark size - Determine the size of the receive low-water mark. The default size is 1.

This option is only supported for sockets with type SOCK_STREAM.

11 Socket reuse address option - Determine if the local socket address can be reused. This option is only

supported by sockets with an address family of AF_INET or AF_INET6 and with type SOCK_STREAM or

SOCK_DGRAM. Option is set if a nonzero value is returned.

12 Socket send buffer size - Determine the size of the send buffer.

13 Socket type value - Determine the value for the socket type.

1 Stream type.

2 Datagram type.

3 Raw type.

4 Sequential packet type.

Socket state. The current state of the socket.

208 iSeries: Communications APIs

Possible values are:

 0 Uninitialized

1 Unbound

2 Bound

3 Listening

4 Connecting

5 Connected

6 Disconnected

7 Error

Task name. The task name as identified to the system.

TCP state. A typical connection goes through the states:

 0 Listen, waiting for a connection request from any remote host.

1 SYN-sent, waiting for a matching connection request after having sent connection request.

2 SYN-received, waiting for a confirming connection request acknowledgement.

3 Established, the normal state in which data is transferred.

4 FIN-wait-1, waiting for the remote host to acknowledge the local system request to end the

connection.

5 FIN-wait-2, waiting for the remote host request to end the connection.

6 Close-wait, waiting for an end connection request from the local user.

7 Closing, waiting for an end connection request acknowledgement from the remote host.

8 Last-ACK, waiting for the remote host to acknowledge an end connection request.

9 Time-wait, waiting to allow the remote host enough time to receive the local system’s

acknowledgement to end the connection.

10 Closed, the connection has ended.

11 State value not supported by protocol.

Total retransmissions. The total number of times the local system retransmitted a segment because an

acknowledgment was not received. This is a cumulative count of all segments resent during the entire

time the connection has been active. This field is only valid for TCP connections.

User send next. The sequence number of the next byte of data to be sent by the client application. This

field is only valid for TCP connections.

User receive next. The sequence number of the next byte to be passed to the application by TCP.

Error Messages

 Message ID Error Message Text

TCP84C0 E TCP/IP stack not active.

TCP84C5 E Error providing TCP/IP Network Status list information.

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

TCP84C9 I Information returned incomplete.

TCP84CA E Connection request parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E API contains a problem. See prior messages to determine why the failure occurred.

Communications APIs 209

Message ID Error Message Text

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Profile name Input Char(10)

4 Format name Input Char(8)

5 Error Code I/O Char(*)

 Service Program: QTOCPPPAPI

 Threadsafe: Yes

The Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API retrieves the details of a specific PPP

connection job profile. If the connection profile describes multiple connections, then details of each

connection are also retrieved.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Profile name

INPUT; CHAR(10)

 The name of the PPP connection profile to be returned.

Format name

INPUT; CHAR(8)

 The format of the retrieved profile to be returned. The format names supported are:

 PRFR0100 Connection profile attributes. Refer to “PRFR0100 Format” on page 211 for details on the format.

210 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

PRFR0200 Connection profile static parameters. Refer to “PRFR0100 Format” and “PRFR0200 Format” on

page 213 for details on the format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of Connection Profile Attributes Information

To retrieve the basic connection profile information and current profile job status, use format PRFR0100.

For more detailed profile and connection attributes, use format PRFR0200.

PRFR0100 Format

The following data about a connection profile is returned for the PRFR0100 format. For detailed

descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Profile mode

12 C BINARY(4) Connection protocol

16 10 BINARY(4) Connection status

20 14 BINARY(4) Connection type

24 18 BINARY(4) Profile job type

28 1C BINARY(4) Automatic start

32 20 CHAR(10) Profile name

42 2A CHAR(50) Profile description

92 5C CHAR(16) Reserved

108 6C BINARY(4) Offset to additional information

112 70 BINARY(4) Length of additional information

Field Descriptions

Automatic start. Whether the profile is started automatically when the TCP/IP stack is activated. Possible

values are:

 0 NO. This profile is not started automatically.

1 YES. This profile is started automatically.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Connection protocol. The type of point-to-point connection provided by the profile job.

 1 SLIP.

Communications APIs 211

2 PPP.

Connection status. The current connection of job status of the profile job.Values are as follows:

 1 Inactive

2 Session error

3 Ended - information available

4 Session start submitted

11 Session job starting

12 Session job ending

13 Session ended - job log pending

14 Adding TCP/IP configuration

15 Removing TCP/IP configuration

16 Message pending

17 Session error

18 Starting TCP/IP

19 Ending TCP/IP

21 Calling remote system

22 Waiting for incoming call

23 Connecting

24 Active

26 Switched line-dial on demand

27 Waiting for incoming call - switched line-answer enabled dial on demand

28 Waiting for shared line resource

29 Requesting shared line resource

31 LCP initializing

32 LCP starting

33 LCP closing

34 LCP closed

35 LCP waiting for configuration request

36 LCP configuring

37 LCP authenticating

41 IPCP initializing

42 IPCP starting

43 IPCP ending

44 IPCP stopped

45 IPCP waiting for configuration request

46 IPCP configuring

47 IPCP opening

51 Multi-connection - waiting for incoming call(s)

52 Multi-connection L2TP initiator waiting for tunnel

53 Multi-connection - at least one connection active

54 Multi-hop terminator starting multi-hop initiator

55 Multi-hop initiator establishing second hop tunnel

56 Multi-hop initiator tunnel pre-started

57 Multi-hop connection active

58 Starting VPN connection

59 Negotiating IPSEC SA

60 PPPoE discovery stage

61 PPPoE session stage

Connection type. The type of connection provided by the profile job. Values are:

 1 Switched or dialed connection

212 iSeries: Communications APIs

2 Leased or non-switched connection

3 Virtual circuit connection

Length of additional information. The length in bytes of additional information returned that is not part

of format PRFR0100.

Offset to additional information. The offset in bytes to the rest of the information if a format other than

PRFR0100 is requested.

Profile description. The text description of the function performed by this profile connection job..

Profile job type. The type of job support required for the profile.

 1 Single connection profile

2 Multi-connection or multilink connection profile

Profile mode. The function provided by the profile job. Values are:

 1 Dial only.

2 Answer only.

3 Dial-on-demand.

4 Answer enabled dial-on-demand.

5 L2TP virtual initiator.

6 Remote peer enabled dial-on-demand.

7 L2TP initiator-on-demand.

8 L2TP multihop initiator.

9 PPPoE initiator.

Profile name. The name of this connection profile description.

PRFR0200 Format

The following data about a connection profile is returned for the PRFR0200 format. For detailed

descriptions of the fields in the table, see “Field Descriptions” on page 215.

 Offset

Type Field Dec Hex

0 0 Returns everything from format PRFR0100

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format PRFR0100. This

applies to all entries

below.

BINARY(4) Move current remote phone number if dial operation is successful

 BINARY(4) Redial when disconnected

 BINARY(4) Number of dial attempts

 BINARY(4) Delay between dial attempts

 BINARY(4) Maximum number of connections

 BINARY(4) Multilink connection enabled

 BINARY(4) Maximum number of multilink connections

Communications APIs 213

Offset

Type Field Dec Hex

 BINARY(4) Inactivity timeout

 BINARY(4) Line definition

 CHAR(10) Line name

 CHAR(10) Line type

 CHAR(15) L2TP tunnel end-point IP address

 CHAR(5) Reserved

 BINARY(4) Local user ID defined

 BINARY(4) Local user ID encryption type

 CHAR(10) Local user ID validation list name

 CHAR(6) Reserved

 BINARY(4) Remote user ID required for logon

 BINARY(4) Remote user ID authentication protocols allowed

 BINARY(4) Remote user ID validation method

 BINARY(4) Use Radius for connection auditing and accounting

 CHAR(10) Remote user ID validation list name

 CHAR(6) Reserved

 BINARY(4) ASCII CCSID of line data

 BINARY(4) Connection script file defined

 CHAR(10) Connection script library

 CHAR(10) Connection script file

 CHAR(10) Connection script member

 CHAR(2) Reserved

 BINARY(4) DNS definition

 CHAR(15) DNS IP address

 CHAR(5) Reserved

 BINARY(4) Local IP address definition

 CHAR(15) Local IP address

 CHAR(5) Reserved

 BINARY(4) Remote IP address definition

 CHAR(15) Remote IP address (or start of range)

 CHAR(5) Reserved

 BINARY(4) Allow additional remote IP addresses by user ID

 BINARY(4) Allow remote system to assign the remote IP addres

 BINARY(4) Allow IP datagram forwarding

 BINARY(4) Request VJ header compression

 BINARY(4) Routing definition

 BINARY(4) Hide address (full masquerading)

 BINARY(4) Number of remote IP addresses

 CHAR(4) Reserved

 CHAR(64) Line pool list name

214 iSeries: Communications APIs

Offset

Type Field Dec Hex

 CHAR(10) Subsystem description

 CHAR(6) Reserved

 BINARY(4) Requires IP security protection

 CHAR(40) IP security connection group

 CHAR(10) Answer profile this dial-on-demand profile depends on

 CHAR(6) Reserved

 BINARY(4) Allow remote system to initate call

 BINARY(4) Allow BACP

 BINARY(4) Add link percentage

 BINARY(4) Time to wait (in seconds) for adding a link

 BINARY(4) Drop link percentage

 BINARY(4) Time to wait (in seconds) for dropping a link

 BINARY(4) Bandwidth test direction

 BINARY(4) Use filter rule

 CHAR(32) Filter rule name

 BINARY(4) Allow L2TP Multihop connections

 BINARY(4) Allow L2TP outgoing call connections

 BINARY(4) L2TP outgoing call line definition

 CHAR(10) L2TP outgoing call line name

 CHAR(10) Reserved

 BINARY(4) Offset to profile detailed connection parameter entries

 BINARY(4) Number of profile detailed connection parameter entries

 BINARY(4) Entry length of profile detailed connection parameters

 BINARY(4) Offset to remote phone number entries

 BINARY(4) Number of remote phone number entries

 BINARY(4) Entry length of remote phone numbers

 BINARY(4) PPPoE server addressing

 BINARY(4) Persistent PPPoE connection

 CHAR(256) Requested PPPoE server name

 CHAR(256) Requested PPPoE service

Field Descriptions

Add link percentage. The percentage utilization of the connection before adding another link to a

connection. Valid values are:

 1

5

10

25

50

75

Communications APIs 215

90 (default)

95

100

Allow additional remote IP addresses by user ID. Whether additional remote IP addresses may be

specified for specific user ID entries. Valid values are:

 0 No

1 Yes

Allow BACP (Bandwidth Allocation Control Protocol). Whether BACP is allowed/required for this

connection. Valid values are:

 0 No

1 Yes

Allow IP datagram forwarding. Whether IP datagrams not destined for this system should be forwarded.

Valid values are:

 0 No

1 Yes

Allow L2TP Multihop connections. Whether L2TP multihop connections are allowed by this profile

connection job. Valid values are:

 0 No

1 Yes

Allow L2TP outgoing call connections. Whether L2TP outgoing call connections are allowed by this

profile connection job. Valid values are:

 0 No

1 Yes

Allow remote system to assign the remote IP address. Whether the remote system is allowed to specify

the remote IP address for the connection. Valid values are:

 0 No

1 Yes

Allow remote system to initate call. The remote system is allowed to initate a call for an additional link

for the connection. Valid values are:

 0 No

1 Yes

Answer profile this dial-on-demand profile depends on. The name of the answer profile (connection

job) that must be running to answer incoming connections before this profile connection job may be

started.

216 iSeries: Communications APIs

ASCII CCSID of line data. The ASCII Coded Character Set ID of the line data for the connection that

will be used to translate connection dialog to and from the EBCDIC character set of the Connection Script

used by this profile connection job.

Bandwidth test direction. The data direction on the connection to test the bandwidth for adding and

removing links. Valid values are:

 0 N/A

1 Inbound and outbound

2 Outbound only

Connection script file. The name of the connection script file that is used by this profile connection job.

Connection script file defined. The connection script file that describes dialog for establishing a

connection with the remote system. Valid values are:

 0 No

1 Yes

Connection script library. The library containing a Connection Script file that is used by this profile

connection job.

Connection script member. The member name of the Connection Script file that is used by this profile

connection job.

Delay between dial attempts. The time (in seconds) to wait before next attempting to make a successful

dialed connection. Valid values are:

 1 - 60 (default = 15)

DNS definition. Whether a Domain Name Server IP address is to be added to the DNS address list when

a connection is established for this profile connection job. Valid values are:

 0 DNS not used - no address will be added

1 By IP address - the IP address is statically specified

2 Dynamic - the IP address will be supplied by the remote system

DNS IP address. The IP address of the Domain Name Server used by this profile connection job.

Drop link percentage. The percentage utilization of the connection before dropping a link of a

connection. Valid values are:

 1

5

10

25

40 (default)

75

90

95

100

Communications APIs 217

Entry length of profile detailed connection parameters. The length in bytes of each profile detailed

connection parameter entry returned for this profile. A value of zero is returned if the list is empty.

Entry length of remote phone numbers. The length in bytes of each remote phone number entry

returned for this profile. A value of zerois returned if the list is empty.

Filter rule name.The name of the filter rule to be used by this connection profile.

Hide address (full masquerading). Whether all other IP addresses should be hidden by the IP address of

the PPP connections established by this profile connection job. Valid values are:

 0 No

1 Yes

Inactivity timeout. The value used for the inactivity timeout in the line description. Valid values are 15 -

65535 seconds.

IP security connection group. The name of the connection group that describes the IP Security details for

connections established by this profile connection job.

L2TP outgoing call line definition. The line type to be used by this profile connection job for L2TP

outgoing calls. Valid values are:

 1 Single line

2 LinePool (single line)

5 ISDN line

L2TP outgoing call line name. The name of the line to be used by this profile connection job for L2TP

outgoing calls.

L2TP tunnel end-point address. The IP address of the remote end of the tunnel for an L2TP initiator

profile or the IP address of the local end of the tunnel for an L2TP terminator profile.

Line definition. The line selection method used by this profile connection job. Valid values are:

 1 Specified line name

2 LinePool (single line)

3 LinePool (all)

5 ISDN line

6 L2TP line

7 PPPOE virtual line

Line name. Each TCP/IP interface is associated with a physical network. This field displays the name of

the communications line description that identifies the physical network associated with an interface.

May be blank when Line type selection is *LINEPOOL and no member line has been selected.

Line pool list name. The name of the Line Pool list that contains the names of line descriptions available

for use by this profile connection job.

Line type. The type of line connection defined in this connection profile. Possible values are:

 *PPP PPP line description

*POOL Line name is a member of a line pool

*ISDN ISDN line description

218 iSeries: Communications APIs

*L2TP L2TP line description

*PPPOE PPPoE line description

*ERROR The selected line type is undefined or is improperly defined

Local IP address. The local IP address defined for connections established by this profile connection job.

Local IP address definition. How a local IP address is defined for connections established by this profile

connection job. Valid values are:

 1 By IP address - the IP address is statically specified

2 Dynamic - the IP address will be negotiated with the remote system

Local user ID defined. The User ID that is defined if authentication is required by the remote system.

Valid values are:

 0 No

1 Yes

Local user ID encryption type. The encryption method for the local system user name and password

when authenticating with the remote system. Valid values are:

 0 Undefined

1 PAP only

2 CHAP only

3 EAP only

Local user ID validation list name. The name of the validation list containing the local User ID and

password when authenticating with the remote system.

Maximum number of connections. The maximum number of connections supported by this PPP job

profile.

Maximum number of multilink connections. The maximum number of physical connections connections

that can be bundled into a single multi-linked connection.

Move current remote phone number if dial operation is successful. Whether the current remote phone

number should be moved if the call attempt is successful. Valid values are:

 0 N/A

1 Do NOT move number (default for non-multilink connections)

2 Move number to the top of the list (default for multilink connections)

3 Move number to the bottom of the list

Multilink connection enabled. Whether multilink connections are enabled for the profile. Values are:

 0 No

1 Yes

Number of profile detailed connection parameter entries. The number of profile detailed connection

parameter entries returned for this profile. A value of zero is returned if the list is empty.

Communications APIs 219

Number of remote phone number entries. The number of remote phone number entries returned for this

profile. A value of zero is returned if the list is empty.

Number of remote IP addresses. The number of IP addresses derived from the Remote IP start address

defined for this profile connection job.

Number of dial attempts. The total number of dial attempts to achieve a successful connection.

Offset to profile detailed connection parameter entries. The offset from the beginning of the receiver

variable, in bytes, to the first element in the profile detailed connection parameter entries returned for

this profile. A value of zero is returned if the list is empty.

Offset to remote phone number entries. The offset from the beginning of the receiver variable, in bytes,

to the first element in the remote phone number entries returned for this profile. A value of zero is

returned if the list is empty.

Persistent PPPoE connection. Whether PPPoE connections for this profile are re-established when lost

unexpectedly. Values are:

 0 No

1 Yes

PPPoE server addressing. Describes the method used to select a PPPoE server connection. Valid values

are:

 0 Undefined

1 Connect to the default service of the first server that replies (default)

2 Connect to the default service of the requested server

3 Connect to the first server offering the requested service

4 Connect to the requested server offering the requested service

Re-dial when disconnected. Whether a dialed connection established by this profile connection job will

be redialed if the connection is lost unexpectedly. Valid values are:

 0 No

1 Yes

Remote IP address definition. How a remote IP address is defined for connections established by this

profile connection job. Valid values are:

 1 By IP address - the IP address is statically specified

2 Dynamic - the IP address will be negotiated with the remote system

3 Route specified - the IP address is specified by remote user

4 Address pool - the IP address will be selected from the address pool

5 DHCP - the IP address will be supplied by the DHCP server

6 Radius - the IP address will be supplied by the Radius server

Remote IP address (or start of IP address pool). The remote IP address (or starting IP address for

multi-connection profiles) defined for connections established by this profile connection job.

Remote user ID authentication protocols allowed. The allowable protocols for remote user ID

authentication. Valid values are:

 0 N/A

220 iSeries: Communications APIs

1 CHAP and PA

2 CHAP only

3 PAP only

4 EAP only

5 EAP and PAP

6 EAP and CHAP

7 EAP, CHAP, and PAP

Remote user ID required for logon. Remote User ID authentication is required for logon to the local

system. Valid values are:

 0 No

1 Yes

Remote user ID validation method. The method for validation of the remote user ID. Valid values are:

 0 N/A

1 Validation list

2 Radius

Remote user ID validation list name. The name of the Validation list containing the remote User ID and

password for authenticating the connection with the remote system.

Requested PPPoE server name. The PPPoE server name requested for this PPPoE initiator profile to

negotiate the remote end of the connection.

Requested PPPoE service. The PPPoE service requested for this PPPoE initiator profile to negotiate with

the remote end of the connection.

Request VJ header compression. Whether VJ header compression should be performed on IP datagrams.

Valid values are:

 0 No

1 Yes

Requires IP security protection . Whether IP security is required for connections established by this

profile connection job. Valid values are:

 0 No

1 Yes

Routing definition. The additional routing requested when activating this profile connection job. Valid

values are:

 0 Not Used

1 Add default route

2 Additional static routes defined

Subsystem description. The name of the subsystem description in which the connection jobs for this

profile connection job will be run.

Communications APIs 221

Time to wait (in seconds) for adding a link. The time (in seconds) to wait before adding an additional

link after the connection utilization has exceeded the specified percentage. Valid values are:

 5 - 3600 (in increments of 5, default = 15)

Time to wait (in seconds) for dropping a link. The time (in seconds) to wait before dropping a link after

the connection utilization has receeded below the specified percentage. Valid values are:

 5 - 3600 (in increments of 5, default = 15)

Use filter rule. Whether a filter rule should be used by the profile connection job. Valid values are:

 0 No

1 Yes

Use Radius for connection auditing and accounting. Whether Radius should be used for connection

auditing and accounting. Valid values are:

 0 No

1 Yes

Connection Profile Detailed Parameters

The following data is returned for each profile detailed connection parameter entry, describing one

connection for a profile. Multiple connection profiles may have one entry for each connection. For

detailed descriptions of the fields in the table, see “Field Descriptions” on page 223.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Connection status

4 4 BINARY(4) Maximum transmission unit (MTU)

8 8 BINARY(4) Maximum links per multilink connection bundle

12 C BINARY(4) Number of active links

16 10 BINARY(4) Line inactivity timeout

20 14 CHAR(4) Reserved

24 18 CHAR(6) Job number

30 1E CHAR(10) Job user

40 28 CHAR(10) Job name

50 32 CHAR(10) Line name

60 3C CHAR(15) Active local IP address (set when profile is active)

75 4B CHAR(15) Active remote IP address (set when profile is active)

90 5A CHAR(6) Reserved

96 60 CHAR(48) Remote user name

144 90 CHAR(64) Group access policy

208 D0 CHAR(32) Filter rule name

240 F0 CHAR(1) IP forwardin

241 F1 CHAR(1) Proxy ARP routing

222 iSeries: Communications APIs

Offset

Type Field Dec Hex

242 F2 CHAR(1) TCP/IP header compression

243 F3 CHAR(1) Full masquerading

244 F4 CHAR(1) Authentication protocol

245 F5 CHAR(1) Multilink protocol enabled

246 F6 CHAR(1) Multilink bandwidth utilization monitoring enabled

247 F7 CHAR(1) Reserved

248 F8 BINARY(4) Detailed connection status

252 FC

CHAR(8) Thread ID

Field Descriptions

Active (binary) local IP address. The binary local IP address of the connection established by this profile

connection job.

Active (binary) remote IP address. The binary remote IP address of the connection established by this

profile connection job.

Authentication protocol. The authentication protocol that was negotiated for this profile connection.

Valid values are:

 0 N/A

1 CHAP and PAP

2 CHAP only

3 PAP only

4 EAP only

5 EAP and PAP

6 EAP and CHAP

7 EAP, CHAP, and PAP

Connection status. The current status of this profile connection. Valid values are:

 0 N/A

1 Inactive or ended

2 Ending

3 Starting

4 Waiting for connection

5 Connecting

6 Active

Detailed connection status. Additional detail of the current status of this profile connection. Valid values

are:

 0 No status set

256 Undefined

257 Connection operational

258 Initializing connection to modem

259 Initializing connection data structures

260 Selecting a line from a line pool

Communications APIs 223

261 Requesting a shared line from current owner

262 Waiting for shared line to be available

263 Initializing modem

264 Incoming call detected

265 Dial on-demand connection requested

266 Waiting for modem to connect

267 Redialing remote system

268 Modem connected

269 Modem disconnected

270 Authenticating remote user

271 Negotiating IP address

272 Activating IP address

273 Modem or resource failure

274 Connection profile setings failure

275 Authentication failure

276 Modem failure

277 Retry threshold failure

278 Remote phone number busy

279 No local dial tone detected

280 Remote modem did not answer

281 IP address activation failure

282 PPP protocol rejected

283 PPP connection inactivity timeout

300 Sent PPPoE initiation packet

301 Received PPPoE offer from peer

302 Sent PPPoE request packet to peer

303 Received PPPoE session-confirmation from peer

304 Sent PPPoE termination packet to peer

350 Received PPPoE termination from peer

351 No response from PPPoE peer

352 PPPoE peer response did not match request sent

353 Received error from PPPoE peer

354 Unable to open communication stream

355 Unable to send packet to PPPoE peer

356 Unable to convert packet data

357 PPPoE link error

400 Starting L2TP tunnel negotiation

401 L2TP tunnel negotiation in progress

402 L2TP tunnel established

403 Starting L2TP call negotiation

404 Starting L2TP remote call negotiation

405 L2TP call established

450 L2TP tunnel authentication failed

451 L2TP tunnel maximum connections exceeded

452 Sent stop L2TP tunnel message to peer

453 Received stop L2TP tunnel message from peer

454 L2TP call maximum connections exceeded

455 Sent stop L2TP call message to peer

456 Received stop L2TP call message from peer

Filter rule name. The name of the filter rule that is in effect for this profile connection. A value *NONE

means that no filter rule is in use.

Full masquerading. Whether full masquerading is in effect for this profile connection. Valid values are:

224 iSeries: Communications APIs

0 No

1 Yes

Group access policy. The name of the group access policy that is in effect for this profile connection. A

value *NONE means that no group policy is in use.

IP forwarding. Whether IP forwarding is active for this profile connection. Valid values are:

 0 No

1 Yes

Job name. The job name of this profile connection job.

Note that the connection job may not be unique. That is, multiple connections can share a single job by

running in separate threads.

Job number. The job number of this profile connection job.

Job user. The job user name of this profile connection job.

Line name. The name of the line description used for this profile connection.

Line inactivity timeout. The value used for the inactivity timeout in the line description. Valid values are

15 - 65535 seconds.

Maximum links per multilink connection bundle. The maximum number of links allowed per bundle

for multilink connections for this profile.

Maximum transmission unit. The maximum size of IP datagrams that can be sent over connections

started by this profile connection job. This value is valid only when the profile is active.

Multilink protocol enabled. Whether multilink connections are allowed for this connection profile. Valid

values are:

 0 No

1 Yes

Multilink bandwidth utilization monitoring enabled. Whether bandwidth utilization monitoring is

enabled for this profile connection. Valid values are:

 0 No

1 Yes

Number of active links. The number of active links that constitute this profile connection.

Proxy ARP routing. Whether proxy ARP routing is in effect for this profile connection. Valid values are:

 0 No

1 Yes

Remote user name. The name of the connected remote user that was authenticated for this profile

connection. This value is valid only when authentication is enabled for this connection profile.

Communications APIs 225

TCP/IP header compression. Whether TCP/IP header compression will be performed for this profile

connection. Valid values are:

Thread ID.The thread id under which the connection is running in the point-to-point job.

 0 No

1 Yes

Remote Phone Numbers

The following data is returned for each connection profile remote phone number entry. Multilink

connection profiles may have one entry for each connection in the link. Single connection profiles may

have more than one entry to provide backup phone numbers when the primary (first) number is

unavailable. For detailed descriptions of the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(48) Remote phone number

48 30 CHAR(16) Reserved

Field Descriptions

Remote phone number. A phone number that will be used to attempt a switched connection with a

remote system. Valid for Dial profiles only.

Reserved. An ignored field.

Error Messages

 Message ID Error Message Text

TCP8211 E Point-to-point profile &1 not found

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended, reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

Retrieve TCP/IP Attributes (QtocRtvTCPA) API

 Required Parameter Group:

 1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Format name Input Char(8)

4 Error code I/O Char(*)

 Service Program: QTOCNETSTS

 Threadsafe: Yes

226 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

The Retrieve TCP/IP Attributes (QtocRtvTCPA) API retrieves TCP/IPv4 and TCP/IPv6 stack attributes.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable

OUTPUT; BINARY(4)

 The length of the receiver variable. If this value is larger than the actual size of the receiver

variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 TCPA0100 TCP/IPv4 stack status. Refer to “TCPA0100 Format” on page 228 for details on the format.

TCPA0200 TCP/IPv4 stack attributes in addition to TCP/IPv4 stack status. Refer to “TCPA0100 Format” on

page 228 and “TCPA0200 Format” on page 230 for details on the format.

TCPA0300 TCP/IP domain attributes in addition to TCP/IPv4 stack status. Refer to “TCPA0100 Format” on

page 228 and “TCPA0300 Format” on page 236 for details on the format.

TCPA1100 TCP/IPv6 stack status. Refer to “TCPA1100 Format” on page 238 for details on the format.

TCPA1200 TCP/IPv6 stack attributes in addition to TCP/IPv6 stack status. Refer to “TCPA1100 Format” on

page 238 and “TCPA1200 Format” on page 239 for details on the format.

As of V5R4, this

format is replaced with TCPA1300 and should no longer be used.

TCPA1300 TCP/IPv6 stack attributes in addition to TCP/IPv6 stack status. Refer to “TCPA1100 Format” on

page 238 and TCPA1300 Format (page “TCPA1300 Format” on page 242) for details on the format.

This format replaces TCPA1200.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of TCP/IP Attributes Information

To retrieve the current TCP/IPv4 stack status, use format “TCPA0100 Format” on page 228.

For detailed TCP/IPv4 stack attributes in addition to the TCP/IPv4 stack status, use format “TCPA0200

Format” on page 230.

For domain name system information in addition to the TCP/IPv4 stack status, use format “TCPA0300

Format” on page 236.

To retrieve the current TCP/IPv6 stack status, use format “TCPA1100 Format” on page 238.

For detailed TCP/IPv6 stack attributes in addition to the TCP/IPv6 stack status, use format TCPA1300

(page “TCPA1300 Format” on page 242).

Communications APIs 227

TCPA0100 Format

This format returns information regarding the status of the TCP/IPv4 stack. For detailed descriptions of

the fields in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) TCP/IPv4 stack status

12 C BINARY(4) How long active

16 10 CHAR(8) When last started - date

24 18 CHAR(6) When last started - time

30 1E CHAR(8) When last ended - date

38 26 CHAR(6) When last ended - time

44 2C CHAR(10) Who last started - job name

54 36 CHAR(10) Who last started - job user name

64 40 CHAR(6) Who last started - job number

70 46 CHAR(16) Who last started - internal job identifier

86 56 CHAR(10) Who last ended - job name

96 60 CHAR(10) Who last ended - job user name

106 6A CHAR(6) Who last ended - job number

112 70 CHAR(16) Who last ended - internal job identifier

128 80 BINARY(4) Offset to additional information

132 84 BINARY(4) Length of additional information

136 88 BINARY(4) Limited mode

140 8C

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

How long active. How long, in seconds, the TCP/IP stack has been active if it is active currently, or how

long it was active the last time it was up if it is currently inactive.

Length of additional information. The length in bytes of additional information returned that is not part

of format TCPA0100.

Limited mode. The current value of the TCP/IP Limited mode flag. TCP/IPv4 can operate while the

system is in the restricted state, with limited functionality.

Possible values are:

 0 No - The system is not currently running TCP/IPv4 in limited mode.

1 Yes - The system is currently running TCP/IPv4 in limited mode.

228 iSeries: Communications APIs

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the

start of the next format if a format other than TCPA0100 is requested. This field allows expansion of the

basic information. A value of zero is returned if only the TCPA0100 format is requested.

Reserved. An ignored field.

TCP/IPv4 stack status. The current status of the system TCP/IPv4 stack. Possible values are:

 0 Inactive - The TCP/IPv4 stack is not operational.

1 Active - The TCP/IPv4 stack is operational.

2 Starting - The TCP/IPv4 stack not operational, but is in the process of starting.

3 Ending, immediate - The TCP/IPv4 stack is operational, but is in the process of ending.

4 Ending, controlled - The TCP/IPv4 stack is operational, but is in the process of ending.

When last ended - date. The date when the TCP/IP stack was last ended. The format is YYYYMMDD,

where:

 YYYY Year

MM Month

DD Day

When last ended - time. The time when the TCP/IP stack was last ended. The format is HHMMSS, in

24-hour time, where:

 HH Hour

MM Minute

SS Second

When last started - date. The date when the TCP/IP stack was last started. The format is YYYYMMDD,

where:

 YYYY Year

MM Month

DD Day

When last started - time. The time when the TCP/IP stack was last started. The format is HHMMSS, in

24-hour time, where:

 HH Hour

MM Minute

SS Second

Who last ended - internal job identifier. A value sent to other APIs to speed the process of locating the

job on the system. Only OS/400 APIs use this identifier. This field is all NULLs if the TCP/IP stack has

not been ended since the last initial program load (IPL), or if the job that ended the TCP/IP stack is no

longer active.

Who last ended - job name. The name of the job responsible for ending the TCP/IP stack the last time it

was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this field is

all NULLs.

Communications APIs 229

Who last ended - job number. The job number responsible for ending the TCP/IP stack the last time it

was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this field is

all NULLs.

Who last ended - job user name. The name of the user responsible for ending the TCP/IP stack the last

time it was ended. If the TCP/IP stack has not been ended since the last initial program load (IPL), this

field is all NULLs.

Who last started - internal job identifier. A value sent to other APIs to speed the process of locating the

job on the system. Only OS/400 APIs use this identifier. This field is all NULLs if the TCP/IP stack has

not been started since the last initial program load (IPL), or if the job that started the TCP/IP stack is no

longer active.

Who last started - job name. The name of the job responsible for starting the TCP/IP stack the last time

it was started. If the TCP/IP stack has not been started since the last initial program load (IPL), this field

will be all NULLs.

Who last started - job number. The job number of the job responsible for starting the TCP/IP stack the

last time it was started. If the TCP/IP stack has not been started since the last initial program load (IPL),

this field will be all NULLs.

Who last started - job user name. The user name of the job responsible for starting the TCP/IP stack the

last time it was started. If the TCP/IP stack has not been started since the last initial program load (IPL),

this field will be all NULLs.

TCPA0200 Format

This format returns detailed information about the TCP/IPv4 stack attributes in addition to the TCP/IPv4

stack status (format TCPA0100). For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 231.

 Offset

Type Field Dec Hex

0 0 Returns everything from format TCPA0100

230 iSeries: Communications APIs

Offset

Type Field Dec Hex

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format TCPA0100.

BINARY(4) IP datagram forwarding

BINARY(4) UDP checksum

BINARY(4) Log protocol errors

BINARY(4) IP source routing

BINARY(4) TCP urgent pointer

BINARY(4) IP reassembly timeout

BINARY(4) IP time to live

BINARY(4) TCP keep alive

BINARY(4) TCP receive buffer

BINARY(4) TCP send buffer

BINARY(4) ARP cache timeout

BINARY(4) MTU path discovery

BINARY(4) MTU discovery interval

BINARY(4) QoS enablement

BINARY(4) QoS timer resolution

BINARY(4) QoS data path optimization

BINARY(4) Dead gateway detection enablement

BINARY(4) Dead gateway detection interval

BINARY(4) TCP time wait timeout

BINARY(4) TCP R1 retransmission count

BINARY(4) TCP R2 retransmission count

BINARY(4) TCP minimum retransmission timeout

BINARY(4) TCP close connection message

BINARY(4) Network file cache enablement

BINARY(4) Network file cache timeout

BINARY(4) Network file cache size

BINARY(4) Explicit congession notification

Field Descriptions

ARP cache timeout. The ARP cache time-out value, in minutes The purpose of the time-out value is to

flush out-of-date cache entries from the ARP cache.

The default ARP cache time-out interval is 5 minutes. Valid values range from 1 through 1440 minutes

(24 hours).

Dead gateway detection enablement. Whether dead gateway detection is turned on or off. Dead gateway

detection is a mechanism that involves polling all attached gateways. If no reply is received to the polls,

all routes using that gateway are inactivated. Possible values are:

 0 Dead gateway detection is off.

1 Dead gateway detection is on. This is the default value.

Communications APIs 231

Dead gateway detection interval. The amount of time, in minutes, between dead gateway detection

polls. When the time interval is exceeded, all attached gateways are polled to determine their availability.

The default dead gateway detection interval is 2 minutes. Valid values range from 1 through 60 minutes.

Explicit congession notification (ECN). If ECN is enabled routers can notify end-nodes of congestion

before queues overflow. Without ECN end-nodes can only detect congestion when packets are lost due to

queues overflowing.

 0 ECN is not enabled for the system. This is the default value.

1 ECN is enabled for the system.

IP datagram forwarding. Whether the IP layer forwards Internet Protocol (IP) datagrams between

different networks. It specifies whether the IP layer is acting as a gateway.

Note: IP does not forward datagrams between interfaces on the same subnet.

The OS/400 implementation of TCP/IP does not include full gateway function as defined in RFC1009.

Subsets of the gateway functions are supported. One of the gateway functions supported is IP datagram

forwarding capabilities. The possible values are:

 0 IP datagrams are not forwarded. This is the default value.

1 IP datagrams are forwarded.

IP reassembly timeout. The IP datagram reassembly time, in seconds. If this time is exceeded, a partially

reassembled datagram is discarded and an ICMP time exceeded message is sent to the source host.

The default IP reassembly timeout is 10 seconds. Valid values range from 5 through 120 seconds.

IP source routing. Whether IP source routing currently is on or off. If IP source routing is on, it means

that this system is specifying the route that outgoing IP packets take instead of allowing normal dynamic

routing to take place. Some firewalls will not pass datagrams that have IP source routing switched on.

The possible values are:

 0 IP source routing is off.

1 IP source routing is on. This is the default value.

IP time to live. The current TTL value. The IP datagram time-to-live value specifies a relative limit on the

number of hops across which an IP datagram remains active. The time-to-live value acts as a hop count

that is decremented by each gateway to prevent internet routing loops.

Note: Even though this parameter is specified as a time-to-live value, it is not used as a time value. It is

used as a counter. The standard description is time to live as specified in RFCs.

Note: This IP datagram time-to-live value is not used for datagrams sent to an IP multicast group

address. The default IP datagram time-to-live value for datagram sent to an IP multicast group is always

1, as specified by the Internet standards. Individual multicast applications may override this default using

the IP_MULTICAST_TTL socket option.

The default time-to-live value is 64. Valid values range from 1 through 255.

Log protocol errors. Enables a user to log protocol errors that occur during the processing of TCP/IP

data. These TCP/IP stack layer functions use this parameter to determine if they log protocol-specific

errors: IP, ICMP, ARP, and NAM. TCP and UDP do not log protocol errors.

232 iSeries: Communications APIs

The 7004 error reference code is logged when the LOGPCLERR(*YES) option is specified and inbound

datagrams are silently discarded. Silently discarded means that an ICMP message is not returned to the

originating host when a datagram is discarded because of header errors. Examples of such datagrams

include those with invalid checksums and invalid destination addresses.

The error reference code is for information only. No action should be taken as a result of this error

reference code. It is generated to assist with remote device or TCP/IP network problem analysis.

Note: These error conditions cannot be processed using an APAR.

The log protocol errors parameter should be used when error conditions require the logging of TCP/IP

data, such as datagrams, to determine network problems.

The data is logged in the system error log. This error log is available through the Start System Service

Tools (STRSST) command. The possible values are:

 0 Protocol errors are not logged.

1 Protocol errors are logged.

MTU discovery interval. The amount of time, in minutes, that the TCP/IP protocol stack will cache the

results of a path MTU discovery. When the time interval is exceeded, the path MTU is rediscovered.

The default path MTU discovery interval is 10 minutes. Valid values range from 5 through 40320 minutes

(28 days). A special value is:

 -1 *ONCE - Means that path MTUs should not be recalculated after the first discovery.

MTU path discovery. Whether the Path Maximum Transmission Unit (MTU) discovery function is

enabled on this system.

 0 MTU Path Discovery is disabled for this system.

1 MTU Path Discovery is enabled for this system. This is the default value.

Network file cache enablement. The current enablement status of the Network File Cache (NFC)

function. The Network File Cache is used for the support of FRCA (Fast Response Cache Accelerator).

FCRA dramatically improves the performance of serving non-secure static content by Web and other TCP

servers.

Possible values are:

 0 *NO - Network file cache is currently disabled on this system.

1 *YES - Network file cache is currently enabled on this system.

Network file cache size. The maximum amount of storage that may be used by the Network File Cache

(NFC) for the entire system. This number is the total storage used by all TCP servers for caching files.

The storage being allocated is DASD or disk and is not directly allocated from main memory. Valid

values range from 10 through 100000 megabytes (100GB).

Network file cache timeout. The maximum amount of time in seconds that a file can be cached in the

Network File Cache (NFC). This attribute ensures that a file is refreshed at a regular interval. Valid values

range from 30 through 604800 seconds (one week).

Special values are:

Communications APIs 233

0 *NOMAX - Network file cache entries will not timeout.

QoS data path optimization. The type of data path optimization in use by Quality of Service (QoS). This

field indicates the extent which QoS will batch datagrams so as to optimize performance at the risk of

increasing jitter, or delay. The normal setting maximizes performance by doing more batching of

datagram packets. The MinDelay setting minimizes delay by doing less batching of datagram packets and

just sending them when they are ready. Possible values are:

 1 *NORMAL - Maximize performance. This setting is the default.

2 *MINDELAY - Minimize delay.

QoS enablement. Whether Quality of Service (QoS), IP Type of Service (TOS), or neither of the two are in

use. Possible values are:

 1 *TOS - Type of Service bytes in the IP headers are in use.

2 *YES - QoS is in use.

3 *NO - QoS is not in use and the Type of Service byte is not in use. This setting is the default.

QoS timer resolution. The Quality of Service (QoS) timer resolution value in milliseconds. This field

indicates the amount of control possible over delay variations. A higher timer resolution value contributes

to more jitter (delay), and a lower timer resolution uses more CPU time. The timer resolution value that

can be tolerated is very dependent on the application. For example, video is highly sensitive to large

delay variations. To achieve a smooth rate of flow, timers need to use small timer increments. The smaller

the resolution, the smoother the data flow, but at a higher cost in terms of system overhead to manage

timers.

The default QoS timer resolution is 100 milliseconds. Valid values range from 5 to 5000 milliseconds.

TCP close connection message. The value of the TCP close connection message attribute. The TCP close

connection message attribute specifies whether abnormally closed TCP connections will be logged by

messages to the QTCP message queue. TCP connections could be abnormally closed for the following

reasons:

v TCP connection closed due to the 10 minute Close_Wait time_out.

v TCP connection closed due to the R2 retry threshold being exceeded.

v TCP connection closed due to the keep alive time-out value being exceeded.

Possible values are:

 1 *THRESHOLD - At most, one abnormally closed TCP connection message per minute will be logged. This

value is the default setting.

2 *ALL - All abnormally closed TCP connections will be loged. Note that there are some conditions that could

cause MANY closed connection messages to be logged at the same time.

3 *NONE - Abnormally closed TCP connections will not be logged.

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other

side of a connection. The probe is sent when the connection is otherwise idle, even when there is no data

to be sent.

The transmission of keep-alive packets is controlled by individual sockets applications through use of the

SO_KEEPALIVE socket option. For more information, Sockets Programming in the iSeries Information

Center.

234 iSeries: Communications APIs

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28

days).

TCP minimum retransmission timeout. The current value of the configurable TCP minimum

retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will

wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an

acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum

retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.

TCP R1 retransmission count. The R1 retransmission count value. The default value is 3. Valid values

range from 1 to 15, and R1 must be less than R2.

TCP R2 retransmission count. The R2 retransmission count value. The default value is 16. Valid values

range from 2 to 16, and R2 must be greater than R1.

TCP receive buffer. What to allocate for the default receive buffer size. The TCP receive window size is

based on this value. Decreasing this value decreases the amount of data that the remote system can send

before being read by the local application. Decreasing this value may improve performance in situations

where many retransmissions occur due to the overrunning of a network adapter.

Notes:

1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.

2. This value is also used as the default receive buffer size by IP over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. This is the default buffer

size that is used for initial TCP connection negotiations. An individual application can override this

value by using the SO_RCVBUF socket option. For more information, see Sockets Programming in the

iSeries Information Center.

The default TCP receive buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608

(8MB) bytes.

TCP send buffer. The TCP send buffer size. This parameter informs TCP what to use for the default send

buffer size. The TCP send buffer size provides a limit on the number of outgoing bytes that are buffered

by TCP. Once this limit is reached, attempts to send additional bytes may result in the application

blocking until the number of outgoing bytes buffered drops below this limit. The number of outgoing

bytes buffered is decremented when the remote system acknowledges the data sent.

Notes:

1. This value is used also as the default send buffer size by IP over SNA processing.

2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. This is the default buffer

size that is used for initial TCP connection negotiations. An individual application can override this

value by using the SO_SNDBUF socket option. For more information, see Sockets Programming in the

iSeries Information Center.

The default TCP send buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608 (8M)

bytes.

TCP time wait timeout. The amount of time, in seconds, for which a socket pair (client IP address and

port, server IP address and port) cannot be reused after a connection is closed. The maximum value

possible is 2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from

0 (no timer) to 14400 seconds (240 minutes).

Communications APIs 235

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the

TCP header points to. The urgent pointer in the TCP header points to either the byte immediately

following the last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC

convention).

Note: This value must be consistent between the local and remote ends of a TCP connection. Socket

applications that use this value must use it consistently between the client and server applications. This

value is set on a system basis. All applications using this system will use this value. The possible values

are:

 1 Use the BSD defined convention. The TCP urgent pointer points to the byte immediately following the last

byte of urgent data. This is the default value.

2 Use the RFC defined convention. The TCP urgent pointer points to the last byte of the urgent data.

UDP checksum. Whether UDP processing should generate and validate checksums. It is strongly

recommended that you use UDP checksum processing. If you are concerned about obtaining the best

possible performance and are not concerned with the protection provided by UDP checksum processing,

turn UDP checksum processing off. The possible values are:

 0 Checksum protection is not provided for UDP data.

1 Checksum protection is provided for UDP data. This is the default value.

TCPA0300 Format

This format returns detailed information about the TCP/IP domain attributes, in addition to the

TCP/IPv4 stack status (format TCPA0100). For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 237.

 Offset

Type Field Dec Hex

0 0 Returns everything from format TCPA0100

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format TCPA0100.

BINARY(4) Offset to list of internet addresses

BINARY(4) Number of internet addresses

BINARY(4) Entry length for list of internet addresses

BINARY(4) DNS protocol

BINARY(4) Retries

BINARY(4) Time interval

BINARY(4) Search order

BINARY(4) Initial domain name server

BINARY(4) DNS listening port

CHAR(64) Host name

CHAR(255) Domain name

CHAR(1) Reserved

CHAR(256)

Domain search list

List of Internet Addresses. These fields repeat for each Domain Name Server (DNS) Internet address.

236 iSeries: Communications APIs

Offset

Type Field Dec Hex

0 0 CHAR(15) Internet address

15 F CHAR(1) Reserved

16 10 BINARY(4) Internet address binary

20 14

Field Descriptions

DNS listening port. The remote TCP/IP port number used to contact the Domain Name Server (DNS) or

Servers listed in the Internet address parameter. 53 is the well-known port used for this purpose.

Note: Use of a TCP/IP port number other than the well-known port 53 for use by the Domain Name

Server (DNS) can result in TCP/IP communication problems. You may inadvertently use a port number

that is reserved for use by another TCP/IP application.

The default DNS Listening port is 53. Valid values range from 1 to 65532.

DNS protocol. The TCP/IP protocol used to communicate with the Domain Name Server (DNS)

specified in the Internet address parameter. User Datagram Protocol (UDP) typically is used for this

purpose. Use TCP only if your Domain Name Server (DNS) is specifically configured to use the

Transmission Control Protocol (TCP). Possible values are:

 1 Use of the User Datagram Protocol (UDP) to communicate with the Domain Name Server or Servers.

2 Use of the Transmission Control Protocol (TCP) to communicate with the Domain Name Server or Servers.

Domain name. The name of the TCP/IP domain of which this system is a member.

Domain search list. The TCP/IP domains to be searched whenever a host name is not given as a Fully

Qualified Domain Name (FQDN). Up to six domains may be specified, separated by spaces. The list is

null terminated.

Entry length for list of internet addresses. The entry length in bytes of each element in the list of

Domain Name Server (DNS) Internet addresses returned with this format. A value of zero is returned if

the list is empty.

Host name. The TCP/IP host name of this system. This field returns the value specified by the

CHGTCPDMN command, and is the preferred system name if the system has more than one name

corresponding to multiple interfaces.

Note: This system’s TCP/IP host name must also be defined in the local host table or the Domain Name

Server (DNS) specified in the Internet address parameter. If no Domain Name Server (DNS) is specified,

the local TCP/IP host table is used.

Initial domain name server. How the initial Domain Name Server (DNS) is chosen when doing a name

lookup. The first configured server can always be queried first, or TCP/IP can rotate through the

configured servers in a round-robin fashion to provide a form of load balancing on the servers. Possible

values are:

 1 First. Do not rotate through the configured Domain Name Servers (DNS); always start with the first one. This

setting is the default.

Communications APIs 237

2 Rotate. Rotate through the configured Domain Name Servers (DNS) in a round-robin fashion to choose the

first one to query.

Internet address. The IP address of a Domain Name Server (DNS) to be used by this system. There may

be zero, one, two, or three Domain Name Server (DNS) Internet addresses.

If the first Domain Name Server (DNS) in the list does not respond, the second DNS server in the list will

be contacted. If the second DNS server does not respond, the third DNS server will contacted, and so on.

This field is specified in dotted-decimal form.

Internet address binary. The binary representation of a Domain Name Server (DNS) IP address.

Number of internet addresses. The number of elements in the list of Domain Name Server (DNS)

Internet addresses returned with this format. A value of zero is returned if the list is empty.

Offset to list of internet addresses. The offset from the beginning of the receiver variable, in bytes, to the

first element in the list of Domain Name Server (DNS) Internet addresses returned with this format. A

value of zero is returned if the list is empty.

Retries. The number of additional attempts made to establish communication with each Domain Name

Server (DNS), in the event the first attempt fails.

The default number of retries is 2. Valid values range from 0 to 99.

Search order. Whether to search a Domain Name Server (DNS) first to resolve a TCP/IP host name

conflict, or to search the local TCP/IP host table first.

 1 Local - This system will first search the TCP/IP host table, located on this system, to resolve TCP/IP host

names.

2 Remote - This system will search a remote or local Domain Name Server (DNS) to resolve TCP/IP host names

before searching the local TCP/IP host table. The Domain Name Server (DNS) to use is specified by the

Internet Address parameter. This is the default value.

Time interval. The length of time in seconds this system will wait before initiating a retry attempt to

connect to a DNS server. The default time interval is 2 seconds. Valid values range from 0 to 99.

TCPA1100 Format

This format returns information regarding the status of the TCP/IPv6 stack. For detailed descriptions of

the fields in the table, see “Field Descriptions” on page 239.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) TCP/IPv6 stack status

12 C BINARY(4) Offset to additional information

16 10 BINARY(4) Length of additional information

20 14

238 iSeries: Communications APIs

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Length of additional information. The length in bytes of additional information returned that is not part

of format TCPA1100.

Offset to additional information. The offset from the beginning of the receiver variable, in bytes, to the

start of the next format if format TCPA1200

or format TCPA1300

is requested. This field allows

expansion of the basic information. A value of zero is returned if only the TCPA1100 format is requested.

TCP/IPv6 stack status. The current status of the system TCP/IPv6 stack. Possible values are:

 0 Inactive - The TCP/IPv6 stack is not operational.

1 Active - The TCP/IPv6 stack is operational.

2 Starting - The TCP/IPv6 stack not operational, but is in the process of starting.

3 Ending, immediate - The TCP/IPv6 stack is operational, but is in the process of ending.

4 Ending, controlled - The TCP/IPv6 stack is operational, but is in the process of ending.

TCPA1200 Format

This format returns detailed information about the TCP/IPv6 stack attributes in addition to the TCP/IPv6

stack status (format TCPA1100). For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 240.

As of V5R4, this format is being replaced with TCPA1300 and should no

longer be used.

 Offset

Type Field Dec Hex

0 0 Returns everything from format TCPA1100

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format TCPA1100.

BINARY(4) ICMP error message send rate time

BINARY(4) Router solicitation max delay

BINARY(4) Router solicitation interval

BINARY(4) Router solicitation max transmits

BINARY(4) Neighbor advertisement max transmits

BINARY(4) Neighbor solicitation delay first probe time

BINARY(4) Neighbor solicitation max unicast solicits

BINARY(4) Neighbor solicitation max multicast solicits

BINARY(4) TCP keep alive

BINARY(4) TCP urgent pointer

BINARY(4) TCP receive buffer size

BINARY(4) TCP send buffer size

BINARY(4) TCP R1 retransmission count

BINARY(4) TCP R2 retransmission count

BINARY(4) TCP closed timewait timeout

BINARY(4) TCP minimum retransmission timeout

Communications APIs 239

Field Descriptions

ICMP error message send rate time. The current value of the ICMP error message send rate time

attribute, in milliseconds. The ICMP error message send rate time attribute controls how often ICMPv6

error messages will be sent out by the system. This control mechanism allows the bandwidth and

forwarding costs of sending ICMPv6 error messages to be limited, as in the case of many ICMPv6 error

messages being generated in response to another host sending a stream of erroneous packets. The default

ICMP error message send rate time is 1000 milliseconds (1 second). Valid values range from 10 through

5000 milliseconds (5 seconds).

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Neighbor advertisement max transmits. The current value of the TCP/IPv6 stack Neighbor

advertisement max transmits attribute. The Neighbor advertisement max transmits attribute is specified

as a number of transmissions, and is the maximum number of unsolicited Neighbor Advertisements that

the system will send at a time. The system might send unsolicited Neighbor Advertisements when one of

its link-layer addresses changes (for example, hot-swap of a physical interface card). The default value of

the Neighbor advertisement max transmits attribute is 3 transmissions. Valid values range from 1 through

5 transmissions.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Neighbor solicitation delay first probe time. The current value of the configured Neighbor solicitation

delay first probe time attribute. This attribute controls how long a Neighbor Cache entry will stay in the

DELAY state before the stack will send another Neighbor Solicitation and move the Neighbor Cache

entry’s Reachability state to PROBE if reachability still has not been confirmed. The default Neighbor

solicitation delay first probe time is 5 seconds. Valid values range from 3 through 10 seconds.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Neighbor solicitation max multicast solicits. The current value of the configured Neighbor solicitation

max multicast solicits stack attribute. This attribute controls the maximum number of multicast Neighbor

Solicitations which will be sent out when the system is performing link-layer address resolution for

another host (neighbor). If no Neighbor Advertisement is received after the maximum number of

Neighbor Solicitations have been sent out, address resolution has failed, and an ICMPv6 error message

will be returned to the application. The default value of the Neighbor solicitation max multicast solicits

attribute is 3 transmissions. Valid values range from 1 through 5 transmissions.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Neighbor solicitation max unicast solicits. The current value of the configured Neighbor solicitation max

unicast solicits stack attribute. This attribute controls the maximum number of unicast Neighbor

Solicitations which will be sent out when the system is performing link-layer address resolution for

another host with unicast Neighbor Solicitations. Multicast is the normal way to perform Neighbor

Discovery, but unicast Neighbor Solicitations will be used if the local physical interface is not

multicast-capable. If no Neighbor Advertisement is received after the maximum number of Neighbor

Solicitations have been sent out, address resolution has failed, and an ICMPv6 error message will be

returned to the application. The default Neighbor solicitation max unicast solicits value is 3 transmissions.

Valid values range from 1 through 5 transmissions.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Router solicitation interval. The Router solicitation interval is the amount of time, in seconds, to wait

between sending Router Solicitations while waiting for a Router Advertisement in reply. The default

Router solicitation interval is 4 seconds. Valid values range from 2 through 5 seconds.

240 iSeries: Communications APIs

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Router solicitation max delay. The Router solicitation max delay attribute is the amount of time, in

milliseconds, to wait for a Router Advertisement reply after sending the last Router Solicitation. This

attribute is also used to calculate when to send the first Router Solicitation. To avoid congestion on a link

when many hosts start up at the same time (such as after a power failure), the system will wait Router

soliciation max delay seconds before sending the first Router Solicitation. The default Router soliciation

max delay is 1000 milliseconds. Valid values range from 500 through 3000 milliseconds.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

Router solicitation max transmits. The maximum number of Router Solicitations to transmit. If no Router

Advertisements are received in response to the transmitted Router Solicitations, the system concludes that

there is no IPv6 router on its link. The default Router solicitation max transmits value is 3 transmissions.

Valid values range from 1 through 5 transmissions.

Note: As of V5R4, this data is no longer available and is defaulted to 0.

TCP closed timewait timeout. The amount of time, in seconds, for which a socket pair (client IP address

and port, server IP address and port) cannot be reused after a connection is closed. The maximum value

possible is 2 MSL (maximum segment lifetime). The default value is 120 seconds. Valid values range from

0 (no timer) to 14400 seconds (240 minutes).

Note: As of V5R4, this data is available through format TCPA0200.

TCP keep alive. The amount of time, in minutes, that TCP waits before sending out a probe to the other

side of a connection. The probe is sent when the connection is otherwise idle, even when there is no data

to be sent.

The transmission of keep-alive packets is controlled by individual sockets applications through use of the

SO_KEEPALIVE socket option. For more information, Sockets Programming in the iSeries Information

Center.

The default keep-alive time interval is 120 minutes. Valid values range from 1 through 40320 minutes (28

days).

Note: As of V5R4, this data is available through format TCPA0200.

TCP minimum retransmission timeout. The current value of the configurable TCP minimum

retransmission timeout attribute, in milliseconds. This attribute specifies the amount of time that TCP will

wait for an acknowledgement (ACK) of a packet. When this amount of time has passed without an

acknowledgement, TCP will perform the first retransmission of the packet. The default TCP minimum

retransmission timeout is 250 milliseconds. Valid values range from 100 through 1000 milliseconds.

Note: As of V5R4, this data is available through format TCPA0200.

TCP R1 retransmission count. The R1 retransmission count value. The default value is 3. Valid values

range from 1 to 15, and R1 must be less than R2.

Note: As of V5R4, this data is available through format TCPA0200.

TCP R2 retransmission count. The R2 retransmission count value. The default value is 16. Valid values

range from 2 to 16, and R2 must be greater than R1.

Note: As of V5R4, this data is available through format TCPA0200.

Communications APIs 241

TCP receive buffer size. The TCP receive buffer size in bytes. The TCP receive window size is based on

this value. Decreasing this value decreases the amount of data that the remote system can send before

being read by the local application. Decreasing this value may improve performance in situations where

many retransmissions occur due to the overrunning of a network adapter.

Notes:

1. User Datagram Protocol (UDP) does not have a configurable receive buffer size.

2. This value is also used as the default receive buffer size by IP over SNA processing.

3. Setting this parameter does not guarantee the size of the TCP receive buffer. This is the default buffer

size that is used for initial TCP connection negotiations. An individual application can override this

value by using the SO_RCVBUF socket option. For more information, see Sockets Programming in the

iSeries Information Center.

The default TCP receive buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608

(8MB) bytes.

4.

As of V5R4, this data is available through format TCPA0200.

TCP send buffer size. The TCP send buffer size in bytes. This parameter informs TCP what to use for

the default send buffer size. The TCP send buffer size provides a limit on the number of outgoing bytes

that are buffered by TCP. Once this limit is reached, attempts to send additional bytes may result in the

application blocking until the number of outgoing bytes buffered drops below this limit. The number of

outgoing bytes buffered is decremented when the remote system acknowledges the data sent.

Notes:

1. This value is used also as the default send buffer size by IP over SNA processing.

2. UDP does not have a configurable send buffer size.

3. Setting this parameter does not guarantee the size of the TCP send buffer. This is the default buffer

size that is used for initial TCP connection negotiations. An individual application can override this

value by using the SO_SNDBUF socket option. For more information, see Sockets Programming in the

iSeries Information Center.

The default TCP send buffer size is 8192 (8K) bytes. Valid values range from 512 through 8388608

(8M) bytes.

4.

As of V5R4, this data is available through format TCPA0200.

TCP urgent pointer. The convention to follow when interpreting which byte the urgent pointer in the

TCP header points to. The urgent pointer in the TCP header points to either the byte immediately

following the last byte of urgent data (BSD convention) or the last byte of the urgent data (RFC

convention).

Note: This value must be consistent between the local and remote ends of a TCP connection. Socket

applications that use this value must use it consistently between the client and server applications. This

value is set on a system basis. All applications using this system will use this value. The possible values

are:

 1 Use the BSD defined convention. The TCP urgent pointer points to the byte immediately following the last

byte of urgent data. This is the default value.

2 Use the RFC defined convention. The TCP urgent pointer points to the last byte of the urgent data.

As of V5R4, this data is available through format TCPA0200.

TCPA1300 Format

This format returns information regarding the status of the TCP/IPv6 stack. For detailed descriptions of

the fields in the table, see “Field Descriptions” on page 243.

242 iSeries: Communications APIs

Offset

Type Field Dec Hex

0 0 Returns everything from format TCPA1100

Decimal and

hexadecimal offsets are

reached by using the

offset to additional

information field in

format TCPA1100.

BINARY(4) ICMP error message burst limit

BINARY(4) ICMP error message send rate

BINARY(4) Hop limit

Field Descriptions

Hop limit. The configured IPv6 Hop Limit value specified for all physical interfaces. The Hop limit field

is the IPv6 replacement for the IPv4 Time to live (TTL) field. The Hop limit value specifies a relative limit

on the number of hops across which an IPv6 datagram remains active. The Hop limit value is hop count

that is decremented by each gateway to prevent internet routing loops. The default Hop limit value is 64.

Valid values range from 1 through 255 hops.

ICMP error message burst limit. The maximum number of ICMP error messages sent in a burst. The

default value is 10. Valid values range from 1 through 255.

ICMP error message send rate. The average rate limit of sending ICMP error messages in

packets/second. The default value is 10. Valid values range from 1 through 255.

Error Messages

 Message ID Error Message Text

TCP84C6 E Internal operations error - RESULT &1 CC &2 RC &3 ERRNO &4.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

Update DNS API (QTOBUPDT)

 Required Parameter Group:

 1 Update instructions Input Char(*)

2 Length of update instructions Input Binary(4)

3 Format name of update instructions Input Char(8)

4 Update key override Input Char(*)

5 Length of update key override Input Binary(4)

6 Format name of update key override Input Char(8)

7 Update key name Input Char(*)

8 Length of update key name Input Binary(4)

9 IP address of DNS server Input Char(15)

Communications APIs 243

#TOP_OF_PAGE
aplist.htm

10 Miscellaneous attributes Input Char(*)

11 Length of miscellaneous attributes Input Binary(4)

12 Format name of miscellaneous attributes Input Char(8)

13 Result code Output Binary(4)

14 Error code I/O Char(*)

 Program Name: QDNS/QTOBUPDT

 Default Public Authority: *USE

 Threadsafe: No

The Update DNS API (QTOBUPDT) allows the caller to send one or more update instructions to an

iSeries dynamic DNS (Domain Name System) server. The instructions allow for adding or deleting DNS

Resource Records (RRs). The instructions can optionally include any number of prerequisite conditions

that must be true for the actual updates to take place. This API is based on the Berkeley Internet Name

Domain (BIND) version 8.2.x implementation of dynamic DNS updates. Therefore, it also can be used to

send update requests to DNS servers running on other operating system platforms that conform to BIND

Version 8 update protocols.

i5/OS Option 31 (Domain Name System) must be installed to use this API.

Authorities and Locks

If an Integrated File System (IFS) stream file name is specified for any of the parameters that allow it,

then the user will need *R authority to the stream file and *X authority to the directories in the path of

the stream file.

Required Parameter Group

Update instructions

INPUT; CHAR(*)

 One or more instructions that define which DNS resource records should be updated (added or

deleted) for a specific DNS domain, as well as any prerequistes that must be true for those

updates to take place. Depending on which format name for this parameter is chosen, this

parameter will either contain the actual update instructions themselves or the name of an

Integrated File System file that contains the update instructions.

 The syntax for the update instructions themselves is the same as that defined by BIND 8.2.3 for

dynamic DNS updates, which it uses as input to its nsupdate program. Please see “Update

Instructions Syntax” on page 246 for descriptions of the update instructions themselves.

Length of update instructions

INPUT; BINARY(4)

 The length of the data passed in the Update instructions parameter. If the length is larger than

the size of the Update instructions parameter, the results may not be predictable.

Format name of update instructions

INPUT; CHAR(8)

 The format of the data being passed in the Update instructions parameter.

 DNSU0100 Data passed represents the actual data the API should use.

DNSU0200 Data passed represents the path name of an Integrated File System file that contains the data the

API should use.

DNSU0300 Data passed represents the name of a file that contains the data the API should use. The file name

is in an i5/OS API path name structure. For the format of this structure, see Path name format.

Update key override

INPUT; CHAR(*)

244 iSeries: Communications APIs

This API automatically searches the default DNS dynamic update directory

/QIBM/UserData/OS400/DNS/_DYN for a dynamic update transaction signature (TSIG) key for

the specific domain being updated. The caller can override the default logic and provide a

transaction signature key directly to the API by using this Update key override parameter.

Depending on which format name for this parameter is chosen, this parameter will either contain

the actual key itself or the path name of an Integrated File System file that contains the key.

Length of update key override

INPUT; BINARY(4)

 The length of the data passed in the Update key override parameter. If the length is larger than

the size of the Update key override parameter, the results may not be predictable.

Format name of update key override

INPUT; CHAR(8)

 The format of the data being passed in the Update key override parameter.

 DNSU0100 Data passed represents the actual data the API should use.

DNSU0200 Data passed represents the path name of an Integrated File System (IFS) file that contains the data

the API should use.

DNSU0300 Data passed represents the name of a file that contains the data the API should use. The file name

is in an i5/OS API path name structure. For the format of this structure, see Path name format.

Update key name

INPUT; CHAR(*)

 If the caller is providing a transaction signature key in the update key override parameter, then

the update key name parameter must contain the name of the update key.

Length of update key name

INPUT; BINARY(4)

 The length of the data passed in the Update key name parameter. If the length is larger than the

size of the Update key name parameter, the results may not be predictable.

IP address of DNS server

INPUT; CHAR(15)

 The IP address, in dotted decimal form, of the DNS server where the API should start searching

for the primary master DNS server for the zone being updated. The parameter must be right

padded with blanks if the data does not take up the entire length.

 If this parameter is all blanks on input, the API will automatically search the network to

determine where the primary master DNS server is located for the zone that contains the domain

being updated.

Miscellaneous attributes

INPUT; CHAR(*)

 Optional miscellaneous runtime attributes.

Length of miscellaneous attributes

INPUT; BINARY(4)

 The length of the data passed in the Miscellaneous attributes parameter. If the length is larger

than the size of the Miscellaneous attributes parameter, the results may not be predictable.

Format name of miscellaneous attributes

INPUT; CHAR(8)

Communications APIs 245

The format of the data being passed in the Miscellaneous attributes parameter.

 DNSA0100 Miscellaneous runtime attributes. Refer to “DNSA0100 Format” on page 248 for details on the

format.

Result code

OUTPUT; BINARY(4)

 Whether the API processed successfully or not, and if not, what type of problem was

encountered. Any code that is not 0 means that the updates were not completely successful.

 0 Successful.

1 Send error. The authoritative name server could not be reached.

2 Failed update packet. The name server has rejected the update, either because it does not support

dynamic update or due to an authentication failure.

3 Prerequisite failure. The update was successfully received and authenticated by the name server.

The prerequisites, however, prevented the update from actually being performed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Update Instructions Syntax

The syntax of the update instructions for the QTOBUPDT API is the same as the syntax of the update

instructions that are input to the BIND (Berkeley Internet Name Domain) Version 8.2.x program known

as nsupdate. It is a stream file-based input format that requires carriage-return(<cr>) linefeed (<lf>)

characters to define distinct “lines” of input.

In addition to accepting these instructions using stream files, like nsupdate, the QTOBUPDT API has

added the ability (by specifying format DNSU0100) for an application program to build the lines of input

in memory and pass them directly to the API without first having to write them to a file. It is important

to note, however, that this method still requires that you build the input lines exactly as you would if

you were going to write them to a stream file; that is, separated by the same <cr><lf> characters that are

described below.

QTOBUPDT reads input records, one per line, each line contributing a resource record directive to a

single update request. As described below, the directives can be either prerequisite checks or actual

resource record (RR) data update directives. All domain names used in an update request must belong to

the same DNS zone. A blank line causes the accumulated records to be formatted into a single update

request and transmitted to the zone’s authoritative name servers. Additional records may follow, which

are formed into additional, completely independent, update requests for that domain. For any given call

to the API, multiple update requests can be made, but each group of lines belonging to each single

update request must be separated by a blank line. For the last request to be transmitted, you must

remember to include a blank line as the last line of your input.

Records take one of two general forms. Prerequisite records specify conditions that must be satisfied

before the request will be processed. Update records specify actual data changes to be made to the DNS

database. An “update request” consists of zero or more prerequisites, and one or more updates. Each

update request is processed atomically; that is, all prerequisites must be satisfied, then all updates are

performed. If any of the prerequisites within the specific update request fail, the actual data update

directives following them will not be attempted.

QTOBUPDT API understands the following input record formats:

246 iSeries: Communications APIs

prereq nxdomain

domain-name

<cr><lf>

Requires that no RR of any type exists with name domain-name.

prereq yxdomain

domain-name

<cr><lf>

Requires that at least one RR named domain-name must exist.

prereq nxrrset

domain-name

[class] type

<cr><lf>

Requires that no RR exists of the specified type and domain-name.

prereq yxrrset

domain-name

[class] type

[data...] <cr><lf>

Requires that a RR exists of the specified type and domain-name. If data is specified, it must

match exactly.

update delete

domain-name

[class] [type

[data...]] <cr><lf>

Deletes RRs named domain-name. If type and/or data is specified, only completely matching

records are deleted.

update add

domain-name ttl

[class] type data...

<cr><lf>

Adds a new RR with specified ttl, type, and data.

EXAMPLES

1. The following example illustrates a set of update instructions that could be sent to the QTOBUPDT

API to change an IP address by deleting any existing A records for a domain name, and then inserting

a new A record. Since no prerequisites are specified, the new record will be added even if there were

no existing records to delete. The trailing blank line is required to process the request.

v record 1: update delete test.test.com A <cr><lf>

v record 2: update add test.test.com 3600 A 10.1.1.1 <cr><lf>

v record 3: <cr><lf>

2. In this example, a CNAME alias is added to the database only if there are no existing A or CNAME

records for the domain name.

v record 1: prereq nxrrset www.test.com A <cr><lf>

v record 2: prereq nxrrset www.test.com CNAME <cr><lf>

v record 3: update add www.test.com 3600 CNAME test.test.com <cr><lf>

v record 4: <cr><lf>

3. To accomplish both of the above independent update requests in a single call to the QTOBUPDT API,

the update instructions submitted would be:

v record 1: update delete test.test.com A <cr><lf>

v record 2: update add test.test.com 3600 A 10.1.1.1 <cr><lf>

v record 3: <cr><lf>

v record 4: prereq nxrrset www.test.com A <cr><lf>

v record 5: prereq nxrrset www.test.com CNAME <cr><lf>

v record 6: update add www.test.com 3600 CNAME test.test.com <cr><lf>

v record 7: <cr><lf>

Communications APIs 247

DNSA0100 Format

The following is the format used for passing miscellaneous runtime attributes to the dynamic DNS

update API. For detailed descriptions of the fields in this table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 B Debug flag

4 4 B Virtual circuit flag

8 8 C Reserved for future use

Field Descriptions

Debug flag. If set on, tells the API to create a spooled print file (QPRINT) to the caller’s userid.

 0 Debug tracing is off (default).

1 Debug tracing is on.

Reserved for future use. A reserved field that must be set to hexadecimal zeros.

Virtual circuit flag. If set on, tells the API to use a TCP connection instead of the default UDP packets.

 0 Use UDP packets to communicate with the DNS server (default).

1 Use TCP to communicate with the DNS server.

Error Messages

 Message ID Error Message Text

DNS0300 E Incorrect number of parameters passed.

DNS0301 E The update instructions parameter was null.

DNS0302 E The length of the update instructions parameter is incorrect.

DNS0303 E The format name of the update instructions parameter is incorrect.

DNS0304 E The update key override parameter is null.

DNS0305 E The format name of the update key override parameter is incorrect.

DNS0306 E The IP address of the DNS server parameter is incorrect.

DNS0307 E The miscellaneous attributes parameter is null.

DNS0308 E The format name of the miscellaneous attributes parameter is incorrect.

DNS0309 D The transaction signature key file could not be opened.

DNS0310 E The length of miscellaneous attributes parameter is incorrect.

DNS0311 E The miscellaneous attributes debug flag is incorrect.

DNS0312 E The miscellaneous attributes virtual circuit flag is incorrect.

DNS0313 E The key name parameter is null.

DNS0314 E The length of the key name parameter is incorrect.

DNS0315 E The transaction signature key file could not be read.

DNS030A D The update instructions parameter was incorrect.

DNS030B D The dynamic DNS update failed.

DNS030C D The dynamic DNS update partially failed.

DNS030D E The miscellaneous attributes reserved field was not zeros.

DNS030E E The length of the update key override parameter is incorrect.

DNS030F E The update instructions file could not be opened.

248 iSeries: Communications APIs

API introduced: V5R1

 Top | “Communications APIs,” on page 1 | APIs by category

CPI Communications (CPI-C)

CPI Communications (CPI-C) provides a cross-system programming interface for applications that require

program-to-program communications. CPI-C Reference

details CPI-C APIs and provides examples

for designing application programs using CPI-C concepts and calls.

 Top | “Communications APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Trace Exit Program for Trace TCP/IP Application command

 Required Parameter Group:

 1 Trace option setting Input Char(10)

2 Application Input Char(10)

3 Error detected Output Char(10)

4 Comparison data1 (page 249) Input Char(*)

 QSYSINC/H member name: ESCWCHT

Note 1: Valid only when watch for trace event facility is enabled (WCHMSG or WCHLICLOG parameters

were specified)

The Trace TCP/IP Application (TRCTCPAPP) command has the capability to call a user-written program,

if specified in the TRCPGM parameter. This user written program will be called in the following

circumstances:

For SET(*ON), the trace program will be called:

v Before the application trace starts.

v After the communications and Licensed Internal Code (LIC) traces, if requested, start.

For SET(*OFF), the trace program will be called:

v Before the LIC traces, if requested, end.

v After the communications trace, if requested, ends.

v After the application trace ends.

For SET(*END), the trace program will be called:

v After the LIC and communications traces, if requested, end.

v After the application trace ends.

Also, the Trace TCP/IP Application (TRCTCPAPP) command has the capability to watch for a specific

event and end the trace when this event occurs. An event can be a message being sent to a specific

message queue, history log or job log; or a LIClog. If specified in the TRCPGM parameter, the watch for

trace event facility will call a user-written program at the moments specified in the Trace option setting

parameter.

Communications APIs 249

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

See the online help for more information on the TRCTCPAPP command.

Authorities and Locks

None.

Required Parameter Group

Trace option setting

INPUT; CHAR(10)

 The reason indicating the moment at which the user-written program was called. The possible

values are:

 *ON - The collection of trace information is started, or

- The watch for trace facility is starting1.

*OFF The collection of trace information is stopped and the trace information is written to spooled

printer files of the user.

*END Tracing is ended and all trace information is deleted. No trace information output is created.

*MSGID1 A match on a message id specified on WCHMSG parameter occurred.

*LICLOG1 A match on a LIC log specified on the WCHLICLOG parameter occurred.

*CMPDATA1 The major and minor code of a LIC log matched, but the comparison data did not.

*INTVAL1 The time interval specified on TRCPGMITV parameter is elapsed.

*WCHTIMO1 The length of time to watch specified on WCHTIMO is elapsed.

Application.

INPUT; CHAR(10)

 The possible values for the ″Application″ parameter are the same as the values for the APP

parameter on the TRCTCPAPP command. Ignored by watch for trace event facility.

Error detected

OUTPUT; CHAR(10)

 Indicates if the trace event facility should stop or continue running, or if an error on the

user-written program was found. The possible values are:

v *CONTINUE1 - The trace and the watch for trace event facility.

v *STOP1 - The trace and the watch for trace event facility will be ended.

v *ERROR - Error detected by customer trace program.

Comparison data

INPUT; CHAR(*)

 The format of the trace information depends on the Trace option setting causing the exit program

to be called. The format of the Comparison data is as follows if the Trace option setting is

*MSGID:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(7) Message ID

11 B CHAR(9) Reserved

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

250 iSeries: Communications APIs

Offset

Type Field Dec Hex

28 1C CHAR(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(4) LIC Log major code

8 8 CHAR(4) LIC Log minor code

12 C CHAR(8) LIC Log identifier

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

28 1C CHAR(*) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written

exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.

LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the

watched for log entry.

Message ID. The identifier of the message that occurred.

Message comparison data. The user specified text string used to compare against the entry data of the

watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information

See the Trace TCP/IP Application (TRCTCPAPP) command for more information.

Communications APIs 251

Exit program introduced: V5R3

 Top | “Communications APIs,” on page 1 | APIs by category

Exit Program for Watch for Trace Event

 Required Parameter Group:

 1 Trace option setting Input Char(10)

2 Reserved Input Char(10)

3 Error detected Output Char(10)

4 Comparison data Input Char(*)

 QSYSINC/H member name: ESCWCHT

The Trace commands such as STRCMNTRC, STRTRC, TRCINT and TRCCNN have the capability to

watch for a specific event and end the trace when this event occurs. An event can be a message being

sent to a specific message queue, history log, job log, or LIClog. If specified in the TRCPGM parameter,

the watch for trace event facility will call a user-written program in the cicumstances specified in the

Trace option setting parameter.

Authorities and Locks

None.

Required Parameter Group

Trace option setting

INPUT; CHAR(10)

 The reason indicating the moment at which the user-written program was called. The possible

values are:

 *ON The watch for trace facility is starting.

*MSGID A match on a message id specified on WCHMSG parameter occurred.

*LICLOG A match on a LIC log specified on the WCHLICLOG parameter occurred.

*CMPDATA The major and minor code of a LIC log matched, but the comparison data did not.

*INTVAL The time interval specified on TRCPGMITV parameter is elapsed.

*WCHTIMO The length of time to watch specified on WCHTIMO is elapsed.

Error detected

OUTPUT; CHAR(10)

 Indicates if the trace event facility should stop or continue running, or if an error on the

user-written program was found. The possible values are:

 *CONTINUE The trace and the watch for trace event facility will continue running

*STOP The trace and the watch for trace event facility will be ended

*ERROR Error detected by customer trace program.

Comparison data

INPUT; CHAR(*)

 The format of the trace information depends on the Trace option setting causing the exit program

to be called. The format of the Comparison data is as follows if the Trace option setting is

252 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

*MSGID:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(7) Message ID

11 B CHAR(9) Reserved

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

28 1C CHAR(*) Message comparison data

The format of the Comparison data is as follows if the Trace option setting is *LICLOG or

*CMPDATA:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information

4 4 CHAR(4) LIC Log major code

8 8 CHAR(4) LIC Log minor code

12 C CHAR(8) LIC Log identifier

20 14 BINARY(4) Offset to comparison data

24 18 BINARY(4) Length of comparison data

28 1C CHAR(*) LIC Log comparison data

The format of the Comparison data is as follows if the Trace option setting is *ON, *INTVAL or

*WCHTIMO:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of trace information (always 4 at this time)

Field Descriptions

Length of trace information. The length of the Comparison data parameter passed to the user-written

exit program.

Length of comparison data. The length of the user specified text to be compared against the event data.

LIC Log identifier. The LIC Log entry identifier of the LIC Log that occurred.

LIC Log major code. The major code of the LIC Log that occurred.

LIC Log minor code. The minor code of the LIC Log that occurred.

LIC Log comparison data. The user specified text string used to compare against the entry data of the

watched for log entry.

Message ID. The identifier of the message that occurred.

Communications APIs 253

Message comparison data. The user specified text string used to compare against the entry data of the

watched for message ID.

Offset to comparison data. The offset to the field that holds the comparison data.

Related Information

See the following for more information:

v Start Communications Trace (STRCMNTRC) command

v Start Trace (STRTRC) command

v Trace Internal (TRCINT) command

v Trace Connection (TRCCNN) command

 Exit program introduced: V5R3

 Top | “Communications APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

User-Defined Communications

User-defined communications support is a set of application program interfaces (APIs) that are part of the

Operating System/400(R) (i5/OS(R)) licensed program. These callable routines allow customers to write

their own communications protocol stacks above the iSeries(TM) data link and physical layer support. The

term user-defined communications is used here to describe this communications protocol support. The

term application program refers to a user-supplied communications application program.

This article defines the user-defined communications support and describes how to write protocols using

the APIs. In addition, it provides two C language program examples that illustrate the use of the APIs

while performing a simple file transfer between two systems attached to an X.25 packet switched

network.

Overview

The user-defined communications APIs allow your application programs to send and receive data, and

do specialized functions such as setting timers.

Your application programs need to work with the following:

v User-defined communications support

v Input/output buffers and descriptors

v A queue

Figure 1-1 (page 254) shows an overview of the user-defined communications support.

Figure 1-1. User-Defined Communications Support

254 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

User-Defined Communications Callable Routines

The APIs provided by the i5/OS licensed program are callable routines that allow an application program

to start, perform, and end communications, and perform specialized functions such as setting timers.

These routines are listed below and are discussed in detail in “User-Defined Communications Support

APIs” on page 1.

v Disable Link (QOLDLINK) ends communications

Communications APIs 255

v Enable Link (QOLELINK) starts communications

v Query Line Description (QOLQLIND)

v Receive Data (QOLRECV)

v Send Data (QOLSEND)

v Set Filter (QOLSETF) for inbound routing information

v Set Timer (QOLTIMER) sets or cancels a timer

Input/Output Buffers and Descriptors

The input/output buffers and descriptors are user space objects (*USRSPC) that contain and describe the

data an application program is sending or receiving. There are separate buffers and descriptors for input

and output.

When an application program is ready to send data, it fills the output buffer with data and provides a

description of that data in the output buffer descriptor. Similarly, when an application program receives

data, the user-defined communications support fills the input buffer with data and provides a description

of that data in the input buffer descriptor.

The i5/OS licensed program also provides callable APIs to allow an application program to manipulate

the data in the user spaces. Some of these APIs are listed below.

v Change User Space (QUSCHGUS)

v Retrieve Pointer to User Space (QUSPTRUS)

v Retrieve User Space (QUSRTVUS)

See User Space APIs for more information.

Queues

A queue is used by the user-defined communications support to inform an application program of some

action to perform or of an activity that is complete.

The i5/OS licensed program provides APIs that allow your application programs to manipulate the data

and user queues. Some of these callable APIs are listed below.

v Clear Data Queue (QCLRDTAQ)

v Create User Queue (QUSCRTUQ)

v Delete User Queue (QUSDLTUQ)

v Receive Data Queue (QRCVDTAQ)

v Send Data Queue (QSNDDTAQ)

See the CL Programming topic for more information on data queues.

Terminology

Listed below are terms that are important in understanding the information contained in this part.

Communications handle. The name an application program assigns and uses to refer to a link.

Connection. The logical communication path from one computer system to another. For example, a

switched virtual circuit (SVC) connection on an X.25 network.

Connectionless service. A method of operation where data can be sent to and received from the remote

computer system without establishing a connection to it. User-defined communications support provides

256 iSeries: Communications APIs

obj5.htm

connectionless service over token-ring, Ethernet, fiber distributed data interface (FDDI), wireless and X.25

networks only. For a local area network (LAN) environment, connectionless service is also known as

unacknowledged service.

Connection-oriented service. A method of operation where a connection to the remote computer system

must first be established before data can be sent to it or received from it. User-defined communications

support provides connection-oriented service over X.25 networks only.

Connection identifier. A local identifier (ID) that a computer system uses to distinguish one connection

from another. When using the user-defined communications support on the server, a connection ID is

made up of a user connection end point ID and a provider connection end point ID.

Disable. The process of deactivating a link so that input and output operations are no longer possible on

a communications line.

Enable. The process of setting up and activating a link for input and output operations on a

communications line.

Filter. The technique used to route inbound data to a link that is enabled by an application program.

Link. The logical path between an application program and a communications line. A link is made up of

the following communications objects:

v Network interface description running X.25 over ISDN

v X.25, token-ring, fiber distributed data interface (FDDI), Ethernet, or wireless line description

v Network controller description

v Network device description of type *USRDFN

Provider connection end point ID (PCEP ID). The portion of the connection ID that the user-defined

communications support uses to identify the connection. For example, data sent by the application

program will be on the PCEP ID portion of the connection ID.

User connection end point ID (UCEP ID). The portion of the connection ID that the application program

uses to identify the connection. For example, data received by the application program is on the UCEP ID

portion of the connection ID.

Relationship to Communications Standards

Figure 1-2 (page 257) shows the structure of advanced program-to-program communications (APPC) on

the sergver and its relationship to the International Standards Organization (ISO) protocol model. Note

that only the application layer above the APPC protocol code is available for definition. The APPC

functional equivalents of the ISO presentation, session, networking, transport, data link, and physical

layers are performed by the i5/OS operating system or Licensed Internal Code, and you cannot replace

or change them. Contrast this with Figure 1-3 (page 258) which shows how much more of the protocol is

defined by the user-defined communications application than by the APPC application.

Figure 1-2. iSeries APPC versus ISO Model

Communications APIs 257

Figure 1-3 (page 258) shows the structure for user-defined communications and its relationship to the

International Standards Organization (ISO) protocol model. Note that the available iSeries data links and

physical layers limit user-defined communications to run over LAN (token-ring, Ethernet, wireless, or

FDDI), or X.25 links, but the portion of the protocol above the data link layer is completely open to a

user-defined communications application. In addition, these same X.25 and LAN links may be shared

between the application program and other iSeries communications protocols that support X.25 and LAN

lines. Examples include Systems Network Architecture (SNA), asynchronous communications,

Transmission Control Protocol/Internet Protocol (TCP/IP), and Open Systems Interconnection (OSI).

Figure 1-3. iSeries User-Defined versus ISO Model

258 iSeries: Communications APIs

You can write protocols that run over local area networks or X.25 networks completely in high-level

languages such as C, COBOL, or RPG. You can also write protocols currently running on other systems to

run on the iSeries. For example, you can write both non-SNA LAN or X.25 packet layer protocols on the

iSeries.

Configuration instructions also need to be supplied with the application program. User-defined

communications support simply opens a pathway to the system data links. It is up to you as a protocol

developer to supply any configuration instructions that are in addition to the data link or physical layer

definition. Data link and physical layer definitions are defined when you use the following commands:

v Create Line Description (DDI) (CRTLINDDI)

v Create Line Description (Ethernet) (CRTLINETH)

v Create Line Description (Token Ring) (CRTLINTRN)

v Create Line Description (Wireless) (CRTLINWLS)

v Create Line Description (X.25) (CRTLINX25)

v Create Network Interface Description (ISDN) (CRTNWIISDN)

Figure 1-4 (page 259) outlines the difference between standard iSeries communications configuration, such

as the iSeries APPC protocol, and user-defined communications configuration.

Figure 1-4. Comparison between User-Defined Communications and APPC Communications

Communications APIs 259

Object APPC Communications User-Defined Communications

Network

Interface

Description

ISDN basic rate interface (BRI). Describes the

physical attachment to an ISDN BRI. Only

used for ISDN. X.25 or IDLC protocols

supported.

Same as APPC. Only X.25 supported.

Line Description SDLC, LAN, IDLC, X.25 lines supported.

Contains local port information for iSeries

communication IOP (hardware address,

maximum frame size, exchange identifier

(XID), local recovery information, ...).

LAN, X.25 lines supported. Same as APPC

except some of the information does not

apply to user-defined communications.

Controller Description APPC, host controllers supported. Describes

remote system, and parameters must match

the remote hardware (hardware address,

XID, ...).

Network controller supported. Pathway into

network. Only one specific parameter—X.25

time-out value.

Device Description APPC device supported. Describes remote

logical unit (LU), and parameters must

match partner LU (remote location name,

local location name, ...).

Network device supported. Only describes

the communications method or type(for

example, TCP/IP, OSI, or user-defined

communications).

Mode Description and

Class-of-Service (COS)

Required. Not available.

Although an APPC network requires one APPC controller description to describe each remote system in

the network, user-defined communications only requires one network controller for communications with

an entire network of remote systems. Thus, LAN and X.25 lines can be shared between user-defined

communications support and any other protocols that support those same line types. For example, APPC

may run over a token-ring line and use the X’04’ Service Access Point (SAP). TCP/IP might run at the

same time using the X’AA’ SAP. You might write an application program to use the X’22’ SAP, and run at

the same time as the first two. All three protocols can be active at the same time across the same physical

media.

Note: System-specific configuration information must be part of the application program and is not

supplied by IBM(R).

Local Area Network (LAN) Considerations

User-defined communications supports these LAN types:

v Token ring (IEEE 802.5)

v Ethernet (IEEE 802.3)

v Ethernet Version 2

v Wireless

v FDDI

For token ring (802.5), Ethernet (802.3), and FDDI, user-defined communications uses the IEEE 802.2

logical link control (LLC) layer, which provides type 1 connectionless service. Connectionless service is

also known as unacknowledged service. The LLC layer provides for type 2 connection service as well.

For Ethernet Version 2, no 802.2 layer is available.

The wireless LAN type supports the characteristics of both Ethernet (802.3) and Ethernet Version 2.

Your application program has access to type 1 unnumbered information (UI) frames. This connectionless

service is commonly referred to as datagram support where protocol data units are exchanged between

end points without establishing a data link connection first.

260 iSeries: Communications APIs

The type 1 operations, test and exchange identifier (XID) frames, are not supported in user-defined

communications. Any XID or test frames that the physical layer of the iSeries receives are processed by

the input/output processor (IOP) and never reach your application program.

LAN frames are routed by filtering incoming data using the inbound routing data defined by your

application program. The filters are hierarchical and are set up by your application program before

communications is started.

The following list shows the possible settings for LAN inbound routing data (filters) from least selective

to most selective.

v Destination Service Access Point (DSAP)

v DSAP, Source Service Access Point (SSAP), and optional Ethernet Version 2 frame type

v DSAP, SSAP, optional Ethernet Version 2 frame type, and adapter address

Because user-defined communications does not allow applications to define the data link and physical

layers, the entire token-ring or Ethernet frame is not available to your applications. The following fields

are the parts of the LAN frame that are available to the user-defined communications support:

v DSAP

v SSAP

v Destination address (DA)

v Routing information (RI)

This field is available only when using token ring.

v Priority control

This field is available only when using token ring.

v Access control

This field is available only when using token ring.

v Data

For more information on local area networks, see the LAN, Frame-Relay and ATM Support

book.

X.25 Considerations

X.25 user-defined communications support includes access to both permanent virtual circuits (PVCs) and

switched virtual circuits (SVCs).

Over X.25 networks, including those using ISDN, your application program can initiate and accept X.25

calls, send and receive data, reset, and clear connections.

X.25 packets are routed by filtering the incoming call request using the inbound routing data that is

defined by your application program. The filters are hierarchical and are set up by the application

program before communications is started.

The following list shows the possible settings for X.25 inbound routing data (filters) from least selective to

most selective.

v Protocol identifier (PID)

v PID, and calling data terminal equipment (DTE) address

When X.25 networks are using ISDN, notification of incoming calls may be received on the D-channel.

You can decide whether these calls are accepted.

For more information on X.25 networks, see the X.25 Network Support

book.

Communications APIs 261

Top | “Communications APIs,” on page 1 | APIs by category

Programming Design Considerations for Communications APIs

This document outlines concepts related to user-defined communications and how they might relate to

the design of a user-defined communications application. Topics covered are:

v Jobs

v Application program feedback

v Programming languages

v Connection identifiers

v Token-ring, Ethernet, and wireless networks

v X.25 networks

v Queues

v User spaces

Jobs

A fundamental concept in user-defined communications is the job. The concept of the job is important

because the user-defined communications support performs services for the job requesting the

communications support through one of the user-defined communications APIs. Information used by the

user-defined communications support is kept along with other information about the job. You can display

this information by using the Work with Job (WRKJOB) command and selecting the Work with

communications status option. The user-defined communications information for the job, such as the

communications handle name, last operation, and input and output counts are shown.

A user-defined communications application program (hereafter referred to as an application or

application program), always runs within a job. This job may be run interactively or in batch and always

represents a separate application to the user-defined communications support. This means that the same

protocol can be actively running in more than one job on the system. Also, more than one job can have

links that share the same line as other jobs running application programs.

Each link that is enabled by an application program logically consists of the line, network controller, and

network device description objects (plus the network interface description object for ISDN links). Many

applications can share the same line and controller description, provided the applications are running in

different jobs, but each application uses a different device description. Up to 256 device descriptions can

be attached to a controller description. This means that there can be a maximum of 256 jobs running

application programs that share the same line at one time. When an application program has finished

using a link and disabling it, the network device description used by the application becomes available to

another application.

For end-to-end communication to begin, the application programs on each system must be started. There

is no function equivalent to the intersystem communications function (ICF) program start request. Your

application program is responsible for providing this support, if needed. To provide this support, your

application can have a batch job servicing remote requests to start the user-defined communications

application program. This job can be created to run in any subsystem.

For more information on jobs and subsystems, see the Work Management topic.

You can design your application programs so that the entire protocol resides within one job or separate

jobs where each job represents a portion of the protocol.

There is a one-to-one correspondence between a job and the user-defined communications support for

that job. The user-defined communications support for one job does not communicate with the

262 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

user-defined communications support for another job. If two applications wish to communicate between

themselves, a method such as a shared queue can be used. Also, the queue can be shared between the

two (or more) jobs and the user-defined communications support for those jobs.

Figure 1-1 (page 263) shows how user-defined communications relate to the i5/OS(R) job structure and

the data queue or user queue that provides the ability to communicate between your application and the

user-defined communications support.

In this figure, one interactive job is running over an X.25 line (X25USA) to a system in Rochester,

Minnesota, using the user-defined communications support. The link was enabled with communications

handle name ROCHESTER.

The user space application programming interfaces (APIs) that the application program is using are

shown, along with the programming interfaces for data and user queues and the user-defined

communications support APIs.

Figure 1-1. Overview of API Relationships

Communications APIs 263

Figure 1-2 (page 264) shows two jobs, A and B. Each job is using the user-defined communications

support to communicate with the networks attached to the iSeries(TM) server by the line description. The

figure shows the relationship between the different APIs and the job which is running the application

program.

The lines between the jobs indicate that callable APIs that are used to communicate between the

application program and the system services shown.

Figure 1-2. Application Programming Interface to Job Structure

The following list pertains to Figure 1-2 (page 264).

v The applications use the data queue APIs, user space APIs, and user-defined communications APIs.

v An application can have more than one link enabled, and can use a separate queue for each link, or the

same queue for some or all the links that it has enabled.

v The two jobs can communicate with each other using a common queue. This queue can be the same

queue that is used for user-defined communications support or a different one.

v Both jobs (or any other job on the system) that has the proper authority to the user spaces, can access

the user spaces.

v The user-defined communications support uses the data in the output user spaces that are created

when the link is created. The application making the call to the Send Data (qolsend) API can fill the

output buffer and descriptor, or another application can do this.

v The user-defined communications support sends data to the application through the input buffer and

input descriptor that is created when the link on which the data is arriving was created. Either the

application making the call to the Receive Data (QOLRECV) API retrieves the data from the input

buffer and descriptor, or another application with access to the user spaces does this.

264 iSeries: Communications APIs

v The application supplies any communications handle (link name) to the link as long as this name is

unique among all the other links that the job has enabled.

v An application can enable as many links as there are line descriptions that are supported (X.25,

token-ring, Ethernet, wireless, and FDDI) and that are able to be varied on.

v An application is able to run over X.25 and LAN links concurrently.

Application Program Feedback

The user-defined communications support uses return and reason codes to indicate the success or failure

of an operation, and provide suggested recovery information. In severe error conditions an escape

message is signaled to the application program. If a severe error occurs, user-defined communications is

no longer available to the application.

When the qolsend and QOLRECV APIs return to the application and you are running to an X.25

network, the diagnostic field is filled in. The reason code indicates whether or not the application

program should look at the data returned in the diagnostic field. The diagnostic field contains additional

information on the error or condition that is reported.

Synchronous and Asynchronous Operations

Most operations that an application program requests on the call to the qolsend API are synchronous

operations. Synchronous operations involve one step, which is to call the qolsend API, passing the

appropriate information. Synchronous operations complete when the qolsend API returns to the

application program. The success or failure of the operation is reported in the return and reason codes by

the qolsend API.

Asynchronous operations do not complete when the qolsend API returns to the application. There are

two steps for every asynchronous operation:

1. Call the qolsend API to initiate or request the operation.

2. Call the QOLRECV API to receive the results of the completed operation.

When the qolsend API returns to the application program, the request for the operation is successfully

submitted. After the requested operation is complete, the user-defined communications support sends an

incoming data entry (if necessary) to the queue to instruct the application program to call the QOLRECV

API to receive the data. When this call to the QOLRECV API returns, the return and reason codes in the

parameter list contain the success or failure of the operation. If the operation was unsuccessful due to an

application template error in the user space used for output, the request data given to qolsend using the

output buffer and descriptor is copied into the input buffer and descriptor. The offset to the template

error detected is returned in the parameter list of the QOLRECV API. Asynchronous operations are only

used for open connection requests, close connection requests, and resets.

For either type of operation, the application program is allowed to use the output user spaces again as

soon as the call to the qolsend API returns.

Programming Languages

Any program written in an i5/OS-supported language can call user-defined communications support.

One consideration for choosing one language over another, is that the programming language must have

the ability to set a byte field to any hexadecimal value. This does not restrict programming in the

different languages, but it does make some languages more appealing than others.

Starting and Ending Communications

Relatively little configuration is required by user-defined communications support to begin

communications to the network. For information on configuration, see “Configuration and Queue

Entries” on page 299.

Communications APIs 265

To start communications with a network, your user-defined communications application program enables

the link to the network by calling the Enable Link (QOLELINK) API. Once the link is enabled, the

application program can call any of the user-defined communications support APIs, and request any of

the operations supported for the link. When the application program completes communications with the

network, it disables the link by calling the Disable Link (QOLDLINK) API.

Note: Enabling the link does not result in any communications activity on the network. Disabling a link

may cause communications activity for X.25 links if connections are active when the link is disabled.

Using Connection Identifiers

Connection identifiers are used for connection-oriented support over X.25 networks. The connectionless

connection identifiers (UCEP=1, PCEP=1) are used for local area networks. The following examples

(Figure 1-3 (page 266) through Figure 1-14 (page 282)) illustrate how to use connection identifiers (UCEP

and PCEP). They show how the two step operations, open connection request, and close connection

request relate to the UCEP and PCEP identifiers. Note the outstanding two-step operations. This is

important so that the application can correctly interpret the PCEP and reuse UCEPs.

The connections in each figure refer to SVC connections, and the examples use the Receive Data Queue

(QRCVDTAQ) API. The same principles apply when using PVC connections and user queues.

Figure 1-3. Example 1: Normal Connection Establishment

1. The application wants to open a connection, so it calls the qolsend API passing it the UCEP it wants

to use for the connection. The application keeps track of the UCEP, PCEP pair. At this point, the

UCEP=7, and the PCEP is undefined.

266 iSeries: Communications APIs

2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1. The UCEP=7, PCEP=1 connection is not yet

active. Next, the application calls the Receive Entry From Data Queue (QRCVDTAQ) API, to wait for

the incoming data entry. The application is expecting the open connection response.

4. The X.25 call accept is received for PCEP=1. To inform the application of the incoming data, an

incoming data entry is sent to the data queue.

5. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

6. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response operation, and determines the UCEP associated with the data by examining

the PCEP associated with the X.25 call accept. Because the call accept was received for PCEP=1, the

UCEP=7.

7. The application’s call to the QOLRECV API returns with successful return and reason codes for the

open connection response operation. This operation was reported for UCEP 7; the UCEP=7, PCEP=1

connection is now active.

Figure 1-4. Example 2: Connection Request Cleared by Network/Remote System

1. The application wishes to open a connection, so it calls the qolsend API, passing it the UCEP it wants

to use for the new connection. The application keeps track of the UCEP, PCEP pair. At this point, the

UCEP=7, and the PCEP is undefined.

Communications APIs 267

2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open-connection response.

4. A clear is received for PCEP=1. To inform the application of the incoming data, an incoming data

entry is sent to the data queue.

5. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

6. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response operation, and determines the UCEP for the data by using the PCEP for

which the X.25 call accept was received. Because the call was cleared for PCEP=1, the UCEP=7. The

PCEP=1 is no longer active, and may be reused by the user-defined communications support.

7. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the

open connection response operation. Thus for the PCEP=1, the UCEP=7. The PCEP=1 is no longer

active, and the operation is for UCEP=7. Because the connection is not open, the user-defined

communications support’s PCEP=1 no longer implies UCEP=7, and the application’s UCEP=7 may be

reused.

Figure 1-5. Example 3: Request to Clear Connection with Outstanding Call (Unsuccessful)

268 iSeries: Communications APIs

1. The application wishes to open a connection, so it calls the qolsend API passing it the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and

the PCEP is undefined.

2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open connection response.

4. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application

no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to identify the

connection to be closed. Then the application calls the QRCVDTAQ API.

5. The user-defined communications support receives the close connection request, and returns to the

application, acknowledging the receipt of the request.

The user-defined communications support validates the request and finds an error.

6. The user space error is found. A copy of the user space, which contained an error, is passed back to

the application. To inform the application of the unsuccessful close connection request, an incoming

data entry is sent to the data queue.

7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

Communications APIs 269

8. The user-defined communications support fills in the input buffer and descriptor with data for the

unsuccessful close connection request operation, and determines the UCEP associated with the data

by examining the PCEP associated with the close connection. Because the close connection request

was for PCEP=1, the UCEP=7.

9. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the

close connection response operation. This operation is for UCEP=7. The connection UCEP=7, PCEP=1

is still in use by both the application and the user-defined communications support. The application

can either correct the error and reissue the operation, or wait for the call to be accepted or rejected.

Figure 1-6. Unsuccessful Attempt to Clear Outstanding (Successful) Call

1. The application wishes to open a connection, so it calls the qolsend API, passing the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and

the PCEP is undefined.

270 iSeries: Communications APIs

2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

 3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open connection response.

 4. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application

no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to identify the

connection to be closed. Then the application calls the QRCVDTAQ API.

 5. The X.25 call accept is received for PCEP=1. To inform the application of the incoming data, an

incoming data entry is sent to the data queue.

 6. The user-defined communications support receives the close connection request, and returns to the

application, acknowledging the receipt of the request.

 7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

 8. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response, and determines the UCEP associated with the data by examining the

PCEP for the X.25 call accept. Because the call accept was received for PCEP=1, the UCEP=7.

 9. The application’s call to the QOLRECV API returns with successful return and reason codes for the

open connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1

connection is now active with an outstanding close connection request. The application calls the

QRCVDTAQ API.

10. While processing the close connection request, the user-defined communications support detects an

error in the user space. The user space that is in error is copied into the input buffer and descriptor,

so the application is aware of the data in error. To inform the application of the unsuccessful close

connection request, an incoming data entry is sent to the data queue.

11. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

12. The user-defined communications support fills the input buffer and descriptor with data for the

unsuccessful close connection request operation. By using the PCEP that was requested for the close

connection, the support determines the UCEP with which the data is associated. Because the close

connection request was for PCEP=1, the UCEP is 7. The PCEP=1 is still active.

13. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for

the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,

PCEP=1 is still in use by both the application and the user-defined communications support. The

application can either correct the error and reissue the operation, or wait for the call to be accepted

or rejected.

Figure 1-7. Example 5: Successful Attempt to Clear Outstanding (Successful) Call

Communications APIs 271

1. The application wishes to open a connection so it calls the qolsend API, passing it the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and

the PCEP is undefined.

 2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

 3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open connection response.

 4. QRCVDTAQ returns to the application (the dequeue time-out value has elapsed), and the application

no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to identify the

connection to be closed. The application calls the QRCVDTAQ API.

272 iSeries: Communications APIs

5. The X.25 call-accept is received for PCEP=1. To inform the application of the incoming data, an

incoming data entry is sent to the data queue.

 6. The user-defined communications support receives the close connection request, and returns to the

application, acknowledging the receipt of the request. The application calls QRCVDTAQ API.

 7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to QOLRECV.

 8. The user-defined communications support validates the close connection request, and issues an X.25

clear request.

 9. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response, and determines the UCEP that the data is for by using the PCEP for the

X.25 call accept. Since the call accept was received for PCEP=1, the UCEP is 7.

10. The application’s call to QOLRECV returns with successful return and reason codes for the open

connection request operation. This operation is reported for UCEP=7; the UCEP=7, PCEP=1

connection is now active with an outstanding close connection request.

11. The clear confirmation is received for PCEP=1. To inform the application of the successful close

connection request, an incoming data entry is sent to the data queue.

12. The application’s call to the QRCVDTAQ API returns indicating there is data to receive.

13. The user-defined communications support fills the input buffer and descriptor with data for the

successful close connection request operation, and determines the UCEP associated with the data by

examining the PCEP that was requested for the close connection. Because the close connection

request was for PCEP=1, the UCEP=7. The PCEP=1 is no longer active.

14. The application’s call to the QOLRECV API returns with successful return and reason codes for the

close connection response operation. This operation is for UCEP 7. The UCEP=7, PCEP=1 connection

is no longer active.

Figure 1-8. Example 6: Successful Attempt to Clear Outstanding (Unsuccessful) Call

Communications APIs 273

1. The application wishes to open a connection, so it calls the qolsend API, passing it the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and

the PCEP is undefined.

 2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP, which is 1, and returns to the application, acknowledging the

receipt of the request.

The user-defined communications support validates the request and issues the X.25 call request.

 3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open connection response.

274 iSeries: Communications APIs

4. QRCVDTAQ API returns to the application (the dequeue time-out value has elapsed), and the

application no longer wants the UCEP=7 connection. It calls the qolsend API passing the PCEP=1 to

identify the connection to be closed. Then the application calls the QRCVDTAQ API.

 5. The X.25 clear is received for PCEP=1. To inform the application of the incoming data, an incoming

data entry is sent to the data queue.

 6. The user-defined communications support receives the close connection request, and returns to the

application, acknowledging the receipt of the request.

 7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

 8. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response, and determines the UCEP that the data is for by using the PCEP that the

X.25 clear is for. Because the clear was received for PCEP=1, the UCEP is 7.

 9. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for

the open connection request operation. This operation is reported for UCEP=7. Because the close

connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The

application calls the QRCVDTAQ API.

10. The close connection request is validated, but no clear is sent because the connection was cleared

previously. The close is considered successful, and an entry is sent to the data queue.

11. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

12. The user-defined communications support fills in the input buffer and descriptor with data for the

successful close connection request operation, and determines the UCEP that the data is for by using

the PCEP that the close connection was requested for. Since the close connection request was for

PCEP=1, and the UCEP is 7. The PCEP=1 is no longer active.

13. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for

the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,

PCEP=1 is no longer active.

Figure 1-9. Example 7: Unsuccessful Attempt to Clear Outstanding (Unsuccessful) Call

Communications APIs 275

1. The application wishes to open a connection, so it calls the qolsend API passing it the UCEP for the

new connection. The application keeps track of the UCEP, PCEP pair. At this point, the UCEP=7, and

the PCEP is undefined.

 2. The user-defined communications support receives the request, stores the UCEP for the connection,

and uses the next available PCEP (1); and returns to the application, acknowledging the receipt of

the request.

The user-defined communications support validates the request and issues the X.25 call request.

 3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7, PCEP=1 connection is not

yet active. Next, the application calls the QRCVDTAQ API to wait for the incoming data entry. The

application is expecting the open connection response.

 4. The application no longer wants the UCEP=7 connection. It calls the qolsend API passing the

PCEP=1 to identify the connection to be closed. The application calls the QRCVDTAQ API.

276 iSeries: Communications APIs

5. The X.25 Clear is received for PCEP=1. To inform the application of the incoming data, an incoming

data entry is sent to the data queue.

 6. The user-defined communications support receives the close connection request, and returns to the

application, acknowledging the receipt of the request.

 7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

 8. The user-defined communications support fills in the input buffer and descriptor with data for the

open connection response, and determines the UCEP that the data is for by using the PCEP that the

X.25 clear is for. Because the clear was received for PCEP=1, the UCEP is 7.

 9. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for

the open connection request operation. This operation is reported for UCEP=7. Because the close

connection request is outstanding, the UCEP=7, PCEP=1 connection is not fully closed. The

application calls the QRCVDTAQ API.

10. The close connection request is validated, and an error is found in the user space. An entry is sent to

the data queue.

11. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

then issues a call to the QOLRECV API.

12. The user-defined communications support fills in the input buffer and descriptor with data for the

unsuccessful close connection request operation, and determines the UCEP that the data is for by

using the PCEP that the close connection was requested for. Since the close connection request was

for PCEP=1, the UCEP is 7. Because the connection was cleared prior to the close connection request,

the PCEP=1, UCEP=7 connection is considered no longer active to the user-defined communications

support.

13. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for

the close connection response operation. This operation is for UCEP 7. The connection UCEP=7,

PCEP=1 is no longer active.

Incoming Connections

The following figures show how the application program handles UCEPs and PCEPs for incoming

connections.

Figure 1-10. Example 1: Normal Connection Establishment

Communications APIs 277

1. An incoming call request is received by the communications support, which determines if there is an

application that has a filter satisfying this call request. The communications support uses the next

available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. The call completes

indicating there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled with the incoming call request for PCEP=1, and the

QOLRECV API returns.

4. The application looks at the operation, which indicates an incoming call indication. The PCEP

reported by the communications support is 1. The application chooses to accept this call, and passes

the UCEP to be used for this new connection. The call is made to the qolsend API with PCEP=1,

UCEP=7.

5. The call accept is received and sent for PCEP=1. The qolsend API returns to the application.

6. The call accept request was successful for UCEP=7, PCEP=1. This connection is now active.

Figure 1-11. Example 2: Send Call Accept Not Valid

278 iSeries: Communications APIs

1. An incoming call request is received by the communications support, which determines if there is an

application that has a filter satisfying this call request. The communications support uses the next

available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It does, indicating

there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled with the incoming call request for PCEP=1, and the

QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP reported

by the communications support is 1. The application chooses to accept this call, and passes the UCEP

to be used for this new connection. The call is made to the qolsend API with PCEP=1, UCEP=7.

5. The call accept is received and an error is found in the user space. The qolsend API returns to the

application, reporting the error and offset. The incoming call is still outstanding for PCEP=1.

The application checks the return and reason codes and finds that an error has occurred. The call

accept was not sent and the incoming call is still waiting for a response.

Figure 1-12. Example 3: Send Clear for Incoming Call

Communications APIs 279

1. An incoming call request is received by the communications support, which determines if there is an

application that has a filter satisfying this call request. The communications support uses the next

available PCEP, which is 1, for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It does, indicating

there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled for the incoming call request for PCEP=1, and the

QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP reported

by the communications support is 1. The application does not wish to accept the call, so the user

space is filled in for a close connection request and the application calls the qolsend API. The

application calls the QRCVDTAQ API.

5. The close connection request is received and the qolsend API returns to the application,

acknowledging the request.

The close connection request is validated and a clear is sent.

6. The clear confirmation is received for PCEP=1 which has no UCEP. An incoming data entry is sent to

the data queue. The application calls the QRCVDTAQ API.

7. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

calls the QOLRECV API to receive the data.

8. The input buffer and descriptor are filled in with the clear confirmation data. Since the connection

was never established (and the application never assigned a UCEP to this connection), the QOLRECV

API returns to the application passing a UCEP=0.

9. The close connection request was successful. PCEP=1 is no longer active.

280 iSeries: Communications APIs

Figure 1-13. Example 4: Send Clear for Incoming Call

1. An incoming call request is received by the communications support, which determines there is an

application that has a filter satisfying this call request. The communications support uses the next

available PCEP=1 for this new connection. An entry is sent to the data queue.

2. The application has been waiting for its call to the QRCVDTAQ API to complete. It completes

indicating there is data to be received. The application calls the QOLRECV API.

3. The input buffer and descriptor are filled for the incoming call request for PCEP=1, and the

QOLRECV API returns.

4. The application looks at the operation which indicates an incoming call indication. The PCEP reported

by the communications support is 1. The application does not wish to accept the call, so the user

space is filled in for a close connection request and the qolsend API. The application calls the

QRCVDTAQ API.

5. The close connection request is received and the qolsend API returns to the application,

acknowledging the request.

6. The close connection request is validated and an error is found. An entry is sent to the data queue.

7. The application’s call to the QRCVDTAQ API return, with the incoming data entry. The application

calls the QOLRECV API to receive the data.

8. The input buffer and descriptor are filled in with the unsuccessful close request, and the QOLRECV

API returns to the application.

9. The close connection request was not successful. PCEP=1 is still active.

Communications APIs 281

Closing Connections

The following figures show how the application program closes a connection. The figures apply to both

incoming and outgoing connections.

The next two figures illustrate that a close connection request never completely guarantees the connection

will be closed.

Figure 1-14. Example 1: Close Connection Request Is Not Valid

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the qolsend API to close the connection. The application calls the QRCVDTAQ

API.

3. The user-defined communications support receives the close connection request and returns to the

application, acknowledging the receipt of the request.

4. The value in the user space is not correct. An entry is sent to the data queue.

5. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

calls the QOLRECV API to receive the data.

6. The user-defined communications support fills the input user space with data for the close connection

request and determines the UCEP that the data is for by examining the PCEP that was requested for

the close connection.

7. The application’s call to the QOLRECV API returns with unsuccessful return and reason codes for the

close connection response. This operation is for UCEP 7. The connection UCEP=7, PCEP=1 is still

active.

Figure 1-15. Example 2: Close Connection Request Is Valid

282 iSeries: Communications APIs

1. A connection is established with the PCEP=1, UCEP=7.

2. The application calls the qolsend API to close the connection. The application calls the QRCVDTAQ

API.

3. The user-defined communications support receives the close connection request and returns to the

application, acknowledging the receipt of the request.

4. The close connection request is received and the qolsend API returns to the application,

acknowledging the request. The close connection request is validated and a clear is sent.

5. The clear confirmation is received for PCEP=1, UCEP=7. An incoming data entry is sent to the data

queue.

6. The application’s call to the QRCVDTAQ API returns with the incoming data entry. The application

calls the QOLRECV API to receive the data.

7. The user-defined communications support fills the input user space with data for the close connection

confirmation and determines the UCEP that the data is for by examining the PCEP that was requested

for the close connection.

8. The application’s call to the QOLRECV API returns with successful return and reason codes for the

close connection response. This operation is for UCEP 7. The connection UCEP=7, PCEP=1 is no

longer active.

Programming Considerations for LAN Applications

User-defined communications over LANs use connectionless (unacknowledged) service. Unacknowledged

Information (UI) frames are the only frames an application program can generate.

For a description of the frame formats for Ethernet Version 2, IEEE 802.3, IEEE 802.5, wireless, and FDDI,

refer to the LAN, Frame-Relay and ATM Support

book. To determine how the format and the user

buffer are specified, see “User-Defined Communications Support APIs” on page 1.

Communications APIs 283

Operations

User-defined communications support defines many different operations. Not all operations are valid on

all data links. The operations which are valid for LAN links are:

v X’0000’ and X’0001’. These operations together represent the send- and receive-data operations for any

of the LAN frames types.

Configuration

The service access point (SAP) that the application program uses to send and receive data must be

configured in the line description. The 04, 06, and AA SAPs are created if *SYSGEN is specified on the

CRTLINTRN, CRTLINETH, CRTLINWLS, or CRTLINDDI command. The 04 SAP is used by SNA, and

the 06 and AA SAPs are used by TCP/IP. An application can choose to use any SAP (including SAPs

defined by SNA or IEEE). The line description must be manually configured to include any other SAPs

the application uses. The SAPTYPE for each SAP used must be configured as *NONSNA to be used by

user-defined communications.

Although it is possible to use any SAP configurable on the iSeries server, it is not recommended to use

SNA SAPs for user-defined communications, because this may restrict the use of SNA on your iSeries

server. In the same manner, using the same SAP as other well-known protocols, such as TCP/IP, may

restrict the use of these protocols or the application program on the iSeries server.

Note: It is not possible to run an SNA application and a user-defined communications application

program over the same SAP concurrently. It is possible to run a TCP/IP application and a user-defined

communications application over the same SAP concurrently, provided the inbound routing information

is unique among all the non-SNA applications sharing the network controller.

Inbound Routing Information

For an application program to receive data from a LAN, it must inform the communications support of

how to filter the inbound data and route it to the application. This is accomplished by a program call to

the Set Filter (QOLSETF) API. The fields in the incoming frame that are used to route the data are DSAP,

SSAP, MAC address, and type.

The inbound routing information acts as a filter to allow the user-defined application to distinguish its

data from the rest of the data on the LAN. The more selective the inbound routing information is, the less

chance there is that the application will be processing unnecessary input requests. Also, more selective

inbound routing information allows multiple jobs running user-defined communications applications to

share the same SAP.

For example, if an application is using 92 SSAP and 92 DSAP but only talking to one remote system, it

may want to set a more selective filter which would include DSAP, SSAP, and the MAC address of the

remote system. Conversely, if an application accepts data on the 04 SAP from all systems sending data on

any SAP, then the application would set a filter for DSAP only, indicating that it will accept all data

arriving on the 04 SAP.

End-to-End Connectivity

Because user-defined communications on a LAN is connectionless, it is up to your application protocol to

define a method to reach the remote systems it communicates with. There are several ways to do this.

One way is to have each system configured in a database file on the iSeries server. Each system could

have a local name that the application program uses to correlate with the MAC address and routing

information. LANs provide a technique to broadcast, which can be used to retrieve this information as

well. An example of this is the Address Resolution Protocol (ARP) used by TCP/IP, which returns the

MAC address and routing information so that a system without that information can communicate with a

new remote system.

284 iSeries: Communications APIs

Sending and Receiving Data

Maximum Frame Size

The user-defined communications support creates a data unit size which is always large enough to

contain the maximum frame size supported by any of the SAPs configured for non-SNA use,

(SAPTYPE(*NONSNA)). The data unit size is returned in the parameter list on the call to the QOLELINK

API. For Ethernet (802.3), token-ring, FDDI, and wireless LANs, the maximum frame size that the

application can specify is the maximum frame size allowed by the SAP that the frame is sent on. There is

no minimum frame size for the Ethernet 802.3, token-ring, FDDI, or wireless LANs.

Ethernet Version 2 does not define SAPs for the higher-layer protocols. Therefore, the maximum frame

size is not determined by the maximum frame size for the SAP that the frame is sent on. The maximum

frame size for Ethernet Version 2 is 1502 bytes. The first 2 bytes are for the type field, and the last 1500

bytes are for user data. The minimum amount of data that can be sent is 48 bytes. The first 2 bytes are

for the type field, and the next 46 bytes are for user data. If the line is configured to handle both Ethernet

802.3 and Ethernet Version 2 data, the larger of the configured value or 1502 bytes is chosen and reported

to the application on the data unit size parameter returned from the QOLELINK API.

If your application program attempts to send data frames that are larger or smaller than those that are

supported, the output request completes with nonzero return and reason codes, and an error code is

returned to the application in the diagnostic information field.

Application programs access information that is contained in the line description through the Query Line

Description (QOLQLIND) API. It is best to call the QOLQLIND API after the link has been successfully

enabled because the information that the QOLQLIND API passes to the application is accurate for as long

as the link is enabled. The application uses the information on the frame size for the SAP to send the

correct amount of data over the SAP.

Maximum Amount of Outstanding Data

Most often, the data arrives at a slightly faster rate than the application program can receive it. The

communications support keeps data intended for an application so that the application can receive it.

However, there is a limit to the amount of data that can be kept for the application to use later. The limit

helps to avoid one system from overrunning another system’s resources. When this limit is reached, all

new incoming data frames for that application are discarded until the application picks up one third of

the data that was stored for the application. Because the data consists of unacknowledged information

frames, the higher-layer protocol within the application detects the loss of data, resends the data, or

performs other recovery actions.

Each time the data limit is exceeded, the communications support creates an error log entry and puts a

message in the QSYSOPR message queue, indicating that the unacknowledged service has temporarily

stopped receiving incoming frames.

Ethernet to Token-Ring Conversion and Routing

The IBM(R) 8209 Ethernet to token-ring bridge provides additional connectivity options for the iSeries

server. See the IBM 8209 LAN Bridge Customer Information book, SA21-9994, for more details.

Performance Considerations

The application program enables connectionless traffic to enter the iSeries server system from the LAN. In

the call to the QOLSETF API, the DSAP field indicates the SAP which will be activated on the iSeries

server. By activating traffic over a SAP, data is taken from the LAN and brought into the iSeries server.

Similarly, deactivating traffic over an SAP causes traffic intended for that SAP to be left at the IOP level

rather than to be processed on the iSeries server system.

Communications APIs 285

To minimize host processing, the SAP or SAPs that the application uses should be deactivated as soon as

the application no longer wants to receive traffic for the SAP. If the link is disabled and no other

applications are using the SAP(s), they are deactivated automatically by the user-defined communications

support.

Protocols that use broadcast frames as a discovery technique could flood the network with messages and

affect performance on all the systems attached to the network.

Programming Considerations for X.25 Applications

The user-defined communications support interface to an X.25 network is at the packet level, which is a

connection-oriented level. Your application program is responsible for ensuring reliable end-to-end

connectivity. End-to-end connectivity means that the application program can initiate, receive, and accept

X.25 calls and handle network errors reported to the application, as well as send and receive data.

Your application program has access to packets that flow over switched virtual circuits (SVCs) and

permanent virtual circuits (PVCs). The application can have SVC and PVC connections active

concurrently. You can configure up to 64 virtual circuits on an X.25 line description, depending on the

communications I/O processor used. The X.25 Network Support

book provides more information

about configuration limitations.

The Display Connection Status (DSPCNNSTS) command shows the virtual circuits that are in use by a

network device, and the state of each connection. This command also displays the active inbound routing

information that the application program uses to route calls.

X.25 Packet Types Supported

A packet is the basic unit of information transmitted through an X.25 network. The following table lists

the X.25 packet types along with the type of service provided. Services for Switched Virtual Circuit (SVC)

and Permanent Virtual Circuit (PVC) connections are identified as well as services that are not accessible

(N/A) to an application program.

 Packet Type Application Input or Access SVC PVC N/A

Data Q,D bits of the general format identifier (GFI)

Note: The modulus used is configured in the line description. The

open connection request allows the user-defined communications

support to set the actual window size used.

X X

Interrupt 32 bytes of data

Note: On the iSeries server, the X.25 packet layer provides the

confirmation of the receipt of this packet. The call to the qolsend

API does not return until the interrupt is confirmed by the remote

system.

X X

Reset request Cause and diagnostic codes

Note: The application program provides the confirmation of this

packet.

X X

Reset indication Cause and diagnostic codes

Note: The application program provides the confirmation of this

packet.

X X

Reset

confirmation

Note: User-defined communications support detects and reports

reset collisions to the application on the reset confirmation.

X X

286 iSeries: Communications APIs

Packet Type Application Input or Access SVC PVC N/A

Incoming Call Remote DTE, local virtual circuit, packet and window sizes, up to

109 bytes of additional facilities, up to 128 bytes of bytes of call

user data

X

Call Request Remote DTE, local virtual circuit, packet and window sizes, up to

109 bytes of additional facilities, up to 128 bytes of bytes of call

user data

X

Call Accept Packet and window sizes, up to 109 bytes of additional facilities X

Call Connected Negotiated packet and window sizes, facilities X

Clear request Cause and diagnostic codes, facilities, up to 128 bytes of clear user

data

X

Clear indication Cause and diagnostic codes, facilities, up to 128 bytes of clear user

data

Note: The X.25 packet layer support provides the confirmation on

this request.

X

Clear

confirmation

The X.25 packet layer support provides this support. X

Receive Ready

(RR)

The flow of RR and RNR packets is determined by the automatic

flow control field of Format I, specified in the open connection

request.

 X

Receive Not

Ready (RNR)

The flow of RR and RNR packets is determined by the automatic

flow control field of Format I, specified in the open connection

request.

 X

Reject (REJ) This packet is not necessarily available on all networks and is not

supported by the iSeries server.

 X

Restart Request,

Indication, and

Confirmation

These packets affect all virtual circuits on the line. X

Diagnostic This packet is not necessarily available on all networks and is not

supported by the iSeries server.

 X

Registration

Request and

Confirmation

This packet is not necessarily available on all networks and is not

supported by the iSeries server.

 X

Operations

User-defined communications support defines many different operations. The X’B000’ operation either

initiates an X.25 SVC call request, or a request to open a PVC. By using this operation, an application

program initiates an open connection request. The X’B100’ operation either initiates an X.25 SVC clear

request (or confirms the connection failure), or requests closing a PVC. By using this operation, an

application program initiates a close connection request. The application can use the X’BF00’ operation to

cause the SVC or PVC connection to be reset.

The open connection request, close connection request, and reset request (or response) operations are

two-step operations. See “Synchronous and Asynchronous Operations” on page 265 for more information

on programming for two-step operations.

The X’B400’ operation initiates an X.25 SVC call accept. This operation is known as a call accept

operation. The X’0000’ operation initiates an X.25 Data packet for a SVC or PVC connection. This

operation is called a send data operation. The call accept and send data operations are one-step

operations. See “Synchronous and Asynchronous Operations” on page 265 for more information on

programming for one step operations.

Communications APIs 287

The application program does not request the other available X.25 operations. These X.25 operations are

inbound packets for responses from the asynchronous operations that are reported to the application in

the parameter list of the QOLRECV API. The X’B201’ operation indicates an incoming X.25 SVC call and

is known as the call indication operation. The X’B301’ operation indicates that a temporary (reset) or

permanent (clear) connection failure has occurred. It is known as the connection failure indication

operation. Finally, the X’0000’ operation indicates incoming data. It is known as the receive data

operation.

Connections

User-defined communications support allows X.25 connections over both switched and permanent virtual

circuits. Your application program can have one or many connections active at once. They can be either

SVC, PVC, or both. The Display Connection Status (DSPCNNSTS) command shows the state of the

connection, logical channel identifier, virtual circuit type, and other information about the call. The states

of the connection include activate pending, active, deactivate pending.

When the open connection request or call accept operations are not yet complete, the connection state is

activate pending. Once the open connection request or call accept operations are complete with return

and reason codes of zero, the connection state is active. When the close connection request is not yet

complete, or if the connection is cleared by the network, but a close connection request has not been

issued by the application program, the connection state is deactivate pending.

Notes:

1. The connection enters the active state when the call accept packet is sent on the network, which is

independent of the application program receiving the results of the open connection request.

Likewise, a connection can become completely closed (deactivated, and no longer appears on the

DSPCNNSTS screen) independent of the application program receiving the results of the close

connection request. This closing occurs when the application confirms the connection failure.

2. A correctly encoded close connection request will always be successful. The only time a close

connection request is not successful is when the application program has coded the close connection

request incorrectly. See Using Connection Identifiers for more information.

Connection Identifiers

To differentiate between connections, user-defined communications support and an application program

both use connection identifiers from the time the connection is started to the time the connection has

successfully ended.

User-defined communications support assigns an identifier for each connection. This identifier is reported

back to your application program as the provider connection end point (PCEP). In the same manner, your

application program assigns an identifier for each connection and reports it to the communications

support as the user connection end point (UCEP). This exchange of identifiers allows both the

communications support and the application program to refer to a connection in a consistent manner. The

UCEP and PCEP are exchanged during the open connection request during the following operations:

v A PVC is opened.

v An outgoing call is requested.

v The call indication is received and the call accept is accepted.

User-defined communications support identifies a connection only in terms of PCEP and UCEP. For

example, the user-defined communications support passes information to an application program and

reports the UCEP to which the information pertains. In the same manner the application program

initiates requests for a connection identified by the PCEP.

User-defined communications support uses PCEPs over again as they become free. PCEPs become free

when the application program receives notification that the open connection request never completed

successfully, or the close connection request completed successfully. This means that PCEPs are not used

288 iSeries: Communications APIs

over again until the application calls the QOLRECV API, which returns either the open connection

request or the close connection request. Until the PCEP is freed, the connection cannot be reused.

User-defined communications support places no restrictions on the value of the UCEP, and does not

verify its uniqueness. Because user-defined communications passes all incoming data and connection

failure indications to the application program using the UCEP connection identifier, the application

should ensure uniqueness of each UCEP. See “Using Connection Identifiers” on page 266 for information

on how to reuse connection identifiers.

Connection Information

In order to ensure reliable end-to-end connectivity, an application program must keep track of the control

information for each connection it is responsible for. Some of this control information is shown in the

following list.

v State of the connection (activating, active, deactivating, reset)

v PCEP for this connection

v SVC or PVC connection indicator

v Negotiated frame sizes; maximum data unit size

v Connection is no longer active indicator or state

v Other application specific information

The application program can use the UCEP as an index into the program’s data structures, which keep

track of this control information.

Switched Virtual Circuit (SVC) Connectivity

Configuration

All the users of an X.25 line description share the SVCs that are configured for that line description.

These users are SNA, asynchronous X.25, OSI, TCP/IP, and user-defined communications. You should

define the line description with enough SVCs to accommodate all of the users of the X.25 line.

Any SVCs defined in the X.25 line description that are not in use by any controllers (including the

network controller) are available to an application program. The available SVCs are distributed as they

are requested by the users of the X.25 line description.

See the X.25 Network Support

book for more information on configuring X.25 line descriptions.

For user-defined communications, the application uses an SVC when it either initiates a call, or receives

an incoming call. The SVC is no longer in use when the application successfully initiates a clear request

to the SVC. Like PVCs, SVCs allow only one application program to have an active connection using the

virtual circuit at a time.

Inbound Routing Information

Before an application program can receive and accept an incoming call, it must first describe to the

user-defined communications support the X.25 calls that should be routed to the application. The

application does this by issuing a program call to the QOLSETF API, specifying the inbound routing

information in the filter.

The inbound routing information that an application program specifies is the first byte of call user data

called the protocol ID, or the protocol ID combined with the calling DTE address. In addition, the

application specifies whether it will accept calls with fast select and reverse charging indicated. The

application program can either accept or reject any calls of which it receives indications. The advantage of

Communications APIs 289

using filters to allow the system to reject some calls (based on protocol ID, calling DTE address, fast

select, and reverse charging indicated in the incoming call) is that the application is relieved of some of

the calls it would always reject.

Once the connection is active, data flows end-to-end between systems and does not need any other

technique to route it to the appropriate application.

End-to-End Connectivity

End-to-end connectivity is achieved when one system initiates a call and another accepts the call. When

this happens, a connection is established, and the state of the connection is active. It remains active until

either one of the application programs initiates a clear request, or the network (or system) clears the

connection due to an error condition.

Permanent Virtual Circuit (PVC) Connectivity

Configuration

SNA and asynchronous X.25 controllers use PVCs on the X.25 line by configuring the controller

description to logically attach to the PVC. This is not true for users of the network controller description.

When a PVC is in use by an application program, the system will logically attach the network controller

to the PVC. This means that any PVC defined in the X.25 line description and not attached to any

controller (including the network controller) is available for use by any application that has a link

enabled for the network to which the line is attached.

Because the attaching of PVCs to applications is programmable, one job can have an open connection

over the PVC, end the connection, and then another job can open a different connection over the same

PVC. Like SVCs, PVCs allow only one application program at a time to have an active connection using

the virtual circuit.

Inbound Routing Information

By definition, the PVC does not require a call to set up a path from one system to another system. As its

name suggests, this path always exists (permanent). Because there is no incoming call to route, the

application has no need to set a filter for the inbound routing information. Once the application has

opened the PVC, there is no other information needed for the system to route packets on the PVC to the

application.

End-to-End Connectivity

The application is responsible for opening and closing PVC connections. To open a PVC, the application

uses the open connection request operation, just as it does to initiate an X.25 SVC call. To close the PVC,

the application uses the close connection request just as it does to clear the SVC call.

Both systems that want to communicate end-to-end must first open the virtual circuit on the local system.

When the PVC is opened on the iSeries server it is considered active and in use by the application. This

is true even if the corresponding remote system doesn’t have the virtual circuit active. On the iSeries

server, an open connection request always completes with return and reason codes of zero as long as the

PVC is defined in the line description and is not in use by another application. There is no way to detect

whether true end-to-end connectivity exists on the PVC.

If the virtual circuit is not active on both systems, and one system attempts to communicate with the

other, the virtual circuit on the system with the open PVC connection is reset. An application that

supports X.25 resets, sees the reset arrive as a result of the attempt to send data. In order to continue, the

application responds to the reset. An application that does not support X.25 resets sees a connection

failure. The application closes the PVC and opens the PVC again in order to continue to use the PVC.

290 iSeries: Communications APIs

Similarly, when a PVC connection is closed from one system, the other system sees a reset (if reset is

supported by that application) or a connection failure if reset is not supported. If the application sees a

reset, it must respond to the reset before communications can continue on that connection.

Sending and Receiving Data Packets

Data Sizes

Data units larger and smaller than the negotiated transmit packet size can be sent by an application

program. Each data unit will be segmented into the appropriate packet sizes by the iSeries server.

Contiguous data larger than the negotiated packet size can also be sent. The data is divided into

individual packets and sent out with the more-data indicator on. The application program should request

that the data unit size be a multiple of the transmit and receive packet sizes configured in the line

description. The application program sets other important values that pertain to each connection. See

“X.25 SVC and PVC Output Operations” on page 45 for information about these values.

The values your application supplies should be carefully determined and tailored to the needs of the

application. Similarly, your application uses the values returned from the system to ensure that the

application does not exceed negotiated limitations.

The application uses three values to determine how to fill the user-space output buffer. These values are:

v Data unit size

v Maximum data unit assembly size

v Negotiated transmit packet size

The data unit size is the value that an application specifies when the link is enabled. The maximum data

unit assembly size is the total length of contiguous input data that is assembled by the iSeries server

before passing it to the application. Contiguous data units have the more-data indicator set on in each

descriptor for all the data units in the sequence except the last data unit, which has the more-data

indicator set off. The application specifies the maximum data unit assembly size on the open connection

request. The maximum data unit assembly size should always be greater than the data unit size to make

full use of the user spaces. The negotiated transmit packet size is returned when the open connection

request completes. The application uses these values together to determine how to fill in the user space

output buffer.

Note: If the maximum data unit assembly size is exceeded, the data is passed up to the application

with the more-data indicator on. If the connection is abnormally reset or cleared, the application

may not receive the rest of the contiguous data, which was in progress during the connection

failure.

If the two applications remain without exceeding the maximum data unit assembly size supported

on the remote system, the system guarantees that the application receives the complete, contiguous

data packet sequence.

See Maximum Amount of Outstanding Data (page 292) for related information on incoming data

limitations.

Interrupts

The interrupt is a special data packet. The X.25 network imposes the restriction that a DTE cannot have

more than one outstanding interrupt on any virtual call in each direction. An application program issues

an interrupt by calling the qolsend API. The qolsend API does not return to the application program until

the interrupt confirmation has been received. It is important to understand the interrupt confirmation

procedures of the remote DTE and its implications to the local system and application.

Flow Control

Communications APIs 291

The iSeries server sends the Receive Ready (RR) and Receive Not Ready (RNR) packets on behalf of the

application program. The distribution of these packets is based on the automatic flow control field in the

open connection request operation. The automatic flow control (RR/RNR) is sent to prevent one system

from overrunning another system with data.

When the automatic flow control value is exceeded for a connection because a remote system is sending

data at a rate too fast for the local system, an RNR packet is sent on behalf of the application on that

local system. Once the application on the local system receives the data, an RR is sent to allow more data

to be received by the local system’s communications support.

The automatic flow control value should be set high enough so that RR/RNR processing does not affect

performance on the virtual circuit, and low enough that the application can process the data fast enough.

If an application is coded properly, the RR and RNR processing is not noticed by the application, just as

for other system users of X.25.

To avoid situations where the virtual circuit is not operational because an RNR was sent, or to avoid

excessive amounts of RR and RNR processing, the application program should always attempt to receive

all the data from the communications support. An application that is not coded correctly can cause

another application to wait indefinitely for an RR to open the virtual circuit for communications. When

the applications are coded correctly, the RR and RNR packet sequences are not noticed by the

applications.

Maximum Amount of Outstanding Data

The communications support sets aside a limited amount of data for the applications it is servicing. For

X.25, it is 128K for each connection. If the 128K limitation is met, an error log entry is created and the

connection is cleared (SVCs) or reset (PVCs) by the system. Before this limit is reached, the iSeries server

attempts to slow the incoming data traffic by issuing an RNR on behalf of the application. An RR is sent

after the application has received one-third of the amount of outstanding data.

Reset Support

When an application program initiates a reset, it is also responsible for discarding any data that the

user-defined communications support has received. The user-defined communications support only

discards data if the connection is closed.

X.25 Call Control

The X.25 support routes X.25 calls arriving to the iSeries server primarily based on the protocol ID field.

This field is the first byte of call-user data in the X.25 call packet. For more information on the X.25

support, see the X.25 Network Support

book.

Performance Considerations

The X’0000’ operation is completely synchronous. This means that control is not returned to the

application until all the data passed in the data units are sent and confirmed by the DCE. Some

implications of this are:

v If the application sends data on a connection that has data flow turned off (the remote system sent an

RNR to the local iSeries server), a subsequent call to the qolsend API with operation X’0000’ will not

return until the remote system sends the RR to turn flow back on for the connection.

v When transmitting Interrupt packets, control is not returned to the application until the interrupt is

confirmed by the remote DTE. If the remote DTE is an iSeries server, the interrupt is confirmed by the

iSeries server X.25 packet layer support. If the network is congested, the use of Interrupt packets may

cause a decrease in performance for the application.

In these situations, it may be appropriate to have one job for each connection (each virtual circuit).

292 iSeries: Communications APIs

Queue Considerations

An application program uses a data queue or user queue for communications between the application

and the communications support. The application should create the queue prior to the call to the

QOLELINK API. For more information on creating and using a queue, see the CL Programming topic.

The link will never be fully enabled if the queue does not exist. For example, in Figure 1-16 (page 293),

communications is no longer available when the user-defined communications support detects that the

data queue has been deleted. The same is true for user queues.

Figure 1-16. Using the Data Queue

In addition to using a queue for communications between the application and the user-defined

communications support, the application can use the queue to provide communications with other

applications.

If multiple processes are using the same queue, the queue can be manipulated so that each process

receives queue entries based on the unique key for each application. This allows the jobs to put many

kinds of entries on the queue. For example, one key value is used for communications between the

Communications APIs 293

application and the system, and another key value is used for communications between the user-defined

communications applications and other applications. Key values can also serve as a way to prioritize

entries on the queue.

The content of the queue entries that the application defines and uses is not restricted by the user-defined

communications support. User-defined communications support never attempts to receive any entries

from the queue. It is the responsibility of the application to receive the entries from the queue and

perform the appropriate actions for an entry based on its handle (or timer handle).

This means that it might be necessary for the application to clear the old messages from the queue if it

has been used. For example, if a link is disabled, all communications entries for that link (denoted by the

communications handle) prior to the disable complete entry are no longer valid.

Note: Timer support does not depend on the user-defined communications support; therefore, timer

entries are still valid.

The following example shows an incoming data entry that the application receives is no longer valid

because the application made a request to disable the link.

Figure 1-17. Application Disables the Link

294 iSeries: Communications APIs

Communications APIs 295

User Space Considerations

Your application uses user space objects (*USRSPC) to hold the input and output buffers and descriptors.

The iSeries server provides APIs you can use to manipulate the user spaces.

When you use the user-defined communications support, you create the user spaces, a total of four, as

part of an enable link request (the QOLELINK API). For each link, there is an input buffer, input buffer

descriptor, output buffer, and output buffer descriptor. The buffers and descriptors are used to pass

information to and from your application program. The buffers are used to contain user data. The

descriptors are used to describe the data (length and other qualifiers). If the enable link request is not

successful (return and reason codes are nonzero), the user spaces are not created.

Figure 1-18. User Spaces

The buffers are divided into equally sized, contiguous sections called data units. The output buffer

contains data to be sent on the network. The input buffer contains data received from the network. The

size of each data unit, as well as the number of data units created, is returned from the QOLELINK API

when the link is enabled.

The buffer descriptors are divided into equally sized, contiguous sections called descriptor elements. Each

descriptor element describes the data in the corresponding data unit of the buffer. For example,

descriptor element 1 describes the data in data unit 1 of the buffer. The size of each descriptor element is

32 bytes.

For complete and specific information about the input/output buffers, descriptors, data units, and data

elements, see the sections in “User-Defined Communications Support APIs” on page 1 describing the

individual APIs.

Your application provides the library and name of the user space object that is created. The descriptive

text for the object always contains the name of the job that is using these spaces. Finally, when the link is

disabled (either explicitly or implicitly), these user spaces are deleted by the user-defined communications

support. See “Disable Link (QOLDLINK) API” on page 2 for more information on disabling the link.

The application reads from the input buffer and descriptor, and writes to the output buffer and

descriptor. Similarly, the user-defined communications support reads from the output buffer

anddescriptor and writes to the input buffer and descriptor. As soon as the call to the qolsend API or the

QOLRECV API is complete, the application can access these user spaces.

296 iSeries: Communications APIs

If changes or deletions to the user spaces occur while they are in use by the user-defined communications

support, a severe application error is reported to the application, and communications over the link

associated with the user spaces is no longer possible.

Figure 1-19. Input/Output Operations

The user-defined communications support defines logical views for the user spaces. These views are

sometimes called formats. There is a format for filters, sending and receiving LAN frames, and sending

and receiving X.25 packets. See “Send Data (QOLSEND) API” on page 39 and “Receive Data (QOLRECV)

API” on page 21 for details on these formats.

Your application must set all the data fields required for the format. There are two types of byte fields in

the buffer and descriptors, character (CHAR) and binary (BIN). Binary implies that the value is used as a

numeric value. Sometimes this might be a 1-byte numeric value; for example, 12 = X’0C’. If you write the

application in a language that is not capable of setting this type of binary field, the field should be

declared as character and set to X’0C’. The character type contains an EBCDIC value, printable or not

printable. In contrast, all parameter values are either character or 4-byte binary. See “Programming

Languages” on page 265 for help in writing your application so that it can provide the expected input for

the user-defined communications support.

The communications support never changes the output buffer; therefore, your application is responsible

for initializing the buffer and descriptor for the next operation, if necessary. The data in the output buffer

can also be used to help determine why a particular operation is not successful.

For performance reasons, your application should attempt to fill the output buffer as completely as

possible.

Finally, for security reasons, your application chooses the library the user space object will reside in. The

library can be any system library, including QTEMP. The advantage (or disadvantage) of using QTEMP

for user space objects is that only the job which has enabled the links has access to the user spaces.This is

Communications APIs 297

because a QTEMP library exists for each job on the system. If the user space objects are in any other

library, any job having authority to the library that the user spaces are in can access them.

Return Codes and Reason Codes

When control returns from a user-defined communications API to your application program, the status of

the operation is located in the reason code and return code output parameters for each API.

Return codes are 4-byte numbers that determine the recovery action to take. They are grouped into the

following categories:

v 00 — Operation successful, no recovery needed

v 80 — Irrecoverable error, need to disable link

v 81 — Irrecoverable error, do not need to disable link

v 82 — Recoverable error, enable link failed

v 83 — Recoverable error, see recovery actions

Reason codes are 4-byte numbers that determine what error occurred. They are grouped into the

following categories:

v 0000 — No error

v 1xxx — Parameter validation or format error

v 20xx — Line, controller, or device description error

v 22xx — Data queue error

v 24xx — Buffer or buffer descriptor error

v 30xx — Link state error

v 32xx — Connection state error

v 34xx — Timer state error

v 4xxx — Communication error

v 8xxx — Application error

v 9999 — A condition in which an Authorized Program Analysis Report (APAR) may be submitted

Note: ’x’ represents any decimal number. For example, 1xxx represents the range 1000 - 1999.

For complete and specific information about the reason codes and return codes, see the sections in

“User-Defined Communications Support APIs” on page 1 describing the individual APIs.

Messages

The following messages are used to signal the success or failure of operations performed by the

user-defined communications APIs:

v Information

 Message ID Error Message Text

CPI91F0 I X.25 network error occurred.

CPI91F1 I ISDN network error occurred.

v Escape

 Message ID Error Message Text

CPF91F0 E Internal system error.

298 iSeries: Communications APIs

Message ID Error Message Text

CPF91F1 E User-defined communications application error.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3

v Diagnostic

 Message ID Error Message Text

CPD91F0 D Error detected in program &1. Condition code is &2.

CPD91F1 D Unexpected error detected in program &1. Condition code is &2.

CPD91F2 D User space &1 or &3 not accessible.

CPD91F3 D Data limit exceeded. Some data not sent.

CPD91F4 D Error while accessing queue &1 in library &2.

CPD91F5 D Error while accessing queue. Time &1 canceled.

CPD91F6 D Error occurred on line &1 while in use.

CPD91F7 D Recovery canceled for network interface &3 or line &1.

CPD91F8 D Error while accessing queue &1 in library &2.

CPD91F9 D Error while enabling line &1.

 Top | “Communications APIs,” on page 1 | APIs by category

Configuration and Queue Entries

v Configure user-defined communications support

v Set up the entries that user-defined communications support can send to the queue

Configuring User-Defined Communications Support

This section describes what needs to be configured before your application program can use the

user-defined communications APIs. You can either use the system-supplied menus or the Control

Language (CL) commands to do this configuration. For more information on using queue APIs, see the

Object APIs in the Information Center.

Links

Links allow your application program to use a token-ring, Ethernet, FDDI, wireless, or X.25

communications line. A link is made up of the following communications objects:

v Token-ring, Ethernet, FDDI, wireless, or X.25 line description

v Network controller description

v Network device description of type *USRDFN

v Network interface description for ISDN (X.25 only)

You need to configure the line description; user-defined communications support automatically

configures a network controller and a network device description of type *USRDFN when the link is

enabled. If you are using X.25 over ISDN, the network interface description must also be configured. The

network interface, line, controller, and device descriptions are automatically varied on, if necessary.

Use the following commands to create or change line descriptions:

v CRTLINDDI — Create Line Description (DDI)

v CHGLINDDI — Change Line Description (DDI)

v CRTLINETH — Create Line Description (Ethernet)

v CHGLINETH — Change Line Description (Ethernet)

v CRTLINTRN — Create Line Description (Token-Ring)

Communications APIs 299

#TOP_OF_PAGE
aplist.htm
obj1.htm

v CHGLINTRN — Change Line Description (Token-Ring)

v CRTLINWLS — Create Line Description (Wireless)

v CHGLINWLS — Change Line Description (Wireless)

v CRTLINX25 — Create Line Description (X.25)

v CHGLINX25 — Change Line Description (X.25)

Use the following commands to create or change controller descriptions:

v CRTCTLNET — Create Controller Description (Network)

v CHGCTLNET — Change Controller Description (Network)

Use the following commands to create or change device descriptions:

v CRTDEVNET — Create Device Description (Network)

v CHGDEVNET — Change Device Description (Network)

Use the following commands to create or change network interface descriptions:

v CRTNWIISDN — Create Network Interface Description (ISDN)

v CHGNWIISDN — Change Network Interface Description (ISDN)

See the Communications Configuration

book on the V5R1 Supplemental Manuals Web site for more

information on configuring communications.

Queue

User-defined communications support uses a queue to inform your application program of some action

to take or of an activity that is complete. You must create the queue before the link is enabled.

The size of each queue entry must be large enough to accommodate the user-defined communications

support entries. See the following “Queue Entries” for more information on the entries that user-defined

communications support can send to the queue.

Use the Create Data Queue (CRTDTAQ) command to create your data queues. Use the QUSCRTUQ and

QUSDLTUQ APIs to create and delete your user queues.

Queue Entries

This section describes the entries user-defined communications support can send to the queue.

General Format

The length of each entry is always at least 80 bytes. When using a keyed queue, however, each entry can

be as large as 336 bytes, depending on the size of the key value supplied to the user-defined

communications support.

Table 1 (page 300) shows the general format of each user-defined communications support entry.

Table 1. Queue Entry General Format

 Entry type Char(10) Entry ID Char(2) Entry data Char(68) Key CHAR(256)

Bytes 1-10 11-12 13-80 81-336

Entry type

300 iSeries: Communications APIs

This indicates the type of entry on the queue and will be *USRDFN for all user-defined communications

support entries.

Entry ID

This uniquely identifies each entry within an entry type. User-defined communications support has five

entries defined:

v Enable-complete entry (entry ID = ’00’)

v Disable-complete entry (entry ID = ’01’)

v Permanent-link-failure entry (entry ID = ’02’)

v Incoming-data entry (entry ID = ’03’)

v Timer-expired entry (entry ID = ’04’)

Note: The entry type of *USRDFN and all associated entry IDs, either defined or undefined, are reserved

for user-defined communications support. Therefore, your application program should not define entries

using this entry type.

Entry data

This data is useful to your application program and varies according to the entry ID.

Key

When using a keyed queue, this is the key value supplied to the user-defined communications support.

Enable-Complete Entry

The enable-complete entry is sent to the queue when the enable link operation is complete. This entry is

only sent after the Enable Link (QOLELINK) API returns to your application program with a successful

return and reason code.

Note: The QOLELINK API only initiates the enabling of the link. Your application program must wait for

the enable-complete entry before attempting to perform input or output on the link.

Table 2 (page 301) shows the format of the enable-complete entry.

Table 2. Enable-Complete Entry

 *USRDFN ’00’ Communications

handle

Status Reserved Key

Bytes 1-10 11-12 13-22 23 24-80 81-336

Communications handle

The name of the link that is being enabled. Your application program supplies this name when the

QOLELINK API is called.

Status

This indicates the outcome of the enable link operation. A character value of zero indicates the enable

link operation was successful and I/O is now possible on this link. A character value of one indicates the

enable link operation was not successful (the job log contains messages indicating the reason). The

user-defined communications support disables the link when the enable link operation does not complete

successfully and the disable-complete entry is not sent to the queue.

Communications APIs 301

Key

The key value associated with the enable-complete entry when using a keyed queue. Your application

program supplies this key value when the QOLELINK API is called. When using a non-keyed queue

(indicated by supplying a key length of zero to the QOLELINK API) this field is not present.

Disable-Complete Entry

The disable-complete entry is sent to the queue when a link is successfully disabled. This entry is always

the last entry sent by the user-defined communications support on this link and, therefore, provides a

way for your application program to remove any enable-complete, incoming-data, or

permanent-link-failure entries previously sent to the queue.

Note: User-defined communications support does not associate timers with links. Therefore, it is

possible for a timer-expired entry to be sent to the queue after the link is disabled. Your

user-defined communications application program is responsible for handling this.

Table 3 (page 302) shows the format of the disable-complete entry.

Table 3. Disable-Complete Entry

 *USRDFN ’01’ Communications

handle

Reserved Key

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link that has been disabled. Your application program supplies this name when the

QOLELINK API is called to enable the link.

Key

The key value associated with the disable-complete entry, when using a keyed queue. Your application

program supplies this key value when the QOLELINK API is called to enable the link. When using a

non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field is not

present.

Permanent-Link-Failure Entry

The permanent-link-failure entry is sent to the queue when error recovery is canceled on a link. You must

disable and then enable the link to recover.

Table 4 (page 302) shows the format of the permanent-link-failure entry.

Table 4. Permanent-Link-Failure Entry

 *USRDFN ’02’ Communications

handle

Reserved Key

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link on which the failure has occurred. Your application program supplies this name

when the QOLELINK API is called to enable the link.

302 iSeries: Communications APIs

Key

The key value associated with the permanent-link-failure entry, when using a keyed queue. Your

application program supplies this key value when the QOLELINK API is called to enable the link. When

using a non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field

is not present.

Incoming-Data Entry

The incoming-data entry is sent to the queue when the user-defined communications support has data for

your application program to receive. Your application program should call the Receive Data (QOLRECV)

API to pick up the data when this entry is received.

Note: Another incoming-data entry is not sent to the queue until your application program picks up all

the data from the user-defined communications support. The data available parameter on the call to the

QOLRECV API indicates that the receipt of data is not complete.

Table 5 (page 303) shows the format of the incoming-data entry.

Table 5. Incoming-Data Entry

 *USRDFN ’03’ Communications

handle

Reserved Key

Bytes 1-10 11-12 13-22 23-80 81-336

Communications handle

The name of the link on which the data has come in. Your application program supplies this name when

the QOLELINK API is called to enable the link.

Key

The key value associated with the incoming-data entry, when using a keyed queue. Your application

program supplies this key value when the QOLELINK API is called to enable the link. When using a

non-keyed queue (indicated by supplying a key length of zero to the QOLELINK API) this field is not

present.

Timer-Expired Entry

The timer-expired entry is sent to the queue when a timer, previously set by your application program,

ends.

Table 6 (page 303) shows the format of the timer-expired entry.

Table 6. Timer-Expired Entry

 *USRDFN ’04’ Timer handle User data Key

Bytes 1-10 11-12 13-20 21-80 81-336

Timer handle

The name of the expired (ended) timer. Your application program returns this name when the Set or

Cancel Timer (QOLTIMER) API is called to set the timer.

User data

Communications APIs 303

The data associated with the expired timer. Your application program supplies this data when the

QOLTIMER API is called to set the timer.

Key

The key value associated with the timer-expired entry, when using a keyed queue. Your application

program supplies this key value when the QOLTIMER API is called to set the timer. When using a

non-keyed queue (indicated by supplying a key length of zero to the QOLTIMER API) this field is not

present.

 Top | “Communications APIs,” on page 1 | APIs by category

Debugging of User-Defined Communications Applications

This section is intended to help you debug your user-defined communications applications. It contains

information about:

v System services and tools

v Error codes reported to the application program and QSYSOPR operation

v Common error list

System Services and Tools

There are several tools on the iSeries(TM) server you can use to debug your user-defined communications

application. Some of the system provided tools that are useful for developing user-defined

communications applications include the following CL commands:

v Program Debug (STRDBG)

v Work with Job, Work with Communications Status (WRKJOB OPTION(*CMNSTS))

v Work with Job, Display Job Log (WRKJOB OPTION(*JOBLOG))

v Display Connection Status (DSPCNNSTS)

v Display Inbound Routing Data (press F6 (Display inbound routing information) following the

DSPCNNSTS command)

v Check Communications Trace (CHKCMNTRC)

v Delete Communications Trace (DLTCMNTRC)

v End Communications Trace (ENDCMNTRC)

v Print Communications Trace (PRTCMNTRC)

v Start Communications Trace (STRCMNTRC)

v Start System Service Tools (STRSST)

– Work with communications trace

– Work with error log
v Dump System Object (DMPSYSOBJ)

Program Debug

Program debug (STRDBG) allows you to trace the program and variables, set stops, change variables, and

display variables. You can use this function to verify that the parameters are passed correctly.

Work with Communications Status

The Work with Job command, Work with Communications Status option, (WRKJOB OPTION(*CMNSTS))

shows the enabled links and operation counts for each link. It also reports information such as the

communications handle the last operation requested, and the total input, output, and other operations

requested. This information is shown for every link enabled by the job.

304 iSeries: Communications APIs

#TOP_OF_PAGE
aplist.htm

Display Job Log

The Work with Job command, selecting the Display job log option (WRKJOB OPTION(*JOBLOG)) allows

you to view the messages in the job log that help determine the exact cause of the problem.

Display Connection Status

The Display Connection Status (DSPCNNSTS) command shows information about the switched virtual

circuits (SVCs) and permanent virtual circuits (PVCs) that are in use by the application using the device

description.

Note: The Display Line Description (DSPLIND) command also shows for each line, the SVCs that are in

use, available, or attached to a controller description. This is not true for PVCs.

Display Inbound Routing Information

Pressing F6 (Display inbound routing information) when the Display Connection Status display is shown

(DSPCNNSTS command) shows the results of the calls to the Set Filter (QOLSETF) API. It also helps to

determine which device description has set a filter with duplicate inbound routing information.

Work with Communications Trace

Using the communications trace function you can obtain information about a communications line. You

can access the communications trace function through the following CL commands:

v Check Communications Trace (CHKCMNTRC)

v Delete Communications Trace (DLTCMNTRC)

v End Communications Trace (ENDCMNTRC)

v Print Communications Trace (PRTCMNTRC)

v Start Communications Trace (STRCMNTRC)

For more information on using the communications trace CL commands, see the Communications

Management

book.

You can also access the communications trace function through the system service tools. You can use this

function by entering the Start System Service Tools (STRSST) command and selecting the option to start a

service tool.

Using the option to Work with communications trace shows data just as it appears to the network. If the

application requests that data be sent and the request does not appear in the communications trace, the

request is rejected. The return and reason codes, and the error code reported in the parameter list for the

Send Data (QOLSEND) API indicates the reason the request was rejected.

Work with Error Log

The error log utility is part of the system service tools. You can use it by entering the Start System Service

Tools (STRSST) command and selecting the option to start a service tool.

Some communications errors are reported by the system to the error log. A remote application that is

communicating with a user-defined communications application on the local system, could cause an entry

to be generated in the error log if one of the following conditions are met:

v When using a LAN, data is not received by the application and exceeds internal threshold values (3

MB).

v When using an X.25 network, data is not received by the application and exceeds internal threshold

values (128KB).

Communications APIs 305

For both cases, the associated message in QSYSOPR identifies the error log that contains the error log

entry. The error log entry contains information only.

Dump System Object to View User Spaces

The Dump System Object (DMPSYSOBJ) command is used to inspect the user spaces after they are filled

in by your application. The following examples indicate what the user spaces look like for some of the

operations.

User Space to Set a Filter to Route Inbound Data

This user space is filled in to activate two X.25 filters which will route any X.25 call containing X’BB’, or

X’DD’ in the first byte of call user data (protocol ID byte).

Figure 1-1. User Space to Set a Filter to Route Incoming X.25 Calls

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:42:07 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 00002200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00A00 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 * - OUTBUFFER *

 000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 01000002 001001BB 00000000 00000000 00000000 000001DD 00000000 00000000 * Y t *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 001FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F1D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F5 *QPADEV0001QSECOFR 006625 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F4F0 F0F44040 *V2R1M00901221124004 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Space for X’B000’ Operation, Initiating an SVC Call

The user space below has been filled in to initiate an SVC call specifying the following:

v Default packet and window sizes

v D-bit (not selected)

v Reverse charging (not selected)

v Fast select (not selected)

v Closed user group (not selected)

v Other facilities (not selected)

v One byte of call user data, X’BB’, which is the protocol identifier

v X.25 reset not supported by the user-defined communications application program

v 16KB is the maximum amount of contiguous data to be received

306 iSeries: Communications APIs

v Automatic flow control value of 32

 Figure 1-2. User Space to Send an SVC Call

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:47:42 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTPUTBUF CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:36:28 SIZE- 00001200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00100 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3D7E4E3 C2E4C640 40404040 40404040 40404040 * - OUTPUTBUF *

 000020 40404040 40404040 E0000000 00000000 00001000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 02000000 FFFFFFFF FFFFFFFF 00000000 00000008 40100001 00000000 00000000 * *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 0000BF SAME AS ABOVE

 0000C0 00000000 00000000 00000000 00000000 00000000 00000001 BB000000 00000000 * Y *

 0000E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000100 TO 0001BF SAME AS ABOVE

 0001C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004000 * *

 0001E0 00200000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000220 TO 000FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F2D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F7 *QPADEV0002QSECOFR 006627 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F3F6 F2F84040 *V2R1M00901221123628 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Space Containing an Incoming X.25 Call, Operation X’B201’

This user space shows the following:

v The call is using SVC 005

v Both transmit and receive packet sizes are 128

v Both transmit and receive window sizes are 7

v The calling DTE address is 40100000

v The called DTE address is 40200000

v No other facilities are requested

v One byte of call user data, X’BB’, which is the protocol identifier

The application received this call because it had set a filter to indicate to the system that it should route

incoming X.25 calls that have the first byte of call user data (the protocol identifier) equal to X’BB’ to the

application.

Figure 1-3. User Space Containing an Incoming X.25 Call

5763SS1 V3R1M0 940909 i5/OS DUMP 023099/QSYSOPR/QPADEV0014 03/07/94 11:57:24 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- INBUFFER CONTEXT- USRDFNCMN

Communications APIs 307

TYPE- *ALL SUBTYPE-*ALL

OBJECT TYPE- SPACE *USRSPC

NAME- INBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 03/07/94 11:53:15 SIZE- 0000002200

OWNER- QSYSOPR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 000001DE7A00 0000

SPACE ATTRIBUTES-

 000000 00FFFF00 00000060 1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040 * - INBUFFER *

 000020 40404040 40404040 E0000000 00000000 00002000 00810000 00000000 00000000 * \ a *

 000040 00000000 00000000 00D601DE 73000400 00000000 00000000 00000000 00000000 * O £ *

SPACE-

 000000 00000005 00800007 00800007 00000000 00000008 40100000 00000000 00000000 * *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 0000BF SAME AS ABOVE

 0000C0 00000000 00000000 00000000 00000000 00000000 00000001 BB000000 00000000 * *

 0000E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000100 TO 00013F SAME AS ABOVE

 000140 00000000 00000000 00000000 00000000 00000000 00000000 08402000 00000000 * *

 000160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000180 TO 001FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F1F4D8E2 E8E2D6D7 D9404040 F0F2F3F0 F9F9 *QPADEV0014QSYSOPR 023099 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F3D9F1D4 F0F0F9F4 F0F3F0F7 F1F1F5F3 F1F54040 *V3R1M00940307115315 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

USAGE-

 000000 D8E2E8E2 D6D7D940 4040D9C3 C8C1E2F3 F2F0 *QSYSOPR RCHAS320 *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Space to Accept an Incoming X.25 Call, Operation X’B400’

This user space was filled in to accept the incoming call, request default packet and window sizes, and

no other additional facilities. The a maximum amount of contiguous data is set at 16KB and the

automatic flow control is set at 32.

Figure 1-4. User Space to Accept an Incoming X.25 Call

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:48:06 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 00002200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00A00 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 * - OUTBUFFER *

 000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 00000000 FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000 00000000 * *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 0001BF SAME AS ABOVE

 0001C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004000 * *

 0001E0 00200000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000220 TO 001FFF SAME AS ABOVE

308 iSeries: Communications APIs

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F1D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F *QPADEV0001QSECOFR 006625 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F4F0 F0F44040 *V2R1M00901221124004 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Spaces for Sending Data, Operation X’0000’

Two user spaces are shown below. The first is the output buffer and the second is the output buffer

descriptor.

The user spaces below are filled in to send three data units of 512 bytes each. The first two data units

have the more data indicator turned on, indicating that all the data units are contiguous.

Note: This link was enabled, specifying a data unit size of 512 bytes.

Figure 1-5. User Space (Buffer) to Send Three Data Units

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:55:19 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTPUTBUF CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:36:28 SIZE- 00001200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00100 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3D7E4E3 C2E4C640 40404040 40404040 40404040 * - OUTPUTBUF *

 000020 40404040 40404040 E0000000 00000000 00001000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 F0F10000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *01 *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 0001FF SAME AS ABOVE

 000200 F0F20000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *02 *

 000220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000240 TO 0003FF SAME AS ABOVE

 000400 F0F30000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *03 *

 000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000440 TO 000FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F2D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F7 *QPADEV0002QSECOFR 006627 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F3F6 F2F84040 *V2R1M00901221123628 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

Communications APIs 309

Figure 1-6. User Space (Descriptor Element) to Describe the Three Data Units

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:55:58 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTPUTBUFD CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTPUTBUFD TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:36:27 SIZE- 00000400

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 009FFE00 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3D7E4E3 C2E4C6C4 40404040 40404040 40404040 *- OUTPUTBUFD *

 000020 40404040 40404040 E0000000 00000000 00000200 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 02000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000020 02000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000040 02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000080 TO 0001FF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F2D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F7 *QPADEV0002QSECOFR 006627 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F3F6 F2F74040 * V2R1M00901221123627 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Spaces for Receiving Data, Operation X’0001’

Two user spaces are shown below. The first is the input buffer and the second is the input buffer

descriptor.

The user spaces below are filled in showing that 2 data units were received. The first data unit has the

more data indicator turned on in the buffer descriptor for the data unit. This means that the X.25 more

indicator was turned on in all the X.25 packets that this data unit contains. The second data unit does not

have the more data indicator turned on, indicating that the last X.25 packet in the data unit had the X.25

more indicator turned off. The first and second data unit are considered to be logically contiguous to the

application program.

Note: This link was enabled specifying a data unit size of 1024 bytes. The sending system sent the data in

data unit sizes of 512 bytes and they were combined into the 1024 byte data unit size by the local system.

The data unit size is not negotiated end-to-end, neither is the maximum amount of contiguous data or

the automatic flow control. Because the values are important, each application should be aware of what

the other application has specified for each value. Refer to Sending and Receiving Data Packets for more

information.

Figure 1-7. User Space (Buffer) Containing the Three Data Units

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:59:33 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- INBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- INBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

310 iSeries: Communications APIs

comm2.htm#HDRPIUCONS

CREATION- 12/21/90 12:40:03 SIZE- 00002200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00400 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040 * - INBUFFER *

 000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 F0F10000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *01 *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 0001FF SAME AS ABOVE

 000200 F0F20000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *02 *

 000220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000240 TO 0003FF SAME AS ABOVE

 000400 F0F30000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *03 *

 000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000440 TO 001FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F1D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F5 *QPADEV0001QSECOFR 006625 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F4F0 F0F34040 * V2R1M00901221124003 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

Figure 1-8. User Space (Descriptor Element) Describing the Three Data Units

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 12:59:41 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- INBUFFERD CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- INBUFFERD TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 00000400

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 00A00200 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934C9D5 C2E4C6C6 C5D9C440 40404040 40404040 40404040 * - INBUFFERD *

 000020 40404040 40404040 E0000000 00000000 00000200 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 04000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000020 02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000060 TO 0001FF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F1D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F5 *QPADEV0001QSECOFR 006625 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F4F0 F0F34040 * V2R1M00901221124003 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

User Space to Clear a Connection or Call, Operation X’B100’

Communications APIs 311

This user space was filled in to end an SVC connection or clear an incoming call. No facilities or clear

user data are requested with this, but cause and diagnostic codes are specified (these are not ISO or SNA

codes).

Figure 1-9. User Space to Send an SVC Clear

5738SS1 V2R1M0 910524 i5/OS DUMP 006625/QSECOFR/QPADEV0001 12/21/90 13:14:48 PAGE 1

DMPSYSOBJ PARAMETERS

OBJ- OUTBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 00002200OWNER- QSECOFR TYPE-

ATTRIBUTES- 0800 ADDRESS- 00A00A00 0000

SPACE ATTRIBUTES-

 000000 00000080 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 * - OUTBUFFER *

 000020 40404040 40404040 E0000000 00000000 00002000 00800000 00000000 00000000 * \ *

 000040 00000000 00000000 0005004D 42000400 00000000 00000000 00000000 00000000 * (a *

SPACE-

 000000 0000BEBE 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * XX *

 000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *

 LINES 000040 TO 001FFF SAME AS ABOVE

POINTERS-

 NONE

OIR DATA-

TEXT-

 000000 D8D7C1C4 C5E5F0F0 F0F1D8E2 C5C3D6C6 D9404040 F0F0F6F6 F2F5 *QPADEV0001QSECOFR 006625 *

SERVICE-

 000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *

 000020 40404040 40404040 404040E5 F2D9F1D4 F0F0F9F0 F1F2F2F1 F1F2F4F0 F0F44040 * V2R1M00901221124004 *

 000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

 000060 40404040 40404040 40404040 40404040 40404040 40404040 00000000 00000000 * *

 000080 00000000 00000000 00000000 00000000 00000000 00000000 40400000 00000000 * *

 0000A0 00000000 00000000 * *

END OF DUMP

 * * * * * E N D O F L I S T I N G * * * * *

Error Codes

The system and user-defined communications support reports important information that is useful for

determining recovery actions when an error occurs. This information is referred to as error codes that are

reported either to the job log or to the QSYSOPR message queue. For a complete list of the messages that

are signaled by the user-defined communications APIs, see “Messages” on page 298.

In some cases error codes are reported to your application in the error specific parameter. The following

sections list the valid error codes. Some of the error codes represent actual coding errors, others only

report additional information. For information about the error codes for the individual user-defined

communications APIs, see User-Defined Communications Support APIs.

Local Area Network (LAN) Error Codes

Figure 1-10 (page 312) shows the valid hexadecimal codes your application can receive as a result of a

call to the QOLSEND API using operation code X’0000’. The codes indicate that the data was never sent

on the line. Associated with these error codes is a message in QSYSOPR, indicating the device description

that caused the error, and the error code. After receiving the error code, the link will still be enabled and

usable.

These error codes indicate to your application that a coding error was made and should be corrected.

Figure 1-10. Error Codes Received While Sending Data over LAN

312 iSeries: Communications APIs

comm4.htm#HDRCOMMC4

Error Code Description Cause

3300 2A55 Routing length not valid Routing length is not valid, or length does not

equal length in routing field.

3300 2A5D Maximum frame size limit exceeded Length of data is greater than maximum frame

size supported by the source SAP

5300 2A7B Access Control not valid Access Control specified is not supported

3300 2AA9 SAP address not valid SAP address is not configured in the line

description

3300 2AA9 SAP address not valid SAP address is not configured in the line

description

3300 2AD4 Data length too small (Ethernet Version 2

only)

Data must be at least 48 bytes long (46 bytes of

data, plus 2 bytes for the Ethernet type field)

3300 2AD5 Ethernet type field is not valid (Ethernet

Version 2 only)

Ethernet type field (first two bytes of data)

X.25 Error Codes

Figure 1-11 (page 313) shows the valid error codes your application can receive as a result of

v A call to the QOLSEND API with operation X’B400’ to accept an SVC call

v A call to the Receive Data (QOLRECV) API which returns the results of the open connection request

operation, X’B101’

v The connection failure indication, reported by operation X’B301’

These error codes indicate to your application that a coding error was made, or a failure condition

occurred.

Figure 1-11. Error Codes Reported on X’B001’, X’B301’, and X’B400’ Operations

 Error Code Description Cause

1200 3122 Outgoing channel not available The logical channel is still active and in the

process of being deactivated

3200 3050 Restart in progress Temporary condition; retry operation

3200 3172 Outgoing channel not available Temporary condition; retry operation

3200 3368 Remote address length not valid Remote address length not supported by the

network

3200 3384 Facility field error A facility was encoded incorrectly or a duplicate

facility was encoded

3200 3388 Facility field too long The total length of the facilities, which includes

user-specified facilities, the NUI facility from the

line description, and system generated facilities,

exceeded X.25 limits (109 bytes)

3200 338C Response restricted by fast select User data is not allowed with restriction

3200 3394 User data not allowed User data is not allowed on the call accept if fast

select was not requested.

3200 33CC Call user data length not valid The length of call user data is greater than 16 and

fast select is not selected.

4200 3210 Reset request transmitted The virtual circuit was reset by the local system.

Refer to cause and diagnostic codes to determine

recovery.

Communications APIs 313

Error Code Description Cause

4200 3220 Clear request transmitted The virtual circuit was cleared by the local system.

Refer to cause and diagnostic codes to determine

recovery.

4200 3222 Clear request transmitted The virtual circuit was cleared by the local system

because there was a problem with the packet size

in the call accept. This is either a configuration

problem or a network problem. Verify that the

default packet size in the line description is

correct.

4200 3224 Clear request transmitted The virtual circuit was cleared by the local system

because there was a problem with the window

size in the call accept. This is either a

configuration problem or a network problem.

Verify that the default window size in the line

description is correct.

4200 3230 Restart request transmitted The virtual circuit was cleared by the local system.

Refer to cause and diagnostic codes for more

information.

4200 3280 Time-out on call Call timed out

4600 3134 Clear indication was received The virtual circuit was cleared by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

4600 3138 Restart indication received Temporary condition; refer to the cause and

diagnostic codes reported to correct the problem,

then retry the operation

Figure 1-12 (page 314) shows the valid error codes your application can receive as a result of a call to the

QOLRECV API with an operation code returned as X’B101’.

These error codes indicate to your application that the connection was cleared or reset for the following

reasons.

Figure 1-12. Error Codes Reported on the X’B101’ Operation

 Error Code Description Cause

3200 3388 Facility field too long The total length of the facilities, which includes

user-specified facilities, the NUI facility from the

line description, and system generated facilities,

exceeded X.25 limits (109 bytes)

3200 3394 User data not allowed User data is not allowed when fast select is not

selected.

3200 33CC Call user data length not valid The length of call user data is greater than 16 and

fast select is not selected.

4200 3240 Time-out on reset The clear request resulted in an X.25 reset, which

timed out

4200 3284 Time-out on clear The remote system did not respond to the CLEAR

within the time-out value

4600 3134 Clear indication was received The virtual circuit was cleared by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

314 iSeries: Communications APIs

Figure 1-13 (page 315) shows the valid error codes your application can receive as a result of a call to the

QOLRECV API, returning the operation code, X’BF01’.

These error codes indicate to your application that the connection was cleared or reset for the following

reasons.

Figure 1-13. Error Codes Reported on the X’BF01’ Operation

 Error Code Description Cause

3200 3050 Network Restart in progress Temporary condition; connection is no longer

active.

3200 3A0C Close pending The virtual circuit is being closed.

3200 3A0D Reset pending The virtual circuit is in the process of being reset

by either the remote system or the network.

4200 3210 Reset packet transmitted A Reset packet was transmitted from the local

system.

4200 3240 Time-out on reset The clear request resulted in an X.25 reset, which

timed out

4600 3130 Reset indication was received The virtual circuit received a reset by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

4600 3134 Clear indication was received The virtual circuit was cleared by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

Figure 1-14 (page 315) shows the valid error codes your application can receive as a result of a call to the

QOLSEND API with an operation code returned as X’0000’.

These error codes indicate to your application that the connection was cleared or reset for the following

reasons.

Figure 1-14. Error Codes Resulting from a X’0000’ Operation

 Error Code Description Cause

3200 3050 Network restart in progress Temporary condition; connection is no longer

active.

3200 336A Q/M bit sequence not valid If the data is qualified, the Q bit must be set for all

data units.

3200 33C8 Data length not valid The length of the packet is not supported for this

virtual circuit.

3200 3A0C Close pending The virtual circuit is being closed.

3200 3A0D Reset pending The virtual circuit is in the process of being reset

by either the remote system or the network.

4200 3284 Interrupt timed out The local DTE sent an interrupt packet. The

response to this packet was not received within

the time-out period, and the connection has been

reset by the iSeries server.

4600 3130 Reset indication was received The virtual circuit received a reset by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

Communications APIs 315

Error Code Description Cause

4600 3134 Clear indication was received The virtual circuit was cleared by either the

remote system or the network. Refer to cause and

diagnostic codes for more information.

Common Errors and Messages

This section shows some of the common errors that you or your application programmer may encounter.

Some of these errors are detected by the APIs and reported to the application by the unsuccessful return

and reason codes returned on each API. Other errors are program design errors, that your application

programmer must detect and correct. The errors are listed by category:

Parameter Errors

v Switching use of connection identifiers (PCEP and UCEP)

v Switching use of timer handles

v Not encoding parameters if not used

v Operation code not in hexadecimal format

v Parameter not declared with proper length

User Space Errors

v Not encoding reserved space for fields not used

v Not initializing user space fields as necessary.

The output user spaces can only be changed by the user-defined communications application.

Operations are validated on each request. If there are fields that the current operation does not use,

they should be set to contain zeros with X’00’, to prevent a template error resulting from information

on the previous operation still being in the user space. Not resetting the indicators in the output buffer

descriptors on each operation and not zeroing out fields before making a call request may result in

template errors.

Queue Errors

v Queue not created

v Queue created with different key length than specified in the parameter list of the Enable Link

(QOLELINK) API

Receive Data (QOLRECV) API Errors

v Not checking the more data output parameter and issuing another call to the QOLRECV API

v Not calling the QOLSETF API to set the filter to route inbound data to the application

v Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)

Send Data (QOLSEND) API Errors

v After a call to the QOLSEND API with an operation code of X’B000’, X’B100’, or X’BF00’, the

application should then call the QRCVDTAQ API and wait for incoming data to be placed on the

queues. The success or failure of these operations is reported through the QOLRECV API with

operation codes of X’B001’, X’B101’ and X’BF01’, respectively.

v Using the wrong data unit descriptor for the data unit (each data unit has its own descriptor)

Enable Link (QOLELINK) API Errors

v User space names not unique

v Queue not created before program call

316 iSeries: Communications APIs

v Line description not created or incorrect prior to program call

Query Line Description (QOLQLIND) API Errors

v Parameter buffer not large enough

 Top | “Communications APIs,” on page 1 | APIs by category

Communications APIs 317

#TOP_OF_PAGE
aplist.htm

318 iSeries: Communications APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 319

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM

Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

320 iSeries: Communications APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

Advanced 36

Advanced Function Printing

Advanced Peer-to-Peer Networking

AFP

AIX

AS/400

COBOL/400

CUA

DB2

DB2 Universal Database

Distributed Relational Database Architecture

Domino

DPI

DRDA

eServer

GDDM

IBM

Integrated Language Environment

Intelligent Printer Data Stream

IPDS

i5/OS

iSeries

Lotus Notes

MVS

Netfinity

Net.Data

NetView

Notes

OfficeVision

Operating System/2

Operating System/400

OS/2

OS/400

PartnerWorld

PowerPC

PrintManager

Print Services Facility

RISC System/6000

RPG/400

RS/6000

SAA

SecureWay

System/36

System/370

System/38

System/390

VisualAge

WebSphere

xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Appendix. Notices 321

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

322 iSeries: Communications APIs

����

Printed in USA

	Contents
	Communications APIs
	APIs
	User-Defined Communications Support APIs
	Disable Link (QOLDLINK) API
	Authorities and Locks
	Required Parameter Group
	Return and Reason Codes

	Enable Link (QOLELINK) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Return and Reason Codes
	Error Messages

	Query Line Description (QOLQLIND) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data in the User Buffer
	Return and Reason Codes
	Error Messages

	Receive Data (QOLRECV) API
	Authorities and Locks
	Required Parameter Group
	Format of Diagnostic Data Parameter
	LAN Input Operations
	X.25 SVC and PVC Input Operations
	Return and Reason Codes
	Error Messages

	Send Data (QOLSEND) API
	Authorities and Locks
	Required Parameter Group
	Diagnostic Data Parameter Format
	LAN Output Operations
	X.25 SVC and PVC Output Operations
	Return and Reason Codes
	Error Messages

	Set Filter (QOLSETF) API
	Authorities and Locks
	Required Parameter Group
	Format of Filter Information
	Return and Reason Codes
	Error Messages

	Set Timer (QOLTIMER) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Return and Reason Codes
	Error Messages

	Data Stream Translation APIs
	End Data Stream Translation Session (QD0ENDTS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start Data Stream Translation Session (QD0STRTS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Translate Data Stream (QD0TRNDS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	OptiConnect APIs
	Close Path (QzdmClosePath) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	CPTH0100 Format
	Field Descriptions
	Error Messages

	Close Stream (QzdmCloseStream) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	CSTR0100 Format
	Field Descriptions
	Error Messages

	Open Path (QzdmOpenPath) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	OPRC0100 Format
	OPRQ0100 Format
	Field Descriptions
	Error Messages

	Open Stream (QzdmOpenStream) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	OSTR0100 Format
	Field Descriptions
	Error Messages

	Receive Control (QzdmReceiveControl) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RCRC0100 Format
	RCRQ0100 Format
	Field Descriptions
	Error Messages

	Receive Request (QzdmReceiveRequest) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RQRC0100 Format
	RQRQ0100 Format
	Field Descriptions
	Error Messages

	Receive Response (QzdmReceiveResponse) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	RSRC0100 Format
	RSRQ0100 Format
	Field Descriptions
	Error Messages

	Send Request (QzdmSendRequest) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	SRRC0100 Format
	SRRQ0100 Format
	Field Descriptions
	Error Messages

	Send Response (QzdmSendResponse) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	SRSP0100 Format
	Field Descriptions
	Error Messages

	Wait Message (QzdmWaitMessage) API
	Restrictions
	Authorities and Locks
	Required Parameter Group
	WMRC0100 Format
	WMRQ0100 Format
	Field Descriptions
	Error Messages

	TCP/IP Management
	Change Connection Attribute (QTOCCCNA) API
	Authorities and Locks
	Required Parameter Group
	TCPA0001 Format
	UDPA0001 Format
	Field Descriptions
	TCPA0101 Format
	UDPA0101 Format
	Field Descriptions
	Error Messages

	Change IPv4 Interface (QTOCC4IF) API
	Authorities and Locks
	Required Parameter Group
	IFCH0100 Format
	Format of Preferred Interface List Entry
	Field Descriptions
	Usage Notes
	Error Messages

	Convert Interface ID (QtocCvtIfcID) API
	Authorities and Locks
	Required Parameter Group
	Format of Returned Interface Data
	NCII0100 Format
	Field Descriptions
	NCII0200 Format
	Field Descriptions
	NCII0300 Format
	Field Descriptions
	Error Messages

	List Neighbor Cache Table (QtocLstNeighborTbl) API
	Authorities and Locks
	Required Parameter Group
	Format of Neighbor Cache Table Lists
	Input Parameter Section
	Header Section
	NNCT0100 Format
	Field Descriptions
	Error Messages

	List Network Connections (QtocLstNetCnn) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Status Lists
	Input Parameter Section
	Header Section
	NCLQ0100 Format
	Field Descriptions
	NCLQ0200 Format
	Field Descriptions
	Format of Returned Connection Data
	NCNN0100 Format
	Field Descriptions
	NCNN0200 Format
	Field Descriptions
	Error Messages

	List Network Interfaces (QtocLstNetIfc) API
	Authorities and Locks
	Required Parameter Group
	Format of Interface Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	NIFC0100 Format
	Format of Preferred Interface List Entry
	Field Descriptions
	NIFC0200 Format
	Field Descriptions
	Error Messages

	List Network Routes (QtocLstNetRte) API
	Authorities and Locks
	Required Parameter Group
	Format of Route Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	NRTE0100 Format
	Field Descriptions
	NRTE0200 Format
	Field Descriptions
	Error Messages

	List Physical Interface ARP Table (QtocLstPhyIfcARPTbl) API
	Authorities and Locks
	Required Parameter Group
	Format of ARP Table Lists
	Input Parameter Section
	Header Section
	ARPT0100 Format
	Field Descriptions
	Error Messages

	List Physical Interface Data (QtocLstPhyIfcDta) API
	Authorities and Locks
	Required Parameter Group
	Format of Physical Interface Lists
	Input Parameter Section
	Header Section
	Format of Returned Connection Data
	IFCD0100 Format
	Field Descriptions
	IFCD0200 Format
	Field Descriptions
	IFCD0300 Format
	Field Descriptions
	Error Messages

	List PPP Connection Profiles (QtocLstPPPCnnPrf) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Profile Lists
	Input Parameter Section
	Header Section
	PRFD0100 Format
	Field Descriptions
	Error Messages

	List TCP/IP Point-to-Point Jobs (QTOCLPPJ) API
	Authorities and Locks
	Required Parameter Group
	Format of Point-to-Point Jobs List
	Input Parameter Section
	Header Section
	PPPJ0100 Format
	Field Descriptions
	Error Messages

	Remove ARP Table Entry (QtocRmvARPTblE) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Network Connection Data (QtocRtvNetCnnDta) API
	Authorities and Locks
	Required Parameter Group
	Socket Connection Request Format
	IPv4 connection (Protocol field value is 1 or 2)
	IPv6 connection (Protocol field value is 3 or 4)
	Field Descriptions
	Format of Returned Connection Data
	NCND0100 Format
	Field Descriptions
	NCND0200 Format
	List of Socket Options.
	List of Jobs/Tasks Associated with this Connection.
	Field Descriptions
	NCND1100 Format
	Field Descriptions
	NCND1200 Format
	List of Socket Options.
	List of Jobs/Tasks Associated with this Connection.
	Field Descriptions
	Error Messages

	Retrieve PPP Connection Profiles (QtocRtvPPPCnnPrf) API
	Authorities and Locks
	Required Parameter Group
	Format of Connection Profile Attributes Information
	PRFR0100 Format
	Field Descriptions
	PRFR0200 Format
	Field Descriptions
	Connection Profile Detailed Parameters
	Field Descriptions
	Remote Phone Numbers
	Field Descriptions
	Error Messages

	Retrieve TCP/IP Attributes (QtocRtvTCPA) API
	Authorities and Locks
	Required Parameter Group
	Format of TCP/IP Attributes Information
	TCPA0100 Format
	Field Descriptions
	TCPA0200 Format
	Field Descriptions
	TCPA0300 Format
	Field Descriptions
	TCPA1100 Format
	Field Descriptions
	TCPA1200 Format
	Field Descriptions
	TCPA1300 Format
	Field Descriptions
	Error Messages

	Update DNS API (QTOBUPDT)
	Authorities and Locks
	Required Parameter Group
	Update Instructions Syntax
	DNSA0100 Format
	Field Descriptions
	Error Messages

	CPI Communications (CPI-C)
	Exit Programs
	Trace Exit Program for Trace TCP/IP Application command
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Exit Program for Watch for Trace Event
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Related Information

	Concepts
	User-Defined Communications
	Overview
	User-Defined Communications Callable Routines
	Input/Output Buffers and Descriptors
	Queues

	Terminology
	Relationship to Communications Standards
	Local Area Network (LAN) Considerations
	X.25 Considerations
	Programming Design Considerations for Communications APIs
	Jobs
	Application Program Feedback
	Synchronous and Asynchronous Operations
	Programming Languages
	Starting and Ending Communications
	Using Connection Identifiers
	Incoming Connections
	Closing Connections

	Programming Considerations for LAN Applications
	Operations
	Configuration
	Inbound Routing Information
	End-to-End Connectivity
	Sending and Receiving Data
	Maximum Amount of Outstanding Data
	Ethernet to Token-Ring Conversion and Routing
	Performance Considerations

	Programming Considerations for X.25 Applications
	X.25 Packet Types Supported
	Operations
	Connections
	Connection Identifiers
	Connection Information
	Switched Virtual Circuit (SVC) Connectivity
	Inbound Routing Information
	End-to-End Connectivity
	Permanent Virtual Circuit (PVC) Connectivity
	Inbound Routing Information
	End-to-End Connectivity
	Sending and Receiving Data Packets
	X.25 Call Control
	Performance Considerations

	Queue Considerations
	User Space Considerations
	Return Codes and Reason Codes
	Messages
	Configuration and Queue Entries
	Configuring User-Defined Communications Support
	Links
	Queue

	Queue Entries
	General Format
	Enable-Complete Entry
	Disable-Complete Entry
	Permanent-Link-Failure Entry
	Incoming-Data Entry
	Timer-Expired Entry

	Debugging of User-Defined Communications Applications
	System Services and Tools
	Program Debug
	Work with Communications Status
	Display Job Log
	Display Connection Status
	Display Inbound Routing Information
	Work with Communications Trace
	Work with Error Log
	Dump System Object to View User Spaces

	Error Codes
	Local Area Network (LAN) Error Codes
	X.25 Error Codes

	Common Errors and Messages

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

