





System i

Programming
IBM Developer Kit for Java

Version 5 Release 4



Note
Before using this information and the product it supports, read the information in

Tenth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM Developer Kit for Java (product number 5722-JV1)
and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not
run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.



Contents

IBM Developer Kit for Java
What's new.
Printable PDF .

Java .
Installmg IBM Developer K1t for ]ava .

Running your first Hello World Java program .

Mapping a network drive to your server .
Creating a directory on your server.

Creating, compiling, and running a HelloWorld

Java program.
Creating and editing ]ava source flles

Customizing your System i5 for the IBM Developer

Kit for Java
Java classpath
Java system properties.
Internationalization.
Release-to-release compat1b1l1ty

Database access with the IBM Developer K1t for

Java .

Accessing your System i5 database w1th the IBM

Developer Kit for Java JDBC driver

Accessing databases using IBM Developer K1t

for Java DB2 SQL]J support .
Java SQL routines . R
Java with other programming languages
Using the Java Native Interface for native
methods .
IBM i5/0S PASE nat1ve methods for ]ava
Teraspace storage model native methods for
Java
Comparison of Integrated Language
Environment and Java
Using java.lang.Runtime.exec()
Interprocess communications .
Java platform .
Java applets and appl1cat1ons .
Java virtual machine .
Java JAR and class files .
Java threads .

Sun Microsystems, Inc. ]ava Development K1t

Advanced topics . .
Java classes, packages, and d1rector1es .
Java-related files in the IFS .

Java file authorities in the integrated file system

Running Java in a batch job

Running your Java application on a host that does

not have a graphical user interface .

© Copyright IBM Corp. 1998, 2006

Installing and configuring IBM Developer K1t for

.12
.12
.14
.23
.32

.32

. 32

. 176
. 187
. 205

. 206
. 216

. 222

. 223
. 223
. 228
. 233
. 234
. 234
. 236
. 236

237

. 238
. 238

. 239
240
. 240

. 241

Native Abstract Windowing Toolkit . . . . . 241

Java security. . . . . . . . . . . . . .252
Java security model . . . . . . . . . .253
Java Cryptography Extension . . . . . . . 253
Java Secure Socket Extension . . . . 256
Java Authentication and Authorization Serv1ce 302
IBM Java Generic Security Service (JGSS) . . . 336

Tuning Java program performance with IBM

Developer Kit for Java . . . ... 369
Java event trace performance tools .. . . .370
Java performance considerations . . . . . . 371
Java garbage collection . . . ... 377
Java Native Method Invocation performance
considerations . . . ... . . 378
Java method inlining performance
considerations . . . . . 378
Java exception performance con51derat1ons . . 379
Java call trace performance tools . . . . . . 379
Java profiling performance tools . . . . . . 379
Collecting Java performance data. . . . . 380

Commands and tools for the IBM Developer K1t

for Java . . . . .383
Java tools that are supported by the IBM
Developer Kit for Java . . . . 383
CL commands that are supported by ]ava .. 391
iSeries Navigator commands that are supported
by Java . . . ... 2392

Debugging Java programs that run on your server 393
Debugging Java programs from an i5/0S

command line . . . . 393
Code examples for the IBM Developer K1t for ]ava 404
Troubleshooting IBM Developer Kit for Java . . . 534

Limitations . . . . . 534

Finding job logs for ]ava problem analysrs . . 535

Collecting data for Java problem analysis . . . 535

Applying program temporary fixes . . . . 536

Getting support for the IBM Developer Kit for

Java . . . . 536
Related 1nformat1on for IBM Developer K1t for ]ava 537

Java Naming and Directory Interface . . . . 537

JavaMail . . . . . . . . . . . . . .538

Java Print Service . . . . . . . . . . .D538

Appendix. Notices . . . . . . . . . 541

Programming Interface Information . . . . . . 543
Trademarks . . . . . . . . . . . . . .b543
Terms and conditions. . . . . . . . . . .543

iii



iv System i: Programming IBM Developer Kit for Java



IBM Developer Kit for Java

@

Jaw;

IBM Developer Kit for Java' is optimized for use in the System i5 " environment. It uses the
compatibility of Java programming and user interfaces, so you can develop your own System i5
applications.

IBM® Developer Kit for Java allows you to create and run Java programs on your System i5. IBM
Developer Kit for Java is a compatible implementation of the Sun Microsystems, Inc. Java Technology, so
we assume that you are familiar with their Java Development Kit (JDK) documentation. To make it easier
for you to work with their information and ours, we provide links to Sun Microsystems, Inc.’s
information.

If for any reason our links to Sun Microsystems, Inc. Java Development Kit documentation do not work,
refer to their HTML reference documentation for the information that you need. You can find this
information on the World Wide Web at[The Source for Java Technology java.sun.com|

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

Related reference

[‘Code examples for the IBM Developer Kit for Java” on page 404
The following is a list of code examples for the IBM Developer Kit for Java.

What’s new
This topic highlights changes to the IBM Developer Kit for Java for V5R4.

New debugging interface

The [‘Java Platform Debugger Architecture” on page 401| and [“Java Virtual Machine Profiler Interface” on|
lpage 380 topics describe the Java Virtual Machine Tool Interface (JVMTI).

New CL commands

See the [“Applying program temporary fixes” on page 536|and [‘CL commands that are supported byl
Java” on page 391[topics for information about using the Display Java Virtual Machine Jobs
(DSPJVMJOB) command.

New Java Cryptography Extension provider

See the [“Java Cryptography Extension” on page 253|topic for information about the IBMJCEFIPS JCE
provider.

New properties

Refer to the [“List of Java system properties” on page 14| for updated J2SE version 5.0 properties.

© Copyright IBM Corp. 1998, 2006 1


http://www.java.sun.com/

New version options

See the|“Support for multiple Java 2 Software Development Kits” on page 5|topic to install J2SE version
5.0 along with other JDK versions.

New Java tools:

+ [“Java apt tool” on page 385

“Java pack200 tool” on page 388

* [‘Java unpack200 tool” on page 390|

What’s new as of 31 January 2006

[“Using Java Secure Socket Extension 1.5” on page 282]
This section explains the use of Java Secure Socket Extension on servers that run J25SDK version
1.5.

In addition, other miscellaneous technical updates and corrections were made.

What’s new as of 28 February 2006

“Installing IBM Technology for Java Virtual Machine” on page 3| and [“Considerations for using IBM|
Technology for Java Virtual Machine” on page 4
New in V5R4 is IBM Technology for Java Virtual Machine, a 32-bit JVM that can be used in
addition to the pre-existing i5/0S® JVM. These sections contain instructions for installing and
using IBM Technology for Java Virtual Machine.

In addition, other miscellaneous technical updates and corrections were made.
What’s new as of 30 November 2006

The topic has been updated with miscellaneous technical changes.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:
* The ¥ image to mark where new or changed information begins.

* The <% image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the

Printable PDF

Follow these steps to view and download a PDF of this topic.

To view or download the PDF version, select [BM Developer Kit for Java| (about 4585 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

2 System i: Programming IBM Developer Kit for Java



Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site] (www.adobe.com/products/acrobat/ readstep.html)'-ld' .

Installing and configuring IBM Developer Kit for Java

If you have not yet used IBM Developer Kit for Java, follow these steps to install it, configure it, and
practice running a simple Hello World Java program.

[“What’s new” on page 1|
This topic highlights changes to the IBM Developer Kit for Java for V5R4.

[“Customizing your System i5 for the IBM Developer Kit for Java” on page 12|
After you install the IBM Developer Kit for Java on your server, you can customize your server.

[‘Downloading and installing Java packages” on page 7|
Use this information to download, install, and use Java packages more effectively on the System i
platform.

[‘Release-to-release compatibility” on page 32|
Java class files are upward compatible (JDK 1.3.x to 1.4.x to 1.5.x) as long as they do not make use of
a feature for which Sun has dropped or changed support.

Installing IBM Developer Kit for Java

Installing IBM Developer Kit for Java allows you to create and run Java programs on your system.

Licensed program 5722-JV1 is shipped with the system CDs, so JV1 is preinstalled. Enter the Go Licensed
Program (GO LICPGM) command and select Option 10 (Display). If you do not see this licensed program
listed, then perform the following steps:

1. Enter the GO LICPGM command on the command line.
2. Select option 11 (Install licensed program).

3. Choose option 1 (Install) for licensed program (LP) 5722-JV1 *BASE, and select the option that
matches the Java Development Kit (JDK) that you want to install. If the option that you want to
install is not displayed in the list, you can add it to the list by entering option 1 (Install) in the option
field. Enter 5722]JV1 in the licensed program field and your option number in the product option field.

Note: You can install more than one option at once.

Once you have installed the IBM Developer Kit for Java on your server, you may choose to customize
your system.

Related concepts

[‘Customizing your System i5 for the IBM Developer Kit for Java” on page 12|
After you install the IBM Developer Kit for Java on your server, you can customize your server.
Related tasks

[“Running your first Hello World Java program” on page 8|
This topic will help you to run your first Java program.

Installing IBM Technology for Java Virtual Machine
IBM Technology for Java Virtual Machine is a 32-bit JVM that is new for V5R4. Use these instructions to
install IBM Technology for Java Virtual Machine.

Note: You may have seen IBM Technology for Java Virtual Machine referred to as J2SE 5.0 32-bit JVM in
other publications.

IBM Developer Kit for Java 3


http://www.adobe.com/products/acrobat/readstep.html

IBM Technology for Java Virtual Machine is included in licensed program 5722-JV1. Licensed program
5722-JV1 is shipped with the system CDs. To access the IBM Technology for Java option, perform the
following steps:

1. Enter the Go Licensed Program (GO LICPGM) command and select Option 10 (Display)
2. If you do not see this licensed program listed, then perform the following steps:

a. Enter the GO LICPGM command on the command line.

b. Select Option 11 (Install licensed program).

c. Choose Option 1 (Install) for licensed program (LP) 5722-JV1 *BASE, and select the Option 8. If
Option 8 is not displayed in the list, you can add it to the list by entering Option 1 (Install) in the
option field. Enter 5722]JV1 in the licensed program field and Option 8 in the product option field.

3. Add an environment variable. At a command line, enter the following command: ADDENVVAR
ENVVAR (JAVA_HOME) VALUE('/QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit")

If you are unsure what JVM you currently using, you can check using the following methods. If you see
IBM J9 VM in the result, you are using IBM Technology for Java.

* Look in the job log for the job containing the JVM. There will be a message that states what JVM you
are using.

* As part of the Java command you are using to run your application, add -showversion. You will see
one additional line that shows the JVM you are using.

e From gsh or gp2term, run java -version.
Related information

[Licensed program releases and sizes|

Considerations for using IBM Technology for Java Virtual Machine:
Be aware of these considerations before using IBM Technology for Java Virtual Machine.
Using native methods with IBM Technology for Java

If you want to use IBM Technology for Java and have programs that use native methods, you must
compile these programs with teraspace storage enabled. Because teraspace storage is not enabled by
default, it is likely that you need to recompile. This is necessary because the Java object is in i5/0S PASE
storage, which is mapped on top of teraspace storage, and a teraspace storage pointer is returned. Also,
the JNI functions, such as GetxxxArrayRegion, have a parameter to a buffer where the data is placed.
This pointer must point to teraspace storage to enable the JNI function in i5/0OS PASE to copy the data
into this storage. If you have not compiled your program with teraspace storage enabled and attempt to
run the native method with IBM Technology for Java, you will receive the escape message MCH4443
(Invalid storage model for target program LOADLIB).

IBM Technology for Java Virtual Machine runs in a 32-bit PASE environment. If you have 64-bit PASE
environment native methods, you cannot use IBM Technology for Java Virtual Machine.

Adopted authority

Adopted authority for Java programs is not supported by IBM Technology for Java Virtual Machine.
Diagnostic messages and files

When ILE native methods encounter problems, you will see messages in the job log. When IBM
Technology for Java Virtual Machine or PASE native methods encounter problems, they will dump
diagnostic files into the IFS. There are several types of these "core files,” including core.=.dmp,

javacore.x.txt, Snap*.trc, and heapdump.=*.phd. The files range in size from tens of KB up to hundreds
of MB. In most cases, more severe problems produce larger files. The larger files can quickly and quietly

4 System i: Programming IBM Developer Kit for Java



consume large amounts of IFS space. Despite the space these files consume, they are useful for debugging
purposes. When possible, you should preserve these files until the underlying problem has been resolved.

Installing a licensed program with the Restore Licensed Program command

The programs listed in the Install Licensed Programs display are those supported by the LICPGM
installation when your server was new. Occasionally, new programs become available which are not
listed as licensed programs on your server. If this is the case with the program you want to install, you
must use the Restore Licensed Program (RSTLICPGM) command to install it.

To install a licensed program with the Restore Licensed Program (RSTLICPGM) command, follow these
steps:

1. Put the tape or CD-ROM containing the licensed program in the appropriate drive.
2. On the i5/0S command line, type:

RSTLICPGM

and press the Enter key.

The Restore Licensed Program (RSTLICPGM) display appears.
3. In the Product field, type the ID number of the licensed program you want to install.
4. In the Device field, specify your install device.

Note: If you are installing from a tape drive, the device ID is usually in the format TAPxx, where xx is
a number, like 01.

5. Keep the default settings for the other parameters in the Restore Licensed Program display. Press the
Enter key.

6. More parameters appear. Keep these default settings also. Press the Enter key. The program begins
installing.

When the licensed program is finished installing, the Restore Licensed Programs display appears again.

Support for multiple Java 2 Software Development Kits
The System i5 platform supports multiple versions of the Java Development Kits (JDKs) and the Java 2
Software Development Kit (J25DK), Standard Edition.

Note: In this documentation, depending on the context, the term JDK refers to any supported version of
the JDK and J2SDK. Usually, the context in which JDK occurs includes a reference to the specific
version and release number.

Your System i5 supports using multiple JDKs simultaneously, but only through multiple Java virtual
machines. A single Java virtual machine runs one specified JDK.

Find the JDK that you are using or want to use, and select the coordinating option to install. See
[“Installing IBM Developer Kit for Java” on page 3[to install more than one JDK at one time. The
java.version system property determines which JDK to run. Once a Java virtual machine is up and
running, changing the java.version system property has no effect.

Note: In V5R3 and later, the following options are no longer available: Option 1 (JDK 1.1.6), Option 2
(JDK 1.1.7), Option 3 (JDK 1.2.2), and Option 4 (JDK 1.1.8). The following table lists the supported J2SDKs
for this release.

Option JDK java.home java.version
5 1.3 /QIBM/ProdData/Java400/jdk13/ 1.3
6 1.4 /QIBM/ProdData/Java400/jdk14/ 1.4
7 1.5 (also referred to as /QIBM/ProdData/Java400/jdk15/ 1.5
J2SE 5.0)

IBM Developer Kit for Java 5



The default JDK chosen in this multiple JDK environment depends on which 5722-JV1 Options are
installed. The following table gives some examples.

Install Enter Result

Option 5 (1.3) java Hello J2SDK, Standard Edition, version 1.3
runs.

Option 6 (1.4) java Hello J2SDK, Standard Edition, version 1.4
runs.

Option 5 (1.3) and Option 6 (1.4) java Hello J2SDK, Standard Edition, version 1.4
runs.

Note: If you install only one JDK, the default JDK is the one you installed. If you install more than one
JDK, the following order of precedence determines the default JDK:
1. Option 6 (1.4)
2. Option 5 (1.3)
3. Option 7 (1.5)

Installing extensions for the IBM Developer Kit for Java

Extensions are packages of Java classes that you can use to extend the functionality of the core platform.
Extensions are packaged in one or more ZIP files or JAR files, and are loaded into the Java virtual
machine by an extension class loader.

The extension mechanism allows the Java virtual machine to use the extension classes in the same way
that the virtual machine uses the system classes. The extension mechanism also provides a way for you
to retrieve extensions from specified Uniform Resource Locators (URLs) when they are not already
installed in the J2SDK, version 1.2 or higher or Java 2 Runtime Environment, Standard Edition, version
1.2 and higher.

Some JAR files for extensions are shipped with i5/0S. If you would like to install one of these extensions,
enter this command:

ADDLNK OBJ('/QIBM/ProdData/Java400/ext/extensionTolnstall.jar')
NEWLNK('/QIBM/UserData/Java400/ext/extensionToInstall.jar")
LNKTYPE (*SYMBOLIC)

Where
extensionTolInstall.jar
is the name of the ZIP or JAR file that contains the extension that you want to install.

Note: JAR files of extensions not provided by IBM may be placed in the /QIBM/UserData/Java400/ext
directory.

When you create a link or add a file to an extension in the /QIBM/UserData/Java400/ext directory, the
list of files that the extension class loader searches changes for every Java virtual machine that is running on
your server. If you do not want to impact the extension class loaders for other Java virtual machines on
your server, but you still want to create a link to an extension or install an extension not shipped by IBM
with the server, follow these steps:

1. Create a directory to install the extensions. Use either the Make Directory (MKDIR) command from
the i5/0S command line or the mkdir command from the Qshell Interpreter.

2. Place the extension JAR file in the directory created.

3. Add the new directory to the java.ext.dirs property. You can add the new directory to the java.ext.dirs
property by using the PROP field of the JAVA command from the i5/0S command line.

6 System i: Programming IBM Developer Kit for Java



If the name of your new directory is /home/username/ext, the name of your extension file is
extensionTolnstall.jar, and the name of your Java program is Hello, then the commands that you enter
should look like this:

MKDIR DIR('/home/username/ext"')

CPY 0BJ('/productA/extensionToInstall.jar') TODIR('/home/username/ext') or
copy the file to /home/username/ext using FTP (file transfer protocol).

JAVA Hello PROP((java.ext.dirs '/home/username/ext'))

Downloading and installing Java packages
Use this information to download, install, and use Java packages more effectively on the System i
platform.

Packages with graphical user interfaces

Java programs used with graphical user interface (GUI) require the use of a presentation device with
graphical display capabilities. For example, you can use a personal computer, technical workstation, or
network computer. You can use Native Abstract Windowing Toolkit (NAWT) to provide your Java
applications and servlets with the full capability of the Java 2 Software Development Kit (J25DK),
Standard Edition Abstract Windowing Toolkit (AWT) graphics functions. For more information, see
[Native Abstract Windowing Toolkit (NAWT)|

Case sensitivity and integrated file system

Integrated file system provides file systems, which are both case-sensitive and those that are not with
regard to file names. QOpenSys is an example of a case-sensitive file system within the integrated file

system. Root, '/’, is an example of a case-insensitive file system. For more information, see the [Integrated
_

le system| topic.
Even though a JAR or class may be located in a case-insensitive file system, Java is still a case-sensitive
language. While wrkink '/home/Hello.class' and wrkink '/home/hello.class' produce the same results,
JAVA CLASS(Hello) and JAVA CLASS(hello) are calling different classes.

ZIP file handling and JAR file handling

ZIP files and JAR files contain a set of Java classes. When you use the [Create Java Program|

command on one of these files, the classes are verified, converted to an internal machine
form, and if specified, transformed to System i machine code. You can treat ZIP files and JAR files like
any other individual class file. When an internal machine form is associated with one of these files, it
remains associated with the file. The internal machine form is used on future runs in place of the class
file to improve performance. If you are unsure whether a current Java program is associated with your
class file or JAR file, use the [Display Java Program (DSPJVAPGM)|command to display information about
your Java program on your server.

In previous releases of the IBM Developer Kit for Java, you had to recreate a Java program if you
changed the JAR file or ZIP file in any way, because the attached Java program would become unusable.
This is no longer true. In many cases, if you change a JAR file or ZIP file, the Java program is still valid
and you do not have to recreate it. If partial changes are made, such as when a single class file is
updated within a JAR file, you only need to recreate the affected class files that are within the JAR file.

Java programs remain attached to the JAR file after most typical changes to the JAR file. For example,
these Java programs remain attached to the JAR file when:

¢ Changing or recreating a JAR file by using the:ai'ar tooil
» Changing or recreating a JAR file by using the:i'ar tooil
* Replacing a JAR file by using the 0S/400 COPY command or the Qshell cp utility.

IBM Developer Kit for Java 7



If you access a JAR file in the integrated file system through iSeries” Access for Windows® or from a
mapped drive on a personal computer (PC), these Java programs remain attached to the JAR file when:

¢ Dragging and dropping another JAR file onto the existing integrated file system JAR file.
» Changing or recreating the integrated file system JAR file by using the
* Replacing the integrated file system JAR file by using the PC copy command.

When a JAR file is changed or replaced, the Java program that is attached to it is no longer current.
There is one exception in which Java programs do not remain attached to the JAR file. The attached Java

programs are destroyed if you use file transfer protocol (FIP) to replace the JAR file. For example, this
occurs if you use the FTP put command to replace the JAR file.

See [“Java performance considerations” on page 371|for more detailed information about the performance
characteristics of JAR files.

Java extensions framework

In J2SDK, extensions are packages of Java classes that you can use to extend the functionality of the core
platform. An extension or application is packaged in one or more JAR files. The extension mechanism
allows the Java virtual machine to use the extension classes in the same way that the virtual machine
uses the system classes. The extension mechanism also provides a way for you to retrieve extensions
from specified URLs when they are not already installed in the J2SDK or Java 2 Runtime Environment,
Standard Edition.

See |“Installing extensions for the IBM Developer Kit for Java” on page 6|for information on installing
extensions.

Running your first Hello World Java program
This topic will help you to run your first Java program.

You can get your Hello World Java program up and running in either of these ways:

1. You can simply run the Hello World Java program that was shipped with the IBM Developer Kit for
Java.
To run the program that is included, perform the following steps:
a. Check that the IBM Developer Kit for Java is installed by entering the Go Licensed Program (GO

LICPGM) command. Then, select option 10 (Displayed installed licensed programs). Verify that
licensed program 5722-JV1 *BASE and at least one of the options are listed as installed.

b. Enter java Hello on the i5/0S Main Menu command line. Press Enter to run the Hello World Java
program.

c. If the IBM Developer Kit for Java was installed correctly, Hello World appears in the Java Shell
Display. Press F3 (Exit) or F12 (Exit) to return to the command entry display.

d. If the Hello World class does not run, check to see that the installation was completed successfully,
or see [“Getting support for the IBM Developer Kit for Java” on page 536 for service information.

2. You can also run your own Hello Java program. For more information about how to create your own
Hello Java program, see [‘Creating, compiling, and running a HelloWorld Java program” on page 10.]

Mapping a network drive to your server
To map a network drive, complete the following steps.

1. Make sure that you have iSeries Access for Windows installed on your server and on your
workstation. For more information on how to install and configure iSeries Access for Windows, see
[nstalling iSeries Access for Windows| You must have a connection configured for the server before
you can map a network drive.

8 System i: Programming IBM Developer Kit for Java



2. Open Windows Explorer:
a. Right-click the Start button on your Windows taskbar.
b. Click Explore in the menu.
3. Select Map Network Drive from the Tools menu.
4. Select the drive that you want to use to connect to your server.

5. Type the path name to your server. For example, \\MYSERVER where MYSERVER is the name of your
server.

6. Check the Reconnect at logon box if it is blank.
7. Click OK to finish.

Your mapped drive now appears in the All Folders section of Windows Explorer.

Creating a directory on your server
You must create a directory on your server where you can save your Java applications.
Related information

(Getting started with iSeries Navigator]

Creating a directory using iSeries Navigator
Choose this option if you have iSeries Access for Windows installed. If you plan to use iSeries Navigator
to compile, optimize, and run your Java program, you must select this option to ensure your program is
saved in the correct location to perform these operations.

To create a directory on your System i, follow these steps.
1. Open iSeries Navigator.

2. Double-click the name of your server in the My Connections window to sign on. If your server is not
listed in the My Connections window, follow these steps to add it:

a. Click File » Add Connection...

b. Type the name of your server in the System field.

c. Click Next.

d. If it is not already entered, enter your User ID in the Use default user ID, prompt as needed field.
e. Click Next.

f. Click Verify Connection. This confirms that you can connect to the server.
g. Click Finish.

3. Expand the folder under the connection you want to use. Locate a folder named File Systems. If you
do not see this folder, the option to install File Systems during the iSeries Navigator installation was
not selected. You must install the File Systems option of iSeries Navigator by selecting Start »
Programs - iSeries Access for Windows > Selective Setup.

4. Expand the File Systems folder and locate the Integrated File System folder.

5. Expand the Integrated File System folder, then expand the Root folder. By expanding the Root folder,
you see the same structure as performing the WRKLNK (’/”) command on the i5/0S command line.

6. Right-click on the folder where you want to add a subdirectory. Select New Folder and enter the
name of the subdirectory you want to create.

Creating a directory using the command entry line
Use these instructions to create a directory if you do not have iSeries Access for Windows installed.

To create a directory on your server, follow these steps.
1. Sign on to your server.
2. On the command line, type:

IBM Developer Kit for Java 9



CRTDIR DIR('/mydir')
where mydir is the name of the directory you are creating.
Press the Enter key.
A message appears at the bottom of your screen, stating "Directory created.”

Creating, compiling, and running a HelloWorld Java program

Creating the simple Hello World Java program is a great place to start when becoming familiar with the
IBM Developer Kit for Java.

To create, compile, and run your own Hello World Java program, perform the following steps:

1.
2.
3.

7.

10

Map a network drive to your server..
Create a directory on your server for your Java applications.

Create the source file as an American Standard Code for Information Interchange (ASCII) text file in
the integrated file system. You can either use an integrated development environment (IDE) product
or a text-based editor such as Windows Notepad to code your Java application.

a. Name your text file HelToWorld. java.
b. Make sure that your file contains this source code:

class HelloWorld {
public static void main (String args[]) {
System.out.printin("Hello World");
1

}

Compile the source file.

a. Enter the Work with Environment Variable (WRKENVVAR) command to check the CLASSPATH
environment variable. If the CLASSPATH variable does not exist, add it and set it to ’.” (the
current directory). If the CLASSPATH variable does exist, make sure that the ’." is at the beginning
of the path name list. For details about the CLASSPATH environment variable, see Java classpath.

b. Enter the Start Qshell (STRQSH) command to start the Qshell Interpreter.

c. Use the change directory (cd) command to change the current directory to the integrated file
system directory that contains the HelloWorld.java file.

d. Enter javac followed by the name of the file as you have it saved on your disk. For example, enter
Jjavac HelloWorld.java.

Set the file authorities on the class file in the integrated file system.
Optimize the Java application.
a. On the QSH Command Entry line, type:

system "CRTJVAPGM '/mydir/myclass.class' OPTIMIZE(20)"

where mydir is the path name of the directory in which your Java application is saved, and where
myclass is the name of your compiled Java application.

Note: You can specify an optimization level of up to 40. An optimization level of 40 increases the
efficiency of the Java application, but it also limits debug capabilities. In the early stages of
developing a Java application, you may want to set your optimization level at 20 so you can more
easily debug your application. See the CRTJVAPGM command and the OPTIMIZE parameter for
more information.

b. Press the Enter key.

A message appears, stating that a Java program has been created for your class.
Run the class file.
a. Ensure that your Java classpath is set up correctly.

System i: Programming IBM Developer Kit for Java



b. On the Qshell command line, type java followed by HelloWorld to run your HelloWorld.class
with the Java virtual machine. For example, enter java HelToWorld. You can also use the Run Java
(RUNJVA) command on your system to run HelloWorld.class.

c. "Hello World" prints to your screen if everything was entered correctly. The shell prompt (by
default, a $) appears, indicating that the Qshell is ready for another command.

d. Press F3 (Exit) or F12 (Disconnect) to return to the command entry display.

You can also easily compile, optimize, and run your Java application using iSeries Navigator, a graphical
user interface for performing tasks on your system.

[“Mapping a network drive to your server” on page §
To map a network drive, complete the following steps.

[“Creating a directory on your server” on page 9|
You must create a directory on your server where you can save your Java applications.

[“Creating and editing Java source files”]

You can create and edit Java source files in a number of ways: using iSeries Access for Windows, on a
workstation, with EDTF, and with SEU.

[“Java classpath” on page 12|

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH
environment variable, and the classpath command parameter all determine what directories are
searched when looking for a particular class.

[‘Java file authorities in the integrated file system” on page 240|
To run or debug a Java program, the class file, JAR file, or ZIP file needs to have read authority (*R).
Directories need read and execute authorities (*RX).

[Create Java Program (CRTJVAPGM) command]

[Run Java (RUNJVA) command)

[‘iSeries Navigator commands that are supported by Java” on page 392

The iSeries Navigator is a graphical interface for your Windows desktop. It is part of iSeries Access

for Windows and covers many i5/0S functions that administrators or users need to accomplish their
daily work. You can use iSeries Navigator commands to create and run optimized Java programs.

[Getting to know iSeries Navigator]

Creating and editing Java source files

You can create and edit Java source files in a number of ways: using iSeries Access for Windows, on a
workstation, with EDTF, and with SEU.

With iSeries Access for Windows

Java source files are American Standard Code for Information Interchange (ASCII) text files in the
integrated file system.

You can create and edit a Java source file with iSeries Access for Windows and a workstation-based
editor.

On a workstation

You can create a Java source file on a workstation. Then, transfer the file to the integrated file system by
using file transfer protocol (FTP).

To create and edit Java source files on a workstation:
1. Create the ASCII file on the workstation by using the editor of your choice.
2. Connect to your server with FTP.

IBM Developer Kit for Java 11



3. Transfer the source file to your directory in the integrated file system as a binary file, so that the file
remains in ASCII format.

With EDTF

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the
Source Entry Utility (SEU) for editing stream files or database files. See the [EDTF CL command] for
information.

With Source Entry Utility
You can create a Java source file as a text file by using source entry utility (SEU).

To create a Java source file as a text file by using SEU, perform the following steps:
1. Create a source file member by using SEU.

2. Use the Copy To Stream File (CPYTOSTMF) command to copy the source file member to an
integrated file system stream file, while converting the data to ASCIL

If you need to make changes to the source code, change the database member by using SEU and copy the
file again.

For information on storing files, see [“JTava-related files in the IFS” on page 239

Customizing your System i5 for the IBM Developer Kit for Java

After you install the IBM Developer Kit for Java on your server, you can customize your server.

Java classpath

The Java virtual machine uses the Java classpath to find classes during runtime. Java commands and
tools also use the classpath to locate classes. The default system classpath, the CLASSPATH environment
variable, and the classpath command parameter all determine what directories are searched when looking
for a particular class.

In the Java 2 Software Development Kit (J2SDK), Standard Edition, the java.ext.dirs property determines
the classpath for the extensions that are loaded. See [“Installing extensions for the IBM Developer Kit for]
Java” on page 6 for more information.

The default bootstrap classpath is system-defined, and you should not change it. On your server, the
default bootstrap classpath specifies where to find the classes that are part of the IBM Developer Kit for
Java, the Native Abstract Window Toolkit (NAWT), and other system classes.

To find any other classes on the system, you must specify the classpath to search by using the
CLASSPATH environment variable or the classpath parameter. The classpath parameter that is used on a
tool or command overrides the value that is specified in the CLASSPATH environment variable.

You can work with the CLASSPATH environment variable using the Work with Environment Variable
(WRKENVVAR) command. From the WRKENVVAR display, you can add or change the CLASSPATH
environment variable. The Add Environment Variable (ADDENVVAR) command and Change
Environment Variable (CHGENVVAR) command either add or change the CLASSPATH environment
variable.

The value of the CLASSPATH environment variable is a list of path names, separated by colons (:), which

are searched to find a particular class. A path name is a sequence of zero or more directory names. These
directory names are followed by the name of the directory, the ZIP file, or the JAR file that is to be

12 System i: Programming IBM Developer Kit for Java



searched in the integrated file system. The components of the path name are separated by the slash (/)
character. Use a period (.) to indicate the current working directory.

You can set the CLASSPATH variable in the Qshell environment by using the export utility that is
available using the Qshell Interpreter.

These commands add the CLASSPATH variable to your Qshell environment and set it to the value "
.:/myclasses.zip:/Product/classes."

e This command sets the CLASSPATH variable in the Qshell environment:
export -s CLASSPATH=.:/myclasses.zip:/Product/classes

* This command sets the CLASSPATH variable from the command line:
ADDENVVAR ENVVAR(CLASSPATH) VALUE(".:/myclasses.zip:/Product/classes")

The J2SDK searches the bootstrap classpath first, then the extension directories, then the classpath. The
search order for J2SDK, using the previous example above, is:

1. The bootstrap classpath, which is in the sun.boot.class.path property,
The extension directories, which is in the java.ext.dirs property,

The current working directory,

The myclasses.zip file that is located in the "root” (/) file system,

ok 0N

The classes directory in the Product directory in the "root” (/) file system.

When entering the Qshell environment, the CLASSPATH variable is set to the environment variable. The
classpath parameter specifies a list of path names. It has the same syntax as the CLASSPATH
environment variable. A classpath parameter is available on these tools and commands:

* java command in Qshell

e javac tool

e javah tool

* javap tool

e javadoc tool

* rmic tool

* Run Java (RUNJVA) command

For more information about these commands, see|[Commands and tools for the IBM Developer Kit for]
If you use the classpath parameter with any of these command or tools, it ignores the CLASSPATH
environment variable.

You can override the CLASSPATH environment variable by using the java.class.path property. You can
change the java.class.path property, as well as other properties, by using the SystemDefault.properties file.
The values in the SystemDefault.properties files override the CLASSPATH environment variable. For
information on the SystemDefault.properties file, see the [SystemDefault.properties file|

In J2SDK, the -Xbootclasspath option also affects what directories the system searches when looking for
classes. Using -Xbootclasspath/a:path appends path to the default bootstrap classpath, /p:path prepends
path to the bootstrap classpath, and :path replaces the bootstrap classpath with path.

Note: Be careful when you specify -Xbootclasspath because unpredictable results occur when a system
class cannot be found or is incorrectly replaced by a user-defined class. Therefore, you should
allow the system default classpath to be searched before any user-specified classpath.

See [Java system propertieq for information about how to determine the environment in which Java
programs run.

IBM Developer Kit for Java 13



For more information, see the [Program and CL Command API{ or the [[ntegrated file system|

Java system properties

Java system properties determine the environment in which you run your Java programs. They are
similar to system values or environment variables in i5/0OS.

Starting an instance of a Java virtual machine (JVM) sets the values for the system properties that affect
that JVM.

You can choose to use the default values for Java system properties or you can specify values for them by
using the following methods:

* Adding parameters to the command line (or the Java Native Interface (JNI) invocation API) when you
start the Java program

* Using the QIBM_JAVA_PROPERTIES_FILE job-level environment variable to point to a specific
properties file. For example:

ADDENVVAR ENVVAR(QIBM_J/-\VA_PROPERTIES_FI LE)
VALUE(/qibm/userdata/java400/mySystem.properties)

* Creating a SystemDefault.properties file that you create in your user.home directory
¢ Using the /qibm/userdata/java400/SystemDefault.properties file

i5/06S and the JVM determine the values for Java system properties by using the following order of
precedence:

1. Command line or JNI invocation API
QIBM_JAVA_PROPERTIES_FILE environment variable
user.home SystemDefault.properties file
/QIBM/UserData/Java400/SystemDefault.properties
Default system property values

Al A

SystemDefault.properties file
The SystemDefault.properties file is a standard Java properties file that enables you to specify default
properties of your Java environment.

The SystemDefault.properties file that resides in your home directory takes priority over the
SystemDefault.properties file that resides in the /QIBM/UserData/Java400 directory.

Properties that you set in the /YourUserHome/SystemDefault.properties file affect only the following
specific Java virtual machines:

* JVMs that you start without specifying a different userhome property
* JVMs that others users start by specifying the property user.home = /YourUserHome/

Example: SystemDefault.properties file

The following example sets several Java properties:

#Comments start with pound sign
#Use J2SDK 1.4
java.version=1.4

#This sets a special property
myown . propname=6

List of Java system properties
Java system properties determine the environment in which the Java programs run. They are similar to
system values or environment variables in i5/0S.

14 System i: Programming IBM Developer Kit for Java



Starting a Java virtual machine (JVM) sets the system properties for that instance of the JVM. For more
information about how to specify values for Java system properties, see the following pages:

* [‘Java system properties” on page 14|

* ['SystemDefault.properties file” on page 14|

For more information on Java system properties, see [“JSSE 1.4 Java system properties” on page 268 and
[“JSSE 1.5 Java system properties” on page 284/

The following table lists the Java system properties for the supported versions of the Java 2 Software
Development Kit (J2SDK), Standard Edition:

* J2SDK, version 1.3
* J2SDK, version 1.4
* J2SE, version 5.0

For each property, the table lists the name of the property and either the default values that apply or a
brief description. The table indicates which system properties have different values in different versions
of the J2SDK. When the column that lists the default values does not indicate different versions of the
J2SDK, all supported versions of the J2SDK use that default value.

awt.toolkit sun.awt.motif.MToolkit

awt.toolkit will be unset unless 0s400.awt.native=true or
java.awt.headless=true

file.encoding ISO8859_1 (default value)

Maps the coded character set identifier (CCSID) to the corresponding ISO
ASCII CCSID. Also, sets the file.encoding value to the Java value that
represents the ISO ASCII CCSID. See [‘File.encoding values and System i5|
|[CCSID” on page 25| for a table that shows the relationship between
possible file.encoding values and the closest matching CCSID.

file.encoding.pkg sun.io

file.separator / (forward slash)

java.awtheadless * J2SDK v1.3: This property is not available when running J2SDK v.1.3.

* J2SDK v1.4: false (default value)
e J2SE 5.0: false

This property specifies whether the Abstract Windowing Toolkit (AWT)
API operates in headless mode or not. The default value of false makes
full AWT function available only when you have enabled AWT by setting
0s400.awt.native to true. Setting this property to true supports headless
AWT mode and also explicitly forces 0s400.awt.native to true.

java.class.path . (period) (default value)

Designates the path that i5/0S uses to locate classes. Defaults to the
user-specified CLASSPATH.

java.class.version e J2SDK v1.3: 47.0
e J2SDK v1.4: 48.0
* J2SE 5.0: 49.0

java.compiler jitc_de (default value)

Specifies whether you compile code by using the Just-In-Time (JIT)
compiler (jitc) or both the JIT compiler and direct processing (jitc_de).

IBM Developer Kit for Java 15



java.ext.dirs

J2SDK v1.3:
* /QIBM/ProdData/Java400/jdk13/lib/ext:
e /QIBM/UserData/Java400/ext

J2SDK v1.4:

* /QIBM/ProdData/0S400/Java400/jdk/lib/ext:
* /QIBM/ProdData/Java400/jdk14/lib/ext:

e /QIBM/UserData/Java400/ext (default value)

J2SE 5.0:
* /QIBM/ProdData/Java400/jdk15/lib/ext:
e /QIBM/UserData/Java400/ext

java.home

J2SDK v1.3: /QIBM/Prodata/Java400/jdk13
J2SDK v1.4: /QIBM/ProdData/Java400/jdk14 (default value)

J2SDK v1.5: /QIBM/ProdData/Java400/jdk15

See [“Support for multiple Java 2 Software Development Kits” on page 5|
for details.

java.library.path

i5/0S library list

java.net.preferIPv4Stack

* true (default value)
 false (no’s)

On dual stack machines, system properties are provided for setting the
preferred protocol stack (IPv4 or IPv6) as well as the preferred address
family types (inet4 or inet6). IPv6 stack is preferred by default, because on
a dual-stack machine IPv6 socket can talk to both IPv4 and IPv6 peers.
This setting can be changed with this property. java.net.preferIPv4Stack is
specific to J2SDK v1.4.

For more information, see the|Networking IPv6 User Guide}

java.net.preferIPv6Addresses

¢ true

e false (no’s) (default value)

Even though IPv6 is available on the operating system, the default
preference is to prefer an IPv4-mapped address over an IPv6 address. This
property controls whether IPv6 (true) or IPv4 (false) addresses are used.
java.net.preferIPv4Stack is specific to J2SDK v1.4.

For more information, see the [Networking IPv6 User Guidel

java.policy

J2SDK v1.3: /QIBM/ProdData/ Java400/jdk13/lib/security /java.policy

J2SDK v1.4: /QIBM/ProdData/OS400/ Java400/jdk/lib/security/
java.policy (default value)

J2SE v5.0: /QIBM/ProdData/ Java400/jdk15/lib/security/java.policy

java.specification.name

* Java Platform API Specification (default value)

* Java Language Specification

java.specification.vendor

Sun Microsystems, Inc.

java.specification.version

e J2SDK v1.3: 1.3
e J2SDK v1.4: 1.4 (default value)
* J2SE v5.0: 1.5

java.use.policy

true

16 System i: Programming IBM Developer Kit for Java



http://java.sun.com/j2se/1.5.0/docs/guide/net/ipv6_guide/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/ipv6_guide/index.html

java.vendor

IBM Corporation

java.vendor.url

http:/ /www.ibm.com

java.version

« 131
e 1.4.2 (default value)
* 15.0

Determines which version of the J25DK that you want to run.

Installing a single version of the J2SDK makes that version the default.
Specifying a version that is not installed results in an error message.
Failing to specify a version uses the most recent version of the J25DK as
the default.

Note: java.version is ignored if placed in the SystemDefault.properties file
and trying to use the Java Native Inteface (JNI). For more information, see
['Support for multiple Java 2 Software Development Kits” on page 5.

java.vm.name

Classic VM

java.vm.specification.name

Java Virtual Machine Specification

java.vm.specification.vendor

Sun Microsystems, Inc.

java.vm.specification.version

1.0

java.vm.vendor

IBM Corporation

java.vm.version

e J2SDK v1.3: 1.3
e J2SDK v1.4: 1.4 (default value)
* J2SE v5.0: 1.5

line.separator \n

os.arch PowerPC®

os.name i5/0S

os.version V5R4MO (default value)

Obtains the i5/0S release level from the Retrieve Product Information
application program interface (API).

o0s400.awt.native

Controls whether the Abstract Windowing Toolkit (AWT) API is supported
or not. Valid values are true and false. The default is false unless
java.awt.headless=true is set, in which case 0s400.awt.native is implied to
be true.

0s400.certificateContainer

Directs Java secure sockets layer (SSL) support to use the specified
certificate container for the Java program that was started and the property
that was specified. If you specify the 0s400.secureApplication system
property, this system property is ignored. For example, enter
-Dos400.certificateContainer=/home/username/ mykeyfile.kdb or
any other keyfile in the integrated file system.

0s400.certificateLabel

You can specify this system property in conjunction with the
0s400.certificateContainer system property. This property lets you select
which certificate in the specified container you want secure sockets layer
(SSL) to use. For example, enter-Dos400.certificateLabel=myCert, where
myCert is the label name that you assign to the certificate through the
Digital Certificate Manager (DCM) when you create or import the
certificate.

IBM Developer Kit for Java 17



0s400.child.stdio.convert

Controls the data conversion for stdin, stdout, and stderr in Java. Data
conversion between ASCII data and Extended Binary Coded Decimal
Interchange Code (EBCDIC) data occurs by default in the Java virtual
machine. Using this property to turn on and turn off these conversions
only affects child processes that this process starts by using the
Runtime.exec() method. This property value becomes the default value for
0s400.stdio.convert in the child processes. See f’Values forl
0s400.stdio.convert and 0s400.child.stdio.convert system properties” on|

page 22J

0s400.class.path.security.check

20 (default value)

Valid values:
* 0
No security check
* 10
Equivalent to RUNJVA CHKPATH(*IGNORE)
20
Equivalent to RUNJVA CHKPATH(*WARN)
* 30
equivalent to RUNJVA CHKPATH(*SECURE)

0s400.class.path.tools

0 (default value)

Valid values:
0
No Sun tools are in the java.class.path property
° 1
Prepends the J2SDK specific tools file to the java.class.path property

For J2SDK v1.3, the path to toolsjar is /QIBM/ProdData/Java400/jdk13/
lib/

For J2SDK v1.4, the path to tools.jar is /QIBM/ProdData/0OS400/Java400/
jdk/lib/

For J2SE v5.0, the path to tools.jar is /QIBM/ProdData/Java400/jdk15/
lib/

0s400.create.type

* interpret (default value)

Equivalent to RUNJVA OPTIMIZE(*INTERPRET) and
INTERPRET(*OPTIMIZE) or INTERPRET(*YES)

e direct

Otherwise

0s400.define.class.cache.file

default value is /QIBM/ProdData/Java400/QDefineClassCache.jar

Specifies the name of a JAR or ZIP file. See "Using cache for user class
loaders” in [Java performance considerations|

0s400.define.class.cache.hour

e default value = 768

* maximum decimal value = 9999

Specifies a decimal value. See "Using cache for user class loaders” in
[performance considerations}

18 System i: Programming IBM Developer Kit for Java




0s400.define.class.cache.maxpgms

e default value = 5000

* maximum decimal value = 40000

Specifies a decimal value. See "Using cache for user class loaders” in
[performance considerations

05400.defineClass.optLevel

0

0s400.display.properties

If this value is set to ‘true’, then all of the Java Virtual Machine properties
are printed to standard out. No other values are recognized.

05400.enbpfrcol

e 0 (default value)

equivalent to CRTJVAPGM ENBPFRCOL(*NONE)
.1

equivalent to CRTJVAPGM ENBPFRCOL(*ENTRYEXIT)
e 7

equivalent to CRTJVAPGM ENBPFRCOL(*FULL)

For a nonzero value, the JIT generates *JVAENTRY, *JVAEXIT,
*IVAPRECALL and *JVAPOSTCALL events.

0s400.exception.trace

This property is used for debugging. Specifying this property causes the
most recent exceptions to be sent to standard output when the JVM exits.

0s400.file.create.auth,
0s400.dir.create.auth

These properties specify authorities assigned to files and directories.
Specifying the properties without any values or with unsupported values
results in a public authority of *“NONE.

You can specify 0s400.file.create.auth=RWX or 0s400.dir.create.auth=RWX,
where R=read, W=write, and X=execute. Any combination of these
authorities is valid.

0s400.file.io.mode

Converts the CCSID of the file if it is different than the file.encoding value
when you specify TEXT, rather than the default, which is BINARY.

05400.gc.heap.size.init

An alternative to using -Xms (setting initial GC size). It is strongly
recommended that you to continue to use -Xms unless you have no other
choice as this property is specific to i5/OS. This property was introduced
mainly so that you can specify initial GC size in the
SystemDefault.properties file.

Note: Use this property carefully; it will override -Xms if specified. The
value must be an integer in size of kilobytes and without commas.

0s400.gc.heap.size.max

An alternative to using -Xmx (setting maximum GC size). It is strongly

recommended that you continue to use -Xmx unless you have no other

choice as this property is specific to i5/0S. This property allows you to
maximum GC size in the SystemDefault.properties file.

Note: Use this property carefully; it will override -Xmx if specified. The
value must be an integer in size of kilobytes and without commas.

0s400.interpret

* 0 (default value)

equivalent to CRTJVAPGM INTERPRET(*NO)
e 1

equivalent to CRTJVAPGM INTERPRET(*YES)

IBM Developer Kit for Java 19



0s400.jit.mmi.threshold

Sets the number of times that a method runs by using the Mixed-Mode
Interpreter (MMI) before i5/0S uses the JIT compiler to compile the
method into native machine instructions. Usually, you should not change
the default value, which is 2000.

* A value of zero disables MMI and compiles methods when they are first
called.

* Values lower than the default tend to both lengthen the startup time and
degrade ultimate performance.

* Values higher than the default initially degrade performance until
reaching the threshold, then tend to improve ultimate runtime
performance.

0s400.job.file.encoding

This property is used for output only. It lists the file encoding of the i5/0S
job that the JVM is in.

0s400.optimization

* 0 (default value)
equivalent to CRTJVAPGM OPTIMIZE(*INTERPRET)
* 10
equivalent to CRTJVAPGM OPTIMIZE(10)
20
equivalent to CRTJVAPGM OPTIMIZE(20)
* 30
equivalent to CRTJVAPGM OPTIMIZE(30)
* 40
equivalent to CRTJVAPGM OPTIMIZE(40)

0s400.pool.size

Defines how much space (in kilobytes) to make available for each heap
pool in the thread local heap.

0s400.run.mode

* interpret
equivalent to RUNJVA OPTIMIZE(*INTERPRET) and
INTERPRET(*OPTIMIZE), or INTERPRET(*YES)

* program_create_type
* jitc_de (default value)

Otherwise

0s400.run.verbose

If this value is set to "true’, then verbose classloading is printed to
standard out. No other values are recognized. Accomplishes the same
thing as specifying -verbose in QSHELL or OPTION(*VERBOSE) on the CL
commands, except this property works in the SystemDefault.properties file.

0s400.runtime.exec

* EXEC (default value)
Invoke functions through runtime.exec() by using the EXEC interface.
* QSHELL
Invoke functions through runtime.exec() by using the Qshell interpreter.

For more information, see [‘Using java.lang.Runtime.exec()” on page 223/

0s400.secureApplication

Associates the Java program that starts when using this system property
(0s400.secureApplication) with the registered secure application name. You
can view registered secure application names by using the Digital
Certificate Manager (DCM).

0s400.security.properties

Allows full control over which java.security file you use. When you specify
this property, J2SDK does not use any other java.security files, including
the J2SDK specific java.security default.

0s400.stderr

Allows mapping stderr to a file or socket. See ["0s400.stdin, 0s400.stdout,
land 0s400.stderr system property values” on page 22

20 System i: Programming IBM Developer Kit for Java




0s400.stdin Allows mapping stdin to a file or socket. See [“0s400.stdin, 0s400.stdout}
land 0s400.stderr system property values” on page 22)
0s400.stdin.allowed 1 (default value)

Specifies whether stdin is allowed (1) or not allowed (0). If the caller is
running a batch job, stdin should not be allowed.

0s400.stdio.convert

Allows control of the data conversion for stdin, stdout, and stderr in Java.
Data conversion occurs by default in the Java virtual machine to convert
ASCII data to or from EBCDIC. You can turn these conversions on or off
with this property, which affects the current Java program. See |“Values foﬂ
0s400.stdio.convert and 0s400.child.stdio.convert system properties” on|

page 22

For Java programs started using the Runtime.exec() method, see
[0s400.child.stdio.convert

0s400.stdout

Allows mapping stdout to a file or socket. See|default value

0s400.xrun.option

This system property allows the Qshell -Xrun option to be used by
specifying a property. You can use it to specify an agent program to run
during JVM startup.

0s400.verify.checks.disable

65535 (default value)

This system property value is a string that represents the sum of one or
more numeric values. For a list of these values, see |”Va1ues foﬂ
|os400.verify.checks.disable system property” on page 23|

0s400.vm.inputargs

This property is used for output only. It will display the arguments that
the JVM received as inputs. This property can be useful for debugging
what was specified on JVM startup.

path.separator

: (colon)

sun.boot.class.path

Lists all of the files required by the default boot classloader. Do not change
this value.

user.dir

Current working directory using the getcwd APL

user.home

Retrieves the initial working directory by using the Get API (getpwnam).
You can place a SystemDefault.properties file in your userhome path to
override the default properties in /QIBM/UserData/Java400/
SystemDefault.properties. You can customize your system to specify your
own set of default property values.

user.language

The Java virtual machine uses this system property to read the job
LANGID value and uses this value to find the corresponding language.

user.name

The Java virtual machine uses this system property to retrieve the effective
user profile name from the Security section (Security.UserName) of the
Trusted Computing Base (TCB).

user.region

The Java virtual machine uses this system property to read the job
CNTRYID value and uses this value to determine the user region.

user.timezone

Universal Time Coordinate (UTC) (default value) The Java virtual machine
uses this system property to obtain the time zone name by using the
QlgRetrieveLocallnformation APIL. The JVM looks to the system QLOCALE
object first. If not found, the JVM then looks at the QTIMZON system
value. If the QTIMZON system value contains a non-recognized
QTIMZON object, the JVM defaults the user.timezone to UTC.

For more information, see [Supported user.timezone property values for the|
[Development Kit for Javalin the WebSphere® Software Information Center.

Related concepts

IBM Developer Kit for Java 21


http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm
http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/adrtzval.htm

[‘Customizing your System i5 for the IBM Developer Kit for Java” on page 12|

After you install the IBM Developer Kit for Java on your server, you can customize your server.

Values for 0s400.stdio.convert and 0s400.child.stdio.convert system properties:

The following tables show the system values for the 0s400.stdio.convert and 0s400.child.stdio.convert

system properties.

Table 1. System values for 0s400.stdio.convert

Value

Description

Y (default)

All stdio converts to or from the file.encoding value to
job CCSID during read or write.

N No stdio conversion is performed during read or write.
1 Only stdin data converts from job CCSID to file.encoding
during read.
2 Only stdout data converts from file.encoding to job
CCSID during write.
Both stdin and stdout conversions are performed.
Only stderr data converts from file.encoding to job
CCSID during write.
5 Both stdin and stderr conversions are performed.
Both stdout and stderr conversions are performed.
7 All stdio conversions are performed.

Table 2. System values for 0s400.child.stdio.convert

Value

Description

N (default)

No stdio conversion is performed during read or write.

Y All stdio converts to or from the file.encoding value to
job CCSID during read or write.

1 Only stdin data converts from job CCSID to file.encoding
during read.

2 Only stdout data converts from file.encoding to job
CCSID during write.
Both stdin and stdout conversions are performed.

4 Only stderr data converts from file.encoding to job
CCSID during write.

5 Both stdin and stderr conversions are performed.
Both stdout and stderr conversions are performed.

7 All stdio conversions are performed.

0s400.stdin, 0s400.stdout, and 0s400.stderr system property values:

The following table shows the system values for 0s400.stdin, 0s400.stdout, and 0s400.stderr system

properties.

Value Example name Description Example

File SomeFileName SomeFileName is an absolute file:/QIBM /UserData/
path or a path relative to the Java400/Output.file
current directory.

22 System i: Programming IBM Developer Kit for Java




Value Example name Description Example

Port HostName Port address port:myhost:2000
Port TCPAddress Port address port:1.1.11.111:2000

Values for 0s400.verify.checks.disable system property:

The 0s400.verify.checks.disable system property value is a string that represents the sum of one or more
numeric values from the following list.

Value Description

1 Bypass access checks for local classes: Indicates that you
want the Java™ virtual machine to bypass access checks
on private and protected fields and methods for classes
that are loaded from the local file system. It is helpful
when transferring applications, which contain inner
classes that refer to private and protected methods and
fields of their enclosing classes.

2 Suppress NoClassDefFoundError during early load:
Indicates that you want the Java virtual machine to
ignore NoClassDefFoundErrors, which occur during
early verification checks for typecasting and field or
method access.

4 Allow LocalVariableTable checking to be bypassed:
Indicates that if you encounter an error in the
LocalVariableTable of a class, the class operates as if the
LocalVariableTable does not exist. Otherwise errors in the
LocaleVariableTable result in a ClassFormatError.

7 Value used at runtime.

You can indicate the value in decimal, hexadecimal, or octal format. It ignores values that are less than
zero. For example, to select the first two values from the list, use this command syntax:

JAVA CLASS(Hello) PROP((0s400.verify.checks.disable 3))

Internationalization

You can customize your Java programs for a specific region of the world by creating internationalized
Java program. By using time zones, locales, and character encoding, you can ensure that your Java
program reflects the correct time, place, and language.

[ [Internationalization by Sun Microsystems, Inc.|
i5/0S globalization|

Time zone configuration
When you have Java programs that are sensitive to time zones, you should configure the time zone on
your server so that your Java programs use the correct time.

To determine the local time correctly, the Java virtual machine (JVM) requires that you set both the
QUTCOFEFSET i5/0S system value and the time of day information in the LOCALE user parameter for
the current user or job:

* The JVM determines the correct Coordinated Universal Time (UTC) by comparing the QUTCOFFSET
value to the local time for the system

e The JVM returns the correct local time to the system by using the Java system property user.timezone.

IBM Developer Kit for Java 23


<link format=

Note: An alternative to setting QUTCOFFSET and LOCALE is to use the QTIMZON system value. The
JVM looks to the system QLOCALE object first. If not found, the JVM will then look at the
QTIMZON system value. If the QTIMZON system value contains a non-recognized QTIMZON
object, the JVM defaults user.timezone to UTC.

QUTCOFFSET and user.timezone

The QUTCOEFFSET i5/0S system value represents the Coordinated Universal Time (UTC) Offset for your
system. QUTCOFFSET specifies the difference in time between UTC (or Greenwich mean time) and the
current system time. The default value for QUTCOFFSET is zero (+00:00).

The QUTCOFEFSET value allows the JVM to determine the correct value for the local time. For example,
the value for QUTCOFFSET to specify central standard time (CST) is -6:00. To specify central daylight
time (CDT), QUTCOFFSET has a value of -5:00.

The user.timezone Java system property uses UTC time as the default value. Unless you specify a
different value, the JVM recognizes UTC time as the current time.

LOCALE

The LOCALE parameter on a user profile specifies the *LOCALE object to use for the LANG
environment variable. Do not confuse the *LOCALE object with Java locales.

Correctly setting the locale information allows the JVM to set the user.timezone property to the correct
time zone. You can set the user.timezone property to override the default setting provided by the
*LOCALE object.

The LC_TOD category defines rules for daylight savings time and time zone information for a locale.

Note: To use daylight savings time, you must adjust the QUTCOFFSET system value to have the correct
offset.

The following example shows the LC_TOD category information that you must include in the locale
object in order to configure the correct time zone for Java:

LC_TOD

% TZDIFF is number of minutes difference from UTC (or GMT)
tzdiff 360
% Timezone name (this is the value that you would have
% passed to the JVM as the user.timezone property.)
name "'<C><S><T>"

Remember to adjust the value of QUTCOFFSET when using
daylight savings time (DST)

Name used for DST.

stname  "<C><D><T>"

DST start in this part of the US is the first Sunday in
April at 2am

ststart 4,1,1,7200
% DST End in this area of US is Last Sunday in October.
dstend 10,-1,1,7200
% shift in seconds
dstshift 3600

O N N QN N N

END LC_TOD
The LC_TOD category of the locale contains the tname field, which you must set to the same value as

your time zone. For valid time zone strings, refer to the Javadoc reference information for the
java.util. TimeZone class.

24 System i: Programming IBM Developer Kit for Java



[‘Java system properties” on page 14|
Java system properties determine the environment in which you run your Java programs. They are
similar to system values or environment variables in i5/0S.

Working with locales in the National Language Support topid
i5/0S system value: QUTCOFFSET|

[ [TimeZone Javadoc reference information by Sun Microsystems, Inc.|

Java character encodings
Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Internally, the Java virtual machine (JVM) always operates with data in Unicode. However, all data
transferred into or out of the JVM is in a format matching the file.encoding property. Data read into the
JVM is converted from file.encoding to Unicode and data sent out of the JVM is converted from Unicode
to file.encoding.

Data files for Java programs are stored in the integrated file system. Files in the integrated file system are
tagged with a coded character set identifier (CCSID) that identifies the character encoding of the data
contained in the file.

When data is read by a Java program, it is expected to be in the character encoding matching
file.encoding. When data is written to a file by a Java program, it is written in a character encoding
matching file.encoding. This also applies to Java source code files (java files) processed by the javac
command and to data sent and received through Transmission Control Protocol/Internet Protocol
(TCP/IP) sockets using the .net package.

Data read from or written to System.in, System.out, and System.err are handled differently than data read
from or written to other sources when they are assigned to stdin, stdout, and stderr. Since stdin, stdout,
and stderr are normally attached to EBCDIC devices on the System i, a conversion is performed by the
JVM on the data to convert from the normal character encoding of file.encoding to a CCSID matching the
System i job CCSID. When System.in, System.out, or System.err are redirected to a file or socket and are
not directed to stdin, stdout, or stderr, this additional data conversion is not performed and the data
remains in a character encoding matching file.encoding.

When data must be read into or written from a Java program in a character encoding other than
file.encoding, the program can use the Java IO classes java.io.InputStreamReader, java.io.FileReader,
java.io.OutputStreamReader, and java.io.FileWriter. These Java classes allow specifying a file.encoding
value that takes precedence over the default file.encoding property currently in use by the JVM.

Data to or from the DB2® database converts to or from the CCSID of the System i database through the
JDBC APIs .

Data that is transferred to or from other programs through Java Native Interface does not get converted.

[ |Internationalization by Sun Microsystems, Inc.|

File.encoding values and System i5 CCSID:

This table shows the relation between possible file.encoding values and the closest matching System i5
coded character set identifier (CCSID).

For more information regarding file.encoding support, see [Supported encodings by Sun Microsystems |

Inc |

IBM Developer Kit for Java 25


http://java.sun.com/j2se/1.5.0/docs/api/java/util/TimeZone.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

file.encoding CCSID | Description

ASCII 367 American Standard Code for Information Interchange

Big5 950 8-bit ASCII T-Chinese BIG-5

Bigh_HKSCS 950 Big5_HKSCS

Big5_Solaris 950 Big5 with seven additional Hanzi ideograph character mappings for the Solaris
zh_TW.BIGS5 locale

CNS11643 964 Chinese National Character Set for traditional Chinese

Cp037 037 IBM EBCDIC US, Canada, Netherlands

Cp273 273 IBM EBCDIC Germany, Austria

Cp277 277 IBM EBCDIC Denmark, Norway

Cp278 278 IBM EBCDIC Finland, Sweden

Cp280 280 IBM EBCDIC Italy

Cp284 284 IBM EBCDIC Spanish, Latin America

Cp285 285 IBM EBCDIC UK

Cp297 297 IBM EBCDIC France

Cp420 420 IBM EBCDIC Arabic

Cp424 424 IBM EBCDIC Hebrew

Cp437 437 8-bit ASCII US PC

Cp500 500 IBM EBCDIC International

Cp737 737 8-bit ASCII Greek MS-DOS

Cp775 775 8-bit ASCII Baltic MS-DOS

Cp838 838 IBM EBCDIC Thailand

Cp850 850 8-bit ASCII Latin-1 Multinational

Cp852 852 8-bit ASCII Latin-2

Cp855 855 8-bit ASCII Cyrillic

Cp856 0 8-bit ASCII Hebrew

Cp857 857 8-bit ASCII Latin-5

Cp860 860 8-bit ASCII Portugal

Cp861 861 8-bit ASCII Iceland

Cp862 862 8-bit ASCII Hebrew

Cp863 863 8-bit ASCII Canada

Cp8o4 864 8-bit ASCII Arabic

Cp865 865 8-bit ASCII Denmark, Norway

Cp866 866 8-bit ASCII Cyrillic

Cp868 868 8-bit ASCII Urdu

Cp869 869 8-bit ASCII Greek

Cp870 870 IBM EBCDIC Latin-2

Cp871 871 IBM EBCDIC Iceland

Cp874 874 8-bit ASCII Thailand

Cp875 875 IBM EBCDIC Greek

Cp918 918 IBM EBCDIC Urdu

Cp921 921 8-bit ASCII Baltic

26 System i: Programming IBM Developer Kit for Java




file.encoding CCSID | Description

Cp922 922 8-bit ASCII Estonia

Cp930 930 IBM EBCDIC Japanese Extended Katakana
Cp933 933 IBM EBCDIC Korean

Cp935 935 IBM EBCDIC Simplified Chinese
Cp937 937 IBM EBCDIC Traditional Chinese
Cp939 939 IBM EBCDIC Japanese Extended Latin
Cp942 942 8-bit ASCII Japanese

Cp942C 942 Variant of Cp942

Cp943 943 Japanese PC data mixed for open env
Cp943C 943 Japanese PC data mixed for open env
Cp948 948 8-bit ASCII IBM Traditional Chinese
Cp949 944 8-bit ASCII Korean KSC5601

Cp949C 949 Variant of Cp949

Cp950 950 8-bit ASCII T-Chinese BIG-5

Cp964 964 EUC Traditional Chinese

Cp970 970 EUC Korean

Cp1006 1006 ISO 8-bit Urdu

Cp1025 1025 IBM EBCDIC Cyrillic

Cp1026 1026 IBM EBCDIC Turkey

Cp1046 1046 8-bit ASCII Arabic

Cp1097 1097 IBM EBCDIC Farsi

Cp1098 1098 8-bit ASCII Farsi

Cpl112 1112 IBM EBCDIC Baltic

Cp1122 1122 IBM EBCDIC Estonia

Cp1123 1123 IBM EBCDIC Ukraine

Cpl124 0 ISO 8-bit Ukraine

Cp1140 1140 Variant of Cp037 with Euro character
Cpl141 1141 Variant of Cp273 with Euro character
Cp1142 1142 Variant of Cp277 with Euro character
Cp1143 1143 Variant of Cp278 with Euro character
Cpl144 1144 Variant of Cp280 with Euro character
Cp1145 1145 Variant of Cp284 with Euro character
Cpl146 1146 Variant of Cp285 with Euro character
Cp1147 1147 Variant of Cp297 with Euro character
Cp1148 1148 Variant of Cp500 with Euro character
Cp1149 1149 Variant of Cp871 with Euro character
Cp1250 1250 MS-Win Latin-2

Cp1251 1251 MS-Win Cyrillic

Cp1252 1252 MS-Win Latin-1

Cp1253 1253 MS-Win Greek

Cp1254 1254 MS-Win Turkish

IBM Developer Kit for Java

27



file.encoding CCSID | Description

Cp1255 1255 MS-Win Hebrew

Cp1256 1256 MS-Win Arabic

Cp1257 1257 MS-Win Baltic

Cp1258 1251 MS-Win Russian

Cp1381 1381 8-bit ASCII S-Chinese GB

Cp1383 1383 EUC Simplified Chinese

Cp33722 33722 | EUC Japanese

EUC_CN 1383 EUC for Simplified Chinese

EUC_JP 5050 EUC for Japanese

EUC_JP_LINUX 0 JISX 0201, 0208 , EUC encoding Japanese

EUC_KR 970 EUC for Korean

EUC_TW 964 EUC for Traditional Chinese

GB2312 1381 8-bit ASCII S-Chinese GB

GB18030 1392 Simplified Chinese, PRC standard

GBK 1386 New simplified Chinese 8-bit ASCII 9

ISCII91 806 ISCII91 encoding of Indic scripts

1SO2022CN 965 ISO 2022 CN, Chinese (conversion to Unicode only)

1SO2022_CN_CNS 965 CNS11643 in ISO 2022 CN form, Traditional Chinese (conversion from Unicode
only)

1SO2022_CN_GB 1383 GB2312 in ISO 2022 CN form, Simplified Chinese (conversion from Unicode
only)

ISO2022CN_CNS 965 7-bit ASCII for Traditional Chinese

1SO2022CN_GB 1383 7-bit ASCII for Simplified Chinese

1SO2022]P 5054 7-bit ASCII for Japanese

ISO2022KR 25546 | 7-bit ASCII for Korean

ISO8859_1 819 ISO 8859-1 Latin Alphabet No. 1

ISO8859_2 912 ISO 8859-2 ISO Latin-2

ISO8859_3 0 ISO 8859-3 ISO Latin-3

1SO8859_4 914 ISO 8859-4 ISO Latin-4

ISO8859_5 915 ISO 8859-5 ISO Latin-5

1SO8859_6 1089 ISO 8859-6 ISO Latin-6 (Arabic)

ISO8859_7 813 ISO 8859-7 1SO Latin-7 (Greek/Latin)

1SO8859_8 916 ISO 8859-8 ISO Latin-8 (Hebrew)

ISO8859_9 920 ISO 8859-9 ISO Latin-9 (ECMA-128, Turkey)

ISO8859_13 0 Latin Alphabet No. 7

ISO8859_15 923 1SO8859_15

1SO8859_15_FDIS 923 ISO 8859-15, Latin alphabet No. 9

ISO-8859-15 923 ISO 8859-15, Latin Alphabet No. 9

J150201 897 Japanese industry standard X0201

J1S0208 5052 Japanese industry standard X0208

J1S0212 0 Japanese industry standard X0212

28 System i: Programming IBM Developer Kit for Java




file.encoding CCSID | Description

JISAutoDetect 0 Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP (conversion to
Unicode only)

Johab 0 Korean composition Hangul encoding (full)

K018_R 878 Cyrillic

KSC5601 949 8-bit ASCII Korean

MacArabic 1256 Macintosh Arabic

MacCentralEurope 1282 Macintosh Latin-2

MacCroatian 1284 Macintosh Croatian

MacCyrillic 1283 Macintosh Cyrillic

MacDingbat 0 Macintosh Dingbat

MacGreek 1280 Macintosh Greek

MacHebrew 1255 Macintosh Hebrew

Maclceland 1286 Macintosh Iceland

MacRoman 0 Macintosh Roman

MacRomania 1285 Macintosh Romania

MacSymbol 0 Macintosh Symbol

MacThai 0 Macintosh Thai

MacTurkish 1281 Macintosh Turkish

MacUkraine 1283 Macintosh Ukraine

MS874 874 MS-Win Thailand

MS932 943 Windows Japanese

MS936 936 Windows Simplified Chinese

MS949 949 Windows Korean

MS950 950 Windows Traditional Chinese

MS950_HKSCS NA Windows Traditional Chinese with Hong Kong S.A.R. of China extensions

SJIS 932 8-bit ASCII Japanese

TIS620 874 Thai industry standard 620

US-ASCIL 367 American Standard Code for Information Interchange

UTF8 1208 UTE-8 (IBM CCSID 1208, which is not yet available on the System i5 platform)

UTE-16 1200 Sixteen-bit UCS Transformation Format, byte order identified by an optional
byte-order mark

UTF-16BE 1200 Sixteen-bit Unicode Transformation Format, big-endian byte order

UTF-16LE 1200 Sixteen-bit Unicode Transformation Format, little-endian byte order

UTE-8 1208 Eight-bit UCS Transformation Format

Unicode 13488 UNICODE, UCS-2

UnicodeBig 13488 | Same as Unicode

UnicodeBigUnmarked Unicode with no byte-order mark

UnicodeLittle Unicode with little-endian byte order

UnicodeLittleUnmarked UnicodeLittle with no byte-order mark

For default values, see [Default file.encoding values|

IBM Developer Kit for Java 29



Default file.encoding values:

This table shows how the file.encoding value is set based on the System i coded character set identifier
(CCSID) when the Java virtual machine starts.

System i CCSID Default file.encoding Description

37 1SO8859_1 English for USA, Canada, New
Zealand, and Australia; Portuguese
for Portugal and Brazil; and Dutch
for Netherlands

256 1SO8859_1 International #1

273 1SO8859_1 German/Germany, German/Austria

277 1SO8859_1 Danish/Denmark,
Norwegian/Norway,
Norwegian/Norway, NY

278 1SO8859_1 Finnish /Finland

280 1S0O8859_1 Italian /Italy

284 1SO8859_1 Catalan/Spain, Spanish/Spain

285 1SO8859_1 English/Great Britain,
English/Ireland

290 Cp943C SBCS portion of Japanese EBCDIC
mixed (CCSID 5026)

297 1SO8859_1 French/France

420 Cp1046 Arabic/Egypt

423 1S0O8859_7 Greece

424 1SO8859_8 Hebrew /Israel

500 1SO8859_1 German/Switzerland,
French/Belgium, French/Canada,
French/Switzerland

833 Cp970 SBCS portion of Korean EBCDIC
mixed (CCSID 933)

836 Cp1383 SBCS portion of S-Chinese EBCDIC
mixed (CCSID 935).

838 TIS620 Thai

870 1S0O8859_2 Czech/Czech Republic,
Croatian/Croatia,
Hungarian/Hungary, Polish/Poland

871 1SO8859_1 Icelandic/Iceland

875 1SO8859_7 Greek /Greece

880 1SO8859_5 Bulgaria (ISO 8859_5)

905 1SO8859_9 Turkey extended

918 Cp868 Urdu

930 Cp943C Japanese EBCDIC mixed (similar to
CCSID 5026)

933 Cp970 Korean/Korea

935 Cp1383 Simplified Chinese

937 Cp950 Traditional Chinese

30 System i: Programming IBM Developer Kit for Java



System i CCSID Default file.encoding Description

939 Cp943C Japanese EBCDIC Mixed (similar to
CCSID 5035)

1025 1SO8859_5 Belorussian/Belarus,
Bulgarian/Bulgaria,
Macedonian/Macedonia,
Russian/Russia

1026 1SO8859_9 Turkish/Turkey

1027 Cp943C SBCS portion of Japanese EBCDIC
mixed (CCSID 5035)

1097 Cp1098 Farsi

1112 Cp921 Lithuanian/Lithuania,
Latvian/Latvia, Baltic

1388 GBK Simplified Chinese EBCDIC mixed
(GBK is included)

5026 Cp943C Japanese EBCDIC mixed CCSID
(Extended Katakana)

5035 Cp943C Japanese EBCDIC mixed CCSID
(Extended Latin)

8612 Cp1046 Arabic (base shapes only) (or ASCII
420 and 8859_6)

9030 Cp874 Thai (host extended SBCS)

13124 GBK SBCS portion of Simplified Chinese
EBCDIC mixed (GBK is included)

28709 Cp948 SBCS portion of Traditional Chinese
EBCDIC mixed (CCSID 937)

Examples: Creating an internationalized Java program
If you need to customize a Java program for a specific region of the world, you can create an
internationalized Java program with Java locales.

Java locales

Creating an internationalized Java program involves several tasks:

1. Isolate the locale-sensitive code and data. For example, strings, dates, and numbers in your program.
2. Set or get the locale using the Locale class.

3. Format dates and numbers to specify a locale if you do not want to use the default locale.

4

Create resource bundles to handle strings and other locale-sensitive data.

Review the following examples, which offer ways to help you complete the tasks required to create an
internationalized Java program:

* ["Example: Internationalization of dates using the java.util. DateFormat class” on page 406|

* ["’Example: Internationalization of numeric display using the java.util. NumberFormat class” on page 407|

* ["Example: Internationalization of locale-specific data using the java.util. ResourceBundle class” on page]
107

[+ [[nternationalization by Sun Microsystems, Inc.|

IBM Developer Kit for Java 31


http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

Release-to-release compatibility

Java class files are upward compatible (JDK 1.3.x to 1.4.x to 1.5.x) as long as they do not make use of a
feature for which Sun has dropped or changed support.

See [The Source for Java Technology java.sun.com| for information on release-to-release availability.

When Java programs on a System i5 are optimized using |Create Java Program (CRTJVAPGM) command)
a Java Program (JVAPGM) is attached to the class file. The internal structure of these JVAPGMs changed
on V4R4. This means that JVAPGMSs created before V4R4 are not valid on V4R4 and later releases. You
must recreate the JVAPGMs or the system automatically creates a JVAPGM at the same optimization level
as before. It is, however, recommended that you manually perform a CRTJVAPGM, especially with JAR
or ZIP files. This produces the best optimization with the smallest program size.

For best performance at optimization level 40, it is recommended to preform CRTJVAPGM on each i5/0S
release or JDK version change. This is especially true if the JDKVER facility is used on CRTJVAPGM, as
this results in methods from the Sun JDK being inlined into your JVAPGM. This can be a great advantage
to performance. If, however, changes are made in the JDK on subsequent releases that invalidate those
inlines, the programs may actually run slower than at lower optimizations. This is because special case
code must be run to get proper operation.

See [“Java performance considerations” on page 371|for more detailed performance information.

Database access with the IBM Developer Kit for Java

With the IBM Developer Kit for Java, your Java programs can access your database files in several ways.

Accessing your System i5 database with the IBM Developer Kit for
Java JDBC driver

The IBM Developer Kit for Java JDBC driver, also known as the "native” driver, provides programmatic
access to System i5 database files. Using the Java Database Connectivity (JDBC) API, applications written
in the Java language can access JDBC database functions with embedded Structured Query Language
(SQL), run SQL statements, retrieve results, and propagate changes back to the database. The JDBC API
can also be used to interact with multiple data sources in a distributed, heterogeneous environment.

The SQL99 Command Language Interface (CLI), on which the JDBC API is based, is the basis for ODBC.
JDBC provides a natural and easy-to-use mapping from the Java programming language to the
abstractions and concepts defined in the SQL standard.

For more information about JDBC, see the documentation by Sun Microsystems, Inc.

For more information about the System i5 native JDBC driver, see [System i5 native JDBC Driver FAQY .

Getting started with JDBC
The Java Database Connectivity (JDBC) driver shipped with the IBM Developer Kit for Java is called the
IBM Developer Kit for Java JDBC driver. This driver is also commonly known as the native JDBC driver.

To select which JDBC driver suits your needs, consider the following suggestions:

* Programs running directly on a server where the database resides should use the native JDBC driver
for performance. This includes most servlet and JavaServer Pages (JSP) solutions, and applications
written to run locally on a system.

* Programs that must connect to a remote System i5, us¢[BM Toolbox for Java JDBC| The IBM Toolbox
for Java JDBC driver is a robust implementation of JDBC and is provided as part of IBM Toolbox for
Java. Being pure Java, the IBM Toolbox for Java JDBC driver is trivial to set up for clients and requires
little server setup.

32 System i: Programming IBM Developer Kit for Java


http://www.java.sun.com/
http://www.java.sun.com/products/jdbc
http://www-1.ibm.com/servers/enable/site/java/jdbc/jdbcfaq.html

* Programs that run on a System i5 and need to connect to a remote, non-System i5 database use the
native JDBC driver and set up a Distributed Relational Database Architecture” (DRDA®) connection to
that remote server.

Types of JDBC drivers:

This topic defines the Java Database Connectivity (JDBC) driver types. Driver types are used to categorize
the technology used to connect to the database. A JDBC driver vendor uses these types to describe how
their product operates. Some JDBC driver types are better suited for some applications than others.

Type 1

Type 1 drivers are "bridge” drivers. They use another technology such as Open Database Connectivity
(ODBC) to communicate with a database. This is an advantage because ODBC drivers exist for many
Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is used to
call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with
it. This can be a serious drawback for a production application. Type 1 drivers cannot be used in an
applet since applets cannot load native code.

Type 2

Type 2 drivers use a native API to communicate with a database system. Java native methods are used to
invoke the API functions that perform database operations. Type 2 drivers are generally faster than Type
1 drivers.

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also uses the
JNL You cannot use a Type 2 driver in an applet since applets cannot load native code. A Type 2 JDBC
driver may require some Database Management System (DBMS) networking software to be installed.
The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Type 3

These drivers use a networking protocol and middleware to communicate with a server. The server then
translates the protocol to DBMS function calls specific to DBMS.

Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native binary
code on the client. A Type 3 driver does not need any client installation.

Type 4

A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the protocols are
usually proprietary, DBMS vendors are generally the only companies providing a Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration.
However, a Type 4 driver may not be suitable for some applications if the underlying protocol does not
handle issues such as security and network connectivity well.

The IIBM Toolbox for Java JDBC driver| is a Type 4 JDBC driver, indicating that the API is a pure Java
networking protocol driver.

JDBC requirements:

IBM Developer Kit for Java 33



This topic indicates the requirements you need to access Core JDBC, JDBC 2.0 optional package, and Java
Transaction API (JTA).

Before you write and deploy your JDBC applications, you may need to include specific jar files in your
classpath.

Core JDBC

For core Java Database Connectivity (JDBC) access to the local database, there are no requirements. All
support is built in, preinstalled, and configured.

JDBC 2.0 optional package

If you need to use the classes of the JDBC 2.0 optional package, you must include the jdbc2_0-stdext.jar
file in your classpath. This Java ARchive (JAR) file contains all the standard interfaces that you need to
write your application to use the JDBC 2.0 optional package. To add the JAR file to your extensions
classpath, create a symbolic link from the UserData extensions directory to the location of the JAR file.
You only need to perform this once; the JAR file in the JDBC 2.0 optional package is always available to
your applications at runtime. Use the following command to add the optional package to the extensions
classpath:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/jdbc2_0-stdext.jar')
NEWLNK('/QIBM/UserData/Java400/ext/jdbc2_0-stdext.jar"')

Note: This requirement is only for J2SDK 1.3. Since J25DK 1.4 is the first release with JDBC 3.0 support,
all of JDBC (that is, the core JDBC and the optional package) moves into the base J2SDK runtime JAR file
that your program always finds.

Java Transaction API

If you need to use the Java Transaction API (JTA) in your application, you must include the
jta-specl_0_1jar file in your classpath. This JAR file contains all the standard interfaces that you need to
write your application to use JTA. To add the JAR file to your extensions classpath, create a symbolic link
from the UserData extensions directory to the location of the JAR file. This is a one-time operation and
once completed, the JTA JAR file is always available to your application at runtime. Use the following
command to add JTA to the extensions classpath:

ADDLNK OBJ('/QIBM/ProdData/0S400/Java400/ext/jta-specl 0 1.jar')
NEWLNK('/QIBM/UserData/Java400/ext/jta-specl 0 1.jar'")

JDBC compliance

The native JDBC driver is compliant with all relevant JDBC specifications. The compliance level of the
JDBC driver is not dependent on the i5/0OS release, but on the JDK release you use. The native JDBC
driver’s compliance level for the various JDKs is listed as follows:

J2SDK release JDBC driver’s compliance level

JDK 1.1 This JDK is compliant with JDBC 1.0.

JDK 1.2 This JDK is compliant with JDBC 2.0 and supports JDBC 2.1 optional package.

JDK 1.3 This JDK is compliant with JDBC 2.0 and supports JDBC 2.1 optional package (there were

no JDBC-related changes for JDK 1.3).

JDK 1.4 and These JDK versions are compliant with JDBC 3.0, but the JDBC optional package no longer
subsequent versions exists (support for it is now part of the core JDK).

JDBC tutorial:

34 System i: Programming IBM Developer Kit for Java



The following is a tutorial on writing a Java Database Connectivity (JDBC) program and running it on a
System i5 with the native JDBC driver. It is designed to show you the basic steps required for your
program to run JDBC.

The example creates a table and populates it with some data. The program processes a query to get that
data out of the database and to display it on the screen.

Run the example program

To run the example program, perform the following steps:
1. Copy the program to your workstation.
a. Copy the example and paste it into a file on your workstation.

b. Save the file with the same name as the public class provided and with the .java extension. In this
case, you must name the file Basic/DBC.java on your local workstation.

2. Transfer the file from your workstation to your server. From a command prompt, enter the following

commands:

ftp <server name>

<Enter your user ID>

<Enter your password>

cd /home/cujo

put BasicJDBC.java

quit
For these commands to work, you must have a directory in which to put the file. In the example,
/home/cujo is the location, but you can use any location you want.

Note: It is possible that the FTP commands mentioned previously may be different for you based on
how your server is set up, but they should be similar. It does not matter how you transfer the
file to your server as long as you transfer it into the integrated file system. Tools such as
VisualAge® for Java can fully automate this process for you.

3. Make sure you set your classpath to the directory where you put the file in so that your Java
commands find the file when you run them. From a CL command line, you can use WRKENVVAR to
see what environment variables are set for your user profile.

* If you see an environment variable named CLASSPATH, you must ensure that the location where
you put the java file in is in the string of directories listed there or add it if the location has not
been specified.

* If there is no CLASSPATH environment variable, you must add one. This can be accomplished with
the following command:

ADDENVVAR ENVVAR (CLASSPATH)
VALUE('/home/cujo:/QIBM/ProdData/Java400/jdk13/T1ib/tools.jar")

Note: To compile Java code from the CL command, you must include the tools.jar file. This JAR file
includes the javac command.

4. Compile the Java file into a class file. Enter the following command from the CL command line:

JAVA CLASS(com.sun.tools.javac.Main) PARM(My_Program_Name.java)
java BasicJDBC

You can also compile the Java file from QSH:

cd /home/cujo
javac BasicJDBC.java

QSH automatically ensures that the tools.jar file can be found. As a result, you do not have to add it
to your classpath. The current directory is also in the classpath. By issuing the change directory (cd)
command, the BasicJDBC java file is also found.

Note: You can also compile the file on your workstation and use FTP to send the class file to your
server in binary mode. This is an example of Java’s ability to run on any platform.

IBM Developer Kit for Java 35



Run the program by using the following command from either the CL command line or from QSH:
java BasicJDBC
The output is as follows:

1 | Frank Johnson
2 | Neil Schwartz
3 | Ben Rodman

4 | Dan Gloore
There were 4 rows returned.
Qutput is complete.
Java program completed.

[+ [IBM Toolbox for Java JDBC drive Web site]

[ [Sun Microsystems, Inc. JDBC page]

Example: [DBC:

This is an example of how to use the Basic]DBC program. This program uses the native JDBC driver for
the IBM Developer Kit for Java to build a simple table and process a query that displays the data in that
table.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
finformation” on page 539

[ITTTTIIEE LI LT L i i iiiiriiie7iiiiiiiiiieeliieilieilieiiiieiiiiiiiii
//

// BasicJDBC example. This program uses the native JDBC driver for the

// Developer Kit for Java to build a simple table and process a query

// that displays the data in that table.

//

// Command syntax:

// BasicJDBC

//

[ITTETIIEETIE L2 i i ieiiiiiiedliiiliieiiieiliielliiilieiiiieiiliiiiil
//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.

/1l
LTI LI T T T 1i1i1i11i111117111111711711

36 System i: Programming IBM Developer Kit for Java


http://www-1.ibm.com/servers/eserver/iseries/toolbox/
http://java.sun.com/products/jdbc/

// Include any Java classes that are to be used. In this application,
// many classes from the java.sql package are used and the

// java.util.Properties class is also used as part of obtaining

// a connection to the database.

import java.sql.*;

import java.util.Properties;

// Create a public class to encapsulate the program.
public class BasicJDBC {

// The connection is a private variable of the object.
private Connection connection = null;

// Any class that is to be an 'entry point' for running
// a program must have a main method. The main method

// is where processing begins when the program is called.
public static void main(java.lang.String[] args) {

// Create an object of type BasicJDBC. This

// is fundamental to object-oriented programming. Once
// an object is created, call various methods on

// that object to accomplish work.

// In this case, calling the constructor for the object
// creates a database connection that the other

// methods use to do work against the database.
BasicJDBC test = new BasicJDBC();

// Call the rebuildTable method. This method ensures that

// the table used in this program exists and Tooks

// correct. The return value is a boolean for

// whether or not rebuilding the table completed

// successfully. If it did no, display a message

// and exit the program.

if (!'test.rebuildTable()) {
System.out.printin("Failure occurred while setting up " +

" for running the test.");

System.out.printin("Test will not continue.");
System.exit(0);

}

// The run query method is called next. This method

// processes an SQL select statement against the table that
// was created in the rebuildTable method. The output of

// that query is output to standard out for you to view.
test.runQuery();

// Finally, the cleanup method is called. This method

// ensures that the database connection that the object has
// been hanging on to is closed.

test.cleanup();

[**

This is the constructor for the basic JDBC test. It creates a database
connection that is stored in an instance variable to be used in Tater
method calls.

*%/

public BasicJDBC() {

// One way to create a database connection is to pass a URL

// and a java Properties object to the DriverManager. The following
// code constructs a Properties object that has your user ID and

// password. These pieces of information are used for connecting

// to the database.

Properties properties = new Properties ();

properties.put("user", "cujo");

IBM Developer Kit for Java

37



properties.put("user", "newtiger");

// Use a try/catch block to catch all exceptions that can come out of the

// following code.

try {
// The DriverManager must be aware that there is a JDBC driver available
// to handle a user connection request. The following line causes the
// native JDBC driver to be Toaded and registered with the DriverManager.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the database Connection object that this program uses in all

// the other method calls that are made. The following code specifies

// that a connection is to be established to the Tocal database and that
// that connection should conform to the properties that were set up

// previously (that is, it should use the user ID and password specified).
connection = DriverManager.getConnection("jdbc:db2:*1ocal", properties);

} catch (Exception e) {
// If any of the lines in the try/catch block fail, control transfers to
// the following line of code. A robust application tries to handle the
// problem or provide more details to you. In this program, the error
// message from the exception is displayed and the application allows
// the program to return.
System.out.printin("Caught exception: " + e.getMessage());

}
1
[**
Ensures that the qgpl.basicjdbc table looks you want it to at the start of
the test.
@returns boolean Returns true if the table was rebuild successfully;
returns false if any failure occurred.
*%/

public boolean rebuildTable() {
// Wrap all the functionality in a try/catch block so an attempt is
// made to handle any errors that may happen within this method.
try {

// Statement objects are used to process SQL statements against the
// database. The Connection object is used to create a Statement

// object.

Statement s = connection.createStatement();

try {
// Build the test table from scratch. Process an update statement
// that attempts to delete the table if it currently exists.
s.executeUpdate("drop table qgpl.basicjdbc");

} catch (SQLException e) {
// Do not perform anything if an exception occurred. Assume
// that the problem is that the table that was dropped does not
// exist and that it can be created next.

}

// Use the statement object to create our table.
s.executeUpdate("create table qgpl.basicjdbc(id int, name char(15))");

// Use the statement object to populate our table with some data.
s.executeUpdate("insert into qgpl.basicjdbc values(1, 'Frank Johnson')");
s.executeUpdate("insert into qgpl.basicjdbc values(2, 'Neil Schwartz')");
s.executeUpdate("insert into qgpl.basicjdbc values(3, 'Ben Rodman')");
s.executeUpdate("insert into qgpl.basicjdbc values(4, 'Dan Gloore')");

// Close the SQL statement to tell the database that it is no longer

// needed.
s.close();

38 System i: Programming IBM Developer Kit for Java



// 1f the entire method processed successfully, return true. At this point,
// the table has been created or refreshed correctly.
return true;

} catch (SQLException sqle) {
// If any of our SQL statements failed (other than the drop of the table
// that was handled in the inner try/catch block), the error message is
// displayed and false is returned to the caller, indicating that the table
// may not be complete.
System.out.printIn("Error in rebuildTable: " + sqle.getMessage());
return false;

[**
Runs a query against the demonstration table and the results are displayed to
standard out.
*%/
public void runQuery() {
// Wrap all the functionality in a try/catch block so an attempts is
// made to handle any errors that might happen within this
// method.
try {
// Create a Statement object.
Statement s = connection.createStatement();

// Use the statement object to run an SQL query. Queries return
// ResultSet objects that are used to Took at the data the query
// provides.

ResultSet rs = s.executeQuery("select * from qgpl.basicjdbc");

// Display the top of our 'table' and initialize the counter for the
// number of rows returned.

System.out.printIn("----=c--ecmmmmmmo ")

int i = 0;

// The ResultSet next method is used to process the rows of a
// ResultSet. The next method must be called once before the

// first data is available for viewing. As long as next returns
// true, there is another row of data that can be used.

while (rs.next()) {

// Obtain both columns in the table for each row and write a row to

// our on-screen table with the data. Then, increment the count

// of rows that have been processed.

System.out.printin("| " + rs.getInt(1) + " | " + rs.getString(2) + "|");
i+t

}

// Place a border at the bottom on the table and display the number of rows
// as output.

System.out.printIn("-----cccmmmmmmaaa- ")s

System.out.printin("There were " + i + " rows returned.");
System.out.printIn("Output is complete.");

} catch (SQLException e) {
// Display more information about any SQL exceptions that are
// generated as output.
System.out.printIn("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printIn("SQLState:...." + e.getSQLState());
System.out.printIn("Vendor Code:." + e.getErrorCode());

e.printStackTrace();

IBM Developer Kit for Java

39



[**
The following method ensures that any JDBC resources that are still
allocated are freed.
*%/
public void cleanup() {
try {
if (connection != null)
connection.close();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

}

Using JNDI for the IBM Developer Kit for Java examples:

DataSources work hand-in-hand with the Java Naming and Directory Interface (JNDI). JNDI is a Java
abstraction layer for directory services just as Java Database Connectivity (JDBC) is an abstraction layer
for databases.

JNDI is used most often with the Lightweight Directory Access Protocol (LDAP), but it may also be used
with the CORBA Object Services (COS), the Java Remote Method Invocation (RMI) registry, or the
underlying file system. This varied use is accomplished by means of the various directory service
providers that turn common JNDI requests into specific directory service requests. Java 2 SDK, v 1.3
includes three service providers: the LDAP service provider, the COS naming service provider, and the
RMI registry service provider.

Note: Keep in mind that using RMI can be a complex undertaking. Before you choose RMI as a solution,
be sure that you understand the ramifications of doing so. A good place to begin assessing RMI is
Java Remote Method Invocation (RMI)

The DataSource samples were designed using the JNDI file system service provider. If you want to run
the examples provided, there must be a JNDI service provider in place.

Follow these directions to set up the environment for the file system service provider:
1. Download the file system JNDI support from Sun Microsystems [[NDI site

2. Transfer (using FTP or another mechanism) fscontext.jar and providerutiljar to your system and put
them in /QIBM/UserData/Java400/ext. This is the extensions directory and the JAR files that you
place here are found automatically when you run your application (that is, you do not need them in
your classpath).

Once you have support for a service provider for JNDI, you must set up the context information for your
applications. This can be accomplished by putting the required information in a SystemDefault.properties
file. There are several places on the system where you can specify default properties, but the best way is
to create a text file called SystemDefault.properties in your home directory (that is, at /home/).

To create a file, use the following lines or add them to your existing file:

# Needed env settings for JNDI.
java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:/DataSources/jdbc

40 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html
http://java.sun.com/products/jndi

These lines specify that the file system service provider handles JNDI requests and that
/DataSources/jdbc is the root for tasks that use JNDI. You can change this location, but the directory that
you specify must exist. The location that you specify is where the example DataSources are bound and
deployed.

Connections

The Connection object represents a connection to a data source in Java Database Connectivity (JDBC). It is
through Connection objects that Statement objects are created for processing SQL statements against the
database. An application program can have multiple connections at one time. These Connection objects
can all connect to the same database or connect to different databases.

Obtaining a connection in JDBC can be accomplished in two ways:
¢ Through the DriverManager class.
* By using DataSources.

Using DataSources to obtain a connection is preferred because it enhances application portability and
maintainability. It also allows an application to transparently use connection and statement pooling, and
distributed transactions.

Related concepts

[Create various types of Statement obijects for interacting with the database

A Statement object is used for processing a static SQL statement and obtaining the results produced
by it. Only one ResultSet for each Statement object can be open at a time. All statement methods that
process an SQL statement implicitly close a statement’s current ResultSet if an open one exists.

[Control transactions against the database]
A transaction is a logical unit of work. To complete a logical unit of work, several actions may need to
be taken against a database.

[Retrieve metadata about the database]

The DatabaseMetaData interface is implemented by the IBM Developer Kit for Java JDBC driver to
provide information about its underlying data sources. It is used primarily by application servers and
tools to determine how to interact with a given data source. Applications may also use
DatabaseMetaData methods to obtain information about a data source, but this is less typical.

Java DriverManager class:

DriverManager is a static class in the Java 2 Software Development Kit (J2SDK). DriverManager manages
the set of Java Database Connectivity (JDBC) drivers that are available for an application to use.

Applications can use multiple JDBC drivers concurrently if necessary. Each application specifies a JDBC
driver by using a Uniform Resource Locator (URL). By passing a URL for a specific JDBC driver to the
DriverManager, the application informs the DriverManager about which type of JDBC connection should
be returned to the application.

Before this can be done, the DriverManager must be made aware of the available JDBC drivers so it can
hand out connections. By making a call to the Class.forName method, it loads a class into the running
Java virtual machine (JVM) based on its string name that is passed into the method. The following is an
example of the class.forName method being used to load the native JDBC driver:

Example: Load the native JDBC driver

// Load the native JDBC driver into the DriverManager to make it
// available for getConnection requests.

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

IBM Developer Kit for Java 41



JDBC drivers are designed to tell the DriverManager about themselves automatically when their driver
implementation class loads. Once the line of code previously mentioned has been processed, the native
JDBC driver is available for the DriverManager with which to work. The following line of code requests a
Connection object using the native JDBC URL:

Example: Request a Connection object
// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal");

The simplest form of JDBC URL is a list of three values that are separated by colons. The first value in
the list represents the protocol which is always jdbc for JDBC URLs. The second value is the subprotocol
and db2 or db2iSeries is used to specifiy the native JDBC driver. The third value is the system name to
establish the connection to a specific system. There are two special values that can be used to connect to
the local database. They are *LOCAL and localhost (both are case insensitive). A specific system name can
also be provided as follows:

Connection ¢ =
DriverManager.getConnection("jdbc:db2:rchasmop");

This creates a connection to the rchasmop system. If the system to which you are trying to connect is a
remote system (for example, through the Distributed Relational Database Architecture), the system name
from the relational database directory must be used.

Note: When not specified, the user ID and password currently used to sign in are also used to establish
the connection to the database.

Note: The IBM DB2 JDBC Universal driver also uses the db2 subprotocol. To assure that the native JDBC
driver will handle the URL, applications need to use the jdbc:db2iSeries:xxxx URL instead of the
jdbc:db2:xxxx URL. If the application does not want the native driver to accept URLS with the db2
subprotocol, then the application should load the class com.ibm.db2 jdbc.app.DB2iSeriesDriver,
instead of com.ibm.db2 jdbc.app.DB2Driver. When this class is loaded, the native driver no longer
handles URLs containing the db2 subprotocol.

Properties

The DriverManager.getConnection method takes a single string URL indicated previously and is only one
of the methods on DriverManager to obtain a Connection object. There is also another version of the
DriverManager.getConnection method that takes a user ID and password. The following is an example of
this version:

Example: DriverManager.getConnection method taking a user ID and password
// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal", "cujo", "newtiger");

The line of code attempts to connect to the local database as user cujo with password newtiger no matter
who is running the application. There is also a version of the DriverManager.getConnection method that
takes a java.util.Properties object to allow further customization. The following is an example:

Example: DriverManager.getConnection method taking a java.util.Properties object
// Get a connection that uses the native JDBC driver.
Properties prop = new java.util.Properties();
prop.put("user", "cujo");

prop.put("password","newtiger");
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal", prop);

42 System i: Programming IBM Developer Kit for Java



The code is functionally equivalent to the version previously mentioned that passed the user ID and
password as parameters.

Refer to [Connection properties| for a complete list of connection properties for the native JDBC driver.

URL properties

Another way to specify properties is to place them in a list on the URL object itself. Each property in the
list is separated by a semi-colon and the list must be of the form property name=property value. This is
just a shortcut and does not significantly change the way processing is performed as the following
example shows:

Example: Specify URL properties
// Get a connection that uses the native JDBC driver.

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal;user=cujo;password=newtiger");
The code is again functionally equivalent to the examples mentioned previously.

If a property value is specified in both a properties object and on the URL object, the URL version takes
precedence over the version in the properties object. The following is an example:

Example: URL properties

// Get a connection that uses the native JDBC driver.

Properties prop = new java.util.Properties();

prop.put("user", "someone");

prop.put("password","something");

Connection ¢ = DriverManager.getConnection("jdbc:db2:*Tocal;user=cujo;password=newtiger",
prop);

The example uses the user ID and password from the URL string instead of the version in the Properties
object. This ends up being functionally equivalent to the code previously mentioned.

Example: Using native JDBC and IBM Toolbox for Java [DBC concurrently:

This is an example of how to use the native JDBC connection and the IBM Toolbox for Java JDBC
connection in a program.

Note: By using the code examples, you agree to the terms of the [’Code license and disclaimer]
[information” on page 539

LTI LI T LTI T2 iri1i1i1i1111171111171111
/1l

// GetConnections example.

/1l

// This program demonstrates being able to use both JDBC drivers at

// once in a program. Two Connection objects are created in this

// program. One is a native JDBC connection and one is a IBM Toolbox for Java
// JDBC connection.

//

// This technique is convenient because it allows you to use different

// JDBC drivers for different tasks concurrently. For example, the

// IBM Toolbox for Java JDBC driver is ideal for connecting to a remote System i5
// and the native JDBC driver is faster for local connections.

// You can use the strengths of each driver concurrently in your

// application by writing code similar to this example.

[IHTLETIELE LT L2 L L i i iiiiiiieriiiliiiilieeliieilieiiieiliieiiliiiiii
//

// This source is an example of the IBM Developer for Java JDBC driver.

// IBM grants you a nonexclusive license to use this as an example

IBM Developer Kit for Java 43



// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A11 rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.

//

[HTLLTTTLLELE L2 rieririiiiirrriieeilllliieiiilliieeiililiieiiiiliiiiill
import java.sql.*;

import java.util.*;

public class GetConnections {

public static void main(java.lang.String[] args)
{
// Verify input.
if (args.length != 2) {
System.out.printin("Usage (CL command line): java GetConnections PARM(<user> <password>)");
System.out.printIn(" where <user> is a valid System i5 user ID");
System.out.printin(" and <password> is the password for that user ID");
System.exit(0);
1

// Register both drivers.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
Class.forName("com.ibm.as400.access.AS400JDBCDriver");

} catch (ClassNotFoundException cnf) {
System.out.printIn("ERROR: One of the JDBC drivers did not load.");
System.exit(0);

}

try {
// Obtain a connection with each driver.
Connection connl = DriverManager.getConnection("jdbc:db2://Tocalhost", args[0], args[1]);
Connection conn2 = DriverManager.getConnection("jdbc:as400://1ocalhost", args[0], args[1]);

// Verify that they are different.
if (connl instanceof com.ibm.db2.jdbc.app.DB2Connection)
System.out.printin("connl is running under the native JDBC driver.");
else
System.out.printIn("There is something wrong with connl.");

if (conn2 instanceof com.ibm.as400.access.AS400JDBCConnection)
System.out.printin("conn2 is running under the IBM Toolbox for Java JDBC driver.");
else
System.out.printIn("There is something wrong with conn2.");

connl.close();

conn2.close();
} catch (SQLException e) {

44 System i: Programming IBM Developer Kit for Java



}

}

System.out.printIn("ERROR: " + e.getMessage());
}

Example: Access property:

This is an example of how to use the Java Access property.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

[information” on page 539

// This program assumes directory cujosql exists.
import java.sql.=;

import javax.sql.*;

import javax.naming.=;

public class AccessPropertyTest {

[**

pubTic String url = "jdbc:db2:*1ocal";
public Connection connection = null;

public static void main(java.lang.String[] args)
throws Exception

{
AccessPropertyTest test = new AccessPropertyTest();

test.setup();

test.run();
test.cleanup();

Set up the DataSource used in the testing.

*%/

public void setup()
throws Exception

{
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection(url);
Statement s = connection.createStatement();
try {
s.executeUpdate("DROP TABLE CUJOSQL.TEMP");
} catch (SQLException e) { // Ignore it - it doesn't exist
}

try {
String sql = "CREATE PROCEDURE CUJOSQL.TEMP "
+ " LANGUAGE SQL SPECIFIC CUJOSQL.TEMP "
+ " MYPROC: BEGIN"
+ " RETURN 11;"
+ " END MYPROC";
s.executeUpdate(sql);
} catch (SQLException e) {
// Ignore it - it exists.

}

s.executeUpdate("create table cujosql.temp (coll char(10))");
s.executeUpdate("insert into cujosql.temp values ('compare')");
s.close();

public void resetConnection(String property)
throws SQLException

IBM Developer Kit for Java

45



if (connection != null)
connection.close();

connection = DriverManager.getConnection(url + ";access=" + property);

public boolean canQuery() {
Statement s = null;
try {
s = connection.createStatement();
ResultSet rs = s.executeQuery("SELECT * FROM cujosql.temp");
if (rs == null)
return false;

rs.next();

if (rs.getString(1).equals("compare "))
return true;

return false;

} catch (SQLException e) {
// System.out.printIn("Exception: SQLState(" +
// e.getSQLState() + ") "+ e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s !'= null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.

public boolean canUpdate() {
Statement s = null;
try {
s = connection.createStatement();
int count = s.executeUpdate("INSERT INTO CUJOSQL.TEMP VALUES('x"')");
if (count != 1)
return false;

return true;

} catch (SQLException e) {
//System.out.printin("Exception: SQLState(" +
// e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s !'= null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.
}

public boolean canCall() {
CallableStatement s = null;

46 System i: Programming IBM Developer Kit for Java



try {
s = connection.prepareCall("? = CALL CUJOSQL.TEMP()");
s.registerOutParameter (1, Types.INTEGER);
s.execute();
if (s.getInt(1) !'= 11)
return false;

return true;

} catch (SQLException e) {
//System.out.printin("Exception: SQLState(" +
// e.getSQLState() + ") " + e + " (" + e.getErrorCode() + ")");
return false;
} finally {
if (s !'= null) {
try {
s.close();
} catch (Exception e) {
// Ignore it.
}

public void run()

throws SQLException

{
System.out.printIn("Set the connection access property to read only");
resetConnection("read only");

System.out.printIn("Can run queries -->" + canQuery());
System.out.printIn("Can run updates -->" + canUpdate());
System.out.printIn("Can run sp calls -->" + canCall());

System.out.printIn("Set the connection access property to read call");
resetConnection("read call");

System.out.printIn("Can run queries -->" + canQuery());
System.out.printIn("Can run updates -->" + canUpdate());
System.out.printIn("Can run sp calls -->" + canCall());

System.out.printIn("Set the connection access property to all");
resetConnection("all");

System.out.printIn("Can run queries -->" + canQuery())

System.out.printIn("Can run updates -->" + canUpdate());
System.out.printIn("Can run sp calls -->" + canCall());

public void cleanup() {
try {
connection.close();
} catch (Exception e) {
// Ignore it.
}

}

Example: Invalid user ID and password:

This is an example of how to use the Connection property in SQL naming mode.

IBM Developer Kit for Java 47



Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

LTI T T2 iiriii1i11i1111111171111
/1l

// InvalidConnect example.

//

// This program uses the Connection property in SQL naming mode.

//

[ITTEETIIEE LTI i i iiiiiiie7iiiliieiiieliieiliiilieieiieiiliiiiii
//

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive license to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A11 rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.

//

[HTLTTTTILEEI L2 i e riiiiirrriieeillliieiiilliieeillliiieiiiiliiiiill
import java.sql.*;

import java.util.*;

public class InvalidConnect f{

public static void main(java.lang.String[] args)
{

// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

} catch (ClassNotFoundException cnf) {
System.out.printIn("ERROR: JDBC driver did not load.");
System.exit(0);

1

// Attempt to obtain a connection without specifying any user or

// password. The attempt works and the connection uses the

// same user profile under which the job is running.

try {
Connection cl = DriverManager.getConnection("jdbc:db2:*Tocal");
cl.close();

} catch (SQLException e) {
System.out.printIn("This test should not get into this exception path.");
e.printStackTrace();
System.exit(1);

1

try {
Connection c2 = DriverManager.getConnection("jdbc:db2:*Tocal",
"notvalid", "notvalid");
} catch (SQLException e) {
System.out.printIn("This is an expected error.");
System.out.printin("Message is " + e.getMessage());

48 System i: Programming IBM Developer Kit for Java



System.out.printIn("SQLSTATE is " + e.getSQLState());

}

JDBC driver connection properties:

This table contains valid JDBC driver connection properties, their values, and their descriptions.

Property

Values

Meaning

access

all, read call, read only

This value can be used to restrict the
type of operations that can be done
with a specific connection. The
default value is all and basically
means that the connection has full
access to the JDBC API. The read call
value allows the connection to do
only queries and call stored
procedures. An attempt to update the
database through an SQL statement is
stopped. The read only value can be
used to restrict a connection to only
queries. Stored procedure calls and
update statements are stopped.

auto commit

true, false

This value is used to set the auto
commit setting of the connection. The
default value is true unless the
transaction isolation property has
been set to a value other than none.
In that case, the default value is false.

batch style

20,21

The JDBC 2.1 specification defines a
second method for how exceptions in
a batch update can be handled. The
driver can comply with either of
these. The default is to work as
defined in the JDBC 2.0 specification.

IBM Developer Kit for Java 49



Property

Values

Meaning

block size

0, 8, 16, 32, 64, 128, 256, 512

This is the number of rows that are
fetched at a time for a result set. For
typical forward-only processing of a
result set, a block of this size is
obtained. Then the database is not
accessed because each row is
processed by your application. The
database requests another block of
data only when the end of the block
is reached.

This value is only used if the
blocking enabled property is set to
true.

Setting the block size property to 0
has the same effect as setting the
blocking enabled property to false.

The default is to use blocking with a
block size of 32. This is a fairly
arbitrary decision and the default
could change in the future.

Blocking is not used on scrollable
result sets.

blocking enabled

true, false

This value is used to determine
whether or not the connection uses
blocking on result set row retrieval.
Blocking can significantly improve
the performance of processing result
sets.

By default, this property is set to
true.

50 System i: Programming IBM Developer Kit for Java




Property

Values

Meaning

cursor hold

true, false

This value specifies whether or not
result sets remain open when a
transaction is committed. A value of
true means that an application is able
to access its open result sets after
commit is called. A value of false
means that commit closes any open
cursors under the connection.

By default, this property is set to
true.

This value property serves as a
default value for all result sets made
for the connection. With cursor
holdability support added in JDBC
3.0, this default is simply replaced if
an application specifies a different
holdability later.

If you are migrating to JDBC 3.0 from
an earlier version, be aware that
cursor holdability support was not
added until JDBC 3.0. In earlier
versions, the default value of "true”
was sent at connect time, but it was
not yet recognized by the JVM.
Therefore, the cursor hold property
will not impact database functionality
until JDBC 3.0.

data truncation

true, false

This value specifies whether
truncation of character data should
cause warnings and exceptions to be
generated (true) or if the data should
just be silently truncated (false). If the
default is true, data truncation of
character fields are honored.

date format

julian, mdy, dmy, ymd, usa, iso, eur,
jis

This property allows you to change
how dates are formatted.

date separator

/(slash), -(dash), .(period), ,(comma),
b

This property allows you to change
what the date separator is. This is
only valid in combination with some
of the dateFormat values (according
to system rules).

decimal separator

.(period), ,(comma)

This property allows you to change
what the decimal separator is.

IBM Developer Kit for Java 51



Property

Values

Meaning

do escape processing

true, false

This property sets a flag for whether
or not statements under the
connection must do escape
processing. Using escape processing
is a way to code your SQL statements
so that they are generic and similar
for all platforms, but then the
database reads the escape clauses and
substitutes the proper system specific
version for the user.

This is good, except that it forces
extra work on the system. In the case
where you know you are only using
SQL statements that already contain
valid i5/0S SQL syntax, it is
recommended that this value be set
to false to increase performance.

The default value for this property is
true, as it must be compliant with the
JDBC specification (that is, escape
processing is active by default).

This value is added due to a
shortcoming of the JDBC
specification. You can only set escape
processing to off in the Statement
class. That works well if you are
dealing with simple statements. You
create your statement, turn off escape
processing, and start processing
statements. However, in the case of
prepared statements and callable
statements, this scheme does not
work. You supply the SQL statement
at the time that the prepared or
callable statement is constructed and
it does not change after that. So the
statement is prepared up front and
changing the escape processing after
that is meaningless. Having this
connection property allows a way to
get around the extra overhead.

errors

basic, full

This property allows the full system
second-level error text to be returned
in SQLException object messages.
The default is basic which returns
only the standard message text.

52 System i: Programming IBM Developer Kit for Java




Property

Values

Meaning

libraries

A space-separated list of libraries. (A
list of libraries can also be separated
by colons or commas.)

This property allows a list of libraries
to be placed into the server job’s
library list or a specific default
library to be set.

The naming property affects how this
property works. In the default case,
where naming is set to sql, JDBC
works like ODBC. The library list has
no effect on how the connection
processes. There is a default library
for all unqualified tables. By default,
that library has the same name as the
user profile that is connected. If the
libraries property is specified, the
first library in the list becomes the
default library. If a default library is
specified on the connection URL (as
in jdbc:db2:*local /mylibrary), that
overrides any value in this property.

In the case where naming is set
system, each of the libraries specified
for this property is added to the user
portion of the library list and the
library list is searched to resolve
unqualified table references.

lob threshold

Any value under 500000

This property tells the driver to place
the actual values into the result set
storage instead of locators for lob
columns if the lob column is smaller
than the threshold size. This property
acts against the column size, not the
lob data size itself. For example, if
the lob column is defined to hold up
to 1 MB for each lob, but all the
column values are under 500 KB,
locators are still used.

Note that the size limit is set as it is
to allow blocks of data to be fetched
without danger of not always
growing data blocks larger than the
16 MB maximum allocation size.
With large result sets, it is still easy
to exceed this limit, which causes
fetches to fail. Care must be taken in
how the block size property and this
property interact with the size of a
data block.

The default is 0. Locators are always
used for lob data.

maximum precision

31, 63

This value specifies the maximum
precision (length) that is returned for
result data types. The default value is
31.

IBM Developer Kit for Java 53



Property

Values

Meaning

maximum scale

0-63

This value specifies the maximum
scale (number of decimal positions to
the right of the decimal point) that is
returned for result data types. The
value can range from 0 to the
maximum precision. The default
value is 31.

minimum divide scale

0-9

This value specifies the minimum
divide scale (number of decimal
positions to the right of the decimal
point) that is returned for both
intermediary and result data types.
The value can range from 0 to 9, not
to exceed the maximum scale. If 0 is
specified, minimum divide scale is
not used. The default value is 0.

naming

sql, system

This property allows you to use
either the traditional System i naming
syntax or the standard SQL naming
syntax. System naming means that
you use a /(slash) character to
separate collection and table values,
and SQL naming means that you use
a .(period) character to separate the
values.

The setting of this value has
ramifications for what the default
library is also. See the libraries
property above for further
information on this.

The default is to use SQL naming.

password

anything

This property allows for a password
to be specified for the connection.
This property does not work
correctly without also specifying the
user property. These properties allow
for connections to be made to the
database as a user other than the one
that is running the System i job.

Specifying the user and password
properties have the same effect as
using the connection method with
the signature getConnection(String
url, String userld, String password).

54 System i: Programming IBM Developer Kit for Java




Property

Values

Meaning

prefetch

true, false

This property specifies whether or
not the driver fetches the first data
for a result set immediately after
processing or wait until the data is
requested. If the default is true, data
is prefetched.

For applications using the Native
JDBC driver, this is rarely an issue.
The property exists primarily for
internal use with Java stored
procedures and user-defined
functions where it is important that
the database engine does not fetch
any data from result sets on your
behalf before you request it.

reuse objects

true, false

This property specifies whether or
not the driver attempts to reuse some
types of objects after you close them.
This is a performance enhancement.
The default is true.

server trace

A string representation of an integer

This property enables tracing of the
JDBC server job. If server tracing is
enabled, tracing starts when the
client connects to the server, and
ends when the connection is
disconnected.

Trace data is collected in spooled files
on the server. Multiple levels of
server tracing can be turned on in
combination by adding the constants
and passing that sum on the set
method.

Note: This property is typically used
by support personnel and its values
are not discussed further.

time format

hms, usa, iso, eur, jis

This property allows you to change
how time values are formatted.

time separator

:(colon), .(period), ,(comma), b

This property allows you to change
what the time separator is. This is
only valid in combination with some
of the timeFormat values (according
to system rules).

trace

true, false

This property allows for turning on
tracing of the connection. It can be
used as a simple debugging aide.

The default value is false, which does
not use tracing.

IBM Developer Kit for Java 55



Property

Values

Meaning

transaction isolation

none, read committed, read
uncommitted, repeatable read,
serializable

This property allows you to set the
transaction isolation level for the
connection. There is no difference
between setting this property to a
specific level and specifying a level
on the setTransactionIsolation method
in the Connection interface.

The default value for this property is
none, as JDBC defaults to
auto-commit mode.

translate binary

true, false

This property can be used to force
the JDBC driver to treat binary and
varbinary data values as if they were
char and varchar data values.

The default for this property is false,
where binary data is not treated the
same as character data.

translate hex

binary, character

This value is used to select the data
type used by hex constants in SQL
expression. The binary setting
indicates that hex contants will use
the BINARY data type. The character
setting indicates that hex contants
will use the CHARACTER FOR BIT
DATA data type. The default setting
is character.

use block insert

true, false

This property allows the native JDBC
driver to go into a block insert mode
for inserting blocks of data into the
database. This is an optimized
version of the batch update. This
optimized mode can only be used in
applications that ensure that they do
not break certain system constraints
or data insert failures and potentially
corrupt data.

Applications that turn on this
property only connect to the local
system when attempting to perform
batched updates. They do use DRDA
to establish remote connections
because blocked insert cannot be
managed over DRDA.

Applications must also ensure that
PreparedStatements with an SQL
insert statement and a values clause
make all the insert values parameters.
No constants are permitted in the
values list. This is a requirement of
the blocked insert engine of the
system.

The default is false.

56 System i: Programming IBM Developer Kit for Java




Property Values Meaning

user anything This property allows for a user ID to
be specified for the connection. This
property does not work correctly
without also specifying the password
property. These properties allow for
connections to be made to the
database as a user other than the one
that is running the System i job.

Specifying the user and password
properties has the same effect as
using the connection method with
the signature getConnection(String
url, String userld, String password).

Example: Creating a UDBDataSource and binding it with JNDI:

This is an example of how to create a UDBDataSource and bind it with JNDIL

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

// Import the required packages. At deployment time,
// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.*;

import javax.naming.=;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind
{
public static void main(java.lang.String[] args)
throws Exception
{
// Create a new UDBDataSource object and give it
// a description.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("A simple UDBDataSource");

// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.

Context ctx = new InitialContext();

// Bind the newly created UDBDataSource object

// to the JNDI directory service, giving it a name
// that can be used to Took up this object again
// at a later time.

ctx.rebind("SimpleDS", ds);

}

Example: Creating a UDBDataSourceBind and setting DataSource properties:

This is an example of how to create a UDBDataSource and set the user ID and password as DataSource
properties.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
[information” on page 539

IBM Developer Kit for Java 57



// Import the required packages. At deployment time,
// the JDBC driver-specific class that implements

// DataSource must be imported.

import java.sql.=;

import javax.naming.=;

import com.ibm.db2.jdbc.app.UDBDataSource;

public class UDBDataSourceBind2
{
public static void main(java.lang.String[] args)
throws Exception
{
// Create a new UDBDataSource object and give it
// a description.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("A simple UDBDataSource " +
"with cujo as the default " +
"profile to connect with.");

// Provide a user ID and password to be used for
// connection requests.

ds.setUser("cujo");

ds.setPassword("newtiger");

// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.

Context ctx = new InitialContext();

// Bind the newly created UDBDataSource object

// to the JNDI directory service, giving it a name
// that can be used to look up this object again
// at a later time.

ctx.rebind("SimpleDS2", ds);

}

Example: Obtaining an initial context before binding UDBDataSource:

The following example obtains an initial context before binding the UDBDataSource. The lookup method
is then used on that context to return an object of type DataSource for the application to use.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

// Import the required packages. There is no
// driver-specific code needed in runtime

// applications.

import java.sql.*;

import javax.sql.*;

import javax.naming.=;

public class UDBDataSourceUse
{
public static void main(java.lang.String[] args)
throws Exception
{
// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.
Context ctx = new InitialContext();

// Retrieve the bound UDBDataSource object using the

// name with which it was previously bound. At runtime,
// only the DataSource interface is used, so there

// is no need to convert the object to the UDBDataSource

58 System i: Programming IBM Developer Kit for Java



// implementation class. (There is no need to know what
// the implementation class is. The Togical JNDI name is
// only required).

DataSource ds = (DataSource) ctx.lookup("SimpleDS");

// Once the DataSource is obtained, it can be used to establish
// a connection. This Connection object is the same type

// of object that is returned if the DriverManager approach

// to establishing connection is used. Thus, so everything from
// this point forward is exactly like any other JDBC

// application.

Connection connection = ds.getConnection();

// The connection can be used to create Statement objects and
// update the database or process queries as follows.
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("select * from gsys2.sysprocs");
while (rs.next()) {
System.out.printin(rs.getString(1) + "." + rs.getString(2));
}

// The connection is closed before the application ends.
connection.close();

}

Example: Creating a UDBDataSource and obtaining a user ID and password:

This is an example of how to create a UDBDataSource and use the getConnection method to obtain a
user ID and password at runtime.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
[information” on page 539

/// Import the required packages. There is
// no driver-specific code needed in runtime
// applications.

import java.sql.*;

import javax.sql.=*;

import javax.naming.=;

public class UDBDataSourceUse2
{
public static void main(java.lang.String[] args)
throws Exception
{
// Retrieve a JNDI context. The context serves
// as the root for where objects are bound or
// found in JNDI.
Context ctx = new InitialContext();

// Retrieve the bound UDBDataSource object using the

// name with which it was previously bound. At runtime,

// only the DataSource interface is used, so there

// is no need to convert the object to the UDBDataSource
// implementation class. (There is no need to know

// what the implementation class is. The logical JNDI name
// is only required).

DataSource ds = (DataSource) ctx.lookup("SimpleDS");

// Once the DataSource is obtained, it can be used to establish
// a connection. The user profile cujo and password newtiger

// used to create the connection instead of any default user

// 1D and password for the DataSource.

IBM Developer Kit for Java



Connection connection = ds.getConnection("cujo", "newtiger");

// The connection can be used to create Statement objects and
// update the database or process queries as follows.
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("select * from gsys2.sysprocs");
while (rs.next()) {
System.out.printin(rs.getString(1) + "." + rs.getString(2));
}

// The connection is closed before the application ends.
connection.close();

}

Using DataSources with UDBDataSource:
DataSource interfaces allow additional flexibility in using Java Database Connectivity (JDBC) drivers.

The use of DataSources can be split into two phases:
* Deployment

Deployment is a setup phase that occurs before a JDBC application actually runs. Deployment usually
involves setting up a DataSource to have specific properties and then binding it into a directory service
through the use of the Java Naming and Directory Interface (JNDI). The directory service is most
commonly the Lightweight Directory Access Protocol (LDAP), but could be a number of others such as
Common Object Request Broker Architecture (CORBA) Object Services, Java Remote Method
Invocation (RMI), or the underlying file system.

e Use

By decoupling the deployment from the runtime use of the DataSource, the DataSource setup can be
reused by many applications. By changing some aspect of the deployment, all the applications that use
that DataSource automatically pick up the changes.

Note: Keep in mind that using RMI can be a complex undertaking. Before you choose RMI as a solution,
be sure that you understand the ramifications of doing so.

An advantage of DataSources is that they allow JDBC drivers to do work on behalf of the application
without having an impact on the application development process directly. For more information, see the
following:

* ["Using DataSource support for object pooling” on page 129

* ["DataSource-based statement pooling” on page 133

« ['JDBC distributed transactions” on page 81|

UDBDataSourceBind

The [UDBDataSourceBind| program is an example of creating a UDBDataSource and getting it bound with
JNDI. This program accomplishes all the basic tasks requested. Namely, it instantiates a UDBDataSource
object, sets properties on this object, retrieves a JNDI context, and binds the object to a name within the
JNDI context.

The deployment time code is vendor-specific. The application must import the specific DataSource
implementation that it wants to work with. In the import list, the package-qualified UDBDataSource class
is imported. The most unfamiliar part of this application is the work done with [NDI| (for example, the
retrieval of the Context object and the call to bind). For additional information, see by Sun
Microsystems, Inc.

Once this program has been run and has successfully completed, there is a new entry in a JNDI directory
service called SimpleDS. This entry is at the location specified by the JNDI context. The DataSource

60 System i: Programming IBM Developer Kit for Java


http://java.sun.com/products/jndi

implementation is now deployed. An application program can make use of this DataSource to retrieve
database connections and JDBC-related work.

UDBDataSourceUse

The [UDBDataSourceUse| program is an example of a JDBC application that uses the previously deployed
application.

The JDBC application obtains an initial context as it did before binding the UDBDataSource in the
previous example. The lookup method is then used on that context to return an object of type DataSource
for the application to use.

Note: The runtime application is only interested in the methods of the DataSource interface, so there is
no need for it to be aware of the implementation class. This makes applications portable.

Suppose that UDBDataSourceUse is a complex application that runs a large operation within your
organization. You have a dozen or more similar large applications within your organization. You have to
change the name of one of the systems in your network. By running a deployment tool and changing a
single UDBDataSource property, you would be able to get this new behavior in all your applications
without changing the code for them. One of the benefits of DataSources is that they allow you to
consolidate system setup information. Another major benefit is that they allow drivers to implement
functionality invisible to the application such as connection pooling, statement pooling and support for
distributed transactions.

After analyzing UDBDataSourceBind and UDBDataSourceUse closely, you may have wondered how the
DataSource object knew what to do. There is no code to specify a system, a user ID, or a password in
either of these programs. The UDBDataSource class has defaults values for all properties; by default, it
connects to the local System i with the user profile and password of the running application. If you
wanted to ensure that the connection was made with the user profile cujo instead, you could have
accomplished this in two ways:

* Set the user ID and password as DataSource properties. See [“Example: Creating a UDBDataSourceBind|
fand setting DataSource properties” on page 57/ on how to use this technique.

* Use the DataSource getConnection method that takes a user ID and password at runtime. See
“Example: Creating a UDBDataSource and obtaining a user ID and password” on page 54'Example;|
Creating a UDBDataSource and obtaining a user ID and password” on page 59 on how to use this
technique.

There are a number of properties that can be specified for the UDBDataSource as there are properties that
can be specified for connections created with the DriverManager. Refer to [DataSource properties| for a list
of supported properties for the native JDBC driver.

While these lists are similar, it is not certain to be similar in future releases. You are encouraged to start
coding to the DataSource interface.

Note: The native JDBC driver also has two jother DataSource implementations), but direct use of them is
not recommended:

e DB2DataSource
e DB2StdDataSource

DataSource properties:

This table contains valid data source properties, their values, and their descriptions.

IBM Developer Kit for Java 61



Set method (data type)

Values

Description

setAccess(String)

"all”, "read call”, "read only”

This property can be used to restrict
the type of operations that can be
done with a specific connection. The
default value is "all” and basically
means that the connection has full
access to the Java Database
Connectivity (JDBC) APL

The "read call” value allows the
connection to only perform queries
and call stored procedures. An
attempt to update the database
through an SQL statement causes an
SQLException.

The "read only” value restricts the
connection to only queries. An
attempt to process a stored procedure
call or update statements causes an
SQLException.

setBatchStyle(String)

//2.0//, //2.1//

The JDBC 2.1 specification defines a
second method for how exceptions in
a batch update can be handled. The
driver can comply with either of
these. The default is to work as
defined in the JDBC 2.0 specification.

setUseBlocking(boolean)

"true”, "false”

This property is used to determine
whether or not the connection uses
blocking on result set row retrieval.
Blocking can significantly improve
the performance of processing result
sets.

By default, this property is set to
true.

62 System i: Programming IBM Developer Kit for Java




Set method (data type)

Values

Description

setBlockSize(int)

"0”/ ”8”, ”16”/ 7732711 ”64”/ ”].28”, ”256”,
7/512//

This property indicates the number
of rows that are fetched at a time for
a result set. For typical forward only
processing of a result set, a block of
this size is obtained if the database
has that many rows that satisfy the
query. Only when the end of the
block is reached in the JDBC driver’s
internal storage, another request for a
block of data is sent to the database.

This value is only used if the
useBlocking property is set to true.
Refer to setUseBlocking above for
more information.

Setting the block size property to "0"
has the same effect as calling
setUseBlocking(false).

The default is to use blocking with a
block size of "32". This is a fairly
arbitrary decision and the default
could change in future releases.

Blocking is not used on scrollable
result sets.

Using blocking affects the degree of
cursor sensitivity the user application
has. A sensitive cursor sees changes
made by other SQL statements.
However, because of data caching,
changes are only detected when data
needs to be fetched from the
database.

setCursorHold(boolean)

"true”, "false”

section for details), this

This property specifies whether or
not result sets remain open when a
transaction is committed. A value of
true means that an application is able
to access its open result sets after
commit is called. A value of false
means that commit closes any open
cursors under the connection.

By default, this property is set to
true.

This property serves as a default
value for all result sets made for the

connection. With cursor support
added in JDBC 3.0 (see the
default is simply replaced if an

application specifies different cursor
support later.

IBM Developer Kit for Java 63



Set method (data type)

Values

Description

setDataTruncation(boolean)

"true”, "false”

This property specifies the following:

¢ Whether truncation of character
data should cause warnings and
exceptions to be generated (true)

e If the data should just be silently
truncated (false).

See [DataTruncation| for additional

details.

setDatabaseName(String)

Any name

This property specifies the database
to which the DataSource attempts to
connect. The default is *LOCAL. The
database name must either exist in
the relational database directory on
the system that runs the application
or be the special value *“LOCAL or
localhost to specify the local system.

setDataSourceName(String)

Any name

This property allows the passing of a
ConnectionPoolDataSource Java
Naming and Directory Interface
(JNDI) name to support connection
pooling.

setDateFormat(String)

non non "o

"julian”, "mdy”, "dmy”, "ymd", "usa”,

"o "o

"iso”, "eur”, "jis"

This property allows you to change
how dates are formatted.

setDateSeparator(String)

/r//r nnomnonon
7T o s b

This property allows you to change
what the date separator is. This is
only valid in combination with some
of the dateFormat values (according
to system rules).

setDecimalSeparator(String)

nmowomon
7o

This property allows you to change
what the decimal separator should
be.

setDescription(String)

Any name

This property allows the setting of
this DataSource object’s text
description.

setDoEscapeProcessing(boolean)

"true”, "false”

This property specifies whether SQL
statements have escaped processing
done on them.

The default value for this property is
true.

setFullErrors(boolean)

"true”, "false”

This property allows second-level
error text of the full system to be
returned in SQLException object
messages. The default is false.

setLibraries(String)

A space-separated list of libraries

This property allows a list of libraries
to be placed into the server job’s
library list. This property is only
used when setSystemNaming(true) is
used.

64 System i: Programming IBM Developer Kit for Java




Set method (data type)

Values

Description

setLobThreshold(int)

Any value under 500000

This property tells the driver to place
the actual values instead of Locator
OBject (LOB) locators if the LOB
column is smaller than the threshold
size.

setLoginTimeout(int)

Any value

This property is currently ignored
and is planned for future use.

setNetworkProtocol(int)

Any value

This property is currently ignored
and is planned for future use.

setPassword(String)

Any string

This property allows for a password
to be specified for the connection.
This property is ignored if a user ID
is not set.

setPortNumber(int)

Any value

This property is currently ignored
and is planned for future use.

setPrefetch(boolean)

d

"true”, "false’

This property specifies whether the
driver fetchs the first data for a result
set immediately after processing or
waits until the data is requested. The
default is true.

setReuseObjects(boolean)

4

"true”, "false’

This property specifies whether the
driver attempts to reuse some types
of objects after you close them. This
is a performance enhancement. The
default is true.

setServerName(String)

Any name

This property is currently ignored
and is planned for future use.

setServerTraceCategories(int)

A string representation of an integer

This property enables tracing of the
JDBC server job. If server tracing is
enabled, tracing starts when the
client connects to the server, and
ends when the connection is
disconnected.

Trace data is collected in spooled files
on the server. Multiple levels of
server tracing can be turned on in
combination by adding the constants
and passing that sum on the set
method.

Note: This property is typically used
by support personnel and its values
are not discussed further.

setSystemNaming(boolean)

"true”, "false”

This property allows specifying
whether collections and tables are
separated by a period (SQL naming)
or a slash (system naming). This
property also determines whether a
default library is used (SQL naming)
or the library list is used (system
naming). The default is SQL naming.

setTimeFormat(String)

"o "o
7

"hms”, "usa”, "iso”, "eur”, "jis"

This property allows you to change
how time values are formatted.

IBM Developer Kit for Java 65



Set method (data type)

Values

Description

setTimeSeparator(String)

oo HbH
7o s

This property allows you to change
what the time separator is. This is
only valid in combination with some
of the timeFormat values (according
to system rules).

setTrace(boolean)

"true”, "false”

This property can enable a simple
trace. The default value is false.

setTransactionlsolationLevel(String)

non

"none”, "read committed”, "read
uncommitted”, "repeatable read”,
"serializable”

This property allows the specification
of the transaction isolation level. The
default value for this property is
"none”, as JDBC defaults to
auto-commit mode.

setTranslateBinary(Boolean)

"true”, "false”

This property can be used to force
the JDBC driver to treat binary and
varbinary data values as if they were
char and varchar data values.

The default for this property is false.

setUseBlockInsert(boolean)

"true”, "false”

This property allows the native JDBC
driver to go into a block insert mode
for inserting blocks of data into the
database. This is an optimized
version of the batch update. This
optimized mode can only be used in
applications that ensure that they do
not break certain system constraints
or data insert failures and potentially
corrupt data.

Applications that turn on this
property only connect to the local
system when attempting to perform
batched updates. They do not use
DRDA to establish remote
connections because a blocked insert
cannot be managed over DRDA.

Applications must also ensure that
PreparedStatements with an SQL
insert statement and a values clause
make all the insert values parameters.
No constants are permitted in the
values list. This is a requirement of
the blocked insert engine of the
system.

The default is false.

setUser(String)

anything

This property allows the setting of a
user ID for obtaining connections.
This property requires that you also
set the password property.

Other DataSource implementations:

There are two implementations of the DataSource interface that are included with the native JDBC driver.
These DataSource implementations should be considered deprecated. While you can still use them, they

66 System i: Programming IBM Developer Kit for Java




are not enhanced with future improvements; for example, robust connection and statement pooling are
not added to these implementations. These implementations exist until you adopt the UDBDataSource

interface and its related functions.

DB2DataSource

The DB2DataSource was an early implementation of the DataSource interface and does not comply with
the complete specification (that is, it predates the specification). DB2DataSource exists today only to allow
WebSphere users to migrate to current releases and should not be used otherwise.

DB2StdDataSource

The DB2StdDataSource is the revised version of the DB2DataSource implementation that became
specification-compliant once the JDBC optional package specification became final. The new version was
provided to not break code already written on the DB2DataSource version.

If you have written applications that make use of these DataSource implementations, migrating to the
UDBDataSource is a trivial task as all the old properties are supported. It is recommended that you
migrate to UDBDataSource to gain the functionality of the new UDBDataSource classes.

JVM properties for JDBC

Some settings used by the native JDBC driver cannot be set using a connection property. These settings
must be set for the JVM in which the native JDBC driver is running. These settings are used for all
connections created by the native JDBC driver.

The native driver recognizes the following JVM properties:

Property

Values

Meaning

jdbe.db2.job.sort.sequence

default value = *HEX

Setting this property to true causes
the native JDBC driver to use the Job
Sort Sequence of the user that starts
the job instead of using the default
value of *HEX. Setting it to anything
else or leaving it unset will cause
JDBC to continue to use the default
of *HEX. Take careful note of what
this means. When JDBC connections
pass in different user profiles on
connection requests, the sort
sequence of the user profile that
starts the server is used for all of the
connections. This is an environment
attribute that is set at startup time,
not a dynamic connection attribute.

jdbc.db2.trace

1 or error = Trace error information 2
or info = Trace information and error
information 3 or verbose = Trace
verbose, information, and error
information 4 or all or true = Trace
all possible information

This property turns on tracing for the
JDBC driver. It should be used when
reporting a problem.

IBM Developer Kit for Java 67



Property

Values

Meaning

jdbe.db2.trace.config

stdout = Trace information is sent to
stdout (default value) usrtrc = Trace

This property is used to specify
where the output of the trace should

information is sent to a user trace. go.
The CL command Dump User Trace
Buffer (DMPUSRTRC) can be used to
obtain the trace information.

file:/ /<pathtofile> = Trace
information is send to a file. If the
file name contains "%j", the "%j" will
be replaced by the job name. An
example of <pathtofile> is
/tmp/jdbc.%j.trace.txt.

DatabaseMetaData interface for IBM Developer Kit for Java

The DatabaseMetaData interface is implemented by the IBM Developer Kit for Java JDBC driver to
provide information about its underlying data sources. It is used primarily by application servers and
tools to determine how to interact with a given data source. Applications may also use
DatabaseMetaData methods to obtain information about a data source, but this is less typical.

The DatabaseMetaData interface includes over 150 methods that can be categorized according to the
types of information they provide. These are described below. The DatabaseMetaData interface also
contains over 40 fields that are constants used as return values for various DatabaseMetaData methods.

See "Changes in JDBC 3.0” below for information about changes made to methods in the
DatabaseMetaData interface.

Creating a DatabaselMetaData object

A DatabaseMetaData object is created with the Connection method getMetaData. Once the object is
created, it can be used to dynamically find information about the underlying data source. The following
example creates a DatabaseMetaData object and uses it to determine the maximum number of characters

allowed for a table name:

Example: Create a DatabaseMetaData object

Note: Read the [Code example disclaimer] for important legal information.

// con is a Connection object
DatabaseMetaData dbmd = con.getMetadata();
int maxLen = dbmd.getMaxTableNameLength();

Retrieving general information

Some DatabaseMetaData methods are used to dynamically find general information about a data source
as well as to obtain details about its implementation. Some of these methods include the following;:

¢ getURL

* getUserName

* getDatabaseProductVersion, getDriverMajorVersion, and getDriverMinorVersion
* getSchemaTerm, getCatalogTerm, and getProcedureTerm

* nullsAreSortedHigh, and nullsAreSortedLow

* usesLocalFiles, and usesLocalFilePerTable

* getSQLKeywords

68 System i: Programming IBM Developer Kit for Java



Determining feature support

A large group of DatabaseMetaData methods can be used to determine whether a given feature or set of
features is supported by the driver or underlying data source. Beyond this, there are methods that
describe what level of support is provided. Some of the methods that describe support for individual
features include the following:

* supportsAlterTableWithDropColumn
* supportsBatchUpdates

* supportsTableCorrelationNames

* supportsPositionedDelete

* supportsFullOuterJoins

* supportsStoredProcedures

* supportsMixedCaseQuotedldentifiers

Methods to describe a level of feature support include the following:
* supportsANSI92EntryLevelSQL
* supportsCoreSQLGrammar

Data source limits

Another group of methods provide the limits imposed by a given data source. Some of the methods in
this category include the following:

* getMaxRowSize

* getMaxStatementLength
* getMaxTablesInSelect

* getMaxConnections

* getMaxCharLiteralLength
* getMaxColumnsInTable

Methods in this group return the limit value as an integer. A return value of zero means that there is
either no limit or the limit is unknown.

SQL objects and their attributes

A number of DatabaseMetaData methods provide information about the SQL objects that populate a
given data source. These methods can determine the attributes of SQL objects. These methods also return
ResultSet objects in which each row describes a particular object. For example, the getUDTs method
returns a ResultSet object in which there is a row for each user-defined table (UDT) that has been defined
in the data source. Examples of this category include the following:

¢ getSchemas and getCatalogs

* getTables

¢ getPrimaryKeys

* getProcedures and getProcedureColumns
* getUDTs

Transaction support

A small group of methods provide information about the transaction semantics supported by the data
source. Examples of this category include the following:

* supportsMultipleTransactions

IBM Developer Kit for Java 69



* getDefaultTransactionIsolation

See [“Example: Returning a list of tables using the IBM Developer Kit for Java DatabaseMetaData|
linterface”| for an example of how to use the DatabaseMetaData interface.

Changes in JDBC 3.0

There are changes to the return values for some of the methods in JDBC 3.0. The following methods have
been updated in JDBC 3.0 to add fields to the ResultSets that they return.

* getTables
* getColumns
* getUDTs
* getSchemas

Note: If an application is being developed using Java Development Kit (JDK) 1.4, you may recognize that
there are a certain number of columns being returned when testing. You write your application
and expect to access all of these columns. However, if the application is being designed to also run
on previous releases of the JDK, the application receives an SQLException when it tries to access
these fields that do not exist in earlier JDK releases. [‘Example: Using metadata ResultSets that]
lhave more than one column”]is an example of how an application can be written to work with
several JDK releases.

Example: Returning a list of tables using the IBM Developer Kit for Java DatabaseMetaData
interface:

This example shows how to return a list of tables.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

// Connect to the server.
Connection ¢ = DriverManager.getConnection("jdbc:db2:mySystem");

// Get the database meta data from the connection.
DatabaseMetaData dbMeta = c.getMetaData();

// Get a list of tables matching this criteria.

String catalog = "myCatalog";

String schema = "mySchema";

String table = "myTable%"; // % indicates search pattern
String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"}:

ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

// ... iterate through the ResultSet to get the values.

// Close the connection.
c.close():

For more information, see [“DatabaseMetaData interface for IBM Developer Kit for Java” on page 68|

Example: Using metadata ResultSets that have more than one column:

This is an example of how to use metadata ResultSets that have more than one column.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
linformation” on page 539,

LTI I T I i iriii1iii1i11i111111111111
/1l

// SafeGetUDTs example. This program demonstrates one way to deal with

70 System i: Programming IBM Developer Kit for Java



// metadata ResultSets that have more columns in JDK 1.4 than they
// had in previous releases.

//

// Command syntax:

// java SafeGetUDTs

/1
LTI LTI T T 1 i1i1i11110117111111111
/1l

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A11 programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

//

// 1BM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

LTI L E i i i i it el iliililiiiileliiieliliriigi
import java.sql.=;
public class SafeGetUDTs {

pubTic static int jdbcLevel;

// Note: Static block runs before main begins.
// Therefore, there is access to jdbcLevel in
// main.
{
try {
Class.forName("java.sql.Blob");

try {
Class.forName("java.sql.ParameterMetaData");
// Found a JDBC 3.0 interface. Must support JDBC 3.0.
jdbcLevel = 3;
} catch (ClassNotFoundException ez) {
// Could not find the JDBC 3.0 ParameterMetaData class.
// Must be running under a JVM with only JDBC 2.0
// support.
jdbcLevel = 2;
}

} catch (ClassNotFoundException ex) {
// Could not find the JDBC 2.0 Blob class. Must be
// running under a JVM with only JDBC 1.0 support.
jdbcLevel = 1;

}

// Program entry point.
public static void main(java.lang.String[] args)

{

Connection ¢ = null;

IBM Developer Kit for Java

71



try {
// Get the driver registered.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
DatabaseMetaData dmd = c.getMetaData();

if (jdbcLevel == 1) {
System.out.printin("No support is provided for getUDTs. Just return.");
System.exit(1);

}

ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN%", null);
while (rs.next()) {

// Fetch all the columns that have been available since the

// JDBC 2.0 release.

System.out.printIn("TYPE_CAT is " + rs.getString("TYPE_CAT"));
System.out.printIn("TYPE_SCHEM is " + rs.getString("TYPE_SCHEM"));
System.out.printIn("TYPE_NAME is " + rs.getString("TYPE_NAME"));
System.out.printIn("CLASS NAME is " + rs.getString("CLASS_NAME"));
System.out.printIn("DATA_TYPE is " + rs.getString("DATA_TYPE"));
System.out.printIn("REMARKS is " + rs.getString("REMARKS"));

// Fetch all the columns that were added in JDBC 3.0.
if (jdbcLevel > 2) {
System.out.printIn("BASE_TYPE is " + rs.getString("BASE_TYPE"));
}
}

} catch (Exception e) {
System.out.printIn("Error: " + e.getMessage());
} finally {
if (¢ !'= null) {
try {
c.close();
} catch (SQLException e) {
// Ignoring shutdown exception.
}

}

Java exceptions
The Java language uses exceptions to provide error-handling capabilities for its programs. An exception is
an event that occurs when you run your program that disrupts the normal flow of instructions.

The Java runtime system and many classes from Java packages throw exceptions in some circumstances
by using the throw statement. You can use the same mechanism to throw exceptions in your Java
programs.

Java SQLException class:

The SQLException class and its subtypes provide information about errors and warnings that occur while
a data source is being accessed.

Unlike most of JDBC, which is defined by interfaces, the exception support is provided in classes. The
base class for exceptions that occur while running JDBC applications is SQLException. Every method of
the JDBC API is declared as being able to throw SQLExceptions. SQLException is an extension of
java.lang.Exception and provides additional information related to failures that happen in a database
context. Specifically, the following information is available from an SQLException:

 Text description

72 System i: Programming IBM Developer Kit for Java



e SQLState
* Error code
* A reference to any other exceptions that also occurred

[ExceptionExampld is a program that properly handles catching an (expected in this case) SQLException
and dumping all the information that it provides.

Note: JDBC provides a mechanism where exceptions can be chained together. This allows the driver or
the database to report multiple errors on a single request. There are currently no instances where
the native JDBC driver would do this. This information is only provided as reference and not a
clear indication that the driver never does this in the future however.

As noted, SQLException objects are thrown when errors occur. This is correct, but is not the complete
picture. In practice, the native JDBC driver rarely throws actual SQLExceptions. It throws instances of its
own SQLException subclasses. This allows you to determine more information about what has actually
failed as is shown below.

DB2Exception.java

DB2Exception objects are not thrown directly either. This base class is used to hold functionality that is
common to all JDBC exceptions. There are two subclasses of this class that are be the standard exceptions
that JDBC throws. These subclasses are DB2DBException.java and DB2JDBCException.java.
DB2DBEXxceptions are exceptions that are reported to you that have come directly from the database.
DB2JDBCExceptions are thrown when the JDBC driver finds problems on its own. Splitting the exception
class hierarchy in this manner allows you to handle the two types of exceptions differently.

DB2DBException.java

As stated, DB2DBExceptions are exceptions that come directly from the database. These are encountered
when the JDBC driver make a call to the CLI and gets back an SQLERROR return code. The CLI function
SQLError is called to get the message text, SQLState, and vendor code in these cases. The replacement
text for the SQLMessage is also retrieved and returned to you. The DatabaseException class causes an
error that the database recognizes and reports to the JDBC driver to build the exception object for.

DB2JDBCException.java

DB2JDBCExceptions are generated for error conditions that come from the JDBC driver itself. The
functionality of this exception class is fundamentally different; the JDBC driver itself handles message
language translation of exception and other issues that the operating system and database handle for
exceptions originating within the database. Wherever possible, the JDBC driver adheres to the SQLStates
of the database. The vendor code for exceptions that the JDBC driver throws is always -99999.
DB2DBExceptions that are recognized and returned by the CLI layer often also have the -99999 error
code. The JDBCException class causes an error that the JDBC driver recognizes and builds the exception
for itself. When run during development of the release, the following output was created. Notice that the
top of the stack contains DB2JDBCException. This is an indication that the error is being reported from
the JDBC driver prior to ever making the request to the database.

Example: SQLException:

This is an example of catching an SQLException and dumping all the information that it provides.

Note: By using the code examples, you agree to the terms of the[“Code license and disclaimer]
[information” on page 539,

import java.sql.=;
public class ExceptionExample {

IBM Developer Kit for Java 73



public static Connection connection = null;
public static void main(java.lang.String[] args) {

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
connection = DriverManager.getConnection("jdbc:db2:*1ocal");

connection.createStatement();

Statement s =
= s.executeUpdate("insert into cujofake.cujofake values(1, 2,3)");

int count

System.out.printIn("Did not expect that table to exist.");

} catch (SQLException e) {
System.out.printIn("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printIn("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());

System.out. printTn (M =--m-mmmm o m o e ")s

e.printStackTrace();

} catch (Exception ex) {
System.out.printin("An exception other than an SQLException was thrown: ");
ex.printStackTrace();

} finally {

try {
if (connection != null) {
connection.close();
}

} catch (SQLException e) {
System.out.printin("Exception caught attempting to shutdown...");
}

}
SQILWarning:

Methods in some interfaces generate an SQLWarning object if the methods cause a database access
warning.

Methods in the following interfaces can generate an SQLWarning:

* Connection

 Statement and its subtypes, PreparedStatement and CallableStatement
* ResultSet

When a method generates an SQLWarning object, the caller is not informed that a data access warning
has occurred. The getWarnings method must be called on the appropriate object to retrieve the
SQLWarning object. However, the DataTruncation subclass of SQLWarning may be thrown in some
circumstances. It should be noted that the native JDBC driver opts to ignore some database-generated
warnings for increased efficiency. For example, a warning is generated by the system when you attempt
to retrieve data beyond the end of a ResultSet through the ResultSet.next method. In this case, the next
method is defined to return false instead of true, informing you of the error. It is unnecessary to create an
object to restate this, so the warning is simply ignored.

If multiple data access warnings occur, they are chained to the first one and can be retrieved by calling

the SQLWarning.getNextWarning method. If there are no more warnings in the chain, getNextWarning
returns null.

74 System i: Programming IBM Developer Kit for Java



Subsequent SQLWarning objects continue to be added to the chain until the next statement is processed
or, in the case of a ResultSet object, when the cursor is repositioned. As a result, all SQLWarning objects
in the chain are removed.

Using Connection, Statement, and ResultSet objects can cause SQLWarnings to be generated.
SQLWarnings are informational messages indicating that while a particular operation has completed
successfully, there might be other information of which you should be aware. SQLWarnings are an
extension of the SQLException class, but they are not thrown. They are instead attached to the object that
causes their generation. When an SQLWarning is generated, nothing happens to inform the application
that the warning has been generated. Your application must actively request warning information.

Like SQLExceptions, SQLWarnings can be chained to one another. You can call the clearWarnings method
on a Connection, Statement, or ResultSet object to clear the warnings for that object.

Note: Calling the clearWarnings method does not clear all warnings. It only clears the warnings that are
associated with a particular object.

The JDBC driver clears SQLWarning objects at specific times if you do not clear them manually.
SQLWarning objects are cleared when the following actions are taken:

* For the Connection interface, warnings are cleared on the creation of a new Statement,
PreparedStatement, or CallableStatement object.

* For the Statement interface, warnings are cleared when the next statement is processed (or when the
statement is processed again for PreparedStatements and CallableStatements).

 For the ResultSet interface, warnings are cleared when the cursor is repositioned.
DataTruncation and silent truncation:

DataTruncation is a subclass of SQLWarning. While SQLWarnings are not thrown, DataTruncation objects
are sometimes thrown and attached like other SQLWarning objects. Silent truncation occurs when the size
of a column exceeds the size specified by the setMaxFieldSize statement method, but no warning or
exception is reported.

DataTruncation objects provide additional information beyond what is returned by an SQLWarning. The
available information includes the following;:

¢ The number of bytes of data that have been transferred.

* The column or parameter index that was truncated.

* Whether the index is for a parameter or a ResultSet column.

* Whether the truncation happened when reading from the database or writing to it.
* The amount of data that was actually transferred.

In some instances, the information can be deciphered, but situations arise that are not completely
intuitive. For example, if the PreparedStatement’s setFloat method is used to insert a value into a column
that holds integer values, a DataTruncation may result because the float may be larger than the largest
value that the column can hold. In these situations, the byte counts for truncation do not make sense, but
it is important for the driver to provide the truncation information.

Report set() and update() methods

There is a subtle difference between JDBC drivers. Some drivers such as the native and IBM Toolbox for
Java JDBC drivers catch and report data truncation issues at the time of the parameter setting. This is
done either on the PreparedStatement set method or the ResultSet update method. Other drivers report
the problem at the time of processing the statement and is accomplished by the execute, executeQuery, or
updateRow methods.

IBM Developer Kit for Java 75



Reporting the problem at the time that you provide incorrect data, instead of at the time that processing
cannot continue any further, offers these advantages:

¢ The failure can be addressed in your application when you have a problem instead of addressing the
problem at processing time.

* By checking when setting the parameters, the JDBC driver can ensure that the values that are handed
to the database at statement processing time are valid. This allows the database to optimize its work
and processing can be completed faster.

ResultSet.update() methods throwing DataTruncation exceptions

In some past releases, ResultSet.update() methods posted warnings when truncation conditions existed.
This case occurs when the data value is going to be inserted into the database. The specification dictates
that JDBC drivers throw exceptions in these cases. As a result, the JDBC driver works in this manner.

There are no significant difference between handling a ResultSet update function that receives a data
truncation error and handling a prepared statement parameter set for an update or insert statement that
receives an error. In both cases, the problem is identical; you provided data that does not fit where you
wanted it.

NUMERIC and DECIMAL truncate to the right side of a decimal point silently. This is how both JDBC
for UDB NT works and how interactive SQL on the System i platform works.

Note: No value is rounded when a data truncation occurs. Any fractional portion of a parameter that
does not fit in a NUMERIC or DECIMAL column is simply lost without warning.

The following are examples, assuming that the value in the values clause is actually a parameter being
set on a prepared statement:

create table cujosql.test (coll numeric(4,2))

a) insert into cujosql.test values(22.22) // works - inserts 22.22

b) insert into cujosql.test values(22.223) // works - inserts 22.22

c) insert into cujosql.test values(22.227) // works - inserts 22.22
d) insert into cujosql.test values(322.22) // fails - Conversion error on assignment to column COL1.

Difference between a data truncation warning and a data truncation exception

The specification states that data truncation on a value to be written to the database throws an exception.
If data truncation is not performed on the value being written to the database, a warning is generated.
This means that the point at which a data truncation situation is identified, you must also be aware of the
statement type that the data truncation is processing. Given this as a requirement, the following lists the
behavior of several SQL statement types:

* In a SELECT statement, query parameters never damage database content. Therefore, data truncation
situations are always handled by posting warnings.

* In VALUES INTO and SET statements, the input values are only used to generate output values. As a
result, warnings are issued.

* In a CALL statement, the JDBC driver cannot determine what a stored procedure does with a
parameter. Exceptions are always thrown when a stored procedure parameter truncates.

 All other statement types throw exceptions rather than post warnings.
Data truncation property for Connection and DataSource

There has been a data truncation property available for many releases. The default for that property is
true, meaning that data truncation issues are checked and warnings are posted or exceptions are thrown.
The property is provided for convenience and performance in cases where you are not concerned that a
value does not fit into the database column. You want the driver to put as much of the value as it can
into the column.

76 System i: Programming IBM Developer Kit for Java



Data truncation property only affects character and binary-based data types

A couple releases ago, the data truncation property determined whether data truncation exceptions could
be thrown. The data truncation property was put in place to have JDBC applications not worry about a
value getting truncated when the truncation was not important to them. There are few cases where you
would want either the value 00 or 10 stored in the database when applications attempted to insert 100
into a DECIMAL(2,0). Therefore, the JDBC driver’s data truncation property was changed to only honor
situations where the parameter is for character-based types such as CHAR, VARCHAR, CHAR FOR BIT
DATA, and VARCHAR FOR BIT DATA.

Data truncation property is only applied to parameters

The data truncation property is a setting of the JDBC driver and not of the database. As a result, it has no
effect on statement literals. For example, the following statements that are processed to insert a value into
a CHAR(8) column in the database still fail with the data truncation flag set to false (assume that
connection is a java.sql.Connection object allocated elsewhere).

Statement stmt = connection.createStatement();

Stmt.executeUpdate("create table cujosql.test (coll char(8))");

Stmt.executeUpdate("insert into cujosql.test values('dettinger')");
// Fails as the value does not fit into database column.

Native JDBC driver throws exceptions for insignificant data truncation

The native JDBC driver does not look at the data that you provide for parameters. Doing so only slows
down processing. However, there can be situations where it does not matter to you that a value truncates,
but you have not set the data truncation connection property to false.

For example, “dettinger ’, a char(10) that is passed, throws an exception even though everything
important about the value fits. This does happen to be how JDBC for UDB NT works; however, it is not
the behavior you would get if you passed the value as a literal in an SQL statement. In this case, the
database engine would throw out the additional spaces quietly.

The problems with the JDBC driver not throwing an exception are the following;:

* Performance overhead is extensive on every set method, whether needed or not. For the majority of
cases where there would be no benefit, there is considerable performance overhead on a function as
common as setString().

* Your workaround is trivial, for example, calling the trim function on the string value passed in.

* There are issues with the database column to take into account. A space in CCSID 37 is not at all a
space in CCSID 65535, or 13488.

Silent truncation

The setMaxFieldSize statement method allows a maximum field size to be specified for any column. If
data truncates because its size has exceeded the maximum field size value, no warning or exception is
reported. This method, like the data truncation property previously mentioned, only affects
character-based types such as CHAR, VARCHAR, CHAR FOR BIT DATA, and VARCHAR FOR BIT
DATA.

JDBC transactions
A transaction is a logical unit of work. To complete a logical unit of work, several actions may need to be
taken against a database.

Transactional support allows applications to ensure the following:
 All the steps to complete a logical unit of work are followed.

IBM Developer Kit for Java 77



* When one of the steps to the unit of work files fails, all the work done as part of that logical unit of
work can be undone and the database can return to its previous state before the transaction began.

Transactions are used to provide data integrity, correct application semantics, and a consistent view of
data during concurrent access. All Java Database Connectivity (JDBC) compliant drivers must support
transactions.

Note: This section only discusses local transactions and the standard JDBC concept of transactions. Java
and the native JDBC driver support the Java Transaction API (JTA), distributed transactions, and
the two-phase commit protocol (2PC).

All transactional work is handled at the Connection object level. When the work for a transaction
completes, it can be finalized by calling the commit method. If the application aborts the transaction, the
rollback method is called.

All Statement objects under a connection are a part of the transaction. This means is that if an application
creates three Statement objects and uses each object to make changes to the database, when a commit or
rollback call happens, the work for all three statements either becomes permanent or is discarded.

The commit and rollback SQL statements are used to finalize transactions when working purely with
SQL. These SQL statements cannot be dynamically prepared and you should not attempt to use them in
your JDBC applications to complete transactions.

JDBC auto-commit mode:

By default, JDBC uses an operation mode called auto-commit. This means that every update to the
database is immediately made permanent.

Any situation where a logical unit of work requires more than one update to the database cannot be done
safely in auto-commit mode. If something happens to the application or the system after one update is
made and before any other updates are made, the first change cannot be undone when running in
auto-commit mode.

Because changes are instantly made permanent in auto-commit mode, there is no need for the application
to call the commit method or the rollback method. This makes applications easier to write.

Auto-commit mode can be enabled and disabled dynamically during a connection’s existence.
Auto-commit is enabled in the following way, assuming that data source already exists:

Connection connection = dataSource.getConnection();

Connection.setAutoCommit(false); // Disables auto-commit.
If the auto-commit setting is changed in the middle of a transaction, any pending work is automatically
committed. An SQLException is generated if auto-commit is enabled for a connection that is part of a
distributed transaction.
Transaction isolation levels:
Transaction isolation levels specify what data is visible to statements within a transaction. These levels

directly impact the level of concurrent access by defining what interaction is possible between
transactions against the same target data source.

78 System i: Programming IBM Developer Kit for Java



Database anomalies

Database anomalies are generated results that seem incorrect when looked at from the scope of a single
transaction, but are correct when looked at from the scope of all transactions. The different types of
database anomalies are described as follows:

* Dirty reads occur when:
1. Transaction A inserts a row into a table.
2. Transaction B reads the new row.
3. Transaction A rolls back.

Transaction B may have done work to the system based on the row inserted by transaction A, but that
row never became a permanent part of the database.

* Nonrepeatable reads occur when:
1. Transaction A reads a row.
2. Transaction B changes the row.
3. Transaction A reads the same row a second time and gets the new results.
¢ Phantom reads occur when:
1. Transaction A reads all rows that satisfy a WHERE clause on an SQL query.
2. Transaction B inserts an additional row that satisfies the WHERE clause.
3. Transaction A re-evaluates the WHERE condition and picks up the additional row.

Note: DB2 UDB for iSeries does not always expose the application to the allowable database anomalies at
the prescribed levels due to its locking strategies.

JDBC transaction isolation levels

There are five levels of transaction isolation in the IBM Developer Kit for Java JDBC API. Listed from
least to most restrictive, they are as follows:

JDBC_TRANSACTION_NONE
This is a special constant indicating that the JDBC driver does not support transactions.

JDBC_TRANSACTION_READ_UNCOMMITTED
This level allows transactions to see uncommitted changes to the data. All database anomalies are
possible at this level.

JDBC_TRANSACTION_READ_COMMITTED
This level means that any changes made inside a transaction are not visible outside it until the
transaction is committed. This prevents dirty reads from being possible.

JDBC_TRANSACTION_REPEATABLE_READ
This level means that rows that are read retain locks so that another transaction cannot change
them when the transaction is not completed. This disallows dirty reads and nonrepeatable reads.
Phantom read are still possible.

JDBC_TRANSACTION_SERIALIZABLE
Tables are locked for the transaction so that WHERE conditions cannot be changed by other
transactions that add values to or remove values from a table. This prevents all types of database
anomalies.

The setTransactionlsolation method can be used to change the transaction isolation level for a connection.

Considerations

A common misinterpretation is that the JDBC specification defines the five transactional levels previously
mentioned. It is commonly thought that the TRANSACTION_NONE value represents the concept of

IBM Developer Kit for Java 79



running without commitment control. The JDBC specification does not define TRANSACTION_NONE in
the same manner. TRANSACTION_NONE is defined in the JDBC specification as a level where the
driver does not support transactions and is not a JDBC-compliant driver. The NONE level is never
reported when the getTransactionlsolation method is called.

The issue is marginally complicated by the fact that a JDBC driver’s default transaction isolation level is
defined by the implementation. The default level of transaction isolation for the native JDBC driver
default transaction isolation level is NONE. This allows the driver to work with files that do not have
journals and you are not required to make any specifications such as files in the QGPL library.

The native JDBC driver allows you to pass JDBC_TRANSACTION_NONE to the setTransactionlsolation
method or specify none as a connection property. However, the getTransactionlsolation method always
reports JDBC_TRANSACTION_READ_UNCOMMITTED when the value is none. It is your application’s
responsibility to keep track of what level you are running if it is a requirement in your application.

In past releases, the JDBC driver would handle your specifying true for auto-commit by changing the
transaction isolation level to none because the system did not have a concept of a true auto-commit
mode. This was a close approximation of the functionality, but did not provide the correct results for all
scenarios. This is not done anymore; the database decouples the concept of auto-commit from the concept
of a transaction isolation level. Therefore, it is completely valid to run at the
JDBC_TRANSACTION_SERIALIZABLE level with auto-commit being enabled. The only scenario that is
not valid is to run at the JDBC_TRANSACTION_NONE level and not be in auto-commit mode. Your
application cannot take control over commit boundaries when the system is not running with a
transaction isolation level.

Transaction isolation levels between the JDBC specification and the System i platform
The System i platform has common names for its transaction isolation levels that do not match those

names provided by the JDBC specification. The following table matches the names used by the System i
platform, but are not equivalent to those used by the JDBC specification:

JDBC level* System i level
JDBC_TRANSACTION_NONE *NONE or *NC
JDBC_TRANSACTION_READ_UNCOMMITTED *CHG or *UR
JDBC_TRANSACTION_READ_COMMITTED *CS
JDBC_TRANSACTION_REPEATABLE_READ *ALL or *RS
JDBC_TRANSACTION_SERIALIZABLE *RR

* In this table, the JDBC_TRANSACTION_NONE value is lined up with the System i levels *NONE and
*NC for clarity. This is not a direct specification-to-System i level match.

Savepoints:

Savepoints allow the setting of "staging points” in a transaction. Savepoints are checkpoints that the
application can roll back to without throwing away the entire transaction.

Savepoints are new in JDBC 3.0, meaning that the application must run on Java Development Kit (JDK)
1.4 or a subsequent release to use them. Moreover, savepoints are new to the Developer Kit for Java,
meaning that savepoints are not supported if JDK 1.4 or a subsequent release is not used with previous
releases of the Developer Kit for Java.

Note: The system provides SQL statements for working with savepoints. It is advised that JDBC
applications do not use these statements directly in an application. Doing so may work, but the

80 System i: Programming IBM Developer Kit for Java




JDBC driver loses its ability to track the your savepoints when this is done. At a minimum, mixing
the two models (that is, using your own savepoint SQL statements and using the JDBC API)
should be avoided.

Setting and rolling back to savepoints

Savepoints can be set throughout the work of a transaction. The application can then roll back to any of
these savepoints if something goes wrong and continue processing from that point. In the following
example, the application inserts the value FIRST into a database table. After that, a savepoint is set and
another value, SECOND, is inserted into the database. A rollback to the savepoint is issued and undoes
the work of inserting SECOND, but leaves FIRST as part of the pending transaction. Finally, the value
THIRD is inserted and the transaction is committed. The database table contains the values FIRST and
THIRD.

Example: Set and roll back to savepoints

Statement s = Connection.createStatement();
s.executeUpdate("insert into tablel values ('FIRST')");
Savepoint ptl = connection.setSavepoint("FIRST SAVEPOINT");
s.executeUpdate("insert into tablel values ('SECOND')";);
connection.rollback(ptl); // Undoes most recent insert.
s.executeUpdate("insert into tablel values ('THIRD')");
connection.commit();

Although it is unlikely to cause problems to set savepoints while in auto-commit mode, they cannot be
rolled back as their lives end at the end of a transaction.

Releasing a savepoint

Savepoints can be released by the application with the releaseSavepoint method on the Connection object.
Once a savepoint has been released, attempting to roll back to it results in an exception. When a
transaction commits or rolls back, all savepoints automatically release. When a savepoint is rolled back,
other savepoints that follow it are also released.

JDBC distributed transactions

Typically, transactions in Java Database Connectivity (JDBC) are local. This means that a single connection
performs all the work of the transaction and that the connection can only work on one transaction at a
time.

When all the work for that transaction has been completed or has failed, commit or rollback is called to
make the work permanent, and a new transaction can begin. There is, however, also advanced support
for transactions available in Java that provides functionality beyond local transactions. This support is
fully specified by the Java Transaction APIL

The Java Transaction API (JTA) has support for complex transactions. It also provides support for
decoupling transactions from Connection objects. As JDBC is modeled after the Object Database
Connectivity (ODBC) and the X/Open Call Level Interface (CLI) specifications, JTA is modeled after the
X/Open Extended Architecture (XA) specification. JTA and JDBC work together to decouple transactions
from Connection objects. By decoupling transactions from Connection objects, this allows you to have a
single connection work on multiple transactions concurrently. Conversely, it allows you to have multiple
Connections work on a single transaction.

Note: If you are planning to work with JTA, refer to the Get started with JDBC topic for more
information about required Java Archive (JAR) files in your extensions classpath. You want both
the JDBC 2.0 optional package and the JTA JAR files (these files are found automatically by the
JDK if you are running JDK 1.4 or a subsequent version). These are not found by default.

IBM Developer Kit for Java 81



Transactions with JTA

When JTA and JDBC are used together, there are a series of steps between them to accomplish
transactional work. Support for XA is provided through the XADataSource class. This class contains
support for setting up connection pooling exactly the same way as its ConnectionPoolDataSource
superclass.

With an XADataSource instance, you can retrieve an XAConnection object. The XAConnection object
serves as a container for both the JDBC Connection object and an XAResource object. The XAResource
object is designed to handle XA transactional support. XAResource handles transactions through objects
called transaction IDs (XIDs).

The XID is an interface that you must implement. It represents a Java mapping of the XID structure of
the X/Open transaction identifier. This object contains three parts:

* A global transaction’s format ID
* A global transaction ID
e A branch qualifier

See the JTA specification for complete details on this interface.

Use UDBXADataSource support for pooling and distributed transactions

The Java Transaction API support provides direct support for connection pooling. UDBXADataSource is
an extension of a ConnectionPoolDataSource, allowing application access to pooled XAConnection
objects. Since UDBXADataSource is a ConnectionPoolDataSource, the configuration and use of the
UDBXADataSource is the same as that described in the Use DataSource support for object pooling topic.
XADataSource properties

In addition to the properties provided by the ConnectionPoolDataSource, the XADataSource interface
provides the following properties:

Set method (data type) Values Description

setLockTimeout (int) 0 or any positive value Any positive value is a valid lock
timeout (in seconds) at the
transaction level.

A lock timeout of 0 means that there
is no lock timeout value enforced at

the transaction level, although there

may be one enforced at other levels

(the job or the table).

The default value is 0.

setTransactionTimeout (int) 0 or any positive value Any positive value is a valid
transaction timeout (in seconds).

A transaction timeout of 0 means that
there is no transaction timeout value
enforced. If the transaction is active
for longer than the timeout value, it
is marked rollback only, and
subsequent attempts to perform work
under it causes an exception to occur.

The default value is 0.

82 System i: Programming IBM Developer Kit for Java



ResultSets and transactions

Besides demarcating the start and end of a transaction as shown in the previous example, transactions
can be suspended for a time and resumed later. This provides a number of scenarios for ResultSet
resources that are created during a transaction.

Simple transaction end

When you end a transaction, all open ResultSets that were created under that transaction automatically
close. It is recommended that you explicitly close your ResultSets when you are finished using them to
ensure maximum parallel processing. However, an exception results if any ResultSets that were opened
during a transaction are accessed after the XAResource.end call is made.

Suspend and resume

While a transaction is suspended, access to a ResultSet created while the transaction was active is not
allowed and results in an exception. However, once the transaction is resumed, the ResultSet is available
again and remains in the same state it was in before the transaction was suspended.

Effecting suspended ResultSets

While a transaction is suspended, the ResultSet cannot be accessed. However, Statement objects can be
reprocessed under another transaction to perform work. Because JDBC Statement objects can have only
one ResultSet at a time (excluding the JDBC 3.0 support for multiple concurrent ResultSets from a stored
procedure call), the ResultSet for the suspended transaction must be closed to fulfill the request of the
new transaction. This is exactly what happens.

Note: Although JDBC 3.0 allows a Statement to have multiple ResultSets open simultaneously for a
stored procedure call, they are treated as a single unit and all of them close if the Statement is
reprocessed under a new transaction. It is not possible to have ResultSets from two transactions active
simultaneously for a single statement.

Multiplexing

The JTA API is designed to decouple transactions from JDBC connections. This API allows you to have
either multiple connections work on a single transaction or a single connection work on multiple
transactions concurrently. This is called multiplexing and many complex tasks can be performed that
cannot be accomplished with JDBC alone.

For further information on using JTA, see the JTA specification. The JDBC 3.0 specification also contains
information on how these two technologies work together to support distributed transactions.

Two-phase commit and transaction logging

The JTA APIs externalize the responsibilities of the distributed two-phase commit protocol completely to
the application. As the examples have shown, when using JTA and JDBC to access a database under a
JTA transaction, the application uses the XAResource.prepare() and XAResource.commit() methods or just
the XAResource.commit() method to commit the changes.

In addition, when accessing multiple distinct databases using a single transaction, it is the application’s
responsibility to ensure that the two-phase commit protocol and any associated logging required for
transaction atomicity across those databases are performed. Typically, the two-phase commit processing
across multiple databases (that is, XAResources) and its logging are performed under the control of an
application server or transaction monitor so that the application itself does not actually concern itself
with these issues.

IBM Developer Kit for Java 83



For example, the application may call some commit() method or return from its processing with no
errors. The underlying application server or transaction monitor would then begin processing for each
database (XAResource) that participated in the single distributed transaction.

The application server would use extensive logging during the two-phase commit processing. It would
call the XAResource.prepare() method in turn for each participant database (XAResource), followed by a
call to the XAResource.commit() method for each participant database (XAResource).

If a failure occurs during this processing, the application server’s transaction monitor logs allow the
application server itself to subsequently use the JTA APIs to recover the distributed transaction. This
recovery, under the control of the application server or transaction monitor, allows the application server
to get the transaction to a known state at each participant database (XAResource). This ensures a
well-known state of the entire distributed transaction across all participant databases.

Related concepts
[‘Getting started with JDBC” on page 32|
The Java Database Connectivity (JDBC) driver shipped with the IBM Developer Kit for Java is called

the IBM Developer Kit for Java JDBC driver. This driver is also commonly known as the native JDBC
driver.

[“Using DataSource support for object pooling” on page 129
You can use DataSources to have multiple applications share a common configuration for accessing a
database. This is accomplished by having each application reference the same DataSource name.

Related reference

[“ConnectionPoolDataSource properties” on page 132|
You can configure the ConnectionPoolDataSource interface by using the set of properties that it
provides.

Related information

[ [fava Transaction API 1.0.1 Specification|

Example: Using JTA to handle a transaction:

This is an example of how to use the Java Transaction API (JTA) to handle a transaction in an application.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

import java.sql.*;

import javax.sql.=*;

import java.util.*;

import javax.transaction.x;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTACommit {

public static void main(java.lang.String[] args) {
JTACommit test = new JTACommit();

test.setup();
test.run();

[ **

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;

84 System i: Programming IBM Developer Kit for Java


http://java.sun.com/products/jta/

Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();

try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... does not exist
}

s.executeUpdate ("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.close();
} finally {
if (¢ !'= null) {
c.close();
}

[**
* This test uses JTA support to handle transactions.
*/
public void run() {
Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection c = xaConn.getConnection();

// For XA transactions, a transaction identifier is required.

// An implementation of the XID interface is not included with the
// JDBC driver. See [Transactions with JTA| for a description of

// this interface to build a class for it.

Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Standard JDBC work is performed.
int count =
stmt.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('JTA is pretty fun.')");

// When the transaction work has completed, the XA resource must
// again be notified.

xaRes.end(xid, XAResource.TMSUCCESS);

// The transaction represented by the transaction ID is prepared
// to be committed.

int rc = xaRes.prepare(xid);

// The transaction is committed through the XAResource.

IBM Developer Kit for Java

85



// The JDBC Connection object is not used to commit
// the transaction when using JTA.
xaRes.commit(xid, false);

} catch (Exception e) {
System.out.printin("Something has gone wrong.");
e.printStackTrace();

} finally {
try {
if (c !'= null)
c.close();

} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

}

Example: Multiple connections that work on a transaction:

This is an example of how to use multiple connections working on a single transaction.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
finformation” on page 539

import java.sql.*;
import javax.sql.*;
import java.util.=*;
import javax.transaction.x*;
import javax.transaction.xa.=*;
import com.ibm.db2.jdbc.app.*;
public class JTAMultiConn {
public static void main(java.lang.String[] args) {
JTAMultiConn test = new JTAMultiConn();
test.setup();
test.run();
1
[**
* Handle the previous cleanup run so that this test can recommence.
*
/
public void setup() {
Connection ¢ = null;
Statement s = null;
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();
try {
s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

}
catch (SQLException e) {
// Ignore... does not exist
}
s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR
(50))");
s.close();
}
finally {
if (¢ !'= null) {
c.close();
}
}
1

[x*

86 System i: Programming IBM Developer Kit for Java



* This test uses JTA support to handle transactions.

*/

public void run() {
Connection cl1 = null;

Connection c2
Connection c3

null;
null;

try {

}

Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.

UDBXADataSource ds = (UDBXADataSource)
ctx.lookup("XADataSource");

// From the DataSource, obtain some XAConnection objects that

// contain an XAResource and a Connection object.

XAConnection xaConnl = ds.getXAConnection();

XAConnection xaConn2 = ds.getXAConnection();

XAConnection xaConn3 = ds.getXAConnection();

XAResource xaResl = xaConnl.getXAResource();

XAResource xaRes2 = xaConn2.getXAResource();

XAResource xaRes3 = xaConn3.getXAResource();

cl = xaConnl.getConnection();

c2 = xaConn2.getConnection();

¢3 = xaConn3.getConnection();

Statement stmtl = cl.createStatement();

Statement stmt2 = c2.createStatement();

Statement stmt3 = c3.createStatement();

// For XA transactions, a transaction identifier is required.

// Support for creating XIDs is again left to the application

// program.

Xid xid = JDXATest.xidFactory();

// Perform some transactional work under each of the three

// connections that have been created.

xaResl.start(xid, XAResource.TMNOFLAGS);

int countl = stmtl.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-A')");

xaResl.end(xid, XAResource.TMNOFLAGS);

xaRes2.start(xid, XAResource.TMJOIN);

int count2 = stmt2.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-B')");

xaRes2.end(xid, XAResource.TMNOFLAGS);

xaRes3.start(xid, XAResource.TMJOIN);

int count3 = stmt3.executeUpdate("INSERT INTO " + tableName + "VALUES('Value 1-C')");

xaRes3.end(xid, XAResource.TMSUCCESS);
// When completed, commit the transaction as a single unit.

// A prepare() and commit() or 1 phase commit() is required for
// each separate database (XAResource) that participated in the

// transaction. Since the resources accessed (xaResl, xaRes2, and xaRes3)
// all refer to the same database, only one prepare or commit is required.

int rc = xaRes.prepare(xid);
xaRes.commit (xid, false);

catch (Exception e) {

}

System.out.printin("Something has gone wrong.");
e.printStackTrace();

finally {

try {
if (cl !'= null) {
cl.close();
}

}
catch (SQLException e) {
System.out.printin("Note: Cleaup exception " +
e.getMessage());
}
try {
if (c2 '= null) {
c2.close();

IBM Developer Kit for Java

87



}

}
}
catch (SQLException e) {

System.out.printin("Note: Cleaup exception " +
e.getMessage());
}

try {
if (3 !'= null) {
c3.close();
}
}
catch (SQLException e) {

System.out.printin("Note: Cleaup exception " +
e.getMessage());

}

Example: Using a connection with multiple transactions:

This is an example of how to use a single connection with multiple transactions.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|

finformation” on page 539

import java.sql.*;

import javax.sql.=*;

import java.util.*;

import javax.transaction.x;
import javax.transaction.xa.x;
import com.ibm.db2.jdbc.app.*;

public class JTAMultiTx {

88

public static void main(java.lang.String[] args) {
JTAMUTtiTx test = new JTAMultiTx();

test.setup();
test.run();

[**

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;
Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {
// Ignore... does not exist

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.close();

} finally {
if (¢ !'= null) {

System i: Programming IBM Developer Kit for Java



[*%

c.close();

* This test uses JTA support to handle transactions.

*/

public void run() {

Connection ¢ = null;

try {

Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes xaConn.getXAResource();

Connection c xaConn.getConnection();

Statement stmt = c.createStatement();

// For XA transactions, a transaction identifier is required.

// This is not meant to imply that all the XIDs are the same.

// Each XID must be unique to distinguish the various transactions
// that occur.

// Support for creating XIDs is again left to the application

// program.

Xid xidl = JDXATest.xidFactory();

Xid xid2 = JDXATest.xidFactory();

Xid xid3 = JDXATest.xidFactory();

// Do work under three transactions for this connection.

xaRes.start(xidl, XAResource.TMNOFLAGS);

int countl = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-A')");
xaRes.end(xid1l, XAResource.TMNOFLAGS);

xaRes.start(xid2, XAResource.TMNOFLAGS);
int count2 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-B')");
xaRes.end(xid2, XAResource.TMNOFLAGS);

xaRes.start(xid3, XAResource.TMNOFLAGS);
int count3 = stmt.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Value 1-C')");
xaRes.end(xid3, XAResource.TMNOFLAGS);

// Prepare all the transactions
int rcl = xaRes.prepare(xidl);
int rc2 = xaRes.prepare(xid2);
int rc3 = xaRes.prepare(xid3);

// Two of the transactions commit and one rolls back.

// The attempt to insert the second value into the table is
// not committed.

xaRes.commit(xidl, false);

xaRes.rollback(xid2);

xaRes.commit (xid3, false);

} catch (Exception e) {

System.out.printin("Something has gone wrong.");
e.printStackTrace();

} finally {

try {
if (c !'= null)

IBM Developer Kit for Java

89



c.close();
} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

}

Example: Suspended ResultSets:

This is an example of the how a Statement object is reprocessed under another transaction to perform
work.

Note: By using the code examples, you agree to the terms of the |”C0de license and disclaimed
linformation” on page 539,

import java.sql.*;

import javax.sql.*;

import java.util.*;

import javax.transaction.x*;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATxEffect {

public static void main(java.lang.String[] args) {
JTATxEffect test = new JTATxEffect();

test.setup();
test.run();

[**

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;

Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();

try {
s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");

} catch (SQLException e) {
// Ignore... does not exist

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('Fun with JTA')");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('JTA is fun.)");

s.close();
} finally {
if (¢ !'= null) {
c.close();
}
1
1
[**

90 System i: Programming IBM Developer Kit for Java



* This test uses JTA support to handle transactions.
*/
public void run() {

Connection ¢ = null;

try {
Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes xaConn.getXAResource();

Connection C xaConn.getConnection();

// For XA transactions, a transaction identifier is required.
// An implementation of the XID interface is not included with
// the JDBC driver. See|Transactions with JTA|

// for a description of this interface to build a

// class for it.

Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate("SELECT = FROM CUJOSQL.JTATABLE");
rs.next();

// The end method is called with the suspend option. The

// ResultSets associated with the current transaction are 'on hold'.
// They are neither gone nor accessible in this state.
xaRes.end(xid, XAResource.TMSUSPEND);

// In the meantime, other work can be done outside the transaction.
// The ResultSets under the transaction can be closed if the
// Statement object used to create them is reused.
ResultSet nonXARS = stmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");
while (nonXARS.next()) {
// Process here...
}

// Attempt to go back to the suspended transaction. The suspended
// transaction's ResultSet has disappeared because the statement
// has been processed again.
xaRes.start(newXid, XAResource.TMRESUME);
try {

rs.next();
} catch (SQLException ex) {

System.out.printIn("This exception is expected. " +

"The ResultSet closed due to another process.");

// When the transaction had completed, end it
// and commit any work under it.
xaRes.end(xid, XAResource.TMNOFLAGS);

int rc = xaRes.prepare(xid);

IBM Developer Kit for Java



xaRes.commit (xid, false);

} catch (Exception e) {
System.out.printin("Something has gone wrong.");
e.printStackTrace();

} finally {
try {
if (c !'= null)
c.close();

} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

}

Example: Ending a transaction:

This is an example of ending a transaction in your application.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
finformation” on page 539

import java.sql.=;

import javax.sql.=;

import java.util.*;

import javax.transaction.x*;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATXEnd {

public static void main(java.lang.String[] args) {
JTATXEnd test = new JTATxEnd();

test.setup();
test.run();

[x%

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;

Statement s = null;

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*Tocal");
s = c.createStatement();

try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... does not exist

s.executeUpdate ("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate("INSERT INTO CUJOSQL.JTATABLE VALUES('Fun with JTA')");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('JTA is fun.)");

s.close();
} finally {

92 System i: Programming IBM Developer Kit for Java



[**

if (¢ != null) {
c.close();
}

* This test use JTA support to handle transactions.

*/

public void run() {

Connection ¢ = null;

try {

Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection c = xaConn.getConnection();

// For XA transactions, transaction identifier is required.
// An implementation of the XID interface is not included
// with the JDBC driver. See [Transactions with JTA for a
// description of this interface to build a class for it.
Xid xid = new XidImp1();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate("SELECT = FROM CUJOSQL.JTATABLE");
rs.next();

// When the end method is called, all ResultSet cursors close.
// Accessing the ResultSet after this point results in an

// exception being thrown.

xaRes.end(xid, XAResource.TMNOFLAGS);

try {

String value = rs.getString(1);

System.out.printin("Something failed if you receive this message.");
} catch (SQLException e) {

System.out.printIn("The expected exception was thrown.");
}

// Commit the transaction to ensure that all locks are
// released.

int rc = xaRes.prepare(xid);

xaRes.commit (xid, false);

} catch (Exception e) {

System.out.printin("Something has gone wrong.");
e.printStackTrace();

} finally {

try {
if (c !'= null)

IBM Developer Kit for Java

93



c.close();
} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

}

|“]DBC distributed transactions” on page 81|

Typically, transactions in Java Database Connectivity (JDBC) are local. This means that a single
connection performs all the work of the transaction and that the connection can only work on one
transaction at a time.

Example: Suspending and resuming a transaction:

This is an example of a transaction that is suspended and then is resumed.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
information” on page 539

import java.sql.*;

import javax.sql.*;

import java.util.x;

import javax.transaction.=;
import javax.transaction.xa.*;
import com.ibm.db2.jdbc.app.*;

public class JTATxSuspend {

public static void main(java.lang.String[] args) {
JTATxSuspend test = new JTATxSuspend();

test.setup();
test.run();

[**

* Handle the previous cleanup run so that this test can recommence.
*/

public void setup() {

Connection ¢ = null;
Statement s = null;
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
s = c.createStatement();

try {

s.executeUpdate("DROP TABLE CUJOSQL.JTATABLE");
} catch (SQLException e) {

// Ignore... doesn't exist

s.executeUpdate("CREATE TABLE CUJOSQL.JTATABLE (COL1 CHAR (50))");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('Fun with JTA')");
s.executeUpdate ("INSERT INTO CUJOSQL.JTATABLE VALUES('JTA is fun.)");

s.close();
} finally {
if (¢ !'= null) {
c.close();

94 System i: Programming IBM Developer Kit for Java



[**

* This test uses JTA support to handle transactions.

*/

public void run() {

Connection ¢ = null;

try {

Context ctx = new InitialContext();

// Assume the data source is backed by a UDBXADataSource.
UDBXADataSource ds = (UDBXADataSource) ctx.lookup("XADataSource");

// From the DataSource, obtain an XAConnection object that
// contains an XAResource and a Connection object.
XAConnection xaConn = ds.getXAConnection();

XAResource xaRes = xaConn.getXAResource();

Connection c xaConn.getConnection();

// For XA transactions, a transaction identifier is required.
// An implementation of the XID interface is not included with
// the JDBC driver. [Transactions with JTA| for a

// description of this interface to build a class for it.

Xid xid = new XidImpl();

// The connection from the XAResource can be used as any other
// JDBC connection.
Statement stmt = c.createStatement();

// The XA resource must be notified before starting any
// transactional work.
xaRes.start(xid, XAResource.TMNOFLAGS);

// Create a ResultSet during JDBC processing and fetch a row.
ResultSet rs = stmt.executeUpdate("SELECT * FROM CUJOSQL.JTATABLE");
rs.next();

// The end method is called with the suspend option. The

// ResultSets associated with the current transaction are 'on hold'.
// They are neither gone nor accessible in this state.
xaRes.end(xid, XAResource.TMSUSPEND);

// Other work can be performed with the transaction.
// As an example, you can create a statement and process a query.
// This work and any other transactional work that the transaction may
// perform is separate from the work done previously under the XID.
Statement nonXAStmt = conn.createStatement();
ResultSet nonXARS = nonXAStmt.executeQuery("SELECT * FROM CUJOSQL.JTATABLE");
while (nonXARS.next()) {
// Process here...

}
nonXARS.close();
nonXAStmt.close();

// If an attempt is made to use any suspended transactions
// resources, an exception results.
try {

rs.getString(1);

System.out.printin("Value of the first row is " + rs.getString(1));
} catch (SQLException e) {

System.out.printIn("This was an expected exception - " +

"suspended ResultSet was used.");

IBM Developer Kit for Java

95



// Resume the suspended transaction and complete the work on it.

// The ResultSet is exactly as it was before the suspension.
xaRes.start(newXid, XAResource.TMRESUME);

rs.next();

System.out.printin("Value of the second row is " + rs.getString(1));

// When the transaction has completed, end it
// and commit any work under it.
xaRes.end(xid, XAResource.TMNOFLAGS);

int rc = xaRes.prepare(xid);
xaRes.commit(xid, false);

} catch (Exception e) {
System.out.printin("Something has gone wrong.");
e.printStackTrace();
} finally {
try {
if (c !'= null)
c.close();
} catch (SQLException e) {
System.out.printin("Note: Cleaup exception.");
e.printStackTrace();

}

Statement types

The Statement interface and its PreparedStatement and CallableStatement subclasses are used to process
structured query language (SQL) commands against the database. SQL statements cause the generation of
ResultSet objects.

Subclasses of the Statement interface are created with a number of methods on the Connection interface.
A single Connection object can have many Statement objects created under it simultaneously. In past
releases, it was possible to give exact numbers of Statement objects that could be created. It is impossible
to do so in this release because different types of Statement objects take different numbers of "handles”
within the database engine. Therefore, the types of Statement objects you are using influence the number
of statements that can be active under a connection at a single time.

An application calls the Statement.close method to indicate that the application has finished processing a
statement. All Statement objects are closed when the connection that created them is closed. However,
you should not fully rely on this behavior to close Statement objects. For example, if your application
changes so that a connection pool is used instead of explicitly closing the connections, the application
"leaks” statement handles because the connections never close. Closing Statement objects as soon as they
are no longer required allows external database resources that the statement is using to be released
immediately.

The native JDBC driver attempts to detect statement leaks and handles them on you behalf. However,
relying on that support results in poorer performance.

Due to the inheritance hierarchy that CallableStatement extends PreparedStatement which extends
Statement, features of each interface are available in the class that extend the interface. For example,
features of the Statement class are also supported in the PreparedStatement and CallableStatement
classes. The main exception is the executeQuery, executeUpdate, and execute methods on the Statement
class. These methods take in an SQL statement to dynamically process and cause exceptions if you
attempt to use them with PreparedStatement or CallableStatement objects.

96 System i: Programming IBM Developer Kit for Java



Statement objects:

A Statement object is used for processing a static SQL statement and obtaining the results produced by it.
Only one ResultSet for each Statement object can be open at a time. All statement methods that process
an SQL statement implicitly close a statement’s current ResultSet if an open one exists.

Create statements

Statement objects are created from Connection objects with the createStatement method. For example,
assuming a Connection object named conn already exists, the following line of code creates a Statement
object for passing SQL statements to the database:

Statement stmt = conn.createStatement();
Specify ResultSet characteristics

The characteristics of ResultSets are associated with the statement that eventually creates them. The
Connection.createStatement method allows you to specify these ResultSet characteristics. The following
are some examples of valid calls to the createStatement method:

Example: The createStatement method
// The following is new in JDBC 2.0

Statement stmt2 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATEABLE);

// The following is new in JDBC 3.0

Statement stmt3 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY, ResultSet.HOLD_CURSOR_OVER_COMMIT);

For more information about these characteristics, see [ResultSets
Process statements

Processing SQL statements with a Statement object is accomplished with the executeQuery(),
executeUpdate(), and execute() methods.

Return results from SQL queries

If an SQL query statement returning a ResultSet object is to be processed, the executeQuery() method
should be used. You can refer to the program that uses a Statement object’s executeQuery
method to obtain a ResultSet.

Note: If an SQL statement processed with executeQuery does not return a ResultSet, an SQLException is
thrown.

Return update counts for SQL Statements
If the SQL is known to be a Data Definition Language (DDL) statement or a Data Manipulation Language

(DML) statement returning an update count, the executeUpdate() method should be used. The
[StatementExample| program uses a Statement object’s executeUpdate method.

Process SQL statements where the expected return is unknown
If the SQL statement type is not known, the execute method should be used. Once this method has been
processed, the JDBC driver can tell the application what types of results the SQL statement has generated

through API calls. The execute method returns true if the result is at least one ResultSet and false if the

IBM Developer Kit for Java 97



return value is an update count. Given this information, applications can use the statement method’s
getUpdateCount or getResultSet to retrieve the return value from processing the SQL statement. The
StatementExecute program uses the execute method on a Statement object. This program expects a
parameter to be passed that is an SQL statement. Without looking at the text of the SQL that you provide,
the program processes the statement and determines information about what was processed.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the
getResultSet method when the result is an update count returns null.

The cancel method

The methods of the native JDBC driver are synchronized to prevent two threads running against the
same object from corrupting the object. An exception is the cancel method. The cancel method can be
used by one thread to stop a long running SQL statement on another thread for the same object. The
native JDBC driver cannot force the thread to stop doing work; it can only request that it stop whatever
task it was doing. For this reason, it still takes time for a cancelled statement to stop. The cancel method
can be used to halt runaway SQL queries on the system.

Example: Using the Statement object’s executeUpdate method:

This is an example of how to use the Statement object’s executeUpdate method.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
finformation” on page 539

import java.sql.=;
import java.util.Properties;

public class StatementExample {

public static void main(java.lang.String[] args)

{

// Suggestion: Load these from a properties object.
String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";
String URL = "jdbc:db2://*1ocal";

// Register the native JDBC driver. If the driver cannot be
// registered, the test cannot continue.
try {
Class.forName(DRIVER);
} catch (Exception e) {
System.out.printIn("Driver failed to register.");
System.out.printin(e.getMessage());
System.exit(1);
1

Connection ¢ = null;
Statement s = null;

try {
// Create the connection properties.
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the local System i5 database.
¢ = DriverManager.getConnection(URL, properties);

// Create a Statement object.

s = c.createStatement();

// Delete the test table if it exists. Note: This
// example assumes that the collection MYLIBRARY

98 System i: Programming IBM Developer Kit for Java



// exists on the system.
try {
s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");
} catch (SQLException e) {
// Just continue... the table probably does not exist.
}

// Run an SQL statement that creates a table in the database.
s.executeUpdate ("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

// Run some SQL statements that insert records into the table.

s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('RICH', 123)");
s.executeUpdate ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('FRED', 456)");
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('MARK', 789)");

// Run an SQL query on the table.
ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

// Display all the data in the table.
while (rs.next()) {

System.out.printin("Employee " + rs.getString(1l) + " has ID " + rs.getInt(2));
}

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());

} finally {
// Close database resources
try {
if (s !'= null) {

s.close();

}
} catch (SQLException e) {

System.out.printin("Cleanup failed to close Statement.");
}

}

try {
if (c !'= null) {
c.close();

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Connection.");
}

}

PreparedStatements:

PreparedStatements extend the Statement interface and provide support for adding parameters to SQL
statements.

SQL statements that are passed to the database go through a two-step process in returning results to you.
They are first prepared and then are processed. With Statement objects, these two phases appear to be
one phase to your applications. PreparedStatements allow these two steps to be broken apart. The
preparation step occurs when the object is created and the processing step occurs when the executeQuery,
executeUpdate, or execute method are called on the PreparedStatement object.

Being able to split the SQL processing into separate phases are meaningless without the addition of
parameter markers. Parameter markers are placed in an application so that it can tell the database that it
does not have a specific value at preparation time, but that it provides one before processing time.
Parameter markers are represented in SQL statements by question marks.

IBM Developer Kit for Java 99



Parameter markers make it possible to make general SQL statements that are used for specific requests.
For example, take the following SQL query statement:

SELECT * FROM EMPLOYEE_TABLE WHERE LASTNAME = 'DETTINGER'

This is a specific SQL statement that returns only one value; that is, information about an employee
named Dettinger. By adding a parameter marker, the statement can become more flexible:

SELECT ~ FROM EMPLOYEE_TABLE WHERE LASTNAME = ?

By simply setting the parameter marker to a value, information can be obtained about any employee in
the table.

PreparedStatements provide significant performance improvements over Statements because the previous
Statement example can go through the preparation phase only once and then be processed repeatedly
with different values for the parameter.

Note: Using PreparedStatements is a requirement to support the native JDBC driver’s statement pooling.

For more information about using prepared statements, including creating prepared statements,
specifying result set characteristics, working with auto-generated keys, and setting parameter markers,
see the following pages:

Creating and using PreparedStatements:

The prepareStatement method is used to create new PreparedStatement objects. Unlike the
createStatement method, the SQL statement must be supplied when the PreparedStatement object is
created. At that time, the SQL statement is precompiled for use.

For example, assuming a Connection object named conn already exists, the following example creates a
PreparedStatement object and prepares the SQL statement for processing within the database.

PreparedStatement ps = conn.prepareStatement ("SELECT * FROM EMPLOYEE_TABLE
WHERE LASTNAME = ?");
Specifing ResultSet characteristics and auto-generated key support
As with the createStatement method, the prepareStatement method is overloaded to provide support for
specifying ResultSet characteristics. The prepareStatement method also has variations for working with

auto-generated keys. The following are some examples of valid calls to the prepareStatement method:

Example: The prepareStatement method

Note: Read the [Code example disclaimer| for important legal information.
// New in JDBC 2.0

PreparedStatement ps2 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?",

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATEABLE) ;

// New in JDBC 3.0

PreparedStatement ps3 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,
ResultSet.HOLD_CURSOR_OVER COMMIT);

PreparedStatement ps4 = conn.prepareStatement ("SELECT * FROM
EMPLOYEE_TABLE WHERE LASTNAME = ?", Statement.RETURN_GENERATED KEYS);

100 System i: Programming IBM Developer Kit for Java



Handling parameters

Before a PreparedStatement object can be processed, each of the parameter markers must be set to some
value. The PreparedStatement object provides a number of methods for setting parameters. All methods
are of the form set<Type>, where <Type> is a Java data type. Some examples of these methods include
setInt, setLong, setString, setTimestamp, setNull, and setBlob. Nearly all of these methods take two
parameters:

* The first parameter is the index of the parameter within the statement. Parameter markers are
numbered, starting with 1.

¢ The second parameter is the value to set the parameter to. There are a couple set<Type> methods that
have additional parameters such as the length parameter on setBinaryStream.

Consult the Javadoc for thefjava.sql package| for more information. Given the prepared SQL statement in
the previous examples for the ps object, the following code illustrates how the parameter value is
specified before processing:

ps.setString (1, 'Dettinger');

If an attempt is made to process a PreparedStatement with parameter markers that have not been set, an
SQLException is thrown.

Note: Once set, parameter markers hold the same value between processes unless the following
situations occur:

* The value is changed by another call to a set method.
* The value is removed when the clearParameters method is called.

The clearParameters method flags all parameters as being unset. After the call to clearParameters
has been made, all the parameters must have the set method called again before the next process.

ParameterMetaData support

A new ParameterMetaData interface allows you to retrieve information about a parameter. This support
is the compliment to ResultSetMetaData and is similar. Information such as the precision, scale, data type,
data type name, and whether the parameter allows the null value are all provided.

Example: ParameterMetaData:

This is an example of using the ParameterMetaData interface to retrieve information about parameters.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

;;////////////////////////////////////////////////////////////////////////////////

// ParameterMetaData example. This program demonstrates
// the new support of JDBC 3.0 for learning information
// about parameters to a PreparedStatement.

//
// Command syntax:
// java PMD

//
LTI T T T2 ii1i1i1i111111111171111
/1

// This source is an example of the IBM Developer for Java JDBC driver.
// IBM grants you a nonexclusive Ticense to use this as an example

// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes

// only. These examples have not been thoroughly tested under all

IBM Developer Kit for Java 101


http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html

// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantability and fitness for a particular purpose are

// expressly disclaimed.

// IBM Developer Kit for Java

// (C) Copyright IBM Corp. 2001

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.

/1l

[ITTETIIEE L L2 L i i n i iiiriiiiie7iiiliieilieiliiellieilieiiiieiiiieiiiii
import java.sql.=;

public class PMD {

// Program entry point.
public static void main(java.lang.String[] args)
throws Exception
{
// Obtain setup.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.MYTABLE VALUES(?, ?, ?)");
ParameterMetaData pmd = ps.getParameterMetaData();

for (int i = 1; i < pmd.getParameterCount(); i++) {
System.out.printIn("Parameter number " + i);
System.out.printin(" Class name is " + pmd.getParameterClassName(i));
// Note: Mode relates to input, output or inout
System.out.printIn(" Mode is " + pmd.getParameterClassName(i));
System.out.printIn(" Type is " + pmd.getParameterType(i));
System.out.printIn(" Type name is " + pmd.getParameterTypeName(i));
System.out.printIn(" Precision is " + pmd.getPrecision(i));
System.out.printIn(" Scale is " + pmd.getScale(i));
System.out.printIn(" Nullable? is " + pmd.isNullable(i));
System.out.printIn(" Signed? is " + pmd.isSigned(i));

}

Processing PreparedStatements:

Processing SQL statements with a PreparedStatement object is accomplished with the executeQuery,
executeUpdate, and execute methods like Statement objects are processed. Unlike Statement versions, no
parameters are passed on these methods because the SQL statement was already provided when the
object was created. Because PreparedStatement extends Statement, applications can attempt to call
versions of executeQuery, executeUpdate, and execute methods that take a SQL statement. Doing so
results in an SQLException being thrown.

Returning results from SQL queries
If an SQL query statement that returns a ResultSet object is to be processed, the executeQuery method

should be used. The [PreparedStatementExample] program uses a PreparedStatement object’s executeQuery
method to obtain a ResultSet.

Note: If an SQL statement processed with the executeQuery method does not return a ResultSet, an
SQLException is thrown.

102 System i: Programming IBM Developer Kit for Java



Returning update counts for SQL statements

If the SQL is known to be a Data Definition Language (DDL) statement or a Data Manipulation Language
(DML) statement that returns an update count, the executeUpdate method should be used. The
[PreparedStatementExample| sample program uses a PreparedStatement object’s executeUpdate method.

Processing SQL statements where the expected return is unknown

If the SQL statement type is not known, the execute method should be used. Once this method has been
processed, the JDBC driver can tell the application what results types the SQL statement generated
through API calls. The execute method returns true if the result is at least one ResultSet and false if the
return value is an update count. Given this information, applications can use the getUpdateCount or
getResultSet statement methods to retrieve the return value from processing the SQL statement.

Note: Calling the getUpdateCount method when the result is a ResultSet returns -1. Calling the
getResultSet method when the result is an update count returns null.

Example: Using PreparedStatement to obtain a ResultSet:

This is an example of using a PreparedStatement object’s executeQuery method to obtain a ResultSet.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
[information” on page 539

import java.sql.=;
import java.util.Properties;

public class PreparedStatementExample {

public static void main(java.lang.String[] args)

{
// Load the following from a properties object.
String DRIVER = "com.ibm.db2.jdbc.app.DB2Driver";
String URL = "jdbc:db2://*10cal";

// Register the native JDBC driver. If the driver cannot
// be registered, the test cannot continue.
try {
Class.forName(DRIVER);
} catch (Exception e) {
System.out.printIn("Driver failed to register.");
System.out.printin(e.getMessage());
System.exit(1);
}

Connection ¢ = null;
Statement s = null;

// This program creates a table that is

// used by prepared statements later.

try {
// Create the connection properties.
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the local database.
¢ = DriverManager.getConnection(URL, properties);

// Create a Statement object.

s = c.createStatement();

// Delete the test table if it exists. Note that

// this example assumes throughout that the collection

IBM Developer Kit for Java 103



104

// MYLIBRARY exists on the system.
try {
s.executeUpdate("DROP TABLE MYLIBRARY.MYTABLE");
} catch (SQLException e) {
// Just continue... the table probably did not exist.
}

// Run an SQL statement that creates a table in the database.
s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());
} finally {
// Close database resources
try {
if (s !'=null) {
s.close();

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Statement.");
}

// This program then uses a prepared statement to insert many
// rows into the database.
PreparedStatement ps = null;
String[] nameArray = {"Rich", "Fred", "Mark", "Scott", "Jason",
"John", "Jessica", "Blair", "Erica", "Barb"};
try {
// Create a PreparedStatement object that is used to insert data into the

// table.
ps = c.prepareStatement ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (7, ?)");

for (int i = 0; i < nameArray.length; i++) {
ps.setString (1, nameArray[i]); // Set the Name from our array.
ps.setInt(2, i+l1); // Set the ID.
ps.executeUpdate();

}

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());
} finally {
// Close database resources
try {
if (ps != null) {
ps.close();

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Statement.");
}

// Use a prepared statement to query the database
// table that has been created and return data from it. In
// this example, the parameter used is arbitrarily set to
// 5, meaning return all rows where the ID field is less than
// or equal to 5.
try {
ps = c.prepareStatement ("SELECT * FROM MYLIBRARY.MYTABLE " +
"WHERE ID <= ?");

ps.setInt(1, 5);

System i: Programming IBM Developer Kit for Java



// Run an SQL query on the table.
ResultSet rs = ps.executeQuery();
// Display all the data in the table.
while (rs.next()) {
System.out.printin("Employee " + rs.getString(1l) + " has ID " + rs.getInt(2));
}

} catch (SQLException sqle) {
System.out.printin("Database processing has failed.");
System.out.printin("Reason: " + sqle.getMessage());

} finally {

// Close database resources

try {
if (ps != null) {
ps.close();
}

} catch (SQLException e) {
System.out.printIn("Cleanup failed to close Statement.");
}

try {
if (¢ !'= null) {
c.close();
}

} catch (SQLException e) {
System.out.printin("Cleanup failed to close Connection.");
}

}

CallableStatements:

The JDBC CallableStatement interface extends PreparedStatement and provides support for output and
input/output parameters. The CallableStatement interface also has support for input parameters that is
provided by the PreparedStatement interface.

The CallableStatement interface allows the use of SQL statements to call stored procedures. Stored
procedures are programs that have a database interface. These programs possess the following:

* They can have input and output parameters, or parameters that are both input and output.
* They can have a return value.
¢ They have the ability to return multiple ResultSets.

Conceptually in JDBC, a stored procedure call is a single call to the database, but the program associated
with the stored procedure may process hundreds of database requests. The stored procedure program
may also perform a number of other programmatic tasks not typically done with SQL statements.

Because CallableStatements follow the PreparedStatement model of decoupling the preparation and
processing phases, they have the potential for optimized reuse (see [“PreparedStatements” on page 99| for
details). Since SQL statements of a stored procedure are bound into a program, they are processed as
static SQL and further performance benefits can be gained that way. Encapsulating a lot of database work
in a single, reusable database call is an example of using stored procedures optimally. Only this call goes
over the network to the other system, but the request can accomplish a lot of work on the remote system.

Creating CallableStatements
The prepareCall method is used to create new CallableStatement objects. As with the prepareStatement

method, the SQL statement must be supplied at the time that the CallableStatement object is created. At
that time, the SQL statement is precompiled. For example, assuming a Connection object named conn

IBM Developer Kit for Java 105



already exists, the following creates a CallableStatement object and completes the preparation phase of
getting the SQL statement ready for processing within the database:

PreparedStatement ps = conn.prepareStatement("? = CALL ADDEMPLOYEE(?, ?, ?");

The ADDEMPLOYEE stored procedure takes input parameters for a new employee name, his social
security number, and his manager’s user ID. From this information, multiple company database tables
may be updated with information about the employee such as his start date, division, department, and so
on. Further, a stored procedure is a program that may generate standard user IDs and e-mail addresses
for that employee. The stored procedure may also send an e-mail to the hiring manager with initial
usernames and passwords; the hiring manager can then provide the information to the employee.

The ADDEMPLOYEE stored procedure is set up to have a return value. The return code may be a
success or failure code that the calling program can use when a failure occurs. The return value may also
be defined as the new employee’s company ID number. Finally, the stored procedure program could have
processed queries internally and have left the ResultSets from those queries open and available for the
calling program. Querying all the new employee’s information and making it available to the caller
through a returned ResultSet is reasonable.

How to accomplish each of these types of tasks is covered in the following sections.
Specifying ResultSet characteristics and auto-generated key support

As with createStatement and prepareStatement, there are multiple versions of prepareCall that provide
support for specifying ResultSet characteristics. Unlike prepareStatement, the prepareCall method does
not provide variations for working with auto-generated keys from CallableStatements (JDBC 3.0 does not
support this concept.) The following are some examples of valid calls to the prepareCall method:

Example: The prepareCall method
// The following is new in JDBC 2.0

CallableStatement cs2 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?

s ?) ",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE);

// New in JDBC 3.0

CallableStatement cs3 = conn.prepareCall("? = CALL ADDEMPLOYEE(?, ?, ?)",
ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATEABLE,
ResultSet.HOLD CURSOR_OVER_COMMIT);

Handling parameters

As stated, CallableStatement objects may take three types of parameters:
* IN

IN parameters are handled in the same manner as PreparedStatements. The various set methods of the
inherited PreparedStatement class are used to set the parameters.

e OUT

OUT parameters are handled with the registerOutParameter method. The most common form of
registerOutParameter takes an index parameter as the first parameter and an SQL type as the second
parameter. This tells the JDBC driver what to expect for data from the parameter when the statement is
processed. There are two other variations on the registerOutParameter method that can be found in the
package Javadoc.

« INOUT
INOUT parameters require that the work for both IN parameters and OUT parameters be done. For
each INOUT parameter, you must call a set method and the registerOutParameter method before the

statement can be processed. Failing to set or register any parameter results in an SQLException being
thrown when the statement is processed.

106 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html

Refer to [‘Example: Creating a procedure with input and output parameters” on page 11(| for more
information.

As with PreparedStatements, CallableStatement parameter values remain the same between processes
unless you call a set method again. The clearParameters method does not affect parameters that are
registered for output. After calling clearParameters, all IN parameters must be set to a value again, but all
OUT parameters do not have to be registered again.

Note: The concept of parameters must not be confused with the index of a parameter marker. A stored
procedure call expects a certain number of parameters that are passed to it. A particular SQL
statement has ? characters (parameter markers) in it to represent values that are supplied at
runtime. Consider the following example to see the difference between the two concepts:

CallableStatement cs = con.prepareCall("CALL PROC(?, "SECOND", ?)");
cs.setString(1, "First"); //Parameter marker 1, Stored procedure parm 1

cs.setString(2, "Third"); //Parameter marker 2, Stored procedure parm 3
Accessing stored procedure parameters by name

Parameters to stored procedures have names associated with them as the following stored procedure
declaration shows:

Example: Stored procedure parameters

CREATE
PROCEDURE MYLIBRARY.APROC
(IN PARM1 INTEGER)
LANGUAGE SQL SPECIFIC MYLIBRARY.APROC
BODY: BEGIN
<Perform a task here...>
END BODY

There is a single integer parameter with the name PARM1. In JDBC 3.0, there is support for specifying
stored procedure parameters by name as well as by index. The code to set up a CallableStatement for this
procedure is as follows:

CallableStatement cs = con.prepareCall("CALL APROC(?)");

cs.setString("PARM1", 6); //Sets input parameter at index 1 (PARM1) to 6.

Processing CallableStatements:

Processing SQL stored procedure calls with a JDBC CallableStatement object is accomplished with the
same methods that are used with a PreparedStatement object.

Return results for stored procedures
If an SQL query statement is processed within a stored procedure, the query results can be made

available to the program calling the stored procedure. Multiple queries can also be called within the
stored procedure and the calling program can process all the ResultSets that are available.

See [Example: Create a procedure with multiple ResultSets| for more information.

Note: If a stored procedure is processed with executeQuery and it does not return a ResultSet, an
SQLException is thrown.

IBM Developer Kit for Java 107



Access ResultSets concurrently

Return results for stored procedures deals with ResultSets and stored procedures and provides an
example that works with all Java Development Kit (JDK) releases. In the example, the ResultSets are
processed in order from the first ResultSet that the stored procedure opened to the last ResultSet opened.
One ResultSet is closed before the next is used.

In JDK 1.4 and subsequent versions, there is support for working with ResultSets from stored procedures
concurrently.

Note: This feature was added to the underlying system support through the Command Line Interface
(CLI) in V5R2. As a result, JDK 1.4 or a subsequent version of the JDK running on a system before
V5R2 does not have this support available to it.

Return update counts for stored procedures

Returning update counts for stored procedures is a feature discussed in the JDBC specification, but it is
not currently supported on the System i platform. There is no way to return multiple update counts from
a stored procedure call. If an update count is needed from a processed SQL statement within a stored
procedure, there are two ways of returning the value:

* Return the value as an output parameter.

* Pass back the value as the return value from the parameter. This is a special case of an output
parameter. See Process stored procedures that have a return for more information.

Process stored procedures where the expected return is unknown

If the results from a stored procedure call are not known, the execute method should be used. Once this
method has been processed, the JDBC driver can tell the application what types of results the stored
procedure generated through API calls. The execute method returns true if the result is one or more
ResultSets. Updating counts do not come from stored procedure calls.

Process stored procedures that have a return value

The System i platform supports stored procedures that have a return value similar to a function’s return
value. The return value from a stored procedure is labeled like other parameters marks and is labeled
such that it is assigned by the stored procedure call. An example of this is as follows:

? = CALL MYPROC(?, ?, ?)

The return value from a stored procedure call is always an integer type and must be registered like any
other output parameter.

See [Example: Create a procedure with return values| for more information.

Example: Creating a procedure with multiple ResultSets:

This example shows how to access a database and then create a procedure with multiple ResultSets using
JDBC.

Note: Read the [Code example disclaimer| for important legal information.

import java.sql.*;
import java.util.Properties;

public class CallableStatementExamplel {

public static void main(java.lang.String[] args) {

108 System i: Programming IBM Developer Kit for Java



// Register the Native JDBC driver. If we cannot
// register the driver, the test cannot continue.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the Tocal server database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();

// Create a procedure with multiple ResultSets.
String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX1 " +
"RESULT SET 2 LANGUAGE SQL READS SQL DATA SPECIFIC MYLIBRARY.SQLSPEX1 " +
"EX1: BEGIN " +
" DECLARE C1 CURSOR FOR SELECT = FROM QSYS2.SYSPROCS " +
" WHERE SPECIFIC_SCHEMA = 'MYLIBRARY'; " +
" DECLARE C2 CURSOR FOR SELECT = FROM QSYS2.SYSPARMS " +
" WHERE SPECIFIC_SCHEMA = 'MYLIBRARY'; " +

" OPEN C1; " +

" OPEN C2; " +

" SET RESULT SETS CURSOR C1, CURSOR C2; " +
"END EX1 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: We are ignoring the error here. We are making

// the assumption that the only reason this fails
// is because the procedure already exists. Other
// reasons that it could fail are because the C compiler
// is not found to compile the procedure or because
// collection MYLIBRARY does not exist on the system.
}
s.close();

// Now use JDBC to run the procedure and get the results back. In

// this case we are going to get information about 'MYLIBRARY's stored
// procedures (which is also where we created this procedure, thereby
// ensuring that there is something to get.

CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX1");

ResultSet rs = cs.executeQuery();

// We now have the first ResultSet object that the stored procedure
// left open. Use it.
int i =1;
while (rs.next()) {
System.out.printIn("MYLIBRARY stored procedure
"4+ 4+ " dis " + rs.getString(1) + "." +
rs.getString(2));
i+t

}
System.out.printin("");

// Now get the next ResultSet object from the system - the previous
// one is automatically closed.
if (!cs.getMoreResults()) {
System.out.printin("Something went wrong. There should have
been another ResultSet, exiting.");
System.exit(0);

IBM Developer Kit for Java 109



}
rs = cs.getResultSet();

// We now have the second ResultSet object that the stored procedure
// 1eft open. Use that one.
i=1;
while (rs.next()) {
System.out.printIn("MYLIBRARY procedure " + rs.getString(1)
+ "." + rs.getString(2) +
" parameter: " + rs.getInt(3) + " direction:
" + rs.getString(4) +
" data type: " + rs.getString(5));
it+;

}

if (i ==1) {
System.out.printin("None of the stored procedures have any parameters.");
}

if (cs.getMoreResults()) {
System.out.printIn("Something went wrong,
there should not be another ResultSet.");
System.exit(0);
}

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {
System.out.printin("Something failed..");

System.out.printin("Reason: " + e.getMessage());
e.printStackTrace();

}

Example: Creating a procedure with input and output parameters:

This example shows how to access a database using JDBC and then create a procedure with input and
output parameters.

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.*;
import java.util.Properties;

public class CallableStatementExample2 {
public static void main(java.lang.String[] args) {

// Register the Native JDBC driver. If we cannot
// register the driver, the test cannot continue.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the Tocal server database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();

110 System i: Programming IBM Developer Kit for Java



// Create a procedure with in, out, and in/out parameters.

String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX2 " +
"(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER) " +
"LANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX2 " +

"EX2: BEGIN " +

“ SET P2 =Pl +1;"+
" SET P3 =P3+1; "+
"END EX2 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: We are ignoring the error here. We are making

// the assumption that the only reason this fails
// is because the procedure already exists. Other
// reasons that it could fail are because the C compiler
// is not found to compile the procedure or because
// collection MYLIBRARY does not exist on the system.
}
s.close();

// Prepare a callable statement used to run the procedure.
CallableStatement cs = c.prepareCall("CALL MYLIBRARY.SQLSPEX2(?, ?, ?)");

// A1l input parameters must be set and all output parameters must
// be registered. Notice that this means we have two calls to make
// for an input output parameter.

cs.setlnt(1, 5);

cs.setInt(3, 10);

cs.registerOutParameter(2, Types.INTEGER);
cs.registerOutParameter(3, Types.INTEGER);

// Run the procedure
cs.executeUpdate();

// Verify the output parameters have the desired values.
System.out.printin("The value of P2 should be P1 (5) + 1 =6. --> " + cs.getInt(2));
System.out.printIn("The value of P3 should be P3 (10) + 1 = 11. --> " + cs.getInt(3));

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {
System.out.printin("Something failed..");

System.out.printin("Reason: " + e.getMessage());
e.printStackTrace();

}

Example: Creating a procedure with return values:

This example shows how to access a database using JDBC and then create a procedure with return
values.

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;
import java.util.Properties;

public class CallableStatementExample3 {
public static void main(java.lang.String[] args) {

// Register the native JDBC driver. If the driver cannot

IBM Developer Kit for Java 111



// be registered, the test cannot continue.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

// Create the connection properties
Properties properties = new Properties ();
properties.put ("user", "userid");
properties.put ("password", "password");

// Connect to the Tocal server database
Connection ¢ = DriverManager.getConnection("jdbc:db2://*1ocal", properties);

Statement s = c.createStatement();
// Create a procedure with a return value.

String sql = "CREATE PROCEDURE MYLIBRARY.SQLSPEX3 " +
" LANGUAGE SQL SPECIFIC MYLIBRARY.SQLSPEX3 " +

" EX3: BEGIN " +
" RETURN 1976; " +
" END EX3 ";

try {
s.executeUpdate(sql);
} catch (SQLException e) {
// NOTE: The error is ignored here. The assumptions is

// made that the only reason this fails is

// because the procedure already exists. Other

// reasons that it could fail are because the C compiler

// is not found to compile the procedure or because

// collection MYLIBRARY does not exist on the system.
s.close();

// Prepare a callable statement used to run the procedure.
CallableStatement cs = c.prepareCall("? = CALL MYLIBRARY.SQLSPEX3");

// You still need to register the output parameter.
cs.registerOutParameter(1, Types.INTEGER);

// Run the procedure.
cs.executeUpdate();

// Show that the correct value is returned.
System.out.printin("The return value
should always be 1976 for this example:
--> " + cs.getInt(1));

cs.close(); // close the CallableStatement object
c.close(); // close the Connection object.

} catch (Exception e) {
System.out.printIn("Something failed..");
System.out.printin("Reason: " + e.getMessage());
e.printStackTrace();

}
ResultSets

The ResultSet interface provides access to the results generated by running queries. Conceptually, data of
a ResultSet can be thought of as a table with a specific number of columns and a specific number of
rows. By default, the table rows are retrieved in sequence. Within a row, column values can be accessed
in any order.

ResultSet characteristics:

112 System i: Programming IBM Developer Kit for Java



This topic discusses ResultSet characteristics such ResultSet types, concurrency, ability to close the
ResultSet by committing the connection object, and specification of ResultSet characteristics.

By default, all created ResultSets have a type of forward only, a concurrency of read only, and cursors are
held over commit boundaries. An exception to this is that WebSphere currently changes the cursor
holdability default so that cursors are implicitly closed when committed. These characteristics are
configurable through methods that are accessible on Statement, PreparedStatement, and CallableStatement
objects.

ResultSet types

The ResultSet type specifies the following about the ResultSet:
¢ Whether the ResultSet is scrollable.

* The types of Java Database Connectivity (JDBC) ResultSets that are defined by constants on the
ResultSet interface.

Definitions of these ResultSet types are as follows:

TYPE_FORWARD_ONLY
A cursor that can only be used to process from the beginning of a ResultSet to the end of it. This
is the default type.

TYPE_SCROLL_INSENSITIVE
A cursor that can be used to scroll through a ResultSet. This type of cursor is insensitive to
changes made to the database while it is open. It contains rows that satisfy the query when the
query was processed or when data is fetched.

TYPE_SCROLL_SENSITIVE
A cursor that can be used to scroll in various ways through a ResultSet. This type of cursor is
sensitive to changes made to the database while it is open. Changes to the database have a direct
impact on the ResultSet data.

JDBC 1.0 ResultSets are always forward only. Scrollable cursors were added in JDBC 2.0.

Note: The blocking enabled and block size connection properties affect the degree of sensitivity of a
TYPE_SCROLL_SENSITIVE cursor. Blocking enhances performance by caching data in the JDBC driver
layer itself.

Concurrency

Concurrency determines whether the ResultSet can be updated. The types are again defined by constants
in the ResultSet interface. The available concurrency settings are as follows:

CONCUR_READ_ONLY
A ResultSet that can only be used for reading data out of the database. This is the default setting.

CONCUR_UPDATEABLE
A ResultSet that allows you to make changes to it. These changes can be placed into the
underlying database.

JDBC 1.0 ResultSets are always forward only. Updateable ResultSets were added in JDBC 2.0.
Note: According to the JDBC specification, the JDBC driver is allowed to change the ResultSet type of the
ResultSet concurrency setting if the values cannot be used together. In such cases, the JDBC driver

places a warning on the Connection object.

There is one situation where the application specifies a TYPE_SCROLL_INSENSITIVE,
CONCUR_UPDATEABLE ResultSet. Insensitivity is implemented in the database engine by making a

IBM Developer Kit for Java 113



copy of the data. You are then not allowed to make updates through that copy to the underlying
database. If you specify this combination, the driver changes the sensitivity to
TYPE_SCROLL_SENSITIVE and create the warning indicating that your request has been changed.

Holdability

The holdability characteristic determines whether calling commit on the Connection object closes the
ResultSet. The JDBC API for working with the holdability characteristic is new in version 3.0. However,
the native JDBC driver has provided a connection property for several releases that allows you to specify
that default for all ResultSets created under the connection. The API support overrides any setting for the
connection property. Values for the holdability characteristic are defined by ResultSet constants and are as
follows:

HOLD_CURSOR_OVER_COMMIT
All open cursors remain open when the commit clause is called. This is the native JDBC default
value.

CLOSE_CURSORS_ON_COMMIT
All open cursors are closed when commit clause is called.

Note: Calling rollback on a connection always closes all open cursors. This is a little known fact, but a
common way for databases to handle cursors.

According to the JDBC specification, the default for cursor holdability is implementation-defined. Some
platforms choose to use CLOSE_CURSORS_ON_COMMIT as the default. This does not usually become
an issue for most applications, but you must be aware of what the driver you are working with does if
you are working with cursors across commit boundaries. The IBM Toolbox for Java JDBC driver also uses
the HOLD_CURSORS_ON_COMMIT default, but the JDBC driver for UDB for Windows NT® has a
default of CLOSE_CURSORS_ON_COMMIT.

Specify ResultSet characteristics

A ResultSet’s characteristics do not change once the ResultSet object has been created. Therefore, the
characteristics have be specified before creating the object. You can specify these characteristics through
overloaded variations of the createStatement, prepareStatement, and prepareCall methods.

Note: There are ResultSet methods to obtain the ResultSet type and the concurrency of the ResultSet, but
there is no method to obtain the holdability of the ResultSet.

Related concepts

[‘Statement objects” on page 97|

A Statement object is used for processing a static SQL statement and obtaining the results produced
by it. Only one ResultSet for each Statement object can be open at a time. All statement methods that
process an SQL statement implicitly close a statement’s current ResultSet if an open one exists.

[“CallableStatements” on page 105

The JDBC CallableStatement interface extends PreparedStatement and provides support for output
and input/output parameters. The CallableStatement interface also has support for input parameters
that is provided by the PreparedStatement interface.

[“PreparedStatements” on page 99|
PreparedStatements extend the Statement interface and provide support for adding parameters to SQL
statements.

[“Cursor movement” on page 119|

The System i Java Database Connectivity (JDBC) drivers support scrollable ResultSets. With a
scrollable ResultSet, you can process rows of data in any order using a number of cursor-positioning
methods.

Related tasks

114 System i: Programming IBM Developer Kit for Java



[‘Changing ResultSets” on page 122
With the System i JDBC drivers, you can change ResultSets by performing several tasks.

Related reference

[‘JDBC driver connection properties” on page 49|
This table contains valid JDBC driver connection properties, their values, and their descriptions.

[“DataSource properties” on page 61]
This table contains valid data source properties, their values, and their descriptions.

Example: Sensitive and insensitive ResultSets:

The following example shows the difference between sensitive and insensitive ResultSets when rows are
inserted into a table.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

import java.sql.x;
public class Sensitive {
pubTic Connection connection = null;

public static void main(java.lang.String[] args) {
Sensitive test = new Sensitive();

test.setup();
test.run("sensitive");
test.cleanup();

test.setup();
test.run("insensitive");
test.cleanup();

public void setup() {

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement s = connection.createStatement();
try {
s.executeUpdate("drop table cujosql.sensitive");
} catch (SQLException e) {
// Ignored.
}

.executeUpdate("create table cujosql.sensitive(coll int)");
.executeUpdate("insert into cujosql.sensitive values(1)");
.executeUpdate("insert into cujosql.sensitive values(2)");
.executeUpdate("insert into cujosql.sensitive values(3)");
.executeUpdate("insert into cujosql.sensitive values(4)");
.executeUpdate("insert into cujosql.sensitive values(5)");
.close();

nw unu unu n unu ununun

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
if (e instanceof SQLException) {
SQLException another = ((SQLException) e).getNextException();
System.out.printin("Another: " + another.getMessage());

IBM Developer Kit for Java 115



public void run(String sensitivity) {
try {
Statement s = null;
if (sensitivity.equalsIgnoreCase("insensitive")) {
System.out.printin("creating a TYPE_SCROLL_INSENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);
} else {
System.out.printin("creating a TYPE_SCROLL_SENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ ONLY);
}

ResultSet rs = s.executeQuery("select * From cujosql.sensitive");

// Fetch the five values that are there.
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printin("value is " + rs.getInt(1));
rs.next();
System.out.printin("value is
rs.next();
System.out.printin("value is " + rs.getInt(1));
rs.next();

System.out.printin("value is " + rs.getInt(1));
System.out.printin("fetched the five rows...");

"+ rs.getInt(1));

// Note: If you fetch the last row, the ResultSet Tooks
// closed and subsequent new rows that are added
// are not be recognized.

// Allow another statement to insert a new value.

Statement s2 = connection.createStatement();
s2.executeUpdate("insert into cujosql.sensitive values(6)");
s2.close();

// Whether a row is recognized is based on the sensitivity setting.
if (rs.next()) {
System.out.printin("There is a row now: " + rs.getInt(1));
} else {
System.out.printin("No more rows.");
}

} catch (SQLException e) {
System.out.printin("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printin("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());
System.out.printTn("=-e---mcmm oo ")s

e.printStackTrace();

}

catch (Exception ex) {
System.out.printin("An exception other than an SQLException was thrown:
ex.printStackTrace();

116 System i: Programming IBM Developer Kit for Java



public void cleanup() {

try

}

{

connection.close();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

Example: ResultSet sensitivity:

The following example shows how a change can affect a where clause of an SQL statement based on the
sensitivity of the ResultSet.

Some of the formatting in this example may be incorrect in order to fit this example on a printed page.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

[information” on page 539

import java.sql.x;

public class Sensitive2 {

public Connection connection =

null;

public static void main(java.lang.String[] args) {
Sensitive2 test = new Sensitive2();

test.
test.
.cleanup();

test

test.
test.
.cleanup();

test

setup();
run("sensitive");

setup();
run("insensitive");

public void setup() {

try

{

System.out.printin("Native JDBC used");
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

C

S
t

}
}

nw unu unu n nvu un

onnection = DriverManager.getConnection("jdbc:db2:*Tocal");

tatement s = connection.createStatement();

ry {

s.executeUpdate("drop table cujosql.sensitive");
catch (SQLException e) {

// Ignored.

.executeUpdate("create
.executeUpdate("insert
.executeUpdate("insert
.executeUpdate("insert
.executeUpdate("insert
.executeUpdate("insert

table cujosql.sensitive(coll int)");
.sensitive
.sensitive
.sensitive
.sensitive
cujosql.

into
into
into
into
into

cujosql
cujosql
cujosql
cujosql

sensitive

values(1)");
values(2)");
values(3)");
values(4)");
values(5)");

IBM Developer Kit for Java

117



try {

s.executeUpdate("drop table cujosql.sensitive2");
} catch (SQLException e) {

// Ignored.

——

.executeUpdate("create table cujosql.sensitive2(col2 int)");
.executeUpdate("insert into cujosql.sensitive2 values(1)");
.executeUpdate("insert into cujosql.sensitive2 values(2)"
.executeUpdate("insert into cujosql.sensitive2 values(3)
.executeUpdate("insert into cujosql.sensitive2 values(4)
.executeUpdate("insert into cujosql.sensitive2 values(5)

nw unu unu n n n

)s
')
")s
II)’

s.close();

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
if (e instanceof SQLException) {
SQLException another = ((SQLException) e).getNextException();
System.out.printin("Another: " + another.getMessage());

public void run(String sensitivity) {
try {

Statement s = null;
if (sensitivity.equalsIgnoreCase("insensitive")) {
System.out.printin("creating a TYPE_SCROLL_INSENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL INSENSITIVE,
ResultSet.CONCUR _READ ONLY);
} else {
System.out.printin("creating a TYPE_SCROLL_SENSITIVE cursor");
s = connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ ONLY);

}

ResultSet rs = s.executeQuery("select coll, col2 From cujosql.sensitive,
cujosql.sensitive2 where coll = col2");

rs.next();
System.out.printin("value is
rs.next();
System.out.printin("value is
rs.next();
System.out.printin("value is
rs.next();
System.out.printin("value is

+

rs.getInt(1));

+

rs.getint(1));

+

rs.getint(1));

+

rs.getInt(1));
System.out.printin("fetched the four rows...");

// Another statement creates a value that does not fit the where clause.

Statement s2 =
connection.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATEABLE) ;

ResultSet rs2 = s2.executeQuery("select *

from cujosql.sensitive where coll = 5 FOR UPDATE");

rs2.next();

rs2.updateInt(1, -1);

118 System i: Programming IBM Developer Kit for Java



rs2.updateRow();
s2.close();

if (rs.next()) {

System.out.printin("There is still a row: " + rs.getInt(1));
} else {

System.out.printin("No more rows.");
}

} catch (SQLException e) {
System.out.printin("SQLException exception: ");

System.out.printin("Message:..... " + e.getMessage());
System.out.printin("SQLState:...." + e.getSQLState());
System.out.printin("Vendor Code:." + e.getErrorCode());
System.out.printTn("--=c---ecmmmmm e ")s

e.printStackTrace();

catch (Exception ex) {
System.out.printin("An exception other
than an SQLException was thrown: ");
ex.printStackTrace();

public void cleanup() {

try {
connection.close();

} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

}

Cursor movement:

The System i Java Database Connectivity (JDBC) drivers support scrollable ResultSets. With a scrollable
ResultSet, you can process rows of data in any order using a number of cursor-positioning methods.

The ResultSet.next method is used to move through a ResultSet one row at a time. With Java Database
Connectivity (JDBC) 2.0, the System i JDBC drivers support scrollable ResultSets. Scrollable ResultSets

allow processing the rows of data in any order by using the previous, absolute, relative, first, and last
methods.

By default, JDBC ResultSets are always forward only, meaning that the only valid cursor-positioning
method to call is next(). You have to explicitly request a scrollable ResultSet. See for more
information.

With a scrollable ResultSet, you can use the following cursor-positioning methods:

Method Description

Next This method moves the cursor forward one row in the ResultSet.

The method returns true if the cursor is positioned on a valid row and false otherwise.

Previous The method moves the cursor backward one row in the ResultSet.

The method returns true if the cursor is positioned on a valid row and false otherwise.

IBM Developer Kit for Java 119



Method Description

First The method moves the cursor to the first row in the ResultSet.

The method returns true if the cursor is positioned on the first row and false if the ResultSet is
empty.

Last The method moves the cursor to the last row in the ResultSet.

The method returns true if the cursor is positioned on the last row and false if the ResultSet is
empty.

BeforeFirst The method moves the cursor immediately before the first row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this method.

AfterLast The method moves the cursor immediately after the last row in the ResultSet.

For an empty ResultSet, this method has no effect. There is no return value from this method.

Relative (int rows) | The method moves the cursor relative to its current position.
¢ If rows is 0, this method has no effect.

* If rows is positive, the cursor is moved forward that many rows. If there are fewer rows
between the current position and the end of the ResultSet than specified by the input
parameters, this method operates like afterLast.

 If rows is negative, the cursor is moved backward that many rows. If there are fewer rows
between the current position and the end of the ResultSet than specified by the input
parameter, this method operates like beforeFirst.

The method returns true if the cursor in positioned on a valid row and false otherwise.

Absolute (int row) |The method moves the cursor to the row specified by row value.

If row value is positive, the cursor is positioned that many rows from the beginning of the
ResultSet. The first row is numbered 1, the second is 2, and so on. If there are fewer rows in
the ResultSet than specified by the row value, this method operates the same way as afterLast.

If row value is negative, the cursor is positioned that many rows from the end of the ResultSet.
The last row is numbered -1, the second to last is -2, and so on. If there are fewer rows in the
ResultSet than specified by the row value, this method operates the same way beforeFirst.

If row value is 0, this method operates the same way as beforeFirst.

The method returns true if the cursor is positioned on a valid row and false otherwise.

Retrieving ResultSet data:

The ResultSet object provides several methods for obtaining column data for a row. All are of the form
get<Type>, where <Type> is a Java data type. Some examples of these methods include getInt, getLong,
getString, getTimestamp, and getBlob. Nearly all of these methods take a single parameter that is either
the column index within the ResultSet or the column name.

ResultSet columns are numbered, starting with 1. If the column name is used and there is more than one
column in the ResultSet with the same name, the first one is returned. There are some get<Type>
methods that have additional parameters, such as the optional Calendar object, which can be passed to
getTime, getDate, and getTimestamp. Refer to the Javadoc for the [java.sql package| for full details.

For get methods that return objects, the return value is null when the column in the ResultSet is null. For
primitive types, null cannot be returned. In these cases, the value is 0 or false. If an application must
distinguish between null, and 0 or false, the wasNull method can be used immediately after the call. This
method can then determine whether the value was an actual 0 or false value, or if that value was
returned because the ResultSet value was indeed null.

120 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html

ResultSetMetaData support

When the getMetaData method is called on a ResultSet object, the method returns a ResultSetMetaData

object describing the columns of that ResultSet object. When the SQL statement being processed is

unknown until runtime, the ResultSetMetaData can be used to determine what get methods should be

used to retrieve the data. The following code example uses ResultSetMetaData to determine each column

type in the result set:

ResultSet rs = stmt.executeQuery(sqlString);

ResultSetMetaData rsmd = rs.getMetaData();

int colType [] = new int[rsmd.getColumnCount()];

for (int idx = 0, int col = 1; idx < colType.length; idx++, col++)
colType[idx] = rsmd.getColumnType(col);

Example: ResultSetMetaData interface for IBM Developer Kit for Java:

This program demonstrates using a ResultSetMetaData and a ResultSet to display all the metadata about

a ResultSet created querying a table. The user passes the value for the table and the library.

Note: Read the [Code example disclaimed for important legal information.

import java.sql.*;

[**

ResultSetMetaDataExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the metadata about a ResultSet
created querying a table. The user passes the value for the
table and library.

*%/

public class ResultSetMetaDataExample f{

public static void main(java.lang.String[] args)
{
if (args.length !'= 2) {
System.out.printIn("Usage: java ResultSetMetaDataExample <library> <table>");
System.out.printin("where <library> is the Tibrary that contains <table>");
System.exit(0);
}

Connection con = null;
Statement s = null;

ResultSet rs = null;
ResultSetMetaData rsmd = null;

try {
// Get a database connection and prepare a statement.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
con = DriverManager.getConnection("jdbc:db2:*Tocal");

s = con.createStatement();

rs = s.executeQuery("SELECT * FROM " + args[0] + "." + args[1]);
rsmd = rs.getMetaData();

int colCount = rsmd.getColumnCount();
int rowCount = 0;
for (int i = 1; i <= colCount; i++) {
System.out.printIn("Information about column " + i);

System.out.printin(" Name..........: " + rsmd.getColumnName(i));
System.out.printin(" Data Type.....: " + rsmd.getColumnType(i) +

" (" + rsmd.getColumnTypeName(i) + " )");
System.out.printin("  Precision.....: " + rsmd.getPrecision(i));
System.out.printin(" Scale.........: " + rsmd.getScale(i));
System.out.print (" Allows Nulls..: ");

IBM Developer Kit for Java

121



if (rsmd.isNullable(i)==0)
System.out.printin("false");
else
System.out.printin("true");

}

} catch (Exception e) {
// Handle any errors.
System.out.printin("Oops... we have an error... ");
e.printStackTrace();
} finally {
// Ensure we always clean up. If the connection gets closed, the
// statement under it closes as well.
if (con !'= null) {
try {
con.close();
} catch (SQLException e) {
System.out.printIn("Critical error - cannot close connection object");
}

}

Changing ResultSets:
With the System i JDBC drivers, you can change ResultSets by performing several tasks.

The default setting for ResultSets is read only. However, with Java Database Connectivity (JDBC) 2.0, the
System i JDBC drivers provide complete support for updateable ResultSets.

You can refer to [“ResultSet characteristics” on page 112|on how to update ResultSets.

Update rows

Rows may be updated in a database table through the ResultSet interface. The steps involved in this
process are the following:

1. Change the values for a specific row using various update<Type> methods, where <Type> is a Java
data type. These update<Type> methods correspond to the get<Type> methods available for retrieving
values.

2. Apply the rows to the underlying database.

The database itself is not updated until the second step. Updating columns in a ResultSet without calling
the updateRow method does not make any changes to the database.

Planned updates to a row can be thrown away with the cancelUpdates method. Once the updateRow
method is called, changes to the database are final and cannot be undone.

Note: The rowUpdated method always returns false as the database does not have a way to point out
which rows have been updated. Correspondingly, the updatesAreDetected method returns false.

Delete rows

Rows may be deleted in a database table through the ResultSet interface. The deleteRow method is
provided and deletes the current row.

Insert rows

122 System i: Programming IBM Developer Kit for Java



Rows may be inserted into a database table through the ResultSet interface. This process makes use of an
"insert row” which applications specifically move the cursor to and build the values they want to insert
into the database. The steps involved in this process are as follows:

1. Position the cursor on the insert row.
2. Set each of the values for the columns in the new row.

3. Insert the row into the database and optionally move the cursor back to the current row within the
ResultSet.

Note: New rows are not inserted into the table where the cursor is positioned. They are typically added
to the end of the table data space. A relational database is not position-dependent by default. For
example, you should not expect to move the cursor to the third row and insert something that
shows up before the forth row when subsequent users fetch the data.

Support for positioned updates

Besides the method for updating the database through a ResultSet, SQL statements can be used to issue

positioned updates. This support relies on using named cursors. JDBC provides the setCursorName

method from Statement and the getCursorName method from ResultSet to provide access to these values.

Two DatabaseMetaData methods, supportsPositionedUpdated and supportsPositionedDelete, both return
true as this feature is supported with the native JDBC driver.

Example: Removing values from a table through another statement’s cursor:

This Java example shows how to remove values from a table through another statement’s cursor.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
[information” on page 539

import java.sql.*;

public class UsingPositionedDelete {
public Connection connection = null;
public static void main(java.lang.String[] args) {
UsingPositionedDelete test = new UsingPositionedDelete();

test.setup();
test.displayTable();

test.run();
test.displayTable();

test.cleanup();

}
[**
Handle all the required setup work.
*%x/

public void setup() {

try {
// Register the JDBC driver.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

connection = DriverManager.getConnection("jdbc:db2:*Tocal");
Statement s = connection.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");
} catch (SQLException e) {

IBM Developer Kit for Java 123



// Ignore problems here.

s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX ( " +
"COL_IND INT, COL_VALUE CHAR(20)) ");

for (int i = 1; 1 <= 10; i++) {
s.executeUpdate ("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", 'FIRST')");
}

s.close();

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
e.printStackTrace();

[ **

In this section, all the code to perform the testing should
be added. If only one connection to the database is needed,
the global variable 'connection' can be used.

*%/
public void run() {
try {
Statement stmtl = connection.createStatement();
// Update each value using next().
stmtl.setCursorName("CUJO");
ResultSet rs = stmtl.executeQuery ("SELECT % FROM CUJOSQL.WHERECUREX " +
"FOR UPDATE OF COL_VALUE");
System.out.printIn("Cursor name is " + rs.getCursorName());
PreparedStatement stmt2 = connection.prepareStatement
("DELETE FROM " + " CUJOSQL.WHERECUREX WHERE CURRENT OF " +
rs.getCursorName ());
// Loop through the ResultSet and update every other entry.
while (rs.next ()) {
if (rs.next())
stmt2.execute ();
}
// Clean up the resources after they have been used.
rs.close ();
stmt2.close ();
} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();
}
1
[x*
In this section, put all clean-up work for testing.
*%/

public void cleanup() {
try {
// Close the global connection opened in setup().
connection.close();

124 System i: Programming IBM Developer Kit for Java



} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

[x%
Display the contents of the table.
*%/
public void displayTable()
{
try {
Statement s = connection.createStatement();

ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

while (rs.next ()) {

System.out.printIn("Index " + rs.getInt(1l) + " value " + rs.getString(2));

}

rs.close ();
s.close();

System.out.printIn("--=-=-mmmmmm oo ")s

} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

}

Example: Changing values with a statement through another statement’s cursor:

This Java example shows how to change values with a statement through another statement’s cursor.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

[information” on page 539,

import java.sql.=;
public class UsingPositionedUpdate {
public Connection connection = null;
public static void main(java.lang.String[] args) {
UsingPositionedUpdate test = new UsingPositionedUpdate();

test.setup();
test.displayTable();

test.run();
test.displayTable();

test.cleanup();

}
[**
Handle all the required setup work.
*%/

public void setup() {

try {
// Register the JDBC driver.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

IBM Developer Kit for Java

125



connection = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement s = connection.createStatement();
try {

s.executeUpdate("DROP TABLE CUJOSQL.WHERECUREX");
} catch (SQLException e) {

// Ignore problems here.

s.executeUpdate("CREATE TABLE CUJOSQL.WHERECUREX ( " +
"COL_IND INT, COL_VALUE CHAR(20)) ");

for (int i = 1; 1 <= 10; i++) {
s.executeUpdate("INSERT INTO CUJOSQL.WHERECUREX VALUES(" + i + ", 'FIRST')");
}

s.close();

} catch (Exception e) {
System.out.printin("Caught exception: " + e.getMessage());
e.printStackTrace();

[x*
In this section, all the code to perform the testing should
be added. If only one connection to the database is required,
the global variable 'connection' can be used.
*%/

public void run() {

try {
Statement stmtl = connection.createStatement();

// Update each value using next().

stmtl.setCursorName("CUJO");

ResultSet rs = stmtl.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX " +
"FOR UPDATE OF COL_VALUE");

System.out.printIn("Cursor name is " + rs.getCursorName());

PreparedStatement stmt2 = connection.prepareStatement ("UPDATE "
+ " CUJOSQL.WHERECUREX
SET COL_VALUE = 'CHANGED'
WHERE CURRENT OF "
+ rs.getCursorName ());

// Loop through the ResultSet and update every other entry.
while (rs.next ()) {
if (rs.next())
stmt2.execute ();

// Clean up the resources after they have been used.
rs.close ();
stmt2.close ();

} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

126 System i: Programming IBM Developer Kit for Java



[**
In this section, put all clean-up work for testing.

*%/
public void cleanup() {

try {

// Close the global connection opened in setup().
connection.close();

} catch (Exception e) {
System.out.printin("Caught exception: ");
e.printStackTrace();

}

1
[**
Display the contents of the table.
*%/

public void displayTable()

{

try {
Statement s = connection.createStatement();
ResultSet rs = s.executeQuery ("SELECT * FROM CUJOSQL.WHERECUREX");

while (rs.next ()) {
System.out.printin("Index " + rs.getInt(1) + " value " + rs.getString(2));
}

rs.close ();

s.close();

System.out.printIn (M ==-mmmmm o e o ")s
} catch (Exception e) {

System.out.printin("Caught exception: ");

e.printStackTrace();

}

Creating ResultSets:

To create a ResultSet object, you can use executeQuery methods, or other methods. This topic describes
options for creating ResultSets.

These methods are from the Statement, PreparedStatement, or CallableStatement interfaces. There are,
however, other available methods. For example, DatabaseMetaData methods such as getColumns,
getTables, getUDTs, getPrimaryKeys, and so on, return ResultSets. It is also possible to have a single SQL
statement return multiple ResultSets for processing. You can also use the getResultSet method to retrieve
a ResultSet object after calling the execute method provided by the Statement, PreparedStatement, or
CallableStatement interfaces.

See [“Example: Creating a procedure with multiple ResultSets” on page 108| for more information.

Close ResultSets
While a ResultSet object is automatically closed when the Statement object with which it is associated
closes, it is recommended that you close ResultSet objects when you are finished using them. By doing

so, you immediately free internal database resources that can increase application throughput.

It is also important to close ResultSets generated by DatabaseMetaData calls. Because you do not directly
have access to the Statement object that was used to create these ResultSets, you do not call close on the

IBM Developer Kit for Java 127



Statement object directly. These objects are linked together in such a way that the JDBC driver closes the
internal Statement object when you close the external ResultSet object. When these objects are not closed
manually, the system continues to work; however, it uses more resources than is necessary.

Note: The holdability characteristic of ResultSets can also close ResultSets automatically on you behalf.
Calling close multiple times on a ResultSet object is allowed.

[“Statement objects” on page 97]

A Statement object is used for processing a static SQL statement and obtaining the results produced
by it. Only one ResultSet for each Statement object can be open at a time. All statement methods that
process an SQL statement implicitly close a statement’s current ResultSet if an open one exists.

[“PreparedStatements” on page 99|
PreparedStatements extend the Statement interface and provide support for adding parameters to SQL
statements.

[“CallableStatements” on page 105|

The JDBC CallableStatement interface extends PreparedStatement and provides support for output
and input/output parameters. The CallableStatement interface also has support for input parameters
that is provided by the PreparedStatement interface.

[‘DatabaseMetaData interface for IBM Developer Kit for Java” on page 68

The DatabaseMetaData interface is implemented by the IBM Developer Kit for Java JDBC driver to
provide information about its underlying data sources. It is used primarily by application servers and
tools to determine how to interact with a given data source. Applications may also use
DatabaseMetaData methods to obtain information about a data source, but this is less typical.

Example: ResultSet interface for IBM Developer Kit for Java:

This is an example of how to use the ResultSet interface.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

import java.sql.*;

[ **

ResultSetExample.java

This program demonstrates using a ResultSetMetaData and

a ResultSet to display all the data in a table even though
the program that gets the data does not know what the table
is going to Took Tike (the user passes in the values for the
table and library).

*%/

public class ResultSetExample {

public static void main(java.lang.String[] args)
{
if (args.length != 2) {
System.out.printin("Usage: Jjava ResultSetExample <library> <table>");
System.out.printin(" where <library> is the library that contains <table>");
System.exit(0);
1

Connection con = null;
Statement s = null;

ResultSet rs = null;
ResultSetMetaData rsmd = null;

try {
// Get a database connection and prepare a statement.
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
con = DriverManager.getConnection("jdbc:db2:*1ocal");

128 System i: Programming IBM Developer Kit for Java



s = con.createStatement();

rs = s.executeQuery("SELECT * FROM " + args[0] + "." + args[1]);
rsmd = rs.getMetaData();

int colCount = rsmd.getColumnCount();
int rowCount = 0;
while (rs.next()) {
rowCount++;
System.out.printin("Data for row " + rowCount);
for (int i = 1; i <= colCount; i++)
System.out.printin(" Row " + i + ": " + rs.getString(i));

r
0
)

}

} catch (Exception e) {
// Handle any errors.
System.out.printin("Oops... we have an error... ");
e.printStackTrace();

} finally {
// Ensure we always clean up. If the connection gets closed, the
// statement under it closes as well.
if (con !'= null) {

try {

con.close();
} catch (SQLException e) {

System.out.printIn("Critical error - cannot close connection object");
}

}
JDBC object pooling

Object pooling is an important consideration for Java Database Connectivity (JDBC) and performance.
Since many objects used in JDBC are expensive to create such as Connection, Statement, and ResultSet
objects, significant performance benefits can be achieved by reusing these objects instead of creating every
time you need them.

Many applications already handle object pooling on your behalf. For example, WebSphere has extensive
support for pooling JDBC objects and allows you to control how the pool is managed. Because of this,
you can get the functionality you want without being concerned about your own pooling mechanisms.
However, when the support is not provided, you must find a solution for all but trivial applications.

Using DataSource support for object pooling:

You can use DataSources to have multiple applications share a common configuration for accessing a
database. This is accomplished by having each application reference the same DataSource name.

By using DataSources, many applications can be changed from a central location. For example, if you
change the name of a default library used by all your applications and you have used a single
DataSource to obtain connections for all of them, you can update the name of the collection in that
DataSource. All of your applications then start using the new default library.

When using DataSources to obtain connections for an application, you can use the native JDBC driver’s
built-in support for connection pooling. This support is provided as an implementation of the
ConnectionPoolDataSource interface.

Pooling is accomplished by handing out "logical” Connection objects instead of physical Connection
objects. A logical Connection object is a connection object that is returned by a pooled Connection object.
Each logical connection object acts as a temporary handle to the physical connection represented by the
pooled connection object. To the application, when the Connection object is returned, there is no

IBM Developer Kit for Java 129



noticeable difference between the two. The subtle difference comes when you call the close method on
the Connection object. This call invalidates the logical connection and returns the physical connection to
the pool where another application is able to use the physical connection. This technique lets many
logical connection objects reuse a single physical connection.

Set up connection pooling

Connection pooling is accomplished by creating a DataSource object that references a
ConnectionPoolDataSource object. ConnectionPoolDataSource objects have properties that can be set for
handling various aspects of pool maintenance.

Refer to the example on how to set up connection pooling with UDBDataSource and
UDBConnectionPoolDataSource more details. You can also see the Java Naming and Directory Interface
(JNDI) for details about the role JNDI plays in this example.

From the example, the link that binds the two DataSource objects together is the dataSourceName. The
link tells the DataSource object to defer establishing connections to the ConnectionPoolDataSource object
that manages pooling automatically.

Pooling and non-pooling applications

There is no difference between an application that uses Connection pooling and one that does not.
Therefore, pooling support can be added after the application code is complete, without making any
changes to the application code.

The following is output from running the previous program locally during development.

Start timing the non-pooling DataSource version... Time spent: 6410

Start timing the pooling version... Time spent: 282

Java program completed.

By default, a UDBConnectionPoolDataSource pools a single connection. If an application needs a
connection several times and only needs one connection at a time, using UDBConnectionPoolDataSource
is a perfect solution. If you need many simultaneous connections, you must configure your

ConnectionPoolDataSource”ConnectionPoolDataSource properties” on page 132 to match your needs and
resources.

Related concepts

[‘JTava Naming and Directory Interface” on page 537

The Java Naming and Directory Interface (JNDI) is part of the JavaSoft platform application program
interface (API). With JNDI, you can connect seamlessly to multiple naming and directory services. You
can build powerful and portable directory-enabled Java applications by using this interface.

Related reference

[“Example: Setting up connection pooling with UDBDataSource and UDBConnectionPoolDataSource”|
This is an example of how to use connection pooling with UDBDataSource and
UDBConnectionPoolDataSource.

[“ConnectionPoolDataSource properties” on page 132|
You can configure the ConnectionPoolDataSource interface by using the set of properties that it
provides.

Example: Setting up connection pooling with UDBDataSource and UDBConnectionPoolDataSource:

This is an example of how to use connection pooling with UDBDataSource and
UDBConnectionPoolDataSource.

130 System i: Programming IBM Developer Kit for Java



Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

[information” on page 539,

import java.sql.*;

import javax.naming.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class ConnectionPoolingSetup

{

public static void main(java.lang.String[] args)
throws Exception

{

}
}

// Create a ConnectionPoolDataSource implementation
UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();
cpds.setDescription("Connection Pooling DataSource object");

// Establish a JNDI context and bind the connection pool data source
Context ctx = new InitialContext();
ctx.rebind("ConnectionSupport", cpds);

// Create a standard data source that references it.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("DataSource supporting pooling");
ds.setDataSourceName ("ConnectionSupport");
ctx.rebind("PoolingDataSource", ds);

Example: Testing the performance of connection pooling:

This is an example of how to test the performance of the pooling example against the performance of the
non-pooling example.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

[information” on page 539

import java.sql.*;
import javax.naming.=;
import java.util.*;
import javax.sql.=*;

public class ConnectionPoolingTest

{

public static void main(java.lang.String[] args)
throws Exception

{

Context ctx = new InitialContext();
// Do the work without a pool:
DataSource ds = (DataSource) ctx.lookup("BaseDataSource");

System.out.printin("\nStart timing the non-pooling DataSource version.

long startTime = System.currentTimeMillis();
for (int i = 0; 1 < 100; i++) {
Connection cl = ds.getConnection();
cl.close();
}
long endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

// Do the work with pooling:
ds = (DataSource) ctx.lookup("PoolingDataSource");
System.out.printin("\nStart timing the pooling version...");

startTime = System.currentTimeMillis();
for (int i = 0; 1 < 100; i++) {
Connection cl = ds.getConnection();

")

IBM Developer Kit for Java

131



cl.close();

}

endTime = System.currentTimeMillis();

System.out.printin("Time spent: " + (endTime - startTime));

}

ConnectionPoolDataSource properties:

You can configure the ConnectionPoolDataSource interface by using the set of properties that it provides.

Descriptions of these properties are provided in the following table.

Property

Description

initialPoolSize

When the pool is first instantiated, this property
determines how many connections are placed into the
pool. If this value is specified outside the range of
minPoolSize and maxPoolSize, either minPoolSize or
maxPoolSize is used as the number of initial connections
to create.

maxPoolSize

As the pool is used, more connections may be requested
than the pool has in it. This property specifies the
maximum number of connections allowed to be created
in the pool.

Applications do not "block” and wait for a connection to
be returned to the pool when the pool is at its maximum
size and all connections are in use. Instead, the JDBC
driver constructs a new connection based on the
DataSource properties and returns the connection.

If a maxPoolSize of 0 is specified, the pool is allowed to
grow unbounded as long as the system has resources
available to hand out.

minPoolSize

Spikes in using the pool can cause it to increase the
number of connections in it. If the activity level
diminishes to the point where some Connections are
never pulled out of the pool, the resources are being
taken up for no particular reason.

In such cases, the JDBC driver has the ability to release
some of the connections that it has accumulated. This
property allows you to tell the JDBC to release
connections, ensuring that it always has a certain number
of connections available to use.

If a minPoolSize of 0 is specified, it is possible for the
pool to free all of its connections and for the application
to actually pay for the connection time for each
connection request.

maxIdleTime

Connections keep track of how long they have been
sitting around without being used. This property
specifies how long an application allows connections to
be unused before they are released (that is, there are
more connections than are needed).

This property is a time in seconds and does not specify
when the actual close occurs. It specifies when enough
time has passed that the connection should be released.

132 System i: Programming IBM Developer Kit for Java




Property Description

propertyCycle This property represents the number of seconds that are
allowed to pass between the enforcement of these rules.

Note: Setting either the maxIdleTime or the propertyCycle time to 0 means that the JDBC driver does not
check for connections to be removed from the pool on its own. The rules specified for initial, min,
and max size are still enforced.

When maxIdleTime and propertyCycle are not 0, a management thread is used to watch over the
pool. The thread wakes up every propertyCycle second and checks all the connections in the pool
to see which ones have been there without being used for more than maxIldleTime seconds.
Connections fitting this criterion are removed from the pool until the minPoolSize is reached.

DataSource-based statement pooling:

The maxStatements property, available on the UDBConnectionPoolDataSource interface, allows for
statement pooling within the connection pool. Statement pooling only has an effect on
PreparedStatements and CallableStatements. Statement objects are not pooled.

The implementation of statement pooling is similar to that of connection pooling. When the application
calls Connection.prepareStatement(”select * from tablex”), the pooling module checks if the Statement
object has already been prepared under the connection. If it has, a logical PreparedStatement object is
handed to you instead of the physical object. When you call close, the Connection object is returned to
the pool, the logical Connection object is thrown away, and the Statement object can be reused.

The maxStatements property allows the DataSource to specify how many statements can be pooled under
a connection. A value of 0 indicates that statement pooling should not be used. When the statement pool

is full, a least recently used algorithm is applied to determine which statement is to be thrown out.

The example below tests one DataSource that uses connection pooling only and the other DataSource that
uses statement and connection pooling.

The following example is output from running this program locally during development.

Deploying statement pooling data source Start timing the connection pooling only version... Time spent:
26312

Starting timing the statement pooling version... Time spent: 2292 Java program completed
Example: Testing the performance of two DataSources:

This is an example of testing one DataSource that uses connection pooling only and another DataSource
that uses statement and connection pooling.

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
|information” on page 539.|

import java.sql.=;

import javax.naming.=;

import java.util.=*;

import javax.sql.*;

import com.ibm.db2.jdbc.app.UDBDataSource;

import com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource;

public class StatementPoolingTest

{

IBM Developer Kit for Java 133




}

public static void main(java.lang.String[] args)
throws Exception

{

Context ctx = new InitialContext();

System.out.printin("deploying statement pooling data source");
deployStatementPoolDataSource();

// Do the work with connection pooling only.
DataSource ds = (DataSource) ctx.lookup("PoolingDataSource");
System.out.printIn("\nStart timing the connection pooling only version...");

Tong startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Connection cl = ds.getConnection();
PreparedStatement ps = cl.prepareStatement("select * from gsys2.sysprocs");
ResultSet rs = ps.executeQuery();
cl.close();
1
Tong endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

// Do the work with statement pooling added.
ds = (DataSource) ctx.lookup("StatementPoolingDataSource");
System.out.printIn("\nStart timing the statement pooling version...");

startTime = System.currentTimeMillis();
for (int i = 0; i < 100; i++) {
Connection cl = ds.getConnection();
PreparedStatement ps = cl.prepareStatement("select * from gsys2.sysprocs");
ResultSet rs = ps.executeQuery();
cl.close();

endTime = System.currentTimeMillis();
System.out.printIn("Time spent: " + (endTime - startTime));

private static void deployStatementPoolDataSource()
throws Exception

{

// Create a ConnectionPoolDataSource implementation

UDBConnectionPoolDataSource cpds = new UDBConnectionPoolDataSource();
cpds.setDescription("Connection Pooling DataSource object with Statement pooling");
cpds.setMaxStatements (10);

// Establish a JNDI context and bind the connection pool data source
Context ctx = new InitialContext();
ctx.rebind("StatementSupport", cpds);

// Create a standard datasource that references it.
UDBDataSource ds = new UDBDataSource();
ds.setDescription("DataSource supporting statement pooling");
ds.setDataSourceName("StatementSupport");
ctx.rebind("StatementPoolingDataSource", ds);

Building your own connection pooling:

134

System i: Programming IBM Developer Kit for Java



You can develop your own connection and statement pooling without requiring support for DataSources
or relying on another product. The pooling techniques are demonstrated on a small Java application, but
are equally applicable to servlets or large n-tiered applications. This example is used to demonstrate the
performance issues.

The demonstration application has two functions:
* To insert a new index and name into a database table.

¢ To read the name for a given index from the table.

The complete code to a connection pooling application can be downloaded from

JDBC tips and trick,

The example application does not perform well. Running 100 calls to the getValue method and 100 calls
to the putValue method through this code took an average of 31.86 seconds on a standard workstation.

The problem is that there is too much database work for every request. That is, you get a connection, get
a statement, process the statement, close the statement, and close the connection. Instead of discarding
everything after each request, there must be a way to reuse portions of this process. Connection pooling
is replacing the create connection code with code to obtain a connection from the pool, and then
replacing the close connection code with code to return the connection to the pool for use.

The connection pool’s constructor creates the connections and places them in the pool. The pool class has
take and put methods for locating a connection to use and for returning the connection to the pool when
done working with the connection. These methods are synchronized because the pool object is a shared

resource, but you do not want multiple threads to simultaneously try to manipulate the pooled resources.

There is a change to the calling code for the getValue method. The putValue method is not shown, but
the exact change is made to it and is available from IBM’s Developer Kit for Java JDBC Web page. The
instantiation of the connection pool object is also not shown. You can call the constructor and pass in the
number of connection objects that you want in the pool. This step should be done when you start up the
application.

Running the previous application (that is, having 100 getValue method and 100 putValue method
requests) with these changes took an average of 13.43 seconds with the connection pooling code in place.
The processing time for the workload is cut by more than half the original processing time without
connection pooling.

Build your own statement pooling

When using connection pooling, time is wasted when creating and closing a statement when each
statement is processed. This is another example of wasting an object that can be reused.

To reuse an object, you can use the prepared statement class. In most applications, the same SQL
statements are reused with minor changes. For example, one iteration through an application might
generate the following query:

SELECT * from employee where salary > 100000

The next iteration might generate the following query:
SELECT * from employee where salary > 50000

This is the same query, but it uses a different parameter. Both queries can be accomplished with the
following query:

SELECT * from employee where salary > ?

IBM Developer Kit for Java 135


http://www.ibm.com/developerworks/wireless/library/wi-tip28.html

You can then set the parameter marker (denoted by the question mark) to 100000 when processing the
first query and 50000 when processing the second query. This enhances performance for three reasons
beyond what the connection pool can offer:

* Fewer objects are created. A PreparedStatement object is created and reused instead of creating a
Statement object for every request. Therefore, you run fewer constructors.

* The database work to set up the SQL statement (called the prepare) can be reused. Preparing SQL
statements is reasonably expensive as it involves determining what the SQL statement text says and
how the system should accomplish the task requested.

* When removing the additional object creations, there is a benefit that is not often considered. There is
no need to destroy what was not created. This model is easier on the Java garbage collector and also
benefits performance over time with many users.

The demonstration program can be changed to pool PreparedStatement objects instead of Connections.
Changing the program allows you to reuse more object and improve performance. You can begin by
writing the class that contains the objects to be pooled. This class must encapsulate the various resources
to be used. For the connection pool example, the Connection was the only pooled resource, so there was
no need for an encapsulating class. Each pooled object must contain a Connection and two
PreparedStatements. You can then create a pool class that contains database access objects instead of
connections.

Finally, the application must change to obtain a database access object and specify which resource from
the object it wants to use. Other than specifying the specific resource, the application remains the same.

With this change, the same test run now takes an average of 0.83 seconds. This time is about 38 times
faster than the original version of the program.

Considerations
Performance improves through replication. If an item is not reused, then it is wasting resources to pool it.

Most applications contain critical sections of code. Typically, an application uses 80 to 90 percent of its
processing time on only 10 to 20 percent of the code. If there are 10,000 SQL statements potentially used
in an application, not all of them are pooled. The objective is to identify and pool the SQL statements that
are used in the application’s critical sections of code.

Creating objects in a Java implementation can carry a heavy cost. The pooling solution can be used with
advantage. Objects used in the process are created at the beginning, before other users attempt to use the
system. These objects are reused as often as required. Performance is excellent and it is possible to
fine-tune the application over time to facilitate its use for greater numbers of users. As a result, more
objects are pooled. Moreover, it permits more efficient multithreading of the application’s database access
to gain greater throughput.

Java (using JDBC) is based on dynamic SQL and tends to be slow. Pooling can minimize this problem. B

8 y ) P y
preparing the statements at startup, access to the database can be rendered static. There is little difference
in performance between dynamic and static SQL after the statement is prepared.

The performance of database access in Java can be efficient and can be accomplished without sacrificing
object-oriented design or code maintainability. Writing code to build statement and connection pooling is
not difficult. Furthermore, the code can be changed and enhanced to support multiple applications and
application types (Web-based, client/server) and so on.

Batch updates

Batch update support allows any updates to the database to be passed as a single transaction between the
user program and the database. This procedure can significantly improve performance when many
updates must be performed at once.

136 System i: Programming IBM Developer Kit for Java



For example, if a large company requires its newly hired employees to start work on a Monday, this
requirement makes it necessary to process many updates (in this case, insertions) to the employee
database at one time. Creating a batch of updates and submitting them to the database as one unit can
save you processing time.

There are two types of batch updates:
* Batch updates that use Statement objects.
* Batch updates that use PreparedStatement objects.

Statement batch update:

To perform a Statement batch update, you must turn off auto-commit. In Java Database Connectivity
(JDBC), auto-commit is on by default. Auto-commit means any updates to the database are committed
after each SQL statement is processed. If you want to treat a group of statements being handed to the
database as one functional group, you do not want the database committing each statement individually.
If you do not turn off auto-commit and a statement in the middle of the batch fails, you cannot roll back
the entire batch and try it again because half of the statements have been made final. Further, the
additional work of committing each statement in a batch creates a lot of overhead.

See [“JDBC transactions” on page 77 for more details.

After turning off auto-commit, you can create a standard Statement object. Instead of processing
statements with methods such as executeUpdate, you add them to the batch with the addBatch method.
Once you have added all the statements you want to the batch, you can process all of them with the
executeBatch method. You can empty the batch at anytime with the clearBatch method.

The following example shows how you can use these methods:

Example: Statement batch update

Note: Read the [Code example disclaimer] for important legal information.

connection.setAutoCommit(false);

Statement statement = connection.createStatement();
statement.addBatch ("INSERT INTO TABLEX VALUES(1, 'Cujo')");
statement.addBatch("INSERT INTO TABLEX VALUES(2, 'Fred')");
statement.addBatch ("INSERT INTO TABLEX VALUES(3, 'Mark')");
int [] counts = statement.executeBatch();
connection.commit();

In this example, an array of integers is returned from the executeBatch method. This array has one
integer value for each statement that is processed in the batch. If values are being inserted into the
database, the value for each statement is 1 (that is, assuming successful processing). However, some of
the statements may be update statements that affect multiple rows. If you put any statements in the batch
other than INSERT, UPDATE, or DELETE, an exception occurs.

PreparedStatement batch update:

A preparedStatement batch is similar to the Statement batch; however, a preparedStatement batch always
works off the same prepared statement, and you only change the parameters to that statement.

The following is an example that uses a preparedStatement batch.

Note: Read the [Code example disclaimer] for important legal information.

connection.setAutoCommit(false);

PreparedStatement statement =
connection.prepareStatement ("INSERT INTO TABLEX VALUES(?, ?)");

statement.setInt(1, 1);

IBM Developer Kit for Java 137



statement.setString(2, "Cujo");
statement.addBatch();

statement.setInt(1l, 2);
statement.setString(2, "Fred");
statement.addBatch();

statement.setInt(1l, 3);
statement.setString(2, "Mark");
statement.addBatch();

int [] counts = statement.executeBatch();
connection.commit();

JDBC BatchUpdateException:

An important consideration of batch updates is what action to take when a call to the executeBatch
method fails. In this case, a new type of exception, called BatchUpdateException, is thrown. The
BatchUpdateException is a subclass of SQLException and it allows you to call all the same methods you
have always called to receive the message, the SQLState, and vendor code.

BatchUpdateException also provides the getUpdateCounts method that returns an integer array. The
integer array contains update counts from all the statements in the batch that were processed up to the
point where the failure occurred. The array length tells you which statement in the batch failed. For
example, if the array returned in the exception has a length of three, the fourth statement in the batch
failed. Therefore, from the single BatchUpdateException object that is returned, you can determine the
update counts for all the statements that were successful, which statement failed, and all the information
about the failure.

The standard performance of processing batched updates is equivalent to the performance of processing
each statement independently. You can refer to [Blocked insert supporf for more information on optimized
support for batch updates. You should still use the new model when coding and take advantage of future
performance optimizations.

Note: In the JDBC 2.1 specification, a different option is provided for how exception conditions for batch
updates are handled. JDBC 2.1 introduces a model where the processing batch continues after a
batch entry fails. A special update count is placed in the array of update count integers that is
returned for each entry that fails. This allows large batches to continue processing even though one
of their entries fails. See the JDBC 2.1 or JDBC 3.0 specification for details on these two modes of
operation. By default, the native JDBC driver uses the JDBC 2.0 definition. The driver provides a
[Connection property| that is used when using DriverManager to establish connections. The driver
also provides a |DataSource property|that is used when using DataSources to establish connections.
These properties allow applications to choose how they want batch operations to handle failures.

Blocked inserts with JDBC:
You can use a blocked insert operation to insert several rows into a database table at a time.

A blocked insert is a special type of operation on the System i that provides a highly optimized way to
insert several rows into a database table at a time. Blocked inserts can be thought of as a subset of
batched updates. Batched updates can be any form of an update request, but blocked inserts are specific.
However, blocked insert types of batched updates are common; the native JDBC driver has been changed
to take advantage of this feature.

Because of system restrictions when using blocked insert support, the default setting for the native JDBC
driver is to have blocked insert disabled. It can be enabled through a Connection property or a
DataSource property. Most of the restrictions when using a blocked insert can be checked and handled on
your behalf, but a few restrictions cannot; thus, this is the reason for turning off blocked insert support
by default. The list of restrictions is as follows:

138 System i: Programming IBM Developer Kit for Java



¢ The SQL statement used must be an INSERT statement with a VALUES clause, meaning that it is not
an INSERT statement with SUBSELECT. The JDBC driver recognizes this restriction and takes the
appropriate course of action.

* A PreparedStatement must be used, meaning that there is no optimized support for Statement objects.
The JDBC driver recognizes this restriction and takes the appropriate course of action.

* The SQL statement must specify parameter markers for all the columns in the table. This means that
you cannot either use constant values for a column or allow the database to insert default values for
any of the columns. The JDBC driver does not have a mechanism to handle testing for specific
parameter markers in your SQL statement. If you set the property to perform optimized blocked
insertions and you do not avoid defaults or constants in your SQL statements, the values that end up
in the database table are not correct.

¢ The connection must be to the local system. This means that a connection using DRDA to access a
remote system cannot be used because DRDA does not support a blocked insert operation. The JDBC
driver does not have a mechanism to handle testing for a connection to a local system. If you set the
property to perform an optimized blocked insertion and you attempt to connect to a remote system,
the processing of the batch update fails.

This code example shows how to enable support for blocked insert processing. The only difference
between this code and a version that does not use blocked insert support is use block insert=true that
is added to the Connection URL.

Example: Blocked insert processing

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer
[information” on page 539

// Create a database connection
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal;use block insert=true");
BigDecimal bd = new BigDecimal("123456");

// Create a PreparedStatement to insert into a table with 4 columns
PreparedStatement ps =
c.prepareStatement ("insert into cujosql.xxx values(?, ?, ?, ?)");

// Start timing...
for (int i = 1; i <= 10000; i++) {
ps.setInt(1l, i); // Set all the parameters for a row
ps.setBigDecimal(2, bd);
ps.setBigDecimal(3, bd);
ps.setBigDecimal (4, bd);
ps.addBatch(); //Add the parameters to the batch
1

// Process the batch
int[] counts = ps.executeBatch();

// End timing...

In similar test cases, a blocked insert is several times faster than performing the same operations when a
blocked insert is not used. For example, the test performed on the previous code was nine time faster
using blocked inserts. Cases that only use primitive types instead of objects can be up to sixteen times
faster. In applications where there is a significant amount of work going on, change your expectations
appropriately.

Advanced data types

Advanced SQL3 data types give you a tremendous amount of flexibility. They are ideal for storing
serialized Java objects, Extensible Markup Language (XML) documents, and multimedia data such as
songs, product pictures, employee photographs, and movie clips. Java Database Connectivity (JDBC) 2.0
and higher provide support for working with these data types that are a part of the SQL99 standard.

IBM Developer Kit for Java 139



Distinct types

The distinct type is a user-defined type that is based on a standard database type. For example, you can
define a Social Security Number type, SSN, that is a CHAR(9) internally. The following SQL statement
creates such a DISTINCT type.

CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)

A distinct type always maps to a built-in data type. For more information on how and when to use
distinct types in the context of SQL, consult the SQL reference manuals.

To use distinct types in JDBC, you access them the same way that you access an underlying type. The
getUDTs method is a new method that allows you to query what distinct types are available on the
system. The Example: Distinct types program shows the following:

* The creation of a distinct type.

* The creation of a table that uses it.

¢ The use of a PreparedStatement to set a distinct type parameter.
* The use of a ResultSet to return a distinct type.

e The use of the metadata Application Programming Interface (API) call to getUDTs to learn about a
distinct type.

For more information, see the Example: Distinct types subtopic that shows various commons tasks you
can perform by using distinct types.

Large Objects

There are three types of Large Objects (LOBs):

* Binary Large Objects (BLOBs)

* Character Large Objects (CLOBs)

¢ Double Byte Character Large Objects (DBCLOBSs)

DBCLOBs are similar to CLOBs except for their internal storage representation of the character data.
Because Java and JDBC externalize all character data as Unicode, there is only support in JDBC for
CLOBs. DBCLOBs work interchangeable with the CLOB support from a JDBC perspective.

Binary Large Objects

In many ways, a Binary Large Object (BLOB) column is similar to a CHAR FOR BIT DATA column that
can be made large. You can store anything in these columns that can be represented as a stream of
nontranslated bytes. Often, BLOB columns are used to store serialized Java objects, pictures, songs, and
other binary data.

You can use BLOBs the same way you can use other standard database types. You can pass them to
stored procedures, use them in prepared statements, and update them in result sets. The
PreparedStatement class has a setBlob method for passing BLOBs to the database, and the ResultSet class
adds a getBlob class for retrieving them from the database. A BLOB is represented in a Java program by a
BLOB object that is a JDBC interface.

Character Large Objects

Character Large Objects (CLOBs) are the character data complement to BLOBs. Instead of storing data in
the database without translation, the data is stored in the database as text and is processed the same way
as a CHAR column. As with BLOBs, JDBC 2.0 provides functions for dealing directly with CLOBs. The
PreparedStatement interface contains a setClob method and the ResultSet interface contains a getClob
method.

140 System i: Programming IBM Developer Kit for Java



Although BLOB and CLOB columns work like CHAR FOR BIT DATA and CHAR columns, this is
conceptually how they work from an external user’s perspective. Internally, they are different; because of
the potentially enormous size of Large Object (LOB) columns, you typically work indirectly with data.
For example, when a block of rows is fetched from the database, you do not move a block of LOBs to the
ResultSet. You move pointers called LOB locators (that is, four-byte integers) into the ResultSet instead.
However, it is not necessary to know about locators when working with LOBs in JDBC.

Datalinks

Datalinks are encapsulated values that contain a logical reference from the database to a file stored
outside the database. Datalinks are represented and used from a JDBC perspective in two different ways,
depending on whether you are using JDBC 2.0 or earlier, or you are using JDBC 3.0 or later.

Unsupported SQL3 data types

There are other SQL3 data types that have been defined and for which the JDBC API provides support.
These are ARRAY, REF, and STRUCT. Presently, System i does not support these types. Therefore, the
JDBC driver does not provide any form of support for them.

Related reference

[“Example: Distinct types” on page 150
This is an example of how to use distinct types.

Writing code that uses BLOBs:

There are a number of tasks that can be accomplished with database Binary Large Object (BLOB) columns
through the Java Database Connectivity (JDBC) Application Programming Interface (API). The following
topics briefly discuss these tasks and include examples on how to accomplish them.

Read BLOBs from the database and insert BLOBs into the database

With the JDBC API, there are ways to get BLOBs out of the database and ways to put BLOBs into the
database. However, there is no standardized way to create a Blob object. This is not a problem if your
database is already full of BLOBs, but it poses a problem if you want to work with BLOBs from scratch
through JDBC. Instead of defining a constructor for the Blob and Clob interfaces of the JDBC API],
support is provided for placing BLOBs into the database and getting them out of the database directly as
other types. For example, the setBinaryStream method can work with a database column of type Blob.
The Example: Blobs topic shows some of the common ways that a BLOB can be put into the database or
retrieved from the database.

Work with the Blob object API

BLOBs are defined in JDBC as an interface of which the various drivers provide implementations. This
interface has a series of methods that can be used to interact with the Blob object. The Example: Use
Blobs shows some of the common tasks that can be performed using this API. Consult the JDBC Javadoc
for a complete list of available methods on the Blob object.

Use JDBC 3.0 support to update BLOBs

In JDBC 3.0, there is support for making changes to LOB objects. These changes can be stored into BLOB
columns in the database. The Example: Update Blobs topic shows some of the tasks that can be
performed with BLOB support in JDBC 3.0.

Related reference

[‘Example: BLOB” on page 142|
This is an example of how a BLOB can be put into the database or retrieved from the database.

IBM Developer Kit for Java 141



[“Example: Updating BLOBs” on page 143]
This is an example of how to update BLOBs in your Java applications.

Example: BLOB:

This is an example of how a BLOB can be put into the database or retrieved from the database.

Note: By using the code examples, you agree to the terms of the |”C0de license and disclaimed
linformation” on page 539,

[HTTELIE00000000001111111111111117
// PutGetBlobs is an example application
// that shows how to work with the JDBC
// API to obtain and put BLOBs to and from
// database columns.

//

// The results of running this program

// are that there are two BLOB values

// in a new table. Both are identical

// and contain 500k of random byte

// data.
[HTTEETEEE010001001111111111111117
import java.sql.*;

import java.util.Random;

public class PutGetBlobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

// Clean up any previous run of this application.
try {

s.executeUpdate("DROP TABLE CUJOSQL.BLOBTABLE");
} catch (SQLException e) {

// Ignore it - assume the table did not exist.
}

// Create a table with a BLOB column. The default BLOB column
// size is 1 MB.
s.executeUpdate ("CREATE TABLE CUJOSQL.BLOBTABLE (COL1 BLOB)");

// Create a PreparedStatement object that allows you to put
// a new Blob object into the database.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.BLOBTABLE VALUES(?)");

// Create a big BLOB value...

Random random = new Random ();

byte [] inByteArray = new byte[500000] ;
random.nextBytes (inByteArray);

// Set the PreparedStatement parameter. Note: This is not

// portable to all JDBC drivers. JDBC drivers do not have

// support when using setBytes for BLOB columns. This is used to
// allow you to generate new BLOBs. It also allows JDBC 1.0

// drivers to work with columns containing BLOB data.
ps.setBytes(1, inByteArray);

142 System i: Programming IBM Developer Kit for Java



// Process the statement, inserting the BLOB into the database.
ps.executeUpdate();

// Process a query and obtain the BLOB that was just inserted out
// of the database as a Blob object.

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");
rs.next();

Blob blob = rs.getBlob(1);

// Put that Blob back into the database through
// the PreparedStatement.

ps.setBlob(1, blob);

ps.execute();

c.close(); // Connection close also closes stmt and rs.
1
1

Example: Updating BLOBs:

This is an example of how to update BLOBs in your Java applications.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
[information” on page 539

[IITTEETIIEETIET I 1iriiiriellieell
// UpdateBlobs is an example application
// that shows some of the APIs providing
// support for changing Blob objects

// and reflecting those changes to the

// database.

/]

// This program must be run after

// the PutGetBlobs program has completed.
[ITTEETEIEETIETE11r111111111111711

import java.sql.*;

public class UpdateBlobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");
rs.next();

Blob blobl = rs.getBlob(1);

rs.next();
Blob blob2 = rs.getBlob(1);

// Truncate a BLOB.
bTobl.truncate((long) 150000);
System.out.printin("Blobl's new length is " + blobl.length());

// Update part of the BLOB with a new byte array.

IBM Developer Kit for Java 143



// The following code obtains the bytes that are at
// positions 4000-4500 and set them to positions 500-1000.

// Obtain part of the BLOB as a byte array.
byte[] bytes = blobl.getBytes(4000L, 4500);

int bytesWritten = blob2.setBytes(500L, bytes);
System.out.printin("Bytes written is " + bytesWritten);

// The bytes are now found at position 500 in blob2
long startInBlob2 = blob2.position(bytes, 1);

System.out.printin("pattern found starting at position " + startInBlob2);
c.close(); // Connection close also closes stmt and rs.
1
1

Example: Using BLOBs:

This is an example of how to use BLOBs in your Java applications.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
finformation” on page 539

T L1101 111111117
// UseBlobs is an example application

// that shows some of the APIs associated
// with Blob objects.

//

// This program must be run after

// the PutGetBlobs program has completed.
HIITTITEEIL 01010111 111111]

import java.sql.=;

public class UseBlobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.BLOBTABLE");

rs.next();
Blob blobl = rs.getBlob(1);
rs.next();
Blob blob2 = rs.getBlob(1);

// Determine the length of a LOB.
long end = blobl.length();
System.out.printin("Blobl Tength is " + blobl.length());

// When working with LOBs, all indexing that is related to them
// is l-based, and is not 0-based like strings and arrays.

long startingPoint = 450;

long endingPoint = 500;

144 System i: Programming IBM Developer Kit for Java



// Obtain part of the BLOB as a byte array.
byte[] outByteArray = blobl.getBytes(startingPoint, (int)endingPoint);

// Find where a sub-BLOB or byte array is first found within a

// BLOB. The setup for this program placed two identical copies of
// a random BLOB into the database. Thus, the start position of the
// byte array extracted from blobl can be found in the starting

// position in blob2. The exception would be if there were 50

// identical random bytes in the LOBs previously.

long startInBlob2 = blob2.position(outByteArray, 1);

System.out.printIn("pattern found starting at position " + startInBlob2);

c.close(); // Connection close closes stmt and rs too.

}
}

Writing code that uses CLOBs:

There are a number of tasks that can be performed with database CLOB and DBCLOB columns through
the Java Database Connectivity (JDBC) Application Programming Interface (API). The following topics
briefly discuss these tasks and include examples on how to accomplish them.

Read CLOBs from the database and insert CLOBs into the database

With the JDBC API, there are ways to get CLOBs out of the database and ways to put CLOBs into the
database. However, there is no standardized way to create a Clob object. This is not a problem if your
database is already full of CLOBs, but it poses a problem if you want to work with CLOBs from scratch
through JDBC. Instead of defining a constructor for the Blob and Clob interfaces of the JDBC API,
support is provided for placing CLOBs into the database and getting them out of the database directly as
other types. For example, the setCharacterStream method can work with a database column of type Clob.
The Example: CLOB topic shows some of the common ways that a CLOB can be put into the database or
retrieved from the database.

Work with the Clob object API

CLOBs are defined in JDBC as an interface of which the various drivers provide implementations. This
interface has a series of methods that can be used to interact with the Clob object. The Example: Use
Clobs topic shows some of the common tasks that can be performed using this API. Consult the JDBC
Javadoc for a complete list of available methods on the Clob object.

Use JDBC 3.0 support to update CLOBs

In JDBC 3.0, there is support for making changes to LOB objects. These changes can be stored into CLOB
columns in the database. The Example: Update Clobs topic shows some of the tasks that can be
performed with CLOB support in JDBC 3.0.

Related reference

[“Example: CLOB’]
This is an example of how a CLOB can be put into the database or retrieved from the database.

[“Example: Using CLOBs” on page 148|

This is an example of how to use CLOBs in your Java applications.
[“Example: Updating CLOBs” on page 147|

This is an example of how to update CLOBs in your Java applications.

Example: CLOB:
This is an example of how a CLOB can be put into the database or retrieved from the database.

IBM Developer Kit for Java 145



Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

[I1ITTTTI00T1EE0iieeillllieiill
// PutGetClobs is an example application
// that shows how to work with the JDBC
// API to obtain and put CLOBs to and from
// database columns.

//

// The results of running this program

// are that there are two CLOB values

// in a new table. Both are identical

// and contain about 500k of repeating

// text data.

[0 111100111111101117

import java.sql.*;

public class PutGetClobs
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

// Clean up any previous run of this application.
try {

s.executeUpdate("DROP TABLE CUJOSQL.CLOBTABLE");
} catch (SQLException e) {

// Ignore it - assume the table did not exist.
}

// Create a table with a CLOB column. The default CLOB column
// size is 1 MB.
s.executeUpdate("CREATE TABLE CUJOSQL.CLOBTABLE (COL1 CLOB)");

// Create a PreparedStatement object that allow you to put
// a new Clob object into the database.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.CLOBTABLE VALUES(?)");

// Create a big CLOB value...
StringBuffer buffer = new StringBuffer(500000);
while (buffer.length() < 500000) {
buffer.append("A11 work and no play makes Cujo a dull boy.");
}

String clobValue = buffer.toString();

// Set the PreparedStatement parameter. This is not

// portable to all JDBC drivers. JDBC drivers do not have

// to support setBytes for CLOB columns. This is done to

// allow you to generate new CLOBs. It also

// allows JDBC 1.0 drivers a way to work with columns containing
// Clob data.

ps.setString(1, clobValue);

// Process the statement, inserting the clob into the database.
ps.executeUpdate();

// Process a query and get the CLOB that was just inserted out of the
// database as a Clob object.

146 System i: Programming IBM Developer Kit for Java



ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");
rs.next();
Clob clob = rs.getClob(1);

// Put that Clob back into the database through
// the PreparedStatement.

ps.setClob(1, clob);

ps.execute();

c.close(); // Connection close also closes stmt and rs.
}
}

Example: Updating CLOBs:

This is an example of how to update CLOBs in your Java applications.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

[IIITI0TTETTETET LIl ri111111117
// UpdateClobs is an example application
// that shows some of the APIs providing
// support for changing Clob objects

// and reflecting those changes to the

// database.

// This program must be run after
// the PutGetClobs program has completed.
[T i ieeriieelieilliiell

import java.sql.*;

public class UpdateClobs {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

rs.next();
Clob clobl = rs.getClob(1);
rs.next();
Clob clob2 = rs.getClob(1);

// Truncate a CLOB.
clobl.truncate((long) 150000);
System.out.printIn("Clobl's new length is " + clobl.length());

// Update a portion of the CLOB with a new String value.
String value = "Some new data for once";
int charsWritten = clob2.setString(500L, value);

System.out.printIn("Characters written is " + charsWritten);

// The bytes can be found at position 500 in clob2

IBM Developer Kit for Java

147



}
}

long startInClob2 = clob2.position(value, 1);
System.out.printin("pattern found starting at position " + startInClob2);

c.close(); // Connection close also closes stmt and rs.

Example: Using CLOBs:

This is an example of how to use CLOBs in your Java applications.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]

linformation” on page 539,

i
// UpdateClobs is an example application
// that shows some of the APIs providing
// support for changing Clob objects

// and reflecting those changes to the

// database.

// This program must be run after
// the PutGetClobs program has completed.
T 1001111117

import java.sql.=;

public class UseClobs {
public static void main(String[] args)
throws SQLException

148

// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.CLOBTABLE");

rs.next();
Clob clobl = rs.getClob(1);
rs.next();
Clob clob2 = rs.getClob(1);

// Determine the length of a LOB.
long end = clobl.length();
System.out.printin("Clobl length is " + clobl.length());

// When working with LOBs, all indexing that is related to them
// is 1-based, and not 0-based like strings and arrays.

long startingPoint = 450;

long endingPoint = 50;

// Obtain part of the CLOB as a byte array.
String outString = clobl.getSubString(startingPoint, (int)endingPoint);
System.out.printin("Clob substring is " + outString);

// Find where a sub-CLOB or string is first found within a

// CLOB. The setup for this program placed two identical copies of

// a repeating CLOB into the database. Thus, the start position of the
// string extracted from clobl can be found in the starting

System i: Programming IBM Developer Kit for Java



// position in clob2 if the search begins close to the position where
// the string starts.
Tong startInClob2 = clob2.position(outString, 440);

System.out.printin("pattern found starting at position " + startInClob2);
c.close(); // Connection close also closes stmt and rs.

}
}

Writing code that uses Datalinks:

How you work with Datalinks is dependent on what release you are working with. In JDBC 3.0, there is

support to work directly with Datalink columns using the getURL and putURL methods.

With previous JDBC versions, you had to work with Datalink columns as if they were String columns.

Presently, the database does not support automatic conversions between Datalink and character data
types. As a result, you need perform some type casting in your SQL statements.

Example: Datalink:

This example application shows how to use the JDBC API to handle datalink database columns.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
[information” on page 539

[ITTEEEIEE0000011011111111111111117
// PutGetDatalinks is an example application
// that shows how to use the JDBC

// API to handle datalink database columns.
LTI 11111111111171
import java.sql.=;

import java.net.URL;

import java.net.MalformedURLException;

public class PutGetDatalinks {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
}

// Establish a Connection and Statement with which to work.
Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

// Clean up any previous run of this application.
try {

s.executeUpdate("DROP TABLE CUJOSQL.DLTABLE");
} catch (SQLException e) {

// Ignore it - assume the table did not exist.
}

// Create a table with a datalink column.
s.executeUpdate ("CREATE TABLE CUJOSQL.DLTABLE (COL1 DATALINK)");

// Create a PreparedStatement object that allows you to add

// a new datalink into the database. Since conversing

// to a datalink cannot be accomplished directly in the database, you
// can code the SQL statement to perform the explicit conversion.
PreparedStatement ps = c.prepareStatement ("INSERT INTO CUJOSQL.DLTABLE

IBM Developer Kit for Java

149



VALUES (DLVALUE( CAST(? AS VARCHAR(100))))");

// Set the datalink. This URL points you to a topic about
// the new features of JDBC 3.0.
ps.setString (1, "http://www-106.1ibm.com/developerworks/java/library/j-jdbcnew/index.htm1");

// Process the statement, inserting the CLOB into the database.
ps.executeUpdate();

// Process a query and obtain the CLOB that was just inserted out of the
// database as a Clob object.

ResultSet rs = s.executeQuery("SELECT * FROM CUJOSQL.DLTABLE");
rs.next();

String datalink = rs.getString(1);

// Put that datalink value into the database through
// the PreparedStatement. Note: This function requires JDBC 3.0

// support.
/*
try {

URL url = new URL(datalink);
ps.setURL(1, url);
ps.execute();

} catch (MalformedURLException mue) {
// Handle this issue here.

}
rs = s.executeQuery("SELECT = FROM CUJOSQL.DLTABLE");
rs.next();

URL url = rs.getURL(1);

System.out.printIn("URL value is " + url);

*/

c.close(); // Connection close also closes stmt and rs.

}

Example: Distinct types:

This is an example of how to use distinct types.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

LTI L1001 111111]
// This example program shows examples of
// various common tasks that can be done
// with distinct types.
TN EET LT L ririirielielligl

import java.sql.=;

public class Distinct {
public static void main(String[] args)
throws SQLException
{
// Register the native JDBC driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (Exception e) {
System.exit(1); // Setup error.
1

Connection ¢ = DriverManager.getConnection("jdbc:db2:*1ocal");
Statement s = c.createStatement();

150 System i: Programming IBM Developer Kit for Java



// Clean up any old runs.

try {

s.executeUpdate("DROP TABLE CUJOSQL.SERIALNOS");
} catch (SQLException e) {

// Ignore it and assume the table did not exist.
}

try {

s.executeUpdate ("DROP DISTINCT TYPE CUJOSQL.SSN");
} catch (SQLException e) {

// Ignore it and assume the table did not exist.
}

// Create the type, create the table, and insert a value.
s.executeUpdate ("CREATE DISTINCT TYPE CUJOSQL.SSN AS CHAR(9)");
s.executeUpdate ("CREATE TABLE CUJOSQL.SERIALNOS (COL1 CUJOSQL.SSN)");

PreparedStatement ps = c.prepareStatement("INSERT INTO CUJOSQL.SERIALNOS VALUES(?)");
ps.setString(1, "399924563");

ps.executeUpdate();

ps.close();

// You can obtain details about the types available with new metadata in
// JDBC 2.0
DatabaseMetaData dmd = c.getMetaData();

int types[] = new int[1];
types[0] = java.sql.Types.DISTINCT;

ResultSet rs = dmd.getUDTs(null, "CUJOSQL", "SSN", types);
rs.next();
System.out.printIn("Type name " + rs.getString(3) +

" has type " + rs.getString(4));

// Access the data you have inserted.

rs = s.executeQuery("SELECT COL1 FROM CUJOSQL.SERIALNOS");
rs.next();

System.out.printIn("The SSN is " + rs.getString(1));

c.close(); // Connection close also closes stmt and rs.
}

JDBC RowSets

RowSets were originally added to the Java Database Connectivity (JDBC) 2.0 Optional Package. Unlike
some of the better-known interfaces of the JDBC specification, the RowSet specification is designed to be
more of a framework than an actual implementation. The RowSet interfaces define a set of core
functionality that all RowSets have. RowSet implementation providers have considerable freedom to
define the functionality that is needed to fit their needs in a specific problem space.

RowSet characteristics:

You can request certain properties to be satisfied by the rowsets. Common properties include the set of
interfaces to be supported by the resulting rowset.

RowSets are ResultSets

The RowSet interface extends the ResultSet interface which means that RowSets have the ability to
perform all the functions that ResultSets can do. For example, RowSets can be scrollable and updateable.

IBM Developer Kit for Java 151



RowSets can be disconnected from the database

There are two categories of RowSets:

Connected
While connected RowSets are populated with data, they always have internal connections to the
underlying database open and serve as wrappers around a ResultSet implementation.

Disconnected
Disconnected RowSets are not required to maintain connections to their data source at all times.
Disconnected RowSets can be detached from the database, be used in a variety of ways, and then
be reconnected to the database to mirror any changes made to them.

RowSets are JavaBeans™ components

RowSets have support for event handling based on the JavaBeans event-handling model. They also have
properties that can be set. These properties can be used by the RowSet to perform the following:

e Establish a connection to the database.
e Process an SQL statement.

* Determine features of the data that the RowSet represents and handle other internal features of the
RowSet object.

RowSets are serializable

RowsSets can be serialized and deserialized to allow them to flow over a network connection, be written
out to a flat file (that is, a text document without any word processing or other structure characters), and
SO on.

DB2CachedRowSet:

The DB2CachedRowSet object is a disconnected RowSet, meaning that it can be used without being
connected to the database. Its implementation adheres closely to the description of a CachedRowSet. The
DB2CachedRowSet is a container for rows of data from a ResultSet. The DB2CachedRowSet holds all its
own data so it does not need to maintain a connection to the database other than explicitly while reading
or writing data to the database.

Using DB2CachedRowSet:

Because the DB2CachedRowSet object can be disconnected and serialized, it is useful in environments
where it is not always practical to run a full JDBC driver (for example, on Personal Digital Assistants
(PDAs) and Java-enabled cell phones).

Since the DB2CachedRowSet object is contained in memory and its data is always known, it can serve as
a highly optimized form of a scrollable ResultSet for applications. Whereas DB2ResultSets that are
scrollable typically pay a performance penalty because their random movements interfere with the JDBC
driver’s ability to cache rows of data, RowSets do not have this issue.

Two methods are provided on DB2CachedRowSet that create new RowSets:
* The createCopy method creates a new RowSet that is identical to the copied one.
* The createShared method creates a new RowSet that shares the same underlying data as the original.

You can use the createCopy method to hand out common ResultSets to clients. If the table data is not

changing, creating a copy of a RowSet and passing it to each client is more efficient than running a query
against the database each time.

152 System i: Programming IBM Developer Kit for Java



You can use the createShared method to improve your database’s performance by allowing several people
to use the same data. For example, assume that you have a Web site that shows the top twenty
best-selling products on your home page when a customer connects. You want the information on your
main page to be updated regularly, but running the query to get the most frequently purchased items
every time a customer visits your main page is not practical. Using the createShared method, you can
effectively create "cursors” for each customer without having to either process the query again or store an
enormous amount of information in memory. When appropriate, the query to find the most frequently
purchased products can be run again. The new data can populate the RowSet that is used to create the
shared cursors and the servlets can use them.

DB2CachedRowSets provide a delayed processing feature. This feature allows multiple query requests to
be grouped together and processed against the database as a single request. See the “Creating ar@]
[populating a DB2CachedRowSet”| topic to eliminate some of the computational stress that the database
would otherwise be under.

Because the RowSet must keep careful track of any changes that happen to it so that they are reflected
back to the database, there is support for functions that undo changes or allow you to see all changes
have been made. For example, there is a showDeleted method that can be used to tell the RowSet to let
you fetch deleted rows. There are also cancelRowInsert and cancelRowDelete methods to undo row
insertions and deletions, respectfully, after they have been made.

The DB2CachedRowSet object offers better interoperability with other Java APIs because of its event
handling support and its toCollection methods that allow a RowSet or a portion of it to be converted into
a Java collection.

The event handling support of DB2CachedRowSet can be used in graphical user interface (GUI)
applications to control displays, for logging information about changes to the RowSet as they are made,
or to find information about changes to sources other than RowSets. See|“DB2JdbcRowSet events” on|

for details.

For specific details on working with DB2CachedRowSets, see the following topics:

* [‘Creating and populating a DB2CachedRowSet”]

* [‘Accessing DB2CachedRowSet data and cursor manipulation” on page 157

+ ["Changing DB2CachedRowSet data and reflecting changes back to the data source” on page 160
* ["'DB2CachedRowSet features” on page 165

For information on the event model and event handling, see [“DB2JdbcRowSet” on page 170|as this
support works identically for both types of RowSets.

Creating and populating a DB2CachedRowSet:

There are several ways to place data into a DB2CachedRowSet: the populate method, DB2CachedRowSet
properties with DataSources, DB2CachedRowSet properties and JDBC URLs, the
setConnection(Connection) method , the execute(Connection) method, and the execute(int) method.

Using the populate method

DB2CachedRowSets have a populate method that can be used to put data into the RowSet from a
DB2ResultSet object. The following is an example of this approach.

Example: Use the populate method

Note: By using the code examples, you agree to the terms of the|“Code license and disclaimer]
[information” on page 539

IBM Developer Kit for Java 153



// Establish a connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a statement and use it to perform a query.
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");

// Create and populate a DB2CachedRowSet from it.
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

// Note: Disconnect the ResultSet, Statement,
// and Connection used to create the RowSet.
rs.close();

stmt.close();

conn.close();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
1

crs.close();

Using DB2CachedRowSet properties and DataSources

DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a
DataSource name. They then use the SQL query and DataSource name to create data for themselves. The
following is an example of this approach. The reference to the DataSource named BaseDataSource is

assumed to be a valid DataSource that has been previously set up.

Example: Use DB2CachedRowSet properties and DataSources

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for
// the RowSet to use a DataSource to populate itself.
crs.setDataSourceName ("BaseDataSource");
crs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.
crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printIn("vl is " + crs.getString(1));
1

// Eventually, close the RowSet.
crs.close();

Using DB2CachedRowSet properties and JDBC URLs

DB2CachedRowSets have properties that allow the DB2CachedRowSets to accept an SQL query and a
JDBC URL. They then use the query and JDBC URL to create data for themselves. The following is an
example of this approach.

Example: Use DB2CachedRowSet properties and JDBC URLs

154 System i: Programming IBM Developer Kit for Java



Note: Read the [Code example disclaimer| for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a JDBC URL to populate itself.
crs.setUrl("jdbc:db2:*1ocal");

crs.setCommand("select coll from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.
crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printin("vl is " + crs.getString(1));
1

// Eventually, close the RowSet.
crs.close();

Using the setConnection(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for
passing an established Connection object to the DB2CachedRowSet that is used to populate the RowSet. If
a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after

populating itself.

Example: Use setConnection(Connection) method to use an existing database connection

Note: Read the [Code example disclaimer] for important legal information.

// Establish a JDBC connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for the

// RowSet to use an already connected connection

// to populate itself.

crs.setConnection(conn);

crs.setCommand("select coll from cujosql.test_table");

// Call the RowSet execute method. This causes

// the RowSet to use the connection that it was provided

// with previously. Once the RowSet is populated, it does not
// close the user-supplied connection.

crs.execute();

// Loop through the data in the RowSet.
while (crs.next()) {
System.out.printin("vl is " + crs.getString(1));

}

// Eventually, close the RowSet.
crs.close();

IBM Developer Kit for Java 155



Using the execute(Connection) method to use an existing database connection

To promote the reuse of JDBC Connection objects, the DB2CachedRowSet provides a mechanism for
passing an established Connection object to the DB2CachedRowSet when the execute method is called. If
a user-supplied Connection object is passed in, the DB2CachedRowSet does not disconnect it after
populating itself.

Example: Use execute(Connection) method to use an existing database connection

Note: Read the [Code example disclaimer] for important legal information.

// Establish a JDBC connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the SQL statement that is to be used to
// populate the RowSet.
crs.setCommand("select coll from cujosql.test_table");

// Call the RowSet execute method, passing in the connection

// that should be used. Once the Rowset is populated, it does not
// close the user-supplied connection.

crs.execute(conn);

// Loop through the data in the RowSet.
while (crs.next()) {

System.out.printIn("vl is " + crs.getString(1));
1

// Eventually, close the RowSet.
crs.close();

Using the execute(int) method to group database requests

To reduce the database’s workload, the DB2CachedRowSet provides a mechanism for grouping SQL
statements for several threads into one processing request for the database.

Example: Use execute(int) method to group database requests

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2CachedRowSet
DB2CachedRowSet crs = new DB2CachedRowSet();

// Set the properties that are needed for

// the RowSet to use a DataSource to populate itself.
crs.setDataSourceName ("BaseDataSource");
crs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the DataSource and SQL query

// specified to populate itself with data. Once

// the RowSet is populated, it disconnects from the database.

// This version of the execute method accepts the number of seconds
// that it is willing to wait for its results. By

// allowing a delay, the RowSet can group the requests

// of several users and only process the request against

// the underlying database once.

crs.execute(5);

// Loop through the data in the RowSet.
while (crs.next()) {
System.out.printin("vl is " + crs.getString(1));

156 System i: Programming IBM Developer Kit for Java



}

// Eventually, close the RowSet.
crs.close();

Accessing DB2CachedRowSet data and cursor manipulation:

This topic provides information about accessing DB2CachedRowSet data and various cursor manipulation
functions.

RowSets depend on ResultSet methods. For many operations, such as DB2CachedRowSet data access and
cursor movement, there is no difference at the application level between using a ResultSet and using a
RowSet.

Accessing DB2CachedRowSet data

RowSets and ResultSets access data in the same manner. In the following example, the program creates a
table and populates it with various data types using JDBC. Once the table is ready, a DB2CachedRowSet

is created and populated with the information from the table. The example also uses various get methods
of the RowSet class.

Example: Access DB2CachedRowSet data

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;

import javax.sql.=*;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

import java.math.*;

public class TestProgram

{

public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
1

try {
Connection conn = DriverManager.getConnection("jdbc:db2:%1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

1
catch (SQLException ex) {

System.out.printin("Caught drop table: " + ex.getMessage());
1

// Create test table

stmt.execute("Create table cujosql.test_table (coll smallint, col2 int, " +
"col3 bigint, col4 real, col5 float, col6 double, col7 numeric, " +
"co18 decimal, col9 char(10), col110 varchar(10), colll date, " +
"col12 time, coll3 timestamp)");

IBM Developer Kit for Java 157



System.out.printin("Table created.");

// Insert some test rows
stmt.execute("insert into cujosql.test_table values (1, 1, 1, 1.5,

1 .5, 'one', 'one',
{d '2001-01-01"}, {t '01:01:01'}, {ts '1998-05-26 11:41:

, 1
2.12
stmt.execute("insert into cujosql.test_table values (null, null, null, null, null, null, null, null,

null, null, null, null, null)");
System.out.printin("Rows inserted");

ResultSet rs = stmt.executeQuery("select * from cujosql.test_table");
System.out.printIn("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Test with getObject");
int count = 0;
while (crs.next()) {
System.out.printin("Row " + (++count));
for (int i = 1; 1 <= 13; i++) {
System.out.printIn(" Col " + i + " value " + crs.getObject(i));
1
}

System.out.printin("Test with getXXX... ");
crs.first();
System.out.printin("Row 1");
System.out.printin(" Col 1 value "
System.out.printin(" Col 2 value "
System.out.printIn(" Col 3 value
System.out.printin(" Col 4 value "
System.out.printin(" Col 5 value
System.out.printin(" Col 6 value "
System.out.printin(" Col 7 value "
System.out.printin(" Col 8 value "
System.out.printin(" Col 9 value "
System.out.printIn(" Col 10 value
System.out.printin(" Col 11 value
System.out.printin(" Col 12 value
System.out.printIn(" Col 13 value
crs.next();

System.out.printin("Row 2");
System.out.printin(" Col 1 value "
System.out.printin(" Col 2 value
System.out.printIn(" Col 3 value "
System.out.printin(" Col 4 value
System.out.printIn(" Col 5 value "
System.out.printin(" Col 6 value "
System.out.printin(" Col 7 value "
System.out.printin(" Col 8 value "
System.out.printIn(" Col 9 value
System.out.printin(" Col 10 value
System.out.printin(" Col 11 value
System.out.printIn(" Col 12 value
System.out.printin(" Col 13 value

crs.getShort(1));
crs.getint(2));
crs.getlong(3));
crs.getFloat(4));
crs.getDouble(5));
crs.getDouble(6));
crs.getBigDecimal(7));
crs.getBigDecimal(8));
crs.getString(9));
crs.getString(10));
crs.getDate(11));
crs.getTime(12));
crs.getTimestamp(13));

+ 4+ + + + + + + +

+ 4+ + +

crs.getShort(1));
crs.getint(2));
crs.getlong(3));
crs.getFloat(4));
crs.getDouble(5));
crs.getDouble(6));
crs.getBigDecimal(7));
crs.getBigDecimal(8));
crs.getString(9));
crs.getString(10));
crs.getDate(11));
crs.getTime(12));
crs.getTimestamp(13));

+ 4+ + + + + + + +

+ 4+ + +

crs.close();

}

catch (Exception ex) {
System.out.printIn("SQLException:

+ ex.getMessage());

158 System i: Programming IBM Developer Kit for Java



ex.printStackTrace();

}
}
}

Cursor manipulation

RowSets are scrollable and act exactly like a scrollable ResultSet. In the following example, the program
creates a table and populates it with data using JDBC. Once the table is ready, a DB2CachedRowSet object
is created and is populated with the information from the table. The example also uses various cursor
manipulation functions.

Example: Cursor manipulation

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSamplel
{

public static void main(String args[])
{
// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
}

catch (ClassNotFoundException ex) {
System.out.printin("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
}

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1o0cal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");
}

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
1

// Create a test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
1

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);
System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

IBM Developer Kit for Java 159



System.out.printin("Use next()");
while (crs.next()) {

System.out.printIn("vl is " + crs.getShort(1));
1

System.out.printin("Use previous()");
while (crs.previous()) {
System.out.printin("value is " + crs.getShort(1));

}

System.out.printin("Use relative()");

crs.next();

crs.relative(9);

System.out.printin("value is " + crs.getShort(1));

crs.relative(-9);
System.out.printIn("value is " + crs.getShort(1));

System.out.printin("Use absolute()");
crs.absolute(10);

System.out.printin("value is " + crs.getShort(1));
crs.absolute(1);

System.out.printin("value is " + crs.getShort(1));
crs.absolute(-10);

System.out.printin("value is " + crs.getShort(1));
crs.absolute(-1);

System.out.printin("value is " + crs.getShort(1));

System.out.printin("Test beforeFirst()");

crs.beforeFirst();

System.out.printin("isBeforeFirst is " + crs.isBeforeFirst());
crs.next();

System.out.printin("move one... isFirst is " + crs.isFirst());

System.out.printIn("Test afterLast()");

crs.afterLast();

System.out.printin("isAfterLast is " + crs.isAfterLast());
crs.previous();

System.out.printin("move one... islLast is " + crs.isLast());

System.out.printin("Test getRow()");
crs.absolute(7);
System.out.printin("row should be (7) and is " + crs.getRow() +
" value should be (6) and is " + crs.getShort(1));

crs.close();

catch (SQLException ex) {
System.out.printin("SQLException: " + ex.getMessage());
}
}
1

Changing DB2CachedRowSet data and reflecting changes back to the data source:

This topic provides information about making changes to rows in a DB2CachedRowSet and then
updating the underlying database.

The DB2CachedRowSet uses the same methods as the standard ResultSet interface for making changes to
the data in the RowSet object. There is no difference at the application level between changing the data of
a RowSet and changing the data of a ResultSet. The DB2CachedRowSet provides the acceptChanges
method that is used to reflect changes to the RowSet back to the database where the data came from.

160 System i: Programming IBM Developer Kit for Java



Delete, insert, and update rows in a DB2CachedRowSet

DB2CachedRowSets can be updated. In the following example, the program creates a table and populates
it with data using JDBC. Once the table is ready, a DB2CachedRowSet is created and is populated with
the information from the table. The example also uses various methods that can be used to update the
RowSet and shows how the use of the showDeleted property that allows the application to fetch rows
even after they have been deleted. Further, the cancelRowInsert and cancelRowDelete methods are used
in the example to allow row insertion or deletion to be undone.

Example: Delete, insert, and update rows in a DB2CachedRowSet

Note: Read the [Code example disclaimer| for important legal information.

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample2
{

public static void main(String args[])

{
// Register the driver.

try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

!
catch (ClassNotFoundException ex) {
System.out.printin("ClassNotFoundException: " +
ex.getMessage());

// No need to go any further.
System.exit(1);

try {
Connection conn = DriverManager.getConnection("jdbc:db2:%1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

}

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint)");
System.out.printIn("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {
stmt.execute("insert into cujosql.test_table values (" + i + ")");

}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printIn("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);
System.out.printIn("RowSet populated.");

IBM Developer Kit for Java 161



conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Delete the first three rows");
crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.beforeFirst();

System.out.printIn("Insert the value -10 into the RowSet");
crs.moveToInsertRow();

crs.updateShort(1, (short)-10);

crs.insertRow();

crs.moveToCurrentRow() ;

System.out.printin("Update the rows to be the negative of what they now are");
crs.beforeFirst();
while (crs.next())

short value = crs.getShort(1);

value = (short)-value;

crs.updateShort(1, value);

crs.updateRow();

}
crs.setShowDeleted(true);
System.out.printin("RowSet is now (value - inserted - updated - deleted)");

crs.beforeFirst();
while (crs.next()) {

System.out.printin("value is " + crs.getShort(1) + " " +
crs.rowlnserted() + " " +
crs.rowlpdated() + " " +

crs.rowDeleted());

}
System.out.printin("getShowDeleted is " + crs.getShowDeleted());

System.out.printIn("Now undo the inserts and deletes");
crs.beforeFirst();
crs.next();
crs.cancelRowDelete();
crs.next();
crs.cancelRowDelete();
crs.next();
crs.cancelRowDelete();
while (!crs.isLast()) {
crs.next();

}

crs.cancelRowInsert();

crs.setShowDeleted(false);

System.out.printin("RowSet is now (value - inserted - updated - deleted)");

crs.beforeFirst();
while (crs.next()) {

System.out.printin("value is " + crs.getShort(1) + " " +
crs.rowlnserted() + " " +
crs.rowlUpdated() + " " +

crs.rowDeleted());

}

System.out.printin("finally show that calling cancelRowUpdates works");
crs.first();

162 System i: Programming IBM Developer Kit for Java



crs.updateShort(1, (short) 1000);

crs.cancelRowUpdates();

crs.updateRow();

System.out.printIn("value of row is " + crs.getShort(1));
System.out.printin("getShowDeleted is " + crs.getShowDeleted());

crs.close();

}

catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
1
}
1

Reflect changes to a DB2CachedRowSet back to the underlying database

Once changes have been made to a DB2CachedRowSet, they only exist as long as the RowSet object
exists. That is, making changes to a disconnected RowSet has no effect on the database. To reflect the
changes of a RowSet in the underlying database, the acceptChanges method is used. This method tells
the disconnected RowSet to re-establish a connection to the database and attempt to make the changes
that have been made to the RowSet to the underlying database. If the changes cannot be safely made to
the database due to conflicts with other database changes after the RowSet was created, an exception is
thrown and the transaction is rolled back.

Example: Reflect changes to a DB2CachedRowSet back to the underlying database

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;

public class RowSetSample3
{

public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);
1

try {
Connection conn = DriverManager.getConnection("jdbc:db2:%1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());

}

// Create test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

IBM Developer Kit for Java 163



// Insert some test rows
for (int i = 0; i < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
}

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Delete the first three rows");
crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.next();

crs.deleteRow();

crs.beforeFirst();

System.out.printin("Insert the value -10 into the RowSet");
crs.moveToInsertRow();

crs.updateShort(1, (short)-10);

crs.insertRow();

crs.moveToCurrentRow() ;

System.out.printin("Update the rows to be the negative of what they now are");
crs.beforeFirst();
while (crs.next()) {

short value = crs.getShort(1);

value = (short)-value;

crs.updateShort (1, value);

crs.updateRow();

}

System.out.printIn("Now accept the changes to the database");

crs.setUrl ("jdbc:db2:%1ocal");
crs.setTableName("cujosql.test_table");

crs.acceptChanges();
crs.close();

System.out.printin("And the database table Tooks like this:");
conn = DriverManager.getConnection("jdbc:db2:1ocalhost");
stmt = conn.createStatement();
rs = stmt.executeQuery("select coll from cujosql.test_table");
while (rs.next()) {

System.out.printin("Value from table is " + rs.getShort(1));
}

conn.close();

1
catch (SQLException ex) {
System.out.printIn("SQLException: " + ex.getMessage());
1
}
1

164 System i: Programming IBM Developer Kit for Java



DB2CachedRowSet features:

In addition to working like a ResultSet, the DB2CachedRowSet class has some additional functionality
that makes it more flexible to use. Methods are provided for turning either the entire Java Database
Connectivity (JDBC) RowSet or just a portion of it into a Java collection. Moreover, because of their
disconnected nature, DB2CachedRowSets do not have a strict one-to-one relationship with ResultSets.

In addition to working like a ResultSet as several examples have shown, the DB2CachedRowSet class has
some additional functionality that makes it more flexible to use. Methods are provided for turning either
the entire Java Database Connectivity (JDBC) RowSet or just a portion of it into a Java collection.
Moreover, because of their disconnected nature, DB2CachedRowSets do not have a strict one-to-one
relationship with ResultSets.

With the methods provided by DB2CachedRowSet, you can perform the following tasks:
Obtaining collections from DB2CachedRowSets

There are three methods that return some form of a collection from a DB2CachedRowSet object. They are
the following:

* toCollection returns an ArrayList (that is, one entry for each row) of vectors (that is, one entry for each
column).

* toCollection(int columnIndex) returns a vector containing the value for each row from the given
column.

* getColumn(int columnIndex) returns an array containing the value for each column for a given
column.

The major difference between toCollection(int columnIndex) and getColumn(int columnIndex) is that the
getColumn method can return an array of primitive types. Therefore, if columnIndex represents a column
that has integer data, an integer array is returned and not an array containing java.lang.Integer objects.

The following example shows how you can use these methods.

Example: Obtain collections from DB2CachedRowSets

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2CachedRowSet;
import java.util.=*;

public class RowSetSample4d
{
public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
1
catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);

try {
Connection conn = DriverManager.getConnection("jdbc:db2:%1ocal");
Statement stmt = conn.createStatement();

IBM Developer Kit for Java 165



// Clean up previous runs
try {
stmt.execute("drop table cujosql.test table");
}
catch (SQLException ex) {
System.out.printIn("Caught drop table: " + ex.getMessage());
}

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint, col2 smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; 1 < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ", " + (i +100) + ")");
}

System.out.printin("Rows inserted");

ResultSet rs = stmt.executeQuery("select * from cujosql.test_table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printIn("RowSet populated.");

conn.close();
System.out.printin("RowSet is detached...");

System.out.printin("Test the toCollection() method");
Collection collection = crs.toCollection();
ArrayList map = (ArrayList) collection;

System.out.printin("size is " + map.size());
Iterator iter = map.iterator();
int row = 1;
while (iter.hasNext()) {
System.out.print("row [" + (row++) + "]J: \t");

Vector vector = (Vector)iter.next();
Iterator innerlter = vector.iterator();
int i = 1;
while (innerIter.hasNext()) {
System.out.print(" [" + (i++) + "]=" + innerIter.next() + "; \t");
}
System.out.printin();
}
System.out.printin("Test the toCollection(int) method");
collection = crs.toCollection(2);
Vector vector = (Vector) collection;

iter = vector.iterator();

while (iter.hasNext()) {
System.out.printin("Iter: Value is " + iter.next());

}

System.out.printin("Test the getColumn(int) method");
Object values = crs.getColumn(2);
short[] shorts = (short [])values;

for (int i =0; i < shorts.length; i++) {
System.out.printin("Array: Value is " + shorts[i]);
}

1
catch (SQLException ex) {

166 System i: Programming IBM Developer Kit for Java



System.out.printIn("SQLException: " + ex.getMessage());
}
}
}

Creating copies of RowSets

The createCopy method creates a copy of the DB2CachedRowSet. All the data associated with the RowSet
is replicated along with all control structures, properties, and status flags.

The following example shows how you can use this method.

Example: Create copies of RowSets

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

public class RowSetSampleb

{
public static void main(String args[])
{
// Register the driver.
try {

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test table");

}
catch (SQLException ex) {

System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create test table
stmt.execute("Create table cujosql.test table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; i < 10; i++) {
stmt.execute("insert into cujosql.test_table values (" + i + ")");

}

System.out.printin("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printIn("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);
System.out.printIn("RowSet populated.");

IBM Developer Kit for Java 167



conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Now some new RowSets from one.");
DB2CachedRowSet crs2 = crs.createCopy();
DB2CachedRowSet crs3 = crs.createCopy();

System.out.printin("Change the second one to be negated values");
crs2.beforeFirst();
while (crs2.next()) {
short value = crs2.getShort(1);
value = (short)-value;
crs2.updateShort(1, value);
crs2.updateRow() ;
}

crs.beforeFirst();
crs2.beforeFirst();
crs3.beforeFirst();
System.out.printin("Now Took at all three of them again");

while (crs.next()) {
crs2.next();
crs3.next();
System.out.printIn("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +
", crs3: " + crs3.getShort(1));
}

1

catch (Exception ex) {
System.out.printIn("SQLException: " + ex.getMessage());
ex.printStackTrace();

}

}

Creating shares for RowSets

The createShared method creates a new RowSet object with high-level status information and allows two
RowSet objects to share the same underlying physical data.

The following example shows how you can use this method.

Example: Create shares of RowSets

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.=;

import javax.sql.*;

import com.ibm.db2.jdbc.app.*;
import java.io.*;

public class RowSetSampleb

{
public static void main(String args[])
{
// Register the driver.
try {

Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

catch (ClassNotFoundException ex) {
System.out.printIn("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.

168 System i: Programming IBM Developer Kit for Java



System.exit(1);
1

try {
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

Statement stmt = conn.createStatement();

// Clean up previous runs

try {
stmt.execute("drop table cujosql.test_table");

catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
1

// Create test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

// Insert some test rows
for (int i = 0; 1 < 10; i++) {

stmt.execute("insert into cujosql.test_table values (" + i + ")");
1

System.out.printIn("Rows inserted");

ResultSet rs = stmt.executeQuery("select coll from cujosql.test table");
System.out.printin("Query executed");

// Create a new rowset and populate it...
DB2CachedRowSet crs = new DB2CachedRowSet();
crs.populate(rs);

System.out.printin("RowSet populated.");

conn.close();
System.out.printIn("RowSet is detached...");

System.out.printin("Test the createShared functionality (create 2 shares)");
DB2CachedRowSet crs2 = crs.createShared();
DB2CachedRowSet crs3 = crs.createShared();

System.out.printin("Use the original to update value 5 of the table");
crs.absolute(5);

crs.updateShort(1, (short)-5);

crs.updateRow();

crs.beforeFirst();
crs2.afterLast();

System.out.printIn("Now move the cursors in opposite directions of the same data.");

while (crs.next()) {
crs2.previous();
crs3.next();
System.out.printin("Values: crs: " + crs.getShort(1) + ", crs2: " + crs2.getShort(1) +
", crs3: " + crs3.getShort(1));
1

crs.close();
crs2.close();
crs3.close();

catch (Exception ex) {

System.out.printIn("SQLException: " + ex.getMessage());
ex.printStackTrace();

IBM Developer Kit for Java 169



DB2JdbcRowSet:

The DB2JdbcRowSet is a connected RowSet, meaning that it can only be used with the support of an
underlying Connection object, PreparedStatement object, or ResultSet object. Its implementation adheres
closely to the description of a JdbcRowSet.

Use DB2JdbcRowSet

Because the DB2JdbcRowSet object supports events described in the Java Database Connectivity (JDBC)
3.0 specification for all RowSets, it can serve as an intermediate object between a local database and other
objects that must be notified about changes to the database data.

As an example, assume that you are working in an environment where you have a main database and
several Personal Digital Assistants (PDAs) that use a wireless protocol to connect to it. A DB2JdbcRowSet
object can be used to move to a row and update it by using a master application that is running on the
server. The row update causes an event to be generated by the RowSet component. If there is a service
running that is responsible for sending out updates to the PDAs, it can register itself as a "listener” of the
RowSet. Each time that it receives a RowSet event, it can generate the appropriate update and send it out
to the wireless devices.

Refer to [Example: DB2JdbcRowSet events| for more information.

Create JDBCRowSets

There are several methods provided for creating a DB2JDBCRowSet object. Each is outlined as follows.
Use DB2JdbcRowSet properties and DataSources

DB2JdbcRowSets have properties that accept an SQL query and a DataSource name. The DB2JdbcRowSets
are then ready to be used. The following is an example of this approach. The reference to the DataSource

named BaseDataSource is assumed to be a valid DataSource that has been previously set up.

Example: Use DB2JdbcRowSet properties and DataSources

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2JdbcRowSet
DB2JdbcRowSet jrs = new DB2JdbcRowSet();

// Set the properties that are needed for

// the RowSet to be processed.
jrs.setDataSourceName("BaseDataSource");
jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This method causes
// the RowSet to use the DataSource and SQL query

// specified to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printIn("vl is " + jrs.getString(1));
1

// Eventually, close the RowSet.
jrs.close();

Use DB2JdbcRowSet properties and JDBC URLs

170 System i: Programming IBM Developer Kit for Java



DB2JdbcRowSets have properties that accept an SQL query and a JDBC URL. The DB2JdbcRowSets are
then ready to be used. The following is an example of this approach:

Example: Use DB2JdbcRowSet properties and JDBC URLs

Note: Read the [Code example disclaimer] for important legal information.

// Create a new DB2JdbcRowSet
DB2JdbcRowSet jrs = new DB2JdbcRowSet () ;

// Set the properties that are needed for

// the RowSet to be processed.
jrs.setUr1("jdbc:db2:*Tocal");

jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the URL and SQL query specified
// previously to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printIn("vl is " + jrs.getString(1));
1

// Eventually, close the RowSet.
jrs.close();

Use the setConnection(Connection) method to use an existing database connection
To promote the reuse of JDBC Connection objects, the DB2]JdbcRowSet allows you to pass an established
connection to the DB2JdbcRowSet. This connection is used by the DB2JdbcRowSet to prepare itself for

usage when the execute method is called.

Example: Use the setConnection method

Note: Read the [Code example disclaimer] for important legal information.

// Establish a JDBC Connection to the database.
Connection conn = DriverManager.getConnection("jdbc:db2:*1ocal");

// Create a new DB2JdbcRowSet.
DB2JdbcRowSet jrs = new DB2JdbcRowSet();

// Set the properties that are needed for

// the RowSet to use an established connection.
jrs.setConnection(conn);

jrs.setCommand("select coll from cujosql.test table");

// Call the RowSet execute method. This causes

// the RowSet to use the connection that it was provided
// previously to prepare itself for data processing.
jrs.execute();

// Loop through the data in the RowSet.

while (jrs.next()) {
System.out.printIn("vl is " + jrs.getString(1));
1

// Eventually, close the RowSet.
jrs.close();

IBM Developer Kit for Java 171



Access data and cursor movement

Manipulation of the cursor position and access to the database data through a DB2JdbcRowSet are
handled by the underlying ResultSet object. Tasks that can be done with a ResultSet object also apply to
the DB2JdbcRowSet object.

Change data and reflecting changes to the underlying database

Support for updating the database through a DB2JdbcRowSet is handled completely by the underlying
ResultSet object. Tasks that can be done with a ResultSet object also apply to the DB2JdbcRowSet object.

DB2]dbcRowSet events:

All RowSet implementations support event handling for situations that are of interest to other
components. This support allows application components to "talk” to each other when events happen to
them. For example, updating a database row through a RowSet can cause a Graphical User Interface
(GUI) table shown to you to update itself.

In the following example, the main method does the update to the RowSet and is your core application.
The listener is part of your wireless server used by your disconnected clients in the field. It is possible to
tie these two aspects of a business together without getting the code for the two processes intermingled.
While the event support of RowSets was designed primarily for updating GUIs with database data, it
works perfectly for this type of application problem.

Example: DB2JdbcRowSet events

Note: Read the [Code example disclaimer] for important legal information.

import java.sql.*;
import javax.sql.*;
import com.ibm.db2.jdbc.app.DB2JdbcRowSet;

public class RowSetEvents {
public static void main(String args[])
{
// Register the driver.
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");
} catch (ClassNotFoundException ex) {
System.out.printin("ClassNotFoundException: " +
ex.getMessage());
// No need to go any further.
System.exit(1);

try {
// Obtain the JDBC Connection and Statement needed to set
// up this example.
Connection conn = DriverManager.getConnection("jdbc:db2:%1ocal");
Statement stmt = conn.createStatement();

// Clean up any previous runs.
try {
stmt.execute("drop table cujosql.test_table");
} catch (SQLException ex) {
System.out.printin("Caught drop table: " + ex.getMessage());
}

// Create the test table
stmt.execute("Create table cujosql.test_table (coll smallint)");
System.out.printin("Table created.");

172 System i: Programming IBM Developer Kit for Java



// Populate the table with data.
for (int i = 03 i < 10; i++) {

stmt.execute("insert into cujosql.test table values (" + i + ")");
}

System.out.printIn("Rows inserted");

// Remove the setup objects.
stmt.close();
conn.close();

// Create a new rowset and set the properties need to
// process it.

DB2JdbcRowSet jrs = new DB2JdbcRowSet();
jrs.setUrl("jdbc:db2:*Tocal");

jrs.setCommand("select coll from cujosql.test table");
jrs.setConcurrency (ResultSet.CONCUR_UPDATEABLE) ;

// Give the RowSet object a Tistener. This object handles
// special processing when certain actions are done on

// the RowSet.

jrs.addRowSetListener(new MyListener());

// Process the RowSet to provide access to the database data.
jrs.execute();

// Cause a few cursor change events. These events cause the cursorMoved
// method in the listener object to get control.

jrs.next();

jrs.next();

jrs.next();

// Cause a row change event to occur. This event causes the rowChanged method
// in the Tistener object to get control.

jrs.updateShort (1, (short)6);

jrs.updateRow();

// Finally, cause a RowSet change event to occur. This causes the
// rowSetChanged method in the listener object to get control.
jrs.execute();

// When completed, close the RowSet.
jrs.close();

} catch (SQLException ex) {
ex.printStackTrace();

}

[ **
* This is an example of a listener. This example prints messages that show
* how control flow moves through the application and offers some
* suggestions about what might be done if the application were fully implemented.
*
/
class MyListener
implements RowSetListener {
public void cursorMoved(RowSetEvent rse) {
System.out.printIn("Event to do: Cursor position changed.");
System.out.printIn(" For the remote system, do nothing ");
System.out.printIn(" when this event happened. The remote view of the data");
System.out.printIn(" could be controlled separately from the local view.");
try {
DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();
System.out.printIn("row is " + rs.getRow() + ". \n\n");
} catch (SQLException e) {
System.out.printin("To do: Properly handle possible problems.");
}

IBM Developer Kit for Java

173



}

public void rowChanged(RowSetEvent rse) {
System.out.printin("Event to do: Row changed.");
System.out.printIn(" Tell the remote system that a row has changed. Then,");
System.out.printIn(" pass all the values only for that row to the ");
System.out.printin(" remote system.");

try {
DB2JdbcRowSet rs = (DB2JdbcRowSet) rse.getSource();
System.out.printIn("new values are " + rs.getShort(1) + ". \n\n");
} catch (SQLException e) {
System.out.printin("To do: Properly handle possible problems.");
}

}

public void rowSetChanged(RowSetEvent rse) {
System.out.printIn("Event to do: RowSet changed.");
System.out.printIn(" If there is a remote RowSet already established, ");
System.out.printIn(" tell the remote system that the values it ");
System.out.printIn(" has should be thrown out. Then, pass all ");
System.out.printIn(" the current values to it.\n\n");

}

Performance tips for the IBM Developer Kit for Java JDBC driver

The IBM Developer Kit for Java JDBC driver is designed to be a high performance Java interface for
working with the database. However, getting the best possible performance requires that you build your
applications in a way that takes advantage of the strengths the JDBC driver has to offer. The following
tips are considered good JDBC programming practice. Most are not specific to the native JDBC driver.
Therefore, applications written according to these guidelines also perform well if used with JDBC drivers
other than the native JDBC driver.

Avoiding SELECT * SQL queries

SELECT * FROM... is a common way to state a query in SQL. Often, however, you do not need to query
all the fields. For each column that is to be returned, the JDBC driver must do the additional work of
binding and returning the row. Even if your application never uses a particular column, the JDBC driver
has to be made aware of it and has to reserve space for its use. If your tables have few columns that are
not used, this is not significant overhead. For a large number of unused columns, however, the overhead
can be significant. A better solution is to list the columns that your application is interested in
individually, like this:

SELECT COL1, COL2, COL3 FROM...

Using getXXX(int) instead of getXXX(String)

Use the ResultSet getXXX methods that take numeric values instead of the versions that take column
names. While the freedom to use your column names instead of numeric constants seems like an
advantage, the database itself only knows how to deal with column indexes. Therefore, each getXXX
method with a column name you call must be resolved by the JDBC driver before it can be passed to the
database. Because getXXX methods are typically called inside loops that could be run millions of times,
this little bit of overhead can rapidly accumulate.

Avoiding getObject calls for Java primitive types

When getting values from the database of primitive types (ints, longs, floats, and so on), it is faster to use
the get method specific to the primitive type (getInt, getLong, getFloat) than to use getObject. The
getObject call does the work of the get for the primitive type, and then creates an object to return to you.
This is typically done in loops, potentially creating millions of objects with short lifespans. Using
getObject for primitive commands has the added drawback of frequently activating the garbage collector,
further degrading performance.

174 System i: Programming IBM Developer Kit for Java



Using PreparedStatement over Statement

If you are writing an SQL statement that is used more than once, it performs better as a
PreparedStatement than as a Statement object. Every time you run a statement, you go through a two
step process: the statement is prepared, and then the statement is processed. When you use a prepared
statement, the statement is prepared only at the time that it is constructed, not each time it is run.
Though it is recognized that a PreparedStatement performs faster than a Statement, this advantage is
often neglected by programmers. Due to the performance boost that PreparedStatements provide, it is
wise to use them in the design of your applications wherever possible (see [“Consider using]
[PreparedStatement pooling” on page 176 below).

Avoiding DatabaseMetaData calls

Be aware that some of the DatabaseMetaData calls can be expensive. In particular, the
getBestRowldentifier, getCrossReference, getExportedKeys, and getImportedKeys methods can be costly.
Some DataBaseMetaData calls involve complex join conditions over system-level tables. Use them only if
you need their information, not just for convenience.

Using the correct commit level for your application

JDBC provides several commit levels which determine how multiple transactions against the system
affect each other (see for more details). The default is to use the lowest commit level. This
means that transactions can see some of each other’s work through commit boundaries. This introduces
the possibility of certain database anomalies. Some programmers increase the commit level so that they
do not have to worry about these anomalies occurring. Be aware that higher commit levels involve the
database hanging onto more course-grained locks. This limits the amount of concurrency that the system
can have, severely slowing the performance of some applications. Often, the anomaly conditions cannot
occur because of the design of the application in the first place. Take time to understand what you are
trying to accomplish and limit your transaction isolation level to the lowest level you can safely use.

Consider storing data in Unicode

Java requires all character data that it works with (Strings) to be in Unicode. Therefore, any table that
does not have Unicode data requires the JDBC driver to translate the data back and forth as it is put into
the database and retrieved out of the database. If the table is already in Unicode, the JDBC driver does
not need to translate the data and can therefore place the data from the database faster. Take care to
understand that data in Unicode may not work with non-Java applications, which do not know how to
deal with Unicode. Also keep in mind that non-character data does not perform any faster, as there is
never a translation of this data. Another consideration is that data stored in Unicode takes up twice as
much space as single byte data does. If you have many character columns that are read many times,
however, the performance gained by storing your data in Unicode can be significant.

Using stored procedures

The use of stored procedures is supported in Java. Stored procedures can perform faster by allowing the
JDBC driver to run static SQL instead of dynamic SQL. Do not create stored procedures for each
individual SQL statement you run in your program. Where possible, however, create a stored procedure
that runs a group of SQL statements.

Using Biglnt instead of Numeric or Decimal

Instead of using Numeric or Decimal fields that have a scale of 0, use the BigInt data type. BigInt
translates directly into the Java primitive type Long whereas Numeric or Decimal data types translate
into String or BigDecimal objects. As noted in [“Avoiding DatabaseMetaData calls,”| using primitive data
types is preferable to using types that require object creation.

IBM Developer Kit for Java 175



Explicitly closing your JDBC resources when done with them

ResultSets, Statements, and Connections should be explicitly closed by the application when they are no
longer needed. This allows the resources to be cleaned up in the most efficient way possible and can
increase performance. Further, database resources that are not explicitly closed can cause resource leaks
and database locks to be held longer than necessary. This can lead to application failures or reduced
concurrency in applications.

Using connection pooling

Connection pooling is a strategy by which JDBC Connection objects get reused for multiple users instead
of each user request creating its own Connection object. Connection objects are expensive to create.
Instead of having each user create a new one, a pool of them should be shared in applications where
performance is critical. Many products (such as WebSphere) provide Connection pooling support that can
be used with little additional effort on the user’s part. If you do not want to use a product with
connection pooling support, or prefer to build your own for better control over how the pool works and
performes, it is reasonably easy to do so.

Consider using PreparedStatement pooling

Statement pooling works similarly to Connection pooling. Instead of just putting Connections into a pool,
put an object that contains the Connection and the PreparedStatements a pool. Then, retrieve that object
and access the specific statement you want to use. This can dramatically increase performance.

Using efficient SQL

Because JDBC is built on top of SQL, just about anything that makes for efficient SQL also makes for
efficient JDBC. Hence, JDBC benefits from optimized queries, wisely chosen indices, and other aspects of
good SQL design.

Accessing databases using IBM Developer Kit for Java DB2 SQLJ
support

DB2 Structured Query Language for Java (SQLJ]) support is based on the SQL] ANSI standard. The DB2
SQL]J support is contained in the IBM Developer Kit for Java. DB2 SQL]J support allows you to create,
build, and run embedded SQL for Java applications.

The SQLJ support provided by the IBM Developer Kit for Java includes the SQL]J run-time classes, and is
available in /QIBM/ProdData/Java400/ext/runtime.zip.

SQLJ setup

Before you can use SQLJ in Java applications on your server, you need to prepare your server to use
SQLJ. For more information, see the SQL]J setup topic.

SQLJ tools

The following tools are also included in the SQL]J support provided by the IBM Developer Kit for Java:

e The SQLJ translator, sq1j, replaces embedded SQL statements in the SQL]J program with Java source
statements and generates a serialized profile that contains information about the SQL]J operations that
are found in the SQL] program.

* The DB2 SQLJ Profile Customizer, db2profc, precompiles the SQL statements stored in the generated
profile and generates a package in the DB2 database.

¢ The DB2 SQLJ Profile Printer, db2profp, prints the contents of a DB2 customized profile in plain text.

176 System i: Programming IBM Developer Kit for Java



* The SQLJ profile auditor installer, profdb, installs and uninstalls debugging class-auditors into an
existing set of binary profiles.

* The SQLJ profile conversion tool, profconv, converts a serialized profile instance to Java class format.

Note: These tools must be run in the Qshell Interpreter.
DB2 SQLJ restrictions

When you create DB2 applications with SQLJ, you should be aware of the following restrictions:

+ DB2 SQL]J support adheres to standard DB2 Universal Database " restrictions on issuing SQL
statements.

¢ The DB2 SQLJ profile customizer should only be run on profiles associated with connections to the
local database.

* The SQLJ Reference Implementation requires JDK 1.1, or higher. See the Support for multiple Java
Development Kits (JDKs) topic for more information on running multiple versions of the Java
Development Kit.

Related concepts

[“Structured Query Language for Java profiles”]

Profiles are generated by the SQL] Translator, sqlj, when you translate the SQL]J source file. Profiles are
serialized binary files. That is why these files have a .ser extension. These files contain the SQL
statements from the associated SQLJ source file.

[“Support for multiple Java 2 Software Development Kits” on page 5
The System i5 platform supports multiple versions of the Java Development Kits (JDKs) and the Java
2 Software Development Kit (J2SDK), Standard Edition.

[“Embedding SQL statements in your Java application” on page 182|

Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sq1 and end with a
semicolon (;) character.

Related tasks

[“Setting up your system to use SQL]” on page 188|

Before running a Java program that contains embedded SQLJ statements, ensure that you set up your
server to support SQLJ. SQL]J support requires that you modify the CLASSPATH environment variable
for your server.

[‘Compiling and running SQLJ programs” on page 186|
If your Java program has embedded SQLJ statements, you need to follow a special procedure to
compile and run it.

Structured Query Language for Java profiles

Profiles are generated by the SQL] Translator, sqlj, when you translate the SQL]J source file. Profiles are
serialized binary files. That is why these files have a .ser extension. These files contain the SQL
statements from the associated SQL] source file.

To generate profiles from your SQLJ source code, run the [“The structured query language for Java (SQLJ)|
translator (sqlj)”|on your .sqlj file.

For more information, see [“Compiling and running SQLJ programs” on page 186/

The structured query language for Java (SQLJ) translator (sqlj)

The SQLJ translator, sqlj, generates a serialized profile containing information about the SQL operations
found in the SQLJ program. The SQL] translator uses the /QIBM/ProdData/Java400/ext/translator.zip
file.

For more information about the profile, follow this link:

IBM Developer Kit for Java 177



Precompiling SQL statements in a profile using the DB2 SQLJ profile customizer,
db2profc

You can use the DB2 SQL]J Profile Customizer, db2profc, to make your Java application work more
efficiently with your database.

The DB2 SQLJ Profile Customizer does the following:

* Precompiles the SQL statements that are stored in a profile and generates a package in the DB2
database.

* Customizes the SQL]J profile by replacing the SQL statements with references to the associated
statement in the package that was created.

To precompile the SQL statements in a profile, type in the following at the Qshell command prompt:
db2profc MyClass_SJProfile0.ser

Where MyClass_S]Profile0.ser is the name of the profile you want to precompile.
DB2 SQLJ Profile Customizer usage and syntax
db2profcloptions] <SQLJ_profile_name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you
want.

The options available for db2profp are the following:
-URL=<JDBC_URL>
* -user=<username>

* -password=<password>

» -package=<library_name/package_name>
e -commitctrl=<commitment control>

» -datefmt=<date_format>

» -datesep=<date_separator>

e -timefmt=<time_format>

* -timesep=<time_separator>

* -decimalpt=<decimal _point>

e -stmtCCSID=<CCSID>

* -sorttbl=<library_name/sort_sequence_table_name>
* -langlD=<language_identifier>

The following are the descriptions of these options:

-URL=<JDBC_URL>
Where [DBC_URL is the URL of the JDBC connection. The syntax for the URL is:

"jdbc:db2:systemName"

For more information, see [“Accessing your System i5 database with the IBM Developer Kit for|
Java JDBC driver” on page 32|

-user=<username>
Where username is your username. The default value is the user ID of the current user that is
signed on for local connection.

178 System i: Programming IBM Developer Kit for Java



-password=<password>

Where password is your password. The default value is the password of the current user that is

signed on for local connection.

-package=<library name/package name>

Where library name is the library where the package is placed, and package name is the name of the
package to be generated. The default library name is QUSRSYS. The default package name is
generated from the name of the profile. The maximum length for the package name is 10
characters. Because the SQL]J profile name is always longer than 10 characters, the default
package name that is constructed is different from the profile name. The default package name is
constructed by concatenating the first letters of the profile name with the profile key number. If
the profile key number is greater than 10 characters long, then the last 10 characters of the profile
key number is used for the default package name. For example, the following chart shows some
profile names and their default package names:

Profile name

Default package name

App_SJProfile0 App_SJPro0
App_SJProfile01234 App_S01234
App_SJProfile012345678 A012345678
App_SJProfile01234567891 1234567891

-commitctrl=<commitment_control>

Where commitment_control is the level of commitment control you want. Commitment control can
have any one of the following character values:

Value Definition

C *CHG. Dirty reads, nonrepeatable reads and phantom
reads are possible.

S *CS. Dirty reads are not possible, but non-repeatable
reads and phantom reads are possible.

A *ALL. Dirty reads and nonrepeatable reads are not
possible, but phantom reads are possible.

N *NONE. Dirty reads, nonrepeatable reads, and phantom

reads are not possible. This is the default.

-datefmt=<date format>

Where date_format is the type of date formatting you want. Date format can have any one of the

following values:

Value Definition

USA IBM USA standard (mm.dd.yyyy,hh:mm a.m., hh:mm
p-m.)

ISO International Standards Organization (yyyy-mm-dd,
hh.mm.ss) This is the default.

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,
hh:mm:ss)

MDY Month/Day/Year (mm/d/yy)

DMY Day/Month/Year (dd/mm/yy)

YMD Year/Month/Day (yy/mm/dd)

JUL Julian (yy/ddd)

IBM Developer Kit for Java 179



Date format is used when accessing date result columns. All output date fields are returned in
the specified format. For input date strings, the specified value is used to determine whether the
date is specified Inc valid format. The default value is ISO.

-datesep=<date_separator>
Where date_separator is the type of separator you want to use. Date separator is used when
accessing date result columns. Date separator can be any of the following values:

Value Definition

/ A slash is used.

A period is used.

, A comma is used.

- A dash is used. This is the default.

blank A space is used.

-timefmt=<time_ format>
Where time_format is the format you want to use to display time fields. Time format is used when
accessing time result columns. For input time strings, the specified value is used to determine
whether the time is specified in a valid format. Time format can be any one of the following

values:

Value Definition

USA IBM USA standard (mm.dd.yyyyhh:mm a.m., hh:mm
p-m.)

ISO International Standards Organization (yyyy-mm-dd,
hh.mm.ss) This is the default.

EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd,
hh:mm:ss)

HMS Hour/Minute/Second (hh:mm:ss)

-timesep=<time_separator>
Where time_separator is the character you want to use to access your time result columns. Time
separator can be any one of the following values:

Value Definition

A colon is used.

A period is used. This is the default.

, A comma is used.

blank A space is used.

-decimalpt=<decimal_point>
Where decimal_point is the decimal point you want to use. The decimal point is used for numeric
constants in SQL statements. Decimal point can be any one of the following values:

Value Definition

A period is used. This is the default.

’ A comma is used.

180 System i: Programming IBM Developer Kit for Java



-stmtCCSID=<CCSID>
Where CCSID is the coded character set identifier for the SQL statements that are prepared into
the package. The value of the job during customization time is the default value.

-sorttbl=<library name/sort_sequence_table_name>
Where library_name/sort_sequence_table_name is the location and table name of the sort sequence
table you want to use. The sort sequence table is used for string comparisons in SQL statements.
The library name and sort sequence table name each have limits of 10 characters. The default
value is taken from the job during customization time.

-langID=<language_identifier>
Where language identifier is the language identifier you want to use. The default value for the
language identifier is taken from the current job during customization time. The language
identifier is used in conjunction with the sort sequence table.

Related information

QL Programmin,
g 8

Printing the contents of DB2 SQLJ profiles (db2profp and profp)
The DB2 SQL]J Profile Printer, db2profp, prints the contents of a DB2 customized profile in plain text. The
Profile Printer, profp, prints the contents of profiles generated by the SQL]J translator in plain text.

To print the content of the profiles generated by the SQL] translator in plain text, use the profp utility as
follows:

profp MyClass_SJProfile0.ser
Where MyClass_S]Profile0.ser is the name of the profile you want to print.

To print the content of the DB2 customized version of the profile in plain text, use the db2profp utility as
follows:

db2profp MyClass_SJProfile@.ser
Where MyClass_S]Profile0.ser is the name of the profile you want to print.

Note: If you run db2profp on an uncustomized profile, it tells you that the profile has not been
customized. If you run profp on a customized profile, it displays the contents of the profile without the
customizations.

DB2 SQLJ Profile Printer usage and syntax:
db2profp [options] <SQLJ_profile_name>

Where SQLJ_profile_name is the name of the profile to be printed and options is the list of options you
want.

The options available for db2profp are the following:

-URL=<JDBC_URL>
Where [DBC_URL is the URL you want to connect to. For more information, see [”Accessing your|
[System i5 database with the IBM Developer Kit for Java JDBC driver” on page 32]

-user=<username>
Where username is the user name is your user profile.

-password=<password>
Where password is the password of your user profile.

SQLJ profile auditor installer (profdb)

The SQLJ profile auditor installer (profdb) installs and uninstalls debugging class-auditors. The
debugging class-auditors are installed into an existing set of binary profiles. Once the debugging

IBM Developer Kit for Java 181



class-auditors are installed, all RTStatement and RTResultSet calls made during application run time are
logged. They can be logged to a file or standard output. The logs can then be inspected to verify the
behavior and trace errors of the application. Note that only the calls made to the underlying RTStatement
and RTResultSetcall interface at run time are audited.

To install debugging class-auditors, enter the following at the Qshell command prompt:
profdb MyClass_SJProfile0.ser

Where MyClass_S]Profile0.ser is the name of the profile that was generated by the SQL]J Translator.

To uninstall debugging class-auditors, enter the following at the Qshell command prompt:
profdb -Cuninstall MyClass_SJProfile.ser

Where MyClass_S]Profile0.ser is the name of the profile that was generated by the SQL]J Translator.

Converting a serialized profile instance to Java class format using the SQLJ
profile conversion tool (profconv)

The SQLJ profile conversion tool (profconv) converts a serialized profile instance to Java class format. The
profconv tool is needed because some browsers do not support loading a serialized object from a
resource file that is associated with an applet. Run the profconv utility to perform the conversion.

To run the profconv utility, type the following on the Qshell command line:
profconv MyApp_SJProfile0.ser

where MyApp_S]Profile0.ser is the name of profile instance you want to convert.

The profconv tool invokes sqlj -ser2class. See for command line options.

Embedding SQL statements in your Java application
Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sq1 and end with a
semicolon (;) character.

Before you create any SQLJ clauses in your Java application, import the following packages:
* import java.sql.*;

e import sqlj.runtime.”;

* import sqlj.runtime.ref.*;

The simplest SQLJ clauses are clauses that can be processed and consist of the token #sql1 followed by an
SQL statement enclosed in braces. For example, the following SQLJ clause may appear wherever a Java
statement may legally appear:

#sql { DELETE FROM TAB };
The previous example deletes all the rows in the table named TAB.

In an SQLJ process clause, the tokens that appear inside the braces are either SQL tokens or host
variables. All host variables are distinguished by the colon (:) character. SQL tokens never occur outside
the braces of an SQL]J process clause. For example, the following Java method inserts its arguments into
an SQL table:

public void insertIntoTABl (int x, String y, float z) throws SQLException
{

}

#sq1 { INSERT INTO TABl VALUES (:x, :y, :z) };

The method body consists of an SQL]J process clause containing the host variables X, y, and z.

182 System i: Programming IBM Developer Kit for Java



In general, SQL tokens are case insensitive (except for identifiers delimited by double quotation marks),

and can be written in upper, lower, or mixed case. Java tokens, however, are case sensitive. For clarity in

examples, case insensitive SQL tokens are uppercase, and Java tokens are lowercase or mixed case.

Throughout this topic, the lowercase null is used to represent the Java "null” value, and the uppercase
NULL is used to represent the SQL "null” value.

The following types of SQL constructs may appear in SQL] programs:

* Queries For example, SELECT statements and expressions.

* SQL Data Change statements (DML) For example, INSERT, UPDATE, DELETE.
* Data statements For example, FETCH, SELECT..INTO.

* Transaction Control statements For example, COMMIT, ROLLBACK, etc.

* Data Definition Language (DDL, also known as Schema Manipulation Language) statements For
example, CREATE, DROP, ALTER.

* Calls to stored procedures For example, CALL MYPROC(:x, :y, :z)
* Invocations of stored functions For example, VALUES( MYFUN(:x) )

Related concepts

[“Host variables in Structured Query Language for Java”|
Arguments to embedded SQL statements are passed through host variables. Host variables are
variables of the host language, and they can appear in SQL statements.

Related tasks

[“Compiling and running SQL]J programs” on page 186|

If your Java program has embedded SQLJ statements, you need to follow a special procedure to
compile and run it.

Host variables in Structured Query Language for Java:

Arguments to embedded SQL statements are passed through host variables. Host variables are variables
of the host language, and they can appear in SQL statements.

Host variables have up to three parts:
* A colon (:) prefix.
* A Java host variable that is a Java identifier for a parameter, variable, or field.
¢ An optional parameter mode identifier.
This mode identifier can be one of the following:
IN, OUT, or INOUT.

The evaluation of a Java identifier does not have side effects in a Java program, so it may appear
multiple times in the Java code generated to replace an SQLJ clause.

The following query contains the host variable, :x. This host variable is the Java variable, field, or
parameter x that is visible in the scope containing the query.

SELECT COL1, COLZ2 FROM TABLE1l WHERE :x > COL3
Example: Embedding SQL Statements in your Java application:

The following example SQL]J application, App.sqlj, uses static SQL to retrieve and update data from the
EMPLOYEE table of the DB2 sample database.

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
[information” on page 539

IBM Developer Kit for Java 183



import java.sql.*;
import sqlj.runtime.=;
import sqlj.runtime.ref.*;

#sql iterator App_Cursorl (String empno, String firstnme) ; // !

#sql iterator App_Cursor2 (String) ;

class App
{

/**********************
*% Register Driver =**

**********************/
static
{
try
Class.forName("com.ibm.db2.jdbc.app.DB2Driver").newInstance();

catch (Exception e)

e.printStackTrace();

/********************
*k Main *k

********************/

public static void main(String argv[])
{
try
{
App_Cursorl cursorl;
App_Cursor2 cursor2;

String strl = null;
String str2 = null;
long countl;

// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample”;

DefaultContext ctx = DefaultContext.getDefaultContext();
if (ctx == null)
{
try
{
// connect with default id/password
Connection con = DriverManager.getConnection(url);
con.setAutoCommit(false);
ctx = new DefaultContext(con);

}
catch (SQLException e)

System.out.printIn("Error: could not get a default context");
System.err.printin(e) ;
System.exit(1);
1
DefaultContext.setDefaultContext(ctx);
}

// retrieve data from the database
System.out.printIn("Retrieve some data from the database.");
#sql cursorl = {SELECT empno, firstnme FROM employee}; // 2

184 System i: Programming IBM Developer Kit for Java



// display the result set
// cursorl.next() returns false when there are no more rows
System.out.printin("Received results:");
while (cursorl.next()) // 3
{
strl
str2

cursorl.empno(); // *
cursorl.firstnme();

System.out.print (" empno= " + strl);
System.out.print (" firstname= " + str2);
System.out.printIn("");

}

cursorl.close(); // °

// retrieve number of employee from the database
#sq1 { SELECT count(*) into :countl FROM employee }; // °
if (1 == countl)
System.out.printin ("There is 1 row in employee table");
else
System.out.printin ("There are " + countl
+ " rows in employee table");

// update the database
System.out.printin("Update the database.");
#sql { UPDATE employee SET firstnme = 'SHILI' WHERE empno = '000010' };

// retrieve the updated data from the database
System.out.printin("Retrieve the updated data from the database.");

strl = "000010";

#sq1 cursor2 = {SELECT firstnme FROM employee WHERE empno = :strl}; // ©

// display the result set

// cursor2.next() returns false when there are no more rows
System.out.printin("Received results:");

while (true)

{
#sql { FETCH :cursor2 INTO :str2 }; // 7
if (cursor2.endFetch()) break; // ®

System.out.print (" empno= " + strl);
System.out.print (" firstname= " + str2);
System.out.printin("");

}

cursor2.close(); // °

// rollback the update
System.out.printin("Rollback the update.");
#sql { ROLLBACK work };
System.out.printin("Rollback done.");

1

catch( Exception e )

{

e.printStackTrace();
1
}
}

"Declare iterators. This section declares two types of iterators:

* App_Cursorl: Declares column data types and names, and returns the values of the columns according
to column name (Named binding to columns).

e App_Cursor2: Declares column data types, and returns the values of the columns by column position
(Positional binding to columns).

*Initialize the iterator. The iterator object cursorl is initialized using the result of a query. The query stores
the result in cursorl.

IBM Developer Kit for Java 185



3Advance the iterator to the next row. The cursorl.next() method returns a Boolean false if there are no
more rows to retrieve.

*Move the data. The named accessor method empno() returns the value of the column named empno on
the current row. The named accessor method firstnme() returns the value of the column named firstnme
on the current row.

*SELECT data into a host variable. The SELECT statement passes the number of rows in the table into the
host variable countl.

® Initialize the iterator. The iterator object cursor2 is initialized using the result of a query. The query
stores the result in cursor2.

"Retrieve the data. The FETCH statement returns the current value of the first column declared in the
ByPos cursor from the result table into the host variable str2.

8Check the success of a FETCH.INTO statement. The endFetch() method returns a Boolean true if the
iterator is not positioned on a row, that is, if the last attempt to fetch a row failed. The endFetch() method
returns false if the last attempt to fetch a row was successful. DB2 attempts to fetch a row when the
next() method is called. A FETCH..INTO statement implicitly calls the next() method.

°Close the iterators. The close() method releases any resources held by the iterators. You should explicitly
close iterators to ensure that system resources are released in a timely fashion.

Compiling and running SQLJ programs
If your Java program has embedded SQL] statements, you need to follow a special procedure to compile
and run it.

If your Java program has embedded SQL]J| statements, you need to follow a special procedure to compile
and run it.

1. [Set up your server to use SQLJ |

2. Use the[SQLJ translator, sqlj} on your Java source code with embedded SQL to generate Java source
code and associated [profiles| There is one profile generated for each connection.

For example, type in the following command:
sqlj MyClass.sqlj

where MyClass.sqlj is the name of your SQL]J file.

In this example, the SQL] translator generates a MyClass.java source code file and any associated
profiles. The associated profiles are named MyClass_SJProfile0.ser, MyClass_S]Profilel.ser,
MyClass_S]Profile2.ser, and so on.

Note: The SQL] translator automatically compiles the translated Java source code into a class file
unless you explicitly turn off the compile option with the -compile=false clause.

3. Use |the SQLJ Profile Customizer tool, db2profc| to install DB2 SQL]J Customizers on generated
profiles and create the DB2 packages on the local system.

For example, type in the command:
db2profc MyClass_SJProfile0.ser

where MyClass_S]Profile0.ser is the name of the profile on which the DB2 SQL] Customizer is run.

Note: This step is optional but is recommended to increase runtime performance.
4. Run the Java class file just like any other Java class file.
For example, type in the command:
java MyClass

186 System i: Programming IBM Developer Kit for Java



where MyClass is the name of your Java class file.

Related concepts

["Embedding SQL statements in your Java application” on page 182
Static SQL statements in SQLJ are in SQLJ clauses. SQLJ clauses begin with #sql and end with a
semicolon (;) character.

Java SQL routines

Your system provides the ability to access Java programs from SQL statements and programs. This can be
done using Java stored procedures and Java user-defined functions (UDFs). The System i5 supports both
the DB2 and SQLJ conventions for calling Java stored procedures and Java UDFs. Both Java stored
procedures and Java UDFs can use Java classes that are stored in JAR files. The System i5 uses stored
procedures defined by the SQLJ Part 1 standard to register JAR files with the database.

Using Java SQL routines
You can access Java programs from SQL statements and programs. This can be done using Java stored
procedures and Java user-defined functions (UDFs).

To use Java SQL routines, complete the following tasks:

1.

Enable SQL]J

Because any Java SQL routine may use SQLJ, make SQL]J runtime support always available when
running Java 2 Software Development Kit (J2SDK). To enable runtime support for SQLJ in J2SDK, add
a link to the SQL]J runtime.zip file from your extensions directory. For more information, see Setting
up your system to use SQLJ.

Write the Java methods for the routines

A Java SQL routine processes a Java method from SQL. This method must be written using either the
DB2 or SQL]J parameter passing conventions. See Java stored procedures, Java user-defined functions,
and Java user-defined table functions for more information about coding a method used by a Java
SQL routine.

Compile the Java classes

Java SQL routines written using the Java parameter style may be compiled without any addition
setup. However, Java SQL routines using the DB2GENERAL parameter style must extend either the
com.ibm.db2.app.UDF class or com.ibm.db2.app.StoredProc class. These classes are contained in the
JAR file, /QIBM/ProdData/Java400/ext/db2routines_classes.jar. When using javac to compile these
routines, this JAR file must exist in the CLASSPATH. For example, the following command compiles a
Java source file containing a routine which uses the DB2GENERAL parameter style:

javac -DCLASSPATH=/QIBM/ProdData/Java400/ext/db2routines_classes.jar
source.java

Make the compiled classes accessible to the Java virtual machine (JVM) used by the database

The user-defined classes used by the database JVM can either reside in the /QIBM/UserData/0OS400/
SQLLib/Function directory or in a JAR file registered to the database.

The /QIBM/UserData/OS400/SQLLib/Function is the System i5 equivalent of /sqllib/function, the
directory where DB2 UDB stores Java stored procedures and Java UDFs on other platforms. If the
class is part of a Java package, it must reside in the appropriate subdirectory. For example, if the runit
class is created as part of the foo.bar package, the file runnit.class should be in the integrated file
system directory, /QIBM/ProdData/0S400/SQLLib/Function/foo/bar.

The class file may also be placed in a JAR file that is registered to the database. The JAR file is
registered using the SQLJ.INSTALL_JAR stored procedure. This stored procedure is used to assign a
JARID to a JAR file. This JAR ID is used to identify the JAR file in which the class file resides. See
SQL]J procedures that manipulate JAR files for more information on SQLJ.INSTALL_JAR as well as
other stored procedures to manipulate JAR files.

5. Register the routine with the database.

IBM Developer Kit for Java 187



Java SQL routines is registered with the database using the CREATE PROCEDURE and CREATE
FUNCTION SQL statements. These statements contain the following elements:

CREATE keywords
The SQL statements to create a Java SQL routine begin with either CREATE PROCEDURE or
CREATE STATEMENT.

Name of routine
The SQL statement then identifies the name of the routine that is known to the database. This
is the name that is used to access the Java routine from SQL.

Parameters and return value
The SQL statement then identifies the parameters and return values, if applicable, for the Java
routine.

LANGUAGE JAVA
The SQL statement uses the keywords LANGUAGE JAVA to indicate that the routine was
written in Java.

PARAMETER STYLE KEYWORDS
The SQL statement then identifies the parameter style using the keywords PARAMETER
STYLE JAVA or PARAMETER STYLE DB2GENERAL.

External name

The SQL statement then identifies the Java method to be processed as Java SQL routines. The

external name has one of two formats:

* If the method is in a class file that is located under the /QIBM /UserData/0S400/SQLLib/
Function directory, then the method is identified using the format classname.methodname,
where classname is the fully qualified name of the class and methodname is the name of the
method.

¢ If the method is in a JAR file registered to the database, then the method is identified using
the format jarid:classname.methodname, where jarid is the JAR ID of the registered JAR file,
classname is the name of the class, and methodname is the name of the method.

iSeries Navigator may be used to create a stored procedure or user-defined function that uses the Java
parameter style.
6. Use the Java procedure

A Java stored procedure is called using the SQL CALL statement. A Java UDF is a function that is
called as part of another SQL statement.

[‘Setting up your system to use SQLJ”|

Before running a Java program that contains embedded SQLJ statements, ensure that you set up your
server to support SQLJ. SQL] support requires that you modify the CLASSPATH environment variable
for your server.

[‘Java stored procedures” on page 189
When using Java to write stored procedures, you can use two possible parameter passing styles.

|“]ava user-defined scalar functions” on page 193|
A Java scalar function returns one value from a Java program to the database. For example, a scalar
function could be created that returns the sum of two numbers.

|”]ava user-defined table functions” on page 198|

DB2 provides the ability for a function to return a table. This is useful for exposing information from
outside the database to the database in table form. For example, a table can be created that exposes
the properties set in the Java virtual machine (JVM) used for Java stored procedures and Java UDFs
(both table and scalar).

[“SQLJ procedures that manipulate JAR files” on page 199
Both Java stored procedures and Java UDFs can use Java classes that are stored in Java JAR files.

Setting up your system to use SQLJ:

188 System i: Programming IBM Developer Kit for Java



Before running a Java program that contains embedded SQLJ statements, ensure that you set up your
server to support SQLJ. SQL] support requires that you modify the CLASSPATH environment variable for
your server.

For more information about working with Java classpaths, see the following page:

Using SQLJ and J2SDK

To set up SQLJ on a server running any supported version of J2SDK, complete the following steps:
1. Add the following files to the CLASSPATH environment variable for your server:

* /QIBM/ProdData/Os400/Java400/ext/sqlj_classes.jar

¢ /QIBM/ProdData/Os400/Java400/ext/translator.zip

Note: You need to add translator.zip only when you want to run the SQLJ translator (sqlj command).
You do not need to add translator.zip if you only want to run compiled Java programs that use
SQLJ. for more information, see|The SQLJ translator (sqlj)|

2. At an i5/0S command prompt, use the following command to add a link to runtime.zip from your
extensions directory. Type the command on one line, then press Enter.

ADDLNK OBJ('/QIBM/ProdData/0s400/Java400/ext/runtime.zip")
NEWLNK('/QIBM/UserData/Java400/ext/runtime.zip")

For more information about installing extensions, see the following page:

[nstall extensions for the IBM Developer Kit for Javal

Java stored procedures
When using Java to write stored procedures, you can use two possible parameter passing styles.

The recommended style is the JAVA parameter style, which matches the parameter style specified in the
SQLj: SQL routines standard. The second style, DB2GENERAL, is a parameter style defined by DB2 UDB.
The parameter style also determines the conventions that you must use when coding a Java stored
procedure.

Additionally, you should also be aware of some restrictions that are placed on Java stored procedures.
JAVA parameter style:

When you code a Java stored procedure that uses the JAVA parameter style, you must use these
conventions.

* The Java method must be a public void static (not instance) method.
¢ The parameters of the Java method must be SQL-compatible types.

¢ A Java method may test for an SQL NULL value when the parameter is a null-capable type (like
String).

* Output parameters are returned by using single element arrays.

¢ The Java method may access the current database using the getConnection method.

Java stored procedures using the JAVA parameter style are public static methods. Within the classes, the
stored procedures are identified by their method name and signature. When you call a stored procedure,
its signature is generated dynamically, based on the variable types defined by the CREATE PROCEDURE
statement.

IBM Developer Kit for Java 189



If a parameter is passed in a Java type that permits the null value, a Java method can compare the
parameter to null to determine if an input parameter is an SQL NULL.

The following Java types do not support the null value:
* short

* int

* long

e float

* double

If a null value is passed to a Java type that does not support the null value, an SQL Exception with an
error code of -20205 will be returned.

Output parameters are passed as arrays that contain one element. The Java stored procedure can set the
first element of the array to set the output parameter.

A connection to the embedding application context is accessed using the following Java Database
Connectivity (JDBC) call:

connection=DriverManager.getConnection("jdbc:default:connection");
This connection then runs SQL statements with JDBC APIs.

The following is a small stored procedure with one input and two outputs. It runs the given SQL query,
and returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

package mystuff;

import java.sql.*;
public class sample2 {
public static void donut(String query, int[] rowCount,
String[] sqlstate) throws Exception {
try {
Connection c=DriverManager.getConnection("jdbc:default:connection");
Statement s=c.createStatement();
ResultSet r=s.executeQuery(query);
int counter=0;
while(r.next()){
counter++;
1
r.close(); s.close();
rowCount[0] = counter;
}catch(SQLException x) {
sqlstate[0]= x.getSQLState();
}
}
1

In the SQLj standard, to return a result set in routines that use the JAVA parameter style, the result set
must be set explicitly. When a procedure is created that returns result sets, additional result set
parameters are added to the end of the parameter list. For example, the statement

190 System i: Programming IBM Developer Kit for Java



CREATE PROCEDURE RETURNTWO()

DYNAMIC RESULT SETS 2

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME 'javaClass!returnTwoResultSets'

would call a Java method with the signature public static void returnTwoResultSets(ResultSet[] rsi,
ResultSet[] rs2).

The output parameters of the result sets must be explicitly set as illustrated in the following example. As
in the DB2GENERAL style, the result sets and corresponding statements should not be closed.

Example: Stored procedure that returns two result sets

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539,

import java.sql.*;
public class javaClass {
[ **
Java stored procedure, with JAVA style parameters,
that processes two predefined sentences
and returns two result sets

* %k ok *

* @param ResultSet[] rsl first ResultSet

* @param ResultSet[] rs2 second ResultSet

*/
public static void returnTwoResultSets (ResultSet[] rsl, ResultSet[] rs2) throws Exception
{

//get caller's connection to the database; inherited from StoredProc
Connection con = DriverManager.getConnection("jdbc:default:connection");

//define and process the first select statement
Statement stmtl = con.createStatement();

String sqll = "select value from table0l where index=1";
rs1[0] = stmtl.executeQuery(sqll);

//define and process the second select statement
Statement stmt2 = con.createStatement();
Stringsql2 = "select value from table@l where index=2";
rs2[0] = stmt2.executeQuery(sql2);
}

1

On the server, the additional result set parameters are not examined to determine the ordering of the
results sets. The results sets on the server are returned in the order in which they were opened. To ensure
compatibility with the SQLj standard, the result should be assigned in the order that they are opened, as
previously shown.

DB2GENERAL parameter style:

When coding a Java stored procedure that uses the DB2GENERAL parameter style, you must use these
conventions.

* The class that defines a Java stored procedure must extend, or be a subclass of, the Java
com.ibm.db2.app.StoredProc class.

¢ The Java method must be a public void instance method.

* The parameters of the Java method must be SQL-compatible types.

* A Java method may test for a SQL NULL value using the isNull method.

¢ The Java method must explicitly set the return parameters using the set method.

* The Java method may access the current database using the getConnection method.

IBM Developer Kit for Java 191



A class that includes a Java stored procedure must extend the class, com.ibm.db2.app.StoredProc. Java
stored procedures are public instance methods. Within the classes, the stored procedures are identified by
their method name and signature. When you call a stored procedure, its signature is generated
dynamically, based on the variable types defined by the CREATE PROCEDURE statement.

The com.ibm.db2.app.StoredProc class provides the isNull method, which permits a Java method to
determine if an input parameter is an SQL NULL. The com.ibm.db2.app.StoredProc class also provides
set...( ) methods that set output parameters. You must use these methods to set output parameters. If you
do not set an output parameter, then the output parameter returns the SQL NULL value.

The com.ibm.db2.app.StoredProc class provides the following routine to fetch a JDBC connection to the

embedding application context. A connection to the embedding application context is accessed using the
following JDBC call:

public Java.sql.Connection getConnection( )
This connection then runs SQL statements with JDBC APIs.

The following is a small stored procedure with one input and two outputs. It processes the given SQL
query, and returns both the number of rows in the result and the SQLSTATE.

Example: Stored procedure with one input and two outputs

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
finformation” on page 539

package mystuff;

import com.ibm.db2.app.*;
import java.sql.=;
public class sample2 extends StoredProc {
public void donut(String query, int rowCount,
String sqlstate) throws Exception {
try {
Statement s=getConnection().createStatement();
ResultSet r=s.executeQuery(query);
int counter=0;
while(r.next()){
counter++;
}
r.close(); s.close();
set(2, counter);
}catch(SQLException x){
set(3, x.getSQLState());
!
1
}

To return a result set in procedures that use the DB2GENERAL parameter style, the result set and the
responding statement must be left open at the end of the procedure. The result set that is returned must
be closed by the client application. If multiple results sets are returned, they are returned in the order in
which they were opened. For example, the following stored procedure returns two results sets.

Example: Stored procedure that returns two results sets

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
linformation” on page 539,

public void returnTwoResultSets() throws Exception

{
// get caller's connection to the database; inherited from StoredProc
Connection con = getConnection ();

192 System i: Programming IBM Developer Kit for Java



Statement stmtl = con.createStatement ();
String sqll = "select value from table0l where index=1";
ResultSet rsl = stmtl.executeQuery(sqll);
Statement stmt2 = con.createStatement();
String sql2 = "select value from table0l where index=2";
ResultSet rs2 = stmt2.executeQuery(sql2);

1

Restrictions on Java stored procedures:

These restrictions apply to Java stored procedures.

* A Java stored procedure should not create additional threads. An additional thread may be created in a
job only if the job is multithread capable. Because there is no guarantee that a job that calls an SQL
stored procedure is multithread capable, a Java stored procedure should not create additional threads.

* You cannot use adopted authority to access Java class files.

* A Java stored procedure uses the same default version of the JDK as the java command. If needed, the
version of the JDK used by a Java stored procedure can be changed using a SystemDefault.properties
file.

* Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the programmer
must use the entire name of these classes if both classes are used in the same program. The program
must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the parameters
passed to the stored procedure.

* When a Java stored procedure is created, the system generates a program in the library. This program
is used to store the procedure definition. The program has a name that is generated by the system. This
name can be obtained by examining the job log of the job that created the stored procedure. If the
program object is saved and then restored, then the procedure definition is restored. If a Java stored
procedure is to be moved from one system to another, you are responsible for moving the program
that contains the procedure definition as well as the integrated file system file, which contains the Java
class.

* A Java stored procedure cannot set the properties (for example, system naming) of the JDBC
connection that is used to connect to the database. The default JDBC connection properties are always
used, except when prefetching is disabled.

Java user-defined scalar functions
A Java scalar function returns one value from a Java program to the database. For example, a scalar
function could be created that returns the sum of two numbers.

Like Java stored procedures, Java scalar functions use one of two parameter styles, Java and
DB2GENERAL. When coding a Java user-defined function (UDF), you must be aware of restrictions
placed on creating Java scalar functions.

Parameter style Java

The Java parameter style is the style specified by the SQLJ Part 1: SQL Routines standard. When coding a
Java UDF, use the following conventions.

¢ The Java method must be a public static method.

* The Java method must return an SQL compatible type. The return value is the result of the method.
¢ The parameters of the Java method must be SQL compatible types.

¢ The Java method may test for a SQL NULL for Java types that permit the null value.

For example, given a UDF called sample!test3 that returns INTEGER and takes arguments of type

CHAR(5), BLOB(10K), and DATE, DB2 expects the Java implementation of the UDF to have the following
signature:

IBM Developer Kit for Java 193



import com.ibm.db2.app.*;
public class sample {

public static int test3(String argl, Blob arg2, Date arg3) { ... }
1

The parameters of a Java method must be SQL compatible types. For example, if a UDF is declared as
taking arguments of SQL types t1, t2, and t3, and returning type t4, it is called as a Java method with the
expected Java signature:

public static T4 name (T1 a, T2 b, T3 ¢) { ..... }

where:

* name is the method name

e T1 through T4 are the Java types that correspond to SQL types t1 through t4.
* a,b, and c are arbitrary variable names for the input arguments.

The correlation between SQL types and Java types is found in [Parameter passing conventions for stored|
fprocedures and UDFs|

SQL NULL values are represented by Java variables that are not initialized. These variables have a Java
null value if they are object types. If an SQL NULL is passed to a Java scalar data type, such as int, then
an exception condition is raised.

To return a result from a Java UDF when using the JAVA parameter style, simply return the result from
the method.

{
}

return value;

Like C modules used in UDFs and stored procedures, you cannot use the Java standard I/O streams
(System.in, System.out, and System.err) in Java UDFs.

Parameter style DB2GENERAL

Parameter style DB2GENERAL is used by Java UDFs. In this parameter style, the return value is passed
as the last parameter of the function and must be set using a set method of the com.ibm.db2.app.UDF
class.

When coding a Java UDF, the following conventions must be followed:

* The class, which includes the Java UDF, must extend, or be a subclass of, the Java
com.ibm.db2.app.UDF class.

* For the DB2GENERAL parameter style, the Java method must be a public void instance method.

* The parameters of the Java method must be SQL-compatible types.

* The Java method may test for an SQL NULL value using the isNull method.

e For the DB2GENERAL parameter style, the Java method must explicitly set the return parameter using
the set() method.

A class that includes a Java UDF must extend the Java class, com.ibm.db2.app.UDEF. A Java UDF that uses
the DB2GENERAL parameter style must be a void instance method of the Java class. For example, for a
UDF called sample!test3 that returns INTEGER and takes arguments of type CHAR(5), BLOB(10K), and
DATE, DB2 expects the Java implementation of the UDF to have the following signature:

import com.ibm.db2.app.*;

public class sample extends UDF {
public void test3(String argl, Blob arg2, String arg3, int result) { ...}
}

194 System i: Programming IBM Developer Kit for Java



The parameters of a Java method must be SQL types. For example, if a UDF is declared as taking
arguments of SQL types t1, t2, and t3, returning type t4, it is called as a Java method with the expected
Java signature:

public void name (T1 a, T2 b, T3 ¢, T4 d) { ..... }

where:

* name is the method name

* T1 through T4 are the Java types that correspond to SQL types t1 through t4.

* 4, b, and c are arbitrary variable names for the input arguments.

* d is an arbitrary variable name that represents the UDF result being computed.

The correlation between SQL types and Java types is given in the section, [Parameter passing conventions|
for stored procedures and UDFs|

SQL NULL values are represented by Java variables that are not initialized. These variables have a value
of zero if they are primitive types, and Java null if they are object types, in accordance with Java rules. To
tell an SQL NULL apart from an ordinary zero, the isNull method can be called for any input argument:

%%.iisNuH(l)) { /* argument #1 was a SQL NULL */ }
else { /* not NULL */ }
}

In the previous example, the argument numbers start at one. The isNull() function, like the other
functions that follow, are inherited from the com.ibm.db2.app.UDF class. To return a result from a Java
UDF when using the DB2GENERAL parameter style, use the set() method in the UDF, as follows:

set(2, value);

}

Where 2 is the index of an output argument, and value is a literal or variable of a compatible type. The
argument number is the index in the argument list of the selected output. In the first example in this
section, the int result variable has an index of 4. An output argument that is not set before the UDF
returns has a NULL value.

Like C modules used in UDFs and stored procedures, you cannot use the Java standard 1/O streams
(System.in, System.out, and System.err) in Java UDFs.

Typically, DB2 calls a UDF many times, once for each row of an input or result set in a query. If
SCRATCHPAD is specified in the CREATE FUNCTION statement of the UDF, DB2 recognizes that some
"continuity” is needed between successive invocations of the UDF, and therefore, for DB2GENERAL
parameter style functions, the implementing Java class is not instantiated for each call, but generally
speaking once per UDF reference per statement. If, however, NO SCRATCHPAD is specified for a UDF,
then a clean instance is instantiated for each call to the UDF, by means of a call to the class constructor.

A scratchpad may be useful for saving information across calls to a UDF. Java UDFs can either use
instance variables or set the scratchpad to achieve continuity between calls. Java UDFs access the
scratchpad with the getScratchPad and setScratchPad methods available in com.ibm.db2.app.UDEF. At the
end of a query, if you specify the FINAL CALL option on the CREATE FUNCTION statement, the
object’s public void close() method is called (for DB2GENERAL parameter style functions). If you do not
define this method, a stub function takes over and the event is ignored. The com.ibm.db2.app.UDF class
contains useful variables and methods that you can use within a DB2GENERAL parameter style UDFE.
These variables and methods are explained in the following table.

IBM Developer Kit for Java 195



Variables and Methods

Description

* public static final int SQLUDF_FIRST_CALL = -1;

* public static final int SQLUDF_NORMAL_CALL = 0;
* public static final int SQLUDF_TF_FIRST = -2;

* public static final int SQLUDF_TF_OPEN = -1;

* public static final int SQLUDF_TF_FETCH = 0;

* public static final int SQLUDF_TF_CLOSE = 1;

* public static final int SQLUDF_TF_FINAL = 2;

For scalar UDFs, these are constants to determine if the
call is a first call or a normal call. For table UDFs, these
are constants to determine if the call is a first call, open
call, fetch call, close call, or final call.

public Connection getConnection();

The method obtains the JDBC connection handle for this
stored procedure call and returns a JDBC object that
represents the calling application’s connection to the
database. It is analogous to the result of a null
SQLConnect() call in a C stored procedure.

public void close();

This method is called by the database at the end of a
UDF evaluation, if the UDF was created with the FINAL
CALL option. It is analogous to the final call for a C
UDE. If a Java UDF class does not implement this
method, this event is ignored.

public boolean isNull(int i)

This method tests whether an input argument with the
given index is an SQL NULL.

* public void set(int i, short s);

* public void set(int i, int j);

* public void set(int i, long j);

* public void set(int i, double d);

* public void set(int i, float f);

* public void set(int i, BigDecimal bigDecimal);
* public void set(int i, String string);

* public void set(int i, Blob blob);

* public void set(int i, Clob clob);

* public boolean needToSet(int i);

These methods set an output argument to the given
value. An exception is thrown if anything goes wrong,
including the following:

* UDF call is not in progress

* Index does not refer to valid output argument
* Data type does not match

* Data length does not match

* Code page conversion error occurs

public void setSQLstate(String string);

This method may be called from a UDF to set the
SQLSTATE to be returned from this call. If the string is
not acceptable as an SQLSTATE, an exception is thrown.
The user may set the SQLSTATE in the external program
to return an error or warning from the function. In this
case, the SQLSTATE must contain one of the following;:

* ’00000” to indicate success

* ‘01Hxx/, where xx is any two digits or uppercase
letters, to indicate a warning

* ’38yxx’, where y is an uppercase letter between I’ and
’Z and xx is any two digits or uppercase letters, to
indicate an error

public void setSQLmessage(String string);

This method is similar to the setSQLstate method. It sets
the SQL message result. If the string is not acceptable
(for example, longer than 70 characters), an exception is
thrown.

public String getFunctionName();

This method returns the name of the processing UDF.

public String getSpecificName();

This method returns the specific name of the processing
UDE

196 System i: Programming IBM Developer Kit for Java




Variables and Methods Description

public byte[] getDBinfo(); This method returns a raw, unprocessed DBINFO
structure for the processing UDF, as a byte array. The
UDF must have been registered (using CREATE
FUNCTION) with the DBINFO option.

+ public String getDBname(); These methods return the value of the appropriate field
. . . from the DBINFO structure of the processing UDF. The

* public String getDBauthid(); UDF must have been registered (using CREATE

* public String getDBver_rel(); FUNCTION) with the DBINFO option. The

* public String getDBplatform(); getDBtbschema(), getDBtbname(), and getDBcolname()

methods only return meaningful information if a

) . ) user-defined function is specified on the right side of a

* public String getDBapplid(); SET clause in an UPDATE statement.

* public String getDBtbschema();

* public String getDBapplid();

* public String getDBtbname();
* public String getDBcolname();

public int getCCSID(); This method returns the CCSID of the job.

public byte[] getScratchpad(); This method returns a copy of the scratchpad of the
currently processing UDF. You must first declare the
UDF with the SCRATCHPAD option.

public void setScratchpad(byte abl]); This method overwrites the scratchpad of the currently
processing UDF with the contents of the given byte
array. You must first declare the UDF with the
SCRATCHPAD option. The byte array must have the
same size as getScratchpad() returns.

public int getCallType(); This method returns the type of call that is currently
being made. These values correspond to the C values
defined in sqludf.h. Possible return values include the
following:

* SQLUDEF_FIRST_CALL

* SQLUDF_NORMAL_CALL
* SQLUDE_TE_FIRST

* SQLUDF_TF_OPEN

* SQLUDEF_TF_FETCH

* SQLUDEF_TF_CLOSE

* SQLUDE_TF_FINAL

Restrictions on Java user-defined functions:

These restrictions apply to Java user-defined functions (UDFs).

* A Java UDF should not create additional threads. An additional thread may be created in a job only if
the job is multithread capable. Since it cannot be guaranteed that a job that calls an SQL stored
procedure is multithread capable, a Java stored procedure should not create additional threads.

* The complete name of the Java stored procedure defined to the database is limited to 279 characters.
This limit is a consequence of the EXTERNAL_NAME column, which has a maximum width of 279
characters.

* Adopted authority cannot be used to access Java class files.
¢ A Java UDF always uses the latest version of the JDK that is installed on the system.

* Since Blob and Clob classes reside in both the java.sql and com.ibm.db2.app packages, the programmer
must use the entire name of these classes if both classes are used in the same program. The program
must ensure that the Blob and Clob classes from the com.ibm.db2.app are used as the parameters
passed to the stored procedure.

IBM Developer Kit for Java 197



* Like sourced functions, when a Java UDF is created, a service program in the library is used to store
the function definition. The name of the service program is generated by the system and can be found
in the job log of the job that created the function. If this object is saved and then restored to another
system, then the function definition is restored. If a Java UDF is to be moved from one system to
another, you are responsible for moving the service program that contains the function definition as
well as the integrated file system file that contains the Java class.

* A Java UDF cannot set the properties (for example, system naming) of the JDBC connection that is
used to connect to the database. The default JDBC connection properties are always used, except when
prefetching is disabled.

Java user-defined table functions:

DB2 provides the ability for a function to return a table. This is useful for exposing information from
outside the database to the database in table form. For example, a table can be created that exposes the
properties set in the Java virtual machine (JVM) used for Java stored procedures and Java UDFs (both
table and scalar).

The SQLJ Part 1: SQL Routines standard does support table functions. Consequently, table functions are
only available using parameter style DB2GENERAL.

Five different types of calls are made to a table function. The following table explains these calls. These
assume that scratchpad has been specified on the create function SQL statement.

NO FINAL CALL LANGUAGE FINAL CALL LANGUAGE JAVA
Point in scan time JAVA SCRATCHPAD SCRATCHPAD
Before the first OPEN of the table No calls Class constructor is called (means
function new scratchpad). UDF method is
called with FIRST call.
At each OPEN of the table function. |Class constructor is called (means UDF method is called with OPEN
new scratchpad). UDF method is call.

called with OPEN all.

At each FETCH for a new row of UDF method is called with FETCH UDF method is called with FETCH
table function data. call. call.

At each CLOSE of the table function | UDF method is called with CLOSE UDF method is called with CLOSE
call. The close() method, if it exists, is | call.
also called.

After the last CLOSE of the table No calls UDF method is called with FINAL
function. call. The close() method, if it exists, is
also called.

Example: Java table function

The following is an example of a Java table function that determines the properties set in the JVM used
to run the Java user-defined table function.

Note: Read the [Code example disclaimer] for important legal information.

import com.ibm.db2.app.*;
import java.util.=*;

public class JVMProperties extends UDF {
Enumeration propertyNames;
Properties properties ;

public void dump (String property, String value) throws Exception
{
int callType = getCallType();

198 System i: Programming IBM Developer Kit for Java



switch(callType) {
case SQLUDF_TF_FIRST:
break;
case SQLUDF_TF_OPEN:
properties = System.getProperties();
propertyNames = properties.propertyNames();
break;
case SQLUDF_TF_FETCH:
if (propertyNames.hasMoreElements()) {
property = (String) propertyNames.nextElement();
value = properties.getProperty(property);
set(1, property);
set(2, value);
} else {
setSQLstate("02000");
}

break;
case SQLUDF_TF_CLOSE:
break;
case SQLUDF_TF_FINAL:
break;
default:
throw new Exception("UNEXPECT call type of "+callType);
}

}
}

After the table function is compiled, and its class file copied to /QIBM/UserData/05400/SQLLib/
Function, the function can be registered to the database by using the following SQL statement.

create function properties()

returns table (property varchar(500), value varchar(500))
external name 'JVMProperties.dump' language java
parameter style db2general fenced no sql

disallow parallel scratchpad

After the function has been registered, it can be used as part of an SQL statement. For example, the
following SELECT statement returns the table generated by the table function.

SELECT * FROM TABLE(PROPERTIES())

SQLJ procedures that manipulate JAR files

Both Java stored procedures and Java UDFs can use Java classes that are stored in Java JAR files.

To use a JAR file, a jar-id must be associated with the JAR file. The system provides stored procedures in
the SQLJ schema that allow jar-ids and JAR files to be manipulated. These procedures allow JAR files to
be installed, replaced, and removed. They also provide the ability to use and update the SQL catalogs
associated with JAR files.

SQLJ.INSTALL_JAR:

The SQLJ.INSTALL_JAR stored procedure installs a JAR file into the database system. This JAR file can
be used in subsequent CREATE FUNCTION and CREATE PROCEDURE statements.

Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the
following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

* The following system authorities:

— The INSERT and SELECT privileges on the table

— The system authority *EXECUTE on library QSYS2
* Administrative authority

IBM Developer Kit for Java 199



The privilege held by the authorization ID of the CALL statement must also have the following
authorities:

¢ Read (*R) access to the JAR file specified in the jar-url parameter being installed.

* Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/0S400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

SQL syntax
>>-CALL--SQLJ.INSTALL JAR-- (--'jar-url'--,--'jar-id'--,--deploy--)-->
D e e i ——_——————— ><
Description

jar-url The URL containing the JAR file to be installed or replaced. The only URL scheme supported is
"file:".

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id
uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or
explicit qualifier.

deploy Value used to describe the install_action of the deployment descriptor file. If this integer is a
nonzero value, then the install_actions of a deployment descriptor file should be run at the end of
the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of
Zero.

Usage notes

When a JAR file is installed, DB2 UDB for iSeries registers the JAR file in the SYSJAROBJECTS system
catalog. It also extracts the names of the Java class files from the JAR file and registers each class in the
SYSJARCONTENTS system catalog. DB2 UDB for iSeries copies the JAR file to a jar/schema subdirectory
of the /QIBM/UserData/0OS400/SQLLib/Function directory. DB2 UDB for iSeries gives the new copy of
the JAR file the name given in the jar-id clause. A JAR file that has been installed by DB2 UDB for iSeries
into a subdirectory of /QIBM/UserData/0S400/SQLLib/Function/jar should not be changed. Instead,
the CALL SQLJ.REMOVE_JAR and CALL SQLJ.REPLACE_JAR SQL commands should be used to
remove or replace an installed JAR file.

Example

The following command is issued from an SQL interactive session.
CALL SQLJ.INSTALL JAR('file:/home/db2inst/classes/Proc.jar' , 'myproc_jar', 0)

The Proc.jar file located in the file:/home/db2inst/classes/ directory is installed into DB2 UDB for iSeries
with the name myproc_jar. Subsequent SQL commands that use the Procedure jar file refer to it with the
name myproc_jar.

SQLJ.REMOVE_JAR:
The SQLJ.REMOVE_JAR stored procedure removes a JAR file from the database system.
Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the
following for the SYSJARCONTENTS and SYSJAROBJECTS catalog tables:

* The following system authorities:
— The SELECT and DELETE privileges on the table

200 System i: Programming IBM Developer Kit for Java



— The system authority *EXECUTE on library QSYS2
* Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following authority.

* *OBJMGT authority to the JAR file being removed. The JAR file is named /QIBM/UserData/0OS400/
SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for this authority.

Syntax
>>-CALL--SQLJ.REMOVE_JAR--(--"jar-id'--, --undeploy--)---------- ><

Description
jar-id The JAR identifier of the JAR file that is to be removed from the database.

undeploy
The value used to describe the remove_action of the deployment descriptor file. If this integer is a
non-zero value, then the remove_actions of a deployment descriptor file should be run at the end
of the install_jar procedure. The current version of DB2 UDB for iSeries only supports a value of
zero.

Example

The following command is issued from an SQL interactive session:
CALL SQLJ.REMOVE_JAR('myProc_jar', 0)

The JAR file myProc_jar is removed from the database.

SQLJ.REPLACE_JAR:

The SQL].REPLACE_JAR stored procedure replaces a JAR file into the database system.
Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the
following for the SYSJAROBJECTS and SYSJARCONTENTS catalog tables:

* The following system authorities:
— The SELECT, INSERT, and DELETE privileges on the table
— The system authority *EXECUTE on library QSYS2

¢ Administrative authority

The privilege held by the authorization ID of the CALL statement must also have the following
authorities:

* Read (*R) access to the JAR file specified by the jar-url parameter being installed.

* *OBJMGT authority to the JAR file being removed. The JAR file is named /QIBM/UserData/0OS400/
SQLLib/Function/jar/schema/jarfile.

Adopted authority cannot be used for these authorities.

Syntax
>>-CALL--SQLJ.REPLACE_JAR--(--"jar-url'--,--"jar-id'--)-------- ><

IBM Developer Kit for Java 201



Description
jar-url The URL containing the JAR file to be replaced. The only URL scheme supported is file:’.

jar-id The JAR identifier in the database to be associated with the file specified by the jar-url. The jar-id
uses SQL naming and the JAR file is installed in the schema or library specified by the implicit or
explicit qualifier.

Usage notes

The SQLJ.REPLACE_JAR stored procedure replaces a JAR file that was previously installed in the
database using SQLJ.INSTALL_JAR.

Example

The following command is issued from an SQL interactive session:
CALL SQLJ.REPLACE_JAR('file:/home/db2inst/classes/Proc.jar' , 'myproc_jar')

The current JAR file referred to by the jar-id myproc_jar is replaced with the Procjar file located in the
file:/home/db2inst/classes/ directory.

SQLJ.UPDATEJARINFO:

The SQLJ.UPDATEJARINFO updates the CLASS_SOURCE column of the SYSJARCONTENTS catalog
table. This procedure is not part of the SQLJ standard but is used by the DB2 UDB for iSeries stored
procedure builder.

Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the
following for the SYSJARCONTENTS catalog table:

* The following system authorities:
— The SELECT and UPDATEINSERT privileges on the table
— The system authority *EXECUTE on library QSYS2

* Administrative authority

The user running the CALL statement must also have the following authorities:

* Read (*R) access to the JAR file specified in the jar-url parameter. Read (*R) access to the JAR file being
installed.

* Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/0S400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

Adopted authority cannot be used for these authorities.

Syntax
>>-CALL--SQLJ.UPDATEJARINFO--(--"jar-id'--,--"'class-id'--,--"'jar-url'--)-->

Description
jar-id The JAR identifier in the database that is to be updated.

class-id
The package qualified class name of the class to be updated.

202 System i: Programming IBM Developer Kit for Java



jar-url The URL containing the classfile to update the JAR file with. The only URL scheme supported is
"file:’.

Example

The following command is issued from an SQL interactive session:

CALL SQLJ.UPDATEJARINFO('myproc_jar', 'mypackage.myclass',
'file:/home/user/mypackage/myclass.class')

The JAR file associated with the jar-id myproc_jar, is updated with a new version of the
mypackage.myclass class. The new version of the class is obtained from the file /home/user/
mypackage/myclass.class.

SQLJ.RECOVERJAR:

The SQL].RECOVERJAR procedure takes the JAR file that is stored in the SYSJAROBJECTS catalog and
restores it to the /QIBM/UserData/0OS400/SQLLib/Function/jar/jarschema/jar_id jar file.

Authorization

The privilege held by the authorization ID of the CALL statement must include at least one of the
following for the SYSJAROBJECTS catalog table:

* The following system authorities:
— The SELECT and UPDATEINSERT privileges on the table
— The system authority *EXECUTE on library QSYS2

¢ Administrative authority

The user running the CALL statement must also have the following authorities:

* Write, Execute, and Read (*RWX) access to the directory where the JAR file is installed. This directory
is /QIBM/UserData/0S400/SQLLib/Function/jar/schema, where schema is the schema of the jar-id.

* *OBJMGT authority to the JAR file being removed. The JAR file is named /QIBM/UserData/0OS400/
SQLLib/Function/jar/schema/jarfile.

Syntax
>>-CALL--SQLJ .RECOVERJAR-~- (== 'jar-id' =) ===mmmmmmmmmmmmemmeeee ><

Description

jar-id The JAR identifier in the database that is to be recovered.
Example

The following command is issued from a SQL interactive session:
CALL SQLJ.UPDATEJARINFO('myproc_jar')

The JAR file associated with the myproc_jar is updated with the contents from SYSJARCONTENT table.
The file is copied to /QIBM/UserData/0S400/SQLLib/Function/jar/jar_schema myproc_jarjar.

SQLJ.REFRESH_CLASSES:
The SQLJ.REFRESH_CLASSES stored procedure causes the reloading of user defined classes used by Java
stored procedures or Java UDFs in the current database connection. This stored procedure must be called

by existing database connections to obtain changes made by a call to the SQL].REPLACE_JAR stored
procedure.

IBM Developer Kit for Java 203



Authorization
NONE

Syntax

>>-CALL--SQLJ.REFRESH_CLASSES-- ()-->

Example

Call a Java stored procedure, MYPROCEDURE, that uses a class in a jar file registered with the MYJAR

jarid:

CALL MYPROCEDURE()

Replace the jar file using the following call:

CALL SQLJ.REPLACE_JAR('MYJAR', '/tmp/newjarfile.jar')

In order for subsequence calls to the MYPROCEDURE stored procedure to use the updated jar file,
SQLJ.REFRESH_CLASSES must be called:

CALL SQLJ.REFRESH_CLASSES()

Call the stored procedure again. The updated class files are used when the procedure is called.

CALL MYPROCEDURE()

Parameter passing conventions for Java stored procedures and UDFs
The following table lists how SQL data types are represented in Java stored procedures and UDFs.

SQL data type

Java parameter style JAVA

Java parameter style DB2GENERAL

SMALLINT short short

INTEGER int int

BIGINT long long

DECIMAL(p,s) BigDecimal BigDecimal
NUMERIC(p,s) BigDecimal BigDecimal

REAL or FLOAT(p) float float

DOUBLE PRECISION or FLOAT or | double double

FLOAT(p)

CHARACTER(n) String String
CHARACTER(n) FOR BIT DATA byte[] com.ibm.db2.app.Blob
VARCHAR(n) String String

VARCHAR(n) FOR BIT DATA byte[] com.ibm.db2.app.Blob
GRAPHIC(n) String String
VARGRAPHIC(n) String String

DATE Date String

TIME Time String

TIMESTAMP Timestamp String

Indicator Variable - -

CLOB - com.ibm.db2.app.Clob

204 System i: Programming IBM Developer Kit for Java




SQL data type Java parameter style JAVA Java parameter style DB2GENERAL
BLOB - com.ibm.db2.app.Blob

DBCLOB - com.ibm.db2.app.Clob

DataLink - -

Java with other programming languages

With Java, you have multiple ways to call code that was written in languages other than Java.
Java Native Interface

One of the ways you can call code written in another language is to implement selected Java methods as
‘native methods.” Native methods are procedures, written in another language, that provide the actual
implementation of a Java method. Native methods can access the Java virtual machine using the Java
Native Interface (JNI). These native methods run under the Java thread, which is a kernel thread, so they
must be thread safe. A function is thread safe if you can start it simultaneously in multiple threads within
the same process. A function is thread safe if and only if all the functions it calls are also thread safe.

Native methods are a "bridge” to access system functions that are not directly supported in Java, or to
interface to existing user code. Use caution when using native methods, because the code that is being
called may not be thread safe.

Java Invocation API

Using the Java Invocation API, which is also a part of the Java Native Interface (JNI) specification, allows
a non-Java application to use the Java virtual machine. It also allows the use of Java code as an extension
of the application.

i5/0S PASE native methods

The i5/0S Java virtual machine (JVM) supports the use of native methods running in the i5/0S PASE
environment. i5/0S PASE native methods for Java enable you to easily port your Java applications that
run in AIX® to your server. You can copy the class files and AIX native method libraries to the integrated
file system on the server and run them from any of the control language (CL), Qshell or i5/0S PASE
terminal session command prompts.

Teraspace native methods

The i5/0S Java virtual machine (JVM) supports the use of teraspace storage model native methods. The
teraspace storage model provides a large process, local-address environment for ILE programs. Using
teraspace allows you to port native method code from other operating systems to i5/0S with little or no
changes to your source code.

java.lang.Runtime.exec()

You can use java.lang.Runtime.exec() to call programs or commands from within a Java program. The
exec() method starts another process in which any System i5 program or command can run. In this
model, you can use standard in, standard out, and standard err of the child process for interprocess
communication.

Interprocess communication

One option is to use sockets for interprocess communication between the parent and child processes.

IBM Developer Kit for Java 205



You can also use stream files for communication between programs. Or see the Interprocess
communications topic for an overview of your options when communicating with programs that are
running in another process.

To call Java from other languages, see the Example: Call Java from C or Example: Call Java from RPG
topics.

You can also use the IBM Toolbox for Java to call existing programs and commands on the server. Data

queues and System i5 messages are usually used for interprocess communication with the IBM Toolbox
for Java.

Note: By using Runtime.exec(), IBM Toolbox for Java, or JNI, you may compromise the portability of the
Java program. You should avoid using these methods in a "pure” Java environment.

Related concepts

[‘JTava Invocation API” on page 208|

The Invocation API, which is part of the Java Native Interface (JNI), allows non-Java code to create a
Java virtual machine, and load and use Java classes. This function lets a multithreaded program make
use of Java classes that are running in a single Java virtual machine in multiple threads.

[“Using sockets for interprocess communication” on page 228
Sockets streams communicate between programs that are running in separate processes.

[“Using input and output streams for interprocess communication” on page 231
Input and output streams communicate between programs that are running in separate processes.

Related reference

[“Example: Calling Java from C” on page 233]

This is an example of a C program that uses the system() function to call the Java Hello program.
[“Example: Calling Java from RPG” on page 233

This is an example of an RPG program that uses the QCMDEXC API to call the Java Hello program.
Related information

[[BM Toolbox for Javal

Using the Java Native Interface for native methods

You should only use native methods in cases where pure Java cannot meet your programming needs.

Limit the use of native methods by only using them under these circumstances:
¢ To access system functions that are not available using pure Java.

¢ To implement extremely performance-sensitive methods that can benefit significantly from a native
implementation.

* To interface to existing application program interfaces (API) that allow Java to call other APIs.

The following instructions apply to using the Java Native Interface (JNI) with the C language. For
information about using JNI with the RPG language, see Chapter 11 of the WebSphere Development
Studio: ILE RPG Programmer’s Guide, SC09-2507.

To use the Java Native Interface (JNI) for native methods, do these steps:

1. Design the class by specifying which methods are native methods with the standard Java language
syntax.

2. Decide on a library and program name for the service program (*SRVPGM) that contains native
method implementations. When coding the System.loadLibrary() method call in the static initializer
for the class, specify the name of the service program.

3. Use the javac tool to compile the Java source into a class file.

206 System i: Programming IBM Developer Kit for Java



10.

1.

Use the javah tool to create the header file (.h). This header file contains the exact prototypes for
creating the native method implementations. The -d option specifies the directory where you should
create the header file.

Copy the header file from the integrated file system into a member in a source file by using the
Copy From Stream File (CPYFRMSTMF) command. You must copy the header file into a source file
member for the C compiler to use it. Use the new stream file support for the Create Bound ILE
C/400® Program (CRTCMOD) command to leave your C source and C header files in the integrated
file system.For more information on the CRTCMOD command and the use of stream files, see the
WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712.

Write the native method code. See the Java native methods and threads considerations topic for
details about the languages and functions that are used for native methods.

a. Include the header file that was created in the previous steps.
b. Match the prototypes in the header file exactly.

c. Convert strings to American Standard Code for Information Interchange (ASCII) if the strings are
to pass to the Java virtual machine. For more information, see the Java character encoding topic.

If your native method must interact with the Java virtual machine, use the functions that are
provided with JNI.

Compile your C source code, using the CRTCMOD command, into a module (*MODULE) object.

Bind one or more module objects into a service program (*SRVPGM) by using the Create Service
Program (CRTSRVPGM) command. The name of this service program must match the name that you
supplied in your Java code that is in the System.load() or System.loadLibrary() function calls.

If you used the System.loadLibrary() call in your Java code, perform one the following task that is
appropriate for the J25DK you are running;:

¢ Include the list of the libraries that you need in the LIBPATH environment variable. You can
change the LIBPATH environment variable in QShell and from the i5/0S command line.

— From the Qshell command prompt, type in:

export LIBPATH=/QSYS.LIB/MYLIB.LIB
java -Djava.version=1.5 myclass

— Or, from the command line:

ADDENVVAR LIBPATH '/QSYS.LIB/MYLIB.LIB'
JAVA PROP((java.version 1.5)) myclass

* Or, supply the list in the java.library.path property. You can change the java.library.path property
in QShell and from the i5/0S command line.

— From the Qshell command prompt, enter:

java -Djava.library.path=/QSYS.LIB/MYLIB.LIB -Djava.version=1.5 myclass
— Or, from the i5/0S command line, type in:

JAVA PROP((java.library.path '/QSYS.LIB/MYLIB.LIB') (java.version '1.5')) myclass

Where /QSYS.LIB/MYLIB.LIB is the library that you want to load using the System.loadLibrary() call,
and myclass is the name of your Java application.

The path syntax for System.load(String path) can be any of these:
* /gsys.lib/sysNMsp.srvpgm (for *SRVPGM QSYS/SYSNMSP)
* /gsys.lib/mylib.lib/myNMsp.srvpgm (for *SRVPGM MYLIB/MYNMSP)

* a symbolic link, such as /home/mydir/myNMsp.srvpgm which links to /qsys.lib/mylib.lib/
myNMsp.srvpgm

Note: This is equivalent to using the System.loadLibrary("myNMsp”) method.

IBM Developer Kit for Java 207



Note: The pathname is typically a string literal enclosed in quotation marks. For example, you could
use the following code:

System.load("/qgsys.1ib/mylib.1ib/myNMsp.srvpgm")

12. The libname parameter for System.loadLibrary(String libname) is typically a string literal in
quotation marks that identifies the native method library. The system uses the current library list and
LIBPATH and PASE_LIBPATH environment variables to search for a service program or i5/0S PASE
executable that matches the library name. For example, ToadLibrary("myNMsp") results in a search for
a *SRVPGM named MYNMSP or an i5/0S PASE executable named libmyNMsp.a or libmyMNsp.so.

See Examples: Use the Java Native Interface for native methods for an example of how to use the JNI for
native methods.

&= [Websphere Development Studio: ILE RPG Programmer’s Guide, SC09-2507]

[‘Java native methods and threads considerations” on page 213|
You can use native methods to access functions that are not available in Java. To better use Java with
native methods, you need to understand these concepts.

[ [[ava Native Interface by Sun Microsystems, Inc)

[“Examples: Using the Java Native Interface for native methods” on page 517

This example program is a simple Java Native Interface (JNI) example in which a C native method is
used to display "Hello, World.” Use the javah tool with the NativeHello class file to generate the
NativeHello.h file. This example assumes that the NativeHello C implementation is part of a service
program that is called NATHELLO.

[‘Strings in native methods” on page 214]

Many Java Native Interface (JNI) functions accept C language-style strings as parameters. For
example, the FindClass() JNI function accepts a string parameter that specifies the fully-qualified
name of a classfile. If the classfile is found, it is loaded by FindClass, and a reference to it is returned
to the caller of FindClass.

[‘Java character encodings” on page 25

Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Java Invocation API

The Invocation API, which is part of the Java Native Interface (JNI), allows non-Java code to create a Java
virtual machine, and load and use Java classes. This function lets a multithreaded program make use of
Java classes that are running in a single Java virtual machine in multiple threads.

The IBM Developer Kit for Java supports the Java Invocation API for the following types of callers:
* An ILE program or service program created for STGMDL (*SNGLVL) and DTAMDL (*P128)

* An ILE program or service program created for STGMDL (*TERASPACE) and DTAMDL(*LLP64)

e An i5/0S PASE executable created for either 32-bit or 64-bit AIX

The application controls the Java virtual machine. The application can create the Java virtual machine,
call Java methods (similar to the way in which an application calls subroutines), and destroy the Java
virtual machine. Once you create the Java virtual machine, it remains ready to run within the process
until the application explicitly destroys it. While being destroyed, the Java virtual machine performs
clean-up, such as running finalizers, ending Java virtual machine threads, and releasing Java virtual
machine resources.

With a Java virtual machine that is ready to run, an application written in ILE languages, such as C and
RPG, can call into the Java virtual machine to perform any function. It also can return from the Java
virtual machine to the C application, call into the Java virtual machine again, and so on. The Java virtual
machine is created once and does not have to be recreated before calling into the Java virtual machine to
run a little or a lot of Java code.

208 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

When using the Invocation API to run Java programs, the destination for STDOUT and STDERR is
controlled by the use of an environment variable called QIBM_USE_DESCRIPTOR_STDIO. If this
environment variable is set to Y or I (for example, QIBM_USE_DESCRIPTOR_STDIO=Y), the Java virtual
machine uses file descriptors for STDIN (fd 0), STDOUT (fd 1), and STDERR (fd 2). In this case, the
program must set these file descriptors to valid values by opening them as the first three files or pipes in
this job. The first file opened in the job is given fd of 0, the second fd of 1, and third is fd of 2. For jobs
initiated with the spawn API, these descriptors can be preassigned using a file descriptor map (see
documentation on Spawn API). If the environment variable QIBM_USE_DESCRIPTOR_STDIO is not set
or is set to any other value, file descriptors are not used for STDIN, STDOUT, or STDERR. Instead,
STDOUT and STDERR are routed to a spooled file that is owned by the current job, and use of STDIN
results in an IO exception.

Invocation API functions:
The IBM Developer Kit for Java supports these Invocation API functions.

Note: Before using this API, you must ensure that you are in a multithread-capable job. See
[Multithreaded applications| for more information about multithread-capable jobs.

* JNI_GetCreatedJavaVMs
Returns information about all Java virtual machines that were created. Even though this API is

designed to return information for multiple Java virtual machines (JVMs), only one JVM can exist for a
process. Therefore, this API will return a maximum of one JVM.

Signature:

jint JINI_GetCreatedJavaVMs(JavaVM xxvmBuf,

jsize buflLen,

jsize *nVMs);
vmBuf is an output area whose size is determined by bufLen, which is the number of pointers. Each
Java virtual machine has an associated JavaVM structure that is defined in java.h. This API stores a
pointer to the JavaVM structure that is associated with each created Java virtual machine into vmBuf,
unless vmBuf is 0. Pointers to JavaVM structures are stored in the order of the corresponding Java
virtual machines that are created. nVMs returns the number of virtual machines that are currently
created. Your server supports the creation of more than one Java virtual machine, so you may expect a
value higher than one. This information, along with the size of the vimBuf, determines whether
pointers to JavaVM structures for each created Java virtual machine are returned.

* JNI_CreateJavaVM
Allows you to create a Java virtual machine and subsequently use it in an application.
Signature:

jint JINI CreateJavaVM(JavaVM **p vm,

void **p_env,

void *vm_args);
p_vm is the address of a JavaVM pointer for the newly created Java virtual machine. Several other JNI
Invocation APIs use p_vm to identify the Java virtual machine. p_env is the address of a JNI
Environment pointer for the newly created Java virtual machine. It points to a table of JNI functions
that start those functions. vim_args is a structure that contains Java virtual machine initialization
parameters.

If you start a Run Java (RUNJVA) command or JAVA command and specify a property that has an
equivalent command parameter, then the command parameter takes precedence. The property is
ignored. For example, the 0s400.optimization parameter is ignored in this command:

JAVA CLASS(Hello) PROP((0s400.optimization 0))

For a list of unique properties that are supported by the JNI_CreateJavaVM API, see
[properties” on page 14.

Note: Java on System i5 supports creating only one Java virtual machine (JVM) within a single job or
process. For more information, see [‘Support for multiple Java virtual machines” on page 210

IBM Developer Kit for Java 209



* DestroyJavaVM
Destroys the Java virtual machine.
Signature:
jint DestroyJavaVM(JavaVM *vm)
When the Java virtual machine is created, v is the JavaVM pointer that is returned.
* AttachCurrentThread
Attaches a thread to a Java virtual machine, so it can use Java virtual machine services.
Signature:

jint AttachCurrentThread(JavaVM *vm,
void **p_env,
void *thr_args);

The JavaVM pointer, v, identifies the Java virtual machine to which the thread is being attached.
p_env is the pointer to the location where the JNI Interface pointer of the current thread is placed.
thr_args contains VM specific thread attachment arguments.

¢ DetachCurrentThread
Signature:
jint DetachCurrentThread(JavaVM *vm);
vm identifies the Java virtual machine from which the thread is being detached.

[ [[ava Native Interface by Sun Microsystems, Inc)

Support for multiple Java virtual machines:

Java on theSystem i5 platform no longer supports creating more than one Java virtual machine (JVM)
within a single job or process. This restriction affects only those users who create JVMs by using the Java
Native Interface Invocation (JNI) APIL. This change in support does not affect how you use the java
command to run your Java programs.

You cannot successfully call JNI_CreateJavaVM() more than once in a job, and JNI_GetCreatedJavaVMs()
cannot return more than one JVM in a list of results.

Support for creating only a single JVM within a single job or process follows the standards of the Sun
Microsystems, Inc. reference implementation of Java.

Example: Java Invocation API:
This example follows the standard Invocation API paradigm.

It does the following:

¢ Creates a Java virtual machine by using JNI_CreateJavaVM.

* Uses the Java virtual machine to find the class file that you want to run.
* Finds the methodID for the main method of the class.

* Calls the main method of the class.

¢ Reports errors if an exception occurs.

When you create the program, the QJVAJNI or QJVAJNI64 service program provides the
JNI_CreateJavaVM Invocation API function. JNI_CreateJavaVM creates the Java virtual machine.

Note: QJVAJNI64 is a new service program for teraspace/LLP64 native method and Invocation API
support.

210 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

These service programs reside in the system binding directory and you do not need to explicitly identify
them on a control language (CL) create command. For example, you would not explicitly identify the
previously mentioned service programs when using the Create Program (CRTPGM) command or the
Create Service Program (CRTSRVPGM) command.

One way to run this program is to use the following control language command:
SBMJOB CMD(CALL PGM(YOURLIB/PGMNAME)) ALWMLTTHD(*YES)

Any job that creates a Java virtual machine must be multithread-capable. The output from the main
program, as well as any output from the program, ends up in QPRINT spooled files. These spooled files
are visible when you use the Work with Submitted Jobs (WRKSBMJOB) control language (CL) command
and view the job that you started by using the Submit Job (SBMJOB) CL command.

Example: Using the Java Invocation API

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

#define 0S400_JVM_12
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <jni.h>

/* Specify the pragma that causes all literal strings in the
* source code to be stored in ASCII (which, for the strings
* used, is equivalent to UTF-8)

*/

#pragma convert(819)

/* Procedure: Oops
*
Description: Helper routine that is called when a JNI function
returns a zero value, indicating a serious error.
This routine reports the exception to stderr and
ends the JVM abruptly with a call to FatalError.

msg -- char* pointing to error description in UTF-8

Note: Control does not return after the call to FatalError

*

*

*

*

*

* Parameters: env -- JNIEnv* to use for JNI calls

*

*

*

* and it does not return from this procedure.

*/

void Oops(JNIEnv* env, char *msg) {
if ((xenv)->ExceptionOccurred(env)) {
(xenv)->ExceptionDescribe(env);

(*env)->FatalError(env, msg);

}

/* This is the program's "main" routine. */
int main (int argc, char xargv[])

{

JavaVMInitArgs initArgs; /* Virtual Machine (VM) initialization structure, passed by
* reference to JNI_CreateJavaVM(). See jni.h for details

*

/

JavaVM* myJVM; /* JavaVM pointer set by call to JNI CreatedavaVM =*/
JNIEnv* myEnv; /* JINIEnv pointer set by call to JNI CreatedavaVM =*/
char*  myClasspath; /* Changeable classpath 'string' =*/

jclass myClass; /* The class to call, 'NativeHello'. =/

IBM Developer Kit for Java 211



jmethodID mainlD; /* The method ID of its 'main' routine. */

jclass stringClass; /* Needed to create the String[] arg for main %/
jobjectArray args; /* The String[] itself =/

JavaVMOption options[1]; /* Options array -- use options to set classpath */
int fdo, fdl, fd2; /x file descriptors for I0 */

/* Open the file descriptors so that I0 works. =*/

fd0 = open("/dev/nul11", O_CREAT|O_TRUNC|0_RDWR, S _IRUSR|S_IROTH);
fdl = open("/dev/nul12", O_CREAT|O_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);
fd2 = open("/dev/nu113", O_CREAT|0_TRUNC|O_WRONLY, S_IWUSR|S_IWOTH);

/* Set the version field of the initialization arguments for J2SDK v1.3. */
initArgs.version = 0x00010002;

/* To use J2SDK v1.4, set initArgs.version = 0x00010004; */

/* To use J2SDK v1.5, set initArgs.version = 0x00010005; x/

/* Now, you want to specify the directory for the class to run in the classpath.
* with Java2, classpath is passed in as an option.
* Note: You must specify the directory name in UTF-8 format. So, you wrap
* blocks of code in #pragma convert statements.
*
/
options[0].optionString="-Djava.class.path=/CrtJvmExample";
/*To use J2SDK v1.4 or vl1.5, replace the '1.3' with '1.4' or '1.5"'.
options[1].optionString="-Djava.version=1.3" */

initArgs.options=options; /* Pass in the classpath that has been set up. */
initArgs.nOptions = 2; /* Pass in classpath and version options */

/* Create the JVM -- a nonzero return code indicates there was
* an error. Drop back into EBCDIC and write a message to stderr
* before exiting the program.
*
/
if (INI_CreatedavaVM("myJVM, (void #*)"myEnv, (void *)"initArgs)) {
#pragma convert(0)
fprintf(stderr, "Failed to create the JVM\n");
#pragma convert(819)
exit(1l);
1

/* Use the newly created JVM to find the example class,
* called 'NativeHello'.
*/
myClass = (*myEnv)->FindClass(myEnv, "NativeHello");
if (! myClass) {
Oops (myEnv, "Failed to find class 'NativeHello'");
1

/* Now, get the method identifier for the 'main' entry point
* of the class.
* Note: The signature of 'main' is always the same for any

* class called by the following java command:
* "main" , "([Ljava/Tang/String;)V"
*/

mainID = (*myEnv)->GetStaticMethodID(myEnv,myClass,"main",
"([Ljava/lang/String;)V");
if (! mainID) {
Oops (myEnv, "Failed to find jmethodID of 'main'");

/* Get the jclass for String to create the array
* of String to pass to 'main'.
*/
stringClass = (*myEnv)->FindClass(myEnv, "java/lang/String");
if (! stringClass) {
Oops(myEnv, "Failed to find java/lang/String");

212 System i: Programming IBM Developer Kit for Java



/* Now, you need to create an empty array of strings,
* since main requires such an array as a parameter.

*/
args = (*myEnv)->NewObjectArray(myEnv,0,stringClass,0);
if (! args) {

Oops(myEnv, "Failed to create args array");

/* Now, you have the methodID of main and the class, so you can
* call the main method.

*/

(*myEnv)->CallStaticVoidMethod(myEnv,myClass,mainID,args);

/* Check for errors. */

if ((*myEnv)->ExceptionOccurred(myEnv)) {
(*myEnv) ->ExceptionDescribe(myEnv) ;

1

/* Finally, destroy the JavaVM that you created. */
(*myJdVM) ->DestroyJdavaVM(myJVM) ;

/* A1l done. =/
return 0;

}

For more information, see [“Java Invocation API” on page 208

Java native methods and threads considerations
You can use native methods to access functions that are not available in Java. To better use Java with
native methods, you need to understand these concepts.

* A Java thread, whether created by Java or an attached native thread, has all floating point exceptions
disabled. If the thread runs a native method that reenables floating point exceptions, Java does not turn
them off a second time. If the user application does not disable them before returning to run Java code,
then the Java code may not behave correctly if a floating point exception occurs. When a native thread
detaches from the Java virtual machine, its floating point exception mask is restored to the value that
was in effect when it was attached.

* When a native thread attaches to the Java virtual machine, the Java virtual machine changes the
threads priority, if necessary, to conform to the one to ten priority schemes that Java defines. When the
thread detaches, the priority is restored. After attaching, the thread can change the thread priority by
using a native method interface (for example, a POSIX API). Java does not change the thread priority
on transitions back to the Java virtual machine.

¢ The Invocation API component of the Java Native Interface (JNI) permits a user to embed a Java
virtual machine within their application. If an application creates a Java virtual machine and the Java
virtual machine ends abnormally, the MCH74A5 "Java Virtual Machine Terminated” System i5
exception is signalled to the initial thread of the process if that thread was attached to the Java virtual
machine when the Java virtual machine ended. The Java virtual machine could end abnormally for any
of these reasons:

— The user calls the java.lang.System.exit() method.

— A thread that the Java virtual machine requires ends.

— An internal error occurs in the Java virtual machine.

This behavior differs from most other Java platforms. On most other platforms, the process that
automatically creates the Java virtual machine ends abruptly as soon as the Java virtual machine ends.
If the application monitors and handles a signalled MCH74A5 exception, it may continue to run.
Otherwise, the process ends when the exception goes unhandled. By adding the code that deals with

the System i5 system-specific MCH74A5 exception, you can make the application less portable to other
platforms.

IBM Developer Kit for Java 213



Because native methods always run in a multithreaded process, the code that they contain must be thread
safe. This places these restrictions on the languages and functions that are used for native methods:

* You should not use ILE CL for native methods, because this language is not thread safe. To run thread
safe CL commands, you can use the C language system() function or the java.lang.Runtime.exec()
method.

— Use the C language system() function to run thread safe CL commands from within a C or C++
native method.

— Use the java.lang.Runtime.exec() method to run thread safe CL commands directly from Java.

* You can use ILE C, ILE C++, ILE COBOL, and ILE RPG to write a native method, but all of the
functions that are called from within the native method must be thread safe.

Note: Compile-time support for writing native methods is currently only supplied for the C, C++, and
RPG languages. While possible, writing native methods in other languages may be much more
complicated.

Caution: Not all standard C, C++, COBOL, or RPG functions are thread safe.
* The C and C++ exit() and abort() functions should never be used within a native method. These

functions cause the entire process that runs the Java virtual machine to stop. This includes all of the
threads in the process, regardless of if they were originated by Java or not.

Note: The exit() function referred to is the C and C++ function, and is not the same as the
java.lang.Runtime.exit() method.

For more information about threads on the server, see [Multithreaded applications|

Native methods and the Java Native Interface
Native methods are Java methods that start in a language other than Java. Native methods can access
system-specific functions and APIs that are not available directly in Java.

The use of native methods limits the portability of an application, because it involves system-specific
code. Native methods can either be new native code statements or native code statements that call
existing native code.

Once you decide that a native method is required, it may have to interoperate with the Java virtual
machine where it runs. The Java Native Interface (JNI) facilitates this interoperability in a
platform-neutral way:.

The JNI is a set of interfaces that permit a native method to interoperate with the Java virtual machine in
numerous ways. For example, the JNI includes interfaces that create new objects and call methods, get
fields and set fields, process exceptions, and manipulate strings and arrays.

For a complete description of the JNI, refer to Java Native Interface by Sun Microsystems, Inc.
Related information

[ [lava Native Interface by Sun Microsystems, Inc|

Strings in native methods
Many Java Native Interface (JNI) functions accept C language-style strings as parameters. For example,
the FindClass() JNI function accepts a string parameter that specifies the fully-qualified name of a

classfile. If the classfile is found, it is loaded by FindClass, and a reference to it is returned to the caller of
FindClass.

All NI functions expect their string parameters to be encoded in UTE-8. For details on UTE-8, you can
refer to the JNI Specification, but in most cases it is enough to observe that 7-bit American Standard Code

214 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

for Information Interchange (ASCII) characters are equivalent to their UTF-8 representation. 7-bit ASCII
characters are actually 8-bit characters but their first bit is always 0. So, most ASCII C strings are actually
already in UTF-8.

The C compiler on the server operates in extended binary-coded decimal interchange code (EBCDIC) by
default, so you can provide strings to the JNI functions in UTF-8. There are two ways to do this. You can
use literal strings, or you can use dynamic strings. |Litera1 stringsl are strings whose value is known when
the source code is compiled. [Dynamic strings| are strings whose value is not known at compile time, but
is actually computed at run time.

Literal strings in native methods:

It is easier to encode literal strings in UTF-8 if the string is composed of characters with a 7-bit American
Standard Code for Information Interchange (ASCII) representation.

If the string can be represented in ASCII, as most are, then the string can be bracketed by "pragma’
statements that change the current codepage of the compiler. Then, the compiler stores the string
internally in the UTF-8 form that is required by the JNI. If the string cannot be represented in ASCII, it is
easier to treat the original extended binary-coded decimal interchange code (EBCDIC) string as a dynamic
string, and process it using iconv() before passing it to the JNI. For more information on dynamic strings,
see [“Converting dynamic strings to and from EBCDIC, Unicode, and UTF-8."]

For example, to find the class named java/lang/String, the code looks like this:

#pragma convert(819)
myClass = (xenv)->FindClass(env,"java/lang/String");
#pragma convert(0)

The first pragma, with the number 819, informs the compiler to store all subsequent double-quoted
strings (literal strings) in ASCII. The second pragma, with the number 0, tells the compiler to revert to the
default code page of the compiler for double-quoted strings, which is usually the EBCDIC code page 37.
So, by bracketing this call with these pragmas, we satisfy the JNI requirement that string parameters are
encoded in UTF-8.

Caution: Be careful with text substitutions. For example, if your code looks like this:

#pragma convert(819)

#define MyString "java/lang/String"
#pragma convert(0)

myClass = (xenv)->FindClass(env,MyString);

Then, the resulting string is EBCDIC, because the value of MyString is substituted into the FindClass call
during compilation. At the time of this substitution, the pragma, number 819, is not in effect. Thus, literal
strings are not stored in ASCIL

Converting dynamic strings to and from EBCDIC, Unicode, and UTF-8:

To manipulate string variables that are computed at run time, it may be necessary to convert strings to
and from extended binary-coded decimal interchange (EBCDIC), Unicode, and UTEF-8.

The system API that provides for code page conversion function is iconv(). To use iconv(), follow these
steps:

1. Create a conversion descriptor with QtqIconvOpen().
2. Call iconv() to use the descriptor to convert to a string.
3. Close the descriptor by using iconv_close.

In [Example 3 of the using the Java Native Interface for native methods exampled, the routine creates,
uses, and then destroys the iconv conversion descriptor within the routine. This scheme avoids the

IBM Developer Kit for Java 215



problems with multithreaded use of an iconv_t descriptor, but for performance sensitive code it is better
to create a conversion descriptor in static storage, and moderate multiple access to it using a mutual
exclusion (mutex) or other synchronization facility.

IBM i5/0S PASE native methods for Java

The i5/0S Java virtual machine (JVM) supports the use of native methods running in the i5/0OS PASE
environment. Prior to V5R2, the native i5/OS JVM used only ILE native methods.

Support for i5/0S PASE native methods includes:
* Full use of the native System i5 Java Native Interface (JNI) from i5/OS PASE native methods
¢ The ability to call i5/0S PASE native methods from the native i5/0S JVM

This new support enables you to easily port your Java applications that run in AIX to your server. You
can copy the class files and AIX native method libraries to the integrated file system on the server and
run them from any of the control language (CL), Qshell or i5/0S PASE terminal session command
prompts.

Related information

[* [5/05 PASE

This information assumes you are already familiar with i5/0S PASE. If you are not yet familiar with
PASE, see this topic to learn more using IBM i5/0S PASE native methods with Java.

Java i5/0S PASE environment variables

The Java virtual machine (JVM) uses the following variables to start i5/0OS PASE environments. You need
to set the QIBM_JAVA_PASE_STARTUP variable in order to run the IBM i5/0S PASE native method for
Java example.

QIBM_JAVA_PASE_STARTUP
You need to set this environment variable when both of the following conditions occur:

* You are using i5/0S PASE native methods

* You are starting Java from an i5/0S command prompt or Qshell command prompt

The JVM uses this environment variable to start a PASE environment. The value of the variable
identifies an i5/0S PASE startup program. Your server includes two i5/0S PASE startup
programs:

e /usr/lib/start32: Starts a 32-bit i5/0S PASE environment
e /usr/lib/start64: Starts a 64-bit i5/0OS PASE environment

The bit format of all shared library objects used by an i5/0OS PASE environment must match the
bit format of the i5/0S PASE environment.

You cannot use this variable when starting Java from an i5/0S PASE terminal session. An i5/0S
PASE terminal session always uses a 32-bit i5/0S PASE environment. Any JVMs started from an
i5/0S PASE terminal session use the same type of PASE environment as the terminal session.

QIBM_JAVA_PASE_CHILD_STARTUP
Set this optional environment variable when the i5/0S PASE environment for a secondary JVM
must be different than the i5/0S PASE environment the primary JVM. A call to Runtime.exec() in
Java starts a secondary (or child) JVM.

QIBM_JAVA_PASE_ALLOW_PREV
Set this optional environment variable when you want to use the current i5/0S PASE
environment, if one exists. In certain situations, it is difficult to determine whether an i5/0S
PASE environment already exists. Using QIBM_JAVA_PASE_ALLOW_PREV and
QIBM_JAVA_PASE_STARTUP in combination enables the JVM to either use an existing i5/0S
PASE environment or start a new i5/0S PASE environment.

216 System i: Programming IBM Developer Kit for Java



Related reference

[“Examples: Environment variables for the IBM i5/0S PASE example”|
To use the IBM i5/0OS PASE native methods for Java example, you need to set environment variables.

Examples: Environment variables for the IBM i5/0S PASE example:

To use the IBM i5/0S PASE native methods for Java example, you need to set environment variables.

PASE_LIBPATH
Your server uses this i5/0S PASE environment variable to identify the location of i5/0OS PASE
native method libraries. You can set the path to a single directory or to multiple directories. For
multiple directories, use a colon (:) to separate entries. Your server can also use the LIBPATH
environment variable.

For more information about using Java, native method libraries, and PASE_LIBPATH with this
example, see ["Managing native method libraries” on page 219.|

PASE_THREAD_ATTACH
Setting this i5/0S PASE environment variable to Y causes an ILE thread that was not started by
i5/0S PASE to be attached automatically to i5/0S PASE when it calls an i5/0S PASE procedure.

For more information about i5/0S PASE environment variables, see the appropriate entries in
[Working with i5/0S PASE environment variables|

QIBM_JAVA_PASE_STARTUP
The JVM uses this environment variable to start an i5/0OS PASE environment. The value of the
variable identifies an i5/0OS PASE startup program.

For more information, see [“Java i5/0S PASE environment variables” on page 216

Using QIBM_JAVA_PASE_CHILD_STARTUP:

The QIBM_JAVA_PASE_CHILD_STARTUP environment variable indicates the i5/0OS PASE startup
program for any secondary JVMs.

Use QIBM_JAVA_PASE_CHILD_STARTUP when all of the following conditions are true:

¢ The Java application that you want to run creates Java virtual machines (JVMs) through Java calls to
Runtime.exec()

* Both the primary and secondary JVMs use i5/OS PASE native methods

* The i5/0S PASE environment of the secondary JVMs must be different than the i5/0S PASE
environment of the primary JVM

When all of the previously listed conditions are true, perform the following actions:

* Set the QIBM_JAVA_PASE_CHILD_STARTUP environment variable to the i5/0OS PASE startup
program of the secondary JVMs.

* When starting the primary JVM from an i5/0S command prompt or Qshell command prompt, set the
QIBM_JAVA_PASE_STARTUP environment variable to the i5/0S PASE startup program of the primary
JVM.

Note: When starting the primary JVM from an i5/0S PASE terminal session, do not set
QIBM_JAVA_PASE_STARTUP.

The process of the secondary JVM inherits the QIBM_JAVA_PASE_CHILD_STARTUP environment
variable. In addition, i5/0S sets the QIBM_JAVA_PASE_STARTUP environment variable of the secondary
JVM process to the value of the QIBM_JAVA_PASE_CHILD_STARTUP environment variable from the
parent process.

IBM Developer Kit for Java 217



The following table identifies the resulting i5/0OS PASE environments (if any) for the various
combinations of command environments and definitions of QIBM_JAVA_PASE_STARTUP and
QIBM_JAVA_PASE_CHILD_STARTUP:

Table 3. Resulting PASE environments for QIBM_JAVA_PASE_STARTUP and QIBM_JAVA_PASE_CHILD_STARTUP

Starting environment

Resulting behavior

Command QIBM_JAVA Primary JVM i5/0S |Primary JVM i5/0S | Secondary JVM

environment _PASE_STARTUP PASE Startup PASE Startup i5/0S PASE Startup

CL or QSH Defined startX Defined startY Use startX Use startY

CL or QSH Defined startX Not defined Use startX Use startX

CL or QSH Not defined Defined startY No ! 5/0S PASE Use startY
environment

CL or QSH Not defined Not defined No ! 5/0S PASE No ! 5/0S PASE
environment environment

i5/0S PASE terminal
session

Defined startX

Defined startY

Not allowed*

Not allowed*

i5/0S PASE terminal
session

Defined startX

Not defined

Not allowed*

Not allowed*

15/0S PASE terminal
session

Not defined

Defined startY

Use i5/0S PASE
terminal session
environment

Use startY

i5/0S PASE terminal
session

Not defined

Not defined

Use i5/0S PASE
terminal session
environment

No i5/0S PASE
environment

* The rows marked "Not allowed” indicate situations where the QIBM_JAVA_PASE_STARTUP
environment variable could conflict with the i5/0S PASE terminal session. Because of the potential
conflict, using QIBM_JAVA_PASE_STARTUP is not allowed from an i5/0OS PASE terminal session.

Using QIBM_JAVA_PASE_ALLOW_PREV:

Sometimes it is difficult to determine whether an i5/0S PASE environment already exists. Using the
optional environment variable QIBM_JAVA_PASE_ALLOW_PREV in combination with

QIBM_JAVA_PASE_STARTUP enables the JVM to determine whether to use the current i5/0S PASE
environment (if one exists) or start a new i5/0S PASE environment.

To use these two environment variables in combination, set them to the following values:
* Set QIBM_JAVA_PASE_STARTUP to the default startup program
* Set QIBM_JAVA_PASE_ALLOW_PREV to 1

For example, an application that optionally starts an i5/0OS PASE environment calls the program that
starts the JVM. In this case, by using the previous settings, the program is able to use the current i5/0S
PASE environment, if one exists, or start a new i5/0S PASE environment.

The following table identifies any i5/OS PASE environments that result from the various combinations of
i5/0S PASE environment and definitions of QIBM_JAVA_PASE_STARTUP and
QIBM_JAVA_PASE_ALLOW_PREV:

218

System i: Programming IBM Developer Kit for Java




Table 4. i5/0S PASE environments resulting from combinations of i5/0S PASE environment and definitions of
QIBM_JAVA_PASE_STARTUP and QIBM_JAVA_PASE_ALLOW_PREV

Starting environment Resulting behavior
QIBM_JAVA QIBM_JAVA_PASE
i5/0S PASE environment _PASE_STARTUP _ALLOW_PREV JVM i5/0S PASE Startup

None Not defined Not defined* No i5/0S PASE environment

None Not defined Defined "1’ No i5/0S PASE environment

None Defined startX Not defined* Use startX

None Defined startX Defined "1’ Use startX

Started Not defined Not defined* Use. existing i5/0S PASE
environment

Started Not defined Defined "1’ Use. existing i5/0S PASE
environment

Started Defined startX Not defined* NOt‘ allowed: JVM error
during startup

Started Defined startX Defined "1’ Use' existing i5/0S PASE
environment

* "Not defined” means that QIBM_JAVA_PASE_ALLOW_PREYV is either not included or has a value other
than 1.

The last two rows in the previous table indicate situations where it is useful to set
QIBM_JAVA_PASE_ALLOW_PREV. The JVM checks QIBM_JAVA_PASE_ALLOW_PREV when an i5/0S
PASE environment already exists and you have defined QIBM_JAVA_PASE_STARTUP. Otherwise, the
JVM ignores QIBM_JAVA_PASE_ALLOW_PREV.

The QIBM_JAVA_PASE_ALLOW_PREV and QIBM_JAVA_PASE_CHILD_STARTUP environment variables
are independent of each other.

Java i5/0S PASE error codes

To help you troubleshoot i5/0S PASE native methods, this topic describes error conditions that are
indicated by i5/0S job log messages and Java runtime exceptions. The following lists describe errors that
you may encounter at start up or at run time when using i5/0S PASE native methods for Java.

Startup Errors
For startup errors, examine the messages in the appropriate job log.
Runtime errors

In addition to startup errors, PaselnternalError or PaseExit Java exceptions may appear in the Qshell
output of the JVM:

 PaselnternalError - indicates internal system error. Check for Licensed Internal Code Log entries.
For more information on the PaselnternalError error code, see [Qp2CallPase

* PaseExit - either the i5/0S PASE application called the exit() function or the i5/0OS PASE environment
ended abnormally. Check the Job Log and Licensed Internal Code Log for additional information.

Managing native method libraries

To use native method libraries, especially when you want to manage multiple versions of a native
method library on your iSeries server, you need to understand both the Java library naming conventions
and the library search algorithm.

IBM Developer Kit for Java 219



i5/0S uses the first native method library that matches the name of the library that the Java virtual
machine (JVM) loads. In order to ensure that i5/0S finds the correct native methods, you must avoid
library name clashes and confusion about which native method library the JVM uses.

i5/0S PASE and AIX Java Library Naming Conventions

If the Java code loads a library named Sample, the corresponding executable file must be named either
libSample.a or libSample.so.

Java library search order

When you enable i5/0S PASE native methods for the JVM, your server uses three different lists (in the
following order) to create a single native method library search path:

1. i5/0S library list
2. LIBPATH environment variable
3. PASE_LIBPATH environment variable

In order to perform the search, i5/0S converts the library list to the integrated file system format. QSYS
file system objects have equivalent names in the integrated file system, but some integrated file system
objects do not have equivalent QSYS file system names. Because the library loader looks for objects in
both the QSYS file system and in the integrated file system, i5/0S uses the integrated file system format
to search for native method libraries.

The following table shows how i5/0S converts entries in the library list to the integrated file system
format:

Library list entry Integrated file system format
QSYS /qsys.lib

QSsYS2 /qsys.lib/qgsys2.lib

QGPL /qsys.lib/qgpl.lib

QTEMP /qsys.lib/qtemp.lib

Example: Searching for the Sample2 library

In the following example, LIBPATH is set to /home/userl/1ib32:/samples/lib32 and PASE_LIBPATH is
set to /QOpenSys/samples/lib.

The following table, when read from top to bottom, indicates the full search path:

Source Integrated file system directories

Library list /qsys.lib
/qsys.lib/qgsys2.lib
/qsys.lib/qgpl.lib
/qsys.lib/qtemp.lib

LIBPATH /home/userl/lib32
/samples/1ib32

PASE_LIBPATH /QOpenSys/samples/lib

Note: Uppercase and lowercase characters are significant only in the /QOpenSys path.

In order to search for library Sample2, the Java library loader searches for file candidates in the following
order:

220 System i: Programming IBM Developer Kit for Java



1. /gsys.lib/sample2.srvpgm

2. /gsys.lib/libSample2.a

3. /gsys.lib/libSample2.so

4. /gsys.lib/qsys2.lib/sample2.srvpgm

5. /gsys.lib/qgsys2.lib/libSample2.a

6. /gsys.lib/qgsys2.lib/libSample2.so

7. /gsyslib/qgpllib/sample2.srvpgm

8. /gsys.lib/qgpl.lib/libSample2.a

9. /gsys.lib/qgpl.lib/libSample2.so
10. /gsys.lib/qtemp.lib/sample2.srvpgm
11. /gsys.lib/qtemp.lib/libSample2.a
12. /gsys.lib/qtemp.lib/libSample2.so
13. /home/userl/1ib32/sample2.srvpgm
14. /home/userl/1ib32/libSample2.a
15. /home/user1/1ib32/libSample2.so
16. /samples/lib32/sample2.srvpgm
17. /samples/1ib32/libSample2.a
18. /samples/1ib32/libSample2.so
19. /QOpenSys/samples/lib/SAMPLE2.srvpgm
20. /QOpenSys/samples/lib/libSample2.a
21. /QOpenSys/samples/lib/libSample2.so

i5/0S loads the first candidate in the list that actually exists into the JVM as a native method library.
Even though candidates like ’/qgsys.lib/libSample2.a” and ’/qgsys.lib/libSample2.s0” occur in the search, it
is not possible to create integrated file system files or symbolic links in the /qsys.lib directories.
Therefore, even though i5/0S checks for these candidate files, it will never find them in integrated file
system directories that begin with /qgsys.lib.

However, you can create arbitrary symbolic links from other integrated file system directories to i5/0S
objects in the QSYS file system. As a result, valid file candidates include files such as
/home/userl/lib32 /sample2.srvpgm.

Example: IBM i5/0S PASE native method for Java

The IBM i5/0S PASE native method for Java example calls an instance of a native C method that then
uses Java Native Interface (JNI) to call back into Java code. Rather than accessing the string directly from
Java code, the example calls a native method that then calls back into Java through JNI to get the string
value.

To see HTML versions of the example source files, use the following links:

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimeti
[information” on page 539

* [’Example: PaseExamplel java” on page 514

* ["Example: PaseExamplel.c” on page 514

Before you can run the i5/0S PASE native method example, you must complete the tasks in the
following topics:

1. ['Example: Downloading the example source code to your AIX workstation” on page 515

2. [“Example: Preparing the example source code” on page 515

3. [“Example: Preparing your System i5 to run the PASE native method for Java example” on page 516|

IBM Developer Kit for Java 221



Running the i5/0S PASE native method for Java example

After you complete the previous tasks, you can run the example. Use either of the following commands
to run the example program:

e From an i5/0S command prompt:
JAVA CLASS(PaseExamplel) CLASSPATH('/home/example')
* From a Qshell command prompt or i5/0S PASE terminal session:

cd /home/example
java PaseExamplel

Teraspace storage model native methods for Java

The i5/0S Java virtual machine (JVM) now supports the use of teraspace storage model native methods.
The teraspace storage model provides a large process-local address environment for ILE programs. Using
teraspace allows you to port native method code from other operating systems to i5/0S with little or no
source code changes.

For details about programming with the teraspace storage model, see the following information:
* Chapter 4 of ILE Concepts
* Chapter 17 of WebSphere Development Studio ILE C/C++ Programmer’s Guide

The concept for Java native methods created for the teraspace storage model is very similar to that of
native methods that use single-level storage. The JVM passes the teraspace native methods a pointer to
the Java Native Interface (JNI) environment that the methods can use to call JNI functions.

For teraspace storage model native methods, the JVM provides JNI function implementations that utilize
teraspace storage model and 8-byte pointers.

Creating teraspace native methods

To successfully create a teraspace storage model native method, your teraspace module creation
command needs to use the following options:

TERASPACE (*YES) STGMDL (*TERASPACE) DTAMDL(*LLP64)

The following option (*TSIFC), to use teraspace storage functions, is optional:
TERASPACE (*YES *TSIFC)

Note: If you do not use DTAMDL(*LLP64) when using teraspace storage model Java native methods, calling
a native method throws a runtime exception.

Creating teraspace service programs that use native methods

In order to create a teraspace storage model service program, use the following option on the Create
Service Program (CRTSRVPGM) control language (CL) command:

CRTSRVPGM STGMDL (*TERASPACE)
In addition, you should use the ACTGRP (*CALLER) option, which allows the JVM to activate all teraspace
storage model native method service programs into the same teraspace activation group. Using a

teraspace activation group this way can be important for native methods to efficiently handle exceptions.

For additional details on program activation and activation groups, see Chapter 3 of ILE Concepts.

222 System i: Programming IBM Developer Kit for Java



Using Java Invocation APIs with teraspace native methods

Use the Invocation API GetEnv function when the JNI environment pointer does not match the storage
model of the service program. The Invocation API GetEnv function always returns the correct JNI

environment pointer.

The JVM supports both single-level and teraspace storage model native methods, but the two storage
models use different JNI environments. Because the two storage models use different JNI environments,
do not pass the JNI environment pointer as a parameter between native methods in the two storage

models.

Related concepts

[‘Java Invocation API” on page 208|

The Invocation API, which is part of the Java Native Interface (JNI), allows non-Java code to create a
Java virtual machine, and load and use Java classes. This function lets a multithreaded program make
use of Java classes that are running in a single Java virtual machine in multiple threads.

Related information

[ [[ava Native Interface by Sun Microsystems, Inc)

E [Chapter 3 of ILE Concepts|

E [Websphere Development Studio ILE C/C++ Programmer’s Guide]

Comparison of Integrated Language Environment and Java

The Java environment on a System i5 is separate from the integrated language environment (ILE). Java is
not an ILE language, and it cannot bind to ILE object modules to create programs or service programs on

a System i5.

ILE

Java

Members that are part of the library or file structure on
an System i5 server store source codes.

Stream files in the integrated file system contain source
code.

Source entry utility (SEU) edits extended binary-coded
decimal interchange code (EBCDIC) source files.

American Standard Code for Information Interchange
(ASCII) source files are usually edited using a
workstation editor.

Source files compile into object code modules, which are
stored in libraries on an System i5 server.

Source code compiles into class files, which the
integrated file system stores.

Object modules are statically bound together in programs
or service programs.

Classes are dynamically loaded, as needed, at runtime.

You can directly call to functions that are written in other
ILE programming languages.

Java Native Interface must be used to call other
languages from Java.

ILE languages are always compiled and run as machine
instructions.

Java programs can be interpreted or compiled.

Using java.lang.Runtime.exec()

Use the java.lang.Runtime.exec method to call programs or commands from within your Java program.
Using java.lang.Runtime.exec() method creates one or more additional thread-enabled jobs. The additional
jobs process the command string that you pass on the method.

Note: The java.lang.Runtime.exec method runs programs in a separate job, which is different than the C
system() function. The C system function runs programs in the same job.

The actual processing that occurs depends on the following items:

IBM Developer Kit for Java 223


http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html

¢ The kind of command that you pass in on java.lang.Runtime.exec()
* The value of the 0s400.runtime.exec system property

Processing different types of commands

The following table indicates how java.lang.Runtime.exec() processes different kinds of commands and
shows the effects of the 0s400.runtime.exec system property.

Value of 0s400.runtime.exec system property

Type of command EXEC (default value) QSHELL

java command Starts a second job that runs the JVM. | Starts a second job that runs Qshell,
The JVM starts a third job that runs | the shell interpreter. Qshell starts a
the Java application. third job to run the Java application,

program Starts a second job that runs an program, or command.

executable program (i5/0S program
or i5/0S PASE program).

CL command Starts a second job that runs an
i5/0S program. The i5/0OS program
runs the CL command in the second
job.

Note: When calling a CL command or CL program, make sure that the job CCSID contains the characters
that you pass as parameters to the called command.

The processing in the second or third job runs concurrently with any Java virtual machine (JVM) in the
original job. Any exit or shutdown processing in those jobs does not affect the original JVM.

0s400.runtime.exec system property
You can set the value of the 0s400.runtime.exec system property to EXEC (the default value) or QSHELL.
The value of 0s400.runtime.exec determines whether java.lang.Runtime.exec() uses the EXEC interface or

Qshell.

Using a value of EXEC instead of QSHELL has the following advantages:
* Your Java program that calls java.lang.Runtime.exec() is more portable

* Using java.lang.Runtime.exec() to call a CL command uses fewer system resources

You should use java.lang.Runtime.exec() to run Qshell only when backward compatibility requires it.
Using java.lang.Runtime.exec() to run Qshell requires that you set 0s400.runtime.exec to QSHELL.

The following illustration shows how using a value of QSHELL launches a third job, which consumes
additional system resources. Remember that using a value of QSHELL decreases the portability of your

Java program.

Figure 1. Using a value of QSHELL for the 0s400.runtime.exec system property

224 System i: Programming IBM Developer Kit for Java



Value of osd400.runtime.exec

Process EXEC or Qshell
Process + Process +
QS5400
program

Runtime. exec(system "CL cmd’)

Process

Runs CL command

Also, when you use a value of QSHELL, passing a CL command to java.lang.Runtime.exec() requires
specific syntax. For more information, see the following example for calling a CL command.

For information about setting 0s400.runtime.exec, see [List of Java system properties|

Example: Calling another Java program with java.lang.Runtime.exec()

This example shows how to call another Java program with java.lang.Runtime.exec(). This class calls the
Hello program that is shipped as part of the IBM Developer Kit for Java. When the Hello class writes to
System.out, this program gets a handle to the stream and can read from it.

Note: You use the Qshell Interpreter to call the program.

Example 1: CallHelloPgm class

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
[information” on page 539

import java.io.=*;

public class CallHelloPgm
{

IBM Developer Kit for Java 225



public static void main(String args[])

{
Process theProcess = null;
BufferedReader inStream = null;

System.out.printIn("CallHelloPgm.main() invoked");

// call the Hello class
try
{

theProcess = Runtime.getRuntime().exec("java com.ibm.as400.system.Hello");

catch(IOException e)
{

System.err.printIn("Error on exec() method");
e.printStackTrace();

}

// read from the called program's standard output stream
try
{

inStream = new BufferedReader(
new InputStreamReader( theProcess.getInputStream() ));
System.out.printIn(inStream.readLine());

}
catch(IOException e)

{

System.err.printIn("Error on inStream.readLine()");
e.printStackTrace();

}
} // end method

} // end class

Example: Calling a CL program with java.lang.Runtime.exec()
This example shows how to run CL programs from within a Java program. In this example, the Java class
CallCLPgm runs a CL program.

The CL program uses the Display Java Program (DSPJVAPGM) command to display the program that is
associated with the Hello class file. This example assumes that the CL program has been compiled and
exists in a library that is called JAVSAMPLIB. The output from the CL program is in the QSYSPRT
spooled file.

See [“Example: Calling a CL command with java.lang.Runtime.exec()” on page 227| for an example of how
to call a CL command from within a Java program.

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number
5722-JV1 installation process. You must explicitly create the library.

Example 1: CallCLPgm class

Note: By using the code examples, you agree to the terms of the [‘Code license and disclaimer]
linformation” on page 539

import java.io.*;

public class CallCLPgm
{

public static void main(String[] args)

{
try

{

Process theProcess =

226 System i: Programming IBM Developer Kit for Java



Runtime.getRuntime().exec("/QSYS.LIB/JAVSAMPLIB.LIB/DSPJVA.PGM");
1
catch(IOException e)
{
System.err.printin("Error on exec() method");
e.printStackTrace();
}
} // end main() method
} // end class

Example 2: Display Java CL program

PGM

DSPJVAPGM CLSF('/QIBM/ProdData/Java400/com/ibm/as400/system/Hello.class') +
OUTPUT (*PRINT)

ENDPGM

Example: Calling a CL command with java.lang.Runtime.exec()
This example shows how to run a control language (CL) command from within a Java program.

In this example, the Java class runs a CL command. The CL command uses the Display Java Program
(DSPJVAPGM) CL command to display the program that is associated with the Hello class file. The
output from the CL command is in the QSYSPRT spooled file.

When you set the 0s400.runtime.exec system property to EXEC (which is the default), commands that
you pass into the Runtime.getRuntime().exec() function use the following format:

Runtime.getRuntime()Exec("system CLCOMMAND");
where CLCOMMAND is the CL command you want to run.

Note: When you set 0s400.runtime.exec to QSHELL, you have to add slash and quotation marks (\"). For
example, the previous command looks like this:

Runtime.getRuntime()Exec("system \"CLCOMMAND\"");
Example: Class for calling a CL command

The following code assumes that you use the default value of EXEC for the 0s400.runtime.exec system
property.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

import java.io.*;

public class CallCLCom
{
public static void main(String[] args)
{
try
{
Process theProcess =
Runtime.getRuntime().exec("system DSPJVAPGM CLSF('/com/ibm/as400/system/Hello.class")
OUTPUT (*PRINT) ") ;
1
catch(IOException e)
{
System.err.printin("Error on exec() method");
e.printStackTrace();
}
} // end main() method
} // end class

Related concepts

IBM Developer Kit for Java 227



["Using java.lang.Runtime.exec()” on page 223|

Use the java.lang.Runtime.exec method to call programs or commands from within your Java
program. Using java.lang.Runtime.exec() method creates one or more additional thread-enabled jobs.
The additional jobs process the command string that you pass on the method.

[“List of Java system properties” on page 14|
Java system properties determine the environment in which the Java programs run. They are similar
to system values or environment variables in i5/0OS.

Interprocess communications

When communicating with programs that are running in another process, there are a number of options.

One option is to use sockets for interprocess communication. One program can act as the server program
that listens on a socket connection for input from the client program. The client program connects to the
server with a socket. Once the socket connection is established, either program can send or receive
information.

Another option is to use stream files for communication between programs. To do this, use the System.in,
System.out, and System.err classes.

A third option is to use the IBM Toolbox for Java, which provides data queues and System i5 message
objects.

You can also call Java from other languages, as demonstrated in the examples below.
Related information
[[BM Toolbox for Javal

Using sockets for interprocess communication
Sockets streams communicate between programs that are running in separate processes.

The programs can either start separately or start by using the java.lang.Runtime.exec() method from
within the main Java program. If a program is written in a language other than Java, you must ensure
that any American Standard Code for Information Interchange (ASCII) or extended binary-coded decimal
interchange code (EBCDIC) conversion takes place. See the Java character encodings topics for more
details.

Related concepts

[“Using java.lang.Runtime.exec()” on page 223|

Use the java.lang.Runtime.exec method to call programs or commands from within your Java
program. Using java.lang.Runtime.exec() method creates one or more additional thread-enabled jobs.
The additional jobs process the command string that you pass on the method.

[‘Java character encodings” on page 25
Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Example: Using sockets for interprocess communication:

This example uses sockets to communicate between a Java program and a C program.

You should start the C program first, which listens on a socket. Once the Java program connects to the
socket, the C program sends it a string by using that socket connection. The string that is sent from the C
program is an American Standard Code for Information Interchange (ASCII) string in codepage 819.

The Java program should be started using this command, java TalkToC xxxxx nnnn on the Qshell

Interpreter command line or on another Java platform. Or, enter JAVA TALKTOC PARM(xxxxx nnnn) on the
i5/0S command line to start the Java program. xxxxx is the domain name or Internet Protocol (IP)

228 System i: Programming IBM Developer Kit for Java



address of the system on which the C program is running. nnnn is the port number of the socket that the
C program is using. You should also use this port number as the first parameter on the call to the C
program.

Example 1: TalkToC client class

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
[information” on page 539,

import java.net.=;
import java.io.=*;

class TalkToC
{
private String host = null;
private int port = -999;
private Socket socket = null;
private BufferedReader inStream = null;

public static void main(String[] args)
{
TalkToC caller = new TalkToC();
caller.host = args[0];
caller.port = new Integer(args[1]).intValue();
caller.setUp();
caller.converse();
caller.cleanUp();

} // end main() method

public void setUp()

{
System.out.printin("TalkToC.setUp() invoked");

try
{

socket = new Socket (host, port);
inStream = new BufferedReader(new InputStreamReader(
socket.getInputStream()));

catch(UnknownHostException e)

{
System.err.printin("Cannot find host called: " + host);
e.printStackTrace();
System.exit(-1);

catch(IOException e)
{

System.err.printin("Could not establish connection for " + host);
e.printStackTrace();
System.exit(-1);

}
} // end setUp() method

public void converse()

{

System.out.printIn("TalkToC.converse() invoked");

if (socket != null && inStream != null)

{
try
{

System.out.printIn(inStream.readLine());

catch(IOException e)

IBM Developer Kit for Java 229



{
System.err.printin("Conversation error with host " + host);
e.printStackTrace();

}
} // end if
} // end converse() method

public void cleanUp()

{
try

{

if(inStream != null)

{

}
if(socket !'= null)
{

}

} // end try

catch(IOException e)

{
System.err.printIn("Error in cleanup");
e.printStackTrace();
System.exit(-1);

}

} // end cleanUp() method

inStream.close();

socket.close();

} // end TalkToC class
SockServ.C starts by passing in a parameter for the port number. For example, CALL SockServ '2001".

Example 2: SockServ.C server program

Note: Read the [Code example disclaimer] for important legal information.

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <unistd.h>
#include <sys/time.h>

void main(int argc, char* argv[])
{
int portNum = atoi(argv[1]);
int server;
int client;
int address_len;
int sendrc;
int bndrc;
char* greeting;
struct sockaddr_in Tlocal_Address;
address_len = sizeof(local_Address);

memset (&local_Address,0x00,sizeof(local_Address));
local_Address.sin_family = AF_INET;

Tocal Address.sin_port = htons(portNum);
Tocal_Address.sin_addr.s_addr = htonl(INADDR_ANY);
#pragma convert (819)

230 System i: Programming IBM Developer Kit for Java



greeting = "This is a message from the C socket server.";
#pragma convert (0)

/* allocate socket x/
if((server = socket(AF_INET, SOCK_STREAM, 0))<0)

printf("failure on socket allocation\n");
perror(NULL) ;
exit(-1);

1

/* do bind  */
if((bndrc=bind(server, (struct sockaddr*)&local_Address, address_len))<0)

printf("Bind failed\n");
perror(NULL) ;
exit(-1);

1

/* invoke Tisten =/
listen(server, 1);

/* wait for client request */
if((client = accept(server,(struct sockaddr*)NULL, 0))<0)

{
printf("accept failed\n");
perror(NULL) ;
exit(-1);

1

/* send greeting to client */
if((sendrc = send(client, greeting, strlen(greeting),0))<0)

printf("Send failed\n");
perror(NULL) ;
exit(-1);

}

close(client);
close(server);

}

Using input and output streams for interprocess communication
Input and output streams communicate between programs that are running in separate processes.

The java.lang.Runtime.exec() method runs a program. The parent program can get handles to the child
process input and output streams and can write to or read from those streams. If the child program is
written in a language other than Java, you must ensure that any American Standard Code for
Information Interchange (ASCII) or extended binary-coded decimal interchange code (EBCDIC)
conversion takes place. See Java character encodings for more details.

Related concepts

[“Using java.lang.Runtime.exec()” on page 223|

Use the java.lang.Runtime.exec method to call programs or commands from within your Java
program. Using java.lang.Runtime.exec() method creates one or more additional thread-enabled jobs.
The additional jobs process the command string that you pass on the method.

[‘Java character encodings” on page 25
Java programs can convert data in different formats, enabling your applications to transfer and use
information from many kinds of international character sets.

Example: Using input and output streams for interprocess communication:

IBM Developer Kit for Java 231



This example shows how to call a C program from Java and use input and output streams for
interprocess communication.

In this example, the C program writes a string to its standard output stream, and the Java program reads
this string and displays it. This example assumes that a library, which is named JAVSAMPLIB, has been
created and that the CSAMP1 program has been created in it.

Note: The JAVSAMPLIB is not created as part of the IBM Developer Kit licensed program (LP) number
5722-JV1 installation process. You must explicitly create it.

Example 1: CallPgm class

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
linformation” on page 539,

import java.io.*;

public class CallPgm
{

public static void main(String args[])

{
Process theProcess = null;
BufferedReader inStream = null;

System.out.printin("CallPgm.main() invoked");

// call the CSAMP1 program
try
{
theProcess = Runtime.getRuntime().exec(
"/QSYS.LIB/JAVSAMPLIB.LIB/CSAMP1.PGM");
}
catch(IOException e)
{
System.err.printIn("Error on exec() method");
e.printStackTrace();

}

// read from the called program's standard output stream
try
{
inStream = new BufferedReader(new InputStreamReader
(theProcess.getInputStream()));
System.out.printin(inStream.readLine());
}
catch(IOException e)

{
System.err.printIn("Error on inStream.readLine()");
e.printStackTrace();

}
} // end method

} // end class

Example 2: CSAMP1 C Program

Note: Read the [Code example disclaimer] for important legal information.

#include <stdio.h>
#include <stdlib.h>

void main(int argc, char* args[])
{
/* Convert the string to ASCII at compile time */

232 System i: Programming IBM Developer Kit for Java



#pragma convert(819)

printf("Program JAVSAMPLIB/CSAMP1 was invoked\n");
#pragma convert(0)

/* Stdout may be buffered, so flush the buffer */

fflush(stdout);
1

Example: Calling Java from C
This is an example of a C program that uses the system() function to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimed
[information” on page 539

#include <stdlib.h>

int main(void)
{

int result;

/* The system function passes the given string to the CL command processor
for processing. */

result = system("JAVA CLASS('com.ibm.as400.system.Hello')");
}

Example: Calling Java from RPG
This is an example of an RPG program that uses the QCMDEXC API to call the Java Hello program.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
[information” on page 539

D= DEFINE THE PARAMETERS FOR THE QCMDEXC API

D*

DCMDSTRING S 25 INZ('JAVA CLASS(''com.ibm.as400.system.Hello'')")
DCMDLENGTH S 15P 5 INZ(25)

D* NOW THE CALL TO QCMDEXC WITH THE 'JAVA' CL COMMAND

C CALL 'QCMDEXC'

C PARM CMDSTRING

C PARM CMDLENGTH

C* This next line displays 'DID IT' after you exit the

C* Java Shell via F3 or F12.

C 'DID IT! DSPLY

C* Set On LR to exit the RPG program

C SETON LR
C

Java platform

The Java platform is the environment for developing and managing Java applets and applications. It
consists of three primary components: the Java language, the Java packages, and the Java virtual
machine.

The Java language and packages are similar to C++ and its class libraries. The Java packages contain
classes, which are available in any compliant Java implementation. The application programming
interface (API) should be the same on any system that supports Java.

Java differs from a traditional language, like C++, in the way it compiles and runs. In a traditional
programming environment, you write and compile source code of a program into object code for a

specific hardware and operating system. The object code binds to other object code modules to create a

IBM Developer Kit for Java

233



running program. The code is specific for a particular set of computer hardware and does not run on
other systems without being changed. This figure illustrates the traditional language deployment
environment.

Java applets and applications

An applet is a Java program designed to be included in an HTML Web document. You can write your
Java applet and include it in an HTML page, much in the same way an image is included. When you use
a Java-enabled browser to view an HTML page that contains an applet, the applet’s code is transferred to
your system and is run by the browser’s Java virtual machine.

The HTML document contains tags, which specify the name of the Java applet and its Uniform Resource
Locator (URL). The URL is the location at which the applet bytecodes reside on the Internet. When an
HTML document containing a Java applet tag is displayed, a Java-enabled Web browser downloads the
Java bytecodes from the Internet and uses the Java virtual machine to process the code from within the
Web document. These Java applets are what enable Web pages to contain animated graphics or
interactive content.

You can also write a Java application that does not require the use of a Web browser.

For more information, see [Writing Applets, Sun Microsystems’ tutorial for Java applets. It includes an
overview of applets, directions for writing applets, and some common applet problems.

Applications are stand-alone programs that do not require the use of a browser. Java applications run by
starting the Java interpreter from the command line and by specifying the file that contains the compiled
application. Applications usually reside on the system on which they are deployed. Applications access
resources on the system, and are restricted by the [fava security modell

Java virtual machine

The Java virtual machine is a runtime environment that you can add into a web browser or any
operating system, such as IBM i5/0S. The Java virtual machine runs instructions that a Java compiler
generates. It consists of a bytecode interpreter and runtime that allow Java class files to run on any
platform, regardless of the platform on which they were originally developed.

The class loader and security manager, which is part of the Java runtime, insulate code that comes from
another platform. They also can restrict which system resources each class that is loaded accesses.

Note: Java applications are not restricted; only applets are restricted. Applications can freely access
system resources and use native methods. Most IBM Developer Kit for Java programs are
applications.

You can use the Create Java Program (CRTJVAPGM) command to ensure that the code meets the safety
requirements that the Java runtime imposes to verify the bytecodes. This includes enforcing type
restrictions, checking data conversions, ensuring that parameter stack overflows or underflows do not
occur, and checking for access violations. However, you do not need to explicitly verify the bytecodes. If
you do not use the CRTJVAPGM command in advance, then the checks occur during the first use of a
class. Once the bytecodes are verified, the interpreter decodes the bytecodes and runs the machine
instructions that are needed to carry out the desired operations.

Note: The [‘Java interpreter” on page 236 is only used if you specify OPTIMIZE(*INTERPRET) or
INTERPRET(*YES).

In addition to loading and running the bytecodes, the Java virtual machine includes a garbage collector
that manages memory. [“Java garbage collection” on page 377|runs at the same time as the loading and
interpretation of the bytecodes.

234 System i: Programming IBM Developer Kit for Java


http://java.sun.com/docs/books/tutorial/applet/index.html

Java runtime environment

The Java runtime environment starts whenever you enter the Run Java (RUNJVA) command or JAVA
command on the i5/0S command line. Because the Java environment is multithreaded, it is necessary to
run the Java virtual machine in a job that supports threads, such as a batch immediate (BCI) job. As
illustrated in the following figure, after the Java virtual machine starts, additional threads may start in the
job in which the garbage collector runs.

Figure 1: The typical Java environment when using the RUNJVA or JAVA CL command

Interactive Joh Batch Immadiate Joh

Java Virtual

JAVA, Machine
CLASS ('HELLO") Application Code
{Helloclass)

Thread x

Garabage
Caollector
Thread vy

It is also possible to start the Java runtime environment by using the java command in Qshell from the
Qshell Interpreter. In this environment, the Qshell Interpreter is running in a BCI job that is associated
with an interactive job. The Java runtime environment starts in the job that is running the Qshell
Interpreter.

Figure 2: The Java environment when using the java command in Qshell

Interactive Joh Batch Immediate Job

STRQSH
java Hello

Java Virtual
Machine
Application Code
{Helloclass)
Thread x

Garabage
Collector
Thread y

IBM Developer Kit for Java 235



When the Java runtime environment starts from an interactive job, the Java Shell Display is shown. This
display provides an input line for entering data into the System.in stream, as well as displaying data that
is written to the System.out stream and System.err stream.

Java interpreter

The Java interpreter is the part of the Java virtual machine that interprets Java class files for a particular
hardware platform. The Java interpreter decodes each bytecode and runs a series of machine instructions
for that bytecode.

Java JAR and class files

A Java ARchive (JAR) file is a file format that combines many files into one. The Java environment differs
from other programming environments in that the Java compiler does not generate machine code for a
hardware-specific instruction set. Instead, the Java compiler converts Java source code into Java virtual
machine instructions, which Java class files store. You can use JAR files to store class files. The class file
does not target a specific hardware platform, but instead targets the Java virtual machine architecture.

You can use JAR as a general archiving tool and also to distribute Java programs of all types, including
applets. Java applets download into a browser in a single Hypertext Transfer Protocol (HTTP) transaction
rather than by opening a new connection for each piece. This method of downloading improves the
speed at which an applet loads on a Web page and begins functioning.

JAR is the only archive format that is cross-platform. JAR is also the only format that handles audio files
and image files, as well as class files. JAR is an open standard, fully extendable format that is written in
Java.

The JAR format also supports compression, which reduces the size of the file and decreases download
time. Additionally, an applet author may digitally sign individual entries in a JAR file to authenticate
their origin.

To update classes in JAR files, use the jar tool.

Java class files are stream files that are produced when a source file is compiled by the Java compiler.
The class file contains tables that describe each field and method of the class. The file also contains the
bytecodes for each method, static data, and descriptions that are used to represent Java objects.

Related information

[ [fava jar tool by Sun Microsytems, Inc.|

Java threads

A thread is a single independent stream that runs within a program. Java is a multithreaded
programming language, so more than one thread may be running within the Java virtual machine at one
time. Java threads provide a way for a Java program to perform multiple tasks at the same time. A thread
is essentially a flow of control in a program.

Threads are a modern programming construct that are used to support concurrent programs and to
improve the performance and scalability of applications. Most programming languages support threads
through the use of add-in programming libraries. Java supports threads as built-in application program
interfaces (APIs).

Note: The use of threads provides the support to increase the interactivity, meaning a shorter wait at the

keyboard because more tasks are running in parallel. But, the program is not necessarily more
interactive just because it has threads.

236 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html

Threads are the mechanism for waiting on long running interactions, while still allowing the program to
handle other work. Threads have the ability to support multiple flows through the same code stream.
They are sometimes called lightweight processes. The Java language includes direct support for threads.
But, by design, it does not support asynchronous non-blocking input and output with interrupts or
multiple wait.

Threads allow the development of parallel programs that scale well in an environment where a machine
has multiple processors. If properly constructed, they also provide a model for handling multiple
transactions and users.

You can use threads in a Java program for a number of situations. Some programs must be able to
engage in multiple activities and still be able to respond to additional input from the user. For example, a
Web browser should be able to respond to user input while playing a sound.

Threads can also use asynchronous methods. When you call a second method, you do not have to wait
for the first method to complete before the second method continues with its own activity.

There are also many reasons not to use threads. If a program uses inherently sequential logic, one thread
can accomplish the entire sequence. Using multiple threads in such a case results in a complex program
with no benefits. There is considerable work in creating and starting a thread. If an operation involves
only a few statements, it is faster to handle it in a single thread. This can be true even when the
operation is conceptually asynchronous. When multiple threads share objects, the objects must
synchronize to coordinate thread access and maintain consistency. Synchronization adds complexity to a
program, is difficult to tune for optimal performance, and can be a source of programming errors.

For more threads information, see [Developing multithreaded applications,

Sun Microsystems, Inc. Java Development Kit

The Java Development Kit (JDK) is software that is distributed by Sun Microsystems, Inc. for Java
developers. It includes the Java interpreter, Java classes, and Java development tools: compiler, debugger,
disassembler, appletviewer, stub file generator, and documentation generator.

The JDK enables you to write applications that are developed once and run anywhere on any Java virtual
machine. Java applications that are developed with the JDK on one system can be used on another
system without changing or recompiling the code. The Java class files are portable to any standard Java
virtual machine.

To find more information about the current JDK, check the version of the IBM Developer Kit for Java on
your server.

You can check the version of the default IBM Developer Kit for Java Java virtual machine on your server
by entering either of the following commands:

e java -version on the Qshell command prompt.
e RUNJVA CLASS(*VERSION) on the CL command line.

Then, look for the same version of Sun Microsystems, Inc. JDK at[The Source for Java Technology|
for specific documentation. The IBM Developer Kit for Java is a compatible implementation
of the Sun Microsystems, Inc. Java Technology, so you should be familiar with their JDK documentation.

Java packages

A Java package is a way of grouping related classes and interfaces in Java. Java packages are similar to
class libraries that are available in other languages.

IBM Developer Kit for Java 237


http://www.java.sun.com/
http://www.java.sun.com/

The Java packages, which provide the Java APIs, are available as part of Sun Microsystems, Inc. Java
Development Kit (JDK). For a complete list of Java packages and information on Java APlIs, see Java 2
Platform Packages.

Java tools

For a complete list of tools that Sun Microsystems, Inc. Java Development Kit supplies, see the Tools
Reference by Sun Microsystems, Inc. For more information about each individual tool that the IBM
Developer Kit for Java supports, see Java tools that are supported by the IBM Developer Kit for Java.

[“Support for multiple Java 2 Software Development Kits” on page 5
The System i5 platform supports multiple versions of the Java Development Kits (JDKs) and the Java
2 Software Development Kit (J2SDK), Standard Edition.

[‘Native methods and the Java Native Interface” on page 214|

Native methods are Java methods that start in a language other than Java. Native methods can access
system-specific functions and APIs that are not available directly in Java.

[ [fava 2 Platform Packaged

[ [Tools Reference by Sun Microsystems, Inc|

[“Java tools that are supported by the IBM Developer Kit for Java” on page 383
The Qshell environment includes the Java development tools that are typically required for program
development.

Advanced topics

This topic provides instructions on how to run Java in a batch job and describes the Java file authorities
required in the integrated file system to display, run, or debug a Java program.

Java classes, packages, and directories

Each Java class is part of a package. The first statement in a Java source file indicates which class is in
what package. If the source file does not contain a package statement, the class is part of an unnamed
default package.

The package name relates to the directory structure in which the class resides. The integrated file system
supports Java classes in a hierarchical file structure that is similar to what you find on most PC and
UNIX® systems. You must store a Java class in a directory with a relative directory path that matches the
package name for that class. For example, consider the following Java class:

package classes.geometry;
import java.awt.Dimension;

public class Shape {
Dimension metrics;

// The implementation for the Shape class would be coded here ...

}

The package statement in the previous code indicates that the Shape class is part of the classes.geometry
package. For the Java runtime to find the Shape class, store the Shape class in the relative directory
structure classes/geometry.

Note: The package name corresponds to the relative directory name in which the class resides. The Java
virtual machine class loader finds the class by appending the relative path name to each directory
that you specify in the classpath. The Java virtual machine class loader can also find the class by
searching the ZIP files or JAR files that you specify in the classpath.

238 System i: Programming IBM Developer Kit for Java


http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/index.html#toolspecs

For example, when you store the Shape class in the /Product/classes/geometry directory in the "root” (/)
file system, you need to specify /Product in the classpath.

Figure 1: Example directory structure for Java classes of the same name in different packages

/ (root)
1 1
Beta | Product |

1
geometry
classes Shape.class

geometry

Shape.class

Note: Multiple versions of the Shape class can exist in the directory structure. To use the Beta version of
the Shape class, place /Beta/myclasses in the classpath before any other directories or ZIP files
that contain the Shape class.

The Java compiler uses the Java classpath, package name, and directory structure to find packages and
classes when compiling Java source code. For more information, see [“Java classpath” on page 12.|

Java-related files in the IFS

The integrated file system (IFS) stores Java-related class, source, ZIP, and JAR files in a hierarchical file
structure. IBM Developer Kit for Java supports using the threadsafe file systems in the IFS to store and
work with your Java-related class files, source files, ZIP files, and JAR files.

Related information

File system considerations for multithreaded programming]

File system comparison|

IBM Developer Kit for Java 239



Java file authorities in the integrated file system

To run or debug a Java program, the class file, JAR file, or ZIP file needs to have read authority (*R).
Directories need read and execute authorities (*RX).

To use the Create Java Program (CRTJVAPGM) command to optimize a program, the class file, JAR file,
or ZIP file must have read authority (*R), and the directory must have execute authority (*X). If you use a
pattern in the class file name, the directory must have read and execute authority (*RX).

To delete a Java program by using the Delete Java Program (DLTJVAPGM) command, you must have
read and write authority (*RW) to the class file, and the directory must have execute authority (*X). If
you use a pattern in the class file name, the directory must have read and execute authority (*RX).

To display a Java program by using the Display Java Program (DSPJVAPGM) command, you must have
read authority (*R) to the class file, and the directory must have execute authority (*X).

Note: Files and directories that do not have execute authority (*X) always appear to have execute
authority (*X) to a user with QSECOFR authority. Different users can get different results in certain
situations, even though both users appear to have the same access to the same files. This is
important to know when running shell scripts using the Qshell Interpreter or java.Runtime.exec().

For example, one user writes a Java program that uses java.Runtime.exec() to call a shell script, then tests
it using a user ID with QSECOEFR authority. If the file mode of the shell script has read and write
authority (*RW), the integrated file system allows the user ID with QSECOFR authority to run it.
However, a non-QSECOFR authority user could try to run the same Java program, and the integrated file
system would tell the java.Runtime.exec() code that the shell script cannot be run, because *X is missing.
In this case, java.Runtime.exec() throws an input and output exception.

You can also assign authorities to new files created by Java programs in an integrated file system. By
using the 0s400.file.create.auth [system property] for files and 0s400.dir.create.auth for directories, any
combination of read, write, and execute authorities may be used.

For more information, see the [Program and CL Command API{ or the [[ntegrated file system|

Running Java in a batch job

Java programs run in a batch job by using the Submit Job (SBMJOB) command. In this mode, the Java
Qshell Command Entry display is not available to handle the System.in, System.out, nor System.err
streams.

You may redirect these streams to other files. Default handling sends the System.out and System.err
streams to a spooled file. The batch job, which results in an input and output exception for read requests
from System.in, owns the spooled file. You can redirect System.in, System.out, and System.err within
your Java program. You can also use the 0s400.stdin, 0s400.stdout, and 0s400.stderr system properties to
redirect System.in, System.out, and System.err.

Note: SBMJOB sets the current working directory (CWD) to the HOME directory that is specified in the
user profile.

Example: Running Java in a Batch Job
SBMJOB CMD(JAVA Hello OPTION(*VERBOSE)) CPYENVVAR(*YES)

Running the JAVA command in the previous example spawns a second job. Therefore, the subsystem that
the batch job runs in must be capable of running more than one job.

You can verify that your batch job is capable of running more than one job by following these steps:

240 System i: Programming IBM Developer Kit for Java



1. On the CL command line, enter DSPSBSD(MYSBSD), where MYSBSD is the subsystem description of your
batch job.

2. Choose option 6, Job queue entries.
3. Look at the Max Active field for your job queue.

Running your Java application on a host that does not have a
graphical user interface

If you want to run your Java application on a host that does not have a graphical user interface (GUI),
such as an System i5, you can use the Native Abstract Windowing Toolkit (NAWT).

Use NAWT to provide your Java applications and servlets with the full capability of the Java 2 Software
Development Kit’s (J25DK), Standard Edition AWT graphics functionality.

Native Abstract Windowing Toolkit

The Native Abstract Windowing Toolkit (NAWT) provides Java applications and servlets with the
capability to use the Abstract Windowing Toolkit (AWT) graphics function offered by the Java 2 Software
Development Kit (J2SDK), Standard Edition.

Note: NAWT currently does not support locale- and language-specific fonts and character sets. When
using NAWT, make sure that you comply with the following requirements:

* Use only characters that are defined in the ISO8859-1 character set.

* Use the font.properties file. The font.properties file resides in the /QIBM/ProdData/Java400/
jdknn/lib directory, where nn is the version number of the J2SDK that you are using.
Specifically, do not use any of the font.properties.xxx files, where xxx is a language or another
qualifier.

Usually, NAWT uses the X Window System as its underlying graphics engine. To use the X Window
System, you need an X server. An X server is a standalone application that accepts connections and
requests from X client programs. In this case, the underlying NAWT infrastructure is the X client
program.

The recommended X server is the AT&T Virtual Network Computing (VNC) server. The VNC server is
well-suited to the System i5 because it does not require a dedicated mouse, keyboard, and
graphics-capable monitor. IBM provides a version of the VNC server that runs in the i5/0S Portable
Application Solutions Environment (i5/0S PASE). i5/0S PASE is a UNIX-like environment that enables
you to run most binary executables compiled for the IBM AIX operating system. i5/0OS PASE is installed
as part of i5/0S.

When you run the VNC server in i5/0S PASE, the server performs all the NAWT graphics computations
and so does not require an external graphics server. The following NAWT and J2SDK information
describes how to obtain and set up the VNC server in i5/0S PASE.

For more information about installing and using NAWT, see the following:

Because running NAWT requires using i5/0S PASE and VNC, you may want to learn more about these
applications.

 Reavng

Levels of NAWT support
The version of the Java 2 Software Development Kit (J25DK), Standard Edition that you use affects the
available choices for Native Abstract Windowing Toolkit (NAWT) support. Before you install NAWT, you

IBM Developer Kit for Java 241


http://www.realvnc.com

need to understand which type of support meets your requirements. Use this information to help you
assess your graphical requirements and select the version of J2SDK that you need to run. Use this
information to help you assess your graphical requirements and select the version of J2SDK that you
need to run.

NAWT and J2SDK, version 1.3

For J2SDK version 1.3, NAWT supports only graphical Java applications that do not require direct user
interaction. This level of support is appropriate for Java applications, servlets, and graphics packages that
generate image data (encoded as JPEGs, GIFs, and so on) on your System i5.

NAWT and J2SDK, version 1.4 and above

For J2SDK version 1.4 and subsequent versions, NAWT supports all Java Abstract Windowing Toolkit
(AWT) functionality, including interactive graphical user interfaces (GUIs) and the Java headless AWT
environment.

Installing and using NAWT with J2SDK, version 1.3:

To install Native Abstract Windowing Toolkit (NAWT) for Java 2 Software Development Kit (J2SDK),
version 1.3, complete the following tasks.

1. Install NAWT software fixes
2. Install System i Tools for Developers PRPQ

Before you can begin using NAWT or test your NAWT install, you need to create a password file for the
Virtual Network Computing (VNC) server. The following are additional required and optional steps:

1. Create a VNC password file
2. Start the VNC server (typically after each IPL)

3. Configure environment variables (every time before you run Java)
4. Configure Java system properties (every time before you run Java)
5. Verify your NAWT install (optional)

Related tasks

[‘Creating a VNC password file” on page 250|

To install and run Native Abstract Windowing Toolkit (NAWT), you need to create a Virtual Network
Computing (VNC) server password file. The VNC server default setting requires a password file that
it uses to protect the VNC display against unauthorized user access. You must create the VNC
password file under the profile that starts the VNC server.

Installing NAWT software fixes:

To install NAWT, you need to ensure that you install the software fix that includes the appropriate
NAWT support for the version of Java 2 Software Development Kit (J25DK), Standard Edition that you
want to use.

Before installing any software fixes (PTFs), make sure that your server software includes the option for
licensed program 5722JV1 that corresponds to the J2SDK version you want to use. To verify the option
for your server software, complete the following steps:

1. At an i5/0S command line, type the Go Licensed Program (GO LICPGM) and press ENTER.

2. Select option 10 (Displayed installed licensed program) and verify that you have installed the licensed
program 5722]JV1 option that corresponds to the version of the JDK that you intend to use.

Be sure to apply the latest Java group software fix to pick up any recent NAWT fixes.

242 System i: Programming IBM Developer Kit for Java



The following table lists the required options and software fix requirements for running NAWT:

J2SDK Version 5722JV1 Option Java Software Fix ID PTF Date
1.3 5 PTF Group 5722-JV1 SF99269 Latest
1.4 6 PTF Group 5722-JV1 SF99269 Latest
1.5 7 PTF Group 5722-JV1 SF99269 Latest

For more information about software fixes, see|Use software fixes,

Installing System i Tools for Developers PRPQ:

To run Native Abstract Windowing Toolkit (NAWT), you need to install the System i Tools for Developers
PRPQ (5799PTL). If you do not have the PRPQ, you must order it.

Newer versions of the PRPQ include a pre-compiled i5/0S PASE-enabled version of Virtual Network

Computing (VNC). Older versions do not include VNC. How you install the PRPQ depends on which

version you have:

* For versions of the PRPQ ordered on or after 14 June 2002: Complete this task by using the installation
instructions available at the [Virtual Innovation Center] Web site.

Note: To install the VNC support available in the PRPQ, follow only the installation instructions at the
Web site. You do not need to follow the setup instructions.

Installing older versions of System i Tools for Developers:

Versions of System i Tools for Developers PRPQ (5799PTL) ordered before 14 June 2002, do not include a
pre-compiled i5/0S PASE-enabled version of Virtual Network Computing (VNC). Use the following
instructions to determine if you have the enhanced PRPQ and to install VNC if you have an older
version of the PRPQ.

Determine whether you have the enhanced PRPQ

If you own PRPQ 5799-PTL but are not sure whether you have the enhanced version that contains VNC,
check for the existence of the following file:

/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver_java

The enhanced version of the PRPQ includes the vncserver_java file, but older versions do not. If
vneserver_java is not present on your server, you can either order and install the latest version of the
PRPQ or use the following instructions to complete the VNC installation.

Install VNC

To install VNC on an older version of System i Tools for Developers PRPQ, complete the following steps.
1. Create the save files on your server by running the following commands:

crtlib vncsavf

crtsavf vncsavf/vncpasswd
crtsavf vncsavf/vnc
crtsavf vncsavf/fonts
crtsavf vncsavf/icewm

2. Download the save files to your workstation from the [Virtual Innovation Center] Web site.

3. Use FIP to transfer the save files from your workstation to the server by running the following
commands on your workstation:

IBM Developer Kit for Java 243


http://www-03.ibm.com/servers/enable/site/porting/tools/install.html
http://www-03.ibm.com/servers/enable/site/porting/tools/

ftp yoursystem
bin
cd /qsys.lib/vncsavf.lib
put vnc.savf
put vncpasswd.savf
put fonts.savf
put icewm.savf
quit
4. Restore the save files by running the following commands on your server:

RSTOBJ OBJ(*ALL) SAVLIB(VNCSAVF) DEV(*SAVF) SAVF(VNCSAVF/VNCPASSWD)

RST DEV('/Qsys.lib/vncsavf.lib/vnc.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/vncx"'))
RST DEV('/Qsys.Tib/vncsavf.1ib/fonts.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/fonts*"'))
RST DEV('/Qsys.lib/vncsavf.lib/icewm.file') OBJ(('/QOpenSys/QIBM/ProdData/DeveloperTools/icewm*"'))

5. Continue installing NAWT.
Related concepts

[‘Installing and using Native Abstract Windowing Toolkit” on page 249|
Use these step-by-step instructions to install NAWT and VNC. Before using NAWT, you must
complete some required steps.

Starting the Virtual Network Computing server:
To the Virtual Network Computing (VNC) server, complete the following steps.

To start the Virtual Network Computing (VNC) server, type the following command at the command line
and press ENTER:

CALL PGM(QSYS/QP2SHELL) PARM('/QOpenSys/QIBM/ProdData/DeveloperTools/vnc/vncserver java' ':n')

where 7 is the display number that you want to use. Display numbers can be any integer in the range
1-99.

Note: Starting the VNC server displays a message that identifies the System i5 system name and display
number, for example, "New "X’desktop is systemname:1." Remember or write down the display
number, because you use that value to configure environment variables.

When you have more than one VNC server running at the same time, each VNC server requires a unique
display number. Explicitly specifying the display value when you start the VNC server makes it easy to
configure the DISPLAY environment variable later. You must configure environment variables every time
you want to run Java with NAWT.

However, when you do not want to specify the display number, simply remove ’:n’ from the previous
command and the vncserver_java program finds an available display.

The .Xauthority file

The process of starting the VNC server either creates a new .Xauthority file or modifies an existing
Xauthority file. VNC server authorization uses the .Xauthority file, which contains encrypted key
information, to prevent applications of other users from intercepting your X server requests. Secure
communications between the Java virtual machine (JVM) and VNC REQUIRES that both the JVM and
VNC have access to the encrypted key information in the .Xauthority file.

The .Xauthority file belongs to the profile that started VNC. The simplest way to allow both the JVM and
the VNC server to share access to the .Xauthority file is to run the VNC server and the JVM under the
same user profile. If you cannot run both the VNC server and the JVM under the same user profile, you
can configure the XAUTHORITY environment variable to point to the correct .Xauthority file.

Related concepts

244 System i: Programming IBM Developer Kit for Java



[‘Configuring NAWT environment variables”
Any time that you run Java with NAWT, you must set environment variables that tell Java the system
name, the display number, and where to find each X server and the associated .Xauthority file.

[‘Tips for using NAWT with WebSphere Application Server” on page 251|

Set up NAWT for use by graphical Java programs running under WebSphere Application Server.
When you use WebSphere Application Server and NAWT, you need to enable secure communications
between the Virtual Network Computing (VNC) server and WebSphere Application Server.

Configuring NAWT environment variables:

Any time that you run Java with NAWT, you must set environment variables that tell Java the system
name, the display number, and where to find e