
iSeries

Qshell

Version 5 Release 4

���

iSeries

Qshell

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 213.

Ninth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Qshell 1

What’s new 2

What’s new as of 31 March 2006 2

What’s new as of 31 August 2006 2

How to see what’s new or changed 2

Printable PDF 2

Tutorial 3

Qshell command language features 3

Qshell utility features 6

Putting it all together in a script 7

Command language 8

Quoting 9

Parameters 9

Variables 10

Variables set by qsh 10

Variables used by qsh 12

Other variables 14

Word expansions 15

Tilde expansions 15

Parameter expansions 16

Command substitutions 18

Arithmetic expansions 18

Field splitting 20

Path name expansion 20

Quote removal 21

Patterns 21

Redirection 21

Simple commands 22

Pipelines 23

Lists 24

Compound commands 25

Grouping commands 25

If command 25

Conditional command 26

Case command 26

Select command 27

While command 27

Until command 28

For command 28

Functions 29

Using Qshell 29

Using a Qshell interactive session 30

Running Qshell commands from CL 31

Running Qshell commands from PASE 32

Customizing your Qshell environment 32

National language support (NLS) considerations 33

Performance considerations 37

Developing your own utilities 37

Editing files with Qshell Interpreter 37

Differences with other interpreters 37

Utilities 38

Utilities for defining aliases 49

alias - Define or display aliases 49

unalias - Remove alias definitions 50

Utilities for running commands 51

builtin - Run a shell built-in utility 51

command - Run a simple command 52

dot (.) - Run commands in current

environment 52

env - Set environment for command

invocation 53

eval - Construct command by concatenating

arguments 54

exec - Run commands and open, close, or

copy descriptors 54

exit - Exit from the shell 55

help - Display information for built-in utility 55

nohup - Run utility without hangups 56

qsh - Qshell command language interpreter . 57

rexec - Run remote command 58

rexx - Run REXX procedure 59

source - Run commands in current

environment 60

system - Run CL command 60

type - Find type of command 62

whence - Determine how command is

interpreted 62

xargs - Construct argument lists and invoke

utility 63

Utilities for managing data 64

cmp - Compare two files 65

cut - Cut out selected fields of each line of a

file 66

egrep - Search a file for an extended regular

expression pattern 67

fgrep - Search a file for a fixed string pattern 67

grep - Search a file for a pattern 67

iconv - Convert characters from one CCSID to

another CCSID 69

sed - Stream editor 70

sort - Sort, merge, or sequence check text files 74

split - Split files into pieces 76

tr - Translate characters 77

uniq - Report or filter out repeated lines in a

file 79

wc - Word, line and byte/character count . . 80

Utilities for DB2 Universal Database(TM) 81

Qshell db2 utility 81

Perl utility 82

Utilities for working with files and directories . . 82

attr - Get or set attributes for files 83

basename - Return non-directory portion of

path name 88

cat - Concatenate and print files 88

catsplf - Concatenate and print spool files . . 89

cd - Change working directory 90

chgrp - Change file group ownership 91

chmod - Change file modes 92

chown - Change file ownership 95

compress - Compress data 96

cp - Copy files 97

© Copyright IBM Corp. 1998, 2006 iii

dirname - Return directory portion of path

name 99

file - Determine file type 100

find - Find files 100

gencat - Generate a formatted message

catalog 104

getconf - Get configuration values 105

head - Copy the first part of files 106

ln - Link files 106

ls - List directory contents 107

mkdir - Make directories 110

mkfifo - Make FIFO special files 111

mv - Move files 112

od - Dump files in various formats 113

pax - Portable archive interchange 114

pr - Print files 121

pwd - Return working directory name . . . 123

pwdx - Print working directory expanded 124

Rfile - Read or write record files 124

rm - Remove directory entries 125

rmdir - Remove directories 126

setccsid - Set CCSID attribute for file . . . 127

tail - Display the last part of a file 128

tar - File archiver 129

touch - Change file access and modification

times 130

umask - Get or set the file mode creation

mask 131

uncompress - Expand compressed data . . . 132

zcat - Expand and concatenate data 133

Utilities for reading and writing input and

output 133

dspmsg - Display message from message

catalog 133

echo - Write arguments to standard output 134

print - Write output 135

printf - Write formatted output 136

read - Read a line from standard input . . . 137

Utilities for developing Javatm programs . . . 138

ajar - Alternative Java(TM) archive 138

appletviewer - View Javatm applet 141

extcheck - A utility to detect JAR conflicts 141

jar - Archive Javatm files 141

Files in the integrated file system 142

jarsigner - JAR signing and verification . . . 142

java - Run Javatm interpreter 142

javac - Compile a Javatm program 143

javadoc - Generate Javatm documentation . . 143

javah - Generate C header or stub file . . . 143

javakey - Manage Javatm security keys and

certificates 144

javap - Disassemble a compiled Javatm

program 144

keytool - Key and certificate management

tool 145

native2ascii - Convert native characters to

ASCII 145

policytool - Policy file creation and

management tool 145

rmic - Compile Javatm RMI stubs 145

rmid - The Javatm RMI activation system . . 145

rmiregistry - Start a remote object registry 145

serialver - Return serial version 146

tnameserv - Naming service 146

Utilities for managing jobs 146

getjobid - Display job information 146

hash - Remember or report utility locations 147

jobs - Display status of jobs in current

session 148

kill - Terminate or signal processes 149

liblist - Manage library list 150

ps - Display process status 151

sleep - Suspend invocation for an interval 153

trap - Trap signals 153

wait - Wait for process completion 155

Utilities for Kerberos credentials and key tables 155

Utilities for LDAP directory server 155

Utilities for working with parameters and

variables 156

declare - Declare variables and set attributes 156

export - Set export attribute for variables . . 157

local - Assign a local variable in a function 158

printenv - Display values of environment

variables 159

readonly - Set read-only attribute for

variables 159

set - Set or unset options and positional

parameters 160

shift - Shift positional parameters 162

typeset - Declare variables and set attributes 162

unset - Unset values of variables and

functions 163

Utilities for writing scripts 164

break - Exit from for, while, or until loop . . 164

colon (:) - Null utility 164

continue - Continue for, while, or until loop 165

false - Return false value 165

getopts - Parse utility options 166

let - Evaluate arithmetic expression 166

return - Return from a function 167

test - Evaluate expression 167

true - Return true value 169

Miscellaneous utilities 170

clrtmp - Clear the /tmp directory 170

dataq - Send or receive messages from

i5/OS(TM) data queue 171

datarea - Read or write i5/OS(TM) data area 172

date - Write the date and time 173

expr - Evaluate arguments as an expression 174

hostname - Display the name of the current

host system 175

id - Return user identity 175

ipcrm - Remove interprocess communication

identifier 176

ipcs - Report interprocess communication

status 177

locale - Get locale specific information . . . 182

logger - Log messages 183

logname - Display user’s login name . . . 184

sysval - Retrieve system values or network

attributes 184

tee - Duplicate standard input 185

iv iSeries: Qshell

ulimit - Set or display resource limits . . . 185

uname - Return system name 186

Application Programming Interfaces 187

QzshSystem() - Run a QSH Command 187

QzshCheckShellCommand() - Find QSH

Command 191

Examples: Using a remote client that connects to a

qsh session 192

Example: Server program 193

Example: Client program 200

Example: Creating and running the server

program 209

Example: Creating and running the client

program 211

Related information for Qshell 211

Warning: Temporary Level 3 Header 211

Warning: Temporary Level 4 Header . . . 211

Books 211

IBM Redbooks 211

Other information 211

Saving PDF files 211

Downloading Adobe Reader 211

Appendix. Notices 213

Programming Interface Information 215

Trademarks 215

Terms and conditions 215

Code license and disclaimer information 216

Contents v

vi iSeries: Qshell

Qshell

Qshell is a command environment based on POSIX and X/Open standards. It consists of two parts:

v The shell interpreter (or qsh) is a program that reads commands from an input source, interprets each

command, and then runs the command using the services of the operating system.

v The utilities (or commands) are external programs that provide additional functions and can be quite

simple or very complex.

Together, the shell interpreter and utilities provide a powerful, standards-based scripting environment. As

you use the new programming models offered by i5/OS(TM), Qshell provides an extensible command

environment that allows you to:

v Manage files in any file system supported by the Integrated File System.

v Run threaded programs that do thread-safe I/O to and from an interactive session.

v Write shell scripts that can be run without modification on other systems using a cross-platform

command language.

v Write your own utilities to extend the functions provided by Qshell.

This topic provides both new and experienced users with the information needed to use Qshell

commands and write Qshell scripts.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 216.

“What’s new” on page 2

Select this link to learn about what is new in Qshell this release.

“Printable PDF” on page 2

Select this link to print a PDF of this topic.

“Tutorial” on page 3

Select this link to learn about using the Qshell command language and utilities. Start here if you are

a new to using shells and shell commands.

“Command language” on page 8

Select this link to view the detailed reference information for the Qshell command language. Start

here if you are writing shell scripts or are an experienced user of shells.

“Using Qshell” on page 29

Select this link to find out how to use the QSH CL command, how to configure the Qshell

environment, and how to develop utilities.

“Utilities” on page 38

Select this link to view the list of utilities provided with Qshell.

“Application Programming Interfaces” on page 187

Select this link to view the list of application programming interfaces (APIs) provided with Qshell.

“Examples: Using a remote client that connects to a qsh session” on page 192

Select this link to view an example of a remote client and server for starting an interactive Qshell

session.

© Copyright IBM Corp. 1998, 2006 1

“Related information for Qshell” on page 211

Find books, Redbooks, and other topics that relate to Qshell.

Note: In this information, the terms ″job″ and ″process″ are used interchangeably. The term ″job″ is from

i5/OS(TM) and the term ″process″ is from POSIX.

What’s new

The following changes were made in Qshell for this release:

“attr - Get or set attributes for files” on page 83

Added support for new attributes.

“cmp - Compare two files” on page 65

Added support for the QIBM_CMP_FILE_SIZE environment variable.

“ipcs - Report interprocess communication status” on page 177

Added support for -j option.

“rexec - Run remote command” on page 58

Added support for -i option.

“sed - Stream editor” on page 70

Added support for -C option.

What’s new as of 31 March 2006

“QzshSystem() - Run a QSH Command” on page 187

Corrected the QzshSystem() example program.

What’s new as of 31 August 2006

“Utilities for DB2 Universal Database(TM)” on page 81

Added information about the db2 and Perl utilities.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to users.

Printable PDF

To view or download the PDF versions of this topic, select Qshell Reference (about 215 pages).

You can also view or print any of the following PDFs:

v Manuals:

– IBM(R) Developer Kit for Java(TM)

– IBM(R) Toolbox for Java(TM)

v Redbook:

– Building AS/400(R) Internet-Based Applications with Java

(about 334 pages)

2 iSeries: Qshell

http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/723cd529d5595808862566cc0060397c?OpenDocument

To save a PDF on your workstation for viewing and printing:

1. Open the PDF in your browser (click one of the links above).

2. In the menu of your browser, click File.

3. Click Save As...

4. Navigate to the directory in which you would like to save the PDF.

5. Click Save.

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the

Adobe Web site

.

Tutorial

This topic provides a tutorial to help you get started using the Qshell command language and utilities.

“Qshell command language features”

Select this link to view information about commands, input and output redirection, path name

expansion, parameter expansion, and command substitution.

“Qshell utility features” on page 6

Select this link to view information about navigating in the Integrated File System and working

with files and directories.

“Putting it all together in a script” on page 7

Select this link to view an example that shows how to write a shell script.

Qshell command language features

The shell interpreter can be used for either an interactive session or for writing shell scripts. A shell script

is just a text file that contains shell commands. The Qshell command language is identical for either

interactive use or for writing scripts. Any command that you run from an interactive command line can

be put in a shell script and it runs the same way. The Qshell command language is interpreted so a shell

script is read and interpreted each time it is run.

Commands

A “Simple commands” on page 22 is the name of a utility that you want to run. If you specify a

fully-qualified path name to the command, for example “/usr/bin/ls”, qsh runs that command. If you

specify a relative path name to the command, for example “ls”, qsh searches the directories specified by

the PATH variable to find it. The PATH variable is a colon delimited list of directories that tells qsh

where to find commands. If the PATH variable is set to

/usr/bin:/QOpenSys/usr/bin:

qsh first looks for the command in the “/usr/bin” directory, then in the “/QOpenSys/usr/bin” directory,

and finally in the current working directory. When the PATH variable begins or ends with a colon or

contains two adjacent colons, qsh searches in the current working directory.

By default, qsh waits for the command to complete before running the next command. When the

command is completed, it sets an exit status that describes the result of the command. An exit status of

zero means that the command was successful. An exit status that is greater than zero means that the

command was unsuccessful. Typically, the exit status is one when a command fails. Although, qsh sets

the exit status to 126 when the command was found but could not be run and sets the exit status to 127

when the command was not found.

Qshell 3

http://www.adobe.com/prodindex/acrobat/readstep.html

The “Compound commands” on page 25 include the if-then-else conditional, [[...]] conditional, case

conditional, select conditional, while loop, until loop, for loop, and functions. These commands provide

the features you would expect in a high-level programming language and allow you to write complex

shell scripts.

A “Pipelines” on page 23 allows you to chain several commands together so the output from one

command is the input to the next command. For example, in the pipeline

ls | grep ^apple

the output from the “ls - List directory contents” on page 107 utility becomes the input to the “grep -

Search a file for a pattern” on page 67 utility. The ls utility lists the contents of a directory and the grep

utility searches for matches to a pattern. The final output of the above pipeline is a list of the files in the

current directory that begin with ″apple″.

You can chain more than two commands in a pipeline. This is a very powerful feature of qsh that allows

you to combine several commands together to accomplish a complex task.

There are two other types of lists that are like pipelines. An ″and″ list stops when the first command in

the list has non-zero exit status. An ″or″ list stops when the first command in the list has a zero exit

status.

An “Lists” on page 24 runs a command in the background. For example, the command

mypgm &

allows you to start mypgm and then run other commands before mypgm completes. If you have a long

running command, an asynchronous list allows you to start the command and not wait for the command

to complete.

Input and output redirection

“Redirection” on page 21 allow you to change where input for a command comes from and where output

for the command goes to. For Qshell commands, input and output work on descriptors. A descriptor can

be opened to either an object in the Integrated File System or to a TCP/IP socket. Input comes from

descriptor 0 or standard input, regular output goes to descriptor 1 or standard output, and error output

goes to descriptor 2 or standard error.

You can change where input comes from by redirecting standard input. For example, in the command

grep orange <fruits.list

when the grep utility reads from standard input it receives the contents of the file fruits.list.

You can change where output goes to by redirecting standard output. For example, in the command

grep apple fruits.list >apple.list

when the grep utility writes the results to standard output, the results are written to the file apple.list.

You can also send standard output and standard error to the same file. For example, in the command

grep apple fruits.list >apple.list 2>&1

standard output (descriptor 1) is written to the file apple.list and standard error (descriptor 2) is

redirected to the same place as descriptor 1.

While most of the time redirections are only used to control standard input, standard output, and

standard error, you can control the descriptors from 0 to 9 using redirections.

4 iSeries: Qshell

Path name expansions

A “Path name expansion” on page 20 substitutes a “Patterns” on page 21 for all of the files that match

the pattern. A shell pattern uses:

v A * to match any string of characters. For example, in the command

ls *.java

qsh expands *.java to all of the files that end with .java in the current working directory.

v A ? to match any single character. For example, in the command

ls *.?

qsh expands *.? to all of the files that have a single character extension.

v A [] for a character class. With a character class, qsh matches a set or range of characters. For example,

in the command

ls *.[ch]

qsh expands *.[ch] to all of the files that end in either .c or .h in the current working directory. You can

also specify a range of characters. For example, in the command

ls *.jav[a-c]

qsh expands *.jav[a-c] to all of the files that end in .java, .javb, or .javc.

Parameter expansions

A “Parameter expansions” on page 16 substitutes the value of a variable. In the simplest form

$myvar

qsh substitutes the value of the variable myvar.

There are modifiers to use default or alternate values or to indicate an error if the variable is unset or

null. For example, in the parameter expansion

${counter:=0}

qsh sets the default value of the variable counter to zero if the variable is unset or null. If the variable

counter was already set, the value is not changed and the current value is substituted.

There are also modifiers to remove small or large prefix or suffix patterns. The patterns are the same as

the ones used for path name expansions. There are four pattern modifiers:

v The % modifier means to remove the smallest suffix pattern.

v The %% modifier means to remove the largest suffix pattern.

v The # modifier means to remove the smallest prefix pattern.

v The ## modifier means to remove the largest prefix pattern.

For example, if the variable pathname is set to “/fruits/apples/grannysmith”, then in the parameter

expansion

${pathname%/*}

qsh removes the smallest right pattern that matches “/*” and “/fruits/apples” is substituted.

Command substitutions

A “Command substitutions” on page 18 allows the output of a command to be substituted in place of the

command name. For example, in the command substitution

Qshell 5

$(grep apple fruit.list)

qsh substitutes the output of the grep command. This is an easy way to capture the output of a

command for further processing in a script.

An older form of command substitution that uses backquotes (`) is supported but should not be used

because of its ambiguous quoting rules.

Qshell utility features

There are over 100 utilities provided with Qshell that provide many functions. A utility is one of two

types:

v A built-in utility (page 23) is one qsh can run directly without having to search for it. It runs in the

same process as the shell interpreter.

v A regular utility (page 23) is a separate program object that qsh finds by searching for it. It runs in a

new process started by the shell interpreter.

A Qshell utility has the following format. The square brackets indicate something that is optionally

specified.

utility [options] [parameters]

Some utilities allow single letter options preceded by a minus sign (-). For example, several utilities use

the -r option for recursively working on a directory tree. More than one option can be specified and all

options must be specified before any parameters. If a parameter begins with a minus sign, you can use

the — option to indicate the end of options. For example, in the command line

utility -r -- -1

the -1 is treated as a parameter because the — marked the end of the options.

Navigating in the Integrated File System

When navigating in the Integrated File System, you always have a current working directory. If a file or

directory is specified without a leading slash (/), it is assumed to be in the current working directory.

You can change the current working directory with the “cd - Change working directory” on page 90

utility. For example to change the current working directory to /usr/bin, use this command:

cd /usr/bin

You can display your current working directory with either the “pwd - Return working directory name”

on page 123 or “pwdx - Print working directory expanded” on page 124 utilities. The pwdx utility

resolves symbolic links and displays the absolute current working directory.

You can list the contents of a directory with the “ls - List directory contents” on page 107 utility. With no

parameters, ls lists the contents of the current working directory. You can also specify one or more

directories as parameters. With the -l (lowercase ell) option, ls lists detailed information about each object

in the directory, including the permissions for the object, the owner and group of the object, the size of

the object, and the date that the object was last accessed.

Working with files and directories

You can create a new directory with the “mkdir - Make directories” on page 110 utility. When the -p

option is specified, mkdir creates all of the directories in the path. For example, to create the new

directories “/fruits” and “/fruits/pears”, use this command:

mkdir -p /fruits/pears

6 iSeries: Qshell

You can copy files with the “cp - Copy files” on page 97 utility. For example, to copy the file

“/fruits/apples/delicious” to the file “/fruits/apples/grannysmith”, use this command:

cp /fruits/apples/delicious /fruits/apples/grannysmith

You can rename or move objects with the “mv - Move files” on page 112 utility. For example, to move the

file orange in the current directory to the file “tangerine” in the “/fruits” directory, use this command:

mv orange /fruits/tangerine

You can delete an object with the “rm - Remove directory entries” on page 125 utility and delete a

directory with the “rmdir - Remove directories” on page 126 utility. When the -r option is specified, rm

recursively deletes all of the objects in a directory tree. This is an easy way to delete a large number of

objects with one command. For example, to delete all of the files and directories in the “/fruits” directory

tree, use this command:

rm -r /fruits

Putting it all together in a script

The following example shows a simple shell script that illustrates the features of the shell interpreter and

utilities. The script takes one input parameter that is the name of a directory. The script then copies all of

the files with the .java extension from the input directory to the current directory, keeping a count of the

files it copied.

 1 # Get a list of files

 2 filelist=$(ls ${1}/*.java)

 3 count=0

 4 # Process each file

 5 for file in $filelist ; do

 6 # Strip directory name

 7 target=${file##*/}

 8 # Copy file to current directory

 9 cp $file $target

10 count=$((count+=1))

11 # Print message

12 print Copied $file to $target

13 done

14 print Copied $count files

On lines 1, 4, 6 ,8, 11, the # character denotes a comment. Any characters after the # character are not

interpreted by qsh.

On line 2, the variable filelist is set to the output from the “ls - List directory contents” on page 107

command. The ${1} expands to the first input parameter and the *.java expands to all of the files with the

.java extension.

On line 3, the variable count is set to zero.

On line 5 is a for loop. For each iteration of the loop. the variable file is set to the next element in the

variable filelist. Each element is delimited by a field separator. The default field separators are tab, space,

and newline. The semicolon character is a command delimiter and allows you to put more than one

command on a line.

On line 7, the variable target is set to the file name from the fully-qualified path name. The ${file##*/}

parameter expansion removes the largest pattern starting from the left that matches all characters up to

the last slash character.

On line 9, the file is copied with the “cp - Copy files” on page 97 utility from the specified directory to

the current working directory.

On line 10, the variable count is incremented by one.

Qshell 7

On line 12, a message is printed using the “print - Write output” on page 135 utility with the files that

were copied.

On line 13, the done marks the end of the for loop.

On line 14, a message is printed with the total number of files that were copied.

If the directory /project/src contained two files with the .java extension and the script is called using the

command:

javacopy /project/src

then the output from the script is

Copied /project/src/foo.java to foo.java

Copied /project/src/bar.java to bar.java

Copied 2 files

Command language

qsh is a program that:

v reads input from either a file or a terminal

v breaks the input into tokens

v parses the input into simple and compound commands

v performs various expansions on each command

v performs redirection of input and output

v runs the commands

v optionally waits for the commands to complete

qsh implements a command language that has flow control constructs, variables, and functions. The

interpretative language is common to both interactive and non-interactive use (shell scripts). So the same

commands that are entered at an interactive command line can also be put in a file and the file can be

run directly by qsh.

See the AIX(R) Information Center for more information about commands.

For more information about particular features of qsh, see the following topics:

“Quoting” on page 9

Select this link to view information about quoting, including the escape character, literal quotes, and

grouping quotes.

“Parameters” on page 9

Select this link to view information about parameters, including positional parameters and special

parameters.

“Variables” on page 10

Select this link to view information about variables, including the variables set by and variables

used by qsh.

“Word expansions” on page 15

Select this link to view information about word expansions, including tilde expansion, parameter

expansion, command substitution, arithmetic expansion, field splitting, path name expansion, and

quote removal.

8 iSeries: Qshell

http://www-03.ibm.com/servers/aix/library/

“Redirection” on page 21

Select this link to view information about input and output redirections.

“Simple commands” on page 22

Select this link to view information about running simple commands.

“Pipelines” on page 23

Select this link to view information about running multiple commands in a pipeline.

“Lists” on page 24

Select this link to view information about running multiple commands in a list.

“Compound commands” on page 25

Select this link to view information about compound commands, including grouping commands,

conditional commands, loop commands, and functions.

Quoting

Use quoting to remove the special meaning of certain characters to qsh. The following characters may be

used:

v The escape character (backslash) to remove the special meaning of the following character with the

exception of <newline>. If a <newline> follows the backslash, qsh interprets it as a line continuation.

For example, \$ removes the special meaning of the dollar sign.

v Literal (or single) quotation marks (’...’) to remove the special meaning of all characters except the

single quotation mark.

v Grouping (or double) quotation marks (″...″) to remove the special meaning of all characters except

dollar sign ($), back quotation mark (`), and backslash (\). The backslash retains its special meaning as

an escape character only when it is followed by a dollar sign ($), back quotation mark (`), double

quotation mark (″), backslash (\), or <newline>.

Parameters

A parameter is used to store data. You can access the value of a parameter by preceding its name with a

dollar sign ($) and surrounding the name with brackets ({ }). The brackets are optional when the name is

a single digit, is a special parameter, or is a single identifier. See “Parameter expansions” on page 16 for

more information about expanding the value of a parameter.

Positional parameters

A positional parameter is a decimal number starting from one. Initially, qsh sets the positional parameters

to the command line arguments that follow the name of the shell script. The positional parameters are

temporarily replaced when a shell function is called and can be reassigned using the “set - Set or unset

options and positional parameters” on page 160 and “shift - Shift positional parameters” on page 162

utilities.

Special parameters

A special parameter is denoted by one of these special characters:

* (Positional parameters)

(Asterisk) Expands to the positional parameters, starting from one. When the expansion occurs

within a string with quotation marks, it expands to a single field with the value of each

parameter separated by the first character of the IFS variable, or by a <space> if IFS is unset.

@ (Positional parameters)

(At sign) Expands to the positional parameters, starting from one. When the expansion occurs

Qshell 9

within quotation marks, each positional parameter expands as a separate argument. If there are

no positional parameters, the expansion of @ generates zero arguments, even when @ is in

quotation marks.

(Number of positional parameters)

(Number sign) Expands to the decimal number of positional parameters. It is initially set to the

number of arguments when qsh is invoked. It can be changed by the “set - Set or unset options

and positional parameters” on page 160, “shift - Shift positional parameters” on page 162, or “dot

(.) - Run commands in current environment” on page 52 utilities or by calling a function.

? (Exit status)

(Question mark) Expands to the decimal exit status of the most recent command. A value of zero

indicates successful completion. A non-zero value indicates an error. A command ended by a

signal number has an exit status of 128 plus the signal number.

- (Option flags)

(Minus) Expands to the current option flags (the single-letter option names concatenated into a

string) as specified when qsh is invoked, by “set - Set or unset options and positional

parameters” on page 160, or implicitly by qsh.

$ (Process ID of current shell)

(Dollar sign) Expands to the decimal process ID of the current shell. A subshell retains the same

value of $ as the current shell even if the subshell is running in a different process.

! (Background process ID)

(Exclamation mark) Expands to the decimal process ID of the most recent background command

run from the current shell. For a pipeline, the process ID is that of the last command in the

pipeline.

0 (Name of shell script)

(Zero) Expands to the name of the shell or shell script.

Variables

When it is started, qsh initializes shell variables from the defined environment variables. A variable is

used to store data. You can change the value of an existing variable or create a new variable by using one

of these methods:

v Assigning a variable using name=value.

v Calling the “read - Read a line from standard input” on page 137 or “getopts - Parse utility options”

on page 166 utilities.

v Using the name parameter in a for loop or select conditional construct.

v Using the ${name=value} parameter expansion.

v Calling the “declare - Declare variables and set attributes” on page 156 or “typeset - Declare variables

and set attributes” on page 162 utilities.

Variable names can contain alphabetic characters, numeric characters, or the underscore (_). A variable

name cannot begin with a numeric character.

Variables set by qsh

_ (Temporary variable)

This variable is set by qsh to the last argument of the previous simple command.

EGID (Effective primary group identifer)

This variable set by qsh to the effective primary group identifier of the process at the time qsh is

started. This variable is read-only.

EUID (Effective user identifer)

This variable set by qsh to the effective user identifier of the process at the time qsh is started.

This variable is read-only.

10 iSeries: Qshell

GID (Primary group identifer)

This variable set by qsh to the primary group identifier of the process at the time qsh is started.

This variable is read-only.

HOSTID (IP identifier of host)

This variable set by qsh to the IP address of the host system.

HOSTNAME (Name of host)

This variable set by qsh to the name of the host system.

HOSTTYPE (Type of host)

This variable set by qsh to a string that represents the type of the host system. The value is set to

“powerpc”.

JOBNAME (Qualified job name)

This variable is set by qsh to the qualified job name of the current job. The qualified job name is

used by CL commands to identify a job.

LAST_JOBNAME (Qualified job name of last job)

This variable is set by qsh to the qualified job name of the last job it started. The qualified job

name is used by CL commands to identify a job.

LINENO (Line number)

This variable is set by qsh to the current line number (decimal) in a script or function before it

runs each command.

MACHTYPE (Machine type)

This variable is set by qsh to a string that represents the machine type. The value is set to

“powerpc-ibm-os400”.

OLDPWD (Previous working directory)

This variable is set by “cd - Change working directory” on page 90 to the previous working

directory after the current working directory is changed.

OPTARG (Option argument)

This variable is set by “getopts - Parse utility options” on page 166 when it finds an option that

requires an argument.

OPTIND (Option index)

This variable is set by “getopts - Parse utility options” on page 166 to the index of the argument

to look at for the next option. The variable is set to one when qsh, a script, or a function is

invoked.

OSTYPE (Operating system type)

This variable set by qsh to a string that represents the operating system type. The value is set to

“os400”.

PPID (Parent process ID)

This variable is set by qsh to the decimal process ID of the process that invoked the current shell.

In a subshell, the value of the variable is not changed even if the subshell is running in a

different process.

PWD (Working directory)

This variable is set by “cd - Change working directory” on page 90 to the current working

directory after it is changed.

QSH_VERSION (Current version)

This variable is set by qsh to a string that represents the current version. The string is in the form

VxRyMz where x is the version number, y is the release number, and z is the modification

number. This variable is read-only.

Qshell 11

RANDOM (Random number generator)

This variable is set by qsh to an integer random number between 1 and 32767 each time it is

referenced. You can seed the random number generator by setting the variable.

REPLY (Reply variable)

This variable is set by “read - Read a line from standard input” on page 137 to the characters that

are read when you do not specify any arguments and by the select compound command to the

contents of the input line read from standard input.

TERMINAL_TYPE (Type of terminal)

This variable is set by qsh to the type of terminal attached to the standard file descriptors. The

value is set to “5250” when attached to a 5250 display, to “REMOTE” when attached to a remote

client, or to “PIPELINE” when attached to pipes.

UID (User identifer)

This variable set by qsh to the user identifier of the process at the time qsh is started. This

variable is read-only.

Variables used by qsh

CDPATH (Search path for cd)

If the directory you specify for “cd - Change working directory” on page 90 does not begin with

a slash (/), qsh searches the directories listed in CDPATH in order for the specified directory. The

value of the variable is a colon separated list of directories. The current working directory is

specified by a period (.) or a null directory before the first colon, between two colons, or after the

last colon. There is no default value.

ENV (Environment file)

When qsh is invoked, it performs parameter expansion, command substitution, and arithmetic

expansion on this variable to generate the path name of a shell script to run in the current

environment. It is typically used to set aliases, define functions, or set options. There is no default

value.

HOME (Home directory)

The value of this variable is the path name of your home directory. The value is used for tilde

expansion and as the default argument for “cd - Change working directory” on page 90. The

value is set by default to the value specified in your user profile.

IFS (Internal field separators)

The value is a string treated as a list of characters that is used for field splitting and to split lines

into fields with “read - Read a line from standard input” on page 137. The first character of the

value is used to separate arguments when expanding the * special parameter. The default value is

“<space><tab><newline>”.

LANG (Language locale)

This variable defines the locale category used for categories that are not specifically set with a

variable starting with LC_. There is no default value.

LC_ALL (Locale settings)

This variable overrides the value of any variables starting with LC_. There is no default value.

LC_COLLATE (Locale collation)

This variable defines the collation relations between characters. There is no default value.

LC_CTYPE (Locale character classes)

This variable defines character types such as upper-case, lower-case, space, digit and,

punctuation. There is no default value.

LC_MESSAGES (Locale message formatting)

This variable defines the format and values for affirmative and negative responses from

applications. There is no default value.

12 iSeries: Qshell

LC_MONETARY (Locale monetary formatting)

This variable defines the monetary names, symbols, and other details. There is no default value.

LC_NUMERIC (Locale numeric formatting)

This variable defines the decimal point character for formatted input/output and string

conversion functions. There is no default value.

LC_TIME (Locale time formatting)

This variable defines the date and time conventions, such as calendar used, time zone, and days

of the week. There is no default value.

LC_TOD (Locale time zone)

This variable defines the time zone name, time zone difference, and Daylight Savings Time start

and end. There is no default value.

NLSPATH (Search path for message catalogs)

When opening a message catalog, the system searches the directories listed in the order specified

until it finds the catalog. The value of the variable is a colon separated list of directories. There is

no default value.

PATH (Search path for commands)

If the command you specify does not begin with a slash (/), qsh searches the directories listed in

the order specified until it finds the command to run. The value of the variable is a colon

separated list of directories. The current working directory is specified by a period (.) or a null

directory before the first colon, between two colons, or after the last colon. The default value is

“/usr/bin:”.

PS1 (Primary prompt string)

When the interactive option is set, qsh performs parameter expansion, command substitution,

and arithmetic expansion on the variable and displays it on stderr when qsh is ready to read a

command. The default value is “$”.

PS2 (Secondary prompt string)

When you enter <newline> before completing a command qsh displays the value of this variable

on stderr. The default value is “>”.

PS3 (Select command prompt)

When the select compound command is run, qsh performs parameter expansion, command

substitution, and arithmetic expansion on the variable and displays it on stderr to prompt the

user to select one of the choices displayed by select. The default value is “#?”.

PS4 (Debug prompt string)

When the execution trace option is set and the interactive option is set, qsh performs parameter

expansion, command substitution, and arithmetic expansion on the variable and displays it on

stderr before each line in the execution trace. The default value is “+”.

QIBM_CCSID (CCSID for translation)

When this variable is set to a numeric value, qsh and various utilities use the value for creating

files and translating data from the CCSID of the job. The default value is “0” for the default job

CCSID. A value of “65535” means no translation is done.

QIBM_CHILD_JOB_SNDINQMSG (Send inquiry message when child process starts)

When this variable is set to a positive numeric value, the parent process is sent an inquiry

message with the qualified job name of the child process. The child process is held until you

reply the message. By setting this variable, you can debug the program running in the child

process by setting breakpoints before the program runs. The value of the variable is the level of

descendant processes to debug. When set to 1, child processes are held, when set to 2 child and

grandchild processes are held, etc. There is no default value.

Qshell 13

QIBM_MULTI_THREADED (Start multi-thread capable processes)

This variable determines if processes started by qsh can create multiple threads. When the value

of the variable is “Y”, all child processes started by qsh can start threads. The default value is

“N”.

QSH_REDIRECTION_TEXTDATA (Process data as text for file redirection)

This variable determines if data read from or written to a file specified on a “Redirection” on

page 21 is treated as text data or binary data. When the value of the variable is “Y”, qsh treats

the data read from or written to the file as text data. When the value of the variable is not “Y”,

qsh treats the data read from or written to the file as binary data. The default value is “Y”.

QSH_USE_PRESTART_JOBS (Use pre-start jobs when available)

This variable determines if processes started by qsh use prestart jobs when available. When the

value of the variable is “Y”, qsh uses prestart jobs if they are available in the current subsystem.

When the value of the variable is not “Y”, or prestart jobs are not available, the processes started

by qsh are batch immediate jobs. The default value is “Y”.

SHELL (Path name of the shell)

When running a script file that does not contain “#!” on the first line, qsh uses the value of this

variable as the path name of the shell interpreter to run the script. There is no default value.

TRACEFILE (Path name of trace file)

When the trace option is set, qsh uses the value of this variable as the path name of the file to

store the trace information. The default value is “$HOME/qsh_trace”.

TRACEOPT (Options for trace file)

When the trace option is set, qsh uses the value of this variable to determine how to handle the

trace file. When the value of the variable is “UNLINK”, qsh unlinks the trace file before opening

it in a root shell. When the value of the variable is “KEEP”, qsh keeps the current trace file. The

default value is “UNLINK”.

Other variables

QIBM_CMP_FILE_SIZE

This variable controls the maximum file size in bytes that cmp reads into an internal buffer for

better performance. For files larger than the maximum size, cmp reads the files one byte at a

time.

QIBM_OD_OUTPUT_FORMAT (Output format for od)

This variable controls the output format for the “od - Dump files in various formats” on page 113

utility. If the value is “OLD”, od uses the old format from previous releases. The old format is not

compatible with the current industry standard and its use is discouraged. There is no default

value.

QIBM_QSH_CMD_ESCAPE_MSG (Send escape messages from QSH CL command)

This variable controls how messages are sent by the QSH CL command when the CMD

parameter is specified. If the value is “Y”, the QSH0005 message is sent as an escape message if

the exit status is greater than zero and the QSH0006 and QSH0007 messages are always sent as

escape messages. There is no default value.

QIBM_QSH_CMD_OUTPUT (Control output of QSH CL command)

This variable controls the output from the QSH CL command when the CMD parameter is

specified. If the value is “STDOUT”, the output is displayed on the C runtime terminal session. If

the value is “NONE”, the output is discarded. If the value is “FILE”, the output is written to the

specified file. If the value is “FILEAPPEND”, the output is appended to the specified file. The

default value is “STDOUT”.

QIBM_QSH_INTERACTIVE_CMD (Initial interactive command)

When this variable is set to a command string, qsh runs the command when an interactive

session is started. The variable must be set before calling the QSH CL command to have qsh run

the command. There is no default value.

14 iSeries: Qshell

QIBM_QSH_INTERACTIVE_TYPE (Type of interactive session)

This variable sets the type of the interactive session started by the QSH CL command. If the

value is “NOLOGIN”, the interactive session is not a login session. Otherwise the interactive

session is a login session. There is no default value.

QIBM_SYSTEM_ALWMLTTHD (Allow multi-threaded jobs for system)

This variable controls how the “system - Run CL command” on page 60 utility behaves in a

multi-thread capable job. If the value of the variable is “Y” and there is only one thread in the

job, system runs the CL command in the job. Otherwise, system starts a new job to the run the

CL command. There is no default value.

QIBM_SYSTEM_USE_ILE_RC

Set this environment variable to control how the “system - Run CL command” on page 60 utility

sets the exit status. If the value of the variable is “Y”, system sets the exit status to the ILE return

code of the program called by the CL command, or zero if the program did not set a return code.

There is no default value.

Word expansions

For more information about the word expansions supported by qsh, see the following topics:

“Tilde expansions”

Select this link to view information about how qsh expands tilde characters.

“Parameter expansions” on page 16

Select this link to view information about how qsh expands parameters.

“Command substitutions” on page 18

Select this link to view information about how qsh expands command substitutions.

“Arithmetic expansions” on page 18

Select this link to view information about how qsh expands arithmetic expressions.

“Field splitting” on page 20

Select this link to view information about how qsh splits fields into words expands path names

using patterns, and remove quotation marks.

“Patterns” on page 21

Select this link to view information about how qsh expands patterns.

Tilde expansions

An unquoted tilde character (~) at the beginning of a word is expanded according to the following rules:

v ~ expands to the value of the HOME variable (the current user’s home directory).

v ~user expands to the home directory of the specified user. All the characters up to a slash (/) or the

end of the word are treated as a user name.

v ~+ expands to the value of the PWD (working directory) variable.

v ~- expands to the value of the OLDPWD (previous working directory) variable if it is set.

Examples

1. Change the current directory to the user’s home directory:

cd ~

2. Change the current directory to the bin directory in user smith’s home directory:

cd ~smith/bin

Qshell 15

Parameter expansions

The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching right brace (}). Any right brace characters

escaped by a backslash or within a string with quotation marks, as well as characters in embedded

arithmetic expansions, command substitutions, and variable expansions, are not examined in determining

the matching right brace.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter is substituted. The parameter name or symbol can be enclosed in braces,

which are optional except for positional parameters with more than one digit or when parameter is

followed by a character that might be interpreted as part of the name. If a parameter expansion occurs

inside double quotation marks, then:

1. Path name expansion is not performed on the results of the expansion.

2. Field splitting is not performed on the results of the expansion, with the exception of @ special

parameter.

A parameter expansion can be modified by using one of the following formats:

${parameter:-word}

Use Default Values. If parameter is unset or null, the expansion of word is substituted. Otherwise,

the value of parameter is substituted.

${parameter:=word}

Assign Default Values. If parameter is unset or null, the expansion of word is assigned to parameter.

In all cases, the final value of parameter is substituted. Only variables, not positional parameters

or special parameters, can be assigned in this way.

${parameter:?word]}

Indicate Error if Null or Unset. If parameter is unset or null, the expansion of word (or a message

indicating it is unset if word is omitted) is written to standard error and a non-interactive shell

exits with a nonzero exit status. Otherwise, the value of parameter is substituted.

${parameter:+word}

Use Alternate Value. If parameter is unset or null, null is substituted. Otherwise, the expansion of

word is substituted.

 In the preceding four parameter expansions, using a colon in the format results in a test for a parameter

that is unset or null; removing the colon results in a test for a parameter that is only unset.

${#parameter}

String Length. If parameter is @ or *, the number of positional parameters is substituted.

Otherwise, the length of the value of parameter is substituted.

${parameter%word}

Remove Smallest Suffix Pattern. The word is expanded to produce a “Patterns” on page 21. Then

the result is parameter after removing the smallest portion of the suffix matched by the pattern.

${parameter%%word}

Remove Largest Suffix Pattern. The word is expanded to produce a “Patterns” on page 21. Then

the result is parameter after removing the largest portion of the suffix matched by the pattern.

16 iSeries: Qshell

${parameter#word}

Remove Smallest Prefix Pattern. The word is expanded to produce a “Patterns” on page 21. Then

the result is parameter after removing the smallest portion of the prefix matched by the pattern.

${parameter##word}

Remove Largest Prefix Pattern. The word is expanded to produce a “Patterns” on page 21. Then

the result is parameter after removing the largest portion of the prefix matched by the pattern.

${parameter:offset}

${parameter:offset:length}

Substring Starting at Offset. The value of this expansion is the substring starting at the byte

specified by offset for length bytes. If length is not specified or the value of length causes the

expansion to exceed the length of parameter, the substring ends with the last byte of parameter.

Both offset and length are “Arithmetic expansions” on page 18 and must evaluate to a value that is

greater than or equal to zero. The first byte of parameter is defined by an offset of zero.

${parameter/pattern/string}

${parameter//pattern/string}

Substitute String for Pattern. The value of this expansion is the value of parameter with the

longest match of pattern replaced with string. In the first form, only the first match of pattern is

replaced. In the second form, all matches of pattern are replaced. If pattern begins with #, it must

match at the beginning of parameter. If pattern begins with a %, it must match at the end of

parameter.

 Examples

 1. Expand the variable QSH_VERSION.

echo ${QSH_VERSION}

 2. Expand the variable filename and use a default value.

echo ${filename:-/tmp/default.txt}

 3. Expand the variable index and assign a default value.

echo ${index:=0}

 4. Expand the variable filename and indicate an error if unset.

echo ${filename:?Variable is not set}

 5. Expand the variable DIRLIST using string length.

DIRLIST=/usr/bin:/home/mike

echo ${#DIRLIST}

 6. Expand the variable DIRLIST using remove smallest suffix pattern.

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST%/*}

 7. Expand the variable DIRLIST using remove largest suffix pattern.

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST%%:*}

 8. Expand the variable DIRLIST using remove smallest prefix pattern.

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST#/usr}

 9. Expand the variable DIRLIST using remove largest prefix pattern.

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST##*/}

10. Expand the variable DIRLIST using a substring starting at offset.

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST:5:3}

11. Expand the variable DIRLIST using a substitute string for pattern.

Qshell 17

DIRLIST=/usr/bin:/home/mike

echo ${DIRLIST/m?ke/joel}

Command substitutions

Command substitution allows the output of a command to be substituted in place of the command name

itself. Command substitution occurs when the command is enclosed as follows:

$(command)

or by using backquotes:

`command`

The backquoted version is provided for compatibility. Its use is discouraged.

The shell expands the command substitution by running command in a subshell environment and

replacing the command substitution with the standard output of the command, removing sequences of one

or more <newline>s at the end of the substitution. Embedded <newline>s before the end of the output

are not removed; however, during field splitting, they may be translated into <space>s, depending on the

value of the IFS variable and quoting that is in effect.

Examples

1. Set the variable list to the output of the ls command:

list=$(ls)

Arithmetic expansions

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and substituting its

value. The format for arithmetic expansion is:

$((expression))

The expression is treated as if it were in double quotation marks, except that a double quotation mark

inside expression is not treated specially. The shell expands all tokens in expression for parameter

expansion, command substitution, and quote removal. qsh treats the result as an arithmetic expression

and substitutes the value of the expression.

Arithmetic expressions

An arithmetic expression can be specified in the following situations:

v in an arithmetic expansion

v for each argument of the “let - Evaluate arithmetic expression” on page 166 utility

v for the argument of the “shift - Shift positional parameters” on page 162 utility

v for the operands of the arithmetic formats of the “printf - Write formatted output” on page 136 utility

v for the operands to the arithmetic comparison operators of the “test - Evaluate expression” on page 167

utility

v for the argument of the “ulimit - Set or display resource limits” on page 185 utility

v in the “Substring Starting at Offset” parameter expansion

qsh performs either integer or floating point arithmetic based on the setting of the float option. When the

float option is set on, qsh performs floating point arithmetic.

An integer number has the format [base#]number where:

v base is a decimal integer between 2 and 36 that specifies the arithmetic base. The default is base 10.

18 iSeries: Qshell

v number is a non-negative number. For a base greater than 10, numbers greater than 9 or represented

using a letter of the alphabet. For example, when using base 16, the decimal number 10 is represented

using A.

A floating point number has the format [+|-] number[.number] [exponent] where:

v number is a non-negative decimal number.

v exponent is E or e followed by + or - and a non-negative decimal number.

Arithmetic expressions use the following ANSI C language operators and precedence.

(expression)

Parenthesis overrides precedence rules

Unary operators

+expression Unary +

 -expression Unary -

 ~expression Bitwise negation

 !expression Logical negation

Multiplicative operators

expression * expression Multiplication

 expression / expression Division

 expression % expression Remainder

Additive operators

expression + expression Addition

 expression - expression Subtraction

Bitwise shift operators

expression << expression Left shift the first expression by the number of bits given in the second

expression

 expression >> expression Right shift the first expression by the number of bits given in the second

expression

Relational operators

expression < expression Less than

 expression <= expression Less than or equal to

 expression > expression Greater than

 expression >= expression Greater than or equal to

Bitwise AND operator

expression & expression Bitwise and where the result contains a 1 in each bit position where there

is a 1 in both expressions and a 0 in all other bit positions.

Bitwise Exclusive OR operator

expression ^ expression Bitwise exclusive or where the result contains a 1 in each bit position where

there is a 1 in only one of the expressions and a 0 in all other bit positions.

Bitwise OR operator

expression | expression Bitwise or where the result contains a 1 in each bit position where there is a

1 in either expression and a 0 in all other bit positions.

Logical AND operator

expression && expression Logical and where the result is true if both expressions are true

Qshell 19

Logical OR operator

expression || expression Logical or where the result is true if one of the expressions is true

Conditional operator

expression ? expression : expression Conditional operator where when the first expression is true, the

second expression is evaluated. Otherwise the third expression is evaluated.

Assignment operators

expression = expression Simple assignment

 expression *= expression Assign and multiply

 expression /= expression Assign and divide

 expression %= expression Assign and remainder

 expression += expression Assign and add

 expression -= expression Assign and subtract

 expression <<= expression Assign and shift left

 expression >>= expression Assign and shift right

 expression &= expression Assign and bitwise AND

 expression ^= expression Assign and bitwise exclusive OR

 expression |= expression Assign and bitwise OR

 Note: When using floating point arithmetic the remainder, left

shift, right shift, bitwise AND, bitwise exclusive OR, and

bitwise OR operators are not supported.

Examples

1. Add two decimal numbers:

echo $((2+2))

2. Add two hexadecimal numbers:

echo $((16#A + 16#20))

3. Increment the variable index by one:

let index+=1

4. Evaluate a complex expression:

echo $((5+9-2*3/2))

5. Add two floating point numbers:

set -F

echo $((5.75+9.157))

set +F

Field splitting

After parameter expansion, command substitution, and arithmetic expansion, qsh scans the results of

expansions and substitutions that did not occur in double quotation marks for field splitting. Multiple

fields can result.

qsh treats each character of the IFS variable as a delimiter and uses the delimiters to split the results of

parameter expansion and command substitution into fields. If the value of the IFS variable is null, no

field splitting is performed.

Path name expansion

When the noglob option is not set, path name expansion is performed after field splitting is complete.

Each word is viewed as a series of “Patterns” on page 21, separated by slashes. The process of expansion

20 iSeries: Qshell

replaces the word with the names of all existing files whose names can be formed by replacing each

pattern with a string that matches the specified pattern. There are two restrictions:

1. a pattern cannot match a string containing a slash

2. a pattern cannot match a string starting with a period unless the first character of the pattern is a

period

Quote removal

The quote characters, backslash (\), single quotation mark (`), and double quotation mark (″), are

removed unless the character has been quoted.

Patterns

A pattern consists of normal characters, which match themselves, and meta-characters. The

meta-characters are:

!, *, ?, and [

These characters lose their special meanings if they are quoted. When command or variable substitution

is performed and the dollar sign ($) or backquote (`) are not double quoted, the value of the variable or

the output of the command is scanned for these characters and they are turned into meta-characters.

An asterisk (*) matches any string of characters.

A question mark (?) matches any single character.

A left bracket ([) introduces a character class. The end of the character class is indicated by a right bracket

(]). If the right bracket is missing then the left bracket matches a [rather than introducing a character

class. A character class matches any of the characters between the square brackets. A range of characters

may be specified using a minus (-). The character class may be complemented by making an exclamation

mark (!) the first character of the character class.

 Note: Specifying a range of characters may produce different

results from other systems because EBCDIC characters are

not contiguous.

To include a right bracket in a character class, make it the first character listed (after the !, if any). To

include a minus in a character class, make it the first or last character listed.

Redirection

Redirections are used to change where a command reads its input or sends its output. In general,

redirections open, close, or duplicate an existing reference to a file. The overall format used for

redirection is as follows:

[n] redir-op file

where redir-op is one of the redirection operators listed below and n is an optional number that refers to a

file descriptor. Following is a list of the possible redirections.

[n]< file

Redirect standard input (or n) from file.

[n1]<&n2

Duplicate standard input (or n1) from file descriptor n2.

[n]<&-

Close standard input (or n).

Qshell 21

[n]> file

Redirect standard output (or n) to file.

[n]>| file

Redirect standard output (or n) to file, but override the noclobber option.

[n]>> file

Append standard output (or n) to file.

[n1]>&n2

Duplicate standard output (or n1) from n2.

[n]>&-

Close standard output (or n).

It is best not to use the /QSYS.LIB/QTEMP.LIB directory for redirections since it is deleted when a job

ends and a new job is started and ended for each command.

Here-documents

The format of a here-document is:

[n]<<[-] delimiter

 here-doc-text ...

 delimiter

All the text on successive lines up to delimiter is saved and made available to the command on standard

input, or file descriptor n if it is specified. If delimiter as specified on the initial line is quoted, then

here-doc-text is treated literally, otherwise the text is subjected to parameter expansion, command

substitution, and arithmetic expansion. If the operator is <<- instead of <<, then leading tabs in

here-doc-text are stripped.

Simple commands

A simple command is a sequence of optional variable assignments and redirections followed by a

command name. When a simple command is recognized by qsh, it performs the following actions:

1. Leading words of the form name=value are stripped off and assigned to the environment of the

simple command. Redirection operators and their arguments are saved for processing in step 3.

2. The remaining words are expanded as described in “Word expansions” on page 15, and the first

remaining word is considered the command name. Any additional words are considered the

arguments of the command. If no command name is found, then the name=value variable

assignments recognized in step 1 affect the current shell.

3. Redirections are performed as described in “Redirection” on page 21.

Path search

If a simple command does not contain any slashes, qsh finds the command by searching:

1. for a special built-in utility of that name, then

2. for a shell function of that name, then

3. for a regular built-in utility of that name, then

4. each directory in the PATH variable in turn for the regular utility.

Command names containing a slash (/) are run as a regular utility without performing any of the above

searches.

22 iSeries: Qshell

A built-in utility is run internal to the shell, without starting a new process. A special built-in utility is

different from a regular built-in utility in these respects:

1. A syntax error in a special built-in utility causes a non-interactive shell to exit.

2. Variable assignments specified with a special built-in utility remain in effect after the utility

completes.

These are the special built-in utilities: “break - Exit from for, while, or until loop” on page 164, “colon (:) -

Null utility” on page 164, “continue - Continue for, while, or until loop” on page 165, “declare - Declare

variables and set attributes” on page 156, “dot (.) - Run commands in current environment” on page 52,

“eval - Construct command by concatenating arguments” on page 54, “exec - Run commands and open,

close, or copy descriptors” on page 54, “exit - Exit from the shell” on page 55, “export - Set export

attribute for variables” on page 157, “local - Assign a local variable in a function” on page 158, “readonly

- Set read-only attribute for variables” on page 159, “return - Return from a function” on page 167, “set -

Set or unset options and positional parameters” on page 160, “shift - Shift positional parameters” on page

162, “source - Run commands in current environment” on page 60, “trap - Trap signals” on page 153,

“typeset - Declare variables and set attributes” on page 162, and “unset - Unset values of variables and

functions” on page 163.

When a shell function is run, all of the shell positional parameters (except the special parameter 0, which

remains unchanged) are set to the arguments of the shell function. The variables which are explicitly

placed in the environment of the command (by placing assignments to them before the function name)

are made local to the function and are set to the specified values. The positional parameters are restored

to their original values when the shell function completes.

When a regular utility is run, qsh starts a new process, passing the arguments and the environment to

the program. If the program is a shell script, qsh will interpret the program in a subshell. qsh will

reinitialize itself in this case, so that the effect will be as if a new shell had been invoked to handle the

shell script.

Command exit status

Each command has an exit status that can influence the behavior of other shell commands. By

convention, a command exits with zero for normal or success, and non-zero for failure, error, or a false

indication. The documentation for each command describes the exit codes it returns and what they mean.

The exit status can be one of these values:

v 0 for success.

v 1 to 125 for failure.

v 126 when qsh finds the command but it is not executable.

v 127 when qsh cannot find the command.

v 128 and above when the command is ended by a signal. The value is 128 plus the signal number.

Pipelines

A pipeline is a sequence of one or more commands separated by the pipeline control operator (|). The

standard output of all but the last command is connected to the standard input of the next command.

The format for a pipeline is:

[!] command1 [| command2 ...]

The standard output of command1 is connected to the standard input of command2. The standard input,

standard output, or both of a command is considered to be assigned by the pipeline before any

redirection specified by redirection operators that are part of the command. The exit status of the pipeline

is the exit status of the last command.

Qshell 23

If the pipeline is not in the background (described below), qsh waits for all commands to complete.

If the reserved word ! does not precede the pipeline, the exit status is the exit status of the last command

specified in the pipeline. Otherwise, the exit status is the logical not of the exit status of the last

command. That is, if the last command returns zero, the exit status is 1; if the last command returns

greater than zero, the exit status is zero.

Because pipeline assignment of standard input or standard output or both takes place before redirection,

it can be modified by redirection. For example:

command1 2>&1 | command2

sends both the standard output and standard error of command1 to the standard input of command2.

Lists

A list is a sequence of commands separated by an ampersand (&) or a semicolon (;), and optionally

terminated by a <newline>, ampersand, or semicolon. An AND-OR list is a sequence of commands

separated by a && or ||. Both operators have the same priority.

Asynchronous lists

If a command is terminated by the control operator ampersand (&), qsh runs the command

asynchronously. That is, qsh does not wait for the command to finish before running the next command.

The format for running a command in the background is:

command1 & [command2 & ...]

If the interactive option is not set, the standard input of any asynchronous command is set to

/dev/qsh-stdin-null. The exit status of an asynchronous list is the exit status of the last command.

Sequential lists

Commands that are separated by a semicolon (;) are run sequentially. The format for a sequential list is:

command1 [; command2 ...]

The commands in the list are run in the order they are written. The exit status of a sequential list is the

exit status of the last command.

AND lists

The format for an AND list is:

command1 [&& command2 ...]

With an AND list, qsh runs command1, and then runs command2 if the exit status of the command1 is zero

and so on until a command has a non-zero exit status or there are no commands left to run. The exit

status of an AND list is the exit status of the last command that is run.

OR lists

The format for an OR list is:

command1 [|| command2 ...]

24 iSeries: Qshell

With an OR list, qsh runs command1, and then runs command2 if the exit status of the command1 is

non-zero and so on until a command has a zero exit status or there are no commands left to run. The exit

status of an OR list is the exit status of the last command that is run.

Compound commands

Compound commands provide control flow for other commands. Each compound command starts with a

reserved word and has a corresponding reserved word at the end.

For more information about the compound commands supported by qsh, see the following topics:

v “Grouping commands”

Select this link to view information about the grouping commands.

“If command”

Select this link to view information about the if-then-else-fi command.

“Conditional command” on page 26

Select this link to view information about the conditional command.

“Case command” on page 26

Select this link to view information about the case-esac command.

“Select command” on page 27

Select this link to view information about the select-do-done command.

“While command” on page 27

Select this link to view information about the while-do-done command.

“Until command” on page 28

Select this link to view information about the until-do-done command.

“For command” on page 28

Select this link to view information about the for-do-done command.

“Functions” on page 29

Select this link to view information about functions.

Grouping commands

You can group commands using either

(list)

or

{ list; }

In the first case, qsh runs list in a subshell environment.

Examples

1. Group two commands in a subshell.

(ls | grep apple)

If command

The syntax of the if command is

if list1

then list2

[elif list3

then list4] ...

Qshell 25

[else list5]

fi

First, qsh runs list1 and if its exit status is zero then qsh runs list2. Otherwise, each elif list3 is run and if

its exit status is zero then qsh runs list4. Otherwise, qsh runs list5.

Examples

1. An if-then-fi command.

x=4

y=9

if test $x -lt $y

then

 echo $x is less than $y

fi

2. An if-then-else-fi command.

x=10

y=9

if test $x -lt $y

then

 echo echo $x is less than $y

else

 echo echo $x is greater than or equal to $y

fi

3. An if-then-elif-else-fi command.

x=4

y=4

if test $x -lt $y

then

 echo echo $x is less than $y

elif test $x -eq $y

then

 echo $x is equal to $y

else

 echo $x is greater than or equal to $y

fi

Conditional command

The syntax of the [[...]] command is

[[expression]]

It returns a status of 0 or 1 depending on the evaluation of the conditional expression expression. The

format of a conditional expression is the same as the expressions evaluated by the “test - Evaluate

expression” on page 167 utility. qsh performs tilde expansion, parameter expansion, arithmetic expansion,

command substitution, and quote removal on expression before it is evaluated.

Examples

1. A conditional command that uses a command substitution.

if [[$(grep -c apple fruits.txt) -eq 0]]

then

 echo There are no apples in fruit.txt

fi

Case command

The syntax of the case command is

case word in

26 iSeries: Qshell

pattern1) list1 ;;

pattern2 | pattern3) list2 ;;

...

esac

qsh expands each pattern in turn and sees if it matches the expansion of word. When there is a match, qsh

runs the corresponding list. After the first match, no more patterns are expanded. See “Patterns” on page

21 for more details on patterns.

Examples

1. A case command for processing command line options.

while getopts ap:t: c ; do

 case $c in

 a) aflag=1;;

 p) pflag=1

 path=$OPTARG;;

 t) time=$OPTARG;;

 *) print -u2 "Invalid option"

 exit 1;;

 esac

done

Select command

The syntax of the select command is

select name [in word ...]

do list

done

The words are expanded, generating a list of items. If word is not specified, the positional parameters are

expanded. The set of expanded words is written to standard error, each preceded by a number. The PS3

prompt is then displayed and a line is read from standard input. If the line consists of a number

corresponding to one of the displayed words, qsh sets the value of name to the word corresponding to

the number. If the line is empty, qsh displays the list again. The REPLY variable is set to the contents of

the input line.

qsh runs the commands in list until a “break - Exit from for, while, or until loop” on page 164, “return -

Return from a function” on page 167, or “exit - Exit from the shell” on page 55 command is run. select

also completes if EOF is read from standard input.

Examples

1. A select command to select from a list.

PS3="Please select a number "

list="alpha beta gamma delta epsilon"

select value in $list ; do

 echo Value for selection $REPLY is $value

 break

done

While command

The syntax of the while command is

while list1

Qshell 27

do list2

done

qsh runs the two lists repeatedly while the exit status of list1 is zero. When the exit status of list1 is

non-zero the command completes.

Examples

1. A while command to iterate until a condition is met.

max=100

index=0

while [[$index -lt $max]] ; do

 echo Index is $index

 let index+=1

done

Until command

The syntax of the until command is

until list1

do list2

done

qsh runs the two lists repeatedly while the exit status of list1 is non-zero. When the exit status of list1 is

zero the command completes.

Examples

1. An until command to iterate until a condition is met.

max=100

index=0

until [[$index -eq $max]] ; do

 echo Index is $index

 let index+=1

done

For command

The syntax of the for command is

for variable in word ...

do list

done

The words are expanded, and then list is run repeatedly with variable set to each word in turn. You can

replace do and done with braces ({ }).

Examples

1. A for command to process a list of objects.

list=$(ls *.class)

for object in $list

do

 system "DSPJVAPGM $object"

done

28 iSeries: Qshell

Functions

The syntax of a function definition is

[function] name () command

A function definition is a statement that when run installs a function named name and returns an exit

status of zero. The command is normally a list enclosed between braces ({ }).

When name is specified as a simple command, qsh runs command. The arguments to the simple command

temporarily become the positional parameters while the function is running. The special parameter 0 is

unchanged. By using local, you can declare local variables inside of the function. By using return, you

can end the function and resume execution with the next command after the function call.

Examples

Here is an example of a function that provides a qsh interface to the PING CL command.

ping()

{

 # Initialize variables and make them local to this function

 local nbrpkt=’’ waittime=’’ intnetadr=’’ msgmode=’’ pktlen=’’ ipttl=’’ host=’’

 local c

 # Process the options

 while getopts c:i:I:qs:T:v c

 do case $c in

 c) nbrpkt="NBRPKT($OPTARG)";;

 i) waittime="WAITTIME($OPTARG)";;

 I) intnetadr="INTNETADR(’$OPTARG’)"

 host="*INTNETADR";;

 q) msgmode=’MSGMODE(*QUIET)’;;

 s) pktlen="PKTLEN($OPTARG)";;

 T) ipttl="IPTTL($OPTARG)";;

 v) msgmode=’MSGMODE(*VERBOSE)’;;

 \?) print -u2 "Usage: ping [-c count] [-i seconds] [-I ipaddr] [-q]" \

 "[-s size] [-T ttl] [-v] hostname"

 return 1;;

 esac

 done

 # Run the command

 shift $OPTIND-1

 system ping ${host:-$1} $intnetadr $nbrpkt $waittime $msgmode $pktlen $ipttl

}

Using Qshell

This topic provides information on using the QSH CL command, configuring the Qshell environment,

and developing your own utilities.

“Using a Qshell interactive session” on page 30

Select this link to find out how to use the interactive session started by the QSH CL command.

“Running Qshell commands from CL” on page 31

Select this link to find out how to run Qshell commands from the CL command environment.

“Running Qshell commands from PASE” on page 32

Select this link to find out how to run Qshell commands from the PASE environment.

“Customizing your Qshell environment” on page 32

Select this link to find out how to customize the Qshell environment on your system.

Qshell 29

“National language support (NLS) considerations” on page 33

Select this link to find out how to configure Qshell for different languages.

“Performance considerations” on page 37

Select this link to find out how to configure Qshell for the best performance on your system.

“Developing your own utilities” on page 37

Select this link to view tips for writing your own utility programs.

“Editing files with Qshell Interpreter” on page 37

Select this link to find out how to edit stream files used for shell scripts.

“Differences with other interpreters” on page 37

Select this link to view the list of differences between Qshell and other shell interpreters.

Using a Qshell interactive session

The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either

starts a Qshell interactive session or runs a Qshell command.

If running in an interactive job with no parameters, STRQSH starts an interactive Qshell session. If a

Qshell session is not already active in the job, then the following events occur:

1. A new Qshell session is started and a terminal window is displayed.

2. qsh runs the commands from the file /etc/profile if it exists.

3. qsh runs the commands from the file .profile in the user’s home directory if it exists.

4. qsh runs the commands from the file specified by the expansion of the ENV variable if it exists.

If a Qshell session is already active in an interactive job, you are reconnected to the existing session.

From the terminal window, you can enter Qshell commands and view output from the commands. The

terminal window has two parts:

v an input line for entering commands

v an output area that contains an echo of the commands you entered and any output generated by the

commands

You can use these function keys:

 Function key Description

F3 (Exit) Close the terminal window and end the Qshell session.

F5 (Refresh) Refresh the output area.

F6 (Print) Print the output area to a spool file.

F7 (Up) Roll output area up one page. If a number is on the

command line, the output area is rolled up by that

number of lines.

F8 (Down) Roll output area down one page. If a number is on the

command line, the output area is rolled down by that

number of lines.

30 iSeries: Qshell

Function key Description

F9 (Retrieve) Retrieve a previous command. You can press this key

multiple times to retrieve any previous command. For

example, to retrieve the second to last command you

entered, press this key two times. You can also select a

specific command to be run again by placing the cursor

on that command and pressing this key. When the

interactive job is running in a double-byte CCSID, this

key is not available.

F11 (Toggle line wrap) Toggle the line wrap/truncate mode in the output area.

In line wrap mode, lines longer than the width of the

terminal window are wrapped to the next line. In

truncate mode, the portion of a line beyond the width of

the terminal window is not shown.

F12 (Disconnect) Disconnect from the Qshell session. This key only closes

the terminal window and does not end the Qshell

session. You can redisplay the disconnected Qshell

session by running STRQSH again.

F13 (Clear) Clear the output area.

F14 (Adjust command line length) Adjust the command line length to four lines. If a

number is on the command line, the command line

length is adjusted to that number of lines.

F17 (Top) Display top of output area.

F18 (Bottom) Display bottom of output area.

F19 (Left) Shift output area to the left. If a number is on the

command line, the output area is shifted by that number

of columns.

F20 (Right) Shift output area to the right. If a number is on the

command line, the output area is shifted by that number

of columns.

F21 (Command entry) Display a command entry window where you can enter

CL commands.

SysReq 2 Interrupt the currently running command by sending the

SIGINT signal to all child processes.

Running Qshell commands from CL

The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either

starts a Qshell interactive session or runs a Qshell command.

If called with the CMD parameter, STRQSH runs the specified Qshell command. The possible values of

the CMD parameter are:

*NONE

No command is provided and an “Using a Qshell interactive session” on page 30 is started. If

CMD(*NONE) is specified and STRQSH is run in a batch job, STRQSH does nothing.

command

A Qshell command to run. The command can be a maximum of 5000 bytes in length. If a blank

or other special characters are used, the command must be enclosed in apostrophes. If an

apostrophe is intended, two apostrophes must be used.

Qshell 31

When running a command, STRQSH starts qsh, runs the specified Qshell command, displays any output

generated by the command to the C runtime terminal session, and ends qsh. Note that qsh does not run

any profile files when started to run a command.

You can control what happens to the output by setting the QIBM_QSH_CMD_OUTPUT environment

variable. The environment variable can have these values:

STDOUT

Display the output to the C runtime terminal session. This is the default value.

NONE

Throw away any output that is produced.

FILE=pathname

Store the output in the file specified by pathname. The file is truncated before output is written to

the file.

FILEAPPEND=pathname

Store the output in the file specified by pathname. The output is appended to end of the file.

 When the command ends, STRQSH sends one of three messages:

v QSH0005 when the process running the command ends normally. The message includes the exit status

of the process.

v QSH0006 when the process running the command ends by signal. The message includes the signal

number.

v QSH0007 when the process running the command ends by exception.

By default, the messages are sent as completion messages. You can have the messages sent as escape

messages by setting the environment variable QIBM_QSH_CMD_ESCAPE_MSG. When the value of the

environment variable is ″Y″, the QSH0006, and QSH0007 messages are always sent as escape messages

and the QSH0005 message is sent as an escape message if the exit status is greater than zero.

Running Qshell commands from PASE

i5/OS(TM) PASE provides a qsh command that invokes “qsh - Qshell command language interpreter” on

page 57 to either run an interactive session or a command. You can use it to run any Qshell command

from any i5/OS(TM) PASE shell.

Customizing your Qshell environment

You can customize your Qshell environment using three profile files. Each profile file is a shell script that

can contain any Qshell command.

See the “Variables” on page 10 topic for the complete list of

supported environment variables.

Global profile file

If the file /etc/profile exists, qsh runs it in the current environment when you login. It is typically

maintained by an administrator to set system-wide defaults for all users. This file should be secured by

setting the public authority to read and execute.

Here is a sample /etc/profile file:

Sample /etc/profile file

export PATH=/usr/bin:

Profile file

If the file .profile exists in the user’s home directory, qsh runs it in the current environment when you

login. It is used to customize your login environment.

32 iSeries: Qshell

Here is a sample .profile file.

Sample .profile file

export ENV=$HOME/.qshrc

export PATH=$PATH:$HOME/bin

Environment file

If the file specified by the expansion of the ENV variable exists, qsh runs it in the current environment

when starting an interactive shell. The environment file is typically used to set aliases, define functions,

or set options for an interactive shell session.

Here is a sample environment file:

Sample environment file

PS1=’$PWD’

National language support (NLS) considerations

When qsh starts, it initializes internal tables for processing commands based on the CCSID of the job.

When reading files, qsh and many utilities dynamically translate files from the CCSID of the file to the

CCSID of the job. For everything to run correctly, you must configure your environment as documented

in the tables below.

A locale contains information about a language and country or region, including how to sort and classify

characters and the formats for dates, times, numbers, and monetary values. A locale is set by setting the

LANG environment variable to the path name to a locale object. For example, to set the locale for US

English, the LANG environment variable is set as follows:

LANG=/QSYS.LIB/EN_US.LOCALE

It is best to set the LANG environment variable before starting qsh. Some utilities will not work

correctly if the locale is not valid for the CCSID and language ID of the job as shown in the tables below.

There can be problems in the following situations:

v In an interactive session, if the CCSID of a job is different from the CCSID of the display device, qsh

does not recognize certain special characters.

v If there is no support for translating between the CCSID of a script file and the CCSID of the job, then

the file cannot be opened.

Supported CCSIDs

The following table shows the supported CCSIDs. It is indexed by CCSID number. If a CCSID is not in

the table, qsh sends message 001-0072 and runs as if it was started in CCSID 37.

 Supported CCSIDs

CCSID Code Page Description

00037 00037 USA, Canada

00256 00256 International #1

00273 00273 Germany, Austria

00277 00277 Denmark, Norway

00278 00278 Finland, Sweden

00280 00280 Italy

00284 00284 Spain, Latin America

00285 00285 United Kingdom

Qshell 33

Supported CCSIDs

CCSID Code Page Description

00297 00297 France

00424 00424 Israel (Hebrew)

00425 00425 Arabic

00500 00500 Belgium, Canada, Switzerland

00833 00833 Korea Extended Single-byte

00836 00836 Simplified Chinese Extended Single-byte

00838 00838 Thailand Extended

00870 00870 Latin-2 Multilingual

00871 00871 Iceland

00875 00875 Greece

00880 00880 Cyrillic Multilingual

00905 00905 Turkey Extended

00918 00918 Pakistan

00933 00833, 00834 Korea Extended Mixed

00935 00836, 00837 Simplified Chinese Extended Mixed

00937 00037, 00835 Traditional Chinese Extended Mixed

00939 01027, 00300 Japan English Extended Mixed

01025 01025 Cyrillic Multilingual

01026 01026 Turkey

01027 01027 Japan Latin Extended Single-byte

01097 01097 Farsi

01112 01112 Baltic Multilingual

01122 01122 Estonian

01123 01123 Cyrllic Ukraine

01130 01130 Vietnam

01132 01132 Lao

01137 01137 Devanagari

01140 01140 USA, Canada euro

01141 01141 Germany, Austria euro

01142 01142 Denmark, Norway euro

01143 01143 Finland, Sweden euro

01144 01144 Italy euro

01145 01145 Spain, Latin America euro

01146 01146 United Kingdom euro

01147 01147 France euro

01148 01148 Belgium, Canada, Switzerland euro

01149 01149 Iceland euro

01153 01153 Latin-2 Multilingual euro

01154 01154 Cyrllic Multilingual euro

01155 01155 Turkey euro

34 iSeries: Qshell

Supported CCSIDs

CCSID Code Page Description

01156 01156 Baltic Multilingual euro

01157 01157 Estonia euro

01158 01158 Cyrillic Ukraine euro

01160 01160 Thailand Extended euro

01164 01164 Vietnam euro

01388 00836, 00837 Simplified Chinese Host Data Mixed

01399 01399, 00300 Japan English Extended Mixed euro

05035 01027, 00300 Japan English Extended Mixed

05123 01399 Japan English Extended Single-byte euro

09030 00838 Thailand Extended Single-byte

13124 00836 Simplified Chinese Host Data Single-byte

28709 00037 Traditional Chinese Extended

Supported Languages

The following table shows the supported languages. It is indexed by language. In the Language field, the

value in parentheses is the value to use for the LANGID parameter of the CHGJOB CL command. In the

Country or Region field, the value in parentheses is the value to use for the CNTRYID parameter of the

CHGJOB CL command.

Note that there are more valid combinations of Language, Country or Region, CCSID, and Locale than

are listed in the table. For example, there is only one entry for the Spanish language even though it is

used in more than one country or region.

When running Qshell, the LANGID, CNTRYID, CCSID job attributes must be set to the values listed in

the table, and the LANG environment variable must be set to the listed locale.

 Supported Languages

Language Country or Region Id CCSID Locale

Albanian (SQI) Albania (AL) 00500 /QSYS.LIB/SQ_AL.LOCALE

Arabic (ARA) Arabic Area (AA) 00425 /QSYS.LIB/AR_AA.LOCALE

Belgian Dutch (NLB) Belgium (BE) 00500 /QSYS.LIB/NL_BE.LOCALE

Belgian Dutch Euro (NLB) Belgium (BE) 01148 /QSYS.LIB/NL_BE_E.LOCALE

Belgian French (FRB) Belgium (BE) 00500 /QSYS.LIB/FR_BE.LOCALE

Belgian French Euro (FRB) Belgium (BE) 01148 /QSYS.LIB/FR_BE_E.LOCALE

Belgium English (ENB) Belgium (BE) 00500 /QSYS.LIB/EN_BE.LOCALE

Brazilian Portugese (PTB) Brazil (BR) 00037 /QSYS.LIB/PT_BR.LOCALE

Bulgarian (BGR) Bulgaria (BG) 00037 /QSYS.LIB/BG_BG.LOCALE

Canadian French (FRC) Canada (CA) 00500 /QSYS.LIB/FR_CA.LOCALE

Croatian (HRV) Croatia (HR) 00870 /QSYS.LIB/HR_HR.LOCALE

Czech (CSY) Czech Republic (CZ) 00870 /QSYS.LIB/CS_CZ.LOCALE

Danish (DAN) Denmark (DK) 00277 /QSYS.LIB/DA_DK.LOCALE

Dutch (NLD) Netherlands (NL) 00037 /QSYS.LIB/NL_NL.LOCALE

Qshell 35

Supported Languages

Language Country or Region Id CCSID Locale

Dutch Euro (NLD) Netherlands (NL) 01140 /QSYS.LIB/NL_NL_E.LOCALE

English Upper Case (ENP) United States (US) 00037 /QSYS.LIB/EN_UPPER.LOCALE

Estonian (EST) Estonia (EE) 01122 /QSYS.LIB/ET_EE.LOCALE

Finnish (FIN) Finland (FI) 00278 /QSYS.LIB/FI_FI.LOCALE

Finnish Euro (FIN) Finland (FI) 01143 /QSYS.LIB/FI_FI_E.LOCALE

French (FRA) France (FR) 00297 /QSYS.LIB/FR_FR.LOCALE

French Euro (FRA) France (FR) 01147 /QSYS.LIB/FR_FR_E.LOCALE

German (DEU) Germany (DE) 00273 /QSYS.LIB/DE_DE.LOCALE

German Euro (DEU) Germany (DE) 01141 /QSYS.LIB/DE_DE_E.LOCALE

Greek (ELL) Greece (GR) 00875 /QSYS.LIB/EL_GR.LOCALE

Hebrew (HEB) Israel (IL) 00424 /QSYS.LIB/IW_IL.LOCALE

Hungarian (HUN) Hungary (HU) 00870 /QSYS.LIB/HU_HU.LOCALE

Icelandic (ISL) Iceland (IS) 00871 /QSYS.LIB/IS_IS.LOCALE

Italian (ITA) Italy (IT) 00280 /QSYS.LIB/IT_IT.LOCALE

Italian Euro (ITA) Italy (IT) 01144 /QSYS.LIB/IT_IT_E.LOCALE

Japanese Katakana (JPN) Japan (JP) 05035 /QSYS.LIB/JA_5035.LOCALE

Japanese Full (JPN) Japan (JP) 13488 /QSYS.LIB/JA_13488.LOCALE

Korean (KOR) South Korea (KR) 00933 /QSYS.LIB/KO_KR.LOCALE

Latvian (LVA) Latvia (LV) 01112 /QSYS.LIB/LV_LV.LOCALE

Lithuanian (LTU) Lithuania (LT) 01112 /QSYS.LIB/LT_LT.LOCALE

Macedonian (MKD) Macedonia (MK) 01025 /QSYS.LIB/MK_MK.LOCALE

Norwegian (NOR) Norway (NO) 00277 /QSYS.LIB/NO_NO.LOCALE

Polish (PLK) Poland (PL) 00870 /QSYS.LIB/PL_PL.LOCALE

Portugese (PTG) Portugal (PT) 00037 /QSYS.LIB/PT_PT.LOCALE

Portugese Euro (PTG) Portugal (PT) 01140 /QSYS.LIB/PT_PT_E.LOCALE

Romanian (ROM) Romania (RO) 00870 /QSYS.LIB/RO_RO.LOCALE

Russian (RUS) Russia (RU) 01025 /QSYS.LIB/RU_RU.LOCALE

Serbian Cyrillic (SRB) Serbia (SQ) 01025 /QSYS.LIB/SR_SP.LOCALE

Serbian Latin (SRL) Serbia (SQ) 00870 /QSYS.LIB/SH_SP.LOCALE

Simplified Chinese (CHS) China (CN) 00935 /QSYS.LIB/ZH_CN.LOCALE

Slovakian (SKY) Slovakia (SK) 00870 /QSYS.LIB/SK_SK.LOCALE

Slovenian (SLO) Slovenia (SI) 00870 /QSYS.LIB/SL_SI.LOCALE

Spanish (ESP) Spain (ES) 00284 /QSYS.LIB/ES_ES.LOCALE

Spanish Euro (ESP) Spain (ES) 01145 /QSYS.LIB/ES_ES_E.LOCALE

Swedish (SVE) Sweden (SE) 00278 /QSYS.LIB/SV_SE.LOCALE

Swiss French (FRS) Switzerland (CH) 00500 /QSYS.LIB/FR_CH.LOCALE

Swiss German (DES) Switzerland (CH) 00500 /QSYS.LIB/DE_CH.LOCALE

Thai (THA) Thailand (TH) 00838 /QSYS.LIB/TH_TH.LOCALE

Turkish (TRK) Turkey (TR) 00905 /QSYS.LIB/TR_TR.LOCALE

Ukrainian (UKR) Ukraine (UA) 01025 /QSYS.LIB/UK_UA.LOCALE

36 iSeries: Qshell

Supported Languages

Language Country or Region Id CCSID Locale

UK English (ENG) United Kingdom (GB) 00285 /QSYS.LIB/EN_GB.LOCALE

US English (ENU) United States (US) 00037 /QSYS.LIB/EN_US.LOCALE

For more details, see the iSeries Globalization IBM Code Pages

.

Performance considerations

The following tips can help improve performance when using qsh.

v Do not use command substitutions in the value of the PS1 variable. This causes a new process to be

started every time you press the <enter> key.

v Use input redirection instead of cat. For example, the following command:

cat myfile | grep Hello

can be replaced with this command:

grep Hello < myfile

v Use built-in utilities whenever possible because they are run in the current process.

v Leave the SHELL variable unset. If a script file does not contain a ″#!″ on the first line, the script is run

in the current activation of qsh.

Developing your own utilities

You can develop your own utility programs using any language, although ILE/C, ILE/C++, and Java

have the best runtime support. When creating ILE/C or ILE/C++ programs, you should use Integrated

File System I/O when creating all of the modules in your utility program.

A utility reads input from standard input or descriptor 0, writes output to standard output or descriptor

1, and writes errors to standard error or descriptor 2.

If your utility program uses the ILE/C or ILE/C++ standard files for I/O, you can run your utility from

either the qsh command line or the QCMD command line. If your utility reads and writes directly from

descriptors 0, 1, and 2, you can only run your utility from the Qshell command line.

Editing files with Qshell Interpreter

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the

Source Entry Utility (SEU) for editing stream files or database files. Also, you can display a stream file or

database file using the DSPF CL command.

Another alternative is to connect to the server using iSeries(TM) Navigator and edit the file using an editor

running on the client. The file can be stored in ASCII and still be used by Qshell.

A shell script is just a text file that contains shell commands. It is important to use the right file system

for storing shell scripts. Shell scripts are stream data and should be stored in the ″root″ file system. While

it is possible to store shell scripts in source physical files in the QSYS.LIB file system, it causes the shell

scripts to use more storage and to run slower.

Differences with other interpreters

While qsh is compatible with other standard shell interpreters, there are several differences:

v There is no support for the <> redirection operator.

v There is no support for a command history list, the HISTSIZE and HISTFILE variables, or the fc (or

hist) built-in utility. As an alternative, the QSH CL command has support for command retrieval.

Qshell 37

http://www-1.ibm.com/servers/eserver/iseries/software/globalization/codepages.html

v There is no support for command line editing and the EDITOR variable.

v There is no support for the MAIL, MAILCHECK, and MAILPATH variables.

v There is no support for job control. There is no concept of a foreground or background process group

on i5/OS(TM). This means it is possible for multiple jobs to be reading from the terminal at the same

time. qsh does not support:

– The fg or bg built-in utilities.

– Using the Suspend key (typically <ctrl>z) to send the SIGTSTP signal to the foreground process

group.

– Using the Stop key (typically <ctrl>s) to send the SIGSTOP signal to the foreground process group.

– Using the Restart key (typically <ctrl>q) to send the SIGCONT signal to the foreground process

group.

– Using the Interrupt key (typically <ctrl>c) to send the SIGINT signal to the foreground process

group. As an alternative, you can use SysReq 2 from an interactive shell session to send the SIGINT

signal to the shell interpreter process and any currently running child processes.
v There is no support for the End-of-file key (typically <ctrl>d). As an alternative, use a here-document to

redirect text entered at the command line to standard input of a utility.

v When calling a program, there is a limit to the maximum number of parameters you can pass to the

command. If the program was built for a release before V5R3, the limit is 255 parameters. If the

program was built for V5R3 or a subsequent release, the limit is 65535 parameters.

v When using path name expansion with some case insensitive file systems, you must use upper case

characters in the pattern. For example, to list all of the program objects in the QSHELL library you

should use this command:

ls /qsys.lib/qshell.lib/*.PGM.

Utilities

Qshell utilities are available for accomplishing the following tasks:

v “Utilities for defining aliases” on page 49

v “Utilities for running commands” on page 51

v “Utilities for managing data” on page 64

v “Utilities for DB2 Universal Database(TM)” on page 81

v “Utilities for working with files and directories” on page 82

v “Utilities for reading and writing input and output” on page 133

v “Utilities for developing Javatm programs” on page 138

v “Utilities for managing jobs” on page 146

v “Utilities for Kerberos credentials and key tables” on page 155

v “Utilities for LDAP directory server” on page 155

v “Utilities for working with parameters and variables” on page 156

v “Utilities for writing scripts” on page 164

v “Miscellaneous utilities” on page 170

List of all utilities

This alphabetical list of all the utilities is available so that you can easily go directly to the utility you

need.

A (page 39) B (page 39) C (page 39) D (page 40) E (page 41) F (page 41) G (page 42) H (page 42) I (page

42) J (page 43) K (page 43) L (page 44) M (page 44) N (page 45) O (page 45) P (page 45) Q (page 46) R

(page 46) S (page 47) T (page 48) U (page 48) W (page 49) X (page 49) Z (page 49)

38 iSeries: Qshell

redirect.htm#HERE

A

“ajar -

Alternative

Java(TM) archive”

on page 138

Alternative Java archive tool

“alias - Define or

display aliases”

on page 49

Define or display aliases

“appletviewer -

View Javatm

applet” on page

141

Run applets without a web browser

“attr - Get or set

attributes for

files” on page 83

Get or set attributes for files

B

“basename -

Return

non-directory

portion of path

name” on page

88

Return non-directory portion of path name

“break - Exit

from for, while,

or until loop” on

page 164

Exit from for, while, or until loop

“builtin - Run a

shell built-in

utility” on page

51

Run a shell built-in utility

C

“cat -

Concatenate and

print files” on

page 88

Concatenate and print files

“catsplf -

Concatenate and

print spool files”

on page 89

Concatenate and print spool files

“cd - Change

working

directory” on

page 90

Change working directory

“chgrp - Change

file group

ownership” on

page 91

Change file group permission

“chmod -

Change file

modes” on page

92

Change file modes (permissions)

“chown -

Change file

ownership” on

page 95

Change file ownership

Qshell 39

“clrtmp - Clear

the /tmp

directory” on

page 170

Clear the /tmp directory

“cmp - Compare

two files” on

page 65

Compare two files

“colon (:) - Null

utility” on page

164

Null utility

“command - Run

a simple

command” on

page 52

Run a simple command

“compress -

Compress data”

on page 96

Compress data

“continue -

Continue for,

while, or until

loop” on page

165

Continue for, while, or until loop

“cp - Copy files”

on page 97

Copy files

“cut - Cut out

selected fields of

each line of a

file” on page 66

Cut out selected fields of each line of a file

D

“dataq - Send or

receive messages

from i5/OS(TM)

data queue” on

page 171

Send or receive messages from i5/OS(TM) data queue

“datarea - Read

or write

i5/OS(TM) data

area” on page

172

Read or write i5/OS(TM) data area

“date - Write the

date and time”

on page 173

Write the date and time

db2profc DB2 SQLJ profile customizer

db2profp Print DB2 customized version of SQLJ profile

“declare -

Declare variables

and set

attributes” on

page 156

Declare variables and set attributes

“dirname -

Return directory

portion of path

name” on page

99

Return directory portion of path name

40 iSeries: Qshell

“dot (.) - Run

commands in

current

environment” on

page 52

Run commands in current environment

“dspmsg -

Display message

from message

catalog” on page

133

Display message from a message catalog

E

“echo - Write

arguments to

standard output”

on page 134

Write arguments to standard output

“egrep - Search a

file for an

extended regular

expression

pattern” on page

67

Search a file for an extended regular expression pattern

“env - Set

environment for

command

invocation” on

page 53

Set environment for command invocation

“eval - Construct

command by

concatenating

arguments” on

page 54

Construct command by concatenating arguments

“exec - Run

commands and

open, close, or

copy

descriptors” on

page 54

Run commands and open, close, or copy descriptors

“exit - Exit from

the shell” on

page 55

Exit from the shell

“export - Set

export attribute

for variables” on

page 157

Set export attribute for variables

“expr - Evaluate

arguments as an

expression” on

page 174

Evaluate arguments as an expression

“extcheck - A

utility to detect

JAR conflicts” on

page 141

Detect Java archive conflicts

F

“false - Return

false value” on

page 165

Return false value

Qshell 41

“fgrep - Search a

file for a fixed

string pattern”

on page 67

Search a file for a fixed string pattern

“file - Determine

file type” on

page 100

Determine file type

“find - Find

files” on page

100

Find files

G

“gencat -

Generate a

formatted

message catalog”

on page 104

Generate a formatted message catalog

“getconf - Get

configuration

values” on page

105

Get configuration values

“getjobid -

Display job

information” on

page 146

Display job information

“getopts - Parse

utility options”

on page 166

Parse utility options

“grep - Search a

file for a

pattern” on page

67

Search a file for a pattern

H

“hash -

Remember or

report utility

locations” on

page 147

Remember or report utility locations

“head - Copy the

first part of files”

on page 106

Copy the first part of files

“help - Display

information for

built-in utility”

on page 55

Display information for built-in utility

“hostname -

Display the

name of the

current host

system” on page

175

Display the name of the current host system

I

“iconv - Convert

characters from

one CCSID to

another CCSID”

on page 69

Convert characters from one CCSID to another CCSID

42 iSeries: Qshell

“id - Return user

identity” on

page 175

Return user identity

“ipcrm - Remove

interprocess

communication

identifier” on

page 176

Remove interprocess communication identifier

“ipcs - Report

interprocess

communication

status” on page

177

Report interprocess communication status

J

“jar - Archive

Javatm files” on

page 141

Archive Java files

“jarsigner - JAR

signing and

verification” on

page 142

Java archive signing and verification

“java - Run

Javatm

interpreter” on

page 142

Run Java interpreter

“javac - Compile

a Javatm

program” on

page 143

Compile a Java program

“javadoc -

Generate Javatm

documentation”

on page 143

Generate Java documentation

“javah -

Generate C

header or stub

file” on page 143

Generate C header or stub file

“javakey -

Manage Javatm

security keys

and certificates”

on page 144

Manage Java security keys and certificates

“javap -

Disassemble a

compiled Javatm

program” on

page 144

Disassemble a compiled Java program

“jobs - Display

status of jobs in

current session”

on page 148

Display status of jobs in the current session

K

kdestroy Destroy a Kerberos credentials cache

keytab Manage a Kerberos key table file

Qshell 43

“keytool - Key

and certificate

management

tool” on page

145

Key and certificate management tool

“kill - Terminate

or signal

processes” on

page 149

End or signal processes

kinit Obtain or renew a Kerberos ticket-granting ticket

klist Display the contents of a Kerberos credentials cache or key table file

ksetup Manage Kerberos service entries in the LDAP directory for a Kerberos realm

L

ldapadd Add LDAP entry tool

ldapchangepwd Change LDAP Password tool

ldapdelete Delete LDAP entry tool

ldapdiff Compare LDAP replication synchronization tool

ldapexop Extend LDAP operation tool

ldapmodify Change LDAP entry tool

ldapmodrdn Change LDAP Relative Distinguished Name (RDN) tool

ldapsearch Search LDAP server tool

“let - Evaluate

arithmetic

expression” on

page 166

Evaluate arithmetic expression

“liblist - Manage

library list” on

page 150

Manage library list

“ln - Link files”

on page 106

Link files

“local - Assign a

local variable in

a function” on

page 158

Assign a local variable in a function

“locale - Get

locale specific

information” on

page 182

Get locale specific information

“logger - Log

messages” on

page 183

Log messages

“logname -

Display user’s

login name” on

page 184

Return user’s login name

“ls - List

directory

contents” on

page 107

List directory contents

M

“mkdir - Make

directories” on

page 110

Make directories

44 iSeries: Qshell

“mkfifo - Make

FIFO special

files” on page

111

Make FIFO special files

“mv - Move

files” on page

112

Move files

N

“native2ascii -

Convert native

characters to

ASCII” on page

145

Convert native characters to ASCII

“nohup - Run

utility without

hangups” on

page 56

Run utility without hangups

O

“od - Dump files

in various

formats” on page

113

Dump files in various formats

P

“pax - Portable

archive

interchange” on

page 114

Portable archive interchange

“policytool -

Policy file

creation and

management

tool” on page

145

Policy file creation and management tool

“pr - Print files”

on page 121

Print files

“print - Write

output” on page

135

Write output

“printenv -

Display values of

environment

variables” on

page 159

Display values of environment variables

“printf - Write

formatted

output” on page

136

Write formatted output

profconv Convert SQLJ serialized profile instance to Java class

profdb SQLJ profile auditor installer

profp Print SQLJ profile

“ps - Display

process status”

on page 151

Display process status

Qshell 45

“pwd - Return

working

directory name”

on page 123

Return working directory name

“pwdx - Print

working

directory

expanded” on

page 124

Return working directory expanded

Q

“qsh - Qshell

command

language

interpreter” on

page 57

Qshell command language interpreter

R

“read - Read a

line from

standard input”

on page 137

Read a line from standard input

“readonly - Set

read-only

attribute for

variables” on

page 159

Set read-only attribute for variables

“return - Return

from a function”

on page 167

Return from a function

“rexec - Run

remote

command” on

page 58

Run remote command

“rexx - Run

REXX

procedure” on

page 59

Run REXX procedure

“Rfile - Read or

write record

files” on page

124

Read or write record files

“rm - Remove

directory entries”

on page 125

Remove directory entries

“rmdir - Remove

directories” on

page 126

Remove directories

“rmic - Compile

Javatm RMI

stubs” on page

145

Compile Java RMI stubs

“rmid - The

Javatm RMI

activation

system” on page

145

Java RMI activation system

46 iSeries: Qshell

“rmiregistry -

Start a remote

object registry”

on page 145

Start a remote object registry

S

“sed - Stream

editor” on page

70

Stream editor

“serialver -

Return serial

version” on page

146

Return serial version

“set - Set or

unset options

and positional

parameters” on

page 160

Set or unset options and positional parameters

“setccsid - Set

CCSID attribute

for file” on page

127

Set CCSID attribute for a file

“qsh - Qshell

command

language

interpreter” on

page 57

Qshell command language interpreter

“shift - Shift

positional

parameters” on

page 162

Shift positional parameters

“sleep - Suspend

invocation for an

interval” on page

153

Suspend invocation for an interval

“sort - Sort,

merge, or

sequence check

text files” on

page 74

Sort, merge, or sequence check text files

“source - Run

commands in

current

environment” on

page 60

Run commands in the current environment

“split - Split files

into pieces” on

page 76

Split files into pieces

sqlj Structured query language for Java (SQLJ) translator

“system - Run

CL command”

on page 60

Run CL command

“sysval -

Retrieve system

values or

network

attributes” on

page 184

Retrieve system values or network attribute

Qshell 47

T

“tail - Display

the last part of a

file” on page 128

Copy the last part of a file

“tar - File

archiver” on

page 129

File archiver

“tee - Duplicate

standard input”

on page 185

Duplicate standard input

“test - Evaluate

expression” on

page 167

Evaluate expression

“tnameserv -

Naming service”

on page 146

Naming service

“touch - Change

file access and

modification

times” on page

130

Change file access and modification times

“tr - Translate

characters” on

page 77

Translate characters

“trap - Trap

signals” on page

153

Trap signals

“true - Return

true value” on

page 169

Return true value

“type - Find type

of command” on

page 62

Find type of command

“typeset -

Declare variables

and set

attributes” on

page 162

Declare variables and set attributes

U

“ulimit - Set or

display resource

limits” on page

185

Set or display resouce limits

“umask - Get or

set the file mode

creation mask”

on page 131

Get or set the file mode creation mask

“unalias -

Remove alias

definitions” on

page 50

Remove alias definitions

“uname - Return

system name” on

page 186

Return system name

48 iSeries: Qshell

“uncompress -

Expand

compressed

data” on page

132

Expand compressed data

“uniq - Report or

filter out

repeated lines in

a file” on page

79

Report or filter out repeated lines in a file

“unset - Unset

values of

variables and

functions” on

page 163

Unset values and attributes of variables and functions

W

“wait - Wait for

process

completion” on

page 155

Wait for process completion

“wc - Word, line

and

byte/character

count” on page

80

Word, line and byte/character count

“whence -

Determine how

command is

interpreted” on

page 62

Determine how command is interpreted

X

“xargs -

Construct

argument lists

and invoke

utility” on page

63

Construct argument lists and invoke utility

Z

“zcat - Expand

and concatenate

data” on page

133

Expand and concatenate data

Utilities for defining aliases

The following are Qshell utilities for defining aliases:

v “alias - Define or display aliases”

v “unalias - Remove alias definitions” on page 50

alias - Define or display aliases

Synopsis

alias [-p] [name [=value] ...]

Description

Qshell 49

The alias utility defines an alias name that has the specified value. If only name is specified, qsh displays

the name and value of the alias.

When no arguments are specified, qsh displays a list of all the aliases and their values.

qsh defines these default aliases:

v float=’declare -E’

v functions=’declare -f’

v integer=’declare -i’

Options

-p Precede each line of the output with the word ″alias ″ so it is displayed in a re-enterable format.

 Operands

Each name specifies an alias in the current environment. If a value is also specified, then the value of the

alias is updated.

Exit Status

v 0 when successful.

v >0 when unsuccessful. The value is the number of names that are not aliases.

Related information

v “unalias - Remove alias definitions”

Examples

1. Define an alias to list the contents of a directory:

alias ll=’ls -l’

2. Display the value of the ll alias:

alias ll

3. Display the values of all currently defined aliases:

alias

unalias - Remove alias definitions

Synopsis

unalias name ...

unalias -a

Description

You can use unalias to remove the names from the list of defined aliases.

Options

-a Remove all aliases

 Operands

Each name is a defined alias.

Exit Status

50 iSeries: Qshell

v 0 when successful.

v >0 when unsuccessful. The value is the number of names that are not aliases.

Related information

v “alias - Define or display aliases” on page 49

Examples

1. Remove the ll alias: unalias ll

Utilities for running commands

The following are Qshell utilities for running commands:

v “builtin - Run a shell built-in utility”

v “command - Run a simple command” on page 52

v “dot (.) - Run commands in current environment” on page 52

v “env - Set environment for command invocation” on page 53

v “eval - Construct command by concatenating arguments” on page 54

v “exec - Run commands and open, close, or copy descriptors” on page 54

v “exit - Exit from the shell” on page 55

v “help - Display information for built-in utility” on page 55

v “nohup - Run utility without hangups” on page 56

v “qsh - Qshell command language interpreter” on page 57

v “rexec - Run remote command” on page 58

v “rexx - Run REXX procedure” on page 59

v “qsh - Qshell command language interpreter” on page 57

v “source - Run commands in current environment” on page 60

v “system - Run CL command” on page 60

v “type - Find type of command” on page 62

v “whence - Determine how command is interpreted” on page 62

v “xargs - Construct argument lists and invoke utility” on page 63

builtin - Run a shell built-in utility

Synopsis

builtin [utility [argument ...]]

Description

The builtin utility runs the shell built-in utility with the specified arguments. You can use builtin to run a

built-in utility from a shell function of the same name.

Operands

The utility is the name of a shell built-in utility (page 23). You can use “command - Run a simple

command” on page 52, “type - Find type of command” on page 62, or “whence - Determine how

command is interpreted” on page 62 to determine the type of a utility

Exit Status

v The exit status of the utility

v 1 if utility is not a built-in utility

Qshell 51

cmpdcmds.htm#FUNCTIONS

Related information

v “command - Run a simple command”

v “type - Find type of command” on page 62

v “whence - Determine how command is interpreted” on page 62

command - Run a simple command

Synopsis

command [-p] command_name [argument ...]

command [-vV] command_name

Description

You can use command to run command_name with the specified arguments with functions eliminated from

the search order. If command_name is a special built-in utility, then it is treated as a regular built-in utility.

Otherwise, the effect of command is the same as omitting command.

Note that command -v is equivalent to whence and command -V is equivalent to whence -v.

Options

-p Perform the command search using a default value for the PATH variable that is guaranteed to

find all of the standard utilities.

-v Write a string that shows the path name or command used by qsh to invoke command_name in

the current environment.

-V Write a string that shows how command_name is interpreted by qsh in the current environment.

 Operands

command_name is a utility in the current environment.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “dot (.) - Run commands in current environment”

v “eval - Construct command by concatenating arguments” on page 54

v “whence - Determine how command is interpreted” on page 62

Examples

1. Run the export special built-in utility as a regular built-in utility: command export ALPHA

2. Display the path name used to invoke the ls utility: command -v ls

3. Display how the reserved word for is interpreted: command -V for

dot (.) - Run commands in current environment

Synopsis

. name [argument ...]

Description

52 iSeries: Qshell

You can use dot to run a script or function in the current environment.

Options

None.

Operands

If name refers to a function, qsh runs the function in the current environment. Otherwise, qsh uses the

search path specified by the PATH variable to find name. If name is found, qsh reads the contents of the

file and runs those commands in the current environment.

If specified, the arguments replace the positional parameters while name is running. Otherwise the

positional parameters are unchanged.

Exit Status

Exit status of last command in name.

Related information

v “command - Run a simple command” on page 52

v “eval - Construct command by concatenating arguments” on page 54

v “exec - Run commands and open, close, or copy descriptors” on page 54

env - Set environment for command invocation

Synopsis

env [-i | -] [name=value ...] [utility [argument ...]]

Description

The env utility obtains the current environment, modifies it according to the arguments, and then invokes

the specified utility. Any arguments are passed to the utility. If no utility is specified, the resulting

environment is written to standard output with one name=value per line.

Options

- Invoke the utility with exactly the environment specified on the command. The inherited

environment is ignored completely.

-i Same as ’-’.

 Operands

name=value

This modifies the run-time environment and is placed into the inherited environment before the

utility is invoked.

utility The name of the command or utility to be invoked.

argument

A string to pass to the invoked command or utility.

 Exit Status

v 0 when successful

v >0 when an error occurs

Qshell 53

eval - Construct command by concatenating arguments

Synopsis

eval [argument ...]

Description

You can use eval to construct a command by concatenating arguments together, each separated by a

<space>. qsh then reads and runs the constructed command.

Options

None.

Operands

Each argument is expanded twice, once to construct the command and once when the constructed

command is run.

Exit Status

Exit status of the constructed command.

Related information

v “command - Run a simple command” on page 52

v “dot (.) - Run commands in current environment” on page 52

exec - Run commands and open, close, or copy descriptors

Synopsis

exec [-c] [command [argument ...]]

Description

The exec utility replaces qsh with command without creating a new process. The specified arguments are

arguments to command. Any redirections affect the current environment.

When a command is not specified, any redirections are processed in the current environment. Any file

descriptors greater than 2 that are opened by a redirection are not inherited when qsh invokes another

program.

Options

-c Run command with an empty set of environment variables.

 Operands

Each argument is assigned in order to the positional parameters of command.

Exit Status

Zero if no command is specified. Otherwise it does not return to qsh.

Related information

v “command - Run a simple command” on page 52

54 iSeries: Qshell

v “dot (.) - Run commands in current environment” on page 52

v “eval - Construct command by concatenating arguments” on page 54

v “nohup - Run utility without hangups” on page 56

v “print - Write output” on page 135

v “read - Read a line from standard input” on page 137

Examples

1. Open a file for reading on descriptor 5:

exec 5<$HOME/input

2. Close descriptor 5:

exec 5<&-

exit - Exit from the shell

Synopsis

exit [n]

Description

You can use exit to end the shell and return to the program that called qsh.

Options

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.

Exit Status

n if specified. Otherwise, the exit status of the preceding command.

Related information

v “return - Return from a function” on page 167

help - Display information for built-in utility

Synopsis

help [utility ...]

Description

The help utility displays a usage message for the specified built-in utility. If no arguments are specified,

help displays the list of all built-in utilities.

Operands

The utility is the name of a shell built-in utility (page 23).

Exit Status

v 0 when successful

v >0 if utility is not a built-in utility

Qshell 55

Related information

v “builtin - Run a shell built-in utility” on page 51

v “command - Run a simple command” on page 52

v “type - Find type of command” on page 62

v “whence - Determine how command is interpreted” on page 62

nohup - Run utility without hangups

Synopsis

nohup [-C ccsid] utility [argument ...]

Description

The nohup utility runs the specified utility with the specified arguments. When utility is invoked the

SIGHUP signal is set to be ignored. You can use nohup to allow utility to run even after ending the

“Using a Qshell interactive session” on page 30.

If standard output is a terminal, all output written by utility to its standard output is appended to the file

nohup.out in the current directory. If the file cannot be created or opened for appending, all output is

appended to the file $HOME/nohup.out. If neither file can be created or opened, utility is not run. The

default permission for the nohup.out file allows only the owner to read and write the file.

If standard error is a terminal, all output written by utility to its standard error is redirected to the same

descriptor as standard output.

Options

-C ccsid

The nohup.out file is created with the specified ccsid and all data written to the file is converted

from the CCSID of the job to the specified ccsid. This option overrides the value of the

QIBM_CCSID environment variable.

 Operands

The utility is the name of a regular utility in the current environment.

Environment Variables

nohup is affected by the following environment variables:

QIBM_CCSID

The value of the environment variable is the CCSID used to create the nohup.out file. All data

written to the file is converted from the CCSID of the job to the specified CCSID.

 Exit Status

v 126 when utility was found but could not be run

v 127 when utility was not found or there was an error in nohup

v Otherwise, the exit status of utility

Related information

v “command - Run a simple command” on page 52

v “env - Set environment for command invocation” on page 53

56 iSeries: Qshell

qsh - Qshell command language interpreter

Synopsis

qsh [-abCefFijlmntuvx] [-o option] command_file arg ...

qsh -c [-abCefFijlmntuvx] [-o option] command_string

qsh -s [-abCefFijlmntuvx] [-o option] arg ...

Description

The qsh utility is the Qshell command language interpreter. In the first synopsis form, qsh reads the

specified command_file and runs the commands contained in the file. In the second synopsis form, qsh

runs the specified command_string and ends. In the third synopsis form, qsh reads commands from

standard input.

Options

The a, b, C, e, f, F, j, l, m, n, -o option t, u, v, and x options are described in “set - Set or unset options

and positional parameters” on page 160.

-c Run the command specified in command_string and exit.

-i The shell is interactive. If there are no operands and standard input is connected to a terminal,

the -i option is set by default.

-s Read commands from standard input. If there are no operands and the -c option is not specified,

the -s option is set by default.

 Operands

The command_file is the pathname of a regular file that contains Qshell commands. If the pathname does

not contain a slash (/) character, qsh searches for command_file using the PATH variable. The special

parameter 0 is set to the value of command_file. Each arg is a positional parameter.

The command_string is any Qshell command, including compound commands.

Exit Status

v 0 when successful.

v 1 when unsuccessful.

v 2 when an error occurred in a script.

v 3 when there was an unexpected exception in a root shell.

v 4 when there was an unexpected exception in an exception handler for a root shell.

v 5 when there was an unexpected exception in a child shell.

v 6 when there was an unexpected exception in an exception handler for a child shell.

v 7 when descriptor 0 was not available.

v 8 when descriptor 1 was not available.

v 9 when descriptor 2 was not available.

v 10 when there was an error opening the message catalog.

v 11-125 when unsuccessful.

v 126 when a command was found but could not be invoked.

v 127 when a command cannot be found.

v >128 when a command was ended by a signal. The value is 128 plus the signal number.

Qshell 57

Related information

v “exit - Exit from the shell” on page 55

v “set - Set or unset options and positional parameters” on page 160

v “Command language” on page 8

rexec - Run remote command

Synopsis

rexec [-C ccsid] [-p password] [-u user] [-i] host command

Description

The rexec utility runs the specified command on the remote system specified by host. The remote system

must be running a rexec server to process the commands. By default, rexec prompts for a valid user

name and password for the remote system. The user name and password are not encyrpted when they

are sent to the remote system.

The standard output and standard error generated by command on the remote system are written to

standard output and standard error on the local system. Any data read from standard input on the local

system is sent to standard input for the command running on the remote system

if the -i option is not

specified.

By default, the data sent to and from the remote system is encoded in CCSID 819. The CCSID used to

encode the data can be specified with either the -C option or the QIBM_CCSID variable. If the CCSID

value is 65535, then no conversion is done on the data.

Options

-C ccsid

Encode the data sent to and from the remote system in the specified ccsid. This option overrides

the value of the QIBM_CCSID environment variable.

-i Ignore standard input on the local system.

-p password

The password for the user on host.

-u user A valid user name on host.

 Operands

The host is the name of the remote system where the command is run. The command is a command string

that is interpreted by the rexec server running on the remote system.

Environment Variables

rexec uses the following environment variables:

QIBM_CCSID

The value of the variable is the CCSID to use to encode the data sent to and from the remote

system.

 Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

58 iSeries: Qshell

v “exec - Run commands and open, close, or copy descriptors” on page 54

rexx - Run REXX procedure

Synopsis

rexx [-c cmdenv] [-t type] path [arg ...]

Description

The rexx utility runs the REXX procedure specified by path with the specified arguments. For more

information about programming with REXX, see the REXX information.

The REXX interpreter cannot read REXX commands from standard input. It can only run REXX

procedures stored in members of database files in the QSYS.LIB file system. The interactive debug feature

of the REXX interpreter is not supported by the rexx utility.

The program /QSYS.LIB/QSHELL.LIB/QZSHSHRX.PGM implements the Qshell command environment

for REXX procedures. The Qshell command environment sets the REXX return code and condition as

follows:

v When the the shell command ends normally with an exit status of zero, the REXX return code is set to

zero and no condition is raised.

v If the shell command ends normally with an exit status that is non-zero, the REXX return code is set to

the exit status value and the ERROR condition is raised.

v If the shell command ends by signal, the REXX return code is set to the signal number + 128 and the

FAILURE condition is raised.

v If the shell command ends by exception, the REXX return code is set to the exception number from

wait() and the FAILURE condition is raised.

Options

-c cmdenv

Set the command environment program to process commands for the REXX procedure. If the

option is not specified, the default value is command. The cmdenv can be one of the following

values:

v command for the i5/OS(TM) CL command environment.

v cpicomm for the Common Programming Interface for communications command environment.

v execsql for the Structured Query Language (SQL) command environment.

v qsh for the Qshell command environment.

v path to specify the path to the command environment program. The path must specify a

program in the QSYS.LIB file system.

-t type Control tracing for the REXX procedure. If the option is not specified, the default value is normal.

The type can be one of the following values:

v all to trace all clauses before processing.

v commands to trace host commands before processing and display any error return codes.

v error to trace host commands after processing that result in an error return code.

v failure to trace host commands after processing that result in a failure along with the return

code.

v intermediates to trace all clauses before processing along with intermediate results during the

evaluation of expressions.

v labels to trace labels during processing.

v normal to trace host commands after processing that result in a failure.

v off to turn off all tracing.

Qshell 59

v results to trace all clauses before processing.

 Operands

The path is the path name of the REXX procedure. On i5/OS(TM), a REXX procedure can only be stored in

the QSYS.LIB file system.

Exit Status

v 0 when successful

v 1 when there is an error running the REXX procedure

v >1 when unsuccessful

Related information

v REXX information

v “system - Run CL command”

source - Run commands in current environment

Synopsis

source name [argument ...]

Description

You can use source to run a script or function in the current environment. It is a synonym for the “dot (.)

- Run commands in current environment” on page 52 utility.

Related information

v “command - Run a simple command” on page 52

v “dot (.) - Run commands in current environment” on page 52

v “eval - Construct command by concatenating arguments” on page 54

v “exec - Run commands and open, close, or copy descriptors” on page 54

system - Run CL command

Synopsis

system [-iKknpqsv] CLcommand [arg ...]

Description

The system utility runs a CL command. Any spool file output generated by CLcommand is written to

standard output. By default, the spool files are deleted after they are written and the job log of the job

running system is deleted.

Any messages generated by CLcommand are written to standard error. By default, all messages generated

by CLcommand are written using the following format:

MsgId: Text

where “MsgId” is the seven character i5/OS(TM) message identifier (for example CPF0001) and “Text” is

the text of the message. Use the -n option to not include the “MsgId” prefix.

By default, system checks the number of threads running in the job. If there is more than one thread

running, it starts a second job and runs CLcommand in the second job. Use the -i option to force system to

always run CLcommand in the current job.

60 iSeries: Qshell

Options

-i Always run CLcommand in the current job and set the exit status to the ILE return code of the

program called by CLcommand. Note that some CL commands do not run in a multi-thread

capable job or when there are multiple threads running in the job.

-K Keep all spool files generated by CLcommand and the job log of the job running system. If this

option is not specified, all spool files are deleted after they are written and the job log is deleted.

-k Keep all spool files generated by CLcommand. If this option is not specified, all spool files are

deleted after they are written.

-n Do not include the message identifier when writing the messages to standard error. Only the

message text of the messages are written to standard error. This option is ignored if the -q option

is also specified.

-p Only write the messages sent to the program’s message queue by CLcommand to standard error.

This option is ignored if the -q option is also specified.

-q Do not write messages generated by CLcommand to standard error.

-s Do not write spool files generated by CLcommand to standard output.

-v Write the complete command string to standard output before running it.

 Note that for compatibility with the PASE system utility, system does not return an error if the -b, -e, -E,

-I, or -O options are specified, but the options are ignored.

Operands

Each arg is a parameter to CLcommand. You may need to enclose CLcommand and args in quotes to prevent

qsh from expanding any special characters in them. Both CL and qsh use some of the same special

characters, for example, the asterisk (*) character.

Environment Variables

The system utility is affected by the following environment variables:

QIBM_SYSTEM_ALWMLTTHD

Set this environment variable to control how the system utility behaves in a multi-thread capable

job. If the value of the variable is “N”, system starts a new job to run the CL command when the

current job is multi-thread capable even if there is only one thread running in the job. There is no

default value.

QIBM_SYSTEM_USE_ILE_RC

Set this environment variable to control how the system utility sets the exit status. If the value of

the variable is “Y”, system sets the exit status to the ILE return code of the program called by

CLcommand, or zero if the program did not set a return code. There is no default value. The

environment variable is ignored if the -i option is specified.

 Exit Status

v 0 when CLcommand is successful

v >0 when CLcommand is unsuccessful or when set by the program called by CLcommand

When the -i option is specified or the environment variable QIBM_SYSTEM_USE_ILE_RC=Y is set,

system sets the exit status to the ILE return code of the program called by CLcommand, or zero if the

program did not set a return code.

Related Information

v CL command finder

Qshell 61

v system - Run a CL command for i5/OS(TM) PASE

Examples

1. List all of the active jobs:

system wrkactjob

2. Create a test library:

system “CRTLIB LIB(TESTDATA) TYPE(*TEST)”

3. Delete a library and do not write any messages:

system -q “DLTLIB LIB(TESTDATA)”

type - Find type of command

Synopsis

type [-apt] name ...

Description

The type utility displays the type of each specified name. The name can be an alias, function, special shell

built-in, shell built-in, reserved word, or file.

Options

-a Show all uses for name.

-p Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-t Display a one word description for the type of name.

 Operands

Each name is a utility in the current environment.

Exit Status

v 0 when every name is found

v >0 when unsuccessful

Related information

v “command - Run a simple command” on page 52

v “whence - Determine how command is interpreted”

whence - Determine how command is interpreted

Synopsis

whence [-afpv] name ...

Description

The whence utility displays how each specified name is interpreted. The name can be an alias, function,

special shell built-in, shell built-in, reserved word, or file.

Note that whence is equivalent to command -v and whence -v is equivalent to command -V.

Options

-a Show all uses for name.

62 iSeries: Qshell

-f Do not check to see if name is a function.

-p Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-v Display the type of name.

 Operands

Each name is a utility in the current environment.

Exit Status

v 0 when every name is found

v >0 when unsuccessful

Related information

v “command - Run a simple command” on page 52

v “dot (.) - Run commands in current environment” on page 52

v “eval - Construct command by concatenating arguments” on page 54

v “type - Find type of command” on page 62

Examples

1. Find the type of the reserved word for:

whence -v for

xargs - Construct argument lists and invoke utility

Synopsis

xargs [-t] [-e[eofstring]] [-E eofstring] [-l[number]] [-L number] [-n number [-x]] [-s size] [utility [arguments ...]]

Description

The xargs utility reads space, tab, newline and end-of-file delimited arguments from the standard input

and runs the specified utility with them as arguments.

The utility and any arguments specified on the command line are given to the utility upon each invocation,

followed by some number of the arguments read from standard input. The utility is repeatedly run until

standard input is exhausted.

Spaces, tabs and newlines may be embedded in arguments using single (’) or double (″) quotation marks

or backslashes (\). Single quotation marks escape all non-single quotation mark characters, excluding

newlines, up to the matching single quotation marks. Double quotation marks escape all non-double

quotation mark characters, excluding newlines, up to the matching double quotation marks. Any single

character, including newlines, may be escaped by a backslash.

If no utility is specified, echo is used by default.

Undefined behavior may occur if utility reads from the standard input.

The xargs utility exits immediately (without processing any further input) if a command line cannot be

assembled, utility cannot be invoked, an invocation of the utility is ended by a signal, or an invocation of

the utility exits with a value of 255.

Options

Qshell 63

-E eofstring

Specify a logical end-of-file string. xargs reads standard input until either end-of-file or the logical

end-of-file string is encountered.

-e[eofstring]

This option is equivalent to the -E option. If eofstring is not specified, the default value is _ (a

single underscore).

-L number

Run utility for each non-empty number lines of arguments read from standard input. The last

invocation of utility will be with fewer lines of arguments if fewer than number remain. A line is

considered to end with the first newline character unless the last character of the line is a blank

character. A trailing blank character signals continuation to the next non-empty line, inclusive.

The -L and -n options are mutually exclusive. The last one specified takes effect.

-l[number]

This option is equivalent to the -L option. If number is not specified, the default value is 1.

-n number

Set the maximum number of arguments read from standard input for each invocation of the

utility. An invocation of utility will use less than number standard input arguments if the number

of bytes accumulated (see the -s option) exceeds the specified size or there are fewer than number

arguments remaining for the last invocation of utility. The maximum number of arguments

i5/OS(TM) can pass to a program is 255. The default value for number is 250. The -n and -L options

are mutually exclusive. The last one specified takes effect.

-s size Set the maximum number of bytes for the command line length provided to utility. The sum of

the length of the utility name and the arguments passed to utility (including NULL terminators)

will be less than or equal to size. The default value for size is 16 252 928 bytes.

-t Turn on trace mode. The command to be run is written to standard error immediately before it is

run.

-x Force xargs to end immediately if a command line containing number arguments will not fit in the

specified (or default) command line length.

 Exit Status

v 0 when all invocations of utility returned exit status 0.

v 1-125 when at least one invocation of utility returned a non-zero exit status or there was an error.

v 126 when utility was found but could not be invoked.

v 127 when utility cannot be found.

v >128 when utility was ended by a signal. The value is 128 plus the signal number.

Related information

v “echo - Write arguments to standard output” on page 134

v “eval - Construct command by concatenating arguments” on page 54

v “find - Find files” on page 100

Utilities for managing data

The following are Qshell utilities for managing data:

v “cmp - Compare two files” on page 65

v “cut - Cut out selected fields of each line of a file” on page 66

v “egrep - Search a file for an extended regular expression pattern” on page 67

v “fgrep - Search a file for a fixed string pattern” on page 67

v “grep - Search a file for a pattern” on page 67

64 iSeries: Qshell

v “iconv - Convert characters from one CCSID to another CCSID” on page 69

v “sed - Stream editor” on page 70

v “sort - Sort, merge, or sequence check text files” on page 74

v “split - Split files into pieces” on page 76

v “tr - Translate characters” on page 77

v “uniq - Report or filter out repeated lines in a file” on page 79

v “wc - Word, line and byte/character count” on page 80

cmp - Compare two files

Synopsis

cmp [-l | -s] [-t] file1 file2 [skip1 [skip2]]

Description

You can use cmp to compare two files. By default, a byte for byte binary comparison is done. If no

differences are found, no output is written. If no option flags are specified, cmp writes a message with

the byte and line number of the first difference and exits with an error. Bytes and lines are numbered

beginning with 1.

Options

-l (Lower case ell) Write the byte number in decimal and the differing bytes in octal for all

differences.

-s Silent mode where no output is written for differing files; only the exit status is set.

-t Text mode where the files are opened in text mode and translated to the CCSID of the job before

comparing byte for byte.

 Operands

The file1 and file2 operands are the two files to be compared byte for byte. The optional skip1 and skip2

are the number of bytes to skip from the beginning of each file, respectively, before the comparison

begins.

Environment Variables

cmp is affected by the following environment variables:

QIBM_CMP_FILE_SIZE

Controls the maximum file size in bytes that cmp reads into an internal buffer for better

performance. For files larger than the maximum size, cmp reads the files one byte at a time.

Exit Status

v 0 when the files are identical

v 1 when the files are different

v >1 when an error occurred

Related information

v “sed - Stream editor” on page 70

v “sort - Sort, merge, or sequence check text files” on page 74

v “split - Split files into pieces” on page 76

Qshell 65

v “uniq - Report or filter out repeated lines in a file” on page 79

Examples

1. Find the exact position where two files differ. It is better to place the reference or good file first and

then the changed or new file second.

cmp myApplet.java.old myApplet.java.new

cut - Cut out selected fields of each line of a file

Synopsis

cut -b list [file ...]

cut -c list [file ...]

cut -f list [-d string] [-s] [file ...]

Description

The cut utility selects portions of each line as specified by list from each file (or the standard input by

default), and writes them to the standard output. The items specified by list can be in terms of column

position or in terms of fields delimited by a special character. Column numbering starts from 1.

The list is a comma or whitespace separated set of increasing numbers and/or number ranges. Number

ranges consist of a number, a dash (-), and a second number and select the fields or columns from the

first number to the second, inclusive. Numbers or number ranges may be preceded by a dash, which

selects all fields or columns from 1 to the first number. Numbers or number ranges may be followed by a

dash, which selects all fields or columns from the last number to the end of the line. Numbers and

number ranges may be repeated, overlapping, and in any order. It is not an error to select fields or

columns not present in the input line.

Options

-b list The list specifies byte positions.

-c list The list specifies character positions.

-d string

Use the first character of string as the field delimiter character instead of the tab character.

-f list The list specifies fields, delimited in the input by a single tab character. Output fields are

separated by a single tab character.

-s Suppresses lines with no field delimiter characters. Unless specified, lines with no delimiters are

passed through unmodified.

 Exit Status

v 0 on success

v 1 if an error occurred.

Related information

v “grep - Search a file for a pattern” on page 67

v “tr - Translate characters” on page 77

v “wc - Word, line and byte/character count” on page 80

66 iSeries: Qshell

egrep - Search a file for an extended regular expression pattern

Synopsis

egrep [-c|-l|-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The egrep utility is equivalent to running the grep utility with the -E option. See “grep - Search a file for

a pattern” for the complete description.

Related information

v “fgrep - Search a file for a fixed string pattern”

v “grep - Search a file for a pattern”

fgrep - Search a file for a fixed string pattern

Synopsis

fgrep [-c|-l|-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The fgrep utility is equivalent to running the grep utility with the -F option. See “grep - Search a file for

a pattern” for the complete description.

Related information

v “egrep - Search a file for an extended regular expression pattern”

v “grep - Search a file for a pattern”

grep - Search a file for a pattern

Synopsis

grep [-E|-F] [-c|-l|-q] [-R [-H | -L | -P]] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The grep utility searches the given input files selecting lines which match one or more patterns. The type

of patterns is controlled by the options specified. By default, a pattern matches an input line if any

regular expression (RE) in the pattern matches the input line without its trailing newline. A null RE

matches every line. Each input line that matches at least one of the patterns is written to the standard

output.

If -E and -F options are both specified, the last one specified is used.

Options

-E Use Extended Regular Expressions (ERE).

-F Do not recognize regular expressions.

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, grep searches each file in the entire subtree connected at that point.

Qshell 67

-c Only a count of selected lines is written to standard output.

-e pattern_list specifies one or more search patterns. Each pattern should be separated by a newline

character.

-f pattern_file specifies a file containing search patterns. Each pattern should be separated by a

newline character.

-h Do not print filename headers.

-i The case of letters is ignored in making comparisons. That is, upper and lower case are

considered identical.

-l Only the names of files containing selected lines are written to standard output. Pathnames are

listed once per file searched. If the standard input is searched, the pathname ″-″ is written.

-n Each output line is preceded by its relative line number in the file; each file starting at line 1. The

line number counter is reset for each file processed. This option is ignored if the -c, -l, or -s

options are specified.

-q Quiet mode where no messages are printed. Only the exit status is returned.

-s Suppress the error messages ordinarily written for nonexistent or unreadable files. Other

messages are not suppressed.

-v Selected lines are those not matching the specified patterns.

-w The expression is searched for as a whole word (as if surrounded by ″[[:<:]]″ and ″[[:>:]]″).

-x Match line if pattern is the only thing on the line. This option takes precedence over the -w

option. If both are specified, the -w option is ignored.

-y Ignore case (same as -i).

 Operands

Each file specifies the path to a text file. If no file operandss are specified, the standard input is used.

Exit Status

v 0 when one or more lines were selected.

v 1 when no lines were selected.

v >1 when an error occurred.

Extended Regular Expressions (ERE)

The following characters are interpreted by grep:

$ Align the match from the end of the line.

^ Align the match from the beginning of the line. (NOTE: This character may not work correctly

from a 5250 terminal session.)

| Add another pattern (see example below).

? Match one or less sequential repetitions of the pattern.

+ Match one or more sequential repetitions of the pattern.

* Match zero or more sequential repetitions of the pattern.

. Match any single character.

[] Match any single character or range of characters enclosed in the brackets.

 Escape special characters which have meaning to grep, that is, the set of {$,.,^,[,],|,?,+,*,(,)}.

68 iSeries: Qshell

Related information

v “cut - Cut out selected fields of each line of a file” on page 66

v “egrep - Search a file for an extended regular expression pattern” on page 67

v “fgrep - Search a file for a fixed string pattern” on page 67

v “tr - Translate characters” on page 77

v “wc - Word, line and byte/character count” on page 80

Examples

1. Find all occurrences of the word patricia in a file.

grep patricia myfile

2. Find all occurrences of the pattern ″.Pp″ at the beginning of a line. The single quotation marks assure

the entire expression is evaluated by grep instead of by the shell. The carat (^) means from the

beginning of a line.

grep ’^.Pp’ myfile

3. Find either 19, 20 or 25 in the file calendar.

grep ’19|20|25’ calendar

4. Find the total number of lines that matches a character in the range of ″a″ to ″z″.

grep -c ’[a-z]’ reference/alphabet.text

5. Display all lines that have a dollar sign ($) character in them. You must escape the dollar sign

character so grep will not interpret the character. Also, display the line number as well as the line that

contains the match.

grep -n ’\$’ valid.file

iconv - Convert characters from one CCSID to another CCSID

Synopsis

iconv -f fromCCSID -t toCCSID [file ...]

Description

The iconv utility converts the encoding of characters read from either standard input or the specified file

from one CCSID to another CCSID and then writes the results to standard output. The input data is

assumed to be in the CCSID specified by the fromCCSID parameter. If file is not specified, the iconv

utility reads from standard input.

You must specify valid i5/OS(TM) CCSIDs with a supported conversion for the fromCCSID and toCCSID

parameters.

Options

-f fromCCSID

The input data is encoded in the fromCCSID.

-t toCCSID

The output data is encoded in the toCCSID.

 Operands

The file operand specifies a path name to a regular file.

Exit Status

v 0 when successful

v 1 when the conversion is not supported or there is an error with file

Qshell 69

v 2 when there is an error during the conversion

Related information

v “locale - Get locale specific information” on page 182

v “tr - Translate characters” on page 77

sed - Stream editor

Synopsis

sed [-an] [-C ccsid] command file ...

sed [-an] [-C ccsid] [-e command] [-f command_file] file ...

Description

The sed utility reads the specified files, or the standard input if no files are specified, modifying the input

as specified by a list of commands. The input is then written to the standard output.

A single command may be specified as the first argument to sed. Multiple commands may be specified by

using the -e or -f options. All commands are applied to the input in the order they are specified

regardless of their origin.

Options

-a By default, the files listed as parameters for the w functions are created (or truncated) before any

processing begins. The -a option causes sed to delay opening each file until a command

containing the related w function is applied to a line of input.

-C ccsid

Any files created by sed are created with the CCSID specified by ccsid. This option overrides the

value of the QIBM_CCSID environment variable.

-e command

Append the editing commands specified by the command argument to the list of commands.

-f command_file

Append the editing commands found in the file command_file to the list of commands. The editing

commands should each be listed on a separate line.

-n By default, each line of input is echoed to the standard output after all of the commands have

been applied to it. The -n option suppresses this behavior.

 Operands

The form of a sed command is as follows:

[address[,address]]function[arguments]

White space may be inserted before the first address and the function portions of the command.

Normally, sed cyclically copies a line of input, not including its terminating newline character, into a

″pattern space″, (unless there is something left after a D function), applies all of the commands with

addresses that select that pattern space, copies the pattern space to the standard output, appending a

newline, and deletes the pattern space.

Some of the functions use a ″hold space″ to save all or part of the pattern space for subsequent retrieval.

Extended Description

70 iSeries: Qshell

sed Addresses

An address is not required, but if specified must be:

v a number that counts input lines cumulatively across input files,

v a dollar ($) character that addresses the last line of input, or

v a context address which consists of a regular expression preceded and followed by a delimiter.

A command line with no addresses selects every pattern space.

A command line with one address selects all of the pattern spaces that match the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches

the first address through the next pattern space that matches the second. If the second address is a

number less than or equal to the line number first selected, only that line is selected. Starting at the first

line following the selected range, sed starts looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the exclamation character (!)

function.

sed Regular Expressions

sed regular expressions are basic regular expressions. In addition, sed has the following two additions to

basic regular expressions:

v In a context address, any character other than a backslash (\) or newline character may be used to

delimit the regular expression. Also, putting a backslash character before the delimiting character

causes the character to be treated literally. For example, in the context address \xabc\xdefx, the regular

expression delimiter is an x and the second x stands for itself, so that the regular expression is abcxdef .

v The escape sequence \n matches a newline character embedded in the pattern space. You can’t,

however, use a literal newline character in an address or in the substitute command.

One special feature of sed regular expressions is that they can default to the last regular expression used.

If a regular expression is empty, that is, just the delimiter characters are specified, the last regular

expression encountered is used instead. The last regular expression is defined as the last regular

expression used as part of an address or substitute command, and at run-time, not compile-time. For

example, the command:

/abc/s//XXX/

will substitute XXX for the pattern abc.

sed Functions

In the following list of commands, the maximum number of permissible addresses for each command is

indicated by [0addr], [1addr], or [2addr], representing zero, one, or two addresses.

The argument text consists of one or more lines. To embed a newline in the text, precede it with a

backslash. Other backslashes in text are deleted and the following character taken literally.

The r and w functions take an optional file parameter, which should be separated from the function letter

by white space. Each file given as an argument to sed is created (or its contents truncated) before any

input processing begins.

The b, r,s, t,w,y,! , and & functions all accept additional arguments. The following synopses indicate

which arguments have to be separated from the function letters by white space characters.

Two of the functions take a function-list. This is a list of sed functions separated by newlines, as follows:

Qshell 71

{ function

 function

 ...

 function

}

The { can be preceded by white space and can be followed by white space. The function can be preceded

by white space. The terminating } must be preceded by a newline or optional white space.

[2addr] function-list

Execute function-list only when the pattern space is selected.

[1addr]a\ text

Write text to standard output immediately before each attempt to read a line of input, whether by

executing the N function or by beginning a new cycle.

[2addr]b[label]

Branch to the & function with the specified label. If the label is not specified, branch to the end of

the script.

[2addr]c\ text

Delete the pattern space. With 0 or 1 address or at the end of a 2-address range, text is written to

the standard output.

[2addr]d

Delete the pattern space and start the next cycle.

[2addr]D

Delete the initial segment of the pattern space through the first newline character and start the

next cycle.

[2addr]g

Replace the contents of the pattern space with the contents of the hold space.

[2addr]G

Append a newline character followed by the contents of the hold space to the pattern space.

[2addr]h

Replace the contents of the hold space with the contents of the pattern space.

[2addr]H

Append a newline character followed by the contents of the pattern space to the hold space.

[1addr]i\ text

Write text to the standard output.

[2addr]l

(The letter ell.) Write the pattern space to the standard output in a visually unambiguous form.

This form is as follows:

v backslash (\)

v alert (\a)

v form-feed (\f)

v newline (\n)

v carriage-return (\r)

v tab (\t)

v vertical tab (\v)

Nonprintable characters are written as three-digit octal numbers (with a preceding backslash) for

each byte in the character (most significant byte first). Long lines are folded, with the point of

folding indicated by displaying a backslash followed by a newline. The end of each line is

marked with a dollar sign ($).

72 iSeries: Qshell

[2addr]n

Write the pattern space to the standard output if the default output has not been suppressed, and

replace the pattern space with the next line of input.

[2addr]N

Append the next line of input to the pattern space, using an embedded newline character to

separate the appended material from the original contents. Note that the current line number

changes.

[2addr]p

Write the pattern space to standard output.

[2addr]P

Write the pattern space, up to the first newline character to the standard output.

[1addr]q

Branch to the end of the script and quit without starting a new cycle.

[1addr]r file

Copy the contents of file to the standard output immediately before the next attempt to read a

line of input. If file cannot be read for any reason, it is silently ignored and no error condition is

set.

[2addr]s/regular_expression/replacement/flags

Substitute the replacement string for the first instance of the regular_expression in the pattern space.

Any character other than backslash or newline can be used instead of a slash to delimit the

regular_expression and the replacement. Within the regular_expression and the replacement, the regular

expression delimiter itself can be used as a literal character if it is preceded by a backslash.

 An ampersand (&) appearing in the replacement is replaced by the string matching the regular

expression. The special meaning of & in this context can be suppressed by preceding it by a

backslash. The string \#, where # is a digit, is replaced by the text matched by the corresponding

backreference expression.

 A line can be split by substituting a newline character into it. To specify a newline character in

the replacement string, precede it with a backslash.

 The value of flags in the substitute function is zero or more of the following:

0 ... 9 Make the substitution only for the N’th occurrence of the regular expression in the

pattern space.

g Make the substitution for all non-overlapping matches of the regular expression, not just

the first one.

p Write the pattern space to standard output if a replacement was made. If the replacement

string is identical to that which it replaces, it is still considered to have been a

replacement.

w file Append the pattern space to file if a replacement was made. If the replacement string is

identical to that which it replaces, it is still considered to have been a replacement.

[2addr]t [label]

Branch to the : function bearing the label if any substitutions have been made since the most

recent reading of an input line or execution of a t function. If no label is specified, branch to the

end of the script.

[2addr]w file

Append the pattern space to the file.

[2addr]x

Swap the contents of the pattern and hold spaces.

Qshell 73

[2addr]y/string1/string2/

Replace all occurrences of characters in string1 in the pattern space with the corresponding

characters from string2. Any character other than a backslash or newline can be used instead of a

slash to delimit the strings. Within string1 and string2, a backslash followed by any character

other than a newline is that literal character, and a /n is replaced by a newline character.

[2addr]!function

[2addr]!function-list

Apply the function or function-list only to the lines that are not selected by the address(es).

[0addr]:label

This function does nothing; it bears a label to which the b and t commands may branch.

[1addr]=

Write the line number to the standard output followed by a newline character.

[0addr]

Empty lines are ignored.

[0addr]#

The # and the remainder of the line are ignored (treated as a comment), with the single exception

that if the first two characters in the file are #n, the default output is suppressed. This is the same

as specifying the -n option on the command line.

 Environment Variables

sed is affected by the following environment variables:

QIBM_CCSID

Any files created by sed are created with the CCSID specified by the value of the environment

variable.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “cmp - Compare two files” on page 65

v “sort - Sort, merge, or sequence check text files”

v “split - Split files into pieces” on page 76

v “uniq - Report or filter out repeated lines in a file” on page 79

sort - Sort, merge, or sequence check text files

Synopsis

sort [-cmubdfinr] [-t char] [-T char] [-k keydef ...] [-o output] [file] ...

Description

The sort utility sorts text files by lines. Comparisons are based on one or more sort keys extracted from

each line of input, and are performed lexicographically. By default, if keys are not given, sort regards

each input line as a single field.

Options

-c Check that the single input file is sorted. If the file is not sorted, sort produces the appropriate

error messages and exits with code 1. Otherwise, sort returns 0. This option produces no output.

74 iSeries: Qshell

-m Merge only; the input files are assumed to be presorted.

-o output

The output argument is the name of an output file to be used instead of the standard output. This

file can be the same as one of the input files.

-u Unique processing to suppress all but one in each set of lines having equal keys. If used with the

-c option, check that there are no lines with duplicate keys.

 The following options override the default ordering rules. When ordering options appear independent of

key field specifications, the requested field ordering rules are applied globally to all sort keys. When

attached to a specific key, the ordering options override all global ordering options for that key.

-d Only blank space and alphanumeric characters are used in making comparisons.

-f Considers all lowercase characters that have uppercase equivalents to be the same for purposes of

comparison.

-i Ignore all non-printable characters.

-n An initial numeric string, consisting of optional blank space, optional minus sign, and zero or

more digits (including decimal point) is sorted by arithmetic value.

-r Reverse the sense of comparisons.

 The treatment of field separators can be altered using the options:

-b Ignores leading blank space when determining the start and end of a restricted sort key. A -b

option specified before the first -k option applies globally to all -k options. Otherwise, the -b

option can be attached independently to each field argument of the -k option (see below). Note

that the -b option has no effect unless key fields are specified.

-t char The char argument is used as the field separator character. The initial char is not considered to be

part of a field when determining key offsets (see below). Each occurrence of char is significant

(for example, ″char-char″ delimits an empty field). If -t is not specified, blank space characters are

used as default field separators.

-T char

The char argument is used as the record separator character. This option should be used with

discretion. The -T option with an alphanumeric char typically produces undesirable results. The

default line separator is newline.

-k keydef

Select the key fields to use for sorting. keydef as the format:

 field_start[type][,field_end[type]]

 where field_start is the starting position and field_end is the optional ending position of a key field.

If field_end is not specified, the ending position is the end of the line. The type is a character from

the set of characters b, d, f, i, n, r. The type behaves the same as the corresponding option but

only to the specified key field. If no -k option is specified, a default sort key is used. A maximum

of nine -k options can be specified.

 Operands

The path name of a file to be sorted, merged, or checked. If no file operands are specified, the standard

input is used.

Extended Description

A field is defined as a minimal sequence of characters followed by a field separator or a newline

character. By default, the first blank space of a sequence of blank spaces acts as the field separator. All

Qshell 75

blank spaces in a sequence of blank spaces are considered as part of the next field. For example, all blank

spaces at the beginning of a line are considered to be part of the first field.

Fields are specified by the -k field_start[type][,field_end[type]] option.

The field_start portion of the option argument has the form:

field_number[.first_character]

Fields and characters within fields are numbered starting with 1. The field_number and first_character are

positive decimal integers and specify the first character to be used as part of a sort key. If .first_character is

not specified, it refers to the first character of the field.

The field_end portion of the option argument has the form:

field_number[.last_character]

The field_number is a positive decimal integer and last_character is a non-negative decimal integer. If

last_character is not specified or is zero, it refers to the last character of the field.

If the -b option or the b type modifier is in effect, characters in fields are counted from the first non-blank

character.

Exit Status

v 0 normal behavior.

v 1 on disorder (or non-uniqueness) with the -c option

v 2 an error occurred

Related information

v “cmp - Compare two files” on page 65

v “sed - Stream editor” on page 70

v “split - Split files into pieces”

v “uniq - Report or filter out repeated lines in a file” on page 79

split - Split files into pieces

Synopsis

split [-b byte_count[k|m]] [-l line_count] [file [prefix]]

Description

The split utility reads the given file (or standard input if no file is specified) and breaks it up into files of

1000 lines each.

Options

-b Create files that are byte_count bytes in length. If k is appended to the number, the file is split

into byte_count kilobyte pieces. If m is appended to the number, the file is split into byte_count

megabyte pieces.

-l Create files that are line_count lines in length.

 Operands

76 iSeries: Qshell

If additional arguments are specified, the first is used as the name of the input file which is to be split. If

a second additional argument is specified, it is used as a prefix for the names of the files into which the

file is split. In this case, each file into which the file is split is named by the prefix followed by a lexically

ordered suffix in the range of ″aa-zz″. If the prefix argument is not specified, the default prefix is ″x″. The

maximum number of possible output file names is 676.

Exit Status

v 0 if successful

v >0 if an error occurs

Related information

v “cmp - Compare two files” on page 65

v “sed - Stream editor” on page 70

v “sort - Sort, merge, or sequence check text files” on page 74

v “uniq - Report or filter out repeated lines in a file” on page 79

Examples

1. Split the file jdk_v11.jar into files that are 1.44MB in size and use the prefix ″jdk_v11.″. for the output

files.

split -b1440k jdk_v11.jar jdk_v11.

2. Split the file myapp.java into files of 100 lines each.

split -l 100 myapp.java

tr - Translate characters

Synopsis

tr [-cs] string1 string2

tr [-c] -d string1

tr [-c] -s string1

tr [-c] -ds string1 string2

Description

The tr utility copies the standard input to the standard output with substitution or deletion of selected

characters.

In the first synopsis form, the characters in string1 are translated into the characters in string2 where the

first character in string1 is translated into the first character in string2 and so on. If string1 is longer than

string2, the last character found in string2 is duplicated until string1 is exhausted.

In the second synopsis form, the characters in string1 are deleted from the input.

In the third synopsis form, the characters in string1 are compressed as described for the -s option below.

In the fourth synopsis form, the characters in string1 are deleted from the input, and the characters in

string2 are compressed as described for the -s option below.

The following conventions can be used in string1 and string2 to specify sets of characters. Any character

not described by one of the following conventions represents itself.

nnn A backslash (\) followed by 1, 2 or 3 octal digits represents a character with that encoded value.

Qshell 77

char To follow an octal sequence with a digit as a character, left zero-pad the octal sequence to the full

3 octal digits. A backslash (\) followed by certain special characters maps to special values. The

special characters and their values are:

v a - alert character

v b - backspace

v f - form-feed

v n - newline

v r - carriage return

v t - tab

v v - vertical tab

v A backslash (\) followed by any other character maps to that character.

c-c Represents the range of characters between the range endpoints, inclusively.

[:class:]

Represents all characters belonging to the defined character class. These are the class names:

v alnum - alphanumeric characters

v alpha - alphabetic characters

v cntrl - control characters

v digit - numeric characters

v graph - graphic characters

v lower - lower-case alphabetic characters

v print - printable characters

v punct - punctuation characters

v space - space characters

v upper - upper-case characters

v xdigit - hexadecimal characters

 Note: With the exception of the upper and lower classes,

characters in the classes are in unspecified order. In the

upper and lower classes, characters are entered in

ascending order.

 Options

-c Complement the set of characters in string1, that is -c ab includes every character except for ″a″

and ″b″.

-d Delete characters from the input.

-s Squeeze multiple occurrences of the characters listed in the last operand (either string1 or string2)

in the input into a single instance of the character. This occurs after all deletion and translation is

completed.

 Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “cut - Cut out selected fields of each line of a file” on page 66

v “grep - Search a file for a pattern” on page 67

v “tr - Translate characters” on page 77

78 iSeries: Qshell

v “wc - Word, line and byte/character count” on page 80

Examples

1. Create a list of the words in file1, one per line, where a word is taken to be a maximal string of

letters.

tr -cs ’[:alpha:]’ ’n’ < file1

2. Translate the contents of file1 to upper-case.

tr ’[:lower:]’ ’[:upper:]’ < file1

tr ’a-z’ ’A-Z’ < file1

3. Remove the non-printable characters from file1.

tr -cd ’[:print:]’ < file1

uniq - Report or filter out repeated lines in a file

Synopsis

uniq [-c | -du] [-f fields] [-s chars] [input_file [output_file]]

Description

The uniq utility reads the standard input comparing adjacent lines, and writes a copy of each unique

input line to the standard output. The second and succeeding copies of identical adjacent input lines are

not written. Repeated lines in the input will not be detected if they are not adjacent, so it may be

necessary to sort the files first.

Options

-c Precede each output line with the count of the number of times the line occurred in the input,

followed by a single space.

-d Suppress the writing of lines that are not repeated in the input.

-f fields

Ignore the first fields fields in each input line when doing comparisons. A field is a string of

non-blank characters separated from adjacent fields by blanks. Field numbers are one based, so

the first field is field one.

-s chars

Ignore the first chars characters in each input line when doing comparisons. If specified in

conjunction with the -f option, the first chars characters after the first fields fields will be ignored.

Character numbers are one based, so the first character is character one.

-u Suppress the writing of lines that are repeated in the input.

 Operands

If additional arguments are specified on the command line, the first such argument is used as the name

of an input file, the second is used as the name of an output file.

Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “cmp - Compare two files” on page 65

v “sed - Stream editor” on page 70

v “split - Split files into pieces” on page 76

Qshell 79

v “sort - Sort, merge, or sequence check text files” on page 74

Examples

In the following examples, the contents of example file are:

There are 5 apples

There are 9 oranges

There are 9 oranges

There are 2 pears

1. Display the unique lines in the file ″fruit″.

uniq fruit

There are 5 apples

There are 9 oranges

There are 2 pears

2. Display the lines that repeat in the file ″fruit″.

uniq -d fruit

There are 9 oranges

3. Display a list of how many times a line is repeated in the file ″fruit″.

uniq -c fruit

1 There are 5 apples

2 There are 9 oranges

1 There are 2 pears

wc - Word, line and byte/character count

Synopsis

wc [-c | -m] [-lw] [file ...]

Description

The wc utility displays the number of lines, words, and bytes contained in each input file (or standard

input, by default) to standard output. A line is defined as a string of characters delimited by a newline

character. A word is defined as a string of characters delimited by white space characters. If more than

one input file is specified, a line of cumulative counts for all the files is displayed on a separate line after

the output for the last file.

Options

c Write to standard output the number of bytes in each input file.

l Write to standard output the number of lines in each input file.

m Write to standard output the number of characters in each input file.

w Write to standard output the number of words in each input file.

 Operands

When an option is specified, wc only reports the information requested by that option. The default action

is equivalent to specifying all of the flags.

If no files are specified, the standard input is used and no file name is displayed.

Exit Status

v 0 when successful

80 iSeries: Qshell

v >0 when an error occurred

Related information

v “cut - Cut out selected fields of each line of a file” on page 66

v “grep - Search a file for a pattern” on page 67

v “tr - Translate characters” on page 77

Utilities for DB2 Universal Database(TM)

The following are Qshell utilities for working with the DB2 Universal Database(TM):

v

“Qshell db2 utility”

v db2profc - DB2(R) SQLJ profile customizer

v db2profp - Print DB2 customized version of SQLJ profile

v

“Perl utility” on page 82

v profconv - Convert SQLJ serialized profile instance to Java(TM) class

v profdb - SQLJ profile auditor installer

v profp - Print SQLJ profile

v sqlj - Structured query language for Java (SQLJ) translator

Qshell db2 utility

The db2 utility uses the SQL CLI (Call Level Interface) and allows you to execute SQL statements directly,

interactively, or from a file.

When processing SQL interactively or from a file, the db2 utility treats the backslash character at the end

of a line as a continuation character. The backslash and newline character are removed and the remaining

text is used as the SQL statement.

Syntax

db2 [General Options] [Delimiter Options] [Connection Options] [SQL Source Options]

General Options:

-v Echo the SQL statement to standard output

-S Suppress spaces and padding in output, useful for viewing LOB columns containing text data

 Delimiter Options:

Only one of the following can be specified.

-T, character

Specified character is used as termination character

-t Use the semicolon as the statement termination character

-d Use Exclamation point (!) as the termination character

 Connection Options:

-r rdbname

Connect to specified remote database (must be name in WRKRDBDIRE). If not specified

connection is to local database.

-u username

The user profile name for connecting to remote database, can only be used with -r option

Qshell 81

-p username

The password to use on remote database connection

 SQL Source Options:

SQL Statement

SQL statement text. If statement contains spaces or shell characters, be sure to correctly quote on

Qshell command line

-f filename default_lib

Read and execute SQL statements from the specified file. Default_lib parameter is optional. When

specified, it is used as the default library/schema for all statements

-i Enter SQL statements interactively. Enter quit or exit to end interactive SQL session

 Special character and command support

v Lines starting with two dashes (—) are comments

v Lines starting with an exclamation point are qshell commands

v Lines startng with ’at’ symbol (@) are CL commands

v Connect command is ignored, utility uses local connection unless -r option is specified

v Echo command is a command built in to the db2 utility and echoes the text

v Exit or quit commands will end the db2 SQL session

v Help and ? commands will list basic help

v Terminate command is ignored

Examples

db2 select constraint_name from qsys2.syscst

db2 -t -f mysqlfile.txt

Contents of mysqlfile.txt:

select constraint_name from qsys2.syscst;

create table qgpl.testtable (c1 integer);

Perl utility

The Perl utility allows you to run Perl scripts on your system. The Perl utility is available as freeware.

For more information about downloading and using this utility, see the DB2(R) for i5/OS(R): Qshell, Perl,

and DB2 for i5/OS topic on the System i(TM) Website.

Utilities for working with files and directories

The following are Qshell utilities for working with files and directories:

v “attr - Get or set attributes for files” on page 83

v “basename - Return non-directory portion of path name” on page 88

v “cat - Concatenate and print files” on page 88

v “catsplf - Concatenate and print spool files” on page 89

v “cd - Change working directory” on page 90

v “chgrp - Change file group ownership” on page 91

v “chmod - Change file modes” on page 92

v “chown - Change file ownership” on page 95

82 iSeries: Qshell

http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html
http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html

v “compress - Compress data” on page 96

v “cp - Copy files” on page 97

v “dirname - Return directory portion of path name” on page 99

v “file - Determine file type” on page 100

v “find - Find files” on page 100

v “gencat - Generate a formatted message catalog” on page 104

v “getconf - Get configuration values” on page 105

v “head - Copy the first part of files” on page 106

v “ln - Link files” on page 106

v “ls - List directory contents” on page 107

v “mkdir - Make directories” on page 110

v “mkfifo - Make FIFO special files” on page 111

v “mv - Move files” on page 112

v “od - Dump files in various formats” on page 113

v “pax - Portable archive interchange” on page 114

v “pr - Print files” on page 121

v “pwd - Return working directory name” on page 123

v “pwdx - Print working directory expanded” on page 124

v “Rfile - Read or write record files” on page 124

v “rm - Remove directory entries” on page 125

v “rmdir - Remove directories” on page 126

v “setccsid - Set CCSID attribute for file” on page 127

v “tail - Display the last part of a file” on page 128

v “tar - File archiver” on page 129

v “touch - Change file access and modification times” on page 130

v “umask - Get or set the file mode creation mask” on page 131

v “uncompress - Expand compressed data” on page 132

v “zcat - Expand and concatenate data” on page 133

attr - Get or set attributes for files

Synopsis

attr [-hp] file [attribute [=value] ...]

Description

The attr utility gets or sets attributes for the object specified by file. When no attributes are specified, attr

displays all of the attributes for the object in a re-entrable format to standard output. When an attribute is

specified, attr displays the value of the attribute to standard output. When an attribute and value are

specified, attr sets the attribute to the value. Note that all attributes can be displayed, but only some

attributes can be set.

For date and time attributes, the value displayed by default is formatted with the asctime() function. If

the LC_TIME environment variable is set, the value displayed is formatted with the format specified by

the d_t_fmt keyword in the LC_TIME category of the specified locale.

See the Qp0lGetAttr() API for detailed information about the attributes and their values.

Options

Qshell 83

-h Display or set the attributes of a symbolic link instead of the object pointed to by the symbolic

link.

-p Display the attribute in an re-entrable format.

 Operands

The file operand specifies a path name to an object. The attribute operand can have the following values:

ACCESS_TIME

The date and time the object was last accessed. This attribute can only be displayed.

ALLOC_SIZE

The number of bytes allocated for the object displayed as a 32-bit number. This attribute can only

be displayed.

ALLOC_SIZE_64

The number of bytes allocated for the object displayed as a 64-bit number. This attribute can only

be displayed.

ALWCKPWRT

An indicator if a stream file can be shared with readers and writers during the save-while-active

checkpoint processing. This attribute can be displayed or set.

ALWSAV

An indicator of whether the object can be saved or not. This attribute can be displayed or set.

ASP The auxillary storage pool in which the object is stored. This attribute can only be displayed.

AUDIT

The auditing value associated with the object. This attribute can only be displayed.

AUTH_GROUP

The name of the user profile that is the primary group for the object. This attribute can only be

displayed.

AUTH_LIST_NAME

The name of the authorization list used to secure the object. This attribute can only be displayed.

AUTH_OWNER

The name of the user profile that is the owner of the object. This attribute can only be displayed.

AUTH_USERS

The list of user profiles that are authorized to use the object. This attribute can only be displayed.

CCSID The coded character set identifier (CCSID) of the object. This attribute can be displayed or set.

CHANGE_TIME

The date and time the object’s data or attributes were last changed. This attribute can only be

displayed.

CHECKED_OUT

An indicator if the object is checked out. This attribute can only be displayed.

CHECKED_OUT_USER

The user profile that has the object checked out. This attribute can only be displayed.

CHECKED_OUT_TIME

The date and time that the object was checked out. This attribute can only be displayed.

CODEPAGE

The code page derived from the coded character set identifier (CCSID) of the object. This

attribute can be displayed or set.

84 iSeries: Qshell

CREATE_TIME

The date and time the object was created. This attribute can only be displayed.

CRTOBJAUD

The create object auditing value associated with a directory. The auditing value is given to any

objects created in the directory. This attribute can be displayed or set.

CRTOBJSCAN

An indicator of whether the objects created in a directory will be scanned when exit programs are

registered with any of the integrated file system scan-related exit points. This attribute can be

displayed or set.

DATA_SIZE

The size in bytes of the data in the object displayed as a 32-bit number. This attribute can only be

displayed.

DATA_SIZE_64

The size in bytes of the data in the object displayed as a 64-bit number. This attribute can only be

displayed.

DIR_FORMAT

An indicator of the format of a directory object. This attribute can only be displayed.

DISK_STG_OPT

An indicator of how auxiliary storage storage is allocated by the system for the object. This

attribute can be displayed or set.

EXTENDED_ATTR_SIZE

The number of bytes used for extended attributes for the object. This attribute can only be

displayed.

FILE_FORMAT

The format of the stream file. This attribute can only be displayed.

FILE_ID

The file identifier of the object if the object is stored in the ″root″ (/), the QOpenSys, or a

user-defined file system. This attribute can only be displayed.

JOURNAL_APPLY_CHANGES

An indicator of whether the object was restored with partial transactions which requires an Apply

Journaled Changes (APYJRNCHG) command to complete the transaction. This attribute can only

be displayed.

JOURNAL_ID

The journal identifier that can be used on journal-related commands and APIs. This attribute can

only be displayed.

JOURNAL_LIBRARY

If the object is journaled, the library containing the currently used journal. If the object is not

journaled, the library containing the last used journal. This attribute can only be displayed.

JOURNAL_NAME

If the object is journaled, the name of the currently used journal. If the object is not journaled, the

name of the last used journal. This attribute can only be displayed.

JOURNAL_OPTIONS

The current journaling options. This attribute can only be displayed.

JOURNAL_RCVR_ASP

The name of the ASP for the library that contains the journal receiver. This attribute can only be

displayed.

JOURNAL_RCVR_LIBRARY

The name of the library that contains the journal receiver. This attribute can only be displayed.

Qshell 85

JOURNAL_RCVR_NAME

The name of the oldest journal receiver needed to successfully Apply Journaled Changes

(APYJRNCHG). This attribute can only be displayed.

JOURNAL_ROLLBACK_ENDED

An indicator of whether the object had rollback ended before completion of a request to roll back

a transaction. This attribute can only be displayed.

JOURNAL_START_TIME

The date and time that journaling was last started for the object. This attribute can only be

displayed.

JOURNAL_STATUS

An indicator if the object is currently journaled. This attribute can only be displayed.

LOCAL_REMOTE

An indicator if the object is on the local system or a remote system. This attribute can only be

displayed.

MAIN_STG_OPT

An indicator of how main storage is allocated and used by the system for the object. This

attribute can be displayed or set.

MODIFY_TIME

The date and time that the object’s data was last modified. This attribute can only be displayed.

MULT_SIGS

An indicator if the object has more than one i5/OS(TM) digital signature. This attribute can only be

displayed.

OBJTYPE

A text string describing the type of the object. This attribute can only be displayed.

PC_ARCHIVE

An indicator if the object has changed since the last time the file was examined. This attribute can

be displayed or set.

PC_HIDDEN

An indicator if the object is hidden. This attribute can be displayed or set.

PC_READ_ONLY

An indicator if the object is read-only. This attribute can be displayed or set.

PC_SYSTEM

An indicator if the object is a system object. This attribute can be displayed or set.

RSTDRNMUNL

An indicator of whether renames and unlinks are restricted for objects within a directory. Objects

can be linked into a directory that has this attribute set on, but cannot be renamed or unlinked

from it unless the user has the appropriate authority. This attribute can be displayed or set.

SCAN An indicator of whether the object will be scanned when exit programs are registered with any of

the integrated file system scan-related exit points. This attribute can be displayed or set.

SCAN_BINARY

An indicator of whether the object has been scanned in binary mode when it was previously

scanned. This attribute can only be displayed.

SCAN_CCSID1

If an object has been scanned in text mode, the first CCSID used when it was previously scanned.

This attribute can only be displayed.

86 iSeries: Qshell

SCAN_CCSID2

If an object has been scanned in text mode, the second CCSID used when it was previously

scanned. This attribute can only be displayed.

SCAN_SIGS_DIFF

An indicator of whether the scan signature for the object is different from the global scan

signature. This attribute can only be displayed.

SCAN_STATUS

The scan status for the object. This attribute can only be displayed.

SGID An indicator if the effective group ID is set at run time. This attribute can be displayed or set.

SIGNED

An indicator if the object has an i5/OS(TM) digital signature. This attribute can only be displayed.

STG_FREE

An indicator if the data is moved offline. This attribute can only be displayed.

SUID An indicator if the effective user ID is set at run time. This attribute can be displayed or set.

SYSTEM_ARCHIVE

An indicator if the object has changed and needs to be saved. This attribute can be displayed or

set.

SYSTEM_USE

An indicator if the object has a special use by the system. This attribute is valid only for stream

files. This attribute can only be displayed.

SYS_SIGNED

An indicator of whether the i5/OS(TM) digital signature is from a source that is trusted by the

system. This attribute can only be displayed.

UDFS_DEFAULT_FORMAT

The default file format of stream files created in the user-defined file system. This attribute can

only be displayed.

USAGE_DAYS_USED

The number of days an object has been used. This attribute can only be displayed.

USAGE_LAST_USED_TIME

The date and time that the object was last used. This attribute can only be displayed.

USAGE_RESET_TIME

The date and time that the object’s days used count was reset to zero. This attribute can only be

displayed.

 Environment Variables

attr is affected by the following environment variables:

LANG

Provides a default value for locale categories that are not specifically set with a variable starting

with LC_.

LC_TIME

Defines the output format for date and time attributes.

 Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

Qshell 87

v “setccsid - Set CCSID attribute for file” on page 127

v “touch - Change file access and modification times” on page 130

v Qp0lGetAttr() - Get attributes

v Qp0lSetAttr() - Set attributes

Examples

1. Display all of the attributes for a file.

attr script.sh

2. Display the OBJTYPE and PC_READ_ONLY attributes for a file.

attr script.sh OBJTYPE PC_READ_ONLY

3. Display the DATA_SIZE_64 attribute in a re-entrable format for a file.

attr -p script.sh DATA_SIZE_64

4. Set the PC_HIDDEN attribute for a file.

attr script.sh PC_HIDDEN=1

basename - Return non-directory portion of path name

Synopsis

basename string [suffix]

Description

You can use basename to delete any prefix ending with the last slash (/) character present in string, and

a suffix, if specified. The resulting filename is written to standard output. The string is processed using

the following rules:

v If string consists entirely of slash characters, a single slash character is written to standard output and

processing ends.

v If there are any trailing slash characters in string, they are removed.

v If there are any slash characters remaining in string, the prefix of string up to and including the last

slash character is removed.

v If a suffix is specified, and is not identical to the characters remaining in string, and is identical to a

suffix of the characters remaining in string, the suffix is removed. Otherwise string is not modified. It is

not an error if suffix is not found in string.

Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “dirname - Return directory portion of path name” on page 99

Examples

1. Set the shell variable FOO to ″trail″.

FOO=$(basename /usr/bin/trail)

2. Return the last part of the path ″/usr/bin/this_test″ with the ″test″ suffix removed.

basename /usr/bin/this_test test

cat - Concatenate and print files

Synopsis

cat [-bcensStuv] [-] [file ...]

88 iSeries: Qshell

Description

The cat utility reads the specified files sequentially, writing them to standard output. The file operands are

processed in command line order. A single dash represents standard input.

By default, cat reads file as text data so the data is translated from the CCSID of the file. When the -c

option is specified, cat reads the file as binary data.

Note that because of the shell language mechanism used to perform output redirection, the command cat

file1 file2 > file2 will cause the original data in file2 to be destroyed. Also, the process will go into an

infinite loop.

Options

-b Number the output lines but do not number blank lines.

-c Do not convert the data as it is read.

-e Number the output lines and display a dollar sign ($) at the end of each line as well.

-n Number the output lines, starting at 1.

-s Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-S Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-t Display non-printing characters so they are visible like the -v option and display tab characters as

well.

-u Guarantee that the output is unbuffered.

-v Display non-printing characters so they are visible. A control character prints as ″^X″ (for

control). The delete character prints as ″^?″. A non-display character prints as ″M-x″ (for meta).

Note that in most locales, all of the characters are displayable.

 Exit Status

v 0 when successful.

v >0 when an error occurred.

Related information

v “head - Copy the first part of files” on page 106

v “tail - Display the last part of a file” on page 128

v “zcat - Expand and concatenate data” on page 133

Examples

1. Display the contents of file, ″myfile″.

cat myfile

2. Display the contents of three different files at the same time and save their contents into a new file.

cat file1 file2 file3 > all.files

catsplf - Concatenate and print spool files

Synopsis

catsplf -j qualified-job [-aen] splfname splfnum

catsplf -p pid [-aen] splfname splfnum

Description

Qshell 89

The catsplf utility reads the specified spool file and writes it to standard output.

In the first synopsis form, catsplf finds the spool files associated with the job specified by qualified-job.

In the second synopsis form, catsplf finds the spool files associated with the job specified by pid.

Options

-a Print all of the spool files associated with the specified job.

-e Number the output lines starting at 1 and display a dollar sign ($) at the end of each line.

-j qualified-job

Find the spool files associated with the job identified by qualified-job, where qualified-job is a string

in the form number/user/name. The number is a six-digit decimal number, user is the user profile

under which the job was started, and name is the name of job.

-n Number the output lines starting at 1.

-p pid Find the spool files associated with the job identified by pid, where pid is the decimal process ID

of the job.

 Operands

The splfname operand specifies the name of the spool file and the splfnum operand specifies the number of

the spool file. Both operands are required to uniquely identify a spool file.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “cat - Concatenate and print files” on page 88

v “Rfile - Read or write record files” on page 124

v “zcat - Expand and concatenate data” on page 133

Examples

1. Print the spool file named QPRINT and number 1 for a job using a qualified job name.

catsplf -j 386687/SHELLTST/QZSHCHLD QPRINT 1

2. Print the spool file named QPRINT and number 1 for a job using a pid.

catsplf -p 942 QPRINT 1

3. Print all of the spool files for a job.

catsplf -a -j 386687/SHELLTST/QZSHCHLD

cd - Change working directory

Synopsis

cd [directory]

Description

You can use cd to change the working directory. qsh sets the PWD variable to the new working directory

and the OLDPWD variable to the previous working directory.

Options

90 iSeries: Qshell

None.

Operands

For directory, you can specify:

- (minus)

qsh changes the working directory to the previous directory and displays the new working

directory name.

/name or ../name

qsh changes the working directory to the specified name.

name (does not begin with a / or ../)

If the CDPATH variable is set, qsh prepends each directory in CDPATH to name to construct a

directory name. qsh changes to the first directory that you have permission to. qsh displays the

new working directory name.

 If the CDPATH variable is not set, qsh changes the working directory to the specified name.

not specified

qsh changes the working directory to the value of the HOME variable.

 You must have permission to the specified directory.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “hash - Remember or report utility locations” on page 147

v “pwd - Return working directory name” on page 123

chgrp - Change file group ownership

Synopsis

chgrp [-R [-H | -L | -P]] [-h] group file ...

Description

You can use chgrp to set the group of file to the group identifier or profile specified by group.

To change the group identifier, you must have one of the following authorities:

v The current user has *ALLOBJ special authority.

v The current user is the owner of file and either one of the following:

– The primary group of the job is group.

– One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the group profile specified by group.

By default, chgrp follows symbolic links and changes the group of the file pointed to by the symbolic

link.

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options

override each other and the command’s actions are determined by the last one specified.

The group of a file cannot be the same as the owner of the file.

Qshell 91

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file is a directory, chgrp recursively changes the group of each file in the entire subtree

connected at that point.

-h Change the owner and group of a symbolic link instead of the file pointed to by the symbolic

link.

 Operands

The group operand specifies either a group identifier number or group profile name. The file operand

specifies a path name to an object.

Exit Status

v 0 when successful and all requested changes were made.

v >0 when an error occurred.

Related information

v “chmod - Change file modes”

v “chown - Change file ownership” on page 95

Examples

1. Change the group to group profile ″abbey″ for the file ″newgui.java″.

chgrp abbey newgui.java

2. Change the group to group profile ″managers″ for the subdirectory ″personal.dir″ and all files and

subdirectories below this directory.

chgrp -R managers personal.dir

3. Change the group to group identifier ″442″ for the file ″memo.txt″.

chgrp 442 memo.txt

chmod - Change file modes

Synopsis

chmod [-R [-H | -L | -P]] [-h] mode file ...

Description

The chmod utility modifies the file mode bits of file as specified by the mode operand.

To change the mode of a file, you must have one of the following authorities:

v The current user has *ALLOBJ special authority.

v The current user is the owner of the file.

By default, chmod follows symbolic links and changes the mode on the file pointed to by the symbolic

link. Symbolic links do not have modes so using chmod on a symbolic link always succeeds and has no

effect.

92 iSeries: Qshell

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options

override each other and the command’s actions are determined by the last one specified.

Note that chmod changes the i5/OS(TM) data authorities for an object. Use the CHGAUT CL command to

change the i5/OS(TM) object authorities for an object.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed. Since symbolic links do not have modes

chmod has no effect on the symbolic links.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed. Since symbolic links do not have

modes chmod has no effect on the symbolic links.

-R If file designates a directory, chmod changes the mode of each file in the entire subtree connected

at that point.

-h Do not follow symbolic links. Since symbolic links do not have modes chmod has no effect on

the symbolic links.

 Operands

A mode may be absolute or symbolic. An absolute mode is a three or four digit octal number constructed

by or-ing the following values:

4000 Set-user-id on execute bit

2000 Set-group-id on execute bit

1000 Restricted deletion bit for a directory

0400 Allow read by owner

0200 Allow write by owner

0100 Allow execute/search by owner

0040 Allow read by group

0020 Allow write by group

0010 Allow execute/search by group

0004 Allow read by other

0002 Allow write by other

0001 Allow execute/search by other

 A symbolic mode is described by the following grammar:

v mode ::= clause [, clause ...]

v clause ::= [who ...] [action ...] last_action

v action ::= op [perm ...]

v last_action ::= op [perm ...]

v who ::= a | u | g | o

v op ::= + | - | =

v perm ::= r | w | x | X | s | t | u | g | o

The who symbols specify who is granted or denied the permissions as follows:

Qshell 93

u The owner permission bits.

g The group permission bits.

o The other permission bits.

a The owner, group, and other permission bits. It is equivalent to specifying the ugo symbols

together.

 The op symbols represent the operation performed, as follows:

+ Grant the specified permission. If no value is supplied for perm, the ″+″ operation has no effect. If

no value is supplied for who, each permission bit specified in perm, for which the corresponding

bit in the file mode creation mask is clear, is set. Otherwise, the mode bits represented by the

specified who and perm values are set.

- Deny the specified permission. If no value is supplied for perm, the ″-″ operation has no effect. If

no value is supplied for who, each permission bit specified in perm, for which the corresponding

bit in the file mode creation mask is clear, is cleared. Otherwise, the mode bits represented by the

specified who and perm values are cleared.

= Clear the selected permission field and set it to the specified permission. The mode bits specified

by the who value are cleared, or, if no who value is specified, the owner, group and other mode

bits are cleared. Then, if no value is supplied for who, each permission bit specified in perm, for

which the corresponding bit in the file mode creation mask is clear, is set. Otherwise, the mode

bits represented by the specified who and perm values are set.

 The perm symbols represent the portions of the mode bits as follows:

r The read bits.

w The write bits.

x The execute/search bits.

X The execute/search bits if the file is a directory or if any of the execute/search bits are set in the

original (unmodified) mode. Operations with this symbol are only meaningful in conjunction

with the op symbol “+”, and are ignored in all other cases.

s The set-user-id on execute bit when the owner permission bits are set or the set-group-id on

execute bit when the group permission bits are set.

t The restricted deletion bit when the object is a directory. It can be used when the who symbol is a

or there is no who symbol. It is ignored if the file is not a directory or the who symbol is u, g, or

o.

 Each clause specifies one or more operations to be performed on the mode bits, and each operation is

applied to the mode bits in the order specified.

Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “chgrp - Change file group ownership” on page 91

v “chown - Change file ownership” on page 95

Examples

1. Grant read and write permission to owner and read permission to group and other using an absolute

mode.

chmod 644 myfile

94 iSeries: Qshell

2. Deny write permission to group and other.

chmod go-w myfile

3. Clear all permissions that are currently set and grant read and write permissions to owner, group, and

other.

chmod =rw myfile

4. Grant search permission on a directory to owner, group, and other if search permission is set for one

them.

chmod +X mydir

5. Grant read, write, and execute permission to owner and read and execute permission to group and

other using an absolute mode.

chmod 755 myfile

6. Clear all permissions for group and other.

chmod go= myfile

7. Set the group permissions equal to the owner permission, but deny write permission to the group.

chmod g=u-w myfile

8. Set the set-user-id on execute bit and grant read, write, and execute permission to the owner and

execute permission for other using an absolute mode.

chmod 4701 myfile

chown - Change file ownership

Synopsis

chown [-R [-H | -L | -P]] [-h] owner[:group] file ...

Description

You can use chown to set the owner of file to the user identifier or profile specified by owner. Optionally,

chown can also set the group of the file to the group identifier or profile specified by group.

To change the owner of a file, you must have one of the following authorities:

v The current user has *ALLOBJ special authority.

v The current user is the owner of the file or directory.

To change the group of a file, you must have one of the following authorities:

v The current user has *ALLOBJ special authority.

v The current user is the owner of file and either one of the following:

– The primary group of the job is group.

– One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the new user profile or group profile.

By default, chown follows symbolic links and changes the owner and group of the file pointed to by the

symbolic link.

The group of a file cannot be the same as the owner of the file.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

Qshell 95

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, chown recursively changes the owner and group of each file in the

entire subtree connected at that point.

-h Change the owner and group of a symbolic link instead of the file pointed to by the symbolic

link.

 Operands

The owner operand specifies either a user identifer number or a user profile name. The group operand

specifies either a group identifier number or a group profile name. The file operand specifies a path name

to an object.

Exit Status

v 0 when successful and all requested changes were made.

v >0 when an error occurred.

Related information

v “chgrp - Change file group ownership” on page 91

v “chmod - Change file modes” on page 92

Examples

1. Change the owner to user profile ″sam″ for the file ″personal.file″.

chown sam personal.file

2. Recursively change the owner to user profile ″larry″ for the sub-directory ″moe.dir″ and all files and

sub-directories below this directory.

chown -R larry moe.dir

3. Change the owner to user identifier ″500″ for the file ″your.file″.

chown 500 your.file

4. Change the owner to user profile ″sam″ and the group to group profile ″abbey″ for the file

″memo.txt″.

chown sam:abbey memo.txt

compress - Compress data

Synopsis

compress [-cfv] [-b bits] [file ...]

Description

The compress utility reduces the size of the files using adaptive Lempel-Ziv coding. Each file is renamed

to the same name plus the extension ″.Z″. As many of the modification time, access time, file flags, file

mode, user ID, and group ID as allowed by permissions are retained in the new file. If compression

would not reduce the size of a file, the file is ignored.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user

is prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not

received, the files are not overwritten.

Options

-b bits Specify the bits code limit (see below for details).

-c Compressed output is written to the standard output. No files are modified.

96 iSeries: Qshell

-f Force compression of file, even if it is not actually reduced in size. Additionally, files are

overwritten without prompting for confirmation.

-v Print the percentage of reduction for each file.

 Operands

Each file is a pathname of a file to compress. If no files are specified, the standard input is compressed to

the standard output. If either the input or output files are not regular files, the checks for reduction in

size and file overwriting are not performed, the input file is not removed, and the attributes of the input

file are not retained.

Extended Description

The compress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first

replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes and

continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits must

be between 9 and 16.

After the bits limit is reached, compress periodically checks the compression ratio. If it is increasing,

compress continues to use the existing code dictionary. However, if the compression ratio decreases,

compress discards the table of substrings and rebuilds it from scratch. This allows the algorithm to adapt

to the next ″block″ of the file.

The amount of compression obtained depends on the size of the input, the number of bits per code, and

the distribution of common substrings. Typically, text such as source code or English is reduced by

50-60%.

Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “pax - Portable archive interchange” on page 114

v “uncompress - Expand compressed data” on page 132

v “zcat - Expand and concatenate data” on page 133

cp - Copy files

Synopsis

cp [-r | -R [-H | -L | -P]] [-fhipt] source_file target_file

cp [-r | -R [-H | -L | -P]] [-fhipt] source_file ... target_directory

Description

In the first synopsis form, the cp utility copies the contents of the source_file to the target_file.

In the second synopsis form, the cp utility copies the contents of each named source_file to a file in the

destination target_directory. The names of the files themselves are not changed. The target_directory must

exist unless there is only one named source_file which is a directory and the -R flag is specified.

If cp detects an attempt to copy a file to itself, the copy will fail.

Qshell 97

If target_file does not exist, the mode of the source_file is used, as modified by the file creation mask, when

creating target_file. The S_ISUID and S_ISGID file permission bits are never set when creating a new file.

If target_file already exists and the -t option is not specified, its contents are overwritten as binary data

and the CCSID attribute is changed to match the CCSID attribute of source_file. The file permission bits,

owner, and group of target_file are unchanged. You can force the data to be copied as text data by using

the -t option. You can force the file permission bits, owner, and group to be copied using the -p option.

Note that when copying to members in the QSYS.LIB file system, many attributes of source_file cannot be

preserved because they are associated with the file object and not the member.

Symbolic links are always followed unless the -h option is specified or the -R option is specified with the

-H or the -L options. The -H, -L and -P options are ignored unless the -R option is specified. In addition,

these options override each other and the command’s actions are determined by the last one specified.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed and the symbolic link is copied instead of the

file pointed to by the symbolic link.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed. A symbolic link encountered in the

tree traversal is copied instead of the file pointed to by the symbolic link.

-R If source_file designates a directory, cp copies the directory and the entire subtree connected at

that point. This option causes cp to create special files rather than copying them as normal files.

Created directories have the same mode as the corresponding source directory, unmodified by the

file creation mask.

-f Remove target_file if it cannot be opened for write operations. A new file is created before the

data is copied.

-h Copy symbolic links instead of the file pointed to by the symbolic link.

-i Write a prompt to standard error before copying a file that would overwrite an existing file. If the

response from the standard input begins with the first character for the YES response in the

current locale, the file copy is attempted.

-p Preserve in the copy as many of the modification time, access time, file permission bits, owner,

and group as allowed by permissions.

 If the owner and group cannot be preserved, no error message is displayed and the exit value is

not altered.

 The S_ISUID and S_ISGID file permission bits are only copied when both the owner and group of

the file are successfully copied.

 Note: This option has no effect when copying to the QSYS.LIB

file system.

-r Same as -R except this option copies special files in the same manner as regular files. The -R flag

is preferred to the -r flag.

-t When the target file exists, treat the data in source_file as text data and translate the data to the

CCSID associated with target_file as it is copied. The CCSID attribute of target_file is not changed.

 Exit Status

v 0 on success

98 iSeries: Qshell

v >0 if an error occurred.

Related information

v “ln - Link files” on page 106

v “ls - List directory contents” on page 107

v “mv - Move files” on page 112

v “rm - Remove directory entries” on page 125

v “rmdir - Remove directories” on page 126

v “umask - Get or set the file mode creation mask” on page 131

Examples

1. Copy the file, ″file1″, into the subdirectory, ″data.dir″.

cp file1 data.dir

2. Copy all the files with the .java extension from the ″code″ subdirectory into the subdirectory,

″code/old_code.dir″ and prompt the user for overwrite verification only if the file already exists in

the subdirectory, ″code/old_code.dir″.

cp -i code/*.java code/old_code.dir

dirname - Return directory portion of path name

Synopsis

dirname string

Description

You can use dirname to delete the filename portion, beginning with the last slash character (/) to the end

of string, and write the result to standard output. The string is processed using the following rules:

v If string consists entirely of slash characters, a single slash character is written to standard output and

processing ends.

v If there are any trailing slash characters in string, they are removed.

v If there are no slash characters remaining in string, a period character is written to standard output and

processing ends.

v If there are trailing non-slash characters in string, they are removed.

v If there are any trailing slash characters in string, they are removed.

v If the remaining string is empty, string is set to a single slash character.

Operands

The string operand is the pathname of which dirname will return the directory portion of.

Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “basename - Return non-directory portion of path name” on page 88

Examples

1. Set the shell variable FOO to ″/usr/bin″.

FOO=$(dirname /usr/bin/trail)

Qshell 99

file - Determine file type

Synopsis

file [-m MagicFile] [-f ListFile] [file ...]

file [-c] [-m MagicFile]

Description

In the first synopsis form, the file utility determines the type of object for the specified file. The file

utility will make a best guess determination of the type. The file type is then written to standard output.

If the pathname is determined to be a regular file, file examines the first 1024 bytes to determine the

type. By default, the file utility uses the /etc/magic file to help identify files that have defined patterns

at specified byte offsets within the object.

In the second synopsis form, the file utility checks the specified MagicFile for format errors.

Options

-c Checks a specified magic file for format errors.

-f ListFile

Specifies a file containing a list of file names to be tested. This ListFile must have only one file per

line and not contain leading or trailing spaces.

-m MagicFile

Specifies the name of the magic file to use. The default magic file is /etc/magic.

 Operands

Each file is a pathname of a file to be tested.

Exit Status

v 0 when successful

v >0 when an error occurred

Related information

v “find - Find files”

find - Find files

Synopsis

find [-H | -L | -P] [-Xdx] [-f file] file ... [expression]

Description

The find utility recursively descends the directory tree for each file listed, evaluating an expression

(composed of the ″primaries″ and ″operands″ listed below) in terms of each file in the tree.

Options

-H Symbolic links on the command line are followed. Symbolic links encountered in the tree

traversal are not followed. The file information and file type returned for each symbolic link

specified on the command line is for the file referenced by the link. If the referenced file does not

exist, the file information and type will be for the link itself.

-L Both symbolic links on the command line and symbolic links encountered in the tree traversal are

100 iSeries: Qshell

followed. The file information and file type returned for each symbolic link is for the file

referenced by the link. If the referenced file does not exist, the file information and type will be

for the link itself.

-P No symbolic links are followed. The file information and file type returned for each symbolic link

are for the link itself.

-X A modification to permit find to be safely used in conjunction with xargs. If a file name contains

any of the delimiting characters used by xargs, a diagnostic message is displayed on standard

error, and the file is skipped. The delimiting characters include single (’) and double (″) quotation

marks, backslash (\), space, tab and newline characters.

-d find performs a depth-first traversal. The directories are visited in post-order and all entries in a

directory will be acted on before the directory itself. By default, find visits directories in

pre-order, or before their contents. Note, the default is not a breadth-first traversal.

-f Specify a file hierarchy for find to traverse. File hierarchies may also be specified as the operands

immediately following the options.

-x Prevent find from descending into directories that have a device number different than that of

the file from which the descent began.

 Primaries

-atime n

True if the difference between the file last access time and the time find was started, rounded up

to the next full 24-hour period, is n 24-hour periods.

-ctime n

True if the difference between the time of last change of file status information and the time find

was started, rounded up to the next full 24-hour period, is n 24-hour periods.

-exec utility [argument ...] ;

True if the program named utility returns a zero value as its exit status. Optional arguments may

be passed to the utility. The expression must be terminated by a semicolon (;). If the string ″{}″

appears anywhere in the utility name or the arguments it is replaced by the path name of the

current file. The utility is run from the directory from which find was run. Since the semicolon is

also a special character for the shell, you may need to escape the semicolon so it is passed as an

argument to find.

-group gname

True if the file belongs to the group gname. If gname is numeric and there is no such group name,

then gname is treated as a group identifier.

-inum n

True if the file has inode number n.

-links n

True if the file has n links.

-ls This primary always evaluates to true. The following information for the current file is written to

standard output:

v inode number

v size in kilobytes

v file permissions

v number of hard links

v owner

v group

v size in bytes

v last modification time

Qshell 101

v path name

If the file is a block or character special file, the major and minor numbers will be displayed

instead of the size in bytes. If the file is a symbolic link, the path name of the linked-to file will

be displayed preceded by `->’.

-mtime n

True if the difference between the file last modification time and the time find was started,

rounded up to the next full 24-hour period, is n 24-hour periods.

-ok utility [argument...] ;

The -ok primary is identical to the -exec primary with the exception that find requests user

affirmation for running the utility by printing a message to standard error and reading a

response. If the response is other than the first character of the YES response in the current locale,

the utility is not run and the value of the ok expression is false.

-name pattern

True if the last component of the path name being examined matches pattern. Special shell pattern

matching characters ([,], *, and ?) may be used as part of pattern. These characters may be

matched explicitly by escaping them with a backslash (\).

-newer file

True if the current file has a more recent last modification time than file.

-nouser

True if the file belongs to an unknown user.

-nogroup

True if the file belongs to an unknown group.

-path pattern

True if the path name being examined matches pattern. Special shell pattern matching characters

([,], *, and ?) may be used as part of pattern. These characters may be matched explicitly by

escaping them with a backslash (\). Slashes (/) are treated as normal characters and do not need

to be matched explicitly.

-perm [-]mode

The mode may be either symbolic or an octal number in the formats supported by the “chmod -

Change file modes” on page 92 command. If the mode is symbolic, a starting value of zero is

assumed and the mode sets or clears permissions without regard to the process file mode creation

mask. If the mode is octal, only bits 00777 (S_IRWXU | S_IRWXG | S_IRWXO) of the file’s mode

bits participate in the comparison. If the mode is preceded by a dash (-), this primary evaluates to

true if at least all of the bits in the mode are set in the file’s mode bits. If the mode is not preceded

by a dash, this primary evaluates to true if the bits in the mode exactly match the file’s mode bits.

Note, the first character of a symbolic mode may not be a dash (-).

-print This primary always evaluates to true. It prints the path name of the current file to standard

output. The expression is appended to the user specified expression if neither -exec, -ls nor -ok is

specified.

-prune

This primary always evaluates to true. It causes find to not descend into the current file. Note,

the -prune primary has no effect if the -d option was specified.

-size n[c]

True if the file’s size, rounded up, in 512-byte blocks is n. If n is followed by c, then the primary

is true if the file’s size is n bytes.

-type t

True if the file is of the specified type. Possible file types are as follows:

v b for block special

v c for character special

102 iSeries: Qshell

v d for directory

v f for regular file

v l for symbolic link

v p for FIFO

v s for socket

-user uname

True if the file belongs to the user uname. If uname is numeric and there is no such user name,

then uname is treated as a user identifier.

 All primaries which take a numeric argument allow the number to be preceded by a plus sign (+) or a

minus sign (-). A preceding plus sign means ″more than n″, a preceding minus sign means ″less than n″

and neither means ″exactly n″.

Operators

The primaries may be combined using the following operators. The operators are listed in order of

decreasing precedence.

(expression)

This evaluates to true if the parenthesized expression evaluates to true.

!expression

This is the unary NOT operator. It evaluates to true if the expression is false.

expression -and expression

The -and operator is the logical AND operator. As it is implied by the juxtaposition of two

expressions it does not need to be specified. The expression evaluates to true if both expressions

are true. The second expression is not evaluated if the first expression is false.

expression -or expression

The -or operator is the logical OR operator. The expression evaluates to true if either the first or

the second expression is true. The second expression is not evaluated if the first expression is

true.

 All operands and primaries must be separate arguments to the find utility. Primaries which themselves

take arguments expect each argument to be a separate argument to find. Notes

1. The special characters used by find are also special characters to many shell programs. In particular,

the characters *, [,], ?, (,), !, and ; may need to be escaped from the shell.

Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “chmod - Change file modes” on page 92

v “file - Determine file type” on page 100

v “xargs - Construct argument lists and invoke utility” on page 63

Examples

1. Find all *.class files starting at the directory ″/project/java/class″.

find /project/java/class -name ’*.class’

2. Find all the *.java files that have the ″import java.awt;″ string in them starting at the directory,

″/project/java/code″.

find /project/java/code -name ’*.java’ -exec grep ’import java.awt;’ {} \;

Qshell 103

3. Find all the *.class files starting at the directory ″/project/java/class″ and remove the files.

find /project/java/class -name ’*.class’ -exec rm {} \;

4. Find all the files that belong to the user ″abbey″ starting at the directory, ″/project″.

find /project -user abbey

gencat - Generate a formatted message catalog

Synopsis

gencat [-C ccsid] [-m mode] [-t text] catfile msgfile ...

Description

The gencat utility generates a formatted message catalog catfile from the message text source file msgfile.

You can specify up to 300 message text source files. Message text source files are processed in the

sequence specified. Each successive source file modifies the catalog. If a message number in the source

file already exists in the message catalog, the new message text defined in the source file replaces the old

message text in the message catalog file. If a message number in the source file does not already exist in

the message catalog, the message information is added to the message catalog.

Options

-C ccsid

Create the message catalog and store the message text in the specified ccsid.

-m mode

Set the file permission bits of the message catalog to the specified mode. The mode argument can

be in any of the formats supported by the “chmod - Change file modes” on page 92 command. If

a symbolic mode is specified, the operation characters + and - are interpreted relative to an initial

mode of ″a=rw″.

-t text Assign the specified text to the message catalog object. Assigning text to objects is dependent on

the support provided by the file system or object type used for the message catalog.

 Operands

The catfile operand specifies the path to the message catalog to be changed or created. If the -m option is

not specified, the message catalog is created using a default mode that allows read and write permission

for the owner, group, and others (0666) as modified by the current file creation mask.

Each msgfile specifies the path to an input message text source file. There is a limit of 300 message text

source files.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “dspmsg - Display message from message catalog” on page 133

Examples

1. Create a message catalog using one message text source file.

gencat product.cat msg.src

2. Create a message catalog using multiple message text source files.

gencat product.cat msg1.src msg2.src msg3.src

3. Create a message catalog and set the mode and ccsid.

104 iSeries: Qshell

gencat -C 37 -m a-w product.cat msg.src

getconf - Get configuration values

Synopsis

getconf [name [pathname]]

Description

The getconf utility displays the POSIX configuration variables. If you specify name, getconf displays the

value of the configuration variable on standard output. When the configuration variable depends on a

path name you must specify pathname.

When no arguments are specified, getconf displays a list of all the configuration variables and their

values. For those configuration variables that depend on a path name, getconf uses /.

Options

None.

Operands

If specified, name is one of these values:

CCSID

Represents the default coded character set identifier (CCSID) used internally for integrated file

system path names.

CHOWN_RESTRICTED

Restrict the use of chown on the object represented by pathname to a job with appropriate

privileges.

CLK_TCK

The number of clock ticks in a second.

LINK_MAX

Maximum number of links the object represented by pathname can have.

NAME_MAX

Maximum number of bytes in a file name (the last component of the path name).

NGROUPS_MAX

Maximum number of supplementary group IDs that can be associated with a job.

NO_TRUNC

Generate an error if a file name is longer than NAME_MAX.

OPEN_MAX

Maximum number of files a single job can have open at one time.

PAGE_SIZE

Represents the system hardware page size.

PAGESIZE

Represents the system hardware page size.

PATH_MAX

Maximum number of bytes in a complete path name.

PIPE_BUF

Maximum number of bytes that can be written atomically to a pipe.

Qshell 105

STREAM_MAX

Maximum number of streams that a job can have open at one time.

THREAD_SAFE

The object represented by pathname resides in a thread-safe file system.

 Exit Status

v 0 when successful.

v >0 when successful.

Examples

1. Determine if the directory /home is in a thread-safe file system:

getconf THREAD_SAFE /home

2. Display the maximum number of bytes in a file name:

getconf NAME_MAX

3. Display all of the configuration variables:

getconf

head - Copy the first part of files

Synopsis

head [-n count] [file ...]

Description

The head utility displays the first count lines of each of the specified files, or of standard input if no files

are specified. If -n is not specified, then the first 10 lines of the file are displayed.

If more than one file is specified, each file is preceded by a header consisting of the string ″==> XXX <==″

where XXX is the name of the file.

Options

-n Display count number of lines.

 Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “cat - Concatenate and print files” on page 88

v “tail - Display the last part of a file” on page 128

Examples

1. To display the first 20 lines in the file ″myfile″.

head -n 20 myfile

ln - Link files

Synopsis

ln [-fs] source_file [target_file]

ln [-fs] source_file ... [target_dir]

106 iSeries: Qshell

Description

The ln utility creates a new directory entry (linked file) which has the same modes as the original file. It

is useful for maintaining multiple copies of a file in many places at once without using up storage for the

copies. Instead, a link ″points to″ the original copy. There are two types of links: hard links and symbolic

links. How a link ″points to″ a file is one of the differences between a hard or symbolic link.

By default ln makes hard links. A hard link to a file is indistinguishable from the original directory entry;

any changes to a file are effective independent of the name used to reference the file. Hard links may not

normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems

and may refer to directories.

Given one or two arguments, ln creates a link to an existing file source_file. If target_file is given, the link

has that name. Target_file may also be a directory in which to place the link. Otherwise it is placed in the

current directory. If only the directory is specified, the link will be made to the last component of

source_file.

Given more than two arguments, ln makes links in target_dir to all the named source files. The links

made will have the same name as the files being linked to.

Options

-f Unlink any already existing file, permitting the link to occur.

-s Create a symbolic link.

 Exit Status

v 0 when success

v >0 when an error occurs

Related information

v “cp - Copy files” on page 97

v “ls - List directory contents”

v “mv - Move files” on page 112

v “rm - Remove directory entries” on page 125

v “rmdir - Remove directories” on page 126

Examples

1. Create a symbolic link from the file, ″/usr/bin/perl5″ to the file ″/usr/bin/perl″.

ln -s /usr/bin/perl5 /usr/bin/perl

2. Create a new link from the file ″/usr/bin/qsh″ to the file ″/bin/qsh″ and unlink the file ″/bin/qsh″ if

it exists.

ln -f /usr/bin/qsh /bin/qsh

ls - List directory contents

Synopsis

ls [-ACFLRSTacdfiloqrstu1] [file ...]

Description

Qshell 107

For each operand that names a file of a type other than directory, ls displays its name as well as any

requested, associated information. For each operand that names a file of type directory, ls displays the

names of files contained within that directory, as well as any requested, associated information.

If no operands are given, the contents of the current directory are displayed. If more than one operand is

given, non-directory operands are displayed first; directory and non-directory operands are sorted

separately and in lexicographical order.

Options

-A List all entries except for ″.″ and ″..″.

-C Force multi-column output; this is the default when output is to a terminal.

-F Display a slash (/) immediately after each path name that is a directory, an asterisk (*) after each

that is executable, and an at sign (@) after each symbolic link.

-L If argument is a symbolic link, list the file or directory the link references rather than the link

itself.

-R Recursively list subdirectories.

-S Display the CCSID attribute for the file.

-T Display complete time information for the file, including month, day, hour, minute, second, and

year when the -l option is also specified.

-a Include directory entries whose names begin with a dot (.).

-c Use time when file status was last changed for sorting or printing.

-d Directories are listed as plain files (not searched recursively) and symbolic links in the argument

list are not indirected through.

-f Output is not sorted.

-i For each file, print the file’s file serial number (inode number).

-l (Lowercase letter `ell.’) List in long format. See Extended Description below for details. If the

output is to a terminal, a total sum for all the file sizes is output on a line before the long listing.

-o Include the file flags in a long (-l) output.

-q Force printing of non-graphic characters in file names as the question mark (?) character. This is

the default when output is to a terminal.

-r Reverse the order of the sort to get reverse lexicographical order or the oldest entries first.

-s Display the number of bytes actually allocated for each file, in units of 1024 bytes, where partial

units are rounded up to the next integer value.

-t Sort by time modified (most recently modified first) before sorting the operands by

lexicographical order.

-u Use time of last access, instead of last modification of the file for sorting (-t) or printing (-l).

-1 (The numeric digit one) Force output to be one entry per line. This is the default when output is

not to a terminal.

 The -1, -C, and -l options all override each other. The last one specified determines the format used.

The -c, and -u options override each other. The last one specified determines the file time used.

By default, ls lists one entry per line to standard output; the exceptions are to terminals or when the -C

option is specified.

108 iSeries: Qshell

File information is displayed with one or more blanks separating the information associated with the -i,

-s, -l, and -S options.

Extended Description

If the -l option is specified, the following long format information is displayed for each file:

v file mode,

v number of links,

v owner name,

v group name,

v number of bytes in the file,

v time the file was last modified, and

v the path name.

If the file was modified within six months of the current date, the time is displayed as the abbreviated

month, day-of-month, hour, and minute. Otherwise the time is displayed as the abbreviated month,

day-of-month, and four-digit year.

In addition, for each directory whose contents are displayed, the total number of bytes used by the files

in the directory is displayed on a line by itself immediately before the information for the files in the

directory.

If the owner or group names are not a known user or group name the numeric identifiers are displayed.

If the file is a character special or block special file, the major and minor device numbers for the file are

displayed in the size field. If the file is a symbolic link the pathname of the linked-to file is preceded by

″->″.

The file mode consists of the entry type, owner permissions, group permissions, and other permissions.

The entry type character describes the type of file, as follows:

v b for a block special file.

v c for a character special file.

v d for a directory.

v l for a symbolic link.

v p for a pipe.

v s for a socket.

v - for a regular file.

The owner permissions, group permissions, and other permissions are each three characters. Each field

has three character positions:

v For the first position, if the value is r, the file is readable. If the value is -, it is not readable.

v For the second position, if the value is w, the file is writable. If the value is -, it is not writable.

v For the third position,

– If the value is S for the owner permissions, the set-user-ID mode is set. If the value is S for the

group permissions, the set-group-ID mode is set.

– If the value is s for the owner permissions, the file is executable and the set-user-ID mode is set. If

the value is s for the group permissions, the file is executable and the set-group-ID mode is set.

– If the value is x, the file is executable or the directory is searchable.

– If the value is -, the object is not executable or searchable.

Environment Variables

Qshell 109

ls is affected by the following environment variables:

COLUMNS

If this variable contains a string representing a decimal integer, it is used as the column position

width for displaying multiple-text-column output. The ls utility calculates how many path name

text columns to display based on the width provided. See the -C option.

 Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “chgrp - Change file group ownership” on page 91

v “chmod - Change file modes” on page 92

v “chown - Change file ownership” on page 95

v “cp - Copy files” on page 97

v “ln - Link files” on page 106

v “mkdir - Make directories”

v “mv - Move files” on page 112

v “rm - Remove directory entries” on page 125

v “rmdir - Remove directories” on page 126

Examples

1. Display the list of files in the current directory using the long format.

ls -l

2. Display all date and time details for the file ″myfile″.

ls -lT myfile

-rwxrwxrwx 1 abbey 0 592 Sep 12 22:47:01 1998 myfile

mkdir - Make directories

Synopsis

mkdir [-p] [-m mode] directory ...

Description

The mkdir utility creates the directories named as operands, in the order specified, using mode

rwxrwxrwx (0777) as modified by the current file creation mask.

The user must have write permission in the parent directory.

Options

-m Set the file permission bits of the final created directory to the specified mode. The mode

argument can be in any of the formats supported by the “chmod - Change file modes” on page

92 command. If a symbolic mode is specified, the operation characters + and - are interpreted

relative to an initial mode of ″a=rwx″.

-p Create intermediate directories as required. If this option is not specified, the full path prefix of

each operand must already exist. Intermediate directories are created with permission bits of

rwxrwxrwx (0777) as modified by the current file creation mask, plus write and search

permission for the owner.

 Exit Status

110 iSeries: Qshell

v 0 if successful

v >0 if an error occurred.

Related information

v “chmod - Change file modes” on page 92

v “rmdir - Remove directories” on page 126

v “umask - Get or set the file mode creation mask” on page 131

Examples

1. Create the directories ″new″, ″java″, ″test″, ″dir″, ″4″ and ″bob″ and set the mode to read, write and

execute for owner.

mkdir -p -m 700 /new/java/test/dir/4/bob

mkfifo - Make FIFO special files

Synopsis

mkfifo [-p] [-m mode] file ...

Description

The mkfifo utility creates the FIFO special files named as operands, in the order specified, using a

default mode that allows read and write permission for the owner, group, and others (0666) as modified

by the current file creation mask.

The user must have write permission in the parent directory.

Options

-m mode

Set the file permission bits of the FIFO special file to the specified mode. The mode argument can

be in any of the formats supported by the “chmod - Change file modes” on page 92 command. If

a symbolic mode is specified, the operation characters + and - are interpreted relative to an initial

mode of ″a=rw″.

-p Create intermediate directories as required. If this option is not specified, the full path prefix of

each file must already exist. Intermediate directories are created with a default mode that allows

read, write, and search permission for the owner, group, and others (0777) as modified by the

current file creation mask.

 Operands

Each file is the path name of FIFO special file.

Exit Status

v 0 if successful

v >0 if an error occurred.

Related information

v “chmod - Change file modes” on page 92

v “mkdir - Make directories” on page 110

v “umask - Get or set the file mode creation mask” on page 131

Examples

1. Create the FIFO special files “fifo1” and “fifo1”:

Qshell 111

mkfifo fifo1 fifo2

2. Create the the FIFO special file “fifo1” and set the permissons to read, write and execute for the

owner:

mkfifo -m 700 myfifo

3. Create the the FIFO special file “/dir1/dir2/fifo1” and each directory in the path that does not exist:

mkfifo -p /dir1/dir2/fifo1

mv - Move files

Synopsis

mv [-f | -i] source_file target_file

mv [-f | -i] source_file ... target_dir

Description

In its first form, the mv utility renames the file named by the source_file operand to the destination path

named by the target_file operand. This form is assumed when the last operand does not name an already

existing directory.

In its second form, mv moves each file named by a source_file operand to a destination file in the existing

directory named by the target_dir operand. The destination path for each source_file operand is the path

name produced by the concatenation of target_dir, a slash, and the final path name component from

source_file.

It is an error for either the source_file operand or the destination path to specify a directory except when

both are directories.

If the destination path does not have a mode which permits writing, mv prompts the user for

confirmation as specified for the -i option.

Options

-f Do not prompt for confirmation before overwriting the destination path. The -i option is ignored

if the -f option is specified.

-i Write a prompt to standard error before moving a file that would overwrite an existing file. If the

response from the standard input begins with the first character for the YES response in the

current locale, the move is attempted.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “cp - Copy files” on page 97

v “ln - Link files” on page 106

v “ls - List directory contents” on page 107

v “rm - Remove directory entries” on page 125

Examples

1. Move the file ″perl5″ into the directory ″/usr/bin″ and prompt the user to overwrite if the file exists.

mv -i perl5 /usr/bin

112 iSeries: Qshell

od - Dump files in various formats

Synopsis

od [-A address_base] [-j skip] [-N count] [-t type_string] [-Cbcdosvx] [file...]

Description

The od utility writes the contents of the specified files to standard output in a user-specified format. If the

file parameter is not given, the od command reads standard input. The format is specified by the -t flag.

If no format type is specified, -t oS is the default.

Options

-A address_base

Specifies the format for the output offset base. The address_base can be one of these values:

v d for decimal,

v o for octal,

v x for hexadecimal, or

v n for none.

In the case of n, the offset base is not displayed. If -A is not specified, -A o is the default.

-b Output bytes in octal. It is equivalent to -t 01.

-C Display the CCSID of the file to standard output before the rest of the output is written.

-c Output bytes as characters. It is equivalent to -t c.

-d Output bytes in unsigned decimal. It is equivalent to -t u2.

-j skip Specifies the number of bytes to skip before beginning to display output. If more than one file is

specified, the number of bytes will be used on the concatenated input of all files specified. An

error will occur if this number is larger than the size of the concatenated inputs. This value can

be specified in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal (default).

-N count

Specifies the number of bytes to be written. By default, the whole file will be written. This value

can be specified in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal

(default).

-o Output bytes in octal. It is equivalent to -t o2.

-s Output bytes in signed decimal. It is equivalent to -t d2.

-t type_string

Specifies one or more output types. The type specified must be a string containing all of the

formatting types that you want. The type_string can contain these values:

v a for character,

v c for character,

v d for signed decimal,

v f for floating point,

v o for octal,

v u for unsigned decimal, or

v x for hexadecimal.

The type specifications of a and c may give unexpected results since they depend on the CCSID

on the data. The a type specifier displays non-printable characters as named characters. The c

type specifier displays non-printable characters as three digit octal numbers.

Qshell 113

The type specifications of d, o, u and x can also be followed by 1, 2, 4, C, S, I or L. These specify

the number of bytes to be transformed by each instance of the output type. The values C, S, I

and L correspond to char, short, int and long.

 The type specification of f can be followed by by 4, 8, F, D or L. These specify the number of

bytes to be transformed by each instance of the output type. The values F, D and L correspond to

float, double, and long double. If -t is not specified, the default is -t oS.

-v Write all input data. Without this option, repeated output lines will not be written. When repeats

occur, only an asterisk (*) will be written.

-x Output bytes in hexadecimal. It is equivalent to -t x2.

 Operands

Each file is a path name of an object to be written to standard output. If no file operands are specified,

standard input will be used.

Exit Status

v 0 when successful

v >0 when an error occurred.

Related information

v “cat - Concatenate and print files” on page 88

v “pr - Print files” on page 121

Examples

1. Dump a file in hexadecimal format.

od -tx output.txt

2. Dump the first 50 bytes of a file.

od -N50 output.txt

3. Skip the first 100 bytes and then dump the rest of a file.

od -j100 output.txt

4. Dump a file in both hexadecimal and character format.

od -tx1 -tc output.txt

pax - Portable archive interchange

Synopsis

pax [-cdnv] [-E limit] [-f archive] [-s replstr ...] [-U user ...] [-G group ...] [-T [from_date][,to_date] ...] [pattern

...]

pax -r [-cdiknuvDYZ] [-C ccsid] [-E limit] [-f archive] [-o options ...] [-p string ...] [-s replstr ...] [-U user ...]

[-G group ...] [-T [from_date][,to_date] ...] [pattern ...]

pax -w [-dituvHLPX] [-b blocksize] [[-a] [-f archive]] [-x format] [-B bytes] [-s replstr ...] [-o options ...] [-U

user ...] [-G group ...] [-T [from_date][,to_date][/[c][m]] ...] [file ...]

pax -r -w [-diklntuvDHLPXYZ] [-p string ...] [-s replstr ...] [-U user ...] [-G group ...] [-T

[from_date][,to_date][/[c][m]] ...] [file ...] directory

Description

114 iSeries: Qshell

The pax utility reads, writes, and lists the members of an archive file, and copies directory hierarchies.

pax operation is independent of the specific archive format, and supports a wide variety of different

archive formats. A list of supported archive formats can be found under the description of the -x option.

The presence of the -r and the -w options specifies which of the following functional modes pax will

operate under: list, read, write, and copy.

<none>List

pax writes a table of contents of the members of the archive file read from whose path names

match the specified patterns. The table of contents contains one file name per line and is written

using single line buffering.

-r Read

pax extracts the members of the archive file read from the with path names matching the

specified patterns. The archive format and blocking is automatically determined on input. When

an extracted file is a directory, the entire file hierarchy rooted at that directory is extracted. All

extracted files are created relative to the current file hierarchy. The setting of ownership, access

and modification times, and file mode of the extracted files are discussed in more detail under

the -p option.

-w Write

pax writes an archive containing the file operands to standard output using the specified archive

format. When no file operands are specified, a list of files to copy with one per line is read from

standard input. When a file operand is also a directory, the entire file hierarchy rooted at that

directory will be included.

-r -w Copy

pax copies the file operands to the destination directory. When no file operands are specified, a list

of files to copy with one per line is read from standard input. When a file operand is also a

directory the entire file hierarchy rooted at that directory will be included. The effect of the copy

is as if the copied files were written to an archive file and then subsequently extracted, except

that there may be hard links between the original and the copied files (see the -l option below).

 Warning: The destination directory must not be one of the file

operands or a member of a file hierarchy rooted at one of

the file operands. The result of a copy under these

conditions is unpredictable.

 Note: Archive files must be in CCSID 819 for portability with

other platforms.

While processing a damaged archive during a read or list operation, pax will attempt to recover from

media defects and will search through the archive to locate and process the largest number of archive

members possible (see the -E option for more details on error handling).

Options

-r Read an archive file from standard input and extract the specified files. If any intermediate

directories are needed in order to extract an archive member, these directories will be created as if

mkdir was called with the bitwise inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the

mode argument. When the selected archive format supports the specification of linked files and

these files cannot be linked while the archive is being extracted, pax will write a diagnostic

message to standard error and exit with a nonzero exit status at the completion of operation.

-w Write files to the standard output in the specified archive format. When no file operands are

specified, standard input is read for a list of path names with one per line without any leading or

trailing <blanks>.

-a Append files to the end of an archive that was previously written. If an archive format is not

Qshell 115

specified with a -x option, the format currently being used in the archive will be selected. Any

attempt to append to an archive in a format different from the format already used in the archive

will cause pax to exit immediately with a non-zero exit status. The blocking size used in the

archive volume where writing starts will continue to be used for the remainder of that archive

volume.

-b blocksize

When writing an archive, block the output at a positive decimal integer number of bytes per

write to the archive file. The blocksize must be a multiple of 512 bytes with a maximum of 32256

bytes. A blocksize can end with k or b to specify multiplication by 1024 (1K) or 512. A pair of

blocksizes can be separated by x to indicate a product. When blocking is not specified, the default

blocksize is dependent on the specific archive format being used (see the -x option).

-c Match all file or archive members except those specified by the pattern and file operands.

-d Cause files of type directory being copied or archived, or archive members of type directory

being extracted, to match only the directory file or archive member and not the file hierarchy

rooted at the directory.

-f archive

Specify archive as the path name of the input or output archive, overriding the default standard

input (for list and read) or standard output (for write). A single archive may span multiple files

and different archive devices. When required, pax will prompt for the path name of the file or

device of the next volume in the archive.

-i Interactively rename files or archive members. For each archive member matching a pattern

operand or each file matching a file operand, pax will prompt to the terminal giving the name of

the file, its file mode and its modification time. pax then reads a line from the terminal. If this

line is blank, the file or archive member is skipped. If this line consists of a single period, the file

or archive member is processed with no modification to its name. Otherwise, its name is replaced

with the contents of the line. pax will immediately exit with a non-zero exit status if EOF is

encountered when reading a response. If the LC_TIME environment variable is set, the

modification time is formatted using the format specified by the d_t_fmt keyword in the

LC_TIME category of the specified locale.

-k Do not overwrite existing files.

-l (The lowercase letter ell) Link files. In the copy mode (-r -w), hard links are made between the

source and destination file hierarchies whenever possible.

-n Select the first archive member that matches each pattern operand. No more than one archive

member is matched for each pattern. When members of type directory are matched, the file

hierarchy rooted at that directory is also matched (unless -d is also specified).

-o Information to modify the algorithm for extracting or writing archive files which is specific to the

archive format specified by -x. In general, options take the form: name=value.

-p string

Specify one or more file characteristic options (privileges). The string is a string specifying file

characteristics to be retained or discarded on extraction. The string consists of the specification

characters a, e, m, o, and p. Multiple characteristics can be concatenated within the same string

and multiple -p options can be specified. The meaning of the specification characters are as

follows:

a Do not preserve file access times. By default, file access times are preserved whenever

possible.

e Preserve everything, the user ID, group ID, file mode bits, file access time, and file

modification time. This is intended to be used by someone with all the appropriate

privileges in order to preserve all aspects of the files as they are recorded in the archive.

The e flag is the sum of the o and p flags.

116 iSeries: Qshell

m Do not preserve file modification times. By default, file modification times are preserved

whenever possible.

o Preserve the user ID and group ID.

p Preserve the file mode bits. This intended to be used by a user with regular privileges

who wants to preserve all aspects of the file other than the ownership. The file times are

preserved by default, but two other flags are offered to disable this and use the time of

extraction instead.

In the preceding list, preserve indicates that an attribute stored in the archive is given to the

extracted file, subject to the permissions of the invoking process. Otherwise the attribute of the

extracted file is determined as part of the normal file creation action. If the preservation of any of

these items fails for any reason, pax will write a diagnostic message to standard error. Failure to

preserve these items affects the final exit status, but will not cause the extracted file to be deleted.

If the file characteristic letters in any of the strings are duplicated or conflict with each other, the

one given last will take precedence. For example, if -p eme is specified, file modification times

are still preserved.

-s Modify the file or archive member names specified by the pattern or file operands according to

the substitution expression replstr, using the syntax of the regular expressions. The format of these

regular expressions are:

 /old/new/[gp]

Old is a basic regular expression and new can contain an ampersand (&), n (where n is a digit)

back-references, or subexpression matching. The old string may also contain <newline>

characters. Any non-null character can be used as a delimiter (/ is shown here). Multiple -s

expressions can be specified. The expressions are applied in the order they are specified on the

command line, terminating with the first successful substitution. The optional trailing g continues

to apply the substitution expression to the path name substring which starts with the first

character following the end of the last successful substitution. The first unsuccessful substitution

stops the operation of the g option. The optional trailing p will cause the final result of a

successful substitution to be written to standard error in the following format:

 <original path name> >> <new path name>

File or archive member names that substitute to the empty string are not selected and will be

skipped.

-t Reset the access times of any file or directory read or accessed by pax to be the same as they

were before being read or accessed by pax.

-u Ignore files that are older (having a less recent file modification time) than a pre-existing file or

archive member with the same name. During read, an archive member with the same name as a

file in the file system will be extracted if the archive member is newer than the file. During write,

a file system member with the same name as an archive member will be written to the archive if

it is newer than the archive member. During copy, the file in the destination hierarchy is replaced

by the file in the source hierarchy or by a link to the file in the source hierarchy if the file in the

source hierarchy is newer.

-v During a list operation, produce a verbose table of contents using the format of the ls utility with

the -l option. For path names representing a hard link to a previous member of the archive, the

output has the format: <ls -l listing> == <link name> For path names representing a symbolic

link, the output has the format: <ls -l listing> = ><link name> Where <ls -l listing> is the output

format specified by the ls utility when used with the -l option. Otherwise for all the other

operational modes (read, write, and copy), path names are written and flushed to standard error

without a trailing newline as soon as processing begins on that file or archive member. The

trailing newline is not buffered, and is written only after the file has been read or written. If the

Qshell 117

LC_TIME environment variable is set, the output time is formatted using the format specified by

the d_t_fmt keyword in the LC_TIME category of the specified locale.

-x Specify the output archive format, with the default format being ustar. pax currently supports the

following formats:

cpio The extended cpio interchange format specified in the 1003.2 standard. The default

blocksize for this format is 5120 bytes.

bcpio The old binary cpio format. The default blocksize for this format is 5120 bytes. This

format is not very portable and should not be used when other formats are available.

sv4cpio

The System V release 4 cpio. The default blocksize for this format is 5120 bytes.

sv4crc The System V release 4 cpio with file crc checksums. The default blocksize for this format

is 5120 bytes.

tar The old BSD tar format as found in BSD4.3. The default blocksize for this format is 10240

bytes. Path names stored by this format must be 100 characters or less in length. Only

regular files, hard links, soft links, and directories will be archived (other file system

types are not supported). For backward compatibility with even older tar formats, a -o

option can be used when writing an archive to omit the storage of directories. This option

takes the form: -o -Cm -write_opt=nodir

ustar The extended tar interchange format specified in the 1003.2 standard. The default

blocksize for this format is 10240 bytes. Path names stored by this format must be 250

characters or less in length.

pax will detect and report any file that it is unable to store or extract as the result of any specific

archive format restrictions. The individual archive formats may impose additional restrictions on

use. Typical archive format restrictions include (but are not limited to): file path name length, file

size, link path name length and the type of the file.

-A Run pax as old tar.

-B Limit the number of bytes written to a single archive volume to bytes. The bytes limit can end

with m, k, or b to specify multiplication by 1048576 (1M), 1024 (1K) or 512. A pair of bytes limits

can be separated by x to indicate a product.

-C ccsid

Create the files extracted from the archive in the specified ccsid. There must be a valid translation

from CCSID 819 to the specified ccsid. This option overrides the value of the QIBM_CCSID

environment variable.

-D This option is the same as the -u option, except that the file inode change time is checked instead

of the file modification time. The file inode change time can be used to select files whose inode

information (for example, uid, gid, and so on) is newer than a copy of the file in the destination

directory.

-E Limit the number of consecutive read faults while trying to read a flawed archives. With a

positive limit, pax will attempt to recover from an archive read error and will continue processing

starting with the next file stored in the archive. A limit of 0 will cause pax to stop operation after

the first read error is detected on an archive volume. A limit of NONE will cause pax to attempt

to recover from read errors forever. The default limit is a small positive number of retries.

 Warning: Using this option with NONE should be used with

extreme caution as pax may get stuck in an infinite loop

on a very badly flawed archive.

118 iSeries: Qshell

-G Select a file based on its group name, or when starting with a #, a numeric gid. A ’’ can be used

to escape the #. Multiple -G options may be supplied and checking stops with the first match.

-H Follow only command line symbolic links while performing a physical file system traversal.

-L Follow all symbolic links to perform a logical file system traversal.

-P Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

-T Allow files to be selected based on a file modification or inode change time falling within a

specified time range of from_date to to_date (the dates are inclusive). If only a from_date is

supplied, all files with a modification or inode change time equal to or younger are selected. If

only a to_date is supplied, all files with a modification or inode change time equal to or older will

be selected. When the from_date is equal to the to_date, only files with a modification or inode

change time of exactly that time will be selected.

 When pax is in the write or copy mode, the optional trailing field [c][m] can be used to

determine which file time (inode change, file modification or both) are used in the comparison. If

neither is specified, the default is to use file modification time only. The m specifies the

comparison of file modification time (the time when the file was last written). The c specifies the

comparison of inode change time (the time when the file inode was last changed; for example, a

change of owner, group, mode, and so on). When c and m are both specified, then the

modification and inode change times are both compared. The inode change time comparison is

useful in selecting files whose attributes were recently changed or selecting files which were

recently created and had their modification time reset to an older time (as what happens when a

file is extracted from an archive and the modification time is preserved). Time comparisons using

both file times is useful when pax is used to create a time based incremental archive (only files

that were changed during a specified time range will be archived).

 A time range is made up of seven different fields and each field must contain two digits. The

format is:

 [cc[yy[mm[dd[hh]]]]]mm[.ss]

where cc is the century, yy is the last two digits of the year, the first mm is the month (from 01 to

12), dd is the day of the month (from 01 to 31), hh is the hour of the day (from 00 to 23), the

second mm is the minute (from 00 to 59), and ss is the seconds (from 00 to 59). The minute field

mm is required, while the other fields are optional and must be added in the following order: hh,

dd, mm, yy, cc.

 The ss field may be added independently of the other fields. Time ranges are relative to the

current time, so -T 1234/cm would select all files with a modification or inode change time of

12:34 p.m. today or later. Multiple -T time range can be supplied and checking stops with the first

match.

-U Select a file based on its user name, or when starting with a #, a numeric uid. A ’’ can be used to

escape the #. Multiple -U options may be supplied and checking stops with the first match.

-X When traversing the file hierarchy specified by a path name, do not descend into directories that

have a different device ID.

-Y This option is the same as the -D option, except that the inode change time is checked using the

path name created after all the file name modifications have completed.

-Z This option is the same as the -u option, except that the modification time is checked using the

path name created after all the file name modifications have completed.

 The options that operate on the names of files or archive members (-c, -i, -n, -s, -u, -v, -D, -G, -T, -U, -Y,

and -Z) interact as follows.

v When extracting files during a read operation, archive members are selected based only on the user

specified pattern operands as modified by the -c, -n, -u, -D, -G, -T, -U options. Then any -s and -i

Qshell 119

options will modify in that order, the names of these selected files. Then the -Y and -Z options will be

applied based on the final path name. Finally the -v option will write the names resulting from these

modifications.

v When archiving files during a write operation, or copying files during a copy operation, archive

members are selected based only on the user specified path names as modified by the -n, -u, -D, -G,

-T, and -U options (the -D option only applies during a copy operation). Then any -s and -i options

will modify in that order, the names of these selected files. Then during a copy operation the -Y and

the -Z options will be applied based on the final path name. Finally the -v option will write the names

resulting from these modifications.

v When one or both of the -u or -D options are specified along with the -n option, a file is not

considered selected unless it is newer than the file to which it is compared.

Operands

The directory operand specifies a destination directory path name. If the directory operand does not exist,

or it is not writable by the user, or it is not of type directory, pax will exit with a non-zero exit status.

The pattern operand is used to select one or more path names of archive members. When the pattern

operand is not supplied, all members of the archive will be selected. When a pattern matches a directory,

the entire file hierarchy rooted at that directory will be selected. When a pattern operand does not select

at least one archive member, pax will write these pattern operands in a diagnostic message to standard

error and then exit with a non-zero exit status.

The file operand specifies the path name of a file to be copied or archived. When a file operand does not

select at least one archive member, pax will write these file operand path names in a diagnostic message

to standard error and then exit with a non-zero exit status.

Environment Variables

pax is affected by the following environment variables:

LANG

Provides a default value for locale categories that are not specifically set with a variable starting

with LC_.

LC_TIME

Defines the date and time format used in displaying file times.

QIBM_CCSID

pax creates the file extracted from the archive in the CCSID specified by the value of the

environment variable.

 Exit Status

v 0 All files were processed successfully

v 1 An error occurred

Related information

v “compress - Compress data” on page 96

v “tar - File archiver” on page 129

Examples

1. Copy the contents of the current directory to an archive file:

pax -w -f saved.ar

2. Display the verbose table of contents for an archive file:

pax -r -v -f saved.ar

120 iSeries: Qshell

3. The following commands copy the entire directory tree anchored at /home/abbey/olddir to

/home/abbey/newdir:

mkdir /home/abbey/newdir

cd /home/abbey/olddir

pax -rw . /home/abbey/newdir

4. Interactively select the files to copy from the current directory to the directory destination:

pax -rw -i . destination

5. Extract all files from an archive file that are owned by user root and group bin and preserve all file

permissions:

pax -r -pe -U root -G bin -f saved.ar

6. List and update only those files in the destination directory /backup which are older than files with

the same name found in the source directory /sourcecode:

pax -r -w -v -Y -Z /sourcecode /backup

pr - Print files

Synopsis

pr [+page] [-column] [-adFmrt] [-e [char][gap]] [-h header] [-i[char][gap]] [-l line] [-n[char][width]] [-o offset]

[-s[char]] [-w width] [-] [file ...]

Description

The pr utility is a printing and pagination filter for text files. When multiple input files are specified, each

is read, formatted, and written to standard output. By default, the input is separated into 66-line pages,

each with a 5-line header with the page number, date, time, and the path name of the file and a 5-line

trailer consisting of blank lines. If the LC_TIME environment variable is set, the date and time in the

header is formatted using the format specified by the d_t_fmt keyword in the LC_TIME category of the

specified locale.

When multiple column output is specified, text columns are of equal width. By default text columns are

separated by at least one <space>. Input lines that do not fit into a text column are truncated. Lines are

not truncated under single column output.

Error messages are written to standard error during the printing process (if output is redirected) or after

all successful file printing is complete (when printing to a terminal).

If pr receives an interrupt while printing to a terminal, it flushes all accumulated error messages to the

screen before terminating.

Options

Notes:

1. In the following option descriptions, column, lines, offset, page, and width are positive decimal integers

and gap is a nonnegative decimal integer.

2. The -s option does not allow the option letter to be separated from its argument.

3. The -e, -i, and -n options require that both arguments, if present, not be separated from the option

letter.

+page Begin output at page number page of the formatted input.

-column

Produce output that is columns wide (default is 1) that is written vertically down each column in

the order in which the text is received from the input file. The options -e and -i are assumed. This

option should not be used with the -m option. When used with the -t option the minimum

number of lines is used to display the output.

Qshell 121

-a Modify the effect of the column option so that the columns are filled across the page in a

round-robin order (for example, when column is 2, the first input line heads column 1, the second

heads column 2, the third is the second line in column 1, and so on). This option requires the use

of the column option.

-d Produce output that is double spaced. An extra <newline> character is output following every

<newline> found in the input.

-e [char][gap]

Expand each input <tab> to the next greater column position specified by the formula n*gap+1,

where n is an integer > 0. If gap is zero or is omitted the default is 8. All <tab> characters in the

input are expanded into the appropriate number of <space>s . If any nondigit character, char, is

specified, it is used as the input tab character.

-F Use a <form-feed> character for new pages, instead of the default behavior that uses a sequence

of <newline> characters.

-h header

Use the string header to replace the file name in the header line.

-i [char][gap]

In output, replace multiple <space>s with <tab>s whenever two or more adjacent <space>s reach

column positions gap+1, 2*gap+1, and so on. If gap is zero or omitted, default <tab> settings at

every eighth column position is used. If any nondigit character, char, is specified, it is used as the

output <tab> character.

-l lines Override the 66 line default and reset the page length to lines. If lines is not greater than the sum

of both the header and trailer depths (in lines), the pr utility suppresses output of both the

header and trailer, as if the -t option were in effect.

-m Merge the contents of multiple files. One line from each file specified by a file operand is written

side by side into text columns of equal fixed widths, in terms of the number of column positions.

The number of text columns depends on the number of file operands successfully opened. The

maximum number of files merged depends on page width and the per process open file limit.

The options -e and i are assumed.

-n [char][width]

Provide width digit line numbering. The default for width, if not specified, is 5. The number

occupies the first width column positions of each text column or each line of -m output. If char

(any nondigit character) is given, it is appended to the line number to separate it from whatever

follows. The default for char is a <tab>. Line numbers longer than width columns are truncated.

-o offset

Each line of output is preceded by offset <spaces>s. If this option is not specified, the default is

zero. The space taken is in addition to the output line width.

-r Write no diagnostic reports on failure to open a file.

-s char Separate text columns by the single character char instead of by the appropriate number of

<space>s (default for char is the <tab> character).

-t Print neither the five-line identifying header nor the five-line trailer typically supplied for each

page. Quit printing after the last line of each file without spacing to the end of the page.

-w width

Set the width of the line to width column positions for multiple text-column output only. If this

option is not specified and the -s option is not specified, the default width is 72. If this option is

not specified and the -s option is specified, the default width is 512.

 Operands

122 iSeries: Qshell

Each file is a path name of a file to be printed. If no file operands are specified, or if a file operand is -, the

standard input is used.

Environment Variables

pr is affected by the following environment variables:

LANG

Provides a default value for locale categories that are not specifically set with a variable starting

with LC_.

LC_TIME

Defines the format of the date and time used in writing header lines.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “cat - Concatenate and print files” on page 88

v “od - Dump files in various formats” on page 113

Examples

1. Print a file starting at page 3:

pr +3 source.java

2. Print every *.java file and change the header message:

pr -h ’JDK source files and examples’ code/*.java

pwd - Return working directory name

Synopsis

pwd

Description

You can use pwd to display the working directory on standard output.

Options

None.

Operands

None.

Exit Status

v 0 when successful.

Related information

v “cd - Change working directory” on page 90

v “pwdx - Print working directory expanded” on page 124

Qshell 123

pwdx - Print working directory expanded

Synopsis

pwdx

Description

You can use pwdx to display the working directory with symbolic links expanded on standard output.

Exit Status

v 0 when successful

Related information

v “cd - Change working directory” on page 90

v “pwd - Return working directory name” on page 123

Rfile - Read or write record files

Synopsis

Rfile -r | -w | -h [-abKlqQs] [-c CL-command] [-C CL-command] file ...

Description

The Rfile utility reads i5/OS(TM) record files (database or device files) and writes the data to standard

output, or reads standard input and writes the data to record files.

 Note: This utility is unique to i5/OS(TM).

Options

-a Append the contents of standard input to the record file. This option only applies when -w is

specified. If -w is specified without -a, any physical file member is cleared before writing the

contents of the stream.

-b Process binary data. This option prevents normal processing for newline characters in the input

or output stream. When -b is omitted, newline characters are removed from standard input lines

written to a record file, and newline characters are inserted at the end of records written to

standard output.

-c CL-command

Run a CL command in the utility process before processing any record file. This option can be

used to run a CL override command that specifies device-dependent parameters for a record file.

If more than one -c option is specified, the CL commands are processed in sequence before

processing any record file.

-C CL-command

Run a CL command in the utility process after processing all record files. If more than one -C

option is specified, the CL commands are processed in sequence after processing all record files.

-h Write a brief description of command syntax to standard error.

-K Keep the job log at job termination. The system normally deletes the job log after running a

QShell utility. This option forces the system to produce a job log listing (which may assist with

problem determination) when the job that runs Rfile ends.

-l Do not truncate long text lines. This option only applies to text data. When -l is specified, any

standard input line longer than one output record is folded onto as many records as necessary,

and no trailing blanks are removed from records written to standard output.

124 iSeries: Qshell

-q Suppress warning messages. This option suppresses messages normally written to standard error

when long text lines are truncated or folded in the output file.

-Q Use i5/OS(TM) qualified name syntax for file names. When this option is specified, the file names

specified as command operands are i5/OS(TM) qualified names (instead of Integrated File System

path names).

-r Read the specified record files and write their contents to standard output. Either -r or -w, but

not both, must be specified.

-s Process source sequence number and date fields as text. This option only applies to text

processing of FILETYPE(*SRC) record files. When -s is specified, the entire contents of every

record is processed as a text line. If -s is omitted, the first 12 bytes is stripped from every source

record read, and the first 12 bytes of every source record written is filled with a sequence number

and zeros for the date field.

-w Read standard input and write its contents to the specified record file. The output file must

already exist, or an error is reported (and no file is created). Either -r or -w, but not both, must be

specified.

 Operands

At least one i5/OS(TM) record file name must be specified. If more than one file is specified, they are

processed in sequence as end of file is reached on each input source. When option -Q is omitted, files are

identified by path names in the Integrated File System. If option -Q is specified, file names are specified

in any of these forms:

 file

 library/file

 ’file(member)’

 ’library/file(member)’

If the library name is omitted or *LIBL is specified for the library name, the file is located using the job

library list. If the member name is omitted or *FIRST is specified as the member name, the first member

of a database file is opened. Specifying *LAST for the member name opens the last member of a database

file. Member name *ALL can be used with option -r to read all members of a database file (from first to

last). Member names are ignored for device files (when specified in i5/OS(TM) qualified name form).

Examples

1. Read the contents of source database member QSYSINC/H(SQLCLI), and write it to standard output.

Trailing blanks are removed from each line, as are the first 12 characters of each line (containing

sequence number and date information):

Rfile -rQ ’qsysinc/h(sqlcli)’

2. Write the contents of stream file mydoc.ps to spooled printer device file QPRINT as unconverted

ASCII data, and then use the CL LPR command to send the spool file to another system:

before=’ovrprtf qprint devtype(*userascii) spool(*yes)’

after="lpr file(qprint) system(usrchprt01) prtq(’rchdps’) transform(*no)"

cat -c mydoc.ps | Rfile -wbQ -c "$before" -C "$after" qprint

3. Copy the contents of save file INSAVF in library QGPL to another save file named OUTSAVF located

using the job library list. Note that the data is read and written in binary mode to avoid

ASCII/EBCDIC conversion and newline processing:

Rfile -rb /qsys.lib/qgpl.lib/insavf.file | Rfile -wbQ outsavf

rm - Remove directory entries

Synopsis

rm [-f | -i] [-dPRr] file ...

Qshell 125

Description

The rm utility attempts to remove the non-directory type files specified on the command line. If the

permissions of the file do not permit writing, and the standard input device is a terminal, the user is

prompted (on standard error) for confirmation.

The rm utility removes symbolic links, not the files referenced by the links.

It is an error to attempt to remove the files ″.″ and ″..″.

Options

-d Attempt to remove directories as well as other types of files.

-f Attempt to remove the files without prompting for confirmation, regardless of the file’s

permissions. If the file does not exist, do not display a diagnostic message or modify the exit

status to reflect an error. The -f option overrides any previous -i options.

-i Request confirmation before attempting to remove each file, regardless of the file’s permissions, or

whether the standard input device is a terminal. If the response from the standard input begins

with the first character for the YES response in the current locale, the file is removed. The -i

option overrides any previous -f options.

-P Overwrite regular files before deleting them. Files are overwritten three times, first with the byte

pattern 0xff, then 0x00, and then 0xff again, before they are deleted.

-R Attempt to remove the file hierarchy rooted in each file argument. The -R option implies the -d

option. If the -i option is specified, the user is prompted for confirmation before each directory’s

contents are processed (as well as before the attempt is made to remove the directory). If the user

does not respond affirmatively, the file hierarchy rooted in that directory is skipped.

-r Equivalent to -R.

 Exit Status

v 0 if all of the named files or file hierarchies were removed, or if the -f option was specified and all of

the existing files or file hierarchies were removed.

v >0 if an error occurs.

Related information

v “cp - Copy files” on page 97

v “ln - Link files” on page 106

v “ls - List directory contents” on page 107

v “mv - Move files” on page 112

v “rmdir - Remove directories”

Examples

1. Remove all the files and the directory ″java″, as well as any subdirectories or files, or both, and do not

prompt for conformation.

rm -r -f /home/bob/examples/code/java

2. Remove the files ″file1″, ″file2″ and ″file3″.

rm file1 file2 file3

rmdir - Remove directories

Synopsis

rmdir directory ...

126 iSeries: Qshell

Description

The rmdir utility removes the directory entry specified by each directory argument, provided it is empty.

Arguments are processed in the order given. In order to remove both a parent directory and a

subdirectory of that parent, the subdirectory must be specified first so the parent directory is empty when

rmdir tries to remove it.

Exit Status

v 0 if each directory entry specified referred to an empty directory and was removed successfully.

v >0 An error occurred.

Related information

v “mkdir - Make directories” on page 110

v “rm - Remove directory entries” on page 125

setccsid - Set CCSID attribute for file

Synopsis

setccsid [-R [-H | -L | -P]] [-h] ccsid file ...

Description

The setccsid utility sets the CCSID attribute for the specified files to the specified ccsid. The data

contained in file is not changed.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links

encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links

encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, setccsid sets the CCSID of each file in the entire subtree connected at

that point.

-h Set the CCSID of a symbolic link instead of the file pointed to by the symbolic link.

 Operands

The ccsid is an integer number identifying the coded character set id. Each file is a pathname of a file to

set the CCSID.

Related information

v “attr - Get or set attributes for files” on page 83

v “chmod - Change file modes” on page 92

v “chown - Change file ownership” on page 95

v “iconv - Convert characters from one CCSID to another CCSID” on page 69

v “touch - Change file access and modification times” on page 130

Examples

1. Set the CCSID of the files “file1” and “file2” to 819:

setccsid 819 file1 file2

Qshell 127

tail - Display the last part of a file

Synopsis

tail [-f | -r] [-b number | -c number | -k number |-n number] [file ...]

Description

The tail utility displays the contents of file or, by default, standard input, to the standard output.

The display begins at a byte, line, 512-byte block, or kilobyte location in the input. Numbers having a

leading plus sign (+) are relative to the beginning of the input, for example, ″-c +2″ starts the display at

the second byte of the input. Numbers having a leading minus sign (-) or no explicit sign are relative to

the end of the input, for example, ″-n 2″ displays the last two lines of the input. The default starting

location is ″-n 10″, or the last 10 lines of the input.

If more than one file is specified, each file is preceded by a header consisting of the string ″==> XXX <==″

where XXX is the name of the file.

 Note: tail does not support large files (files greater than 2GB in

size).

Options

-b number

The location is number 512-byte blocks.

-c number

The location is number bytes.

-f Causes tail to not stop when end of file is reached, but rather to wait for additional data to be

appended to the input. The -f option is ignored if the standard input is a pipe, but not if it is a

FIFO.

-k number

The location is number kilobytes.

-n number

The location is number lines.

-r Causes the input to be displayed in reverse order, by line. Additionally, this option changes the

meaning of the -b, -c and -n options. When the -r option is specified, these options specify the

number of bytes, lines or 512-byte blocks to display, instead of the bytes, lines or blocks from the

beginning or end of the input from which to begin the display. The default for the -r option is to

display all of the input.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “cat - Concatenate and print files” on page 88

v “head - Copy the first part of files” on page 106

Examples

1. Display the last 100 lines from the file ″donkeys″. If the file ″donkeys″ is less than 100 lines, then tail

displays the entire file.

tail -n 100 donkeys

128 iSeries: Qshell

tar - File archiver

Synopsis

tar -crtux[befmopvwHLPX] [archive] [blocksize] file ...

Description

The tar utility reads, writes, and lists files from an archive file.

Options

The following options select the function tar performs. One of these options must be specified.

-c Create a new archive.

-r Add the specified file to end of the achive.

-t List the names of the files in the archive to standard output.

-u Update the specified file in the archive if it has been modified since last written to the archive or

add file to the archive if it is not in the archive.

-x Extract the specified files from the archive. If no files are specified, all files are extracted from the

archive.

 The following options affect the operation of tar.

-b Use the first operand (or the second, if f has already been specified) as the block size for the

archive.

-e Exit after the first error is found.

-f Use the first operand (or the second, if b has already been specified) as the name of the archive

instead of the default name. If the name of the file is -, tar writes to the standard output or reads

from the standard input depending on the function.

-m Do not restore the modification times. The modification time of the file is the time of extraction.

-o Set the owner and group of extracted files to the user running tar instead of to the user and

group saved with the archive.

-p Preserve the owner, group, file mode, access time, and modification time of files extracted from

the archive.

-v Verbose mode. Write to standard error the name of each file being processed. When the t function

is specified, the output also includes the mode, number of links, owner, group, size, and

modification date of each file.

-w Write the action to be taken, followed by the name of the file, and then wait for the user’s

confirmation. If an affirmative response is given, the action is performed. Any other input

suppresses the action.

-H Follow only command line symbolic links while performing a physical file system traversal.

-L Follow all symbolic links to perform a logical file system traversal.

-P Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

-X When traversing the file hierarchy specified by a path name, do not descend into directories that

have a different device ID.

 Operands

Qshell 129

Each file is an object that is either added to the archive or extracted from the archive depending on the

function.

Environment Variables

tar is affected by the following environment variables:

QIBM_CCSID

The value of the environment variable is the CCSID used to create files extracted from the

archive. There must be a valid translation from CCSID 819 to the specified CCSID.

 Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “pax - Portable archive interchange” on page 114

touch - Change file access and modification times

Synopsis

touch [-acfm] [-r ref_file] [-t [[CC]YY]MMDDhhmm[.SS]] [-C ccsid] file ...

Description

The touch utility sets the modification and access times of files to the current time of day. If the file

doesn’t exist, it is created with default permissions.

Options

-a Change the access time of file. The modification time of the file is not changed unless the -m flag

is also specified.

-C ccsid

If file does not exist, create the file with the specified ccsid. This option overrides the value of the

QIBM_CCSID environment variable.

-c Do not create file if it does not exist. The touch utility does not treat this as an error. No error

messages are displayed and the exit value is not affected.

-f Attempt to force the update, even if the file permissions do not currently permit it.

-m Change the modification time of file. The access time of the file is not changed unless the -a flag

is also specified.

-r ref_file

Use the access and modifications times from the specified ref_file instead of the current time of

day.

-t Change the access and modification times to the specified time. The argument should be in the

form:

 [[CC]YY]MMDDhhmm[.SS]

where each pair of letters represents the following:

CC The first two digits of the year (the century).

YY The second two digits of the year. If YY is specified, but CC is not, a value for CC

between 69 and 99 results in a YY value of 19. Otherwise, a CC value of 20 is used.

MM The month of the year, from 1 to 12.

130 iSeries: Qshell

DD The day of the month, from 1 to 31.

hh The hour of the day, from 0 to 23.

mm The minute of the hour, from 0 to 59.

SS The second of the minute, from 0 to 59.

If the CC and YY letter pairs are not specified, the values default to the current year. If the SS

letter pair is not specified, the value defaults to 0.

 Environment Variables

touch is affected by the following environment variables:

QIBM_CCSID

If file does not exist, touch creates the file with the CCSID specified by the value of the

environment variable.

 Exit Status

v 0 on success

v >0 if an error occurs

Examples

1. Change the time-date stamp of the file myfile to match the time-date stamp of the file yourfile.

touch -r yourfile myfile

2. Change the time-date stamp of the file myfile to a specific time-date stamp.

touch -t 200001010000.00 myfile

umask - Get or set the file mode creation mask

Synopsis

umask [-S] [mask]

Description

You can use umask to set or display the file creation mask. The mask allows you to control the file

permission bits that are set when creating a file or directory.

If you specify mask, qsh sets the file creation mask to mask. If you do not specify mask, qsh displays the

current file creation mask on standard output.

Options

v -S Use symbolic permissions.

Operands

When using symbolic permissions, mask is an expression that defines which permissions should not be

removed. A symbolic permission is an expression with the format [who] op [permission] where:

v who is a combination of the letters:

– u for owner permissions.

– g for group permissions

– o for other (or public) permissions

– a for all permissions (the default value).

Qshell 131

v op is one of the following:

– - (minus) to delete the permission.

– + (plus) to add the permission.
v permission is one or more of the following:

– r for read permission.

– w for write permission.

– x for execute or search permission.

Exit Status

v 0 when successful.

v >0 when mask is invalid.

Related information

v “chmod - Change file modes” on page 92

v “touch - Change file access and modification times” on page 130

Examples

1. Display the current file creation mask in symbolic form: umask -S

2. Display the current file creation mask: umask

3. Set the file creation mask to remove read permission for others: umask 004

4. Set the file creation mask to remove write permission for group: umask -S g-w

uncompress - Expand compressed data

Synopsis

uncompress [-cv] [-b bits] [file ...]

Description

The uncompress utility restores the compressed files to their original form, renaming the files by deleting

the ″.Z″ extension.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user

is prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not

received, the files are not overwritten.

Options

-b bits Specify the bits code limit (see below for details).

-c Uncompressed output is written to the standard output. No files are modified.

-v Print the percentage of expansion for each file.

 Operands

Each file is a pathname of a file to uncompress. If no files are specified, the standard input is

uncompressed to the standard output. If either the input and output files are not regular files, the checks

for reduction in size and file overwriting are not performed, the input file is not removed, and the

attributes of the input file are not retained.

Extended Description

132 iSeries: Qshell

The uncompress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first

replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes and

continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits must

be between 9 and 16.

The amount of compression obtained depends on the size of the input, the number of bits per code, and

the distribution of common substrings. Typically, text such as source code or English is reduced by

50-60%.

Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “compress - Compress data” on page 96

v “zcat - Expand and concatenate data”

zcat - Expand and concatenate data

Synopsis

zcat [file ...]

Description

The zcat utility expands the compressed data from the specified files and the uncompressed output is

written to standard output.

Operands

Each file is a pathname of a file that contains compressed data.

Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “compress - Compress data” on page 96

v “uncompress - Expand compressed data” on page 132

Utilities for reading and writing input and output

The following are Qshell utilities for reading and writing input and output:

v “dspmsg - Display message from message catalog”

v “echo - Write arguments to standard output” on page 134

v “print - Write output” on page 135

v “printf - Write formatted output” on page 136

v “read - Read a line from standard input” on page 137

dspmsg - Display message from message catalog

Synopsis

dspmsg [-n] [-s set] catalog msgid [defaultMsg [arguments ...]]

Qshell 133

Description

The dspmsg utility displays a message from a message catalog created by the GENCAT CL command.

The message is written to standard output. The dspmsg utility can be used as a replacement for echo or

print when a script needs to display messages that are translated to multiple languages.

Options

-n Display the specified message with no substitution.

-s set Retrieve the message from the specified set in the message catalog. The default value for set is 1.

 Operands

The catalog operand specifies the path name to a message catalog. If the catalog is specified using a

relative path name, the NLSPATH variable and the LC_MESSAGES locale catagory are used to find the

catalog.

The msgid operand specifies the message identifier to retrieve from the message catalog.

When the specified catalog or msgid is not found, the optional defaultMsg is displayed instead. If the

defaultMsg operand is not specified, a system generated message is displayed.

The optional arguments are substituted into the output message if it contains the %s, %n$s, %ld, or %n$ld

printf() conversion specifications. Any other conversion specifications are not valid. Also, the normal

control character escapes (for example, \n) are supported.

Exit Status

v 0 if successful

v >0 if an error occurred.

Related information

v “echo - Write arguments to standard output”

v “gencat - Generate a formatted message catalog” on page 104

v “print - Write output” on page 135

v “printf - Write formatted output” on page 136

Examples

1. Display message 5 from catalog mycat.

dspmsg mycat 5 "Message not found" hello

echo - Write arguments to standard output

Synopsis

echo [arg ...]

Description

You can use echo to display each arg on standard output separated by a space character and followed by

a newline character.

Operands

Each arg is echoed on standard output.

134 iSeries: Qshell

Exit Status

v 0 when successful

v >0 when an error occurs

Related information

v “dspmsg - Display message from message catalog” on page 133

v “print - Write output”

v “printf - Write formatted output” on page 136

v “tee - Duplicate standard input” on page 185

print - Write output

Synopsis

print [-nrR] [-u [n]] [argument ...]

Description

You can use print to display each argument on standard output separated by a <space> character and

followed by a <newline> character.

Unless you specify -r or -R, print formats the output using the following conventions:

v \a Bell.

v \b Backspace.

v \c Print without adding newline character. The remaining arguments are ignored.

v \f Formfeed.

v \n Newline.

v \r Return.

v \t Tab.

v \v Vertical tab.

v \\ Backslash.

v \0x The character whose EBCDIC code is the 1, 2, or 3-digit octal number x.

Options

-n Do not add a trailing newline character to the output.

-r Do not use the conventions listed above.

-R Do not use the conventions listed above.

-u n Write output to descriptor n if specified or descriptor 1 by default. The descriptor must be 1, 2, or

one you opened with exec.

 Operands

Each argument is printed on standard output.

Exit Status

v 0 when successful.

v >0 wnen unsuccessful.

Related information

v “dspmsg - Display message from message catalog” on page 133

Qshell 135

v “exec - Run commands and open, close, or copy descriptors” on page 54

v “echo - Write arguments to standard output” on page 134

v “printf - Write formatted output”

printf - Write formatted output

Synopsis

printf format [argument ...]

Description

You can use printf to format and display output on standard output. The syntax is similar to the ILE C

printf() function. printf formats using the following conversion control string syntax:

%[flags][width].[precision]conversion

conversion specifies how the corresponding argument is displayed. You must specify one of the following

conversion characters:

c Unsigned character.

d Signed decimal number.

e,E Scientific notation.

f Floating point number.

g,G Scientific notation with significant digits.

i Signed decimal number.

o Unsigned octal number.

s String.

u Unsigned decimal number.

x Unsigned hexadecimal number with digits 0123456789abcdef.

X Unsigned hexadecimal number with digits 0123456789ABCDEF.

 flags control how the argument is displayed in the following ways:

- (minus)

Left align argument within the field.

+ (plus)

Prefix all numbers with a + or -.

space Prefix positive numbers with <space> and negative numbers with -.

0 Pad field width with leading zeros for d, e, E, f, g, or G.

Use an alternate output form depending on conversion character. For o, prefix octal numbers

with ″0″. For x, prefix hexadecimal numbers with ″0x″. For X, prefix hexadecimal numbers with

″0X″. For e, E, f, g, or G, display decimal point. For g or G, display trailing zeros.

 width is the minimum number of character positions displayed. Using an asterisk (*) character for the

width means the value of the next argument is the field width.

The meaning of precision depends on the conversion character.

v For d, i, o, u, x, or X precision specifies the minimum number of digits to be displayed.

v For e, E, or f precision specifies the number of digits to be displayed after the decimal point.

136 iSeries: Qshell

v For g, or G precision specifies the maximum number of significant digits.

v For s precision specifies the maximum number of characters to be displayed.

Options

None.

Operands

Each argument is converted and displayed as specified by the format.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “dspmsg - Display message from message catalog” on page 133

v “echo - Write arguments to standard output” on page 134

v “print - Write output” on page 135

read - Read a line from standard input

Synopsis

read [-r] [-p prompt] [-u [n]] [name ...]

Description

You can use read to read a line and split it into fields using the characters from the IFS variable as

delimiters. By default, a backslash (\) at the end of a line causes the line to be continued on the next line.

qsh removes both the backslash and the <newline>.

Options

-p prompt

When the interactive option is set, display prompt on stderr.

-r A backslash at the end of a line does not mean continue the line.

-u n Read from descriptor n if specified or descriptor 0 by default. The descriptor must be 0 or one

that you opened with exec.

 Operands

Each name is assigned to the corresponding field from the input line. Any leftover fields are assigned to

the last name. The default name is the REPLY variable.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “exec - Run commands and open, close, or copy descriptors” on page 54

v “print - Write output” on page 135

Examples

Qshell 137

1. Read a line from stdin after displaying a prompt: read -p `Enter a name: ’ firstname lastname

2. Read a line from descriptor 5: read -u5

Utilities for developing Javatm programs

The following are Qshell utilities for developing Javatm programs:

v “ajar - Alternative Java(TM) archive”

v “appletviewer - View Javatm applet” on page 141

v “extcheck - A utility to detect JAR conflicts” on page 141

v “jar - Archive Javatm files” on page 141

v “jarsigner - JAR signing and verification” on page 142

v “java - Run Javatm interpreter” on page 142

v “javac - Compile a Javatm program” on page 143

v “javadoc - Generate Javatm documentation” on page 143

v “javah - Generate C header or stub file” on page 143

v “javakey - Manage Javatm security keys and certificates” on page 144

v “javap - Disassemble a compiled Javatm program” on page 144

v “keytool - Key and certificate management tool” on page 145

v “native2ascii - Convert native characters to ASCII” on page 145

v “policytool - Policy file creation and management tool” on page 145

v “rmic - Compile Javatm RMI stubs” on page 145

v “rmid - The Javatm RMI activation system” on page 145

v “rmiregistry - Start a remote object registry” on page 145

v “serialver - Return serial version” on page 146

v “tnameserv - Naming service” on page 146

ajar - Alternative Java(TM) archive

Synopsis

ajar {-h | —help}

ajar {-l | —list} [-v | —verbose] [-q | —quiet] jarfile [{file | pattern} ...] [{-x | -i} {file | pattern} ...] ...

ajar {-x | —extract} [-v | —verbose] [-q | —quiet] [-N | —neverWrite] [-p | —pipe] jarfile [{file |

pattern} ...]

[{-x | -i} {file | pattern} ...] ...

ajar {-c | —create} [-0 | —store-only] [-v | —verbose] [-r | —recurse] [-@ | —stdin] [-D | —nodirs] [-q

| —quiet]

[{-m | —manifest} mffile] [-M | —no-manifest] [{-n | —no-deflate} suffix..] jarfile file ... [{-x | -i} {file |

pattern} ...] ...

ajar {-a | —add} [-0 | —store-only] [-v | —verbose] [-r | —recurse] [-@ | —stdin] [-D | —nodirs] [-q |

—quiet]

[{-m | —manifest} mffile] [-M | —no-manifest] [{-n | —no-deflate} suffix..] jarfile file ... [{-x | -i} {file |

pattern} ...] ...

ajar {-d | —delete} [-v | —verbose] [-q | —quiet] [{-m | —manifest} mffile] [-M | —no-manifest] jarfile

{file | pattern} ... [{-x | -i} {file | pattern} ...] ...

Description

138 iSeries: Qshell

ajar may be used as an alternative interface for creating and manipulating Javatm Archive (JAR) files. The

ajar utility combines several of the features found in zip/unzip tools with those of the IBM(R) Developer

Kit for Java jar tool. Use ajar instead of the jar command when you need a zip or unzip like interface.

Like the jar tool, ajar lists the contents of jar files, extracts from jar files, creates new jar files and

supports many of the zip formats.. Additionally, ajar supports adding and deleting files in existing jars.

Actions

-h | —help

Writes command syntax to stdout.

-l | —list

Writes table of contents to stdout.

-x | —extract

Extracts files to the current directory.

-c | —create

Creates a new archive.

-a | —add

Adds new files to the archive and replaces existing files.

-d | —delete

Deletes files from the archive.

 Options

-@ | —stdin

Read file list from stdin. The file list consists of parameters that would normally follow the jarfile

parameter on the command line. The file list may consist of multiple lines with one item per line

and no leading blanks. Comments begin with ’#’ and extend to the end of the line.

-0 | —store-only

Store only. Do not compress/deflate files. Used when adding files and creating jars.

-m | —manifest

Include manifest information from the specified file.

-n | —no-deflate

Do not deflate files with the specified suffixes. The list of suffixes must be terminated by another

option or ″—″. See examples below.

-p | —pipe

Extract to stdout.

-q | —quiet

Quiet mode. Do not write informational and warning messages.

-r | —recurse

Recurse into directories. Used when adding files and creating jars.

-v | —verbose

Verbose mode. Write diagnostic information to stderr.

-D | —nodirs

Suppress directory entries. Used when adding files and creating jars.

-M | —no-manifest

Do not create a manifest.

-N | —neverWrite

Never overwrite any files when extracting.

Qshell 139

Operands

The jarfile operand specifies the pathname of the jar file being operated on. jarfile must be an Integrated

File System (IFS) name.

The file operand specifies the pathname of a file or directory. file must be an IFS name.

The pattern operand specifies a pattern to match pathnames of files and directories. pattern will match to

IFS names. A pattern is a sequence of characters containing one or more of the following meta characters:

* matches 0 or more characters

? matches any single character

[...] matches any single character found within the brackets where ″...″ represents a set of characters.

Ranges are specified by a beginning character, a hyphen, and an ending character. A exclamation

(’!’) or carrot (’^’) following the left bracket means the characters within the brackets are

complemented (match anything except the characters within the brackets).

 Patterns must be contained within quotation marks or the meta characters must be preceded by a back

slash (’\’) to prevent Qshell from interpreting them.

The file and pattern operands are used to select the files to be acted upon. Selected files are determined

using three sets of files, a candidate set, an exclusion set, and an inclusion set.

candidate set

The candidate set is determined using the operands listed after jarfile and before any -x or -i. For

the list and extract actions the candidate set defaults to all files contained in the jar file. For all

other actions there is no default value for the candidate set.

exclusion set

The exclusion set is determined using all lists of file and pattern operands preceded by a -x and

followed by another -x, a -i or the end of the command string. The exclusion set defaults to the

empty set.

inclusion set

The inclusion set is determined using all lists of file and pattern operands preceded by a -i and

followed by another -i, a -x or the end of the command string. The inclusion set defaults to all

files in the candidate set.

 All candidate files are selected that are in the inclusion set and not in the exclusion set.

Exit Status

v 0 when all files were processed successfully

v >0 when an error occurred

Examples

 1. To list all files in a jar file named myjar which is located in the current directory: ajar -l myjar

 2. To list all .java files in myjar: ajar -l myjar *.java

 3. To extract all files from myjar into the current directory: ajar -x myjar

 4. To create a jar named myjar containing all directories and files in the file system hierarchy rooted in

the current directory (Note in this example Qshell interprets the ’*’ and expands it so that the list of

candidate files contains all files and directories in the current directory.): ajar -c -r myjar *

 5. To create a jar named myjar containing entries for only the files in the current directory: ajar -c -D

myjar *

 6. To create the same jar file without a manifest (which is a zip file for all practical purposes): ajar -c -D

-M myjar *

140 iSeries: Qshell

7. To create a jar named myjar containing all files except .java files in the file system hierarchy rooted

in the current directory: ajar -c -r myjar * -x *.java

 8. To create a jar named myjar containing only the .class files in a file system hierarchy rooted in the

current directory: ajar -c -r myjar * -i *.class

 9. To create a jar named myjar without deflating the .java files: ajar -c -r -n java — myjar *

10. To create a jar named myjar while reading the file list from stdin: ajar -@ -c -r myjar

Sample stdin data:

docs

source

classes

-x

docs/foo/*

11. To add a file named bar to a jar named myjar: ajar -a myjar bar

12. To delete a file named foo/bar from a jar named myjar: ajar -d myjar foo/bar

Notes

1. Short options can be clustered (for example, -c -v -D is the same as -cvD). Long options (—create,

—verbose, —nodirs, ..., and so on.) can be abbreviated as long as the abbreviations are unique.

2. File names can be changed when creating a jar or adding a file to a jar. For example, ″ajar -c x.jar

bin/foo : bin/bar″ creates the jar file x.jar from the file bin/foo with a single entry, bin/bar. This can

also be done using stdin, ″ajar -c@ x.jar″, where stdin contains:

bin/foo : bin/bar

3. Use of ajar requires the QIBM_MULTI_THREADED environment variable must be set to ’Y’.

appletviewer - View Javatm applet

The appletviewer tool allows you to run applets without a web browser. It is compatible with the

appletviewer tool that is supplied by Sun Microsystems, Inc.

The appletviewer tool is available using the Qshell Interpreter.

For more information about the appletviewer tool, see the appletviewer tool

by Sun Microsystems,

Inc.

extcheck - A utility to detect JAR conflicts

In Javatm 2 SDK (J2SDK), Standard Edition, version 1.2, the extcheck tool detects version conflicts

between a target JAR file and currently installed extension JAR files. It is compatible with the keytool

that is supplied by Sun Microsystems, Inc.

The extcheck tool is available using the Qshell Interpreter.

For more information about the extcheck tool, see the extcheck tool

by Sun Microsystems, Inc.

jar - Archive Javatm files

The jar tool combines multiple files into a single Javatm ARchive (JAR) file. It is compatible with the jar

tool that is supplied by Sun Microsystems, Inc.

The jar tool is available using the Qshell Interpreter.

For more information about file systems, see Integrated File System Information on IBM(R) Toolbox for

Java or “Files in the integrated file system” on page 142.

For more information about the jar tool, see the jar tool

by Sun Microsystems, Inc.

Qshell 141

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/appletviewer.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/extcheck.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/jar.html

Files in the integrated file system: The integrated file system stores Javatm-related class files, source

files, ZIP files, and JAR files in a hierarchical file structure. You can also store source files in the

integrated file system. You may store the files in these integrated file systems:

v ″root″ (/) file system

v open systems file system (QOpenSys)

v user-defined file system

v library file system (QSYS.LIB)

v optical file system (QOPT)

Note: Other integrated file systems are not supported, because they are not thread safe.

jarsigner - JAR signing and verification

In Javatm 2 SDK (J2SDK), Standard Edition, version 1.2, the jarsigner tool signs JAR files and verfies

signatures on signed JAR files. The jarsigner tool accesses the keystore, which the keytool creates and

manages, when it needs to find the private key for signing a JAR file. In J2SDK, the jarsigner and

keytool tools replace the javakey tool. It is compatible with the jarsigner tool that is supplied by Sun

Microsystems, Inc.

The jarsigner tool is available using the Qshell Interpreter.

For more information about the jarsigner tool, see the jarsigner tool

by Sun Microsystems, Inc.

java - Run Javatm interpreter

The java Qshell command runs Javatm programs. It is compatible with the java tool that is supplied by

Sun Microsystems, Inc. with a few exceptions.

The IBM Developer Kit for Java ignores the following options of the java Qshell command:

 Ignored option Description

-cs Not supported.

-checksource Not supported.

-debug Supported by the iSeries internal debugger.

-noasyncgc Garbage collection is always running with the IBM Developer Kit for Java.

-noclassgc Garbage collection is always running with the IBM Developer Kit for Java.

-prof iSeries has its own performance tools.

-ss Not applicable.

-oss Not applicable.

-t iSeries uses its own trace function.

-verify Always verify on iSeries.

-verifyremote Always verify on iSeries.

-noverify Always verify on iSeries.

The java Qshell command supports new options. These are the new supported options:

 Supported option Description

-secure Checks for public write access to directories in the CLASSPATH.

-gcfrq Specifies the garbage collection frequency.

-gcpty Specifies the garbage collection priority.

142 iSeries: Qshell

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jarsigner.html

Supported option Description

-opt Specifies the optimization level.

-verbosegc A message is displayed for each garbage collection sweep.

The Run Java (RUNJVA) command in the CL command reference documentation describes these new

options in detail. The CL command reference documentation for the Create Java Program (CRTJVAPGM)

command, Delete Java Program (DLTJVAPGM) command, and Display Java Program (DSPJVAPGM)

command contains information about managing Java programs.

The java Qshell command is available using the Qshell Interpreter.

For more information about the java Qshell command, see the java tool

by Sun Microsystems, Inc.

javac - Compile a Javatm program

The javac tool compiles Javatm programs. It is compatible with the javac tool that is supplied by Sun

Microsystems, Inc.

The javac tool is available using the Qshell Interpreter.

For more information about the javac tool, see the javac tool

by Sun Microsystems, Inc.

javadoc - Generate Javatm documentation

The javadoc tool generates API documentation. It is compatible with the javadoc tool that is supplied by

Sun Microsystems, Inc.

The javadoc tool is available using the Qshell Interpreter.

For more information about the javadoc tool, see the javadoc tool

by Sun Microsystems, Inc.

javah - Generate C header or stub file

The javah tool facilitates the implementation of Javatm native methods. It is compatible with the javah

tool that is supplied by Sun Microsystems, Inc. with a few exceptions.

 Note: Writing native methods means that your application is

not 100% pure Java. It also means that your application is

not directly portable across platforms. Native methods

are, by nature, platform or system specific. Using native

methods may increase your development and

maintenance costs for your applications.

The javah tool is available using the Qshell Interpreter. It reads a Java class file and creates a C-language

header file in the current working directory. The header file that is written is a Stream File (STMF). It

must be copied to a file member before it can be included in a C program on i5/OS.

The javah tool is compatible with the tool that is provided by Sun Microsystems, Inc. If the following

options are specified; however, iSeries 400 ignores them:

 Ignored option Description

-td The javah tool does not require a temporary directory.

-stubs Java on iSeries only supports the Java Native Interface

(JNI) form of native methods. Stubs were only required

for the pre-JNI form of native methods.

Qshell 143

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/java.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javac.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

Ignored option Description

-trace Relates to the .c stub file output, which Java on iSeries

does not support.

-v Not supported.

 Note: The -jni option must always be specified. The iSeries

server does not support native method implementations

before JNI.

For more information about the javah tool, see the javah tool

by Sun Microsystems, Inc.

javakey - Manage Javatm security keys and certificates

Use the javakey tool for encryption key, and certificate generation and management, including generation

of digital signatures for applets. It is compatible with the javakey tool that is supplied by Sun

Microsystems, Inc.

Applet packaging and applet signing is dependent on your browser. Check your browser documentation

to ensure that your browser is compatible with the Javatm JAR file format and javakey applet signing.

 Note: The files that are created by the javakey tool contain

sensitive information. Appropriate Integrated File System

security measures protect the public and private key files.

The javakey tool is available using the Qshell Interpreter.

For more information about file systems, see the information about Integrated File System. or “Files in

the integrated file system” on page 142.

For more information about the javakey tool, see the javakey tool

by Sun Microsystems, Inc.

javap - Disassemble a compiled Javatm program

The javap tool disassembles compiled Javatm files and prints out a representation of the Java program.

This may be helpful when the original source code is no longer available on a system.

It is compatible with the javap tool that is supplied by Sun Microsystems, Inc. with a few exceptions:

 Ignored option Description

-b This option is ignored. Backward compatibility is not

required, because Java on iSeries only supports Java

Developer Kit (JDK) 1.1.4 and later.

-p On iSeries -p is not a valid option. You must spell out

-private.

-verify This option is ignored. The javap tool does not perform

verification.

The javap tool is available using the Qshell Interpreter.

 Note: The use of the javap tool to disassemble classes may

violate the license agreement for those classes. Consult

the license agreement for the classes before using the

javap tool.

144 iSeries: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javah.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javakey.html

For more information about the javap tool, see the javap tool

by Sun Microsystems, Inc.

keytool - Key and certificate management tool

In Javatm 2 SDK (J2SDK), Standard Edition, version 1.2, the keytool creates public and private key pairs,

self-signed certificates, and manages keystores. In J2SDK, the jarsigner and keytool tools replace the

javakey tool. It is compatible with the keytool that is supplied by Sun Microsystems, Inc.

The keytool is available using the Qshell Interpreter.

For more information about the keytool, see the keytool

by Sun Microsystems, Inc.

native2ascii - Convert native characters to ASCII

The native2ascii tool converts a file with native-encoded characters (characters which are non-Latin 1

and non-Unicode) to one with Unicode-encoded characters. It is compatible with the native2ascii tool

that is supplied by Sun Microsystems, Inc.

The native2ascii tool is available using the Qshell Interpreter.

For more information about the native2ascii tool, see the native2ascii tool

by Sun Microsystems,

Inc.

policytool - Policy file creation and management tool

In Javatm 2 SDK, Standard Edition, version 1.2, the policytool creates and changes the external policy

configuration files that define the Java security policy of your installation. It is compatible with the

policytool that is supplied by Sun Microsystems, Inc.

The policytool is a graphical user interface (GUI) tool that is available using the Qshell Interpreter and

the Native Abstract Windowing Toolkit. See IBM Developer Kit for Java Native Abstract Windowing

Toolkit for more information.

For more information about the policytool, see the policytool

by Sun Microsystems, Inc.

rmic - Compile Javatm RMI stubs

The rmic tool generates stub files and class files for Javatm objects. It is compatible with the rmic tool that

is supplied by Sun Microsystems, Inc.

The rmic tool is available using the Qshell Interpreter.

For more information about the rmic tool, see the rmic tool

by Sun Microsystems, Inc.

rmid - The Javatm RMI activation system

In Javatm 2 SDK (J2SDK), Standard Edition, version 1.2, the rmid tool starts the activation system daemon,

so objects can be registered and activated in a Java virtual machine. It is compatible with the rmid tool

that is supplied by Sun Microsystems, Inc.

The rmid tool is available using the Qshell Interpreter.

For more information about the rmid tool, see the rmid tool

by Sun Microsystems, Inc.

rmiregistry - Start a remote object registry

The rmiregistry tool starts a remote object registry on a specified port. It is compatible with the

rmiregistry tool that is supplied by Sun Microsystems, Inc.

Qshell 145

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javap.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/native2ascii.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/policytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmic.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/rmid.html

The rmiregistry tool is available using the Qshell Interpreter.

For more information about the rmiregistry tool, see the rmiregistry tool

by Sun Microsystems, Inc.

serialver - Return serial version

The serialver tool returns the version number or serialization-unique identifier for one or more classes.

It is compatible with the serialver tool that is supplied by Sun Microsystems, Inc.

The serialver tool is available using the Qshell Interpreter.

For more information about the serialver tool, see the serialver tool

by Sun Microsystems, Inc.

tnameserv - Naming service

In Javatm 2 SDK (J2SDK), Standard Edition, version 1.2, the tnameserv tool provides access to the naming

service. It is compatible with the tnameserv tool that is supplied by Sun Microsystems, Inc.

The tnameserv tool is available using the Qshell Interpreter.

For more information about the tnameserv tool, see the tnameserv tool

by Sun Microsystems, Inc.

Utilities for managing jobs

The following are Qshell utilities for managing jobs:

v “getjobid - Display job information”

v “hash - Remember or report utility locations” on page 147

v “jobs - Display status of jobs in current session” on page 148

v “kill - Terminate or signal processes” on page 149

v “liblist - Manage library list” on page 150

v “ps - Display process status” on page 151

v “sleep - Suspend invocation for an interval” on page 153

v “trap - Trap signals” on page 153

v “wait - Wait for process completion” on page 155

getjobid - Display job information

Synopsis

getjobid [-csv] [pid ...]

getjobid -j [-csv] [qualified-job ...]

Description

The getjobid utility writes the qualified job name and process ID for the specified process to standard

output. The qualified job name is a string in the form number/user/name. The number is a six-digit

decimal number, user is the user profile under which the job was started, and name is the name of job.

In the first synopsis form, the process is identified using the process ID. In the second synopsis form, the

process is identified using the qualified job name.

When the -v option is specified, getjobid displays the process ID, parent’s process ID, process group,

current status, and qualified job name for the specified process.

 Note: This utility is unique to i5/OS(TM).

146 iSeries: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmiregistry.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/serialver.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl/jidlNaming.html

Options

-c Display information about all of the current child processes of the specified process.

-j Processes are identified using the qualified job name.

-s Display a short form with just the qualified job name.

-v Display detailed information about the specified process, including the process ID, the parent’s

process ID, process group, current status, and qualified job name.

 Operands

Each pid is the decimal process ID of an active process on the system. When pid is not specified, getjobid

displays information for the current process.

Each qualified-job is the qualified job name of an active process on the system. The qualified job name is a

string in the form number/user/name. The number is a six-digit decimal number, user is the user profile

under which the job was started, and name is the name of job.

Exit Status

v 0 when successful.

v >0 when an error occurred. The exit status is the number of processes for which information could not

be obtained.

Related information

v “jobs - Display status of jobs in current session” on page 148

v “ps - Display process status” on page 151

Examples

1. Display the qualified job name of the current process.

getjobid

2. Display detailed information for three processes.

getjobid -v 318 942 1130

3. Display the short form of the qualified job name for one process.

getjobid -s 325

4. Display detailed information for a process identified with the qualified job name.

getjobid -jv 325411/SHELLTST/QZSHCHLD

hash - Remember or report utility locations

hash [-p filename] [utility ...]

hash -r

Description

The hash utility adds utility to the list of remembered utility locations or removes all remembered utilities

from the list. By default, hash uses a path search to find utility.

When no arguments are specified, hash reports the contents of the list. An entry that has not been looked

at since the last “cd - Change working directory” on page 90 command is marked with an asterisk; it is

possible for the entry to be invalid.

Qshell 147

Options

-p filename

Do not use a path search to find utility. Use the specified filename as the location of utility.

-r Remove all previously remembered utility locations.

 Operands

Each utility is added to the list of remembered utility locations.

Exit Status

v 0 when successful.

Related information

v “cd - Change working directory” on page 90

jobs - Display status of jobs in current session

Synopsis

jobs [-ln] [job ...]

Description

You can use jobs to display information about active jobs started by qsh. For each job, qsh displays:

v Job number in brackets ([]).

v Status (Running, Done, Terminated, and so on).

v Return value of the job in parenthesis () when the return value is greater than zero and the job status is

Done.

v Command line for the job.

Options

-l Display status for each process in the specified job.

-n Display status only for those jobs whose status has changed but has not been reported yet.

 Operands

Each job specifies an active job. The job can be specified as a:

v Number to refer to a process id.

v %number to refer to a job number.

v %string to refer to a job whose name begins with string.

If job is not specified, qsh displays status for all active jobs.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “kill - Terminate or signal processes” on page 149

v “wait - Wait for process completion” on page 155

Examples

148 iSeries: Qshell

1. Display status for job number 1: jobs %1

2. Display status for process id 16107: jobs 16107

3. Display status for a job running the ls utility: jobs %ls

4. Display status for all active jobs: jobs

kill - Terminate or signal processes

Synopsis

kill [-s signame] job ...

kill [-n signum] job ...

kill [-sig] job ...

kill -l [signal ...]

Description

You can use kill to send a signal to the specified jobs. You can specify a signal using:

v signame - A signal name.

v signum - A signal number.

v sig - Either a signal name or signal number with no space after the minus (-).

 Note: The valid signal numbers on i5/OS(TM) may be different

than the signal numbers on other systems. You can list

the valid signal names by specifying the -l option. For

portability, you should always specify the signal name.

Options

-l List signal names. If there are no arguments, qsh displays all of the signal names. If signal is a

name, qsh displays the corresponding signal number. If signal is a number, qsh displays the

corresponding signal name.

-n A signal number.

-s A signal name in either uppercase or lowercase.

 Operands

Each job specifies an active job. The job can be specified as a:

v Number to refer to a process id.

v %number to refer to a job number.

v %string to refer to a job whose name begins with string.

Exit Status

v 0 when successful.

v >0 when unsuccessful. If the -l option was not specified, the exit status is the number of jobs to which

qsh could not send the signal.

Related information

v “jobs - Display status of jobs in current session” on page 148

v “trap - Trap signals” on page 153

v “wait - Wait for process completion” on page 155

Qshell 149

Examples

1. Send the USR1 signal to process id 16711: kill -s USR1 16711

2. Send the USR1 signal to job 1: kill -n 7 %1

3. List the valid signal names: kill -l

liblist - Manage library list

Synopsis

liblist [-acdfl] [library ...]

Description

You can use liblist to add or delete a library from the user portion of the library list, set the current

library, or display the library list for the current job.

You can add libraries to the user portion of the library list by specifying the -a option and a list of

libraries. By default, the libraries are added to user portion of the beginning of the library list.

You can remove libraries from the user portion of the library list by specifying the -d option and a list of

libraries.

The current library is set to library when the -c option is specified. The current library can be unset by

specifying both the -c and -d options.

When no arguments are specified, qsh displays the current library list. Each line in the output includes

the library name and the type of the library. A library can be one of the following types:

v SYS for a library in the system portion of the library list.

v PRD for a library in the product portion of the library list.

v CUR for the current library.

v USR for a library in the user portion of the library list.

Options

-a Add library to the user portion of the library list.

-c Set the current library to library.

-d Remove library from the user portion of the library list or unset the current library if the -c option

is also specified.

-f When the -a option is specified, add library to the beginning of the user portion of the library list.

-l When the -a option is specified, add library to the end of the user portion of the library list.

 Operands

Each library is a library to either add or delete from the user portion of the library list depending on the

options specified.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Examples

1. Add the library MYLIB to the library list: liblist -a MYLIB

2. Remove the library MYLIB from the library list: liblist -d MYLIB

150 iSeries: Qshell

3. Set the current library to MYLIB: liblist -c MYLIB

4. Unset the current library: liblist -cd

5. Display the library list: liblist

ps - Display process status

Synopsis

ps [-Aaefjlt] [-o format] [-p pidlist] [-s sbslist] [-u userlist]

Description

The ps utility displays information about processes. The output from ps can include the following fields:

CGROUP

The current primary group profile of the process.

CMD Program, menu, or command most recently run by the process.

CUSER

The current user profile of the process.

DEVICE

Name of the device description object that is associated with the process.

ETIME

The elapsed time since the process started. The time is displayed in the format [[dd-]hh:]mm:ss

where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss

is the number of seconds.

FUNCTION

Program, menu, or command most recently run by the process.

JOBID Qualified job name of the process. The qualified job name is a string in the form

number/user/name. The number is a six-digit decimal number, user is the user profile under which

the job was started, and name is the name of job.

JOBNAME

Job name component of the qualified job name.

JOBNUM

Job number component of the qualified job name.

NTHREADS

The number of threads currently running in the process as a decimal number.

PCPU The ratio of CPU time used recently to CPU time available, expressed as a percentage.

PGID Process group ID number as a decimal number.

PID Process ID number as a decimal number.

PPID Parent process ID number as a decimal number.

PRI Current priority of the process as a decimal number. Lower numbers mean a higher priority.

SBS Subsytem in which the process is running.

STATUS

Current status of the process.

STIME

Date and time the process was started. By default, the date and time is displayed in the format

mm-dd-yyyy hh:nn:ss where mm is the month, dd is the day, yyyy is the year, hh is the hour, nn is

Qshell 151

the minute, and ss is the second. If the LC_TIME environment variable is set, the date and time is

displayed with the format specified by the d_t_fmt keyword in the LC_TIME category of the

specified locale.

THCOUNT

The number of threads currently running in the process as a decimal number.

TIME CPU time used by the process in seconds. The time is displayed in the format [[dd-]hh:]mm:ss

where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss

is the number of seconds.

TMPSZ

The amount of temporary storage used by the process in megabytes as a decimal number.

TYPE The type of the process.

USER User profile component of the qualified job name.

UID User id number corresponding to the user profile component of the qualified job name.

 By default, ps displays the PID, DEVICE, TIME, FUNCTION, STATUS, and JOBID fields about processes

owned by the current user. Use the -o option to select the fields displayed by ps.

To display information about other processes, you must have *JOBCTL special authority.

Options

-a Display information for all processes associated with a 5250 terminal.

-A Display information for all processes. This includes processes that are active, on a job queue, or

on an output queue.

-e Include active processes in the output.

-f Display a full listing. The output includes the USER, PID, PPID, STIME, DEVICE, TIME and

FUNCTION fields.

-j Include processes on a job queue in the output.

-l Display a long listing. The output includes the USER, PID, PPID, PRI, STATUS, JOBID, STIME,

DEVICE, TIME and FUNCTION fields.

-o format

Display information according to the format specification given in format. Multiple -o options can

be specified.

-p pidlist

Write information for processes whose process ID numbers are specified in pidlist. The pidlist

must be a single argument in the form of a blank- or comma-separated list.

-s sbslist

Write information for processes running in the subsystems specified in sbslist. The sbslist must be

a single argument in the form of a blank- or comma-separated list.

-t Include processes on an out queue in the output.

-u userlist

Write information for processes whose user ID numbers or user names are specified in userlist.

The userlist must be a single argument in the form of a blank- or comma-separated list.

 Environment Variables

ps is affected by the following environment variables:

152 iSeries: Qshell

LANG

Provides a default value for locale categories that are not specifically set with a variable starting

with LC_.

LC_TIME

Defines the output format for date and time attributes.

 Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “getjobid - Display job information” on page 146

v “jobs - Display status of jobs in current session” on page 148

sleep - Suspend invocation for an interval

Synopsis

sleep time

Description

You can use sleep to suspend a process from running for time seconds.

Options

None.

Operands

The value of time must be a positive integer.

Exit Status

v 0 when successful.

v >0 when time is invalid.

trap - Trap signals

Synopsis

trap [action condition ...]

trap -p [condition ...]

trap -l

Description

The trap utility sets the action for qsh to take when a condition arises. qsh expands action once when

running trap and again when condition arises.

When the -p option is specified, trap displays the current action for the specified conditions.

When the -l option is specified, trap displays a list of all of the signal names and their corresponding

numbers.

Qshell 153

When no arguments are specified, trap displays a list of the currently defined traps.

Options

-l Display a list of all of the signal names and their corresponding numbers.

-p Display each trap in a re-enterable format.

 Operands

For action, you can specify:

v Null to ignore condition when it arises

v Minus (-) to reset condition to its original value.

v A command to be run each time condition arises.

For condition, you can specify:

v Name or number of a signal. You can use trap -l to display a list of valid signals. For portability, you

should always specify the signal name.

v 0 or EXIT. qsh runs action when the shell exits.

v ERR. qsh runs action when a command has a non-zero exit status.

v DEBUG. qsh runs action after each simple command.

If more than one condition arises at the same time, qsh runs the traps in this order:

1. DEBUG, if it is specified, then

2. ERR, if it is specified and applicable, then

3. Any other specified traps in signal number order, then

4. EXIT.

Exit Status

v 0 when successful.

v >0 when an invalid condition is specified.

Related information

v “kill - Terminate or signal processes” on page 149

v “wait - Wait for process completion” on page 155

Examples

1. Set a trap for the ERR condition:

trap `print Command failed’ ERR

2. Ignore the ERR condition:

trap “” ERR

3. Reset the ERR condition to its original value:

trap - ERR

4. Display the current action for the ERR condition:

trap -p ERR

5. Display all of the currently defined traps:

trap

154 iSeries: Qshell

wait - Wait for process completion

Synopsis

wait [job ...]

Description

You can use wait to wait for the specified jobs to end. If job is not specified, qsh waits for all child

processes to end.

Options

None.

Operands

Each job specifies an active job. The job can be specified as a:

v Number to refer to a process id. qsh waits for the given process to end.

v %number to refer to a job number. qsh waits for all processes in the job to end.

v %string to refer to a job whose name begins with string. qsh waits for all processes in the job to end.

Exit Status

When no job was specified, the exit status is:

v 0 when all running jobs have ended.

v >0 when unsuccessful.

When at least one job was specified, the exit status is the exit status of the last job.

Related information

v “jobs - Display status of jobs in current session” on page 148

v “kill - Terminate or signal processes” on page 149

v “trap - Trap signals” on page 153

Examples

1. Wait for process id 16825 to end: wait 16825

2. Wait for job number 5 to end: wait %5

Utilities for Kerberos credentials and key tables

The following are Qshell utilities for working with Kerberos credentials and key tables:

v kdestroy - Destroy a Kerberos credentials cache

v keytab - Manage a Kerberos key table file

v kinit - Obtain or renew a Kerberos ticket-granting ticket

v klist - Display the contents of a Kerberos credentials cache or key table file

v ksetup - Manage Kerberos service entries in the LDAP directory for a Kerberos realm

Utilities for LDAP directory server

The following are Qshell utilities for working with the LDAP directory server:

v ldapadd - Add LDAP entry tool

v ldapmodify - Change LDAP entry tool

Qshell 155

v ldapchangepwd - Change LDAP password tool

v ldapmodrdn - Change LDAP Relative Distinguished Name (RDN(TM)) tool

v ldapdiff - Compare LDAP replication synchronization tool

v ldapdelete - Delete LDAP entry tool

v ldapexop - Extend LDAP operation tool

v ldapsearch - Search LDAP server tool

Utilities for working with parameters and variables

The following are Qshell utilities for working with parameters and variables:

v “declare - Declare variables and set attributes”

v “export - Set export attribute for variables” on page 157

v “local - Assign a local variable in a function” on page 158

v “printenv - Display values of environment variables” on page 159

v “readonly - Set read-only attribute for variables” on page 159

v “set - Set or unset options and positional parameters” on page 160

v “shift - Shift positional parameters” on page 162

v “typeset - Declare variables and set attributes” on page 162

v “unset - Unset values of variables and functions” on page 163

declare - Declare variables and set attributes

Synopsis

declare [-Eilrux] name [=value] ...

declare [+Eilrux] name [=value] ...

declare -fF [name ...]

declare -p name ...

declare

Description

The declare utility declares variables, assigns values to variables, sets or unsets attributes for variables,

and displays the definitions for shell functions. If used in a shell function, declare makes the variable

name local to the function.

In the first synopsis form, declare declares a variable name and optionally assigns it the specified value. If

an option is specified, the corresponding attribute is turned on for the variable.

In the second synopsis form, declare declares a variable name and optionally assigns it the specified value.

If an option is specified, the corresponding attribute is turned off for the variable.

In the third synopsis form, declare displays the names and definitions for all shell functions if no names

are specified or the shell functions specified by name.

In the fourth synopsis form, declare displays the attributes and value of the variables specified by name

in a re-enterable format.

In the fifth synopsis form, declare displays the names and values of all variables.

156 iSeries: Qshell

cmpdcmds.htm#FUNCTIONS

Options

-E Set the floating point attribute for the variable. On assignments to the variable the value is

evaluated as a floating point number.

-f Display the names and definitions of shell functions.

-F Display the names of shell functions.

-i Set the integer attribute for the variable. On assignments to the variable the value is evaluated as

an integer number.

-l Set the lowercase attribute for the variable. On assignments to the variable the value is set to

lowercase characters.

-p Display each variable in a re-enterable format.

-r Set the read-only attribute for the variable. The variable cannot have its value changed by a

subsequent assignment and cannot be unset. If a value is also specified, the value of the variable

is updated before setting the read-only attribute.

-u Set the uppercase attribute for the variable. On assignments to the variable the value is set to

uppercase characters.

-x Set the export attribute for the variable. The variable is automatically placed in the environment

of subsequently executed commands.

 Operands

Each name must be a valid “Variables” on page 10 name.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “export - Set export attribute for variables”

v “let - Evaluate arithmetic expression” on page 166

v “local - Assign a local variable in a function” on page 158

v “readonly - Set read-only attribute for variables” on page 159

v “set - Set or unset options and positional parameters” on page 160

v “unset - Unset values of variables and functions” on page 163

export - Set export attribute for variables

Synopsis

export [-ps] [name [=value] ...]

Description

You can use export to set the export attribute for the variables specified by name. A variable with the

export attribute is automatically placed in the environment of subsequently executed commands.

When no arguments are specified, qsh displays a list of all the variables with the export attribute and

their values.

Options

-p Precede each line of the output with the word ″export ″ so it is displayed in a re-enterable format.

Qshell 157

-s Also set the variable as an environment variable in the current process.

 Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the

variable is updated.

Exit Status

v 0 when successful.

Related information

v “declare - Declare variables and set attributes” on page 156

v “local - Assign a local variable in a function”

v “readonly - Set read-only attribute for variables” on page 159

v “set - Set or unset options and positional parameters” on page 160

v “unset - Unset values of variables and functions” on page 163

Examples

1. Set the export attribute for an existing variable:

export ALPHA

2. Set the value and export attribute of a new variable:

export ALPHA=one

3. List all variables with the export attribute:

export

local - Assign a local variable in a function

Synopsis

local [name [=value] ...]

Description

You can use local to make a variable local to a function. When a variable is made local, it inherits the

initial value and exported and read-only attributes from the variable with the same name in the

surrounding scope, if there is one. Otherwise, the variable is initially unset.

qsh uses dynamic scoping, so that if you make the variable alpha local to function foo, which then calls

function bar, references to the variable alpha made inside bar will refer to the variable declared inside foo,

not to the global variable named alpha.

The special parameter - is the only special parameter that can be made local . By making - local, any shell

options that are changed with set inside the function are restored to their original values when the

function returns.

Options

None.

Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the

variable is updated.

158 iSeries: Qshell

Exit Status

v 0 when successful.

v >0 when called from outside of a function.

Related information

v “export - Set export attribute for variables” on page 157

v “readonly - Set read-only attribute for variables”

v “set - Set or unset options and positional parameters” on page 160

v “unset - Unset values of variables and functions” on page 163

printenv - Display values of environment variables

Synopsis

printenv [-s] [name]

Description

The printenv utility displays the value of the environment variable name. If no name is specified, printenv

displays all of the current environment variables, one per line, in the format ″name=value″. By default,

printenv displays job environment variables.

Options

-s Display system environment variables.

 Operands

The name is the name of an environment variable in the current environment or a system environment

variable.

Exit Status

v 0 when successful

v >0 if name is not currently defined

Related information

v “env - Set environment for command invocation” on page 53

v “export - Set export attribute for variables” on page 157

readonly - Set read-only attribute for variables

Synopsis

readonly [-p] [name [=value] ...]

Description

You can use readonly to set the read-only attribute for the variables specified by name. A variable with

the read-only attribute cannot have its value changed by a subsequent assignment and cannot be unset.

Note that qsh can change the value of a variable with the read-only attribute. For example, if PWD has

the read-only attribute, it’s value will be changed when you change the current working directory.

When no arguments are specified, qsh displays a list of the variables with the read-only attribute and

their values.

Qshell 159

Options

-p Precede each line of the output with the word ″readonly ″ so it is displayed in a re-enterable

format.

 Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the

variable is updated before setting the read-only attribute.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

Related information

v “declare - Declare variables and set attributes” on page 156

v “export - Set export attribute for variables” on page 157

v “local - Assign a local variable in a function” on page 158

v “set - Set or unset options and positional parameters”

v “unset - Unset values of variables and functions” on page 163

Examples

1. Set the read-only attribute for an existing variable:

readonly ALPHA

2. Set the value and read-only attribute of a new variable:

readonly ALPHA=one

3. List all variables with the read-only attribute:

readonly

set - Set or unset options and positional parameters

Synopsis

set [-abCefFjlmntuvx-] [-o option] [argument ...]

set [+abCefFjlmntuvx-] [+o option] [argument ...]

Description

The set utility can:

v Display the names and values of all shell variables by specifying no options or arguments.

v Display the option settings by specifying the -o option but no option.

v Set an option by specifying a - (minus) followed by the option letter or by specifying -o option.

v Unset an option by specifying a + (plus) followed by the option letter or by specifying +o option.

v Set positional parameters by specifying arguments.

v Unset positional parameters by specifying — but no argument.

Options

All of the single letter options have a corresponding -o option. The option value is listed in parenthesis

following the letter option below. qsh supports the following options:

-a (allexport)

Set the export attribute to each variable that is assigned a value.

160 iSeries: Qshell

-b (notify)

Enable asynchronous notification of background job completion.

-C (noclobber)

Do not overwrite existing files with the > redirection operator.

-e (errexit)

If the interactive option is not set, exit immediately if any untested command fails. The exit status

of a command is considered to be explicitly tested if the command is used to control an if, elif,

while, or until; or if the command is the left hand operand of an && or || operator.

-f (noglob)

Disable path name expansion.

-F (float)

Enable floating point arithmetic in “Arithmetic expansions” on page 18

-j (jobtrace)

Enable job tracing. Each time qsh starts a i5/OS(TM) job, it displays a message to standard error

with the fully-qualified job name and process id.

-l (logcmds)

Enable command logging. Write each command to a message in the job log before it is run.

-m (monitor)

Display a message when a job completes. qsh implicitly turns on this option when the interactive

option is set.

-n (noexec)

If the interactive option is not set, read commands but do not run them. This is useful for

checking the syntax of shell scripts.

-t (trace)

Enable internal tracing. qsh traces internal information to the file specified by TRACEFILE

variable or the qsh_trace file in the user’s home directory.

-u (nounset)

Write a message to standard error when attempting to expand a variable that is not set, and if the

interactive option is not set exit immediately.

-v (verbose)

Write input to standard error as it is read.

-x (xtrace)

Write each command to standard error before it is run, preceded by the expansion of the PS4

variable.

 Operands

Each argument is assigned in order to the positional parameters.

Exit Status

v 0 when successful.

Related information

v “export - Set export attribute for variables” on page 157

v “qsh - Qshell command language interpreter” on page 57

v “readonly - Set read-only attribute for variables” on page 159

v “shift - Shift positional parameters” on page 162

v “unset - Unset values of variables and functions” on page 163

Qshell 161

Examples

1. List all variables and their values:

set

2. List all option settings:

set -o

3. Set positional parameters $1, $2, $3:

set alpha beta gamma

4. Set the allexport and notify options:

set -o allexport -o notify

5. Set the verbose and xtrace options:

set -xv

6. Unset the xtrace option:

set +x

7. Unset the notify option:

set +o notify

8. Unset all positional parameters:

set --

shift - Shift positional parameters

Synopsis

shift [n]

Description

You can use shift to shift the positional parameters to the left by n. Positional parameter 1 is assigned the

value of positional parameter (1+n), positional parameter 2 is assigned the value of positional parameter

(2+n), and so forth. The special parameter # is updated with the new number of positional parameters.

Options

None.

Operands

The value of n must be an unsigned integer less than or equal to the special parameter #. If n is not

specified, the default value is 1. If n is 0, there are no changes to the positional parameters.

Exit Status

v 0 when successful.

v >0 when n is invalid.

Related information

v “set - Set or unset options and positional parameters” on page 160

Examples

1. Shift the positional parameters by two: shift 2

typeset - Declare variables and set attributes

Synopsis

typeset [-Eilrux] name [=value] ...

162 iSeries: Qshell

typeset [+Eilrux] name [=value] ...

typeset -fF [name ...]

typeset -p name ...

typeset

Description

The typeset utility declares variables, assigns values to variables, sets attributes for variables, and

displays the definitions for shell functions. It is a synonym for the “declare - Declare variables and set

attributes” on page 156 utility.

Related information

v “declare - Declare variables and set attributes” on page 156

v “export - Set export attribute for variables” on page 157

v “local - Assign a local variable in a function” on page 158

v “readonly - Set read-only attribute for variables” on page 159

v “set - Set or unset options and positional parameters” on page 160

v “unset - Unset values of variables and functions”

unset - Unset values of variables and functions

Synopsis

unset [-fv] [name ...]

Description

You can use unset to unset each variable or function specified by name. If no option is specified, name

refers to a variable. Variables with the read-only attribute cannot be unset.

Options

-f name refers to a function.

-v name refers to a variable.

 Operands

Each name is a variable or function.

Exit Status

v 0 when successful.

v >0 when at least one name could not be found. The value is the number of names that are not found.

Related information

v “export - Set export attribute for variables” on page 157

v “local - Assign a local variable in a function” on page 158

v “readonly - Set read-only attribute for variables” on page 159

v “set - Set or unset options and positional parameters” on page 160

Examples

1. Unset the variable alpha: unset alpha

Qshell 163

cmpdcmds.htm#FUNCTIONS

2. Unset the function foo: unset -f foo

Utilities for writing scripts

The following are Qshell utilities for writing scripts:

v “break - Exit from for, while, or until loop”

v “colon (:) - Null utility”

v “continue - Continue for, while, or until loop” on page 165

v “false - Return false value” on page 165

v “getopts - Parse utility options” on page 166

v “let - Evaluate arithmetic expression” on page 166

v “return - Return from a function” on page 167

v “test - Evaluate expression” on page 167

v “true - Return true value” on page 169

break - Exit from for, while, or until loop

Synopsis

break[n]

Description

You can use break to exit from the smallest enclosing for, while, or until loop or from the nth enclosing

loop. Processing resumes with the command immediately following the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit Status

v 0 when successful.

Related information

v “continue - Continue for, while, or until loop” on page 165

colon (:) - Null utility

Synopsis

: [argument ...]

Description

You can use colon where you must have a command, but you do not want the command to do anything.

For example, in the then condition of an if command.

Options

None.

Operands

164 iSeries: Qshell

Each argument is expanded.

Exit Status

v 0 when successful.

continue - Continue for, while, or until loop

Synopsis

continue [n]

Description

You can use continue to go to the top of the smallest enclosing for, while, or until loop or to the nth

enclosing loop. Processing resumes with the first command at the top of the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit Status

v 0 when successful.

Related information

v “break - Exit from for, while, or until loop” on page 164

false - Return false value

Synopsis

false

Description

false returns with an exit code that is non-zero.

Options

None.

Operands

None.

Exit Status

v >0 when successful.

Related information

v “true - Return true value” on page 169

Qshell 165

getopts - Parse utility options

Synopsis

getopts optstring varname

Description

You can use getopts to check the positional parameters for legal options. An option argument begins with

a minus (-). The end of the the options is marked by the first argument that does not begin with a minus

or an argument of —.

Each time you call getopts, it places the next option letter it finds in varname. qsh stores the index of the

next parameter to be processed in the variable OPTIND. When an option requires an argument, qsh

stores the argument in the variable OPTARG.

Options

None.

Operands

The option letters recognized by getopts are identified in optstring. If a letter is followed by a colon (:),

that option is expected to have an argument. The argument can be separated from the option letter by

<space>s.

With each call to getopts, varname is updated with the option letter.

Exit Status

v 0 when successful.

v >0 when unsuccessful.

let - Evaluate arithmetic expression

Synopsis

let arg ...

Description

You can use let to evaluate each arg as an “Arithmetic expansions” on page 18. You may need to quote

each arg since many arithmetic operators have a special meaning to qsh.

Operands

Each arg is evaluated as an “Arithmetic expansions” on page 18.

Exit Status

v 0 when the value of the last expression is non-zero

v 1 when the value of the last expression is zero

Examples

1. Add one to the variable x.

let x=x+1

166 iSeries: Qshell

return - Return from a function

Synopsis

return [n]

Description

You can use return to cause a function or dot script to return to the invoking shell script. If return is

called outside a function or dot script, it is equivalent to exit.

Options

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.

Exit Status

n if specified. Otherwise, the exit status of the preceding command.

Related information

v “exit - Exit from the shell” on page 55

test - Evaluate expression

Synopsis

test expression

[expression]

Description

The test utility checks the type of a file, checks permissions on files, compares two strings, or compares

two arithmetic expressions.

The test utility tests conditions for files using the following primaries:

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists regardless of type.

-f file True if file exists and is a regular file.

-g file True if file exists and its set group id flag is set.

-G file True if file exists and is owned by the effective group id.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its restricted deletion flag is set.

-L file True if file exists and is a symbolic link.

-N file True if file exists and is a native object.

-O file True if file exists and is owned by the effective user id.

Qshell 167

-p file True if file exists and is a pipe.

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-S file True if file exists and is a socket.

-u file True if file exists and its set user id flag is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable. This only means that the execute bit is on. If file is a directory,

the directory can be searched.

file1 -ef file2

True if file1 and file2 are different names for the same file (they have the same device and inode

numbers).

file1 -nt file2

True if file1 is newer than file2 or file2 does not exist.

file1 -ot file2

True if file1 is older than file2 or file2 does not exist.

 The test utility tests conditions for checking status using the following primaries:

-o optname

True if shell option optname is enabled.

-t fd True if file descriptor fd is open and associated with a terminal.

 The test utility tests conditions for comparing strings using the following primaries:

-n string

True if the length of string is non-zero.

-z string

True if the length of string is zero.

string True if string is not the null string.

string1 = string2

True if the strings are identical.

string1 == string2

True if the strings are identical.

string1 != string2

True if the strings are not identical.

string1 < string2

True if string1 sorts before string2 in the collation sequence of the current locale.

string1 > string2

True if string1 sorts after string2 in the collation sequence of the current locale.

 The test utility tests conditions for comparing “Arithmetic expansions” on page 18 using the following

primaries:

exp1 -eq exp2

True if the arithmetic expressions are equal.

exp1 -ne exp2

True if the arithmetic expressions are not equal.

168 iSeries: Qshell

exp1 -gt exp2

True if the first arithmetic expression is greater than the second arithmetic expression.

exp1 -ge exp2

True if the first arithmetic expression is greater than or equal to the second arithmetic expression.

exp1 -lt exp2

True if the first arithmetic expression is less than the second arithmetic expression.

exp1 -le exp2

True if the first arithmetic expression is less than or equal to the second arithmetic expression.

 The above primaries can be combined to form complex expressions using the following operators:

v ! expr True if expr is false.

v expr1 -a expr2 True if both expressions are true.

v expr1 & expr2 True if both expressions are true.

v expr1 && expr2 True if both expressions are true.

v expr1 -o expr2 True if either expression is true.

v expr1 | expr2 True if either expression is true.

v expr1 || expr2 True if either expression is true.

v (expr) Parentheses are for grouping.

The -a, &, and && operators have higher precedence than the -o, | operators, and || operators.

Options

See above.

Operands

All operators and flags are separate arguments.

Exit Status

v 0 when expression is true.

v 1 when expression is false.

v >1 when there is an error.

Examples

1. See if /home is a directory:

test -d /home

2. See if one integer is less than or equal to another:

test "$index" -le "$count"

3. See if two strings are equal:

test "$REPLY" = "Yes"

true - Return true value

Synopsis

true

Description

true returns with an exit code of zero.

Qshell 169

Options

None.

Operands

None.

Exit Status

Zero.

Related information

v “false - Return false value” on page 165

Miscellaneous utilities

The following are miscellaneous Qshell utilities:

v “clrtmp - Clear the /tmp directory”

v “dataq - Send or receive messages from i5/OS(TM) data queue” on page 171

v “datarea - Read or write i5/OS(TM) data area” on page 172

v “date - Write the date and time” on page 173

v “expr - Evaluate arguments as an expression” on page 174

v “hostname - Display the name of the current host system” on page 175

v “id - Return user identity” on page 175

v “ipcrm - Remove interprocess communication identifier” on page 176

v “ipcs - Report interprocess communication status” on page 177

v “locale - Get locale specific information” on page 182

v “logger - Log messages” on page 183

v “logname - Display user’s login name” on page 184

v “sysval - Retrieve system values or network attributes” on page 184

v “tee - Duplicate standard input” on page 185

v “ulimit - Set or display resource limits” on page 185

v “uname - Return system name” on page 186

clrtmp - Clear the /tmp directory

Synopsis

clrtmp [-c]

Description

The clrtmp utility clears the /tmp directory by removing all of the objects from it. On other systems, the

/tmp directory is cleared each time the system is started. On i5/OS(TM), the /tmp directory is not cleared

when the system is started. You can include a call to the clrtmp utility from the startup program specified

by the QSTRUPPGM system value to have the /tmp directory cleared when i5/OS(TM) is started.

To remove objects from the /tmp directory the caller of clrtmp must have *WX authority to each

subdirectory contained in /tmp and *OBJEXIST authority to each object. If the caller does not have the

required authority those objects are not removed from the /tmp directory.

170 iSeries: Qshell

Unpredictable results may occur if clrtmp is called while the system is running. For example, if another

program is writing to a file in the /tmp directory, the path to the file is removed and you will not be able

use the file.

 Note: This utility is unique to i5/OS(TM).

Options

-c Create /tmp if it does not exist.

 Exit Status

v 0 when successful

v >0 when an error occurs or at least one object could not be removed from the /tmp directory

dataq - Send or receive messages from i5/OS(TM) data queue

Synopsis

dataq -c [-l] queue

dataq -r [-lp] [-n number] [-t seconds] queue

dataq -w [-l] [-n number] queue [data ...]

Description

The dataq utility clears messages from a data queue, reads messages from a data queue, or writes

messages to a data queue.

In the first synopsis form, dataq clears all of the messages from the queue.

In the second synopsis form, dataq reads messages from the queue and writes them to standard output.

By default, it reads one message from the queue. If no messages are available from the queue, dataq waits

for a message.

In the third synopsis form, dataq writes messages to the queue. If data is specified, it is written as one

message to the queue. Otherwise, each line read from standard input is written as a message to the queue.

Options

-c Clear all of the messages from the queue.

-l When a relative path name is specified, use the library list to find the queue.

-n number

If the -r option is specified, read number messages from the queue. If the -w option is specified,

write number messages to the queue.

-p Peek mode. When reading messages, the messages are left on the queue.

-r Read messages from the queue.

-t seconds

When reading messages, exit if no messages have been received after seconds seconds of waiting.

-w Write messages from the queue.

 Operands

The queue is the path name to a data queue. A data queue can only exist in the QSYS.LIB file system.

Qshell 171

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “datarea - Read or write i5/OS(TM) data area”

v “Rfile - Read or write record files” on page 124

datarea - Read or write i5/OS(TM) data area

Synopsis

datarea -r [-l] [-s substring] data-area

datarea -w [-l] [-s substring] data-area [data ...]

Description

The datarea utility reads or writes a data area.

In the first synopsis form, datarea reads the contents of the data-area and writes it to standard output. By

default, it reads the entire data area.

In the second synopsis form, datarea writes to the data-area. If data is specified, it is written to the

data-area. Otherwise, one line is read from standard input and written to the data-area.

Options

-l When a relative path name is specified, use the library list to find the data-area.

-r Read from the data-area.

-s substring

For a character type data area, read or write the character positions specified by substring. The

substring is specified as a number range that consists of a number, a dash (-), and a second

number to select the character positions from the first number to the second number, inclusive. If

the first number is omitted, character positions from 1 to the second number are selected. If the

second number is omitted, character positions from the first number to the end of the data area

are selected.

-w Write to the data-area.

 Operands

The data-area is the path name to a data area. A data area can only exist in the QSYS.LIB file system.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “dataq - Send or receive messages from i5/OS(TM) data queue” on page 171

v “Rfile - Read or write record files” on page 124

172 iSeries: Qshell

date - Write the date and time

Synopsis

date [-u] [+format]

Description

The date utility writes the date and time to standard output. By default, the current date and time are

written.

Options

-u Give time in universal coordinated time (UTC). The QUTCOFFSET system value must be set

correctly for date to return the correct time.

 Operands

The +format operand specifies the format of the output from the date command. Each field descriptor is

replaced in the standard output by its corresponding value. All other characters are copied to the output

without change. The output is always terminated with a newline character.

You can use these field descriptors:

%a Insert abbreviated weekday name from locale.

%A Insert full weekday name from locale.

%b Insert abbreviated month name from locale.

%B Insert full month name from locale.

%c Insert date and time from locale.

%d Insert day of the month (01-31).

%H Insert hour (24-hour clock) as a decimal number (00-23).

%I Insert hour (12-hour clock) as a decimal number (01-12).

%j Insert day of the year (001-366).

%m Insert month (01-12).

%M Insert minute (00-59).

%p Insert equivalent of either AM or PM from locale.

%S Insert second (00-61).

%U Insert week number of the year (00-53) where Sunday is the first day of the week.

%w Insert weekday (0-6) where Sunday is 0. first day of the week.

%W Insert week number of the year (00-53) where Monday is the first day of the week

%x Insert date representation from locale.

%X Insert time representation from locale.

%y Insert year without the century (00-99).

%Y Insert year.

%Z Insert name of time zone, or no characters if time zone is not available.

%% Insert %.

Qshell 173

Exit Status

v 0 when successful

v >0 when an error occurred

Examples

1. Print the full weekday name, the full month name, the day and the full year.

date +@(#) 89 1.41@(#), 0 %d%, %Y

Friday, August 14, 1998

2. Print the day, the abbreviated month name, and the abbreviated year.

date +%d%.%b%.%y

14.Aug.98

3. Print the numeric month, day, and abbreviated year.

date +%m%/%d%/%y

08/14/98

expr - Evaluate arguments as an expression

Synopsis

expr operand ...

Description

The expr utility evaluates an expression formed by the operands and writes the result to standard output.

Operands

The format of the expression to evaluate is shown as follows. expr, expr1, and expr2 can be decimal

integers or strings.

 Note: The six relational expressions return the result of a

decimal integer comparison if both arguments are

integers. Otherwise, they return the result of a string

comparison. The result of each comparison is 1 if the

specified relationship is true, or 0 if the relationship is

false.

 Expression Description

expr1 | expr2 Returns the evaluation of expr1 if it is neither null nor

zero; otherwise, returns the evaluation of expr2.

expr1 & expr2 Returns the evaluation of expr1 if neither expression

evaluates to null or zero; otherwise, returns zero.

expr1 = expr2 Equal.

expr1 > expr2 Greater than.

expr1 >= expr2 Greater than or equal.

expr1 < expr2 Less than.

expr1 <= expr2 Less than or equal.

expr1 != expr2 Not equal.

expr1 + expr2 Addition of decimal integers.

expr1 - expr2 Subtraction of decimal integers.

expr1 * expr2 Multiplication of decimal integers.

expr1 / expr2 Division of decimal integers.

expr1 % expr2 Remainder of decimal integer division.

expr1 : expr2 Matching expression.

(expr) Grouping symbols.

174 iSeries: Qshell

Exit Status

v 0 when the expression evaluates to neither null nor zero.

v 1 when the expression evaluates to null or zero.

v 2 when the expression is invalid.

v >2 when an error occurred.

Examples

1. Evaluate an arithmetic expression.

expr 10+10*10/10-10

2. Evaluate a true or false condition.

expr 10 = 10

hostname - Display the name of the current host system

Synopsis

hostname [-is]

Description

The hostname utility writes the name of the current host system to standard output.

Options

-i Also display the IP address of the host system.

-s Display the short name of the host system without the domain information.

 Exit Status

v 0 when successful

v >0 when an error occurs

id - Return user identity

Synopsis

id [user]

id -G [-n] [user]

id -g [-nr] [user]

id -p [user]

id -u [-nr] [user]

Description

The id utility displays the user and group names and numeric identifiers, of the calling process, to

standard output. If the real and effective identifiers are different, both are displayed, otherwise only the

real identifier is displayed.

If a user (login name or user identifier) is specified, the user and group identifiers of that user are

displayed. In this case, the real and effective identifiers are assumed to be the same.

Options

Qshell 175

-G Display the different group identifiers (effective, real and supplementary) as white-space

separated numbers, in no particular order.

-g Display the effective group identifier as a number.

-n Display the name of the user or group identifier for the -G, -g and -u options instead of the

number. If any of the identifier numbers cannot be mapped into names, the number will be

displayed as usual.

-p Make the output human-readable. The user identifier as a name is displayed, preceded by the

keyword ″uid″. If the effective user identifier is different from the real user identifier, the real user

identifier is displayed as a name, preceded by the keyword ″euid″. If the effective group identifier

is different from the real group identifier, the real group identifier is displayed as a name,

preceded by the keyword ″rgid″. The list of groups to which the user belongs is then displayed as

names, preceded by the keyword ″groups″. Each display is on a separate line.

-r Display the real identifier for the -g and -u options instead of the effective identifier.

-u Display the effective user identifier as a number.

 Exit Status

v 0 on success

v >0 if an error occurs.

Related information

v “logname - Display user’s login name” on page 184

Examples

1. Display all user and groups identifiers that belong to the user ″SAM″.

id -p SAM

uid SAM

groups 500, 1

ipcrm - Remove interprocess communication identifier

Synopsis

ipcrm [-m shmid] [-M shmkey] [-q msgid] [-Q msgkey] [-s semid] [-S semkey]

Description

The ipcrm utility removes an interprocess communication (IPC) entry if the caller has the necessary

authority to the IPC entry. The caller can specify an entry either by the key or by the identifier. The caller

can remove multiple entries at once.

Options

-M shmkey

Remove the shared memory segment with the specified key.

-m shmid

Remove the shared memory segment with the specified id.

-Q msgkey

Remove the message queue with the specified key.

-q msgid

Remove the message queue with the specified id.

-S semKey

Remove the semaphore set with the specified key.

176 iSeries: Qshell

-s semid

Remove the semaphore set with the specified id.

 Operands

There are no operands.

Exit Status

v 0 on success

v >0 if an error occurs

Related Information

v “ipcs - Report interprocess communication status”

Examples

v Remove a semaphore with key 1283 and a message queue with id 10:

ipcrm -S 1283 -q 10

ipcs - Report interprocess communication status

Synopsis

ipcs [-ETabcjmnopqstu]

Description

The ipcs utility reports information about existing interprocess communication (IPC) entries on the

system and displays the output on standard output. The ipcs utility is shipped with public authority set

to *EXCLUDE. The user must have *SERVICE special authority to run ipcs.

ipcs automatically reports some information for all entries that match the IPC mechanism specified.

Additional information is reported based on the specified options.

If no IPC mechanism is specified, all five mechanisms are reported. An IPC mechanism is specified by

using the -m option for shared memory, -n option of named semaphores, -s option for semaphores sets,

-q option for message queues, or -u option for unnamed sempahores.

The following information is reported for every shared memory, semaphore set, and message queue

entry:

v The type of the mechanism (column T).

v The id of the entry in decimal form (column ID).

v The key of the entry in hexadecimal form (column KEY).

v The entry’s access modes and flags (column MODE).

v The user profile of the owner of the entry (column OWNER).

v The group profile of the owner of the entry (column GROUP).

The following information is reported for every named semaphore entry:

v The type of the mechanism (column T).

v The title for the semaphore (column TITLE).

v The entry’s access modes and flags (column MODE).

The following information is reported for every unnamed semaphore entry:

v The type of the mechanism (column T).

Qshell 177

v The title for the semaphore (column TITLE).

Warning: Running ipcs locks system-scoped resources that can affect the performance of other IPC

operations.

Options

The following options are used to select the IPC mechanism to report on.

-m Show the shared memory entries on the system.

-n Show the named semaphore entries on the system.

-q Show the message queue entries on the system.

-s Show the semaphore set entries on the system.

-u Show the unnamed semaphore entries on the system.

 The following options select the additional information that is reported for the IPC mechanism.

-a Report all information as if the -b, -c, -o, -p, and -t options were specified.

-b Display the maximum allowable size. If message queues are specified, the report includes the

QBYTES column. If shared memory is specified, the report includes the SEGSZ column. If

semaphore sets are specified, the report includes the NSEMS column. If named semaphores or

unnamed semaphores are specified, the report includes the VALUE and NWAITERS columns.

-c Display the user profile and group profile of the creator of the entry. For all mechanisms, the

report includes the CREATOR and CGROUP columns.

-E Display extended information. If message queues are specified, the report includes the WPID,

WTID, MSGTYPE, and SIZE columns. If shared memory is specified, the report includes the

APID and NUMATT columns. If semaphore sets are specified, the report includes the SEMNUM,

SEMVAL, LOPID, WAITZ, WAITP, and WAITVAL columns. If named semaphores are specified,

the report includes the NAME, LPOST, LWAIT, WAITER, JOB, and THREAD columns. If

unnamed semaphores are specified, the report includes the LPOST, LWAIT, WAITER, JOB, and

THREAD columns.

 Since this level of detail is not available on other systems, this option is kept separate from the -a

option. When this option is specified, at least one row is added for each entry.

-j Display the qualified job name instead of the process ID when the -E option is also specified. If

message queues are specified, the report includes the WJOBID column instead of WPID. If shared

memory is specifed, the report includes the AJOBID column instead of APID. If semaphore sets

are specified, the report includes the LOJOBID column instead of LOPID, the WAITZJID column

instead of WAITZ, and the WAITPJID column instead of WAITP.

-o Display information about outstanding usage. If message queues are specified, the report includes

the CBYTES and QNUM columns. If shared memory is specified, the report includes the

NATTCH column.

-p Display process ID information. If message queues are specified, the report includes the LSPID

and LRPID columns. If shared memory is specified, the report includes the CPID and LPID

columns.

-t Display time information. If message queues are specified, the report includes the CTIME,

RTIME, and STIME columns. If shared memory is specified, the report includes the CTIME,

ATIME, and DTIME columns. If semaphore sets are specified, the report includes the CTIME and

OTIME columns.

-T Display thread information. If message queues are specified, the report includes the LSTID and

178 iSeries: Qshell

LRTID columns. If shared memory is specified, the report includes the CTID and LTID columns.

If semaphore sets are specified and the -E option is specified, the report includes the LOTID,

WAITZTID, and WAITPTID columns.

 Operands

There are no operands.

Extended Description

Listed below are descriptions for all of the columns that can be reported in the output. After the column

name, the options that display the column are shown. A value of “default” means that the column is

always displayed, no matter what option is specified.

AJOBID (-Ej)

The qualified job name of the jobs attached to the shared memory segment.

ATIME (-t, -a)

The last time a job attached to the shared memory segment.

APID (-E)

The process ID of the job or jobs attached to the shared memory segment.

CBYTES (-o, -a)

The total number of bytes in the messages currently on the message queue.

CGROUP (-c, -a)

The group profile of the creator of the entry.

CPID (-p, -a)

The process ID of the job that created the shared memory segment.

CTID (-T)

The thread ID of the thread that created the shared memory segment.

CREATOR (-c, -a)

The user profile of the creator of the entry.

CTIME (-t, -a)

The last time the entry was either created or the owner or permissions, or both, were changed.

DTIME (-t, -a)

The last time a job detached from the shared memory segment.

GROUP (default)

The group profile of the owner of the entry.

ID (default)

The id of the entry in decimal.

JOB (-E)

The fully-qualified job name of the job waiting on the named semaphore or unnamed semaphore.

KEY (default)

The key of the entry in hexadecimal.

LOJOBID (-Ej)

The qualified job name of the last job to change the value of the semaphore using semop().

LOPID (-E)

The process ID of the last job to change the value of the semaphore using semop().

LOTID (-TE)

The thread ID of the last thread to change the value of the semaphore using semop().

Qshell 179

LPID (-p, -a)

The process ID of the last job to attach or detach from the shared memory segment or change the

semaphore value.

LPOST (-E)

The fully-qualified job name and thread id of the last thread to post the named semaphore or

unnamed semaphore.

LRPID (-p, -a)

The process ID of the last job to receive a message from the message queue using msgrcv().

LRTID (-T)

The thread ID of the last thread to receive a message from the message queue using msgrcv().

LSPID (-p, -a)

The process ID of the last job to send a message to the message queue using msgsnd().

LSTID (-T)

The thread ID of the last thread to send a message to the message queue using msgsnd().

LTID (-T)

The thread ID of the last thread to attach or detach from the shared memory segment.

LWAIT (-E)

The fully-qualified job name and thread id of the last thread to wait for the named semaphore or

unnamed semaphore.

MODE (default)

An 11 character field that provides information about the state and permissions of the entry.

 The first character can be one of the following:

D The entry has sustained damage, and no operations can be performed on it. The entry

should only be marked damaged if an internal error has occurred.

T The entry is a shared memory segment and the segment uses teraspace storage.

Y The entry is a shared memory segment and the segment uses teraspace storage and the

entry has sustained damage.

- None of the above applies.

The second character can be one of the following:

R The entry is a message queue and a thread is waiting on a call to msgrcv().

S The entry is a message queue and a thread is waiting on a call to msgsnd().

D The entry is a shared memory segment and the shared memory segment is marked to be

removed when all the jobs detach from the shared memory.

- None of the above applies.

The next nine characters are interpreted as three sets of three permissions each. The first set refers

to the owner’s permissions, the second set to group’s permissions, and the third set to other’s

permissions. Within each set, the first character indicates permission to read, the second character

indicates permission to write, and the last character is currently unused.

 The permissions are indicated as follows:

r If read permission is granted.

w If write permission is granted.

- If the indicated permission is not granted.

180 iSeries: Qshell

MSGTYPE (-E)

The type of the messages that are currently on the message queue.

NAME (-E)

The path name of the named semaphore.

NATTCH (-o, -a)

The current number of attaches to the shared memory segment.

NUMATT (-E)

The number of times the job is attached to the shared memory segment.

NSEMS (-b, -a)

The number of semaphores in the semaphore set.

NWAITERS (-b, -a)

The number of threads waiting on the named semaphore or unnamed semaphore.

OTIME (-t, -a)

The last time that semop() was called using the semaphore set.

OWNER (default)

The user profile of the owner of the entry.

QBYTES (-b, -a)

The maximum number of bytes allowed on the message queue.

QNUM (-o, -a)

The number of messages currently on the message queue.

RTIME (-t, -a)

The last time a msgrcv() was called using the message queue.

SEGSZ (-b, -a)

The size of the shared memory segment.

SEMNUM (-E)

The semaphore number in the semaphore set.

SEMVAL (-E)

The value of the semaphore.

SIZE (-E)

The size of the message on the message queue.

STIME (-t, -a)

The last time a msgsnd() was called using the message queue.

T (default)

The entry type. The value is M for a shared memory segment, N for a named semaphore, Q for a

message queue, S for a semaphore set, or U for an unnamed semaphore.

THREAD (-E)

The thread ID of the thread waiting on the named semaphore or unnamed semaphore.

TITLE (default)

The title of the named semaphore or unnamed semaphore.

VALUE (-b, -a)

The current value of the named semaphore or unnamed semaphore.

WAITER (-E)

The index number of the thread waiting on the named semaphore or unnamed semaphore.

WAITP (-E)

The process ID of the job waiting for the semaphore value to reach a positive number.

Qshell 181

WAITPJID (-Ej)

The qualified job name of the job waiting for the semaphore value to reach a positive number.

WAITPTID (-ET)

The thread ID of the thread or threads waiting for the semaphore value to reach a positive

number.

WAITVAL (-E)

The value that the thread is waiting for the semaphore to reach.

WAITZ (-E)

The process ID of the job waiting for the semaphore value to reach zero.

WAITZJID (-Ej)

The qualified job name of the job waiting for the semaphore value to reach zero.

WAITZTID (-ET)

The thread ID of the thread or thread waiting for the semaphore value to reach zero.

WJOBID (-Ej)

The qualified job names of the jobs waiting to receive a message.

WPID (-E)

The process ID of the job or jobs waiting to receive a message.

WTID (-E)

The thread ID of the thread waiting to receive a message.

 Exit Status

v 0 on success

v >0 if an error occurs

Related Information

v “ipcrm - Remove interprocess communication identifier” on page 176

locale - Get locale specific information

Synopsis

locale [-a]

locale [-ck] name ...

Description

The locale utility displays information about the current locale environment to standard output.

In the first synopsis form, locale writes the names and values of locale environment variables. When the

-a option is specified, locale writes the names of all of the available locales on the system.

In the second synopsis form, locale writes detailed information about the locale category or keyword

specified by name.

Options

-a Write information about all available locales.

-c Display the names of the locale categories.

-k Display the names of the locale keywords.

 Operands

182 iSeries: Qshell

The name operand can be one of the following locale categories or keywords:

v For category LC_CTYPE the keywords include alnum, alpha, blank, cntrl, digit, graph, lower, print,

punct, space, upper, xdigit, and codeset.

v For category LC_MESSAGES the keywords include yesexpr, noexpr, yesstr, and nostr.

v For category LC_MONETARY the keywords include int_curr_symbol, currency_symbol,

mon_decimal_point, mon_grouping, mon_thousands_sep, positive_sign, negative_sign, int_frac_digits,

frac_digits, p_cs_precedes, p_sep_by_space, n_cs_precedes, n_sep_by_space, p_sign_posn, n_sign_posn,

debit_sign, credit_sign, left_parenthesis, right_parenthesis, and crncystr.

v For category LC_NUMERIC the keywords include decimal_point, thousands_sep, grouping, and

radixchar.

v For category LC_TIME the keywords include abday, abday_1, abday_2, abday_3, abday_4, abday_5,

abday_6, abday_7, day, day_1, day_2, day_3, day_4, day_5, day_6, day_7, abmon, ab_mon1, abmon_2,

abmon_3, abmon_4, abmon_5, abmon_6, abmon_7, abmon_8, abmon_9, abmon_10, abmon_11,

abmon_12, mon, mon_1 mon_2 mon_3 mon_4 mon_5 mon_6 mon_7 mon_8 mon_9 mon_10 mon_11

mon_12, d_t_fmt, d_fmt, t_fmt, am_pm, am_str, pm_str, era, era_d_fmt, era_year, t_fmt_ampm,

era_t_fmt, era_d_t_fmt, alt_digits.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “iconv - Convert characters from one CCSID to another CCSID” on page 69

v “tr - Translate characters” on page 77

v Locale overview

Examples

1. Display the current values of the locale environment variables.

locale

2. Display the list of available locales on the system.

locale -a

logger - Log messages

Synopsis

logger [-is] [-f file] [-t tag] [message ...]

Description

The logger utility provides a shell command interface for writing messages to the QHST system log. If

message is not specified, and the -f flag is not provided, standard input is logged.

Options

-i Log the process id of the logger process with each line.

-s Log the message to standard error, as well as the system log.

-f Log the specified file.

-t Mark every line in the log with the specified tag.

 Exit Status

v 0 on success

Qshell 183

v >0 if an error occurs.

Examples

1. Send the file ″test.output.log″ to the system log.

logger -f test.output.log

2. Send a message to the system log and standard error, and include a tag.

logger -s -t ’Tag your are it’ My message is simple

logname - Display user’s login name

Synopsis

logname

Description

The logname utility writes the user’s login name to standard output followed by a newline.

The logname utility explicitly ignores the LOGNAME and USER environment variables because the

environment cannot be trusted.

Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “id - Return user identity” on page 175

sysval - Retrieve system values or network attributes

Synopsis

sysval [-p] systemValue ...

sysval -n [-p] networkAttr ...

Description

The sysval utility displays the value of an i5/OS(TM) system value or network attribute. One system value

or network attribute is displayed per line of output.

 Note: This utility is unique to i5/OS(TM).

Options

-n Display network attributes.

-p Display the system value or network attribute name with the value.

 Operands

See the Retrieve System Value API for the names and descriptions of the valid system values. See the

Retrieve Network Attributes API for the names and descriptions of the valid network attributes.

Examples

1. Display the QDATE system value.

sysval QDATE

184 iSeries: Qshell

2. Display the SYSNAME network attribute.

sysval -n SYSNAME

tee - Duplicate standard input

Synopsis

tee [-ai] [file ...]

Description

The tee utility copies standard input to standard output, making a copy in zero or more files. The output

is unbuffered.

The tee utility takes the default action for all signals, except when the -i option is specified.

Options

-a Append the output to the files rather than overwriting them.

-i Ignore the SIGINT signal.

 Environment Variables

tee is affected by the following environment variables:

QIBM_CCSID

The files created by tee are created with the CCSID specified by the value of the environment

variable.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “echo - Write arguments to standard output” on page 134

Examples

1. Save the output of a command into three different files.

grep ’off_set=’ code/*.java | tee file1 file2 file3 > logfile

2. Make a working and backup copy of the file, ″back9″.

cat back9 | tee pro.tees pro.tees.bak

ulimit - Set or display resource limits

Synopsis

ulimit [-HS] [-acdfmnst] [limit]

Description

The ulimit utility sets or displays resource limits. The resource limits apply to the current process and to

any processes that are started after the resource limit is set.

For each resource, there is a hard or maximum limit and a soft or current limit. The soft limit can be

changed to any value that is less than or equal to the hard limit. The hard limit can be changed to any

value that is greater than or equal to the soft limit. The hard limit can only be increased by a user with

*JOBCTL special authority.

Qshell 185

On i5/OS(TM), only the file size (-f) and number of descriptors (-n) resource limits can be set. All of the

resource limits can be displayed.

Options

-a Display all of the resource limits.

-c Display the resource limit for the maximum size of a core file in kilobytes.

-d Display the resource limit for the maximum size of a process’ data segment in kilobytes.

-f Set or display the resource limit for the maximum size of a file in kilobytes.

-H Set or display the hard limit for the resource.

-m Display the resource limit for the maximum size of a process’ total available storage.

-n Set or display the resource limit for the maximum number of file descriptors that can be opened

by the process.

-s Display the resource limit for the maximum size of the process’ stack in kilobytes.

-S Set or display the soft limit for the resource.

-t Display the resource limit for the maximum amount of CPU time in seconds.

 Operands

When limit is not specified, the value of the resource limit is displayed. When the -H option is specified,

the hard limit is displayed. Otherwise, the soft limit is displayed.

When limit is specified, the value of the resource limit is set. The limit can be an “Arithmetic expansions”

on page 18 or the string ″unlimited″ for no limit. If neither the -H or -S options are specified, both the

hard and soft limits are set.

If no resource is specified, the default is the file size (-f) resource limit.

Exit Status

v 0 when successful

v >0 when unsuccessful

Related information

v “umask - Get or set the file mode creation mask” on page 131

uname - Return system name

Synopsis

uname [-amnrsv]

Description

The uname utility writes the name of the operating system implementation to standard output. When

options are specified, strings representing one or more system characteristics are written to standard

output.

If the -a flag is specified, or multiple flags are specified, all output is written on a single line, separated

by spaces.

Options

-a Behave as though the -m, -n, -r, -s, and -v options were specified.

186 iSeries: Qshell

-m Write the name of the hardware type of the system to standard output.

-n Write the name of the system to standard output.

-r Write the current release level of the operating system to standard output.

-s Write the name of the operating system implementation to standard output.

-v Write the version level of this release of the operating system to standard output.

 Exit Status

v 0 on success

v >0 if an error occurs

Related information

v “ulimit - Set or display resource limits” on page 185

Application Programming Interfaces

Qshell provides the following application program interfaces (APIs):

“QzshSystem() - Run a QSH Command”

“QzshCheckShellCommand() - Find QSH Command” on page 191

QzshSystem() - Run a QSH Command

 Syntax

 #include <qshell.h>

 int QzshSystem(const char *command);

Threadsafe: Yes

The QzshSystem() function runs the specified shell command by spawning a child process and invoking

qsh in the child process. qsh interprets and runs command and then exits.

The QzshSystem() function returns when the child process has ended. While the QzshSystem() function

is waiting for the child process to end, it ignores the SIGQUIT and SIGINT signals, and blocks the

SIGCHLD signal. The QzshSystem() function does not affect the status information of any other child

processes started by the calling process.

Parameters

*command

(Input) Pointer to null-terminated string that contains the shell command to run.

Authorities

 Object Referred To Authority Required errno

Each directory in the path name preceding the executable file *X EACCES

Executable file *X EACCES

If executable file is a shell script *RX EACCES

Return value

Qshell 187

value QzshSystem() was successful. The return value is the status returned from the waitpid() function.

An application can use the macros provided in the sys/wait.h header file to interpret the status

information from the child process. The return value can be a negative number.

-1 QzshSystem() was not successful. The errno value is set to indicate the error.

 Error conditions

If QzshSystem() is not successful, errno typically indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

[ECHILD]

Calling process has no remaining child processes on which wait operation can be performed.

[EFAULT]

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

[ENOMEM]

Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSYSRSC]

System resources not available to complete request.

[EUNKNOWN]

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated. Then try the operation again.

 Related information

v “QzshCheckShellCommand() - Find QSH Command” on page 191

v spawn() - Spawn Process

v waitpid() - Wait for Specific Child Process

Use the QzshSystem() function

The QzshSystem() function provides an interface similar to the system() function from the X/Open

standard. The input is a shell command string, and the QzshSystem() function returns the status of the

command as reported by the waitpid() function. The QzshSystem() function starts a new process, invokes

188 iSeries: Qshell

the shell to run the command in the new process, and waits for the new process to end. You can

determine the results of the command by using the macros from the sys/wait.h header file.

Before calling the QzshSystem() function, ensure that descriptors 0, 1, and 2 are available and that the

appropriate environment variables are set. If your program is called from the QCMD command line or is

run using the Submit Job (SBMJOB) command, your program needs to make sure the environment is set

correctly.

This option gives you more control over the environment while providing a standard interface that hides

the details of starting a new process. In the example below, the QzshSystem() function is used to run the

command specified by the first input parameter. The output is stored in the file specified by the second

input parameter. Note that the descriptors are opened only if they are not currently allocated in the

process.

The compiler and debugger often open descriptors and do not close them. For this reason, you should

run the program from a newly started job.

Example: QzshSystem() function

 #include

 #include

 #include

 #include

 #include

 #include

 /* NOTE: You may want to include exception and/or cancel

 handlers to clean up the descriptors that are

 opened. */

 int main(int argc, char *argv[])

 {

 char *command;

 char *filename;

 int status;

 char envbuf[50];

 char oldvalue;

 char *value;

 int fd0 = -1;

 int fd1 = -1;

 int fd2 = -1;

 /* Set the command and the name of the output file. */

 switch (argc) {

 case 1:

 command = "ls";

 filename = "/dev/null";

 break;

 case 2:

 command = argv[1];

 filename = "/dev/null";

 break;

 default:

 command = argv[1];

 filename = argv[2];

 }

 /* Make sure the standard descriptors are allocated in

 this process. */

 if (fcntl(0, F_GETFL) == -1) {

 fd0 = open("/dev/null", O_RDONLY);

 if (fd0 == -1) {

 printf("Error %d opening file /dev/null

 ", errno);

Qshell 189

}

 }

 if (fcntl(1, F_GETFL) == -1) {

 fd1 = open(filename, O_WRONLY|O_CREAT|O_TRUNC, S_IRWXU);

 if (fd1 == -1) {

 fprintf(stderr, "Error %d opening file %s

 ", errno, filename);

 }

 }

 if (fcntl(2, F_GETFL) == -1) {

 fd2 = open(filename, O_WRONLY|O_CREAT|O_TRUNC, S_IRWXU);

 if (fd2 == -1) {

 fprintf(stderr, "Error %d opening file %s

 ", errno, filename);

 }

 }

 /* Run the specified command while saving and restoring the value of

 the QIBM_USE_DESCRIPTOR_STDIO environment variable. */

 if ((value = getenv("QIBM_USE_DESCRIPTOR_STDIO")) != NULL) {

 oldvalue = *value;

 }

 else {

 oldvalue = ’N’;

 }

 putenv("QIBM_USE_DESCRIPTOR_STDIO=I");

 status = QzshSystem(command);

 sprintf(envbuf, "QIBM_USE_DESCRIPTOR_STDIO=%c", oldvalue);

 putenv(envbuf);

 /* Check the results of the command. */

 if (WIFEXITED(status)) {

 printf("Command %s completed with exit status %d.

 ",

 command, WEXITSTATUS(status));

 }

 else if (WIFSIGNALED(status)) {

 printf("Command %s ended with signal %d.

 ",

 command, WTERMSIG(status));

 }

 else if (WIFEXCEPTION(status)) {

 printf("Command %s ended with exception.

 ", command);

 }

 if (fd0 != -1) {

 close(fd0);

 }

 if (fd1 != -1) {

 close(fd1);

 }

 if (fd2 != -1) {

 close(fd2);

 }

 exit(0);

 }

190 iSeries: Qshell

QzshCheckShellCommand() - Find QSH Command

 Syntax

 #include <qshell.h>

 int QzshCheckShellCommand(const char *command, const char *path);

Threadsafe: Yes

The QzshCheckShellCommand() function finds the specified shell command by searching:

v for a built-in utility, then

v in each directory in the list specified by path or the PATH environment variable in turn.

An application can use QzshCheckShellCommand() to verify that command exists and the user has

authority to command before running it.

Parameters

*command

(Input) Pointer to null-terminated string that contains the shell command to find.

*path

(Input) Pointer to null-terminated string that contains a colon delimited list of directories to search. If this

parameter is NULL, QzshCheckShellCommand() uses the value of the PATH environment variable.

Authorities

When command is an executable file, the user must have the following authorities.

 Object Referred To Authority Required errno

Each directory in the path name preceding the executable file *X EACCES

Executable file *X EACCES

If executable file is a shell script *RX EACCES

Return value

0 QzshCheckShellCommand() was successful. The command was found in the current environment.

-1 Qp0zCheckShellCommand() was not successful. The errno value is set to indicate the error.

 Error conditions

If QzshCheckShellCommand() is not successful, errno typically indicates one of the following errors.

Under some conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

[EFAULT]

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

Qshell 191

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

[ENOMEM]

Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOENT]

No such path or directory.

 The directory or component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[EUNKNOWN]

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated. Then retry the operation.

 Related information

v “QzshSystem() - Run a QSH Command” on page 187

Example: Using the QzshCheckShellCommand() function

For an example of using this function, see the “QzshSystem() - Run a QSH Command” on page 187

function.

Examples: Using a remote client that connects to a qsh session

The following two example programs show how to use a remote client that connects to an interactive qsh

session on the server.

v “Example: Server program” on page 193

v “Example: Client program” on page 200

The server program is compiled and run on i5/OS(TM).

v See “Example: Creating and running the server program” on page 209 for more information.

The client program is compiled and run on a remote system.

v See “Example: Creating and running the client program” on page 211 for more information.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

192 iSeries: Qshell

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

Example: Server program

/**/

/* */

/* Name: server.c */

/* */

/* Description: This program is a server for starting interactive */

/* qsh sessions on remote clients. The program */

/* listens for connections from clients. When a */

/* connection is accepted, it reads the user name */

/* and password of the client. It then swaps to the */

/* the specified user profile and spawns a new */

/* process running the qsh shell interpreter that */

/* handles the connection. */

/* */

/* Parameters: 1. Port number to listen for connections on. */

/* */

/* Notes: 1. The user name and password are sent as plain text */

/* from the client. */

/* 2. The user profile running this program must have */

/* authority to the QSYGETPH, QSYRLSPH, and */

/* QWTSETP APIs. */

/* 3. You will need to change the value of the NLSPATH */

/* environment variable if your system is using a */

/* different language than 2924. */

/* */

/**/

/**/

/* Includes */

/**/

#include <stdio.h> /* fopen(), vfprintf() */

#include <sys/socket.h> /* socket(), bind(), and so on. */

#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on */

#include <arpa/inet.h> /* inet_ntoa() */

#include <spawn.h> /* spawn() */

#include <unistd.h> /* close(), read(), and so on */

#include <stdlib.h> /* exit()*/

#include <stdarg.h> /* va_start(), va_end() */

#include <qp0z1170.h> /* Qp0zInitEnv() */

#include <qsygetph.h> /* QSYGETPH() */

#include <qwtsetp.h> /* QWTSETP() */

#include <qsyrlsph.h> /* QSYRLSPH() */

#include <qusec.h> /* Qus_EC_t */

#include <pwd.h> /* getpwnam() */

#include <ctype.h> /* toupper() */

#include <time.h> /* ctime(), time() */

#include <except.h> /* Exception and cancel handling */

#include <errno.h> /* errno and constants */

/**/

/* Constants */

Qshell 193

/**/

#define DEFAULT_BUF 4096

#define DEFAULT_PORT 6042

#define NULL_PH "\0\0\0\0\0\0\0\0\0\0\0\0"

#define PH_SIZE 12

#define NAME_SIZE 11

#undef PATH_MAX

#define PATH_MAX 4096

/**/

/* Global Variables */

/**/

/* For logging errors */

FILE *log_fp;

char log_file[] = "/tmp/qsh_server.log";

char log_buffer[DEFAULT_BUF];

/**/

/* Function Prototypes */

/**/

int strtoupper(char *);

int GetString(int, char *, size_t);

void LogError(char *, ...);

void SendError(int, char *, ...);

void CleanupHandler(_CNL_Hndlr_Parms_T *);

int main(int argc, char *argv[])

{

 int sfd; /* Server’s listening socket */

 int cfd; /* Socket connected to client */

 int on=1; /* Flag for setsockopt() */

 struct sockaddr_in my_addr; /* Address server binds to */

 struct sockaddr_in client_addr; /* Addrress of connected client */

 int client_addr_len; /* Length of client’s socket address */

 unsigned short port; /* Server’s TCP port */

 char server_ph[PH_SIZE+1] = NULL_PH; /* Server’s profile handle */

 char client_ph[PH_SIZE+1] = NULL_PH; /* Client’s profile handle */

 char profile[NAME_SIZE]; /* User profile read from client */

 char password[NAME_SIZE]; /* Password read from client */

 char sy_profile[NAME_SIZE]; /* User profile for i5/OS(TM) APIs */

 char sy_password[NAME_SIZE]; /* Password for i5/OS(TM) APIs */

 char server_profile[NAME_SIZE] = "*CURRENT ";

 char no_pwd[NAME_SIZE] = "*NOPWD ";

 struct passwd *cpw; /* User information for client */

 Qus_EC_t error = { sizeof(Qus_EC_t), 0 }; /* Error code for SPIs */

 /* Parameters for spawn() to shell process */

 char qsh_pgm[] = "/QSYS.LIB/QSHELL.LIB/QZSHSH.PGM";

 char *args[5]; /* Argument array */

 char *envs[10]; /* Environment variable array */

 int fd_count; /* Number of descriptors */

 int fd_map[3]; /* Map of descriptors */

 struct inheritance inherit; /* Inheritance options */

 char server_dir[] = "/"; /* Default current working directory */

 /* Environment variables */

 char home_var[PATH_MAX+10];

 char logname_var[NAME_SIZE+10];

 char path_var[] = "PATH=/usr/bin:";

 char stdio_var[] = "QIBM_USE_DESCRIPTOR_STDIO=I";

 char terminal_type_var[] = "TERMINAL_TYPE=REMOTE";

 char nlspath_var[] = "NLSPATH=/QIBM/ProdData/OS400/Shell/MRI2924/%N";

 volatile _INTRPT_Hndlr_Parms_T ca; /* For exception handler */

194 iSeries: Qshell

/**/

 /* Process the input parameters. */

 /**/

 /* Use the default port if one is not specified. */

 if (argc < 2) {

 port = DEFAULT_PORT;

 }

 else {

 port = atoi(argv[1]);

 }

 /**/

 /* Initialize the server environment. */

 /**/

 /* Initialize for environment variables. */

 Qp0zInitEnv();

 /* Change to default directory. */

 chdir(server_dir);

 /* Initialize the server’s profile handle. */

 QSYGETPH(server_profile, no_pwd, server_ph, &error);

 if (error.Bytes_Available != 0) {

 LogError("Could not get profile handle for server, "

 "QSYGETPH() failed with exception %7.7s\n",

 error.Exception_Id);

 exit(1);

 }

 /**/

 /* Set up the listening socket. */

 /**/

 /* Create a socket. */

 if ((sfd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP)) < 0) {

 LogError("socket() failed, errno=%d\n", errno);

 exit(1);

 }

 #pragma cancel_handler(CleanupHandler, sfd)

 #pragma exception_handler(Cleanup, ca, _C1_ALL, _C2_ALL)

 /* Allow re-use of this socket address. */

 if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (char *)&on,

 sizeof(int)) != 0) {

 LogError("setsockopt() failed, errno=%d\n", errno);

 exit(1);

 }

 /* Bind to a port. */

 memset(&my_addr, ’\0’, sizeof(my_addr));

 my_addr.sin_family = AF_INET;

 my_addr.sin_port = port;

 my_addr.sin_addr.s_addr = INADDR_ANY;

 if (bind(sfd, (struct sockaddr *)&my_addr, sizeof(my_addr)) != 0) {

 LogError("bind() failed for port %d, errno=%d\n", port, errno);

 close(sfd);

 exit(1);

 }

 /* Make this a listening socket. */

 if (listen(sfd, 10) != 0) {

 LogError("listen() failed, errno=%d\n", errno);

Qshell 195

close(sfd);

 exit(1);

 }

 /**/

 /* Accept connections from clients. */

 /**/

 while (1) {

 if ((cfd = accept(sfd, NULL, 0)) < 0) {

 LogError("accept() failed, errno=%d\n", errno);

 close(sfd);

 exit(1);

 }

 /* Read the user profile and password from the client. The client

 sends two null-terminated strings - the first one is the user

 profile and the second one is the password. */

 if (GetString(cfd, profile, 11) != 0) {

 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);

 LogError("Could not read profile from client at %s, port %hu\n",

 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);

 close(cfd);

 continue;

 }

 if (GetString(cfd, password, 11) != 0) {

 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);

 LogError("Could not read password from client at %s, port %hu\n",

 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);

 close(cfd);

 continue;

 }

 /* Check for the special values that turn off password checking in QSYGETPH(). */

 if ((profile[0] == ’*’) || (password[0] == ’*’)) {

 getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);

 LogError("Invalid password sent from client at %s, port %hu\n",

 inet_ntoa(client_addr.sin_addr), client_addr.sin_port);

 close(cfd);

 continue;

 }

 /* QSYGETPH() requires that the profile be exactly ten characters,

 left-aligned in the field, and padded with blanks. */

 strtoupper(profile);

 sprintf(sy_profile, "%-10.10s", profile);

 /* Get the profile handle for the client’s user profile. */

 QSYGETPH(sy_profile, password, client_ph, &error, strlen(password), 0);

 if (error.Bytes_Available != 0) {

 LogError("Could not get profile handle for profile %s, "

 "QSYGETPH() failed with exception %7.7s\n",

 sy_profile, error.Exception_Id);

 SendError(cfd, "Could not get profile handle for profile %s\n",

 sy_profile);

 close(cfd);

 continue;

 }

 /* Switch to client’s user profile. */

 QWTSETP(client_ph, &error);

 if (error.Bytes_Available != 0) {

 LogError("Could not switch to profile %s, "

 "QWTSETP() failed with exception %7.7s\n",

 sy_profile, error.Exception_Id);

 SendError(cfd, "Could not switch to profile %s\n", sy_profile);

196 iSeries: Qshell

QSYRLSPH(client_ph, NULL);

 close(cfd);

 continue;

 }

 /* Get the info for this user profile. */

 if ((cpw = getpwnam(profile)) == NULL) {

 /* Log error. */

 LogError("Could not retrieve information for profile %s, "

 "getpwnam() failed with errno=%d\n",

 profile, errno);

 SendError(cfd, "Could not retrieve information for profile %s\n",

 profile);

 /* Switch back to the server’s user profile. */

 QWTSETP(server_ph, &error);

 if (error.Bytes_Available != 0) {

 LogError("Could not switch back to server’s profile, "

 "QWTSETP() failed with exception %7.7s\n",

 error.Exception_Id);

 break;

 }

 /* Release the client’s profile handle. */

 QSYRLSPH(client_ph, NULL);

 if (error.Bytes_Available != 0) {

 LogError("Could not release client’s profile handle, "

 "QSYRLSPH() failed with exception %7.7s\n",

 error.Exception_Id);

 break;

 }

 close(cfd);

 continue;

 }

 /* Build the file descriptor map for the child. */

 fd_count = 3;

 fd_map[0] = cfd;

 fd_map[1] = cfd;

 fd_map[2] = cfd;

 /* Build the argv array for the child. */

 args[0] = qsh_pgm;

 args[1] = "-login"; /* Do login processing */

 args[2] = "-s"; /* Take input from stdin */

 args[3] = "-i"; /* Run as an interactive shell */

 args[4] = NULL;

 /* Build the environ array for the child. */

 sprintf(home_var, "HOME=%s", cpw->pw_dir);

 sprintf(logname_var, "LOGNAME=%s", cpw->pw_name);

 envs[0] = home_var;

 envs[1] = logname_var;

 envs[2] = path_var;

 envs[3] = stdio_var;

 envs[4] = terminal_type_var;

 envs[5] = nlspath_var;

 envs[6] = NULL;

 /* Set up the inheritance structure. */

 memset(&inherit, ’\0’, sizeof(struct inheritance));

 inherit.flags = SPAWN_SETTHREAD_NP;

 inherit.pgroup = SPAWN_NEWPGROUP;

 /* Change to the home directory for the client. The child process

 inherits this as its current working directory. */

 chdir(cpw->pw_dir);

Qshell 197

/* Start a child process running the shell interpreter. */

 if (spawn(args[0], fd_count, fd_map, &inherit, args, envs) < 0) {

 LogError("Could not start qsh process, spawn() failed with "

 "errno=%d\n", errno);

 SendError(cfd, "Could not start qsh process\n");

 }

 /* Clean up for the next connection. */

 chdir(server_dir);

 close(cfd);

 /* Switch back to server’s user profile. */

 QWTSETP(server_ph, &error);

 if (error.Bytes_Available != 0) {

 LogError("Could not switch back to server’s profile, "

 "QWTSETP() failed with exception %7.7s\n",

 error.Exception_Id);

 break;

 }

 /* Release the client’s profile handle. */

 QSYRLSPH(client_ph, &error);

 if (error.Bytes_Available != 0) {

 LogError("Could not release client’s profile handle, "

 "QSYRLSPH() failed with exception %7.7s\n",

 error.Exception_Id);

 break;

 }

 } /* End of while */

 /* Clean up. */

 close(sfd);

 #pragma disable_handler /* Exception handler */

 #pragma disable_handler /* Cancel handler */

 exit(0);

 return 0;

 /* Exception handler */

 Cleanup:

 LogError("Unexpected exception %7.7s\n", ca.Msg_Id);

 close(sfd);

 exit(1);

} /* End of main() */

/*

 * Convert a string to uppercase.

 */

int

strtoupper(char *string)

{

 for (; *string != ’\0’; ++string)

 *string = toupper(*string);

 return 0;

} /* End of strtoupper() */

/*

 * Read a string from a socket.

 */

198 iSeries: Qshell

int

GetString(int fd, char *buffer, size_t nbytes)

{

 char c;

 do {

 if (read(fd, &c, 1) != 1) {

 return -1;

 }

 *buffer++ = c;

 if (--nbytes == 0) {

 return 0;

 }

 } while (c != ’\0’);

 return 0;

} /* End of GetString() */

/*

 * Write an error message to the log file.

 */

void LogError(char *format, ...)

{

 va_list ap;

 time_t now; /* Time stamp */

 /* If needed, open the log file. */

 if (log_fp == NULL) {

 log_fp = fopen(log_file, "w");

 if (log_fp == NULL) {

 return;

 }

 }

 /* Write timestamp to the log file. */

 now=time(NULL);

 fprintf(log_fp, "\n%s", ctime(&now));

 /* Write the formatted string to the log file. */

 va_start(ap, format);

 vfprintf(log_fp, format, ap);

 va_end(ap);

 /* Flush output to log file. */

 fflush(log_fp);

 return;

} /* End of LogError() */

/*

 * Send an error message to the client.

 */

void SendError(int fd, char *format, ...)

{

 va_list ap;

 /* Build the formatted string. */

 va_start(ap, format);

 vsprintf(log_buffer, format, ap);

 va_end(ap);

 /* Write the formatted string. */

 write(fd, log_buffer, strlen(log_buffer));

Qshell 199

return;

} /* End of SendError() */

/*

 * Handler to clean up when the program is canceled.

 */

void CleanupHandler(_CNL_Hndlr_Parms_T *cancel_info)

{

 int sfd;

 sfd = *((int *)cancel_info->Com_Area);

 close(sfd);

} /* End of CleanupHandler() */

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 216.

Example: Client program

/**/

/* */

/* Name: qshc.c */

/* */

/* Description: This program is a client for an interactive qsh */

/* session running on a server. The program */

/* first connects to a server on the specified */

/* server and sends the user name and password of */

/* the client. After the qsh session is started, */

/* the program takes input from stdin and sends it */

/* to the server and receives output from the server */

/* and displays it on stdout. */

/* */

/* Parameters: 1. Host running the qsh server (either host name or */

/* IP address). */

/* */

/* Options: 1. -n to force prompt for user name and password. */

/* 2. -p to specify port of qsh server. */

/* */

/* Notes: 1. The user name and password are sent as plain text */

/* to the server. */

/* 2. All translations from ASCII to EBCDIC are done by */

/* this program on the client. */

/* 3. The program includes translation tables for */

/* converting between EBCDIC code page 37 (US English)*/

/* and ASCII code page 850 (US English). You can */

/* modify these tables to support other code pages. */

/* Or if your system supports the iconv APIs, you */

/* can define USE_ICONV to translate using iconv(). */

/* 4. This program has been tested on AIX(R) 4.1.5 and */

/* Linux(TM) 2.0.29. */

/* */

/**/

/* Remove the comments from the following line to use iconv(). */

/* #define USE_ICONV 1 */

/**/

/* Includes */

/**/

#include <stdio.h> /* perror() */

#include <sys/socket.h> /* socket(), bind(), and so on */

#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on */

#include <unistd.h> /* close(), read(), write() and so on */

#include <stdlib.h> /* exit() */

200 iSeries: Qshell

#include <stdlib.h> /* exit(), memset() */

#include <sys/ioctl.h> /* ioctl() */

#include <errno.h> /* errno and values */

#include <string.h> /* strlen() */

#include <arpa/inet.h> /* inet_addr() */

#include <netdb.h> /* gethostbyname() */

#include <pwd.h> /* getpwuid() */

#include <signal.h> /* sigaction(), and so on */

#ifdef _AIX

#include <sys/select.h> /* select() */

#include <strings.h> /* bzero() for FD_ZERO */

#endif

#ifdef __linux__

#include <sys/time.h> /* FD_SET(), select */

#endif

#ifdef USE_ICONV

#include <iconv.h> /* iconv(), and so on */

#endif

/**/

/* Constants */

/**/

#define QSH_PORT 6042

#define DEFAULT_BUF 4096

/**/

/* Types */

/**/

typedef unsigned char uchar;

/**/

/* Global Variables */

/**/

char *sysname; /* Long host name of server system */

#ifdef USE_ICONV

iconv_t ecd; /* Conversion descriptor for ASCII to EBCDIC */

iconv_t acd; /* Conversion descriptor for EBCDIC to ASCII */

#else

/* EBCDIC to ASCII translation table */

static uchar AsciiTable[256] =

{

 0x00,0x01,0x02,0x03,0x20,0x09,0x20,0x7f, /* 00-07 */

 0x20,0x20,0x20,0x0b,0x0c,0x0d,0x0e,0x0f, /* 08-0f */

 0x10,0x11,0x12,0x13,0x20,0x0a,0x08,0x20, /* 10-17 */

 0x18,0x19,0x20,0x20,0x20,0x1d,0x1e,0x1f, /* 18-1f */

 0x20,0x20,0x1c,0x20,0x20,0x0a,0x17,0x1b, /* 20-27 */

 0x20,0x20,0x20,0x20,0x20,0x05,0x06,0x07, /* 28-2f */

 0x20,0x20,0x16,0x20,0x20,0x20,0x20,0x04, /* 30-37 */

 0x20,0x20,0x20,0x20,0x14,0x15,0x20,0x1a, /* 38-3f */

 0x20,0x20,0x83,0x84,0x85,0xa0,0xc6,0x86, /* 40-47 */

 0x87,0xa4,0xbd,0x2e,0x3c,0x28,0x2b,0x7c, /* 48-4f */

 0x26,0x82,0x88,0x89,0x8a,0xa1,0x8c,0x8b, /* 50-57 */

 0x8d,0xe1,0x21,0x24,0x2a,0x29,0x3b,0xaa, /* 58-5f */

 0x2d,0x2f,0xb6,0x8e,0xb7,0xb5,0xc7,0x8f, /* 60-67 */

 0x80,0xa5,0xdd,0x2c,0x25,0x5f,0x3e,0x3f, /* 68-6f */

 0x9b,0x90,0xd2,0xd3,0xd4,0xd6,0xd7,0xd8, /* 70-77 */

 0xde,0x60,0x3a,0x23,0x40,0x27,0x3d,0x22, /* 78-7f */

 0x9d,0x61,0x62,0x63,0x64,0x65,0x66,0x67, /* 80-87 */

 0x68,0x69,0xae,0xaf,0xd0,0xec,0xe7,0xf1, /* 88-8f */

 0xf8,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,0x70, /* 90-97 */

Qshell 201

0x71,0x72,0xa6,0xa7,0x91,0xf7,0x92,0xcf, /* 98-9f */

 0xe6,0x7e,0x73,0x74,0x75,0x76,0x77,0x78, /* a8-a7 */

 0x79,0x7a,0xad,0xa8,0xd1,0xed,0xe8,0xa9, /* a8-af */

 0x5e,0x9c,0xbe,0xfa,0xb8,0x15,0x14,0xac, /* b0-b7 */

 0xab,0xf3,0x5b,0x5d,0xee,0xf9,0xef,0x9e, /* b8-bf */

 0x7b,0x41,0x42,0x43,0x44,0x45,0x46,0x47, /* c0-c7 */

 0x48,0x49,0xf0,0x93,0x94,0x95,0xa2,0xe4, /* c8-cf */

 0x7d,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,0x50, /* d0-d7 */

 0x51,0x52,0xfb,0x96,0x81,0x97,0xa3,0x98, /* d8-df */

 0x5c,0xf6,0x53,0x54,0x55,0x56,0x57,0x58, /* e0-e7 */

 0x59,0x5a,0xfc,0xe2,0x99,0xe3,0xe0,0xe5, /* e8-ef */

 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37, /* f0-f7 */

 0x38,0x39,0xfd,0xea,0x9a,0xeb,0xe9,0xff /* f8-ff */

};

/* ASCII to EBCDIC translation table */

static uchar EbcdicTable[256] =

{

 0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f, /* 00-07 */

 0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f, /* 08-0f */

 0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26, /* 10-17 */

 0x18,0x19,0x3f,0x27,0x22,0x1d,0x1e,0x1f, /* 18-1f */

 0x40,0x5a,0x7f,0x7b,0x5b,0x6c,0x50,0x7d, /* 20-27 */

 0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61, /* 28-2f */

 0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7, /* 30-37 */

 0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0x6e,0x6f, /* 38-3f */

 0x7c,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7, /* 40-47 */

 0xc8,0xc9,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6, /* 48-4f */

 0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xe6, /* 50-57 */

 0xe7,0xe8,0xe9,0xba,0xe0,0xbb,0xb0,0x6d, /* 58-5f */

 0x79,0x81,0x82,0x83,0x84,0x85,0x86,0x87, /* 60-67 */

 0x88,0x89,0x91,0x92,0x93,0x94,0x95,0x96, /* 68-6f */

 0x97,0x98,0x99,0xa2,0xa3,0xa4,0xa5,0xa6, /* 70-77 */

 0xa7,0xa8,0xa9,0xc0,0x4f,0xd0,0xa1,0x07, /* 78-7f */

 0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48, /* 80-87 */

 0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67, /* 88-8f */

 0x71,0x9c,0x9e,0xcb,0xcc,0xcd,0xdb,0xdd, /* 90-97 */

 0xdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0x40, /* 98-9f */

 0x45,0x55,0xee,0xde,0x49,0x69,0x9a,0x9b, /* a8-a7 */

 0xab,0xaf,0x5f,0xb8,0xb7,0xaa,0x8a,0x8b, /* a8-af */

 0x40,0x40,0x40,0x40,0x40,0x65,0x62,0x64, /* b0-b7 */

 0xb4,0x40,0x40,0x40,0x40,0x4a,0xb2,0x40, /* b8-bf */

 0x40,0x40,0x40,0x40,0x40,0x40,0x46,0x66, /* c0-c7 */

 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x9f, /* c8-cf */

 0x8c,0xac,0x72,0x73,0x74,0x89,0x75,0x76, /* d0-d7 */

 0x77,0x40,0x40,0x40,0x40,0x6a,0x78,0x40, /* d8-df */

 0xee,0x59,0xeb,0xed,0xcf,0xef,0xa0,0x8e, /* e0-e7 */

 0xae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe, /* e8-ef */

 0xca,0x8f,0x40,0xb9,0xb6,0xb5,0xe1,0x9d, /* f0-f7 */

 0x90,0xbd,0xb3,0xda,0xea,0xfa,0x40,0x40 /* f8-ff */

};

#endif /* USE_ICONV */

/**/

/* Function Prototypes */

/**/

int ConvertToEBCDIC(char *, size_t, char *, size_t);

int ConvertToASCII(char *, size_t, char *, size_t);

int GetPassword(char *, char *, char *);

int Translate(uchar *, size_t, uchar *, uchar *);

void MySignalHandler(int);

void usage(void);

int main (int argc, char *argv[])

{

 struct sigaction sigact; /* Signal action */

202 iSeries: Qshell

int c; /* Option letter */

 int nflag=0; /* True when -n option is specified */

 int port=QSH_PORT; /* Port to connect to on server */

 int sd; /* Socket to server */

 fd_set read_set; /* For select() */

 int rc; /* Return code */

 struct sockaddr_in svr_addr; /* AF_INET socket address */

 long ip_addr; /* IP address of server system */

 struct in_addr host_addr; /* Host address for gethostbyaddr() */

 char *hostname; /* Short host name of server system */

 size_t len; /* Length of input string */

 char *ascii_user; /* Username in ASCII */

 char *ebcdic_user; /* Username in EBCDIC */

 char *ascii_pwd; /* Password in ASCII */

 char *ebcdic_pwd; /* Password in EBCDIC */

 struct hostent *host_p; /* Pointer to hostent structure returned by

 gethostbyname() */

 char *ascii_buf; /* Buffer for ASCII text */

 char *ebcdic_buf; /* Buffer for EBCDIC text */

 int buf_size; /* Amount of data read from server */

 /**/

 /* Initialization. */

 /**/

 #ifdef USE_ICONV

 /* Open the conversion descriptors for converting between ASCII and

 EBCDIC. Assume the server job is running in CCSID 37.

 This must be changed if the server job is running in a

 different CCSID. The input parameters to iconv_open() may need to

 be changed depending on the operating system. This ioonv_open() is

 coded for AIX. */

 if ((acd = iconv_open("IBM-850", "IBM-037")) < 0) {

 perror("qshc: iconv_open() failed for ASCII to EBCDIC");

 exit(1);

 }

 if ((ecd = iconv_open("IBM-037", "IBM-850")) < 0) {

 perror("qshc: iconv_open() failed for EBCDIC to ASCII");

 exit(1);

 }

 #endif /* USE_IOONV */

 /* Set up a signal handler for SIGINT. The signal is sent to the

 process when the user presses <ctrl>c. */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = MySignalHandler;

 if (sigaction(SIGINT, &sigact, NULL) != 0) {

 perror("qshc: sigaction(SIGINT) failed");

 exit(1);

 }

 /**/

 /* Process the input parameters. */

 /**/

 if (argc < 2) {

 usage();

 }

 /* Process the options. */

 while ((c = getopt(argc, argv, "hnp:")) != EOF) {

 switch (c) {

 case ’n’:

 nflag = 1;

 break;

Qshell 203

case ’p’:

 port = atoi(optarg);

 break;

 case ’h’:

 default:

 usage();

 break;

 } /* End of switch */

 } /* End of while */

 /* Convert a dotted decimal address to a 32-bit IP address. */

 hostname = argv[optind];

 ip_addr = inet_addr(hostname);

 /* When inet_addr() returns -1 assume the user specified

 a host name. */

 if (ip_addr == -1) {

 /* Try to find the host by name. */

 host_p = gethostbyname(hostname);

 if (host_p) {

 memcpy(&ip_addr, host_p->h_addr, host_p->h_length);

 sysname = host_p->h_name;

 }

 else {

 fprintf(stderr, "qshc: Could not find host %s\n", hostname);

 exit(1);

 }

 } /* End of if */

 /* The user specified a IP address. */

 else {

 /* Try to find the host by address. */

 host_addr.s_addr = ip_addr;

 host_p = gethostbyaddr((char *)&host_addr.s_addr, sizeof(host_addr),

 AF_INET);

 if (host_p) {

 sysname = host_p->h_name;

 }

 else {

 fprintf(stderr, "qshc: Could not find host %s\n", hostname);

 exit(1);

 }

 } /* End of else */

 /**/

 /* Connect to the qsh server on the specified system. */

 /**/

 /* Create a socket. */

 if ((sd = socket(AF_INET, SOCK_STREAM, IPPROTO_IP)) < 0) {

 perror("qshc: socket() failed");

 exit(1);

 }

 /* Connect to the qsh server on the specified system. */

 memset(&svr_addr, ’\0’, sizeof(svr_addr));

 svr_addr.sin_family = AF_INET;

 svr_addr.sin_port = htons(port);

 svr_addr.sin_addr.s_addr = ip_addr;

 if (connect(sd, (struct sockaddr *)&svr_addr, sizeof(svr_addr)) != 0) {

 perror("qshc: connect() failed");

 exit(1);

 }

 /**/

204 iSeries: Qshell

/* Send the user name and password to the server. */

 /**/

 /* Allocate buffers for translating input and output. */

 ascii_buf = (char *)malloc(DEFAULT_BUF);

 memset(ascii_buf, ’\0’, DEFAULT_BUF);

 ebcdic_buf = (char *)malloc(DEFAULT_BUF);

 memset(ebcdic_buf, ’\0’, DEFAULT_BUF);

 ascii_user = ascii_buf;

 ascii_pwd = ascii_buf + 100;

 ebcdic_user = ebcdic_buf;

 ebcdic_pwd = ebcdic_buf + 100;

 /* Prompt the user for the user name and password. */

 if (nflag) {

 printf("Enter user name: ");

 gets(ascii_user);

 ascii_pwd = getpass("Enter password: ");

 }

 /* Get the user name and password from the ~/.netrc file. */

 else {

 if (GetPassword(hostname, ascii_user, ascii_pwd) != 0) {

 fprintf(stderr, "qshc: Could not find user or password in ~/.netrc\n");

 exit(1);

 }

 }

 /* Convert the user name and password to EBCDIC. */

 if (ConvertToEBCDIC(ascii_user, strlen(ascii_user)+1, ebcdic_user, 11) < 0) {

 fprintf(stderr, "qshc: Could not convert user %s to EBCDIC\n", ascii_user);

 exit(1);

 }

 if (ConvertToEBCDIC(ascii_pwd, strlen(ascii_pwd)+1, ebcdic_pwd, 11) < 0) {

 fprintf(stderr, "qshc: Could not convert password %s to EBCDIC\n",

 ascii_pwd);

 exit(1);

 }

 /* Send the user name and password to the qsh server. Note that the

 user name and password are sent as plain text. */

 if ((rc = write(sd, (void *)ebcdic_user, strlen(ebcdic_user)+1)) < 0) {

 perror("qshc: write() failed sending username\n");

 close(sd);

 exit(1);

 }

 if ((rc = write(sd, (void *)ebcdic_pwd, strlen(ebcdic_pwd)+1)) < 0) {

 perror("qshc: write() failed sending password\n");

 close(sd);

 exit(1);

 }

 printf("Started qsh session on %s\n\n", sysname);

 /**/

 /* Process input and output between the user and the remote shell. */

 /**/

 /* Loop forever. */

 while (1) {

 /* Select on stdin and the socket connected to the remote shell. */

 FD_ZERO(&read_set);

 FD_SET(0, &read_set);

 FD_SET(sd, &read_set);

Qshell 205

rc = select(sd+1, &read_set, NULL, NULL, NULL);

 if ((rc < 0) && (errno != EINTR)) {

 perror("qshc: select() failed");

 exit(1);

 }

 if (rc == 0) {

 continue;

 }

 /* Process data entered by the terminal user. */

 if (FD_ISSET(0, &read_set)) {

 /* Read the data from the terminal. */

 gets(ascii_buf);

 /* Convert the string to EBCDIC. */

 len = strlen(ascii_buf);

 if (ConvertToEBCDIC(ascii_buf, len, ebcdic_buf, DEFAULT_BUF) < 0) {

 fprintf(stderr, "qshc: Could not convert input string to EBCDIC\n");

 continue;

 }

 /* Put a newline on the end of the string. */

 *(ebcdic_buf+len) = 0x25;

 /* Send the data to the remote shell. */

 if (write(sd, ebcdic_buf, len+1) < 0) {

 perror("qshc: write() failed sending input");

 }

 }

 /* Process data from the remote shell. */

 if (FD_ISSET(sd, &read_set)) {

 /* Read the data from the remote shell. */

 buf_size = read(sd, ebcdic_buf, DEFAULT_BUF-1);

 /* There was a failure reading from the remote shell. */

 if (buf_size < 0) {

 perror("\nqshc: error reading data from remote shell");

 printf("Ended qsh session on %s\n", sysname);

 exit(0);

 }

 /* The remote shell process ended. */

 else if (buf_size == 0) {

 printf("\nEnded qsh session on %s\n", sysname);

 exit(0);

 }

 /* Process the data from the remote shell. */

 else {

 /* Convert to ASCII. */

 *(ebcdic_buf+buf_size) = ’\0’;

 if (ConvertToASCII(ebcdic_buf, buf_size+1, ascii_buf,

 DEFAULT_BUF) >= 0) {

 write(1, ascii_buf, buf_size);

 }

 }

 }

 } /* End of while */

 exit(0);

} /* End of main() */

/*

206 iSeries: Qshell

* Convert a string from ASCII to EBCDIC.

 */

int

ConvertToEBCDIC(char *ibuf, size_t ileft, char *obuf, size_t oleft)

{

 int rc;

 #ifdef USE_ICONV

 rc = iconv(ecd, (const char**)&ibuf, &ileft, &obuf, &oleft);

 #else

 rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, EbcdicTable);

 #endif

 if (rc < 0)

 perror("qshc: error converting to EBCDIC");

 return rc;

} /* End of ConvertToEBCDIC() */

/*

 * Convert a string from EBCDIC to ASCII.

 */

int

ConvertToASCII(char *ibuf, size_t ileft, char *obuf, size_t oleft)

{

 int rc;

 #ifdef USE_ICONV

 rc = iconv(acd, (const char**)&ibuf, &ileft, &obuf, &oleft);

 #else

 rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, AsciiTable);

 #endif

 if (rc < 0)

 perror("qshc: error converting to ASCII");

 return rc;

} /* End of ConvertToASCII() */

/*

 * Get the user name and password for the specified system from the

 * ~/.netrc file.

 */

int

GetPassword(char *sysname, char *logname, char *password)

{

 #define BUFSIZE 256

 char buffer[BUFSIZE];

 char *systag, *logtag;

 int logflag = 0, pwdflag = 0;

 FILE *netrc;

 struct passwd *pwdbuf;

 int rc=0;

 /* Get user’s home directory. */

 pwdbuf = getpwuid(getuid());

 /* Does user have a .netrc file in their home directory? */

 strcat(strcpy(buffer, pwdbuf->pw_dir), "/.netrc");

 if ((netrc = fopen(buffer, "r")) == NULL) {

 perror("qshc: open() failed for ~/.netrc file");

 return -1;

 }

Qshell 207

while (!(logflag || pwdflag) && fgets(buffer, BUFSIZE, netrc) != NULL) {

 /* Find system name in ~/.netrc. */

 if ((systag = (char*)strtok(buffer, " \t\n")) != NULL &&

 !strncmp(systag, "machine", 7)) {

 systag = (char *)strtok(NULL, " \t\n");

 if (!strcmp(systag, sysname)) {

 /* Find login and password. */

 while (!logflag || !pwdflag) {

 if ((logtag = (char *)strtok(NULL, " \t\n")) == NULL) {

 /* Nothing else on that line... get another. */

 while (!logtag) {

 fgets(buffer, BUFSIZE, netrc);

 logtag = (char *)strtok(buffer, " \t\n");

 }

 }

 if (!strncmp(logtag, "login", 5)) {

 strcpy(logname, strtok(NULL, " \n\t"));

 ++logflag;

 }

 else if (!strncmp(logtag, "password", 8)) {

 strcpy(password, strtok(NULL, " \n\t"));

 ++pwdflag;

 }

 else

 ;

 } /* while flags not set */

 } /* if found login and passwd in .netrc */

 } /* if machine in .netrc */

 } /* while fgets */

 fclose(netrc);

 /* Login and password not found for system. */

 if (!(logflag && pwdflag)) {

 rc = -1;

 }

 return rc;

} /* End of GetPassword() */

#ifndef USE_ICONV

/*

 * Translate bytes using the specified translation table.

 */

int

Translate(uchar *ip, size_t ilen, uchar *op, uchar *table)

{

 int index;

 for (index = 0; index < ilen; ++index) {

 *op = table[*ip];

 ip++;

 op++;

 }

 return 0;

} /* End of Translate() */

#endif

/*

 * Signal handler.

 */

208 iSeries: Qshell

void

MySignalHandler(int signo)

{

 switch (signo) {

 case SIGINT:

 printf("\nqshc: <ctrl>c ends this program\n");

 printf("Ended qsh session on %s\n", sysname);

 exit(0);

 break;

 default:

 exit(1);

 break;

 } /* End of switch */

 return;

} /* End of MySignalHandler() */

/*

 * Display usage message.

 */

void usage(void)

{

 fprintf(stderr, "Usage: qshc [-n] [-p port] hostname\n");

 exit(1);

} /* End of usage() */

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer

information” on page 216.

Example: Creating and running the server program

Creating the server program The following example shows how to create the server program on

i5/OS(TM). The example assumes that the source for the server program is in member SERVER in the file

QGPL/QCSRC. The server program is owned by a special user profile QSHSVR that has minimal

authorities but private authority to the QSYGETPH(), QSYRLSPH(), and QWTSETP() APIs. It is not

possible to sign on using the QSHSVR user profile. The server program adopts the authority of QSHSVR

so it can switch to the client’s user profile.

CRTBNDC PGM(QGPL/SERVER)

 SRCFILE(QGPL/QCSRC)

 SRCMBR(SERVER)

 OPTIMIZE(40)

 SYSIFCOPT(*IFSIO)

 LOCALETYPE(*LOCALE)

 USRPRF(*OWNER)

 AUT(*USE)

 TEXT(’Shell server’)

CRTUSRPRF USRPRF(QSHSVR)

 PASSWORD(*NONE)

 USRCLS(*USER)

 TEXT(’Shell server profile’)

CHGOBJOWN OBJ(QGPL/SERVER)

 OBJTYPE(*PGM)

 NEWOWN(QSHSVR)

GRTOBJAUT OBJ(QSYS/QSYGETPH)

 OBJTYPE(*PGM)

 USER(QSHSVR)

 AUT(*USE)

GRTOBJAUT OBJ(QSYS/QSYRLSPH)

 OBJTYPE(*PGM)

 USER(QSHSVR)

 AUT(*USE)

Qshell 209

GRTOBJAUT OBJ(QSYS/QWTSETP)

 OBJTYPE(*PGM)

 USER(QSHSVR)

 AUT(*USE)

Running the server program You may want to run the server program and any child processes started

by the server in their own subsystem. The following example shows how to create the following objects:

v A subsystem description and related routing entry and prestart job entries for both non-threaded and

multi-thread capable jobs.

v A class.

v A job description.

v A job queue.

CRTSBSD SBSD(QGPL/SHELL)

 POOLS((1 *BASE))

 AUT(*USE)

 TEXT(’Shell server subsystem’)

CRTCLS CLS(QGPL/SHELL)

 RUNPTY(20)

 TIMESLICE(2000)

 DFTWAIT(30)

 AUT(*USE)

 TEXT(’Shell server class’)

CRTJOBQ JOBQ(QGPL/SHELL)

 AUTCHK(*DTAAUT)

 AUT(*USE)

 TEXT(’Shell server job queue’)

CRTJOBD JOBD(QGPL/SHELL)

 JOBQ(QGPL/SHELL)

 AUT(*USE)

 TEXT(’Shell server job description’)

ADDJOBQE SBSD(QGPL/SHELL)

 JOBQ(QGPL/SHELL)

 MAXACT(*NOMAX)

ADDRTGE SBSD(QGPL/SHELL)

 SEQNBR(1)

 CMPVAL(*ANY)

 PGM(*LIBL/QCMD)

ADDPJE SBSD(QGPL/SHELL)

 PGM(QSYS/QP0ZSPWP)

 USER(QSHSVR)

 STRJOBS(*YES)

 INLJOBS(10)

 THRESHOLD(2)

 ADLJOBS(3)

 MAXJOBS(*NOMAX)

 JOBD(QGPL/SHELL)

ADDPJE SBSD(QGPL/SHELL)

 PGM(QSYS/QP0ZSPWT)

 USER(QSHSVR)

 STRJOBS(*YES)

 INLJOBS(10)

 THRESHOLD(2)

 ADLJOBS(3)

 MAXJOBS(*NOMAX)

 JOBD(QSYS/QAMTJOBD)

Starting the subsystem The following example shows how to start the subsystem described in the

previous example and the server program.

210 iSeries: Qshell

STRSBS SBSD(QGPL/QSHELL)

SBMJOB CMD(CALL QGPL/SERVER)

 JOB(SERVER)

 JOBD(QGPL/SHELL)

 JOBQ(QGPL/SHELL)

 USER(QSHSVR)

Example: Creating and running the client program

Creating the client program The following example shows how to create the client program on AIX

using xlc. The example assumes that the source for the client program is in file qshc.c in the current

working directory. The client program has been compiled and tested on AIX 4.1.5 using xlc and Linux

2.0.29 using gcc 2.7.2.1.

xlc -o qshc qshc.c

Running the client program The following example shows how to run the client program and connect to

a server running on system myas400. Before running the command, there must be an entry in your

~/.netrc file for the specified system and the server must be started and listening on TCP/IP port 6042.

qshc myas400

Related information for Qshell

Listed here are sources that relate to the Qshell topic.

Warning: Temporary Level 3 Header

Warning: Temporary Level 4 Header

Books: Qshell for iSeries

IBM Redbooks: Building AS/400 Internet-Based Applications with Java

Other information:

v IBM Developer Kit for Java

v IBM Directory Server for iSeries (LDAP)

v IBM Toolbox for Java

Saving PDF files: To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader: You need Adobe Reader installed on your system to view or print these

PDFs. You can download a free copy from the Adobe Web site (www.adobe.com/products/acrobat/

readstep.html)

.

Qshell 211

http://store.yahoo.com/mcpressonline/5061.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/723cd529d5595808862566cc0060397c?OpenDocument
http://www.adobe.com/products/acrobat/readstep.html

212 iSeries: Qshell

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 213

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

214 iSeries: Qshell

Programming Interface Information

This Qshell publication documents intended Programming Interfaces that allow the customer to write

programs to obtain the services of i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

AS/400

DB2

DB2 Universal Database

eServer

IBM

iSeries

i5/OS

OS/2

RDN

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these publications, or reproduce, distribute or display these publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE

PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 215

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS

OR EXCLUSIONS MAY NOT APPLY TO YOU.

216 iSeries: Qshell

����

Printed in USA

	Contents
	Qshell
	What's new
	What's new as of 31 March 2006
	What's new as of 31 August 2006
	How to see what's new or changed

	Printable PDF
	Tutorial
	Qshell command language features
	Qshell utility features
	Putting it all together in a script

	Command language
	Quoting
	Parameters
	Variables
	Variables set by qsh
	Variables used by qsh
	Other variables

	Word expansions
	Tilde expansions
	Parameter expansions
	Command substitutions
	Arithmetic expansions
	Field splitting
	Path name expansion
	Quote removal
	Patterns

	Redirection
	Simple commands
	Pipelines
	Lists
	Compound commands
	Grouping commands
	If command
	Conditional command
	Case command
	Select command
	While command
	Until command
	For command
	Functions

	Using Qshell
	Using a Qshell interactive session
	Running Qshell commands from CL
	Running Qshell commands from PASE
	Customizing your Qshell environment
	National language support (NLS) considerations
	Performance considerations
	Developing your own utilities
	Editing files with Qshell Interpreter
	Differences with other interpreters

	Utilities
	Utilities for defining aliases
	alias - Define or display aliases
	unalias - Remove alias definitions

	Utilities for running commands
	builtin - Run a shell built-in utility
	command - Run a simple command
	dot (.) - Run commands in current environment
	env - Set environment for command invocation
	eval - Construct command by concatenating arguments
	exec - Run commands and open, close, or copy descriptors
	exit - Exit from the shell
	help - Display information for built-in utility
	nohup - Run utility without hangups
	qsh - Qshell command language interpreter
	rexec - Run remote command
	rexx - Run REXX procedure
	source - Run commands in current environment
	system - Run CL command
	type - Find type of command
	whence - Determine how command is interpreted
	xargs - Construct argument lists and invoke utility

	Utilities for managing data
	cmp - Compare two files
	cut - Cut out selected fields of each line of a file
	egrep - Search a file for an extended regular expression pattern
	fgrep - Search a file for a fixed string pattern
	grep - Search a file for a pattern
	iconv - Convert characters from one CCSID to another CCSID
	sed - Stream editor
	sort - Sort, merge, or sequence check text files
	split - Split files into pieces
	tr - Translate characters
	uniq - Report or filter out repeated lines in a file
	wc - Word, line and byte/character count

	Utilities for DB2 Universal Database(TM)
	Qshell db2 utility
	Perl utility

	Utilities for working with files and directories
	attr - Get or set attributes for files
	basename - Return non-directory portion of path name
	cat - Concatenate and print files
	catsplf - Concatenate and print spool files
	cd - Change working directory
	chgrp - Change file group ownership
	chmod - Change file modes
	chown - Change file ownership
	compress - Compress data
	cp - Copy files
	dirname - Return directory portion of path name
	file - Determine file type
	find - Find files
	gencat - Generate a formatted message catalog
	getconf - Get configuration values
	head - Copy the first part of files
	ln - Link files
	ls - List directory contents
	mkdir - Make directories
	mkfifo - Make FIFO special files
	mv - Move files
	od - Dump files in various formats
	pax - Portable archive interchange
	pr - Print files
	pwd - Return working directory name
	pwdx - Print working directory expanded
	Rfile - Read or write record files
	rm - Remove directory entries
	rmdir - Remove directories
	setccsid - Set CCSID attribute for file
	tail - Display the last part of a file
	tar - File archiver
	touch - Change file access and modification times
	umask - Get or set the file mode creation mask
	uncompress - Expand compressed data
	zcat - Expand and concatenate data

	Utilities for reading and writing input and output
	dspmsg - Display message from message catalog
	echo - Write arguments to standard output
	print - Write output
	printf - Write formatted output
	read - Read a line from standard input

	Utilities for developing Javatm programs
	ajar - Alternative Java(TM) archive
	appletviewer - View Javatm applet
	extcheck - A utility to detect JAR conflicts
	jar - Archive Javatm files
	Files in the integrated file system

	jarsigner - JAR signing and verification
	java - Run Javatm interpreter
	javac - Compile a Javatm program
	javadoc - Generate Javatm documentation
	javah - Generate C header or stub file
	javakey - Manage Javatm security keys and certificates
	javap - Disassemble a compiled Javatm program
	keytool - Key and certificate management tool
	native2ascii - Convert native characters to ASCII
	policytool - Policy file creation and management tool
	rmic - Compile Javatm RMI stubs
	rmid - The Javatm RMI activation system
	rmiregistry - Start a remote object registry
	serialver - Return serial version
	tnameserv - Naming service

	Utilities for managing jobs
	getjobid - Display job information
	hash - Remember or report utility locations
	jobs - Display status of jobs in current session
	kill - Terminate or signal processes
	liblist - Manage library list
	ps - Display process status
	sleep - Suspend invocation for an interval
	trap - Trap signals
	wait - Wait for process completion

	Utilities for Kerberos credentials and key tables
	Utilities for LDAP directory server
	Utilities for working with parameters and variables
	declare - Declare variables and set attributes
	export - Set export attribute for variables
	local - Assign a local variable in a function
	printenv - Display values of environment variables
	readonly - Set read-only attribute for variables
	set - Set or unset options and positional parameters
	shift - Shift positional parameters
	typeset - Declare variables and set attributes
	unset - Unset values of variables and functions

	Utilities for writing scripts
	break - Exit from for, while, or until loop
	colon (:) - Null utility
	continue - Continue for, while, or until loop
	false - Return false value
	getopts - Parse utility options
	let - Evaluate arithmetic expression
	return - Return from a function
	test - Evaluate expression
	true - Return true value

	Miscellaneous utilities
	clrtmp - Clear the /tmp directory
	dataq - Send or receive messages from i5/OS(TM) data queue
	datarea - Read or write i5/OS(TM) data area
	date - Write the date and time
	expr - Evaluate arguments as an expression
	hostname - Display the name of the current host system
	id - Return user identity
	ipcrm - Remove interprocess communication identifier
	ipcs - Report interprocess communication status
	locale - Get locale specific information
	logger - Log messages
	logname - Display user's login name
	sysval - Retrieve system values or network attributes
	tee - Duplicate standard input
	ulimit - Set or display resource limits
	uname - Return system name

	Application Programming Interfaces
	QzshSystem() - Run a QSH Command
	QzshCheckShellCommand() - Find QSH Command

	Examples: Using a remote client that connects to a qsh session
	Example: Server program
	Example: Client program
	Example: Creating and running the server program
	Example: Creating and running the client program

	Related information for Qshell
	Warning: Temporary Level 3 Header
	Warning: Temporary Level 4 Header
	Books
	IBM Redbooks
	Other information
	Saving PDF files
	Downloading Adobe Reader

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions
	Code license and disclaimer information

