
System i

Database

Database programming

Version 5 Release 4

���

System i

Database

Database programming

Version 5 Release 4

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 299.

Seventh Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Database programming 1

What’s new for V5R4 1

Printable PDF 2

Database file concepts 2

DB2 Universal Database for iSeries 2

Interfaces to DB2 Universal Database for iSeries . 3

Traditional system interface 3

SQL 3

iSeries Navigator 3

IBM Query for iSeries 3

Database files 3

How database files are described 4

Externally and program-described data . . . 5

Dictionary-described data 6

Record format description 6

Access path description 7

Naming conventions for a database file . . . 7

Database data protection and monitoring 7

Database file sizes 8

Example: Database file sizes 11

Setting up database files 12

Creating and describing database files 13

Creating a library 13

Setting up source files 14

Why source files are used 14

Creating a source file 14

Describing database files 17

Describing database files using DDS . . . 18

Specifying database file and member

attributes 27

Setting up physical files 34

Creating a physical file 34

Specifying physical file and member

attributes 35

Implicit physical file journaling 38

Setting up logical files 39

Creating a logical file 39

Creating a logical file with more than one

record format 40

Defining logical file members 44

Describing logical file record formats 45

Describing field use for logical files . . . 47

Deriving new fields from existing fields . . 48

Describing floating-point fields in logical

files 51

Describing access paths for logical files . . . 51

Selecting and omitting records for logical

files 52

Sharing existing access paths between

logical files 56

Setting up a join logical file 58

Example 1: Basic concepts of joining two

physical files 58

Setting up a join logical file 66

Example 2: Using more than one field to

join files 67

Example 3: Reading duplicate records in

the secondary file 69

Example 4: Using join fields whose

attributes are different 70

Example 5: Describing fields that never

appear in the record format 72

Example 6: Specifying key fields in a join

logical file 73

Specifying select/omit statements in a join

logical file 74

Example 7: Joining three or more physical

files 74

Example 8: Joining a physical file to itself 76

Example 9: Using defaults for missing

records from secondary files 78

Example 10: A complex join logical file . . 79

Join logical file considerations 81

Describing access paths for database files . . . 83

Using arrival sequence access paths for

database files 83

Using keyed sequence access paths for

database files 84

Arranging key fields in an alternative

collating sequence 84

Arranging key fields with the SRTSEQ

parameter 85

Arranging key fields in ascending or

descending sequence 86

Using more than one key field 87

Preventing duplicate key values 88

Arranging duplicate keys 89

Using existing access path specifications . . . 91

Using floating-point fields in database file

access paths 92

Securing database files 92

Granting file and data authority 92

Authorizing a user or group using iSeries

Navigator 92

Types of object authority 93

Types of data authority 94

Specifying public authority 95

Defining public authority using iSeries

Navigator 96

Setting a default public authority using

iSeries Navigator 97

Using database file capabilities to control I/O

operations 97

Limiting access to specific fields in a database

file 98

Using logical files to secure data 98

Processing database files 98

Database file processing: Runtime considerations 99

File and member name 99

File processing options 100

Specifying the type of processing 100

Specifying the initial file position 100

© Copyright IBM Corp. 1998, 2006 iii

Reusing deleted records 101

Ignoring the keyed sequence access path 101

Delaying end-of-file processing 102

Specifying the record length 102

Ignoring record formats 102

Determining whether duplicate keys exist 102

Data recovery and integrity 103

Protecting your files with journaling and

commitment control 103

Writing data and access paths to auxiliary

storage 103

Checking changes to the record format

description 104

Checking the expiration date of a physical

file member 104

Preventing the job from changing data in

a file 104

Locking shared data 104

Locking records 105

Locking files 105

Locking members 106

Locking record format data 106

Database lock considerations 106

Displaying locked rows using iSeries

Navigator 108

Displaying locked records using the

Display Record Locks (DSPRCDLCK)

command 108

Sharing database files in the same job or

activation group 108

Open considerations for files shared in a

job or an activation group 109

Input/output considerations for files

shared in a job or an activation group . . 110

Close considerations for files shared in a

job or an activation group 111

Sequential-only processing of database files 114

Open considerations for sequential-only

processing 115

Input/output considerations for

sequential-only processing 116

Close considerations for sequential-only

processing 117

Summary of runtime considerations for

processing database files 117

Storage pool paging option effect on

database performance 120

Opening a database file 120

Opening a database file member 120

Using Open Database File (OPNDBF)

command 121

Using Open Query File (OPNQRYF)

command 123

Creating a query with the Open Query

File (OPNQRYF) command 123

Using an existing record format in the file 124

Using a file with a different record format 125

CL program coding with the Open Query

File (OPNQRYF) command 127

The zero-length literal and the contains

(*CT) function 127

Usage notes for the Open Query File

(OPNQRYF) examples 128

Selecting records without using DDS . . 128

Considerations for using the FORMAT

parameter 154

Considerations for arranging records . . 155

Considerations for DDM files 155

Considerations for writing a high-level

language program 155

Messages sent when the Open Query File

(OPNQRYF) command is run 156

Using the Open Query File (OPNQRYF)

command for more than just input . . . 158

Comparing date, time, and timestamp

using the Open Query File (OPNQRYF)

command 158

Performing date, time, and timestamp

arithmetic using the Open Query File

(OPNQRYF) command 159

Using the Open Query File (OPNQRYF)

command for random processing 163

Open Query File (OPNQRYF) command:

Performance considerations 163

Open Query File (OPNQRYF) command:

Performance considerations for sort

sequence tables 165

Performance comparisons with other

database functions 166

Field use 166

Files shared in a job 167

Checking if the record format description

changed 168

Other runtime considerations for the Open

Query File (OPNQRYF) command . . . 168

Typical errors when using the Open

Query File (OPNQRYF) command . . . 170

Open data path considerations 171

Field names 171

Expressions 172

Built-in functions 175

Restricted built-in functions 188

Basic database file operations in programs . . . 190

Setting a position in the file 190

Reading database records 191

Reading database records using an arrival

sequence access path 191

Reading database records using a keyed

sequence access path 192

Waiting for more records when end of file

is reached 194

Releasing locked records 196

Updating database records 197

Adding database records 198

Identifying which record format to add in

a file with multiple formats 198

Using the force-end-of-data operation . . 200

Deleting database records 201

Closing a database file 202

Monitoring database file errors in a program 203

System handling of error messages 203

Effect of error messages on file positioning 203

iv System i: Database Database programming

 | |
 | |
 | |
 | |
 | |

Determining which messages you want to

monitor 203

Managing database files 204

Basic operations for managing database files 204

Copying a file 204

Moving a file 205

Managing database members 206

Member operations common to all database

files 206

Adding members 206

Changing member attributes 207

Renaming members 207

Removing members 207

Physical file member operations 207

Initializing data in a physical file member 207

Clearing data from a physical file member 208

Reorganizing a physical file member . . 208

Displaying records in a physical file

member 213

Using database attribute and cross-reference

information 214

Displaying information about database files 214

Displaying attributes of a file using iSeries

Navigator 214

Displaying attributes of a file using the

Display File Description (DSPFD)

command 215

Displaying the description of the fields in

a file 215

Displaying the relationships between files

on the system 215

Displaying the files used by programs . . 216

Displaying the system cross-reference files 217

Writing the output from a command directly

to a database file 218

Example: A command output file 218

Output files for the Display File

Description (DSPFD) command 219

Output files for the Display Journal

(DSPJRN) command 219

Output files for the Display Problems

(DSPPRB) command 219

Changing database file descriptions and

attributes 220

Effects of changing fields in a file description 220

Changing a physical file description and

attributes 221

Example 1: Changing a physical file

description and attributes 223

Example 2: Changing a physical file

description and attributes 223

Changing a logical file description and

attributes 224

Recovering and restoring your database . . . 224

Recovering data in a database file 224

Managing journals 224

Ensuring data integrity with commitment

control 231

Reducing time in access path recovery . . . 232

Saving access paths 232

Restoring access paths 233

Journaling access paths 233

System-managed access-path protection 234

Rebuilding access paths 234

Database recovery process after an abnormal

system end 237

Database file recovery during the IPL . . 237

Database file recovery after the IPL . . . 238

Effects of the storage pool paging option

on database recovery 238

Database file recovery options table . . . 239

Database save and restore 239

Database considerations for save and restore 239

Using source files 240

Working with source files 240

Using the source entry utility 240

Using device source files 240

Copying source file data 241

Loading and unloading data from systems

other than System i 242

Using source files in a program 243

Creating an object using a source file . . . 243

Creating an object from source statements

in a batch job 244

Determining which source file member

was used to create an object 245

Managing a source file 245

Changing source file attributes 245

Reorganizing source file member data . . 246

Determining when a source statement was

changed 246

Using source files for documentation . . 247

Controlling the integrity of your database with

constraints 247

Setting up constraints for your database . . 247

Removing unique, primary key, or check

constraints 248

Working with a group of constraints . . . 249

Details: Working with a group of

constraints 249

Working with constraints that are in check

pending status 250

Unique constraints 251

Primary key constraints 252

Check constraints 252

Ensuring data integrity with referential

constraints 253

Adding referential constraints 253

Before you add referential constraints . . 253

Defining the parent file in a referential

constraint 253

Defining the dependent file in a referential

constraint 254

Specifying referential constraint rules . . 254

Details: Adding referential constraints . . 256

Details: Avoiding constraint cycles . . . 257

Verifying referential constraints 257

Enabling or disabling referential constraints 257

Removing referential constraints 258

Details: Removing a constraint with the

CST parameter 258

Contents v

Details: Removing a constraint with the

TYPE parameter 259

Details: Ensuring data integrity with

referential constraints 259

Example: Ensuring data integrity with

referential constraints 259

Referential integrity terms 260

Referential integrity enforcement 261

Foreign key enforcement 261

Parent key enforcement 261

Constraint states 262

Check pending status in referential

constraints 262

Dependent file restrictions in check

pending 262

Parent file restrictions in check pending 263

Referential integrity and CL commands . . 263

Triggering automatic events in your database 265

Uses for triggers 265

Benefits of using triggers in your business 265

Creating trigger programs 265

Adding triggers using iSeries Navigator 266

How trigger programs work 266

Other important information about

working with trigger programs 267

Examples: Trigger programs 271

Trigger buffer sections 284

Adding triggers 287

Displaying triggers 288

Removing triggers 288

Enabling or disabling physical file triggers 288

Triggers and their relationship to CL

commands 289

Triggers and their relationship to referential

integrity 290

Database distribution 291

Double-byte character set considerations 291

DBCS field data types 292

DBCS field mapping considerations 292

DBCS field concatenation 293

DBCS field substring operations 294

Comparing DBCS fields in a logical file . . . 294

Using DBCS fields in the Open Query File

(OPNQRYF) command 294

Using the wildcard function with DBCS

fields 294

Comparing DBCS fields through the Open

Query File (OPNQRYF) command 295

Using concatenation with DBCS fields . . . 295

Using sort sequence with DBCS fields . . . 295

Related information for database programming . . 296

Appendix. Notices 299

Programming Interface Information 300

Trademarks 301

Terms and conditions 301

vi System i: Database Database programming

Database programming

DB2® Universal Database™ for iSeries® (DB2® UDB for iSeries) provides a wide range of support for

setting up, processing, and managing database files.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.

What’s new for V5R4

This topic highlights the changes made to this topic collection for V5R4.

The following topics are updated:

v “Database file sizes” on page 8

v “Example: Database file sizes” on page 11

v “Referential integrity and CL commands” on page 263

v “Triggering automatic events in your database” on page 265

v “Creating trigger programs” on page 265

v “Adding triggers using iSeries Navigator” on page 266

v “How trigger programs work” on page 266

v “Trigger buffer field descriptions” on page 285

v “Adding triggers” on page 287

v “Removing triggers” on page 288

v “Enabling or disabling physical file triggers” on page 288

v “Triggers and their relationship to CL commands” on page 289

The following topics are added into “Using Open Query File (OPNQRYF) command” on page 123:

v “Open data path considerations” on page 171

v “Field names” on page 171

v “Expressions” on page 172

v “Built-in functions” on page 175

v “Restricted built-in functions” on page 188

What’s new as of April 2007

The list of IBM-supplied source files in “IBM-supplied source files” on page 16 was updated.

The tables in “Summary of runtime considerations for processing database files” on page 117 were

updated.

The table in “Displaying the files used by programs” on page 216 was updated.

In addition, miscellaneous technical changes have been made to the following topics:

v “Adding triggers” on page 287

v “Built-in functions” on page 175

v “Checking the expiration date of a physical file member” on page 104

v “Example: Implicitly shared access paths” on page 57

© Copyright IBM Corp. 1998, 2006 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v “Example 2: Using more than one field to join files” on page 67

v “Example 7: Joining three or more physical files” on page 74

v “Reorganizing a physical file member” on page 208

v “Specifying the access path maintenance (MAINT) parameter” on page 30

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Database programming (about 4305 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Database file concepts

This introduction to i5/OS® database files includes information about DB2 Universal Database for iSeries

interfaces to database files, the types and maximum sizes of database files, and the ways of describing

and protecting database files.

DB2 Universal Database for iSeries

DB2 Universal Database for iSeries is the integrated relational database manager on the i5/OS operating

system.

DB2 UDB for iSeries is part of the i5/OS operating system. It provides access to and protection for data.

It also provides advanced functions such as referential integrity and parallel database processing.

With DB2 UDB for iSeries, independent auxiliary storage pools (ASPs), or independent disk pools, allow

you to have one or more separate databases associated with each ASP group. You can set up databases

using primary independent disk pools.

 Related concepts

 Independent disk pools examples

2 System i: Database Database programming

|

|

|

http://www.adobe.com/products/acrobat/readstep.html

Interfaces to DB2 Universal Database for iSeries

DB2 Universal Database for iSeries provides several independent interfaces to the database.

Traditional system interface

The i5/OS traditional system interface is the full set of system commands and other non-SQL facilities

that you can use to access and change DB2 Universal Database for iSeries data.

The traditional system interface provides control language (CL) commands to create and manage

database objects. The system interface also has an integrated facility for describing data called data

description specifications (DDS).

WebSphere® Development Studio for iSeries, an IBM® licensed program (5722-WDS), provides several

utilities to describe and process data. The data file utility (DFU) can add, change, and delete data in a

database file described by RPG, DDS, and the interactive data description utility (IDDU). The source

entry utility (SEU) can specify and change data in files.

SQL

Structured Query Language (SQL) is a standardized language that can be used within host programming

languages or interactively to define, access, and manipulate data in a relational database.

SQL uses a relational model of data; that is, it perceives all data as existing in tables. The DB2 UDB for

iSeries database has SQL processing capability integrated into the system. It processes compiled programs

that contain SQL statements. To develop SQL applications, you need IBM DB2 Query Manager and SQL

Development Kit for iSeries (5722-ST1) for the system on which you develop your applications.

Interactive SQL is a function of the DB2 Query Manager and SQL Development Kit for iSeries licensed

program that allows SQL statements to run dynamically instead of in batch mode. Every interactive SQL

statement is read from the workstation, prepared, and run dynamically.

 Related concepts

 SQL programming

 Introduction to DB2 UDB for iSeries Structure Query Language

iSeries Navigator

iSeries Navigator is a no-charge feature of iSeries Access for Windows® that is bundled with the i5/OS

operating system. It provides a graphical, Microsoft® Windows interface to common i5/OS management

functions, including database.

Most database operations that you can access using iSeries Navigator are based on Structured Query

Language (SQL) functions. However, some operations are based on the traditional system interface, such

as control language (CL) commands.

 Related concepts

 iSeries Navigator

IBM Query for iSeries

IBM Query for iSeries is an IBM licensed program (5722-QU1) that you can use to select, format, and

analyze information from database files to produce reports and other files.

Database files

A database file is one of the several types of the system object type *FILE. A database file contains

descriptions of how input data is to be presented to a program from internal storage and how output

data is to be presented to internal storage from a program.

Database files contain members and records.

Database programming 3

Source file

A source file contains uncompiled programming code and input data needed to create some types of

objects. It can contain source statements for such items as high-level language programs and data

description specifications (DDS). A source file can be a source physical file, diskette file, tape file, or inline

data file.

Physical file

A physical file is a database file that stores application data. It contains a description of how data is to be

presented to or received from a program and how data is actually stored in the database.

A physical file consists of fixed-length records that can have variable-length fields. It contains one record

format and one or more members. From the perspective of the SQL interface, physical files are identical

to tables.

Logical file

A logical file is a database file that logically represents one or more physical files. It contains a

description of how data is to be presented to or received from a program. This type of database file

contains no data, but it defines record formats for one or more physical files.

Logical files let users access data in a sequence and format that are different from the physical files they

represent. From the perspective of the SQL interface, logical files are identical to views and indexes.

Member

Members are different sets of data, each with the same format, within one database file. Before you

perform any input or output operations on a file, the file must have at least one member.

As a general rule, a database file has only one member, the one created when the file is created. If a file

contains more than one member, each member serves as a subset of the data in the file.

Record

A record is a group of related data within a file. From the perspective of the SQL interface, records are

identical to rows.

 Related concepts

 “Why source files are used” on page 14
A source file contains input (source) data that is needed to create some types of objects. A source file

is used when a command alone cannot provide sufficient information for creating an object.

How database files are described

Records in database files can be described to the field or record level.

v Field-level description. The fields in the record are described to the system. For each field you can

describe the name, length, data type, and validity checks. You can also add a text description. Database

files that are created with field-level descriptions are referred to as externally described files.

v Record-level description. Only the length of the record in the file is described to the system. The

system does not know about fields in the file. These database files are referred to as program-described

files.

Whether a file is described to the field or record level, you must describe and create the file before you

can compile a program that uses that file. That is, the file must exist on the system before you use it.

4 System i: Database Database programming

Externally and program-described data

Programs can use either externally described or program-described files.

Programs can use file descriptions in two ways:

v The program uses the field-level descriptions that are part of the file. Because the field descriptions are

external to the program itself, the data is called externally described data.

v The program uses fields that are described in the program itself; therefore, the data is called

program-described data. Fields in files that are only described to the record level must be described in

the program using the file.

However, if you choose to describe a file to the field level, the system can do more for you. For example,

when you compile your programs, the system can extract information from an externally described file

and automatically include field information in your programs. Therefore, you do not have to code the

field information in each program that uses the file.

The following figure shows the typical relationships between files and programs on the system.

1 Externally Described Data

The program uses the field-level description of a file that is defined to the system. At compilation

time, the language compiler copies the external description of the file into the program.

2 Program-Described Data

The program uses a file that is described to the field level to the system, but it does not use the

actual field descriptions. At compilation time, the language compiler does not copy the external

description of the file into the program. The fields in the file are described in the program. In this

case, the field attributes (for example, field length) used in the program must be the same as the

field attributes in the external description.

3 Program-Described Data

The program uses a file that is described only to the record level to the system. The fields in the

file must be described in the program.

 Externally described files can also be described in a program. You might want to use this method for

compatibility with previous systems. For example, you want to run programs on a system that originally

came from a traditional file system. Those programs use program-described data, and the file is described

only to the record level. Later, you describe the file to the field level (externally described file) to use

more of the database functions that are available on the system. Your old programs that contain

program-described data can continue to use the externally described file while new programs use the

field-level descriptions that are part of the file. Over time, you can change one or more of your old

programs to use the field-level descriptions.

Database programming 5

Dictionary-described data

You can define a program-described or an externally described file with the record format description

that is stored in the data dictionary.

You can describe the record format information using the interactive data definition utility (IDDU). Even

though the file is program described, IBM Query for iSeries, iSeries Access, and the data file utility (DFU)

use the record format description that is stored in the data dictionary.

You can use IDDU to describe and then create a file. The file created is an externally described file. You

can also move the file description that is stored in an externally described file into the data dictionary.

The system always ensures that the descriptions in the data dictionary and in the externally described file

are identical.

Record format description

When you describe a database file to the system, you describe two major parts of the file: the record

format and the access path. The record format describes the order of the fields in each record.

The record format also describes each field in detail, including length, data type (for example, packed

decimal or character), validity checks, text description, and other information.

The following example shows the relationship between the record format and the records in a physical

file:

In this example of specifications for record format ITMMST, there are three fields. Field ITEM is zoned

decimal, 5 digits, with no decimal position. Field DESCRP is character, with 18 positions. Field PRICE is

zoned decimal, 5 digits, with two decimal positions.

A physical file can have only one record format. The record format in a physical file describes the way

the data is actually stored.

A logical file contains no data. Logical files are used to arrange data from one or more physical files into

different formats and sequences. For example, a logical file can change the order of the fields in the

physical file, or present to the program only some of the fields stored in the physical file.

A logical file record format can change the length and data type of fields that are stored in physical files.

The system does the necessary conversion between the physical file field description and the logical file

field description. For example, a physical file can describe a field FLDA as a packed decimal field of 5

digits, and a logical file that uses FLDA might redefine it as a zoned decimal field of 7 digits. In this case,

when your program uses the logical file to read a record, the system automatically converts (unpacks)

FLDA to zoned decimal format.

6 System i: Database Database programming

Access path description

An access path of a database file describes the order in which records are to be retrieved. When you

describe an access path, you describe whether it is a keyed sequence access path or an arrival sequence

access path.

 Related concepts

 “Describing access paths for database files” on page 83
An access path describes how records in a database file are retrieved. You can define the access path

for a database file in various ways.

Naming conventions for a database file

The file name, record format name, and field name can be as long as 10 characters and must follow all

system naming conventions. Some high-level languages have more restrictive naming conventions than

the system has.

For example, the RPG/400® language allows only 6-character names, while the system allows

10-character names. In some cases, you can temporarily change (rename) the system name to one that

meets the high-level language restrictions. For more information about renaming database fields in

programs, see your high-level language topic collection.

In addition, names must be unique as follows:

v Field names must be unique in a record format.

v Record format names and member names must be unique in a file.

v File names must be unique in a library.

Database data protection and monitoring

To ensure data integrity and consistency, you can enforce either business rules or data type rules.

You can enforce business rules using the following methods:

v Referential constraints let you put controls (constraints) on data in files you define as having a mutual

dependency. A referential constraint lets you specify rules to be followed when changes are made to

files with constraints.

v Triggers let you run your own program to take any action or evaluate changes when files are changed.

When predefined changes are made or attempted, a trigger program is run.

The system performs data type checking in certain instances to ensure, for example, that data in a

numeric field is really numeric.

In addition, the system protects data from loss using the following methods:

v Journaling and commitment control functions

v System-managed access path protection (SMAPP) support
 Related concepts

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

 “Recovering and restoring your database” on page 224
You can use several i5/OS save and restore functions to recover your database after the system loses

data.

Database programming 7

|
|
|

Database file sizes

Before you design and create a database file, you need to know the maximum size allowed for the file.

The following table lists the maximum values for database files.

 Description Maximum value

Number of bytes in a record 32 766 bytes

Number of fields in a record format 8 000 fields

Number of key fields in a file 120 fields

Size of key for physical and logical files 32 768 characters1

Size of key for ORDER BY (SQL) and KEYFLD

(OPNQRYF)

10 000 bytes

Number of records contained in a file member 4 294 967 294 records2

Number of bytes in a file member 1 869 162 846 624 bytes3

Number of bytes in an access path 1 099 511 627 776 bytes3 5

Number of keyed logical files built over a physical file

member

3686 files

Number of physical file members in a logical file

member

32 members

Number of members that can be joined 256 members

Size of a character or DBCS field 32 766 bytes4

Size of a zoned decimal or packed decimal field 63 digits

Maximum number of distinct database files that can be

in use at one time

~500 000

Maximum number of members in a physical or logical

file

32 767

Maximum number of constraints per physical file 300 constraints

Maximum number of triggers per physical file 300 triggers

Maximum number of recursive insert and update trigger

calls

200

1 When a first-changed-first-out (FCFO) access path is specified for the file, the maximum value for the size of the

key for physical and logical files is 32 763 for ACCPTHSIZ(*MAX1TB) and 1995 characters for

ACCPTHSIZ(*MAX4GB).

2 For files with keyed sequence access paths, the maximum number of records in a member varies and can be

estimated using the following formulas.

When ACCPTHSIZ(*MAX4GB) is specified, use the following formula:

 2,867,200,000

10 + (.8 x key length)

When ACCPTHSIZ(*MAX1TB) is specified, use the following formula:

 725,680,000,000

12 + (.8 x key length)

These are estimated values. The actual maximum number of records can vary significantly.

3 Both the number of bytes in a file member and the number of bytes in an access path must be looked at when

message CPF5272 is sent indicating that the maximum system object size has been reached.

4 The maximum size of a variable-length character or DBCS field is 32 740 bytes. DBCS-graphic field lengths are

expressed in terms of characters; therefore, the maximums are 16 383 characters (fixed length) and 16 370 characters

(variable length).

5 The maximum is 4 294 966 272 bytes if the access path is created with a maximum size of 4 gigabytes (GB),

ACCPTHSIZ(*MAX4GB).

8 System i: Database Database programming

|

|
|
|

|
|

|

|
|

|

|
|

|

These are maximum values. There are situations where the actual limit you experience will be less than

the stated maximum. For example, certain high-level languages can have more restrictive limits than

those described above.

Keep in mind that performance can suffer as you approach some of these maximums. For example, the

more logical files you have built over a physical file, the greater the chance that system performance can

suffer (if you are frequently changing data in the physical file that causes a change in many logical file

access paths).

Normally, an i5/OS database file can grow until it reaches the maximum size allowed on the operating

system. The operating system normally does not allocate all the file space at once. Rather, it occasionally

allocates additional space as the file grows larger. This method of automatic storage allocation provides

the best combination of good performance and effective auxiliary storage space management.

If you want to control the size of the file, the storage allocation, and whether the file should be connected

to auxiliary storage, you can use the SIZE, ALLOCATE, and CONTIG parameters on the Create Physical

File (CRTPF) and the Create Source Physical File (CRTSRCPF) commands.

You can use the following formulas to estimate the disk size of your physical and logical files.

v For a physical file (excluding the access path) that does not contain null-capable fields:

Disk size = (number of valid and deleted records + 1) x

 (record length + 1) + 20480 x (number of members) + 8192

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and

CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on

the SIZE keyword must be used instead of the number of records.
v For a physical file (excluding the access path) that contains null-capable fields:

Disk size = (number of valid and deleted records + 1) x

 (record length + 1) + 20480 x (number of members) +

 8192 + ((number of fields in format ÷ 8) rounded up) x

 (number of valid and deleted records + 1)

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and

CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on

the SIZE keyword must be used instead of the number of records.

v For a logical file (excluding the access path):

Disk size = (12288) x (number of members) + 8192

v For a keyed sequence access path the generalized equation for index size, per member, is:

let a = (LimbPageUtilization - LogicalPageHeaderSize) *

 (LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)

let b = NumKeys * (TerminalTextPerKey + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 + CommonTextPerKey * [LimbPageUtilization + LeafPageUtilization

 - 2 * (LogicalPageHeaderSize - NodeSize)]

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

let c = CommonTextPerKey * [2 * NodeSize - CommonTextPerKey

 - NumKeys * (TerminalTextPerKey + 2 * NodeSize)]

Database programming 9

|
|

|
|
|
|

|

then NumberLogicalPages = ceil([-b - sqrt(b ** 2 - 4 * a * c)]

 / (2 * a))

and TotalIndexSize = NumberLogicalPages * LogicalPageSize

This equation is used for both three and four byte indexes by changing the set of constants in the

equation as follows.

 Constant Three-byte index Four-byte index

NodeSize 3 4

LogicalPageHeaderSize 16 64

LimbPageUtilization .75 * LogicalPageSize .75 * LogicalPageSize

LeafPageUtilization .75 * LogicalPageSize .80 * LogicalPageSize

The remaining constants, CommonTextPerKey and TerminalTextPerKey, are probably best estimated by

using the following formulas:

CommonTextPerKey = [min(max(NumKeys - 256,0),256)

 + min(max(NumKeys - 256 * 256,0),256 * 256)

 + min(max(NumKeys - 256 * 256 * 256,0),

 256 * 256 * 256)

 + min(max(NumKeys - 256 * 256 * 256 * 256,0),

 256 * 256 * 256 * 256)]

 * (NodeSize + 1) / NumKeys

TerminalTextPerKey = KeySizeInBytes - CommonTextPerKey

This should reduce everything needed to calculate the index size to the type of index (that is, 3 or 4

byte), the total key size, and the number of keys. The estimate should be greater than the actual index

size because the common text estimate is minimal.

Given this generalized equation for index size, the LogicalPageSize is as follows.

 Table 1. LogicalPageSize values

Key Length *MAX4GB (3-byte) LogicalPageSize *MAX1TB (4-byte) LogicalPageSize

1 - 500 4096 bytes 8192 bytes

501 - 1000 8192 bytes 16 384 bytes

1001 - 2000 16 384 bytes 32 768 bytes

2001 - 10 000 N/A 65 536 bytes

10 001 - 18 000 N/A 131 072 bytes

18 001 - 26 000 N/A 262 144 bytes

26 001 - 32 768 N/A 524 288 bytes

The LogicalPageSizes in Table 1 generate the following LimbPageUtilizations.

Key Length

*MAX4GB (3-byte)

LimbPageUtilization

*MAX1TB (4-byte)

LimbPageUtilization

1 - 500 3072 bytes 6144 bytes

501 - 1000 6144 bytes 12 288 bytes

1001 - 2000 12 288 bytes 24 576 bytes

2001 - 10 000 N/A 49 152 bytes

10 001 - 18 000 N/A 98 304 bytes

18 001 - 26 000 N/A 196 608 bytes

26 001 - 32 768 N/A 393 216 bytes

10 System i: Database Database programming

The LogicalPageSizes in Table 1 on page 10 generate the following LeafPageUtilizations.

Key Length

*MAX4GB (3-byte)

LeafPageUtilization

*MAX1TB (4-byte)

LeafPageUtilization

1 - 500 3072 bytes 6554 bytes

501 - 1000 6144 bytes 13 107 bytes

1001 - 2000 12 288 bytes 26 214 bytes

2001 - 10 000 N/A 52 428 bytes

10 001 - 18 000 N/A 104 857 bytes

18 001 - 26 000 N/A 209 715 bytes

26 001 - 32 768 N/A 419 430 bytes

Then to simplify the generalized equation for index size, let:

CommonTextPerKey = 0

which would cause:

TerminalTextPerKey = KeySizeInBytes

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

c = 0

NumberLogicalPages = ceil([-b - sqrt(b ** 2)]

 / (2 * a))

 = ceil[(-2 * b) / (2 * a)]

 = ceil[-b/a]

Example: Database file sizes

This example shows how to estimate the maximum size of a database file.

A *MAX1TB (4-byte) access path with 120 byte keys and 500 000 records TotalIndexSize has a

TotalIndexSize in bytes as follows:

a = (LimbPageUtilization - LogicalPageHeaderSize) *

 (LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)

 = (6144 - 64) *

 (64 - 6554 - 2 * 4)

 = 6080 * -6498

 = -39,507,840

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

 = 500,000 * (120 + 2 * 4) *

 (6144 - 64 + 2 * 4)

 - 2 * 4 * (6554 - 64 + 2 * 4)

 = 500,000 * 128 *

 6088

 - 8 * 6498

 = 3.896319e+11

NumberLogicalPages = ceil[-b/a]

 = ceil[-3.896319e+11/-39507840]

Database programming 11

= 9863

TotalIndexSize = NumberLogicalPages * LogicalPageSize

 = 9863 * 8192

 = 80,797,696 bytes

The equation for index size in previous versions of the operating system produces the following result:

TotalIndexSize = (number of keys) * (key length + 8) *

 (0.8) * (1.85) + 4096

 = (NumKeys) * (KeySizeInBytes + 8) *

 (0.8) * (1.85) + 4096

 = 500000 * 128 *

 .8 * 1.85 + 4096

 = 94,724,096

This estimate can differ significantly from your file. The keyed sequence access path depends heavily on

the data in your records. The only way to get an accurate size is to load your data and display the file

description.

The following table shows a list of minimum file sizes.

 Description Minimum size

Physical file without a member 8192 bytes

Physical file with a single member 20 480 bytes

Keyed sequence access path 12 288 bytes

Note: Additional space is not required for an arrival sequence access path.

In addition to the file sizes, the system maintains internal formats and directories for database files.

(These internal objects are owned by user profile QDBSHR.) The following are estimates of the sizes of

those objects:

v For any file not sharing another file’s format:

 Format size = (144 x number of fields) + 4096

v For files sharing their format with any other file:

 Format sharing directory size = (16 x number of files

 sharing the format) + 4096

v For each physical file and each physical file member having a logical file or logical file member built

over it:

 Data sharing directory size = (16 x number of files

 or members sharing data) + 4096

v For each file member having a logical file member sharing its access path:

 Access path sharing directory size = (16 x number of files

 or members sharing access path) + 4096

Setting up database files

You can create, define, and secure a database file using the traditional system interface or iSeries

Navigator.

 Related concepts

12 System i: Database Database programming

|

|
|

|
|

|
|

“Traditional system interface” on page 3
The i5/OS traditional system interface is the full set of system commands and other non-SQL facilities

that you can use to access and change DB2 Universal Database for iSeries data.

 Getting started with iSeries Navigator

Creating and describing database files

You can create and describe a library and a database file using the traditional system interface.

The system supports several methods for creating and describing a database file:

v Interactive data definition utility (IDDU)

You can create a database file by using IDDU, part of the WebSphere Development Studio for iSeries

licensed program. If you are using IDDU to describe your database files, you might also consider using

it to create your files.

v Control language (CL), using the source entry utility (SEU) or the data file utility (DFU) to specify data

description specifications (DDS)

You can create a database file by using CL. The CL database file create commands are Create Physical

File (CRTPF), Create Logical File (CRTLF), and Create Source Physical File (CRTSRCPF). After a

database file is created, you can use SEU or DFU to describe data in the file. SEU and DFU are part of

the IBM WebSphere Development Studio for iSeries licensed program. These topics focus on how to

create files using these methods.

v Structured Query Language (SQL)

You can create and describe a database file (table) by using SQL statements. SQL is the IBM relational

database language. It can be used to interactively describe and create database files.

v iSeries Navigator

You can also create a database file (table) using iSeries Navigator.

 Related concepts

 Creating a table

 Getting started with iSeries Navigator

 SQL programming

 “Traditional system interface” on page 3
The i5/OS traditional system interface is the full set of system commands and other non-SQL facilities

that you can use to access and change DB2 Universal Database for iSeries data.

Creating a library

A library is a system object that serves as a directory to other objects. A library groups related objects and

allows you to find objects by name. To create a library, use iSeries Navigator or the Create Library

(CRTLIB) command.

The system-recognized identifier for the object type is *LIB. Before you can create a database file, you

must create a library to store it. You can create a library in the following ways:

v You can use iSeries Navigator to create a library (in SQL, called a schema).

v You can use the Create Library (CRTLIB) command to create the library.

When creating a library, you can specify the auxiliary storage pool (ASP) where the library is to be

stored. This allows you to create multiple, separate databases.

Creating a library (schema) using iSeries Navigator

To create a library (in SQL, called a schema) from iSeries Navigator, follow these steps:

 1. From iSeries Navigator, expand the system you want to use.

 2. Expand Databases and the database that you want to work with.

Database programming 13

3. Right-click Schemas and click New Schema.

 4. On the New Schema window, specify a schema name.

 5. To add this schema to the list of schemas displayed, select Add to displayed list of schemas.

 6. To create as a standard schema, select Create as a standard schema.

 7. To create a data dictionary, select Create a data dictionary.

 8. Specify a disk pool to contain the schema.

 9. Specify a description.

10. Click OK.
 Related reference

 Create Library (CRTLIB) command

Setting up source files

You can either create a source file or use an IBM-supplied source file.

 Related concepts

 “Using source files” on page 240
DB2 Universal Database for iSeries provides a range of support for source files.

Why source files are used:

A source file contains input (source) data that is needed to create some types of objects. A source file is

used when a command alone cannot provide sufficient information for creating an object.

 For example, to create a control language (CL) program, you must use a source file that contains source

statements in the form of commands. To create a logical file, you must use a source file that contains data

description specifications (DDS).

To create the following objects, source files are required:

v High-level language programs

v Control language programs

v Logical files

v Intersystem communications function (ICF) files

v Commands

To create the following objects, source files can be used, but are not required:

v Physical files

v Display files

v Printer files

v Translate tables

A source file can be a database file, a diskette file, a tape file, or an inline data file. (An inline data file is

included as part of a job.) A source database file is another type of database file. You can use a source

database file as you use any other database file on the system.

 Related concepts

 “Database files” on page 3
A database file is one of the several types of the system object type *FILE. A database file contains

descriptions of how input data is to be presented to a program from internal storage and how output

data is to be presented to internal storage from a program.

Creating a source file:

14 System i: Database Database programming

Before creating a source file, you should first create a library. Then use the Create Source Physical File

(CRTSRCPF), Create Physical File (CRTPF), or Create Logical File (CRTLF) command to create a source

file.

 v Create Source Physical File (CRTSRCPF) command

Normally, you use the CRTSRCPF command to create a source file, because many of the parameters

default to values that you usually want for a source file.

v Create Physical File (CRTPF), or Create Logical File (CRTLF) command

If you want to create a source file and define the record format and fields using data description

specifications (DDS), use the Create Physical File (CRTPF) or Create Logical File (CRTLF) command.

As an alternative to creating a source file, you can use source files supplied with the i5/OS and other

licensed programs.

 Related concepts

 “Creating a library” on page 13
A library is a system object that serves as a directory to other objects. A library groups related objects

and allows you to find objects by name. To create a library, use iSeries Navigator or the Create Library

(CRTLIB) command.
 Related reference

 Create Physical File (CRTPF) command

 Create Logical File (CRTLF) command

Creating a source file using the Create Source Physical File (CRTSRCPF) command:

You can create a source file using the default values of the Create Source Physical File (CRTSRCPF)

command.

CRTSRCPF FILE(QGPL/FRSOURCE) TEXT(’Source file’)

The CRTSRCPF command creates a physical file, but with attributes appropriate for source physical files.

For example, the default record length for a source file is 92 (80 for the source data field, 6 for the source

sequence number field, and 6 for the source date field).

 Related reference

 Create Source Physical File (CRTSRCPF) command

Creating a source file with DDS:

If you want to create a source file with data description specifications (DDS), use the Create Physical File

(CRTPF) or Create Logical File (CRTLF) command.

 If you want to create a source file for which you need to define the record format, use the CRTPF or

CRTLF command. If you create a source logical file, the logical file member should only refer to one

physical file member to avoid duplicate keys.

The following example shows the DDS needed to define the record format for a source file using the

CRTPF command:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* R RECORD1

 A F1 6S 2

 A F2 6S

 A F3 92A

 Related reference

 Create Physical File (CRTPF) command

 Create Logical File (CRTLF) command

Database programming 15

Creating a source file without DDS:

When you create a source physical file without using DDS, but by specifying the record length (RCDLEN

parameter) on the Create Source Physical File (CRTSRCPF) command, the source created contains three

fields: SRCSEQ, SRCDAT, and SRCDTA.

 The record length must include 12 characters for sequence number and date-of-last-change fields so that

the length of the data portion of the record equals the record length minus 12. The data portion of the

record can be defined to contain more than one field (each of which must be character or zoned decimal).

If you want to define the data portion of the record as containing more than one field, you must define

the fields using DDS.

A record format that consists of the following three fields is automatically used for a source physical file

that is created with the CRTSRCPF command.

 Field Name Data type and length Description

1 SRCSEQ Zoned decimal, 6 digits, 2

decimal positions

Sequence number for record

2 SRCDAT Zoned decimal, 6 digits, no

decimal positions

Date of last update of record

3 SRCDTA Character, any length Data portion of the record (text)

Note: For all IBM-supplied database source files, the length of the data portion is 80 bytes. For

IBM-supplied device source files, the length of the data portion is the maximum record length for

the associated device.

IBM-supplied source files:

For your convenience, the i5/OS licensed program and other licensed programs provide a database

source file for each type of source.

 This table shows these IBM-supplied source files.

 File name Library name Used to create

QCBLLESRC QGPL ILE COBOL programs

QCBLSRC QGPL System/38™ compatible COBOL

programs

QCLSRC QGPL CL programs

QCMDSRC QGPL Command definition statements

QCPPSRC QGPL C++ programs

QCSRC QGPL C programs

QDDSSRC QGPL Files definition statements

QFMTSRC QGPL Sort source

QLBLSRC QGPL COBOL/400® programs

QPLISRC QGPL PL/I programs

QPNLSRC QGPL Panel group (UIM) definition

statements

QREXSRC QGPL REXX procedures

QRPGLESRC QGPL ILE RPG programs

QRPGSRC QGPL RPG/400 and System/38 compatible

RPG programs

QS36PRC #LIBRARY System/36™ compatible COBOL and

RPG II procedures

QS36SRC #LIBRARY System/36 compatible COBOL and

RPG programs

16 System i: Database Database programming

||||

|||
|||
|

File name Library name Used to create

QTBLSRC QGPL Translation tables

QTXTSRC QGPL Text

You can either add your source members to these files or create your own source files. Normally, you

want to create your own source files using the same names as the IBM-supplied files, but in different

libraries. The IBM-supplied source files are created with the file names used for the corresponding create

command (for example, the Create CL Program (CRTCLPGM) command uses the QCLSRC file name as

the default). Additionally, the IBM-supplied programmer menu uses the same default names. (If you use

the same file names as the IBM-supplied names, ensure that the library containing your source files

precedes the library containing the IBM-supplied source files in the library list.)

Source file attributes:

Here are the attributes common to most source files and the restrictions on using these attributes.

 Source files usually have the following attributes:

v A record length of 92 characters (this includes a 6-byte sequence number, a 6-byte date, and 80 bytes of

source).

v Keys (sequence numbers) that are unique even though the access path does not specify unique keys.

You are not required to specify a key for a source file. Default source files are created without keys

(arrival sequence access path). A source file created with an arrival sequence access path requires less

storage space and reduces save/restore time in comparison to a source file for which a keyed sequence

access path is specified.

v More than one member.

v Member names that are the same as the names of the objects that are created using them.

v The same record format for all records.

v Relatively few records in each member compared to most data files.

Some restrictions are:

v The source sequence number must be used as a key, if a key is specified.

v The key, if one is specified, must be in ascending sequence.

v The access path cannot specify unique keys.

v The ALTSEQ keyword is not allowed in data description specifications (DDS) for source files.

v The first field must be a 6-digit sequence number field containing zoned decimal data and two decimal

digits.

v The second field must be a 6-digit date field containing zoned decimal data and zero decimal digits.

v All fields following the second field must be zoned decimal or character.

Describing database files

You can use several methods to describe i5/OS database files. This topic discusses how to describe a

database file with data description specifications (DDS) because DDS has the most options for defining

data.

If you want to describe a file just to the record level, you can use the record length (RCDLEN) parameter

on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands. If you want

to describe your file to the field level, several methods can be used to describe data to the database

system: interactive data definition utility (IDDU), Structured Query Language (SQL) commands, or data

description specifications (DDS).

Interactive data definition utility (IDDU)

Database programming 17

|||

|||
|||
|

|
|
|
|
|
|
|

Physical files can be described with IDDU. You might use IDDU because it is a menu-driven,

interactive method of describing data. You might be familiar with describing data using IDDU in

a System/36 environment. In addition, IDDU allows you to describe multiple-format physical

files for use with Query, iSeries Access, and the data file utility (DFU).

When you use IDDU to describe your files, the file definition becomes part of the i5/OS data

dictionary.

DB2 Universal Database for iSeries Structured Query Language (SQL)

 SQL can be used to describe a database file. It supports statements to describe the fields in the

database file and to create the file.

SQL was created by IBM to meet the need for a standard and common database language. It is

currently used on all IBM DB2 platforms and on many other database implementations from

many different manufacturers.

When you create a database file using the DB2 UDB for iSeries SQL, the file description is

automatically added to a data dictionary in the SQL collection. The data dictionary (or catalog) is

then automatically maintained by the system.

SQL is the language of choice for accessing databases on many other platforms. It is the only

language for distributed databases and heterogeneous systems.

Data description specifications (DDS)

 Externally described files can be described with DDS. DDS provides descriptions of the

field-level, record-level, and file-level information.

You might use DDS because it provides the most options for the programmer to describe data in

the database. For example, only with DDS can you describe key fields in logical files.

The DDS form provides a common format for describing data externally. DDS data is column

sensitive. The examples that follow have numbered columns and show the data in the correct

columns.

After a database file is described, you can view the description.

 Related concepts

IDDU Use PDF

 SQL programming

 SQL reference

 “Displaying information about database files” on page 214
Using iSeries Navigator and CL commands, you can display various types of information about

database files.

Describing database files using DDS:

When you describe a database file using data description specifications (DDS), you can describe the file at

the file, record-format, join, field, key-field, and select/omit-field levels.

 v File-level DDS provides the system information about the entire file. For example, you can specify

whether all the key field values in the file must be unique.

v Record format-level DDS provides the system information about a specific record format in the file. For

example, when you describe a logical file record format, you can specify the physical file that it is

based on.

v Join-level DDS provides the system information about the physical files that are used in a join logical

file. For example, you can specify how to join two physical files.

v Field-level DDS provides the system information about individual fields in the record format. For

example, you can specify the name and attributes of each field.

18 System i: Database Database programming

v Key field-level DDS provides the system information about the key fields for the file. For example, you

can specify which fields in the record format are to be used as key fields.

v Select/omit field-level DDS provides the system information about which records are to be returned to

the program during file processing. Select/omit specifications apply to logical files only.
 Related concepts

 DDS for physical and logical files

Example: Describing a physical file using DDS:

This example shows how to describe a physical file using DDS.

 The DDS for a physical file, as shown in the next example, must be in the following order:

1 File-level entries (optional). The UNIQUE keyword is used to indicate that the value of the key

field in each record in the file must be unique. Duplicate key values are not allowed in this file.

2 Record format-level entries. The record format name is specified, along with an optional text

description.

3 Field-level entries. The field names and field lengths are specified, along with an optional text

description for each field.

4 Key field-level entries (optional). The field names used as key fields are specified.

5 Comment (optional).
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A 5

 A 1 UNIQUE

 A 2 R ORDHDR TEXT(’Order header record’)

 A 3 CUST 5 0 TEXT(’Customer number’)

 A ORDER 5 0 TEXT(’Order number’)

 A .

 A .

 A .

 A K CUST

 A 4 K ORDER

The following example shows a physical file ORDHDRP (an order header file), with an arrival sequence

access path without key fields specified, and the DDS necessary to describe that file.

Record format of physical file ORDHDRP

 Customer number (CUST) — Packed decimal length 5, No decimals

Order number (ORDER) — Packed Decimal Length 5, No decimals

Order date (ORDATE) — Packed decimal length 6, No decimals

Purchase order number (CUSORD) — Packed decimal length 15, No decimals

Shipping instructions (SHPVIA) — Character length 15

Order status (ORDSTS) — Character length 1

...

State (STATE) — Character length 2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST 5 0 TEXT(’Customer Number’)

 A ORDER 5 0 TEXT(’Order Number’)

 A ORDATE 6 0 TEXT(’Order Date’)

Database programming 19

A CUSORD 15 0 TEXT(’Customer Order No.’)

 A SHPVIA 15 TEXT(’Shipping Instr’)

 A ORDSTS 1 TEXT(’Order Status’)

 A OPRNME 10 TEXT(’Operator Name’)

 A ORDAMT 9 2 TEXT(’Order Amount’)

 A CUTYPE 1 TEXT(’Customer Type’)

 A INVNBR 5 0 TEXT(’Invoice Number’)

 A PRTDAT 6 0 TEXT(’Printed Date’)

 A SEQNBR 5 0 TEXT(’Sequence Number’)

 A OPNSTS 1 TEXT(’Open Status’)

 A LINES 3 0 TEXT(’Order Lines’)

 A ACTMTH 2 0 TEXT(’Accounting Month’)

 A ACTYR 2 0 TEXT(’Accounting Year’)

 A STATE 2 TEXT(’State’)

 A

The R in position 17 indicates that a record format is being defined. The record format name ORDHDR is

specified in positions 19 through 28.

You make no entry in position 17 when you are describing a field; a blank in position 17 along with a

name in positions 19 through 28 indicates a field name.

The data type is specified in position 35. The valid data types are:

Entry Meaning

A Character

P Packed decimal

S Zoned decimal

B Binary

F Floating point

H Hexadecimal

L Date

T Time

Z Timestamp

Notes:

1. For double-byte character set (DBCS) data types, see “Double-byte character set

considerations” on page 291.

2. The system performs arithmetic operations more efficiently for the packed-decimal than for

the zoned-decimal data type.

3. Some high-level languages do not support floating-point data.

4. Some special considerations that apply when you are using floating-point fields are:

v The precision associated with a floating-point field is a function of the number of bits

(single or double precision) and the internal representation of the floating-point value. This

translates into the number of decimal digits supported in the significant and the maximum

values that can be represented in the floating-point field.

v When a floating-point field is defined with fewer digits than supported by the precision

specified, that length is only a presentation length and has no effect on the precision used

for internal calculations.

v Although floating-point numbers are accurate to 7 (single) or 15 (double) decimal digits of

precision, you can specify up to 9 or 17 digits. You can use the extra digits to uniquely

20 System i: Database Database programming

establish the internal bit pattern in the internal floating-point format so identical results are

obtained when a floating-point number in internal format is converted to decimal and back

again to internal format.

If the data type (position 35) is not specified, the decimal positions entry is used to determine the data

type. If the decimal positions (positions 36 through 37) are blank, the data type is assumed to be

character (A); if these positions contain a number 0 through 31, the data type is assumed to be packed

decimal (P).

The length of the field is specified in positions 30 through 34, and the number of decimal positions (for

numeric fields) is specified in positions 36 and 37. If a packed or zoned decimal field is to be used in a

high-level language program, the field length must be limited to the length allowed by the high-level

language you are using. The length is not the length of the field in storage but the number of digits or

characters specified externally from storage. For example, a 5-digit packed decimal field has a length of 5

specified in DDS, but it uses only 3 bytes of storage.

Character or hexadecimal data can be defined as variable length by specifying the VARLEN field-level

keyword. Generally you would use variable length fields, for example, as an employee name within a

database. Names usually can be stored in a 30-byte field; however, there are times when you need 100

bytes to store a very long name. If you always define the field as 100 bytes, you waste storage. If you

always define the field as 30 bytes, some names are truncated.

You can use the DDS VARLEN keyword to define a character field as variable length. You can define this

field as:

v Variable-length with no allocated length. This allows the field to be stored using only the number of

bytes equal to the data (plus two bytes per field for the length value and a few overhead bytes per

record). However, performance might be affected because all data is stored in the variable portion of

the file, which requires two disk read operations to retrieve.

v Variable-length with an allocated length equal to the most likely size of the data. This allows most field

data to be stored in the fixed portion of the file and minimizes unused storage allocations common

with fixed-length field definitions. Only one read operation is required to retrieve field data with a

length less than the allocated field length. Field data with a length greater than the allocated length is

stored in the variable portion of the file and requires two read operations to retrieve the data.

Example: Describing a logical file using DDS:

This example shows how to describe a logical file using DDS.

 The DDS for a logical file, as shown in the next example, must be in the following order:

1 File-level entries (optional). In this example, the UNIQUE keyword indicates that for this file the

key value for each record must be unique; no duplicate key values are allowed.

For each record format:

2 Record format-level entries. In this example, the record format name, the associated physical file,

and an optional text description are specified.

3 Field-level entries (optional). In this example, each field name used in the record format is

specified.

4 Key field-level entries (optional). In this example, the Order field is used as a key field.

5 Select/omit field-level entries (optional). In this example, all records whose Opnsts field contains

a value of N are omitted from the file’s access path. That is, programs reading records from this

file never see a record whose OPNSTS field contains an N value.

6 Comment.

Database programming 21

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A 6

 A 1 UNIQUE

 A 2 R ORDHDR PFILE(ORDHDRP)

 A 3 ORDER TEXT(’Order number’)

 A CUST TEXT(’Customer number’)

 A .

 A .

 A .

 A 4 K ORDER

 A O OPNSTS 5 CMP(EQ ’N’)

 A S ALL

A logical file must be created after all physical files on which it is based are created. The PFILE keyword

in this example is used to specify the physical file or files on which the logical file is based.

Record formats in a logical file can be:

v A new record format based on fields from a physical file

v The same record format as in a previously described physical or logical file.

Fields in the logical file record format must either appear in the record format of at least one of the

physical files or be derived from the fields of the physical files on which the logical file is based.

 Related concepts

 “Sharing existing record format descriptions in a database file” on page 25
A record format can be described once in either a physical or a logical file (except a join logical file)

and can be used by many files. When you describe a new file, you can specify that the record format

of an existing file is to be used by the new file.

 “Setting up logical files” on page 39
A logical file contains no data, but it defines record formats for one or more physical files. You can

create various logical files and describe their record formats and access paths using data description

specifications (DDS).

 Control language

Additional DDS field definition functions:

You can describe additional information about the fields in the physical and logical file record formats

with function keywords (positions 45 through 80 on the DDS form).

 Some of the things you can specify include:

v Validity checking keywords to verify that the field data meets your standards. For example, you can

describe a field to have a valid range of 500 to 900. (This checking is done only when data is typed on

a keyboard to the display.)

v Editing keywords to control how a field should be displayed or printed. For example, you can use the

EDTCDE(Y) keyword to specify that a date field is to appear as MM/DD/YY. The EDTCDE and

EDTWRD keywords can be used to control editing. (This editing is done only when used in a display

or printer file.)

v Documentation, heading, and name control keywords to control the description and name of a field.

For example, you can use the TEXT keyword to document a description of each field. This text

description is included in your compiler list to better document the files used in your program. The

TEXT and COLHDG keywords control text and column-heading definitions. The ALIAS keyword can

be used to provide a more descriptive name for a field. The alias, or alternative name, is used in a

program (if the high-level language supports alias names).

v Content and default value keywords to control the null content and default data for a field. The

ALWNULL keyword specifies whether a null value is allowed in the field. If ALWNULL is used, the

default value of the field is null. If ALWNULL is not present at the field level, the null value is not

22 System i: Database Database programming

allowed, character and hexadecimal fields default to blanks, and numeric fields default to zeros, unless

the DFT (default) keyword is used to specify a different value.

Using existing field descriptions and field reference files to describe a database file:

If you want to use a field description in an existing file, you can copy that field description into your

new file description. You can also create a field reference file to contain the field descriptions that you

need for any group of files.

 DDS keywords REF and REFFLD allow you to refer to a field description in an existing file. This helps

reduce the effort of coding DDS statements. It also helps ensure that the field attributes are used

consistently in all files that use the field.

In addition, you can create a physical file for the sole purpose of using its field descriptions. That is, the

file does not contain data; it is used only as a reference for the field descriptions for other files. This type

of file is known as a field reference file. A field reference file is a physical file containing no data, just

field descriptions.

You can use a field reference file to simplify record format descriptions and to ensure that field

descriptions are used consistently. You can create a field reference file using DDS and the Create Physical

File (CRTPF) command.

After the field reference file is created, you can build physical file record formats from this file without

describing the characteristics of each field in each file. When you build physical files, all you need to do

is to refer to the field reference file (using the REF and REFFLD keywords) and specify any changes. Any

changes to the field descriptions and keywords specified in your new file override the descriptions in the

field reference file.

In the following example, a field reference file named DSTREFP is created for distribution applications.

The following example shows the DDS needed to describe DSTREFP.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* FIELD REFERENCE FILE (DSTREFP)

 A R DSTREF TEXT(’Field reference file’)

 A

 A* FIELDS DEFINED BY CUSTOMER MASTER RECORD (CUSMST)

 A CUST 5 0 TEXT(’Customer numbers’)

 A COLHDG(’CUSTOMER’ ’NUMBER’)

 A NAME 20 TEXT(’Customer name’)

 A ADDR 20 TEXT(’Customer address’)

 A

 A CITY 20 TEXT(’Customer city’)

 A

 A STATE 2 TEXT(’State abbreviation’)

 A CHECK(MF)

 A CRECHK 1 TEXT(’Credit check’)

 A VALUES(’Y’ ’N’)

 A SEARCH 6 0 TEXT(’Customer name search’)

 A COLHDG(’SEARCH CODE’)

 A ZIP 5 0 TEXT(’Zip code’)

 A CHECK(MF)

 A CUTYPE 15 COLHDG(’CUSTOMER’ ’TYPE’)

 A RANGE(1 5)

 A

 A* FIELDS DEFINED BY ITEM MASTER RECORD (ITMAST)

 A ITEM 5 TEXT(’Item number’)

 A COLHDG(’ITEM’ ’NUMBER’)

 A CHECK(M10)

 A DESCRP 18 TEXT(’Item description’)

 A PRICE 5 2 TEXT(’Price per unit’)

 A EDTCDE(J)

 A CMP(GT 0)

Database programming 23

A COLHDG(’PRICE’)

 A ONHAND 5 0 TEXT(’On hand quantity’)

 A EDTCDE(Z)

 A CMP(GE 0)

 A COLHDG(’ON HAND’)

 A WHSLOC 3 TEXT(’Warehouse location’)

 A CHECK(MF)

 A COLHDG(’BIN NO’)

 A ALLOC R REFFLD(ONHAND *SRC)

 A TEXT(’Allocated quantity’)

 A CMP(GE 0)

 A COLHDG(’ALLOCATED’)

 A

 A* FIELDS DEFINED BY ORDER HEADER RECORD (ORDHDR)

 A ORDER 5 0 TEXT(’Order number’)

 A COLHDG(’ORDER’ ’NUMBER’)

 A ORDATE 6 0 TEXT(’Order date’)

 A EDTCDE(Y)

 A COLHDG(’DATE’ ’ORDERED’)

 A CUSORD 15 TEXT(’Cust purchase ord no.’)

 A COLHDG(’P.O.’ ’NUMBER’)

 A SHPVIA 15 TEXT(’Shipping instructions’)

 A ORDSTS 1 TEXT(’Order status code’)

 A COLHDG(’ORDER’ ’STATUS’)

 A OPRNME R REFFLD(NAME *SRC)

 A TEXT(’Operator name’)

 A COLHDG(’OPERATOR NAME’)

 A ORDAMT 9 2 TEXT(’Total order value’)

 A COLHDG(’ORDER’ ’AMOUNT’)

 A INVNBR 5 0 TEXT(’Invoice number’)

 A COLHDG(’INVOICE’ ’NUMBER’)

 A PRTDAT 6 0 EDTCDE(Y)

 A COLHDG(’PRINTED’ ’DATE’)

 A SEQNBR 5 0 TEXT(’Sequence number’)

 A COLHDG(’SEQ’ ’NUMBER’)

 A OPNSTS 1 TEXT(’Open status’)

 A COLHDG(’OPEN’ ’STATUS’)

 A LINES 3 0 TEXT(’Lines on invoice’)

 A COLHDG(’TOTAL’ ’LINES’)

 A ACTMTH 2 0 TEXT(’Accounting month’)

 A COLHDG(’ACCT’ ’MONTH’)

 A ACTYR 2 0 TEXT(’Accounting year’)

 A COLHDG(’ACCT’ ’YEAR’)

 A

 A* FIELDS DEFINED BY ORDER DETAIL/LINE ITEM RECORD (ORDDTL)

 A LINE 3 0 TEXT(’Line no. this item’)

 A COLHDG(’LINE’ ’NO’)

 A QTYORD 3 0 TEXT(’Quantity ordered’)

 A COLHDG(’QTY’ ’ORDERED’

 A CMP(GE 0)

 A EXTENS 6 2 TEXT(’Ext of QTYORD x PRICE’)

 A EDTCDE(J)

 A COLHDG(’EXTENSION’)

 A

 A* FIELDS DEFINED BY ACCOUNTS RECEIVABLE

 A ARBAL 8 2 TEXT(’A/R balance due’)

 A EDTCDE(J)

 A

 A* WORK AREAS AND OTHER FIELDS THAT OCCUR IN MULTIPLE PROGRAMS

 A STATUS 12 TEXT(’status description’)

 A A

Assume that the DDS in the previous example is entered into a source file FRSOURCE; the member name

is DSTREFP. To create a field reference file, use the CRTPF command as follows:

24 System i: Database Database programming

CRTPF FILE(DSTPRODLB/DSTREFP)

 SRCFILE(QGPL/FRSOURCE) MBR(*NONE)

 TEXT(’Distribution field reference file’)

The parameter MBR(*NONE) tells the system not to add a member to the file (because the field reference

file never contains data and therefore does not need a member).

To describe the physical file ORDHDRP by referring to DSTREFP, use the following DDS example:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREFP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST R

 A ORDER R

 A ORDATE R

 A CUSORD R

 A SHPVIA R

 A ORDSTS R

 A OPRNME R

 A ORDAMT R

 A CUTYPE R

 A INVNBR R

 A PRTDAT R

 A SEQNBR R

 A OPNSTS R

 A LINES R

 A ACTMTH R

 A ACTYR R

 A STATE R

 A

The REF keyword (positions 45 through 80) with DSTREFP (the field reference file name) specified

indicates the file from which field descriptions are to be used. The R in position 29 of each field indicates

that the field description is to be taken from the reference file.

When you create the ORDHDRP file, the system uses the DSTREFP file to determine the attributes of the

fields included in the ORDHDR record format. To create the ORDHDRP file, use the CRTPF command.

Assume that the DDS in the previous example was entered into a source file QDDSSRC; the member

name is ORDHDRP.

 CRTPF FILE(DSTPRODLB/ORDHDRP)

 TEXT(’Order Header physical file’)

Note: The files used in some of the examples in this topic collection refer to this field reference file.

Using a data dictionary for field reference in a database file:

You can use a data dictionary and the interactive data description utility (IDDU) as an alternative to

using a DDS field reference file. IDDU allows you to define fields in a data dictionary.

 Related concepts

IDDU Use PDF

Sharing existing record format descriptions in a database file:

A record format can be described once in either a physical or a logical file (except a join logical file) and

can be used by many files. When you describe a new file, you can specify that the record format of an

existing file is to be used by the new file.

 Sharing existing record format descriptions can help reduce the number of DDS statements that you

normally code to describe a record format in a new file and can save auxiliary storage space.

Database programming 25

The file originally describing the record format can be deleted without affecting the files sharing the

record format. After the last file using the record format is deleted, the system automatically deletes the

record format description.

The following example shows the DDS for two files. The first file describes a record format, and the

second file shares the record format of the first file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 PFILE(CUSMSTP)

 A CUST

 A NAME

 A ADDR

 A SEARCH

 A K CUST

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 PFILE(CUSMSTP)

 A FORMAT(CUSMSTL)

 A K NAME

 A

The first example shows file CUSMSTL, in which the fields Cust, Name, Addr, and Search make up the

record format. The Cust field is specified as a key field.

The DDS in the second example shows file CUSTMSTL1, in which the FORMAT keyword names

CUSMSTL to supply the record format. The record format name must be RECORD1, the same as the

record format name shown in the first example. Because the files are sharing the same format, both files

have fields Cust, Name, Addr, and Search in the record format. In file CUSMSTL1, a different key field,

Name is specified.

The following restrictions apply to shared record formats:

v A physical file cannot share the format of a logical file.

v A join logical file cannot share the format of another file, and another file cannot share the format of a

join logical file.

v A view cannot share the format of another file, and another file cannot share the format of a view. (In

the Structured Query Language (SQL), a view is an alternative representation of data from one or more

tables. It can include all or some of the columns contained in the table or tables on which it is defined.)

If the original record format is changed by deleting all related files and creating the original file and all

the related files again, it is changed for all files that share it. If only the file with the original format is

deleted and re-created with a new record format, all files previously sharing that file’s format continue to

use the original format.

If a logical file is defined but no field descriptions are specified and the FORMAT keyword is not

specified, the record format of the first physical file (specified first on the PFILE keyword for the logical

file) is automatically shared. The record format name specified in the logical file must be the same as the

record format name specified in the physical file.

To find out if a file shares a format with another file, use the RCDFMT parameter on the Display

Database Relations (DSPDBR) command.

Record format relationships between physical and logical files:

When you change, add, or delete fields with the Change Physical File (CHGPF) command, a certain

relationship exists between the physical and logical files that share the same record format.

 v When you change the length of a field in a physical file, you also change the length of the logical file’s

field.

26 System i: Database Database programming

v When you add a field to the physical file, the field is also added to the logical file.

v When you delete a field in the physical file, the field is also deleted from the logical file unless there is

another dependency in DDS, such as a keyed field or a select/omit statement.

Record format sharing limitation with physical and logical files:

You might encounter this record format sharing limitation when you are duplicating the same database

object multiple times.

 A record format can only be shared by 32KB objects. Error messages are issued when you reach this

limitation.

Note: Format sharing is performed for files that are duplicated. The format is shared up to 32 767 times.

Beyond 32 767 times, if a file that shares the format is duplicated, a new format is created for the

duplicated file.

Specifying database file and member attributes:

When you create a database file, database attributes are stored with the file and members. You specify

attributes with database command parameters.

 Related reference

 Create Physical File (CRTPF) command

 Create Logical File (CRTLF) command

 Create Source Physical File (CRTSRCPF) command

 Add Physical File Member (ADDPFM) command

 Add Logical File Member (ADDLFM) command

 Change Physical File (CHGPF) command

 Change Physical File Member (CHGPFM) command

 Change Logical File (CHGLF) command

 Change Logical File Member (CHGLFM) command

 Change Source Physical File (CHGSRCPF) command

Specifying the file name and member name (FILE and MBR) parameters:

The FILE and MBR parameters specify the names of a database file and a file member.

 You name a file with the FILE parameter on a create command. You also name the library where the file

is stored. When you create a physical or logical file, the system normally creates a member with the same

name as the file. You can, however, specify a member name with the MBR parameter on a create

command. You can also choose not to create any members by specifying MBR(*NONE).

Note: The system does not automatically create a member for a source physical file.

Specifying the physical file data members (DTAMBRS) parameter:

The DTAMBRS parameter on the Create Logical File (CRTLF) command specifies the physical files and

members that contain the data associated with a logical file member.

 You can specify:

v The order in which the physical file members are to be read.

v The number of physical file members to be used.
 Related concepts

Database programming 27

“Defining logical file members” on page 44
You can define members in a logical file to separate the data into logical groups. A logical file member

can be associated with one or several physical file members.

Specifying the source file and source member (SRCFILE and SRCMBR) parameters:

The SRCFILE and SRCMBR parameters specify the names of the source file and the source file member

that contain DDS statements.

 If you do not specify a name:

v The default source file name is QDDSSRC.

v The default member name is the name specified on the FILE parameter.

Specifying the file type (FILETYPE) parameter:

The FILETYPE parameter specifies the type of database file.

 A database file type is either data (*DATA) or source (*SRC). The Create Physical File (CRTPF) and Create

Logical File (CRTLF) commands use the default data file type (*DATA).

Specifying the maximum number of members (MAXMBRS) parameter:

The MAXMBRS parameter specifies the maximum number of members that a database file can hold.

 The default maximum number of members for physical and logical files is one, and the default for source

physical files is *NOMAX.

Specifying the preferred storage unit (UNIT) parameter:

The system finds a place for a database file on auxiliary storage. The UNIT parameter specifies where to

store the file.

Note: Effective for Version 3 Release 6 the UNIT parameter is a no-operation (NOP) function for the

following commands:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

v Change physical File (CHGPF)

v Change Logical File (CHGLF)

v Change Source Physical File (CHGSRCPF)

The parameter can still be coded; its presence does not cause an error. It will be ignored.

The UNIT parameter specifies:

v The location of data records in physical files.

v The access path for both physical files and logical files.

The data is placed on different units if:

v There is not enough space on the unit.

v The unit is not valid for your system.

An informational message indicating that the file was not placed on the requested unit is sent when file

members are added. (A message is not sent when the file member is extended.)

28 System i: Database Database programming

UNIT parameter tips

In general, you should not specify the UNIT parameter. Let the system place the file on the disk unit of

its choosing. This is usually better for performance, and relieves you of the task of managing auxiliary

storage. If you specify a unit number and also an auxiliary storage pool, the unit number is ignored.

 Related concepts

 Independent disk pools examples

Specifying the force write ratio (FRCRATIO) parameter:

The FRCRATIO parameter on the create, change, or override database file command controls when

database file changes are written to auxiliary storage.

 Normally, the system determines when to write changed data from main storage to auxiliary storage.

Closing the file (except for a shared close) and the force-end-of-data operation forces remaining updates,

deletions, and additions to auxiliary storage. If you are journaling the file, the FRCRATIO parameter

should normally be *NONE.

FRCRATIO parameter tip

Using the FRCRATIO parameter has performance and recovery considerations for your system.

 Related concepts

 “Recovering and restoring your database” on page 224
You can use several i5/OS save and restore functions to recover your database after the system loses

data.

Specifying the force keyed access path (FRCACCPTH) parameter:

The FRCACCPTH parameter controls whether access path changes are forced to auxiliary storage along

with the associated records in a database file.

 FRCACCPTH (*YES) forces access path changes to auxiliary storage whenever the access path is changed.

This reduces the chance that the access path needs rebuilding if the system fails.

FRCACCPTH parameter tips

Specifying FRCACCPTH(*YES) can degrade performance when changes occur to the access path. An

alternative to forcing the access path is journaling the access path.

 Related concepts

 “Recovering and restoring your database” on page 224
You can use several i5/OS save and restore functions to recover your database after the system loses

data.

Specifying the record format level check (LVLCHK) parameter:

When a database file is opened, the system can check whether the file definition is changed. The

LVLCHK parameter specifies the check for record format description changes.

 When the file changes to an extent that your program might not be able to process the file, the system

notifies your program. The default is to do level checking. You can specify if you want level checking

when you:

v Create a file.

v Use a change database file command.

Database programming 29

You can override the system and ignore the level check using the Override with Database File (OVRDBF)

command.

Example: Record format level check

Assume that you compiled your program two months ago. At that time, the file was defined as having

three fields in each record. Last week another programmer decided to add a field to the record format, so

now each record has four fields. When your program tries to open the file, the system notifies your

program that a significant change has occurred to the file definition since the last time the program was

compiled. This notification is known as a record format level check.

Specifying the access path maintenance (MAINT) parameter:

The MAINT parameter specifies the type of access path maintenance for all members of a database file.

 If a file member is open, the system maintains the access path for the member when changes are made to

the data in it. However, because more than one access path might exist for the same data, changing data

in one file member might cause changes in the access paths for other file members that are not open (in

use).

Here are the ways you can maintain access paths for all members of a database file:

v Immediate maintenance of an access path means that the access path is maintained for a file member

whenever changes are made to its associated data, whether the member is open or not. Access paths

used by referential constraints are always in immediate maintenance.

v Rebuild maintenance of an access path means that the access path is maintained for a file member

only when the member is open, not when the member is closed; the access path is rebuilt when the

member is opened the next time. When a file member with rebuild maintenance is closed, the system

stops maintaining the access path. When the file member is opened again, the access path is totally

rebuilt. If one or more programs have opened a specific file member with rebuild maintenance

specified, the system maintains the access path for the member until the last user closes it.

v Delayed maintenance of an access path means that any maintenance of the access path is done after

the file member is opened the next time and when it remains open. However, the access path is not

rebuilt as it is with rebuild maintenance. Changes to the access path are collected from the time the

member is closed until it is opened again. When it is opened, only the collected changes are merged

into the access path.

If you do not specify the type of maintenance for a file, the default is immediate maintenance.

MAINT parameter comparison:

This table compares the effect of the immediate, rebuild, and delayed maintenance of access paths on

opening and processing files.

 Function Immediate maintenance Rebuild maintenance Delayed maintenance

Open Fast open because the

access path is current.

Slow open because access

path must be rebuilt.

Moderately fast open

because the access path

does not have to be rebuilt,

but it must still be changed.

Slow open if extensive

changes are needed.

30 System i: Database Database programming

|

|
|
|
|

|
|
|

|
|
|
|
|
|

Function Immediate maintenance Rebuild maintenance Delayed maintenance

Process Slower update and output

operations when many

access paths with

immediate maintenance are

built over changing data

(the system must maintain

the access paths).

Faster update and output

operations when many

access paths with rebuild

maintenance are built over

changing data and are not

open (the system does not

have to maintain the access

paths).

Moderately fast update and

output operations when

many access paths with

delayed maintenance are

built over changing data

and are not open (the

system records the changes,

but the access path itself is

not maintained).

Notes:

1. Delayed or rebuild maintenance cannot be specified for a file that has unique keys.

2. Rebuild maintenance cannot be specified for a file if its access path is being journaled.

MAINT parameter tips:

The type of access path maintenance to specify depends on the number of records and the frequency of

add, delete, or update operations on the file when it is closed.

 You should use delayed maintenance for files that have relatively few changes to the access paths while

the file members are closed. Delayed maintenance reduces system overhead by reducing the number of

access paths that are maintained immediately. It might also result in faster open processing, because the

access paths do not have to be rebuilt.

You might want to specify immediate maintenance for access paths that are used frequently, or when you

cannot wait for an access path to be rebuilt when the file is opened. You might want to specify delayed

maintenance for access paths that are not used frequently, if infrequent changes are made to the record

keys that make up the access path.

In general, for files used interactively, immediate maintenance results in good response time. For files

used in batch jobs, either immediate, delayed, or rebuild maintenance is adequate, depending on the size

of the members and the frequency of changes.

Specifying the access path recovery (RECOVER) parameter:

The RECOVER parameter specifies when changed access paths that are not journaled or forced to

auxiliary storage are rebuilt after the system failure.

 You can use the RECOVER parameter on the following commands to specify when the access path is to

be rebuilt:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

Note: Access paths are rebuilt during the initial program load (IPL), after the IPL, or when a file is

opened.

Table 2 on page 32 shows your choices for possible combinations of duplicate key and maintenance

options.

Database programming 31

Table 2. Recovery options

With this duplicate key

option

And this maintenance

option

Your recovery options are

Unique Immediate Rebuild during the IPL (*IPL) Rebuild after the IPL

(*AFTIPL, default) Do not rebuild at IPL, wait for first

open (*NO)

Not unique Immediate or delayed Rebuild during the IPL (*IPL) Rebuild after the IPL

(*AFTIPL) Do not rebuild at IPL, wait for first open

(*NO, default)

Not unique Rebuild Do not rebuild at IPL, wait for first open (*NO, default)

RECOVER parameter tip

A list of files with access paths that need to be recovered is shown on the Edit Rebuild of Access Paths

display during the next IPL if the IPL is in manual mode. You can edit the original recovery option for

the file by selecting the desired option on the display. After the IPL is complete, you can use the Edit

Rebuild of Access Paths (EDTRBDAP) command to set the sequence in which access paths are rebuilt. If

the IPL is unattended, the Edit Rebuild of Access Paths display is not shown and the access paths are

rebuilt in the order determined by the RECOVER parameter. You only see the *AFTIPL and *NO (open)

access paths.

 Related concepts

 “Recovering and restoring your database” on page 224
You can use several i5/OS save and restore functions to recover your database after the system loses

data.

Backup and Recovery PDF

Specifying the share open data path (SHARE) parameter:

The system allows multiple users to access and change a database file at the same time. The SHARE

parameter specifies whether the open data path (ODP) is shared with other programs in the same routing

step.

 The SHARE parameter allows sharing of opened files in the same job. For example, sharing a file in a job

allows programs in the job to share the file’s status, record position, and buffer. The file sharing can

improve performance by reducing:

v The amount of storage the job needs.

v The time required to open and close the file.
 Related concepts

 “Sharing database files in the same job or activation group” on page 108
By default, the database management system allows one file to be read and changed by many users at

the same time. You can also share a file in the same job or activation group by specifying the SHARE

parameter.

Specifying the maximum file and record wait time (WAITFILE and WAITRCD) parameters:

The WAITFILE and WAITRCD parameters specify how long a program can wait for a file and a record in

the file if another job has the file or record locked.

 If the wait time ends before the file or record is released, a message is sent to the program indicating that

the job was not able to use the file or read the record.

 Related concepts

32 System i: Database Database programming

“Locking records” on page 105
DB2 Universal Database for iSeries has built-in integrity for records.

 “Locking files” on page 105
When a database file is allocated exclusively, any program trying to open the file has to wait until it is

released. However, you can set a wait time for the file to become available using the WAITFILE

parameter.

Specifying the authority (AUT) parameter:

Public authority is the authority given to users who do not have any specific authority to an object, who

are not on the authorization list (if one is specified for the object), and whose group profile has no

specific authority to the object. The AUT parameter specifies public authority to a database file.

 Related concepts

 “Specifying public authority” on page 95
Public authority is given to users who do not have any specific authority to an object, who are not on

the authorization list of the object, or whose group profile has no specific authority to the object.

When you create a file, you can specify and grant public authority.

Specifying the system (SYSTEM) parameter:

The SYSTEM parameter specifies whether a database file is created on the local system or on the remote

system that supports distributed data management (DDM).

 Related concepts

 Distributed data management

Specifying the text description (TEXT) parameter:

The TEXT parameter specifies the text that briefly describes a database file and member.

Specifying the coded character set identifier (CCSID) parameter:

A coded character set identifier (CCSID) is a 16-bit number that includes a specific set of encoding scheme

identifiers, character set identifiers, code page identifiers, and other information that uniquely identifies

the coded graphic-character representation. The CCSID parameter specifies the CCSID that describes

character data in the fields of a file.

 Related concepts

 i5/OS globalization

Specifying the sort sequence (SRTSEQ) parameter:

The SRTSEQ parameter specifies the sort sequence for a database file.

 The values of the SRTSEQ parameter, along with the values of the CCSID and LANGID parameters,

determine which sort sequence table the file uses.

You can specify:

v System-supplied sort sequence tables with unique or shared collating weights. There are sort sequence

tables for each supported language.

v Any user-created sort sequence table.

v The hexadecimal value of the characters in the character set.

v The sort sequence of the current job or the one specified in the ALTSEQ parameter. The sort sequence

table is stored with the file, except when the sort sequence is *HEX.

Specifying the language identifier (LANGID) parameter:

Database programming 33

The LANGID parameter specifies the language identifier that the system uses when the sort sequence

(SRTSEQ) parameter value is *LANGIDSHR or *LANGIDUNQ.

 The values of the LANGID, CCSID, and SRTSEQ parameters determine which sort sequence table the file

uses. You can set the LANGID parameter for physical and logical files.

You can specify any language identifier supported on your system, or you can specify that the language

identifier for the current job be used.

Setting up physical files

A physical file is a description of how data is to be presented to or received from a program and how data

is actually stored in the database. A physical file contains one record format and one or more members.

You can create and describe a physical file using the traditional system interface.

 Related concepts

 “Describing access paths for database files” on page 83
An access path describes how records in a database file are retrieved. You can define the access path

for a database file in various ways.
 Related reference

 “Example: Describing a physical file using DDS” on page 19
This example shows how to describe a physical file using DDS.

Creating a physical file:

You can create a physical file using data description specifications (DDS).

 Before you begin

You need to create a library and a source file before you create a physical file.

About this task

To create a physical file, follow these steps:

1. If you are using DDS, enter DDS for the physical file into a source file. You can do this using the

source entry utility (SEU). SEU is part of IBM WebSphere Development Studio for iSeries.

2. Create the physical file. You can use the Create Physical File (CRTPF) command or the Create Source

Physical File (CRTSRCPF) command.

Results

The following command creates a one-member file using DDS and places it in a library called

DSTPRODLB.

CRTPF FILE(DSTPRODLB/ORDHDRP)

 TEXT(’Order header physical file’)

As shown, this command uses defaults. For the SRCFILE and SRCMBR parameters, the system uses DDS

in the source file called QDDSSRC and the member named ORDHDRP (the same as the file name). The

file ORDHDRP with one member of the same name is placed in the library DSTPRODLB.

Tables are similar to physical files. You can create tables using iSeries Navigator or using the CREATE

TABLE SQL statement.

 Related concepts

34 System i: Database Database programming

“Creating a library” on page 13
A library is a system object that serves as a directory to other objects. A library groups related objects

and allows you to find objects by name. To create a library, use iSeries Navigator or the Create Library

(CRTLIB) command.

 “Creating a source file” on page 14
Before creating a source file, you should first create a library. Then use the Create Source Physical File

(CRTSRCPF), Create Physical File (CRTPF), or Create Logical File (CRTLF) command to create a

source file.

 “Working with source files” on page 240
You can use various methods to enter and maintain data in a source file.

 “Describing database files” on page 17
You can use several methods to describe i5/OS database files. This topic discusses how to describe a

database file with data description specifications (DDS) because DDS has the most options for

defining data.

 Getting started with iSeries Navigator
 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

 CREATE TABLE

Specifying physical file and member attributes:

You can specify the attributes of physical files and members on the Create Physical File (CRTPF), Create

Source Physical File (CRTSRCPF), Change Physical File (CHGPF), Change Source Physical File

(CHGSRCPF), Add Physical File Member (ADDPFM), and Change Physical File Member (CHGPFM)

commands.

Expiration date:

The EXPDATE parameter specifies an expiration date for each member in a physical file (ADDPFM,

CHGPFM, CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

 If the expiration date is past, the system operator is notified when the file is opened. The system operator

can then override the expiration date and continue, or stop the job. Each member can have a different

expiration date, which is specified when the member is added to the file.

 Related concepts

 “Checking the expiration date of a physical file member” on page 104
The system can check whether the data in a physical file member is still current. You can specify

whether the system checks the expiration date of a physical file member using the EXPCHK

parameter on the Override with Database File (OVRDBF) command.
 Related reference

 Add Physical File Member (ADDPFM) command

 Change Physical File (CHGPF) command

 Change Physical File Member (CHGPFM) command

 Change Source Physical File (CHGSRCPF) command

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Size of a physical file member:

The SIZE parameter specifies the maximum number of records that can be placed in each physical file

member (CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

Database programming 35

|
|
|

The following formula can be used to determine the maximum:

R + (I * N)

where:

R is the starting record count

I is the number of records (increment) to add each time

N is the number of times to add the increment

The defaults for the SIZE parameter are:

R 10 000

I 1000

N 3 (CRTPF command)

 499 (CRTSRCPF command)

For example, assume that R is a file created for 5000 records plus 3 increments of 1000 records each. The

system can add 1000 to the initial record count of 5000 three times to make the total maximum 8000.

When the total maximum is reached, the system operator either stops the job or tells the system to add

another increment of records and continue. When increments are added, a message is sent to the system

history log. When the file is extended beyond its maximum size, the minimum extension is 10% of the

current size, even if this is larger than the specified increment. Instead of taking the default size or

specifying a size, you can specify *NOMAX.

 Related reference

 “Database file sizes” on page 8
Before you design and create a database file, you need to know the maximum size allowed for the

file.

 Change Physical File (CHGPF) command

 Change Source Physical File (CHGSRCPF) command

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Storage allocation:

The ALLOCATE parameter controls the storage that is allocated to each member when it is added to a

physical file (CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

 The storage allocated is large enough to contain the initial record count for a member. If you do not

allocate storage when the members are added, the system will automatically extend the storage allocation

as needed. You can use the ALLOCATE parameter only if you specified a maximum size on the SIZE

parameter. If SIZE(*NOMAX) is specified, then ALLOCATE(*YES) cannot be specified.

 Related reference

 Change Physical File (CHGPF) command

 Change Source Physical File (CHGSRCPF) command

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Method of allocating storage:

The CONTIG parameter controls the method of allocating physical storage for each physical file member

(CRTPF and CRTSRCPF commands).

36 System i: Database Database programming

If you allocate storage, you can request that the storage for the starting record count for a member be

contiguous. That is, all the records in a member are to physically reside together. If there is not enough

contiguous storage, contiguous storage allocation is not used and an informational message is sent to the

job that requests the allocation, at the time the member is added.

Note: When a physical file is first created, the system always tries to allocate its initial storage

contiguously. The only difference between using CONTIG(*NO) and CONTIG(*YES) is that with

CONTIG(*YES) the system sends a message to the job log if it is unable to allocate contiguous

storage when the file is created. No message is sent when a file is extended after creation,

regardless of what you specified on the CONTIG parameter.

 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Record length:

The RCDLEN parameter specifies the length of records in a physical file (CRTPF and CRTSRCPF

commands).

 If the file is described to the record level only, then you specify the RCDLEN parameter when the file is

created. This parameter cannot be specified if the file is described using DDS, IDDU, or SQL (the system

automatically determines the length of records in the file from the field-level descriptions).

 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Deleted records:

The DLTPCT parameter specifies the percentage of deleted records that each physical file member can

contain before you want the system to send a message to the system history log (CRTPF, CHGPF,

CRTSRCPF, and CHGSRCPF commands).

 When a file is closed, the system checks the member to determine the percentage of deleted records. If

the percentage exceeds the value specified in the DLTPCT parameter, a message is sent to the history log.

(For information about processing the history log, see the Control language topic collection. One reason

you might want to know when a file reaches a certain percentage of deleted records is to reclaim the

space used by the deleted records. After you receive the message about deleted records, you can run the

Reorganize Physical File Member (RGZPFM) command to reclaim the space. You can also specify to

bypass the deleted records check by using the *NONE value for the DLTPCT parameter. *NONE is the

default for the DLTPCT parameter.

REUSEDLT parameter specifies whether deleted record space should be reused on subsequent write

operations (CRTPF and CHGPF commands). When you specify *YES for the REUSEDLT parameter, all

insert requests on that file try to reuse deleted record space. Reusing deleted record space allows you to

reclaim space used by deleted records without having to issue a RGZPFM command. When the CHGPF

command is used to change a file to reuse deleted records, it might take a long time to run, especially if

the file is large and there are already a lot of deleted records in it. It is important to note the following

items:

v The term arrival order loses its meaning for a file that reuses deleted record space. Records are no

longer always inserted at the end of the file when deleted record space is reused.

v If a new physical file is created with the reuse deleted record space attribute and the file is keyed, the

FIFO or LIFO access path attribute cannot be specified for the physical file, nor can any keyed logical

file with the FIFO or LIFO access path attribute be built over the physical file.

Database programming 37

v You cannot change an existing physical file to reuse deleted record space if there are any logical files

over the physical file that specify FIFO or LIFO ordering for duplicate keys, or if the physical file has a

FIFO or LIFO duplicate key ordering.

v Reusing deleted record space should not be specified for a file that is processed as a direct file or if the

file is processed using relative record numbers.
 Related concepts

 “Reorganizing a physical file member” on page 208
You can reorganize a physical file member to change the manner in which records are stored on the

i5/OS operating system.

 “Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.
 Related reference

 Change Physical File (CHGPF) command

 Change Source Physical File (CHGSRCPF) command

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Physical file capabilities:

File capabilities are used to control which input/output operations are allowed for a database file

independent of database file authority. The ALWUPD and ALWDLT parameters specify whether records

in a physical file can be updated and deleted (CRTPF and CRTSRCPF commands).

 Related concepts

 “Securing database files” on page 92
You can secure database files in various ways.

 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

Source type:

The SRCTYPE parameter specifies the source type for a member in a source file (ADDPFM and CHGPFM

commands).

 The source type determines the syntax checker, prompting, and formatting that are used for the member.

If you specify a unique source type other than the types that are supported on the i5/OS operating

system, such as COBOL and RPG, you must provide the programming to handle the unique type.

If the source type is changed, it is only reflected when the member is subsequently opened; members

currently open are not affected.

 Related reference

 Add Physical File Member (ADDPFM) command

 Change Physical File Member (CHGPFM) command

Implicit physical file journaling:

A physical file can be journaled automatically when it is created.

 If the data area called QDFTJRN exists in the same library into which the physical file is created, and the

user is authorized to the data area, journaling will be started to the journal named in the data area if all

the following limitations are met:

38 System i: Database Database programming

v The identified library for the physical file must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL,

QRPLOBJ, QGPL, or QTEMP.

v The journal specified in the data area must exist and the user must be authorized to start journaling to

the journal.

v The first 10 bytes of the data area must contain the name of the library in which to find the journal.

v The second 10 bytes must contain the name of the journal.

v The third n bytes must contain the value *FILE. The value *NONE can be used to prevent journaling

from being started.

Setting up logical files

A logical file contains no data, but it defines record formats for one or more physical files. You can create

various logical files and describe their record formats and access paths using data description

specifications (DDS).

Many of the rules for setting up logical files apply to all categories of logical files. In these topics, rules

that apply only to one category of logical file identify which category they refer to. Rules that apply to all

categories of logical files do not identify the specific categories they apply to.

Creating a logical file

You can create a logical file using data description specifications (DDS).

Before you begin

The physical file or files on which the logical file is based must already exist before you create a logical

file.

About this task

To create a logical file, follow these steps:

1. Type the DDS for the logical file into a source file. You can do this using the source entry utility

(SEU). The following example shows the DDS for logical file ORDHDRL (an order header file):

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER LOGICAL FILE (ORDHDRL)

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

This file uses the key field Order (order number) to define the access path. The record format is the

same as the associated physical file ORDHDRP. The record format name for the logical file must be

the same as the record format name for the physical file because no field descriptions are given.

2. Create the logical file. You can use the Create Logical File (CRTLF) command. The following example

shows how the CRTLF command can be typed:

CRTLF FILE(DSTPRODLB/ORDHDRL)

 TEXT(’Order header logical file’)

Results

As shown, this command uses some defaults. For example, because the SRCFILE and SRCMBR

parameters are not specified, the system uses DDS from the IBM-supplied source file QDDSSRC, and the

source file member name is ORDHDRL (the same as the file name specified on the CRTLF command).

The ORDHDRL file with one member of the same name is placed in the DSTPRODLB library.

You can create multiple logical files over a single physical file. The maximum number of logical files that

can be created over a single physical file is 32KB.

Database programming 39

Views are similar to logical files. You can create views using iSeries Navigator or using the CREATE

VIEW SQL statement.

 Related concepts

 “Working with source files” on page 240
You can use various methods to enter and maintain data in a source file.

 “Identifying which record format to add in a file with multiple formats” on page 198
If your application uses a file name instead of a record format name for records to be added to the

database, and if the file used is a logical file with more than one record format, you need to write a

format selector program to determine where a record should be placed in the database.

 Creating and using a view
 Related reference

 Create Logical File (CRTLF) command

 CREATE VIEW

Creating a logical file with more than one record format:

A multiple-format logical file allows you to use records from two or more physical files by referring to

only one logical file.

 Each record format of such a multiple-format logical file is always associated with one or more physical

files. You can use the same physical file in more than one record format.

The following example shows the data description specifications (DDS) for a physical file, ORDDTLP,

built from a field reference file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER DETAIL FILE (ORDDTLP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREF)

 A R ORDDTL TEXT(’Order detail record’)

 A CUST R

 A ORDER R

 A LINE R

 A ITEM R

 A QTYORD R

 A DESCRP R

 A PRICE R

 A EXTENS R

 A WHSLOC R

 A ORDATE R

 A CUTYPE R

 A STATE R

 A ACTMTH R

 A ACTYR R

 A

The following example shows the DDS for the ORDHDRP physical file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREFP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST R

 A ORDER R

 A ORDATE R

 A CUSORD R

 A SHPVIA R

 A ORDSTS R

 A OPRNME R

 A ORDMNT R

 A CUTYPE R

 A INVNBR R

40 System i: Database Database programming

A PRTDAT R

 A SEQNBR R

 A OPNSTS R

 A LINES R

 A ACTMTH R

 A ACTYR R

 A STATE R

 A

The following example shows how to create a logical file ORDFILL with two record formats. One record

format is defined for order header records from the ORDHDRP physical file; the other is defined for

order detail records from the ORDDTLP physical file.

The logical file record format ORDHDR uses one key field, Order, for sequencing; the logical file record

format ORDDTL uses two keys fields, Order and Line, for sequencing.

The following example shows the DDS for the ORDFILL logical file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

 A

 A R ORDDTL PFILE(ORDDTLP)

 A K ORDER

 A K LINE

 A

To create the logical file ORDFILL with two associated physical files, use a Create Logical File (CRTLF)

command in the following way:

CRTLF FILE(DSTPRODLB/ORDFILL)

 TEXT(’Order transaction logical file’)

The DDS source is in the ORDFILL member of the QDDSSRC file. The ORDFILL file with a member of

the same name is placed in the DSTPRODLB library. The access path for the ORDFILL logical file

member arranges records from both the ORDHDRP and ORDDTLP files. Record formats for both

physical files are keyed on Order as the common field. Because of the order in which they were specified

in the logical file description, they are merged in Order sequence with duplicates between files retrieved

first from the ORDHDRP header file and second from the ORDDTLP detail file. Because FIFO, LIFO, or

FCFO are not specified, the order of retrieval of duplicate keys in the same file is not guaranteed.

Note: In some circumstances, it is better to use multiple logical files, rather than to use a multiple-format

logical file. For example, when keyed access is used with a multiple-format logical file, it is

possible to experience poor performance if one of the files has very few records. Even though there

are multiple formats, the logical file has only one index, with entries from each physical file.

Depending on the kind of processing being done by the application program (for example, using

RPG SETLL and READE with a key to process the small file), the system might have to search all

index entries in order to find an entry from the small file. If the index has many entries, searching

the index might take a long time, depending on the number of keys from each file and the

sequence of keys in the index. (If the small file has no records, performance is not affected, because

the system can take a fast path and avoid searching the index.)

Controlling how records are retrieved in a logical file with multiple formats:

Key field definitions are required in a logical file with more than one record format.

 Each record format can have its own key field definition. The record format key fields can be defined to

merge the records from different formats. Each record format does not have to contain every key field in

the key.

Database programming 41

Consider the following records.

 Table 3. Header record format

Record Order Cust Ordate

1 41882 41394 050688

2 32133 28674 060288

 Table 4. Detail record format

Record Order Line Item Qtyord Extens

A 32133 01 46412 25 125000

B 32133 03 12481 4 001000

C 41882 02 46412 10 050000

D 32133 02 14201 110 454500

E 41882 01 08265 40 008000

In data description specifications (DDS), the header record format is defined before the detail record

format. If the access path uses the Order field as the first key field for both record formats and the Line

field as the second key field for only the second record format, both in ascending sequence, the order of

the records in the access path is:

v Record 2

v Record A

v Record D

v Record B

v Record 1

v Record E

v Record C

Note: Records with duplicate key values are arranged first in the sequence in which the physical files are

specified. Then, if duplicates still exist within a record format, the duplicate records are arranged

in the order specified by the FIFO, LIFO, or FCFO keyword. For example, if the logical file

specified the DDS keyword FIFO, then duplicate records within the format would be presented in

first-in-first-out sequence.

For logical files with more than one record format, you can use the *NONE DDS function for key fields

to separate records of one record format from records of other record formats in the same access path.

Generally, records from all record formats are merged based on key values. However, if *NONE is

specified in DDS for a key field, only the records with key fields that appear in all record formats before

the *NONE are merged. When such records are retrieved by key from more than one record format, only

key fields that appear in all record formats before the *NONE are used. To increase the number of key

fields that are used, limit the number of record formats considered.

The logical file in the following example contains three record formats, each associated with a different

physical file:

 Record format Physical file Key fields

EMPMSTR EMPMSTR Empnbr (employee number) 1

EMPHIST EMPHIST Empnbr, Empdat (employed date) 2

EMPEDUC EMPEDUC Empnbr, Clsnbr (class number) 3

Note: All record formats have one key field in common, the Empnbr field.

42 System i: Database Database programming

The DDS for this example is:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A K EMPNBR 1

 A

 A K EMPNBR 2

 A K EMPDAT

 A

 A K EMPNBR 3

 A K *NONE

 A K CLSNBR

 A

*NONE is assumed for the second and third key fields for EMPMSTR and the third key field for

EMPHIST because no key fields follow these key field positions.

The following table shows the arrangement of the records.

 Empnbr Empdat Clsnbr Record format name

426 EMPMSTR

426 6/15/74 EMPHIST

426 412 EMPEDUC

426 520 EMPEDUC

427 EMPMSTR

427 9/30/75 EMPHIST

427 412 EMPEDUC

*NONE serves as a separator for the record formats EMPHIST and EMPEDUC. All the records for

EMPHIST with the same Empnbr field are grouped together and sorted by the Empdat field. All the

records for EMPEDUC with the same Empnbr field are grouped together and sorted by the Clsnbr field.

Note: Because additional key field values are placed in the key sequence access path to guarantee the

above sequencing, duplicate key values are not predictable.

 Related concepts

 DDS concepts

Controlling how records are added to a logical file with multiple formats:

To add a record to a multiple-format logical file, you need to identify the member of the based-on

physical file to which you want the record to be written.

 If the application you are using does not allow you to specify a particular member within a format, each

of the formats in the logical file needs to be associated with a single physical file member. If one or more

of the based-on physical files contain more than one member, you need to use the DTAMBRS parameter,

described in “Defining logical file members” on page 44, to associate a single member with each format.

Finally, give each format in the multiple format logical file a unique name. If the multiple format logical

file is defined in this way, then when you specify a format name on the add operation, you target a

particular physical file member into which the record is added.

When you add records to a multiple-format logical file and your application program uses a file name

instead of a record format name, you need to write a format selector program.

 Related concepts

 “Identifying which record format to add in a file with multiple formats” on page 198
If your application uses a file name instead of a record format name for records to be added to the

database, and if the file used is a logical file with more than one record format, you need to write a

format selector program to determine where a record should be placed in the database.

Database programming 43

Defining logical file members:

You can define members in a logical file to separate the data into logical groups. A logical file member

can be associated with one or several physical file members.

 The following figure illustrates this concept.

The record formats used with all logical members in a logical file must be defined in data description

specifications (DDS) when the file is created. If new record formats are needed, another logical file or

record format must be created.

The attributes of an access path are determined by the information specified in DDS and on commands

when the logical file is created. The selection of data members is specified in the DTAMBRS parameter on

the Create Logical File (CRTLF) and Add Logical File Member (ADDLFM) commands.

When a logical file is defined, the physical files used by the logical file are specified in DDS by the

record-level PFILE or JFILE keyword. If multiple record formats are defined in DDS, a PFILE keyword

must be specified for each record format. You can specify one or more physical files for each PFILE

keyword.

When a logical file is created or a member is added to the file, you can use the DTAMBRS parameter on

the CRTLF or the ADDLFM command to specify which members of the physical files used by the logical

file are to be used for data. *NONE can be specified as the physical file member name if no members

from a physical file are to be used for data.

In the following example, the logical file has two record formats defined:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

00010A R LOGRCD2 PFILE(PF1 PF2)

 A .

 A .

 A .

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)

 A .

 A .

 A .

 A

If the DTAMBRS parameter is specified on the CRTLF or ADDLFM command as in the following

example:

DTAMBRS((PF1 M1) (PF2 (M1 M2)) (PF1 M1) (PF2 (*NONE)) (PF3 M3))

44 System i: Database Database programming

Record format LOGRCD2 is associated with physical file member M1 in PF1 and M1 and M2 in file PF2.

Record format LOGRCD3 is associated with M1 in PF1 and M3 in PF3. No members in PF2 are

associated with LOGRCD3. If the same physical file name is specified on more than one PFILE keyword,

each occurrence of the physical file name is handled as a different physical file.

If a library name is not specified for the file on the PFILE keyword, the library list is used to find the

physical file when the logical file is created. The physical file name and the library name then become

part of the logical file description. The physical file names and the library names specified on the

DTAMBRS parameter must be the same as those stored in the logical file description.

If a file name is not qualified by a library name on the DTAMBRS parameter, the library name defaults to

*CURRENT, and the system uses the library name that is stored in the logical file description for the

respective physical file name. This library name is either the library name that was specified for the file

on the PFILE DDS keyword or the name of the library in which the file was found using the library list

when the logical file was created.

When you add a member to a logical file, you can specify data members as follows:

v Specify no associated physical file members (DTAMBRS (*ALL) default). The logical file member is

associated with all the physical file members of all physical files in all the PFILE keywords specified in

the logical file DDS.

v Specify the associated physical file members (DTAMBRS parameter). If you do not specify library

names, the logical file determines the libraries used. When more than one physical file member is

specified for a physical file, the member names should be specified in the order in which records are to

be retrieved when duplicate key values occur across those members. If you do not want to include any

members from a particular physical file, either do not specify the physical file name or specify the

physical file name and *NONE for the member name. This method can be used to define a logical file

member that contains a subset of the record formats defined for the logical file.

You can use the Create Logical File (CRTLF) command to create the first member when you create the

logical file. Subsequent members must be added using the Add Logical File Member (ADDLFM)

command. However, if you are going to add more members, you must specify more than 1 for the

MAXMBRS parameter on the CRTLF command. The following example of adding a member to a logical

file uses the CRTLF command.

CRTLF FILE(DSTPRODLB/ORDHDRL)

 MBR(*FILE) DTAMBRS(*ALL)

 TEXT(’Order header logical file’)

*FILE is the default for the MBR parameter and means that the name of the member is the same as the

name of the file. All the members of the associated physical file (ORDHDRP) are used in the logical file

(ORDHDRL) member. The text description is the text description of the member.

Describing logical file record formats

For every logical file record format described with data description specifications (DDS), you must

specify a record format name and either the PFILE keyword (for simple- and multiple-format logical files)

or the JFILE keyword (for join logical files).

The file names specified on the PFILE or JFILE keyword are the physical files that the logical file is based

on. A simple or multiple-format logical file record format can be specified with DDS in any one of the

following ways:

v In the simple logical file record format, specify only the record format name and the PFILE keyword.

The record format for the only (or first) physical file specified on the PFILE keyword is the record

format for the logical file. The record format name specified in the logical file must be the same as the

record format name in the only (or first) physical file. Consider this example of a simple logical file:

Database programming 45

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R ORDDTL PFILE(ORDDTLP)

 A

v Describe your own record format by listing the field names you want to include. You can specify the

field names in a different order, rename fields using the RENAME keyword, combine fields using the

CONCAT keyword, and use specific positions of a field using the SST keyword. You can also override

attributes of the fields by specifying different attributes in the logical file. Consider this example of a

simple logical file with fields specified::

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R ORDHDR PFILE(ORDHDRP)

 A ORDER

 A CUST

 A SHPVIA

 A

v Specify the name of a database file for the file name on the FORMAT keyword. The record format is

shared from this database file by the logical file being described. The file name can be qualified by a

library name. If a library name is not specified, the library list is used to find the file. The file must

exist when the file you are describing is created. In addition, the record format name you specify in the

logical file must be the same as one of the record format names in the file you specify on the FORMAT

keyword. Consider this example:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R CUSRCD PFILE(CUSMSTP)

 A FORMAT(CUSMSTL)

 A

In the following example, a program needs:

v The fields placed in a different order

v A subset of the fields from the physical file

v The data types changed for some fields

v The field lengths changed for some fields

You can use a logical file to make these changes.

For the logical file, the DDS would be as follows:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R LOGREC PFILE(PF1)

 A D 10S 0

 A A

 A C 5S 0

 A

46 System i: Database Database programming

For the physical file, the DDS would be as follows:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R PHYREC

 A A 8S 2

 A B 32

 A C 2B 0

 A D 10

 A

When a record is read from the logical file, the fields from the physical file are changed to match the

logical file description. If the program updates or adds a record, the fields are changed back. For an add

or update operation using a logical file, the program must supply data that conforms with the format

used by the logical file.

The following chart shows what types of data mapping are valid between physical and logical files.

 Physical file

data type

Logical file data type

Character or

hexadecimal Zoned Packed Binary

Floating

point Date Time Timestamp

Character or

Hexadecimal

Valid See Notes

1

Not valid Not valid Not valid Not

valid

Not

valid

Not valid

Zoned See Notes 1 Valid Valid See Notes

2

Valid Not

valid

Not

valid

Not Valid

Packed Not valid Valid Valid See Notes

2

Valid Not

valid

Not

valid

Not valid

Binary Not valid See Notes

2

See Notes

2

See Notes

3

See Notes

2

Not

valid

Not

valid

Not valid

Floating point Not valid Valid Valid See Notes

2

Valid Not

valid

Not

valid

Not valid

Date Not valid Valid Not valid Not valid Not valid Valid Not

valid

Not valid

Time Not valid Valid Not valid Not valid Not valid Not

valid

Valid Not valid

Timestamp Not valid Not valid Not valid Not valid Not valid Valid Valid Valid

Notes:

1. Valid only if the number of characters or bytes equals the number of digits.

2. Valid only if the binary field has zero decimal positions.

3. Valid only if both binary fields have the same number of decimal positions.

 Related concepts

 “Double-byte character set considerations” on page 291
A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The

database on the i5/OS operating system supports DBCS.

Describing field use for logical files:

You can specify that the fields in a logical file be input-only, both (input/output), or neither fields.

 To describe field use for a logical file, specify one of the following items in position 38:

Entry Meaning

Blank For simple or multiple format logical files, defaults to B (both) For join logical files, defaults to I

(input only).

Database programming 47

B Both input and output allowed; not valid for join logical files.

I Input only (read only).

N Neither input nor output; valid only for join logical files.

Note: The usage value (in position 38) is not used on a reference function. When another file refers to a

field (using a REF or REFFLD keyword) in a logical file, the usage value is not copied into that

file.

Describing field use for logical files: Both:

A both field can be used for both input and output operations. Your program can read data from the field

and write data to the field.

 Both fields are not valid for join logical files because join logical files are read-only files.

Describing field use for logical files: Input only:

An input-only field can be used for read operations only. Your program can read data from the field, but

cannot update the field.

 Typical cases of input-only fields are key fields (to reduce maintenance of access paths by preventing

changes to key field values), sensitive fields that a user can see but not update (for example, salary), and

fields for which either the translation table (TRNTBL) keyword or the substring (SST) keyword is

specified.

If your program updates a record in which you have specified input-only fields, the input-only fields are

not changed in the file. If your program adds a record that has input-only fields, the input-only fields

take default values (DFT keyword).

Describing field use for logical files: Neither:

A neither field is used neither for input nor for output.

 A neither field is valid only for join logical files. It can be used as a join field in a join logical file, but

your program cannot read or update a neither field.

Use neither fields when the attributes of join fields in the physical files do not match. In this case, one or

both join fields must be defined again. However, you cannot include these redefined fields in the record

format (the application program does not see the redefined fields.) Therefore, redefined join fields can be

coded N so that they do not appear in the record format.

A field with N in position 38 does not appear in the buffer used by your program. However, the field

description is displayed with the Display File Field Description (DSPFFD) command.

Neither fields cannot be used as select/omit or key fields.

 Related reference

 “Example 5: Describing fields that never appear in the record format” on page 72
Neither fields (where N is specified in position 38) can be used in a join logical file for neither input

nor output. Neither fields are not included in the record format. This example shows how to describe

such fields that never appear in the record format.

Deriving new fields from existing fields:

Fields in a logical file can be derived from fields in a physical file on which the logical file is based or

from fields in the same logical file.

48 System i: Database Database programming

For example, you can concatenate, using the CONCAT keyword, two or more fields from a physical file

to make them appear as one field in the logical file. Likewise, you can divide one field in the physical file

to make it appear as multiple fields in the logical file with the SST keyword.

Concatenated fields:

You can use the Concatenate (CONCAT) DDS keyword to combine two or more fields from a physical

file record format into one field in a logical file record format.

 For example, a physical file record format contains the fields Month, Day, and Year. For a logical file, you

concatenate these fields into one field, Date.

The field length for the resulting concatenated field is the sum of the lengths of the included fields

(unless the fields in the physical file are binary or packed decimal, in which case they are changed to

zoned decimal). The field length of the resulting field is automatically calculated by the system. A

concatenated field can have:

v Column headings

v Validity checking

v Text description

v Edit code or edit word (numeric concatenated fields only)

Note: This editing and validity checking information is not used by the database management system

but is retrieved when field descriptions from the database file are referred to in a display or printer

file.

When fields are concatenated, the data types can change (the resulting data type is automatically

determined by the system). The following rules and restrictions apply:

v The operating system assigns the data type based on the data types of the fields that are being

concatenated.

v The maximum length of a concatenated field varies depending on the data type of the concatenated

field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its

total length cannot exceed 31 bytes; if it is character (A), its total length cannot exceed 32 766 bytes.

v In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is to be used. The first field must,

therefore, be unique among the physical files on which the logical file is based, or you must also

specify the JREF keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only) if the concatenated field is variable length.

Otherwise, the use can be B (both input and output).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

v If any of the fields contain the null value, the result of concatenation is the null value.

Note: For information about concatenating DBCS fields, see “Double-byte character set considerations”

on page 291.
When only numeric fields are concatenated, the sign of the last field in the group is used as the sign of

the concatenated field.

Notes:

1. Numeric fields with decimal precision other than zero cannot be included in a concatenated

field.

2. Date, time, timestamp, and floating-point fields cannot be included in a concatenated field.

The following example shows the field description in data description specifications (DDS) for

concatenation. (The CONCAT keyword is used to specify the fields to concatenate.)

Database programming 49

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

00101A MONTH

00102A DAY

00103A YEAR

00104A DATE CONCAT(MONTH DAY YEAR)

 A

In this example, the logical file record format includes the separate fields of Month, Day, and Year, as well

as the concatenated Date field. Any of the following formats can be used:

v A format with the separate fields of Month, Day, and Year

v A format with only the concatenated Date field

v A format with the separate fields Month, Day, Year and the concatenated Date field

When both separate and concatenated fields exist in the format, any updates to the fields are processed in

the sequence in which the DDS is specified. In the previous example, if the Date field contained 103188

and the Month field is changed to 12, when the record is updated, the month in the Date field would be

used. The updated record would contain 103188. If the Date field were specified first, the updated record

would contain 123188.

Concatenated fields can also be used as key fields and select/omit fields.

Substring fields:

You can use the Substring (SST) DDS keyword to specify which fields (character, hexadecimal, or zoned

decimal) are in a substring.

 You can also use substring with a packed field in a physical file by specifying S (zoned decimal) as the

data type in the logical file.

For example, assume that you defined the Date field in physical file PF1 as 6 characters in length. You can

describe the logical file with three fields, each 2 characters in length. You can use the SST keyword to

define MM as 2 characters starting in position 1 of the Date field, DD as 2 characters starting in position 3

of the Date field, and YY as 2 characters starting in position 5 of the Date field.

The following example shows the field descriptions in data description specifications (DDS) for these

substring fields. The SST keyword is used to specify the field to substring.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1 PFILE(PF1)

 A

 A MM I SST(DATE 1 2)

 A DD I SST(DATE 3 2)

 A YY I SST(DATE 5 2)

 A

Note: The starting position of the substring is specified according to its position in the field being

operated on (Date), not according to its position in the file. The I in the Usage column indicates

input-only.

Substring fields can also be used as key fields and select/omit fields.

Renamed fields:

You can use the Rename (RENAME) DDS keyword to name a field in a logical file differently than in a

physical file.

50 System i: Database Database programming

You might want to rename a field in a logical file because the program uses a different field name or

because the original field name does not conform to the naming restrictions of your high-level language.

Translated fields:

You can use the Translation Table (TRNTBL) DDS keyword to specify a translation table for a field in a

logical file.

 When you read a logical file record and a translation table was specified for one or more fields in the

logical file, the system translates the data from the field value in the physical file to the value determined

by the translation table.

Describing floating-point fields in logical files:

You can use floating-point fields as mapped fields in logical files.

 A single- or double-precision floating-point field can be mapped to or from a zoned, packed,

zero-precision binary, or another floating-point field. You cannot map between a floating-point field and a

nonzero-precision binary field, a character field, a hexadecimal field, or a double-byte character set

(DBCS) field.

Mapping between floating-point fields of different precision, single or double, or between floating-point

fields and other numeric fields can result in rounding or a loss of precision. Mapping a double-precision

floating-point number to a single-precision floating-point number can result in rounding, depending on

the particular number involved and its internal representation. Rounding is to the nearest (even) bit. The

result always contains as much precision as possible. A loss of precision can also occur between two

decimal numbers if the number of digits of precision is decreased.

You can inadvertently change the value of a field which your program did not explicitly change. For

floating-point fields, this can occur if a physical file has a double-precision field that is mapped to a

single-precision field in a logical file, and you issue an update for the record through the logical file. If

the internal representation of the floating-point number causes it to be rounded when it is mapped to the

logical file, then updating the logical record causes a permanent loss of precision in the physical file. If

the rounded number is the key of the physical record, then the sequence of records in the physical file

can also change.

A fixed-point numeric field can also be updated inadvertently if the precision is decreased in the logical

file.

Describing access paths for logical files

You can specify the access path for a logical file in several ways.

v Keyed sequence access path specification. Specify key fields after the last record or field-level

specification. The key field names must be in the record format. For join logical files, the key fields

must come from the first, or primary, physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R CUSRCD PFILE(CUSMSTP)

 A K ARBAL

 A K CRDLMT

 A

v Encoded vector access path specification. You define the encoded vector access path with the SQL

CREATE INDEX statement.

v Arrival sequence access path specification. Specify no key fields. You can specify only one physical file

on the PFILE keyword (and only one of the physical file’s members when you add the logical file

member).

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R CUSRCD PFILE(CUSMSTP)

Database programming 51

v Previously defined keyed-sequence access path specification (for simple and multiple-format logical

files only). Specify the REFACCPTH keyword at the file level to identify a previously created database

file whose access path and select/omit specifications are to be copied to this logical file. You cannot

specify individual key or select/omit fields with the REFACCPTH keyword.

Note: Even though the specified file’s access path specifications are used, the system determines which

file’s access path, if any, will actually be shared. The system always tries to share access paths,

regardless of whether the REFACCPTH keyword is used.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 REFACCPTH(DSTPRODLIB/ORDHDRL)

 A R CUSRCD PFILE(CUSMSTP)

When you define a record format for a logical file that shares key field specifications of another file’s

access path (using the DDS keyword, REFACCPTH), you can use any fields from the associated physical

file record format. These fields do not have to be used in the file that describes the access path. However,

all key and select/omit fields used in the file that describes the access path must be used in the new

record format.

 Related reference

 CREATE INDEX

Selecting and omitting records for logical files:

You can select and omit records for a logical file. This helps exclude records from a file for processing

convenience or for security.

 The process of selecting and omitting records is based on comparisons identified in position 17 of the

DDS form for the logical file, and is similar to a series of comparisons coded in a high-level language

program.

For example, in a logical file that contains order detail records, you can specify that the only records you

want to use are those in which the quantity ordered is greater than the quantity shipped. All other

records are omitted from the access path. The omitted records remain in the physical file but are not

retrieved for the logical file. If you are adding records to the physical file, all records are added, but only

selected records that match the select/omit criteria can be retrieved through the select/omit access path.

In DDS, to specify select or omit, you specify an S (select) or O (omit) in position 17 of the DDS form.

You then name the field (in positions 19 through 28) that will be used in the selection or omission

process. In positions 45 through 80 you specify the comparison.

Note: Select/omit specifications appear after key specifications (if keys are specified).

Records can be selected and omitted by several types of comparisons:

v VALUES. The contents of the field are compared to a list of not more than 100 values. If a match is

found, the record is selected or omitted. In the following example, a record is selected if one of the

values specified in the VALUES keyword is found in the Itmnbr field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR VALUES(301542 306902 382101 422109 +

 A 431652 486592 502356 556608 590307)

 A

v RANGE. The contents of the field are compared to lower and upper limits. If the contents are greater

than or equal to the lower limit and less than or equal to the upper limit, the record is selected or

omitted. In the following example, all records with a range 301000 through 599999 in the Itmnbr field

are selected.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR RANGE(301000 599999)

 A

52 System i: Database Database programming

v CMP. The contents of a field are compared to a value or the contents of another field. Valid comparison

codes are EQ, NE, LT, NL, GT, NG, LE, and GE. If the comparison is met, the record is selected or

omitted. In the following example, a record is selected if its Itmnbr field is less than or equal to 599999:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR CMP(LE 599999)

 A

The value for a numeric field for which the CMP, VALUES, or RANGE keyword is specified is aligned

based on the decimal positions specified for the field and filled with zeros where necessary. If decimal

positions were not specified for the field, the decimal point is placed to the right of the farthest right digit

in the value. For example, for a numeric field with length 5 and decimal position 2, the value 1.2 is

interpreted as 001.20 and the value 100 is interpreted as 100.00.

The status of a record is determined by evaluating select/omit statements in the sequence you specify

them. If a record qualifies for selection or omission, subsequent statements are ignored.

Normally the select and omit comparisons are treated independently of one another; the comparisons are

ORed together. That is, if the select or omit comparison is met, the record is either selected or omitted. If

the condition is not met, the system proceeds to the next comparison. To connect comparisons together,

you leave a space in position 17 of the DDS form. Then, all the comparisons that were connected in this

fashion must be met before the record is selected or omitted. That is, the comparisons are ANDed

together.

The fewer comparisons, the more efficient the task is. So, when you have several select/omit

comparisons, try to specify the one that selects or omits the most records first.

The following examples show ways to code select/omit functions. In these examples, few records exist

for which the Rep field is JSMITH. The examples show how to use DDS to select all the records before

1988 for a sales representative named JSMITH in the state of New York. All give the same results with

different efficiency. 3 shows the most efficient way.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ST CMP(EQ ’NY’) 1

 A REP CMP(EQ ’JSMITH’)

 A YEAR CMP(LT 88)

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A O YEAR CMP(GE 88) 2

 A S ST CMP(EQ ’NY’)

 A REP CMP(EQ ’JSMITH’)

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A O REP CMP(NE ’JSMITH’) 3

 A O ST CMP(NE ’NY’)

 A S YEAR CMP(LT 88)

 A

1 All records must be compared with all of the select fields St, Rep, and Year before they can be

selected or omitted.

2 All records are compared with the Year field. Then, the records before 1988 must be compared

with the St and Rep fields.

3 All records are compared with the Rep field. Then, only the few for JSMITH are compared with

the St field. Then, the few records that are left are compared to the Year field.

 As another example, assume that you want to select the following items:

v All records for departments other than Department 12.

Database programming 53

v Only those records for Department 12 that contain an item number 112505, 428707, or 480100. No other

records for Department 12 are to be selected.

If you create the preceding example with a sort sequence table, the select/omit fields are translated

according to the sort table before the comparison. For example, with a sort sequence table using shared

weightings for uppercase and lowercase, NY and ny are equal.

The following diagram shows the logic of this example.

This example uses the DDS select and omit functions:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S DPTNBR CMP(NE 12)

 A S ITMNBR VALUES(112505 428707 480100)

 A

It is possible to have an access path with select/omit values and process the file in arrival sequence. For

example, a high-level language program can specify that the keyed access path is to be ignored. In this

case, every record is read from the file in arrival sequence, but only those records meeting the select/omit

values specified in the file are returned to the high-level language program.

A logical file with key fields and select/omit values specified can be processed in arrival sequence or

using relative record numbers randomly. Records omitted by the select/omit values are not processed.

That is, if an omitted record is requested by relative record number, the record is not returned to the

high-level language program.

The system does not ensure that any additions or changes through a logical file will allow the record to

be accessed again in the same logical file. For example, if the selection values of the logical file specifies

only records with an A in Fld1 and the program updates the record with a B in Fld1, the program cannot

retrieve the record again using this logical file.

Note: You cannot select or omit based on the values of a floating-point field.

54 System i: Database Database programming

The two kinds of select/omit operations are access path select/omit and dynamic select/omit. The

default is access path select/omit. The select/omit specifications themselves are the same in each kind,

but the system actually does the work of selecting and omitting records at different times.

You can also use the Open Query File (OPNQRYF) command to select or omit records.

 Related concepts

 DDS concepts

Access path select/omit:

With the access path select/omit operation, the access path only contains keys that meet the select/omit

values specified for the logical file.

 When you specify key fields for a logical file, an access path is kept for the file and maintained by the

system when you add or update records in the physical files used by the logical file. The only index

entries in the access path are those that meet the select/omit values.

Dynamic select/omit:

With the dynamic select/omit operation, the system only returns those records that meet the select/omit

values when a program reads records from the file. That is, the actual select/omit processing is done

when records are read by a program, rather than when the records are added or changed.

 However, the keyed sequence access path contains all the keys, not just keys from selected records.

Access paths using dynamic select/omit allow more access path sharing, which can improve

performance.

To specify dynamic select/omit, use the Dynamic selection (DYNSLT) keyword. With dynamic

select/omit, key fields are not required.

If you have a file that is updated frequently and read infrequently, you might not need to update the

access path for select/omit purposes until your program reads the file. In this case, dynamic select/omit

might be the correct choice. The following example helps describe this.

You use a code field (A=active, I=inactive), which is changed infrequently, to select/omit records. Your

program processes the active records and the majority (over 80%) of the records are active. It can be more

efficient to use DYNSLT to dynamically select records at processing time rather than perform access path

maintenance when the code field is changed.

 Related concepts

 “Sharing existing access paths between logical files” on page 56
When two or more logical files are based on the same physical files with the same key fields in the

same order, they automatically share the same keyed sequence access path.

Selecting and omitting logical file records using the Open Query File (OPNQRYF) command:

As an alternative to using DDS, you can select and omit records for a logical file by specifying the

QRYSLT parameter on the Open Query File (OPNQRYF) command.

 The open data path created by the OPNQRYF command is like a temporary logical file; that is, it is

automatically deleted when it is closed. A logical file, however, remains in existence until you specifically

delete it.

 Related concepts

 “Using Open Query File (OPNQRYF) command” on page 123
By using the Open Query File (OPNQRYF) command, you can open a file to a set of database records

that satisfies a database query request.

Database programming 55

Sharing existing access paths between logical files:

When two or more logical files are based on the same physical files with the same key fields in the same

order, they automatically share the same keyed sequence access path.

 When access paths are shared, the amount of system activity required to maintain the access paths and

the amount of auxiliary storage used by the files are reduced. So when a logical file with a keyed

sequence access path is created, the system always tries to share an existing access path. For access path

sharing to occur, an access path that satisfies the following conditions must exist on the system:

v The logical file member to be added must be based on the same physical file members that the existing

access path is based on.

v The length, data type, and number of decimal positions specified for each key field must be identical

in both the new file and the existing file.

v If the FIFO, LIFO, or FCFO keyword is not specified, the new file can have fewer key fields than the

existing access paths. That is, a new logical file can share an existing access path if the beginning part

of the key is identical. However, when a file shares a partial set of keys from an existing access path,

any record updates made to fields that are part of the set of keys for the shared access path might

change the record position in that access path.

v The attributes of the access path (such as UNIQUE, LIFO, FIFO, or FCFO) and the attributes of the key

fields (such as DESCEND, ABSVAL, UNSIGNED, and SIGNED) must be identical.

Exceptions:

1. A FIFO access path can share an access path in which the UNIQUE keyword is specified if all the

other requirements for access path sharing are met.

2. A UNIQUE access path can share a FIFO access path that needs to be rebuilt (for example, has

*REBLD maintenance specified), if all the other requirements for access path sharing are met.
v If the new logical file has select/omit specifications, they must be identical to the select/omit

specifications of the existing access path. However, if the new logical file specifies DYNSLT, it can

share an existing access path if the existing access path has either:

– The dynamic select (DYNSLT) keyword specified

– No select/omit keywords specified
v The alternative collating sequence (ALTSEQ keyword) and the translation table (TRNTBL keyword) of

the new logical file member, if any, must be identical to the alternative collating sequence and

translation table of the existing access path.

Note: Logical files that contain concatenated or substring fields cannot share access paths with physical

files.

The owner of any access path is the logical file member that originally created the access path. For a

shared access path, if the logical member owning the access path is deleted, the first member to share the

access path becomes the new owner. The FRCACCPTH, MAINT, and RECOVER parameters on the

Create Logical File (CRTLF) command need not match the same parameters on an existing access path for

that access path to be shared. When an access path is shared by several logical file members, and the

FRCACCPTH, MAINT, and RECOVER parameters are not identical, the system maintains the access path

by the most restrictive value for each of the parameters specified by the sharing members. The following

list illustrates how this occurs:

v MBRA specifies:

FRCACCPTH (*NO)

MAINT (*IMMED)

RECOVER (*AFTIPL)

v MBRB specifies:

v FRCACCPTH (*YES)

MAINT (*DLY)

RECOVER (*NO)

56 System i: Database Database programming

v System does:

FRCACCPTH (*YES)

MAINT (*IMMED)

RECOVER (*AFTIPL)

Access path sharing does not depend on sharing between members; therefore, it does not restrict the

order in which members can be deleted.

The Display File Description (DSPFD) and Display Database Relations (DSPDBR) commands show access

path sharing relationships.

 Related concepts

 “Arranging duplicate keys” on page 89
If you do not specify the Unique (UNIQUE) keyword in data description specifications (DDS), you

can specify how the system stores records with duplicate key values.

Example: Implicitly shared access paths:

This example shows how to implicitly share an access path between logical files.

 Two logical files, LFILE1 and LFILE2, are built over the physical file PFILE. LFILE1, which was created

first, has two key fields, KFD1 and KFD2. LFILE2 has three key fields, KFD1, KFD2, and KFD3. The two

logical files use two of the same key fields, but no access path is shared because the logical file with three

key fields was created after the file with two key fields.

 Table 5. Physical and logical files before save and restore

Description Physical file (PFILE) Logical file 1 (LFILE1) Logical file 2 (LFILE2)

Access path KFD1, KFD2 KFD1, KFD2, KFD3

Fields KFD1, KFD2, KFD3, A, B, C, D,

E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

An application uses LFILE1 to access the records and to change the KFD3 field to blank if it contains a C,

and to a C if it is blank. This application does not cause any unexpected results because the access paths

are not shared. However, after the physical file and both logical files are saved and restored, the program

appears to do nothing and takes longer to process.

Unless you change the way you restore the logical files (for example, if you restore LFILE1 and LFILE2

separately with the Restore Object (RSTOBJ) command), the system restores the logical file with the

largest number of keys first or does not build unnecessary access paths.

Because it has three key fields, LFILE2 is restored first. After recovery, LFILE1 implicitly shares the access

path for LFILE2. Users who do not understand implicitly shared access paths do not realize that when

they use LFILE1 after a recovery, they are really using the key for LFILE2.

 Table 6. Physical and logical files after save and restore. Note that the only difference from before the save and

restore is that the logical files now share the same access path.

Description Physical file (PFILE) Logical file 1 (LFILE1) Logical file 2 (LFILE2)

Access path KFD1, KFD2, KFD3 KFD1, KFD2, KFD3

Fields KFD1, KFD2, KFD3, A, B, C, D,

E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

Database programming 57

|
|
|

The following records are tested and changed.

 Relative record KFD1 KFD2 KFD3

001 01 01 <blank>

002 01 01 <blank>

003 01 01 <blank>

004 01 01 <blank>

The first record is read through the first key of 0101<blank> and changed to 0101C. The records now look

like this.

 Relative record KFD1 KFD2 KFD3

001 01 01 C

002 01 01 <blank>

003 01 01 <blank>

004 01 01 <blank>

When the application issues a get next key, the next higher key above 0101<blank> is 0101C. This is the

record that was just changed. However, this time the application changes the KFD3 field from C to blank.

Because the user does not understand implicit access path sharing, the application accesses and changes

every record twice. The end result is that the application takes longer to run, and the records look like

they have not changed.

Setting up a join logical file

These examples show how to create a variety of join logical files.

In general, the examples in these topics include a picture of the files, data description specifications

(DDS) for the files, and sample data. For example 1, several cases are given that show how to join files in

different situations (when data in the physical files varies).

In these examples, for convenience and ease of recognition, join logical files are shown with the label JLF,

and physical files are illustrated with the labels PF1, PF2, PF3, and so forth.

 Related concepts

 Joining data from more than one table

Example 1: Basic concepts of joining two physical files:

A join logical file is a logical file that combines (in one record format) fields from two or more physical

files because not all the fields in the record format need to exist in all the physical files. This example

shows a join logical file that joins two physical files.

58 System i: Database Database programming

In this example, the join logical file (JLF) has field Employee number, Name, and Salary. Physical file 1 (PF1)

has Employee number and Name, while physical file 2 (PF2) has Employee number and Salary. Employee

number is common to both physical files (PF1 and PF2), but Name is found only in PF1, and Salary is

found only in PF2.

With a join logical file, the application program does one read operation (to the record format in the join

logical file) and gets all the data needed from both physical files. Without the join specification, the

logical file would contain two record formats, one based on PF1 and the other based on PF2, and the

application program would have to do two read operations to get all the needed data from the two

physical files. Thus, join provides more flexibility in designing your database.

However, a few restrictions are placed on join logical files:

v You cannot change a physical file through a join logical file. To do update, delete, or write (add)

operations, you must create a second multiple format logical file and use it to change the physical files.

You can also use the physical files, directly, to do the change operations.

v You cannot use data file utility (DFU) to display a join logical file.

v You can specify only one record format in a join logical file.

v The record format in a join logical file cannot be shared.

v A join logical file cannot share the record format of another file.

v Key fields must be fields defined in the join record format and must be fields from the first file

specified on the JFILE keyword (which is called the primary file).

v Select/omit fields must be fields defined in the join record format, but can come from any of the

physical files.

v Commitment control cannot be used with join logical files.

This example uses the following DDS:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NBR)

 A NBR JREF(PF1)

 A NAME

 A SALARY

 A K NBR

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 10

 A NAME 20

 A K NBR

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NBR 10

 A SALARY 7 2

 A K NBR

 A

The following list describes the DDS for the join logical file in example 1:

The record-level specification identifies the record format name used in the join logical file.

R Identifies the record format. Only one record format can be placed in a join logical file.

Database programming 59

JFILE Replaces the PFILE keyword used in simple and multiple-format logical files. You must specify at

least two physical files. The first file specified on the JFILE keyword is the primary file. The other

files specified on the JFILE keyword are secondary files.

The join specification describes the way a pair of physical files is joined. The second file of the pair is

always a secondary file, and there must be one join specification for each secondary file.

J Identifies the start of a join specification. You must specify at least one join specification in a join

logical file. A join specification ends at the first field name specified in positions 19 through 28 or

at the next J specified in position 17.

JOIN Identifies which two files are joined by the join specification. If only two physical files are joined

by the join logical file, the JOIN keyword is optional.

JFLD Identifies the join fields that join records from the physical files specified on the JOIN keyword.

JFLD must be specified at least once for each join specification. The join fields are fields common

to the physical files. The first join field is a field from the first file specified on the JOIN keyword,

and the second join field is a field from the second file specified on the JOIN keyword.

 Join fields, except character type fields, must have the same attributes (data type, length, and

decimal positions). If the fields are character type fields, they do not need to have the same

length. If you are joining physical file fields that do not have the same attributes, you can

redefine them for use in a join logical file.

The field-level specification identifies the fields included in the join logical file.

Field names

Specifies which fields (in this example, Nbr, Name, and Salary) are used by the application

program. At least one field name is required. You can specify any field names from the physical

files used by the logical file. You can also use keywords like RENAME, CONCAT, or SST as you

would in simple and multiple format logical files.

JREF In the record format (which follows the join specification level and precedes the key field level, if

any), the field names must uniquely identify which physical file the field comes from. In this

example, the Nbr field occurs in both PF1 and PF2. Therefore, the JREF keyword is required to

identify the file from which the Nbr field description will be used.

The key field level specification is optional, and includes the key field names for the join logical file.

K Identifies a key field specification. The K appears in position 17. Key field specifications are

optional.

Key field names

Key field names (in this example, Nbr is the only key field) are optional and make the join logical

file an indexed (keyed sequence) file. Without key fields, the join logical file is an arrival

sequence file. In join logical files, key fields must be fields from the primary file, and the key

field name must be specified in positions 19 through 28 in the logical file record format.

The select/omit field level specification is optional, and includes select/omit field names for the join

logical file.

S or O

Identifies a select or omit specification. The S or O appears in position 17. Select/omit

specifications are optional.

Select/omit field names

Only those records meeting the select/omit values will be returned to the program using the

logical file. Select/omit fields must be specified in positions 19 through 28 in the logical file

record format.
 Related concepts

60 System i: Database Database programming

DDS concepts
 Related reference

 “Example 7: Joining three or more physical files” on page 74
This example shows how to use a join logical file to join three or more physical files.

 “Example 4: Using join fields whose attributes are different” on page 70
This example shows how to handle join fields when their attributes (length, data type, and decimal

positions) are different.

Reading a join logical file:

These cases show how the join logical file in example 1 presents records to an application program.

 The PF1 file is specified first on the JFILE keyword, and is therefore the primary file. When the

application program requests a record, the system does the following things:

1. Uses the value of the first join field in the primary file (the Nbr field in PF1).

2. Finds the first record in the secondary file with a matching join field (the Nbr field in PF2 matches the

Nbr field in PF1).

3. For each match, joins the fields from the physical files into one record and provides this record to

your program. Depending on how many records are in the physical files, one of the following

conditions might occur:

a. For all records in the primary file, only one matching record is found in the secondary file. The

resulting join logical file contains a single record for each record in the primary file. See “Case 1:

Matching records in primary and secondary files.”

b. For some records in the primary file, no matching record is found in the secondary file.

If you specify the JDFTVAL keyword:

v For those records in the primary file that have a matching record in the secondary file, the system joins

to the secondary, or multiple secondaries. The result is one or more records for each record in the

primary file.

v For those records in the primary file that do not have a matching record in the secondary file, the

system adds the default value fields for the secondary file and continues the join operation. You can

use the DFT keyword in the physical file to define which defaults are used. See “Case 2A: A record

missing in the secondary file (JDFTVAL keyword not specified)” on page 62 and “Case 2B: A record

missing in the secondary file (JDFTVAL keyword specified)” on page 63.

Note: If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is

used in the join. The result would be at least one join record for each primary record.

v If a record exists in the secondary file, but the primary file has no matching value, no record is

returned to your program. A second join logical file can be used that reverses the order of primary and

secondary files to determine if secondary file records exist with no matching primary file records.

If you do not specify the JDFTVAL keyword:

v If a matching record in a secondary file exists, the system joins to the secondary, or multiple

secondaries. The result is one or more records for each record in the primary file.

v If a matching record in a secondary file does not exist, the system does not return a record.

Note: When the JDFTVAL is not specified, the system returns a record only if a match is found in every

secondary file for a record in the primary file.

In the following examples, cases 1 through 4 describe sequential read operations, and case 5 describes

reading by key.

Case 1: Matching records in primary and secondary files:

Database programming 61

This example join logical file contains a single record for each record in the primary file because each

record in the primary file has a match in the secondary file.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58, and four records are contained in both PF1 and PF2, as shown in the following two tables.

 Table 7. Physical file 1 (PF1)

Employee number Name

235 Anne

440 Doug

500 Mark

729 Sue

 Table 8. Physical file 2 (PF2)

Employee number Salary

235 1700.00

440 950.50

500 2100.00

729 1400.90

The program does four read operations and gets the following records.

 Table 9. Join logical file (JLF)

Employee number Name Salary

235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

Case 2A: A record missing in the secondary file (JDFTVAL keyword not specified):

This example join logical file misses one record in the primary file because it does not have a match in

the secondary file and the Join Default Values (JDFTVAL) DDS keyword is not specified.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58, and there are four records in PF1 and three records in PF2, as shown in the following two

tables.

 Table 10. Physical file 1 (PF1)

Employee number Name

235 Anne

440 Doug

500 Mark

729 Sue

62 System i: Database Database programming

Table 11. Physical file 2 (PF2)

Employee number Salary

235 1700.00

440 950.50

729 1400.90

In PF2, no record is found for number 500.

The program reads the join logical file and gets the following records.

 Table 12. Join logical file (JLF)

Employee number Name Salary

235 Anne 1700.00

440 Doug 950.50

729 Sue 1400.90

If you do not specify the JDFTVAL keyword and no match is found for the join field in the secondary

file, the record is not included in the join logical file.

Case 2B: A record missing in the secondary file (JDFTVAL keyword specified):

Because the Join Default Values (JDFTVAL) DDS keyword is specified, this example join logical file

contains a single record for each record in the primary file even though one record does not have a match

in the secondary file.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58, except that the JDFTVAL keyword is specified, as shown in the following DDS:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NBR)

 A NBR JREF(PF1)

 A NAME

 A SALARY

 A K NBR

 A

The program reads the join logical file and gets the following records.

 Table 13. Join logical file (JLF)

Employee number Name Salary

235 Anne 1700.00

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

With JDFTVAL specified, the system returns a record for 500, even though the record is missing in PF2.

Without that record, some field values can be missing in the join record. In this case, the Salary field is

missing. With JDFTVAL specified, missing character fields normally use blanks; missing numeric fields

Database programming 63

use zeros. Therefore, in this case, the value for the missing record in the join record is 0. However, if the

DFT keyword is specified for the field in the physical file, the default value specified on the DFT

keyword is used.

Case 3: Secondary file has more than one match for a record in the primary file:

This example join logical file contains a duplicate record in the primary file because it has more than one

match in the secondary file.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58, and there are four records in PF1 and five records in PF2, as shown in the following two

tables.

 Table 14. Physical file 1 (PF1)

Employee number Name

235 Anne

440 Doug

500 Mark

729 Sue

 Table 15. Physical file 2 (PF2)

Employee number Salary

235 1700.00

235 1500.00

440 950.50

500 2100.00

729 1400.90

In PF2, the record for 235 is duplicated.

The program gets five records.

 Table 16. Join logical file (JLF)

Employee number Name Salary

235 Anne 1700.00

235 Anne 1500.00

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

In the join records, the record for 235 is duplicated. The order of the records received for the duplicated

record is unpredictable unless the JDUPSEQ keyword is used.

 Related reference

 “Example 3: Reading duplicate records in the secondary file” on page 69
This example shows how a join logical file reads duplicate records in the secondary file based on the

specification of the Join Duplicate Sequence (JDUPSEQ) DDS keyword.

Case 4: An extra record in the secondary file:

64 System i: Database Database programming

This example join logical file does not include an extra record in the secondary file because the record

does not have a match in the primary file.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58, and four records are contained in PF1 and five records in PF2.

The record for 301 exists only in PF2.

The program reads the join logical file and gets only four records. The record for 301 does not appear.

 Table 17. Join logical file (JLF)

Employee number Name Salary

235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

These results would be the same even if the JDFTVAL keyword were specified, because a record must

always be contained in the primary file to receive a join record.

Case 5: Random access:

This example join logical file returns records for a random access read operation.

 Assume that a join logical file is specified as in “Example 1: Basic concepts of joining two physical files”

on page 58. Note that the join logical file has key fields defined.

Assume that PF1 and PF2 have the following records.

 Table 18. Physical file 1 (PF1)

Employee number Name

235 Anne

440 Doug

500 Mark

729 Sue

997 Tim

 Table 19. Physical file 2 (PF2)

Employee number Salary

235 1700.00

440 950.50

729 1400.90

984 878.25

997 331.00

997 555.00

In PF2, no record is found for record 500, record 984 exists only in PF2, and duplicate records are found

for 997.

Database programming 65

The program can get the following records.

Given a value of 235 from the program for the Nbr field in the logical file, the system supplies the

following record.

 Employee number Name Salary

235 Anne 1700.00

Given a value of 500 from the program for the Nbr field in the logical file and with the JDFTVAL

keyword specified, the system supplies the following record.

 Employee number Name Salary

500 Mark 0000.00

Note: If the JDFTVAL keyword was not specified in the join logical file, no record is found for a value of

500 because no matching record is contained in the secondary file.

Given a value of 984 from the program for the Nbr field in the logical file, the system supplies no record

and a no record found exception occurs because record 984 is not in the primary file.

Given a value of 997 from the program for the Nbr field in the logical file, the system returns one of the

following records.

 Employee number Name Salary

997 Tim 331.00

or

 Employee number Name Salary

997 Tim 555.00

Which record is returned to the program cannot be predicted. To specify which record is returned, specify

the JDUPSEQ keyword in the join logical file.

Notes:

1. With random access, the application programmer must be aware that duplicate records can be

contained in PF2, and ensure that the program does more than one read operation for records

with duplicate keys. If the program is using sequential access, a second read operation gets

the second record.

2. If you specify the JDUPSEQ keyword, the system can create a separate access path for the join

logical file (because there is less of a chance that the system will find an existing access path

that it can share). If you omit the JDUPSEQ keyword, the system can share the access path of

another file. (In this case, the system can share the access path of PF2.)
 Related reference

 “Example 3: Reading duplicate records in the secondary file” on page 69
This example shows how a join logical file reads duplicate records in the secondary file based on the

specification of the Join Duplicate Sequence (JDUPSEQ) DDS keyword.

Setting up a join logical file:

To create a join logical file, follow this process.

66 System i: Database Database programming

1. Find the names of all the physical file fields you want in the logical file record format. (You can

display the fields contained in files using the Display File Field Description (DSPFFD) command.)

2. Describe the fields in the record format. Write the field names in a vertical list. This is the start of the

record format for the join logical file.

Note: You can specify the field names in any order. If the same field names appear in different

physical files, specify the name of the physical file on the JREF keyword for those fields. You

can rename fields using the RENAME keyword, and concatenate fields from the same physical

file using the CONCAT keyword. A subset of an existing character, hexadecimal, or zoned

decimal field can be defined using the SST keyword. The substring of a character or zoned

decimal field is a character field, and the substring of a hexadecimal field is also a hexadecimal

field. You can redefine fields: changing their data type, length, or decimal positions.

3. Specify the names of the physical files as parameter values on the JFILE keyword. The first name you

specify is the primary file. The others are all secondary files. For best performance, specify the

secondary files with the least records first after the primary file.

4. For each secondary file, code a join specification. On each join specification, identify which pair of

files are joined (using the JOIN keyword; optional if only one secondary file), and identify which

fields are used to join the pair (using the JFLD keyword; at least one required in each join

specification).

5. Optional: Specify the following items:

a. The JDFTVAL keyword. Do this if you want to return a record for each record in the primary file

even if no matching record exists in a secondary file.

b. The JDUPSEQ keyword. Do this for fields that might have duplicate values in the secondary files.

JDUPSEQ specifies on which field (other than one of the join fields) to sort these duplicates, and

the sequence that should be used.

c. Key fields. Key fields cannot come from a secondary file. If you omit key fields, records are

returned in arrival sequence as they appear in the primary file.

d. Select/omit fields. In some situations, you must also specify the dynamic selection (DYNSLT)

keyword at the file level.

e. Neither fields.
 Related reference

 “Example 5: Describing fields that never appear in the record format” on page 72
Neither fields (where N is specified in position 38) can be used in a join logical file for neither input

nor output. Neither fields are not included in the record format. This example shows how to describe

such fields that never appear in the record format.

Example 2: Using more than one field to join files:

You can specify more than one join field to join a pair of files. This example shows the fields in the

logical file and the two physical files.

Database programming 67

The join logical file (JLF) has fields Part number, Color, Price, and Quantity on hand. Physical file 1 (PF1)

has Part number, Color, Price, and Vendor, while physical file 2 (PF2) has Part number, Color, Quantity on

hand, and Warehouse. The data description specifications (DDS) for these files are shown as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(PTNBR PTNBR)

 A JFLD(COLOR COLOR)

 A PTNBR JREF(PF1)

 A COLOR JREF(PF1)

 A PRICE

 A QUANTOH

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A PTNBR 4

 A COLOR 20

 A PRICE 7 2

 A VENDOR 40

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A PTNBR 4

 A COLOR 20

 A QUANTOH 5 0

 A WAREHSE 30

 A

Assume that the physical files have the following records.

 Table 20. Physical file 1 (PF1)

Part number Color Price Vendor

100 Black 22.50 ABC Corp.

100 White 20.00 Ajax Inc.

120 Yellow 3.75 ABC Corp.

187 Green 110.95 ABC Corp.

187 Red 110.50 ABC Corp.

190 Blue 40.00 Ajax Inc.

 Table 21. Physical file 2 (PF2)

Part number Color Quantity on hand Warehouse

100 Black 23 ABC Corp.

100 White 15 Ajax Inc.

120 Yellow 102 ABC Corp.

187 Green 0 ABC Corp.

187 Red 2 ABC Corp.

190 Blue 2 Ajax Inc.

68 System i: Database Database programming

If the file is processed sequentially, the program receives the following records.

 Table 22. Join logical file (JLF)

Part number Color Price Quantity on hand

100 Black 22.50 23

100 White 20.00 15

120 Yellow 3.75 102

187 Green 110.95 0

187 Red 110.50 2

190 Blue 40.00 2

Note: No record for part number 190, color blue, is available to the program, because a match was not

found on both fields in the secondary file. Because JDFTVAL was not specified, no record is

returned.

Example 3: Reading duplicate records in the secondary file:

This example shows how a join logical file reads duplicate records in the secondary file based on the

specification of the Join Duplicate Sequence (JDUPSEQ) DDS keyword.

 The data description specifications (DDS) for the physical files and for the join logical file are shown as

follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NAME1 NAME2)

 A JDUPSEQ(TELEPHONE)

 A NAME1

 A ADDR

 A TELEPHONE

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NAME1 10

 A ADDR 20

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NAME2 10

 A TELEPHONE 8

 A

The physical files have the following records.

 Table 23. Physical file 1 (PF1)

Name Address

Anne 120 1st St.

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Database programming 69

||||

Table 24. Physical file 2 (PF2)

Name Telephone

Anne 555–1111

Anne 555–6666

Anne 555–2222

Doug 555–5555

The join logical file returns the following records.

 Table 25. Join logical file (JLF)

Name Address Telephone

Anne 120 1st St. 555–1111

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–6666

Doug 40 Pillsbury 555–5555

The program reads all the records available for Anne, then Doug, then Mark. Anne has one address, but

three telephone numbers. Therefore, there are three records returned for Anne.

The records for Anne sort in ascending sequence by telephone number because the JDUPSEQ keyword

sorts in ascending sequence unless you specify *DESCEND as the keyword parameter. The following

example shows the use of *DESCEND in DDS:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NAME1 NAME2)

 A JDUPSEQ(TELEPHONE *DESCEND)

 A NAME1

 A ADDR

 A TELEPHONE

 A

When you specify JDUPSEQ with *DESCEND, the records are returned as follows.

 Table 26. Join logical file (JLF)

Name Address Telephone

Anne 120 1st St. 555–6666

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–1111

Doug 40 Pillsbury 555–5555

Note: The JDUPSEQ keyword applies only to the join specification in which it is specified.

 Related reference

 “Example 10: A complex join logical file” on page 79
This example shows a more complex join logical file.

Example 4: Using join fields whose attributes are different:

70 System i: Database Database programming

This example shows how to handle join fields when their attributes (length, data type, and decimal

positions) are different.

 For example, as in “Example 3: Reading duplicate records in the secondary file” on page 69, the Name1

field is a character field 10 characters long in physical file PF1, and can be joined to the Name2 field, a

character field 10 characters long in physical file PF2. The Name1 and Name2 fields have the same

characteristics and, therefore, can easily be used as join fields.

You can also use character type fields that have different lengths as join fields without requiring any

redefinition of the fields. For example, if the NAME1 field of PF1 is 10 characters long and the NAME2

field of PF2 is 15 characters long, those fields can be used as join fields without redefining one of the

fields.

The following example shows the join fields that do not have the same attributes. Both physical files have

fields for employee number. The Nbr field in physical file PF1 and the Nbr field in physical file PF2 both

have a length of 3 specified in position 34, but in the PF1 file the field is zoned (S in position 35), and in

the PF2 file the field is packed (P in position 35). To join the two files using these fields as join fields, you

must redefine one or both fields to have the same attributes.

The following example illustrates the fields in the logical and physical files:

The join logical file (JLF) contains Employee number, Name, and Salary fields. Physical file 1 (PF1) contains

Employee number (zoned) and Name. Physical file 2 (PF2) contains Employee number (packed) and Salary.

The data description specifications (DDS) for these files are shown as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NBR)

 A NBR S JREF(2)

 A NAME

 A SALARY

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 3S 0 <-Zoned

 A NAME 20

 A K NBR

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NBR 3P 0 <-Packed

 A SALARY 7 2

 A K NBR

 A

Database programming 71

Note: In this example, the Nbr field in the logical file comes from PF2, because JREF(2) is specified.

Instead of specifying the physical file name, you can specify a relative file number on the JREF

keyword; in this example, the 2 indicates PF2.

Because the Nbr fields in the PF1 and PF2 files are used as the join fields, they must have the same

attributes. In this example, they do not. Therefore, you must redefine one or both of them to have the

same attributes. In this example, to resolve the difference in the attributes of the two employee number

fields, the Nbr field in JLF (which is coming from the PF2 file) is redefined as zoned (S in position 35 of

JLF).

Example 5: Describing fields that never appear in the record format:

Neither fields (where N is specified in position 38) can be used in a join logical file for neither input nor

output. Neither fields are not included in the record format. This example shows how to describe such

fields that never appear in the record format.

 Programs using the join logical file cannot see or read neither fields. Neither fields are not included in the

record format. Neither fields cannot be key fields or used in select/omit statements in the joined file. You

can use a neither field for a join field (specified at the join specification level on the JFLD keyword) that

is redefined at the record level only to allow the join operation, but is not needed or wanted in the

program.

In the following example, the program reads the descriptions, prices, and quantity on hand of parts in

stock. The part numbers themselves are not wanted except to bring together the records of the parts.

However, because the part numbers have different attributes, at least one must be redefined.

The join logical file (JLF) has fields Description, Price, and Quantity on hand. Physical file 1 (PF1) has

Description and Part number, while physical file 2 (PF2) has Part number, Price, and Quantity on hand. The

data description specifications (DDS) for these files are shown as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(PRTNBR PRTNBR)

 A PRTNBR S N JREF(1)

 A DESC

 A PRICE

 A QUANT

 A K DESC

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A DESC 30

 A PRTNBR 6P 0

 A

72 System i: Database Database programming

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A PRTNBR 6S 0

 A PRICE 7 2

 A QUANT 8 0

 A

In PF1, the Prtnbr field is a packed decimal field; in PF2, the Prtnbr field is a zoned decimal field. In the

join logical file, they are used as join fields, and the Prtnbr field from PF1 is redefined to be a zoned

decimal field by specifying an S in position 35 at the field level. The JREF keyword identifies which

physical file the field comes from. However, the field is not included in the record format; therefore, N is

specified in position 38 to make it a neither field. A program using this file would not see the field.

In this example, a sales clerk can type a description of a part. The program can read the join logical file

for a match or a close match, and display one or more parts for the user to examine, including the

description, price, and quantity. This application assumes that part numbers are not necessary to

complete a customer order or to order more parts for the warehouse.

Example 6: Specifying key fields in a join logical file:

This example illustrates the rules for specifying key fields in a join logical file.

 If you specify key fields in a join logical file, the following rules apply:

v The key fields must exist in the primary physical file.

v The key fields must be named in the join record format in the logical file in positions 19 through 28.

v The key fields cannot be fields defined as neither fields (N specified in position 38 for the field) in the

logical file.

The following example illustrates the rules for key fields:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NUMBER)

 A JFLD(FLD3 FLD31)

 A FLD1 RENAME(F1)

 A FLD2 JREF(2)

 A FLD3 35 N

 A NAME

 A TELEPHONE CONCAT(AREA LOCAL)

 A K FLD1

 A K NAME

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 4

 A F1 20

 A FLD2 7 2

 A FLD3 40

 A NAME 20

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NUMBER 4

 A FLD2 7 2

Database programming 73

A FLD31 35

 A AREA 3

 A LOCAL 7

 A

The following fields cannot be key fields:

v Nbr (not named in positions 19 through 28)

v Number (not named in positions 19 through 28)

v F1 (not named in positions 19 through 28)

v Fld31 (comes from a secondary file)

v Fld2 (comes from a secondary file)

v Fld3 (is a neither field)

v Area and Local (not named in positions 19 through 28)

v Telephone (is based on fields from a secondary file)

Specifying select/omit statements in a join logical file:

When you specify select/omit statements in a join logical file, follow these rules.

 v The fields can come from any physical file the logical file uses (specified on the JFILE keyword).

v The fields you specify on the select/omit statements cannot be fields defined as neither fields (N

specified in position 38 for the field).

v In some circumstances, you must specify the DYNSLT keyword when you specify select/omit

statements in join logical files.
 Related concepts

 DDS concepts
 Related reference

 “Example 10: A complex join logical file” on page 79
This example shows a more complex join logical file.

Example 7: Joining three or more physical files:

This example shows how to use a join logical file to join three or more physical files.

 You can use a join logical file to join as many as 32 physical files. These files must be specified on the

JFILE keyword. The first file specified on the JFILE keyword is the primary file; the other files are all

secondary files.

The physical files must be joined in pairs, with each pair described by a join specification. Each join

specification must have one or more join fields identified.

The following chart shows the fields in the files and one field common to all the physical files in the

logical file.

74 System i: Database Database programming

The join logical file (JLF2) contains Name, Address, Telephone, and Salary. Physical file 1 (PF1) has Name

and Address, physical file 2 (PF2) has Name and Telephone, and physical file 3 (PF3) has Name and Salary.

In this example, the Name field is common to all the physical files (PF1, PF2, and PF3), and serves as the

join field.

The following example shows the data description specifications (DDS) for the physical and logical files:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2 P3)

 A J JOIN(PF1 PF2)

 A JFLD(NAME NAME)

 A J JOIN(PF2 PF3)

 A JFLD(NAME NAME)

 A NAME JREF(PF1)

 A ADDR

 A TELEPHONE

 A SALARY

 A K NAME

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NAME 10

 A ADDR 20

 A K NAME

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NAME 10

 A TELEPHONE 7

 A K NAME

 A

PF3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC3

 A NAME 10

 A SALARY 9 2

 A K NAME

 A

Assume that the physical files have the following records.

 Table 27. Physical file 1 (PF1)

Name Address

Anne 120 1st St.

Database programming 75

Table 27. Physical file 1 (PF1) (continued)

Name Address

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Tom 335 Elm St.

 Table 28. Physical file 2 (PF2)

Name Telephone

Anne 555–1111

Doug 555–5555

Mark 555–0000

Sue 555–3210

 Table 29. Physical file 3 (PF3)

Name Salary

Anne 1700.00

Doug 950.00

Mark 2100.00

The program reads the following logical file records.

 Table 30. Join logical file (JLF)

Name Address Telephone Salary

Anne 120 1st St. 555–1111 1700.00

Doug 40 Pillsbury 555–5555 950.00

Mark 2 Lakeside Dr. 555–0000 2100.00

No record is returned for Tom because a record is not found for him in PF2 and PF3 and the JDFTVAL

keyword is not specified. No record is returned for Sue because the primary file has no record for Sue.

Example 8: Joining a physical file to itself:

This example shows how to use a join logical file to combine records from one physical file.

 The following chart shows how you can join a physical file to itself.

76 System i: Database Database programming

||

||||

||||

||||

||||
|

The join logical file (JLF) contains Employee number, Name, and Manager’s name. The physical file (PF1)

contains Employee number, Name, and Manager’s employee number. The following example shows the data

description specifications (DDS) for these files:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JOINREC JFILE(PF1 PF1)

 A J JOIN(1 2)

 A JFLD(MGRNBR NBR)

 A NBR JREF(1)

 A NAME JREF(1)

 A MGRNAME RENAME(NAME)

 A JREF(2)

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1

 A NBR 3

 A NAME 10 DFT(’none’)

 A MGRNBR 3

 A

Notes:

1. Relative file numbers must be specified on the JOIN keyword because the same file name is

specified twice on the JFILE keyword. Relative file number 1 refers to the first physical file

specified on the JFILE keyword, 2 refers to the second, and so forth.

2. With the same physical files specified on the JFILE keyword, the JREF keyword is required for

each field specified at the field level.

Assume that the following records are contained in PF1.

 Table 31. Physical file 1 (PF1)

Employee number Name Manager’s employee number

235 Anne 440

440 Doug 729

500 Mark 440

729 Sue 888

The program reads the following logical file records.

 Table 32. Join logical file (JLF)

Employee number Name Manager’s name

235 Anne Doug

440 Doug Sue

500 Mark Doug

729 Sue none

Notes:

1. A record is returned for the manager name of Sue because the JDFTVAL keyword was

specified.

2. The value none is returned because the DFT keyword was used on the Name field in the PF1

physical file.

Database programming 77

Example 9: Using defaults for missing records from secondary files:

This example shows how to use the default value for a missing join field in a secondary file to join to the

other secondary file.

 If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is used in

the logical file.

The data description specifications (DDS) for the files are shown as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JRCD JFILE(PF1 PF2 PF3)

 A J JOIN(PF1 PF2)

 A JFLD(NAME NAME)

 A J JOIN(PF2 PF3)

 A JFLD(TELEPHONE TELEPHONE)

 A NAME JREF(PF1)

 A ADDR

 A TELEPHONE JREF(PF2)

 A LOC

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1

 A NAME 20

 A ADDR 40

 A COUNTRY 40

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD2

 A NAME 20

 A TELEPHONE 8 DFT(’999-9999’)

 A

PF3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD3

 A TELEPHONE 8

 A LOC 30 DFT(’No location assigned’)

 A

Assume that PF1, PF2, and PF3 have the following records.

 Table 33. Physical file 1 (PF1)

Name Address Country

Anne 120 1st St. USA

Doug 40 Pillsbury Canada

Mark 2 Lakeside Dr. Canada

Sue 120 Broadway USA

 Table 34. Physical file 2 (PF2)

Name Telephone

Anne 555–1234

Doug 555–2222

78 System i: Database Database programming

Table 34. Physical file 2 (PF2) (continued)

Name Telephone

Sue 555–1144

 Table 35. Physical file 3 (PF3)

Telephone Location

555–1234 Room 312

555–2222 Main lobby

999–9999 No telephone number

With JDFTVAL specified in the join logical file, the program reads the following logical file records.

 Table 36. Join logical file (JLF)

Name Address Telephone Location

Anne 120 1st St. 555–1234 Room 312

Doug 40 Pillsbury 555–2222 Main lobby

Mark 2 Lakeside Dr. 999–9999 No telephone number

Sue 120 Broadway 555–1144 No location assigned

In this example, complete data is found for Anne and Doug. However, part of the data is missing for

Mark and Sue.

v PF2 is missing a record for Mark because he has no telephone number. The default value for the

Telephone field in PF2 is defined as 999-9999 using the DFT keyword. In this example, therefore,

999-9999 is the telephone number returned when no telephone number is assigned. The JDFTVAL

keyword specified in the join logical file causes the default value for the Telephone field (which is

999-9999) in PF2 to be used to match with a record in PF3. (In PF3, a record is included to show a

description for telephone number 999-9999.) Without the JDFTVAL keyword, no record would be

returned for Mark.

v Sue’s telephone number is not yet assigned a location; therefore, a record for 555-1144 is missing in

PF3. Without JDFTVAL specified, no record would be returned for Sue. With JDFTVAL specified, the

system supplies the default value specified on the DFT keyword in PF3 the Loc field (which is No

location assigned).

Example 10: A complex join logical file:

This example shows a more complex join logical file.

 Assume that the data is in the following three physical files:

Vendor Master File (PF1)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1 TEXT(’VENDOR INFORMATION’)

 A VDRNBR 5 TEXT(’VENDOR NUMBER’)

 A VDRNAM 25 TEXT(’VENDOR NAME’)

 A STREET 15 TEXT(’STREET ADDRESS’)

 A CITY 15 TEXT(’CITY’)

 A STATE 2 TEXT(’STATE’)

 A ZIPCODE 5 TEXT(’ZIP CODE’)

 A DFT(’00000’)

 A PAY 1 TEXT(’PAY TERMS’)

 A

Order File (PF2)

Database programming 79

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD2 TEXT(’VENDORS ORDER’)

 A VDRNUM 5S 0 TEXT(’VENDOR NUMBER’)

 A JOBNBR 6 TEXT(’JOB NUMBER’)

 A PRTNBR 5S 0 TEXT(’PART NUMBER’)

 A DFT(99999)

 A QORDER 3S 0 TEXT(’QUANTITY ORDERED’)

 A UNTPRC 6S 2 TEXT(’PRICE’)

 A

Part File (PF3)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD3 TEXT(’DESCRIPTION OF PARTS’)

 A PRTNBR 5S 0 TEXT(’PART NUMBER’)

 A DFT(99999)

 A DESCR 25 TEXT(’DESCRIPTION’)

 A UNITPRICE 6S 2 TEXT(’UNIT PRICE’)

 A WHSNBR 3 TEXT(’WAREHOUSE NUMBER’)

 A PRTLOC 4 TEXT(’LOCATION OF PART’)

 A QOHAND 5 TEXT(’QUANTITY ON HAND’)

 A

The join logical file record format should contain the following fields:

v Vdrnam (vendor name)

v Street, City, State, and Zipcode (vendor address)

v Jobnbr (job number)

v Prtnbr (part number)

v Descr (description of part)

v Qorder (quantity ordered)

v Untprc (unit price)

v Whsnbr (warehouse number)

v Prtloc (location of part)

The data description specifications (DDS) for this join logical file are shown as follows:

Join Logical File (JLF)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A 1 DYNSLT

 A 2 JDFTVAL

 A R RECORD1 JFILE(PF1 PF2 PF3)

 A 3 J JOIN(1 2)

 A JFLD(VDRNBR VDRNUM)

 A 4 JDUPSEQ(JOBNBR)

 A 5 J JOIN(2 3)

 A 6 JFLD(PRTNBR PRTNBR)

 A JFLD(UNTPRC UNITPRICE)

 A 7 VDRNUM 5A N TEXT(’CHANGED ZONED TO CHAR’)

 A VDRNAM

 A ADDRESS 8 CONCAT(STREET CITY STATE +

 A ZIPCODE)

 A JOBNBR

 A PRTNBR 9 JREF(2)

 A DESCR

 A QORDER

 A UNTPRC

 A WHSNBR

 A PRTLOC

 A 10 S VDRNAM COMP(EQ ’SEWING COMPANY’)

 A S QORDER COMP(GT 5)

 A

1 The DYNSLT keyword is required because the JDFTVAL keyword and select fields are specified.

80 System i: Database Database programming

2 The JDFTVAL keyword is specified to pick up default values in physical files.

3 First join specification.

4 The JDUPSEQ keyword is specified because duplicate vendor numbers occur in PF2.

5 Second join specification.

6 Two JFLD keywords are specified to ensure that the correct records are joined from the PF2 and

PF3 files.

7 The Vdrnum field is redefined from zoned decimal to character (because it is used as a join field

and it does not have the same attributes in PF1 and PF2).

8 The CONCAT keyword concatenates four fields from the same physical file into one field.

9 The JREF keyword must be specified because the Prtnbr field exists in two physical files and you

want to use the one in PF2.

10 The select/omit fields are Vdrnam and Qorder.

Note: They come from two different physical files.)

Join logical file considerations:

Consider performance, data integrity, and rules for join logical files.

Performance considerations:

Use these tips to improve performance of join logical files.

 v If the physical files you join have a different number of records, specify the physical file with fewest

records first (first parameter following the JOIN keyword).

v Consider using the DYNSLT keyword.

v Consider describing your join logical file so it can automatically share an existing access path.

Note: Join logical files always have access paths using the second field of the pair of fields specified in

the JFLD keyword. This field acts like a key field in simple logical files. If an access path does

not already exist, the access path is implicitly created with immediate maintenance.
 Related concepts

 “Dynamic select/omit” on page 55
With the dynamic select/omit operation, the system only returns those records that meet the

select/omit values when a program reads records from the file. That is, the actual select/omit

processing is done when records are read by a program, rather than when the records are added or

changed.

 “Sharing existing access paths between logical files” on page 56
When two or more logical files are based on the same physical files with the same key fields in the

same order, they automatically share the same keyed sequence access path.

Data integrity considerations:

These situations can occur unless you lock the physical files that are used by the join logical file.

 v Your program reads a record for which there are two or more records in a secondary file. The system

supplies one record to your program.

v Another program updates the record in the primary file that your program has just read, changing the

join field.

v Your program issues another read request. The system supplies the next record based on the current

(new) value of the join field in the primary file.

Database programming 81

These same considerations apply to secondary files as well.

Summary of rules:

This is a summary of rules for joining database files.

Requirements:

Here are the principle requirements for join logical files.

 v Each join logical file must have:

– Only one record format, with the JFILE keyword specified for it.

– At least two physical file names specified on the JFILE keyword. (The physical file names on the

JFILE keyword do not have to be different files.)

– At least one join specification (J in position 17 with the JFLD keyword specified).

– A maximum of 255 secondary files.

– At least one field name with field use other than N (neither) at the field level.
v If only two physical files are specified for the JFILE keyword, the JOIN keyword is not required. Only

one join specification can be included, and it joins the two physical files.

v If more than two physical files are specified for the JFILE keyword, the following rules apply:

– The primary file must be the first file of the pair of files specified on the first JOIN keyword (the

primary file can also be the first of the pair of files specified on other JOIN keywords).

Note: Relative file numbers must be specified on the JOIN keyword and any JREF keyword when

the same file name is specified twice on the JFILE keyword.

– Every secondary file must be specified only once as the second file of the pair of files on the JOIN

keyword. This means that for every secondary file on the JFILE keyword, one join specification must

be included (two secondary files would mean two join specifications, three secondary files would

mean three join specifications).

– The order in which secondary files appear in join specifications must match the order in which they

are specified on the JFILE keyword.

Join fields:

Here are the rules for join fields.

 v Every physical file you join must be joined to another physical file by at least one join field. A join field

is a field specified as a parameter value on the JFLD keyword in a join specification.

v Join fields (specified on the JFLD keyword) must have identical attributes (length, data type, and

decimal positions) or be redefined in the record format of the join logical file to have the same

attributes. If the join fields are of character type, the field lengths might be different.

v Join fields need not be specified in the record format of the join logical file (unless you must redefine

one or both so that their attributes are identical).

v If you redefine a join field, you can specify N in position 38 (making it a neither field) to prevent a

program using the join logical file from using the redefined field.

v The maximum length of fields used in joining physical files is equal to the maximum size of keys for

physical and logical files.
 Related reference

 “Database file sizes” on page 8
Before you design and create a database file, you need to know the maximum size allowed for the

file.

Fields in join logical files:

82 System i: Database Database programming

Here are the rules for fields in join logical files.

 v Fields in a record format for a join logical file must exist in one of the physical files used by the logical

file or, if CONCAT, RENAME, TRNTBL, or SST is specified for the field, be a result of fields in one of

the physical files.

v Fields specified as parameter values on the CONCAT keyword must be from the same physical file. If

the first field name specified on the CONCAT keyword is not unique among the physical files, you

must specify the JREF keyword for that field to identify which file contains the field descriptions you

want to use.

v If a field name in the record format for a join logical file is specified in more than one of the physical

files, you must uniquely specify on the JREF keyword which file the field comes from.

v Key fields, if specified, must come from the primary file. Key fields in the join logical file need not be

key fields in the primary file.

v Select/omit fields can come from any physical file used by the join logical file, but in some

circumstances the DYNSLT keyword is required.

v If specified, key fields and select/omit fields must be defined in the record format.

v Relative file numbers must be used for the JOIN and JREF keywords if the name of the physical file is

specified more than once on the JFILE keyword.

Miscellaneous rules:

Here are the other rules for using join logical files.

 v Join logical files are read-only files.

v Join record formats cannot be shared, and cannot share other record formats.

v The following items are not allowed in a join logical file:

– The REFACCPTH and FORMAT keywords

– Both fields (B specified in position 38)

Describing access paths for database files

An access path describes how records in a database file are retrieved. You can define the access path for a

database file in various ways.

Records in a physical or logical file can be retrieved through an arrival sequence access path or a keyed

sequence access path. For logical files, you can also select and omit records based on one or more field

values in each record. A key field is a field that is used to arrange the records of a particular type within

a file member.

 Related concepts

 “Access path description” on page 7
An access path of a database file describes the order in which records are to be retrieved. When you

describe an access path, you describe whether it is a keyed sequence access path or an arrival

sequence access path.

Using arrival sequence access paths for database files

An arrival sequence access path is based on the order in which records arrive and are stored in a

database file.

For reading or updating, records can be accessed:

v Sequentially, where each record is taken from the next sequential physical position in the file.

v Directly by relative record number, where the record is identified by its position from the start of the

file.

An externally described file has an arrival sequence access path when no key fields are specified for the

file.

Database programming 83

An arrival sequence access path is valid only for the following files:

v Physical files

v Logical files in which each member of the logical file is based on only one physical file member

v Join logical files

v Views

You can use arrival sequence access paths in the following ways:

v Arrival sequence is the only processing method that allows a program to use the storage space

previously occupied by a deleted record by placing another record in that storage space. This method

requires explicit insertion of a record given a relative record number that you provide. Another

method, in which the system manages the space created by deleting records, is the reuse deleted

records attribute that can be specified for physical files.

v Through your high-level language, the Display Physical File Member (DSPPFM) command, and the

Copy File (CPYF) command, you can process a keyed sequence file in arrival sequence. You can use

this function for a physical file, a simple logical file based on one physical file member, or a join logical

file.

v Through your high-level language, you can process a keyed sequence file directly by relative record

number. You can use this function for a physical file, a simple logical file based on one physical file

member, or a join logical file.

v An arrival sequence access path does not take up any additional storage and is always saved or

restored with the file. (Because the arrival sequence access path is nothing more than the physical order

of the data as it was stored, when you save the data you save the arrival sequence access path.)
 Related concepts

 “Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.

 “Deleting database records” on page 201
The delete operation allows you to delete an existing database record.

Using keyed sequence access paths for database files

A keyed sequence access path is based on the contents of the key fields as defined in data description

specifications (DDS).

This type of access path is updated whenever records are added or deleted, or when records are updated

and the contents of a key field is changed. The keyed sequence access path is valid for both physical and

logical files. The sequence of the records in the file is defined in DDS when the file is created and is

maintained automatically by the system.

Key fields defined as character fields are arranged based on the sequence defined for EBCDIC characters.

Key fields defined as numeric fields are arranged based on their algebraic values, unless the UNSIGNED

(unsigned value) or ABSVAL (absolute value) DDS keywords are specified for the field. Key fields

defined as DBCS are allowed, but are arranged only as single bytes based on their bit representation.

Arranging key fields in an alternative collating sequence:

You can arrange key fields that are defined as character fields either in a sequence for EBCDIC characters

or in an alternative collating sequence.

 Consider the following records.

 Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318

2 Smith, Ron 45 41321

84 System i: Database Database programming

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

4 Smith, ROBERT 27 56218

5 JONES, MARTIN 53 62213

If the Empname is the key field and is a character field, using the sequence for EBCDIC characters, the

records can be arranged as follows.

 Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

2 Smith, Ron 45 41321

4 Smith, ROBERT 27 56218

Notice that the EBCDIC sequence causes an unexpected sort order because the lowercase characters are

sorted before uppercase characters. Thus, Smith, Ron sorts before Smith, ROBERT. An alternative collating

sequence can be used to sort the records when the records were entered using uppercase and lowercase

as shown in the following example.

 Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

1 Jones, Mary 45 23318

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

To use an alternative collating sequence for a character key field, specify the ALTSEQ DDS keyword, and

specify the name of the table containing the alternative collating sequence. When setting up a table, each

2-byte position in the table corresponds to a character. To change the order in which a character is sorted,

change its 2-digit value to the same value as the character it should be sorted equal to. For information

about sorting uppercase and lowercase characters regardless of their case, the QCASE256 table in library

QUSRSYS is provided for you.

 Related concepts

 DDS concepts

Arranging key fields with the SRTSEQ parameter:

You can arrange key fields that contain character data in a sort sequence order by using the SRTSEQ

parameter.

 Consider the following records.

 Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318

2 Smith, Ron 45 41321

3 JOHNSON, JOHN 53 41322

4 Smith, ROBERT 27 56218

5 JONES, MARTIN 53 62213

6 Jones, Martin 08 29231

Database programming 85

If the Empname field is the key field and is a character field, the *HEX sequence (the EBCDIC sequence)

arranges the records as follows.

 Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318

6 Jones, Martin 08 29231

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

2 Smith, Ron 45 41321

4 Smith, ROBERT 27 56218

Notice that with the *HEX sequence, all lowercase characters are sorted before the uppercase characters.

Thus, Smith, Ron sorts before Smith, ROBERT, and JOHNSON, JOHN sorts between the lowercase and

uppercase Jones. You can use the *LANGIDSHR sort sequence to sort records when the records were

entered using a mixture of uppercase and lowercase. The *LANGIDSHR sequence, which uses the same

collating weight for lowercase and uppercase characters, results in the following record.

 Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

1 Jones, Marilyn 45 23318

5 JONES, MARTIN 53 62213

6 Jones, Martin 08 29231

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

Notice that with the *LANGIDSHR sequence, the lowercase and uppercase characters are treated as

equal. Thus, JONES, MARTIN and Jones, Martin are equal and sort in the same sequence they have in the

base file. While this is not incorrect, it would look better in a report if all the lowercase Jones preceded

the uppercase JONES. You can use the *LANGIDUNQ sort sequence to sort the records when the records

were entered using an inconsistent uppercase and lowercase. The *LANGIDUNQ sequence, which uses

different but sequential collating weights for lowercase and uppercase characters, results in the following

record.

 Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

1 Jones, Marilyn 45 23318

6 Jones, Martin 08 29231

5 JONES, MARTIN 53 62213

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

The *LANGIDSHR and *LANGIDUNQ sort sequences exist for every language supported in your system.

The LANGID parameter determines which *LANGIDSHR or *LANGIDUNQ sort sequence to use. Use

the SRTSEQ parameter to specify the sort sequence and the LANGID parameter to specify the language.

Arranging key fields in ascending or descending sequence:

You can arrange key fields in either ascending or descending sequence. When you describe a key field,

the default is ascending sequence. However, you can use the Descend (DESCEND) DDS keyword to

specify that you want to arrange a key field in descending sequence.

86 System i: Database Database programming

Consider the following records.

 Record Empnbr Clsnbr Clsnam Cpdate

1 56218 412 Welding I 032188

2 41322 412 Welding I 011388

3 64002 412 Welding I 011388

4 23318 412 Welding I 032188

5 41321 412 Welding I 051888

6 62213 412 Welding I 032188

If the Empnbr field is the key field, the two possibilities for organizing these records are:

v In ascending sequence, where the order of the records in the access path is shown in the following

table.

 Record Empnbr Clsnbr Clsnam Cpdate

4 23318 412 Welding I 032188

5 41321 412 Welding I 051888

2 41322 412 Welding I 011388

1 56218 412 Welding I 032188

6 62213 412 Welding I 032188

3 64002 412 Welding I 011388

v In descending sequence, where the order of the records in the access path is shown in the following

table.

 Record Empnbr Clsnbr Clsnam Cpdate

3 64002 412 Welding I 011388

6 62213 412 Welding I 032188

1 56218 412 Welding I 032188

2 41322 412 Welding I 011388

5 41321 412 Welding I 051888

4 23318 412 Welding I 032188

Using more than one key field:

You can use more than one key field to arrange records in a database file. The key fields do not have to

use the same sequence.

 For example, when you use two key fields, one field can use ascending sequence while the other can use

descending sequence. Consider the following records.

 Record Order Ordate Line Item Qtyord Extens

1 52218 063088 01 88682 425 031875

2 41834 062888 03 42111 30 020550

3 41834 062888 02 61132 4 021700

4 52218 063088 02 40001 62 021700

5 41834 062888 01 00623 50 025000

If the access path uses the Order field, then the Line field as the key fields, both in ascending sequence,

the order of the records in the access path is.

Database programming 87

Record Order Ordate Line Item Qtyord Extens

5 41834 062888 01 00623 50 025000

3 41834 062888 02 61132 4 021700

2 41834 062888 03 42111 30 020550

1 52218 063088 01 88682 425 031875

4 52218 063088 02 40001 62 021700

If the access path uses the key field Order in ascending sequence, then the Line field in descending

sequence, the order of the records in the access path is.

 Record Order Ordate Line Item Qtyord Extens

2 41834 062888 03 42111 30 020550

3 41834 062888 02 61132 4 021700

5 41834 062888 01 00623 50 025000

4 52218 063088 02 40001 62 021700

1 52218 063088 01 88682 425 031875

When a record has key fields whose contents are the same as the key field in another record in the same

file, then the file is said to have records with duplicate key values. However, the duplication must occur

for all key fields for a record if they are to be called duplicate key values. For example, if a record format

has two key fields Order and Ordate, duplicate key values occur when the contents of both the Order and

Ordate fields are the same in two or more records. These records have duplicate key values.

 Order Ordate Line Item Qtyord Extens

41834 062888 03 42111 30 020550

41834 062888 02 61132 04 021700

41834 062888 01 00623 50 025000

Using the Line field as a third key field defines the file so that there are no duplicate keys.

 (First key field)

order

(Second key field)

ordate

(Third key field)

line Item Qtyord Extens

41834 062888 03 42111 30 020550

41834 062888 02 61132 04 021700

41834 062888 01 00623 50 025000

A logical file that has more than one record format can have records with duplicate key values, even

though the record formats are based on different physical files. That is, even though the key values come

from different record formats, they are considered duplicate key values.

Preventing duplicate key values:

DB2 Universal Database for iSeries allows records with duplicate key values in a database file. However,

you can prevent duplicate key values in your files.

 For example, you can create a file where the key field is defined as the customer number field. In this

case, you want the system to ensure that each record in the file has a unique customer number.

You can prevent duplicate key values in your files by specifying the UNIQUE keyword in data

description specifications (DDS). With the UNIQUE keyword specified, a record cannot be entered or

copied into a file if its key value is the same as the key value of a record already existing in the file. You

can also use unique constraints to enforce the integrity of unique keys.

88 System i: Database Database programming

If records with duplicate key values already exist in a physical file, the associated logical file cannot have

the UNIQUE keyword specified. If you try to create a logical file with the UNIQUE keyword specified,

and the associated physical file contains duplicate key values, the logical file is not created. The system

sends you a message stating this and sends you messages (as many as 20) indicating which records

contain duplicate key values.

When the UNIQUE keyword is specified for a file, any record added to the file cannot have a key value

that duplicates the key value of an existing record in the file, regardless of the file used to add the new

record. For example, two logical files LF1 and LF2 are based on the physical file PF1. The UNIQUE

keyword is specified for LF1. If you use LF2 to add a record to PF1, you cannot add the record if it

causes a duplicate key value in LF1.

If any of the key fields allow null values, null values that are inserted into those fields might or might

not cause duplicates depending on how the access path was defined when the file was created. The

*INCNULL parameter of the UNIQUE keyword indicates that null values are included when determining

whether duplicates exist in the unique access path. The *EXCNULL parameter indicates that null values

are not included when determining whether duplicate values exist.

The following example shows the DDS for a logical file that requires unique key values:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)

 A UNIQUE

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

 A

 A R ORDDTL PFILE(ORDDTLP)

 A K ORDER

 A K LINE

 A

In this example, the contents of the key fields (the Order field for the ORDHDR record format, and the

Order and Line fields for the ORDDTL record format) must be unique whether the record is added

through the ORDHDRP file, the ORDDTLP file, or the logical file defined here. With the Line field

specified as a second key field in the ORDDTL record format, the same value can exist in the Order key

field in both physical files. Because the physical file ORDDTLP has two key fields and the physical file

ORDHDRP has only one, the key values in the two files do not conflict.

 Related concepts

 “Controlling the integrity of your database with constraints” on page 247
A constraint is a restriction or limitation placed on a database file to ensure that the data in your

database remains consistent when you add, change, and remove records.

 DDS concepts

Arranging duplicate keys:

If you do not specify the Unique (UNIQUE) keyword in data description specifications (DDS), you can

specify how the system stores records with duplicate key values.

 You specify that records with duplicate key values are stored in the access path in one of the following

ways:

v Last-in-first-out (LIFO). When the LIFO keyword is specified (1), records with duplicate key values are

retrieved in LIFO order by the physical sequence of the records. Here is an example of DDS using the

LIFO keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDERP2

 A 1 LIFO

 A R ORDER2

 A .

Database programming 89

A .

 A .

 A K ORDER

 A

v First-in-first-out (FIFO). If the FIFO keyword is specified, records with duplicate key values are

retrieved in FIFO order by the physical sequence of the records.

v First-changed-first-out (FCFO). If the FCFO keyword is specified, records with duplicate key values are

retrieved in FCFO order by the physical sequence of the keys.

v No specific order for duplicate key fields (the default). When the FIFO, FCFO, or LIFO keyword is not

specified, no guaranteed order is specified for retrieving records with duplicate keys. No specific order

for duplicate key fields allows more access path sharing, which can improve performance.

When a simple- or multiple-format logical file is based on more than one physical file member, records

with duplicate key values are read in the order in which the files and members are specified on the

DTAMBRS parameter of the Create Logical File (CRTLF) or Add Logical File Member (ADDLFM)

command. Examples of logical files with more than one record format can be found in DDS concepts.

The LIFO or FIFO order of records with duplicate key values is not determined by the sequence of the

updates made to the contents of the key fields, but only by the physical sequence of the records in the

file member. Assume that a physical file has the FIFO keyword specified (records with duplicate keys are

in FIFO order), and that the following table shows the order in which records were added to the file.

 Order records were added to file Key value

1 A

2 B

3 C

4 C

5 D

The sequence of the access path is FIFO, with ascending key values.

 Record number Key value

1 A

2 B

3 C

4 C

5 D

Records 3 and 4, which have duplicate key values, are in FIFO order. That is, because record 3 was added

to the file before record 4, it is read before record 4. This would become apparent if the records were read

in descending order. This can be done by creating a logical file based on this physical file, with the

DESCEND keyword specified in the logical file.

The sequence of the access path is FIFO, with descending key values.

 Record number Key value

5 D

3 C

4 C

2 B

1 A

90 System i: Database Database programming

If the key value of physical record 1 is changed to C, the sequence of the access path for the physical file

is FIFO, with ascending key values.

 Record number Key value

2 B

1 C

3 C

4 C

5 D

Finally, changing to descending order, the new sequence of the access path for the logical file is FIFO,

with descending key values.

 Record number Key value

5 D

1 C

3 C

4 C

2 B

After the change, record 1 does not appear after record 4, even though the contents of the key field were

updated after record 4 was added.

The FCFO order of records with duplicate key values is determined by the sequence of updates made to

the contents of the key fields. In the preceding example, after record 1 is changed such that the key value

is C, the sequence of the access path is FCFO, with ascending key values only.

 Record number Key value

2 B

3 C

4 C

1 C

5 D

For FCFO, the duplicate key ordering can change when the FCFO access path is rebuilt or when a

rollback operation is performed. In some cases, your key field can change but the physical key does not

change. In these cases, the FCFO ordering does not change, even though the key field has changed. For

example, when the index ordering is changed to be based on the absolute value of the key, the FCFO

ordering does not change. The physical value of the key does not change even though your key changes

from negative to positive. Because the physical key does not change, FCFO ordering does not change.

If the reuse deleted records attribute is specified for a physical file, the duplicate key ordering must be

allowed to default or must be FCFO. The reuse deleted records attribute is not allowed for the physical

file if either the key ordering for the file is FIFO or LIFO, or if any of the logical files defined over the

physical file have duplicate key ordering of FIFO or LIFO.

 Related concepts

 “Sharing existing access paths between logical files” on page 56
When two or more logical files are based on the same physical files with the same key fields in the

same order, they automatically share the same keyed sequence access path.

Using existing access path specifications

You can use the Reference Access Path Definition (REFACCPTH) DDS keyword to copy another file’s

access path specifications. After you create the file, the system determines which access path to share.

Database programming 91

The file using the REFACCPTH keyword does not necessarily share the access path of the file specified in

the REFACCPTH keyword. The REFACCPTH keyword is used to only reduce the number of DDS

statements that must be specified. That is, rather than code the key field specifications for the file, you

can specify the REFACCPTH keyword. When the file is created, the system copies the key field and

select/omit specifications from the file specified on the REFACCPTH keyword to the file being created.

Using floating-point fields in database file access paths

The collating sequence for records in a keyed database file depends on the presence of the Signed

(SIGNED), Unsigned (UNSIGNED), and Absolute Value (ABSVAL) keywords in data description

specifications (DDS). For floating-point fields, the sign is the farthest-left bit, the exponent is next, and the

significant is last.

The collating sequence with UNSIGNED specified is:

v Positive real numbers—positive infinity

v Negative real numbers—negative infinity

A floating-point key field with the SIGNED keyword specified, or defaulted to, in DDS has an algebraic

numeric sequence. The collating sequence is negative infinity—real numbers—positive infinity.

A floating-point key field with the ABSVAL keyword specified in DDS has an absolute value numeric

sequence.

The following floating-point collating sequences are observed:

v Zero (positive or negative) collates in the same manner as any other positive/negative real number.

v Negative zero collates before positive zero for SIGNED sequences.

v Negative and positive zero collate the same for ABSVAL sequences.

You cannot use not-a-number (*NAN) values in key fields. If you attempt this, and a *NAN value is

detected in a key field during file creation, the file is not created.

Securing database files

You can secure database files in various ways.

 Related concepts

Security Reference PDF

Granting file and data authority

DB2 Universal Database for iSeries provides several methods to grant file and data authority.

v You can use iSeries Navigator to authorize a user or group.

v You can use the Grant Object Authority (GRTOBJAUT) command to specify the authority you want

users to have to access data in your database files.

v You can use the SQL GRANT statement.
 Related reference

 Grant Object Authority (GRTOBJAUT) command

 GRANT (Table or View Privileges)

Authorizing a user or group using iSeries Navigator:

Some users might need specific authority to an object. You can grant specific authority to a user or group

using iSeries Navigator.

92 System i: Database Database programming

About this task

To authorize a user or group to an object, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and click Permissions.

4. On the Permissions window, click Add.

5. On the Add window, select one or more users and groups or enter the name of a user or group in the

user or group name field.

6. Click OK. This adds the users or groups to the top of the list.

Results

Note: The user or group is given the default authority to the object. You can change a user’s authority to

one of the types defined by the system or you can customize the authority.

You can also remove and customize authority using iSeries Navigator.

Types of object authority:

An object authority controls what a user can do with an entire object.

 The types of object authority follow:

Object operational authority

Users need object operational authority to:

v Open the file for processing. (You must also have at least one data authority.)

v Compile a program which uses the file description.

v Display descriptive information about active members of a file.

v Open the file for query processing. For example, the Open Query File (OPNQRYF) command opens a

file for query processing.

Note: You must also have the appropriate data authorities required by the options specified on the open

operation.

Object existence authority

Users need object existence authority to:

v Delete the file.

v Save, restore, and free the storage of the file. If the object existence authority has not been explicitly

granted to the user, the *SAVSYS special user authority allows the user to save, restore, and free the

storage of a file. *SAVSYS is not the same as object existence authority.

v Remove members from the file.

v Transfer ownership of the file.

Note: All these functions except save/restore also require object operational authority to the file.

Object management authority

Users need object management authority to:

Database programming 93

v Create a logical file with a keyed sequence access path (object management authority is required for

the physical file referred to by the logical file).

v Grant and revoke authority. You can grant and revoke only the authority that you already have. (You

must also have object operational authority to the file.)

v Change the file.

v Add members to the file. (The owner of the file becomes the owner of the new member.)

v Change the member in the file.

v Move the file.

v Rename the file.

v Rename a member of the file.

v Clear a member of the file. (Delete data authority is also required.)

v Initialize a member of the file. (Add data authority is also required to initialize with default records;

delete data authority is required to initialize with deleted records.)

v Reorganize a member of the file. (All data authorities are also required.)

Object alter authority

Users need object alter authority for many of the same operations as object management authority (see

preceding section). Object alter authority is a replacement authority for object management authority.

Object reference authority

Users need object reference authority to refer to an object from another object so that the operations on

that object can be restricted by the referencing object.

Adding a physical file referential constraint checks for either object management authority or object

reference authority to the parent file.

 Related concepts

 “Controlling the integrity of your database with constraints” on page 247
A constraint is a restriction or limitation placed on a database file to ensure that the data in your

database remains consistent when you add, change, and remove records.

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Types of data authority:

A data authority is a specific authority to read, add, update, or delete data in a database file, to run a

program, or to search a library or directory.

 The types of data authority follow:

Read authority

Users can read the records in the file.

Add authority

Users can add new records to the file.

94 System i: Database Database programming

Update authority

Users can update existing records. (To read a record for update, you must also have read authority.)

Delete authority

Users can delete existing records. (To read a record for deletion, you must also have read authority.)

Execute authority

You can use execute authority to work with libraries and to start programs. For example, if you are

changing a file associated with a trigger, you must have execute authority to the trigger program. If you

do not have execute authority, the system will not start the trigger program.

Normally, the authority you have to the data in the file is not verified until you actually perform the

input/output operation. However, the Open Query File (OPNQRYF) and Open Database File (OPNDBF)

commands also verify data authority when the file is opened.

If object operational authority is not granted to a user for a file, the user cannot open the file.

The following example shows the relationship between authority granted for logical files and the physical

files used by the logical file. The logical files LF1, LF2, and LF3 are based on the physical file PF1.

USERA has read (*READ) and add (*ADD) authority to the data in PF1 and object operational

(*OBJOPR), read (*READ), and add (*ADD) authority for LF1 and LF2. This means that USERA cannot

open PF1 or use its data directly in any way because the user does not have object operational authority

(*OBJOPR) to PF1; USERA can open LF1 and LF2 and read records from and add records to PF1 through

LF1 and LF2.

Note: The user was not given authority for LF3 and, therefore, cannot use it.

 Related concepts

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

Specifying public authority

Public authority is given to users who do not have any specific authority to an object, who are not on the

authorization list of the object, or whose group profile has no specific authority to the object. When you

create a file, you can specify and grant public authority.

You can specify public authority through the AUT parameter on the Create Physical File (CRTPF) or

Create Source Physical File (CRTSRCPF) command. Public authority is the last authority check made.

Database programming 95

|
|
|

That is, if the user has specific authority to a file or the user is a member of a group with specific

authority, then the public authority is not checked. Public authority can be specified as:

v *LIBCRTAUT. The library in which the file is created is checked to determine the public authority of

the file when the file is created. An authority is associated with each library. This authority is specified

when the library is created, and all files created into the library are given this public authority if the

*LIBCRTAUT value is specified for the AUT parameter of the Create File (CRTLF, CRTPF, and

CRTSRCPF) commands. The *LIBCRTAUT value is the default public authority.

v *CHANGE. All users that do not have specific user or group authority to the file have authority to

change data in the file.

v *USE. All users that do not have specific user or group authority to the file have authority to read data

in the file.

v *EXCLUDE. Only the owner, security officer, users with specific authority, or users who are members

of a group with specific authority can use the file.

v *ALL. All users that do not have specific user or group authority to the file have all data authorities

along with object operational, object management, and object existence authorities.

v Authorization list name. The authorization list is a list of users and their authorities. The list allows

users and their different authorities to be grouped together.

Note: When you create a logical file, no data authorities are granted. Consequently, *CHANGE is the

same as *USE, and *ALL does not grant any data authority.

You can grant public authority in the following ways:

v Define public authority using iSeries Navigator.

v Use the Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), or Revoke Object

Authority (RVKOBJAUT) command to grant or revoke the public authority of a file.

You can also use iSeries Navigator to set default public authority for a new file.

 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

 Edit Object Authority (EDTOBJAUT) command

 Grant Object Authority (GRTOBJAUT) command

 Revoke Object Authority (RVKOBJAUT) command

Defining public authority using iSeries Navigator:

Public authority is defined for every object on the system to describe what type of access a user has to

the object when that user has no specific access to it. You can define public authority for a database file

using iSeries Navigator.

 About this task

To define public authority, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and click Permissions.

4. On the Permissions window, select Public from the group list.

5. Click the Details button to implement detailed permissions. Apply the permissions that you want for

public authority by checking the appropriate box.

6. Click OK.

96 System i: Database Database programming

Results

Setting a default public authority using iSeries Navigator:

By setting a default public authority from iSeries Navigator, you can have a common authority to all new

objects when they are created in a library. You can edit the permissions for individual objects that require

a different level of security.

 About this task

To set a default public authority, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Right-click the library for which you want to set a public authority and click Permissions.

5. On the Permissions window, click New Object.

6. On the New Object window, select a default public authority.

7. To assign an Authorization List, you can enter or Browse for the name of the authorization list. To

view Authorization list properties, click Open.

8. Click OK.

Results

From system value

Specifies to use the system value for the default public authority for a new object.

Use

Allows access to the object attributes and use of the object. The public can view, but not change, the

objects.

Change

Allows the contents of the object (with some exceptions) to be changed.

All

Allows all operations on the object, except those that are limited to the owner. The user or group can

control the object.s existence, specify the security for the object, change the object, and perform basic

functions on the object. The user or group can also change ownership of the object.

Exclude

All operations on the object are prohibited. No access nor operations are allowed to the object for the

users and groups having this permission. Specifies the public is not allowed to use the objects.

Use authorization list

Allows you specify an authorization list to use to secure the object.

Using database file capabilities to control I/O operations

When you create a physical file, you can specify that the file capabilities control which input/output

(I/O) operations are allowed for the file, independent of database file authority.

You can specify if the file is update-capable and delete-capable by using the ALWUPD and ALWDLT

parameters on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands.

By creating a file that is not update-capable and not delete-capable, you can effectively enforce an

environment where data cannot be changed or deleted from a file after the data is written.

File capabilities cannot be explicitly set for logical files. The file capabilities of a logical file are

determined by the file capabilities of the physical files it is based on.

Database programming 97

You cannot change file capabilities after the file is created. You must delete the file and then re-create it

with the capability that you want. The Display File Description (DSPFD) command can be used to

determine the capabilities of a file.

 Related reference

 Create Physical File (CRTPF) command

 Create Source Physical File (CRTSRCPF) command

 Display File Description (DSPFD) command

Limiting access to specific fields in a database file

You can restrict update and read requests to the specific fields in a database file.

Use one of the following ways to limit access to the specific fields in a database file:

v Create a logical view of the physical file that includes only the fields to which you want your users to

have access.

v Use the SQL GRANT statement to grant update authority to specific columns of a Structured Query

Language (SQL) table.

 Related concepts

 “Using logical files to secure data”
You can use logical files to prevent data in physical files from being read or changed.

 SQL programming

Using logical files to secure data

You can use logical files to prevent data in physical files from being read or changed.

You can use a logical file to prevent a field in a physical file from being viewed. This is accomplished by

describing a logical file record format that does not include fields you do not want the user to see.

You can also use a logical file to prevent one or more fields from being changed in a physical file by

specifying, for those fields you want to protect, an I (input only) in position 38 of the DDS form.

You can use a logical file to secure records in a physical file based on the contents of one or more fields

in that record. To secure records based on the contents of a field, use the select and omit keywords when

describing the logical file.

 Related concepts

 “Describing logical file record formats” on page 45
For every logical file record format described with data description specifications (DDS), you must

specify a record format name and either the PFILE keyword (for simple- and multiple-format logical

files) or the JFILE keyword (for join logical files).

 “Describing field use for logical files” on page 47
You can specify that the fields in a logical file be input-only, both (input/output), or neither fields.

 “Selecting and omitting records for logical files” on page 52
You can select and omit records for a logical file. This helps exclude records from a file for processing

convenience or for security.

Processing database files

DB2 Universal Database for iSeries provides various processing options for you to open, manipulate, and

close database files. You can also monitor database file errors in your program.

98 System i: Database Database programming

Database file processing: Runtime considerations

Before a database file is opened for processing, you need to consider how you want to use the file in the

program or job. A better understanding of the runtime file processing parameters can help you avoid

unexpected results and improve the performance of your program.

When a file is opened, the attributes in the database file description are merged with the parameters in

the program. Normally, most of the information the system needs for your program to open and process

the file is found in the file attributes and in the application program itself.

Sometimes, however, it is necessary to override the processing parameters found in the file and in the

program. For example, if you want to process a member of the file other than the first member, you need

to tell the system to use the member you want to process. The Override with Database File (OVRDBF)

command allows you to do this. The OVRDBF command also allows you to specify processing

parameters that can improve the performance of your job, but that cannot be specified in the file

attributes or in the program. The OVRDBF command parameters take precedence over the file and

program attributes.

These topics describe the file processing parameters and other methods or considerations that can be

used to affect database file processing. The parameter values are determined by the high-level language

program, the file attributes, and any open or override commands processed before the high-level

language program is called.

 Related concepts

ILE Concepts PDF

 Control language
 Related reference

 Create Physical File (CRTPF) command

 Create Logical File (CRTLF) command

 Create Source Physical File (CRTSRCPF) command

 Add Physical File Member (ADDPFM) command

 Add Logical File Member (ADDLFM) command

 Change Physical File (CHGPF) command

 Change Physical File Member (CHGPFM) command

 Change Logical File (CHGLF) command

 Change Logical File Member (CHGLFM) command

 Change Source Physical File (CHGSRCPF) command

 Override with Database File (OVRDBF) command

 Open Database File (OPNDBF) command

 Open Query File (OPNQRYF) command

 Close File (CLOF) command

File and member name

Before you can process data in a database file, you must identify which file and member you want to use

with the FILE and MBR parameters.

Normally, you specify the file name and, optionally, the member name in your high-level language

program. The system then uses this name when your program requests the file to be opened. To override

the file name specified in your program and open a different file, you can use the TOFILE parameter on

the Override with Database File (OVRDBF) command. If no member name is specified in your program,

the first member of the file (as defined by the creation date and time) is processed.

Database programming 99

If the member name cannot be specified in the high-level language program (some high-level languages

do not allow a member name), or you want a member other than the first member, you can use an

OVRDBF command or an open command (OPNDBF or OPNQRYF) to specify the file and member you

want to process (using the FILE and MBR parameters).

To process all the members of a file, use the OVRDBF command with the MBR(*ALL) parameter

specified. For example, if FILEX has three members and you want to process all the members, you can

specify:

OVRDBF FILE(FILEX) MBR(*ALL)

If you specify MBR(*ALL) on the OVRDBF command, your program reads the members in the order they

were created. For each member, your program reads the records in keyed or arrival sequence, depending

on whether the file is an arrival sequence or keyed sequence file.

File processing options

DB2 Universal Database for iSeries provides several runtime file processing options.

Specifying the type of processing:

When you use a database file in a program, the system needs to know what type of operation you plan

to use for the file. You can specify the type of processing with the OPTION parameter.

 For example, the system needs to know if you plan to just read data in the file or if you plan to read and

update the data. The valid operation options are: input, output, update, and delete. The system

determines the options you are using from the information you specify in your high-level language

program or from the OPTION parameter on the Open Database File (OPNDBF) and Open Query File

(OPNQRYF) commands.

The system uses the options to determine which operations are allowed in your program. For example, if

you open a file for input only and your program tries an output operation, your program receives an

error.

Normally, the system verifies that you have the required data authority when you do an input/output

operation in your program. However, when you use the OPNQRYF or OPNDBF command, the system

verifies at the time the file is opened that you have the required data authority to perform the operations

specified on the OPTION parameter.

The system also uses these options to determine the locks to use to protect the data integrity of the files

and records being processed by your program.

 Related concepts

 “Types of data authority” on page 94
A data authority is a specific authority to read, add, update, or delete data in a database file, to run a

program, or to search a library or directory.

 “Locking shared data” on page 104
By definition, all database files can be used by many users at the same time. However, some

operations can lock files, members, or records to prevent them from being shared across jobs.

Specifying the initial file position:

After a database file is opened, the system needs to know where it should start processing the file. You

can specify the initial file position with the POSITION parameter.

100 System i: Database Database programming

The default is to start just before the first record in the file (the first sequential read operation reads the

first record). But, you can tell the system to start at the end of the file, or at a certain record in the middle

of the file using the Override with Database File (OVRDBF) command. You can also dynamically set a

position for the file in your program.

 Related concepts

 “Setting a position in the file” on page 190
After a file is opened by a job, the system maintains a position in the file for that job. The file position

is used in processing the file.

Reusing deleted records:

Sometimes you might want to reuse deleted records for your database files. In this case, you can use the

REUSEDLT parameter.

 When you specify REUSEDLT(*YES) on the Create Physical File (CRTPF) or Change Physical File

(CHGPF) command, the following operations might work differently:

v Arrival order becomes meaningless for a file that reuses deleted record space. Records might not be

added at the end of the file.

v End-of-file delay does not work for the files that reuse deleted record space.

v One hundred percent reuse of deleted record space is not guaranteed. A file full condition might be

reached or the file might be extended even though deleted record space still exists in the file.

Note: Because of the way the system reuses deleted record space, the following types of files should not

be created or changed to reuse deleted record space:

v Files processed using relative record numbers, and files used by an application to determine a

relative record number that is used as a key into another file

v Files used as queues

v Any files used by applications that assume new record insertions are at the end of the file

v When DB2 Symmetric Multiprocessing is installed, files on which you expect to have parallel

index maintenance performed when rows are updated, inserted, or deleted

If you decide to change an existing physical file to reuse deleted record space, and there are logical files

with access paths with first-in-first-out (FIFO) or last-in-first-out (LIFO) duplicate key ordering over the

physical file, you can re-create the logical files without the FIFO or LIFO attribute and avoid rebuilding

the existing access path by following these steps:

1. Rename the existing logical file that has the FIFO or LIFO attribute.

2. Create a second logical file identical to the renamed file except that duplicate key ordering should not

be specified for the file. Give the new file the original file name. The new file shares the access path of

the renamed file.

3. Delete the renamed file.

Ignoring the keyed sequence access path:

If a key field is defined for a database file, the system automatically uses the keyed sequence access path.

However, sometimes you can use the ACCPTH parameter to ignore the keyed sequence access path for

better performance.

 You can use the ACCPTH parameter to ignore the keyed sequence access path and process the file in

arrival sequence. You can tell the system to ignore the keyed sequence access path in some high-level

languages, or on the Open Database File (OPNDBF) command.

When you ignore the keyed sequence access path, operations that read data by key are not allowed.

Operations are done sequentially along the arrival sequence access path. (If this option is specified for a

Database programming 101

logical file with select/omit values defined, the arrival sequence access path is used and only those

records meeting the select/omit values are returned to the program. The processing is done as if the

DYNSLT keyword were specified for the file.)

Note: You cannot ignore the keyed sequence access path for logical file members that are based on more

than one physical file member.

Delaying end-of-file processing:

When your program reaches the end of a database file, the system normally signals your program that

there is no more data to read. If you want the system to hold your program until more data arrives in the

file, use the EOFDLY parameter to delay the end-of-file processing.

 If you use the EOFDLY parameter on the Override with Database File (OVRDBF) command, the program

can read the newly arrived records when more data arrives in the file.

Note: End-of-file delay should not be used for files that reuse deleted records.

 Related concepts

 “Waiting for more records when end of file is reached” on page 194
End-of-file delay is a method of continuing to read sequentially from a database file (logical or

physical) after an end-of-file condition occurs.

Specifying the record length:

As an option, you can specify the record length in your high-level language program.

 The system needs to know the length of the record your program will be processing, but it is not

required that you specify the record length in your program. The system automatically determines this

information from the attributes and description of the file named in your program.

If the file that is opened contains records that are longer than the length specified in the program, the

system allocates a storage area to match the file member’s record length and this option is ignored. In

this case, the entire record is passed to the program. (However, some high-level languages allow you to

access only that portion of the record defined by the record length specified in the program.) If the file

that is opened contains records that are less than the length specified in the program, the system allocates

a storage area for the program-specified record length. The program can use the extra storage space, but

only the record lengths defined for the file member are used for input/output operations.

Ignoring record formats:

When you use a multiple-format logical file, the system assumes that you want to use all the formats

defined for the file. However, if you do not want to use all the formats, you can specify which formats

you want to use and ignore.

 If you do not use this option to ignore formats, your program can process all formats defined in the file.

For more information about this processing option, see your high-level language topic collection.

Determining whether duplicate keys exist:

The set of keyed sequence access paths used to determine whether the key is a duplicate key differs

depending on the input/output (I/O) operation that is performed. You can determine whether duplicate

keys exist using the DUPKEYCHK parameter.

 For input operations (reads), the keyed sequence access path used is the one that the file is opened with.

Any other keyed sequence access path that can exist over the physical file are not considered. Also, any

102 System i: Database Database programming

records in the keyed sequence access path omitted because of select/omit specifications are not

considered when deciding if the key operation is a duplicate.

For output (write) and update operations, all nonunique keyed sequence access paths of *IMMED

maintenance that exist over the physical file are searched to determine if the key for this output or

update operation is a duplicate. Only keyed sequence access paths that have *REBLD and *DLY

maintenance are considered if the access paths are actively open over the file at feedback time.

When you process a keyed file with a COBOL program, you can specify duplicate key feedback to be

returned to your program through the COBOL language, or on the Open Database File (OPNDBF) or

Open Query File (OPNQRYF) command. However, in COBOL, having duplicate key feedback returned

can cause a decline in performance.

Data recovery and integrity

You can specify several file processing parameters for data recovery and integrity.

Protecting your files with journaling and commitment control:

Journaling and commitment control are the preferred methods for i5/OS data and transaction recovery.

You can use the COMMIT parameter to protect your file with journaling and commitment control.

 Database file journaling is started by running the Start Journal Physical File (STRJRNPF) command for

the file. Access path journaling is started by running the Start Journal Access Path (STRJRNAP) command

for the file or by using System-Managed Access-Path Protection (SMAPP). You tell the system that you

want your files to run under commitment control through the Start Commitment Control (STRCMTCTL)

command and through high-level language specifications. You can also specify the commitment control

(COMMIT) parameter on the Open Database File (OPNDBF) and Open Query File (OPNQRYF)

commands.

If you are performing insert, update, or delete operations on a file that is associated with a referential

constraint and the delete rule, update rule, or both are other than RESTRICT, you must use journaling.

 Related concepts

 “Managing journals” on page 224
Journal management allows you to record all the data changes that occur to one or more database

files. You can then use the journal for recovery.

 “Ensuring data integrity with commitment control” on page 231
Commitment control allows you to define and process a number of changes to database files in a

single unit (transaction).

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Writing data and access paths to auxiliary storage:

Normally, DB2 Universal Database for iSeries determines when to write changed data and access paths

from main storage to auxiliary storage. However, you can control when database changes are written to

auxiliary storage.

 If you want to control when changed data are written from main storage to auxiliary storage, you can use

the force write ratio (FRCRATIO) parameter on the create, change, or override database file commands,

and the force access path (FRCACCPTH) parameter on the create and change database file commands.

Using the FRCRATIO and FRCACCPTH parameters have performance and recovery considerations for

your system.

 Related concepts

Database programming 103

“Recovering and restoring your database” on page 224
You can use several i5/OS save and restore functions to recover your database after the system loses

data.

Checking changes to the record format description:

When a database file is opened, the system checks whether the description of the record format has been

changed since the program was compiled to an extent that it cannot process the file.

 The system normally notifies your program of a level check. When you use the create or change file

command, you can specify that you want level checking. You can also override the level check attribute

defined for the file using the LVLCHK parameter on the Override with Database File (OVRDBF)

command.

 Related concepts

 “Effects of changing fields in a file description” on page 220
The system uses the information in the record format description to determine the level identifier.

Changes to the fields in a file description cause the level identifier to change. Changes in key fields or

select/omit fields might cause unexpected results in programs using the new access path.

Checking the expiration date of a physical file member:

The system can check whether the data in a physical file member is still current. You can specify whether

the system checks the expiration date of a physical file member using the EXPCHK parameter on the

Override with Database File (OVRDBF) command.

 If you check the expiration date and the current date is greater than the expiration date, a message is sent

to the system operator when the physical file member is opened.

 Related concepts

 “Expiration date” on page 35
The EXPDATE parameter specifies an expiration date for each member in a physical file (ADDPFM,

CHGPFM, CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands).

Preventing the job from changing data in a file:

If you want to test your program, but do not want to change data in a file that is used for the test, you

can tell the system not to write (inhibit) any changes to the file that the program attempts to make. For

this operation, you can use the INHWRT parameter.

 To inhibit any changes to the file, specify INHWRT(*YES) on the Override with Database File (OVRDBF)

command.

Locking shared data

By definition, all database files can be used by many users at the same time. However, some operations

can lock files, members, or records to prevent them from being shared across jobs.

When files, members, or records are locked, no other jobs can read the same data for update operations,

which keeps another job from unintentionally deleting the first job’s update.

You can lock a row in iSeries Navigator by opening a table and editing the row you want to lock, or use

the SQL LOCK TABLE statement. You can also use the following operations to lock files, members, or

data records, and display locked records using the Display Record Locks (DSPRCDLCK) command or

iSeries Navigator.

 Related reference

 LOCK TABLE

104 System i: Database Database programming

|
|
|

|
|

Locking records:

DB2 Universal Database for iSeries has built-in integrity for records.

 Here is an example of built-in integrity for records. If PGMA reads a record for an update operation, it

locks the record. Another program cannot read the same record for an update operation until PGMA

releases the record, but another program can read the record just for inquiry.

In this way, the system ensures the integrity of the database. However, you can set your own wait time

for a locked record to be released using the WAITRCD parameter.

The system determines the lock condition based on the type of file processing specified in your program

and the operation requested. For example, if your open options include update or delete, each record

read is locked so that any number of users can read the record at the same time, but only one user can

update the record.

The system normally waits a specific number of seconds for a locked record to be released before it sends

your program a message that it cannot get the record you are requesting. The default record wait time is

60 seconds; however, you can set your own wait time through the WAITRCD parameter on the create

and change file commands and the override database file command. If your program is notified that the

record it wants is locked by another operation, you can have your program take the appropriate action

(for example, you can send a message to the operator that the requested record is currently unavailable).

If the record lock is being implicitly acquired as a result of a referential integrity CASCADE DELETE,

SET NULL, or SET DEFAULT delete rule, the lock wait time is limited to 30 seconds.

The system automatically releases a lock when the locked record is updated or deleted. However, you

can release record locks without updating the record. For information about how to release a record lock,

see your high-level language topic collection.

Note: Using commitment control changes the record locking rules.

You can display locked records using either the Display Record Locks (DSPRCDLCK) command or iSeries

Navigator.

 Related concepts

 Commitment control

 “Displaying locked records using the Display Record Locks (DSPRCDLCK) command” on page 108
You can use the Display Record Locks (DSPRCDLCK) command to display the current lock status

(wait or held) of records in a physical file member.
 Related tasks

 “Displaying locked rows using iSeries Navigator” on page 108
You can use iSeries Navigator to display locked rows in a table.

Locking files:

When a database file is allocated exclusively, any program trying to open the file has to wait until it is

released. However, you can set a wait time for the file to become available using the WAITFILE

parameter.

 You can control the amount of time a program waits for the file to become available by specifying a wait

time on the WAITFILE parameter of the create and change file commands and the override database file

command. If you do not specifically request a wait time, the system defaults the file wait time to zero

seconds.

Database programming 105

A file is exclusively allocated when an operation that changes its attributes is run. These operations (such

as move, rename, grant or revoke authority, change owner, or delete) cannot be run at the same time with

any other operation on the same file or on members of that file. Other file operations (such as display,

open, dump, or check object) only use the file definition, and thus lock the file less exclusively. They can

run at the same time with each other and with input/output operations on a member.

Locking members:

Member operations (such as add and remove) automatically allocate the file exclusively to prevent other

file operations from occurring at the same time.

 Input/output (I/O) operations on the same member cannot run, but I/O operations on other members of

the same file can run at the same time.

Locking record format data:

Sometimes you might want to lock the entire set of records associated with a record format (for example,

all the records in a physical file). In this case, you can use the RCDFMTLCK parameter on the Override

Database File (OVRDBF) command.

Database lock considerations:

These tables show the types of locks that some of the database functions place on database files, the valid

lock combinations, and the types of locks for constraints.

 Table 37 summarizes some of the most commonly used database functions and the types of locks they

place on database files. The types of locks are explained on the next page.

 Table 37. Database functions and locks

Function Command File lock Member/Data lock Access path lock

Add Member ADDPFM, ADDLFM *EXCLRD *EXCLRD

Change File

Attributes

CHGPF, CHGLF *EXCL *EXCLRD *EXCLRD

Change Member

Attributes

CHGPFM, CHGLFM *SHRRD *EXCLRD

Change Object Owner CHGOBJOWN *EXCL

Check Object CHKOBJ *SHRNUPD

Clear Physical File

Member

CLRPFM *SHRRD *EXCLRD3

Create Duplicate

Object

CRTDUPOBJ *EXCL (new object)

*SHRNUPD (object)

Create File CRTPF, CRTLF,

CRTSRCPF

*EXCL

Delete File DLTF *EXCL *EXCLRD

Grant/Revoke

Authority

GRTOBJAUT,

RVKOBJAUT

*EXCL

Initialize Physical File

Member

INZPFM *SHRRD *EXCLRD

Move Object MOVOBJ *EXCL

Open File OPNDBF, OPNQRYF *SHRRD *SHRRD *EXCLRD

Rebuild Access Path EDTRBDAP, OPNDBF *SHRRD *SHRRD *EXCLRD

Remove Member RMVM *EXCLRD *EXCL *EXCLRD

Rename File RNMOBJ *EXCL *EXCL *EXCL

Rename Member RNMM *EXCLRD *EXCL *EXCL

Reorganize Physical

File Member

RGZPFM *SHRRD *EXCL4

106 System i: Database Database programming

Table 37. Database functions and locks (continued)

Function Command File lock Member/Data lock Access path lock

Restore File RSTLIB, RSTOBJ *EXCL

Save File SAVLIB, SAVOBJ,

SAVCHGOBJ

*SHRNUPD1 *SHRNUPD2

1 For save-while-active, the file lock is *SHRUPD initially, and then the lock is reduced to *SHRRD. See Backup and

Recovery

for a description of save-while-active locks for the save commands.

2 For save-while-active, the member/data lock is *SHRRD.

3 The clear operation does not happen if the member is open in this process or in any other process.

4 If ALWCANCEL(*YES) is specified, the LOCK keyword can specify a *SHRUPD or *EXCLRD lock instead.

The following table shows the valid lock combinations:

 Lock *EXCL *EXCLRD *SHRUPD *SHRNUPD *SHRRD

*EXCL1

*EXCLRD2

 X

*SHRUPD3

 X X

*SHRNUPD4

 X X

*SHRRD5

 X X X X

1 Exclusive lock (*EXCL). The object is allocated for the exclusive use of the requesting job; no other job can use the

object.

2 Exclusive lock, allow read (*EXCLRD). The object is allocated to the job that requested it, but other jobs can read

the object.

3 Shared lock, allow read and update (*SHRUPD). The object can be shared either for read or change with other

jobs.

4 Shared lock, read only (*SHRNUPD). The object can be shared for read with other jobs.

5 Shared lock (*SHRRD). The object can be shared with another job if the job does not request exclusive use of the

object.

Table 38 shows database locking for constraints of a database file, depending on whether the constraint is

associated with the parent file (PAR) or the dependent file (DEP).

 Table 38. Database constraint locks

Type of function File type File5 Member5 Other file

Other

member

ADDPFM1 DEP *EXCL *EXCL *EXCL *EXCL

ADDPFM1 PAR *EXCL *EXCL *EXCL *EXCL

ADDPFCST7 *REFCST *EXCL *EXCL *EXCL *EXCL

ADDPFCST6 *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL

ADDPFCST *UNIQUE *PRIKEY *EXCL *EXCL

RMVM2 DEP *EXCL *EXCL *EXCL *EXCL

RMVM2 PAR *EXCL *EXCL *EXCL *EXCL

DLTF3 DEP *EXCL *EXCL *EXCL *EXCL

DLTF3 PAR *EXCL *EXCL *EXCL *EXCL

RMVPFCST7 *REFCST *EXCL *EXCL *EXCL4 *EXCL

RMVPFCST6 *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL

RMVPFCST *UNIQUE *PRIKEY *EXCL *EXCL

CHGPFCST *EXCL *EXCL *SHRRD *EXCL

Database programming 107

Table 38. Database constraint locks (continued)

Type of function File type File5 Member5 Other file

Other

member

1 If adding a physical file member causes a referential constraint to be established.

2 If removing a physical file member causes an established referential constraint to become defined.

3 When deleting a dependent or parent file that has constraints established or defined for the file.

4 When the Remove Physical File Constraint (RMVPFCST) command is invoked for the parent file which has

constraints established or defined, the parent and any logical files over the parent file are all locked *EXCL.

5 For referential constraints, the column refers to the dependent file or the dependent member.

6 Unique constraint or primary key constraint is a parent key in a referential constraint where the other file is a

dependent file.

7 The other file is a parent file.

Displaying locked rows using iSeries Navigator:

You can use iSeries Navigator to display locked rows in a table.

 About this task

To display locked rows using iSeries Navigator, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Database → Schemas.

3. Click the library that contains the table for which you want to display locked row information.

4. Right-click the table and click Locked Rows. The Locked Rows window displays the rows that are

locked.

Displaying locked records using the Display Record Locks (DSPRCDLCK) command:

You can use the Display Record Locks (DSPRCDLCK) command to display the current lock status (wait

or held) of records in a physical file member.

 The DSPRCDLCK command will also indicate what type of lock is currently held. Depending on the

parameters you specify, this command displays the lock status for a specific record or displays the lock

status of all records in the member. You can also display record locks from the Work with Job (WRKJOB)

display.

 Related concepts

 Control language

Backup and Recovery
 Related reference

 Display Record Locks (DSPRCDLCK) command

Sharing database files in the same job or activation group

By default, the database management system allows one file to be read and changed by many users at

the same time. You can also share a file in the same job or activation group by specifying the SHARE

parameter.

You can share a file in the same job or activation group by opening the database file:

v More than once in the same program.

108 System i: Database Database programming

v In different programs in the same job or activation group.

Note: For more information about open sharing in the Integrated Language Environment® model, see the

ILE Concepts

manual.

The SHARE parameter on the create file, change file, and override database file commands allows

sharing in a job or activation group, including sharing the file, its status, its positions, and its storage

area. Sharing files in the job or activation group can improve performance by reducing the amount of

main storage needed and by reducing the time needed to open and close the file.

Using the SHARE(*YES) parameter lets two or more programs running in the same job or activation

group share an open data path (ODP). An open data path is the path through which all input/output

operations for the file are performed. In a sense, it connects the program to a file. If you do not specify

the SHARE(*YES) parameter, a new open data path is created every time a file is opened. If an active file

is opened more than once in the same job or activation group, you can use the active ODP for the file

with the current open of the file. You do not have to create a new open data path.

This reduces the amount of time required to open the file after the first open, and the amount of main

storage required by the job or activation group. SHARE(*YES) must be specified for the first open and

other opens of the same file for the ODP to be shared. A well-designed (for performance) application

normally shares an ODP with files that are opened in multiple programs in the same job or activation

group.

Specifying SHARE(*NO) tells the system not to share the ODP for a file. Normally, this is specified only

for those files that are seldom used or require unique processing in specific programs.

Note: A high-level language program processes an open or a close operation as if the file were not being

shared. You do not specify that the file is being shared in the high-level language program. You

indicate that the file is being shared in the same job or activation group through the SHARE

parameter. The SHARE parameter is specified only on the create, change, and override database

file commands.

Open considerations for files shared in a job or an activation group:

Here are the considerations for opening a database file that is shared in the same job or activation group.

 v Make sure that when the shared file is opened for the first time in a job or activation group, all the

open options needed for subsequent opens of the file are specified. If the open options specified for

subsequent opens of a shared file do not match those specified for the first open of a shared file, an

error message is sent to the program. (You can correct this by making changes to your program or to

the Open Database File (OPNDBF) or Open Query File (OPNQRYF) command parameters, to remove

any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job or activation group and PGMA only

needs to read the file. However, PGMA calls PGMB, which will delete records from the same shared

file. Because PGMB will delete records from the shared file, PGMA will have to open the file as if it,

PGMA, is also going to delete records. You can accomplish this by using the correct specifications in

the high-level language. (To accomplish this in some high-level languages, you might have to use file

operation statements that are never run. See your high-level language topic collection for more details.)

You can also specify the file processing option on the OPTION parameter on the OPNDBF and

OPNQRYF commands.

v Sometimes sharing a file within a job or activation group is not desirable. For example, one program

needs records from a file in arrival sequence and another program needs records in keyed sequence. In

this situation, you should not share the open data path (ODP). Specify SHARE(*NO) on the Override

with Database File (OVRDBF) command to ensure that the file is not shared within the job or

activation group.

Database programming 109

v If debug mode is entered with UPDPROD(*NO) after the first open of a shared file in a production

library, subsequent shared opens of the file share the original ODP and allow the file to be changed. To

prevent this, specify SHARE(*NO) on the OVRDBF command before opening files being debugged.

v The use of commitment control for the first open of a shared file requires that all subsequent shared

opens also use commitment control.

v Key feedback, insert key feedback, or duplicate key feedback must be specified on the full open if any

of these feedback types are desired on the subsequent shared opens of the file.

v If you did not specify a library name in the program or on the OVRDBF command (*LIBL is used), the

system assumes that the library list has not changed since the last open of the same shared file with

*LIBL specified. If the library list has changed, you should specify the library name on the OVRDBF

command to ensure that the correct file is opened.

v The record length that is specified on the full open is the record length that is used on subsequent

shared opens even if a larger record length value is specified on the shared opens of the file.

v Overrides and program specifications specified on the first open of the shared file are processed.

Overrides and program specifications specified on subsequent opens, other than those that change the

file name or the value specified on the SHARE or LVLCHK parameter of the OVRDBF command, are

ignored.

v Overrides specified for a first open using the OPNQRYF command can be used to change the names of

the files, libraries, and members that should be processed by the OPNQRYF command. Any parameter

values specified on the OVRDBF command other than TOFILE, MBR, LVLCHK, and SEQONLY are

ignored by the OPNQRYF command.

v The OPNDBF and OPNQRYF commands scope the ODP to the level specified on the Open Scope

(OPNSCOPE) parameter according to the following rules:

– The system searches for shared opens in the activation group first, and then in the job.

– Shared opens that are scoped to an activation group might not be shared between activation groups.

– Shared opens that are scoped to the job can be shared throughout the job, by any number of

activation groups at a time.

The CPF4123 diagnostic message lists the mismatches that can be encountered between the full open and

the subsequent shared opens. These mismatches do not cause the shared open to fail.

Note: The OPNQRYF command never shares an existing shared ODP in the job or activation group. If a

shared ODP already exists in the job or activation group with the same file, library, and member

name as the one specified on the OPNQRYF command, the system sends an error message and the

query file is not opened.

Input/output considerations for files shared in a job or an activation group:

Here are the considerations for processing a database file that is shared in the same job or activation

group.

 v Because only one open data path is allowed for a shared file, only one record position is maintained

for all the programs in the job or activation group that is sharing the file. If a program establishes a

position for a record using a read or a read-for-update operation, and then calls another program that

also uses the shared file, the record position might have moved or a record lock been released when

the called program returns to the calling program. This can cause errors in the calling program because

of an unexpected record position or lock condition. When sharing files, it is your responsibility to

manage the record position and record locking considerations by re-establishing position and locks.

v If a shared file is first opened for update operation, this does not necessarily cause every subsequent

program that shares the file to request a record lock. The system determines the type of record lock

needed for each program using the file. The system tries to keep lock contention to a minimum, while

still ensuring data integrity.

For example, PGMA is the first program in the job or activation group to open a shared file. PGMA

intends to update records in the file; therefore, when the program reads a record for update operation,

110 System i: Database Database programming

it locks the record. PGMA then calls PGMB. PGMB also uses the shared file, but it does not update any

records in the file; PGMB just reads records. Even though PGMA originally opened the shared file as

update-capable, PGMB does not lock the records it reads, because of the processing specifications in

PGMB. Thus, the system ensures data integrity, while minimizing record lock contention.

Close considerations for files shared in a job or an activation group:

Here are the considerations for closing a database file that is shared in the same job or activation group.

 v The complete processing of a close operation (including releasing file, member, and record locks;

forcing changes to auxiliary storage; and destroying the open data path) is done only when the last

program to open the shared open data path closes it.

v If the file was opened with the Open Database File (OPNDBF) or the Open Query File (OPNQRYF)

command, use the Close File (CLOF) command to close the file. The Reclaim Resources (RCLRSC)

command can also be used to close a file opened by the OPNQRYF command when one of the

following parameters is specified:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from the default activation group.

– TYPE(*NORMAL)

If one of the following parameters is specified, the file remains open even if the Reclaim Resources

(RCLRSC) command is run:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from an activation group other than the

default.

– OPNSCOPE(*ACTGRP)

– OPNSCOPE(*JOB)

– TYPE(*PERM)

Example 1: A single set of files with similar processing options:

You use the same set of files each time you sign on.

 A control language (CL) program (PGMA) is used as the first program (to set up the application,

including overrides and opening the shared files). PGMA then transfers control to PGMB, which displays

the application menu. Assume, in this example, that files A, B, and C are used, and files A and B are to

be shared. Files A and B were created with SHARE(*NO); therefore the Override with Database File

(OVRDBF) command should precede each of the Open Database File (OPNDBF) commands to specify the

SHARE(*YES) option. File C was created with SHARE(*NO) and File C is not to be shared in this

example.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.
PGMA: PGM /* PGMA - Initial program */

 OVRDBF FILE(A) SHARE(*YES)

 OVRDBF FILE(B) SHARE(*YES)

 OPNDBF FILE(A) OPTION(*ALL)

 OPNDBF FILE(B) OPTION(*INP) ...

 TFRCTL PGMB

 ENDPGM

PGMB: PGM /* PGMB - Menu program */

 DCLF FILE(DISPLAY)

BEGIN: SNDRCVF RCDFMT(MENU)

 IF (&RESPONSE *EQ ’1’) CALL PGM11

 IF (&RESPONSE *EQ ’2’) CALL PGM12

 .

Database programming 111

.

 IF (&RESPONSE *EQ ’90’) SIGNOFF

 GOTO BEGIN

 ENDPGM

The files opened in PGMA are either scoped to the job, or PGMA, PGM11, and PGM12 run in the same

activation group and the file opens are scoped to that activation group.

In this example, assume that:

v PGM11 opens files A and B. Because these files were opened as shared by the OPNDBF commands in

PGMA, the open time is reduced. The close time is also reduced when the shared open data path is

closed. The OVRDBF commands remain in effect even though control is transferred (with the Transfer

Control (TFRCTL) command in PGMA) to PGMB.

v PGM12 opens files A, B, and C. File A and B are already opened as shared and the open time is

reduced. Because file C is used only in this program, the file is not opened as shared.

In this example, the Close File (CLOF) command is not used because only one set of files is required.

When the operator signs off, the files are automatically closed. It is assumed that PGMA (the initial

program) is called only at the start of the job. For more information about how to reclaim resources in the

Integrated Language Resources, see the ILE Concepts book.

Note: The display file (DISPLAY) in PGMB can also be specified as a shared file, which can improve the

performance for opening the display file in any programs that use it later.

In Example 1, the OPNDBF commands are placed in a separate program (PGMA) so the other processing

programs in the job run as efficiently as possible. That is, the important files used by the other programs

in the job are opened in PGMA. After the files are opened by PGMA, the main processing programs

(PGMB, PGM11, and PGM12) can share the files; therefore, their open and close requests will process

faster. In addition, by placing the open commands (OPNDBF) in PGMA rather than in PGMB, the amount

of main storage used for PGMB is reduced.

Any overrides and opens can be specified in the initial program (PGMA); then, that program can be

removed from the job (for example, by transferring out of it). However, the open data paths that the

program created when it opened the files remain in existence and can be used by other programs in the

job.

Note: Overrides must be specified before the file is opened. Some of the parameters on the OVRDBF

command also exist on the OPNDBF command. If conflicts arise, the OVRDBF value is used.

 Related concepts

ILE Concepts PDF

Example 2: Multiple sets of files with similar processing options:

You use a different set of files for each program. You normally work with one program for a considerable

length of time before selecting a new program.

 Assume that a menu requests the operator to specify the application program (for example, accounts

receivable or accounts payable) that uses the Open Database File (OPNDBF) command to open the

required files. When the application is ended, the Close File (CLOF) command closes the files. The CLOF

command is used to help reduce the amount of main storage needed by the job.

An example of the accounts receivable programs follows:

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.

112 System i: Database Database programming

PGMC: PGM /* PGMC PROGRAM */

 DCLF FILE(DISPLAY)

BEGIN: SNDRCVF RCDFMT(TOPMENU)

 IF (&RESPONSE *EQ ’1’) CALL ACCRECV

 IF (&RESPONSE *EQ ’2’) CALL ACCPAY

 .

 .

 IF (&RESPONSE *EQ ’90’) SIGNOFF

 GOTO BEGIN

 ENDPGM

ACCREC: PGM /* ACCREC PROGRAM */

 DCLF FILE(DISPLAY)

 OVRDBF FILE(A) SHARE(*YES)

 OVRDBF FILE(B) SHARE(*YES)

 OPNDBF FILE(A) OPTION(*ALL)

 OPNDBF FILE(B) OPTIONS(*INP) ...

BEGIN: SNDRCVF RCDFMT(ACCRMENU)

 IF (&RESPONSE *EQ ’1’) CALL PGM21

 IF (&RESPONSE *EQ ’2’) CALL PGM22

 .

 .

 IF (&RESPONSE *EQ ’88’) DO /* Return */

 CLOF FILE(A)

 CLOF FILE(B)

 RETURN

 ENDDO

 GOTO BEGIN

 ENDPGM

The program for the accounts payable menu would be similar, but with a different set of OPNDBF and

CLOF commands.

For this example, files A and B were created with SHARE(*NO). Therefore, an OVRDBF command must

precede the OPNDBF command. As in Example 1, the amount of main storage used by each job can be

reduced by placing the OPNDBF commands in a separate program and calling it. A separate program can

also be created for the CLOF commands. The OPNDBF commands can be placed in an application setup

program that is called from the menu, which transfers control to the specific application program menu

(any overrides specified in this setup program are kept). However, calling separate programs for these

functions also uses system resources and, depending on the frequency with which the different menus are

used, it might be better to include the OPNDBF and CLOF commands in each application program menu

as shown in this example.

Another choice is to use the Reclaim Resources (RCLRSC) command in PGMC (the setup program)

instead of using the CLOF command. The RCLRSC command closes any files and frees any leftover

storage associated with any files and programs that were called and have since returned to the calling

program. However, RCLRSC does not close files that are opened with the following parameters specified

on the OPNDBF or Open Query File (OPNQRYF) command:

v OPNSCOPE(*ACTGRPDFN), and the open is requested from some activation group other than the

default.

v OPNSCOPE(*ACTGRP) reclaims if the RCLRSC command is from an activation group with an

activation group number that is lower than the activation group number of the open.

v OPNSCOPE(*JOB).

v TYPE(*PERM).

The following example shows the RCLRSC command used to close files:

Database programming 113

.

 .

IF (&RESPONSE *EQ ’1’) DO

 CALL ACCRECV

 RCLRSC

 ENDDO

IF (&RESPONSE *EQ ’2’) DO

 CALL ACCPAY

 RCLRSC

 ENDDO

 .

 .

Example 3: A single set of files with different processing options:

You use the same set of files for programs that need read-only file processing and for programs that need

some or all of the options (input, update, add, and delete).

 The same methods apply if a file is to be processed with certain command parameters in some programs

and not in others (for example, sometimes the commit option should be used).

A single Open Database File (OPNDBF) command can be used to specify OPTION(*ALL) and the open

data path would be opened shared (if, for example, a previous Override with Database File (OVRDBF)

command was used to specify SHARE(*YES)). Each program can then open a subset of the options. The

program requests the type of open depending on the specifications in the program. In some cases this

does not require any more considerations because a program specifying an open for input only would

operate similarly as if it had not done a shared open (for example, no additional record locking occurs

when a record is read).

However, some options specified on the OPNDBF command can affect how the program operates. For

example, SEQONLY(*NO) is specified on the open command for a file in the program. An error would

occur if the OPNDBF command used SEQONLY(*YES) and a program attempted an operation that was

not valid with sequential-only processing.

The ACCPTH parameter must also be consistent with the way programs will use the access path (arrival

or keyed).

If COMMIT(*YES) is specified on the OPNDBF command and the Start Commitment Control

(STRCMTCTL) command specifies LCKLVL(*ALL) or LCKLVL(*CS), any read operation of a record locks

that record (per commitment control record locking rules). This can cause records to be locked

unexpectedly and cause errors in the program.

Two OPNDBF commands can be used for the same data (for example, one with OPTION(*ALL) and the

other specifying OPTION(*INP)). The second use must be a logical file pointing to the same physical

file(s). This logical file can then be opened as SHARE(*YES) and multiple uses made of it during the

same job.

Sequential-only processing of database files

If your program processes a database file sequentially for input only or output only, you might be able to

improve performance by specifying the sequential-only processing (SEQONLY) parameter on the

Override with Database File (OVRDBF) or the Open Database File (OPNDBF) command.

To use SEQONLY processing, the file must be opened for input-only or output-only. The NBRRCDS

parameter can be used with any combination of open options. (The Open Query File (OPNQRYF)

command uses sequential-only processing whenever possible.) Depending on your high-level language

specifications, the high-level language can also use sequential-only processing as the default. For

114 System i: Database Database programming

example, if you open a file for input only and the only file operations specified in the high-level language

program are sequential read operations, then the high-level language automatically requests

sequential-only processing.

Note: File positioning operations are not considered sequential read operations; therefore, a high-level

language program that contains positioning operations does not automatically request

sequential-only processing. (The SETLL operation in the RPG language and the START operation in

the COBOL language are examples of file positioning operations.) Even though the high-level

language program cannot automatically request sequential-only processing, you can request it

using the SEQONLY parameter on the Override with Database File (OVRDBF) command.

If you specify sequential-only processing, you can also specify the number of records to be moved as one

unit between the system database main storage area and the job’s internal data main storage area. If you

do not specify the sequential-only number of records to be moved, the system calculates a number based

on the number of records that fit into a 4096-byte buffer.

The system also provides you a way to control the number of records that are moved as a unit between

auxiliary storage and main storage. If you are reading the data in the file in the same order as the data is

physically stored, you can improve the performance of your job using the NBRRCDS parameter on the

OVRDBF command.

Note: Sequential-only processing should not be used with a keyed sequence access path file unless the

physical data is in the same order as the access path. SEQONLY(*YES) processing might cause

poor application performance until the physical data is reorganized into the access path’s order.

Open considerations for sequential-only processing:

Here are the considerations for opening files when sequential-only processing is specified.

 If the system determines that sequential-only processing is not allowed, a message is sent to the program

to indicate that the request for sequential-only processing is not being accepted; however, the file is still

opened for processing.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of

records was not specified) and either the opened member is a logical member, a uniquely keyed

physical member, or there are other access paths to the physical member, SEQONLY(*YES) is changed

to SEQONLY(*NO) so the program can handle possible errors (for example, duplicate keys, conversion

mapping, and select/omit errors) at the time of the output operation. If you want the system to run

sequential-only processing, change the SEQONLY parameter to include both the *YES value and

number of records specification.

v Sequential-only processing can be specified only for input-only (read) or output-only (add) operations.

If the program specifies update or delete operations, sequential-only processing is not allowed by the

system.

v If a file is being opened for output, it must be a physical file or a logical file based on one physical file

member.

v Sequential-only processing can be specified with commitment control only if the member is opened for

output-only.

v If sequential-only processing is being used for files opened with commitment control and a rollback

operation is performed for the job, the records that are in the job’s storage area during the rollback

operation are not written to the system storage area and never appear in the journal for the

commitment control transaction. If no records were ever written to the system storage area prior to a

rollback operation being performed for a particular commitment control transaction, the entire

commitment control transaction is not reflected in the journal.

Database programming 115

v For output-only, the number of records specified to be moved as a unit and the force ratio are

compared and automatically adjusted as necessary. If the number of records is larger than the force

ratio, the number of records is reduced to equal the force ratio. If the opposite is true, the force ratio is

reduced to equal the number of records.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of

records was not specified), and duplicate or insert key feedback has been requested, SEQONLY(*YES)

will be changed to SEQONLY(*NO) to provide the feedback on a record-by-record basis when the

records are inserted into the file.

v The number of records in a block will be changed to one if all of the following conditions are true:

– The member was opened for output-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is a file that cannot be extended because its increment number of records was

set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of

records.

The following considerations apply when sequential-only processing is not specified and the file is

opened using the Open Query File (OPNQRYF) command. If these conditions are satisfied, a message is

sent to indicate that sequential-only processing will be performed and the query file is opened.

v If the OPNQRYF command specifies the name of one or more fields on the group field (GRPFLD)

parameter, or OPNQRYF requires group processing.

v If the OPNQRYF command specifies one or more fields, or *ALL on the UNIQUEKEY parameter.

v If a view is used with the DISTINCT option on the SQL SELECT statement, then SEQONLY(*YES)

processing is automatically performed.
 Related concepts

 “Using Open Query File (OPNQRYF) command” on page 123
By using the Open Query File (OPNQRYF) command, you can open a file to a set of database records

that satisfies a database query request.

Input/output considerations for sequential-only processing:

Here are the considerations for input/output operations on files when sequential-only processing is

specified.

 v For input, your program receives one record at a time from the input buffer. When all records in the

input buffer are processed, the system automatically reads the next set of records.

Note: Changes made after records are read into the input buffer are not reflected in the input buffer.

v For output, your program must move one record at a time to the output buffer. When the output

buffer is full, the system automatically adds the records to the database.

Note: If you are using a journal, the entire buffer is written to the journal at one time as if the entries

had logically occurred together. This journal processing occurs before the records are added to

the database.

If you use sequential-only processing for output, you might not see all the changes made to the file as

they occur. For example, if sequential-only is specified for a file being used by PGMA, and PGMA is

adding new records to the file and the SEQONLY parameter was specified with 5 as the number of

records in the buffer, then only when the buffer is filled will the newly added records be transferred to

the database. In this example, only when the fifth record was added, would the first five records be

transferred to the database, and be available for processing by other jobs in the system.

In addition, if you use sequential-only processing for output, some additions might not be made to the

database if you do not handle the errors that can occur when records are moved from the buffer to the

database. For example, assume that the buffer holds five records, and the third record in the buffer had

116 System i: Database Database programming

a key that was a duplicate of another record in the file and the file was defined as a unique-key file. In

this case, when the system transfers the buffer to the database it would add the first two records and

then get a duplicate key error for the third. Because of this error, the third, fourth, and fifth records in

the buffer would not be added to the database.

v The force-end-of-data function can be used for output operations to force all records in the buffer to

the database (except those records that would cause a duplicate key in a file defined as having unique

keys, as described previously). The force-end-of-data function is only available in certain high-level

languages.

v The number of records in a block will be changed to one if all of the following conditions are true:

– The member was opened for output-only processing or sequential-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is being extended because the increment number of records was set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of

records.

Close considerations for sequential-only processing:

Here are the considerations for closing files when sequential-only processing is specified.

 When a file for which sequential-only processing is specified is closed, all records still in the output

buffer are added to the database. However, if an error occurs for a record, any records following that

record are not added to the database.

If multiple programs in the same job are sharing a sequential-only output file, the output buffer is not

emptied until the final close occurs. Consequently, a close (other than the last close in the job) does not

cause the records still in the buffer to appear in the database for this or any other job.

Summary of runtime considerations for processing database files

These tables show whether you can specify a particular file processing option on a CL command and in a

high-level language.

For parameters that can be specified in more than one place, the system merges the values. The Override

with Database File (OVRDBF) command parameters take precedence over program parameters, and Open

Database File (OPNDBF) or Open Query File (OPNQRYF) command parameters take precedence over

create or change file parameters.

Note: Any override parameters other than TOFILE, MBR, LVLCHK, SEQONLY, SHARE, WAITRCD, and

INHWRT are ignored by the OPNQRYF command.

The parameters in the following tables are arranged in the order of importance. If a new parameter is

related to an existing parameter, it is added next to the existing parameter.

 Table 39. Database processing options specified on CL commands

Description Parameter Command

CRTPF, CRTLF CHGPF,

CHGLF

OPNDBF OPNQRYF OVRDBF

File name FILE Yes Yes1 Yes Yes Yes

Library name LIB Yes Yes2 Yes Yes Yes

Member

name

MBR Yes No Yes Yes Yes

Member

processing

options

OPTION No No Yes Yes No

Database programming 117

||

|||

||
|
|||

|||||||

|||||||

|
|
||||||

|
|
|

||||||

Table 39. Database processing options specified on CL commands (continued)

Description Parameter Command

CRTPF, CRTLF CHGPF,

CHGLF

OPNDBF OPNQRYF OVRDBF

Record format

lock state

RCDFMTLCK No No No No Yes

Starting file

position after

open

POSITION No No No No Yes

Program

performs only

sequential

processing

SEQONLY No No Yes Yes Yes

Ignore keyed

sequence

access path

ACCPTH No No Yes No No

Time to wait

for file locks

WAITFILE Yes Yes No No Yes

Time to wait

for record

locks

WAITRCD Yes Yes No No Yes

Prevent

overrides

SECURE No No No No Yes

Number of

records to be

transferred

from auxiliary

to main

storage

NBRRCDS No No No No Yes

Share open

data path

with other

programs

SHARE Yes3 Yes4 No No Yes

Format

selector

FMTSLR Yes5 Yes5 No No Yes

Force ratio FRCRATIO Yes Yes No No Yes

Inhibit write INHWRT No No No No Yes

Level check

record

formats

LVLCHK Yes Yes No No Yes

Expiration

date checking

EXPCHK No No No No Yes

Expiration

date

EXPDATE Yes6 Yes6 No No Yes

Force access

path

FRCACCPTH Yes Yes No No No

Commitment

control

COMMIT No No Yes Yes No

End-of-file

delay

EOFDLY No No No No Yes

118 System i: Database Database programming

|

|||

||
|
|||

|
|
||||||

|
|
|

||||||

|
|
|
|

||||||

|
|
|

||||||

|
|
||||||

|
|
|

||||||

|
|
||||||

|
|
|
|
|
|

||||||

|
|
|
|

||||||

|
|
||||||

|||||||

|||||||

|
|
|

||||||

|
|
||||||

|
|
||||||

|
|
||||||

|
|
||||||

|
|
||||||

Table 39. Database processing options specified on CL commands (continued)

Description Parameter Command

CRTPF, CRTLF CHGPF,

CHGLF

OPNDBF OPNQRYF OVRDBF

Duplicate key

check

DUPKEYCHK No No Yes Yes No

Reuse deleted

record space

REUSEDLT Yes6 Yes6 No No No

Coded

character set

identifier

CCSID Yes6 Yes6 No No No

Sort sequence SRTSEQ Yes Yes7 No Yes No

Language

identifier

LANGID Yes Yes7 No Yes No

1 File name: The CHGPF and CHGLF commands use the file name for identification only. You cannot change the file

name.

2 Library name: The CHGPF and CHGLF commands use the library name for identification only. You cannot change

the library name.

3 Share open data path with other programs: It applies only to members that are added on the create file request.

4 Share open data path with other programs: It applies only to the current members of the file on the change file

request.

5 Format selector: It is used on the CRTLF and CHGLF commands only.

6 Expiration date, reuse deleted records, and coded character set identifier: They are used on the CRTPF and CHGPF

commands only.

7 Sort sequence and language identifier: They cannot be specified on the CHGLF command. They can be specified

on the CHGPF command only when they are used in conjunction with the source file.

 Table 40. Database processing options specified in high-level language programs

Description RPG/400 ILE RPG COBOL/400 ILE COBOL PL/I

File name Yes Yes Yes Yes Yes

Library name No Yes No No Yes

Member name No Yes No No Yes

Record length Yes Yes Yes Yes Yes

Member

processing

options

Yes Yes Yes Yes Yes

Record format

lock state

No No No No Yes

Record formats

the program will

use

Yes Yes No No No

Clear physical file

member of

records

No No Yes Yes No

Database programming 119

|

|||

||
|
|||

|
|
||||||

|
|
||||||

|
|
|

||||||

|||||||

|
|
||||||

|
|

|
|

|

|
|

|

|
|

|
|
|

||

||||||

||||||

||||||

||||||

||||||

|
|
|

|||||

|
|
|||||

|
|
|

|||||

|
|
|

|||||

Table 40. Database processing options specified in high-level language programs (continued)

Description RPG/400 ILE RPG COBOL/400 ILE COBOL PL/I

Program

performs only

sequential

processing

Yes Yes Yes Yes Yes

Ignore keyed

sequence access

path

Yes Yes Yes Yes Yes

Share open data

path with other

programs

No No No No Yes

Level check

record formats

Yes Yes Yes Yes Yes

Commitment

control

Yes Yes Yes Yes Yes

Duplicate key

check

No No Yes Yes No

Note: Control language (CL) programs can also specify many of these parameters. See Table 39 on page 117 for

more information about the database processing options that can be specified on CL commands.

Storage pool paging option effect on database performance

The paging option of shared pools can have a significant impact on the performance of reading and

changing database files.

v A paging option of *FIXED causes the program to minimize the amount of memory it uses by:

– Transferring data from auxiliary storage to main memory in smaller blocks

– Writing file changes (updates to existing records or newly added records) to auxiliary storage

frequently

This option allows the system to perform much like it did before the paging option was added.

v A paging option of *CALC might improve how the program performs when it reads and updates

database files. In cases where there is sufficient memory available within a shared pool, the program

might:

– Transfer larger blocks of data to memory from auxiliary storage.

– Write changed data to auxiliary storage less frequently.

The paging operations done on database files vary dynamically based on file use and memory

availability. Frequently referenced files are more likely to remain resident than those less often

accessed. The memory is used somewhat like a cache for popular data. The overall number of I/O

operations might be reduced using the *CALC paging option.
 Related concepts

 Performance

Opening a database file

You can use the Open Query File (OPNQRYF) and Open Database File (OPNDBF) commands to open

database file members in a program.

Opening a database file member

You can open a database file member with statements in your high-level language program. You can also

use the control language (CL) open commands: Open Database File (OPNDBF) and Open Query File

(OPNQRYF).

120 System i: Database Database programming

|

||||||

|
|
|
|

|||||

|
|
|

|||||

|
|
|

|||||

|
|
|||||

|
|
|||||

|
|
|||||

|
|
|

To use a database file in a program, your program must issue an open operation to the database file. If

you do not specify an open operation in some programming languages, they automatically open the file

for you. If you did not specify a member name in your program or on an Override with Database File

(OVRDBF) command, the first member (as defined by creation date and time) in the file is used.

If you specify a member name, files that have the correct file name but do not contain the member name

are ignored. If you have multiple database files named FILEA in different libraries, the member that is

opened is the first one in the library list that matches the request. For example, LIB1, LIB2, and LIB3 are

in your library list and all three contain a file named FILEA. Only FILEA in LIB3 has a member named

MBRA that is to be opened. Member MRBA in FILEA in LIB3 is opened; the other FILEAs are ignored.

After finding the member, the system connects your program to the database file. This allows your

program to perform input/output operations on the file. For more information about opening files in

your high-level language program, see the appropriate high-level language topic collection.

You can also open a database file member with the OPNDBF command and the OPNQRYF command.

The OPNDBF command is useful in an initial program in a job for opening shared files. The OPNQRYF

command is very effective in selecting and arranging records outside your program. Then, your program

can use the information supplied by the OPNQRYF command to process only the data it needs.

 Related concepts

 Control language
 Related reference

 Open Database File (OPNDF) command

 Open Query File (OPNQRYF) command

Using Open Database File (OPNDBF) command

Usually when you use the Open Database File (OPNDBF) command, you use the default values for the

command parameters. Sometimes you might want to specify particular values for some of the

parameters.

ACCPTH parameter

If the file has a keyed sequence access path and either (1) the open option is *OUT, or (2) the open option

is *INP or *ALL, but your program does not use the keyed sequence access path, then you can specify

ACCPTH(*ARRIVAL) on the OPNDBF parameter. Ignoring the keyed sequence access path can improve

your job’s performance.

COMMIT parameter

Specify *YES if the application programs use commitment control. If you specify *YES, you must be

running in a commitment control environment (the Start Commitment Control (STRCMTCTL) command

was processed) or the OPNDBF command will fail. Use the default of *NO if the application programs do

not use commitment control.

DUPKEYCHK parameter

Specify whether you want duplicate key feedback. If you specify *YES, duplicate key feedback is returned

on I/O operations. If you specify *NO, duplicate key feedback is not returned on I/O operations. Use the

default (*NO) if the application programs are not written in the COBOL or ILE C/C++ language, or if

your COBOL or ILE C/C++ program does not use the duplicate-key feedback information that is

returned.

Database programming 121

MBR parameter

If a member, other than the first member in the file, is to be opened, you must specify the name of the

member to be opened or issue an Override with Database File (OVRDBF) command before the OPNDBF

command.

Note: You must specify a member name on the OVRDBF command to use a member (other than the first

member) to open in subsequent programs.

OPNID parameter

If an identifier other than the file name is to be used, you must specify it. The open identifier can be used

in other control language (CL) commands to process the file. For example, the Close File (CLOF)

command uses the identifier to specify which file is to be closed.

OPNSCOPE parameter

This parameter specifies the scoping of the open data path (ODP). Specify *ACTGRPDFN if the request is

from the default activation group, and the ODP is to be scoped to the call level of the program issuing

the command. If the request is from any other activation group, the ODP is scoped to that activation

group. Specify *ACTGRP if the ODP is to be scoped to the activation group of the program issuing the

command. Specify *JOB if the ODP is to be scoped to the job. If you specify this parameter and the TYPE

parameter you get an error message.

OPTION parameter

Specify the *INP option if your application programs use input-only processing (reading records without

updating records). This allows the system to read records without trying to lock each one for possible

update. Specify the *OUT option if your application programs use output-only processing (writing

records into a file but not reading or updating existing records).

Note: If your program does direct output operations to active records (updating by relative record

number), *ALL must be specified instead of *OUT. If your program does direct output operations

to deleted records only, *OUT must be specified.

SEQONLY parameter

Specify *YES if subsequent application programs process the file sequentially. This parameter can also be

used to specify the number of records that should be transferred between the system data buffers and the

program data buffers. SEQONLY(*YES) is not allowed unless OPTION(*INP) or OPTION(*OUT) is also

specified on the Open Database File (OPNDBF) command. Sequential-only processing should not be used

with a keyed sequence access path file unless the physical data is in access path order.

TYPE parameter

Specify what you want to happen when exceptions that are not monitored occur in your application

program. If you specify *NORMAL, one of the following operations can happen:

v Your program can issue a Reclaim Resources (RCLRSC) command to close the files opened at a higher

level in the call stack than the program issuing the RCLRSC command.

v The high-level language you are using can perform a close operation.

Specify *PERM if you want to continue the application without opening the files again. TYPE(*NORMAL)

causes files to be closed if both of the following situations occur:

v Your program receives an error message.

v The files are opened at a higher level in the call stack.

122 System i: Database Database programming

TYPE(*PERM) allows the files to remain open even if an error message is received. Do not specify this

parameter if you specified the OPNSCOPE parameter.

Using Open Query File (OPNQRYF) command

By using the Open Query File (OPNQRYF) command, you can open a file to a set of database records

that satisfies a database query request.

The OPNQRYF command allows you to perform many data processing functions on database files.

Essentially, it acts as a filter between the processing program and the database records. The database file

can be a physical or logical file. Unlike the Create Physical File (CRTPF) or Create Logical File (CRTLF)

command, the OPNQRYF command creates only a temporary file for processing the data; it does not

create a permanent file.

The OPNQRYF command has functions similar to those in data description specifications (DDS) and the

CRTPF and CRTLF commands. DDS requires source statements and a separate step to create the file. The

OPNQRYF command allows a dynamic definition without using DDS. The OPNQRYF command does not

support all of the DDS functions, but it supports significant functions that go beyond the capabilities of

DDS. In addition, Query for iSeries can be used to perform some of the functions that the OPNQRYF

command performs. However, the OPNQRYF command is more useful as a programmer’s tool.

The OPNQRYF command parameters also have many functions similar to the SQL SELECT statements.

For example, the FILE parameter is similar to the SQL FROM statement, the QRYSLT parameter is similar

to the SQL WHERE statement, the GRPFLD parameter is similar to the SQL GROUP BY statement, and

the GRPSLT parameter is similar to the SQL HAVING statement.

The following list shows the major functions supplied by the OPNQRYF command:

v Dynamic record selection

v Dynamic keyed sequence access path

v Dynamic keyed sequence access path over a join

v Dynamic join

v Handling missing records in secondary join files

v Unique-key processing

v Mapped field definitions

v Group processing

v Final total-only processing

v Improving performance

v Open query identifier (ID)

v Sort sequence processing

To understand the OPNQRYF command, you must be familiar with its two processing approaches: using

a format in the file, and using a file with a different format. The typical use of the OPNQRYF command

is to select, arrange, and format the data so it can be read sequentially by your high-level language

program.

 Related concepts

 SQL programming

 Control language
 Related reference

 Open Query File (OPNQRYF) command

Creating a query with the Open Query File (OPNQRYF) command:

Database programming 123

You can use the Open Query File (OPNQRYF) command to create a query over database records.

Alternatively, you can create a query using the Run SQL Scripts window in iSeries Navigator.

 Related concepts

 Querying your database using the Run SQL Scripts interface
 Related reference

 Open Query File (OPNQRYF) command

Using an existing record format in the file:

The Open Query File (OPNQRYF) command does the record selection, and your program processes only

the records that meet the selection values. You can use this approach to select a set of records, return

records in a different sequence than they are stored, or both.

 About this task

Assume that you only want your program to process the records in which the Code field is equal to D.

You create the program as if there were only records with a D in the Code field. That is, you do not code

any selection operations in the program. You then run the OPNQRYF command and specify that only the

records with a D in the Code field are to be returned to the program. The following chart is an example of

using the OPNQRYF command to select and sequence records:

1 Create the high-level language program to process the database file as you would any normal

program using externally described data. Only one format can be used, and it must exist in the

file.

2 Run the Override with Database file (OVRDBF) command specifying the file and member to be

processed and SHARE(*YES). (If the member is permanently changed to SHARE(*YES) and the

first or only member is the one you want to use, this step is not necessary.)

124 System i: Database Database programming

The OVRDBF command can be run after the OPNQRYF command, unless you want to override

the file name specified in the OPNQRYF command. In this discussion and in these examples, the

OVRDBF command is shown first.

Some restrictions are placed on using the OVRDBF command with the OPNQRYF command. For

example, MBR(*ALL) causes an error message and the file is not opened.

3 Run the OPNQRYF command, specifying the database file, member, format names, any selection

options, any sequencing options, and the scope of influence for the opened file.

4 Call the high-level language program you created in step 1. Besides using a high-level language,

the Copy from Query File (CPYFRMQRYF) command can also be used to process the file created

by the OPNQRYF command. Other control language (CL) commands (for example, the Copy File

(CPYF) and the Display Physical File Member (DSPPFM) commands) and utilities (for example,

Query) do not work on files created with the OPNQRYF command.

5 Close the file that you opened in step 3, unless you want the file to remain open. The Close File

(CLOF) command can be used to close the file.

6 Delete the override specified in step 2 with the Delete Override (DLTOVR) command. It might

not always be necessary to delete the override, but the command is shown in all the examples for

consistency.
 Related concepts

 “Files shared in a job” on page 167
To use the open data path that is built by the Open Query File (OPNQRYF) command, your program

must share the query file.

Using a file with a different record format:

For more advanced functions of the Open Query File (OPNQRYF) command (such as dynamically joining

records from different files), you must define a new file that contains a different record format.

 This new file is separate from the one you are going to process and contains the fields that you want to

create with the OPNQRYF command. This powerful capability also lets you define fields that do not

currently exist in your database records, but can be derived from them.

When you code your high-level language program, specify the name of the file with the different format

so the externally described field definitions of both existing and derived fields can be processed by the

program.

Before calling your high-level language program, you must specify an Override with Database File

(OVRDBF) command to direct your program file name to the open query file. On the OPNQRYF

command, specify both the database file and the new file with the special format to be used by your

high-level language program. If the file you are querying does not have SHARE(*YES) specified, you

must specify SHARE(*YES) on the OVRDBF command.

The following chart shows the process flow:

Database programming 125

1 Specify the data description specifications (DDS) for the file with the different record format, and

create the file. This file contains the fields that you want to process with your high-level language

program. Normally, data is not contained in this file, and it does not require a member. You

normally create this file as a physical file without keys. A field reference file can be used to

describe the fields. The record format name can be different from the record format name in the

database file that is specified. You can use any database or DDM file for this function. The file

can be a logical file and it can be indexed. It can have one or more members, with or without

data.

2 Create the high-level language program to process the file with the record format that you

created in step 1. In this program, do not name the database file that contains the data.

3 Run the OVRDBF command. Specify the name of the file with the different (new) record format

on the FILE parameter. Specify the name of the database file that you want to query on the

TOFILE parameter. You can also specify a member name on the MBR parameter. If the database

member you are querying does not have SHARE(*YES) specified, you must also specify

SHARE(*YES) on the OVRDBF command.

4 Run the OPNQRYF command. Specify the database file to be queried on the FILE parameter, and

specify the name of the file with the different (new) format that was created in step 1 on the

FORMAT parameter. Mapped field definitions can be required on the OPNQRYF command to

describe how to map the data from the database file into the format that was created in step 1.

You can also specify selection options, sequencing options, and the scope of influence for the

opened file.

5 Call the high-level language program you created in step 2.

126 System i: Database Database programming

6 The first file named in step 4 for the FILE parameter was opened with OPNQRYF as

SHARE(*YES) and is still open. The file must be closed. The Close File (CLOF) command can be

used.

7 Delete the override that was specified in step 3.

 The previous steps show the normal flow using externally described data. It is not necessary to create

unique DDS and record formats for each OPNQRYF command. You can reuse an existing record format.

However, all fields in the record format must be actual fields in the real database file or defined by

mapped field definitions. If you use program-described data, you can create the program at any time.

You can use the file created in step 1 to hold the data created by the OPNQRYF command. For example,

you can replace step 5 with a high-level language processing program that copies data to the file with the

different format, or you can use the Copy from Query File (CPYFRMQRYF) command. The Copy File

(CPYF) command cannot be used. You can then follow step 5 with the CPYF command or Query.

CL program coding with the Open Query File (OPNQRYF) command:

When you use the Open Query File (OPNQRYF) command, follow these rules to prevent coding errors.

v Specify selection fields from a database file without an ampersand (&). Fields declared in the control

language (CL) program with DCL or DCLF require the ampersand.

v Enclose fields defined in the CL program with DCL or DCLF within single quotation marks (’&testfld’,

for example).

v Enclose all parameter comparisons within quotation marks when compared to character fields, single

quotation marks when compared to numeric fields.

In the following example, the fields INVCUS and INVPRD are defined as character data:

QRYSLT(’INVCUS *EQ "’ *CAT &K1CUST *CAT ’" *AND +

 INVPRD *GE "’ *CAT &LPRD *CAT ’" *AND +

 INVPRD *LE "’ *CAT &HPRD *CAT ’"’)

If the fields are defined numeric data, the QRYSLT parameter can look like this:

QRYSLT(’INVCUS *EQ ’ *CAT &K1CUST *CAT ’ *AND +

 INVPRD *GE ’ *CAT &LPRD *CAT ’ *AND +

 INVPRD *LE ’ *CAT &HPRD *CAT ’ ’)

 Related concepts

 “Usage notes for the Open Query File (OPNQRYF) examples” on page 128
These usage notes apply to the examples in the Selecting records without using DDS topic, which

describe how to specify the parameters for the major functions of the Open Query File (OPNQRYF)

command and how to use the OPNQRYF command in your high-level language program.

The zero-length literal and the contains (*CT) function:

In the Open Query File (OPNQRYF) command, a zero-length literal is denoted as a quoted string with

nothing, not even a blank, between the quotation marks (″″). Zero-length literal support changes the

results of a comparison when used as the compare argument of the contains (*CT) function.

 The concept of a zero-length literal was introduced in Version 2, Release 1, Modification 1.

Consider this statement:

QRYSLT(’field *CT ""’)

With zero-length literal support, the statement returns records that contain anything. It is, in essence, a

wildcard comparison for any number of characters followed by any number of characters. It is equivalent

to:

Database programming 127

’field = %WLDCRD("**")’

Before zero-length literal support, (before Version 2, Release 1, Modification 1), the argument (″″) was

interpreted as a single-byte blank. The statement returned records that contained a single blank

somewhere in the field. It was, in essence, a wildcard comparison for any number of characters, followed

by a blank, followed by any number of characters. It was equivalent to:

’field = %WLDCRD("* *")’

To get pre-Version 2, Release 1, Modification 1 results with the contains function, you must code the

QRYSLT to explicitly look for the blank:

QRYSLT(’field *CT " "’)

 Related concepts

 “Usage notes for the Open Query File (OPNQRYF) examples”
These usage notes apply to the examples in the Selecting records without using DDS topic, which

describe how to specify the parameters for the major functions of the Open Query File (OPNQRYF)

command and how to use the OPNQRYF command in your high-level language program.

Usage notes for the Open Query File (OPNQRYF) examples:

These usage notes apply to the examples in the Selecting records without using DDS topic, which

describe how to specify the parameters for the major functions of the Open Query File (OPNQRYF)

command and how to use the OPNQRYF command in your high-level language program.

 Notes:

v If you run the OPNQRYF command from a command entry line with the

OPNSCOPE(*ACTGRPDFN) or TYPE(*NORMAL) parameter option, error messages that occur

after the OPNQRYF command successfully runs will not close the file. Such messages would

have closed the file prior to Version 2 Release 3 when TYPE(*NORMAL) was used. The system

automatically runs the Reclaim Resources (RCLRSC) command if an error message occurs,

except for message CPF0001, which is sent when the system detects an error in the command.

However, the RCLRSC command only closes files opened from the default activation group at a

higher level in the call stack than the level at which the RCLRSC command was run.

v After running a program that uses the OPNQRYF command for sequential processing, the file

position is normally at the end of the file. If you want to run the same program or a different

program with the same files, you must position the file or close the file and open it with the

same OPNQRYF command. You can position the file with the Position Database File (POSDBF)

command. In some cases, a high-level language program statement can be used.
 Related concepts

 “Selecting records without using DDS”
The Open Query File (OPNQRYF) command provides dynamic record selection. That is, you can

request a subset of records in a file without using data description specifications (DDS).

 “CL program coding with the Open Query File (OPNQRYF) command” on page 127
When you use the Open Query File (OPNQRYF) command, follow these rules to prevent coding

errors.

 “The zero-length literal and the contains (*CT) function” on page 127
In the Open Query File (OPNQRYF) command, a zero-length literal is denoted as a quoted string with

nothing, not even a blank, between the quotation marks (″″). Zero-length literal support changes the

results of a comparison when used as the compare argument of the contains (*CT) function.

Selecting records without using DDS:

The Open Query File (OPNQRYF) command provides dynamic record selection. That is, you can request

a subset of records in a file without using data description specifications (DDS).

128 System i: Database Database programming

For example, you can select records that have a specific value or range of values (for example, all

customer numbers between 1000 and 1050).

 Related concepts

 “Usage notes for the Open Query File (OPNQRYF) examples” on page 128
These usage notes apply to the examples in the Selecting records without using DDS topic, which

describe how to specify the parameters for the major functions of the Open Query File (OPNQRYF)

command and how to use the OPNQRYF command in your high-level language program.

Selecting records using the Open Query File (OPNQRYF) command:

These examples show how to select database records using the Open Query File (OPNQRYF) command.

 In all these examples, it is assumed that a single-format database file (physical or logical) is being

processed. (The FILE parameter on the OPNQRYF command allows you to specify a record format name

if the file is a multiple format logical file.)

 Related concepts

 Control language

Example 1: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to select records with a specific value using the Open Query File (OPNQRYF)

command.

 Assume that you want to select all the records from FILEA where the value of the Code field is D. Your

processing program is PGMB. PGMB only sees the records that meet the selection value (you do not have

to test in your program).

Note: You can specify parameters easier by using the prompt function for the OPNQRYF command. For

example, you can specify an expression for the QRYSLT parameter without the surrounding

delimiters because the system will add the single quotation marks.

Specify the following parameters:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "D" ’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Notes:

1. The entire expression in the QRYSLT parameter must be enclosed in single quotation marks (’

’).

2. When specifying field names in the OPNQRYF command, the names in the record are not

enclosed in quotation marks.

3. Character literals must be enclosed by quotation marks (″ ″). (The quotation mark character is

used in the examples.) It is important to place the character(s) between the quotation marks in

either uppercase or lowercase to match the value you want to find in the database. (The

examples are all shown in uppercase.)

4. To request a selection against a numeric constant, specify:

OPNQRYF FILE(FILEA) QRYSLT(’AMT *GT 1000.00’)

Note:

Numeric constants are not enclosed by quotation marks.

5. When comparing a field value to a control language (CL) variable, use apostrophes as follows

(only character CL variables can be used):

Database programming 129

v If doing selection against a character, date, time, or timestamp field, specify:

OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CHAR *CAT ’" *EQ FIELDA’)

or, in reverse order:

OPNQRYF FILE(FILEA) QRYSLT(’FIELDA *EQ "’ *CAT &CHAR *CAT ’"’)

Note:

Single quotation marks (’ ’) and quotation marks (″ ″) enclose the CL variables and *CAT

operators.

v If doing selection against a numeric field, specify:

OPNQRYF FILE(FILEA) QRYSLT(&CHARNUM *CAT ’ *EQ NUM’)

or, in reverse order:

OPNQRYF FILE(FILEA) QRYSLT(’NUM *EQ ’ *CAT &CHARNUM);

Note:

Single quotation marks enclose the field and operator only.

When comparing two fields or constants, the data types must be compatible. The following table

describes the valid comparisons.

 Table 41. Valid data type comparisons for the OPNQRYF command

 Any numeric Character Date1 Time1 Timestamp1

Any numeric Valid Not valid Not valid Not valid Not valid

Character Not valid Valid Valid2 Valid2 Valid2

Date1 Not valid Valid2 Valid Not valid Not valid

Time1 Not valid Valid2 Not valid Valid Not valid

Timestamp1 Not valid Valid2 Not valid Not valid Valid

1 Date, time, and timestamp data types can be represented by fields and expressions, but not constants;

however, character constants can represent date, time, or timestamp values.

2 The character field or constant must represent a valid date value if compared to a date data type, a

valid time value if compared to a time data type, or a valid timestamp value if compared to a timestamp

data type.

The performance of record selection can be greatly enhanced if a file on the system uses the field being

selected in a keyed sequence access path. This allows the system to quickly access only the records that

meet the selection values. If no such access path exists, the system must read every record to determine if

it meets the selection values.

Even if an access path exists on the field you want to select from, the system might not use the access

path. For example, if it is faster for the system to process the data in arrival sequence, it will do so.

 Related concepts

 “Double-byte character set considerations” on page 291
A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The

database on the i5/OS operating system supports DBCS.

 “Open Query File (OPNQRYF) command: Performance considerations” on page 163
Here are the tips and techniques for optimizing the performance of the Open Query File (OPNQRYF)

command.

Example 2: Selecting records using the Open Query File (OPNQRYF) command:

130 System i: Database Database programming

This example shows how to select records with a specific date value using the Open Query File

(OPNQRYF) command.

 Assume that you want to process all records in which the Date field in the record is the same as the

current date. Also assume that the Date field is in the same format as the system date. In a control

language (CL) program, you can specify:

DCL VAR(&CURDAT); TYPE(*CHAR) LEN(6)

RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CURDAT);

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

A CL variable is assigned with a leading ampersand (&) and is not enclosed in single quotation marks.

The whole expression is enclosed in single quotation marks. The CAT operators and CL variable are

enclosed in both single quotation marks and quotation marks.

It is important to know whether the data in the database is defined as character, date, time, timestamp, or

numeric. In the preceding example, the Date field is assumed to be character.

If the DATE field is defined as date data type, the preceding example can be specified as:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’%CURDATE *EQ DATE’)

CALL PGM(PGMB)

CLOF OPENID(FILEA)

DLTOVR FILE(FILEA)

Note: The date field does not have to have the same format as the system date.
You can also specify the example as:

DCL VAR(&CVTDAT); TYPE(*CHAR) LEN(6)

DCL VAR(&CURDAT); TYPE(*CHAR) LEN(8)

RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CVTDAT);

CVTDAT DATE(&CVTDAT); TOVAR(&CURDAT); TOSEP(/)

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA)

 QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)

CALL PGM(PGMB)

CLOF OPNID (FILEA)

DLTOVR FILE(FILEA)

This is where DATE has a date data type in FILEA, the job default date format is MMDDYY, and the job

default date separator is the slash (/).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If, instead, you were using a constant, the QRYSLT would be specified as follows:

QRYSLT(’"12/31/87" *EQ DATE’)

The job default date format must be MMDDYY and the job default separator must be the slash (/).

If a numeric field exists in the database and you want to compare it to a variable, only a character

variable can be used. For example, to select all records where a packed Date field is greater than a

variable, you must ensure that the variable is in character form. Normally, this means that before the

OPNQRYF command, you use the Change Variable (CHGVAR) command to change the variable from a

decimal field to a character field. The CHGVAR command would be specified as follows:

CHGVAR VAR(&CHARVAR); VALUE(’123188’)

Database programming 131

The QRYSLT parameter would be specified as follows (see the difference from the preceding examples):

QRYSLT(&CHARVAR *CAT ’ *GT DATE’)

If, instead, you were using a constant, the QRYSLT statement would be specified as follows:

QRYSLT(’123187 *GT DATE’)

Example 3: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to select records in a range of values using the Open Query File (OPNQRYF)

command.

 Assume that you have a Date field specified in the character format YYMMDD and with the “.” separator,

and you want to process all records for 1988. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’DATE *EQ %RANGE("88.01.01" +

 "88.12.31") ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

This example also works if the DATE field has a date data type, the job default date format is YYMMDD,

and the job default date separator is the period (.).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If the ranges are variables defined as character data types and the DATE field is defined as a character

data type, specify the QRYSLT parameter as follows:

QRYSLT(’DATE *EQ %RANGE("’ *CAT &LORNG *CAT ’"’ *BCAT ’"’ +

 *CAT &HIRNG *CAT ’")’)

However, if the DATE field is defined as a numeric data type, specify the QRYSLT parameter as follows:

QRYSLT(’DATE *EQ %RANGE(’ *CAT &LORNG *BCAT &HIRNG *CAT ’)’)

Note: *BCAT can be used if the QRYSLT parameter is in a control language (CL) program, but it is not

allowed in an interactive command.

Example 4: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to select records using the contains function of the Open Query File

(OPNQRYF) command.

 Assume that you want to process all records in which the Addr field contains the street named

BROADWAY. The contains (*CT) function determines if the characters appear anywhere in the named

field. You can specify as follows:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’ADDR *CT "BROADWAY" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this example, assume that the data is in uppercase in the database record. If the data is in lowercase or

mixed case, you can specify a translation function to translate the lowercase or mixed case data to

uppercase before the comparison is made. The system-provided table QSYSTRNTBL translates the letters

a through z to uppercase. (You can use any translation table to perform the translation.) Therefore, you

can specify as follows:

132 System i: Database Database programming

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’%XLATE(ADDR QSYSTRNTBL) *CT +

 "BROADWAY" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

When the %XLATE function is used on the QRYSLT statement, the value of the field passed to the

high-level language program appears as it is in the database. You can force the field to appear in

uppercase using the %XLATE function on the MAPFLD parameter.

Example 5: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to select records by specifying multiple fields on the Open Query File

(OPNQRYF) command.

 Assume that you want to process all records in which either the Amt field is equal to zero, or the Lstdat

field (YYMMDD order in character format) is equal to or less than 88-12-31. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’AMT *EQ 0 *OR LSTDAT +

 *LE "88-12-31" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

This example also works if the LSTDAT field has a date data type. The LSTDAT field can be in any valid

date format; however, the job default date format must be YYMMDD and the job default date separator

must be the dash (–).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If variables are used, the QRYSLT parameter is typed as follows:

QRYSLT(’AMT *EQ ’ *CAT &VARAMT *CAT ’ *OR +

 LSTDAT *LE "’ *CAT &VARDAT *CAT ’"’)

or, typed in reverse order:

QRYSLT(’"’ *CAT &VARDAT *CAT ’" *GT LSTDAT *OR ’ +

 *CAT &VARAMT *CAT ’ *EQ AMT’)

Note:

The &VARAMT variable must be defined as a character type. If the variable is passed to your control

language (CL) program as a numeric type, you must convert it to a character type to allow concatenation.

You can use the Change Variable (CHGVAR) command to do this conversion.

Example 6: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to use the Open Query File (OPNQRYF) command many times in a program.

 You can use the OPNQRYF command more than once in a high-level language program. For example,

assume that you want to prompt the user for some selection values and then display one or more pages

of records. At the end of the first request for records, the user might want to specify other selection

values and display those records. You can do this by following these steps:

1. Before calling the high-level language program, use an Override with Database File (OVRDBF)

command to specify SHARE(*YES).

2. In the high-level language program, prompt the user for the selection values.

Database programming 133

3. Pass the selection values to a control language (CL) program that issues the OPNQRYF command (or

run the command with a call to program QCMDEXC). The file must be closed before your program

processes the OPNQRYF command. You normally use the Close File (CLOF) command and monitor

for the file not being open.

4. Return to the high-level language program.

5. Open the file in the high-level language program.

6. Process the records.

7. Close the file in the program.

8. Return to step 2.

When the program completes, run the CLOF command or the Reclaim Resources (RCLRSC) command to

close the file, then delete the OVRDBF command specified in step 1.

Note: An override command in a called CL program does not affect the open in the main program. All

overrides are implicitly deleted when the program is ended. (However, you can use a call to

program QCMDEXC from your high-level language program to specify an override, if needed.)

Example 7: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to map fields for packed numeric data fields using the Open Query File

(OPNQRYF) command.

 Assume that you have a packed decimal Date field in the format MMDDYY and you want to select all

the records for the year 1988. You cannot select records directly from a portion of a packed decimal field,

but you can use the MAPFLD parameter on the OPNQRYF command to create a new field that you can

then use for selecting part of the field.

The format of each mapped field definition is:

(result field ’expression’ attributes)

where:

result field

The name of the result field.

expression

How the result field should be derived. The expression can include substring, other built-in

functions, or mathematical statements.

attributes

The optional attributes of the result field. If no attributes are given (or the field is not defined in a

file), the OPNQRYF command calculates a field attribute determined by the fields in the

expression.
OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’YEAR *EQ "88" ’) +

 MAPFLD((CHAR6 ’%DIGITS(DATE)’) +

 (YEAR ’%SST(CHAR6 5 2)’ *CHAR 2))

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this example, if DATE was a date data type, it can be specified as follows:

OPNQRYF FILE(FILEA) +

QRYSLT (’YEAR *EQ 88’) +

MAPFLD((YEAR ’%YEAR(DATE)’))

134 System i: Database Database programming

The first mapped field definition specifies that the Char6 field be created from the packed decimal Date

field. The %DIGITS function converts from packed decimal to character and ignores any decimal

definitions (that is, 1234.56 is converted to ’123456’). Because no definition of the Char6 field is specified,

the system assigns a length of 6. The second mapped field defines the Year field as type *CHAR

(character) and length 2. The expression uses the substring function to map the last 2 characters of the

Char6 field into the Year field.

Note that the mapped field definitions are processed in the order in which they are specified. In this

example, the Date field was converted to character and assigned to the Char6 field. Then, the last two

digits of the Char6 field (the year) were assigned to the Year field. Any changes to this order would have

produced an incorrect result.

Note: Mapped field definitions are always processed before the QRYSLT parameter is evaluated.

You can accomplish the same result by specifying the substring on the QRYSLT parameter and dropping

one of the mapped field definitions as follows:

OPNQRYF FILE(FILEA) +

 QRYSLT(’%SST(CHAR6 5 2) *EQ "88" ’) +

 MAPFLD((CHAR6 ’%DIGITS(DATE)’))

Example 8: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to select records using the wildcard function of the Open Query File

(OPNQRYF) command.

 Assume that you have a packed decimal Date field in the format MMDDYY and you want to select the

records for March 1988. To do this, you can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) +

 QRYSLT(’%DIGITS(DATE) *EQ %WLDCRD("03__88")’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Note that the only time the MAPFLD parameter is needed to define a database field for the result of the

%DIGITS function is when the result needs to be used with a function that only supports a simple field

name (not a function or expression) as an argument. The %WLDCRD operation has no such restriction on

the operand that appears before the *EQ operator.

Note that although the field in the database is in numeric form, quotation marks surround the literal to

make its definition the same as the Char6 field. The wildcard function is not supported for DATE, TIME,

or TIMESTAMP data types.

The %WLDCRD function lets you select any records that match your selection values, in which the

underline (_) will match any single character value. The two underline characters in Example 8 allow any

day in the month of March to be selected. The %WLDCRD function also allows you to name the wild

card character (underline is the default).

The wild card function supports two different forms:

v A fixed-position wild card as shown in the previous example in which the underline (or your

designated character) matches any single character as in this example:

QRYSLT(’FLDA *EQ %WLDCRD("A_C")’)

This compares successfully to ABC, ACC, ADC, AxC, and so on. In this example, the field being

analyzed only compares correctly if it is exactly 3 characters in length. If the field is longer than 3

characters, you also need the second form of wild card support.

Database programming 135

v A variable-position wild card matches any zero or more characters. The Open Query File (OPNQRYF)

command uses an asterisk (*) for this type of wild card variable character or you can specify your own

character. An asterisk is used in this example:

QRYSLT(’FLDB *EQ %WLDCRD("A*C*") ’)

This compares successfully to AC, ABC, AxC, ABCD, AxxxxxxxC, and so on. The asterisk causes the

command to ignore any intervening characters if they exist. Notice that in this example the asterisk is

specified both before and after the character or characters that can appear later in the field. If the

asterisk is omitted from the end of the search argument, it causes a selection only if the field ends with

the character C.

You must specify an asterisk at the start of the wild card string if you want to select records where the

remainder of the pattern starts anywhere in the field. Similarly, the pattern string must end with an

asterisk if you want to select records where the remainder of the pattern ends anywhere in the field.

For example, you can specify:

QRYSLT(’FLDB *EQ %WLDCRD("*ABC*DEF*") ’)

You get a match on ABCDEF, ABCxDEF, ABCxDEFx, ABCxxxxxxDEF, ABCxxxDEFxxx, xABCDEF,

xABCxDEFx, and so on.

You can combine the two wildcard functions as shown in this example:

QRYSLT(’FLDB *EQ %WLDCRD("ABC_*DEF*") ’)

You get a match on ABCxDEF, ABCxxxxxxDEF, ABCxxxDEFxxx, and so on. The underline forces at least

one character to appear between the ABC and DEF (for example, ABCDEF would not match).

Assume that you have a Name field that contains:

v JOHNS

v JOHNS SMITH

v JOHNSON

v JOHNSTON

You only gets the first record if you specify:

QRYSLT(’NAME *EQ "JOHNS"’)

You would not select the other records because a comparison is made with blanks added to the value you

specified. The way to select all four names is to specify:

QRYSLT(’NAME *EQ %WLDCRD("JOHNS*")’)

 Related concepts

 “Double-byte character set considerations” on page 291
A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The

database on the i5/OS operating system supports DBCS.

 Control language

Example 9: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to specify complex selection statements when you select records using the Open

Query File (OPNQRYF) command.

 Complex selection statements can also be specified. For example, you can specify:

QRYSLT(’DATE *EQ "880101" *AND AMT *GT 5000.00’)

QRYSLT(’DATE *EQ "880101" *OR AMT *GT 5000.00’)

You can also specify:

QRYSLT(’CODE *EQ "A" *AND TYPE *EQ "X" *OR CODE *EQ "B")

136 System i: Database Database programming

The rules governing the priority of processing the operators are described in the Control language (CL)

topic. Some of the rules are:

v The *AND operations are processed first; therefore, the record would be selected if:

 The Code field = ″A″ and The Type field = ″X″

 or

 The Code field = ″B″

v Parentheses can be used to control how the expression is handled, as shown in this example:

QRYSLT(’(CODE *EQ "A" *OR CODE *EQ "B") *AND TYPE *EQ "X" +

 *OR CODE *EQ "C"’)

 The Code field = ″A″ and The Type field= ″X″

 or

 The Code field = ″B″ and The Type field = ″X″

 or

 The Code field = ″C″

You can also use the symbols described in the Control language (CL) topic, instead of the abbreviated

form (for example, you can use = instead of *EQ), as shown in this example:

QRYSLT(’CODE = "A" & TYPE = "X" | AMT > 5000.00’)

This command selects all records in which:

 The Code field = ″A″ and The Type field = ″X″

 or

 The Amt field > 5000.00

A complex selection statement can also be written like this:

QRYSLT(’CUSNBR = %RANGE("60000" "69999") & TYPE = "B" +

 & SALES>0 & ACCRCV / SALES>.3’)

This command selects all records in which:

 The Cusnbr field is in the range 60000-69999 and

 The Type field = ″B″ and

 The Sales fields are greater than 0 and

 Accrcv divided by Sales is greater than 30 percent

Example 10: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to use coded character set identifiers (CCSIDs) when you select records using

the Open Query File (OPNQRYF) command.

 Each character and DBCS field in all database files is tagged with a CCSID. This CCSID allows you to

further define the data stored in the file so that any comparison, join, or display of the fields is performed

in a meaningful way. For example, if you compare FIELD1 in FILE1 where FIELD1 has a CCSID of 37

(USA) to FIELD2 in FILE2 where FILED2 has a CCSID of 273 (Austria, Germany), appropriate mapping

occurs to make the comparison meaningful.

OPNQRYF FILE(FILEA FILEB) FORMAT(RESULTF) +

 JFLD((FILEA/NAME FILEB/CUSTOMER))

If field NAME has a CCSID of 37 and field CUSTOMER has a CCSID of 273, the mapping of either

NAME or CUSTOMER is performed during processing of the OPNQRYF command so that the join of the

two fields provides a meaningful result.

Database programming 137

Normally, constants defined in the MAPFLD, QRYSLT, and GRPSLT parameters are tagged with the

CCSID defined to the current job. This suggests that when two users with different job CCSIDs run the

same OPNQRYF command (or a program containing an OPNQRYF command) and the OPNQRYF

command has constants defined in it, the users can get different results because the CCSID tagged to the

constants might cause the constants to be treated differently.

You can tag a constant with a specific CCSID by using the MAPFLD parameter. By specifying a MAPFLD

whose definition consists only of a constant and then specifying a CCSID for the MAPFLD, the constant

becomes tagged with the CCSID specified in the MAPFLD parameter. For example:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ MAP1’) +

 MAPFLD((MAP1 ’"Smith"’ *CHAR 5 *N 37))

The constant “Smith” is tagged with the CCSID 37 regardless of the job CCSID of the user issuing the

OPNQRYF command. In this example, all users get the same result records (although the result records

would be mapped to the user’s job CCSID). Conversely, if the query is specified as:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ "Smith"’)

The results of the query might differ, depending on the job CCSID of the user issuing the OPNQRYF

command.

 Related concepts

 i5/OS globalization

Example 11: Selecting records using the Open Query File (OPNQRYF) command:

This example shows how to use a sort sequence and a language identifier when you select records using

the Open Query File (OPNQRYF) command.

 To see how to use a sort sequence, run the examples in this topic against the STAFF file shown in

Table 42.

 Table 42. The STAFF file

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45

30 Merenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 00 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk 0 13504.60 128.20

90 Koonitz 42 sales 6 18001.75 1386.70

100 Plotz 42 mgr 6 18352.80 0

In the examples, the results are shown for a particular statement using each of the following sort

sequences:

v *HEX sort sequence.

v Shared-weight sort sequence for language identifier ENU.

v Unique-weight sort sequence for language identifier ENU.

138 System i: Database Database programming

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ) or

SRTSEQ(*LANGIDSHR), and LANGID(ENU) in the OPNQRYF command.

The following command selects records with the value MGR in the JOB field:

OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ "MGR"’)

Table 43 shows the record selection with the *HEX sort sequence. The records that match the record

selection criteria for the JOB field are selected exactly as specified in the QRYSLT statement; only the

uppercase MGR is selected.

 Table 43. Using the *HEX sort sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’) SRTSEQ(*HEX)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Table 44 shows the record selection with the shared-weight sort sequence. The records that match the

record selection criteria for the JOB field are selected by treating uppercase and lowercase letters the

same. With this sort sequence, mgr, Mgr, and MGR values are selected.

 Table 44. Using the shared-weight sort sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)

SRTSEQ(LANGIDSHR) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

Table 45 shows the record selection with the unique-weight sort sequence. The records that match the

record selection criteria for the JOB field are selected by treating uppercase and lowercase letters as

unique. With this sort sequence, the mgr, Mgr, and MGR values are all different. The MGR value is selected.

 Table 45. Using the unique-weight sort sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)

SRTSEQ(LANGIDUNQ) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Specifying a keyed sequence access path without using DDS:

The dynamic access path function of the Open Query File (OPNQRYF) command allows you to specify a

keyed access path without using data description specifications (DDS).

 If an access path that can be shared already exists, the system can share it. If a new access path is

required, it is built before any records are passed to the program.

Example 1: Specifying a keyed sequence access path without using DDS:

This example shows how to arrange records using one key field.

 Assume that you want to process the records in FILEA arranged by the value in the Cust field with

program PGMD. You can specify:

Database programming 139

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(CUST)

CALL PGM(PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Note: The FORMAT parameter on the Open Query File (OPNQRYF) command is not needed because

PGMD is created by specifying FILEA as the processed file. FILEA can be an arrival sequence or a

keyed sequence file. If FILEA is keyed, its key field can be the Cust field or a totally different field.

Example 2: Specifying a keyed sequence access path without using DDS:

This example shows how to arrange records using multiple key fields.

 If you want the records to be processed by Cust sequence and then by Date in Cust, specify:

OPNQRYF FILE(FILEA) KEYFLD(CUST DATE)

If you want the Date to appear in descending sequence, specify:

OPNQRYF FILE(FILEA) KEYFLD((CUST) (DATE *DESCEND))

In these two examples, the FORMAT parameter is not used. (If a different format is defined, all key fields

must exist in the format.)

Example 3: Specifying a keyed sequence access path without using DDS:

This example shows how to arrange records using a unique-weight sort sequence.

 To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

“Example 11: Selecting records using the Open Query File (OPNQRYF) command” on page 138, specify:

OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

This query results in a JOB field in the following sequence:

v Clerk

v mgr

v Mgr

v Mgr

v MGR

v sales

v Sales

v Sales

v Sales

v SALES

Example 4: Specifying a keyed sequence access path without using DDS:

This example shows how to arrange records using a shared-weight sort sequence.

 To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

“Example 11: Selecting records using the Open Query File (OPNQRYF) command” on page 138, specify:

OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

140 System i: Database Database programming

The results from this query are similar to the results in Example 3. The mgr and sales entries can be in

any sequence because the uppercase and lowercase letters are treated as equals. That is, the

shared-weight sort sequence treats mgr, Mgr, and MGR as equal values. Likewise, sales, Sales, and SALES

are treated as equal values.

Specifying key fields from different files:

The Open Query File (OPNQRYF) command supports a dynamic keyed sequence access path over a join

logical file. That is, you can specify a processing sequence in which the keys can be in different physical

files (DDS restricts the keys to the primary file).

 The specification is identical to the previous method. The access path is specified using whatever key

fields are required. There is no restriction on which physical file the key fields are in. However, if a key

field exists in other than the primary file of a join specification, the system must make a temporary copy

of the joined records. The system must also build a keyed sequence access path over the copied records

before the query file is opened. The key fields must exist in the format identified on the FORMAT

parameter.

Example: Specifying key fields from different files

This example shows how to use a field in a secondary file as a key field.

Assume that you already have a join logical file named JOINLF. FILEX is specified as the primary file

and is joined to FILEY. You want to process the records in JOINLF by the Descrp field which is in FILEY.

Assume that the file record formats contain the following fields.

 FILEX FILEY JOINLF

Item Item Item

Qty Descrp Qty

 Descrp

You can specify:

OVRDBF FILE(JOINLF) SHARE(*YES)

OPNQRYF FILE(JOINLF) KEYFLD(DESCRP)

CALL PGM(PGMC)

CLOF OPNID(JOINLF)

DLTOVR FILE(JOINLF)

If you want to arrange the records by Qty in Descrp (Descrp is the primary key field and Qty is a

secondary key field) you can specify:

OPNQRYF FILE(JOINLF) KEYFLD(DESCRP QTY)

Dynamically joining database files without DDS:

The dynamic join function of the Open Query File (OPNQRYF) command allows you to join files without

having to first specify data description specifications (DDS) and then create a join logical file.

 You must use the FORMAT parameter on the OPNQRYF command to specify the record format for the

join. You can join any physical or logical file including a join logical file and a view (DDS does not allow

you to join logical files). You can specify either a keyed or arrival sequence access path. If keys are

specified, they can be from any of the files included in the join (DDS restricts keys to just the primary

file).

Database programming 141

In the following examples, it is assumed that the file specified on the FORMAT parameter was created.

You normally want to create the file before you create the processing program so you can use the

externally described data definitions.

The default for the join order (JORDER) parameter is used in all of the following examples. The default

for the JORDER parameter is *ANY, which tells the system that it can determine the order in which to

join the files. That is, the system determines which file to use as the primary file and which as the

secondary files. This allows the system to try to improve the performance of the join function.

The join criterion, like the record selection criterion, is affected by the sort sequence (SRTSEQ) and the

language identifier (LANGID) specified.

 Related reference

 “Example 11: Selecting records using the Open Query File (OPNQRYF) command” on page 138
This example shows how to use a sort sequence and a language identifier when you select records

using the Open Query File (OPNQRYF) command.

Example 1: Dynamically joining database files without DDS:

This example shows how to dynamically join database files without DDS.

 Assume that you want to join FILEA and FILEB, and the files contain the following fields:

 FILEA FILEB JOINAB

Cust Cust Cust

Name Amt Name

Addr Amt

The join field is Cust which exists in both files. Any record format name can be specified on the Open

Query File (OPNQRYF) command for the join file. The file does not need a member. The records are not

required to be in keyed sequence.

You can specify:

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((FILEA/CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’))

CALL PGM(PGME) /* Created using file JOINAB as input */

CLOF OPNID(FILEA)

DLTOVR FILE(JOINAB)

File JOINAB is a physical file with no data. This file contains the record format to be specified on the

FORMAT parameter of the OPNQRYF command.

Notice that the TOFILE parameter on the Override with Database File (OVRDBF) command specifies the

name of the primary file for the join operation (the first file specified for the FILE parameter on the

OPNQRYF command). In this example, the FILE parameter on the OPNQRYF command identifies the

files in the sequence they are to be joined (A to B). The format for the file is in the file JOINAB.

The JFLD parameter identifies the Cust field in FILEA to join to the Cust field in FILEB. Because the Cust

field is not unique across all of the joined record formats, it must be qualified on the JFLD parameter. The

system attempts to determine, in some cases, the most efficient values even if you do not specify the

JFLD parameter on the OPNQRYF command. For example, using the previous example, if you specified:

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 QRYSLT(’FILEA/CUST *EQ FILEB/CUST’) +

 MAPFLD((CUST ’FILEA/CUST’))

142 System i: Database Database programming

The system joins FILEA and FILEB using the Cust field because of the values specified for the QRYSLT

parameter. Notice that in this example the JFLD parameter is not specified on the command. However, if

either JDFTVAL(*ONLYDFT) or JDFTVAL(*YES) is specified on the OPNQRYF command, the JFLD

parameter must be specified.

The MAPFLD parameter is needed on the Open Query File (OPNQRYF) command to describe which file

should be used for the data for the Cust field in the record format for file JOINAB. If a field is defined on

the MAPFLD parameter, its unqualified name (the Cust field in this case without the file name

identification) can be used anywhere else in the OPNQRYF command. Because the Cust field is defined

on the MAPFLD parameter, the first value of the JFLD parameter need not be qualified. For example, the

same result can be achieved by specifying:

JFLD((CUST FILEB/CUST)) +

MAPFLD((CUST ’FILEA/CUST’))

Any other uses of the same field name in the OPNQRYF command to indicate a field from a file other

than the file defined by the MAPFLD parameter must be qualified with a file name.

Because no KEYFLD parameter is specified, the records appear in any sequence depending on how the

OPNQRYF command selects the records. You can force the system to arrange the records the same as the

primary file. To do this, specify *FILE on the KEYFLD parameter. You can specify this even if the primary

file is in arrival sequence.

The JDFTVAL parameter (similar to the JDFTVAL keyword in DDS) can also be specified on the

OPNQRYF command to describe what the system should do if one of the records is missing from the

secondary file. In this example, the JDFTVAL parameter was not specified, so only the records that exist

in both files are selected.

If you tell the system to improve the results of the query (through parameters on the OPNQRYF

command), it generally tries to use the file with the smallest number of records selected as the primary

file. However, the system also tries to avoid building a temporary file.

You can force the system to follow the file sequence of the join as you have specified it in the FILE

parameter on the OPNQRYF command by specifying JORDER(*FILE). If JDFTVAL(*YES) or

JDFTVAL(*ONLYDFT) is specified, the system will never change the join file sequence because a different

sequence can cause different results.

Example 2: Dynamically joining database files without DDS:

This example shows how to read only those records that have a match in secondary files.

 Assume that you want to join files FILEAB, FILECD, and FILEEF to select only those records with

matching records in secondary files. Define a file JOINF and describe the format that should be used.

Assume that the record formats for the files contain the following fields:

 FILEAB FILECD FILEEF JOINF

Abitm Cditm Efitm Abitm

Abord Cddscp Efcolr Abord

Abdat Cdcolr Efqty Cddscp

Cdcolr

Efqty

In this case, all field names in the files that make up the join file begin with a 2-character prefix (identical

for all fields in the file) and end with a suffix that is identical across all the files (for example, xxitm). This

makes all field names unique and avoids having to qualify them.

Database programming 143

The xxitm field allows the join from FILEAB to FILECD. The two fields xxitm and xxcolr allow the join

from FILECD to FILEEF. A keyed sequence access path does not have to exist for these files. However, if

a keyed sequence access path does exist, performance might improve significantly because the system

will attempt to use the existing access path to arrange and select records, where it can. If access paths do

not exist, the system automatically creates and maintains them as long as the file is open.

OVRDBF FILE(JOINF) TOFILE(FILEAB) SHARE(*YES)

OPNQRYF FILE(FILEAB FILECD FILEEF) +

 FORMAT(JOINF) +

 JFLD((ABITM CDITM)(CDITM EFITM) +

 (CDCOLR EFCOLR))

CALL PGM(PGME) /* Created using file JOINF as input */

CLOF OPNID(FILEAB)

DLTOVR FILE(JOINF)

The join field pairs do not have to be specified in the preceding order. For example, the same result is

achieved with a JFLD parameter value of:

JFLD((CDCOLR EFCOLR)(ABITM CDITM) (CDITM EFITM))

The attributes of each pair of join fields do not have to be identical. Normal padding of character fields

and decimal alignment for numeric fields occurs automatically.

The JDFTVAL parameter is not specified so *NO is assumed and no default values are used to construct

join records. If you specified JDFTVAL(*YES) and there is no record in file FILECD that has the same join

field value as a record in file FILEAB, defaults are used for the Cddscp and Cdcolr fields to join to file

FILEEF. Using these defaults, a matching record can be found in file FILEEF (depending on if the default

value matches a record in the secondary file). If not, a default value appears for these files and for the

Efqty field.

Example 3: Dynamically joining database files without DDS:

This example shows how to use mapped fields as join fields.

 You can use fields defined on the MAPFLD parameter for either one of the join field pairs. This is useful

when the key in the secondary file is defined as a single field (for example, a 6-character date field) and

there are separate fields for the same information (for example, month, day, and year) in the primary file.

Assume that FILEA has character fields Year, Month, and Day and needs to be joined to FILEB which has

the Date field in YYMMDD format. Assume that you have defined file JOINAB with the required format.

You can specify:

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((YYMMDD FILEB/DATE)) +

 MAPFLD((YYMMDD ’YEAR *CAT MONTH *CAT DAY’))

CALL PGM(PGME) /* Created using file JOINAB as input */

CLOF OPNID(FILEA)

DLTOVR FILE(JOINAB)

The MAPFLD parameter defines the YYMMDD field as the concatenation of several fields from FILEA.

You do not need to specify field attributes (for example, length or type) for the YYMMDD field on the

MAPFLD parameter because the system calculates the attributes from the expression.

Handling missing records in secondary join files:

The system allows you to control whether to use defaults for missing records in secondary files (similar

to the JDFTVAL DDS keyword for a join logical file). You can also specify that only records with defaults

be processed when you use the Open Query File (OPNQRYF) command.

144 System i: Database Database programming

Example: Handling missing records in secondary join file

This example shows how to read records from the primary file that do not have a match in the secondary

file.

In “Example 1: Dynamically joining database files without DDS” on page 142, the JDFTVAL parameter is

not specified, so the only records read are the result of a successful join from FILEA to FILEB. If you

want a list of the records in FILEA that do not have a match in FILEB, you can specify *ONLYDFT on the

JDFTVAL parameter as shown in the this example:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(FILEA) +

 JFLD((CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’)) +

 JDFTVAL(*ONLYDFT)

CALL PGM(PGME) /* Created using file FILEA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

JDFTVAL(*ONLYDFT) causes a record to be returned to the program only when there is no equivalent

record in the secondary file (FILEB).

Because any values returned by the join operation for the fields in FILEB are defaults, it is normal to use

only the format for FILEA. The records that appear are those that do not have a match in FILEB. The

FORMAT parameter is required whenever the FILE parameter describes more than a single file, but the

file name specified can be one of the files specified on the FILE parameter. The program is created using

FILEA.

Conversely, you can also get a list of all the records where there is a record in FILEB that does not have a

match in FILEA. You can do this by making the secondary file the primary file in all the specifications.

You can specify:

OVRDBF FILE(FILEB) SHARE(*YES)

OPNQRYF FILE(FILEB FILEA) FORMAT(FILEB) JFLD((CUST FILEA/CUST)) +

 MAPFLD((CUST ’FILEB/CUST’)) JDFTVAL(*ONLYDFT)

CALL PGM(PGMF) /* Created using file FILEB as input */

CLOF OPNID(FILEB)

DLTOVR FILE(FILEB)

Note: The Override with Database File (OVRDBF) command in this example uses FILE(FILEB) because it

must specify the first file on the FILE parameter of the OPNQRYF command. The Close File

(CLOF) command also names FILEB. The JFLD and MAPFLD parameters are also changed. The

program is created using FILEB.

Unique-key processing:

The Open Query File (OPNQRYF) command supports unique-key processing. It allows you to process

only the first record of a group.

 A group is defined by one or more records with the same set of key values. Processing the first record

implies that the records you receive have unique keys.

When you use unique-key processing, you can only read the file sequentially. The key fields are sorted

according to the specified sort sequence (SRTSEQ) and language identifier (LANGID).

If you specify unique-key processing, and the file actually has duplicate keys, you receive only a single

record for each group of records with the same key value.

 Related reference

Database programming 145

“Example 3: Specifying a keyed sequence access path without using DDS” on page 140
This example shows how to arrange records using a unique-weight sort sequence.

 “Example 4: Specifying a keyed sequence access path without using DDS” on page 140
This example shows how to arrange records using a shared-weight sort sequence.

Example 1: Unique-key processing:

This example shows how to read only unique-key records.

 Assume that you want to process FILEA, which has records with duplicate keys for the Cust field. You

want only the first record for each unique value of the Cust field to be processed by program PGMF. You

can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(CUST) UNIQUEKEY(*ALL)

CALL PGM(PGMF)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Example 2: Unique-key processing:

This example shows how to read records using only some of the key fields.

 Assume that you want to process the same file with the sequence: Slsman, Cust, Date, but you want only

one record per Slsman and Cust. Assume that the records in the file are:

 Slsman Cust Date Record #

01 5000 880109 1

01 5000 880115 2

01 4025 880103 3

01 4025 880101 4

02 3000 880101 5

You specify the number of key fields that are unique, starting with the first key field.

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(SLSMAN CUST DATE) UNIQUEKEY(2)

CALL PGM(PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

The following records are retrieved by the program:

 Slsman Cust Date Record #

01 4025 880101 4

01 5000 880109 1

02 3000 880101 5

Note: Null values are treated as equal, so only the first null value would be returned.

Defining fields derived from existing field definitions:

The Open Query File (OPNQRYF) command supports mapped field definitions. That is, you can define

fields that are mapped or derived from other fields.

 Mapped field definitions:

146 System i: Database Database programming

v Allow you to create internal fields that specify selection values, as shown in “Example 7: Selecting

records using the Open Query File (OPNQRYF) command” on page 134.

v Allow you to avoid confusion when the same field name occurs in multiple files, as shown in

“Example 1: Dynamically joining database files without DDS” on page 142.

v Allow you to create fields that exist only in the format to be processed, but not in the database itself.

This allows you to perform translate, substring, concatenation, and complex mathematical operations.

The following examples describe this function.

Example 1: Defining fields derived from existing field definitions:

This example shows the use of derived fields.

 Assume that you have the Price and Qty fields in the record format. You can multiply one field by the

other by using the Open Query File (OPNQRYF) command to create the derived Exten field. You want

FILEA to be processed, and you have already created FILEAA. Assume that the record formats for the

files contain the following fields:

 FILEA FILEAA

Order Order

Item Item

Qty Exten

Price Brfdsc

Descrp

The Exten field is a mapped field. Its value is determined by multiplying Qty times Price. It is not

necessary to have either the Qty or Price field in the new format, but they can exist in that format, too, if

you want. The Brfdsc field is a brief description of the Descrp field (it uses the first 10 characters).

Assume that you have specified PGMF to process the new format. To create this program, use FILEAA as

the file to read. You can specify:

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

 MAPFLD((EXTEN ’PRICE * QTY’) +

 (BRFDSC ’DESCRP’))

CALL PGM(PGMF) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

Notice that the attributes of the Exten field are those defined in the record format for FILEAA. If the

value calculated for the field is too large, an exception is sent to the program.

It is not necessary to use the substring function to map to the Brfdsc field if you only want the characters

from the beginning of the field. The length of the Brfdsc field is defined in the FILEAA record format.

All fields in the format specified on the FORMAT parameter must be described on the OPNQRYF

command. That is, all fields in the output format must either exist in one of the record formats for the

files specified on the FILE parameter or be defined on the MAPFLD parameter. If you have fields in the

format on the FORMAT parameter that your program does not use, you can use the MAPFLD parameter

to place zeros or blanks in the fields. Assume the Fldc field is a character field and the Fldn field is a

numeric field in the output format, and you are using neither value in your program. You can avoid an

error on the OPNQRYF command by specifying:

MAPFLD((FLDC ’ " " ’)(FLDN 0))

Notice quotation marks enclose a blank value. By using a constant for the definition of an unused field,

you avoid having to create a unique format for each use of the OPNQRYF command.

Database programming 147

Example 2: Defining fields derived from existing field definitions:

This example shows the use of built-in functions.

 Assume that you want to calculate a mathematical function that is the sine of the Fldm field in FILEA.

First create a file (assume it is called FILEAA) with a record format containing the following fields:

 FILEA FILEAA

Code Code

Fldm Fldm

 Sinm

You can then create a program (assume PGMF) using FILEAA as input and specify:

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

 MAPFLD((SINM ’%SIN(FLDM)’))

CALL PGM(PGMF) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

The built-in function %SIN calculates the sine of the field specified as its argument. Because the Sinm

field is defined in the format specified on the FORMAT parameter, the Open Query File (OPNQRYF)

command converts its internal definition of the sine value (in floating point) to the definition of the Sinm

field. This technique can be used to avoid certain high-level language restrictions regarding the use of

floating-point fields. For example, if you defined the Sinm field as a packed decimal field, PGMF can be

written using any high-level language, even though the value was built using a floating-point field.

There are many other functions besides sine that can be used. See the OPNQRYF command in the

Control language (CL) topic for a complete list of built-in functions.

 Related concepts

 Control language

Example 3: Defining fields derived from existing field definitions:

This example shows the use of derived fields and built-in functions.

 Assume, in the previous example, that a field called Fldx also exists in FILEA, and the Fldx field has

appropriate attributes used to hold the sine of the Fldm field. Also assume that you are not using the

contents of the Fldx field. You can use the MAPFLD parameter to change the contents of a field before

passing it to your high-level language program. For example, you can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) MAPFLD((FLDX ’%SIN(FLDM)’))

CALL PGM(PGMF) /* Created using file FILEA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this case, you do not need to specify a different record format on the FORMAT parameter. (The default

uses the format of the first file on the FILE parameter.) Therefore, the program is created by using FILEA.

When using this technique, you must ensure that the field you redefine has attributes that allow the

calculated value to process correctly. The least complicated approach is to create a separate file with the

specific fields you want to process for each query.

You can also use this technique with a mapped field definition and the %XLATE function to translate a

field so that it appears to the program in a different manner than what exists in the database. For

example, you can translate a lowercase field so the program only sees uppercase.

148 System i: Database Database programming

The sort sequence and language identifier can affect the results of the %MIN and %MAX built-in

functions. For example, the uppercase and lowercase versions of letters can be equal or unequal

depending on the selected sort sequence and language identifier.

Note: The translated field value is used to determine the minimum and maximum, but the untranslated

value is returned in the result record.

The example described uses FILEA as an input file. You can also update data using the Open Query File

(OPNQRYF) command. However, if you use a mapped field definition to change a field, updates to the

field are ignored.

Handling divide-by-zero errors:

Dividing by zero is considered an error by the Open Query File (OPNQRYF) command. However, you

can get a zero result and avoid a divide-by-zero error.

 Record selection is normally done before field mapping errors occur. Therefore, a record can be omitted

that would have caused a divide-by-zero error and in this case, processing by the OPNQRYF command

would continue. If you want a zero answer, here is a solution that is practical for typical commercial data.

Assume that you want to divide A by B giving C (stated as A / B = C). Assume the following definitions

where B can be zero.

 Field Digits Dec

A 6 2

B 3 0

C 6 2

The following algorithm can be used:

(A * B) / %MAX((B * B) .nnnn1)

The %MAX function returns the maximum value of either B * B or a small value. The small value must

have enough leading zeros so that it is less than any value calculated by B * B unless B is zero. In this

example, B has zero decimal positions so .1 can be used. The number of leading zeros should be 2 times

the number of decimals in B. For example, if B had 2 decimal positions, then .00001 should be used.

Specify the following MAPFLD definition:

MAPFLD((C ’(A * B) / %MAX((B * B) .1)’))

The intent of the first multiplication is to produce a zero dividend if B is zero. This ensures a zero result

when the division occurs. Dividing by zero does not occur if B is zero because the .1 value will be the

value used as the divisor.

Summarizing data from database file records (grouping):

The group processing function of the Open Query File (OPNQRYF) command allows you to summarize

data from existing database records.

 You can specify:

v The grouping fields

v Selection values both before and after grouping

v A keyed sequence access path over the new records

v Mapped field definitions that allow you to do such functions as sum, average, standard deviation, and

variance, as well as counting the records in each group

Database programming 149

v The sort sequence and language identifier that supply the weights by which the field values are

grouped

You normally start by creating a file with a record format containing only the following types of fields:

v Grouping fields. Specified on the GRPFLD parameter that define groups. Each group contains a

constant set of values for all grouping fields. The grouping fields do not need to appear in the record

format identified on the FORMAT parameter.

v Aggregate fields. Defined by using the MAPFLD parameter with one or more of the following built-in

functions:

%COUNT

Counts the records in a group

%SUM

A sum of the values of a field over the group

%AVG

Arithmetic average (mean) of a field, over the group

%MAX

Maximum value in the group for the field

%MIN

Minimum value in the group for the field

%STDDEV

Standard deviation of a field, over the group

%VAR Variance of a field, over the group
v Constant fields. Allow constants to be placed in field values. The restriction that the Open Query File

(OPNQRYF) command must know all fields in the output format is also true for the grouping function.

When you use group processing, you can only read the file sequentially.

Example: Summarizing data from database file records (grouping):

This example shows how to use the group processing function to summarize data from existing database

records.

 Assume that you want to group the data by customer number and analyze the amount field. Your

database file is FILEA and you create a file named FILEAA containing a record format with the following

fields:

 FILEA FILEAA

Cust Cust

Type Count (count of records per customer)

Amt Amtsum (summation of the amount field)

 Amtavg (average of the amount field)

 Amtmax (maximum value of the amount field)

When you define the fields in the new file, you must ensure that they are large enough to hold the

results. For example, if the Amt field is defined as 5 digits, you might need to define the Amtsum field as

7 digits. Any arithmetic overflow causes your program to end abnormally.

150 System i: Database Database programming

Assume that the records in FILEA have the following values:

 Cust Type Amt

001 A 500.00

001 B 700.00

004 A 100.00

002 A 1200.00

003 B 900.00

001 A 300.00

004 A 300.00

003 B 600.00

You then create a program (PGMG) using FILEAA as input to print the records.

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) KEYFLD(CUST) +

 GRPFLD(CUST) MAPFLD((COUNT ’%COUNT’) +

 (AMTSUM ’%SUM(AMT)’) +

 (AMTAVG ’%AVG(AMT)’) +

 (AMTMAX ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

The records retrieved by the program appear as:

 Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00

002 1 1200.00 1200.00 1200.00

003 2 1500.00 750.00 900.00

004 2 400.00 200.00 300.00

Note: If you specify the GRPFLD parameter, the groups might not appear in ascending sequence. To

ensure a specific sequence, you should specify the KEYFLD parameter.

Assume that you want to print only the summary records in this example in which the Amtsum value is

greater than 700.00. Because the Amtsum field is an aggregate field for a given customer, use the GRPSLT

parameter to specify selection after grouping. Add the GRPSLT parameter:

GRPSLT(’AMTSUM *GT 700.00’)

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00

002 1 1200.00 1200.00 1200.00

003 2 1500.00 750.00 900.00

The Open Query File (OPNQRYF) command supports selection both before grouping (QRYSLT

parameter) and after grouping (GRPSLT parameter).

Assume that you want to select additional customer records in which the Type field is equal to A. Because

Type is a field in the record format for file FILEA and not an aggregate field, you add the QRYSLT

statement to select before grouping as follows:

QRYSLT(’TYPE *EQ "A" ’)

Database programming 151

Note: Fields used for selection do not have to appear in the format processed by the program.

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

001 2 800.00 400.00 500.00

002 1 1200.00 1200.00 1200.00

Note: The values for CUST 001 changed because the selection took place before the grouping took place.

Assume that you want to arrange the output by the Amtavg field in descending sequence, in addition to

the previous QRYSLT parameter value. You can do this by changing the KEYFLD parameter on the

OPNQRYF command as:

KEYFLD((AMTAVG *DESCEND))

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

002 1 1200.00 1200.00 1200.00

001 2 800.00 400.00 500.00

Final total-only processing:

The Open Query File (OPNQRYF) command supports final-total-only processing. It is a special form of

grouping in which you do not specify grouping fields. The output is only one record.

 All of the special built-in functions for grouping can be specified. You can also specify the selection of

records that make up the final total.

Example 1: Final total-only processing:

This example shows simple total processing.

 Assume that you have a database file FILEA and decide to create file FINTOT for your final total record

as follows.

 FILEA FINTOT

Code Count (count of all the selected records)

Amt Totamt (total of the amount field)

 Maxamt (maximum value in the amount field)

The FINTOT file is created specifically to hold the single record which is created with the final totals. You

can specify:

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

 MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FINTOT as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FINTOT)

Example 2: Final total-only processing:

This example shows total-only processing with record selection.

152 System i: Database Database programming

Assume that you want to change the previous example so that only the records where the Code field is

equal to B are in the final total. You can add the QRYSLT parameter as follows:

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

 QRYSLT(’CODE *EQ "B" ’) MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FINTOT as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FINTOT)

You can use the GRPSLT keyword with the final total function. The GRPSLT selection values you specify

determines if you receive the final total record.

Example 3: Final total-only processing:

This example shows total-only processing using a new record format.

 Assume that you want to process the new file/format with a control language (CL) program. You want to

read the file and send a message with the final totals. You can specify:

DCLF FILE(FINTOT)

DCL &COUNTA *CHAR LEN(7)

DCL &TOTAMTA *CHAR LEN(9)

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’))

RCVF

CLOF OPNID(FILEA)

CHGVAR &COUNTA &COUNT

CHGVAR &TOTAMTA &TOTAMT

SNDPGMMSG MSG(’COUNT=’ *CAT &COUNTA *CAT +

 ’ Total amount=’ *CAT &TOTAMTA);

DLTOVR FILE(FINTOT)

You must convert the numeric fields to character fields to include them in an immediate message.

Controlling how the system runs the Open Query File (OPNQRYF) command:

The optimization function of the Open Query File (OPNQRYF) command allows you to specify how you

are going to use the results of the query.

 When you use the Open Query File (OPNQRYF) command, there are two steps where performance

considerations exist. The first step is during the actual processing of the OPNQRYF command itself. This

step decides if the OPNQRYF command is going to use an existing access path or build a new one for

this query request. The second step when performance considerations play a role is when the application

program is using the results of the OPNQRYF command to process the data.

For most batch type functions, you are usually only interested in the total time of both steps mentioned

in the preceding paragraph. Therefore, the default for the OPNQRYF command is OPTIMIZE(*ALLIO).

This means that the OPNQRYF command considers the total time it takes for both steps.

If you use the OPNQRYF command in an interactive environment, you might not be interested in

processing the entire file. You might want the first screen full of records to be displayed as quickly as

possible. For this reason, you want the first step to avoid building an access path, if possible. You can

specify OPTIMIZE(*FIRSTIO) in such a situation.

If you want to process the same results of the OPNQRYF command with multiple programs, you might

want the first step to make an efficient open data path (ODP). That is, you try to minimize the number of

records that must be read by the processing program in the second step by specifying

OPTIMIZE(*MINWAIT) on the OPNQRYF command.

Database programming 153

If the KEYFLD or GRPFLD parameter on the OPNQRYF command requires that an access path be built

when there is no access path to share, the access path is built entirely regardless of the OPTIMIZE entry.

Optimization mainly affects selection processing.

 Related concepts

 Database performance and query optimization

Example 1: Controlling how the system runs the Open Query File (OPNQRYF) command:

This example shows how to optimize for the first set of records.

 Assume that you have an interactive job in which the operator requests all records where the Code field is

equal to B. Your program’s subfile contains 15 records per screen. You want to get the first screen of

results to the operator as quickly as possible. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE = "B" ’) +

 SEQONLY(*YES 15) OPTIMIZE(*FIRSTIO)

CALL PGM(PGMA)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

The system optimizes handling the query and fills the first buffer with records before completing the

entire query regardless of whether an access path already exists over the Code field.

Example 2: Controlling how the system runs the Open Query File command:

This example shows how to minimize the number of records that multiple programs read.

 Assume that you have multiple programs that will access the same file which is built by the Open Query

File (OPNQRYF) command. In this case, you will want to optimize the performance so that the

application programs read only the data they are interested in. This means that you want OPNQRYF to

perform the selection as efficiently as possible. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "B"’) +

 KEYFLD(CUST) OPTIMIZE(*MINWAIT)

CALL PGM(PGMA)

POSDBF OPNID(FILEA) POSITION(*START)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Considerations for using the FORMAT parameter:

Here are the considerations for using the FORMAT parameter on the Open Query File (OPNQRYF)

command.

 You must specify a record format name on the FORMAT parameter when you request join processing by

specifying multiple entries on the FILE parameter (that is, you cannot specify FORMAT(*FILE)). Also, a

record format name is normally specified with the grouping function or when you specify a complex

expression on the MAPFLD parameter to define a derived field. Consider the following guidelines and

rules:

v The record format name is any name you select. It can differ from the format name in the database file

you want to query.

v The field names are any names you select. If the field names are unique in the database files you are

querying, the system implicitly maps the values for any fields with the same name in a queried file

record format (FILE parameter) and in the query result format (FORMAT parameter).

v If the field names are unique, but the attributes differ between the file specified on the FILE parameter

and the file specified on the FORMAT parameter, the data is implicitly mapped.

154 System i: Database Database programming

v The correct field attributes must be used when using the MAPFLD parameter to define derived fields.

For example, if you are using the grouping %SUM function, you must define a field that is large

enough to contain the total. If not, an arithmetic overflow occurs and an exception is sent to the

program.

v Decimal alignment occurs for all field values mapped to the record format identified on the FORMAT

parameter. Assume that you have a field in the query result record format with 5 digits with 0

decimals, and the value that was calculated or must be mapped to that field is 0.12345. You will receive

a result of 0 in your field because digits to the right of the decimal point are truncated.
 Related reference

 “Example 1: Dynamically joining database files without DDS” on page 142
This example shows how to dynamically join database files without DDS.

Considerations for arranging records:

Here are the considerations for arranging records using the Open Query File (OPNQRYF) command.

 The default processing for the OPNQRYF command provides records in any order that improves

performance and does not conflict with the order specified on the KEYFLD parameter. Therefore, unless

you specify the KEYFLD parameter to either name specific key fields or specify KEYFLD(*FILE), the

sequence of the records returned to your program can vary each time you run the same OPNQRYF

command.

When you specify the KEYFLD(*FILE) parameter option for the OPNQRYF command, and a sort

sequence other than *HEX has been specified for the query with the job default or the OPNQRYF

SRTSEQ parameter, you can receive your records in an order that does not reflect the true file order. If

the file is keyed, the query’s sort sequence is applied to the key fields of the file and informational

message CPI431F is sent. The file’s sort sequence and alternative collating sequence table are ignored for

the ordering, if they exist. This allows users to indicate which fields to apply a sort sequence to without

having to list all the field names. If a sort sequence is not specified for the query (for example, *HEX),

ordering is done as it was prior to Version 2 Release 3.

Considerations for DDM files:

The Open Query File (OPNQRYF) command can process distributed data management (DDM) files.

However, there are some restrictions.

 All DDM files identified on the FILE parameter must exist on the same IBM System i™ or System/38

target system. The Open Query File (OPNQRYF) command that specifies group processing and uses a

DDM file requires that both the source and target system be the same type (either both System/38 or

both System i platforms).

Considerations for writing a high-level language program:

Here are the considerations for writing a high-level language program that processes a database file using

the Open Query File (OPNQRYF) command.

 If you omit the FORMAT parameter, your high-level language program is coded as if you were directly

accessing the database file. Selection or sequencing occurs external to your program, and the program

receives the selected records in the order you specified. The program does not receive records that are

omitted by your selection values. This same function occurs if you process through a logical file with

select/omit values.

If you use the FORMAT parameter, your program specifies the same file name used on the FORMAT

parameter. The program is written as if this file contained actual data.

Database programming 155

If you read the file sequentially, your high-level language can automatically specify that the key fields are

ignored. Normally you write the program as if it were reading records in arrival sequence. If the

KEYFLD parameter is used on the Open Query File (OPNQRYF) command, you receive a diagnostic

message, which can be ignored.

If you process the file randomly by keys, your high-level language probably requires a key specification.

If you have selection values, it can prevent your program from accessing a record that exists in the

database. A Record not found condition can occur on a random read whether the OPNQRYF command

was used or whether a logical file created using DDS select/omit logic was used.

In some cases, you can monitor exceptions caused by mapping errors such as arithmetic overflow, but it

is better to define the attributes of all fields to correctly handle the results.

 Related tasks

 “Using an existing record format in the file” on page 124
The Open Query File (OPNQRYF) command does the record selection, and your program processes

only the records that meet the selection values. You can use this approach to select a set of records,

return records in a different sequence than they are stored, or both.

Messages sent when the Open Query File (OPNQRYF) command is run:

When the Open Query File (OPNQRYF) command is run, messages are sent to inform the interactive user

of the status of the OPNQRYF request.

 For example, if a keyed access path is built by the OPNQRYF command to satisfy the request, a message

is sent to the user. The following messages might be sent when the OPNQRYF command is run.

 Message identifier Description

CPI4301 Query running.

CPI4302 Query running. Building access path...

CPI4303 Query running. Creating copy of file...

CPI4304 Query running. Selection complete...

CPI4305 Query running. Sorting copy of file...

CPI4306 Query running. Building access path from file...

CPI4307 Query running. Building hash table from file &1 in

&2.

CPI4011 Query running. Number of records processed...

To stop these status messages from appearing, you can see the discussion about message handling in the

Control language (CL) topic.

When your job is running under debug (by using the Start Debug (STRDBG) command), or requested

with query options file option of DEBUG_MESSAGES *YES, messages are sent to your job log. These

messages describe the implementation method that is used to process the OPNQRYF request. These

messages provide information about the optimization processing that occurred. You can use these

messages as a tool for tuning the OPNQRYF request to achieve the best performance. Listed here are

these messages:

CPI4321

Access path built for file...

CPI4322

Access path built from keyed file...

CPI4324

Temporary file built from file...

156 System i: Database Database programming

CPI4325

Temporary file built for query

CPI4326

File processed in join position...

CPI4327

File processed in join position 1.

CPI4328

Access path of file that is used...

CPI4329

Arrival sequence that is used for file...

CPI432A

Query optimizer timed out...

CPI432C

All access paths considered for file...

CPI432E

Selection fields mapped to different attributes...

CPI432F

Access path suggestion for file...

CPI433B

Unable to update query options file.

CPI4330

&6 tasks used for parallel &10 scan of file &1.

CPI4332

&6 tasks used for parallel index that is created over file...

CPI4333

Hashing algorithm used to process join.

CPI4338

&1 access paths used for bitmap processing of file...

CPI4339

Query options retrieved file &2 in library &1.

CPI4341

Performing distributed query.

CPI4342

Performing distributed join for query.

CPI4345

Temporary distributed result file &4 built...

CPI4346

Optimizer debug messages for query join step &1 of &2 follow:

CPI4347

Query is processing in multiple steps.

Most of the messages provide a reason why the particular option was performed. The second level text

on each message gives an extended description of why the option was chosen. Some messages provide

suggestions to help improve the performance of the OPNQRYF request.

 Related concepts

 Control language

Database programming 157

Using the Open Query File (OPNQRYF) command for more than just input:

You can use the OPTION parameter of the Open Query File (OPNQRYF) command to specify the type of

processing.

 The default is OPTION(*INP); that is, the file is opened for input only. You can also use other OPTION

values of the OPNQRYF command and a high-level language program to add, update, or delete records

through the open query file.

However, if you specify the UNIQUEKEY, GRPFLD, or GRPSLT parameter, use one of the aggregate

functions, or specify multiple files on the FILE parameter, your use of the file is restricted to input only.

A join logical file is limited to input-only processing. A view is limited to input-only processing, if group,

join, union, distinct processing, or a user-defined table function is specified in the definition of the view.

If the query optimizer needs to create a temporary file to implement the query, then the use of the file is

restricted to input only.

If you want to change a field value from the current value to a different value in some of the records in a

file, you can use a combination of the OPNQRYF command and a specific high-level language program.

For example, assume that you want to change all the records where the Flda field is equal to ABC so that

the Flda field is equal to XYZ. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’FLDA *EQ "ABC" ’)

CALL PGM(PGMA)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Program PGMA processes all records it can read, but the query selection restricts these to records where

the Flda field is equal to ABC. The program changes the field value in each record to XYZ and updates

the record.

You can also delete records in a database file using the OPNQRYF command. For example, assume that

you have a field in your record that, if equal to X, means the record should be deleted. Your program can

be written to delete any records it reads and use the OPNQRYF command to select those to be deleted

such as:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’DLTCOD *EQ "X" ’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

You can also add records by using the OPNQRYF command. However, if the query specifications include

selection values, your program can be prevented from reading the added records because of the selection

values.

Comparing date, time, and timestamp using the Open Query File (OPNQRYF) command:

A date, time, or timestamp value can be compared either with another value of the same data type or

with a string representation of that data type.

 All comparisons are chronological, which means the farther a time is from January 1, 0001, the greater the

value of that time.

Comparisons involving time values and string representations of time values always include seconds. If

the string representation omits seconds, zero seconds are implied.

158 System i: Database Database programming

Comparisons involving timestamp values are chronological without regard to representations that might

be considered equivalent. Thus, the following predicate is true:

TIMESTAMP (’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

When a character, DBCS-open, or DBCS-either field or constant is represented as a date, time, or

timestamp, the following rules apply:

Date: The length of the field or literal must be at least 8 if the date format is *ISO, *USA, *EUR, *JIS,

*YMD, *MDY, or *DMY. If the date format is *JUL (yyddd), the length of the variable must be at least 6

(includes the separator between yy and ddd). The field or literal can be padded with blanks.

Time: For all of the time formats (*USA, *ISO, *EUR, *JIS, *HMS), the length of the field or literal must be

at least 4. The field or literal can be padded with blanks.

Timestamp: For the timestamp format (yyyy-mm-dd-hh.mm.ss.uuuuuu), the length of the field or literal

must be at least 16. The field or literal can be padded with blanks.

Performing date, time, and timestamp arithmetic using the Open Query File (OPNQRYF) command:

Date, time, and timestamp values can be incremented, decremented, and subtracted. These operations

might involve decimal numbers called durations.

Durations:

A duration is a number that represents an interval of time.

 Date duration

A date duration represents a number of years, months, and days, expressed as a DECIMAL(8,0) number.

To be properly interpreted, the number must have the format yyyymmdd, where yyyy represents the

number of years, mm the number of months, and dd the number of days. The result of subtracting one

date value from another, as in the expression HIREDATE - BRTHDATE, is a date duration.

Labeled duration

A labeled duration represents a specific unit of time as expressed by a number (which can be the result of

an expression) used as an operand for one of the seven duration built-in functions: %DURYEAR,

%DURMONTH, %DURDAY, %DURHOUR, %DURMINUTE, %DURSEC, or %DURMICSEC. The

functions are for the duration of year, month, day, hour, minute, second, and microsecond, respectively.

The number specified is converted as if it were assigned to a DECIMAL(15,0) number. A labeled duration

can only be used as an operand of an arithmetic operator when the other operand is a value of data type

*DATE, *TIME, or *TIMESTP. Thus, the expression HIREDATE + %DURMONTH(2) + %DURDAY(14) is

valid, whereas the expression HIREDATE + (%DURMONTH(2) + %DURDAY(14)) is not. In both of these

expressions, the labeled durations are %DURMONTH(2) and %DURDAY(14).

Time duration

A time duration represents a number of hours, minutes, and seconds, expressed as a DECIMAL(6,0)

number. To be properly interpreted, the number must have the format hhmmss, where hh represents the

number of hours, mm the number of minutes, and ss the number of seconds. The result of subtracting one

time value from another is a time duration.

Database programming 159

Timestamp duration

A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and

microseconds, expressed as a DECIMAL(20,6) number. To be properly interpreted, the number must have

the format yyyymmddhhmmsszzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent, respectively, the

number of years, months, days, hours, minutes, seconds, and microseconds. The result of subtracting one

timestamp value from another is a timestamp duration.

Rules for date, time, and timestamp arithmetic:

The only arithmetic operations that can be performed on date and time values are addition and

subtraction. If a date or time value is the operand of addition, the other operand must be a duration.

 The specific rules governing the use of the addition operator with date and time values follow:

v If one operand is a date, the other operand must be a date duration or a labeled duration of years,

months, or days.

v If one operand is a time, the other operand must be a time duration or a labeled duration of hours,

minutes, or seconds.

v If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.

The rules for the use of the subtraction operator on date and time values are not the same as those for

addition because a date or time value cannot be subtracted from a duration, and because the operation of

subtracting two date and time values is not the same as the operation of subtracting a duration from a

date or time value. The specific rules governing the use of the subtraction operator with date and time

values follow:

v If the first operand is a date, the second operand must be a date, a date duration, a string

representation of a date, or a labeled duration of years, months, or days.

v If the second operand is a date, the first operand must be a date or a string representation of a date.

v If the first operand is a time, the second operand must be a time, a time duration, a string

representation of a time, or a labeled duration of hours, minutes, or seconds.

v If the second operand is a time, the first operand must be a time or string representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a string representation of

a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or a string representation

of a timestamp.

Subtracting dates:

The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the

number of years, months, and days between the two dates.

 The data type of the result is DECIMAL(8,0). If DATE1 is greater than or equal to DATE2, DATE2 is

subtracted from DATE1. If DATE1 is less than DATE2, however, DATE1 is subtracted from DATE2, and

the sign of the result is made negative. The following procedural description clarifies the steps involved

in the operation RESULT = DATE1 - DATE2.

160 System i: Database Database programming

For example, the result of %DATE(’3/15/2000’) - ’12/31/1999’ is 215 (or, a duration of 0 years, 2 months,

and 15 days).

Incrementing and decrementing dates:

The result of adding a duration to a date or subtracting a duration from a date is itself a date.

 (For the purposes of this operation, a month denotes the equivalent of a calendar page. Adding months

to a date, then, is like turning the pages of a calendar, starting with the page on which the date appears.)

The result must fall between the dates January 1, 0001, and December 31, 9999, inclusive. If a duration of

years is added or subtracted, only the year portion of the date is affected. The month is unchanged, as is

the day unless the result would be February 29 of a year that is not a leap year. In this case, the day is

changed to 28.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are

affected. The day portion of the date is unchanged unless the result would not be valid (September 31,

for example). In this case, the day is set to the last day of the month.

Adding or subtracting a duration of days, of course, affects the day portion of the date, and potentially

the month and year.

Date durations, whether positive or negative, can also be added to and subtracted from dates. As with

labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,

the date is incremented by the specified number of years, months, and days, in that order. Thus, DATE1

+ X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 +

%DURYEAR(%YEAR(X)) + %DURMONTH(%MONTH(X)) + %DURDAY(%DAY(X))

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,

the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1

- X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 -

%DURDAY(%DAY(X)) - %DURMONTH(%MONTH(X)) - %DURYEAR(%YEAR(X))

When adding durations to dates, adding one month to a given date gives the same date one month later

unless that date does not exist in the later month. In that case, the date is set to that of the last day of the

later month. For example, January 28 plus one month gives February 28; and one month added to

January 29, 30, or 31 results in either February 28 or, for a leap year, February 29.

If %DAY(DATE2) <= %DAY(DATE1) ;

 then %DAY(RESULT) = %DAY(DATE1) - %DAY(DATE2).

If %DAY(DATE2) > %DAY(DATE1) ;

 then %DAY(RESULT) = N + %DAY(DATE1) - %DAY(DATE2) ;

 where N = the last day of %MONTH(DATE2). ;

 %MONTH(DATE2) is then incremented by 1.

If %MONTH(DATE2) <= %MONTH(DATE1) ;

 then %MONTH(RESULT) = %MONTH(DATE1) - %MONTH(DATE2).

If %MONTH(DATE2) > %MONTH(DATE1) ;

 then %MONTH(RESULT) = 12 + %MONTH(DATE1) - %MONTH(DATE2). ;

 %YEAR(DATE2) is then incremented by 1.

%YEAR(RESULT) = %YEAR(DATE1) - %YEAR(DATE2).

Database programming 161

Note: If one or more months are added to a given date and then the same number of months is

subtracted from the result, the final date is not necessarily the same as the original date.

Subtracting times:

The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies the

number of hours, minutes, and seconds between the two times.

 The data type of the result is DECIMAL(6,0). If TIME1 is greater than or equal to TIME2, TIME2 is

subtracted from TIME1. If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the

sign of the result is made negative. The following procedural description clarifies the steps involved in

the operation RESULT = TIME1 - TIME2.

For example, the result of %TIME(’11:02:26’) - ’00:32:56’ is 102930 (a duration of 10 hours, 29 minutes, and

30 seconds).

Incrementing and decrementing times:

The result of adding a duration to a time or subtracting a duration from a time is itself a time. Any

overflow or underflow of hours is discarded, thereby ensuring that the result is always a time.

 If a duration of hours is added or subtracted, only the hours portion of the time is affected. The minutes

and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are

affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds, of course, affects the seconds portion of the time, and

potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The result

is a time that has been incremented or decremented by the specified number of hours, minutes, and

seconds, in that order.TIME1 + X, where X is a DECIMAL(6,0) number, is equivalent to the expression:

TIME1 + %DURHOUR(%HOUR(X)) + %DURMINUTE(%MINUTE(X)) + %DURSEC(%SECOND(X))

Subtracting timestamps:

The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies

the number of years, months, days, hours, minutes, seconds, and microseconds between the two

timestamps.

If %SECOND(TIME2) <= %SECOND(TIME1) ;

 then %SECOND(RESULT) = %SECOND(TIME1) - %SECOND(TIME2).

If %SECOND(TIME2) > %SECOND(TIME1) ;

 then %SECOND(RESULT) = 60 + %SECOND(TIME1) - %SECOND(TIME2). ;

 %MINUTE(TIME2) is then incremented by 1.

If %MINUTE(TIME2) <= %MINUTE(TIME1) ;

 then %MINUTE(RESULT) = %MINUTE(TIME1) - %MINUTE(TIME2).

If %MINUTE(TIME2) > %MINUTE(TIME1) ;

 then %MINUTE(RESULT) = 60 + %MINUTE(TIME1) - %MINUTE(TIME2). ;

 %HOUR(TIME2) is then incremented by 1.

%HOUR(RESULT) = %HOUR(TIME1) - %HOUR(TIME2).

162 System i: Database Database programming

The data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2, TS2 is subtracted

from TS1. If TS1 is less than TS2, however, TS1 is subtracted from TS2 and the sign of the result is made

negative. The following procedural description clarifies the steps involved in the operation RESULT = TS1

- TS2:

If %MICSEC(TS2) <= %MICSEC(TS1) ;

 then %MICSEC(RESULT) = %MICSEC(TS1) - ;

 %MICSEC(TS2).

If %MICSEC(TS2) > %MICSEC(TS1) ;

 then %MICSEC(RESULT) = 1000000 + ;

 %MICSEC(TS1) - %MICSEC(TS2) ;

 and %SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the rules for subtracting

times:

If %HOUR(TS2) <= %HOUR(TS1) ;

 then %HOUR(RESULT) = %HOUR(TS1) - %HOUR(TS2).

If %HOUR(TS2) > %HOUR(TS1) ;

 then %HOUR(RESULT) = 24 + %HOUR(TS1) - %HOUR(TS2) ;

 and %DAY(TS2) is incremented by 1.

The date part of the timestamp is subtracted as specified in the rules for subtracting dates.

Incrementing and decrementing timestamps:

The result of adding a duration to a timestamp or subtracting a duration from a timestamp is itself a

timestamp.

 Date and time arithmetic is performed as previously defined, except that an overflow or underflow of

hours is carried into the date part of the result, which must be within the range of valid dates.

Microseconds overflow into seconds.

Using the Open Query File (OPNQRYF) command for random processing:

In addition to sequential processing, you can use the OPNQRYF command for random processing (for

example, the RPG language operation CHAIN or the COBOL language operation READ). However, if

you use the grouping or unique-key function, you cannot process the file randomly.

Open Query File (OPNQRYF) command: Performance considerations:

Here are the tips and techniques for optimizing the performance of the Open Query File (OPNQRYF)

command.

 The best performance can occur when the OPNQRYF command uses an existing keyed sequence access

path. For example, if you want to select all the records where the Code field is equal to B and an access

path exists over the Code field, the system can use the access path to perform the selection (key

positioning selection) rather than read the records and select at run time (dynamic selection).

The OPNQRYF command cannot use an existing index when any of the following conditions are true:

v The key field in the access path is derived from a substring function.

v The key field in the access path is derived from a concatenation function.

Database programming 163

v Both listed here are true of the sort sequence table associated with the query (specified on the SRTSEQ

parameter):

– It is a shared-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an

alternate collating sequence table).
v Both listed here are true of the sort sequence table associated with the query (specified on the SRTSEQ

parameter):

– It is a unique-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an

alternate collating sequence table) when either:

- Ordering is specified (KEYFLD parameter).

- Record selection exists (QRYSLT parameter) that does not use *EQ, *NE, *CT, %WLDCRD, or

%VALUES.

- Join selection exists (JFLD parameter) that does not use *EQ or *NE operators.

Part of the OPNQRYF processing is to determine what is the fastest approach to satisfying your request.

If the file you are using is large and most of the records have the Code field equal to B, it is faster to use

arrival sequence processing than to use an existing keyed sequence access path. Your program still sees

the same records. The OPNQRYF processing can only make this type of decision if an access path exists

on the Code field. In general, if your request includes approximately 20% or more of the number of

records in the file, the OPNQRYF processing tends to ignore the existing access paths and read the file in

arrival sequence.

If no access path exists over the Code field, the program reads all of the records in the file and passes

only the selected records to your program. That is, the file is processed in arrival sequence.

The system can perform selection faster than your application program. If no appropriate keyed sequence

access path exists, either your program or the system makes the selection of the records you want to

process. Allowing the system to perform the selection process is considerably faster than passing all the

records to your application program.

This is especially true if you are opening a file for update operations because individual records must be

passed to your program, and locks are placed on every record read (in case your program needs to

update the record). By letting the system perform the record selection, the only records passed to your

program and locked are those that meet your selection values.

If you use the KEYFLD parameter to request a specific sequence for reading records, the fastest

performance results if an access path already exists that uses the same key specification or if a keyed

sequence access path exists that is similar to your specifications (such as a key that contains all the fields

you specified plus some additional fields on the end of the key). This is also true for the GRPFLD

parameter and on the to-fields of the JFLD parameter. If no such access path exists, the system builds an

access path and maintains it as long as the file is open in your job.

Processing all the records in a file by an access path that does not already exist is generally not as

efficient as using a full record sort, if the number of records to be arranged (not necessarily the total

number of records in the file) exceeds 1000 and is greater than 20% of the records in the file. While it is

generally faster to build the keyed sequence access path than to do the sort, faster processing allowed by

the use of arrival sequence processing normally favors sorting the data when looking at the total job time.

If a usable access path already exists, using the access path can be faster than sorting the data. You can

use the ALWCPYDTA(*OPTIMIZE) parameter of the Open Query File (OPNQRYF) command to allow the

system to use a full record sort if this is the fastest method of processing records.

164 System i: Database Database programming

If you do not intend to read all of the query records and if the OPTIMIZE parameter is *FIRSTIO or

*MINWAIT, you can specify a number to indicate how many records you intend to retrieve. If the

number of records is considerably less than the total number the query is expected to return, the system

might select a faster access method.

If you use the grouping function, faster performance is achieved if you specify selection before grouping

(QRYSLT parameter) instead of selection after grouping (GRPSLT parameter). Only use the GRPSLT

parameter for comparisons involving aggregate functions.

For most uses of the OPNQRYF command, new or existing access paths are used to access the data and

present it to your program. In some cases of the OPNQRYF command, the system must create a

temporary file. The rules for when a temporary file is created are complex, but the following cases are

typical in which this occurs:

v When you specify a dynamic join, and the KEYFLD parameter describes key fields from different

physical files.

v When you specify a dynamic join and the GRPFLD parameter describes fields from different physical

files.

v When you specify both the GRPFLD and KEYFLD parameters but they are not the same.

v When the fields specified on the KEYFLD parameter total more than 2000 bytes in length.

v When you specify a dynamic join and *MINWAIT for the OPTIMIZE parameter.

v When you specify a dynamic join using a join logical file and the join type (JDFTVAL) of the join

logical file does not match the join type of the dynamic join.

v When you specify a logical file and the format for the logical file refers to more than one physical file.

v When you specify an SQL view, the system might require a temporary file to contain the results of the

view.

v When the ALWCPYDTA(*OPTIMIZE) parameter is specified and using a temporary result would

improve the performance of the query.

When a dynamic join occurs (JDFTVAL(*NO)), the OPNQRYF command attempts to improve

performance by reordering the files and joining the file with the smallest number of selected records to

the file with the largest number of selected records. To prevent the OPNQRYF command from reordering

the files, specify JORDER(*FILE). This forces the OPNQRYF command to join the files in the order

specified on the FILE parameter.

 Related concepts

 Database performance and query optimization

Open Query File (OPNQRYF) command: Performance considerations for sort sequence tables:

Here are the tips and techniques for optimizing the performance of sort sequence tables.

Grouping, joining, and selection: Open Query File (OPNQRYF) command performance:

When using an existing index, the optimizer ensures that the attributes of the selection, join, and

grouping fields match the attributes of the keys in the existing index.

 Also, the sort sequence table associated with the query must match the sequence table (a sort sequence

table or an alternate collating sequence table) associated with the key field of the existing index. If the

sequence tables do not match, the existing index cannot be used.

However, if the sort sequence table associated with the query is a unique-weight sequence table

(including *HEX), some additional optimization is possible. The optimizer acts as though no sort

sequence table is specified for any grouping fields or any selection or join predicates that use the

following operators or functions:

Database programming 165

v *EQ

v *NE

v *CT

v %WLDCRD

v %VALUES

The advantage is that the optimizer is free to use any existing access path where the keys match the field

and the access path either:

v Does not contain a sequence table.

v Contains a unique-weight sequence table (the table does not have to match the unique-weight sort

sequence table associated with the query).

Ordering: Open Query File (OPNQRYF) command performance:

For ordering fields, the optimizer is not free to use any existing access path. The sort sequence tables

associated with the index and the query must match unless the optimizer chooses to do a sort to satisfy

the ordering request.

 When a sort is used, the translation is performed during the sort, leaving the optimizer free to use any

existing access path that meets the selection criteria.

Performance comparisons with other database functions:

The Open Query File (OPNQRYF) command uses the same database support as logical files and join

logical files. Therefore, the performance of functions like building a keyed access path or doing a join

operation is the same.

 The selection functions done by the OPNQRYF command (for the QRYSLT and GRPSLT parameters) are

similar to logical file select/omit. The main difference is that for the OPNQRYF command, the system

decides whether to use access path selection or dynamic selection (similar to omitting or specifying the

DYNSLT keyword in the DDS for a logical file), as a result of the access paths available on the system

and what value was specified on the OPTIMIZE parameter.

Field use:

When the grouping function is used, all fields in the record format for the open query file (FORMAT

parameter) and all key fields (KEYFLD parameter) must be either grouping fields (specified on the

GRPFLD parameter) or mapped fields (specified on the MAPFLD parameter).

 Mapped fields are defined using only grouping fields, constants, and aggregate functions.

The aggregate functions are: %AVG, %COUNT, %MAX (using only one operand), %MIN (using only one

operand), %STDDEV, %SUM, and %VAR. Group processing is required in the following cases:

v When you specify grouping field names on the GRPFLD parameter

v When you specify group selection values on the GRPSLT parameter

v When a mapped field that you specified on the MAPFLD parameter uses an aggregate function in its

definition

Fields that have any of the large object data types: BLOB, CLOB, or DBCLOB, can only be read using the

Copy From Query File (CPYFRMQRYF) command or Structured Query Language (SQL). Large object

field data cannot be directly accessed from an open query file. The CPYFRMQRYF command must be

used to access large object fields from an open query file. A field with a large object data type (BLOB,

CLOB or DBCLOB) cannot be specified on these OPNQRYF parameters: KEYFLD, UNIQUEKEY, JFLD,

and GRPFLD.

166 System i: Database Database programming

Fields of type DATALINK might not appear in selection, grouping, ordering, or joins. If a DATALINK

field appears in that format, it will be returned in its unprocessed form, as it exists in the data space.

Fields contained in a record format, identified on the FILE parameter, and defined (in the DDS used to

create the file) with a usage value of N (neither input nor output) cannot be specified on any parameter

of the OPNQRYF command. Only fields defined as either I (input-only) or B (both input and output)

usage can be specified. Any fields with usage defined as N in the record format identified on the

FORMAT parameter are ignored by the OPNQRYF command.

Fields in the open query file records normally have the same usage attribute (input-only or both input

and output) as the fields in the record format identified on the FORMAT parameter, with the exceptions

noted later in this topic. If the file is opened for any option (OPTION parameter) that includes output or

update and any usage, and if any B (both input and output) field in the record format identified on the

FORMAT parameter is changed to I (input only) in the open query file record format, then an

information message is sent by the OPNQRYF command.

If you request join processing or group processing, or if you specify UNIQUEKEY processing, all fields in

the query records are given input-only use. Any mapping from an input-only field from the file being

processed (identified on the FILE parameter) is given input-only use in the open query file record format.

Fields defined using the MAPFLD parameter are normally given input-only use in the open query file. A

field defined on the MAPFLD parameter is given a value that matches the use of its constituent field if

all of the following conditions are true:

v Input-only is not required because of any of the conditions previously described in this topic.

v The field-definition expression specified on the MAPFLD parameter is a field name (no operators or

built-in functions).

v The field used in the field-definition expression exists in one of the file, member, or record formats

specified on the FILE parameter (not in another field defined using the MAPFLD parameter).

v The base field and the mapped field are compatible field types (the mapping does not mix numeric

and character field types, unless the mapping is between zoned and character fields of the same

length).

v If the base field is binary with nonzero decimal precision, the mapped field must also be binary and

have the same precision.

Files shared in a job:

To use the open data path that is built by the Open Query File (OPNQRYF) command, your program

must share the query file.

 If your program does not open the query file as shared, it does a full open of the file that it was

originally compiled to use (not the query open data path built by the OPNQRYF command).

Your program will share the query open data path, depending on the following conditions:

v Your application program must open the file as shared. Your program meets this condition when the

first or only member queried (as specified on the FILE parameter) has an attribute of SHARE(*YES). If

the first or only member has an attribute of SHARE(*NO), you must specify SHARE(*YES) in an

Override with Database File (OVRDBF) command before calling your program.

v The file opened by your application program must have the same name as the file opened by the

OPNQRYF command. Your program meets this condition when the file specified in your program has

the same file and member name as the first or only member queried (as specified on the FILE

parameter). If the first or only member has a different name, then you must specify an Override with

Database File (OVRDBF) command of the name of the file your program was compiled against to the

name of the first or only member queried.

Database programming 167

v Your program must be running in the same activation group to which the query open data path (ODP)

is scoped. If the query ODP is scoped to the job, your program can run in any activation group within

the job.

The OPNQRYF command never shares an existing open data path in the job or activation group. A

request to open a query file fails with an error message if the open data path has the same library, file,

and member name that is in the open request, and if either of the following is true:

v OPNSCOPE(*ACTGRPDFN) or OPNSCOPE(*ACTGRP) is specified for the OPNQRYF command, and

the open data path is scoped to the same activation group or job from which the OPNQRYF command

is run.

v OPNSCOPE(*JOB) is specified for the OPNQRYF command, and the open data path is scoped to the

same job from which the OPNQRYF command is run.

Subsequent shared opens adhere to the same open options (such as SEQONLY) that were in effect when

the OPNQRYF command was run.

 Related concepts

 “Sharing database files in the same job or activation group” on page 108
By default, the database management system allows one file to be read and changed by many users at

the same time. You can also share a file in the same job or activation group by specifying the SHARE

parameter.

Checking if the record format description changed:

If record format level checking is indicated, the format level number of the open query file record format

(identified on the FORMAT parameter) is checked against the record format your program was compiled

against. This occurs when your program shares the previously opened query file.

 Your program’s shared open is checked for record-format level if the following conditions are met:

v The first or only file queried (as specified on the FILE parameter) must have the LVLCHK(*YES)

attribute.

v There must not be an override of the first or only file queried to LVLCHK(*NO).

Other runtime considerations for the Open Query File (OPNQRYF) command:

You can consider overrides and copying from an open query file when using the Open Query File

(OPNQRYF) command.

Overrides and the Open Query File (OPNQRYF) command:

Overrides can change the name of a file, library, and member that should be processed by an open query

file. However, any parameters other than TOFILE, MBR, LVLCHK, INHWRT, or SEQONLY that are

specified on an Override with Database File (OVRDBF) command are ignored by the Open Query File

(OPNQRYF) command.

 If a name change override applies to the first or only member queried, any additional overrides must be

against the new name, not the name specified for the FILE parameter on the OPNQRYF command.

Copying from an open query file:

You can use the Copy from Query File (CPYFRMQRYF) command to copy from an open query file to

another file or to print a formatted listing of the records.

168 System i: Database Database programming

Any open query file, except those using distributed data management (DDM) files, specified with the

input, update, or all operation value on the FILE parameter of the Open Query File (OPNQRYF)

command can be copied using the CPYFRMQRYF command. The CPYFRMQRYF command cannot be

used to copy to logical files.

Although the CPYFRMQRYF command uses the open data path of the open query file, it does not open

the file. Consequently, you do not have to specify SHARE(*YES) for the database file you are copying.

 Related concepts

 Database file management

Example 1: Copying from an open query file:

This example shows how to build a file with a subset of records using the Open Query File (OPNQRYF)

and Copy from Query File (CPYFRMQRYF) commands.

 Assume that you want to create a file from the CUSTOMER/ADDRESS file that contains only records

where the value of the STATE field is Texas. You can specify as follows:

OPNQRYF FILE(CUSTOMER/ADDRESS) QRYSLT(’STATE *EQ "TEXAS"’)

CPYFRMQRYF FROMOPNID(ADDRESS) TOFILE(TEXAS/ADDRESS) CRTFILE(*YES)

Example 2: Copying from an open query file:

This example shows how to print records based on selection using the Open Query File (OPNQRYF) and

Copy from Query File (CPYFRMQRYF) commands.

 Assume that you want to print all records from FILEA where the value of the CITY field is Chicago. You

can specify as follows:

OPNQRYF FILE(FILEA) QRYSLT(’CITY *EQ "CHICAGO"’)

CPYFRMQRYF FROMOPNID(FILEA) TOFILE(*PRINT)

Example 3: Copying from an open query file:

This example shows how to copy a subset of records to a diskette using the Open Query File (OPNQRYF)

and Copy from Query File (CPYFRMQRYF) commands.

 Assume that you want to copy all records from FILEB where the value of FIELDB is 10 to a diskette. You

can specify:

OPNQRYF FILE(FILEB) QRYSLT(’FIELDB *EQ "10"’) OPNID(MYID)

CPYFRMQRYF FROMOPNID(MYID) TOFILE(DISK1)

Example 4: Copying from an open query file:

This example shows how to create a copy of the output of a dynamic join using the Open Query File

(OPNQRYF) and Copy from Query File (CPYFRMQRYF) commands.

 Assume that you want to create a physical file that has the format and data of the join of FILEA and

FILEB, and that the files contain the following fields:

FILEA FILEB JOINAB

Cust Cust Cust

Name Amt Name

Addr Amt

The join field is Cust, which exists in both files. To join the files and save a copy of the results in a new

physical file MYLIB/FILEC, you can specify:

Database programming 169

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((FILEA/CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’)) OPNID(QRYFILE)

CPYFRMQRYF FROMOPNID(QRYFILE) TOFILE(MYLIB/FILEC) CRTFILE(*YES)

The file MYLIB/FILEC will be created by the CPYFRMQRYF command. The file will have file attributes

like those of FILEA although some file attributes might be changed. The format of the file will be like

JOINAB. The file will contain the data from the join of FILEA and FILEB using the Cust field. File FILEC

in library MYLIB can be processed like any other physical file with control language (CL) commands,

such as the Display Physical File Member (DSPPFM) command and utilities, such as Query.

 Related concepts

 Database file management

Typical errors when using the Open Query File (OPNQRYF) command:

You must specify several functions correctly for the Open Query File (OPNQRYF) command and your

program to get correct results.

 The Display Job (DSPJOB) command is your most useful tool if problems occur. This command supports

both the open files option and the file overrides option. You can look at both options if you are having

problems.

Listed here are the most common problems you might encounter when using the OPNQRYF command

and the ways to correct them:

v Shared open data path (ODP). The OPNQRYF command operates through a shared ODP. In order for

the file to process correctly, the member must be opened for a shared ODP. If you are having problems,

use the open files option on the DSPJOB command to determine if the member is opened and has a

shared ODP.

There are normally two reasons that the file is not open:

– The member to be processed must be SHARE(*YES). Either use an Override with Database File

(OVRDBF) command or permanently change the member.

– The file is closed. You have run the OPNQRYF command with the OPNSCOPE(*ACTGRPDFN) or

TYPE(*NORMAL) parameter option from a program that was running in the default activation

group at a higher level in the call stack than the program that is getting an error message or that is

running the Reclaim Resources (RCLRSC) command. This closes the open query file because it was

opened from a program at a higher level in the call stack than the program that ran the RCLRSC

command. If the open query file was closed, you must run the OPNQRYF command again. Note

that when using the OPNQRYF command with the TYPE(*NORMAL) parameter option on releases

prior to Version 2 Release 3, the open query file is closed even if it was opened from the same

program that reclaims the resources.
v Level check. Level checking is normally used because it ensures that your program is running against

the same record format that the program was compiled with. If you are experiencing level check

problems, it is normally because of one of the following reasons:

– The record format was changed since the program was created. Creating the program again should

correct the problem.

– An override is directing the program to an incorrect file. Use the file overrides option on the

DSPJOB command to ensure that the overrides are correctly specified.

– The FORMAT parameter is needed but is either not specified or incorrectly specified. When a file is

processed with the FORMAT parameter, you must ensure:

- The OVRDBF command, used with the TOFILE parameter, describes the first file on the FILE

parameter of the OPNQRYF command.

- The FORMAT parameter identifies the file that contains the format used to create the program.

170 System i: Database Database programming

– The FORMAT parameter is used to process a format from a different file (for example, for group

processing), but SHARE(*YES) was not requested on the OVRDBF command.
v The file to be processed is at end of file. The normal use of the OPNQRYF command is to process a file

sequentially where you can only process the file once. At that point, the position of the file is at the

end of the file and you will not receive any records if you attempt to process it again. To process the

file again from the start, you must either run the OPNQRYF command again or reposition the file

before processing. You can reposition the file by using the Position Database File (POSDBF) command,

or through a high-level language program statement.

v No records exist. This can be caused when you use the FORMAT keyword, but do not specify the

OVRDBF command.

v Syntax errors. The system found an error in the specification of the OPNQRYF command.

v Operation not valid. The definition of the query does not include the KEYFLD parameter, but the

high-level language program attempts to read the query file using a key field.

v Get option not valid. The high-level language program attempted to read a record or set a record

position before the current record position, and the query file used either the group by option, the

unique key option, or the distinct option on the SQL statement.

Open data path considerations:

An open data path (ODP) is a control block created when a file is opened. An ODP contains information

about the merged file attributes and information returned by input or output operations.

 The file, library, and file member names used by ODP are the same as the first file and file member

names specified on the FILE parameter, unless an override forces the use of a different file or file member

name. The record format name of the open query file is the same as that specified on the FORMAT

parameter.

The Open Query File (OPNQRYF) command always opens a file with an ODP that is shared, as if

SHARE(*YES) were specified for the file. If the file, library, or file member name specified in the

high-level language (HLL) program differs from the name of the open query file, an override command

must be used to specify the correct file, library, and member names to allow the HLL program to share

the open query file ODP. If the first, or the only, member queried has an attribute of SHARE(*NO),

SHARE(*YES) must be specified in an override to enable an HLL program to share the query file ODP.

If the OPNQRYF command is scoped to the job, any subsequent open, other than a query open, of the

same file can share the ODP whether scoped to an activation group or the job. If the OPNQRYF

command is scoped to an activation group, any subsequent open, other than a query open, of the same

file can share the ODP if it is also scoped to the same activation group.

Field names:

Field names specified on the Open Query File (OPNQRYF) command parameters must follow these rules.

 The field name used as the first part of an element in the list specified on the MAPFLD parameter must

be a simple name, and the field names in the record format identified on the FORMAT parameter are

always treated as simple names. Any other field name specified on an OPNQRYF command parameter

(QRYSLT, KEYFLD, JFLD, GRPFLD, GRPSLT, or the field-definition expression part of the MAPFLD

parameter) is a qualified field name, specified as follows:

field-name

Specify a simple field name that identifies a field that is defined on the MAPFLD parameter, or

with a field name that is unique among all field names from all record formats included in the

list specified on the FILE parameter. This form is not allowed if there is no MAPFLD parameter

definition for the specified field name and the FILE parameter includes more than one record

Database programming 171

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

format that contains a field with the specified name, even if the same file and record format is

specified more than once in the list on the FILE parameter.

 For example, AMOUNT is valid if the field named AMOUNT is defined on the MAPFLD

parameter. It is also valid if AMOUNT is not defined on the MAPFLD parameter, as long as there

is only one field named AMOUNT in any record format specified on the FILE parameter.

file-name/field-name

Specify a field name that is qualified with the simple name of the file specified on the FILE

parameter whose record format contains the field, but only if the simple file name is unique

among all file names specified on the FILE parameter. This form is not allowed if the same

simple file name is specified more than once in the list specified for the FILE parameter, even if

different library, member, or record format names are used.

 For example, WHS01/PARTNBR is valid if there is a field named PARTNBR in the record format

for file WHS01, and file name WHS01 is only specified once on the FILE parameter.

file-nbr/field-name

Specify a simple field name that is qualified with the number of the element in the FILE

parameter list for the record format that contains the field. The file-nbr qualifier must be specified

without leading zeros. This form is only required if the same simple file name is specified more

than once in the list specified on the FILE parameter.

 For example, 2/BALDUE is valid if the second file record format in the list specified on the FILE

parameter contains a field named BALDUE.

*MAPFLD/field-name

Specify a simple field name that is qualified with the special value *MAPFLD if the field is

defined on the MAPFLD parameter. When the field is defined, this form has the same meaning as

specifying the simple field name with no qualifier. If the field is not defined on the MAPFLD

parameter, *MAPFLD cannot be specified.

 For example, *MAPFLD/AVGBAL is valid if the AVGBAL field is specified as the first part of one

of the mapped field list elements specified on the MAPFLD parameter.

Expressions:

The expressions specified on the Open Query File (OPNQRYF) command must follow these conventions.

 Expressions specified on the QRYSLT, GRPSLT, and MAPFLD parameters are similar to expressions

specified on other control language (CL) command parameters. Logical, relational, numeric, and string

operations are performed by using combinations of field values and constants. Symbolic and named

operators are supported, as well as many built-in functions, and parentheses are used to control the order

of evaluation.

There are also differences in the expressions specified on OPNQRYF parameters and on other CL

command parameters. Listed here are the ways that expressions on the QRYSLT, GRPSLT, and MAPFLD

parameters differ from normal CL expressions:

v The expression string must be enclosed in apostrophes if it contains embedded blanks or special

characters.

v The following differences affect numeric and string literals:

– Character string constants are quoted by using single quotation marks or quotation marks.

– The leading and trailing zeros of a numeric constant are significant parts of its attributes.

– Floating-point constants (including the special values *INF and *NEGINF) are used in expressions.
v The following differences contrast CL variables with database fields:

– No prefixed ampersand (&) is used in database field names.

– Qualified field names are supported.

172 System i: Database Database programming

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|

|

|

|

– No ’logical’ field type exists for database fields.

– Many additional data types are supported for database fields.
v The following CL operators are not supported on the OPNQRYF command:

– *BCAT or | >

– *TCAT or | <
v The following additional operators are supported beyond CL support:

– // for remainder

– ** for exponentiation

– *CT for ’contains’ (character scan)

– *XOR or && for ’logical exclusive or’
v The following differences affect built-in function support:

– The %SWITCH built-in function is not supported.

– Many additional built-in functions are supported.

– Nested built-in functions and expressions for built-in function arguments (such as ’%LOG(%SIN(x))’)

generally are allowed.

– To support expressions as built-in function arguments, any argument that is a signed numeric value

or an expression (for example, ’%MIN(3 (-2) x (y+4))’) must be enclosed in parentheses.

The following table shows the priority of all operators that are used for expressions on the QRYSLT,

GRPSLT, or MAPFLD parameters. Only operators listed for priorities 1 through 5, excluding the *NOT

and operators, are allowed in an expression specified on the MAPFLD parameter:

 Priority Operators

1 +, - (when used for signed numeric values), *NOT, ¬

2 **

3 *, / ,// (a / must have a space before the / and/or after the /)

4 +, - (when used between two operands)

5 *CAT, | |

6 *GT, *LT, *EQ, *GE, *LE, *NE, *NG, *NL, *CT, >, <, =, >=, <=, ¬=, ¬>, ¬<

7 *AND, &

8 *OR, *XOR, |, &&

Except for operators ¬ and *NOT, the operators for priorities 1 through 4 are numeric operators, which

require numeric operands. The operators for priority 5 are string operators, which require operands to be

either character or DBCS strings. Priority 6 operators are called relational operators, which require at least

one operand that is a field name or a numeric or string expression (not a constant). The operators for

priorities 7 and 8, plus the ¬ and *NOT operators (priority 1), are logical operators. The operands in a

logical expression are relations (constructed by using a relational operator with appropriate operands)

and other logical expressions.

The operands in a string expression, including string operands for a built-in function, are a combination

of character fields and DBCS fields and constants. If both operands of such an expression are DBCS-only

fields or constants, the final result from evaluation of the expression is a DBCS-only field value. If the

operands are a combination of DBCS or character fields or constants, the result is a DBCS-open field

value. When DBCS fields are concatenated, the extraneous shift-in and shift-out characters between the

fields are removed.

The result produced by a + or - sign prefixed operator has the same attributes as the operand, unless the

operand of a - sign prefixed operator is a *BIN2, in which case the result is a *BIN4. The result of an **

Database programming 173

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|||

||

||

||

||

||

||

||

||
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

operator (exponentiation) is a double-precision floating-point number (*FLT8). For other numeric

operators that require two operands, if either operand is a floating-point number, the result is a

double-precision floating point number (*FLT8). If both operands are fixed-point numbers, the system

uses the information in the following table to determine the number of total and fractional digits required

to produce a packed decimal (*DEC) result. If both operands are zero-precision binary fields and/or

integer constants, the result is a *BIN4, unless the operator is a ″/″. In that case, the result is the same as

for a fixed-point result. If the total number of digits required exceeds 31, the number of fraction digits is

reduced enough to enable calculation of the result with a total of 31 digits. If some fraction digits are

dropped and the attributes of the end result of the computation (the attributes specified on the MAPFLD

parameter for the field) require greater precision than that of the intermediate result, a warning message

is sent to indicate that some precision was lost in evaluating the expression.

 Operation Result (Total Digits) Result (Fractional Digits)

+ MAX(d1-f1, d2-f2)+MAX(f1,f2)+1 MAX(f1, f2)

_ MAX (d1-f1, d2-f2)+MAX (f1,f2)+1 MAX(f1, f2)

* d1+d2 f1+f2

/ 31 31-(d1-f1+f2)

// MIN(d1-f1,d2-f2)+MAX(f1,f2) MAX(f1,f2)

Legend:

d1 Total digits in operand 1

f1 Fractional digits in operand 1

d2 Total digits in operand 2

f2 Fractional digits in operand 2

When a numeric or string expression is specified on the MAPFLD parameter, the attributes of the final

result are used in one of the two ways. They are either used directly for the field value (if field-type

*CALC is specified and the field is not contained in the prototype record format identified on the

FORMAT parameter), or the final result is changed to match the attributes specified on the MAPFLD

parameter or contained in the field definition in the record format identified by the FORMAT parameter.

Both operands of a relational operator can be constants. The fields, constants, or expressions specified as

operands on the left and right side of a relational operator must be of the same type, either numeric or

string. Any combination of character and DBCS field operands are allowed except that a character field

cannot be related to a DBCS-only field.

There are two types of DBCS constants: DBCS-only and DBCS-open. A DBCS-only constant has only

DBCS data between its single quotation marks. This data must be enclosed in SO/SI characters. A

DBCS-open constant has a mixture of DBCS and alphameric data. An SO character (HEX 0E) indicates the

start of a group of DBCS characters and an SI character (HEX 0F) follows the last double-byte character

of the group.

If a numeric or string expression appears as a complex selection operand on the QRYSLT or GRPSLT

parameter, the attributes of the final result of the expression used for the selection operand are changed

to match the other relational operand.

It is not necessary for operands of a relational operator to have identical attributes, but numeric operands

cannot be mixed with character operands. If the operands do not have identical attributes, the system

changes them to identical attributes (except for the *CT operator, where the character string operands

might be of different lengths), before performing the operation. This change uses packed decimal format

if both operands are fixed-point numeric operands, or floating-point format if either operand is a

floating-point number. The changes for fixed-point numeric operands align their decimal points and pad

them with zeros. Numeric type changes might truncate fractional digits if more than 31 total digits are

174 System i: Database Database programming

|
|
|
|
|
|
|
|
|
|
|

||||

|||

|||

|||

|||

|||

|

||

||

||

||
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

required for fixed-point numbers, or might drop some of the least significant digits if more than 15 total

digits are required for floating-point numbers. Character operands are changed by padding the shorter

operand with blanks.

The *CT operator performs a scan of the character field or string expression (except for expressions made

up of a single character string literal) that must be specified as the left side of the relation, in order to

determine if it contains the character string, field, or expression value specified as the right side of the

relation. The second operand (the search value) must be no longer than the first operand (the base

string).

If the string is found, the relation is satisfied and the result is a logical value of ’true’; otherwise, the

result is a logical ’false’ value. The following example illustrates this process:

v Field BASEFLD contains the value ’THIS IS A TEST’.

v Field TESTFLD contains the value ’TE’.

 Expression Result

’BASEFLD *CT ’’IS A’’’ True

’BASEFLD *CT TESTFLD True

’BASEFLD *CT ’’X’’’ False

’BASEFLD *CT TESTFLD | | ’’Z’’’ False

’BASEFLD | | ’’ABC’’ *CT ’’TAB’’’ True

Built-in functions:

These built-in functions are supported for an expression that is used to define a derived field on the

MAPFLD parameter or for a complex selection operand specified on the QRYSLT or GRPSLT parameter.

 A numeric argument is a numeric field, a numeric constant or a numeric expression. A string argument is

a character field, a character string literal, or a string expression. Unless otherwise noted, all built-in

functions allow expressions, including other built-in functions, to be used as arguments.

For a field that appears in the record format identified by the FORMAT parameter, and that is also

defined by an expression on the MAPFLD parameter, the expression result is calculated by using the

attributes described in the following paragraphs. Then the resultant value is mapped to match the

attributes of the field.

%ABSVAL (numeric-argument)

%ABSVAL accepts a numeric argument and returns the absolute value of the argument. The

returned value has the same attributes as the argument, unless the argument is a *BIN2, in which

case the returned value is a *BIN4.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a packed decimal number (*DEC) with 8 digits and 0 precision (date

duration), 6 digits and 0 precision (time duration), or 20 digits and 6 precision (timestamp

duration).

%ACOS (numeric-argument)

%ACOS accepts a numeric argument and returns the arc cosine of the argument, in radians.

%ACOS and %COS are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%AND (string-argument ...)

Database programming 175

|
|
|

|
|
|
|
|

|
|

|

|

|||

||

||

||

||

||
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

%AND accepts two or more character or hexadecimal string arguments and returns a string that

is the bit-wise ’AND’ (logical and) of the arguments. This function takes the first argument string,

ANDs it with the next string, and continues to AND each successive argument with the previous

result. If an argument is encountered that is shorter than the previous result, it is padded on the

right with blanks. The returned value is a string of type *HEX with the same length as the

longest argument. If any of the arguments are variable-length, the maximum length is used as the

length of the argument.

%ANTILOG (numeric-argument)

%ANTILOG accepts a numeric argument and returns the antilogarithm (base 10) of the argument.

%ANTILOG and %LOG are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%ASIN (numeric-argument)

%ASIN accepts a numeric argument and returns the arc sine of the argument, in radians. %ASIN

and %SIN are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%ATAN (numeric-argument)

%ATAN accepts a numeric argument and returns the arc tangent of the argument, in radians.

%ATAN and %TAN are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%ATANH (numeric-argument)

%ATANH accepts a numeric argument and returns the hyperbolic arc tangent of the argument, in

radians. %ATANH and %TANH are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%AVG (numeric-argument)

%AVG accepts a numeric argument and returns the average value of its argument for the group

of records defined on the GRPFLD parameter. The argument must be a field name or an

expression (not a literal).

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. If no records are selected, the result is the null value. Otherwise,

v If the argument is fixed-point, the result is a packed decimal number (*DEC) with 31 total

digits and the same number of integer digits as the argument.

v If the argument is floating-point, the result is a double-precision floating-point number (*FLT8).

v If the argument is date duration, time duration, or timestamp duration, the returned value is a

packed decimal number (*DEC) with 31 digits and 0 precision (date duration), 31 digits and 0

precision (time duration), or 31 digits and 6 precision (timestamp duration).

%AVG is an aggregate function that is used for a nongrouping field in a query that uses the

grouping function.

%CHAR (date/time-argument date/time-format)

%CHAR accepts a date/time argument and date/time format and returns the character

176 System i: Database Database programming

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

representation of the argument using the specified format. The date/time argument can be a date,

time, or timestamp field. The returned value is of type *CHAR and is tagged with the CCSID of

the current job.

 The date/time format is optional. If specified, it must be one of the following formats:

EUR European format

ISO International Standards Organization format

JIS Japanese Industrial Standard format

USA United States format

If the format is not specified, the job default format is used.

Example:

OPNQRYF

 FILE(library/file)

 GRPFLD(charfld)

 GRPSLT(’charfld = %CHAR(timefld "USA")’)

%COS (numeric-argument)

%COS accepts a numeric argument and returns the cosine of the argument. The argument must

be specified in radians. %COS and %ACOS are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%COSH (numeric-argument)

%COSH accepts a numeric argument and returns the hyperbolic cosine of the argument. The

argument must be specified in radians.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%COT (numeric-argument)

%COT accepts a numeric argument and returns the cotangent of the argument. The argument

must be specified in radians.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%COUNT

 %COUNT does not support any arguments. It returns the count of the number of records

contained in the group of records defined on the GRPFLD parameter. The returned value is a

4-byte binary number (*BIN4) with 10 total decimal digits and no fraction digits. %COUNT is an

aggregate function that applies only to a query that uses the grouping function.

%CURDATE

 %CURDATE does not support any arguments. It obtains the current date based on a reading of

the time-of-day clock. The returned value is of type *DATE. The format and separator are derived

from the job attributes.

%CURSERVER

 %CURSERVER does not support any arguments. If only non-distributed files are specified then it

obtains the current server name (or RDB name) of the local system. If distributed files are

specified then it obtains the current server name (or RDB name) of the COORDINATOR node.

The returned value is of type variable-length character (*VCHAR) with a maximum length of 18.

Database programming 177

|
|
|

|

||

||

||

||

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|

%CURTIME

 %CURTIME does not support any arguments. It obtains the current time based on a reading of

the time-of-day clock. The returned value is of type *TIME. The format and separator are derived

from the job attributes.

%CURTIMESTP

 %CURTIMESTP does not support any arguments. It obtains the current timestamp based on a

reading of the time-of-day clock. The returned value is of type *TIMESTP. The format and

separator will be derived from the job attributes.

%CURTIMEZONE

 %CURTIMEZONE does not support any arguments. It obtains the current time zone. The

returned value is a packed decimal number (*DEC) with 6 digits and 0 precision.

%DATE (date/time-argument)

%DATE accepts a date/time argument and returns a date. The date/time argument can be a date

or timestamp field, a character or hexadecimal field containing the external form of a date, a date

literal, or a numeric field or literal value in the range 1 - 3,652,059. The returned value is of type

*DATE.

 Example:

 OPNQRYF

 FILE(library/file)

 QRYSLT((’%DATE(tstampfld) =

 "1989-10-23"’))

%DAY (date/time-argument)

%DAY accepts a date/time argument and returns the day part of the value. The date/time

argument can be a date or timestamp field, a date duration or timestamp duration (field or

literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0

precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 8 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

%DAYS (date/time-argument)

 %DAYS accepts a date/time argument and returns an integer representation of the date. The

date/time argument can be a date or timestamp field, a character or hexadecimal field containing

the external form of a date, or a date literal. The returned value is of type *BIN4.

%DIGITS (numeric-argument)

 %DIGITS accepts a numeric argument and returns a character representation of its numeric value,

not including the sign or a decimal point. The result is tagged with the CCSID of the current job.

For example, %DIGITS (-1.5) returns the character string 15. The numeric argument must not be a

floating point number.

%DURDAY (integer-argument)

%DURDAY accepts an integer argument and returns a labeled duration of days. The integer

argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition of the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

date or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURHOUR (integer-argument)

%DURHOUR accepts an integer argument and returns a labeled duration of hours. The integer

argument for this function can be a numeric expression, a field, or a literal.

178 System i: Database Database programming

|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMICSEC (integer-argument)

%DURMICSEC accepts an integer argument and returns a labeled duration of microseconds. The

integer argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMINUTE (integer-argument)

%DURMINUTE accepts an integer argument and returns a labeled duration of minutes. The

integer argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURMONTH (integer-argument)

%DURMONTH accepts an integer argument and returns a labeled duration of months. The

integer argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

date or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURSEC (integer-argument)

%DURSEC accepts an integer argument and returns a labeled duration of seconds. The integer

argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition on the MAPFLD

parameter, and is allowed as part of an arithmetic (addition or subtraction) expression with a

time or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

%DURYEAR (integer-argument)

%DURYEAR accepts an integer argument and returns a labeled duration of years. The integer

argument for this function can be a numeric expression, a field, or a literal.

 This built-in function is allowed to stand by itself in the mapped-field-definition value on the

MAPFLD parameter, and is allowed as part of an arithmetic (addition or subtraction) expression

with a date or timestamp field on the QRYSLT, GRPSLT, or MAPFLD parameters.

Example:

OPNQRYF

 FILE((library/file))

 QRYSLT(’startfld > %CURDATE + oneyear *AND

 endfld < %CURDATE + %DURYEAR(2)’)

 MAPFLD((oneyear ’%DURYEAR(1)’))

%EXP (numeric-argument)

%EXP accepts a numeric argument and returns a value that is the base of the natural logarithm

(e) raised to a power specified by the argument. %EXP and %LN are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%HASH (expression-argument)

%HASH accepts a valid expression and returns a 4-byte binary number (*BIN4) with 10 total

decimal digits and no fraction digits. The returned value will be the partition number of the

record selected.

Database programming 179

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

A valid expression cannot include aggregate functions such as %COUNT, %AVG, %MIN, %MAX,

%SUM, and %STDDEV as operands to %HASH.

Use the %HASH function to determine what the partitions are if the partitioning key is composed

of EMPNO and LASTNAME. The following example returns the partition number for every row

in EMPLOYEE.

Example:

OPNQRYF

 FILE((CORPDATA/EMPLOYEE))

 FORMAT(FNAME)

 MAPFLD((HASH ’%HASH((1/EMPNO) (1/LN))’))

%HEX (hexadecimal-argument)

 %HEX accepts an argument and returns the hexadecimal equivalent of the argument’s value. The

hexadecimal argument can be of any type. The returned value is of type *CHAR, and is tagged

with the CCSID of the current job.

%HOUR (date/time-argument)

%HOUR accepts a date/time argument and returns the hour part of the value. The date/time

argument can be a time or timestamp field, a time duration or timestamp duration (either field or

literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0

precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 6 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

Example:

Example:

 OPNQRYF

 FILE(library/file)

 QRYSLT((’%HOUR(timefld2) = 12’))

%LEN (length-argument)

%LEN accepts one argument and returns the number of bytes used to represent the value unless

the value is a graphic field type. If the value is a graphic field type, the number of graphic

characters is returned. The length argument can be of any type. The returned value is of type

*BIN4.

 Example:

OPNQRYF

 FILE(library/file)

 QRYSLT(’%LEN(varlenfld) <= 30’)

Argument Type Result Length in Bytes

-------------------- ----------------------

Character 1-32766

Hex 1-32766

DBCS-only 4-32766

DBCS-either 4-32766

DBCS-open 4-32766

DBCS-graphic 1-16383

Variable Character 0-32740

Variable Hex 0-32740

Variable DBCS-only 0-32740

Variable DBCS-either 0-32740

Variable DBCS-open 0-32740

Variable DBCS-graphic 0-16370

Date 4

Time 3

Timestamp 10

Binary *BIN4 2

Binary *BIN8 4

180 System i: Database Database programming

|
|

|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Floating point *FLT4 4

Floating point *FLT8 8

Packed decimal (p,s) INTEGER(p/2)+1, (1-16)

Zoned decimal (p,s) p (1-31)

--

p=precision, s=scale

String notes: The %LEN function returns the length of the value as it is stored in the data space.

v For fixed-length fields, the length is always the same as the declared size of the field, not the

length of the actual data in the field.

v For variable-length fields, the length is the length of the actual data in the field, including

trailing blanks.

For example, assume FIXED10 is a *CHAR(10) field, and VAR10 is a *VCHAR(10) field. The

following example shows results of the %LEN function:

%LEN Statement Field Data Result

-------------- ------------ ------

%LEN(fixed10) ’1234567890’ 10

%LEN(fixed10) ’12345’ 10

%LEN(var10) ’1234567890’ 10

%LEN(var10) ’12345’ 5

%LEN(var10) ’12345 ’ 7

%LEN(var10) ’’ 0

%LN (numeric-argument)

%LN accepts a numeric argument and returns the natural logarithm of the argument. %LN and

%EXP are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%LOG (numeric-argument)

%LOG accepts a numeric argument and returns the common logarithm (base 10) of the argument.

%LOG and %ANTILOG are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%MAX (numeric-or-string-or-date/time-argument ...)

%MAX accepts one or more character-string, DBCS-string, numeric, or date/time arguments, and

returns the largest value from the list. Date/time arguments are arguments of type *DATE,

*TIME, or *TIMESTP, or arguments that are date, time, or timestamp durations. String arguments

must be no longer than 256 bytes.

 If only one argument is specified, this function returns the maximum value of its argument for

the group of records defined on the GRPFLD parameter, and the returned value has the same

attributes as the argument. If no records are selected, the result is the null value. If the single

argument is a date duration, time duration, or timestamp duration, then the returned value is a

packed decimal number (*DEC) with 8 digits and 0 precision (date duration), 6 digits and 0

precision (time duration), or 20 digits and 6 precision (timestamp duration). When a single

argument is used, it must be a field name or an expression (not a literal). %MAX with only one

argument is an aggregate function that is used for a nongrouping field in a query that uses the

grouping function.

If multiple arguments are specified, %MAX returns the maximum value of all the arguments. All

arguments must be either character-string, DBCS-string, numeric, or date/time values. This

function calculates the maximum value of the first two arguments, and then continues to

determine the maximum value of the previous result and the next successive argument. The final

result is determined according to the following value conversion rules.

Database programming 181

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

If an argument has different attributes than the previous result, the two values are converted to

identical attributes and the operation continues. This conversion uses packed decimal if both

values are fixed-point numeric values, or floating-point if either value is floating-point. The

conversion for fixed-point numeric values aligns the decimal points and pads the values with

zeros. Numeric type changes might truncate fractional digits if more than 31 total digits are

required for fixed-point numbers, or drop some of the least significant digits if more than 15 total

digits are required for floating-point numbers. Character values are changed by padding the

shorter field with blanks.

%MICSEC (date/time-argument)

 %MICSEC accepts a date/time argument and returns the microsecond part of the value. The

date/time argument can be a timestamp (field or literal), a timestamp duration (field or literal), a

character field that contains the external form of a timestamp, or a numeric field or literal. The

returned value is of type *BIN4. A numeric field argument must be defined as packed decimal

(*DEC) with 20 digits and 6 precision for timestamp duration. A numeric constant argument must

be 14 digits followed by a decimal point and 6 digits.

%MIN (numeric-or-string-or-date/time-argument ...)

%MIN accepts one or more character-string, DBCS-string, numeric, or date/time arguments, and

returns the smallest value from the list. Date/time arguments are arguments of type *DATE,

*TIME, or *TIMESTP, or arguments that are date, time, or timestamp durations. String arguments

must be no longer than 256 bytes.

 If only one argument is specified, this function returns the minimum value of its argument for

the group of records defined on the GRPFLD parameter, and the returned value has the same

attributes as the argument. If no records are selected, the result is the null value. If the single

argument is a date duration, time duration, or timestamp duration, then the returned value is a

packed decimal number (*DEC) with 8 digits and 0 precision (date duration), 6 digits and 0

precision (time duration), or 20 digits and 6 precision (timestamp duration). When a single

argument is used, it must be a field name or an expression (not a literal). %MIN with only one

argument is an aggregate function that is used for a nongrouping field in a query that uses the

grouping function.

If multiple arguments are specified, %MIN returns the minimum value of all the arguments. All

arguments must be either character-string, DBCS-string, numeric, or date/time values. This

function calculates the minimum value of the first two arguments, and then continues to

determine the minimum value of the previous result and the next successive argument. The final

result is determined by the value change rules described below.

If an argument has different attributes than the previous one, the two values are changed to

identical attributes and the operation continues. This change uses packed decimal numbers if

both values are fixed-point numeric values, or floating-point numbers if either value is a

floating-point number. The change for fixed-point numeric values aligns the decimal points and

pads with zeros. Numeric type change might truncate fractional digits if more than 31 total digits

are required for fixed-point numbers, or might drop some of the least significant digits if more

than 15 total digits are required for floating-point numbers. Character values are changed by

padding the shorter field with blanks.

%MINUTE (date/time-argument)

%MINUTE accepts a date/time argument and returns the minute part of the value. The

date/time argument can be a time or timestamp field, a time duration or timestamp duration

(either field or literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0

precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 6 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

182 System i: Database Database programming

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

%MONTH (date/time-argument)

%MONTH accepts a date/time argument and returns the month part of the value. The date/time

argument can be a date or timestamp field, a date duration or timestamp duration (field or

literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0

precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 8 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

%NODENAME (integer-argument)

%NODENAME accepts an integer-argument which is used to identify a file that has been

specified on the FILE parameter. The argument must be greater than 0 and less than or equal to

the number of files specified on the file parameter. The %NODENAME function returns the RDB

name for the record retrieved. The returned value is of type *VCHAR of length 18.

 Find the node name for every record of the EMPLOYEE table.

Example:

OPNQRYF

 FILE((CORPDATA/EMPLOYEE))

 FORMAT(FNAME)

 MAPFLD((NODENAME ’%NODENAME(1)’))

Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO) and

determine the node from which each record involved in the join originated.

Example:

OPNQRYF

 FILE((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))

 FORMAT(FNAME)

 JFLD((EMPLOYEE/DEPTNO DEPARTMENT/DEPTNO *EQ))

 MAPFLD((EMPNO ’EMPLOYEE/EMPNO’)

 (NODENAME1 ’%NODENAME(1)’)

 (NODENAME1 ’%NODENAME(2)’))

Join the EMPLOYEE and DEPARTMENT tables, select all records of the result where the records

of the two tables are on the same node.

Example:

OPNQRYF

 FILE((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))

 FORMAT(FNAME)

 JFLD((1/NODENAME1 2/NODENAME2 *EQ))

 MAPFLD((NODENAME1 ’%NODENAME(1)’)

 (NODENAME2 ’%NODENAME(2)’))

%NODENUMBER (integer-argument)

%NODENUMBER accepts an integer-argument which is used to identify a file that has been

specified on the FILE parameter. The argument must be greater than zero and less than or equal

to the number of files specified on the file parameter. The %NODENUMBER function returns a

4-byte binary number (*BIN4) with 10 total decimal digits and no fraction digits. The returned

value will be the node number of the record selected.

 If the argument identifies a non-distributed file, the value zero is returned.

For OPNQRYF the node number from the secondary file where the outer or exception join is

performed will be returned.

If CORPDATA.EMPLOYEE is a distributed file, then the node number for each record and the

employee name will returned.

Example:

Database programming 183

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|

OPNQRYF

 FILE((CORPDATA/EMPLOYEE))

 FORMAT(FNAME)

 MAPFLD((NODENAME ’%NODENUMBER(1)’)

 (LNAME ’1/LASTNAME’))

%NONNULL (argument ...)

%NONNULL accepts a list of two or more arguments and returns the first non-null value from

the list. The items in the argument list can be fields or literal values of any type. The type of the

returned value is that of the item selected from the list.

 Example:

OPNQRYF

 FILE(library/file)

 QRYSLT(’%NONNULL(fld1 fld2 0) > 0’)

The above example selects records from the file where either field FLD1 or field FLD2 contains a

non-null value that is greater than zero. If both FLD1 and FLD2 were null, the %NONNULL

function specified in this example would return ’0’ because of the constant ’0’ passed as the third

argument. If any field is DBCS-graphic, all fields must be DBCS-graphic.

%NOT (string-argument)

 %NOT accepts a character or hexadecimal string argument and returns a string that is the

bit-wise ’NOT’ (logical not) of the argument. The returned value is a string of type *HEX with the

same length as the argument.

%OR (string-argument ...)

 %OR accepts two or more character-string arguments and returns a string that is the bit-wise

’OR’ (logical inclusive or) of the arguments. This function takes the first argument string, ORs it

with the next string, and then continues to OR each successive argument with the previous result.

If an argument is encountered that is shorter than the previous result, it is padded with blanks.

The final result is a string with the same length as the longest argument. If any of the arguments

are variable-length, the maximum length is used as the length of the argument.

%PARTITION (integer-argument)

%PARTITION accepts an integer-argument which is used to identify a file that has been specified

on the FILE parameter. The argument must be greater than 0 and less than or equal to the

number of files specified on the file parameter. The partition function returns a 4-byte binary

number (*BIN4) with 10 total decimal digits and no fraction digits. The returned value will be the

partition number of the record.

 If the argument identifies a non-distributed file then a value of zero will be returned.

Find the PARTITION number for every row of the EMPLOYEE table. This can be used to

determine if there is data skew.

Example:

OPNQRYF FILE((CORPDATA/EMPLOYEE))

 FORMAT(FNAME)

 MAPFLD((PART1 ’%PARTITION(1)’))

Select the employee number (EMPNO) from the EMPLOYEE table for all records where the

partition number is equal to 100.

Example:

OPNQRYF

 FILE((EMPLOYEE))

 QRYSLT(’%PARTITION(1) *EQ 100’)

Join the EMPLOYEE and DEPARTMENT tables, select all records of the result where the records

of the two tables have the same partition number

Example:

184 System i: Database Database programming

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|
|
|

|
|

|

|
|
|

|
|

|

OPNQRYF

 FILE((CORPDATA/EMPLOYEE) (CORPDATA/DEPARTMENT))

 FORMAT(FNAME)

 JFLD((1/PART1 2/PART2 *EQ))

 MAPFLD((PART1 ’%PARTITION(1)’)

 (PART2 ’%PARTITION(2)’))

%SECOND (date/time-argument)

%SECOND accepts a date/time argument and returns the seconds part of the value. The

date/time argument can be a time or timestamp field, a time duration or timestamp duration

(either field or literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 6 digits and 0

precision for time duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 6 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

%SIN (numeric-argument)

%SIN accepts a numeric argument and returns the sine of the argument. The argument must be

specified in radians. %SIN and %ASIN are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%SINH (numeric-argument)

%SINH accepts a numeric argument and returns the hyperbolic sine of the argument. The

argument must be specified in radians.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%SQRT (numeric-argument)

%SQRT accepts a numeric argument and returns the square root of the argument.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%SST (string-argument start-position-expression <length-expression>)

%SST and %SUBSTRING accept a character, hexadecimal, DBCS, or graphic string, a starting

position expression, and an optional length expression as arguments. They return a substring of

the string argument that is of the same type and CCSID as the string argument and has length

equal to the value specified by the length-expression.

 Single-byte substringing is done when these functions (%SST and %SUBSTRING) are used for

DBCS data. The shift-out and shift-in characters might be lost, which produces unusual results.

The result of the DBCS substring operation is the DBCS-open type.

The string argument can be a fixed- or variable-length character, hexadecimal, DBCS, or graphic

field or an expression which evaluates to a fixed- or variable-length character, hexadecimal,

DBCS, or graphic string.

The values derived from expressions for the second and third arguments must be valid integers.

The second argument must have a value between 1 and the length attribute (or maximum length

of a variable-length field) of the first argument, and the third argument must have a value

between 1 and the length attribute (or maximum length of a variable-length field) of the first

argument.

If an argument is DBCS-graphic, the second and third arguments must also be specified as

DBCS-graphic characters, not bytes.

Database programming 185

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

If an expression is given for the second or third arguments, the expression must be enclosed in

parentheses.

If the expressions evaluate to variable-length results, no validation of the range of these

expressions is guaranteed and errors might occur during input/output processing.

The maximum value allowed for the third argument (length) is 32766 except for DBCS-graphic,

which is 16383. However, if the third operand is represented by an expression, this causes the

result to be variable-length. Thus, the value of the expression cannot exceed 32740 except for

DBCS-graphic, which cannot exceed 16370.

The user can omit the third argument. If the third argument is not specified and the first

argument is:

v fixed-length, the default value for the third argument is LENGTH(argument_1) -

value_for_argument_2 + 1

v variable-length, the default value for the third argument is the maximum of 0 and

LENGTH(argument_1) - value_for_argument_2 + 1

v variable-length with a length less than the value for argument_2, the default value for the third

argument is zero and the result is the empty string.

Example:

OPNQRYF

 FILE(library/file)

 QRYSLT(’field1 =

 %SST(field2 (numfld1+3)

 (numfld1+numfld2))’)

%STDDEV (numeric-argument)

%STDDEV accepts a numeric argument and returns the standard deviation of its argument for

the group of records defined by the GRPFLD parameter. The argument must be a field name or

an expression (not a literal). If no records are selected, the result is the null value. Otherwise, the

returned value is a double-precision floating-point number (*FLT8). %STDDEV is an aggregate

function that is used for a nongrouping field in a query that uses the grouping function.

%STRIP (string-argument <strip-character><strip-function>)

%STRIP accepts a character-, DBCS-, or graphic-string argument, an optional strip character, and

an optional strip function as arguments. It returns a result string with the strip character removed

from the string argument as specified by the strip function.

 The string argument can be a literal, a fixed or variable-length character, hexadecimal, DBCS, or

graphic field, or an expression which evaluates to a fixed- or variable-length character,

hexadecimal, DBCS, or graphic string.

The strip character must be a single character, enclosed in apostrophes, with a data type

compatible to the source string. The default is a single SBCS space for character data, DBCS-open,

and DBCS-either, a single DBCS space for DBCS-only data, and a single graphic space for graphic

data.

The strip function can be one of three functions:

*LEAD

Remove leading strip character(s)

*TRAIL

Remove trailing strip character(s)

*BOTH

Remove both leading and trailing strip character(s)

The default strip function is *BOTH.

Example:

186 System i: Database Database programming

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

|

|

OPNQRYF

 FILE(library/file)

 QRYSLT(’%STRIP(fld ’.’ *TRAIL) = ’Mr’)

%SUBSTRING (string-field-name start-position length)

 %SUBSTRING performs the same operation as %SST. See the %SST description for more

information.

%SUM (numeric-argument)

%SUM accepts a numeric argument and returns the sum of all the values for its argument in the

group of records defined on the GRPFLD parameter and must be enclosed in parentheses. The

argument must be a field name or an expression (not a literal).

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. If no records are selected, the result is the null value. Otherwise,

v If the argument is floating-point number, the returned value is a double-precision floating-point

number (*FLT8).

v If the argument is a binary number with zero-precision, the returned value is *BIN4.

v If the argument is a binary number with nonzero precision or a fixed-point number, the

returned value is a packed decimal number (*DEC) with 31 total digits and as many fractional

digits as the argument.

v If the argument is of type date duration, time duration, or timestamp duration, the returned

value is a double-precision floating-point number (*FLT8).

%SUM is an aggregate function that is used for a nongrouping field in a query that uses the

grouping function.

%TAN (numeric-argument)

%TAN accepts a numeric argument and returns the tangent of the argument. The argument must

be specified in radians. %TAN and %ATAN are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The return value is a double-precision floating-point number (*FLT8).

%TANH (numeric-argument)

%TAN accepts a numeric argument and returns the hyperbolic tangent of the argument. The

argument must be specified in radians. %TANH and %ATANH are inverse operations.

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. Arguments of these types can be specified either as fields or literal values.

The returned value is a double-precision floating-point number (*FLT8).

%TIME (date/time-argument)

 %TIME accepts a date/time argument and returns a time. The date/time argument can be a time

or timestamp field, a character or hexadecimal field containing the external form of a time, or a

time literal. The returned value is of type *TIME.

%TIMESTP (date/time-argument date/time-argument)

%TIMESTP accepts one or two date/time arguments and returns a timestamp.

v If only one date/time argument is specified, it must be a timestamp (field or literal), or a

character or hexadecimal field containing the external form of a timestamp.

v If both arguments are specified,

1. The first date/time argument must be a date (field or literal), or a character or hexadecimal

field containing the external form of a date.

2. The second date/time argument must be a time (field or literal), or a character or

hexadecimal field containing the external form of a time.

The returned value is of type *TIMESTP.

Database programming 187

|
|
|

|

|
|

|
|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|

|

%USER

%USER does not support any arguments. It returns the user profile name of the job in which the

query is running. The returned value is of type variable-length character (*VCHAR) with a

maximum length of 18.

 Example:

OPNQRYF

 FILE(library/file)

 QRYSLT(’field = %USER’)

%VAR (numeric-argument)

%VAR accepts a numeric argument and returns the variance of its argument for the group of

records defined by the GRPFLD parameter. The argument must be a field name or an expression

(not a literal).

 The following argument types are treated as numeric values: date duration, time duration, and

timestamp duration. If no records are selected, the result is the null value. Otherwise, the

returned value is a double-precision floating-point number (*FLT8). %VAR is an aggregate

function that is used for a nongrouping field in a query that uses the grouping function.

%XLATE (string-argument qualified-table)

%XLATE accepts a character-string argument and the name of a table object (*TBL), and returns a

string that is the value of the first argument translated by using the contents of the table. The

returned value is a string with the same length and CCSID as the first argument.

 The second argument must be a simple or qualified table object name. If no library name is

specified, *LIBL is used to find the table.

%XOR (string-argument...)

 %XOR accepts two or more character-string arguments and returns a string that is the bit-wise

’XOR’ (logical exclusive or) of the arguments. This function takes the first argument string, XORs

it with the next string, and then continues to XOR each successive argument with the previous

result. If an argument is encountered that is longer than the previous result, the previous result is

padded with blanks before the XOR operation. If any of the arguments is variable-length, the

maximum length is used as the length of the argument. The final result is a string of type *HEX

with the same length as the longest argument.

%YEAR

%YEAR accepts a date/time argument and returns the year part of the value. The date/time

argument can be a date or timestamp field, a date duration or timestamp duration (field or

literal), or a numeric field or literal. The returned value is of type *BIN4.

 A numeric field argument must be defined as packed decimal (*DEC) with 8 digits and 0

precision for date duration or packed decimal (*DEC) with 20 digits and 6 precision for

timestamp duration. A numeric constant argument must have 8 digits followed by a decimal

point, or 14 digits followed by a decimal point and 6 digits.

Restricted built-in functions:

Some built-in functions are restricted in the way certain relational operators are specified on the QRYSLT

and GRPSLT parameters.

 The following built-in function is supported only as the second operand of the ’equal’ or ’not-equal’

relational operators specified on the QRYSLT and GRPSLT parameters:

%NULL

%NULL accepts no arguments. It is used to select or omit records based on whether a field in the

record contains a null value.

 Example:

188 System i: Database Database programming

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|

OPNQRYF

 FILE(library/file)

 QRYSLT(’charfld = %NULL’)

This query would select all the records where ’charfld’ contains the null value.

The following built-in functions are supported only as the second operand of the ’equal’ relational

operator specified on the QRYSLT and GRPSLT parameters:

%RANGE (low-value high-value)

%RANGE is used to identify the lower and upper boundaries for the value of a field or

expression. %RANGE must be specified as the right side of a relation whose operator is equal.

The low-value and high-value argument must be field names, character strings, or numeric

literals, to match the type of field or expression specified as left side of the relation. For example,

to select only records where the numeric field NBRFLD has a value ranging from 10 through 20,

specify as follows:

 ’nbrfld = %RANGE(10 20)’

If the low-value argument is greater than the high-value argument, the relation produces a logical

value of ’false’.

%VALUES (allowed-value...)

%VALUES is used to identify a list of allowed values for a field or expression. %VALUES must

be specified as the right side of a relation whose operator is equal. The allowed-value arguments

must be character string or numeric literals, to match the type of the field or expression specified

as the left side of the relation. For example, to select only records where the second character of

field CHARFLD has a value that is one of the values ’A’, ’E’, ’I’, ’O’, or ’U’, specify as follows:

 ’%SST(charfld 2 1) = %VALUES(’’A’’ ’’E’’ ’’I’’ ’’O’’ ’’U’’)’

%WLDCRD (’’pattern-string’’ ’’wild-characters’’)

%WLDCRD is used to specify a pattern that performs a wildcard scan of the character or

hexadecimal field or string expression (except for expressions made up of a single character-string

literal) that must be specified as the left side of the relation. %WLDCRD must be specified as the

right side of a relation whose operator is equal. The pattern-string argument must be a

character-string, DBCS, or graphic literal, to match the left side of the relation. The

wild-characters argument is an optional parameter that specifies what ’wildcard’ characters are

used in the pattern-string.

 If specified for character data only (no DBCS data), the wild-characters argument must be a

character-string literal of exactly two characters. The first character is the value that matches any

single character in the search string. The second character is the value that matches a substring of

any zero or more characters. The two characters must not be the same, but there is no

requirement that either character appear in the pattern-string. If the wild-characters argument is

omitted, the default is for an underline (’_’) to match any single character and an asterisk (’*’) to

match a substring of any zero or more characters.

If the wild-characters argument is specified for DBCS data only (no character data), the argument

must be a double-byte character-string literal of exactly two double-byte characters. The first

double-byte character is the value that will match any one double-byte character in the search

string. The second double-byte character is the value that will match a substring of any zero or

more characters. The two double-byte characters must not be the same, but there is no

requirement that either character appear in the pattern string. If the wild-characters argument is

omitted, the default is for a DBCS underline to match any one double-byte character and a DBCS

asterisk to match a substring of any zero or more double-byte characters.

If the wild-characters argument is specified for both character and DBCS data, in addition to the

previous rules, the argument must first contain a single-byte character-string literal (two

single-byte characters), then a double-byte character string (two double-byte characters).

Database programming 189

|
|
|

|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

In this case, the first character matches any single-byte character in the character string, the

second character matches a substring of any number of single-byte or double-byte characters. The

first double-byte character matches any double-byte character in the character string. The second

double-byte character matches a substring of any number of single-byte or double-byte

characters.

The following example selects only records where the character field CHARFLD contains a ’T’,

followed by any two characters and an ’E’, appearing anywhere in the field.

’charfld = %WLDCRD(’’*T__E*’’)’

Note: The asterisks at the start and end of the pattern-string are required to allow the ’T’ and ’E’

to appear somewhere other than the first and last positions in the field:

To select only records where the character field CHARFLD starts with the string ’ABC’, followed

by one or more other characters and then followed by the string ’XYZ’ (but not necessarily at the

end of the field), specify the following.

’charfld = %WLDCRD(’’ABC_*XYZ*’’)’

To select only records where the second character of field CHARFLD is an asterisk (’*’), the last

character is an underline (’_’), and the letter ’M’ appears somewhere in between, specify as

follows:

’charfld = %WLDCRD(’’#*.M._’’ ’’#.’’)’

Basic database file operations in programs

Your program can perform read, update, write, and delete operations on database files.

Setting a position in the file

After a file is opened by a job, the system maintains a position in the file for that job. The file position is

used in processing the file.

For example, if a program does a read operation requesting the next sequential record, the system uses

the file position to determine which record to return to the program. The system then sets the file

position to the record just read, so that another read operation requesting the next sequential record can

return the correct record. The system keeps track of all file positions for each job. In addition, each job

can have multiple positions in the same file.

The file position is first set to the position specified in the POSITION parameter on the Override with

Database File (OVRDBF) command. If you do not use an OVRDBF command, or if you take the default

for the POSITION parameter, the file position is set just before the first record in the member’s access

path.

A program can change the current file position by using the appropriate file positioning operation of a

high-level language (for example, SETLL in the RPG language or START in the COBOL language). A

program can also change the file position by using the Position Database File (POSDBF) command.

Note: File positioning by means of the OVRDBF command does not occur until the next time the file is

opened. Because a file can be opened only once within a control language (CL) program, this

command cannot be used within a single CL program to affect what is read through the Receive

File (RCVF) command.

At end of file, after the last read, the file member is positioned to *START or *END file position,

depending on whether the program was reading forward or backward through the file. The following

diagram shows *START and *END file positions. *START is at the top, with three records following, and

*END at the bottom.

190 System i: Database Database programming

|
|
|
|
|

|
|

|

|
|

|
|
|

|

|
|
|

|

Only a read operation, force-end-of-data operation, high-level language positioning operation, or specific

CL command to change the file position can change the file position. Add, update, and delete operations

do not change the file position. After a read operation, the file is positioned to the new record. This

record is then returned to your program. After the read operation is completed, the file is positioned at

the record just returned to your program. If the member is open for input, a force-end-of-data operation

positions the file after the last record in the file (*END) and sends the end-of-file message to your

program.

For sequential read operations, the current file position is used to locate the next or previous record on

the access path. For read-by-key or read-by-relative-record-number operations, the file position is not

used. If POSITION(*NONE) is specified at open time, no starting file position is set. In this case, you

must establish a file position in your program, if you are going to read sequentially.

If end-of-file delay was specified for the file on an OVRDBF command, the file is not positioned to

*START or *END when the program reads the last record. The file remains positioned at the last record

read. A file with end-of-file delay processing specified is positioned to *START or *END only when a

force-end-of-data (FEOD) occurs or a controlled job end occurs.

You can also use the POSDBF command to set or change the current position in your file for files opened

using either the Open Database File (OPNDBF) command or the Open Query File (OPNQRYF) command.

 Related concepts

 Control language

 “Waiting for more records when end of file is reached” on page 194
End-of-file delay is a method of continuing to read sequentially from a database file (logical or

physical) after an end-of-file condition occurs.
 Related reference

 Override with Database File (OVRDBF) command

Reading database records

The system provides various ways to read database records.

Note: Some high-level languages do not support all of the read operations available on the system. See

your high-level language topic collection for more information about reading database records.

Reading database records using an arrival sequence access path:

These read operations are allowed if the file is defined with an arrival sequence access path, or if the file

is defined with a keyed sequence access path, but you choose to ignore the keyed sequence access path.

 Note: The system performs the read operations based on the operations that you specify using your

high-level language. Your high-level language might not allow all of the following read operations.

See your high-level language topic collection to determine which operations are allowed.

 Related concepts

Database programming 191

“Ignoring the keyed sequence access path” on page 101
If a key field is defined for a database file, the system automatically uses the keyed sequence access

path. However, sometimes you can use the ACCPTH parameter to ignore the keyed sequence access

path for better performance.

Reading next operation:

This operation positions the file to the next record that is not deleted in the arrival sequence access path

and gets that record.

 Deleted records between the current position in the file and the next active record are skipped. (The

READ statement in the RPG language and the READ NEXT statement in the COBOL language are

examples of this operation.)

Reading previous operation:

This operation positions the file to the previous active record in the arrival sequence access path and gets

that record.

 Deleted records between the current file position and the previous active record are skipped. (The

READP statement in the RPG language and the READ PRIOR statement in the COBOL language are

examples of this operation.)

Reading first operation:

This operation positions the file to the first active record in the arrival sequence access path and gets that

record.

Reading last operation:

This operation positions the file to the last active record in the arrival sequence access path and gets that

record.

Reading same operation:

This operation gets the record that is identified by the current position in the file. The file position is not

changed.

Reading by relative record number operation:

This operation positions the file to the record that is identified by the relative record number in the

arrival sequence access path and gets that record.

 The relative record number must identify an active record and must be less than or equal to the largest

active relative record number in the member. This operation also reads the record in the arrival sequence

access path identified by the current file position plus or minus a specified number of records. (The

CHAIN statement in the RPG language and the READ statement in the COBOL language are examples of

this operation.) Special consideration should be given to creating or changing a file to reuse deleted

records if the file is processed by relative record processing.

 Related concepts

 “Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.

Reading database records using a keyed sequence access path:

192 System i: Database Database programming

These read operations can be used with a keyed sequence access path to get database records.

 When a keyed sequence access path is used, a read operation cannot position to the storage occupied by

a deleted record.

Note: The system performs the read operations based on the statements that you specify using your

high-level language. Your high-level language might not allow all of the following operations. See

your high-level language topic collection to determine which operations are allowed by the

language.

Reading next operation:

This operation gets the next record on the keyed sequence access path.

 If a record format name is specified, this operation gets the next record in the keyed sequence access path

that matches the record format. The current position in the file is used to locate the next record. (The

READ statement in the RPG language and the READ NEXT statement in the COBOL language are

examples of this operation.)

Reading previous operation:

This operation gets the previous record on the keyed sequence access path.

 If a record format name is specified, this operation gets the previous record in the keyed sequence access

path that matches the record format. The current position in the file is used to locate the previous record.

(The READP statement in the RPG language and the READ PRIOR statement in the COBOL language are

examples of this operation.)

Reading first operation:

This operation gets the first record on the keyed sequence access path.

 If a record format name is specified, this operation gets the first record on the access path with the

specified format name.

Reading last operation:

This operation gets the last record on the keyed sequence access path.

 If a record format name is specified, this operation gets the last record on the access path with the

specified format name.

Reading same operation:

This operation gets the record that is identified by the current file position. The position in the file is not

changed.

Reading by key operation:

This operation gets the record identified by the key value.

 Key operations of equal, equal or after, equal or before, read previous key equal, read next key equal,

after, or before can be specified. If a format name is specified, the system searches for a record of the

specified key value and record format name. If a format name is not specified, the entire keyed sequence

access path is searched for the specified key value. If the key definition for the file includes multiple key

fields, a partial key can be specified (you can specify either the number of key fields or the key length to

Database programming 193

be used). This allows you to do generic key searches. If the program does not specify a number of key

fields, the system assumes a default number of key fields. This default varies depending on if a record

format name is passed by the program. If a record format name is passed, the default number of key

fields is the total number of key fields defined for that format. If a record format name is not passed, the

default number of key fields is the maximum number of key fields that are common across all record

formats in the access path. The program must supply enough key data to match the number of key fields

assumed by the system. (The CHAIN statement in the RPG language and the READ statement in the

COBOL language are examples of this operation.)

Reading by relative record number operation:

For a keyed sequence access path, the relative record number can be used. This is the relative record

number in the arrival sequence, even though the member opened has a keyed sequence access path.

 If the member contains multiple record formats, a record format name must be specified. In this case, you

are requesting a record in the associated physical file member that matches the record format specified. If

the member opened contains select/omit statements and the record identified by the relative record

number is omitted from the keyed sequence access path, an error message is sent to your program and

the operation is not allowed. After the operation is completed, the file is positioned to the key value in

the keyed sequence access path that is contained in the physical record, which was identified by the

relative record number. This operation also gets the record in the keyed sequence access path identified

by the current file position plus or minus some number of records. (The CHAIN statement in the RPG

language and the READ statement in the COBOL language are examples of this operation.)

Reading when logical file shares an access path with more keys operation:

When the First-In First-Out (FIFO), Last-In First-Out (LIFO), or First-Changed First-Out (FCFO) keyword

is not specified in the data description specifications (DDS) for a logical file, the logical file can implicitly

share an access path that has more keys than the logical file being created.

 This sharing of a partial set of keys from an existing access path can lead to perceived problems for

database read operations that use these partially shared keyed sequence access paths. The problems

might appear to be:

v Records that should be read, are never returned to your program

v Records are returned to your program multiple times

What is actually happening is that your program or another currently active program is updating the

physical file fields that are keys within the partially shared keyed sequence access path, but that are not

actual keys for the logical file that is being used by your program (the fields being updated are beyond

the number of keys known to the logical file being used by your program). The updating of the actual

key fields for a logical file by your program or another program has always yielded the above results.

The difference with partially shared keyed sequence access paths is that the updating of the physical file

fields that are keys beyond the number of keys known to the logical file can cause the same

consequences.

If these consequences caused by partially shared keyed sequence access paths are not acceptable, the

FIFO, LIFO, or FCFO keyword can be added to the DDS for the logical file, and the logical file created

again.

Waiting for more records when end of file is reached:

End-of-file delay is a method of continuing to read sequentially from a database file (logical or physical)

after an end-of-file condition occurs.

194 System i: Database Database programming

When an end-of-file condition occurs on a file being read sequentially (for example, next/previous

record) and you have specified an end-of-file delay time (EOFDLY parameter on the Override with

Database File (OVRDBF) command), the system waits for the time you specified.

At the end of the delay time, another read is done to determine if any new records were added to the

file. If records were added, normal record processing is done until an end-of-file condition occurs again.

If records were not added to the file, the system waits again for the time specified. Special consideration

should be taken when using end-of-file delay on a logical file with select/omit specifications, opened so

that the keyed sequence access path is not used. In this case, after end-of-file is reached, the system

retrieves only those records added to a based-on physical file that meet the select/omit specifications of

the logical file.

Also, special consideration should be taken when using end-of-file delay on a file with a keyed sequence

access path, opened so that the keyed sequence access path is used. In this case, after end-of-file is

reached, the system retrieves only those records added to the file or those records updated in the file that

meet the specification of the read operation using the keyed sequence access path.

For example, end-of-file delay is used on a keyed file that has a numeric key field in ascending order. An

application program reads the records in the file using the keyed sequence access path. The application

program performs a read next operation and gets a record that has a key value of 99. The application

program performs another read next and no more records are found in the file, so the system attempts to

read the file again after the specified end-of-file delay time. If a record is added to the file or a record is

updated, and the record has a key value less than 99, the system does not retrieve the record. If a record

is added to the file or a record is updated and the record has a key value greater than or equal to 99, the

system retrieves the record.

For end-of-file delay times equal to or greater than 10 seconds, the job is eligible to be removed from

main storage during the wait time. If you do not want the job eligible to be moved from main storage,

specify PURGE(*NO) on the Create Class (CRTCLS) command for the CLASS the job is using.

To indicate which jobs have an end-of-file delay in progress, the status field of the Work with Active Jobs

(WRKACTJOB) display shows an end-of-file wait or end-of-file activity level for jobs that are waiting for

a record.

If a job uses end-of-file-delay and commitment control, it can hold its record locks for a longer period of

time. This increases the chances that some other job can try to access those same records and be locked

out. For that reason, be careful when using end-of-file-delay and commitment control in the same job.

If a file is shared, the OVRDBF command specifying an end-of-file delay must be requested before the

first open of the file because overrides are ignored that are specified after the shared file is opened.

There are several ways to end a job that is waiting for more records because of an end-of-file-delay

specified on the OVRDBF command:

v Write a record to the file with the end-of-file-delay that will be recognized by the application program

as a last record. The application program can then specify a force-end-of-data (FEOD) operation. An

FEOD operation allows the program to complete normal end-of-file processing.

v Do a controlled end of a job by specifying OPTION(*CNTRLD) on the End Job (ENDJOB) command,

with a DELAY parameter value time greater than the EOFDLY time. The DELAY parameter time

specified must allow time for the EOFDLY time to run out, time to process any new records that have

been put in the file, and any end-of-file processing required in your application. After new records are

processed, the system signals end of file, and a normal end-of-file condition occurs.

v Specify OPTION(*IMMED) on the ENDJOB command. No end-of-file processing is done.

v If the job is interactive, press the System Request key to end the last request.

The following example shows an end-of-file delay operation:

Database programming 195

The actual processing of the EOFDLY parameter is more complex than shown because it is possible to

force a true end-of-file if OPTION(*CNTRLD) on the ENDJOB command is used with a long delay time.

The job does not become active whenever a new record is added to the file. The job becomes active after

the specified end-of-file delay time ends. When the job becomes active, the system checks for any new

records. If new records were added, the application program gets control and processes all new records,

then waits again. Because of this, the job takes on the characteristic of a batch job when it is processing.

For example, it normally processes a batch of requests. When the batch is completed, the job becomes

inactive. If the delay is small, you can cause excessive system overhead because of the internal processing

required to start the job and check for new records. Normally, only a small amount of overhead is used

for a job waiting during end-of-file delay.

Note: When the job is inactive (waiting) it is in a long-wait status, which means it was released from an

activity level. After the long-wait status is satisfied, the system reschedules the job in an activity

level.

 Related concepts

 Work management

Releasing locked records:

196 System i: Database Database programming

The system automatically releases a locked record when the record is updated or deleted, or when you

read another record in the file. However, you might want to release a locked record without performing

these operations.

 Some high-level languages support an operation to release a locked record. See your high-level language

topic collection for more information about releasing record locks.

Note: The rules for locking are different if your job is running under commitment control.

 Related concepts

 Commitment control

Updating database records

The update operation allows you to change an existing database record in a logical or physical file.

The UPDAT statement in the RPG language and the REWRITE statement in the COBOL language are

examples of this operation. Before you update a database record, you must first read and lock the record.

You lock the record by specifying the update option on any of the read operations listed under “Reading

database records using an arrival sequence access path” on page 191 or “Reading database records using

a keyed sequence access path” on page 192.

If you issue several read operations with the update option specified, each read operation releases the

lock on the previous record before attempting to locate and lock the new record. When you do the

update operation, the system assumes that you are updating the currently locked record. Therefore, you

do not have to identify the record to be updated on the update operation. After the update operation is

done, the system releases the lock.

Note: The rules for locking are different if your job is running under commitment control.

If the update operation changes a key field in an access path for which immediate maintenance is

specified, the access path is updated if the high-level language allows it. (Some high-level languages do

not allow changes to the key field in an update operation.)

If you request a read operation on a record that is already locked for update and if your job is running

under a commitment control level of *ALL or *CS (cursor stability), then you must wait until the record is

released or the time specified by the WAITRCD parameter on the create file or override commands has

been exceeded. If the WAITRCD time is exceeded without the lock being released, an exception is

returned to your program and a message is sent to your job stating the file, member, relative record

number, and the job which has the lock. If the job that is reading records is not running under a

commitment control level of *ALL or *CS, the job is able to read a record that is locked for update.

If the file you are updating has an update trigger associated with it, the trigger program is called before

or after updating the record.

If the files being updated are associated with referential constraints, the update operation can be affected.

 Related concepts

 Commitment control

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Database programming 197

|
|
|

Adding database records

The write operation allows you to add a record to a physical file member.

The WRITE statement in the RPG language and the WRITE statement in the COBOL language are

examples of this operation. New records can be added to a physical file member or to a logical file

member that is based on the physical file member. If a multiple-format logical file is used, a record

format name must be supplied to tell the system which physical file member to add the record to.

The new record is normally added at the end of the physical file member. The next available relative

record number (including deleted records) is assigned to the new record. Some high-level languages

allow you to write a new record over a deleted record position (for example, the WRITE statement in

COBOL when the file organization is defined as RELATIVE). For more information about writing records

over deleted record positions, see your high-level language topic collection.

If the physical file to which records are added reuses deleted records, the system tries to insert the

records into slots that held deleted records. Before you create or change a file to reuse deleted records,

you should review the restrictions and tips for use to determine whether the file is a candidate for reuse

of deleted record space.

If you are adding new records to a file member that has a keyed access path, the new record appears in

the keyed sequence access path immediately at the location defined by the record key. If you are adding

records to a logical member that contains select/omit values, the omit values can prevent the new record

from appearing in the member’s access path.

If the file to which you are adding a record has an insert trigger associated with it, the trigger program is

called before or after inserting the record.

If the files you are adding to are associated with referential constraints, record insertion can be affected.

The SIZE parameter on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF)

commands determines how many records can be added to a physical file member.

 Related concepts

 “Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Identifying which record format to add in a file with multiple formats:

If your application uses a file name instead of a record format name for records to be added to the

database, and if the file used is a logical file with more than one record format, you need to write a

format selector program to determine where a record should be placed in the database.

 A format selector can be a control language (CL) program or a high-level language program. It must be

used if all of the following conditions are true:

v The logical file is not a join and not a view logical file.

v The logical file is based on multiple physical files.

198 System i: Database Database programming

|
|
|

v The program uses a file name instead of a record format name on the add operation.

If you do not write a format selector program for this situation, your program ends with an error when it

tries to add a record to the database.

Note: A format selector program cannot be used to select a member if a file has multiple members; it can

only select a record format.

When an application program wants to add a record to the database file, the system calls the format

selector program. The format selector program examines the record and specifies the record format to be

used. The system then adds the record to the database file using the specified record format name.

The following example shows the programming statements for a format selector program written in the

RPG/400 language:

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments+++...

+++*

C *ENTRY PLIST

C PARM RECORD 80

C* The length of field RECORD must equal the length of

C* the longest record expected.

C PARM FORMAT 10

C MOVELRECORD BYTE 1

C BYTE IFEQ ’A’

C MOVEL’HDR’ FORMAT

C ELSE

C MOVEL’DTL’ FORMAT

C END

The format selector receives the record in the first parameter; therefore, this field must be declared to be

the length of the longest record expected by the format selector. The format selector can access any

portion of the record to determine the record format name. In this example, the format selector checks the

first character in the record for the character A. If the first character is A, the format selector moves the

record format name HDR into the second parameter (FORMAT). If the character is not A, the format

selector moves the record format name DTL into the second parameter.

The format selector uses the second parameter, which is a 10-character field, to pass the record format

name to the system. When the system knows the name of the record format, it adds the record to the

database.

You do not need a format selector if:

v You are doing update operations only. For update operations, your program already retrieved the

record, and the system knows which physical file the record came from.

Database programming 199

v Your application program specifies the record format name instead of a file name for an add or delete

operation.

v All the records used by your application program are contained in one physical file.

To create the format selector, you use the create program command for the language in which you wrote

the program. You cannot specify USRPRF(*OWNER) on the create command. The format selector must

run under the user’s user profile not the owner’s user profile.

In addition, for security and integrity and because performance would be severely affected, you must not

have any calls or input/output operations within the format selector.

The name of the format selector is specified on the FMTSLR parameter of the Create Logical File

(CRTLF), Change Logical File (CHGLF), or Override with Database File (OVRDBF) command. The format

selector program does not have to exist when the file is created, but it must exist when the application

program is run.

 Related concepts

 “Controlling how records are added to a logical file with multiple formats” on page 43
To add a record to a multiple-format logical file, you need to identify the member of the based-on

physical file to which you want the record to be written.
 Related tasks

 “Creating a logical file” on page 39
You can create a logical file using data description specifications (DDS).

Using the force-end-of-data operation:

The force-end-of-data (FEOD) operation allows you to force all changes that were made to a file by your

program to auxiliary storage. It also allows you to position the read operation to either the beginning or

the end of a file if the file is open for input operations.

 Normally, the system determines when to force changes to auxiliary storage. However, you can use the

FEOD operation to ensure that all changes are forced to auxiliary storage.

*START sets the beginning or starting position in the database file member currently open to just before

the first record in the member (the first sequential read operation reads the first record in the current

member). If MBR(*ALL) processing is in effect for the Override with Database File (OVRDBF) command,

a read previous operation gets the last record in the previous member. If a read previous operation is

done and the previous member does not exist, the end of file message (CPF5001) is sent. *END sets the

position in the database file member currently open to just after the last record in the member (a read

previous operation reads the last record in the current member). If MBR(*ALL) processing is in effect for

the OVRDBF command, a read next operation gets the first record in the next member. If a read next

operation is done and the next member does not exist, the end of file message (CPF5001) occurs.

If the file has a delete trigger, the force-end-of-data operation is not allowed. If the file is part of a

referential parent relationship, the FEOD operation is not allowed.

See your high-level language topic collection for more information about the FEOD operation (some

high-level languages do not support the FEOD operation).

 Related concepts

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

200 System i: Database Database programming

|
|
|

“Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Deleting database records

The delete operation allows you to delete an existing database record.

The DELET statement in the RPG language and the DELETE statement in the COBOL language are

examples of this operation. To delete a database record, you must first read and lock the record. You lock

the record by specifying the update option on any of the read operations listed under “Reading database

records using an arrival sequence access path” on page 191 or “Reading database records using a keyed

sequence access path” on page 192. The rules for locking records for deletion and identifying which

record to delete are the same as for update operations.

Note: Some high-level languages do not require that you read the record first. These languages allow you

to specify which record you want deleted on the delete statement. For example, the RPG language

allows you to delete a record without first reading it.

When a database record is deleted, the physical record is marked as deleted. This is true even if the

delete operation is done through a logical file. A deleted record cannot be read. The record is removed

from all keyed sequence access paths that contain the record. The relative record number of the deleted

record remains the same. All other relative record numbers within the physical file member do not

change.

The space used by the deleted record remains in the file, but it is not reused until:

v The Reorganize Physical File Member (RGZPFM) command is run to compress and free these spaces in

the file member.

v Your program writes a record to the file by relative record number and the relative record number

used is the same as that of the deleted record.

Note: The system tries to reuse deleted record space automatically if the file has the reuse deleted record

space attribute specified.

The system does not allow you to retrieve the data for a deleted record. You can, however, write a new

record to the position (relative record number) associated with a deleted record. The write operation

replaces the deleted record with a new record. See your high-level language topic collection for more

details about how to write a record to a specific position (relative record number) in the file.

To write a record to the relative record number of a deleted record, that relative record number must exist

in the physical file member. You can delete a record in the file using the delete operation in your

high-level language. You can also delete records in your file using the Initialize Physical File Member

(INZPFM) command. The INZPFM command can initialize the entire physical file member to deleted

records.

If the file from which you are deleting has a delete trigger associated with it, the trigger program is

called before or after deleting the record.

If the file is part of a referential constraint relationship, record deletion might be affected.

 Related concepts

 “Reorganizing a physical file member” on page 208
You can reorganize a physical file member to change the manner in which records are stored on the

i5/OS operating system.

Database programming 201

“Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.

 “Initializing data in a physical file member” on page 207
To use relative record processing in a program, a database file must contain a number of record

positions equal to the highest relative record number used in the program. Programs using

relative-record-number processing sometimes require that you initialize these records.

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Closing a database file

When your program completes processing a database file member, it should close the file. Closing a

database file disconnects your program from the file.

The close operation releases all record locks and all file member locks, forces all changes made through

the open data path (ODP) to auxiliary storage, then destroys the ODP. (When a shared file is closed but

the ODP remains open, the functions differ)

To close a database file in a program, use one of the following methods:

v High-level language close statements

Most high-level languages allow you to specify that you want to close your database files. For more

information about how to close a database file in a high-level language program, see your high-level

language topic collection.

v Close File (CLOF) command

You can use the CLOF command to close database files that were opened using either the Open

Database File (OPNDBF) or Open Query File (OPNQRYF) command.

v Reclaim Resources (RCLRSC) command

The RCLRSC command releases all locks (except, under commitment control, locks on records that

were changed but not yet committed), forces all changes to auxiliary storage, then destroys the ODP

for that file. You can use the RCLRSC command to allow a calling program to close the files of a called

program. (For example, if the called program returns to the calling program without closing its files,

the calling program can then close the files of the called program.) However, the normal way of closing

files in a program is with the high-level language close operation or through the CLOF command. For

more information about resource reclamation in the integrated language environment, see the ILE

Concepts book.

If a job ends normally (for example, a user signs off) and all the files associated with that job were not

closed, the system automatically closes all the remaining open files associated with that job, forces all

changes to auxiliary storage, and releases all record locks for those files. If a job ends abnormally, the

system also closes all files associated with that job, releases all record locks for those files, and forces all

changes to auxiliary storage.

When a process is trying to lock a file that is held by another process, the Close database file exit

program is called. This exit is called in the process that is holding the lock.

 Related concepts

202 System i: Database Database programming

|
|
|

“Sharing database files in the same job or activation group” on page 108
By default, the database management system allows one file to be read and changed by many users at

the same time. You can also share a file in the same job or activation group by specifying the SHARE

parameter.

 Control language

ILE Concepts PDF
 Related reference

 Close File (CLOF) command

 Reclaim Resources (RCLRSC) command

Monitoring database file errors in a program

When your applications perform operations on database files, you need to monitor messages about file

errors so as to take appropriate actions to prevent the errors.

Each high-level language (HLL) provides its own procedure for monitoring these messages, and you

should see the documentation for the HLL you are using to implement error message monitoring.

One or more of the following events occur when error conditions are detected during processing of a

database file:

v Messages can be sent to the program message queue for the program processing the file.

v An inquiry message can be sent to the system operator message queue.

v File errors and diagnostic information can appear to your program as return codes and status

information in the file feedback area.

For example, the COBOL language sets a return code in the file status field if it is defined in the

program.

System handling of error messages

If you do not monitor messages about database file errors, the system handles the errors.

The system also sets the appropriate error return code in the program. Depending on the error, the

system can end the job or send a message to the operator requesting further actions.

Effect of error messages on file positioning

If a message is sent to your program when your program is processing a database file member, the

position in the file is not lost.

The position remains at the record it was positioned to before the message was sent, except:

v After an end-of-file condition is reached and a message is sent to the program, the file is positioned at

*START or *END.

v After a conversion mapping message on a read operation, the file is positioned to the record containing

the data that caused the message.

Determining which messages you want to monitor

If your programming language allows you to monitor error messages, you can choose which messages

you want to monitor.

Here are some of the error messages that you can monitor.

 Table 46. Sample of monitorable error messages

Message identifier Description

CPF5001 End of file reached

Database programming 203

Table 46. Sample of monitorable error messages (continued)

Message identifier Description

CPF5006 Record not found

CPF5007 Record deleted

CPF5018 Maximum file size reached

CPF5025 Read attempted past *START or *END

CPF5026 Duplicate key

CPF5027 Record in use by another job

CPF5028 Record key changed

CPF5029 Data mapping error

CPF502B Error in trigger program

CPF502D Referential constraint violation

CPF5030 Partial damage on member

CPF5031 Maximum number of record locks exceeded

CPF5032 Record already allocated to job

CPF5033 Select/omit error

CPF5034 Duplicate key in another member’s access path

CPF503A Referential constraint violation

CPF5040 Omitted record not retrieved

CPF5072 Join value in member changed

CPF5079 Commitment control resource limit exceeded

CPF5084 Duplicate key for uncommitted key

CPF5085 Duplicate key for uncommitted key in another access path

CPF5090 Unique access path problem prevents access to member

CPF5097 Key mapping error

You can display the full description of these messages using the Display Message Description

(DSPMSGD) command.

 Related concepts

 Monitoring for messages in a CL program or procedure

 Control language
 Related reference

 Display Message Description (DSPMSGD) command

Managing database files

You can manage and maintain control over database files in various ways.

Basic operations for managing database files

The basic operations for managing database files are copying a file and moving a file.

Copying a file

You can copy a file using iSeries Navigator or the Copy File (CPYF) command.

Copying a file (table) using iSeries Navigator

Copying a table to a different schema creates two instances of the same table. To copy a table to a

different schema, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database and schema that you want to work with.

4. Click the Tables container.

204 System i: Database Database programming

5. Right-click the table and click Copy.

6. Right-click the schema you want to copy the table to and click Paste.

Distributed data management (DDM) is used by iSeries Navigator to actually move or copy the table. If

the operating system on the source system is running Version 4 Release 4 or later and if the operating

system on the target system is running Version 4 Release 2 or later, the operation is performed using

DDM over TCP/IP. Otherwise the operation is performed using DDM over SNA. For a move or copy

operation using DDM over SNA, the names by which iSeries Access knows the systems must be the same

as the remote location names specified in the APPC or APPN device descriptions used by DDM. For a

move or copy operation using DDM over TCP/IP, TCP communications must be enabled between the

systems. For TCP/IP, it is important to note that TCP/IP must be enabled between the systems as they

are known to iSeries Access.

Copying a file using the Copy File (CPYF) command

The Copy File (CPYF) command copies all or part of a database or an external device file to a database or

an external device file.

 Related concepts

 Control language
 Related reference

 Copy File (CPYF) command

Moving a file

You can move a database file from one library to another using iSeries Navigator or the Move Object

(MOVOBJ) command.

Moving a file (table) using iSeries Navigator

To move a file (table) to a different library, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database and schema that you want to work with.

4. Click the Tables container.

5. Right-click the table and click Cut.

6. Right-click the schema you want to move the table to and click Paste, or drag the table and drop it on

another library on the same system or a different system.

Note: Moving a table to a new location does not always remove it from the source system. For example,

if you have read authority but not delete authority to the source table, the table is moved to the

target system; however, it is not deleted from the source system, causing two instances of the table

to exist.

Distributed data management (DDM) is used by iSeries Navigator to actually move or copy the table. If

the operating system on the source system is running Version 4 Release 4 or later and if the operating

system on the target system is running Version 4 Release 2 or later, the operation is performed using

DDM over TCP/IP. Otherwise the operation is performed using DDM over SNA. For a move or copy

operation using DDM over SNA, the names by which iSeries Access knows the systems must be the same

as the remote location names specified in the APPC or APPN device descriptions used by DDM. For a

move or copy operation using DDM over TCP/IP, TCP communications must be enabled between the

systems. For TCP/IP, it is important to note that TCP/IP must be enabled between the systems as they

are known to iSeries Access.

Database programming 205

Moving a file using the Move Object (MOVOBJ) command

The Move Object (MOVOBJ) command removes an object from its currently assigned library and places it

in a different library. The type of the object moved is specified in the OBJTYPE parameter.

 Related concepts

 Distributed data management

 Control language
 Related reference

 Move Object (MOVOBJ) command

Managing database members

You can perform various operations on database file members, such as adding and removing members

and changing member attributes.

Before you perform any input or output operations on a file, the file must have at least one member. As a

general rule, a database file has only one member, the one created when the file is created. The name of

this member is the same as the file name, unless you give it a different name. Because most operations on

a database file assume that the member being used is the first member in the file, and because most files

only have one member, usually you do not have to be concerned with, or specify, member names.

If a file contains more than one member, each member serves as a subset of the data in the file. This

allows you to classify data easier. For example, you define an accounts receivable file. You decide that

you want to keep data for a year in that file, but you frequently want to process data just one month at a

time. For example, you create a physical file with 12 members, one named for each month. Then, you

process each month’s data separately (by individual member). You can also process several or all

members together.

Member operations common to all database files

The system allows you to make changes to file definitions. You can use control language (CL) commands

to perform most of these operations.

 Related concepts

 Control language

Adding members:

You can use several methods to add members to a database file.

 v Automatically. When a file is created using the Create Physical File (CRTPF) or Create Logical File

(CRTLF) command, the default is to automatically add a member (with the same name as the file) to

the newly created file. (The default for the Create Source Physical File (CRTSRCPF) command is not to

add a member to the newly created file.) You can specify a different member name using the MBR

parameter on the create database file commands. If you do not want a member added when the file is

created, specify *NONE on the MBR parameter.

v Specifically. After the file is created, you can add a member using the Add Physical File Member

(ADDPFM) or Add Logical File Member (ADDLFM) command.

v The Copy File (CPYF) command. If the member you are copying does not exist in the file being copied

to, the member is added to the file by the CPYF command.
 Related reference

 Create Physical File (CRTPF) command

 Create Logical File (CRTLF) command

 Add Physical File Member (ADDPFM) command

 Copy File (CPYF) command

206 System i: Database Database programming

Changing member attributes:

You can use the Change Physical File Member (CHGPFM) or Change Logical File Member (CHGLFM)

command to change certain attributes of a physical or a logical file member.

 For a physical file member, you can change the following parameters: SRCTYPE (the member’s source

type), EXPDATE (the member’s expiration date), SHARE (whether the member can be shared within a

job), and TEXT (the text description of the member). For a logical file member you can change the

SHARE and TEXT parameters.

Note: You can use the Change Physical File (CHGPF) and Change Logical File (CHGLF) commands to

change many other file attributes. For example, to change the maximum size allowed for each

member in the file, you can use the SIZE parameter on the CHGPF command.

 Related reference

 Change Physical File Member (CHGPFM) command

 Change Logical File Member (CHGLFM) command

 Change Physical File (CHGPF) command

 Change Logical File (CHGLF) command

Renaming members:

You can use the Rename Member (RNMM) command to change the name of an existing member in a

physical or logical file; however, the file name is not changed.

 Related reference

 Rename Member (RNMM) command

Removing members:

You can use the Remove Member (RMVM) command to remove a member and its contents from a

database file.

 After the member is removed, it can no longer be used by the system. This is different from just clearing

or deleting the data from the member. If the member still exists, programs can continue to use (for

example, add data to) the member.

 Related reference

 Remove Member (RMVM) command

Physical file member operations

Some member operations are unique to physical file members.

If the physical file members are associated with referential constraints, the operations on these members

might be affected.

 Related concepts

 “Ensuring data integrity with referential constraints” on page 253
You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Initializing data in a physical file member:

To use relative record processing in a program, a database file must contain a number of record positions

equal to the highest relative record number used in the program. Programs using relative-record-number

processing sometimes require that you initialize these records.

Database programming 207

You can use the Initialize Physical File Member (INZPFM) command to initialize members with one of

two types of records:

v Default records

v Deleted records

You specify which type of record you want using the RECORDS parameter on the INZPFM command.

If you initialize records using default records, the fields in each new record are initialized to the default

field values defined when the file was created. If no default field value was defined, then numeric fields

are filled with zeros and character fields are filled with blanks.

Variable-length character fields have a zero-length default value. The default value for null-capable fields

is the null value. The default value for dates, times, and timestamps is the current date, time, or

timestamp if no default value is defined. Program-described files have a default value of all blanks.

Note: You can initialize one default record if the UNIQUE keyword is specified in DDS for the physical

file member or any associated logical file members. Otherwise, you would create a series of

duplicate key records.

If the records are initialized to the default records, you can read a record by relative record number and

change the data.

If the records are initialized to deleted records, you can change the data by adding a record using a

relative record number of one of the deleted records. (You cannot add a record using a relative record

number that was not deleted.)

Deleted records cannot be read; they only hold a place in the member. A deleted record can be changed

by writing a new record over the deleted record.

 Related concepts

 “Deleting database records” on page 201
The delete operation allows you to delete an existing database record.

 Related reference

 Initialize Physical File Member (INZPFM) command

Clearing data from a physical file member:

You can remove data from a physical file member using the Clear Physical File Member (CLRPFM)

command. After the clear operation is complete, the member description remains, but the data is

removed.

 Related reference

 Clear Physical File Member (CLRPFM) command

Reorganizing a physical file member:

You can reorganize a physical file member to change the manner in which records are stored on the

i5/OS operating system.

Reorganizing a table using iSeries Navigator:

Reorganizing a table restores the table to its ideal physical organization. That is, the rows of the table are

laid out on pages and ordered by their key values in some frequently used indexes. You can reorganize a

table by compressing out deleted records, by key, or by a selected index from iSeries Navigator.

208 System i: Database Database programming

About this task

To reorganize a table using iSeries Navigator, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database folder that you want to work with.

4. Expand the Schemas folder.

5. Click the schema that contains the table you want to reorganize.

6. Click Tables.

7. In the detail pane, right-click the table you want to reorganize and select Reorganize.

Results

On the Reorganize window, select one of the following options to specify how the rows are reorganized

in the table:

v By compressing out deleted rows without preserving the arrival row sequence: specify that valid rows

at the end of the table are moved to deleted rows until no deleted rows remain.

v By compressing out deleted rows and preserving the arrival row sequence: specify that all valid rows

after the first deleted row in the table are moved forward in the table to compress out any deleted

rows.

v By table key: specify that the rows of the table are rearranged by the key values of the table’s access

path. The table must have a primary key or must be a keyed physical file.

v By a selected index from library: specify that the rows of the table are rearranged by the key values of

an index or keyed logical file that is built over the specified table. You can select only an existing

index. Your list of indexes is determined by the library you select.

You can specify other options on the Reorganize window to control performance and concurrency of the

reorganize operation:

v Specify which partition of a partitioned file (or which member of a multiple member physical file)

should be reorganized

v Specify whether the reorganize operation can be suspended and subsequently restarted.

If you do not specify that the reorganize operation can be suspended, the table will be allocated

exclusively for the duration of the reorganize operation and can only be suspended by ending the job

immediately.

If you specify that the reorganize can be suspended:

– The file must be journaled since the rows are moved under commitment control to ensure that no

rows are lost if the reorganize operation is suspended.

– You can also specify whether other users can read the table or change the table during the

reorganize operation. Locks are acquired for short periods of time on rows that are moved during

the reorganize. If concurrent jobs also acquire locks on rows, record lock time-outs might occur. You

can change the record lock wait time for the file, or you can use the Override with Database File

(OVRDBF) command to specify an appropriate record wait time.
v Specify how indexes are maintained:

– If you specify that the reorganize operation can be suspended, you can also specify that all indexes

should be maintained during the reorganize operation. No index rebuilds are necessary.

– Otherwise, you can specify that indexes be rebuilt synchronously or asynchronously. You can see the

progress of asynchronously built indexes by using the Edit Rebuild of Access Paths (EDTRBDAP)

command.
 Related concepts

Database programming 209

“Locking records” on page 105
DB2 Universal Database for iSeries has built-in integrity for records.

Reorganizing a physical file member using the Reorganize Physical File Member (RGZPFM) command:

You can specify several key options when you reorganize a physical file member using the Reorganize

Physical File Member (RGZPFM) command.

 You can use the RGZPFM command to:

v Remove deleted records to make the space occupied by them available.

v Reorganize the records of a physical file member in the order in which you normally access them

sequentially, thereby minimizing the time required to retrieve records. You can do this by using the

KEYFILE parameter. This might be advantageous for members that are primarily accessed in an order

other than arrival sequence. You can reorganize a physical file member using either of the following

key fields:

– Key fields of the physical file member

– Key fields of a logical file member that is based on the physical file

Note: Key fields are defined at the file level.

v Reorganize a source file member, insert new source sequence numbers, and reset the source date fields

(using the SRCOPT and SRCSEQ parameters on the RGZPFM command).

v If you specify that the reorganize operation cannot be canceled, reclaim space in the variable portion of

the member that was previously used by variable-length fields in the physical file format and that has

become fragmented.
 Related reference

 Reorganize Physical File Member (RGZPFM) command

 “Usage notes: Reorganizing a physical file member” on page 211
Here is a list of considerations for reorganizing a physical file member.

Example: Reorganizing a physical file member:

The example shows how to reorganize a physical file member with the Reorganize Physical File Member

(RGZPFM) command.

 For example, the following RGZPFM command reorganizes the first member of a physical file using an

access path of a logical file member:

RGZPFM FILE(DSTPRODLB/ORDHDRP)

 KEYFILE(DSTPRODLB/ORDFILL ORDFILL)

Physical file member ORDHDRP has an arrival sequence access path. You reorganize it using the access

path of logical file member ORDFILL. Assume that the key field is the Order field. The following tables

show how records are arranged.

This table shows the original physical file member ORDHDRP. Record 3 is deleted before the RGZPFM

command is run.

 Relative record number Cust Order Ordate. . .

1 41394 41882 072480. . .

2 28674 32133 060280. . .

3 deleted record

4 56325 38694 062780. . .

210 System i: Database Database programming

|
|

|
|
|
|
|

|

|

|

|
|
|

|

|
|

|
|

|
|

|

|
|

This table shows the physical file member ORDHDRP after you reorganize it using the Order field as the

key field in ascending sequence.

 Relative record Number Cust Order Ordate. . .

1 28674 32133 060280. . .

2 56325 38694 062780. . .

3 41394 41882 072480. . .

Usage notes: Reorganizing a physical file member:

Here is a list of considerations for reorganizing a physical file member.

 v If a physical file member has an arrival sequence access path and you reorganize it using a keyed

sequence access path, the arrival sequence access path is changed. That is, the records in the member

are physically placed in the order of the keyed sequence access path. By reorganizing the data into a

physical sequence that closely matches the keyed access path you are using, you can improve the

performance of processing the data sequentially.

v Reorganizing a physical file member compresses deleted records, which changes subsequent relative

record numbers.

v Because access paths with the following DDS keywords specified depend on the physical sequence of

records in the physical file member, the sequence of the records with duplicate key fields might change

after you reorganize a physical file member using a keyed sequence access path:

– First-Changed First-Out (FCFO)

– First-In First-Out (FIFO)

– Last-In First-Out (LIFO)

The sequence of the records with duplicate key fields are maintained only for the access path specified

in the KEYFILE parameter. If the access path specified in the KEYFILE parameter has an LIFO DDS

keyword, the duplicate key fields are maintained only if you specify that the reorganize operation can

be canceled (suspended).

v If you specify that the reorganize operation cannot be canceled and you end the job running the

Reorganize Physical File Member (RGZPFM) command, all the access paths over the physical file

member might have to be rebuilt. If you specify that the reorganize operation can be canceled, and you

cancel the RGZPFM command, only those access paths that are not maintained during the reorganize

operation might have to be rebuilt.

v If you use the RGZPFM command twice in a row, you might notice that the total size of the member

after the first time differs from the total size after the second. This is because the amount of space

allocated for the reorganized member is only an estimate that allows extra space for future insertion.

After records are reorganized the first time, the space allocated is calculated exactly.

Reorganization options:

You can specify whether the reorganize operation on a physical file member can or cannot be canceled.

Consider the features of each option when deciding which option to use.

v ALWCANCEL(*NO): This is the traditional type of reorganize operation. A full copy of the data might

be made, so you need up to two times the amount of space. This option cannot be canceled

(suspended) and cannot fully run in parallel. It requires exclusive use of the physical file member.

v ALWCANCEL(*YES): The data rows are moved within the physical file member so that a full copy of

the data is not required. The physical file must be journaled, however, so storage is necessary for the

journal entries. You can use the journal receiver threshold to minimize the amount of storage used in a

specific journal receiver.

This option can be canceled (suspended) and restarted. It can run in parallel if the DB2 Symmetric

Multiprocessing option is installed. To control the amount of resources used by the reorganize

Database programming 211

|
|

|

|
|
|
|
|

|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

operation, you might want to change the query attributes using the Change Query Attributes

(CHGQRYA) CL command or using Change Query Attributes from iSeries Navigator.

This option requires exclusive use for only a few seconds after the reorganize operation is complete to

return storage to the system. If the exclusive lock cannot be acquired, a warning message is sent to the

job log indicating that space cannot be recovered. To recover the space, you can start the reorganization

again when no concurrent users are accessing the file member. The reorganize operation then

immediately attempts to recover the space before starting the reorganization. If concurrent data

changes have occurred since the initial reorganize operation, only a portion of the space might be

recovered.

If LOCK(*EXCLRD) or LOCK(*SHRUPD) is specified, the result of the reorganize operation is not

guaranteed to be exact, because concurrent users might be locking rows or changing rows in the file

member.

The type of reorganize operation that you decide to use depends on several factors. For example, is your

goal to recover space, or is the sequence of the rows important? Is it important that the reorganize

operation can be canceled (suspended)? Is it important to allow concurrent access to the physical file

member? Use the following table to determine which option is most appropriate based on these factors.

The shaded entries (which are also identified by an asterisk) are the characteristics of a key file option

that make its choice particularly desirable.

 ALWCANCEL(*NO) ALWCANCEL(*YES)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

KEYFILE

(*RPLDLTRCD)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

Cancel and restart No No Yes* Yes* Yes*

Concurrent access No No Yes* Yes* Yes*

Parallel processing Only index rebuilds Only index rebuilds Data movement and

index rebuilds*

Data movement and

index rebuilds*

Data movement and

index rebuilds*

Non-parallel

performance

Very fast Fast Very fast* Slower* Slowest*

Temporary storage Double data storage Double data storage Journal receiver

storage*

Journal receiver

storage*

Journal receiver

storage*

LIFO KEYFILE

index processing

N/A Duplicates reversed N/A* N/A* Duplicate ordering

preserved*

Index processing

(non-KEYFILE)

Synchronous or

asynchronous

rebuilds*

Synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

Final row position

exact

Yes* Yes* Only if

LOCK(*EXCL) and

not restarted

Only if

LOCK(*EXCL) and

not restarted

Only if

LOCK(*EXCL) and

not restarted

Amount of CPU

and I/O used

Smallest* Next smallest* Smallest More Most

Variable lengths

segment reorganize

Good* Good* Worse Worse Worse

Allows referential

integrity parents

and FILE LINK

CONTROL

DataLinks

Yes* Yes* No No No

Allows QTEMP and

database

cross-reference files

Yes* Yes* No No No

Replication cost Minimal (one

journal entry)*

Minimal (one

journal entry)*

More (journal

entries for all rows

moved)

Most (journal

entries for all rows

moved)

Most (journal

entries for all rows

moved)

212 System i: Database Database programming

|
|
|
|
|
|

Suspending or canceling a reorganize operation:

Sometimes you might need to suspend or cancel a reorganize operation on a physical file member.

 If you specify that the reorganize operation cannot be canceled and one of the following situations occur

while the Reorganize Physical File Member (RGZPFM) command is running, the records might not be

reorganized at all:

v The system ends abnormally.

v The job containing the RGZPFM command is ended with an *IMMED option.

v The subsystem in which the RGZPFM command is running ends with an *IMMED option.

v The system stops with an *IMMED option.

In addition, when the RGZPFM command is running, records associated with large objects (LOBs) might

not be reorganized and a deleted record might remain in the member.

If you specify that the reorganize operation can be canceled and one of the preceding situations occurs, or

you cancel the reorganize operation, the operation might be only partially completed. If you issue the

same reorganize operation later, the reorganize operation might continue from where it was interrupted.

However, if significant changes have occurred since the reorganize operation was canceled, the reorganize

operation will not be continued and will start over.

The status of the member being reorganized also depends on how much the system was able to do before

the reorganization is ended and what you have specified in the SRCOPT parameter.

If the SRCOPT parameter was specified, any of the following statuses might happen to the member:

v It is completely reorganized. A completion message is sent to your job log indicating the reorganize

operation is completely successful.

v It is not reorganized at all, or only partially reorganized. A message is sent to your job log indicating

that the reorganize operation is not successful. If this occurs, run the Reorganize Physical File Member

(RGZPFM) command again.

v It is reorganized, but only some of the sequence numbers are changed. A completion message is sent to

your job log indicating that the member is reorganized, but all the sequence numbers are not changed.

If this occurs, issue the RGZPFM command again with KEYFILE(*NONE) specified.

If the SRCOPT parameter was not specified, the member is either completely reorganized or not

reorganized at all. You can display the contents of the member using either the Display Physical File

Member (DSPPFM) command or the Quick View from iSeries Navigator to determine how much of the

member, if any, has been reorganized. You can run the RGZPFM command again if necessary.

To reduce the number of deleted records that exist in a physical file member, you can create or change

the file to reuse deleted record space.

 Related concepts

 “Reusing deleted records” on page 101
Sometimes you might want to reuse deleted records for your database files. In this case, you can use

the REUSEDLT parameter.

Displaying records in a physical file member:

You can display records in a physical file member using the Display Physical File Member (DSPPFM)

command.

 The DSPPFM command can be used to display the data in the physical file member by arrival sequence.

The DSPPFM command can be used for:

v Problem analysis

Database programming 213

|

|
|

|
|
|
|

v Debugging

v Record inquiry

You can display source files or data files, whether they are keyed or arrival sequence. Records are

displayed in arrival sequence, even if the file is a keyed file. You can page through the file, locate a

particular record by record number, or shift the display to the right or left to see other parts of the

records. You can also press a function key to show either character data or hexadecimal data on the

display.

If you have Query installed, you can use the Start Query (STRQRY) command to select and display

records, too.

If you have the SQL language installed, you can use the Start SQL (STRSQL) command to interactively

select and display records.

 Related reference

 Display Physical File Member (DSPPFM) command

Using database attribute and cross-reference information

The i5/OS integrated database provides file attribute and cross-reference information.

Some of the cross-reference information include:

v The files used in a program

v The files that depend on other files for data or access paths

v File attributes

v The fields defined for a file

v Constraints associated with a file

v Key fields for a file

Each of the commands described in these topics can present information on a display, a printout, or write

the cross-reference information to a database file that, in turn, can be used by a program or utility (for

example, Query) for analysis.

You can retrieve information about a member of a database file for use in your applications with the

Retrieve Member Description (RTVMBRD) command.

 Related concepts

 Control language
 Related reference

 Retrieve Member Description (RTVMBRD) command

Displaying information about database files

Using iSeries Navigator and CL commands, you can display various types of information about database

files.

Displaying attributes of a file using iSeries Navigator:

You can use iSeries Navigator to display the attributes of a database file or a device file.

 About this task

To display database file attributes, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

214 System i: Database Database programming

3. Expand the database and library that you want to work with.

4. Click the library that contains the table or view for which you want to display information.

5. Right-click the table, view, or index and click Description.

Results

On the description window, you can select general, allocation, usage, activity, and detailed.

Displaying attributes of a file using the Display File Description (DSPFD) command:

You can use the Display File Description (DSPFD) command to display the attributes of a database file.

The information can be displayed, printed, or written to a database output file (OUTFILE).

 The information supplied by the DSPFD command includes (parameter values given in parentheses):

v Basic attributes (*BASATR)

v File attributes (*ATR)

v Access path specifications (*ACCPTH, logical and physical files only)

v Select/omit specifications (*SELECT, logical files only)

v Join logical file specifications (*JOIN, join logical files only)

v Alternative collating sequence specifications (*SEQ, physical and logical files only)

v Record format specifications (*RCDFMT)

v Member attributes (*MBR, physical and logical files only)

v Spooling attributes (*SPOOL, printer and diskette files only)

v Member lists (*MBRLIST, physical and logical files only)

v File constraints (*CST)

v Triggers (*TRG)
 Related reference

 Display File Description (DSPFD) command

Displaying the description of the fields in a file:

You can use the Display File Field Description (DSPFFD) command to display field information for both

database and device files. The information can be displayed, printed, or written to a database output file

(OUTFILE).

 Related reference

 Display File Field Description (DSPFFD) command

Displaying the relationships between files on the system:

You can use the Display Database Relations (DSPDBR) command to display the relationships between

database files on the system. The information can be displayed, printed, or written to a database output

file (OUTFILE).

 You can use the DSPDBR command to display the following information about the organization of your

database:

v A list of database files (physical and logical) that use a specific record format.

v A list of database files (physical and logical) that depend on the specified file for data sharing.

v A list of members (physical and logical) that depend on the specified member for sharing data or

sharing an access path.

v A list of physical files that are dependent files in a referential constraint relationship with this file.

Database programming 215

For example, to display a list of all database files associated with physical file ORDHDRP, with the record

format ORDHDR, type the following DSPDBR command:

DSPDBR FILE(DSTPRODLB/ORDHDRP) RCDFMT(ORDHDR)

Note: See the DSPDBR command description in the Control language (CL) topic for details of this

display.

This display presents header information when a record format name is specified on the RCDFMT

parameter, and presents information about which files are using the specified record format.

If a member name is specified on the MBR parameter of the DSPDBR command, the dependent members

are shown.

If the DSPDBR command is specified with the default MBR(*NONE) parameter value, the dependent

data files are shown. To display the shared access paths, you must specify a member name.

The DSPDBR command output identifies the type of sharing involved. If the results of the command are

displayed, the name of the type of sharing is displayed. If the results of the command are written to a

database file, the code for the type of sharing (shown below) is placed in the WHTYPE field in the

records of the output file.

 Type Code Description

Constraint C The physical file is dependent on the data

in another physical file with which it is

associated via a constraint.

Data D The file or member is dependent on the

data in a member of another file.

Access path sharing I The file member is sharing an access path.

Access path owner O If an access path is shared, one of the file

members is considered the owner. The

owner of the access path is charged with

the storage used for the access path. If the

member displayed is designated the

owner, one or more file members are

designated with an I for access path

sharing.

SQL View V The SQL view or member is dependent on

another SQL view.

 Related concepts

 Control language
 Related reference

 Display Database Relations (DSPDBR) command

Displaying the files used by programs:

You can use the Display Program Reference (DSPPGMREF) command to determine which files, data

areas, and other programs are used by a program. This information is available for compiled programs

only and can be displayed, printed, or written to a database output file (OUTFILE).

 When a program is created, the information about certain objects used in the program is stored. This

information is then available for use with the DSPPGMREF command.

216 System i: Database Database programming

The following table shows the objects for which the high-level languages and utilities save information.

 Language or utility Files Programs Data areas See Notes

CL Yes Yes Yes 1

COBOL/400 Yes Yes No 2

CSP Yes Yes No 3

DFU Yes N/A N/A

FORTRAN/400 No No N/A

ILE C/C++ No No N/A

ILE COBOL Yes Yes Yes 2

ILE RPG Yes Yes Yes

PL/I Yes Yes N/A 2

RPG/400 Yes Yes Yes 4

SQL Yes N/A N/A

Notes:

1. All system commands that refer to files, programs, or data areas specify in the command definition that the

information should be stored when the command is compiled in a control language (CL) program. If a variable

is used, the name of the variable is used as the object name (for example, &FILE); If an expression is used, the

name of the object is stored as *EXPR. User-defined commands can also store the information for files, programs,

or data areas specified on the command. See the description of the FILE, PGM, and DTAARA parameters on the

PARM or ELEM command statements in the Control language (CL) topic.

2. The program name is stored only when a literal is used for the program name (this is a static call, for example,

CALL ’PGM1’), not when a COBOL/400 identifier is used for the program name (this is a dynamic call, for

example, CALL PGM1).

3. CSP programs also save information for an object of type *MSGF, *CSPMAP, and *CSPTBL.

4. The use of the local data area is not stored.

The stored file information contains an entry (a number) for the type of use. In the database file output of

the DSPPGMREF command (built when using the OUTFILE parameter), this is specified as:

Code Meaning

1 Input

2 Output

3 Input and Output

4 Update

8 Unspecified

Combinations of codes are also used. For example, a file coded as a 7 would be used for input, output,

and update.

 Related concepts

 Control language
 Related reference

 Display Program Reference (DSPPGMREF) command

Displaying the system cross-reference files:

You can use the database files that are managed by the system to determine basic attribute and database

file requirements. To display the fields in these files, use the Display File Field Description (DSPFFD)

command.

 The system manages eight database files that contain the following information:

v Basic database file attribute information (QSYS/QADBXREF)

Database programming 217

|
|

v Cross-reference information (QSYS/QADBFDEP) about all the database files on the system (except

those database files that are in the QTEMP library)

v Database file field information (QSYS/QADBIFLD)

v Database file key field information (QSYS/QADBKFLD)

v Referential constraint file information (QSYS/QADBFCST)

v Referential constraint field information (QSYS/QADBCCST)

v SQL package information (QSYS/QADBPKG)

v Remote database directory information (QSYS/QADBXRDBD)

Note: The authority to use these files is restricted to the security officer. However, all users have the

authority to view the data by using one of (or the only) logical file(s) built over each file. The

authorities for these files cannot be changed because they are always open.

 Related reference

 Display File Field Description (DSPFFD) command

Writing the output from a command directly to a database file

You can store the output from many control language (CL) commands in an output physical file by

specifying the OUTFILE parameter on the commands. You can then use the output files in programs or

utilities (for example, Query) for data analysis.

For example, you can send the output of the Display Program References (DSPPGMREF) command to a

physical file, then query that file to determine which programs use a specific file.

The physical files are created for you when you specify the OUTFILE parameter on the commands.

Initially, the files are created with private authority; only the owner (the person who ran the command)

can use it. However, the owner can authorize other users to these files as you would for any other

database file.

The system supplies model files that identify the record format for each command that can specify the

OUTFILE parameter. If you specify a file name on the OUTFILE parameter for a file that does not already

exist, the system creates the file using the same record format as the model file. If you specify a file name

for an existing output file, the system checks to see if the record format is the same record format as the

model file. If the record formats do not match, the system sends a message to the job and the command

does not complete.

Note: You must use your own files for output files, rather than specifying the system-supplied model

files on the OUTFILE parameter.

See the Control language (CL) topic for a list of commands that allow output files and the names of the

model files supplied for those commands.

Note: All system-supplied model files are located in the QSYS library.

You can display the fields contained in the record formats of the system-supplied model files using the

Display File Field Descriptions (DSPFFD) command.

 Related concepts

 Control language
 Related reference

 Display File Field Description (DSPFFD) command

 Display Journal (DSPJRN) command

 Display Problems (DSPPRB) command

Example: A command output file:

218 System i: Database Database programming

This example shows how to write the output from a control language (CL) command directly to a

database file.

 You can use the Display Program References (DSPPGMREF) command to collect information for all

compiled programs in all libraries and place the output in a database file named DBROUT:

DSPPGMREF PGM(*ALL/*ALL) OUTPUT(*OUTFILE) OUTFILE(DSTPRODLB/DBROUT)

You can use Query to process the output file. Another way to process the output file is to create a logical

file to select information from the file. The following example shows the DDS for such a logical file.

Records are selected based on the file name.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* Logical file DBROUTL for query

 A

 A R DBROUTL PFILE(DBROUT)

 A S WHFNAM VALUES(’ORDHDRL’ ’ORDFILL’)

 A

Output files for the Display File Description (DSPFD) command:

The Display File Description (DSPFD) command provides unique output files, depending on the

parameters specified.

 To collect access path information about all files in the LIBA library, you can specify:

DSPFD FILE(LIBA/*ALL) TYPE(*ACCPTH) OUTPUT(*OUTFILE) +

 OUTFILE(LIBB/ABC)

The file ABC is created in library LIBB and is externally described with the same field descriptions as in

the system-supplied file QSYS/QAFDACCP. The ABC file then contains a record for each key field in

each file found in library LIBA that has an access path.

If the DSPFD command is coded as:

DSPFD FILE(LIBX/*ALL) TYPE(*ATR) OUTPUT(*OUTFILE) +

 FILEATR(*PF) OUTFILE(LIBB/DEF)

the file DEF is created in library LIBB and is externally described with the same field descriptions as exist

in QSYS/QAFDPHY. The DEF file then contains a record for each physical file found in library LIBX.

You can display the field names of each model file supplied by IBM using the DSPFFD command. For

example, to display the field description for the access path model file (*ACCPTH specified on the TYPE

parameter), specify as follows:

DSPFFD QSYS/QAFDACCP

 Related concepts

 Control language
 Related reference

 Display File Description (DSPFD) command

Output files for the Display Journal (DSPJRN) command:

The Display Journal (DSPJRN) command provides unique output files.

 Related concepts

 Control language
 Related reference

 Display Journal (DSPJRN) command

Output files for the Display Problems (DSPPRB) command:

Database programming 219

The Display Problems (DSPPRB) command provides unique output files, depending on the type of

record.

 The output files depend on the following types of record:

v Basic problem data record (*BASIC). This includes problem type, status, machine type/model/serial

number, product ID, contact information, and tracking data.

v Point of failure, isolation, or answer FRU records (*CAUSE). Answer FRUs are used if they are

available. If answer FRUs are not available, isolation FRUs are used if they are available. If answer

FRUs and isolation FRUs are not available, then point of failure FRUs are used.

v PTF fix records (*FIX).

v User-entered text (note records) (*USRTXT).

v Supporting data identifier records (*SPTDTA).

The records in all five output files have a problem identifier so that the cause, fix, user text information,

and supporting data can be correlated with the basic problem data. Only one type of data can be written

to a particular output file. The cause, fix, user text, and supporting data output files can have multiple

records for a particular problem.

 Related concepts

 Control language
 Related reference

 Display Problems (DSPPRB) command

Changing database file descriptions and attributes

Sometimes you might change the descriptions or attributes of a database file by adding, changing, or

deleting a field.

Effects of changing fields in a file description

The system uses the information in the record format description to determine the level identifier.

Changes to the fields in a file description cause the level identifier to change. Changes in key fields or

select/omit fields might cause unexpected results in programs using the new access path.

When a program that uses externally described data is compiled, the compiler copies the file descriptions

of the files into the compiled program. When you run the program, the system can verify that the record

formats the program was compiled with are the same as the record formats currently defined for the file.

The default is to do level checking. The system assigns a unique level identifier for each record format

when the file it is associated with is created. The system uses the information in the record format

description to determine the level identifier. This information includes the total length of the record

format, the record format name, the number and order of fields defined, the data type, the size of the

fields, the field names, the number of decimal positions in the field, and whether the field allows the null

value. Changes to this information in a record format cause the level identifier to change.

The following DDS information has no effect on the level identifier and, therefore, can be changed

without recompiling the program that uses the file:

v TEXT keyword

v COLHDG keyword

v CHECK keyword

v EDTCDE keyword

v EDTWRD keyword

v REF keyword

v REFFLD keyword

v CMP, RANGE, and VALUES keywords

220 System i: Database Database programming

v TRNTBL keyword

v REFSHIFT keyword

v DFT keyword

v CCSID keyword

v Join specifications and join keywords

v Key fields

v Access path keywords

v Select/omit fields

Keep in mind that even though changing key fields or select/omit fields does not cause a level check, the

change might cause unexpected results in programs using the new access path. For example, changing

the key field from the customer number to the customer name changes the order in which the records are

retrieved, and might cause unexpected problems in the programs processing the file.

If level checking is specified (or defaulted to), the level identifier of the file to be used is compared to the

level identifier of the file in your program when the file is opened. If the identifiers differ, a message is

sent to the program to identify the changed condition and the changes might affect your program. You

can compile your program again so that the changes are included.

An alternative is to display the file description to determine if the changes affect your program. You can

use the Display File Field Description (DSPFFD) command to display the description or, if you have

source entry utility (SEU), you can display the source file containing the DDS for the file.

The format level identifier defined in the file can be displayed by the Display File Description (DSPFD)

command. When you are displaying the level identifier, remember that the record format identifier is

compared, rather than the file identifier.

Not every change in a file necessarily affects your program. For example, if you add a field to the end of

a file and your program does not use the new field, you do not have to recompile your program. If the

changes do not affect your program, you can use the Change Physical File (CHGPF) or the Change

Logical File (CHGLF) command with LVLCHK(*NO) specified to turn off level checking for the file, or

you can enter an Override with Database File (OVRDBF) command with LVLCHK(*NO) specified so that

you can run your program without level checking.

Keep in mind that level checking is the preferred method of operating. The use of LVLCHK(*YES) is a

good database integrity practice. The results produced by LVLCHK(*NO) cannot always be predicted.

 Related reference

 Display File Field Description (DSPFFD) command

 Display File Description (DSPFD) command

 Change Physical File (CHGPF) command

 Change Logical File (CHGLF) command

 Override with Database File (OVRDBF) command

Changing a physical file description and attributes

Sometimes when you make a change to a physical file description and then re-create the file, the level

identifier can change. If the level identifier changes, you can either compile the program again or avoid

recompiling using a logical file.

About this task

For example, the level identifier changes if you add a field to the file description, or change the length of

an existing field. If the level identifier changes, you can compile the program again that uses the physical

file. After the program is recompiled, it uses the new level check identifier.

Database programming 221

You can avoid compiling again by creating a logical file that presents data to your programs in the

original record format of the physical file. Using this approach, the logical file has the same level check

identifier as the physical file before the change.

For example, you decide to add a field to a physical file record format. To avoid compiling your program

again, follow these steps:

1. Change the DDS and create a new physical file (FILEB in LIBA) to include the new field:

CRTPF FILE(LIBA/FILEB) MBR(*NONE)...

FILEB does not have a member. (The old file FILEA is in library LIBA and has one member MBRA.)

2. Copy the member of the old physical file to the new physical file:

CPYF FROMFILE(LIBA/FILEA) TOFILE(LIBA/FILEB)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 MBROPT(*ADD) FMTOPT(*MAP)

The member in the new physical file is automatically named the same as the member in the old

physical file because FROMMBR(*ALL) and TOMBR(*FROMMBR) are specified. The FMTOPT

parameter specifies to copy (*MAP) the data in the fields by field name.

3. Describe a new logical file (FILEC) that looks like the original physical file (the logical file record

format does not include the new physical file field). Specify FILEB for the PFILE keyword. (When a

level check is done, the level identifier in the logical file and the level identifier in the program match

because FILEA and FILEC have the same format.)

4. Create the new logical file:

CRTLF FILE(LIBA/FILEC)...

5. You can now perform one of the following operations:

a. Use an Override with Database File (OVRDBF) command in the appropriate jobs to override the

old physical file referred to in the program with the logical file (the OVRDBF command

parameters are described in more detail in “Database file processing: Runtime considerations” on

page 99).

OVRDBF FILE(FILEA) TOFILE(LIBA/FILEC)

b. Delete the old physical file and rename the logical file to the name of the old physical file so the

file name in the program does not have to be overridden.

DLTF FILE(LIBA/FILEA)

RNMOBJ OBJ(LIBA/FILEC) OBJTYPE(*FILE)

 NEWOBJ(FILEA)

Results

The following tables illustrate the relationship of the record formats used in the three files.

 Table 47. FILEA (old physical file)

FLDA FLDB FLDC FLDD

In FILEB, FLDB1 was added to the record format.

 Table 48. FILEB (new physical file)

FLDB1

FILEC shares the record format of FILEA. FLDB1 is not used in the record format for the logical file.

 Table 49. FILEC (logical file)

FLDA FLDB FLDC FLDD

222 System i: Database Database programming

When you make changes to a physical file, which causes you to create the file again, all logical files

referring to it must first be deleted before you can delete and create a new physical file. After the

physical file is re-created, you can re-create or restore the logical files referring to it.

Example 1: Changing a physical file description and attributes:

This example shows how to create a new physical file with the same name in a different library.

 1. Create a new physical file with a different record format in a library different from the library the old

physical file is in. The name of the new file should be the same as the name of the old file. (The old

physical file FILEPFC is in library LIBB and has two members, MBRC1 and MBRC2.)

CRTPF FILE(NEWLIB/FILEPFC) MAXMBRS(2)...

2. Copy the members of the old physical file to the new physical file. The members in the new physical

file are automatically named the same as the members in the old physical file because

TOMBR(*FROMMBR) and FROMMBR(*ALL) are specified.

CPYF FROMFILE(LIBB/FILEPFC) TOFILE(NEWLIB/FILEPFC)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 FMTOPT(*MAP *DROP) MBROPT(*ADD)

3. Describe and create a new logical file in a library different from the library the old logical file is in.

The new logical file name should be the same as the old logical file name. You can use the FORMAT

keyword to use the same record formats as in the current logical file if no changes need to be made to

the record formats. You can also use the Create Duplicate Object (CRTDUPOBJ) command to create

another logical file from the old logical file FILELFC in library LIBB.

CRTLF FILE(NEWLIB/FILELFC)

4. Delete the old logical and physical files.

DLTF FILE(LIBB/FILELFC)

DLTF FILE(LIBB/FILEPFC)

5. Move the newly created files to the original library by using the following commands:

MOVOBJ OBJ(NEWLIB/FILELFC) OBJTYPE(*FILE) TOLIB(LIBB)

MOVOBJ OBJ(NEWLIB/FILEPFC) OBJTYPE(*FILE) TOLIB(LIBB)

Example 2: Changing a physical file description and attributes:

This example shows how to create new versions of files in the same library.

 To create new versions of files in the same library, follow these steps:

1. Create a new physical file with a different record format in the same library the old physical file is in.

The names of the old and new files should be different. (The old physical file FILEPFA is in library

LIBA and has two members MBRA1 and MBRA2.)

CRTPF FILE(LIBA/FILEPFB) MAXMBRS(2)...

2. Copy the members of the old physical file to the new physical file.

CPYF FROMFILE(LIBA/FILEPFA) TOFILE(LIBA/FILEPFB)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 FMTOPT(*MAP *DROP) MBROPT(*REPLACE)

3. Create a new logical file in the same library as the old logical file is in. The names of the old and new

files should be different. (You can use the FORMAT keyword to use the same record formats as are in

the current logical file if no changes need be made to the record formats.) The PFILE keyword must

refer to the new physical file created in step 1. The old logical file FILELFA is in library LIBA.

CRTLF FILE(LIBA/FILELFB)

4. Delete the old logical and physical files.

DLTF FILE(LIBA/FILELFA)

DLTF FILE(LIBA/FILEPFA)

Database programming 223

5. Rename the new logical file to the name of the old logical file. (If you also decide to rename the

physical file, be sure to change the DDS for logical file so that the PFILE keyword refers to the new

physical file name.)

RNMOBJ(LIBA/FILELFB) OBJTYPE(*FILE) NEWOBJ(FILELFA)

6. If the logical file member should be renamed, and assume that the default was used on the Create

Logical File (CRTLF) command, issue the following command:

RNMM FILE(LIBA/FILELFA) MBR(FILELFB) NEWMBR(FILELFA)

You can use the Change Physical File (CHGPF) command to change some of the attributes of a physical

file and its members.

 Related concepts

 Control language

Changing a logical file description and attributes

As a general rule, when your changes to a logical file cause a change to the level identifier (for example,

adding a new field, deleting a field, or changing the length of a field), you need to recompile the

program that uses the logical file.

Sometimes you can make changes to a logical file, which changes the level identifier and does not require

you to recompile your program (for example, adding a field that will not be used by your program to the

end of the file). However, in those situations you are forced to turn off level checking to run your

program that uses the changed file. That is not the preferred method of operating. It increases the

chances of incorrect data in the future.

To avoid recompiling, you can keep the current logical file (unchanged) and create a new logical file with

the added field. Your program refers to the old file, which still exists.

You can use the Change Logical File (CHGLF) command to change most of the attributes of a logical file

and its members that were specified on the Create Logical File (CRTLF) command.

 Related reference

 Change Logical File (CHGLF) command

 Create Logical File (CRTLF) command

Recovering and restoring your database

You can use several i5/OS save and restore functions to recover your database after the system loses

data.

 Related concepts

 “Writing data and access paths to auxiliary storage” on page 103
Normally, DB2 Universal Database for iSeries determines when to write changed data and access

paths from main storage to auxiliary storage. However, you can control when database changes are

written to auxiliary storage.

Backup and Recovery PDF

 Backup and recovery

Recovering data in a database file

The i5/OS operating system uses journaling and commitment control to help you recover data in a

database file.

Managing journals:

Journal management allows you to record all the data changes that occur to one or more database files.

You can then use the journal for recovery.

224 System i: Database Database programming

If a database file is destroyed or becomes unusable and you are using journals, you can reconstruct most

of the activity for the file. The journal also allows you to remove revisions made to the file.

 Related concepts

 Journal management

Journals:

When a change is made to a file and you are using journals, the system records the change in a journal

receiver and writes the receiver to auxiliary storage before the change is recorded in the file. Therefore,

the journal receiver always has the latest database information.

 Journal entries record activity for a specific record or for the file as a whole. Each entry includes bytes of

control information that identify the source of the activity (such as user, job, program, time, and date).

For changes that affect a single record, record images are included after the control information. The

record image before the change can also be included. You can control whether to create a journal both

before and after record images or just after record images by specifying the IMAGES parameter on the

Start Journal Physical File (STRJRNPF) command.

All journaled database files are automatically synchronized with the journal when the system is started

(IPL time). If the system session ends abnormally, some database changes might be in the journal, but

some of these changes might not be reflected in the database files. If that is the case, the system

automatically updates the database files from the journal.

Journals make saving database files an easier and faster task. For example, instead of saving an entire file

every day, save the journal receiver that contains the changes to that file. You can still save the entire file

on a weekly basis. This method can reduce the amount of time it takes to perform your daily save

operations.

 Related concepts

 Journal management

Working with journals:

You can work with journals using CL commands or iSeries Navigator functions.

 The following CL commands can be used to work with journals:

v To recover a damaged or unusable database file member that contains journaled changes, use the

Apply Journaled Changes (APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG) commands.

v To apply the changes that were recorded in a journal receiver to the designated physical file member,

use the APYJRNCHG command. However, depending on the type of damage to the physical file and

the amount of activity since the file was last saved, removing changes from the file using the

RMVJRNCHG command can be easier.

v To convert journal entries to a database file, use the Display Journal (DSPJRN) command. Use this file

for activity reports, audit trails, security, and program debugging.
 Related concepts

 Journal management

 Control language
 Related reference

 Apply Journaled Changes (APYJRNCHG) command

 Removed Journaled Changes (RMVJRNCHG) command

 Display Journal (DSPJRN) command

Creating a journal using iSeries Navigator:

Database programming 225

Creating a journal causes a new instance of a journal on your system. You must start journaling the table

to a journal before it begins journaling information.

 To journal the table to a journal, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to create the new journal in.

4. Right-click a library object and click New Journal.

5. On the New Journal window, specify a name in the Name field.

6. Specify a description in the Description field.

7. Select a library in which to store the journal receivers.

You can now create the journal using the default values. You can edit the journal default values by

clicking Advanced. To create the journal using the default values, click OK.

To edit the journal default values, first create the journal and then follow these steps:

 1. Click Advanced on the New Journal window.

 2. Select the journal message queue in the Journal message queue field. The default is the System

Operator message queue. You can specify another message queue. However, if the message queue

that you specify is not available when the message is sent, the message is sent to the System

Operator message queue.

 3. Specify the library in which to store the journal message queue.

 4. Edit or specify a description in the Description field.

 5. Select a Receivers managed by option. Your choices are System or User.

 6. Select Minimize fixed portion of entries if you do not want to record the job, program and user

profile information. This minimizes the size of each journal entry but limits the selection criteria that

can be used on other journal commands.

 7. Select Remove internal entries if you want to automatically remove only the internal journal entries

required for system restart recovery. Removing these entries reduces the size of the journal receiver.

 8. A new journal receiver is created at the same time as the journal. You can edit the default values of

the receiver by clicking New Receiver.

 9. After you have completed the Advanced options, click OK to return to the New Journal window.

10. Click OK to create the journal.

Creating a journal receiver using iSeries Navigator:

A journal receiver is a file that contains the information that a journal is recording. When you create a

journal, the receiver is automatically created. However, if you want to manually swap receivers, you must

first create a journal receiver.

 To create a journal receiver using iSeries Navigator, follow these steps:

 1. From iSeries Navigator, expand the system you want to use.

 2. Expand Databases.

 3. Expand the database and library that contains the journal for which you want to add a receiver.

 4. Right-click the journal for which you want to add a receiver and click Properties.

 5. Click Receivers.

 6. On the Receivers for Journal... window, click New.

 7. Specify a name (limited to 10 characters), a library to contain the receiver, a description and a

storage space threshold.

 8. Click OK to close the New Journal Receiver window.

226 System i: Database Database programming

9. Click OK to close the Receivers for Journal... window.

10. Click OK to close the Journal Properties window.

When you create a new journal, you can also create a new receiver by following these steps:

1. On the Advanced Journal Attributes window, click New Receiver.

2. On the New Journal Receiver window, specify a name (limited to 10 characters), a library to contain

the receiver, a description and a storage space threshold.

3. Click OK to close the New Journal Receiver window.

4. Click OK to close the Advanced Journal Attributes window. If you do not specify values for the

journal receiver, it will be created with the default values.

Values for new journals and journal receivers:

The journal and journal receiver are created or changed with the values that you specify on the Advanced

Journal Attributes or the Journal Properties window. If you do not specify any values, the journal and

journal receiver are created with the default values.

 For journals:

v The journal is created in the library in focus.

v The storage space for the journal is allocated from the same auxiliary storage pool (ASP) as the storage

space of the journal’s library’s ASP. This value cannot be changed.

v The message queue associated with the journal is the System Operator message queue.

v The swapping of journal receivers is set so that the system automatically does the swapping.

v The journal receivers are not automatically deleted by the system during swap processing.

v The fixed portion of journal entries are not minimized, but the internal journal entries are removed.

v The public authority for the journal is taken from the default public authority for the library.

v No default text description is created for the journal.

For journal receivers:

v The storage space for the journal receiver is allocated from the same auxiliary storage pool (ASP) as the

storage space of the journal receiver’s library’s ASP. This value cannot be changed.

v The storage space threshold for the journal receiver is set at 500 megabyte (MB).

v The public authority for the journal receiver is taken from the default public authority for the library.

v A default text description is created for the journal receiver.

Adding a remote journal using iSeries Navigator:

Remote journals allow you to replicate journal information to a separate system. A remote journal is

associated with an existing journal. The journal on the source system can be either a local journal or

another remote journal.

 About this task

To add a remote journal using iSeries Navigator, follow these steps:

 1. From iSeries Navigator, expand the system you want to use.

 2. Expand Databases.

 3. Expand the database that you want to work with and Libraries.

 4. Click the library that contains the journal that you want to add a remote journal to.

 5. Right-click the journal you want to add a remote journal to and click Properties.

 6. On the Journal Properties window, click Remote Journals.

 7. To add (associate) a remote journal to this journal, click Add.

Database programming 227

8. To display a list of relational database (RDB) directory entries, click the down arrow in the Relational

database name box on the Add a Remote Journal window.

 9. Select the journal type (Type 1 or Type 2).

10. To associate the remote journal receivers on the target system with a different library from that used

on the source system, click Redirect receiver.

11. In the Target receiver library field, specify the library on the target system where the remote journal

receivers are to be located

12. Click OK.

Results

The remote journal type influences the redirection capabilities, journal receiver restore operations, and

remote journal association characteristics.

Limited redirection (Type 1) If the remote journal being added is Type 1, the journal library name be

redirected to a single different library from that of the local journal. All Type 1 remote journals associated

with a given local journal must reside in the same library. A Type 1 remote journal cannot be added to a

Type 2 remote journal.

Flexible redirection (Type 2) If the remote journal being added is Type 2, you can specify a redirected

library that is the same as or different from the redirected library specified on previous additions of Type

2 remote journals. Subsequent additions of Type 2 remote journals can specify a different library

redirection from what was specified on any previously added remote journal.

After you have added a remote journal, you must activate it.

Note: This task assumes that you have an RDB directory entry and that you have a user profile on the

target system.

Removing a remote journal using iSeries Navigator:

Removing a remote journal disassociates it from the journal on the source system; it does not delete the

journal or the journal receivers. You must deactivate a remote journal before you can remove it.

Activating a remote journal using iSeries Navigator:

After you add a remote journal, you must activate it.

 About this task

To activate a remote journal, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to work with and Libraries.

4. Click the library that contains the journal that has the associated remote journal you want to activate.

5. Right-click the journal, and select Properties.

6. On the Journal Properties window, click Remote Journals.

7. On the Remote Journals for window, select the remote journal in the list of remote journals, then click

Activate to activate the selected remote journal.

8. On the Activate window, select the delivery mode, the starting receiver, and the processing mode for

the activate request.

9. Click OK.

228 System i: Database Database programming

Results

Notes:

1. Activating a remote journal for the first time creates one or more journal receivers on the

target system.

2. Activating the remote journal establishes the connection between the source and remote

journal so that journal entry replication can begin.

3. The remote journal must be inactive before you can activate it. Also, the remote journal that

you are activating must not itself already be replicating journal entries to other remote

journals.

Deactivating a remote journal using iSeries Navigator:

When you deactivate a remote journal, the collection of data is stopped.

 If you are deactivating a synchronously maintained journal, the remote journal function is ended

immediately, regardless of whether an immediate or controlled end is requested. If the remote journal is

in the catch-up phase of processing, the remote journal function is ended immediately, regardless of

whether an immediate or controlled end is requested. (Catch-up processing refers to the process of

replicating journal entries that existed in the journal receivers of the source journal before the remote

journal was activated.) Remote journals are in catch-up if they have a delivery mode of asynchronous

pending or synchronous pending.

Controlled

Deactivates the remote journal function in a controlled manner. This means that the system should

replicate all journal entries already queued to be sent from the source system to the target system

before deactivating the remote journal. Until all queued entries have been replicated, the remote

journal will be in a state of inactive pending. While in a state of inactive pending, the Remote

Journals window provides inactive pending information. When all queued entries have been sent to

the target system, the system sends a message to the journal message queue, indicating that the

remote journal function has been ended.

Immediately

Deactivates the remote journal function immediately. This means that the system should not continue

to replicate any journal entries that are already queued before deactivating the remote journal.

Displaying journal information for a table using iSeries Navigator:

You can get journal information for a table from iSeries Navigator.

 About this task

To display journal information for a table, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Click the library that contains the table for which you want to display journal information.

5. Right-click the table and click Journaling.

6. If the table has never been journaled, you can choose the journal you want to use by typing the

journal and library names in the appropriate boxes, or by clicking the Browse button and navigating

to the location of the journal that you want to use for the table.

7. To journal before images, select the Journal image before change option.

8. To omit open and close entries from being journaled, select the Exclude open and close entries

option.

Database programming 229

Swapping journal receivers using iSeries Navigator:

Swapping journal receivers replaces the current journal receiver with a new journal receiver that is

automatically created and attached to the journal by the system. You can use two methods to swap

receivers. The first method does not change the attributes of the new receiver; the second method does.

 If you select the first method, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Right-click the journal you want to use and click Swap Receivers.

For this option, the system generates a new name when it creates the receiver, and you are not

allowed to change the attributes of the new receiver.

If you select the second method, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Double-click the journal you want to use.

5. Click Receivers. This window displays all of the receivers that are associated with the journal.

6. To add a new receiver, click New.

7. Click OK to close the Journal Receivers window. Click OK again, and the new journal receiver

changes its status to attached.

For this option, you are allowed to change the attributes of the new receiver.

Starting or stopping a journal for a table (file) using iSeries Navigator:

After you create a journal, you must start it for a table (file). If you want to delete a journal, you must

stop it.

 To start or stop a journal for a table or a file using iSeries Navigator, follow these steps:

1. From iSeries Navigator, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that contains the journal you want to edit.

4. Click the library that contains the journal you want to edit.

5. Right-click the journal and click Starts and ends table journaling.

6. To start journaling for a table (file), select the table that you want to journal from the Tables list and

then click Add. Or you can drag a table from the Tables list and drop it on the Tables to journal list.

7. To end journaling for a table, select the table that you no longer want to journal from the Tables

already being journaled list, and then click Remove.

8. To end journaling for all the tables at once, click Select all to select all the tables listed in the Tables

already being journaled list, and then click Remove.

9. Click OK to close the Start/End journaling window.

You can also start or stop journaling for a table or file by following these steps:

1. From the library tree list, right-click the object for which you want to start or stop journaling and click

Journaling.

2. Click Stop to stop journaling for the selected object.

3. To start journaling from an object:

a. Select a journal to associate with the object. You can browse for the journal by clicking Browse.

230 System i: Database Database programming

b. Select a library that the journal is located in. This field is automatically filled in when you select a

journal from Browse.

c. To journal before images, select the Journal images before change option.

d. To omit open and close entries from being journaled, select the Exclude open and close entries

option.

e. Click Start to start journaling for the selected object.
4. Click OK to close the Advanced Journal Attributes window. If you do not specify values for the

journal receiver, it will be created with the default values.

Ensuring data integrity with commitment control:

Commitment control allows you to define and process a number of changes to database files in a single

unit (transaction).

 Commitment control ensures that complex application transactions are logically synchronized, even if the

job or system ends. Two-phase commitment control ensures that committable resources, such as database

files on multiple systems, remain synchronized.

You implement commitment control in your database by executing commit and rollback operations.

Using SQL, you use the COMMIT and ROLLBACK statements.

 Related concepts

 Commitment control
 Related reference

 COMMIT

 ROLLBACK

Transactions:

A transaction is a group of changes that appear as a single change, such as the transfer of funds from a

savings account to a checking account.

 Transactions can be classified into the following categories:

v Inquiries in which no file changes occur.

v Simple transactions in which one file is changed each time you press the Enter key.

v Complex transactions in which two or more files are changed each time you press the Enter key.

v Complex transactions in which one or more files are changed each time you press the Enter key. These

changes represent only part of a logical group of transactions.

Revisions made to files during transaction processing are journaled when using commitment control.

If the system or job ends abnormally, journaling alone can ensure that, at most, only the very last record

change is lost. However, if the system or job ends abnormally during a complex transaction, the files

reflect an incomplete logical transaction. For example, the job might have updated a record in file A, but

before it updates a corresponding record in file B, the job ended abnormally. In this case, the logical

transaction consists of two updates, but only one update had completed before the job ended abnormally.

Benefits of using commitment control:

Recovering a complex application requires detailed application knowledge. Programs cannot be restarted.

In this case, commitment control helps solve these problems.

 Sometimes record changes might have to be made with an application program or data file utility to

reverse the files to just before the last complex transaction began. This task becomes more complex if

Database programming 231

multiple users are accessing the files at the same time. In this case, commitment control can help.

Commitment control locks records from other users during a complex transaction. This ensures that other

users do not use the records until the transaction is complete. At the end of the transaction, the program

issues the commit operation, freeing the records. However, if the system ends abnormally before

performing the commit operation, all record changes for that job since the last time a commit operation

occurred are rolled back. Any affected records that are still locked are then unlocked. In other words,

database changes roll back to a clean transaction boundary.

Usage notes: Commitment control:

The commit and rollback operations are available in several programming languages that are supported

on the i5/OS operating system, including RPG, COBOL, PL/I, SQL, and CL.

 You can open logical files for output under commitment control when underlying physical files are

journaled to different journals. Commitment control can also be used in a batch environment.

However, the checks for violations are deferred if a record change affects underlying physical files that

are journaled to the same journal. If the record change affects underlying physical files that are not

journaled to the same journal, and it causes a duplicate key or referential constraint violation, an error

will occur during the input/output operation. For example, assume physical file A with a unique key is

journaled to journal X, while physical file B with a unique key is journaled to journal Y. Logical file C is

created over physical files A and B and opened under commitment control. A delete operation performed

using logical file C removes a record from physical file A with key K. It is possible to add a record back

to physical file A with key K before the transaction is committed. However, an attempt to add a record to

physical file B with key K, before the transaction is committed, will fail since physical files A and B are

journaled to different journals.

Just as it provides assistance in interactive transaction recovery, commitment control can also help in

batch job recovery.

 Related concepts

 Commitment control

Reducing time in access path recovery

The system ensures the integrity of an access path before you can use it. If the system determines that the

access path is unusable, the system attempts to recover it. Access path recovery might take a long time;

however, you can reduce the recovery time in several ways.

Journaling access paths is often faster than rebuilding access paths. With the System-managed access path

protection (SMAPP) support, you do not have to use the journaling commands, such as the Start Journal

Access Path (STRJRNAP) command, to get the benefits of access path journaling. SMAPP support

recovers access paths after an abnormal system end rather than rebuilding them during IPL.

Saving access paths:

You can reduce the time of access path recovery by saving access paths. To save access paths, you can use

the access path (ACCPTH) parameter on the Save Changed Objects (SAVCHGOBJ), Save Library

(SAVLIB), and Save Object (SAVOBJ) commands.

 Normally, the system saves only descriptions of logical files; however, the system saves access paths

under the following conditions:

v ACCPTH(*YES) is specified.

v All physical files under the logical file are being saved and are in the same library.

v The logical file is MAINT(*IMMED) or MAINT(*DLY).

Note:

232 System i: Database Database programming

The logical file itself is not saved when you have specified the ACCPTH(*YES) parameter. You must save

the logical file explicitly.

 Related concepts

Backup and Recovery PDF

Restoring access paths:

The system has the ability to restore access paths. It usually restores an access path faster than it rebuilds

an access path.

 The system can restore access paths if:

v They were previously saved.

v All the physical files on which they depend are restored at the same time.

For example, assume that a logical file is built over a physical file that contains 500 000 records. You have

determined through the Display Object Description (DSPOBJD) command that the size of the logical file

is about 15 megabytes.

In this example, it takes about 50 minutes to rebuild the access path for the logical file. It takes about 1

minute to restore the same access path from a tape. (This assumes that the system builds approximately

10 000 index entries per minute.)

After restoring the access path, you might need to update the file by applying the latest journal changes.

For example, the system applies approximately 80 000 to 100 000 journal entries to the file per hour. This

assumes that each of the physical files to which entries are being applied has only one access path built

over it. This rate drops proportionally for each access path of *IMMED maintenance that is present over

the physical file. Even with this additional recovery time, you usually find that it is faster to restore

access paths than to rebuild them.

 Related concepts

 Journal management

Journaling access paths:

Journaling access paths can reduce recovery time by reducing the number of access paths that need to be

rebuilt after an abnormal system end. It is suggested that you journal access paths because larger access

paths require more time to rebuild.

 When you journal database files, you record images of changes to the file in the journal. The system uses

these record images to recover the file after an abnormal system end.

After an abnormal end, the system might find that access paths are not synchronized with the data in the

file. If an access path does not synchronize with its data, the system rebuilds the access path to ensure

that the two are synchronized and usable.

When journaling access paths, the system records images of the access path in the journal to provide

known synchronization points between the access path and its data. By having that information in the

journal, the system recovers both the data files and the access paths. The system then synchronizes the

two. In such cases, you avoid the lengthy time to rebuild access paths.

In addition, other system recovery functions work with journaling access paths. For example, the system

has a number of options to reduce recovery time from the failure and replacement of a disk unit. These

options include user auxiliary storage pools and checksum protection. These options further reduce the

chances that the entire system must reload because of the disk failure. However, you might still need to

Database programming 233

rebuild access paths when the system is started following replacement of the failed disk. By using access

path journaling and some of the recovery options, you reduce your chances of having to reload the entire

system and having to rebuild access paths.

Before journaling an access path, you must journal the physical files that are associated with the access

path. In addition, you must use the same journal for the access path and its associated physical files. It is

easy to start journaling access paths:

v You can use the system-managed access-path protection (SMAPP) facility.

v You can manage the journaling environment yourself with the Start Journal Access Path (STRJRNAP)

command.

– To start journaling the access path for the specified file, use the STRJRNAP command. You can

journal access paths that have a maintenance attribute of immediate (*IMMED) or delayed (*DLY).

– After you start journaling, the system protects the access path until the access path is deleted or

until you run the End Journal Access Path (ENDJRNAP) command for that access path.

Access path journaling minimizes additional output operations. For example, the system will write the

journal data for the changed record and the changed access path in the same output operation. However,

you should seriously consider isolating your journal receivers in user auxiliary storage pools when you

start journaling your access paths. Placing journal receivers in their own user auxiliary storage pool

provides the best journaling performance, while helping to protect them from a disk failure.

 Related concepts

 Journal management
 Related reference

 Start Journal Access Path (STRJRNAP) command

System-managed access-path protection:

System-managed access-path protection (SMAPP) provides automatic protection for access paths. With

SMAPP support, you do not have to use the journaling commands, such as the Start Journal Access Path

(STRJRNAP) command, to get the benefits of access path journaling.

 SMAPP support recovers access paths after an abnormal system end rather than rebuilding them during

IPL. The shipped system automatically turns on SMAPP support. The system sets SMAPP support to a

value of 70 minutes.

The system determines which access paths to protect based on:

v Target access path recovery times provided by the user, or

v A system-provided default time.

You specify target access path recovery times as a system-wide value or on an auxiliary storage pool

(ASP) basis. Access paths already in a user-defined journal are ineligible for SMAPP protection because

they are already protected.

 Related concepts

 Journal management

Rebuilding access paths:

Rebuilding a database access path might take as much as one minute for every 10 000 records. But some

factors might affect the time estimate for rebuilding access paths.

 The following factors affect the time estimate for rebuilding access paths:

v Storage pool size. You can improve the rebuild time by running the job in a larger storage pool.

v The system model. The speed of the processing unit is a key factor.

234 System i: Database Database programming

v Key length. A large key length slows rebuilding the access path because the access path constructs and

stores more key information.

v Select/omit values. Select/omit processing slows the rebuilding of an access path because the system

compares each record to see if it meets the select/omit values.

v Record length. A large record length slows the rebuilding of an access path because the system looks at

more data.

v Storage device that contains the data. The relative speed of the storage device that contains the actual

data and the device that stores the access path affects the time needed to rebuild an access path.

v The order of the records in the file. The system tries to rebuild an access path so that it can find

information quickly when using that access path. The order of the records in a file has a small affect on

how fast the system builds the access path while trying to maintain an efficient access path.

Controlling when access paths are rebuilt:

If the system ends abnormally, it automatically lists the files that require access path recovery during the

next initial program load (IPL). You can control when access paths are rebuilt.

 You can decide whether to rebuild the access path:

v During the IPL

v After the IPL

v When you first use the file.

You can also:

v Change the scheduling order in which the access paths are rebuilt

v Hold rebuilding of an access path indefinitely

v Continue the IPL process while access paths with a sequence value that is less than or equal to the *IPL

threshold value are rebuilding.

v Control the rebuilding of access paths after the system has completed the IPL process by using the Edit

Rebuild of Access Paths (EDTRBDAP) command.

The IPL threshold value determines which access paths to rebuild during the IPL. All access paths with a

sequence value that is less than or equal to the IPL threshold value rebuild during the IPL. Changing the

IPL threshold value to 99 means that all access paths with a sequence value of 1 through 99 rebuild

during the IPL. Changing the IPL threshold value to 0 means that no access paths rebuild until after the

system completes its IPL, except those access paths that were being journaled and those access paths for

system files.

The access path recovery value for a file is determined by the value you specified for the RECOVER

parameter on the create and change file commands. The default recovery value for *IPL (rebuild during

IPL) is 25 and the default value for AFTIPL (rebuild after IPL) is 75; therefore, RECOVER(*IPL) will show

as 25. The initial IPL threshold value is 50; this allows the parameters to affect when the access path is

rebuilt. You can override this value on the Edit Rebuild of Access Paths display.

If a file is not needed immediately after IPL time, specify that the file can be rebuilt at a later time. This

should reduce the number of access paths that need to be rebuilt at IPL, allowing the system to complete

its IPL much faster.

For example, you can specify that all files that must have their access paths rebuilt should rebuild the

access paths when the file is first used. In this case, no access paths are rebuilt at IPL. You can control the

order in which the access paths are rebuilt by running only those programs that use the files you want to

rebuild first. This method shortens the IPL time and can make the first of several applications available

Database programming 235

faster. However, the overall time to rebuild access paths probably is longer. (Other work might be

running when the access paths are being rebuilt, and there might be less main storage available to rebuild

the access paths).

 Related reference

 Edit Rebuild of Access Paths (EDTRBDAP) command

Designing files to reduce access path rebuilding time:

File design can help reduce access path recovery time.

 For example, you might divide a large master file into a history file and a transaction file. The system

uses the transaction file for adding new data. The system uses the history file for inquiry only. On a daily

basis, you might merge the transaction data into the history file, then clear the transaction file for the

next day’s data. With this design, you shorten the time to rebuild access paths.

However, if the system abnormally ended during the day, the access path to the smaller transaction file

might need to be rebuilt. Still, the access path to the large history file, being read-only for most of the

day, would rarely be unsynchronized with its data. Therefore, you reduce the chance of rebuilding this

access path.

Consider the trade-off between using a file design to reduce access path rebuilding time and using

system-supplied functions like access path journaling. The above file design might require a more

complex application design. After evaluating your situation, you might decide to use system-supplied

functions like journaling your access paths rather than design applications that are more complex.

Other methods to avoid rebuilding access paths:

If you do not journal access paths or use system-managed access-path protection (SMAPP), consider other

system functions that reduce the chances of rebuilding access paths.

 The system uses a file synchronization indicator to determine if an access path needs to be rebuilt.

Normally, the synchronization indicator is on, indicating the synchronization of the access path and its

associated data. When a job changes a file that affects an access path, the system turns off the

synchronization indicator in the file. If the system ends abnormally, it must rebuild any access path

whose file has its synchronization indicator off.

You need to periodically synchronize the data with its access path to reduce the number of access paths

you must rebuild. There are several methods to synchronize a file with its access path:

v Full file close. The last full (that is, not shared) system-wide close performed against a file will

synchronize the access path and the data.

v Force access path. Specify the force-access-path (FRCACCPTH) parameter on the create, change, or

override database file commands.

v Force write ratio of 2 or greater. Specify the force-write-ratio (FRCRATIO) parameter on the create,

change, or override database file commands.

v Force end of data. Running the force-end-of-data operation in your program can synchronize the file’s

data and its access path. (Some high-level languages do not have a force-end-of-data operation. See

your high-level language topic collection for further details.)

Performing one of the methods mentioned previously synchronizes the access path and the data.

However, the next change to the data in the file can turn the synchronization indicator off again.

Note that each of the methods can be costly in terms of performance; therefore, use them with caution.

Consider journaling access paths along with saving access paths or using SMAPP as the primary means

of protecting access paths.

236 System i: Database Database programming

Database recovery process after an abnormal system end

After an abnormal system end, the system proceeds through several automatic recovery steps. The system

rebuilds the directory and synchronizes the journal to the files being journaled. The system performs

recovery operations during IPL and after IPL.

Database file recovery during the IPL:

During the initial program load (IPL), nothing but the recovery function is active on the system.

 Database file recovery during the IPL consists of the following actions:

v The listed functions that were in progress when the system ended are completed:

– Delete file

– Remove member

– Rename member

– Move object

– Rename object

– Change object owner

– Change member

– Grant authority

– Revoke authority

– Start journal physical file

– Start journal access path

– End journal physical file

– End journal access path

– Change journal

– Delete journal

– Recover SQL views

– Remove physical file constraint
v The listed functions that were in progress when the system ended are backed out (and you must run

them again):

– Create file

– Add member

– Change file

– Create journal

– Restore journal

– Add physical file constraint
v If the operator is doing the IPL (attended IPL), the Edit Rebuild of Access paths display appears on the

operator’s display. The display allows the operator to edit the RECOVER option for the files that were

in use for which immediate or delayed maintenance was specified. If all access paths are valid, or the

IPL is unattended, no displays appear.

v Access paths that:

– have immediate or delayed maintenance

– are specified for recovery during IPL (from the RECOVER option or changed by the Edit Rebuild of

Access Paths display)

– are rebuilt and a message is sent when you start journaling your access paths. Placing journal

receivers in their own user auxiliary storage pool provides the best journaling performance, while

helping to protect them from a disk failure.

 Related concepts

Database programming 237

Journal management

Database file recovery after the IPL:

This recovery of database files runs after the initial program load (IPL) is completed. Interactive and

batch jobs can continue with the recovery.

 The database file recovery after the IPL consists of the following actions:

v The access paths for immediate or delayed maintenance files that specify recovery after IPL are rebuilt.

v The system history log receives messages that indicate the success or failure of the rebuild operations.

v After IPL completion, use the Edit Rebuilt of Access Paths (EDTRBDAP) command to order the

rebuilding of access paths.

v After IPL completion, the Edit Check Pending Constraints (EDTCPCST) command displays a list of the

physical file constraints in check pending. This command specifies the verification sequence of the

check pending constraints.

Note: If you are not using journaling for a file, records might or might not exist after IPL recovery:

v For added records, if after the IPL recovery the Nth record added exists, then all records added

preceding N also exist.

v For updated and deleted records, if the update or delete operation on the Nth record is present

after the IPL recovery, there is no guarantee that the records updated or deleted prior to the Nth

record are also present in the database.

v For REUSEFLT(*YES), records added are treated as updates, and these records might not exist

after IPL recovery.
 Related reference

 Edit Rebuild of Access Paths (EDTRBDAP) command

 Edit Check Pending Constraints (EDTCPCST) command

Effects of the storage pool paging option on database recovery:

The shared pool paging option controls whether the system dynamically adjusts the paging characteristics

of the storage pool for optimum performance.

 v The system does not dynamically adjust paging characteristics for a paging option of *FIXED.

v The system dynamically adjusts paging characteristics for a paging option of *CALC.

v You can also control the paging characteristics through an application programming interface. For more

information, see Change Pool Tuning Information API (QWCCHGTN) in the Application programming

interfaces (APIs) topic.

A shared pool paging option other than *FIXED can have an impact on data loss for nonjournaled

physical files in a system failure. When you do not journal physical files, data loss from a system failure,

where memory is not saved, can increase for *CALC or USRDFN paging options. You can write file

changes to auxiliary storage less frequently for these options. There is a risk of data loss for nonjournaled

files with the *FIXED option, but the risk can be higher for *CALC or user-defined (USRDFN) paging

options. For more information about the paging option, see Automatically tune performance of the

Performance topic.

 Related concepts

 Adjusting performance automatically

 Application programming interfaces

 Performance
 Related reference

 Change Pool Tuning Information (QWCCHGTN) API

238 System i: Database Database programming

Database file recovery options table:

The table outlines the recovery options for database files.

 RECOVER parameter specified

Access path/ Maintenance *NO *AFTIPL *IPL

Keyed sequence access

path/ immediate or

delayed maintenance

v No database recovery at

IPL

v File available

immediately

v Access path rebuilt first

time file opened

v Access path rebuilt after

IPL

v Access path rebuilt

during IPL

Keyed sequence access path

rebuild maintenance

v No database recovery at

IPL

v File available

immediately

v Access path rebuilt first

time file opened

v Not applicable; no

recovery is done for

rebuild maintenance

v Not applicable; no

recovery is done for

rebuild maintenance

Arrival sequence access

path

v No database recovery at

IPL

v File available

immediately

v Not applicable; no

recovery is done for an

arrival sequence access

path

v Not applicable; no

recovery is done for an

arrival sequence access

path

Database save and restore

You can save and restore database files and related objects with any supported device and media or a

save file.

A save file (or the media) receives a copy, written in special format, of the saved information. You can

remove and store the media for future use on the System i platform. Restored information is read from

the media or from a save file into storage, where system users access the information.

Save files are disk-resident files that can be the target of a save operation or the source of a restore

operation. Save files allow unattended save operations. An operator does not need to load tapes or

diskettes when saving to a save file. However, periodically use the Save Save File Data (SAVSAVFDTA)

command to save the save file data on tape or diskette. Periodically remove and store the tapes or

diskettes away from the site. These media are then available to help you recover in case of a site disaster.

 Related concepts

Backup and Recovery PDF

 Backup and recovery
 Related reference

 Save Save File Data (SAVSAVFDTA) command

Database considerations for save and restore

Consider these tips when using the i5/OS database save and restore functions.

v When you save an object to a save file, you can prevent the system from updating the date and time of

the save operation by specifying UPDHST(*NO) on the save command.

v When you restore an object, the system always updates the object description with the date and time of

the restore operation. Display the object description and other save/restore related information by

using the Display Object Description (DSPOBJD) command with DETAIL(*FULL).

v To display the objects in a save file, use the Display Save File (DSPSAVF) command.

Database programming 239

v To display the objects on the media, specify DATA(SAVRST) on the Display Diskette (DSPDKT) or

Display Tape (DSPTAP) command.

v To display the last save/restore date for a database file, type: DSPFD FILE(file-name) TYPE(*MBR).

Also consider automatically writing records to auxiliary storage.

Force-writing data to auxiliary storage

The force-write ratio (FRCRATIO) parameter on the create file and override database file commands

indicates how often the records are to be written to auxiliary storage.

A force-write ratio of one immediately writes every add, update, and delete request to auxiliary storage

for the file in question. However, choosing this option can reduce system performance. Therefore,

consider saving your files and journaling your files as the primary methods for protecting database files.

 Related concepts

Backup and Recovery PDF

 Backup and recovery
 Related reference

 Display Object Description (DSPOBJD) command

 Display Save File (DSPSAVF) command

 Display Tape (DSPTAP) command

Using source files

DB2 Universal Database for iSeries provides a range of support for source files.

 Related concepts

 “Setting up source files” on page 14
You can either create a source file or use an IBM-supplied source file.

Working with source files

You can use various methods to enter and maintain data in a source file.

 Related tasks

 “Creating a logical file” on page 39
You can create a logical file using data description specifications (DDS).

Using the source entry utility:

You can use the source entry utility (SEU) to enter and change source in a source file. SEU is part of the

IBM WebSphere Development Studio for iSeries licensed program.

 If you use SEU to enter source in a database file, SEU adds the sequence number and date fields to each

source record.

If you use SEU to update a source file, you can add records between existing records. For example, if you

add a record between records 0003.00 and 0004.00, the sequence number of the added record can be

0003.01. SEU will automatically arrange the newly added statements in this way.

When records are first placed in a source file, the date field is all zoned decimal zeros (unless DDS is

used with the DFT keyword specified). If you use SEU, the date field changes in a record when you

change the record. See the ADTS for AS/400®: Source Entry Utility manual on the V5R1 Supplemental

Manuals

Web site for information about how to update database source files.

Using device source files:

240 System i: Database Database programming

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

Tape and diskette files can be created as source files. When device files are used as source files, the record

length must include the sequence number and date fields.

 Any maximum record length restrictions must consider these additional 12 characters. For example, the

maximum record length for a tape record is 32 766. If data is to be processed as source input, the actual

tape data record has a maximum length of 32 754 (which is 32 766 minus 12).

If you open source device files for input, the system adds the sequence number and date fields, but there

are zeros in the date fields.

If you open a device file for output and the file is defined as a source file, the system deletes the

sequence number and date before writing the data to the device.

Copying source file data:

You can use the Copy Source File (CPYSRCF) and Copy File (CPYF) commands to write data to and from

source file members.

 When you are copying from a database source file to another database source file that has an insert

trigger associated with it, the trigger program is called for each record copied.

Copying to and from source files using the Copy Source File (CPYSRCF) command:

The Copy Source File (CPYSRCF) command is designed to operate with database source files. Although it

is similar in function to the Copy File (CPYF) command, the CPYSRCF command provides defaults that

are normally used for copying a source file.

 For example, it has a default that assumes the TOMBR parameter is the same as the FROMMBR

parameter and that any TOMBR records are always replaced. The CPYSRCF command also supports a

unique printing format when TOFILE(*PRINT) is specified. Therefore, when you are copying database

source files, you might want to use the CPYSRCF command.

The CPYSRCF command automatically converts the data from the from-file CCSID to the to-file CCSID.

 Related reference

 Copy Source File (CPYSRCF) command

Copying to and from source files using the Copy File (CPYF) command:

The Copy File (CPYF) command provides additional functions over the Copy Source File (CPYSRCF)

command for copying to and from source files.

 The CPYF command allows:

v Copying from database source files to device files

v Copying from device files to database source files

v Copying between database files that are not source files and source database files

v Printing a source member in hexadecimal format

v Copying source with selection values
 Related reference

 Copy File (CPYF) command

Source sequence numbers used in copies:

When you copy to a database source file, you can use the SRCOPT parameter to update sequence

numbers and initialize dates to zeros.

Database programming 241

By default, the system assigns a sequence number of 1.00 to the first record and increases the sequence

numbers by 1.00 for the remaining records. You can use the SRCSEQ parameter to set a fractional

increased value and to specify the sequence number at which the renumbering is to start. For example, if

you specify in the SRCSEQ parameter that the increased value is .10 and is to start at sequence number

100.00, the copied records have the sequence numbers 100.00, 100.10, 100.20, and so on.

If a starting value of .01 and an increased value of .01 are specified, the maximum number of records that

can have unique sequence numbers is 999,999. When the maximum sequence number (9999.99) is

reached, any remaining records will have a sequence number of 9999.99.

The following example is about copying source from one member to another in the same file. If MBRB

does not exist, it is added; if it does exist, all records are replaced.

CPYSRCF FROMFILE(QCLSRC) TOFILE(QCLSRC) FROMMBR(MBRA) +

 TOMBR(MBRB)

The following example is about copying a generic member name from one file to another. All members

starting with PAY are copied. If the corresponding members do not exist, they are added; if they do exist,

all records are replaced.

CPYSRCF FROMFILE(LIB1/QCLSRC) TOFILE(LIB2/QCLSRC) +

 FROMMBR(PAY*)

The following example is about copying the member PAY1 to the printer file QSYSPRT (the default for

*PRINT). A format similar to the one used by service entry utility (SEU) is used to print the source

statements.

CPYSRCF FROMFILE(QCLSRC) TOFILE(*PRINT) FROMMBR(PAY1)

When you copy from a device source file to a database source file, sequence numbers are added and

dates are initialized to zeros. Sequence numbers start at 1.00 and are increased by 1.00. If the file being

copied has more than 9999 records, then the sequence number is wrapped back to 1.00 and continues to

be increased unless the SRCOPT and SRCSEQ parameters are specified.

When you are copying from a database source file to a device source file, the date and sequence number

fields are removed.

Loading and unloading data from systems other than System i:

You can use the Copy From Import File (CPYFRMIMPF) and Copy To Import File (CPYTOIMPF)

commands to import (load) or export (unload) data from and to systems other than System i.

 About this task

To import database data from a system other than System i into an externally described DB2 Universal

Database for iSeries database file with the CPYFRMIMPF and CPYTOIMPF commands, follow these

steps:

1. Create an import file for the data that you want to copy. The import file can be a database source file

or an externally-described database file that has 1 field. The field must have a data type of

CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, or UCS-2.

2. Send the data to the import file (or, the from file). The system performs any required ASCII to

EBCDIC conversion during this process. You can send the data in several ways:

v TCP/IP file transfer (file transfer)

v iSeries Access support (file transfer, ODBC)

v Copy from Tape File (CPYFRMTAP) command
3. Create an externally-described DB2 UDB for iSeries database file, or a distributed data management

(DDM) file, into which you want to copy the data.

242 System i: Database Database programming

4. Use the CPYFRMIMPF command to copy the data from the import file to your database file. If you

have the DB2 Symmetric Multiprocessing option installed on the i5/OS operating system, the

operating system will copy the file in parallel.

Results

To export database data to a system other than System i, use the CPYTOIMPF command to copy the data

from your database file to the import file. Then send the data to the system to which you are exporting

the data.

 Related reference

 Copy From Import File (CPYFRMIMPF) command

 Copy To Import File (CPYTOIMPF) command

Using source files in a program:

You can process a source file in your program. You can use the external definition of the source file and

perform any input/output operations on the file just as you do on any other database file.

 Source files are externally described database files. As such, when you name a source file in your

program and compile it, the source file description is automatically included in your program printout.

For example, assume you wanted to read and update records for a member called FILEA in the source

file QDDSSRC. When you write the program to process this file, the system will include the SRCSEQ,

SRCDAT, and SRCDTA fields from the source file.

Note: You can display the fields defined in a file by using the Display File Field Description command

(DSPFFD).

The program processing the FILEA member of the QDDSSRC file can:

v Open the file member (just like any other database file member).

v Read and update records from the source file (probably changing the SRCDTA field where the actual

source data is stored).

v Close the source file member (just like any other database file member).
 Related concepts

 “Displaying the description of the fields in a file” on page 215
You can use the Display File Field Description (DSPFFD) command to display field information for

both database and device files. The information can be displayed, printed, or written to a database

output file (OUTFILE).

Creating an object using a source file

You can use a create command to create an object using a source file. If you create an object using a

source file, you can specify the name of the source file on the create command.

For example, to create a control language program, you use the Create Control Language Program

(CRTCLPGM) command. A create command specifies through a SRCFILE parameter where the source is

stored.

The create commands are designed so that you do not have to specify source file name and member

name if you follow this procedure:

1. Use the default source file name for the type of object you are creating. To find the default source file

name for the command you are using, see IBM-supplied source files.

2. Give the source member the same name as the object to be created.

For example, to create the control language (CL) program PGMA using the command defaults, you can

type:

Database programming 243

CRTCLPGM PGM(PGMA)

The system would expect the source for PGMA to be in the PGMA member in the QCLSRC source file.

The library containing the QCLSRC file would be determined by the library list.

As another example, the following Create Physical File (CRTPF) command creates the file DSTREF using

the database source file FRSOURCE. The source member is named DSTREF. Because the SRCMBR

parameter is not specified, the system assumes that the member name, DSTREF, is the same as the name

of the object being created.

CRTPF FILE (QGPL/DSTREF) SRCFILE(QGPL/FRSOURCE)

 Related concepts

 “IBM-supplied source files” on page 16
For your convenience, the i5/OS licensed program and other licensed programs provide a database

source file for each type of source.

Creating an object from source statements in a batch job:

If your create command is contained in a batch job, you can use an inline data file as the source file for

the command.

 However, inline data files used as a source file should not exceed 10,000 records. The inline data file can

be either named or unnamed. Named inline data files have a unique file name that is specified on the

//DATA command. For more information about inline data files, see the Database file management topic.

Unnamed inline data files are files without unique file names; they are all named QINLINE. The

following is an example of an inline data file used as a source file:

//BCHJOB

CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(QINLINE)

//DATA FILETYPE(*SRC)

 .

 . (source statements)

 .

//

//ENDBCHJOB

In this example, no file name was specified on the //DATA command. An unnamed spooled file was

created when the job was processed by the spooling reader. The CRTPF command must specify QINLINE

as the source file name to access the unnamed file. The //DATA command also specifies that the inline

file is a source file (*SRC specified for the FILETYPE parameter).

If you specify a file name on the //DATA command, you must specify the same name on the SRCFILE

parameter on the CRTPF command. For example:

//BCHJOB

CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(ORD199)

//DATA FILE(ORD199) FILETYPE(*SRC)

 .

 . (source statements)

 .

//

//ENDBCHJOB

If a program uses an inline file, the system searches for the first inline file of the specified name. If that

file cannot be found, the program uses the first file that is unnamed (QINLINE).

244 System i: Database Database programming

If you do not specify a source file name on a create command, an IBM-supplied source file is assumed to

contain the needed source data. For example, if you are creating a control language (CL) program but

you did not specify a source file name, the IBM-supplied source file QCLSRC is used. You must have

placed the source data in QCLSRC.

If a source file is a database file, you can specify a source member that contains the needed source data.

If you do not specify a source member, the source data must be in a member that has the same name as

the object being created.

 Related concepts

 Database file management

Determining which source file member was used to create an object:

When an object is created from source, the information about the source file, library, and member is held

in the object. The date and time when the source member was last changed before object creation is also

saved in the object.

 The information in the object can be displayed with the Display Object Description (DSPOBJD) command

and specifying DETAIL(*SERVICE).

This information can help you in determining which source member was used and if the existing source

member was changed since the object was created.

You can also ensure that the source used to create an object is the same as the source that is currently in

the source member using the following commands:

v The Display File Description (DSPFD) command using TYPE(*MBR). This display shows both date and

time for the source member. The Last source update date/time value should be used to compare to

the Source file date/time value displayed from the DSPOBJD command.

v The Display Object Description (DSPOBJD) command using DETAIL(*SERVICE). This display shows

the date and time of the source member used to create the object.

Note: If you are using the data written to output files to determine if the source and object dates are the

same, then you can compare the ODSRCD (source date) and ODSRCT (source time) fields from the

output file of the DSPOBJD DETAIL(*SERVICE) command to the MBUPDD (member update date)

and MBUPDT (member update time) fields from the output file of the DSPFD TYPE(*MBR)

command.

 Related reference

 Display Object Description (DSPOBJD) command

 Display File Description (DSPFD) command

Managing a source file

You can change source file attributes and the manner in which the data in a source file is stored. You can

determine when a source statement was last changed. You can also use an IBM-supplied source file for

online documentation.

Changing source file attributes:

There are various methods for changing source file attributes.

 If you are using the source entry utility (SEU) to maintain database source files, see the ADTS for AS/400:

Source Entry Utility manual on the V5R1 Supplemental Manuals

Web site for information about how

to change database source files. If you are not using SEU to maintain database source files, you must

totally replace the existing member.

Database programming 245

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/rzaqhindex.htm

If your source file is on a diskette, you can copy it to a database file, change it using SEU, and copy it

back to a diskette. If you do not use SEU, you must delete the old source file and create a new source

file.

If you change a source file, the object previously created from the source file does not match the current

source. The old object must be deleted and then created again using the changed source file. For example,

if you change the source file FRSOURCE created in the “Creating an object using a source file” on page

243, you must delete the file DSTREF that was created from the original source file, and create it again

using the new source file so that DSTREF matches the changed FRSOURCE source file.

Reorganizing source file member data:

You usually do not need to reorganize a source file member if it uses an arrival sequence access path. You

must specify several parameters to assign unique sequence numbers.

 To assign unique sequence numbers to all the records, specify the following parameters on the

Reorganize Physical File Member (RGZPFM) command:

v KEYFILE(*NONE), so that the records are not reorganized

v SRCOPT(*SEQNBR), so that the sequence numbers are changed

v SRCSEQ with a fractional value such as .10 or .01, so that all the sequence numbers are unique

Note: Deleted records, if they exist, will be compressed out.

A source file with an arrival sequence access path can be reorganized by sequence number if a logical file

for which a keyed sequence access path is specified is created over the physical file.

 Related reference

 Reorganize Physical File Member (RGZPFM) command

Determining when a source statement was changed:

Each source record contains a date field that is automatically updated by the source entry utility (SEU) if

a change is made to the statement. You can use this date field to determine when a statement was last

changed.

 Most high-level language compilers print these dates on the compiler lists. The Copy File (CPYF) and

Copy Source File (CPYSRCF) commands also print these dates.

Each source member description contains two date and time fields. The first date/time field reflects

changes to the member any time it is closed after being updated.

The second date/time field reflects any changes to the member. This includes all changes caused by SEU,

commands (such as CRYF and CPYSRCF), authorization changes, and changes to the file status. For

example, the FRCRATIO parameter on the Change Physical File (CHGPF) command changes the member

status. This date/time field is used by the Save Changed Objects (SAVCHGOBJ) command to determine

if the member should be saved. Both date/time fields can be displayed with the Display File Description

(DSPFD) command specifying TYPE(*MBR). There are two changed date/times shown with source

members:

v Last source update date/time. This value reflects any change to the source data records in the

member. When a source update occurs, the Last change date/time value is also updated, although

there might be a 1- or 2-second difference in that date/time value.

v Last change date/time. This value reflects any changes to the member. This includes all changes

caused by SEU, commands (such as CPYF and CPYSRCF), authorization changes, or changes to file

status. For example, the FRCRATIO parameter on the CHGPF command changes the member status,

and therefore, is reflected in the Last change date/time value.

246 System i: Database Database programming

Using source files for documentation:

You can use the IBM-supplied source file QTXTSRC to help you create and update online documentation.

 You can create and update QTXTSRC members just like any other application (such as QRPGSRC or

QCLSRC) available with the source entry utility (SEU). The QTXTSRC file is most useful for narrative

documentation, which can be retrieved online or printed. The text that you put in a source member is

easy to update by using the SEU add, change, move, copy, and include operations. The entire member

can be printed by specifying Yes for the print current source file option on the exit prompt. You can also

write a program to print all or part of a source member.

Controlling the integrity of your database with constraints

A constraint is a restriction or limitation placed on a database file to ensure that the data in your database

remains consistent when you add, change, and remove records.

v Unique constraints and primary key constraints let you create enforced unique keys for a physical file

beyond the file access path.

v Check constraints provide another check for the validity of your data by testing the data in an

expression.

Primary key and unique constraints can be used as the parent key when adding a referential constraint.

Setting up constraints for your database

You can use physical file constraints to control data integrity in your database. You can add constraints

using the Add Physical File Constraint (ADDPFCST) command or iSeries Navigator.

To add a physical file constraint, use the ADDPFCST command.

v To add a unique constraint, specify a value of *UNQCST on the Type parameter. You must also specify

one or more field names for the Key parameter.

v To add a primary key constraint, specify a value of *PRIKEY on the Type parameter. The key that you

specify on the command becomes the primary access path of the file. If the file does not have a keyed

access path that can be shared, the system creates one. You must also specify one or more field names

for the Key parameter.

v To add a check constraint, specify a value of *CHKCST on the Type parameter. You must also specify a

check constraint expression on the CHKCST parameter. The check constraint expression has the same

syntax as the expression used for check-conditions that are defined using Structured Query Language

(SQL). For information about using SQL to set up constraints, see DB2 Universal Database for iSeries

SQL Reference.

You can also add constraints using iSeries Navigator. See the following topics in the SQL programming

topic:

v Add key constraints using iSeries Navigator

v Add check constraints using iSeries Navigator

You can also add constraints when using the SQL CREATE TABLE and ALTER TABLE statements.

Rules for setting up constraints

Here is a list of rules that apply to all physical file constraints.

v The file must be a physical file.

v A file can have a maximum of one member, MAXMBR(1).

v A constraint can be defined when the file has zero members. A constraint cannot be established,

however, until the file has one, and only one, member.

v A file can have a maximum of one primary key constraint, but might have many unique constraints.

Database programming 247

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of the

following constraints:

– The unique constraints

– The primary key constraint

– The check constraints

– The referential constraints, whether they are participating as a parent or a dependent, and whether

the constraints are defined or established.
v Constraint names must be unique in a library.

v Constraints cannot be added to files in the QTEMP library.

v Referential constraints must have the parent and dependent file in the same auxiliary storage pool

(ASP).
 Related concepts

 SQL reference

 SQL programming

 Getting started with iSeries Navigator
 Related reference

 Add Physical File Constraint (ADDPFCST) command

 CREATE TABLE

 ALTER TABLE

Removing unique, primary key, or check constraints

You can use the Remove Physical File Constraint (RMVPFCST) command to remove a physical file

constraint. The full effects of the command depend on the type of constraint that you remove and how it

is used.

To remove a physical file constraint, use the RMVPFCST command.

v To remove a unique constraint, specify a value of *UNQCST on the Type parameter.

v To remove a primary key constraint, specify a value of *PRIKEY on the Type parameter.

v To remove a check constraint, specify a value of *CHKCST on the Type parameter.

You can specify any of the following values on the Constraint (CST) parameter for each of the constraint

types:

v CST(*ALL) to remove all of the constraints you specify on the Type parameter.

v CST(constraint-name) to remove a specific constraint.

v CST(*CHKPND) to remove only those constraints that are in check pending status.

v Use CST(*ALL) with TYPE(*ALL) to remove all constraints from the file.

You can also remove a constraint using Structured Query Language (SQL) or iSeries Navigator.

Considerations for removing constraints

If you remove a primary key or a unique constraint, and the associated access path is shared by a logical

file, the ownership of the shared path transfers to the logical file. If the access path is not shared, it is

removed.

When you remove a primary key constraint with the RMVPFCST command, the system sends an inquiry

message to determine if the key specifications should be removed from the file. A reply of ’K’ maintains

the key specifications in the file. The file remains keyed. A reply of ’G’ indicates that the file will have an

arrival sequence access path when the command completes.

248 System i: Database Database programming

Note: When you remove a primary key constraint with the SQL ALTER TABLE statement, the inquiry

message is not sent. The key specifications are always removed and the file has an arrival sequence

access path when the ALTER TABLE completes.

 Related concepts

 SQL reference

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Remove Physical File Constraint (RMVPFCST) command

Working with a group of constraints

You can use the Work with Physical File Constraints (WRKPFCST) command to display and manage a list

of constraints.

To display a list of the constraints that exist for a particular file, use the WRKPFCST command. From this

display, you can change or remove a constraint and display a list of the records that placed a file

constraint into check pending status.

 Related reference

 Work with Physical File Constraints (WRKPFCST) command

Details: Working with a group of constraints:

The Work with Physical File Constraints display shows all the constraints defined for a physical file.

 Work with Physical File Constraints

 Type options, press Enter.

 2=Change 4=Remove 6=Display records in check pending

 Check

 Opt Constraint File Library Type State Pending

 _ DEPTCST EMPDIV7 EPPROD *REFCST EST/ENB No

 _ ACCTCST EMPDIV7 EPPROD *REFCST EST/ENB Yes

 _ STAT84 EMPDIV7 EPPROD *REFCST DEF/ENB No

 _ FENSTER REVSCHED EPPROD *REFCST EST/DSB Yes

 _ IRSSTAT3 REVSCHED EPPROD *UNQCST

 _ IFRNUMBERO > REVSCHED EPPROD *UNQCST

 _ EVALDATE QUOTOSCHEM EPPROD *REFCST EST/ENB No

 _ STKOPT CANSCRONN9 EPPROD *PRIKEY

 _ CHKDEPT EMPDIV2 EPPROD *CHKCST EST/ENB No

 Parameters for options 2, 4, 6 or command

 ===>__

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F15=Sort by

 F16=Repeat position to F17=Position to F22=Display constraint name

The display lists the constraint names, the file name, and the library name. In addition, the following

information is displayed:

v The Type column identifies the constraint as referential, check, unique, or primary key.

v The State column indicates whether the constraint is defined or established and whether it is enabled

or disabled. The State column only applies to referential and check constraints.

v The Check Pending column contains the check pending status of the constraint. Unique and primary

key constraints do not have a state because they are always established and enabled.

For each of the listed constraints, you can perform the following actions:

v To change a referential or check constraint to any of its permissible states, select Change (option 2). For

example, you can enable a constraint that is currently disabled. This option performs the same

functions as the Change Physical File Constraint (CHGPFCST) command.

Database programming 249

v To remove a constraint, select Remove (option 4). This option performs the same functions as the

Remove Physical File Constraint (RMVPFCST) command.

v To display the records that are in check pending state, select Display (option 6). This option performs

the same functions as the Display Check Pending Constraint (DSPCPCST) command. The DSPCPCST

command applies only to referential and check constraints.

Working with constraints that are in check pending status:

When you add a referential or check constraint to a physical file, the system automatically checks all the

records in the file to ensure that they meet the constraint definition. If the constraint is not valid or if it

cannot be verified, the system places it in check pending status.

 About this task

This check is also performed when the system is being restored.

To work with the constraints that are in check pending status, follow these steps:

1. Make the constraint inactive by running the Change Physical File Constraint (CHGPFCST) command

and specifying *DISABLED on the Constraint state parameter.

2. Display the list of records that caused the constraint to be marked as check pending by running the

Display Check Pending Constraints (DSPCPCST) command.

Note: The length of time that this command runs depends on the number of records the file contains.

3. Schedule the verification of the constraints that are in check pending status by running the Edit Check

Pending Constraints (EDTCPCST) command.

4. Make the constraint active by running the CHGPFCST command again and specify *ENABLED on the

Constraint state parameter.

Results

 Related reference

 Change Physical File Constraint (CHGPFCST) command

 Display Check Pending Constraint (DSPCPCST) command

 Edit Check Pending Constraints (EDTCPCST) command

Displaying records that put a constraint in check pending status:

You can use the Display Check Pending Constraint (DSPCPCST) command to display the records that put

a constraint in check pending status.

 It is often useful to examine the records that do not conform to the rules of your constraint. You can then

change either the record or the constraint as necessary.

Note: Before you perform the following step, you should run the Change Physical File Constraint

(CHGPFCST) command to disable the constraint.

To display or print the list of records that have caused a constraint to be placed in check pending status,

run the DSPCPCST command.

 Related reference

 Display Check Pending Constraint (DSPCPCST) command

 Change Physical File Constraint (CHGPFCST) command

Processing constraints that are in check pending status:

250 System i: Database Database programming

It might take a long time for the system to validate constraints that are created for large files. You can list

the constraints that are in check pending status and schedule them for verification as required.

 To display and edit the list of constraints that are in check pending status, follow these steps:

1. Run the Edit Check Pending Constraints (EDTCPCST) command.

2. Check the status of the constraint you want to process.

3. If the constraint is in a status other than RUN or READY, change the *HLD value in the Seq field to a

value between 1 and 99.

4. Press Enter.

 Edit Check Pending Constraints

 Type sequence, press Enter.

 Sequence: 1-99, *HLD

 ------------Constraints----------- Verify Elapsed

 Seq Status Cst File Library Time Time

 1 RUN EMP1 DEP EPPROD 00:01:00 00:00:50

 1 READY CONST > DEP EPPROD 00:02:00 00:00:00

 *HLD CHKPND FORTH > STYBAK EPPROD 00:03:00 00:00:00

 *HLD CHKPND CST88 STYBAK EPPROD 00:10:00 00:00:00

 *HLD CHKPND CS317 STYBAK EPPROD 00:20:00 00:00:00

 *HLD CHKPND KSTAN STYBAK EPPROD 02:30:00 00:00:00

 Bottom

 F3=Exit F5=Refresh F12=Cancel F13=Repeat all F15=Sort by

 F16=Repeat position to F17=Position to F22=Display constraint name

Details: Processing constraints that are in check pending status

Additional information about processing constraints that are in check pending status includes the Status

field of the Edit Check Pending Constraints display, the Constraint column, and the Verify time column.

The Status field of the Edit Check Pending Constraints display has one of the following values:

v RUN indicates that the constraint is being verified.

v READY indicates that the constraint is ready to be verified.

v NOTVLD indicates that the access path that is associated with the constraint is not valid. After the

access path has been rebuilt, the system automatically verifies the constraint. This value applies only to

a referential constraint.

v HELD indicates that the constraint is not being verified. You must change the sequence to a value from

1 to 99 to change this state.

v CHKPND indicates that the system attempted to verify the constraint, but the constraint is still in

check pending. You must change the sequence to a value from 1 to 99 to change this state.

The Constraint column contains the first five characters of the constraint name. A > symbol follows the

name if it exceeds five characters. You can display the whole long name, put the cursor on that line and

press the F22 key.

The Verify time column shows the time it would take to verify the constraint if there were no other jobs

on the system. The elapsed time column indicates the time already spent on verifying the constraint.

 Related reference

 Edit Check Pending Constraints (EDTCPCST) command

Unique constraints

Unique constraints act as controls in a database to ensure that rows are unique.

Database programming 251

For example, you can specify a customer identification number as a unique constraint in your database. If

anyone attempts to create a new customer with the same customer number, an error message is sent to

the database administrator.

Unique constraints identify a field or set of fields in a database file whose values must be unique across

records in the file. The field must be in ascending order, and can be null-capable.

A file can have multiple unique constraints, but you cannot duplicate unique constraints. The same key

fields, regardless of order, constitute a duplicate constraint.

A unique constraint can be used as the parent key when adding a referential constraint.

Primary key constraints

A primary key constraint is a unique key with special attributes that make the key the primary access

path for the file.

Primary key constraints identify a field or set of fields in a database file whose values must be unique

across records in the file. The field must be in ascending order, and can be null-capable. If it is

null-capable, a check constraint is implicitly added so that null values cannot be entered in the field. You

can define only one primary key constraint for a file.

A primary key constraint can be used as the parent key when adding a referential constraint.

Check constraints

You use check constraints to maintain limits on field values so that they conform to your database

requirements.

Check constraints ensure data validity during insert or update operations by checking the data against a

check constraint expression that you define.

For example, you can create a check constraint on a field and define that the values that are inserted into

the field must be between 1 and 100. If a value does not fall within the range, the insert or update

operation against your database is not processed.

Check constraints are much like referential constraints in terms of their states:

v Defined and enabled. The constraint definition has been added to the file, and the constraint will be

enforced after the constraint is established.

v Defined and disabled . The constraint definition has been added to the file, but the constraint will not

be enforced.

v Established and enabled. The constraint has been added to the file and all of the pieces of the file are

there for enforcement.

v Established and disabled. The constraint has been added to the file and all of the pieces of the file are

there for enforcement, but the constraint will not be enforced.

A check constraint, like a referential constraint, can have a check pending status. If the data in any field

violates the check constraint expression, then the constraint is in check pending status. For the insertion

or update of a record, if the data violates the check constraint expression, then the insert or update

operation is not allowed.

A check constraint that contains one or more Large Object (LOB) fields is restricted to a narrower range

of operations than a check constraint without LOB fields. When the check constraint includes one or

more LOB fields, the LOB fields can only be involved in direct comparisons to:

v Other LOB fields of the same type and same maximum length.

v Literal values.

252 System i: Database Database programming

v The null value.

Operations known as derived operations, such as the Substring or Concat operations, are not allowed

against LOB fields in a check constraint. The diagnostic message CPD32E6 will be sent when you try to

add a check constraint that attempts a derived operation against a LOB field.

Ensuring data integrity with referential constraints

You use referential constraints to enforce the referential integrity of your database. Referential integrity

encompasses all of the mechanisms and techniques that you can use to ensure that your database

contains only valid data.

Adding referential constraints

You can add referential constraints on physical files with no more than one member. A referential

constraint is a file-level attribute; therefore, you can create the constraint before the member exists.

Before you add referential constraints:

Before you add referential constraints, make sure that you meet these prerequisites.

 v There must be a parent file with a key capable of being a parent key. If the parent file has no primary

key or unique constraint, the system tries to add a primary key constraint to the parent file if the field

attributes of the potential parent key match those of the foreign key field attributes of the dependent

file.

v There must be a dependent file with certain attributes that match the attributes of the parent file:

– Sort sequence (SRTSEQ) must match for data types CHAR, OPEN, EITHER, and HEX.

– The coded character set identifier (CCSID) must match for each SRTSEQ table unless either (or both)

of the CCSIDs is 65535.

– Each sort sequence table must match exactly.
v The dependent file must contain a foreign key that matches the following attributes of the parent key:

– Data type

– Length

– Precision (packed, zoned, or binary)

– CCSID (unless either has a CCSID of 65535)

– REFSHIFT (if data type is OPEN, EITHER, or ONLY)

Defining the parent file in a referential constraint:

A parent file must be a physical file with a maximum of one member. You can either create a parent file

or use an existing file as the parent file.

 The concept of a parent key applies only in terms of a referential constraint. When a referential constraint

is added to the dependent file, a parent key is required for the parent file. To prepare for this, you must

first add either a primary key constraint or a unique constraint to the parent file with the appropriate set

of fields for the key. When the referential constraint is added, a search is conducted of unique constraints

(and primary key) for a match. If a match is found, then the access path of the constraint is used as the

parent key in the referential constraint relationship.

To create a new physical file as a parent file, follow these steps:

1. Use the Create Physical File (CRTPF) command to create the file.

2. Use the Add Physical File Constraint (ADDPFCST) command to either add a primary key constraint

or a unique constraint. The primary key can be null-capable, but the system creates an implicit check

constraint to prevent the insertion of null values in the field.

Database programming 253

Note: You can use the SQL CREATE TABLE statement to perform the preceding steps with one step.

To use an existing file as a parent file, choose from the following options:

v You can add a primary key constraint to a file with the ADDPFCST command. Specify *PRIKEY for the

TYPE parameter. You must also specify the key field or fields with the KEY parameter.

If a primary key constraint already exists for the file, the ADDPFCST command with TYPE(*PRIKEY)

will fail because a file can have only one primary key. If you want a different primary key constraint,

you must first remove the existing primary key constraint with the Remove Physical File Constraint

(RMVPFCST) command. Then you can add a new primary key constraint.

v You can add a unique constraint to a file with the ADDPFCST command. Specify *UNQCST for the

TYPE parameter. You must also specify the key field or fields with the KEY parameter. You can also

add a unique constraint with the Structured Query Language (SQL) ALTER TABLE statement.

If the parent file does not have a primary key or unique constraint that can be used as the parent key,

the system will attempt to automatically add a primary key constraint when adding a referential

constraint.

If the parent file has a uniquely keyed access path, where the access path fields match the foreign key’s

fields (both for the number of fields and matching attributes), then a primary key constraint will be

implicitly added to the parent file. This will become the parent key for the referential constraint.

If the parent file is arrival sequence access path, then if the fields specified for the parent key match the

foreign key’s fields (matching attributes), then a primary key constraint will be implicitly added to the

parent file. This will become the parent key for the referential constraint.

What to do when you cannot define a parent key

For an existing file with a primary key or unique constraint, if neither constraint will suffice as the parent

key, there are options you can turn to.

You can take either of the following actions when you cannot define a parent key.

v Delete the file and create it again with the appropriate keys.

v Add a unique or primary key constraint to the created file.
 Related reference

 Create Physical File (CRTPF) command

 Add Physical File Constraint (ADDPFCST) command

 Remove Physical File Constraint (RMVPFCST) command

Defining the dependent file in a referential constraint:

A dependent file must be a physical file with a maximum of one member. You can either create a

dependent file as you do any physical file or use an existing file as the dependent file.

 The dependent file does not require a keyed access path when you create the actual constraint. If no

existing access paths meet the foreign key criteria, the system adds an access path to the file.

Specifying referential constraint rules:

Referential constraints allow you to specify the rules that you want the system to enforce when you

delete or update records.

 About this task

To specify the rules that you want to enforce with referential constraints, follow these steps:

1. Run the Add Physical File Constraint (ADDPFCST) command.

254 System i: Database Database programming

2. Specify the rule that you want to enforce when you delete records (the delete rule) by choosing a value

for the DLTRULE parameter.

3. Specify the rule that you want to enforce when you update records (the update rule) by choosing a

value for the UPDRULE parameter.

Results

You can also add referential constraints using iSeries Navigator.

 Related concepts

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Add Physical File Constraint (ADDPFCST) command

Details: Specifying referential constraint delete rules:

You can specify one of these values for the DLTRULE parameter. The delete rule specifies the action that

the system takes when you delete a parent key value. The delete rule does not affect null parent key

values.

 v *NOACTION (the default value)

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key

value.
v *CASCADE

– Record deletion in a parent file causes records in the dependent file to be deleted when the parent

key value matches the foreign key value.
v *SETNULL

– Record deletion in a parent file updates those records in the dependent file where the value of the

parent non-null key matches the foreign key value. For those dependent records that meet the

preceding criteria, all null-capable fields in the foreign key are set to null. Foreign key fields with

the non-null attribute are not updated.
v *SETDFT

– Record deletion in a parent file updates those records in the dependent file where the value of the

parent non-null key matches the foreign key value. For those dependent records that meet the

preceding criteria, the foreign key field or fields are set to their corresponding default values.
v *RESTRICT

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key

value.

Note: The system enforces a delete *RESTRICT rule immediately when the deletion is attempted. The

system enforces other constraints at the logical end of the operation. The operation, in the case

of other constraints, includes any trigger programs that are run before or after the delete

operation. It is possible for a trigger program to correct a potential referential integrity violation.

For example, a trigger program can add a parent record if one does not exist. The *RESTRICT

rule does not prevent the violation.

Details: Specifying referential constraint update rules:

You can specify one of these values for the UPDRULE parameter. The UPDRULE parameter identifies the

update rule for the constraint relationship between parent and dependent files. The update rule specifies

the action that the system takes when you update the parent file.

 v *NOACTION (the default value)

Database programming 255

– Record update in a parent file does not occur if there is a matching foreign key value in the

dependent file.
v *RESTRICT

– Record update in a parent file does not occur if a value of the non-null parent key matches a foreign

key value.

Note: The system enforces an update *RESTRICT rule immediately when you attempt the update

operation. The system enforces other constraints at the logical end of the operation. For example,

a trigger program can add a parent record if one does not exist. The *RESTRICT rule does not

prevent the violation.

Details: Specifying referential constraint rules—journaling requirements:

If you perform insert, update, or delete operations on a file that is associated with a referential constraint,

and the delete rule, update rule, or both are other than *RESTRICT, you must use journaling.

 You must journal both the parent and the dependent files to the same journal. In addition, you are

responsible for starting the journaling for the parent and dependent files.

You can start the journaling for the parent and dependent files with the Start Journal Physical File

(STRJRNPF) command.

If you are inserting, updating, or deleting records to a file associated with a referential constraint that has

a delete rule, update rule, or both rules, other than *RESTRICT, commitment control is required. If you

have not started commitment control, the system starts and ends the commit cycle automatically for you.

 Related reference

 Start Journal Physical File (STRJRNPF) command

Details: Adding referential constraints:

Consider these limitations when adding referential constraints.

 v A parent file must be a physical file.

v A parent file can have a maximum of one member, MAXMBR(1).

v A dependent file must be a physical file.

v A dependent file can have a maximum of one member, MAXMBR(1).

v You can define a constraint when both or either of the dependent and the parent files have zero

members. A constraint cannot be established unless both files have a member.

v A file can have a maximum of one primary key, but might have many unique constraints.

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of:

– The referential constraints whether participating as a parent or a dependent, and whether the

constraints are defined or established.

– The unique constraints, which includes the primary key constraint.

– The check constraints.
v Only externally described files are allowed in referential constraints. Source files are not allowed.

Program described files are not allowed.

v Files with insert, update, or delete capabilities are not allowed in *RESTRICT relationships.

v Constraint names must be unique in a library.

v You cannot add constraints to files in the QTEMP library.

v You cannot add a referential constraint where the parent file is in one ASP and the dependent file is in

a different ASP.

256 System i: Database Database programming

Details: Avoiding constraint cycles:

A constraint cycle is a sequence of constraint relationships in which a descendent of a parent file becomes

a parent to the original parent file. You can use constraint cycles in a DB2 Universal Database for iSeries

database; however, you should avoid using them.

Verifying referential constraints

The system automatically verifies the validity of a referential constraint when you add the constraint with

the Add Physical File Constraint (ADDPFCST) command. The system verifies that every non-null value

in the foreign key matches a corresponding value in the parent key.

If the verification is successful, the constraint rules are enforced on subsequent accesses by a user or an

application program. An unsuccessful verification causes the constraint to be marked as check pending. If

the constraint is added with the ADDPFCST command, it will be in check pending but disabled state.

Note: It is not uncommon to add a referential constraint to existing files that contain large amounts of

data. The ADDPFCST command can take several hours to complete when a very large number of

records are involved. The add process places an exclusive lock on the files. You should take this

time factor and file availability into consideration before you add a referential constraint.

Enabling or disabling referential constraints

You can enable or disable a referential constraint using the Change Physical File Constraint (CHGPFCST)

command or iSeries Navigator.

To enable or disable a referential constraint relationship, use the CHGPFCST command. You must specify

the dependent file when changing a referential constraint; you cannot disable or enable a constraint by

specifying the parent file.

You can also enable or disable a referential constraint using iSeries Navigator.

You must have a minimum of object management authority (or ALTER privilege) to the dependent file in

order to enable or disable a constraint.

Details: Enabling or disabling referential constraints

When the system enables or disables a constraint, it locks the parent and the dependent files, both

members, and both access paths. It removes the locks when the enable or disable operation is complete.

Attempting to enable an enabled constraint or disable a disabled constraint does nothing but cause the

issuance of an informational message.

An established/disabled or check pending constraint relationship can be enabled. The enabling causes the

system to verify the constraint again. If verification finds mismatches between the parent and the foreign

keys, the constraint is marked as check pending.

Disabling a constraint relationship allows all file input/output (I/O) operations for both the parent and

the dependent files, if the user has the correct authority. The entire infrastructure of the constraint

remains. The parent key and the foreign key access paths are still maintained. However, there is no

referential enforcement that is performed for the two files in the disabled relationship. All remaining

enabled constraints are still enforced.

Disabling a constraint can allow file I/O operations in performance-critical situations to run faster.

Always consider the trade-off in this kind of a situation. The file data can become referentially not valid.

When the constraint is enabled, depending on the file size, the system will take time to re-verify the

referential constraint relationship.

Database programming 257

Note: Users and applications must be cautious when modifying files with a constraint relationship in the

established and disabled state. Relationships can be violated and not detected until the constraint

is enabled again.

The Allocate Object (ALCOBJ) command can allocate (lock) files while a constraint relationship is

disabled. This allocation prevents others from changing the files while this referential constraint

relationship is disabled. Specify a lock state of Exclusive read (*EXCLRD) on the command so other users

can read the files. After the constraint is enabled again, the Deallocate Object (DLCOBJ) command

unlocks the files.

When you enable or disable multiple constraints, they are processed sequentially. If a constraint cannot be

modified, you receive a diagnostic message, and the function proceeds to the next constraint in the list.

When all constraints have been processed, you receive a completion message listing the number of

constraints modified.

 Related concepts

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Change Physical File Constraint (CHGPFCST) command

 Allocate Object (ALCOBJ) command

 Deallocate Object (DLCOBJ) command

Removing referential constraints

You can remove referential constraints in various ways. The full impact of the removal depends on the

constraint you are removing and the certain conditions that surround the constraint.

About this task

To remove a referential constraint, follow these steps:

1. Run the Remove Physical File Constraint (RMVPFCST) command.

2. Specify the constraint or constraints you want to remove using the CST and TYPE parameters.

v Use the CST parameter to specify all constraints or a specific constraint name.

v Use the TYPE parameter to specify a particular type of constraint.

Results

You can also remove a referential constraint using iSeries Navigator.

When you remove a referential constraint, the system removes the associated foreign keys and access

paths from the file. The system does not remove the foreign key access path if any logical file or other

constraint on the system uses it.

If you remove a referential, primary key, or unique constraint, and the associated access path is shared by

a logical file, the ownership of the shared path transfers to the logical file.

 Related concepts

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Remove Physical File Constraint (RMVPFCST) command

Details: Removing a constraint with the CST parameter:

258 System i: Database Database programming

You can specify which constraint you want to remove by using the CST parameter.

 With the CST parameter, you can specify to remove:

v All constraints CST(*ALL) associated with a file where TYPE(*ALL) is specified

v A specific referential constraint CST(constraint-name)

v Referential or check constraints in check pending CST(*CHKPND)

v All constraints CST(*ALL) associated with a specific TYPE of constraint

Details: Removing a constraint with the TYPE parameter:

You can specify the type of constraint that you want to remove by using the TYPE parameter.

 With the TYPE parameter, you can specify the type of constraint that you want to remove.

v All types: TYPE(*ALL)

– All constraints for CST(*ALL)

– All constraints in check pending for CST(*CHKPND)

– The named constraint for CST(constraint-name)
v Referential constraints: TYPE(*REFCST)

– All referential constraints for CST(*ALL)

– All referential constraints in check pending for CST(*CHKPND)

– The named referential constraint for CST(constraint-name)
v Unique constraints: TYPE(*UNQCST)

– All unique constraints except the primary key constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—a unique constraint cannot be in check pending

– The named unique constraint for CST(constraint-name)
v Primary key constraints: TYPE(*PRIKEY)

– The primary constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—the primary constraint cannot be in check pending

– The named primary constraint for CST(constraint-name)
v Check constraints: TYPE(*CHKCST)

– All check constraints for CST(*ALL)

– All check constraints in check pending for CST(*CHKPND)

– The named check constraint for CST(constraint-name)

Details: Ensuring data integrity with referential constraints

You might want to ensure data integrity with referential constraints for several reasons.

v To make sure that data values between files meet the rules of your business. For example, consider a

business that maintains a list of customers in one file and a list of their accounts in another file. It does

not make sense to allow the addition of an account if an associated customer does not exist. Likewise,

it is not reasonable to delete a customer until you delete all of their accounts.

v To be able to define the relationships between data values.

v To have the system enforce the data relationships no matter what application makes changes.

v To improve the performance of integrity checks that are made at a high-level language (HLL) or SQL

level by moving the checking into the database.

Example: Ensuring data integrity with referential constraints

Suppose that a database contains an employee file and a department file. You can define a referential

constraint to ensure that every employee in the employee file belongs to a corresponding department in

the department file.

Database programming 259

Both the employee and department files have a department number field named DEPTNO. The related

records of these database files are those for which employee.DEPTNO equals department.DEPTNO.

1. Use the Add Physical File Constraint (ADDPFCST) command, add a primary key constraint or a

unique constraint to the department file for the DEPTNO field. This primary key or unique constraint

will later become a parent key. It is not yet a parent key because a referential constraint has not yet

been added.

2. Add a referential constraint to the employee file using the ADDPFCST command. The employee file

will be the dependent file. The foreign key will be employee.DEPTNO. The department file will be the

parent file with parent key department.DEPTNO. Because there is either a primary key constraint or a

unique constraint with the DEPTNO field as the key, the constraint will serve as the parent key

associated with the referential constraint.

The referential constraint has update and delete rules that must be followed for record insert, update, and

delete operations on the parent or the dependent file.

Referential integrity terms

A discussion of referential integrity requires an understanding of several terms. These terms are arranged

in an order that might help you understand their relationship to each other.

Primary key constraint

A field or set of fields in a database file that must be unique, ascending, and cannot contain null

values. The primary key is the primary file access path. The primary key constraint can be used

as the parent key when adding a referential constraint. A primary key constraint is really a

unique constraint with some special attributes.

Unique constraint

A field or set of fields in a database file that must be unique, ascending, and can contain null

values.

Parent key

A field or set of fields in a database file that must be unique, ascending, and might or might not

contain null values. The parent key of the parent file is used to add a referential constraint to the

dependent file. The parent key must be either a primary key or a unique constraint.

Foreign key

A field or set of fields in which each non-null value must match a value in the parent key of the

related parent file.

 The attributes (data type, length, and so forth) must be the same as the parent key of the parent

file.

Parent file

The file in a referential constraint relationship that contains the parent key.

Dependent file

The file in a referential constraint relationship that contains the foreign key. The dependent file is

dependent on the parent file. That is, for every non-null value in the foreign key of the

dependent file, there must be a corresponding non-null value in the parent key of the parent file.

Check pending

The state that occurs when the database does not know with certainty whether for a referential

constraint this is true: for every non-null value in the foreign key of the dependent file, there

must be a corresponding non-null value in the parent key of the parent file.

Delete rule

A definition of what action the database should take when there is an attempt to delete a parent

record.

Update rule

A definition of what action the database should take when there is an attempt to update a parent

record.

260 System i: Database Database programming

Referential integrity enforcement

The input/output (I/O) access for a database file that is associated with an established and enabled

constraint varies, depending on whether the file contains the parent key or foreign key in the constraint

relationship. The system enforces referential integrity on all parent and dependent file I/O requests.

The database enforces constraint rules for all I/O requests whether from application programs or system

commands (such as the Initialize Physical File Member (INZPFM) command) or SQL statements or file

I/O utilities (such as STRSEU).

Foreign key enforcement:

The rules that you specify for a referential constraint apply to parent key changes. The database enforces

a no-action rule on the insert and update operations on the foreign key to ensure that the value of every

non-null foreign key matches the value of the parent key.

 The system returns a referential constraint violation if a matching parent key does not exist for the new

foreign key value, and does not insert or update the dependent record.

Parent key enforcement:

The rules that you specify for a referential constraint determine how the database processes the delete

and update operations on the parent key. The system enforces the unique attribute of a parent key on all

parent file I/O.

Enforcement of delete rules:

When you delete a record from a parent file, the system checks the dependent file for any dependent

records (matching non-null foreign key values). If the system finds any dependent records, the delete rule

determines the action to be taken.

 v No Action. If the system finds any dependent records, it returns a constraint violation and does not

delete records.

v Cascade. The system deletes dependent records that its finds in the dependent file.

v Set Null. The system sets null-capable fields in the foreign key to null in every dependent record that

it finds.

v Set Default. The system sets all fields of the foreign key to their default value when it deletes the

matching parent key.

v Restrict. Same as no action except that enforcement is immediate.

If part of the delete rule enforcement fails, the entire delete operation fails and all associated changes are

rolled back. For example, a delete cascade rule causes the database to delete ten dependent records, but a

system failure occurs while deleting the last record. The database will not allow deletion of the parent

key record, and the deleted dependent records are re-inserted.

If a referential constraint enforcement causes a change to a record, the associated journal entry will have

an indicator value noting that a referential constraint caused the record change. For example, a dependent

record that is deleted by a delete cascade rule will have a journal entry indicator which indicates that the

record change was generated during referential constraint enforcement.

Enforcement of update rules:

When the system updates a parent key in a parent file, it checks for any dependent records (matching

non-null foreign values) in the dependent file. If the system finds any dependent records, the update rule

for the constraint relationship determines the action to be taken.

 v No Action. If the system finds any dependent records, it returns a constraint violation, does not update

any records.

Database programming 261

v Restrict. The system performs the same as above, but enforcement is immediate.

Constraint states

A file can be in several constraint states.

v Non-constraint relationship state. No referential constraint exists for a file in this state. If a constraint

relationship once existed for the file, all information about it has been removed.

v Defined state. A constraint relationship is defined between a dependent and a parent file. It is not

necessary to create the member in either file to define a constraint relationship. In the defined state, the

constraint can be:

– Defined and enabled. A defined and enabled constraint relationship is for definition purposes only.

The rules for the constraint are not enforced. A constraint in this state remains enabled when it goes

to the established state.

– Defined and disabled. A defined constraint relationship that is disabled is for definition purposes

only. The rules for the constraint are not enforced. A constraint in this state remains disabled when it

goes to the established state.
v Established state. The dependent file has a constraint relationship with the parent file. A constraint

will be established only if the attributes match between the foreign and parent key. Members must

exist for both files. In the established state, the constraint can be:

– Established and enabled. An established constraint relationship that is enabled causes the database

to enforce referential integrity.

– Established and disabled. An established constraint relationship that is disabled directs the database

to not enforce referential integrity.

Check pending status in referential constraints

Check pending is the condition of a constraint relationship when potential mismatches exist between

parent and foreign keys. When the system determines that referential integrity might have been violated,

the constraint relationship is marked as check pending.

For example:

v A restore operation where only data in the dependent file is restored and this data is no longer

synchronized (a foreign key does not have a parent) with the parent file on the system.

v A system failure allowed a parent key value to be deleted when a matching foreign key exists. This can

only occur when the dependent and parent files are not journaled.

v A foreign key value does not have a corresponding parent key value. This can happen when you add a

referential constraint to existing files that have never before been part of a constraint relationship.

Check pending status is either *NO or *YES.

Check pending applies only to the constraints in the established state. A referential constraint that is

established and enabled can have a check pending status of *YES or *NO.

To get a constraint relationship out of check pending, you must disable the relationship, correct the key

(foreign, parent, or both) data, and enable the constraint again. The database then verifies the constraint

relationship again.

When a relationship is in check pending, the parent and dependent files are in a situation that restricts

their use. The parent file I/O restrictions are different from the dependent file restrictions. Check pending

restrictions do not apply to the constraints that are in the established and disabled state (which are

always in check pending status).

Dependent file restrictions in check pending:

These restrictions apply to a dependent file that has an established and enabled referential constraint in

check pending.

262 System i: Database Database programming

A dependent file in a constraint relationship that is marked as check pending cannot have any file

input/output (I/O) operations performed on it. You must correct the file mismatches between the

dependent and parent files. Also, you must take the relationship out of check pending before the system

allows any I/O operations. The system does not allow records to be read from such a file because the

user or application might not be aware of the check pending status and the constraint violation.

To perform I/O operations on a dependent file with an enabled referential constraint in check pending,

you can first disable the constraint and then perform the I/O operations that you want.

Parent file restrictions in check pending:

These restrictions apply to a parent file that has an established and enabled referential constraint in check

pending.

 You can open the parent file of a constraint relationship that the system marks as check pending, but you

are limited in the types of input/output (I/O) operations that you can do. You can read and insert

records, but you cannot delete or update records.

To perform update and delete operations on a parent file with an enabled referential constraint in check

pending, you can first disable the constraint and then perform the I/O operations that you want.

Referential integrity and CL commands

Referential integrity affects the characteristics of some CL commands.

v Add Physical File Member (ADDPFM):

In the case where a constraint relationship is defined between a dependent file and a parent file each

having zero members:

– If a member is first added to the parent file, the constraint relationship remains in the defined state.

– If a member is then added to the dependent file, the foreign key access path is built, and a

constraint relationship is established with the parent.
v Change Physical File (CHGPF):

When a constraint relationship exists for a file, you cannot change certain parameters available in the

CHGPF command. The following parameters are restricted:

MAXMBRS

The maximum number of members for a file that has a constraint relationship is one:

MAXMBRS(1).

CCSID

The CCSID of a file that is not associated with a constraint, can be changed. If the file is associated

with a constraint, the CCSID can only be changed to 65535.
v Clear Physical File Member (CLRPFM):

The CLRPFM command fails when issued for a parent file that contains records and is associated with

an enabled referential constraint.

v FORTRAN Force-End-Of-Data (FEOD):

The FEOD operation fails when issued for a parent file that is associated with an enabled referential

constraint relationship.

v Create Duplicate Object (CRTDUPOBJ):

If CST(*NO) is specified, constraints will not be duplicated in the new file. If CST(*YES) is specified,

constraints will be duplicated. The following rules describe how constraints are duplicated:

– If the parent file is duplicated either to the same library or to a different library, the system cross

reference file is used to locate the dependent file of a defined referential constraint. Also, the system

attempts to establish the constraint relationship.

– If the dependent file is duplicated, then the TOLIB is used to determine constraint relationships:

Database programming 263

|
|

|
|
|

|

- If both the parent and dependent files are in the same library, the referential constraint

relationship will be established with the parent file in the TOLIB.

- If the parent and dependent files are in different libraries, then the referential constraint

relationship of the duplicated dependent file will be established with the original parent file
v Copy File (CPYF):

When the CPYF command creates a new file and the original file has constraints, the constraints are

not copied to the new file.

v Move Object (MOVOBJ):

The MOVOBJ command moves a file from one library to another. The system attempts to establish any

defined referential constraints that can exist for the file in the new library.

v Rename Object (RNMOBJ):

The RNMOBJ command renames a file within the same library or renames a library.

An attempt is made to establish any defined referential constraints that can exist for the renamed file

or library.

v Delete File (DLTF):

The DLTF command has an optional keyword that specifies how referential constraint relationships are

handled. The RMVCST keyword applies to the dependent file in a constraint relationship. The

keyword specifies how much of the constraint relationship of the dependent file is removed when the

parent file is deleted:

*RESTRICT

If a constraint relationship is defined or established between a parent file and dependent file, the

parent file is not deleted and the constraint relationship is not removed. This is the default value.

*REMOVE

The parent file is deleted, and the constraint relationship and definition are removed. The

constraint relationship between the parent file and the dependent file is removed. The dependent

file’s corresponding foreign key access path or paths, as well as the constraint definition, are

removed.

*KEEP

The parent file is deleted, and the referential constraint relationship definition is left in the defined

state. The dependent file’s corresponding foreign key access path and constraint definition are not

removed.
v Remove Physical File Member (RMVM):

When the member of a parent file in a constraint relationship is removed, the constraint relationship is

put in the defined state. The foreign key access path and referential constraint definition are not

removed. The parent key access path is removed because the parent member was removed; the parent

constraint definition remains at the file level.

When the member of a dependent file in a constraint relationship is removed, the constraint

relationship is put in the defined state. The parent key access path and constraint definition are not

removed. The foreign key access path is removed because the dependent member was removed; the

referential constraint definition is not removed.

v Save and restore commands:

If the parent file is restored to a library, the system uses the system cross reference files to locate the

dependent file of a defined referential constraint. An attempt is made to establish the constraint

relationship.

If the dependent file is restored, the TOLIB is used to determine constraint relationships:

– If both the parent and dependent files are in the same library, the referential constraint relationship

is established with the parent file in the TOLIB.

– If the parent and dependent files are in different libraries, the referential constraint relationship of

the duplicated dependent file is established with the original parent file.

264 System i: Database Database programming

|
|

|
|

The order of the restore of dependent and parent files within a constraint relationship does not matter

(parent restored before dependent or dependent restored before parent). The constraint relationship

will eventually be established.

Triggering automatic events in your database

A trigger is a set of actions that run automatically when a specified change or read operation is performed

on a specified database file. You can define a set of trigger actions in any high-level language that is

supported on the i5/OS operating system.

The change operation can be an insert, update, or delete high-level language statement in an application

program. The read operation can be a fetch, get, or read high-level language statement in an application

program.

You can also use SQL triggers.

 Related concepts

 “Database data protection and monitoring” on page 7
To ensure data integrity and consistency, you can enforce either business rules or data type rules.

 SQL triggers

 SQL programming
 Related information

Stored Procedures, Triggers and User Defined Functions on DB2 Universal Database for iSeries

Uses for triggers

Triggers in the database have several uses.

Triggers allow you to perform the following tasks:

v Enforce business rules

v Validate input data

v Generate a unique value for a newly inserted row on a different file (surrogate function)

v Write to other files for audit trail purposes

v Query from other files for cross-referencing purposes

v Access system functions (for example, print an exception message when a rule is violated)

v Replicate data to different files to achieve data consistency

Benefits of using triggers in your business

Triggers offer benefits to your business.

These benefits are:

v Faster application development. Because the database stores triggers, you do not have to code the

trigger actions into each database application.

v Global enforcement of business rules. Define a trigger once and then reuse it for any application that

uses the database.

v Easier maintenance. If a business policy changes, you need to change only the corresponding trigger

program instead of each application program.

v Improve performance in client/server environment. All rules run in the server before the result returns.

Creating trigger programs

You can create and work with a program that contains a set of trigger actions.

Database programming 265

|
|
|

http://www.redbooks.ibm.com/abstracts/sg246503.html

About this task

To add a trigger to a database file, follow these steps:

1. Supply a trigger program. You can write a trigger program in a high-level language (HLL), Structured

Query Language (SQL), or control language (CL).

2. Use one of the following methods to add the trigger:

v The Add Physical File Trigger (ADDPFTRG) command. You must specify your trigger program in

the trigger program (PGM) parameter on the command.

v Add a trigger using iSeries Navigator.

v The CREATE TRIGGER SQL statement.
 Related reference

 Add Physical File Trigger (ADDPFTRG) command

 CREATE TRIGGER

Adding triggers using iSeries Navigator:

Using iSeries Navigator, you can define system triggers and SQL triggers. Additionally, you can enable or

disable a trigger on a physical database file.

 About this task

A trigger is a set of actions that run automatically when a specified change operation is performed on a

specified database file. In this discussion, a table is a physical file. The change or read operation can be

an insert, update, or delete high-level language statement in an application program, or an SQL INSERT,

UPDATE, or DELETE statement.

To add a trigger, follow these steps:

1. From iSeries Navigator, expand your system → Database → Schemas.

2. Click the library that contains the table to which you want to add the trigger.

3. Right-click the table to which you want to add the trigger and click New → Trigger.

4. Click External to add a system trigger.

5. Click SQL to add an SQL trigger.
 Related concepts

 “Triggering automatic events in your database” on page 265
A trigger is a set of actions that run automatically when a specified change or read operation is

performed on a specified database file. You can define a set of trigger actions in any high-level

language that is supported on the i5/OS operating system.

 SQL triggers

How trigger programs work:

When a user or an application issues a change or read operation on a database file that has an associated

trigger, the operation calls the appropriate trigger program or programs.

 The change or read operation passes two parameters to the trigger program, as described in the following

table.

 Parameter Description Input or output Type

1 Trigger buffer, which contains the

information about the current change

operation that is calling this trigger

program.

Input CHAR(*)

266 System i: Database Database programming

|

|
|

|
|
|
|

|

|

|

|

|
|
|

|
|

Parameter Description Input or output Type

2 Trigger buffer length. Input BINARY(4)

From these inputs, the trigger program can refer to a copy of the original or the new records. You must

code the trigger program so that it accepts these parameters.

 Related concepts

 “Trigger buffer sections” on page 284
The trigger buffer has two logical sections: a static section and a variable section.

Other important information about working with trigger programs:

Here are the recommendations, precautions, and error messages for trigger programs. Information about

monitoring and commitment control is also included.

Recommendations for trigger programs:

Consider these recommendations when you create a trigger program.

 v Create the trigger program so that it runs under the user profile of the user who created it. In this way,

users who do not have the same level of authority to the program will not encounter errors.

v Create the program with USRPRF(*OWNER) and *EXCLUDE public authority, and do not grant

authorities to the trigger program to USER(*PUBLIC). Avoid having the trigger program altered or

replaced by other users. The database calls the trigger program even if the user causing the trigger

program to run does not have authority to the trigger program.

v Create the program as ACTGRP(*CALLER) if the program is running in an Integrated Language

Environment (ILE). This allows the trigger program to run under the same commitment definition as

the application.

v Open the file with a commit lock level the same as the application’s commit lock level. This allows the

trigger program to run under the same commit lock level as the application.

v Create the program in the physical file’s library.

v Use commit or rollback in the trigger program if the trigger program runs under a different activation

group than the application.

v Signal an exception if an error occurs or is detected in the trigger program. If an error message is not

signalled from the trigger program, the database assumes that the trigger ran successfully. This might

cause the user data to end up in an inconsistent state.

Precautions to take when coding trigger programs:

Trigger programs can be very powerful. But you must take caution when coding trigger programs.

 Be careful when designing trigger programs that access a system resource, such as a tape drive. For

instance, a trigger program that copies record changes to tape media can be useful, but the program itself

cannot detect if the tape drive is ready or if it contains the correct tape. You must take these kinds of

resource issues into considerations when designing trigger programs.

In addition, use read triggers with extreme caution. Using a read trigger causes a trigger to be called for

every record that is read. During a query, this means that triggers can be called many times as records

are processed multiple times by the query. This can impact system performance.

Functions to use with care in trigger programs:

Some control language (CL) commands and functions are not recommended in a trigger program and

need to be carefully considered if they are to be used.

Database programming 267

|
|
|
|

These CL commands and functions are:

v STRCMTCTL (Start Commitment Control)

v RCLSPLSTG (Reclaim Spool Storage)

v RCLRSC (Reclaim Resources)

v CHGSYSLIBL (Change System Library List)

v DLTLICPGM, RSTLICPGM, and SAVLICPGM (Delete, Restore, and Save Licensed Program)

v SAVLIB (Save Library) with SAVACT other than (*NO)

v Any commands with DKT or TAP

v Any migration commands

v The debug program (a security exposure)

v Any commands related to remote job entry (RJE)

v Invoking another CL or interactive entry—might reach lock resource limit.

Commands, statements, and operations that you cannot use in trigger programs:

A trigger program cannot include some commands, statements, and operations.

 The system returns an exception if you use these:

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the COMMIT operation. The COMMIT operation is allowed for any other

commitment definition in the job.

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the ROLLBACK operation. The ROLLBACK operation is allowed for any other

commitment definition in the job.

v The SQL CONNECT, DISCONNECT, SET CONNECTION, and RELEASE statements are not allowed.

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the ENDCMTCTL CL command. The ENDCMTCTL CL command is allowed for

any other commitment definition in the job.

v An attempt to add a local API commitment resource (QTNADDCR) to the same commitment definition

associated with the insert, update, delete, or read operation that called the trigger.

v An attempt to do any input/output operation to a file that a trigger program has opened with *SHARE

and is the file that caused the trigger program to be called.

v The called trigger program that uses the same commitment definition as the insert, update, delete, or

read operation that called the trigger and that already has an existing remote resource. However, the

system puts the entire transaction into a rollback-required state:

– If the trigger program fails and signals an escape message AND

– Any remote resource was updated during the nonprimary commit cycle for either a system other

than System i or for the system that is at a pre-Version 3 Release 2 level.

– The trigger program can add a remote resource to the commitment definition associated with the

insert, update, delete, or read operation that called the trigger. This allows for LU62 remote

resources (protected

– conversation) and DFM remote resources (DDM file open), but not DRDA® remote resources.

– If a failure occurs when changing a remote resource from a trigger program, the trigger program

must end by signalling an escape message. This allows the system to ensure that the entire

transaction, for all remote locations, properly rolls back. If the trigger program does not end with an

escape message, the databases on the various remote locations might become inconsistent.

– A commit lock level of the application program is passed to the trigger program. Run the trigger

program under the same lock level as the application program.

268 System i: Database Database programming

– The trigger program and application program can run in the same or different activation groups.

Compile the trigger program with ACTGRP(*CALLER) to achieve consistency between the trigger

program and the application program.

– A trigger program calls other programs or it can be nested (that is, a statement in a trigger program

causes the calling of another trigger program). In addition, a trigger program itself can call a trigger

program. The maximum trigger nested level for insert, update, delete, or read is 200. When the

trigger program runs under commitment control, the following situations will result in an error:

- Any update of the same record that has already been changed by the change operation or by an

operation in the trigger program.

- Conflicting operations on the same record within one change operation. For example, the change

operation inserts a record, then the record is deleted by the trigger program.

Notes:

1. If the change operation is not running under commitment control, the system always

protects the change operation. However, the system does not monitor updating the same

record within the trigger program.

2. The ALWREPCHG(*NO|YES) parameter of the Add Physical File Trigger (ADDPFTRG)

command controls repeated changes under commitment control. Changing from the

default value to ALWREPCHG(*YES) allows the same record or updated record

associated with the trigger program to repeatedly change.
– The Allow Repeated Change ALWREPCHG(*YES) parameter on the Add Physical File Trigger

(ADDPFTRG) command also affects trigger programs defined to be called before insert and update

database operations. If the trigger program updates the new record in the trigger buffer and

ALWREPCHG(*YES) is specified, the actual insert or update operation on the associated physical file

uses the modified new record image. This option can be helpful in trigger programs that are

designed for data validation and data correction. Because the trigger program receives physical file

record images (even for logical files), it can change any field of that record image.

– The trigger program is called for each row that is changed in or read from the physical file.

– If the physical file or the dependent logical file is opened for insert SEQONLY(*YES) processing, and

the physical file has an insert trigger program associated with it, the system changes the open to

SEQONLY(*NO) so it can call the trigger program for each row that is inserted.

Monitoring the use of trigger programs:

DB2 Universal Database for iSeries provides the capability to associate trigger programs with database

files. Trigger-program capability is common across the industry for high-function database managers.

 When you associate a trigger program with a database file, you specify when the trigger program runs.

For example, you can set up the customer order file to run a trigger program whenever a new record is

added to the file. When the customer’s outstanding balance exceeds the credit limit, the trigger program

can print a warning letter to the customer and send a message to the credit manager.

Trigger programs are a productive way both to provide application functions and to manage information.

Trigger programs also provide the ability for someone with devious intentions to create a “Trojan horse”

on your system. A destructive program can be sitting and waiting to run when a certain event occurs in a

database file on your system.

Note: In history, the Trojan horse was a large hollow wooden horse that was filled with Greek soldiers.

After the horse was introduced within the walls of Troy, the soldiers climbed out of the horse and

fought the Trojans. In the computer world, a program that hides destructive functions is often

called a Trojan horse.

When your system ships, the ability to add a trigger program to a database file is restricted. If you are

managing object authority carefully, the typical user will not have sufficient authority to add a trigger

Database programming 269

program to a database file. (Appendix D in the Security Reference book tells the authority that is required

or all commands, including the Add Physical File Trigger (ADDPFTRG) command.

You can use the Print Trigger Programs (PRTTRGPGM) command to print a list of all the trigger

programs in a specific library or in all libraries. The following example shows the report:

 Trigger Programs (Full Report)

Specified library : CUSTLIB

 Trigger Trigger Trigger Trigger Trigger

Library File Library Program Time Event Condition

CUSTLIB MB106 ARPGMLIB INITADDR Before Update Always

CUSTLIB MB107 ARPGMLIB INITNAME Before Update Always

You can use the initial report as a base to evaluate any trigger programs that already exist on your

system. Then, you can print the changed report regularly to see whether new trigger programs have been

added to your system.

When you evaluate trigger programs, consider the following questions:

v Who created the trigger program? You can use the Display Object Description (DSPOBJD) command to

determine this.

v What does the program do? You will have to look at the source program or talk to the program creator

to determine this. For example, does the trigger program check to see who the user is? Perhaps the

trigger program is waiting for a particular user (QSECOFR) in order to gain access to system resources.

After you have established a base of information, you can print the changed report regularly to monitor

new trigger programs that have been added to your system. The following example shows the changed

report:

 Trigger Programs (Changed Report)

Specified library : LIBX

Last changed report : 96/01/21 14:33:37

 Trigger Trigger Trigger Trigger Trigger

Library File Library Program Time Event Condition

INVLIB MB108 INVPGM NEWPRICE After Delete Always

INVLIB MB110 INVPGM NEWDSCNT After Delete Always

Trigger and application programs that are under commitment control:

Here are the considerations for trigger and application programs that are running under commitment

control.

 When the trigger program and the application program run under the same commitment definition, a

failure of the trigger program causes the rollback of all statements that are associated with the trigger

program. This includes any statement in a nested trigger program. The originating change operation also

rolls back. This requires the trigger program to signal an exception when it encounters an error.

When the trigger program and the application program run under different commitment definitions, the

COMMIT statements in the application program only affect its own commitment definition. The

programmer must commit the changes in the trigger program by issuing the COMMIT statement.

When insert or update record operations are performed under commitment control, the detection of any

specific duplicate key errors is deferred until the logical end of the operation, to allow for the possibility

that such errors have been resolved by that time. In the case of a trigger program running in the same

commitment definition as its calling program, the logical end of the operation occurs after the single or

blocked insert, update, or delete record operation is performed by the calling program, and control

returns from any called before or after trigger programs. As a result, duplicate key errors are not

detectable in trigger programs that use the same commitment definition as the insert, update, or delete

record operation that called the trigger programs.

270 System i: Database Database programming

Trigger and application programs that are not under commitment control:

Here are the considerations for trigger and application programs that are not running under commitment

control.

 If both programs do not run under commitment control, any error in a trigger program leaves files in the

state that exists when the error occurs. No rollback occurs.

If the trigger program does not run under commitment control and the application program does run

under commitment control, all changes from the trigger program are committed when either:

v A commit operation is performed in the trigger program.

v The activation group ends. In the normal case, an implicit commit is performed when the activation

group ends. However, if an abnormal system failure occurs, a rollback is performed.

Trigger program error messages:

If a failure occurs when the trigger program is running, the program must signal an appropriate escape

message before exiting. Otherwise, the application assumes that the trigger program ran successfully.

 The message can be the original message that is signalled from the system or a message that is created by

the trigger program creator.

Examples: Trigger programs:

These example trigger programs are triggered by write, update, and delete operations on the ATMTRANS

file. They are written in ILE C, ILE COBOL, and RPG/400.

 For an ILE RPG example, see the Stored Procedures, Triggers, and User-Defined Functions on DB2

Universal Database for iSeries

redbook.

The application contains the following types of transactions.

1. The application inserts three records into the ATMTRANS file which runs an insert trigger. The insert

trigger adds the correct amount to the ATMS file and the ACCTS file to reflect the changes.

2. Next, the application makes two withdrawals, which run an update trigger:

a. The application withdraws $25.00 from account number 20001 and ATM number 10001 which runs

the update trigger. The update trigger subtracts $25.00 from the ACCTS and ATMS files.

b. The application withdraws $900.00 from account number 20002 and ATM number 10002 which

runs an update trigger. The update trigger signals an exception to the application indicating that

the transaction fails.
3. Finally, the application deletes the ATM number from the ATMTRANS file which runs a delete trigger.

The delete trigger deletes the corresponding ACCTID from the ACCTS file and ATMID from the

ATMS file.

Example: Insert trigger written in RPG/400:

This trigger program runs after records are inserted into the ATMTRANS file.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.

* Program Name : INSTRG

 * This is an insert trigger for the application

 * file. The application inserts the following three

 * records into the ATMTRANS file.

 *

Database programming 271

http://www.redbooks.ibm.com/abstracts/sg246503.html
http://www.redbooks.ibm.com/abstracts/sg246503.html

* ATMID ACCTID TCODE AMOUNT

 * --------------------------------

 * 10001 20001 D 100.00

 * 10002 20002 D 250.00

 * 10003 20003 D 500.00

 *

 * When a record is inserted into ATMTRANS, the system calls

 * this program, which updates the ATMS and

 * ACCTS files with the correct deposit or withdrawal amount.

 * The input parameters to this trigger program are:

 * - TRGBUF : contains trigger information and newly inserted

 * record image of ATMTRANS.

 * - TRGBUF Length : length of TRGBUF.

 *

 H 1

 *

 * Open the ATMS file and the ACCTS file.

 *

 FATMS UF E DISK KCOMIT

 FACCTS UF E DISK KCOMIT

 *

 * DECLARE THE STRUCTURES THAT ARE TO BE PASSED INTO THIS PROGRAM.

 *

 IPARM1 DS

 * Physical file name

 I 1 10 FNAME

 * Physical file library

 I 11 20 LNAME

 * Member name

 I 21 30 MNAME

 * Trigger event

 I 31 31 TEVEN

 * Trigger time

 I 32 32 TTIME

 * Commit lock level

 I 33 33 CMTLCK

 * Reserved

 I 34 36 FILL1

 * CCSID

 I B 37 400CCSID

 * Reserved

 I 41 48 FILL2

 * Offset to the original record

 I B 49 520OLDOFF

 * length of the original record

 I B 53 560OLDLEN

 * Offset to the original record null byte map

 I B 57 600ONOFF

 * length of the null byte map

 I B 61 640ONLEN

 * Offset to the new record

 I B 65 680NOFF

 * length of the new record

 I B 69 720NEWLEN

 * Offset to the new record null byte map

 I B 73 760NNOFF

 * length of the null byte map

 I B 77 800NNLEN

 * Reserved

 I 81 96 RESV3

 * Old record ** not applicable

 I 97 112 OREC

 * Null byte map of old record

 I 113 116 OOMAP

 * Newly inserted record of ATMTRANS

 I 117 132 RECORD

 * Null byte map of new record

272 System i: Database Database programming

I 133 136 NNMAP

 IPARM2 DS

 I B 1 40LENG

 **

 * SET UP THE ENTRY PARAMETER LIST.

 **

 C *ENTRY PLIST

 C PARM PARM1

 C PARM PARM2

 **

 * Use NOFF, which is the offset to the new record, to

 * get the location of the new record from the first

 * parameter that was passed into this trigger program.

 * - Add 1 to the offset NOFF since the offset that was

 * passed to this program started from zero.

 * - Substring out the fields to a CHARACTER field and

 * then move the field to a NUMERIC field if it is

 * necessary.

 **

 C Z-ADDNOFF O 50

 C ADD 1 O

 **

 * - PULL OUT THE ATM NUMBER.

 **

 C 5 SUBSTPARM1:O CATM 5

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE ACCOUNT NUMBER.

 **

 C ADD 5 O

 C 5 SUBSTPARM1:O CACC 5

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE TRANSACTION CODE.

 **

 C ADD 5 O

 C 1 SUBSTPARM1:O TCODE 1

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE TRANSACTION AMOUNT.

 **

 C ADD 1 O

 C 5 SUBSTPARM1:O CAMT 5

 C MOVELCAMT TAMT 52

 * PROCESS THE ATM FILE. ****************

 * READ THE FILE TO FIND THE CORRECT RECORD.

 C ATMN DOUEQCATM

 C READ ATMS 61EOF

 C END

 C 61 GOTO EOF

 * CHANGE THE VALUE OF THE ATM BALANCE APPROPRIATELY.

 C TCODE IFEQ ’D’

 C ADD TAMT ATMAMT

 C ELSE

 C TCODE IFEQ ’W’

 C SUB TAMT ATMAMT

 C ELSE

 C ENDIF

 C ENDIF

 * UPDATE THE ATM FILE.

 C EOF TAG

 C UPDATATMFILE

 C CLOSEATMS

 * PROCESS THE ACCOUNT FILE. ****************

Database programming 273

 * READ THE FILE TO FIND THE CORRECT RECORD.

 C ACCTN DOUEQCACC

 C READ ACCTS 62 EOF2

 C END

 C 62 GOTO EOF2

 * CHANGE THE VALUE OF THE ACCOUNTS BALANCE APPROPRIATELY.

 C TCODE IFEQ ’D’

 C ADD TAMT BAL

 C ELSE

 C TCODE IFEQ ’W’

 C SUB TAMT BAL

 C ELSE

 C ENDIF

 C ENDIF

 * UPDATE THE ACCT FILE.

 C EOF2 TAG

 C UPDATACCFILE

 C CLOSEACCTS

 *

 C SETON LR

After the insertions by the application, the ATMTRANS file contains the following data:

 ATMID ACCTID TCODE AMOUNT

10001 20001 D 100.00

10002 20002 D 250.00

10003 20003 D 500.00

After being updated from the ATMTRANS file by the insert trigger program, the ATMS file and the

ACCTS file contain the following data:

 ATMN LOCAT ATMAMT

10001 MN 300.00

10002 MN 750.00

10003 CA 750.00

 ACCTN BAL ACTACC

20001 200.00 A

20002 350.00 A

20003 500.00 C

Example: Update trigger written in ILE COBOL:

This trigger program runs after a record is updated in the ATMTRANS file.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.

 100 IDENTIFICATION DIVISION.

 200 PROGRAM-ID. UPDTRG.

 300 **

 400 **** Program Name : UPDTRG *

 500 ***** *

 600 ***** This trigger program is called when a record is updated *

 700 ***** in the ATMTRANS file. *

 800 ***** This program will check the balance of ACCTS and *

 900 ***** the total amount in ATMS.If either one of the amounts *

 1000 ***** is not enough to meet the withdrawal, an exception *

 1100 ***** message is signalled to the application. *

274 System i: Database Database programming

1200 ***** If both ACCTS and ATMS files have enough money, this *

 1300 ***** program will update both files to reflect the changes. *

 1400 ***** *

 1500 ***** ATMIDs of 10001 and 10002 will be updated in the ATMTRANS *

 1600 ***** file with the following data: *

 1700 ***** *

 1800 ***** ATMID ACCTID TCODE AMOUNT *

 1900 ***** -------------------------------- *

 2000 ***** 10001 20001 W 25.00 *

 2100 ***** 10002 20002 W 900.00 *

 2200 ***** 10003 20003 D 500.00 *

 2300 ***** *

 2400 ***

 2500 ***

 2600 ENVIRONMENT DIVISION.

 2700 CONFIGURATION SECTION.

 2800 SOURCE-COMPUTER. IBM-AS400.

 2900 OBJECT-COMPUTER. IBM-AS400.

 3000 SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-JUNK.

 3100 INPUT-OUTPUT SECTION.

 3200 FILE-CONTROL.

 3300 SELECT ACC-FILE ASSIGN TO DATABASE-ACCTS

 3400 ORGANIZATION IS INDEXED

 3500 ACCESS IS RANDOM

 3600 RECORD KEY IS ACCTN

 3700 FILE STATUS IS STATUS-ERR1.

 3800

 3900 SELECT ATM-FILE ASSIGN TO DATABASE-ATMS

 4000 ORGANIZATION IS INDEXED

 4100 ACCESS IS RANDOM

 4200 RECORD KEY IS ATMN

 4300 FILE STATUS IS STATUS-ERR2.

 4400

 4500 ***

 4600 * COMMITMENT CONTROL AREA. *

 4700 ***

 4800 I-O-CONTROL.

 4900 COMMITMENT CONTROL FOR ATM-FILE, ACC-FILE.

 5000

 5100 ***

 5200 * DATA DIVISION *

 5300 **

 5400

 5500 DATA DIVISION.

 5600 FILE SECTION.

 5700 FD ATM-FILE

 5800 LABEL RECORDS ARE STANDARD.

 5900 01 ATM-REC.

 6000 COPY DDS-ATMFILE OF ATMS.

 6100

 6200 FD ACC-FILE

 6300 LABEL RECORDS ARE STANDARD.

 6400 01 ACC-REC.

 6500 COPY DDS-ACCFILE OF ACCTS.

 6600

 7000

 7100 ***

 7200 * WORKING-STORAGE SECTION *

 7300 ***

 7400 WORKING-STORAGE SECTION.

 7500 01 STATUS-ERR1 PIC XX.

 7600 01 STATUS-ERR2 PIC XX.

 7700 01 TEMP-PTR USAGE IS POINTER.

 7800

 7900 01 NUMBERS-1.

 8000 03 NUM1 PIC 9(10).

 8100 03 NUM2 PIC 9(10).

Database programming 275

8200 03 NUM3 PIC 9(10).

 8300

 8400 01 FEEDBACK-STUFF PIC X(500) VALUE SPACES.

 8500

 8600 ***

 8700 * MESSAGE FOR SIGNALLING ANY TRIGGER ERROR *

 8800 * - Define any message ID and message file in the following*

 8900 * message data. *

 9000 ***

 9100 01 SNDPGMMSG-PARMS.

 9200 03 SND-MSG-ID PIC X(7) VALUE "TRG9999".

 9300 03 SND-MSG-FILE PIC X(20) VALUE "MSGF LIB1 ".

 9400 03 SND-MSG-DATA PIC X(25) VALUE "Trigger Error".

 9500 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 25.

 9600 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE ".

 9700 03 SND-PGM-QUEUE PIC X(10) VALUE "* ".

 9800 03 SND-PGM-STACK-CNT PIC 9(8) BINARY VALUE 1.

 9900 03 SND-MSG-KEY PIC X(4) VALUE " ".

10000 03 SND-ERROR-CODE.

10100 05 PROVIDED PIC 9(8) BINARY VALUE 66.

10200 05 AVAILABLE PIC 9(8) BINARY VALUE 0.

10300 05 RTN-MSG-ID PIC X(7) VALUE " ".

10400 05 FILLER PIC X(1) VALUE " ".

10500 05 RTN-DATA PIC X(50) VALUE " ".

10600

10700 ***

10800 * LINKAGE SECTION *

10900 * PARM 1 is the trigger buffer *

11000 * PARM 2 is the length of the trigger buffer *

11100 ***

11200 LINKAGE SECTION.

11300 01 PARM-1-AREA.

11400 03 FILE-NAME PIC X(10).

11500 03 LIB-NAME PIC X(10).

11600 03 MEM-NAME PIC X(10).

11700 03 TRG-EVENT PIC X.

11800 03 TRG-TIME PIC X.

11900 03 CMT-LCK-LVL PIC X.

12000 03 FILLER PIC X(3).

12100 03 DATA-AREA-CCSID PIC 9(8) BINARY.

12200 03 FILLER PIC X(8).

12300 03 DATA-OFFSET.

12400 05 OLD-REC-OFF PIC 9(8) BINARY.

12500 05 OLD-REC-LEN PIC 9(8) BINARY.

12600 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.

12700 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.

12800 05 NEW-REC-OFF PIC 9(8) BINARY.

12900 05 NEW-REC-LEN PIC 9(8) BINARY.

13000 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.

13100 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.

13200 05 FILLER PIC X(16).

13300 03 RECORD-JUNK.

13400 05 OLD-RECORD PIC X(16).

13500 05 OLD-NULL-MAP PIC X(4).

13600 05 NEW-RECORD PIC X(16).

13700 05 NEW-NULL-MAP PIC X(4).

13800

13900 01 PARM-2-AREA.

14000 03 TRGBUFL PIC X(2).

14100

14200 01 INPUT-RECORD2.

14300 COPY DDS-TRANS OF ATMTRANS.

14400

14500 05 OFFSET-NEW-REC2 PIC 9(8) BINARY.

14600

14700 ***

14800 ****** PROCEDURE DIVISION *

276 System i: Database Database programming

14900 ***

15000 PROCEDURE DIVISION USING PARM-1-AREA, PARM-2-AREA.

15100 MAIN-PROGRAM SECTION.

15200 000-MAIN-PROGRAM.

15300 OPEN I-O ATM-FILE.

15400 OPEN I-O ACC-FILE.

15500

15600 MOVE 0 TO BAL.

15700

15800 ***

15900 * SET UP THE OFFSET POINTER AND COPY THE NEW RECORD. *

16000 ***

16100 SET TEMP-PTR TO ADDRESS OF PARM-1-AREA.

16200 SET TEMP-PTR UP BY NEW-REC-OFFSET.

16300 SET ADDRESS OF INPUT-RECORD2 TO TEMP-PTR.

16400 MOVE INPUT-RECORD2 TO INPUT-RECORD.

16500

16600 **

16700 * READ THE RECORD FROM THE ACCTS FILE *

16800 **

16900 MOVE ACCTID TO ACCTN.

17000 READ ACC-FILE

17100 INVALID KEY PERFORM 900-OOPS

17200 NOT INVALID KEY PERFORM 500-ADJUST-ACCOUNT.

17300

17400 ***

17500 * READ THE RECORD FROM THE ATMS FILE. *

17600 ***

17700 MOVE ATMID TO ATMN.

17800 READ ATM-FILE

17900 INVALID KEY PERFORM 950-OOPS

18000 NOT INVALID KEY PERFORM 550-ADJUST-ATM-BAL.

18100 CLOSE ATM-FILE.

18200 CLOSE ACC-FILE.

18300 GOBACK.

18400

18500 ***

18600 ***

18700 ***

18800 ***

18900 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE ****

19000 ****** ACCTS FOR THE WITHDRAWAL. ****

19100 ***

19200 200-NOT-ENOUGH-IN-ACC.

19300 DISPLAY "NOT ENOUGH MONEY IN ACCOUNT.".

19400 CLOSE ATM-FILE.

19500 CLOSE ACC-FILE.

19600 PERFORM 999-SIGNAL-ESCAPE.

19700 GOBACK.

19800

19900 ***

20000 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE

20100 ****** ATMS FOR THE WITHDRAWAL.

20200 ***

20300 250-NOT-ENOUGH-IN-ATM.

20400 DISPLAY "NOT ENOUGH MONEY IN ATM.".

20500 CLOSE ATM-FILE.

20600 CLOSE ACC-FILE.

20700 PERFORM 999-SIGNAL-ESCAPE.

20800 GOBACK.

20900

21000 ***

21100 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE FOR THE ACCOUNT OF

21200 ****** THE PERSON WHO PERFORMED THE TRANSACTION.

21300 ***

21400 500-ADJUST-ACCOUNT.

21500 IF TCODE = "W" THEN

Database programming 277

21600 IF (BAL < AMOUNT) THEN

21700 PERFORM 200-NOT-ENOUGH-IN-ACC

21800 ELSE

21900 SUBTRACT AMOUNT FROM BAL

22000 REWRITE ACC-REC

22100 ELSE IF TCODE = "D" THEN

22200 ADD AMOUNT TO BAL

22300 REWRITE ACC-REC

22400 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.

22500

22600 ***

22700 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE OF THE ATM FILE ***

22800 ****** FOR THE AMOUNT OF MONEY IN ATM AFTER A TRANSACTION. ***

22900 ***

23000 550-ADJUST-ATM-BAL.

23100 IF TCODE = "W" THEN

23200 IF (ATMAMT < AMOUNT) THEN

23300 PERFORM 250-NOT-ENOUGH-IN-ATM

23400 ELSE

23500 SUBTRACT AMOUNT FROM ATMAMT

23600 REWRITE ATM-REC

23700 ELSE IF TCODE = "D" THEN

23800 ADD AMOUNT TO ATMAMT

23900 REWRITE ATM-REC

24000 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.

24100

24200 ** *******

24300 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **

24400 ****** NOT FOUND IN THE ACCTS FILE. **

24500 ***

24600 900-OOPS.

24700 DISPLAY "INVALID KEY: ", ACCTN, " ACCOUNT FILE STATUS: ",

24800 STATUS-ERR1.

24900 CLOSE ATM-FILE.

25000 CLOSE ACC-FILE.

25100 PERFORM 999-SIGNAL-ESCAPE.

25200 GOBACK.

25300

25400 ***

25500 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **

25600 ****** NOT FOUND IN THE ATM FILE. **

25700 ***

25800 950-OOPS.

25900 DISPLAY "INVALID KEY: ", ATMN, " ATM FILE STATUS: ",

26000 STATUS-ERR2.

26100 CLOSE ATM-FILE.

26200 CLOSE ACC-FILE.

26300 PERFORM 999-SIGNAL-ESCAPE.

26400 GOBACK.

26500

26600 ***

26700 ****** SIGNAL ESCAPE TO THE APPLICATION ********

26800 ***

26900 999-SIGNAL-ESCAPE.

27000

27100 CALL "QMHSNDPM" USING SND-MSG-ID,

27200 SND-MSG-FILE,

27300 SND-MSG-DATA,

27400 SND-MSG-LEN,

27500 SND-MSG-TYPE,

27600 SND-PGM-QUEUE,

27700 SND-PGM-STACK-CNT,

27800 SND-MSG-KEY,

27900 SND-ERROR-CODE.

28000 *DISPLAY RTN-MSG-ID.

28100 *DISPLAY RTN-DATA.

28200

278 System i: Database Database programming

After being updated from the ATMTRANS file by the update trigger programs, the ATMS and ACCTS

files contain the following data. The update to the ATMID 10002 fails because of insufficient amount in

the account.

 ATMN LOCAT ATMAMT

10001 MN 275.00

10002 MN 750.00

10003 CA 750.00

 ACCTN BAL ACTACC

20001 175.00 A

20002 350.00 A

20003 500.00 C

Example: Delete trigger written in ILE C:

This trigger program runs after a record is deleted from the ATMTRANS file.

 Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 297.

 /**/

 /* Program Name - DELTRG */

 /* This program is called when a delete operation occurs in */

 /* the ATMTRANS file. */

 /* */

 /* This program will delete the records from ATMS and ACCTS */

 /* based on the ATM ID and ACCT ID that are passed in from */

 /* the trigger buffer. */

 /* */

 /* The application will delete ATMID 10003 from the ATMTRANS */

 /* file. */

 /* */

 /**/

 #include <stdio.h>

 #include <stdlib.h>

 #include <recio.h>

 #include "applib/csrc/msghandler" /* message handler include */

 #include "qsysinc/h/trgbuf" /* trigger buffer include without*/

 /* old and new records */

 Qdb_Trigger_Buffer_t *hstruct; /* pointer to the trigger buffer */

 char *datapt;

 #define KEYLEN 5

 /**/

 /* Need to define file structures here since there are non- */

 /* character fields in each file. For each non-character */

 /* field, C requires boundary alignment. Therefore, a _PACKED */

 /* struct should be used in order to access the data that */

 /* is passed to the trigger program. */

 /* */

 /**/

 /** record area for ATMTRANS **/

_Packed struct rec {

 char atmid[5];

 char acctid[5];

 char tcode[1];

 char amount[5];

 } oldbuf, newbuf;

Database programming 279

/** record area for ATMS **/

 _Packed struct rec1{

 char atmn[5];

 char locat[2];

 char atmamt[9];

 } atmfile;

 /** record area for ACCTS **/

 _Packed struct rec2{

 char acctn[5];

 char bal[9];

 char actacc[1];

 } accfile;

 /**/

 /**/

 /* Start of the Main Line Code. ************************************/

 /**/

 /**/

 main(int argc, char **argv)

 {

 _RFILE *out1; /* file pointer for ATMS */

 _RFILE *out2; /* file pointer for ACCTS */

 _RIOFB_T *fb; /* file feedback pointer */

 char record[16]; /* record buffer */

 _FEEDBACK fc; /* feedback for message handler */

 _HDLR_ENTRY hdlr = main_handler;

 /********************************/

 /* active exception handler */

 /********************************/

 CEEHDLR(&hdlr, NULL, &fc);;

 /********************************/

 /* ensure exception handler OK */

 /********************************/

 if (fc.MsgNo != CEE0000)

 {

 printf("Failed to register exception handler.\n");

 exit(99);

 }

 /* set pointer to the input parameter */

 hstruct = (Qdb_Trigger_Buffer_t *)argv[1];

 datapt = (char *) hstruct;

 /* Copy old and new record from the input parameter */

 if ((strncmp(hstruct ->trigger_event,"2",1)== 0)|| /* delete event */

 (strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */

 { obufoff = hstruct ->old_record_offset;

 memcpy(&oldbuf,datapt+obufoff,; hstruct->old_record_len);

 }

 if ((strncmp(hstruct -> trigger_event,"1",1)== 0) || /* insert event */

 (strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */

 { nbufoff = hstruct ->new_record_offset;

 memcpy(&newbuf,datapt+nbufoff,; hstruct->new_record_len);

 }

 /***/

 /* Open ATM and ACCTS files */

 /* */

 /* Check the application’s commit lock level. If it */

 /* runs under commitment control, then open both */

 /* files with commitment control. Otherwise, open */

 /* both files without commitment control. */

 /***/

 if(strcmp(hstruct->commit_lock_level,"0") == 0) /* no commit */

280 System i: Database Database programming

{

 if ((out1=_Ropen("APPLIB/ATMS","rr+")) == NULL)

 {

 printf("Error opening ATM file");

 exit(1);

 }

 if ((out2=_Ropen("APPLIB/ACCTS","rr+")) == NULL)

 {

 printf("Error opening ACCTS file");

 exit(1);

 }

 }

 else /* with commitment control */

 {

 if ((out1=_Ropen("APPLIB/ATMS","rr+,commit=Y")) == NULL)

 {

 printf("Error opening ATMS file");

 exit(1);

 }

 if ((out2=_Ropen("APPLIB/ACCTS","rr+,commit=Y")) == NULL)

 {

 printf("Error opening ACCTS file");

 exit(1);

 }

 }

 /* Delete the record based on the input parameter */

 fb =_Rlocate(out1,&oldbuf.atmid,KEYLEN,__DFT);

 if (fb->num_bytes != 1)

 {

 printf("record not found in ATMS\n");

 _Rclose(out1);

 exit(1);

 }

 _Rdelete(out1); /* delete record from ATMS */

 _Rclose(out1);

 fb =_Rlocate(out2,&oldbuf.acctid,KEYLEN,__DFT);

 if (fb->num_bytes != 1)

 {

 printf("record not found in ACCOUNTS\n");

 _Rclose(out2);

 exit(1);

 }

 _Rdelete(out2); /* delete record from ACCOUNTS */

 _Rclose(out2);

 } /* end of main */

After the deletion by the application, the ATMTRANS file contains the following data:

 ATMID ACCTID TCODE AMOUNT

10001 20001 W 25.00

10002 20002 W 900.00

After being deleted from the ATMTRANS file by the delete trigger program, the ATMS file and the

ACCTS file contain the following data:

 ATMN LOCAT ATMAMT

10001 MN 275.00

10002 MN 750.00

Database programming 281

ACCTN BAL ACTACC

20001 175.00 A

20002 350.00 A

 /**/

 /* INCLUDE NAME : MSGHANDLER */

 /* */

 /* DESCRIPTION : Message handler to signal an exception message*/

 /* to the caller of this trigger program. */

 /* */

 /* Note: This message handler is a user defined routine. */

 /* */

 /**/

 #include <stdio.h>

 #include <stdlib.h>

 #include <recio.h>

 #include <leawi.h>

 #pragma linkage (QMHSNDPM, OS)

 void QMHSNDPM(char *, /* Message identifier */

 void *, /* Qualified message file name */

 void *, /* Message data or text */

 int, /* Length of message data or text */

 char *, /* Message type */

 char *, /* Call message queue */

 int, /* Call stack counter */

 void *, /* Message key */

 void *, /* Error code */

 ...); /* Optionals:

 length of call message queue

 name

 Call stack entry qualification

 display external messages

 screen wait time */

 /***/

 /******** This is the start of the exception handler function. */

 /***/

 void main_handler(_FEEDBACK *cond, _POINTER *token, _INT4 *rc,

 _FEEDBACK *new)

 {

 /**/

 /* Initialize variables for call to */

 /* QMHSNDPM. */

 /* User defines any message ID and */

 /* message file for the following data */

 /**/

 char message_id[7] = "TRG9999";

 char message_file[20] = "MSGF LIB1 ";

 char message_data[50] = "Trigger error ";

 int message_len = 30;

 char message_type[10] = "*ESCAPE ";

 char message_q[10] = "_C_pep ";

 int pgm_stack_cnt = 1;

 char message_key[4];

 /**/

 /* Declare error code structure for */

 /* QMHSNDPM. */

 /**/

 struct error_code {

 int bytes_provided;

 int bytes_available;

 char message_id[7];

 } error_code;

 error_code.bytes_provided = 15;

282 System i: Database Database programming

/**/

 /* Set the error handler to resume and */

 /* mark the last escape message as */

 /* handled. */

 /**/

 *rc = CEE_HDLR_RESUME;

 /**/

 /* Send my own *ESCAPE message. */

 /**/

 QMHSNDPM(message_id,

 &message_file,

 &message_data,

 message_len,

 message_type,

 message_q,

 pgm_stack_cnt,

 &message_key,

 &error_code);

 /**/

 /* Check that the call to QMHSNDPM */

 /* finished correctly. */

 /**/

 if (error_code.bytes_available != 0)

 {

 printf("Error in QMHOVPM : %s\n", error_code.message_id);

 }

 }

/**/

/* INCLUDE NAME : TRGBUF */

/* */

/* DESCRIPTION : The input trigger buffer structure for the */

/* user’s trigger program. */

/* */

/* LANGUAGE : ILE C */

/* */

/**/

/**/

/* Note: The following type definition only defines the fixed */

/* portion of the format. The data area of the original */

/* record, null byte map of the original record, the */

/* new record, and the null byte map of the new record */

/* is varying length and immediately follows what is */

/* defined here. */

/**/

 typedef _Packed struct Qdb_Trigger_Buffer {

 char file_name[10];

 char library_name[10];

 char member_name[10];

 char trigger_event[1];

 char trigger_time[1];

 char commit_lock_level[1];

 char reserved_1[3];

 int data_area_ccsid;

 char reserved_2]8];

 int old_record_offset;

 int old_record_len;

 int old_record_null_byte_map;

 int old_record_null_byte_map_len;

 int new_record_offset;

 int new_record_len;

 int new_record_null_byte_map;

 int new_record_null_byte_map_len;

 } Qdb_Trigger_Buffer_t;

Data structures for the example database files:

Database programming 283

These data structures are used in the application for the ATMTRANS, ATMS, and ACCTS files.

 v ATMTRANS : /* Transaction record */

 ATMID CHAR(5) (KEY) /* ATM** machine ID number */

 ACCTID CHAR(5) /* Account number */

 TCODE CHAR(1) /* Transaction code */

 AMOUNT ZONED /* Amount to be deposited or */

 /* withdrawn */

v ATMS : /* ATM machine record */

 ATMN CHAR(5) (KEY) /* ATM machine ID number */

 LOCAT CHAR(2) /* Location of ATM */

 ATMAMT ZONED /* Total amount in this ATM */

 /* machine */

 ATMN LOCAT ATMAMT

10001 MN 200.00

10002 MN 500.00

10003 CA 250.00

v ACCTS: /* Accounting record */

 ACCTN CHAR(5) (KEY) /* Account number */

 BAL ZONED /* Balance of account */

 ACTACC CHAR(1) /* Status of Account */

 ACCTN BAL ACTACC

20001 100.00 A

20002 100.00 A

20003 0.00 C

Trigger buffer sections:

The trigger buffer has two logical sections: a static section and a variable section.

 The static section occupies (in decimal) offset 0 through 95. It contains the following items:

v A trigger template that contains the physical file name, member name, trigger event, trigger time,

commit lock level, and CCSID of the current record and relative record number.

v Offsets and lengths of the record areas and null byte maps.

The variable section contains areas for old record, old null byte map, new record, and new null byte map.

The following table provides a summary of the fields in the trigger buffer.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Physical file name

10 A CHAR(10) Physical file library name

20 14 CHAR(10) Physical file member name

30 1E CHAR(1) Trigger event

31 1F CHAR(1) Trigger time

32 20 CHAR(1) Commit lock level

33 21 CHAR(3) Reserved

36 24 BINARY(4) CCSID of data

284 System i: Database Database programming

Offset

Type Field Dec Hex

40 28 BIN(4) Relative Record Number

44 2C CHAR(4) Reserved

48 30 BINARY(4) Original record offset

52 34 BINARY(4) Original record length

56 38 BINARY(4) Original record null byte map offset

60 3C BINARY(4) Original record null byte map length

64 40 BINARY(4) New record offset

68 44 BINARY(4) New record length

72 48 BINARY(4) New record null byte map offset

76 4C BINARY(4) New record null byte map length

80 50 CHAR(*) Reserved

* * CHAR(*) Original record

* * CHAR(*) Original record null byte map

* * CHAR(*) New record

* * CHAR(*) New record null byte map

Trigger buffer field descriptions:

Fields in the buffer field are described in alphabetic order.

 CCSID of data

The CCSID of the data in the new or the original records. The data is converted to the job CCSID

by the database. SBCS data is converted to the single byte associated CCSID. DBCS data is

converted to the double byte associated CCSID.

Commit lock level

The commit lock level of the current application program. The possible values are:

’0’ *NONE

’1’ *CHG

’2’ *CS

’3’ *ALL

File library name

The name of the library in which the database file resides.

File member name

The name of the database file member.

File name

The name of the physical file being changed or read.

New record

A copy of the record that is being inserted or updated in a physical file as a result of the change

operation. The new record only applies to the insert or update operations.

New record length

The maximum length is 32 766 bytes.

Database programming 285

|
|

|
|

|
|

New record null byte map

This structure contains the NULL value information for each field of the new record. Each byte

represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

New record null byte map length

The length is equal to the number of fields in the physical file.

New record null byte map offset

The location of the null byte map of the new record. The offset value is from the beginning of the

trigger buffer. This field is not applicable if the new value of the record does not apply to the

change operation, for example, a delete operation.

New record offset

The location of the new record. The offset value is from the beginning of the trigger buffer. This

field is not applicable if the new value of the record does not apply to the change operation, for

example, a delete operation.

Original record

A copy of the original physical record before being updated, deleted, or read. The original record

applies only to update, delete, and read operations.

Original record length

The maximum length is 32 766 bytes.

Original record null byte map

This structure contains the NULL value information for each field of the original record. Each

byte represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

Original record null byte map length

The length is equal to the number of fields in the physical file.

Original record null byte map offset

The location of the null byte map of the original record. The offset value is from the beginning of

the trigger buffer. This field is not applicable if the original value of the record does not apply to

the change operation, for example, an insert operation.

Original record offset

The location of the original record. The offset value is from the beginning of the trigger buffer.

This field is not applicable if the original value of the record does not apply to the operation; for

example, an insert operation.

Relative Record Number

The relative record number of the record to be updated or deleted (*BEFORE triggers) or the

relative record number of the record which was inserted, updated, deleted, or read(*AFTER

triggers).

Trigger event

The event that caused the trigger program to be called. The possible values are:

’1’ Insert operation

’2’ Delete operation

’3’ Update operation

’4’ Read operation

Trigger time

286 System i: Database Database programming

The time, relative to the operation on the database file, when the trigger program is called. The

possible values are:

’1’ After the change or read operation

’2’ Before the change operation

’3’ Instead of the change operation

Adding triggers

You can add a trigger to a specific database file.

To add a trigger, follow these steps:

1. Ensure that you have the proper authority and the file has the proper data capabilities.

2. Use one of the following methods to associate the trigger program with a specific database file:

v Use iSeries Navigator to create a new file or edit the properties of an existing file.

v Use the Add Physical File Trigger (ADDPFTRG) command.

v Use the CREATE TRIGGER SQL statement.

Note: If the trigger program resides in QTEMP library, the trigger program cannot be associated with a

physical file.

After you have created the association between the trigger program and the file, the system calls the

trigger program when a change or read operation is initiated against the database file, a member of the

file, and any logical file created over the physical file.

You can associate a maximum of 300 triggers with one database file. Each insert, delete, or update

operation can call multiple triggers before and after the operation occurs. Each read operation can call

multiple triggers after the operation occurs. This topic shows how to add a trigger to a file.

You can associate a maximum of three triggers with one logical file. That is, you can create one INSTEAD

OF trigger per insert, update, or delete operation. The trigger is called instead of performing the

operation.

The number of triggers called after a read operation that is issued by a query might not be equal to the

number of records that are actually returned. This is because the query might have read a different

number of records, causing a trigger to be called for each read operation, before returning the correct

number of records.

An SQL update operation involves a simultaneous read operation followed by a write operation. Read

triggers are not run for SQL update operations. An update trigger should be specified to cover this read

operation followed by a write operation.

Required authorities and data capabilities for triggers

To add triggers, you must have the following required authorities:

v Object management or alter authority to the file

v Object operational authority to the file

v Read authority to the file

v Update authority and object operational authority to the file if ADDPFTRG ALWREPCHG(*YES) is

specified

v Execute authority to the file’s library

v Execute authority to the trigger program

v Execute authority to the trigger program’s library

Database programming 287

|
|

||

|

|

|
|
|

|
|
|

|
|
|

|
|

The file must have appropriate data capabilities before you add a trigger:

v CRTPF ALWUPD(*NO) conflicts with *UPDATE Trigger

v CRTPF ALWDLT(*NO) conflicts with *DELETE Trigger
 Related reference

 Add Physical File Trigger (ADDPFTRG) command

Displaying triggers

You can use the Display File Description (DSPFD) command to display a list of triggers that are

associated with a file. Specify TYPE(*TRG) or TYPE(*ALL) to get the list.

The DSPFD command provides the following information:

v The number of trigger programs

v The trigger name and library

v The trigger status

v The trigger program names and libraries

v The trigger events

v The trigger times

v The trigger update conditions

v The trigger type

v The trigger mode

v The trigger orientation

v The trigger creation date/time

v The number of trigger update columns

v List of trigger update columns

 Related reference

 Display File Description (DSPFD) command

Removing triggers

You can remove triggers using the Remove Physical File Trigger (RMVPFTRG) command, the SQL DROP

TRIGGER statement, and iSeries Navigator.

Use the RMVPFTRG command to remove the association of a file and the trigger program. After you

remove the association, the system takes no action when a change or read operation occurs to the

physical file. The trigger program, however, remains on the system.

 Related concepts

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Remove Physical File Trigger (RMVPFTRG) command

Enabling or disabling physical file triggers

You can enable or disable triggers using the Change Physical File Trigger (CHGPFTRG) command and

iSeries Navigator.

Use the CHGPFTRG command to enable or disable named triggers, or to enable or disable all triggers for

a file. Disabling triggers causes the trigger program not to be called when a change operation occurs to

the physical file. Enabling triggers causes the trigger program again to be called when a change operation

occurs to the physical file. You can also enable or disable triggers using iSeries Navigator.

Triggers on logical files cannot be enabled or disabled.

288 System i: Database Database programming

|
|

|

Related concepts

 Getting started with iSeries Navigator

 SQL programming
 Related reference

 Change Physical File Trigger (CHGPFTRG) command

Triggers and their relationship to CL commands

Triggers interact with CL commands in several ways.

Save/Restore Base File (SAVOBJ/RSTOBJ)

v The Save/Restore function will not search for the trigger program during save/restore time. It is your

responsibility to manage the program. During run time, if the system has not restored the trigger

program, the system returns a hard error with the trigger program name, physical file name, and

trigger event.

v If the entire library (*ALL) is saved and the file and all trigger programs are in the same library and

they are restored to a different library, then all the trigger program names are changed in the file to

reflect the new library.

Save/Restore Trigger Program (SAVOBJ/RSTOBJ)

v If you restore the trigger program in a different library, the change operation fails because the trigger

program is not in the original library. The error returns the trigger program name, physical file name,

and trigger event information.

There are two ways to recover in this situation:

– Restore the trigger program to the same library

– Create a new trigger program with the same name in the new library

Delete File (DLTF)

v If a file is deleted, the association between this file and its trigger programs are removed. For system

triggers, the trigger programs remain on the system.

Copy File (CPYF)

v If a to-file associates with an insert trigger, each inserted record calls the trigger program.

v If a to-file associates with a delete trigger program and the CPYF command specifies

MBROPT(*REPLACE), the copy operation fails.

v Copy with CREATE(*YES) does not propagate the trigger information

Create Duplicate Object (CRTDUPOBJ)

If TRG(*NO) is specified, triggers will not be duplicated in the new file. If TRG(*YES) is specified,

triggers will be duplicated. The following rules describe how triggers are duplicated:

v When a physical file and its trigger program are originally in the same library, the trigger program

library will always be changed to the new library, even if the trigger program does not exist in the new

library. In addition, the following rules apply:

– If the CRTDUPOBJ command is duplicating both the physical file and its trigger program to a new

library, then the new trigger program will be associated with the new physical file.

– If the CRTDUPOBJ command is duplicating only the physical file, then the trigger program with the

same program name in the TO library will be associated with the new physical file. This is true even

if there is no trigger program by that name in the TO library. The library of the trigger program will

be changed.

– If the CRTDUPOBJ command is duplicating only the trigger program, then the new trigger program

will not be associated with any physical files.

Database programming 289

|
|
|

|
|

|
|

v When a physical file and its trigger program are originally in different libraries:

– The old trigger program will be associated with the new physical file. Even if the new physical file

is duplicated to the same library as the trigger program, the old trigger program will still be

associated with the new physical file.
v A trigger program cannot be added if the program is in the QTEMP library. For database files, the

CRTDUPOBJ command attempts to locate the trigger program in the TO library. If the CRTDUPOBJ

command is used with QTEMP specified as the new library, CRTDUPOBJ attempts to create as much

of the object as possible. The file is created, but the trigger cannot be added, so the file remains in

QTEMP without a member.

Clear Physical File Member (CLRPFM)

v If the physical file is associated with a delete trigger, the CLRPFM operation fails.

Initialize Physical File Member (INZPFM)

v If the physical file is associated with an insert trigger, the INZPFM operation fails.

FORTRAN Force-End-Of-Data (FEOD)

v If the physical file is associated with a delete trigger, the FEOD operation fails.

Apply Journaled Changes or Remove Journaled Changes (APYJRNCHG/RMVJRNCHG)

v If the physical file is associated with any type of trigger, the APYJRNCHG and RMVJRNCHG

operations do not call the trigger program. Therefore, you must make sure to have all the files within

the trigger program journaled. Then, when using the APYJRNCHG or RMVJRNCHG command, make

sure to specify all of these files. This ensures that all the physical file changes for the application

program and the trigger programs are consistent.

Note: If any trigger program functions do not relate to database files and cannot be explicitly

journaled, send journal entries to record relevant information. Use the Send Journal Entry

(SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API. Use this information during

database file recovery to ensure consistency.

Triggers and their relationship to referential integrity

A physical file can have both triggers and referential constraints associated with it. The running order

among trigger actions and referential constraints depends on the constraints and triggers that are

associated with the file.

In some cases, the system evaluates referential constraints before the system calls an after trigger

program. This is the case with constraints that specify the RESTRICT rule.

In some cases, all statements in the trigger program, including nested trigger programs, run before the

constraint is applied. This is true for NO ACTION, CASCADE, SET NULL, and SET DEFAULT referential

constraint rules. When you specify these rules, the system evaluates the file’s constraints based on the

nested results of trigger programs. For example, an application inserts employee records into an EMP file

that has a constraint and trigger:

v The referential constraint specifies that the department number for an inserted employee record to the

EMP file must exist in the DEPT file.

v Whenever an insert to the EMP file occurs, the trigger program checks if the department number exists

in the DEPT file. The trigger program then adds the number if it does not exist.

When the insertion to the EMP file occurs, the system calls the trigger program first. If the department

number does not exist in the DEPT file, the trigger program inserts the new department number into the

DEPT file. Then the system evaluates the referential constraint. In this case, the insertion is successful

because the department number exists in the DEPT file.

290 System i: Database Database programming

There are some restrictions when both a trigger and referential constraint are defined for the same

physical file:

v If a delete trigger associates with a physical file, that file must not be a dependent file in a referential

constraint with a delete rule of CASCADE.

v If an update trigger associates with a physical file, no field in this physical file can be a foreign key in

a referential constraint with a delete rule of SET NULL or SET DEFAULT.

If failure occurs during either a trigger program or referential constraint validation, all trigger programs

associated with the change operation roll back if all the files run under the same commitment definition.

The referential constraints are guaranteed when all files in the trigger program and the referential

integrity network run under the same commitment definition. If you open the files without commitment

control or in a mixed scenario, undesired results might occur.

You can use triggers to enforce referential constraints and business rules. For example, you can use

triggers to simulate the update cascade constraints on a physical file. However, you would not have the

same functional capabilities as provided by the constraints that the system referential integrity functions

define. You might lose the following referential integrity advantages if you define them with triggers:

v Dependent files might contain rows that violate one or more referential constraints that put the

constraint into check pending but still allow file operations.

v The ability to inform users when the system places a constraint in check pending.

v When an application runs under COMMIT(*NONE) and an error occurs during a cascaded delete, the

database rolls back all changes.

v While saving a file that is associated with a constraint, the database network saves all dependent files

in the same library.

Database distribution

DB2 Multisystem (5722-SS1 Option 27) provides a simple and direct method of distributing a database

file over multiple systems in a loosely coupled environment.

DB2 Multisystem allows users on distributed systems to have real-time query and update access to a

distributed database as if it existed totally on their particular systems. DB2 Multisystem places new

records on the appropriate system based on a user-defined key field or fields. DB2 Multisystem chooses a

system on the basis of either a system-supplied or user-defined hashing algorithm.

Query performance is improved by a factor approaching the number of nodes in the environment. For

example, a query against a database distributed over four systems runs in approximately one quarter of

the time. However, performance can vary greatly when queries involve joins and grouping. Performance

is also influenced by the balance of the data across the multiple nodes. Multisystem runs the query on

each system concurrently. DB2 Multisystem can significantly reduce query time on very large databases.

 Related concepts

 DB2 Multisystem

Double-byte character set considerations

A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The

database on the i5/OS operating system supports DBCS.

The DBCS supports national languages that contain a large number of unique characters or symbols (the

maximum number of characters that can be represented with 1 byte is 256 characters). Examples of such

languages include Japanese, Korean, and Chinese.

Database programming 291

DBCS field data types

There are two general kinds of double-byte character set (DBCS) data: bracketed-DBCS data and graphic

(nonbracketed) DBCS data.

Bracketed-DBCS data is preceded by a DBCS shift-out character and followed by a DBCS shift-in

character. Graphic-DBCS data is not surrounded by shift-out and shift-in characters. The application

program might require special processing to handle bracketed-DBCS data that would not be required for

graphic-DBCS data.

The specific DBCS data types (specified in position 35 on the DDS coding form.) are:

Entry Meaning

O DBCS-open: A character string that contains both single-byte and bracketed double-byte data.

E DBCS-either: A character string that contains either all single-byte data or all bracketed

double-byte data.

J DBCS-only: A character string that contains only bracketed double-byte data.

G DBCS-graphic: A character string that contains only nonbracketed double-byte data.

Note: Files containing DBCS data types can be created on a single-byte character set (SBCS) system. Files

containing DBCS data types can be opened and used on a SBCS system, however, coded character

set identifier (CCSID) conversion errors can occur when the system tries to convert from a DBCS

or mixed CCSID to a SBCS CCSID. These errors do not occur if the job CCSID is 65535.

DBCS constants

A constant identifies the actual character string to be used. The character string is enclosed in single

quotation marks and a string of DBCS characters is surrounded by the DBCS shift-out and shift-in

characters (represented by the characters < and > in the following examples). A DBCS-graphic constant is

preceded by the character G.

The types of DBCS constants are:

Type Example

DBCS-Only

’<A1A2A3>’

DBCS-Open

’<A1A2A3>BCD’

DBCS-Graphic

G’<A1A2A3>’

DBCS field mapping considerations

The table shows what types of data mapping are valid between physical and logical files for double-byte

character set (DBCS) fields.

 Physical file

data type

Logical file data type

Character Hexa-

decimal

DBCS- open DBCS-
either

DBCS- only DBCS-
graphic

UCS2-

graphic

UTF-8 UTF-16

Character Valid Valid Valid Not valid Not valid Not valid Valid Valid Valid

Hexadecimal Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Not valid

DBCS-open Not valid Valid Valid Not valid Not valid Not valid Valid Valid Valid

DBCS-either Not valid Valid Valid Valid Not valid Not valid Not valid1 Not valid1 Not valid1

DBCS-only Valid Valid Valid Valid Valid Valid Not valid1 Not valid1 Not valid1

292 System i: Database Database programming

Physical file

data type

Logical file data type

Character Hexa-

decimal

DBCS- open DBCS-
either

DBCS- only DBCS-
graphic

UCS2-

graphic

UTF-8 UTF-16

DBCS-graphic Not valid Not valid Valid Valid Valid Valid Valid Valid Valid

UCS2-graphic Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

UTF-8 Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

UTF-16 Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

Note: In the table,

1 indicates that these mappings are not supported because of the possibility of substitution characters appearing after conversion.

DBCS field concatenation

When fields are concatenated, the data types can change (the resulting data type is automatically

determined by the system). Double-byte character set (DBCS) field concatenation follows these rules.

v The operating system assigns the data type based on the data types of the fields that are being

concatenated. When DBCS fields are included in a concatenation, the general rules are:

– If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

– If all fields in the concatenation are DBCS-only (J), the resulting data type is DBCS-only (J).

– If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) fields, the

resulting data type is DBCS open (O).

– If the concatenation contains two or more DBCS open (O) fields, the resulting data type is a

variable-length DBCS open (O) field.

– If the concatenation contains one or more variable-length fields of any data type, the resulting data

type is variable length.

– A DBCS-graphic (G) field can be concatenated only to another DBCS-graphic field. The resulting

data type is DBCS-graphic (G).

– A UCS2-graphic (G) field can be concatenated to another UCS2-graphic field, a UTF-8 character

field, or a UTF-16 graphic field. The resulting data type is UTF-16 if one of the operands is UTF-16,

UTF-8 if one of the operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.

– A UTF-8 character (A) field can be concatenated with another UTF-8 field, a UTF-16 field, or a

UCS-2 field. The resulting data type is UTF-16 if one of the operands is UTF-16, UTF-8 if one of the

operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.

– A UTF-16 graphic (G) field can be concatenated with another UTF-16 field, a UTF-8 field, or a UCS-2

field. The resulting data type is UTF-16 if one of the operands is UTF-16, UTF-8 if one of the

operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.
v The maximum length of a concatenated field varies depending on the data type of the concatenated

field and length of the fields being concatenated. If the concatenated field is zoned decimal (S), its total

length cannot exceed 31 bytes. If the concatenated field is character (A), DBCS-open (O), or DBCS-only

(J), its total length cannot exceed 32,766 bytes (32,740 bytes if the field is variable length).

The length of DBCS-graphic (G) fields is expressed as the number of double-byte characters (the actual

length is twice the number of characters); therefore, the total length of the concatenated field cannot

exceed 16,383 characters (16,370 characters if the field is variable length).

v In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is used. The first field must,

therefore, be unique among the physical files on which the logical file is based, or you must also

specify the JREF keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

Notes:

Database programming 293

1. When bracketed-DBCS fields are concatenated, a shift-in at the end of one field and a shift-out

at the beginning of the next field are removed. If the concatenation contains one or more

hexadecimal fields, the shift-in and shift-out pairs are only eliminated for DBCS fields that

precede the first hexadecimal field.

2. A concatenated field that contains DBCS fields must be an input-only field.

3. Resulting data types for concatenated DBCS fields might differ when using The Open Query

File (OPNQRYF) command.
 Related concepts

 “Using concatenation with DBCS fields” on page 295
When double-byte character set (DBCS) fields are included in a concatenation through the Open

Query File (OPNQRYF) command, the resulting data type is the same as the data type of the

concatenated field in a logical file, with some slight variations.

DBCS field substring operations

A substring operation allows you to use part of a field or constant in a logical file.

For bracketed-DBCS data types, the starting position and the length of the substring refer to the number

of bytes; therefore, each double-byte character counts as two positions. For the DBCS-graphic (G) data

type, the starting position and the length of the substring refer to the number of characters; therefore, each

double-byte character counts as one position.

Comparing DBCS fields in a logical file

When you compare two fields or compare a field and constants, fixed-length fields can be compared to

variable-length fields if the types are compatible. The table shows the valid comparisons for double-byte

character set (DBCS) fields in a logical file.

 Table 50. Valid comparisons for DBCS fields in a logical file

 Any

numeric

Character Hexadecimal DBCS-open DBCS-

either

DBCS-only DBCS-

graphic

UCS2-

graphic

UTF-8 UTF-16 Date Time Timestamp

Any numeric Valid Not valid Not valid Not valid Not

valid

Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

Character Not valid Valid Valid Valid Valid Not valid Not valid Not valid Valid Valid Not valid Not valid Not valid

Hexa-

decimal

Not valid Valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

DBCS- open Not valid Valid Valid Valid Valid Valid Not valid Not valid Valid Valid Not valid Not valid Not valid

DBCS- either Not valid Valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

DBCS- only Not valid Not valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

DBCS-

graphic

Not valid Not valid Not valid Not valid Not

valid

Not valid Valid Not valid Valid Valid Not valid Not valid Not valid

UCS2-

graphic

Not valid Not valid Not valid Not valid Not

valid

Not valid Not valid Valid Valid Valid Not valid Not valid Not valid

UTF-8 Not valid Valid Not valid Valid Not

valid

Not valid Valid Valid Valid Valid Not valid Not valid Not valid

UTF-16 Not valid Valid Not valid Valid Not

valid

Not valid Valid Valid Valid Valid Not valid Not valid Not valid

Date Not valid Not valid Not valid Not valid Not

valid

Not valid Not valid Not valid Not valid Not valid Valid Not valid Not valid

Time Not valid Not valid Not valid Not valid Not

valid

Not valid Not valid Not valid Not valid Not valid Not valid Valid Not valid

Timestamp Not valid Not valid Not valid Not valid Not

valid

Not valid Not valid Not valid Not valid Not valid Not valid Not valid Valid

Using DBCS fields in the Open Query File (OPNQRYF) command

Double-byte character set (DBCS) fields can be used for the wildcard, concatenation, and sort sequence

functions of the Open Query File (OPNQRYF) command.

Using the wildcard function with DBCS fields

The wildcard (%WLDCRD) function with a double-byte character set (DBCS) field differs depending on

whether the function is used with a bracketed-DBCS field or a DBCS-graphic field.

When using the wildcard function with a bracketed-DBCS field, both single-byte and double-byte

wildcard values (asterisk and underline) are allowed. The following special rules apply:

294 System i: Database Database programming

v A single-byte underline refers to one EBCDIC character; a double-byte underline refers to one

double-byte character.

v A single- or double-byte asterisk refers to any number of characters of any type.

When using the wildcard function with a DBCS-graphic field, only double-byte wildcard values (asterisk

and underline) are allowed. The following special rules apply:

v A double-byte underline refers to one double-byte character.

v A double-byte asterisk refers to any number of double-byte characters.

Comparing DBCS fields through the Open Query File (OPNQRYF) command

When you compare two fields or constants, fixed-length fields can be compared to variable-length fields

if the types are compatible. The table shows the valid comparisons for double-byte character set (DBCS)

fields through the Open Query File (OPNQRYF) command.

 Table 51. Valid comparisons for DBCS fields through the OPNQRYF command

 Any numeric Character

Hexa-

decimal DBCS- open DBCS- either DBCS- only

DBCS-

graphic UCS2- graphic Date Time Time- stamp

Any numeric Valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

Character Not valid Valid Valid Valid Valid Not valid Not valid Valid Valid Valid Valid

Hexa- decimal Not valid Valid Valid Valid Valid Valid Not valid Not valid Valid Valid Valid

DBCS- open Not valid Valid Valid Valid Valid Valid Not valid Valid Valid Valid Valid

DBCS- either Not valid Valid Valid Valid Valid Valid Not valid Valid Valid Valid Valid

DBCS- only Not valid Not valid Valid Valid Valid Valid Not valid Valid Not valid Not valid Not valid

DBCS- graphic Not valid Not valid Not valid Not valid Not valid Not valid Valid Valid Not valid Not valid Not valid

UCS2- graphic Not valid Valid Not valid Valid Valid Valid Valid Valid Not valid Not valid Not valid

Date Not valid Valid Valid Valid Valid Not valid Not valid Not valid Valid Not valid Not valid

Time Not valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Valid Not valid

Time- stamp Not valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Valid

Using concatenation with DBCS fields

When double-byte character set (DBCS) fields are included in a concatenation through the Open Query

File (OPNQRYF) command, the resulting data type is the same as the data type of the concatenated field

in a logical file, with some slight variations.

The following rules apply when using concatenation with DBCS fields through the OPNQRYF command:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

v If the concatenation contains one or more UCS2-graphic fields, the resulting data type is UCS2-graphic.

v If all fields in the concatenation are DBCS-only (J), the resulting data type is variable length DBCS-only

(J).

v If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) or

UCS2-graphic fields, the resulting data type is variable length DBCS open (O).

v If the concatenation contains one or more variable length fields of any data type, the resulting data

type is variable length.

v If a DBCS-graphic (G) field is concatenated to another DBCS-graphic (G) field, the resulting data type

is DBCS-graphic (G).
 Related concepts

 “DBCS field concatenation” on page 293
When fields are concatenated, the data types can change (the resulting data type is automatically

determined by the system). Double-byte character set (DBCS) field concatenation follows these rules.

Using sort sequence with DBCS fields

When a sort sequence is specified on the Open Query File (OPNQRYF) command, the double-byte

character set (DBCS) data is not translated.

Only SBCS data in DBCS-either or DBCS-open fields is translated. UCS2 data is translated.

Database programming 295

Related information for database programming

Listed here are the manuals and information center topics that relate to the Database programming topic.

You can view or print any of the PDFs.

Manuals

v Backup and Recovery

This manual provides general information about recovery and availability

options.

v IDDU Use

This manual provides the administrative secretary, business professional, or

programmer with information about using the interactive data definition utility (IDDU) to describe

data dictionaries, files, and records to the system.

v Query for iSeries Use

This supplemental manual provides the administrative secretary, business

professional, or programmer with information about using IBM Query for iSeries to get data from any

database file. It describes how to sign on to Query, and how to define and run queries to create reports

that contain the selected data.

v Security Reference

This manual tells how system security support can be used to protect the

system and the data from being used by unauthorized people, protect the data from intentional or

unintentional damage or destruction, keep security information up-to-date, and set up security on the

system.

Other information

v Application programming interfaces This topic provides the application programmer with information

needed to develop system-level and other i5/OS applications using the application programming

interfaces.

v Backup and recovery This topic contains information about how to plan a backup and recovery

strategy, how to set up disk protection for your data, how to back up your system, and how to control

your system shutdown in the event of a failure.

v Commitment control This topic contains information about using commitment control to ensure that

database changes are synchronized.

v Control language This topic provides the application programmer and system programmer with

detailed information about control language (CL) and commands.

v Database file management This topic provides the application programmer with information about

using files in application programs. Included are topics on the Copy File (CPYF) command and the

override commands.

v DB2 UDB for iSeries SQL Reference This topic provides the application programmer, programmer, or

database administrator with detailed information about Structured Query Language (SQL) statements

and their parameters.

v DDS concepts This topic provides the application programmer with descriptions of the entries and

keywords needed to describe database files (both logical and physical) and certain device files (for

displays, printers, and intersystem communications function (ICF) external to the user’s programs).

v Disk management This topic helps you manage and protect disk units and disk pools for continuously

available information.

v Distributed data management This topic provides the application programmer with information about

remote file processing. It describes how to define a remote file to i5/OS distributed data management

(DDM), how to create a DDM file, what file utilities are supported through DDM, and the

requirements of i5/OS DDM as related to other systems.

v i5/OS globalization This topic provides the data processing manager, system operator and manager,

application programmer, user, and system engineer with information about the i5/OS national

language support function. It prepares the user for planning, installing, configuring, and using the

296 System i: Database Database programming

i5/OS globalization and multilingual system. It also explains database management of multilingual

data and application considerations for a multilingual system.

v Journal management This topic provides information about how to set up, manage, and troubleshoot

system-managed access-path protection (SMAPP), local journals, and remote journals.

v Performance This topic provides a description of tuning the system, collecting performance data,

including information about record formats and contents of the data being collected, working with

system values to control or change the overall operation of the system, and a description of how to

gather data to determine who is using the system and what resources are being used.

v SQL programming This topic provides the application programmer, programmer, or database

administrator with an overview of how to design, write, run, and test Structured Query Language

(SQL) statements. It also describes interactive SQL.

v Work management This topic provides the programmer with information about how to create and

change a work management environment.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Database programming 297

|

|

|

|
|
|
|
|

|
|

|

|
|

|

|
|
|

http://www.adobe.com/products/acrobat/readstep.html

298 System i: Database Database programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2006 299

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Database programming publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of IBM i5/OS.

300 System i: Database Database programming

|
|
|

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AS/400

COBOL/400

DB2

DB2 Universal Database

DRDA

i5/OS

IBM

IBM (logo)

Integrated Language Environment

iSeries

RPG/400

System i

System/36

System/38

WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 301

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

302 System i: Database Database programming

����

Printed in USA

	Contents
	Database programming
	What's new for V5R4
	Printable PDF
	Database file concepts
	DB2 Universal Database for iSeries
	Interfaces to DB2 Universal Database for iSeries
	Traditional system interface
	SQL
	iSeries Navigator
	IBM Query for iSeries

	Database files
	How database files are described
	Externally and program-described data
	Dictionary-described data
	Record format description
	Access path description
	Naming conventions for a database file

	Database data protection and monitoring
	Database file sizes
	Example: Database file sizes

	Setting up database files
	Creating and describing database files
	Creating a library
	Setting up source files
	Why source files are used
	Creating a source file
	Creating a source file using the Create Source Physical File (CRTSRCPF) command
	Creating a source file with DDS
	Creating a source file without DDS
	IBM-supplied source files
	Source file attributes

	Describing database files
	Describing database files using DDS
	Example: Describing a physical file using DDS
	Example: Describing a logical file using DDS
	Additional DDS field definition functions
	Using existing field descriptions and field reference files to describe a database file
	Using a data dictionary for field reference in a database file
	Sharing existing record format descriptions in a database file

	Specifying database file and member attributes
	Specifying the file name and member name (FILE and MBR) parameters
	Specifying the physical file data members (DTAMBRS) parameter
	Specifying the source file and source member (SRCFILE and SRCMBR) parameters
	Specifying the file type (FILETYPE) parameter
	Specifying the maximum number of members (MAXMBRS) parameter
	Specifying the preferred storage unit (UNIT) parameter
	Specifying the force write ratio (FRCRATIO) parameter
	Specifying the force keyed access path (FRCACCPTH) parameter
	Specifying the record format level check (LVLCHK) parameter
	Specifying the access path maintenance (MAINT) parameter
	Specifying the access path recovery (RECOVER) parameter
	Specifying the share open data path (SHARE) parameter
	Specifying the maximum file and record wait time (WAITFILE and WAITRCD) parameters
	Specifying the authority (AUT) parameter
	Specifying the system (SYSTEM) parameter
	Specifying the text description (TEXT) parameter
	Specifying the coded character set identifier (CCSID) parameter
	Specifying the sort sequence (SRTSEQ) parameter
	Specifying the language identifier (LANGID) parameter

	Setting up physical files
	Creating a physical file
	Specifying physical file and member attributes
	Expiration date
	Size of a physical file member
	Storage allocation
	Method of allocating storage
	Record length
	Deleted records
	Physical file capabilities
	Source type

	Implicit physical file journaling

	Setting up logical files
	Creating a logical file
	Creating a logical file with more than one record format
	Controlling how records are retrieved in a logical file with multiple formats
	Controlling how records are added to a logical file with multiple formats

	Defining logical file members

	Describing logical file record formats
	Describing field use for logical files
	Describing field use for logical files: Both
	Describing field use for logical files: Input only
	Describing field use for logical files: Neither

	Deriving new fields from existing fields
	Concatenated fields
	Substring fields
	Renamed fields
	Translated fields

	Describing floating-point fields in logical files

	Describing access paths for logical files
	Selecting and omitting records for logical files
	Access path select/omit
	Dynamic select/omit
	Selecting and omitting logical file records using the Open Query File (OPNQRYF) command

	Sharing existing access paths between logical files
	Example: Implicitly shared access paths

	Setting up a join logical file
	Example 1: Basic concepts of joining two physical files
	Reading a join logical file
	Case 1: Matching records in primary and secondary files
	Case 2A: A record missing in the secondary file (JDFTVAL keyword not specified)
	Case 2B: A record missing in the secondary file (JDFTVAL keyword specified)
	Case 3: Secondary file has more than one match for a record in the primary file
	Case 4: An extra record in the secondary file
	Case 5: Random access

	Setting up a join logical file
	Example 2: Using more than one field to join files
	Example 3: Reading duplicate records in the secondary file
	Example 4: Using join fields whose attributes are different
	Example 5: Describing fields that never appear in the record format
	Example 6: Specifying key fields in a join logical file
	Specifying select/omit statements in a join logical file
	Example 7: Joining three or more physical files
	Example 8: Joining a physical file to itself
	Example 9: Using defaults for missing records from secondary files
	Example 10: A complex join logical file
	Join logical file considerations
	Performance considerations
	Data integrity considerations
	Summary of rules

	Describing access paths for database files
	Using arrival sequence access paths for database files
	Using keyed sequence access paths for database files
	Arranging key fields in an alternative collating sequence
	Arranging key fields with the SRTSEQ parameter
	Arranging key fields in ascending or descending sequence
	Using more than one key field
	Preventing duplicate key values
	Arranging duplicate keys

	Using existing access path specifications
	Using floating-point fields in database file access paths

	Securing database files
	Granting file and data authority
	Authorizing a user or group using iSeries Navigator
	Types of object authority
	Types of data authority

	Specifying public authority
	Defining public authority using iSeries Navigator
	Setting a default public authority using iSeries Navigator

	Using database file capabilities to control I/O operations
	Limiting access to specific fields in a database file
	Using logical files to secure data

	Processing database files
	Database file processing: Runtime considerations
	File and member name
	File processing options
	Specifying the type of processing
	Specifying the initial file position
	Reusing deleted records
	Ignoring the keyed sequence access path
	Delaying end-of-file processing
	Specifying the record length
	Ignoring record formats
	Determining whether duplicate keys exist

	Data recovery and integrity
	Protecting your files with journaling and commitment control
	Writing data and access paths to auxiliary storage
	Checking changes to the record format description
	Checking the expiration date of a physical file member
	Preventing the job from changing data in a file

	Locking shared data
	Locking records
	Locking files
	Locking members
	Locking record format data
	Database lock considerations
	Displaying locked rows using iSeries Navigator
	Displaying locked records using the Display Record Locks (DSPRCDLCK) command

	Sharing database files in the same job or activation group
	Open considerations for files shared in a job or an activation group
	Input/output considerations for files shared in a job or an activation group
	Close considerations for files shared in a job or an activation group
	Example 1: A single set of files with similar processing options
	Example 2: Multiple sets of files with similar processing options
	Example 3: A single set of files with different processing options

	Sequential-only processing of database files
	Open considerations for sequential-only processing
	Input/output considerations for sequential-only processing
	Close considerations for sequential-only processing

	Summary of runtime considerations for processing database files
	Storage pool paging option effect on database performance

	Opening a database file
	Opening a database file member
	Using Open Database File (OPNDBF) command
	Using Open Query File (OPNQRYF) command
	Creating a query with the Open Query File (OPNQRYF) command
	Using an existing record format in the file
	Using a file with a different record format
	CL program coding with the Open Query File (OPNQRYF) command
	The zero-length literal and the contains (*CT) function
	Usage notes for the Open Query File (OPNQRYF) examples
	Selecting records without using DDS
	Selecting records using the Open Query File (OPNQRYF) command
	Specifying a keyed sequence access path without using DDS
	Specifying key fields from different files
	Dynamically joining database files without DDS
	Handling missing records in secondary join files
	Unique-key processing
	Defining fields derived from existing field definitions
	Handling divide-by-zero errors
	Summarizing data from database file records (grouping)
	Final total-only processing
	Controlling how the system runs the Open Query File (OPNQRYF) command

	Considerations for using the FORMAT parameter
	Considerations for arranging records
	Considerations for DDM files
	Considerations for writing a high-level language program
	Messages sent when the Open Query File (OPNQRYF) command is run
	Using the Open Query File (OPNQRYF) command for more than just input
	Comparing date, time, and timestamp using the Open Query File (OPNQRYF) command
	Performing date, time, and timestamp arithmetic using the Open Query File (OPNQRYF) command
	Durations
	Rules for date, time, and timestamp arithmetic
	Subtracting dates
	Incrementing and decrementing dates
	Subtracting times
	Incrementing and decrementing times
	Subtracting timestamps
	Incrementing and decrementing timestamps

	Using the Open Query File (OPNQRYF) command for random processing
	Open Query File (OPNQRYF) command: Performance considerations
	Open Query File (OPNQRYF) command: Performance considerations for sort sequence tables
	Grouping, joining, and selection: Open Query File (OPNQRYF) command performance
	Ordering: Open Query File (OPNQRYF) command performance

	Performance comparisons with other database functions
	Field use
	Files shared in a job
	Checking if the record format description changed
	Other runtime considerations for the Open Query File (OPNQRYF) command
	Overrides and the Open Query File (OPNQRYF) command
	Copying from an open query file

	Typical errors when using the Open Query File (OPNQRYF) command
	Open data path considerations
	Field names
	Expressions
	Built-in functions
	Restricted built-in functions

	Basic database file operations in programs
	Setting a position in the file
	Reading database records
	Reading database records using an arrival sequence access path
	Reading next operation
	Reading previous operation
	Reading first operation
	Reading last operation
	Reading same operation
	Reading by relative record number operation

	Reading database records using a keyed sequence access path
	Reading next operation
	Reading previous operation
	Reading first operation
	Reading last operation
	Reading same operation
	Reading by key operation
	Reading by relative record number operation
	Reading when logical file shares an access path with more keys operation

	Waiting for more records when end of file is reached
	Releasing locked records

	Updating database records
	Adding database records
	Identifying which record format to add in a file with multiple formats
	Using the force-end-of-data operation

	Deleting database records

	Closing a database file
	Monitoring database file errors in a program
	System handling of error messages
	Effect of error messages on file positioning
	Determining which messages you want to monitor

	Managing database files
	Basic operations for managing database files
	Copying a file
	Moving a file

	Managing database members
	Member operations common to all database files
	Adding members
	Changing member attributes
	Renaming members
	Removing members

	Physical file member operations
	Initializing data in a physical file member
	Clearing data from a physical file member
	Reorganizing a physical file member
	Reorganizing a table using iSeries Navigator
	Reorganizing a physical file member using the Reorganize Physical File Member (RGZPFM) command
	Usage notes: Reorganizing a physical file member
	Reorganization options
	Suspending or canceling a reorganize operation

	Displaying records in a physical file member

	Using database attribute and cross-reference information
	Displaying information about database files
	Displaying attributes of a file using iSeries Navigator
	Displaying attributes of a file using the Display File Description (DSPFD) command
	Displaying the description of the fields in a file
	Displaying the relationships between files on the system
	Displaying the files used by programs
	Displaying the system cross-reference files

	Writing the output from a command directly to a database file
	Example: A command output file
	Output files for the Display File Description (DSPFD) command
	Output files for the Display Journal (DSPJRN) command
	Output files for the Display Problems (DSPPRB) command

	Changing database file descriptions and attributes
	Effects of changing fields in a file description
	Changing a physical file description and attributes
	Example 1: Changing a physical file description and attributes
	Example 2: Changing a physical file description and attributes

	Changing a logical file description and attributes

	Recovering and restoring your database
	Recovering data in a database file
	Managing journals
	Journals
	Working with journals

	Ensuring data integrity with commitment control
	Transactions
	Benefits of using commitment control
	Usage notes: Commitment control

	Reducing time in access path recovery
	Saving access paths
	Restoring access paths
	Journaling access paths
	System-managed access-path protection
	Rebuilding access paths
	Controlling when access paths are rebuilt
	Designing files to reduce access path rebuilding time
	Other methods to avoid rebuilding access paths

	Database recovery process after an abnormal system end
	Database file recovery during the IPL
	Database file recovery after the IPL
	Effects of the storage pool paging option on database recovery
	Database file recovery options table

	Database save and restore
	Database considerations for save and restore

	Using source files
	Working with source files
	Using the source entry utility
	Using device source files
	Copying source file data
	Copying to and from source files using the Copy Source File (CPYSRCF) command
	Copying to and from source files using the Copy File (CPYF) command
	Source sequence numbers used in copies

	Loading and unloading data from systems other than System i
	Using source files in a program

	Creating an object using a source file
	Creating an object from source statements in a batch job
	Determining which source file member was used to create an object

	Managing a source file
	Changing source file attributes
	Reorganizing source file member data
	Determining when a source statement was changed
	Using source files for documentation

	Controlling the integrity of your database with constraints
	Setting up constraints for your database
	Removing unique, primary key, or check constraints
	Working with a group of constraints
	Details: Working with a group of constraints
	Working with constraints that are in check pending status
	Displaying records that put a constraint in check pending status
	Processing constraints that are in check pending status

	Unique constraints
	Primary key constraints
	Check constraints

	Ensuring data integrity with referential constraints
	Adding referential constraints
	Before you add referential constraints
	Defining the parent file in a referential constraint
	Defining the dependent file in a referential constraint
	Specifying referential constraint rules
	Details: Specifying referential constraint delete rules
	Details: Specifying referential constraint update rules
	Details: Specifying referential constraint rules—journaling requirements

	Details: Adding referential constraints
	Details: Avoiding constraint cycles

	Verifying referential constraints
	Enabling or disabling referential constraints
	Removing referential constraints
	Details: Removing a constraint with the CST parameter
	Details: Removing a constraint with the TYPE parameter

	Details: Ensuring data integrity with referential constraints
	Example: Ensuring data integrity with referential constraints
	Referential integrity terms
	Referential integrity enforcement
	Foreign key enforcement
	Parent key enforcement
	Enforcement of delete rules
	Enforcement of update rules

	Constraint states
	Check pending status in referential constraints
	Dependent file restrictions in check pending
	Parent file restrictions in check pending

	Referential integrity and CL commands

	Triggering automatic events in your database
	Uses for triggers
	Benefits of using triggers in your business
	Creating trigger programs
	Adding triggers using iSeries Navigator
	How trigger programs work
	Other important information about working with trigger programs
	Recommendations for trigger programs
	Precautions to take when coding trigger programs
	Monitoring the use of trigger programs
	Trigger and application programs that are under commitment control
	Trigger and application programs that are not under commitment control
	Trigger program error messages

	Examples: Trigger programs
	Example: Insert trigger written in RPG/400
	Example: Update trigger written in ILE COBOL
	Example: Delete trigger written in ILE C
	Data structures for the example database files

	Trigger buffer sections
	Trigger buffer field descriptions

	Adding triggers
	Displaying triggers
	Removing triggers
	Enabling or disabling physical file triggers
	Triggers and their relationship to CL commands
	Triggers and their relationship to referential integrity

	Database distribution

	Double-byte character set considerations
	DBCS field data types
	DBCS field mapping considerations
	DBCS field concatenation
	DBCS field substring operations
	Comparing DBCS fields in a logical file
	Using DBCS fields in the Open Query File (OPNQRYF) command
	Using the wildcard function with DBCS fields
	Comparing DBCS fields through the Open Query File (OPNQRYF) command
	Using concatenation with DBCS fields
	Using sort sequence with DBCS fields

	Related information for database programming

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

