In-

:]

__:._ .m o) ™

5 < S
w g m
2

— — — —
— — — —
-— o Ew ——
-— — ———
-— — —— -
-— o Em - .
— — — —
— — — 7 —

iSeries
Qshell

Version 5 Release 4

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 213

Ninth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Qshell 1 command - Run a simple command . . 52
What’'s new. . 2 dot (.) - Run commands in current
What's new as of 31 March 2006 .2 environment . . . 52
What's new as of 31 August 2006 .2 env - Set environment for Command
How to see what’s new or changed. .2 invocation . . .53
Printable PDF .) eval - Construct command by concatenatlng
Tutorial3 arguments. . . . 54
Qshell command language features. .3 exec - Run commands and open Close, or
Qshell utility features . .6 copy descriptors. . 54
Putting it all together in a scrlpt L7 exit - Exit from the shell . . 55
Command language . .8 help - Display information for bu11t—1n utrhty 55
Quoting . .9 nohup - Run utility without hangups. 56
Parameters . .9 gsh - Qshell command language interpreter 57
Variables 10 rexec - Run remote command . 58
Variables set by qsh 10 rexx - Run REXX procedure . . 59
Variables used by gsh . 12 source - Run commands in current
Other variables . .14 environment60
Word expansions . 15 system - Run CL command60
Tilde expansions.15 type - Find type of command62
Parameter expansions . T 1 whence - Determine how command is
Command substitutions18 interpreted 62
Arithmetic expansions.18 xargs - Construct argument hsts and 1nvoke
Field splitting.20 utility . . . A o ¢
Path name expansion20 Utilities for managlng data A o
Quote removal) | cmp - Compare two files 65
Patterns21 cut - Cut out selected fields of each hne of a
Redirection21 file 66
Simple commands22 egrep - Search a f11e for an extended regular
Pipelines23 expression pattern 67
Lists. 24 fgrep - Search a file for a frxed strmg pattern 67
Compound commands25 grep - Search a file for a pattern . . . 67
Grouping commands25 iconv - Convert characters from one CCSID to
If command Lo .25 another CCSID69
Conditional command.26 sed - Stream editor70
Casecommand26 sort - Sort, merge, or sequence check text fﬂes 74
Select command27 split - Split files into pieces76
While command.27 tr - Translate characters77
Until command28 uniq - Report or filter out repeated hnes in a
For command28 file79
Functions29 wc - Word, line and byte / character count . .80
Using Qshell . o .29 Utilities for DB2 Universal Database™ 81
Using a Qshell interactive session30 Qshell db2 utility81
Running Qshell commands from CL31 Perl utility. 82
Running Qshell commands from PASE32 Utilities for working w1th flles and d1rector1es .82
Customizing your Qshell environment32 attr - Get or set attributes for files.83
National language support (NLS) considerations 33 basename - Return non-directory portion of
Performance considerations37 path name.88
Developing your own utilities37 cat - Concatenate and pr1nt flles88
Editing files with Qshell Interpreter37 catsplf - Concatenate and print spool files . . 89
Differences with other interpreters.37 cd - Change working directory90
Utilities.38 chgrp - Change file group ownership. . . .91
Utilities for def1n1ng ahases P chmod - Change file modes92
alias - Define or display aliases.49 chown - Change file ownership.95
unalias - Remove alias definitions. 50 compress - Compress data9
Utilities for running commands.51 cp - Copy files97
builtin - Run a shell built-in utility51

© Copyright IBM Corp. 1998, 2006 iii

iv

dirname - Return directory portion of path
name o

file - Determine file type

find - Find files. .
gencat - Generate a formatted message
catalog

getconf - Get configuration values

head - Copy the first part of files.

In - Link files R

Is - List directory contents .

mkdir - Make directories .
mkfifo - Make FIFO special files .

mv - Move files. .

od - Dump files in various formats .
pax - Portable archive interchange

pr - Print files . . .
pwd - Return working directory name .
pwdx - Print working directory expanded
Rfile - Read or write record files .

rm - Remove directory entries .

rmdir - Remove directories .

setcesid - Set CCSID attribute for file

tail - Display the last part of a file

tar - File archiver .

touch - Change file access and modification
times . .
umask - Get or set the file mode creation
mask . .

uncompress - Expand compressed data
zcat - Expand and concatenate data .

Utilities for reading and writing input and
output.

dspmsg - Display message from message
catalog

echo - Write arguments to standard output
print - Write output .

printf - Write formatted output

read - Read a line from standard input .

Utilities for developing Java™ programs

ajar - Alternative Java™ archive .

appletviewer - View Java™ applet
extcheck - A utility to detect JAR conflicts
jar - Archive Java™ files .

Files in the integrated file system
jarsigner - JAR signing and verification.
java - Run Java™ interpreter
javac - Compile a Java™ program.
javadoc - Generate Java™ documentation .
javah - Generate C header or stub file .
javakey - Manage Java™ security keys and
certificates
javap - Disassemble a compiled]ava
program . . .
keytool - Key and certificate management
tool. . .
native2ascii - Convert native Characters to
ASCII . .
policytool - Policy file creation and
management tool . .
rmic - Compile Java™ RMI stubs .
rmid - The Java™ RMI activation system

iSeries: Qshell

.99
. 100
. 100

. 104
. 105
. 106
. 106
. 107
. 110
. 111
. 112
. 113
. 114
. 121
. 123

124

. 124
. 125
. 126
. 127
. 128
. 129

. 130
. 131
. 132
. 133
. 133

. 133

134

. 135
. 136
. 137
. 138
. 138
. 141

141

. 141
. 142
. 142
. 142
. 143
. 143
. 143

. 144

. 144

. 145

. 145

. 145

. 145
. 145

rmiregistry - Start a remote object registry
serialver - Return serial version
tnameserv - Naming service
Utilities for managing jobs .
getjobid - Display job information
hash - Remember or report utility locations
jobs - Display status of jobs in current
session o
kill - Terminate or Signal processes .
liblist - Manage library list .
ps - Display process status .
sleep - Suspend invocation for an interval
trap - Trap signals.
wait - Wait for process completion .
Utilities for Kerberos credentials and key tables
Utilities for LDAP directory server
Utilities for working with parameters and
variables .
declare - Declare variables and set attributes
export - Set export attribute for variables .
local - Assign a local variable in a function
printenv - Display values of environment
variables .
readonly - Set read- only attribute for
variables .
set - Set or unset options and pos1tiona1
parameters .
shift - Shift pOSitional parameters
typeset - Declare variables and set attributes
unset - Unset values of variables and
functions . .
Utilities for writing scripts .
break - Exit from for, while, or until loop
colon () - Null utility.
continue - Continue for, while, or until loop
false - Return false value
getopts - Parse utility options .
let - Evaluate arithmetic expression .
return - Return from a function
test - Evaluate expression
true - Return true value .
Miscellaneous utilities .
clrtmp - Clear the /tmp directory
dataq - Send or receive messages from
i5/0S™ data queue . .
datarea - Read or write i5/ OS™ data area
date - Write the date and time. .
expr - Evaluate arguments as an expression
hostname - Display the name of the current
host system . .
id - Return user identity S
ipcrm - Remove interprocess communication
identifier . e
ipcs - Report interprocess communication
status .
locale - Get locale specific information .
logger - Log messages .
logname - Display user’s login name
sysval - Retrieve system values or network
attributes .
tee - Duplicate standard input

145

. 146
. 146
. 146
. 146

147

. 148
. 149
. 150
. 151

153

. 153
. 155

155

. 155

. 156

156

. 157

158

. 159

. 159

. 160
. 162

162

. 163
. 164
. 164
. 164

165

. 165
. 166
. 166
. 167
. 167
. 169
. 170
. 170

. 171

172

. 173

174

. 175
. 175

. 176

. 177
. 182
. 183
. 184

. 184
. 185

ulimit - Set or display resource limits
uname - Return system name .
Application Programming Interfaces.
QzshSystem() - Run a QSH Command .
QzshCheckShellCommand() - Find QSH
Command .o
Examples: Using a remote chent that Connects to a
gsh session e
Example: Server program
Example: Client program
Example: Creating and running the server
program . .
Example: Creating and running the Client
program .
Related 1nformat10n for Qshell

. 185
. 186
. 187
. 187

. 191
. 192
. 193
. 200
. 209

. 211
. 211

Warning: Temporary Level 3 Header
Warning: Temporary Level 4 Header
Books . F
IBM Redbooks .
Other information .
Saving PDF files
Downloading Adobe Reader

Appendix. Notices

Programming Interface Information .
Trademarks .

Terms and conditions.

Code license and disclaimer 1nformat10n

. 211
. 211
.21
.21
. 211
. 211
.21

. 213
. 215
. 215
. 215
. 216

Contents

A\

Vi iSeries: Qshell

Qshell

Qshell is a command environment based on POSIX and X/Open standards. It consists of two parts:

* The shell interpreter (or qsh) is a program that reads commands from an input source, interprets each
command, and then runs the command using the services of the operating system.

* The utilities (or commands) are external programs that provide additional functions and can be quite
simple or very complex.

Together, the shell interpreter and utilities provide a powerful, standards-based scripting environment. As
you use the new programming models offered by i5/0S™, Qshell provides an extensible command
environment that allows you to:

* Manage files in any file system supported by the Integrated File System.
* Run threaded programs that do thread-safe I/O to and from an interactive session.

* Write shell scripts that can be run without modification on other systems using a cross-platform
command language.

* Write your own utilities to extend the functions provided by Qshell.

This topic provides both new and experienced users with the information needed to use Qshell
commands and write Qshell scripts.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer]
information” on page 216

[“What’s new” on page 2|
Select this link to learn about what is new in Qshell this release.

[“Printable PDF” on page 2|
Select this link to print a PDF of this topic.

[“Tutorial” on page 3|
Select this link to learn about using the Qshell command language and utilities. Start here if you are
a new to using shells and shell commands.

[“Command language” on page 8|
Select this link to view the detailed reference information for the Qshell command language. Start
here if you are writing shell scripts or are an experienced user of shells.

[“Using Qshell” on page 29|
Select this link to find out how to use the QSH CL command, how to configure the Qshell
environment, and how to develop utilities.

[“Utilities” on page 38|
Select this link to view the list of utilities provided with Qshell.

“Application Programming Interfaces” on page 187
Select this link to view the list of application programming interfaces (APIs) provided with Qshell.

[“Examples: Using a remote client that connects to a qsh session” on page 192
Select this link to view an example of a remote client and server for starting an interactive Qshell
session.

© Copyright IBM Corp. 1998, 2006 1

[“Related information for Qshell” on page 211|
Find books, Redbooks, and other topics that relate to Qshell.

Note: In this information, the terms "job” and "process” are used interchangeably. The term "job” is from
i5/0S™ and the term "process” is from POSIX.

What’s new

The following changes were made in Qshell for this release:

“attr - Get or set attributes for files” on page 83|
Added support for new attributes.

[“cmp - Compare two files” on page 65|
Added support for the QIBM_CMP_FILE_SIZE environment variable.

[“ipcs - Report interprocess communication status” on page 177
Added support for -j option.

[“rexec - Run remote command” on page 58|
Added support for -i option.

[“sed - Stream editor” on page 70|
Added support for -C option.

What’s new as of 31 March 2006

[“QzshSystem() - Run a QSH Command” on page 187
Corrected the QzshSystem() example program.

What’s new as of 31 August 2006

[“Utilities for DB2 Universal Database™” on page 81|
Added information about the db2 and Perl utilities.

How to see what’s new or changed
To help you see where technical changes have been made, this information uses:
* The ¥ image to mark where new or changed information begins.

e The <% image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the

Printable PDF

To view or download the PDF versions of this topic, select|Qshell Reference| (about 215 pages).

You can also view or print any of the following PDFs:
* Manuals:

— [BM® Developer Kit for Java™ @

- |IIBM® Toolbox for Java™
* Redbook:

— [Building AS/400® Internet-Based Applications with Javal Q (about 334 pages)

2 iSeries: Qshell

http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/723cd529d5595808862566cc0060397c?OpenDocument

To save a PDF on your workstation for viewing and printing:

1. Open the PDF in your browser (click one of the links above).

In the menu of your browser, click File.

Click Save As...

Navigate to the directory in which you would like to save the PDFE.
Click Save.

ok N

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the

|[Adobe Web sitel-'ld' .

Tutorial

This topic provides a tutorial to help you get started using the Qshell command language and utilities.

[“Qshell command language features”]
Select this link to view information about commands, input and output redirection, path name
expansion, parameter expansion, and command substitution.

[“Qshell utility features” on page €
Select this link to view information about navigating in the Integrated File System and working
with files and directories.

[“Putting it all together in a script” on page 7|
Select this link to view an example that shows how to write a shell script.

Qshell command language features

The shell interpreter can be used for either an interactive session or for writing shell scripts. A shell script
is just a text file that contains shell commands. The Qshell command language is identical for either
interactive use or for writing scripts. Any command that you run from an interactive command line can
be put in a shell script and it runs the same way. The Qshell command language is interpreted so a shell
script is read and interpreted each time it is run.

Commands

A[“Simple commands” on page 22 is the name of a utility that you want to run. If you specify a
fully-qualified path name to the command, for example “/usr/bin/ls”, qsh runs that command. If you
specify a relative path name to the command, for example “ls”, gsh searches the directories specified by
the PATH variable to find it. The PATH variable is a colon delimited list of directories that tells qsh
where to find commands. If the PATH variable is set to

/usr/bin:/Q0penSys/usr/bin:

gsh first looks for the command in the “/usr/bin” directory, then in the “/QOpenSys/usr/bin” directory,
and finally in the current working directory. When the PATH variable begins or ends with a colon or
contains two adjacent colons, gsh searches in the current working directory.

By default, qsh waits for the command to complete before running the next command. When the
command is completed, it sets an exit status that describes the result of the command. An exit status of
zero means that the command was successful. An exit status that is greater than zero means that the
command was unsuccessful. Typically, the exit status is one when a command fails. Although, qsh sets
the exit status to 126 when the command was found but could not be run and sets the exit status to 127
when the command was not found.

Qshell 3

http://www.adobe.com/prodindex/acrobat/readstep.html

The [’Compound commands” on page 25|include the if-then-else conditional, [[...]] conditional, case
conditional, select conditional, while loop, until loop, for loop, and functions. These commands provide
the features you would expect in a high-level programming language and allow you to write complex
shell scripts.

A|“Pipelines” on page 23| allows you to chain several commands together so the output from one
command is the input to the next command. For example, in the pipeline

1s | grep ~apple

the output from the [“ls - List directory contents” on page 107| utility becomes the input to the
[Search a file for a pattern” on page 67| utility. The Is utility lists the contents of a directory and the grep
utility searches for matches to a pattern. The final output of the above pipeline is a list of the files in the
current directory that begin with "apple”.

You can chain more than two commands in a pipeline. This is a very powerful feature of qsh that allows
you to combine several commands together to accomplish a complex task.

There are two other types of lists that are like pipelines. An "and” list stops when the first command in
the list has non-zero exit status. An "or” list stops when the first command in the list has a zero exit
status.

An [“Lists” on page 24 runs a command in the background. For example, the command
mypgm &

allows you to start mypgm and then run other commands before mypgm completes. If you have a long
running command, an asynchronous list allows you to start the command and not wait for the command
to complete.

Input and output redirection

[“Redirection” on page 21| allow you to change where input for a command comes from and where output
for the command goes to. For Qshell commands, input and output work on descriptors. A descriptor can
be opened to either an object in the Integrated File System or to a TCP/IP socket. Input comes from
descriptor 0 or standard input, regular output goes to descriptor 1 or standard output, and error output
goes to descriptor 2 or standard error.

You can change where input comes from by redirecting standard input. For example, in the command
grep orange <fruits.list

when the grep utility reads from standard input it receives the contents of the file fruits.list.

You can change where output goes to by redirecting standard output. For example, in the command
grep apple fruits.list >apple.list

when the grep utility writes the results to standard output, the results are written to the file apple.list.

You can also send standard output and standard error to the same file. For example, in the command
grep apple fruits.list >apple.list 2>&1

standard output (descriptor 1) is written to the file apple.list and standard error (descriptor 2) is
redirected to the same place as descriptor 1.

While most of the time redirections are only used to control standard input, standard output, and
standard error, you can control the descriptors from 0 to 9 using redirections.

4 iSeries: Qshell

Path name expansions

A|“Path name expansion” on page 20| substitutes a [‘Patterns” on page 21| for all of the files that match
the pattern. A shell pattern uses:

* A * to match any string of characters. For example, in the command
1s *.java

gsh expands *java to all of the files that end with .java in the current working directory.
* A ? to match any single character. For example, in the command
Ts *.?

gsh expands *.? to all of the files that have a single character extension.

e A[] for a character class. With a character class, qsh matches a set or range of characters. For example,
in the command

1s *.[ch]

gsh expands *.[ch] to all of the files that end in either .c or .h in the current working directory. You can
also specify a range of characters. For example, in the command

1s *.jav[a-c]
gsh expands *jav[a-c] to all of the files that end in java, .javb, or javc.

Parameter expansions

A[“Parameter expansions” on page 16| substitutes the value of a variable. In the simplest form

$myvar
qsh substitutes the value of the variable myvar.

There are modifiers to use default or alternate values or to indicate an error if the variable is unset or
null. For example, in the parameter expansion

${counter:=0}

qsh sets the default value of the variable counter to zero if the variable is unset or null. If the variable
counter was already set, the value is not changed and the current value is substituted.

There are also modifiers to remove small or large prefix or suffix patterns. The patterns are the same as
the ones used for path name expansions. There are four pattern modifiers:

* The % modifier means to remove the smallest suffix pattern.
¢ The %% modifier means to remove the largest suffix pattern.
* The # modifier means to remove the smallest prefix pattern.
* The ## modifier means to remove the largest prefix pattern.

For example, if the variable pathname is set to “/fruits/apples/grannysmith”, then in the parameter
expansion

${pathname%/*}
gsh removes the smallest right pattern that matches “/*” and “/fruits/apples” is substituted.

Command substitutions

Al“Command substitutions” on page 18| allows the output of a command to be substituted in place of the
command name. For example, in the command substitution

Qshell 5

$(grep apple fruit.list)

gsh substitutes the output of the grep command. This is an easy way to capture the output of a
command for further processing in a script.

An older form of command substitution that uses backquotes (*) is supported but should not be used
because of its ambiguous quoting rules.

Qshell utility features

There are over 100 utilities provided with Qshell that provide many functions. A utility is one of two

types:

* A built-in utility (page is one gsh can run directly without having to search for it. It runs in the
same process as the shell interpreter.

* A regular utility (page @) is a separate program object that gsh finds by searching for it. It runs in a
new process started by the shell interpreter.

A Qshell utility has the following format. The square brackets indicate something that is optionally
specified.
utility [options] [parameters]

Some utilities allow single letter options preceded by a minus sign (-). For example, several utilities use
the -r option for recursively working on a directory tree. More than one option can be specified and all
options must be specified before any parameters. If a parameter begins with a minus sign, you can use
the — option to indicate the end of options. For example, in the command line

utility -r -- -1
the -1 is treated as a parameter because the — marked the end of the options.
Navigating in the Integrated File System

When navigating in the Integrated File System, you always have a current working directory. If a file or
directory is specified without a leading slash (/), it is assumed to be in the current working directory.

You can change the current working directory with the [“cd - Change working directory” on page 90|
utility. For example to change the current working directory to /usr/bin, use this command:

cd /usr/bin

You can display your current working directory with either the[“pwd - Return working directory name”]
lon page 123|or [“pwdx - Print working directory expanded” on page 124] utilities. The pwdx utility
resolves symbolic links and displays the absolute current working directory.

You can list the contents of a directory with the [“ls - List directory contents” on page 107 utility. With no
parameters, 1s lists the contents of the current working directory. You can also specify one or more
directories as parameters. With the -1 (lowercase ell) option, 1s lists detailed information about each object
in the directory, including the permissions for the object, the owner and group of the object, the size of
the object, and the date that the object was last accessed.

Working with files and directories

You can create a new directory with the [“mkdir - Make directories” on page 110| utility. When the -p
option is specified, mkdir creates all of the directories in the path. For example, to create the new
directories “/fruits” and “/fruits/pears”, use this command:

mkdir -p /fruits/pears

6 iSeries: Qshell

You can copy files with the [“cp - Copy files” on page 97 utility. For example, to copy the file
“/fruits/apples/delicious” to the file “/fruits/apples/grannysmith”, use this command:

cp /fruits/apples/delicious /fruits/apples/grannysmith

You can rename or move objects with the [‘mv - Move files” on page 112| utility. For example, to move the
file orange in the current directory to the file “tangerine” in the “/fruits” directory, use this command:

mv orange /fruits/tangerine

You can delete an object with the [“rm - Remove directory entries” on page 125| utility and delete a
directory with the [‘rmdir - Remove directories” on page 126| utility. When the -r option is specified, rm
recursively deletes all of the objects in a directory tree. This is an easy way to delete a large number of
objects with one command. For example, to delete all of the files and directories in the “/fruits” directory
tree, use this command:

rm -r /fruits

Putting it all together in a script

The following example shows a simple shell script that illustrates the features of the shell interpreter and
utilities. The script takes one input parameter that is the name of a directory. The script then copies all of
the files with the java extension from the input directory to the current directory, keeping a count of the
files it copied.

1 # Get a list of files

2 filelist=$(1s ${1}/*.java)

3 count=0

4 # Process each file

5 for file in $filelist ; do

6 # Strip directory name

7 target=${file##*/}

8 # Copy file to current directory
9 cp $file $target

10 count=$((count+=1))

11 # Print message

12 print Copied $file to $target
13 done

14 print Copied $count files

On lines 1, 4, 6 ,8, 11, the # character denotes a comment. Any characters after the # character are not
interpreted by gsh.

On line 2, the variable filelist is set to the output from the[“ls - List directory contents” on page 107
command. The ${1} expands to the first input parameter and the *java expands to all of the files with the
Jjava extension.

On line 3, the variable count is set to zero.

On line 5 is a for loop. For each iteration of the loop. the variable file is set to the next element in the
variable filelist. Each element is delimited by a field separator. The default field separators are tab, space,
and newline. The semicolon character is a command delimiter and allows you to put more than one
command on a line.

On line 7, the variable target is set to the file name from the fully-qualified path name. The ${file##*/}
parameter expansion removes the largest pattern starting from the left that matches all characters up to
the last slash character.

On line 9, the file is copied with the [’cp - Copy files” on page 97] utility from the specified directory to
the current working directory.

On line 10, the variable count is incremented by one.

Qshell 7

On line 12, a message is printed using the [“print - Write output” on page 135| utility with the files that
were copied.

On line 13, the done marks the end of the for loop.

On line 14, a message is printed with the total number of files that were copied.

If the directory /project/src contained two files with the java extension and the script is called using the
command:

Jjavacopy /project/src

then the output from the script is

Copied /project/src/foo.java to foo.java
Copied /project/src/bar.java to bar.java
Copied 2 files

Command language

gsh is a program that:

reads input from either a file or a terminal

breaks the input into tokens

parses the input into simple and compound commands
performs various expansions on each command
performs redirection of input and output

runs the commands

optionally waits for the commands to complete

gsh implements a command language that has flow control constructs, variables, and functions. The
interpretative language is common to both interactive and non-interactive use (shell scripts). So the same
commands that are entered at an interactive command line can also be put in a file and the file can be
run directly by qsh.

See the [AIX™ Information Center|for more information about commands.

For more information about particular features of qsh, see the following topics:

8

[“Quoting” on page 9|
Select this link to view information about quoting, including the escape character, literal quotes, and

grouping quotes.

[“Parameters” on page 9
Select this link to view information about parameters, including positional parameters and special
parameters.

[“Variables” on page 10|
Select this link to view information about variables, including the variables set by and variables
used by qsh.

[“Word expansions” on page 15|

Select this link to view information about word expansions, including tilde expansion, parameter
expansion, command substitution, arithmetic expansion, field splitting, path name expansion, and
quote removal.

iSeries: Qshell

http://www-03.ibm.com/servers/aix/library/

[“Redirection” on page 21
Select this link to view information about input and output redirections.

[“Simple commands” on page 22|
Select this link to view information about running simple commands.

|”Pipe1ines” on page 23|
Select this link to view information about running multiple commands in a pipeline.

[“Lists” on page 24|
Select this link to view information about running multiple commands in a list.

[“Compound commands” on page 25
Select this link to view information about compound commands, including grouping commands,
conditional commands, loop commands, and functions.

Quoting

Use quoting to remove the special meaning of certain characters to qsh. The following characters may be
used:

* The escape character (backslash) to remove the special meaning of the following character with the
exception of <newline>. If a <newline> follows the backslash, gsh interprets it as a line continuation.
For example, \$ removes the special meaning of the dollar sign.

e Literal (or single) quotation marks (’...”) to remove the special meaning of all characters except the
single quotation mark.

* Grouping (or double) quotation marks ("...") to remove the special meaning of all characters except
dollar sign ($), back quotation mark (*), and backslash (\). The backslash retains its special meaning as
an escape character only when it is followed by a dollar sign ($), back quotation mark (%), double
quotation mark ("), backslash (\), or <newline>.

Parameters

A parameter is used to store data. You can access the value of a parameter by preceding its name with a
dollar sign ($) and surrounding the name with brackets ({ }). The brackets are optional when the name is
a single digit, is a special parameter, or is a single identifier. See [“Parameter expansions” on page 1§ for

more information about expanding the value of a parameter.

Positional parameters

A positional parameter is a decimal number starting from one. Initially, qsh sets the positional parameters
to the command line arguments that follow the name of the shell script. The positional parameters are
temporarily replaced when a shell function is called and can be reassigned using the [“set - Set or unset|
foptions and positional parameters” on page 160|and |“shift - Shift positional parameters” on page 162
utilities.

Special parameters

A special parameter is denoted by one of these special characters:

* (Positional parameters)
(Asterisk) Expands to the positional parameters, starting from one. When the expansion occurs
within a string with quotation marks, it expands to a single field with the value of each
parameter separated by the first character of the IFS variable, or by a <space> if IFS is unset.

@ (Positional parameters)
(At sign) Expands to the positional parameters, starting from one. When the expansion occurs

Qshell 9

within quotation marks, each positional parameter expands as a separate argument. If there are
no positional parameters, the expansion of @ generates zero arguments, even when @ is in
quotation marks.

(Number of positional parameters)
(Number sign) Expands to the decimal number of positional parameters. It is initially set to the
number of arguments when gsh is invoked. It can be changed by the[“set - Set or unset optiong
and positional parameters” on page 160)[“shift - Shift positional parameters” on page 162,| or |”d011
(.) - Run commands in current environment” on page 52| utilities or by calling a function.

? (Exit status)
(Question mark) Expands to the decimal exit status of the most recent command. A value of zero
indicates successful completion. A non-zero value indicates an error. A command ended by a
signal number has an exit status of 128 plus the signal number.

- (Option flags)
(Minus) Expands to the current option flags (the single-letter option names concatenated into a
string) as specified when gsh is invoked, by [“set - Set or unset options and positional|
[parameters” on page 160) or implicitly by gsh.

$ (Process ID of current shell)
(Dollar sign) Expands to the decimal process ID of the current shell. A subshell retains the same
value of $ as the current shell even if the subshell is running in a different process.

! (Background process ID)
(Exclamation mark) Expands to the decimal process ID of the most recent background command
run from the current shell. For a pipeline, the process ID is that of the last command in the
pipeline.

0 (Name of shell script)
(Zero) Expands to the name of the shell or shell script.

Variables

When it is started, qsh initializes shell variables from the defined environment variables. A variable is
used to store data. You can change the value of an existing variable or create a new variable by using one
of these methods:

* Assigning a variable using name=value.

+ Calling the|“read - Read a line from standard input” on page 137 or|“getopts - Parse utility options”]

|(_)n page 166| utilities.

* Using the name parameter in a for loop or select conditional construct.

Using the ${name=value} parameter expansion.

Calling the [“declare - Declare variables and set attributes” on page 156/ or [“typeset - Declare variables|
land set attributes” on page 162| utilities.

Variable names can contain alphabetic characters, numeric characters, or the underscore (_). A variable
name cannot begin with a numeric character.

Variables set by qsh

_ (Temporary variable)
This variable is set by gsh to the last argument of the previous simple command.

EGID (Effective primary group identifer)
This variable set by gsh to the effective primary group identifier of the process at the time gsh is
started. This variable is read-only.

EUID (Effective user identifer)
This variable set by qsh to the effective user identifier of the process at the time qsh is started.
This variable is read-only.

10 iSeries: Qshell

GID (Primary group identifer)
This variable set by qsh to the primary group identifier of the process at the time qsh is started.
This variable is read-only.

HOSTID (IP identifier of host)
This variable set by qsh to the IP address of the host system.

HOSTNAME (Name of host)
This variable set by gsh to the name of the host system.

HOSTTYPE (Type of host)
This variable set by qsh to a string that represents the type of the host system. The value is set to
“powerpc”.

JOBNAME (Qualified job name)
This variable is set by gsh to the qualified job name of the current job. The qualified job name is
used by CL commands to identify a job.

LAST_JOBNAME (Qualified job name of last job)
This variable is set by gsh to the qualified job name of the last job it started. The qualified job
name is used by CL commands to identify a job.

LINENO (Line number)
This variable is set by gsh to the current line number (decimal) in a script or function before it
runs each command.

MACHTYPE (Machine type)
This variable is set by gsh to a string that represents the machine type. The value is set to
“powerpc-ibm-0s400”.

OLDPWD (Previous working directory)
This variable is set by [‘cd - Change working directory” on page 90| to the previous working
directory after the current working directory is changed.

OPTARG (Option argument)
This variable is set by [‘getopts - Parse utility options” on page 166 when it finds an option that
requires an argument.

OPTIND (Option index)
This variable is set by [‘getopts - Parse utility options” on page 166|to the index of the argument
to look at for the next option. The variable is set to one when gsh, a script, or a function is
invoked.

OSTYPE (Operating system type)
This variable set by qsh to a string that represents the operating system type. The value is set to
“0s400”.

PPID (Parent process ID)
This variable is set by gsh to the decimal process ID of the process that invoked the current shell.
In a subshell, the value of the variable is not changed even if the subshell is running in a
different process.

PWD (Working directory)
This variable is set by [“cd - Change working directory” on page 90| to the current working
directory after it is changed.

QSH_VERSION (Current version)
This variable is set by gsh to a string that represents the current version. The string is in the form
VxRyMz where x is the version number, y is the release number, and z is the modification
number. This variable is read-only.

Qshell 11

RANDOM (Random number generator)
This variable is set by gqsh to an integer random number between 1 and 32767 each time it is
referenced. You can seed the random number generator by setting the variable.

REPLY (Reply variable)
This variable is set by |”read - Read a line from standard input” on page 137| to the characters that
are read when you do not specify any arguments and by the select compound command to the
contents of the input line read from standard input.

TERMINAL_TYPE (Type of terminal)
This variable is set by gsh to the type of terminal attached to the standard file descriptors. The
value is set to “5250” when attached to a 5250 display, to “TREMOTE” when attached to a remote
client, or to “PIPELINE” when attached to pipes.

UID (User identifer)
This variable set by qsh to the user identifier of the process at the time qsh is started. This
variable is read-only.

Variables used by gsh

CDPATH (Search path for cd)
If the directory you specify for [“cd - Change working directory” on page 90| does not begin with
a slash (/), qsh searches the directories listed in CDPATH in order for the specified directory. The
value of the variable is a colon separated list of directories. The current working directory is
specified by a period (.) or a null directory before the first colon, between two colons, or after the
last colon. There is no default value.

ENV (Environment file)
When gsh is invoked, it performs parameter expansion, command substitution, and arithmetic
expansion on this variable to generate the path name of a shell script to run in the current
environment. It is typically used to set aliases, define functions, or set options. There is no default
value.

HOME (Home directory)
The value of this variable is the path name of your home directory. The value is used for tilde
expansion and as the default argument for [“cd - Change working directory” on page 90 The
value is set by default to the value specified in your user profile.

IFS (Internal field separators)
The value is a string treated as a list of characters that is used for field splitting and to split lines
into fields with [‘read - Read a line from standard input” on page 137) The first character of the
value is used to separate arguments when expanding the * special parameter. The default value is
“<space><tab><newline>".

LANG (Language locale)
This variable defines the locale category used for categories that are not specifically set with a
variable starting with LC_. There is no default value.

LC_ALL (Locale settings)
This variable overrides the value of any variables starting with LC_. There is no default value.

LC_COLLATE (Locale collation)
This variable defines the collation relations between characters. There is no default value.

LC_CTYPE (Locale character classes)
This variable defines character types such as upper-case, lower-case, space, digit and,
punctuation. There is no default value.

LC_MESSAGES (Locale message formatting)
This variable defines the format and values for affirmative and negative responses from
applications. There is no default value.

12 iSeries: Qshell

LC_MONETARY (Locale monetary formatting)
This variable defines the monetary names, symbols, and other details. There is no default value.

LC_NUMERIC (Locale numeric formatting)
This variable defines the decimal point character for formatted input/output and string
conversion functions. There is no default value.

LC_TIME (Locale time formatting)
This variable defines the date and time conventions, such as calendar used, time zone, and days
of the week. There is no default value.

LC_TOD (Locale time zone)
This variable defines the time zone name, time zone difference, and Daylight Savings Time start
and end. There is no default value.

NLSPATH (Search path for message catalogs)
When opening a message catalog, the system searches the directories listed in the order specified
until it finds the catalog. The value of the variable is a colon separated list of directories. There is
no default value.

PATH (Search path for commands)
If the command you specify does not begin with a slash (/), qsh searches the directories listed in
the order specified until it finds the command to run. The value of the variable is a colon
separated list of directories. The current working directory is specified by a period (.) or a null

directory before the first colon, between two colons, or after the last colon. The default value is
“/usr/bin:”.

PS1 (Primary prompt string)
When the interactive option is set, gsh performs parameter expansion, command substitution,
and arithmetic expansion on the variable and displays it on stderr when qsh is ready to read a
command. The default value is “$”.

PS2 (Secondary prompt string)
When you enter <newline> before completing a command qsh displays the value of this variable

"

on stderr. The default value is “>".

PS3 (Select command prompt)
When the select compound command is run, gsh performs parameter expansion, command
substitution, and arithmetic expansion on the variable and displays it on stderr to prompt the
user to select one of the choices displayed by select. The default value is “#?”.

PS4 (Debug prompt string)
When the execution trace option is set and the interactive option is set, qsh performs parameter
expansion, command substitution, and arithmetic expansion on the variable and displays it on

o

stderr before each line in the execution trace. The default value is “+”.

QIBM_CCSID (CCSID for translation)
When this variable is set to a numeric value, qsh and various utilities use the value for creating
files and translating data from the CCSID of the job. The default value is “0” for the default job
CCSID. A value of “65535” means no translation is done.

QIBM_CHILD_JOB_SNDINQMSG (Send inquiry message when child process starts)
When this variable is set to a positive numeric value, the parent process is sent an inquiry
message with the qualified job name of the child process. The child process is held until you
reply the message. By setting this variable, you can debug the program running in the child
process by setting breakpoints before the program runs. The value of the variable is the level of
descendant processes to debug. When set to 1, child processes are held, when set to 2 child and
grandchild processes are held, etc. There is no default value.

Qshell 13

QIBM_MULTI_THREADED (Start multi-thread capable processes)

This variable determines if processes started by qsh can create multiple threads. When the value
of the variable is “Y”, all child processes started by qsh can start threads. The default value is
“N”.

QSH_REDIRECTION_TEXTDATA (Process data as text for file redirection)
This variable determines if data read from or written to a file specified on a |”Redirection” on|
is treated as text data or binary data. When the value of the variable is “Y”, gsh treats
the data read from or written to the file as text data. When the value of the variable is not “Y”,
gsh treats the data read from or written to the file as binary data. The default value is “Y”.

QSH_USE_PRESTART_JOBS (Use pre-start jobs when available)
This variable determines if processes started by qsh use prestart jobs when available. When the
value of the variable is “Y”, qsh uses prestart jobs if they are available in the current subsystem.
When the value of the variable is not “Y”, or prestart jobs are not available, the processes started
by gsh are batch immediate jobs. The default value is “Y”.

SHELL (Path name of the shell)
When running a script file that does not contain “#!” on the first line, gsh uses the value of this
variable as the path name of the shell interpreter to run the script. There is no default value.

TRACEFILE (Path name of trace file)
When the trace option is set, qsh uses the value of this variable as the path name of the file to
store the trace information. The default value is “$HOME/qsh_trace”.

TRACEOPT (Options for trace file)
When the trace option is set, gsh uses the value of this variable to determine how to handle the
trace file. When the value of the variable is “UNLINK”, gsh unlinks the trace file before opening
it in a root shell. When the value of the variable is “KEEP”, gsh keeps the current trace file. The
default value is “UNLINK”".

Other variables

¥ QIBM_CMP_FILE_SIZE
This variable controls the maximum file size in bytes that cmp reads into an internal buffer for
better performance. For files larger than the maximum size, cmp reads the files one byte at a

time. ¥

QIBM_OD_OUTPUT_FORMAT (Output format for od)
This variable controls the output format for the[“od - Dump files in various formats” on page 113|
utility. If the value is “OLD”, od uses the old format from previous releases. The old format is not
compatible with the current industry standard and its use is discouraged. There is no default
value.

QIBM_QSH_CMD_ESCAPE_MSG (Send escape messages from QSH CL command)
This variable controls how messages are sent by the QSH CL command when the CMD
parameter is specified. If the value is “Y”, the QSH0005 message is sent as an escape message if
the exit status is greater than zero and the QSH0006 and QSH0007 messages are always sent as
escape messages. There is no default value.

QIBM_QSH_CMD_OUTPUT (Control output of QSH CL command)
This variable controls the output from the QSH CL command when the CMD parameter is
specified. If the value is “STDOUT”, the output is displayed on the C runtime terminal session. If
the value is “NONE”, the output is discarded. If the value is “FILE”, the output is written to the
specified file. If the value is “FILEAPPEND”, the output is appended to the specified file. The
default value is “STDOUT”.

QIBM_QSH_INTERACTIVE_CMD (Initial interactive command)
When this variable is set to a command string, qsh runs the command when an interactive
session is started. The variable must be set before calling the QSH CL command to have gsh run
the command. There is no default value.

14 iSeries: Qshell

QIBM_QSH_INTERACTIVE_TYPE (Type of interactive session)
This variable sets the type of the interactive session started by the QSH CL command. If the
value is “NOLOGIN”, the interactive session is not a login session. Otherwise the interactive
session is a login session. There is no default value.

QIBM_SYSTEM_ALWMLTTHD (Allow multi-threaded jobs for system)
This variable controls how the [“system - Run CL command” on page 6() utility behaves in a
multi-thread capable job. If the value of the variable is “Y” and there is only one thread in the
job, system runs the CL command in the job. Otherwise, system starts a new job to the run the
CL command. There is no default value.

QIBM_SYSTEM_USE_ILE_RC
Set this environment variable to control how the[“system - Run CL. command” on page 60| utility
sets the exit status. If the value of the variable is “Y”, system sets the exit status to the ILE return
code of the program called by the CL command, or zero if the program did not set a return code.
There is no default value.

Word expansions

For more information about the word expansions supported by qsh, see the following topics:

[“Tilde expansions”]
Select this link to view information about how qsh expands tilde characters.

[“Parameter expansions” on page 16|
Select this link to view information about how qsh expands parameters.

[“Command substitutions” on page 18|
Select this link to view information about how qsh expands command substitutions.

[“Arithmetic expansions” on page 18|
Select this link to view information about how qsh expands arithmetic expressions.

[“Field splitting” on page 20|
Select this link to view information about how gsh splits fields into words expands path names
using patterns, and remove quotation marks.

[“Patterns” on page 21|
Select this link to view information about how qsh expands patterns.

Tilde expansions
An unquoted tilde character (~) at the beginning of a word is expanded according to the following rules:

* ~ expands to the value of the HOME variable (the current user’s home directory).

¢ ~user expands to the home directory of the specified user. All the characters up to a slash (/) or the
end of the word are treated as a user name.

* ~+ expands to the value of the PWD (working directory) variable.
* ~- expands to the value of the OLDPWD (previous working directory) variable if it is set.

Examples

1. Change the current directory to the user’s home directory:
cd ™

2. Change the current directory to the bin directory in user smith’s home directory:
cd ~smith/bin

Qshell 15

Parameter expansions
The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching right brace (}). Any right brace characters
escaped by a backslash or within a string with quotation marks, as well as characters in embedded
arithmetic expansions, command substitutions, and variable expansions, are not examined in determining
the matching right brace.

The simplest form for parameter expansion is:
${parameter}

The value, if any, of parameter is substituted. The parameter name or symbol can be enclosed in braces,
which are optional except for positional parameters with more than one digit or when parameter is
followed by a character that might be interpreted as part of the name. If a parameter expansion occurs
inside double quotation marks, then:

1. Path name expansion is not performed on the results of the expansion.

2. Field splitting is not performed on the results of the expansion, with the exception of @ special
parameter.

A parameter expansion can be modified by using one of the following formats:

${parameter:-word)}
Use Default Values. If parameter is unset or null, the expansion of word is substituted. Otherwise,
the value of parameter is substituted.

${parameter:=word}
Assign Default Values. If parameter is unset or null, the expansion of word is assigned to parameter.
In all cases, the final value of parameter is substituted. Only variables, not positional parameters
or special parameters, can be assigned in this way.

${parameter:?word]}
Indicate Error if Null or Unset. If parameter is unset or null, the expansion of word (or a message
indicating it is unset if word is omitted) is written to standard error and a non-interactive shell
exits with a nonzero exit status. Otherwise, the value of parameter is substituted.

${parameter:+word}
Use Alternate Value. If parameter is unset or null, null is substituted. Otherwise, the expansion of
word is substituted.

In the preceding four parameter expansions, using a colon in the format results in a test for a parameter
that is unset or null; removing the colon results in a test for a parameter that is only unset.

${#parameter}
String Length. If parameter is @ or *, the number of positional parameters is substituted.
Otherwise, the length of the value of parameter is substituted.

${parameter%word)
Remove Smallest Suffix Pattern. The word is expanded to produce a[“Patterns” on page 21| Then
the result is parameter after removing the smallest portion of the suffix matched by the pattern.

${parameter% %word}
Remove Largest Suffix Pattern. The word is expanded to produce a [‘Patterns” on page 21| Then
the result is parameter after removing the largest portion of the suffix matched by the pattern.

16 iSeries: Qshell

${parameterttword}

${parameterit#word)
Remove Largest Prefix Pattern. The word is expanded to produce a [“Patterns” on page 21| Then
the result is parameter after removing the largest portion of the prefix matched by the pattern.

Remove Smallest Prefix Pattern. The word is expanded to produce a[“Patterns” on page 21| Then

the result is parameter after removing the smallest portion of the prefix matched by the pattern.

${parameter:offset}

${parameter:offset:length}

Substring Starting at Offset. The value of this expansion is the substring starting at the byte
specified by offset for length bytes. If length is not specified or the value of length causes the

expansion to exceed the length of parameter, the substring ends with the last byte of parameter.

Both offset and length are |“ Arithmetic expansions” on page 18/ and must evaluate to a value that is

greater than or equal to zero. The first byte of parameter is defined by an offset of zero.

${parameter/pattern/string}

${parameterllpattern/string}

Substitute String for Pattern. The value of this expansion is the value of parameter with the

longest match of pattern replaced with string. In the first form, only the first match of pattern is

replaced. In the second form, all matches of pattern are replaced. If pattern begins with #, it must

match at the beginning of parameter. If pattern begins with a %, it must match at the end of
parameter.

Examples

1.

10.

11.

Expand the variable QSH_VERSION.

echo ${QSH_VERSION}

Expand the variable filename and use a default value.

echo ${filename:-/tmp/default.txt}

Expand the variable index and assign a default value.

echo ${index:=0}

Expand the variable filename and indicate an error if unset.
echo ${filename:?Variable is not set}

Expand the variable DIRLIST using string length.

DIRLIST=/usr/bin:/home/mike
echo ${#DIRLIST}

Expand the variable DIRLIST using remove smallest suffix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST%/*}

Expand the variable DIRLIST using remove largest suffix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST%%:*}

Expand the variable DIRLIST using remove smallest prefix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST#/usr}

Expand the variable DIRLIST using remove largest prefix pattern.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST##x/}

Expand the variable DIRLIST using a substring starting at offset.

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST:5:3}

Expand the variable DIRLIST using a substitute string for pattern.

Qshell

17

DIRLIST=/usr/bin:/home/mike
echo ${DIRLIST/m?ke/joel}

Command substitutions
Command substitution allows the output of a command to be substituted in place of the command name
itself. Command substitution occurs when the command is enclosed as follows:

$(command)

or by using backquotes:

“command”

The backquoted version is provided for compatibility. Its use is discouraged.

The shell expands the command substitution by running command in a subshell environment and
replacing the command substitution with the standard output of the command, removing sequences of one
or more <newline>s at the end of the substitution. Embedded <newline>s before the end of the output
are not removed; however, during field splitting, they may be translated into <space>s, depending on the
value of the IFS variable and quoting that is in effect.

Examples
1. Set the variable list to the output of the Is command:
Tist=$(1s)

Arithmetic expansions
Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and substituting its
value. The format for arithmetic expansion is:

$((expression))

The expression is treated as if it were in double quotation marks, except that a double quotation mark
inside expression is not treated specially. The shell expands all tokens in expression for parameter
expansion, command substitution, and quote removal. qsh treats the result as an arithmetic expression
and substitutes the value of the expression.

Arithmetic expressions

An arithmetic expression can be specified in the following situations:
* in an arithmetic expansion

« for each argument of the [“let - Evaluate arithmetic expression” on page 166 utility

« for the argument of the [“shift - Shift positional parameters” on page 162 utility

» for the operands of the arithmetic formats of the [“printf - Write formatted output” on page 136| utility

e for the operands to the arithmetic comparison operators of the [“test - Evaluate expression” on page 167]
utility
« for the argument of the|“ulimit - Set or display resource limits” on page 185 utility

* in the “Substring Starting at Offset” parameter expansion

qsh performs either integer or floating point arithmetic based on the setting of the float option. When the
float option is set on, qsh performs floating point arithmetic.

An integer number has the format [base#]number where:
* base is a decimal integer between 2 and 36 that specifies the arithmetic base. The default is base 10.

18 iSeries: Qshell

* number is a non-negative number. For a base greater than 10, numbers greater than 9 or represented
using a letter of the alphabet. For example, when using base 16, the decimal number 10 is represented
using A.

A floating point number has the format [+ | -] number|[.number] [exponent] where:
e number is a non-negative decimal number.

* exponent is E or e followed by + or - and a non-negative decimal number.

Arithmetic expressions use the following ANSI C language operators and precedence.

(expression)
Parenthesis overrides precedence rules

Unary operators
+expression Unary +

-expression Unary -
~expression Bitwise negation
lexpression Logical negation

Multiplicative operators
expression * expression Multiplication

expression / expression Division
expression % expression Remainder

Additive operators
expression + expression Addition

expression - expression Subtraction

Bitwise shift operators
expression << expression Left shift the first expression by the number of bits given in the second
expression

expression >> expression Right shift the first expression by the number of bits given in the second
expression

Relational operators
expression < expression Less than

expression <= expression Less than or equal to
expression > expression Greater than
expression >= expression Greater than or equal to

Bitwise AND operator
expression & expression Bitwise and where the result contains a 1 in each bit position where there
is a 1 in both expressions and a 0 in all other bit positions.

Bitwise Exclusive OR operator
expression N expression Bitwise exclusive or where the result contains a 1 in each bit position where
there is a 1 in only one of the expressions and a 0 in all other bit positions.

Bitwise OR operator
expression | expression Bitwise or where the result contains a 1 in each bit position where there is a
1 in either expression and a 0 in all other bit positions.

Logical AND operator
expression && expression Logical and where the result is true if both expressions are true

Qshell 19

Logical OR operator
expression | | expression Logical or where the result is true if one of the expressions is true

Conditional operator
expression ? expression : expression Conditional operator where when the first expression is true, the
second expression is evaluated. Otherwise the third expression is evaluated.

Assignment operators
expression = expression Simple assignment

expression *= expression Assign and multiply

expression /= expression Assign and divide

expression %= expression Assign and remainder

expression += expression Assign and add

expression -= expression Assign and subtract

expression <<= expression Assign and shift left

expression >>= expression Assign and shift right
expression &= expression Assign and bitwise AND
expression "= expression Assign and bitwise exclusive OR

expression | = expression Assign and bitwise OR

Note: When using floating point arithmetic the remainder, left
shift, right shift, bitwise AND, bitwise exclusive OR, and
bitwise OR operators are not supported.

Examples

1. Add two decimal numbers:
echo $((2+2))

2. Add two hexadecimal numbers:
echo $((16#A + 16#20))

3. Increment the variable index by one:
Tet index+=1

4. Evaluate a complex expression:
echo $((5+9-2%3/2))

5. Add two floating point numbers:

set -F
echo $((5.75+9.157))
set +F

Field splitting

After parameter expansion, command substitution, and arithmetic expansion, qsh scans the results of
expansions and substitutions that did not occur in double quotation marks for field splitting. Multiple
fields can result.

gsh treats each character of the IFS variable as a delimiter and uses the delimiters to split the results of
parameter expansion and command substitution into fields. If the value of the IFS variable is null, no
field splitting is performed.

Path name expansion
When the noglob option is not set, path name expansion is performed after field splitting is complete.
Each word is viewed as a series of [“Patterns” on page 21separated by slashes. The process of expansion

20 iSeries: Qshell

replaces the word with the names of all existing files whose names can be formed by replacing each
pattern with a string that matches the specified pattern. There are two restrictions:

1. a pattern cannot match a string containing a slash

2. a pattern cannot match a string starting with a period unless the first character of the pattern is a
period

Quote removal
The quote characters, backslash (\), single quotation mark (*), and double quotation mark ("), are
removed unless the character has been quoted.

Patterns
A pattern consists of normal characters, which match themselves, and meta-characters. The
meta-characters are:

1,* 2 and [

These characters lose their special meanings if they are quoted. When command or variable substitution
is performed and the dollar sign ($) or backquote (*) are not double quoted, the value of the variable or
the output of the command is scanned for these characters and they are turned into meta-characters.

An asterisk (*) matches any string of characters.
A question mark (?) matches any single character.

A left bracket ([) introduces a character class. The end of the character class is indicated by a right bracket
(I). If the right bracket is missing then the left bracket matches a [rather than introducing a character
class. A character class matches any of the characters between the square brackets. A range of characters
may be specified using a minus (-). The character class may be complemented by making an exclamation
mark (!) the first character of the character class.

Note: Specifying a range of characters may produce different
results from other systems because EBCDIC characters are
not contiguous.

To include a right bracket in a character class, make it the first character listed (after the !, if any). To
include a minus in a character class, make it the first or last character listed.

Redirection

Redirections are used to change where a command reads its input or sends its output. In general,
redirections open, close, or duplicate an existing reference to a file. The overall format used for
redirection is as follows:

[n] redir-op file
where redir-op is one of the redirection operators listed below and 7 is an optional number that refers to a

file descriptor. Following is a list of the possible redirections.

[n 1< file
Redirect standard input (or n) from file.

[n1 J<&n2
Duplicate standard input (or n1) from file descriptor n2.

[n]<&-
Close standard input (or n).

Qshell 21

[n 1> file
Redirect standard output (or n) to file.

[n]>] file

Redirect standard output (or n) to file, but override the noclobber option.

[n1>> file
Append standard output (or 1) to file.

[n1]>&n2
Duplicate standard output (or n1) from n2.

[n]>&-
Close standard output (or n).

#» It is best not to use the /QSYS.LIB/QTEMP.LIB directory for redirections since it is deleted when a job
ends and a new job is started and ended for each command. <%

Here-documents
The format of a here-document is:

[n I<<I[-] delimiter

here-doc-text ...
delimiter

All the text on successive lines up to delimiter is saved and made available to the command on standard
input, or file descriptor n if it is specified. If delimiter as specified on the initial line is quoted, then
here-doc-text is treated literally, otherwise the text is subjected to parameter expansion, command
substitution, and arithmetic expansion. If the operator is <<- instead of <<, then leading tabs in
here-doc-text are stripped.

Simple commands

A simple command is a sequence of optional variable assignments and redirections followed by a
command name. When a simple command is recognized by qsh, it performs the following actions:

1. Leading words of the form name=value are stripped off and assigned to the environment of the
simple command. Redirection operators and their arguments are saved for processing in step 3.

2. The remaining words are expanded as described in [“Word expansions” on page 15/and the first
remaining word is considered the command name. Any additional words are considered the
arguments of the command. If no command name is found, then the name=value variable
assignments recognized in step 1 affect the current shell.

3. Redirections are performed as described in [“Redirection” on page 21

Path search

If a simple command does not contain any slashes, gsh finds the command by searching:
1. for a special built-in utility of that name, then

2. for a shell function of that name, then

3. for a regular built-in utility of that name, then

4. each directory in the PATH variable in turn for the regular utility.

Command names containing a slash (/) are run as a regular utility without performing any of the above
searches.

22 iSeries: Qshell

A built-in utility is run internal to the shell, without starting a new process. A special built-in utility is
different from a regular built-in utility in these respects:

1. A syntax error in a special built-in utility causes a non-interactive shell to exit.

2. Variable assignments specified with a special built-in utility remain in effect after the utility
completes.

These are the special built-in utilities: [“break - Exit from for, while, or until loop” on page 164])}“colon (: -|
INull utility” on page 164,]]”c0ntinue - Continue for, while, or until loop” on page 165M"dec1are - Declare
variables and set attributes” on page 156)|“dot (.) - Run commands in current environment” on page 52
“eval - Construct command by concatenating arguments” on page 54/[“exec - Run commands and open,
close, or copy descriptors” on page 54/|“exit - Exit from the shell” on page 55][“export - Set export|
attribute for variables” on page 157 ||“local - Assign a local variable in a function” on page 158,||”read0nlv|
L Set read-only attribute for variables” on page 159|[“return - Return from a function” on page 167 [[“set
Set or unset options and positional parameters” on page 160J]”shift - Shift positional parameters” on 3age|
162 }[“source - Run commands in current environment” on page @J]”trap - Trap signals” on page 153,
“typeset - Declare variables and set attributes” on page 162]and [“unset - Unset values of variables and|
functions” on page 163

When a shell function is run, all of the shell positional parameters (except the special parameter 0, which
remains unchanged) are set to the arguments of the shell function. The variables which are explicitly
placed in the environment of the command (by placing assignments to them before the function name)
are made local to the function and are set to the specified values. The positional parameters are restored
to their original values when the shell function completes.

When a regular utility is run, qsh starts a new process, passing the arguments and the environment to
the program. If the program is a shell script, qsh will interpret the program in a subshell. gsh will
reinitialize itself in this case, so that the effect will be as if a new shell had been invoked to handle the
shell script.

Command exit status

Each command has an exit status that can influence the behavior of other shell commands. By
convention, a command exits with zero for normal or success, and non-zero for failure, error, or a false
indication. The documentation for each command describes the exit codes it returns and what they mean.
The exit status can be one of these values:

* 0 for success.
1 to 125 for failure.
¢ 126 when gsh finds the command but it is not executable.

* 127 when qsh cannot find the command.

¢ 128 and above when the command is ended by a signal. The value is 128 plus the signal number.

Pipelines

A pipeline is a sequence of one or more commands separated by the pipeline control operator (I). The
standard output of all but the last command is connected to the standard input of the next command.

The format for a pipeline is:

['] commandl [| command?2 ...]

The standard output of commandl is connected to the standard input of command?2. The standard input,
standard output, or both of a command is considered to be assigned by the pipeline before any

redirection specified by redirection operators that are part of the command. The exit status of the pipeline
is the exit status of the last command.

Qshell 23

If the pipeline is not in the background (described below), qsh waits for all commands to complete.

If the reserved word ! does not precede the pipeline, the exit status is the exit status of the last command
specified in the pipeline. Otherwise, the exit status is the logical not of the exit status of the last
command. That is, if the last command returns zero, the exit status is 1; if the last command returns
greater than zero, the exit status is zero.

Because pipeline assignment of standard input or standard output or both takes place before redirection,
it can be modified by redirection. For example:

commandl 2>&1 | command?2

sends both the standard output and standard error of command1 to the standard input of command?2.

Lists
A list is a sequence of commands separated by an ampersand (&) or a semicolon (;), and optionally

terminated by a <newline>, ampersand, or semicolon. An AND-OR list is a sequence of commands
separated by a && or | |. Both operators have the same priority.

Asynchronous lists

If a command is terminated by the control operator ampersand (&), qsh runs the command
asynchronously. That is, qsh does not wait for the command to finish before running the next command.
The format for running a command in the background is:

commandl & [command2 & ...]

If the interactive option is not set, the standard input of any asynchronous command is set to
/dev/gsh-stdin-null. The exit status of an asynchronous list is the exit status of the last command.

Sequential lists
Commands that are separated by a semicolon (;) are run sequentially. The format for a sequential list is:
commandl [; command?2 ...]

The commands in the list are run in the order they are written. The exit status of a sequential list is the
exit status of the last command.

AND lists

The format for an AND list is:

commandl | && command?2 ...]

With an AND list, gsh runs commandl, and then runs command? if the exit status of the commandl is zero
and so on until a command has a non-zero exit status or there are no commands left to run. The exit
status of an AND list is the exit status of the last command that is run.

OR lists

The format for an OR list is:

commandl [1| command?2 ...]

24 iSeries: Qshell

With an OR list, gsh runs commandl, and then runs command? if the exit status of the command1 is
non-zero and so on until a command has a zero exit status or there are no commands left to run. The exit
status of an OR list is the exit status of the last command that is run.

Compound commands

Compound commands provide control flow for other commands. Each compound command starts with a
reserved word and has a corresponding reserved word at the end.

For more information about the compound commands supported by qsh, see the following topics:

* ["Grouping commands”]
Select this link to view information about the grouping commands.

“If command”

Select this link to view information about the if-then-else-fi command.

[“Conditional command” on page 26|
Select this link to view information about the conditional command.

[‘Case command” on page 26|
Select this link to view information about the case-esac command.

[“Select command” on page 27|
Select this link to view information about the select-do-done command.

[“While command” on page 27|
Select this link to view information about the while-do-done command.

[“Until command” on page 28]
Select this link to view information about the until-do-done command.

[“For command” on page 28§|
Select this link to view information about the for-do-done command.

[“Functions” on page 29|
Select this link to view information about functions.

Grouping commands
You can group commands using either

(list)

or

{ list; }

In the first case, gsh runs list in a subshell environment.

Examples
1. Group two commands in a subshell.
(1s | grep apple)

If command
The syntax of the if command is

if list1

then [ist?

[elif list3
then list4] ...

Qshell 25

[else list5]
fi

First, gsh runs list1 and if its exit status is zero then qsh runs list2. Otherwise, each elif list3 is run and if
its exit status is zero then qsh runs list4. Otherwise, qsh runs list5.

Examples

1. An if-then-fi command.

x=4
y=9
if test $x -1t $y
then
echo $x is Tess than $y
fi
2. An if-then-else-fi command.
x=10
y=9
if test $x -1t $y
then
echo echo $x is less than $y
else
echo echo $x is greater than or equal to §y
fi
3. An if-then-elif-else-fi command.
x=4
y=4
if test $x -1t $y
then

echo echo $x is less than $y
elif test $x -eq $y

then

echo $x is equal to $y
else

echo $x is greater than or equal to $y
fi

Conditional command
The syntax of the [[...]] command is

[[expression 11

It returns a status of 0 or 1 depending on the evaluation of the conditional expression expression. The
format of a conditional expression is the same as the expressions evaluated by the|“test - Evaluate
fexpression” on page 167 utility. qsh performs tilde expansion, parameter expansion, arithmetic expansion,
command substitution, and quote removal on expression before it is evaluated.

Examples
1. A conditional command that uses a command substitution.

if [[$(grep -c apple fruits.txt) -eq 0]]
then

echo There are no apples in fruit.txt
fi

Case command
The syntax of the case command is

case word in

26 iSeries: Qshell

patternl) list1 ;;

pattern2 | pattern3) list2 ;;

esac

gsh expands each pattern in turn and sees if it matches the expansion of word. When there is a match, gsh
runs the corresponding list. After the first match, no more patterns are expanded. See|“Patterns” on page]
for more details on patterns.

Examples
1. A case command for processing command line options.

while getopts ap:t: ¢ ; do
case $c in
a) aflag=1;;
p) pflag=1
path=$0PTARG; ;
t) time=$0PTARG;;
*) print -u2 "Invalid option"
exit 1;;
esac
done

Select command
The syntax of the select command is

select name [in word ...]
do list
done

The words are expanded, generating a list of items. If word is not specified, the positional parameters are
expanded. The set of expanded words is written to standard error, each preceded by a number. The PS3
prompt is then displayed and a line is read from standard input. If the line consists of a number
corresponding to one of the displayed words, gsh sets the value of name to the word corresponding to
the number. If the line is empty, gsh displays the list again. The REPLY variable is set to the contents of
the input line.

gsh runs the commands in list until a [‘break - Exit from for, while, or until loop” on page 164 |[“return -
[Return from a function” on page 167,|or [‘exit - Exit from the shell” on page 55 command is run. select
also completes if EOF is read from standard input.

Examples
1. A select command to select from a list.

PS3="Please select a number "
list="alpha beta gamma delta epsilon"
select value in §$list ; do
echo Value for selection $REPLY is $value
break
done

While command
The syntax of the while command is

while list1

Qshell 27

do [list2
done

gsh runs the two lists repeatedly while the exit status of list] is zero. When the exit status of [ist1 is
non-zero the command completes.

Examples
1. A while command to iterate until a condition is met.

max=100

index=0

while [[$index -1t $max]] ; do
echo Index is $index
let index+=1

done

Until command
The syntax of the until command is

until list1
do list2
done

gsh runs the two lists repeatedly while the exit status of list1 is non-zero. When the exit status of Iist1 is
zero the command completes.

Examples
1. An until command to iterate until a condition is met.

max=100

index=0

until [[$index -eq $max]] ; do
echo Index is $index
let index+=1

done

For command
The syntax of the for command is

for variable in word ...
do list
done

The words are expanded, and then list is run repeatedly with variable set to each word in turn. You can
replace do and done with braces ({ }).

Examples
1. A for command to process a list of objects.

Tist=$(1s *.class)
for object in §1ist
do
system "DSPJVAPGM $object"
done

28 iSeries: Qshell

Functions
The syntax of a function definition is

[function] name () command

A function definition is a statement that when run installs a function named name and returns an exit

status of zero. The command is normally a list enclosed between braces ({ }).

When name is specified as a simple command, qsh runs command. The arguments to the simple command

temporarily become the positional parameters while the function is running. The special parameter 0 is
unchanged. By using local, you can declare local variables inside of the function. By using return, you

can end the function and resume execution with the next command after the function call.
Examples

Here is an example of a function that provides a gsh interface to the PING CL command.
ping()
{

Initialize variables and make them local to this function
local nbrpkt='"' waittime='' intnetadr='"' msgmode='"' pktlen='"' ipttl=""' host=""'
local ¢

Process the options
while getopts c:i:I:qs:T:v c
do case $c in
c) nbrpkt="NBRPKT($OPTARG)";;
i) waittime="WAITTIME($OPTARG)";;
I) intnetadr="INTNETADR('$OPTARG')"
host="xINTNETADR"; ;
q) msgmode="MSGMODE (*QUIET)';;
s) pktlen="PKTLEN($OPTARG)";;
T) iptt1="IPTTL($OPTARG)";;
v) msgmode="'MSGMODE (*VERBOSE) ';;
\?) print -u2 "Usage: ping [-c count] [-i seconds] [-I ipaddr] [-q]" \
"[-s size] [-T tt1] [-v] hostname"
return 1;;
esac
done

Run the command
shift $OPTIND-1
system ping ${host:-$1} $intnetadr $nbrpkt $waittime $msgmode $pktlen $iptt]

Using Qshell

This topic provides information on using the QSH CL command, configuring the Qshell environment,

and developing your own utilities.

[“Using a Qshell interactive session” on page 30|

Select this link to find out how to use the interactive session started by the QSH CL command.

“Running Qshell commands from CL” on page 31|

Select this link to find out how to run Qshell commands from the CL command environment.

[“Running Qshell commands from PASE” on page 32|
Select this link to find out how to run Qshell commands from the PASE environment.

[“Customizing your Qshell environment” on page 32|
Select this link to find out how to customize the Qshell environment on your system.

29

[“National language support (NLS) considerations” on page 33|
Select this link to find out how to configure Qshell for different languages.

[“Performance considerations” on page 37
Select this link to find out how to configure Qshell for the best performance on your system.

[“Developing your own utilities” on page 37
Select this link to view tips for writing your own utility programs.

[“Editing files with Qshell Interpreter” on page 37|
Select this link to find out how to edit stream files used for shell scripts.

[“Differences with other interpreters” on page 37|
Select this link to view the list of differences between Qshell and other shell interpreters.

Using a Qshell interactive session

The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either
starts a Qshell interactive session or runs a Qshell command.

If running in an interactive job with no parameters, STRQSH starts an interactive Qshell session. If a
Qshell session is not already active in the job, then the following events occur:

1. A new Qshell session is started and a terminal window is displayed.

2. qsh runs the commands from the file /etc/profile if it exists.

3. gsh runs the commands from the file .profile in the user’s home directory if it exists.

4. gsh runs the commands from the file specified by the expansion of the ENV variable if it exists.

If a Qshell session is already active in an interactive job, you are reconnected to the existing session.

From the terminal window, you can enter Qshell commands and view output from the commands. The
terminal window has two parts:

* an input line for entering commands

* an output area that contains an echo of the commands you entered and any output generated by the
commands

You can use these function keys:

Function key Description

F3 (Exit) Close the terminal window and end the Qshell session.
F5 (Refresh) Refresh the output area.

F6 (Print) Print the output area to a spool file.

F7 (Up) Roll output area up one page. If a number is on the

command line, the output area is rolled up by that
number of lines.

F8 (Down) Roll output area down one page. If a number is on the
command line, the output area is rolled down by that
number of lines.

30 iSeries: Qshell

Function key

Description

F9 (Retrieve)

Retrieve a previous command. You can press this key
multiple times to retrieve any previous command. For
example, to retrieve the second to last command you
entered, press this key two times. You can also select a
specific command to be run again by placing the cursor
on that command and pressing this key. When the
interactive job is running in a double-byte CCSID, this
key is not available.

F11 (Toggle line wrap)

Toggle the line wrap/truncate mode in the output area.
In line wrap mode, lines longer than the width of the
terminal window are wrapped to the next line. In
truncate mode, the portion of a line beyond the width of
the terminal window is not shown.

F12 (Disconnect)

Disconnect from the Qshell session. This key only closes
the terminal window and does not end the Qshell
session. You can redisplay the disconnected Qshell
session by running STRQSH again.

F13 (Clear)

Clear the output area.

F14 (Adjust command line length)

Adjust the command line length to four lines. If a
number is on the command line, the command line
length is adjusted to that number of lines.

F17 (Top) Display top of output area.
F18 (Bottom) Display bottom of output area.
F19 (Left) Shift output area to the left. If a number is on the

command line, the output area is shifted by that number
of columns.

F20 (Right)

Shift output area to the right. If a number is on the
command line, the output area is shifted by that number
of columns.

F21 (Command entry)

Display a command entry window where you can enter
CL commands.

SysReq 2

Interrupt the currently running command by sending the
SIGINT signal to all child processes.

Running Qshell commands from CL

The Start QSH (STRQSH) command, also known as QSH, is a CL (control language) command that either
starts a Qshell interactive session or runs a Qshell command.

If called with the CMD parameter, STRQSH runs the specified Qshell command. The possible values of

the CMD parameter are:
*NONE

No command is provided and an[“Using a Qshell interactive session” on page 30|is started. If
CMD(*NONE) is specified and STRQSH is run in a batch job, STRQSH does nothing.

command

A Qshell command to run. The command can be a maximum of 5000 bytes in length. If a blank
or other special characters are used, the command must be enclosed in apostrophes. If an
apostrophe is intended, two apostrophes must be used.

Qshell 31

When running a command, STRQSH starts qsh, runs the specified Qshell command, displays any output
generated by the command to the C runtime terminal session, and ends qsh. Note that qsh does not run
any profile files when started to run a command.

You can control what happens to the output by setting the QIBM_QSH_CMD_OUTPUT environment
variable. The environment variable can have these values:

STDOUT
Display the output to the C runtime terminal session. This is the default value.

NONE
Throw away any output that is produced.

FILE=pathname
Store the output in the file specified by pathname. The file is truncated before output is written to
the file.

FILEAPPEND=pathname
Store the output in the file specified by pathname. The output is appended to end of the file.

When the command ends, STRQSH sends one of three messages:

* QSHO0005 when the process running the command ends normally. The message includes the exit status
of the process.

* QSHO0006 when the process running the command ends by signal. The message includes the signal
number.

* QSHO0007 when the process running the command ends by exception.

By default, the messages are sent as completion messages. You can have the messages sent as escape
messages by setting the environment variable QIBM_QSH_CMD_ESCAPE_MSG. When the value of the
environment variable is "Y", the QSH0006, and QSH0007 messages are always sent as escape messages
and the QSHO0005 message is sent as an escape message if the exit status is greater than zero.

Running Qshell commands from PASE
i5/0S"" PASE| provides a that invokes [“gsh - Qshell command language interpreter” on|

age 57] to either run an interactive session or a command. You can use it to run any Qshell command
from any i5/0S™ PASE shell.

Customizing your Qshell environment

You can customize your Qshell environment using three profile files. Each profile file is a shell script that
can contain any Qshell command. 3 See the [“Variables” on page 10| topic for the complete list of
supported environment variables. <%

Global profile file

If the file /etc/profile exists, qsh runs it in the current environment when you login. It is typically
maintained by an administrator to set system-wide defaults for all users. This file should be secured by
setting the public authority to read and execute.

Here is a sample /etc/profile file:

Sample /etc/profile file

export PATH=/usr/bin:

Profile file

If the file .profile exists in the user’s home directory, qsh runs it in the current environment when you
login. It is used to customize your login environment.

32 iSeries: Qshell

Here is a sample .profile file.

Sample .profile file
export ENV=$HOME/.gshrc
export PATH=$PATH:$HOME/bin

Environment file

If the file specified by the expansion of the ENV variable exists, qsh runs it in the current environment
when starting an interactive shell. The environment file is typically used to set aliases, define functions,
or set options for an interactive shell session.

Here is a sample environment file:

Sample environment file
PS1="'$PWD'

National language support (NLS) considerations

When gsh starts, it initializes internal tables for processing commands based on the CCSID of the job.
When reading files, qsh and many utilities dynamically translate files from the CCSID of the file to the
CCSID of the job. For everything to run correctly, you must configure your environment as documented
in the tables below.

A locale contains information about a language and country or region, including how to sort and classify
characters and the formats for dates, times, numbers, and monetary values. A locale is set by setting the
LANG environment variable to the path name to a locale object. For example, to set the locale for US
English, the LANG environment variable is set as follows:

LANG=/QSYS.LIB/EN_US.LOCALE

% It is best to set the LANG environment variable before starting qsh. Some utilities will not work
correctly if the locale is not valid for the CCSID and language ID of the job as shown in the tables below.

&

There can be problems in the following situations:

* In an interactive session, if the CCSID of a job is different from the CCSID of the display device, qsh
does not recognize certain special characters.

¢ If there is no support for translating between the CCSID of a script file and the CCSID of the job, then
the file cannot be opened.

Supported CCSIDs

The following table shows the supported CCSIDs. It is indexed by CCSID number. If a CCSID is not in
the table, gsh sends message 001-0072 and runs as if it was started in CCSID 37.

Supported CCSIDs

CCSID Code Page Description

00037 00037 USA, Canada

00256 00256 International #1
00273 00273 Germany, Austria
00277 00277 Denmark, Norway
00278 00278 Finland, Sweden
00280 00280 Italy

00284 00284 Spain, Latin America
00285 00285 United Kingdom

Qshell 33

Supported CCSIDs

CCSID Code Page Description

00297 00297 France

00424 00424 Israel (Hebrew)

00425 00425 Arabic

00500 00500 Belgium, Canada, Switzerland
00833 00833 Korea Extended Single-byte
00836 00836 Simplified Chinese Extended Single-byte
00838 00838 Thailand Extended

00870 00870 Latin-2 Multilingual

00871 00871 Iceland

00875 00875 Greece

00880 00880 Cyrillic Multilingual

00905 00905 Turkey Extended

00918 00918 Pakistan

00933 00833, 00834 Korea Extended Mixed

00935 00836, 00837 Simplified Chinese Extended Mixed
00937 00037, 00835 Traditional Chinese Extended Mixed
00939 01027, 00300 Japan English Extended Mixed
01025 01025 Cyrillic Multilingual

01026 01026 Turkey

01027 01027 Japan Latin Extended Single-byte
01097 01097 Farsi

01112 01112 Baltic Multilingual

01122 01122 Estonian

01123 01123 Cyrllic Ukraine

01130 01130 Vietnam

01132 01132 Lao

01137 01137 Devanagari

01140 01140 USA, Canada euro

01141 01141 Germany, Austria euro

01142 01142 Denmark, Norway euro

01143 01143 Finland, Sweden euro

01144 01144 Italy euro

01145 01145 Spain, Latin America euro

01146 01146 United Kingdom euro

01147 01147 France euro

01148 01148 Belgium, Canada, Switzerland euro
01149 01149 Iceland euro

01153 01153 Latin-2 Multilingual euro

01154 01154 Cyrllic Multilingual euro

01155 01155 Turkey euro

34 iSeries: Qshell

Supported CCSIDs

CCSID Code Page Description

01156 01156 Baltic Multilingual euro

01157 01157 Estonia euro

01158 01158 Cyrillic Ukraine euro

01160 01160 Thailand Extended euro

01164 01164 Vietnam euro

01388 00836, 00837 Simplified Chinese Host Data Mixed
01399 01399, 00300 Japan English Extended Mixed euro
05035 01027, 00300 Japan English Extended Mixed

05123 01399 Japan English Extended Single-byte euro
09030 00838 Thailand Extended Single-byte

13124 00836 Simplified Chinese Host Data Single-byte
28709 00037 Traditional Chinese Extended

Supported Languages

The following table shows the supported languages. It is indexed by language. In the Language field, the
value in parentheses is the value to use for the LANGID parameter of the CHGJOB CL command. In the

Country or Region field, the value in parentheses is the value to use for the CNTRYID parameter of the

CHGJOB CL command.

Note that there are more valid combinations of Language, Country or Region, CCSID, and Locale than
are listed in the table. For example, there is only one entry for the Spanish language even though it is

used in more than one country or region.

When running Qshell, the LANGID, CNTRYID, CCSID job attributes must be set to the values listed in

the table, and the LANG environment variable must be set to the listed locale.

Supported Languages

Language Country or Region Id CCSID | Locale

Albanian (SQI) Albania (AL) 00500 | /QSYS.LIB/SQ_AL.LOCALE
Arabic (ARA) Arabic Area (AA) 00425 | /QSYS.LIB/AR_AA.LOCALE
Belgian Dutch (NLB) Belgium (BE) 00500 | /QSYS.LIB/NL_BE.LOCALE
Belgian Dutch Euro (NLB) Belgium (BE) 01148 | /QSYS.LIB/NL_BE_E.LOCALE
Belgian French (FRB) Belgium (BE) 00500 | /QSYS.LIB/FR_BE.LOCALE
Belgian French Euro (FRB) Belgium (BE) 01148 /QSYS.LIB/FR_BE_E.LOCALE
Belgium English (ENB) Belgium (BE) 00500 | /QSYS.LIB/EN_BE.LOCALE
Brazilian Portugese (PTB) Brazil (BR) 00037 | /QSYS.LIB/PT_BR.LOCALE
Bulgarian (BGR) Bulgaria (BG) 00037 | /QSYS.LIB/BG_BG.LOCALE
Canadian French (FRC) Canada (CA) 00500 | /QSYS.LIB/FR_CA.LOCALE
Croatian (HRV) Croatia (HR) 00870 | /QSYS.LIB/HR_HR.LOCALE
Czech (CSY) Czech Republic (CZ) 00870 | /QSYS.LIB/CS_CZ.LOCALE
Danish (DAN) Denmark (DK) 00277 | /QSYS.LIB/DA_DK.LOCALE
Dutch (NLD) Netherlands (NL) 00037 | /QSYS.LIB/NL_NL.LOCALE

Qshell

35

Supported Languages

Language Country or Region Id CCSID | Locale

Dutch Euro (NLD) Netherlands (NL) 01140 | /QSYS.LIB/NL_NL_E.LOCALE
English Upper Case (ENP) United States (US) 00037 | /QSYS.LIB/EN_UPPER.LOCALE
Estonian (EST) Estonia (EE) 01122 | /QSYS.LIB/ET_EE.LOCALE
Finnish (FIN) Finland (FI) 00278 | /QSYS.LIB/FI_FIL.LOCALE
Finnish Euro (FIN) Finland (FI) 01143 | /QSYS.LIB/FI_FI_E.LOCALE
French (FRA) France (FR) 00297 | /QSYS.LIB/FR_FR.LOCALE
French Euro (FRA) France (FR) 01147 | /QSYS.LIB/FR_FR_E.LOCALE
German (DEU) Germany (DE) 00273 | /QSYS.LIB/DE_DE.LOCALE
German Euro (DEU) Germany (DE) 01141 | /QSYS.LIB/DE_DE_E.LOCALE
Greek (ELL) Greece (GR) 00875 | /QSYS.LIB/EL_GR.LOCALE
Hebrew (HEB) Israel (IL) 00424 | /QSYS.LIB/IW_IL.LOCALE
Hungarian (HUN) Hungary (HU) 00870 | /QSYS.LIB/HU_HU.LOCALE
Icelandic (ISL) Iceland (IS) 00871 | /QSYS.LIB/IS_IS.LOCALE
Italian (ITA) Italy (IT) 00280 | /QSYS.LIB/IT_IT.LOCALE
Italian Euro (ITA) Italy (IT) 01144 | /QSYS.LIB/IT_IT_E.LOCALE
Japanese Katakana (JPN) Japan (JP) 05035 | /QSYS.LIB/JA_5035.LOCALE
Japanese Full (JPN) Japan (JP) 13488 | /QSYS.LIB/JA_13488.LOCALE
Korean (KOR) South Korea (KR) 00933 | /QSYS.LIB/KO_KR.LOCALE
Latvian (LVA) Latvia (LV) 01112 | /QSYS.LIB/LV_LV.LOCALE
Lithuanian (LTU) Lithuania (LT) 01112 | /QSYS.LIB/LT_LT.LOCALE
Macedonian (MKD) Macedonia (MK) 01025 | /QSYS.LIB/MK_MK.LOCALE
Norwegian (NOR) Norway (NO) 00277 | /QSYS.LIB/NO_NO.LOCALE
Polish (PLK) Poland (PL) 00870 | /QSYS.LIB/PL_PL.LOCALE
Portugese (PTG) Portugal (PT) 00037 | /QSYS.LIB/PT_PT.LOCALE
Portugese Euro (PTG) Portugal (PT) 01140 | /QSYS.LIB/PT_PT_E.LOCALE
Romanian (ROM) Romania (RO) 00870 | /QSYS.LIB/RO_RO.LOCALE
Russian (RUS) Russia (RU) 01025 | /QSYS.LIB/RU_RU.LOCALE
Serbian Cyrillic (SRB) Serbia (SQ) 01025 | /QSYS.LIB/SR_SP.LOCALE
Serbian Latin (SRL) Serbia (SQ) 00870 | /QSYS.LIB/SH_SP.LOCALE
Simplified Chinese (CHS) China (CN) 00935 | /QSYS.LIB/ZH_CN.LOCALE
Slovakian (SKY) Slovakia (SK) 00870 | /QSYS.LIB/SK_SK.LOCALE
Slovenian (SLO) Slovenia (SI) 00870 | /QSYS.LIB/SL_SI.LOCALE
Spanish (ESP) Spain (ES) 00284 | /QSYS.LIB/ES_ES.LOCALE
Spanish Euro (ESP) Spain (ES) 01145 | /QSYS.LIB/ES_ES_E.LOCALE
Swedish (SVE) Sweden (SE) 00278 | /QSYS.LIB/SV_SE.LOCALE
Swiss French (FRS) Switzerland (CH) 00500 | /QSYS.LIB/FR_CH.LOCALE
Swiss German (DES) Switzerland (CH) 00500 | /QSYS.LIB/DE_CH.LOCALE
Thai (THA) Thailand (TH) 00838 | /QSYS.LIB/TH_TH.LOCALE
Turkish (TRK) Turkey (TR) 00905 | /QSYS.LIB/TR_TR.LOCALE
Ukrainian (UKR) Ukraine (UA) 01025 | /QSYS.LIB/UK_UA.LOCALE

36 iSeries: Qshell

Supported Languages

Language Country or Region Id CCSID | Locale

UK English (ENG) United Kingdom (GB) 00285 | /QSYS.LIB/EN_GB.LOCALE
US English (ENU) United States (US) 00037 | /QSYS.LIB/EN_US.LOCALE

For more details, see the[iSeries Globalization IBM Code Pages| -ld' .

Performance considerations
The following tips can help improve performance when using qsh.

* Do not use command substitutions in the value of the PS1 variable. This causes a new process to be
started every time you press the <enter> key.

* Use input redirection instead of cat. For example, the following command:
cat myfile | grep Hello
can be replaced with this command:
grep Hello < myfile
* Use built-in utilities whenever possible because they are run in the current process.

* Leave the SHELL variable unset. If a script file does not contain a "#!” on the first line, the script is run
in the current activation of gsh.

Developing your own utilities

You can develop your own utility programs using any language, although ILE/C, ILE/C++, and Java
have the best runtime support. When creating ILE/C or ILE/C++ programs, you should use Integrated
File System 1I/O when creating all of the modules in your utility program.

A utility reads input from standard input or descriptor 0, writes output to standard output or descriptor
1, and writes errors to standard error or descriptor 2.

If your utility program uses the ILE/C or ILE/C++ standard files for I/O, you can run your utility from
either the qsh command line or the QCMD command line. If your utility reads and writes directly from
descriptors 0, 1, and 2, you can only run your utility from the Qshell command line.

Editing files with Qshell Interpreter

You can edit files from any file system using the EDTF CL command. It is an editor that is similar to the
Source Entry Utility (SEU) for editing stream files or database files. Also, you can display a stream file or
database file using the DSPF CL command.

Another alternative is to connect to the server using iSeries™ Navigator and edit the file using an editor
running on the client. The file can be stored in ASCII and still be used by Qshell.

A shell script is just a text file that contains shell commands. It is important to use the right file system
for storing shell scripts. Shell scripts are stream data and should be stored in the "root” file system. While
it is possible to store shell scripts in source physical files in the QSYS.LIB file system, it causes the shell
scripts to use more storage and to run slower.

Differences with other interpreters
While gsh is compatible with other standard shell interpreters, there are several differences:
* There is no support for the <> redirection operator.

* There is no support for a command history list, the HISTSIZE and HISTFILE variables, or the fc (or
hist) built-in utility. As an alternative, the QSH CL command has support for command retrieval.

Qshell 37

http://www-1.ibm.com/servers/eserver/iseries/software/globalization/codepages.html

There is no support for command line editing and the EDITOR variable.

There is no support for the MAIL, MAILCHECK, and MAILPATH variables.

There is no support for job control. There is no concept of a foreground or background process group

on i5/0S™). This means it is possible for multiple jobs to be reading from the terminal at the same

time. qsh does not support:

— The fg or bg built-in utilities.

— Using the Suspend key (typically <ctrl>z) to send the SIGTSTP signal to the foreground process
group.

— Using the Stop key (typically <ctrl>s) to send the SIGSTOP signal to the foreground process group.

— Using the Restart key (typically <ctrl>q) to send the SIGCONT signal to the foreground process
group.

— Using the Interrupt key (typically <ctrl>c) to send the SIGINT signal to the foreground process

group. As an alternative, you can use SysReq 2 from an interactive shell session to send the SIGINT
signal to the shell interpreter process and any currently running child processes.

There is no support for the End-of-file key (typically <ctrl>d). As an alternative, use a to

redirect text entered at the command line to standard input of a utility.

When calling a program, there is a limit to the maximum number of parameters you can pass to the
command. If the program was built for a release before V5R3, the limit is 255 parameters. If the
program was built for V5R3 or a subsequent release, the limit is 65535 parameters.

When using path name expansion with some case insensitive file systems, you must use upper case
characters in the pattern. For example, to list all of the program objects in the QSHELL library you
should use this command:

1s /qsys.1ib/qshell.1ib/*.PGM.

Utilities

Qshell utilities are available for accomplishing the following tasks:

[“Utilities for defining aliases” on page 49|

[‘Utilities for running commands” on page 51|

[‘Utilities for managing data” on page 64|
[Utilities for DB2 Universal Database™” on page 81|

[Utilities for working with files and directories” on page 82|

[‘Utilities for reading and writing input and output” on page 133

[“Utilities for developing Java™ programs” on page 13§

[‘Utilities for managing jobs” on page 146]

[“Utilities for Kerberos credentials and key tables” on page 155

“Utilities for LDAP directory server” on page 155|

“Utilities for working with parameters and variables” on page 156|

“Utilities for writing scripts” on page 164

“Miscellaneous utilities” on page 17()

List of all utilities

This alphabetical list of all the utilities is available so that you can easily go directly to the utility you
need.

A (page B (page 39) C (page D (page@[) E (page 41) F (page G (page 42) H (page.

42

age
)] (page K geL ageM age@N ageO ageP ageQ(pageiP

(page }46) S (page T (page 48) U (page i8) W (page[49) X (page [49) Z (page U

38 iSeries: Qshell

redirect.htm#HERE

" appleticwn
T

View Java'

“cat -
Concatenate and
print files” o
page 88|

“catsplf -
Concatenate and
print spool files”|
on page 89

“cd - Change
working
directory” on
page 90

“chgrp - Change|
file group
ownership” on|
page 91

“chmod -
IChange file)
modes” on page
92

“chown

Change file
ownership” on|
page 95|

Alternative Java archive tool

Define or display aliases

Run applets without a web browser

Get or set attributes for files

Return non-directory portion of path name

Exit from for, while, or until loop

Run a shell built-in utility

Concatenate and print files

Concatenate and print spool files

Change working directory

Change file group permission

Change file modes (permissions)

Change file ownership

Qshell

39

“colon (:) - Nulll
utility” on page
16

“command - Run|

“cp - Copy files”
on page 9
“cut - Cut out

“dataq - Send or

recelle messaae:

from i5/0S™)

40 iSeries: Qshell

Clear the /tmp directory

Compare two files

Null utility

Run a simple command

Compress data

Continue for, while, or until loop

Copy files

Cut out selected fields of each line of a file

Send or receive messages from i5/0S™ data queue

Read or write i5/0S™ data area

Write the date and time

DB2 SQLJ profile customizer
Print DB2 customized version of SQLJ profile
Declare variables and set attributes

Return directory portion of path name

“dot (.) - Run| Run commands in current environment
commands in|

Display message from a message catalog

“echo - Write Write arguments to standard output
arguments to
standard output”|
on page 134

“egrep - Search a| Search a file for an extended regular expression pattern
file for a
extended regula
lexpressio
pattern” on page
6
“env - Se Set environment for command invocation
lenvironment fo
command|
invocation” o
page 53|
“eval - Construct| Construct command by concatenating arguments
command b
concatenating
arguments” on|
page 54
“exec - Ru Run commands and open, close, or copy descriptors
commands and
open, close, o
ICOPY]
descriptors” on|
page 54
“exit - Exit from| Exit from the shell
the shell” o
page 55
“export - Se Set export attribute for variables
lexport attribute
for variables” on
age 15
“expr - Evaluate| Evaluate arguments as an expression
arguments as an
lexpression” on|
age 174
“extchec

Detect Java archive conflicts

Return false value

Qshell 41

Search a file for a fixed string pattern

Determine file type

Find files

Generate a formatted message catalog

Get configuration values

Display job information

Parse utility options

Search a file for a pattern

Remember or report utility locations

locations” o
page 147
"head - Copy the| Copy the first part of files
first part of files”
on page 106
“help - Display| Display information for built-in utility
information for
built-in utili

“hostname
Display th
name of the
current host

system” on pa
17

“iconv - Convertl Convert characters from one CCSID to another CCSID
characters fro

Display the name of the current host system

one CCSID to

42 iSeries: Qshell

“jar - Archive
ava™ files” o
page 14
“jarsigner - JA
signing and
verification” on|
page 142

112

ava™
interpreter” on|
page 142
avae— Compile
a Java'

program” o
page 143

Generate Java"
documentation”
on page 143
“javah -
Generate C
header or stub
file” on page 143

A o
| Mk S

Manage Java'
security keys
and certificates”
on page 144
“javap -

7]

program” O
page 144

“jobs - Display
status of jobs in
current session”’

on page 148|

K

kdestro
keytab

Return user identity

Remove interprocess communication identifier

Report interprocess communication status

Archive Java files

Java archive signing and verification

Run Java interpreter

Compile a Java program

Generate Java documentation

Generate C header or stub file

Manage Java security keys and certificates

Disassemble a compiled Java program

Display status of jobs in the current session

Destroy a Kerberos credentials cache
Manage a Kerberos key table file

Qshell

43

“keytool - Ke
and certificate|

[dapadd
[dapchangepwd
[dapdelete|
dapdifi
Idapexop
ldapmodif
Idapmodrd
ldapsearc

“let - Evaluate
arithmetig
lexpression” on|
page 166
“liblist - Manage
library list” o
page 150

“In - Link files”
on page 106
“local - Assig
local variable i
a function” o
page 158
“locale - Gef]
locale specifia
information” o
page 182
“logger - Log]
messages” on
page 183
“logname -
Display user’
login name” on
page 184

“Is - List]
directory]
contents” on|

page 107

44 iSeries: Qshell

Key and certificate management tool

End or signal processes

Obtain or renew a Kerberos ticket-granting ticket
Display the contents of a Kerberos credentials cache or key table file
Manage Kerberos service entries in the LDAP directory for a Kerberos realm

Add LDAP entry tool

Change LDAP Password tool

Delete LDAP entry tool

Compare LDAP replication synchronization tool

Extend LDAP operation tool

Change LDAP entry tool

Change LDAP Relative Distinguished Name (RDN) tool
Search LDAP server tool

Evaluate arithmetic expression

Manage library list

Link files

Assign a local variable in a function

Get locale specific information

Log messages

Return user’s login name

List directory contents

Make directories

Make FIFO special files

Move files

Convert native characters to ASCII

Run utility without hangups

“od - Dump files| Dump files in various formats
in various|

formats” on pagé
113

Portable archive interchange

Policy file creation and management tool

Print files

Write output

Display values of environment variables

Write formatted output

Convert SQLJ serialized profile instance to Java class
SQLJ profile auditor installer

Print SQLJ profile

Display process status

Qshell 45

I

R
“read - Read a
line from|

7

standard input
on page 137
“readonly - Set
read-only
attribute fo
variables” o
page 159
“return - Return|
from a function”
on page 167
“rexec - Run|
remote
command” o
page 58|

“rexx - Ru
REXX|
procedure” o
page 59

“Rfile - Read or]
write record
files” on page]
124]

“rm - Remove

directory entries”|

“rmdir - Remove
directories” o

46

iSeries: Qshell

Return working directory name

Return working directory expanded

Qshell command language interpreter

Read a line from standard input

Set read-only attribute for variables

Return from a function

Run remote command

Run REXX procedure

Read or write record files

Remove directory entries

Remove directories

Compile Java RMI stubs

Java RMI activation system

“sed - Stream
leditor” on pagé
70

“serialver -
Return seriall
version” on page
146

“set - Set or
lunset option:
and positional
parameters” o
page 160
“setccsid - Set
(CCSID attributg
for file” on page
12

“gsh - Qshel
command
language]
interpreter” on|
page 5

“shift - Shift
positiona
parameters” o
page 162

“sleep - Suspend
invocation for a

interval” on page|

15
“sort - Sort,
merge, O

sequence check
text files” on
age 74
“source - Run|
commands i
lcurrent|
lenvironment” on
age 60)
“split - Split file
into pieces” o
age 76|
sqlj
“system - Run|
ICL command”

Start a remote object registry

Stream editor

Return serial version

Set or unset options and positional parameters

Set CCSID attribute for a file

Qshell command language interpreter

Shift positional parameters

Suspend invocation for an interval

Sort, merge, or sequence check text files

Run commands in the current environment

Split files into pieces

Structured query language for Java (SQLJ) translator
Run CL command

Retrieve system values or network attribute

“tail - Displa

Copy the last part of a file

“tar - File) File archiver

archiver” o

page 129
“tee - Duplicate| Duplicate standard input
standard input’

Evaluate expression

Naming service

Change file access and modification times

Translate characters

Trap signals

Return true value

Find type of command

Declare variables and set attributes

Set or display resouce limits

Get or set the file mode creation mask

Remove alias definitions

Return system name

system name” o

page 186|

48 iSeries: Qshell

“uncompress Expand compressed data
[Expand

compresse

data” on page

13

“uniq - Report of] Report or filter out repeated lines in a file

Unset values and attributes of variables and functions

Wait for process completion

Word, line and byte/character count

Determine how command is interpreted

Construct argument lists and invoke utility

Expand and concatenate data

Utilities for defining aliases
The following are Qshell utilities for defining aliases:

+ [“alias - Define or display aliases’]

* [‘unalias - Remove alias definitions” on page 50|

alias - Define or display aliases
Synopsis

alias [-p 1 [name [=value] ...]

Description

Qshell 49

The alias utility defines an alias name that has the specified value. If only name is specified, qsh displays
the name and value of the alias.

When no arguments are specified, qsh displays a list of all the aliases and their values.

gsh defines these default aliases:
* float="declare -E’

* functions="declare -f’

* integer="declare -i’

Options

P Precede each line of the output with the word "alias " so it is displayed in a re-enterable format.
Operands

Each name specifies an alias in the current environment. If a value is also specified, then the value of the
alias is updated.

Exit Status
* 0 when successful.
* >0 when unsuccessful. The value is the number of names that are not aliases.

Related information

* [‘unalias - Remove alias definitions”]

Examples

1. Define an alias to list the contents of a directory:
alias 11="1s -1'

2. Display the value of the Il alias:
alias 11

3. Display the values of all currently defined aliases:
alias

unalias - Remove alias definitions
Synopsis

unalias name ...

unalias -a

Description

You can use unalias to remove the names from the list of defined aliases.

Options

-a Remove all aliases
Operands
Each name is a defined alias.

Exit Status

50 iSeries: Qshell

* 0 when successful.

¢ >0 when unsuccessful. The value is the number of names that are not aliases.

Related information

« [“alias - Define or display aliases” on page 49

Examples
1. Remove the 1l alias: unalias 11

Utilities for running commands
The following are Qshell utilities for running commands:
* ["builtin - Run a shell built-in utility”

* [‘command - Run a simple command” on page 52|

* [“dot (.) - Run commands in current environment” on page 52|

* [“env - Set environment for command invocation” on page 53

[“eval - Construct command by concatenating arguments” on page 54|

+ [“exec - Run commands and open, close, or copy descriptors” on page 54

* [“exit - Exit from the shell” on page 55

[“help - Display information for built-in utility” on page 55|

[‘nohup - Run utility without hangups” on page 56|

[“gsh - Qshell command language interpreter” on page 57

* [‘rexec - Run remote command” on page 5§

* [‘rexx - Run REXX procedure” on page 59|

* [“gsh - Qshell command language interpreter” on page 57|

* [“source - Run commands in current environment” on page 60

* [“system - Run CL command” on page 60|

* [“type - Find type of command” on page 62

* [‘whence - Determine how command is interpreted” on page 62|

* ["xargs - Construct argument lists and invoke utility” on page 63|

builtin - Run a shell built-in utility
Synopsis

builtin [utility [arqument ...]]
Description

The builtin utility runs the shell built-in utility with the specified arguments. You can use builtin to run a
built-in utility from a [shell functionfof the same name.

Operands

The utility is the name of a shell built-in utility (page E%I) You can use [“‘command - Run a simple]
command” on page 52[“type - Find type of command” on page 62 or [“whence - Determine how|
command is interpreted” on page 62|to determine the type of a utility

Exit Status
¢ The exit status of the utility
* 1 if utility is not a built-in utility

Qshell 51

cmpdcmds.htm#FUNCTIONS

Related information

* [‘command - Run a simple command”]

* [“type - Find type of command” on page 62

¢ ['whence - Determine how command is interpreted” on page 62|

command - Run a simple command
Synopsis

command [-p] command_name [arqument ...]

command [-vV | command_name

Description

You can use command to run command_name with the specified arquments with functions eliminated from
the search order. If command_name is a special built-in utility, then it is treated as a regular built-in utility.

Otherwise, the effect of command is the same as omitting command.

Note that command -v is equivalent to whence and command -V is equivalent to whence -v.

Options

P Perform the command search using a default value for the PATH variable that is guaranteed to
find all of the standard utilities.

-v Write a string that shows the path name or command used by qsh to invoke command_name in
the current environment.

-V Write a string that shows how command_name is interpreted by gsh in the current environment.

Operands

command_name is a utility in the current environment.

Exit Status
* 0 when successful.

¢ >0 when unsuccessful.

Related information

* ["dot () - Run commands in current environment”|

* ["eval - Construct command by concatenating arguments” on page 54|

¢ ['whence - Determine how command is interpreted” on page 62|

Examples
1. Run the export special built-in utility as a regular built-in utility: command export ALPHA
2. Display the path name used to invoke the Is utility: command -v Is

3. Display how the reserved word for is interpreted: command -V for

dot (.) - Run commands in current environment
Synopsis

. name [arqument ...]

Description

52 iSeries: Qshell

You can use dot to run a script or function in the current environment.

Options

None.

Operands

If name refers to a function, gsh runs the function in the current environment. Otherwise, qsh uses the
search path specified by the PATH variable to find name. If name is found, qsh reads the contents of the

file and runs those commands in the current environment.

If specified, the arguments replace the positional parameters while name is running. Otherwise the
positional parameters are unchanged.

Exit Status
Exit status of last command in name.

Related information

+ [‘command - Run a simple command” on page 52|

+ [“eval - Construct command by concatenating arguments” on page 54|

* [“exec - Run commands and open, close, or copy descriptors” on page 54

env - Set environment for command invocation
Synopsis

env [-i | -] [name=value ...] [utility [arqument ...]]
Description

The env utility obtains the current environment, modifies it according to the arguments, and then invokes
the specified utility. Any arquments are passed to the utility. If no utility is specified, the resulting
environment is written to standard output with one name=value per line.

Options

- Invoke the utility with exactly the environment specified on the command. The inherited
environment is ignored completely.

-1 Same as ’-".

Operands

name=value
This modifies the run-time environment and is placed into the inherited environment before the
utility is invoked.

utility The name of the command or utility to be invoked.
argument

A string to pass to the invoked command or utility.

Exit Status
* 0 when successful

* >0 when an error occurs

Qshell 53

eval - Construct command by concatenating arguments
Synopsis

eval [arqument ... |
Description

You can use eval to construct a command by concatenating arguments together, each separated by a
<space>. qsh then reads and runs the constructed command.

Options
None.
Operands

Each argument is expanded twice, once to construct the command and once when the constructed
command is run.

Exit Status
Exit status of the constructed command.

Related information

s [‘command - Run a simple command” on page 52|

* [“dot (.) - Run commands in current environment” on page 52|

exec - Run commands and open, close, or copy descriptors
Synopsis

exec [-¢ 1 [command [arqument ... 1]
Description

The exec utility replaces qsh with command without creating a new process. The specified arguments are
arguments to command. Any redirections affect the current environment.

When a command is not specified, any redirections are processed in the current environment. Any file
descriptors greater than 2 that are opened by a redirection are not inherited when qsh invokes another

program.

Options

-c Run command with an empty set of environment variables.
Operands

Each argument is assigned in order to the positional parameters of command.
Exit Status

Zero if no command is specified. Otherwise it does not return to gsh.

Related information

* [‘command - Run a simple command” on page 52|

54 iSeries: Qshell

[dot (.) - Run commands in current environment” on page 52|

* [‘eval - Construct command by concatenating arguments” on page 54

¢ ['nohup - Run utility without hangups” on page 56|

* [‘print - Write output” on page 135

* [‘read - Read a line from standard input” on page 137|

Examples

1. Open a file for reading on descriptor 5:
exec 5<$HOME/input

2. Close descriptor 5:
exec 5<&-

exit - Exit from the shell
Synopsis

exit [n]

Description

You can use exit to end the shell and return to the program that called qsh.

Options

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.
Exit Status

n if specified. Otherwise, the exit status of the preceding command.

Related information

* [‘return - Return from a function” on page 167

help - Display information for built-in utility
Synopsis

help [utility ...]
Description

The help utility displays a usage message for the specified built-in utility. If no arguments are specified,
help displays the list of all built-in utilities.

Operands
The utility is the name of a shell built-in utility (page .

Exit Status
* 0 when successful
* >0 if utility is not a built-in utility

Qshell 55

Related information

* [‘builtin - Run a shell built-in utility” on page 51|

¢ ['command - Run a simple command” on page 52|

* [“type - Find type of command” on page 62|

* ["whence - Determine how command is interpreted” on page 62|

nohup - Run utility without hangups
Synopsis

nohup [-C ccsid 1 utility [arqument ...]
Description
The nohup utility runs the specified utility with the specified arguments. When utility is invoked the

SIGHUP signal is set to be ignored. You can use nohup to allow utility to run even after ending the
[“Using a Qshell interactive session” on page 30.

If standard output is a terminal, all output written by utility to its standard output is appended to the file
nohup.out in the current directory. If the file cannot be created or opened for appending, all output is
appended to the file SHOME /nohup.out. If neither file can be created or opened, utility is not run. The
default permission for the nohup.out file allows only the owner to read and write the file.

If standard error is a terminal, all output written by utility to its standard error is redirected to the same
descriptor as standard output.

Options

-C ccsid
The nohup.out file is created with the specified ccsid and all data written to the file is converted
from the CCSID of the job to the specified ccsid. This option overrides the value of the
QIBM_CCSID environment variable.

Operands
The utility is the name of a regular utility in the current environment.
Environment Variables

nohup is affected by the following environment variables:

QIBM_CCSID
The value of the environment variable is the CCSID used to create the nohup.out file. All data
written to the file is converted from the CCSID of the job to the specified CCSID.

Exit Status

* 126 when utility was found but could not be run

* 127 when utility was not found or there was an error in nohup
* Otherwise, the exit status of utility

Related information

* [‘command - Run a simple command” on page 52|

* ["env - Set environment for command invocation” on page 53

56 iSeries: Qshell

gsh - Qshell command language interpreter
Synopsis

qsh [-abCefFijlmntuvx] [-o option] command_file arg ...

qsh -c [-abCefFijlmntuvx] [-o0 option] command_string

qsh -s [-abCefFijlmntuvx] [-o option] arg ...

Description

The qsh utility is the Qshell command language interpreter. In the first synopsis form, qsh reads the
specified command_file and runs the commands contained in the file. In the second synopsis form, qsh
runs the specified command_string and ends. In the third synopsis form, qsh reads commands from

standard input.

Options

Thea b, C e f FEj 1 m n, -ooption t, u, v, and x options are described in [“set - Set or unset optiongd
land positional parameters” on page 160,

-c Run the command specified in command_string and exit.

-i The shell is interactive. If there are no operands and standard input is connected to a terminal,
the -i option is set by default.

-s Read commands from standard input. If there are no operands and the -c option is not specified,
the -s option is set by default.

Operands

The command_file is the pathname of a regular file that contains Qshell commands. If the pathname does
not contain a slash (/) character, qsh searches for command_file using the PATH variable. The special
parameter 0 is set to the value of command_file. Each arg is a positional parameter.

The command_string is any Qshell command, including compound commands.

Exit Status

* 0 when successful.

* 1 when unsuccessful.

* 2 when an error occurred in a script.

* 3 when there was an unexpected exception in a root shell.

* 4 when there was an unexpected exception in an exception handler for a root shell.
* 5 when there was an unexpected exception in a child shell.

* 6 when there was an unexpected exception in an exception handler for a child shell.
* 7 when descriptor 0 was not available.

* 8 when descriptor 1 was not available.

* 9 when descriptor 2 was not available.

* 10 when there was an error opening the message catalog.

¢ 11-125 when unsuccessful.

¢ 126 when a command was found but could not be invoked.

* 127 when a command cannot be found.

¢ >128 when a command was ended by a signal. The value is 128 plus the signal number.

Qshell 57

Related information

* [‘exit - Exit from the shell” on page 55

* [’set - Set or unset options and positional parameters” on page 160|

¢ ["Command language” on page 8§

rexec - Run remote command
Synopsis

#» rexec [-C ccsid] [-p password] [-u user] [-i] host command <&,
Description

The rexec utility runs the specified command on the remote system specified by host. The remote system
must be running a rexec server to process the commands. By default, rexec prompts for a valid user
name and password for the remote system. The user name and password are not encyrpted when they
are sent to the remote system.

The standard output and standard error generated by command on the remote system are written to
standard output and standard error on the local system. Any data read from standard input on the local
system is sent to standard input for the command running on the remote system ¥ if the -i option is not
specified. €%

By default, the data sent to and from the remote system is encoded in CCSID 819. The CCSID used to
encode the data can be specified with either the -C option or the QIBM_CCSID variable. If the CCSID
value is 65535, then no conversion is done on the data.

Options

-C ccsid
Encode the data sent to and from the remote system in the specified ccsid. This option overrides
the value of the QIBM_CCSID environment variable.

-1 Ignore standard input on the local system. <%

-p password
The password for the user on host.

-u user A valid user name on host.
Operands

The host is the name of the remote system where the command is run. The command is a command string
that is interpreted by the rexec server running on the remote system.

Environment Variables

rexec uses the following environment variables:

QIBM_CCSID
The value of the variable is the CCSID to use to encode the data sent to and from the remote
system.

Exit Status
* 0 when successful

¢ >0 when unsuccessful

Related information

58 iSeries: Qshell

* ["exec - Run commands and open, close, or copy descriptors” on page 54

rexx - Run REXX procedure
Synopsis

rexx [-c cmdenv 1 [-t type 1 path [arg ...]
Description

The rexx utility runs the REXX procedure specified by path with the specified arquments. For more
information about programming with REXX, see the [REXX information|

The REXX interpreter cannot read REXX commands from standard input. It can only run REXX
procedures stored in members of database files in the QSYS.LIB file system. The interactive debug feature
of the REXX interpreter is not supported by the rexx utility.

The program /QSYS.LIB/QSHELL.LIB/QZSHSHRX.PGM implements the Qshell command environment
for REXX procedures. The Qshell command environment sets the REXX return code and condition as
follows:

* When the the shell command ends normally with an exit status of zero, the REXX return code is set to
zero and no condition is raised.

* If the shell command ends normally with an exit status that is non-zero, the REXX return code is set to
the exit status value and the ERROR condition is raised.

* If the shell command ends by signal, the REXX return code is set to the signal number + 128 and the
FAILURE condition is raised.

¢ If the shell command ends by exception, the REXX return code is set to the exception number from
wait() and the FAILURE condition is raised.

Options

-c cmdenv
Set the command environment program to process commands for the REXX procedure. If the
option is not specified, the default value is command. The cmdenv can be one of the following
values:

« command for the i5/0S™ CL command environment.
¢ cpicomm for the Common Programming Interface for communications command environment.
* execsql for the Structured Query Language (SQL) command environment.
* gsh for the Qshell command environment.
* path to specify the path to the command environment program. The path must specify a
program in the QSYS.LIB file system.
-t type Control tracing for the REXX procedure. If the option is not specified, the default value is normal.
The type can be one of the following values:
* all to trace all clauses before processing.
* commands to trace host commands before processing and display any error return codes.
* error to trace host commands after processing that result in an error return code.

* failure to trace host commands after processing that result in a failure along with the return
code.

* intermediates to trace all clauses before processing along with intermediate results during the
evaluation of expressions.

* labels to trace labels during processing.
* normal to trace host commands after processing that result in a failure.
* off to turn off all tracing.

Qshell 59

e results to trace all clauses before processing.
Operands

The path is the path name of the REXX procedure. On i5/0S™), a REXX procedure can only be stored in
the QSYS.LIB file system.

Exit Status

* 0 when successful

* 1 when there is an error running the REXX procedure
¢ >1 when unsuccessful

Related information
» [REXX information|

“system - Run CL command”|

source - Run commands in current environment
Synopsis

source name [arqument ... |
Description

You can use source to run a script or function in the current environment. It is a synonym for the
 Run commands in current environment” on page 52| utility.

Related information

* [“'command - Run a simple command” on page 52|

* [“dot (.) - Run commands in current environment” on page 52|

* [‘eval - Construct command by concatenating arguments” on page 54|

* [“exec - Run commands and open, close, or copy descriptors” on page 54

system - Run CL command
Synopsis

system [-iKknpqsv] CLcommand [arg ...]

Description

The system utility runs a CL command. Any spool file output generated by CLcommand is written to
standard output. By default, the spool files are deleted after they are written and the job log of the job

running system is deleted.

Any messages generated by CLcommand are written to standard error. By default, all messages generated
by CLcommand are written using the following format:

Msgld: Text

where “MsgId” is the seven character i5/0S™ message identifier (for example CPF0001) and “Text” is
the text of the message. Use the -n option to not include the “Msgld” prefix.

By default, system checks the number of threads running in the job. If there is more than one thread

running, it starts a second job and runs CLcommand in the second job. Use the -i option to force system to
always run CLcommand in the current job.

60 iSeries: Qshell

Options

-i

-q
-S

-V

Always run CLcommand in the current job and set the exit status to the ILE return code of the
program called by CLcommand. Note that some CL commands do not run in a multi-thread
capable job or when there are multiple threads running in the job.

Keep all spool files generated by CLcommand and the job log of the job running system. If this
option is not specified, all spool files are deleted after they are written and the job log is deleted.

Keep all spool files generated by CLcommand. If this option is not specified, all spool files are
deleted after they are written.

Do not include the message identifier when writing the messages to standard error. Only the
message text of the messages are written to standard error. This option is ignored if the -q option
is also specified.

Only write the messages sent to the program’s message queue by CLcommand to standard error.
This option is ignored if the -q option is also specified.

Do not write messages generated by CLcommand to standard error.
Do not write spool files generated by CLcommand to standard output.

Write the complete command string to standard output before running it.

Note that for compatibility with the PASE system utility, system does not return an error if the -b, -e, -E,
-I, or -O options are specified, but the options are ignored.

Operands

Each arg is a parameter to CLcommand. You may need to enclose CLcommand and args in quotes to prevent
gsh from expanding any special characters in them. Both CL and qsh use some of the same special
characters, for example, the asterisk (*) character.

Environment Variables

The system utility is affected by the following environment variables:

QIBM_SYSTEM_ALWMLTTHD

Set this environment variable to control how the system utility behaves in a multi-thread capable
job. If the value of the variable is “N”, system starts a new job to run the CL command when the
current job is multi-thread capable even if there is only one thread running in the job. There is no
default value.

QIBM_SYSTEM_USE_ILE_RC

Set this environment variable to control how the system utility sets the exit status. If the value of
the variable is “Y”, system sets the exit status to the ILE return code of the program called by
CLcommand, or zero if the program did not set a return code. There is no default value. The
environment variable is ignored if the -i option is specified.

Exit Status

* 0 when CLcommand is successful

* >0 when CLcommand is unsuccessful or when set by the program called by CLcommand

When the -i option is specified or the environment variable QIBM_SYSTEM_USE_ILE_RC=Y is set,
system sets the exit status to the ILE return code of the program called by CLcommand, or zero if the
program did not set a return code.

Related Information

* [CL command finded

Qshell 61

* kystem - Run a CL command for i5/0S"") PASH

Examples

1. List all of the active jobs:
system wrkactjob

2. Create a test library:
system "CRTLIB LIB(TESTDATA) TYPE(+TEST)"

3. Delete a library and do not write any messages:
system -q "DLTLIB LIB(TESTDATA)"

type - Find type of command
Synopsis

type [-apt] name ...
Description

The type utility displays the type of each specified name. The name can be an alias, function, special shell
built-in, shell built-in, reserved word, or file.

Options
-a Show all uses for name.
-p Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-t Display a one word description for the type of name.
Operands
Each name is a utility in the current environment.

Exit Status
* 0 when every name is found

¢ >0 when unsuccessful

Related information

¢ ['command - Run a simple command” on page 52|

* ['whence - Determine how command is interpreted”]

whence - Determine how command is interpreted
Synopsis

whence [-afpv | name ...
Description

The whence utility displays how each specified name is interpreted. The name can be an alias, function,
special shell built-in, shell built-in, reserved word, or file.

Note that whence is equivalent to command -v and whence -v is equivalent to command -V.

Options

-a Show all uses for name.

62 iSeries: Qshell

-f Do not check to see if name is a function.
P Do not check to see if name is a reserved word, a built-in utility, an alias, or a function.

-v Display the type of name.
Operands
Each name is a utility in the current environment.

Exit Status
* 0 when every name is found

* >0 when unsuccessful

Related information

* [‘command - Run a simple command” on page 52|

+ [“dot (.) - Run commands in current environment” on page 52|

* [“eval - Construct command by concatenating arguments” on page 54|

* [“type - Find type of command” on page 62

Examples
1. Find the type of the reserved word for:
whence -v for

xargs - Construct argument lists and invoke utility
Synopsis

xargs [-t] [-eleofstring]] [-E eofstring] [-llnumber 11 [-L number] [-n number [-x]]1 [-s size]l [utility [arguments ...]]
Description

The xargs utility reads space, tab, newline and end-of-file delimited arquments from the standard input
and runs the specified utility with them as arguments.

The utility and any arguments specified on the command line are given to the utility upon each invocation,
followed by some number of the arguments read from standard input. The utility is repeatedly run until
standard input is exhausted.

Spaces, tabs and newlines may be embedded in arguments using single (") or double (") quotation marks
or backslashes (\). Single quotation marks escape all non-single quotation mark characters, excluding
newlines, up to the matching single quotation marks. Double quotation marks escape all non-double
quotation mark characters, excluding newlines, up to the matching double quotation marks. Any single
character, including newlines, may be escaped by a backslash.

If no utility is specified, echo is used by default.

Undefined behavior may occur if utility reads from the standard input.

The xargs utility exits immediately (without processing any further input) if a command line cannot be
assembled, utility cannot be invoked, an invocation of the utility is ended by a signal, or an invocation of

the utility exits with a value of 255.

Options

Qshell 63

-E eofstring
Specify a logical end-of-file string. xargs reads standard input until either end-of-file or the logical
end-of-file string is encountered.

-e[eofstring]
This option is equivalent to the -E option. If eofstring is not specified, the default value is _ (a
single underscore).

-L number
Run utility for each non-empty number lines of arguments read from standard input. The last
invocation of utility will be with fewer lines of arguments if fewer than number remain. A line is
considered to end with the first newline character unless the last character of the line is a blank
character. A trailing blank character signals continuation to the next non-empty line, inclusive.
The -L and -n options are mutually exclusive. The last one specified takes effect.

-I[number]
This option is equivalent to the -L option. If number is not specified, the default value is 1.

-n number
Set the maximum number of arguments read from standard input for each invocation of the
utility. An invocation of utility will use less than number standard input arguments if the number
of bytes accumulated (see the -s option) exceeds the specified size or there are fewer than number
arguments remaining for the last invocation of utility. The maximum number of arguments
i5/0S™ can pass to a program is 255. The default value for number is 250. The -n and -L options
are mutually exclusive. The last one specified takes effect.

-s size Set the maximum number of bytes for the command line length provided to utility. The sum of
the length of the utility name and the arguments passed to utility (including NULL terminators)
will be less than or equal to size. The default value for size is 16 252 928 bytes.

-t Turn on trace mode. The command to be run is written to standard error immediately before it is
run.
-X Force xargs to end immediately if a command line containing number arguments will not fit in the

specified (or default) command line length.

Exit Status

* 0 when all invocations of utility returned exit status 0.

¢ 1-125 when at least one invocation of utility returned a non-zero exit status or there was an error.
* 126 when utility was found but could not be invoked.

¢ 127 when utility cannot be found.

¢ >128 when utility was ended by a signal. The value is 128 plus the signal number.

Related information

* [‘echo - Write arguments to standard output” on page 134|

* [‘eval - Construct command by concatenating arguments” on page 54l
+ [“find - Find files” on page 100|

Utilities for managing data

The following are Qshell utilities for managing data:

* [“emp - Compare two files” on page 65|

* [“cut - Cut out selected fields of each line of a file” on page 66|

* [‘egrep - Search a file for an extended regular expression pattern” on page 67|

* ["fgrep - Search a file for a fixed string pattern” on page 67]

* [“orep - Search a file for a pattern” on page 67]

64 iSeries: Qshell

* [“iconv - Convert characters from one CCSID to another CCSID” on page 69

* [‘sed - Stream editor” on page 70|

* [’sort - Sort, merge, or sequence check text files” on page 74|

* [’split - Split files into pieces” on page 76

* [“tr - Translate characters” on page 77

* [“uniq - Report or filter out repeated lines in a file” on page 79|

* [‘wc - Word, line and byte/character count” on page 80|

cmp - Compare two files
Synopsis

cmp [-1 | -s] [-t] filel file2 [skip1 [skip2]]

Description

You can use cmp to compare two files. By default, a byte for byte binary comparison is done. If no
differences are found, no output is written. If no option flags are specified, cmp writes a message with

the byte and line number of the first difference and exits with an error. Bytes and lines are numbered
beginning with 1.

Options

-1 (Lower case ell) Write the byte number in decimal and the differing bytes in octal for all
differences.

-s Silent mode where no output is written for differing files; only the exit status is set.

-t Text mode where the files are opened in text mode and translated to the CCSID of the job before

comparing byte for byte.
Operands

The filel and file2 operands are the two files to be compared byte for byte. The optional skipl and skip2
are the number of bytes to skip from the beginning of each file, respectively, before the comparison
begins.

3 Environment Variables

cmp is affected by the following environment variables:

QIBM_CMP_FILE_SIZE
Controls the maximum file size in bytes that cmp reads into an internal buffer for better
performance. For files larger than the maximum size, cmp reads the files one byte at a time.

&

Exit Status

* 0 when the files are identical
* 1 when the files are different
* >1 when an error occurred

Related information

* ['sed - Stream editor” on page 70|

* [“sort - Sort, merge, or sequence check text files” on page 74|

* [“split - Split files into pieces” on page 76

Qshell 65

* ["uniq - Report or filter out repeated lines in a file” on page 79

Examples

1. Find the exact position where two files differ. It is better to place the reference or good file first and
then the changed or new file second.

cmp myApplet.java.old myApplet.java.new

cut - Cut out selected fields of each line of a file
Synopsis

cut -b list [file ...]

cut -c list [file ...]

cut -f list [-d string] [-s] [file ...]
Description

The cut utility selects portions of each line as specified by list from each file (or the standard input by
default), and writes them to the standard output. The items specified by list can be in terms of column
position or in terms of fields delimited by a special character. Column numbering starts from 1.

The list is a comma or whitespace separated set of increasing numbers and/or number ranges. Number
ranges consist of a number, a dash (-), and a second number and select the fields or columns from the
first number to the second, inclusive. Numbers or number ranges may be preceded by a dash, which
selects all fields or columns from 1 to the first number. Numbers or number ranges may be followed by a
dash, which selects all fields or columns from the last number to the end of the line. Numbers and
number ranges may be repeated, overlapping, and in any order. It is not an error to select fields or
columns not present in the input line.

Options
-b list The list specifies byte positions.

-c list The list specifies character positions.

-d string
Use the first character of string as the field delimiter character instead of the tab character.

-f list The list specifies fields, delimited in the input by a single tab character. Output fields are
separated by a single tab character.

-s Suppresses lines with no field delimiter characters. Unless specified, lines with no delimiters are
passed through unmodified.

Exit Status
* 0 on success

e 1 if an error occurred.

Related information

“orep - Search a file for a pattern” on page 67

* [“tr - Translate characters” on page 77|

* ["wc - Word, line and byte/character count” on page 80|

66 iSeries: Qshell

egrep - Search a file for an extended regular expression pattern
Synopsis

egrep [-c|-11-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The egrep utility is equivalent to running the grep utility with the -E option. See [“grep - Search a file for]
for the complete description.

Related information

» [“fgrep - Search a file for a fixed string pattern”|

* ["grep - Search a file for a pattern”|

fgrep - Search a file for a fixed string pattern
Synopsis

fgrep [-cl-11-q] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]

Description

The fgrep utility is equivalent to running the grep utility with the -F option. See [“grep - Search a file for]
for the complete description.

Related information

* [“egrep - Search a file for an extended regular expression pattern”|

* [“grep - Search a file for a pattern”|

grep - Search a file for a pattern
Synopsis

grep [-EI-F] [-cl-11-q] [-R [-H | -L | -P]] [-ihnsvwxy] [-e pattern_list] [-f pattern_file] [pattern] [file ...]
Description

The grep utility searches the given input files selecting lines which match one or more patterns. The type
of patterns is controlled by the options specified. By default, a pattern matches an input line if any
regular expression (RE) in the pattern matches the input line without its trailing newline. A null RE

matches every line. Each input line that matches at least one of the patterns is written to the standard
output.

If -E and -F options are both specified, the last one specified is used.

Options

-E Use Extended Regular Expressions (ERE).

-F Do not recognize regular expressions.

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, grep searches each file in the entire subtree connected at that point.

Qshell 67

-c Only a count of selected lines is written to standard output.

-e pattern_list specifies one or more search patterns. Each pattern should be separated by a newline
character.

-f pattern_file specifies a file containing search patterns. Each pattern should be separated by a
newline character.

-h Do not print filename headers.

-i The case of letters is ignored in making comparisons. That is, upper and lower case are
considered identical.

-1 Only the names of files containing selected lines are written to standard output. Pathnames are
listed once per file searched. If the standard input is searched, the pathname "-" is written.

-n Each output line is preceded by its relative line number in the file; each file starting at line 1. The
line number counter is reset for each file processed. This option is ignored if the -c, -1, or -s
options are specified.

-q Quiet mode where no messages are printed. Only the exit status is returned.

-s Suppress the error messages ordinarily written for nonexistent or unreadable files. Other
messages are not suppressed.

-v Selected lines are those not matching the specified patterns.

-w The expression is searched for as a whole word (as if surrounded by "[[:<:]]" and "[[:>:]]").

-X Match line if pattern is the only thing on the line. This option takes precedence over the -w
option. If both are specified, the -w option is ignored.

-y Ignore case (same as -i).

Operands

Each file specifies the path to a text file. If no file operandss are specified, the standard input is used.

Exit Status

¢ 0 when one or more lines were selected.

* 1 when no lines were selected.

¢ >1 when an error occurred.

Extended Regular Expressions (ERE)

The following characters are interpreted by grep:

$

AN

[]

Align the match from the end of the line.

Align the match from the beginning of the line. (NOTE: This character may not work correctly
from a 5250 terminal session.)

Add another pattern (see example below).

Match one or less sequential repetitions of the pattern.
Match one or more sequential repetitions of the pattern.
Match zero or more sequential repetitions of the pattern.
Match any single character.

Match any single character or range of characters enclosed in the brackets.

Escape special characters which have meaning to grep, that is, the set of {$,.,",[],1,2,+*,()}.

68

iSeries: Qshell

Related information

¢ [‘cut - Cut out selected fields of each line of a file” on page 66|

* ["egrep - Search a file for an extended regular expression pattern” on page 67|

* [‘fgrep - Search a file for a fixed string pattern” on page 67

* [‘tr - Translate characters” on page 77

“wc - Word, line and byte/character count” on page 80|

Examples

1. Find all occurrences of the word patricia in a file.
grep patricia myfile

2. Find all occurrences of the pattern ".Pp” at the beginning of a line. The single quotation marks assure
the entire expression is evaluated by grep instead of by the shell. The carat (*) means from the
beginning of a line.
grep '~.Pp' myfile

3. Find either 19, 20 or 25 in the file calendar.
grep '19]20|25' calendar

4. Find the total number of lines that matches a character in the range of "a” to "z".
grep -c '[a-z]' reference/alphabet.text

5. Display all lines that have a dollar sign ($) character in them. You must escape the dollar sign
character so grep will not interpret the character. Also, display the line number as well as the line that
contains the match.

grep -n '\§' valid.file

iconv - Convert characters from one CCSID to another CCSID
Synopsis

iconv -f fromCCSID -t toCCSID [file ...]

Description

The iconv utility converts the encoding of characters read from either standard input or the specified file
from one CCSID to another CCSID and then writes the results to standard output. The input data is

assumed to be in the CCSID specified by the fromCCSID parameter. If file is not specified, the iconv
utility reads from standard input.

You must specify valid i5/0S™ CCSIDs|with a supported conversion for the fromCCSID and toCCSID
parameters.

Options

-f fromCCSID
The input data is encoded in the fromCCSID.

-t toCCSID
The output data is encoded in the toCCSID.

Operands
The file operand specifies a path name to a regular file.

Exit Status
* 0 when successful

* 1 when the conversion is not supported or there is an error with file

Qshell 69

* 2 when there is an error during the conversion

Related information

* ["locale - Get locale specific information” on page 182|

e [“tr - Translate characters” on page 77|

sed - Stream editor
Synopsis

sed [-an] [-C ccsid | command file ...
sed [-an] [-C ccsid] [-e command] [-f command._file] file ... <%,
Description

The sed utility reads the specified files, or the standard input if no files are specified, modifying the input
as specified by a list of commands. The input is then written to the standard output.

A single command may be specified as the first argument to sed. Multiple commands may be specified by
using the -e or -f options. All commands are applied to the input in the order they are specified
regardless of their origin.

Options

-a By default, the files listed as parameters for the w functions are created (or truncated) before any
processing begins. The -a option causes sed to delay opening each file until a command
containing the related w function is applied to a line of input.

s -C cesid
Any files created by sed are created with the CCSID specified by ccsid. This option overrides the
value of the QIBM_CCSID environment variable. <%,

-e command
Append the editing commands specified by the command argument to the list of commands.

-f command_file
Append the editing commands found in the file command_file to the list of commands. The editing
commands should each be listed on a separate line.

-n By default, each line of input is echoed to the standard output after all of the commands have
been applied to it. The -n option suppresses this behavior.

Operands

The form of a sed command is as follows:
[address[,address]] function[arguments]

White space may be inserted before the first address and the function portions of the command.
Normally, sed cyclically copies a line of input, not including its terminating newline character, into a
"pattern space”, (unless there is something left after a D function), applies all of the commands with
addresses that select that pattern space, copies the pattern space to the standard output, appending a
newline, and deletes the pattern space.

Some of the functions use a "hold space” to save all or part of the pattern space for subsequent retrieval.

Extended Description

70 iSeries: Qshell

sed Addresses

An address is not required, but if specified must be:

* a number that counts input lines cumulatively across input files,

* adollar ($) character that addresses the last line of input, or

* a context address which consists of a regular expression preceded and followed by a delimiter.

A command line with no addresses selects every pattern space.
A command line with one address selects all of the pattern spaces that match the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches
the first address through the next pattern space that matches the second. If the second address is a
number less than or equal to the line number first selected, only that line is selected. Starting at the first
line following the selected range, sed starts looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the exclamation character (!)
function.

sed Regular Expressions

sed regular expressions are basic regular expressions. In addition, sed has the following two additions to
basic regular expressions:

* In a context address, any character other than a backslash (\) or newline character may be used to
delimit the regular expression. Also, putting a backslash character before the delimiting character
causes the character to be treated literally. For example, in the context address \xabc\xdefx, the regular
expression delimiter is an x and the second x stands for itself, so that the regular expression is abcxdef .

* The escape sequence \n matches a newline character embedded in the pattern space. You can't,
however, use a literal newline character in an address or in the substitute command.

One special feature of sed regular expressions is that they can default to the last regular expression used.
If a regular expression is empty, that is, just the delimiter characters are specified, the last regular
expression encountered is used instead. The last regular expression is defined as the last regular
expression used as part of an address or substitute command, and at run-time, not compile-time. For
example, the command:

/abc/s//XXX/
will substitute XXX for the pattern abc.
sed Functions

In the following list of commands, the maximum number of permissible addresses for each command is
indicated by [0addr], [1addr], or [2addr], representing zero, one, or two addresses.

The argument text consists of one or more lines. To embed a newline in the text, precede it with a
backslash. Other backslashes in text are deleted and the following character taken literally.

The r and w functions take an optional file parameter, which should be separated from the function letter
by white space. Each file given as an argument to sed is created (or its contents truncated) before any
input processing begins.

The b, 1,5, tw,y,! , and & functions all accept additional arguments. The following synopses indicate
which arguments have to be separated from the function letters by white space characters.

Two of the functions take a function-list. This is a list of sed functions separated by newlines, as follows:

Qshell 71

{ function
function

function
}

The { can be preceded by white space and can be followed by white space. The function can be preceded
by white space. The terminating } must be preceded by a newline or optional white space.

[2addr] function-list
Execute function-list only when the pattern space is selected.

[1addr]a\ text
Write text to standard output immediately before each attempt to read a line of input, whether by
executing the N function or by beginning a new cycle.

[2addrIbllabel]
Branch to the & function with the specified label. If the label is not specified, branch to the end of
the script.

[2addr]c\ text
Delete the pattern space. With 0 or 1 address or at the end of a 2-address range, text is written to
the standard output.

[2addrld
Delete the pattern space and start the next cycle.

[2addr]D
Delete the initial segment of the pattern space through the first newline character and start the
next cycle.

[2addr]g
Replace the contents of the pattern space with the contents of the hold space.

[2addr]G
Append a newline character followed by the contents of the hold space to the pattern space.

[2addr]h
Replace the contents of the hold space with the contents of the pattern space.

[2addr]H
Append a newline character followed by the contents of the pattern space to the hold space.

[1addr]i\ text
Write text to the standard output.

[2addr]]
(The letter ell.) Write the pattern space to the standard output in a visually unambiguous form.
This form is as follows:

* backslash (\)

* alert (\a)

* form-feed (\f)

* newline (\n)

* carriage-return (\r)

¢ tab (\t)

 vertical tab (\v)

Nonprintable characters are written as three-digit octal numbers (with a preceding backslash) for
each byte in the character (most significant byte first). Long lines are folded, with the point of

folding indicated by displaying a backslash followed by a newline. The end of each line is
marked with a dollar sign ($).

72 iSeries: Qshell

[2addrIn
Write the pattern space to the standard output if the default output has not been suppressed, and
replace the pattern space with the next line of input.

[2addrIN
Append the next line of input to the pattern space, using an embedded newline character to
separate the appended material from the original contents. Note that the current line number
changes.

[2addrlp
Write the pattern space to standard output.

[2addr]P
Write the pattern space, up to the first newline character to the standard output.

[1addrlq
Branch to the end of the script and quit without starting a new cycle.

[1addrr file
Copy the contents of file to the standard output immediately before the next attempt to read a
line of input. If file cannot be read for any reason, it is silently ignored and no error condition is
set.

[2addr]s/regular_expression/replacement/flags
Substitute the replacement string for the first instance of the regular_expression in the pattern space.
Any character other than backslash or newline can be used instead of a slash to delimit the
regular_expression and the replacement. Within the regular_expression and the replacement, the regular
expression delimiter itself can be used as a literal character if it is preceded by a backslash.

An ampersand (&) appearing in the replacement is replaced by the string matching the regular
expression. The special meaning of & in this context can be suppressed by preceding it by a
backslash. The string \#, where # is a digit, is replaced by the text matched by the corresponding
backreference expression.

A line can be split by substituting a newline character into it. To specify a newline character in
the replacement string, precede it with a backslash.

The value of flags in the substitute function is zero or more of the following:

0..9 Make the substitution only for the N’th occurrence of the regular expression in the
pattern space.

8 Make the substitution for all non-overlapping matches of the regular expression, not just
the first one.

P Write the pattern space to standard output if a replacement was made. If the replacement
string is identical to that which it replaces, it is still considered to have been a
replacement.

w file Append the pattern space to file if a replacement was made. If the replacement string is
identical to that which it replaces, it is still considered to have been a replacement.

[2addrlt [label]
Branch to the : function bearing the label if any substitutions have been made since the most
recent reading of an input line or execution of a t function. If no label is specified, branch to the
end of the script.

[2addrlw file
Append the pattern space to the file.

[2addr]x
Swap the contents of the pattern and hold spaces.

Qshell 73

[2addrly/string1/string2/
Replace all occurrences of characters in stringl in the pattern space with the corresponding
characters from string2. Any character other than a backslash or newline can be used instead of a
slash to delimit the strings. Within stringl and string2, a backslash followed by any character
other than a newline is that literal character, and a /n is replaced by a newline character.

[2addr]function

[2addr]\function-list
Apply the function or function-list only to the lines that are not selected by the address(es).

[0addr]:label
This function does nothing; it bears a label to which the b and t commands may branch.

[1addr]=
Write the line number to the standard output followed by a newline character.

[0addr]
Empty lines are ignored.

[0addrl#
The # and the remainder of the line are ignored (treated as a comment), with the single exception
that if the first two characters in the file are #n, the default output is suppressed. This is the same
as specifying the -n option on the command line.

Environment Variables

sed is affected by the following environment variables:

QIBM_CCSID
Any files created by sed are created with the CCSID specified by the value of the environment
variable.

Exit Status
* 0 on success

¢ >0 if an error occurs

Related information

* [“cmp - Compare two files” on page 65|

* [’sort - Sort, merge, or sequence check text files’

* [‘split - Split files into pieces” on page 76

* ["uniq - Report or filter out repeated lines in a file” on page 79

sort - Sort, merge, or sequence check text files
Synopsis

sort [-emubdfinr] [-t char] [-T char] [-k keydef ...] [-0 output] [file] ...

Description

The sort utility sorts text files by lines. Comparisons are based on one or more sort keys extracted from
each line of input, and are performed lexicographically. By default, if keys are not given, sort regards

each input line as a single field.

Options

-c Check that the single input file is sorted. If the file is not sorted, sort produces the appropriate
error messages and exits with code 1. Otherwise, sort returns 0. This option produces no output.

74 iSeries: Qshell

-m Merge only; the input files are assumed to be presorted.

-0 output
The output argument is the name of an output file to be used instead of the standard output. This
file can be the same as one of the input files.

-u Unique processing to suppress all but one in each set of lines having equal keys. If used with the
-c option, check that there are no lines with duplicate keys.

The following options override the default ordering rules. When ordering options appear independent of
key field specifications, the requested field ordering rules are applied globally to all sort keys. When
attached to a specific key, the ordering options override all global ordering options for that key.

-d Only blank space and alphanumeric characters are used in making comparisons.

-f Considers all lowercase characters that have uppercase equivalents to be the same for purposes of
comparison.

-i Ignore all non-printable characters.

-n An initial numeric string, consisting of optional blank space, optional minus sign, and zero or

more digits (including decimal point) is sorted by arithmetic value.

-r Reverse the sense of comparisons.

The treatment of field separators can be altered using the options:

-b Ignores leading blank space when determining the start and end of a restricted sort key. A -b
option specified before the first -k option applies globally to all -k options. Otherwise, the -b
option can be attached independently to each field argument of the -k option (see below). Note
that the -b option has no effect unless key fields are specified.

-t char The char argument is used as the field separator character. The initial char is not considered to be
part of a field when determining key offsets (see below). Each occurrence of char is significant
(for example, "char-char” delimits an empty field). If -t is not specified, blank space characters are
used as default field separators.

-T char
The char argument is used as the record separator character. This option should be used with
discretion. The -T option with an alphanumeric char typically produces undesirable results. The
default line separator is newline.

-k keydef
Select the key fields to use for sorting. keydef as the format:
field_start[typell field_end[type]]

where field_start is the starting position and field_end is the optional ending position of a key field.
If field_end is not specified, the ending position is the end of the line. The type is a character from
the set of characters b, d, f, i, n, r. The type behaves the same as the corresponding option but
only to the specified key field. If no -k option is specified, a default sort key is used. A maximum
of nine -k options can be specified.

Operands

The path name of a file to be sorted, merged, or checked. If no file operands are specified, the standard
input is used.

Extended Description

A field is defined as a minimal sequence of characters followed by a field separator or a newline
character. By default, the first blank space of a sequence of blank spaces acts as the field separator. All

Qshell 75

blank spaces in a sequence of blank spaces are considered as part of the next field. For example, all blank
spaces at the beginning of a line are considered to be part of the first field.

Fields are specified by the -k field_start[type]| field_end[type]] option.

The field_start portion of the option argument has the form:

field_number]| first_character]

Fields and characters within fields are numbered starting with 1. The field_number and first_character are
positive decimal integers and specify the first character to be used as part of a sort key. If first_character is
not specified, it refers to the first character of the field.

The field_end portion of the option argument has the form:

field_number|.last_character]

The field_number is a positive decimal integer and last_character is a non-negative decimal integer. If
last_character is not specified or is zero, it refers to the last character of the field.

If the -b option or the b type modifier is in effect, characters in fields are counted from the first non-blank
character.

Exit Status

* 0 normal behavior.

* 1 on disorder (or non-uniqueness) with the -c option
* 2 an error occurred

Related information

* [“cmp - Compare two files” on page 65|

* [“sed - Stream editor” on page 70|

* [‘split - Split files into pieces”]

* [“uniq - Report or filter out repeated lines in a file” on page 79

split - Split files into pieces
Synopsis

split [-b byte_count[k | ml] [-1 line_count] [file [prefix]]
Description

The split utility reads the given file (or standard input if no file is specified) and breaks it up into files of
1000 lines each.
Options

-b Create files that are byte_count bytes in length. If k is appended to the number, the file is split
into byte_count kilobyte pieces. If m is appended to the number, the file is split into byte_count
megabyte pieces.

-1 Create files that are line_count lines in length.

Operands

76 iSeries: Qshell

If additional arguments are specified, the first is used as the name of the input file which is to be split. If
a second additional argument is specified, it is used as a prefix for the names of the files into which the
file is split. In this case, each file into which the file is split is named by the prefix followed by a lexically
ordered suffix in the range of "aa-zz". If the prefix argument is not specified, the default prefix is "x". The
maximum number of possible output file names is 676.

Exit Status
e 0 if successful
e >0 if an error occurs

Related information

* [‘cmp - Compare two files” on page 65|

* ['sed - Stream editor” on page 70|

* [‘sort - Sort, merge, or sequence check text files” on page 74|

* [‘uniq - Report or filter out repeated lines in a file” on page 79|

Examples
1. Split the file jdk_v11 jar into files that are 1.44MB in size and use the prefix "jdk_v11.". for the output
files.

split -b1440k jdk_vl1l.jar jdk_v11l.
2. Split the file myapp.java into files of 100 lines each.
split -1 100 myapp.java

tr - Translate characters
Synopsis

tr [-cs] stringl string2

tr [-c] -d stringl

tr [-c] -s stringl

tr [-c] -ds stringl string2
Description

The tr utility copies the standard input to the standard output with substitution or deletion of selected
characters.

In the first synopsis form, the characters in stringl are translated into the characters in string2 where the
first character in stringl is translated into the first character in string2 and so on. If stringl is longer than
string2, the last character found in string? is duplicated until stringl is exhausted.
In the second synopsis form, the characters in stringl are deleted from the input.

In the third synopsis form, the characters in stringl are compressed as described for the -s option below.

In the fourth synopsis form, the characters in stringl are deleted from the input, and the characters in
string2 are compressed as described for the -s option below.

The following conventions can be used in stringl and string2 to specify sets of characters. Any character
not described by one of the following conventions represents itself.

nnn A backslash (\) followed by 1, 2 or 3 octal digits represents a character with that encoded value.

Qshell 77

char To follow an octal sequence with a digit as a character, left zero-pad the octal sequence to the full
3 octal digits. A backslash (\) followed by certain special characters maps to special values. The
special characters and their values are:

* a - alert character
* b - backspace

* f - form-feed

* n - newline

* r - carriage return
* t-tab

e v - vertical tab

A backslash (\) followed by any other character maps to that character.
c-c Represents the range of characters between the range endpoints, inclusively.
[:class:]
Represents all characters belonging to the defined character class. These are the class names:
* alnum - alphanumeric characters
¢ alpha - alphabetic characters
* cntrl - control characters
* digit - numeric characters
¢ graph - graphic characters
* lower - lower-case alphabetic characters
* print - printable characters
* punct - punctuation characters
* space - space characters
* upper - upper-case characters
* xdigit - hexadecimal characters
Note: With the exception of the upper and lower classes,
characters in the classes are in unspecified order. In the

upper and lower classes, characters are entered in
ascending order.

Options

-c Complement the set of characters in stringl, that is -c ab includes every character except for "a”
and "b".

-d Delete characters from the input.

-s Squeeze multiple occurrences of the characters listed in the last operand (either stringl or string2)
in the input into a single instance of the character. This occurs after all deletion and translation is
completed.

Exit Status
* 0 on success

¢ >0 if an error occurs.

Related information

* [“cut - Cut out selected fields of each line of a file” on page 66|

* [“orep - Search a file for a pattern” on page 67]

* [“tr - Translate characters” on page 77|

78 iSeries: Qshell

* ['wc - Word, line and byte/character count” on page 80|

Examples

1. Create a list of the words in filel, one per line, where a word is taken to be a maximal string of
letters.

tr -cs '[:alpha:]' 'n' < filel
2. Translate the contents of filel to upper-case.

tr '[:Tower:]" '[:upper:]' < filel
tr 'a-z' 'A-Z' < filel

3. Remove the non-printable characters from filel.
tr -cd '[:print:]' < filel

uniq - Report or filter out repeated lines in a file
Synopsis

uniq [-c | -du] [-f fields] [-s chars] [input_file [output_file]]
Description

The uniq utility reads the standard input comparing adjacent lines, and writes a copy of each unique
input line to the standard output. The second and succeeding copies of identical adjacent input lines are
not written. Repeated lines in the input will not be detected if they are not adjacent, so it may be
necessary to sort the files first.

Options

-c Precede each output line with the count of the number of times the line occurred in the input,
followed by a single space.

-d Suppress the writing of lines that are not repeated in the input.

-f fields
Ignore the first fields fields in each input line when doing comparisons. A field is a string of
non-blank characters separated from adjacent fields by blanks. Field numbers are one based, so
the first field is field one.

-s chars
Ignore the first chars characters in each input line when doing comparisons. If specified in
conjunction with the -f option, the first chars characters after the first fields fields will be ignored.
Character numbers are one based, so the first character is character one.

-u Suppress the writing of lines that are repeated in the input.
Operands

If additional arguments are specified on the command line, the first such argument is used as the name
of an input file, the second is used as the name of an output file.

Exit Status
* 0 on success

¢ >0 if an error occurs

Related information

* ["emp - Compare two files” on page 65|

* [“sed - Stream editor” on page 70|

+ [“split - Split files into pieces” on page 76

Qshell 79

* [’sort - Sort, merge, or sequence check text files” on page 74|

Examples

In the following examples, the contents of example file are:

There are 5 apples
There are 9 oranges
There are 9 oranges
There are 2 pears

1. Display the unique lines in the file "fruit”.
uniq fruit
There are 5 apples

There are 9 oranges
There are 2 pears

2. Display the lines that repeat in the file "fruit”.
uniq -d fruit

There are 9 oranges

3. Display a list of how many times a line is repeated in the file "fruit".
uniq -c¢ fruit
1 There are 5 apples

2 There are 9 oranges
1 There are 2 pears

wc - Word, line and byte/character count
Synopsis

we [-¢ | -m] [-1w] [file ...]
Description

The wc utility displays the number of lines, words, and bytes contained in each input file (or standard
input, by default) to standard output. A line is defined as a string of characters delimited by a newline
character. A word is defined as a string of characters delimited by white space characters. If more than
one input file is specified, a line of cumulative counts for all the files is displayed on a separate line after
the output for the last file.

Options
c Write to standard output the number of bytes in each input file.
1 Write to standard output the number of lines in each input file.

m Write to standard output the number of characters in each input file.
\

Write to standard output the number of words in each input file.
Operands

When an option is specified, we only reports the information requested by that option. The default action
is equivalent to specifying all of the flags.

If no files are specified, the standard input is used and no file name is displayed.

Exit Status
* 0 when successful

80 iSeries: Qshell

e >0 when an error occurred

Related information

¢ [‘cut - Cut out selected fields of each line of a file” on page 66|

* [“grep - Search a file for a pattern” on page 67]

“tr - Translate characters” on page 77

Utilities for DB2 Universal Database™

The following are Qshell utilities for working with the DB2 Universal Database'
* 3/“Qshell db2 utility”}

» [db2profc - DB2® SQLJ profile customizer|

» [db2profp - Print DB2 customized version of SQLJ profild

B £[Perl utility” on page 82|

* [profconv - Convert SQL]J serialized profile instance to Java™ class|

[profdb - SOLJ profile auditor installer]

* [profp - Print SQLJ profild

* Isqlj - Structured query language for Java (SQLJ) translatoq

Z

Qshell db2 utility
The db2 utility uses the SQL CLI (Call Level Interface) and allows you to execute SQL statements directly,
interactively, or from a file.

™).

When processing SQL interactively or from a file, the db2 utility treats the backslash character at the end
of a line as a continuation character. The backslash and newline character are removed and the remaining
text is used as the SQL statement.

Syntax
db2 [General Options] [Delimiter Options] [Connection Options] [SQL Source Options]

General Options:

-v Echo the SQL statement to standard output

-S Suppress spaces and padding in output, useful for viewing LOB columns containing text data
Delimiter Options:

Only one of the following can be specified.

-T, character
Specified character is used as termination character

-t Use the semicolon as the statement termination character

-d Use Exclamation point (!) as the termination character

Connection Options:

-r rdbname
Connect to specified remote database (must be name in WRKRDBDIRE). If not specified
connection is to local database.

-u username
The user profile name for connecting to remote database, can only be used with -r option

Qshell 81

-p username
The password to use on remote database connection

SQL Source Options:

SQL Statement
SQL statement text. If statement contains spaces or shell characters, be sure to correctly quote on
Qshell command line

-f filename default_lib
Read and execute SQL statements from the specified file. Default_lib parameter is optional. When
specified, it is used as the default library/schema for all statements

-i Enter SQL statements interactively. Enter quit or exit to end interactive SQL session

Special character and command support

* Lines starting with two dashes (—) are comments

¢ Lines starting with an exclamation point are gshell commands

* Lines startng with "at’” symbol (@) are CL commands

¢ Connect command is ignored, utility uses local connection unless -r option is specified
* Echo command is a command built in to the db2 utility and echoes the text

* Exit or quit commands will end the db2 SQL session

* Help and ? commands will list basic help

* Terminate command is ignored

Examples

db2 select constraint_name from gsys2.syscst
db2 -t -f mysqlfile.txt

Contents of mysgqlfile.txt:

select constraint_name from gsys2.syscst;
create table qgpl.testtable (cl integer);

Loy
Perl utility

The Perl utility allows you to run Perl scripts on your system. The Perl utility is available as freeware.

For more information about downloading and using this utility, see the [DB2™ for i5/0S™: Qshell, Perl)
land DB2 for i5/09 topic on the System i"™ Website.

b

Utilities for working with files and directories

The following are Qshell utilities for working with files and directories:

» [“attr - Get or set attributes for files” on page 83

* ["basename - Return non-directory portion of path name” on page 88|

* [‘cat - Concatenate and print files” on page 8§

» [‘catsplf - Concatenate and print spool files” on page 89|

* [‘cd - Change working directory” on page 90
. "’chgrp - Change file group ownership” on page 91|

+ [“chmod - Change file modes” on page 92

* [‘chown - Change file ownership” on page 95|

82 iSeries: Qshell

http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html
http://www-03.ibm.com/servers/eserver/iseries/db2/qshellperl.html

* [’compress - Compress data” on page 96|

* [’cp - Copy files” on page 97

¢ [’dirname - Return directory portion of path name” on page 99|

* [‘file - Determine file type” on page 100

* [“find - Find files” on page 100|

* [‘gencat - Generate a formatted message catalog” on page 104|

* [“getconf - Get configuration values” on page 105

* [‘head - Copy the first part of files” on page 106|

* ["In - Link files” on page 106|

* ["Is - List directory contents” on page 107

* ["'mkdir - Make directories” on page 110}
* [“mkfifo - Make FIFO special files” on page 111|
* ['mv - Move files” on page 112

* [“od - Dump files in various formats” on page 113]

* [‘pax - Portable archive interchange” on page 114

+ [“pr - Print files” on page 121]

* [‘pwd - Return working directory name” on page 123|

* ["pwdx - Print working directory expanded” on page 124|

+ [“Rfile - Read or write record files” on page 124

* [‘rm - Remove directory entries” on page 125

* [‘rmdir - Remove directories” on page 126|
* [“setcesid - Set CCSID attribute for file” on page 127
[“tail - Display the last part of a file” on page 128

[“tar - File archiver” on page 129|

[‘touch - Change file access and modification times” on page 130)

* [‘umask - Get or set the file mode creation mask” on page 131]

¢ [‘uncompress - Expand compressed data” on page 132|

* [“zcat - Expand and concatenate data” on page 133]

attr - Get or set attributes for files
Synopsis

attr [-hp 1 file [attribute [=value] ...]

Description

The attr utility gets or sets attributes for the object specified by file. When no attributes are specified, attr
displays all of the attributes for the object in a re-entrable format to standard output. When an attribute is
specified, attr displays the value of the attribute to standard output. When an attribute and value are
specified, attr sets the attribute to the value. Note that all attributes can be displayed, but only some
attributes can be set.

For date and time attributes, the value displayed by default is formatted with the asctime() function. If
the LC_TIME environment variable is set, the value displayed is formatted with the format specified by
the d_t_fmt keyword in the LC_TIME category of the specified locale.

See the |QpO0lGetAttr()] API for detailed information about the attributes and their values.

Options

Qshell 83

-h Display or set the attributes of a symbolic link instead of the object pointed to by the symbolic

link.
P Display the attribute in an re-entrable format.
Operands

The file operand specifies a path name to an object. The attribute operand can have the following values:

ACCESS_TIME
The date and time the object was last accessed. This attribute can only be displayed.

ALLOC_SIZE
The number of bytes allocated for the object displayed as a 32-bit number. This attribute can only
be displayed.

ALLOC_SIZE_64
The number of bytes allocated for the object displayed as a 64-bit number. This attribute can only
be displayed.

ALWCKPWRT
An indicator if a stream file can be shared with readers and writers during the save-while-active
checkpoint processing. This attribute can be displayed or set.

ALWSAV
An indicator of whether the object can be saved or not. This attribute can be displayed or set.

ASP The auxillary storage pool in which the object is stored. This attribute can only be displayed.

AUDIT
The auditing value associated with the object. This attribute can only be displayed.

AUTH_GROUP
The name of the user profile that is the primary group for the object. This attribute can only be
displayed.

AUTH_LIST_ NAME
The name of the authorization list used to secure the object. This attribute can only be displayed.

AUTH_OWNER
The name of the user profile that is the owner of the object. This attribute can only be displayed.

AUTH_USERS
The list of user profiles that are authorized to use the object. This attribute can only be displayed.

CCSID The coded character set identifier (CCSID) of the object. This attribute can be displayed or set.

CHANGE_TIME
The date and time the object’s data or attributes were last changed. This attribute can only be
displayed.

CHECKED_oUuT
An indicator if the object is checked out. This attribute can only be displayed.

CHECKED_OUT_USER
The user profile that has the object checked out. This attribute can only be displayed.

CHECKED_OUT_TIME
The date and time that the object was checked out. This attribute can only be displayed.

CODEPAGE
The code page derived from the coded character set identifier (CCSID) of the object. This
attribute can be displayed or set.

84 iSeries: Qshell

CREATE_TIME
The date and time the object was created. This attribute can only be displayed.

¥ CRTOBJAUD
The create object auditing value associated with a directory. The auditing value is given to any
objects created in the directory. This attribute can be displayed or set. 4%

CRTOBJSCAN
An indicator of whether the objects created in a directory will be scanned when exit programs are
registered with any of the integrated file system scan-related exit points. This attribute can be
displayed or set.

DATA_SIZE
The size in bytes of the data in the object displayed as a 32-bit number. This attribute can only be
displayed.

DATA_SIZE_64
The size in bytes of the data in the object displayed as a 64-bit number. This attribute can only be
displayed.

DIR_FORMAT
An indicator of the format of a directory object. This attribute can only be displayed.

DISK_STG_OPT
An indicator of how auxiliary storage storage is allocated by the system for the object. This
attribute can be displayed or set.

EXTENDED_ATTR_SIZE
The number of bytes used for extended attributes for the object. This attribute can only be
displayed.

FILE_FORMAT
The format of the stream file. This attribute can only be displayed.

FILE_ID
The file identifier of the object if the object is stored in the "root” (/), the QOpenSys, or a
user-defined file system. This attribute can only be displayed.

JOURNAL_APPLY CHANGES
An indicator of whether the object was restored with partial transactions which requires an Apply
Journaled Changes (APYJRNCHG) command to complete the transaction. This attribute can only
be displayed.

JOURNAL_ID
The journal identifier that can be used on journal-related commands and APIs. This attribute can
only be displayed.

JOURNAL_LIBRARY
If the object is journaled, the library containing the currently used journal. If the object is not
journaled, the library containing the last used journal. This attribute can only be displayed.

JOURNAL_NAME
If the object is journaled, the name of the currently used journal. If the object is not journaled, the
name of the last used journal. This attribute can only be displayed.

JOURNAL_OPTIONS
The current journaling options. This attribute can only be displayed.

JOURNAL_RCVR_ASP
The name of the ASP for the library that contains the journal receiver. This attribute can only be
displayed.

JOURNAL_RCVR_LIBRARY
The name of the library that contains the journal receiver. This attribute can only be displayed.

Qshell 85

JOURNAL_RCVR_NAME
The name of the oldest journal receiver needed to successfully Apply Journaled Changes
(APYJRNCHG). This attribute can only be displayed.

JOURNAL_ROLLBACK_ENDED
An indicator of whether the object had rollback ended before completion of a request to roll back
a transaction. This attribute can only be displayed.

JOURNAL_START_TIME
The date and time that journaling was last started for the object. This attribute can only be
displayed.

JOURNAL_STATUS

An indicator if the object is currently journaled. This attribute can only be displayed.

LOCAL_REMOTE
An indicator if the object is on the local system or a remote system. This attribute can only be
displayed.

MAIN_STG_OPT
An indicator of how main storage is allocated and used by the system for the object. This
attribute can be displayed or set.

MODIFY_TIME
The date and time that the object’s data was last modified. This attribute can only be displayed.

MULT_SIGS
An indicator if the object has more than one i5/0S™ digital signature. This attribute can only be
displayed.

OBJTYPE
A text string describing the type of the object. This attribute can only be displayed.

PC_ARCHIVE
An indicator if the object has changed since the last time the file was examined. This attribute can
be displayed or set.

PC_HIDDEN
An indicator if the object is hidden. This attribute can be displayed or set.

PC_READ_ONLY
An indicator if the object is read-only. This attribute can be displayed or set.

PC_SYSTEM
An indicator if the object is a system object. This attribute can be displayed or set.

RSTDRNMUNL
An indicator of whether renames and unlinks are restricted for objects within a directory. Objects
can be linked into a directory that has this attribute set on, but cannot be renamed or unlinked
from it unless the user has the appropriate authority. This attribute can be displayed or set.

SCAN An indicator of whether the object will be scanned when exit programs are registered with any of
the integrated file system scan-related exit points. This attribute can be displayed or set.

SCAN_BINARY
An indicator of whether the object has been scanned in binary mode when it was previously
scanned. This attribute can only be displayed.

SCAN_CCSID1
If an object has been scanned in text mode, the first CCSID used when it was previously scanned.
This attribute can only be displayed.

86 iSeries: Qshell

SCAN_CCSID2
If an object has been scanned in text mode, the second CCSID used when it was previously
scanned. This attribute can only be displayed.

SCAN_SIGS_DIFF
An indicator of whether the scan signature for the object is different from the global scan
signature. This attribute can only be displayed.

SCAN_STATUS
The scan status for the object. This attribute can only be displayed.

SGID An indicator if the effective group ID is set at run time. This attribute can be displayed or set.

SIGNED
An indicator if the object has an i5/0S™ digital signature. This attribute can only be displayed.

STG_FREE
An indicator if the data is moved offline. This attribute can only be displayed.

SUID An indicator if the effective user ID is set at run time. This attribute can be displayed or set.

SYSTEM_ARCHIVE
An indicator if the object has changed and needs to be saved. This attribute can be displayed or
set.

¥ SYSTEM_USE
An indicator if the object has a special use by the system. This attribute is valid only for stream
files. This attribute can only be displayed.

SYS_SIGNED
An indicator of whether the i5/0S™ digital signature is from a source that is trusted by the
system. This attribute can only be displayed.

UDFS_DEFAULT_FORMAT
The default file format of stream files created in the user-defined file system. This attribute can
only be displayed.

USAGE_DAYS_USED
The number of days an object has been used. This attribute can only be displayed.

USAGE_LAST_USED_TIME
The date and time that the object was last used. This attribute can only be displayed.

USAGE_RESET_TIME
The date and time that the object’s days used count was reset to zero. This attribute can only be
displayed.

Environment Variables

attr is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting
with LC_.

LC_TIME
Defines the output format for date and time attributes.

Exit Status
* 0 when successful
* >0 when unsuccessful

Related information

Qshell 87

* [’setccsid - Set CCSID attribute for file” on page 127

[“touch - Change file access and modification times” on page 130
[Qp0lGetAttr() - Get attributes|

[QpOISetAttr() - Set attributes|

Examples
1. Display all of the attributes for a file.
attr script.sh
2. Display the OBJTYPE and PC_READ_ONLY attributes for a file.
attr script.sh OBJTYPE PC_READ_ONLY
3. Display the DATA_SIZE_64 attribute in a re-entrable format for a file.
attr -p script.sh DATA_SIZE 64
4. Set the PC_HIDDEN attribute for a file.
attr script.sh PC_HIDDEN=1

basename - Return non-directory portion of path name
Synopsis

basename string [suffix]
Description

You can use basename to delete any prefix ending with the last slash (/) character present in string, and
a suffix, if specified. The resulting filename is written to standard output. The string is processed using
the following rules:

* If string consists entirely of slash characters, a single slash character is written to standard output and
processing ends.

* If there are any trailing slash characters in string, they are removed.

e If there are any slash characters remaining in string, the prefix of string up to and including the last
slash character is removed.

* If a suffix is specified, and is not identical to the characters remaining in string, and is identical to a
suffix of the characters remaining in string, the suffix is removed. Otherwise string is not modified. It is
not an error if suffix is not found in string.

Exit Status
* 0 on success

e >0 if an error occurs.

Related information

“dirname - Return directory portion of path name” on page 99|

Examples

1. Set the shell variable FOO to "trail”.
FO0=$ (basename /usr/bin/trail)

2. Return the last part of the path "/usr/bin/this_test” with the "test” suffix removed.
basename /usr/bin/this_test test

cat - Concatenate and print files
Synopsis

cat [-bcensStuv] [-] [file ...]

88 iSeries: Qshell

Description

The cat utility reads the specified files sequentially, writing them to standard output. The file operands are
processed in command line order. A single dash represents standard input.

By default, cat reads file as text data so the data is translated from the CCSID of the file. When the -c
option is specified, cat reads the file as binary data.

Note that because of the shell language mechanism used to perform output redirection, the command cat
filel file2 > file2 will cause the original data in file2 to be destroyed. Also, the process will go into an
infinite loop.

Options

-b Number the output lines but do not number blank lines.

-C Do not convert the data as it is read.

-e Number the output lines and display a dollar sign ($) at the end of each line as well.

-n Number the output lines, starting at 1.

-s Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-S Squeeze multiple adjacent empty lines, causing the output to be single spaced.

-t Display non-printing characters so they are visible like the -v option and display tab characters as
well.

-u Guarantee that the output is unbuffered.

-v Display non-printing characters so they are visible. A control character prints as "AX" (for

control). The delete character prints as "A?”. A non-display character prints as "M-x" (for meta).
Note that in most locales, all of the characters are displayable.

Exit Status
* 0 when successful.

¢ >0 when an error occurred.

Related information

* [‘head - Copy the first part of files” on page 106|

* [‘tail - Display the last part of a file” on page 12§

* ['zcat - Expand and concatenate data” on page 133]

Examples

1. Display the contents of file, "myfile”.
cat myfile

2. Display the contents of three different files at the same time and save their contents into a new file.
cat filel file2 file3 > all.files

catsplf - Concatenate and print spool files
Synopsis

catsplf -j qualified-job [-aen] splfname splfnum
catsplf -p pid [-aen] splfname splfnum

Description

Qshell 89

The catsplf utility reads the specified spool file and writes it to standard output.
In the first synopsis form, catsplf finds the spool files associated with the job specified by qualified-job.

In the second synopsis form, catsplf finds the spool files associated with the job specified by pid.

Options
-a Print all of the spool files associated with the specified job.
-e Number the output lines starting at 1 and display a dollar sign ($) at the end of each line.

-j qualified-job
Find the spool files associated with the job identified by qualified-job, where qualified-job is a string
in the form number/user/name. The number is a six-digit decimal number, user is the user profile
under which the job was started, and name is the name of job.

-n Number the output lines starting at 1.

-p pid Find the spool files associated with the job identified by pid, where pid is the decimal process ID
of the job.

Operands

The splfname operand specifies the name of the spool file and the splfnum operand specifies the number of
the spool file. Both operands are required to uniquely identify a spool file.

Exit Status
* 0 when successful
¢ >0 when unsuccessful

Related information

+ [“cat - Concatenate and print files” on page 8§

* ['Rfile - Read or write record files” on page 124

* [“zcat - Expand and concatenate data” on page 133

Examples

1. Print the spool file named QPRINT and number 1 for a job using a qualified job name.
catsplf -j 386687/SHELLTST/QZSHCHLD QPRINT 1

2. Print the spool file named QPRINT and number 1 for a job using a pid.
catsplf -p 942 QPRINT 1

3. Print all of the spool files for a job.
catsplf -a -j 386687/SHELLTST/QZSHCHLD

cd - Change working directory
Synopsis

cd [directory]
Description

You can use cd to change the working directory. gsh sets the PWD variable to the new working directory
and the OLDPWD variable to the previous working directory.

Options

90 iSeries: Qshell

None.
Operands

For directory, you can specify:

- (minus)
gsh changes the working directory to the previous directory and displays the new working
directory name.

/mame or ../name
gsh changes the working directory to the specified name.

name (does not begin with a / or ../)
If the CDPATH variable is set, gsh prepends each directory in CDPATH to name to construct a
directory name. gsh changes to the first directory that you have permission to. gsh displays the
new working directory name.

If the CDPATH variable is not set, qsh changes the working directory to the specified name.
not specified
gsh changes the working directory to the value of the HOME variable.

You must have permission to the specified directory.

Exit Status
* 0 when successful.

* >0 when unsuccessful.

Related information

* [“hash - Remember or report utility locations” on page 147

* ['pwd - Return working directory name” on page 123|

chgrp - Change file group ownership
Synopsis

chgrp [[R[-H | -L | -P 11 [-h] group file ...
Description
You can use chgrp to set the group of file to the group identifier or profile specified by group.

To change the group identifier, you must have one of the following authorities:
* The current user has *ALLOB]J special authority.
* The current user is the owner of file and either one of the following:

— The primary group of the job is group.

— One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the group profile specified by group.

By default, chgrp follows symbolic links and changes the group of the file pointed to by the symbolic
link.

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options
override each other and the command’s actions are determined by the last one specified.

% The group of a file cannot be the same as the owner of the file. %

Qshell

91

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file is a directory, chgrp recursively changes the group of each file in the entire subtree
connected at that point.

-h Change the owner and group of a symbolic link instead of the file pointed to by the symbolic
link.

Operands

The group operand specifies either a group identifier number or group profile name. The file operand
specifies a path name to an object.

Exit Status
* 0 when successful and all requested changes were made.

¢ >0 when an error occurred.

Related information

* [“chmod - Change file modes”]

* [‘chown - Change file ownership” on page 95|

Examples
1. Change the group to group profile "abbey” for the file "newgui.java".
chgrp abbey newgui.java

2. Change the group to group profile "managers” for the subdirectory "personal.dir” and all files and
subdirectories below this directory.

chgrp -R managers personal.dir
3. Change the group to group identifier "442" for the file "memo.txt".
chgrp 442 memo.txt

chmod - Change file modes
Synopsis

chmod [-R[-H | -L | -PI1][-h] mode file ...
Description
The chmod utility modifies the file mode bits of file as specified by the mode operand.

To change the mode of a file, you must have one of the following authorities:
* The current user has *ALLOB]J special authority.
* The current user is the owner of the file.

By default, chmod follows symbolic links and changes the mode on the file pointed to by the symbolic

link. Symbolic links do not have modes so using chmod on a symbolic link always succeeds and has no
effect.

92 iSeries: Qshell

The -H, -L and -P options are ignored unless the -R option is specified. In addition, these options
override each other and the command’s actions are determined by the last one specified.

Note that chmod changes the i5/0S™ data authorities for an object. Use the[CHGAUT]| CL command to
change the i5/0S™ object authorities for an object.

Options

-H

If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed. Since symbolic links do not have modes
chmod has no effect on the symbolic links.

-L If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed. Since symbolic links do not have
modes chmod has no effect on the symbolic links.

-R If file designates a directory, chmod changes the mode of each file in the entire subtree connected
at that point.

-h Do not follow symbolic links. Since symbolic links do not have modes chmod has no effect on
the symbolic links.

Operands

A mode may be absolute or symbolic. An absolute mode is a three or four digit octal number constructed
by or-ing the following values:

4000
2000
1000
0400
0200
0100
0040
0020
0010
0004
0002
0001

Set-user-id on execute bit
Set-group-id on execute bit
Restricted deletion bit for a directory
Allow read by owner

Allow write by owner

Allow execute/search by owner
Allow read by group

Allow write by group

Allow execute/search by group
Allow read by other

Allow write by other

Allow execute/search by other

A symbolic mode is described by the following grammar:

* mode ::= clause [, clause ...]

* clause ::= [who ...] [action ...] last_action

* action = op [perm ...]

* last_action ::= op [perm ...]

e whoz=alulglo

copu=+1-1=

cpermz=rlwlx | XIsltlulglo

The who symbols specify who is granted or denied the permissions as follows:

Qshell 93

u The owner permission bits.
g The group permission bits.
The other permission bits.

a The owner, group, and other permission bits. It is equivalent to specifying the ugo symbols
together.

The op symbols represent the operation performed, as follows:

+ Grant the specified permission. If no value is supplied for perm, the "+" operation has no effect. If
no value is supplied for who, each permission bit specified in perm, for which the corresponding
bit in the file mode creation mask is clear, is set. Otherwise, the mode bits represented by the
specified who and perm values are set.

n-n

- Deny the specified permission. If no value is supplied for perm, the "-" operation has no effect. If
no value is supplied for who, each permission bit specified in perm, for which the corresponding
bit in the file mode creation mask is clear, is cleared. Otherwise, the mode bits represented by the
specified who and perm values are cleared.

= Clear the selected permission field and set it to the specified permission. The mode bits specified
by the who value are cleared, or, if no who value is specified, the owner, group and other mode
bits are cleared. Then, if no value is supplied for who, each permission bit specified in perm, for
which the corresponding bit in the file mode creation mask is clear, is set. Otherwise, the mode
bits represented by the specified who and perm values are set.

The perm symbols represent the portions of the mode bits as follows:

r The read bits.

w The write bits.

X The execute/search bits.

X The execute/search bits if the file is a directory or if any of the execute/search bits are set in the

original (unmodified) mode. Operations with this symbol are only meaningful in conjunction
with the op symbol “+”, and are ignored in all other cases.

s The set-user-id on execute bit when the owner permission bits are set or the set-group-id on
execute bit when the group permission bits are set.

t The restricted deletion bit when the object is a directory. It can be used when the who symbol is a
or there is no who symbol. It is ignored if the file is not a directory or the who symbol is u, g, or
o.

Each clause specifies one or more operations to be performed on the mode bits, and each operation is
applied to the mode bits in the order specified.

Exit Status
* 0 on success
e >0 if an error occurs

Related information

+ [“chgrp - Change file group ownership” on page 91|

* [’chown - Change file ownership” on page 95|

Examples

1. Grant read and write permission to owner and read permission to group and other using an absolute
mode.

chmod 644 myfile

94 iSeries: Qshell

Deny write permission to group and other.

chmod go-w myfile

Clear all permissions that are currently set and grant read and write permissions to owner, group, and
other.

chmod =rw myfile

Grant search permission on a directory to owner, group, and other if search permission is set for one
them.

chmod +X mydir

Grant read, write, and execute permission to owner and read and execute permission to group and
other using an absolute mode.

chmod 755 myfile

Clear all permissions for group and other.

chmod go= myfile

Set the group permissions equal to the owner permission, but deny write permission to the group.
chmod g=u-w myfile

Set the set-user-id on execute bit and grant read, write, and execute permission to the owner and
execute permission for other using an absolute mode.

chmod 4701 myfile

chown - Change file ownership
Synopsis

chown [[R[-H | -L | -P 1] [-h] owner[:group] file ...

Description

You can use chown to set the owner of file to the user identifier or profile specified by owner. Optionally,
chown can also set the group of the file to the group identifier or profile specified by group.

To change the owner of a file, you must have one of the following authorities:

¢ The current user has *ALLOB]J special authority.

* The current user is the owner of the file or directory.

To change the group of a file, you must have one of the following authorities:

* The current user has *ALLOB]J special authority.

¢ The current user is the owner of file and either one of the following:

— The primary group of the job is group.

— One of the supplemental groups of the job is group.

In addition, the current user must have *USE authority to the new user profile or group profile.

By default, chown follows symbolic links and changes the owner and group of the file pointed to by the
symbolic link.

#» The group of a file cannot be the same as the owner of the file. 4%

Options

-H

-L

If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

Qshell 95

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, chown recursively changes the owner and group of each file in the
entire subtree connected at that point.

-h Change the owner and group of a symbolic link instead of the file pointed to by the symbolic
link.

Operands

The owner operand specifies either a user identifer number or a user profile name. The group operand
specifies either a group identifier number or a group profile name. The file operand specifies a path name
to an object.

Exit Status
* 0 when successful and all requested changes were made.
* >0 when an error occurred.

Related information

* [“chgrp - Change file group ownership” on page 91|

* [“chmod - Change file modes” on page 92|

Examples
1. Change the owner to user profile "sam” for the file "personal.file”.
chown sam personal.file

2. Recursively change the owner to user profile "larry” for the sub-directory "moe.dir” and all files and
sub-directories below this directory.

chown -R Tarry moe.dir
3. Change the owner to user identifier "500” for the file "your.file".
chown 500 your.file

4. Change the owner to user profile "sam” and the group to group profile "abbey” for the file
"memo.txt".

chown sam:abbey memo.txt

compress - Compress data
Synopsis

compress [-cfv] [-b bits] [file ...]
Description

The compress utility reduces the size of the files using adaptive Lempel-Ziv coding. Each file is renamed
to the same name plus the extension ".Z". As many of the modification time, access time, file flags, file
mode, user ID, and group ID as allowed by permissions are retained in the new file. If compression
would not reduce the size of a file, the file is ignored.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user
is prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not
received, the files are not overwritten.

Options

-b bits Specify the bits code limit (see below for details).

-c Compressed output is written to the standard output. No files are modified.

96 iSeries: Qshell

-f Force compression of file, even if it is not actually reduced in size. Additionally, files are
overwritten without prompting for confirmation.

-v Print the percentage of reduction for each file.
Operands

Each file is a pathname of a file to compress. If no files are specified, the standard input is compressed to
the standard output. If either the input or output files are not regular files, the checks for reduction in
size and file overwriting are not performed, the input file is not removed, and the attributes of the input
file are not retained.

Extended Description

The compress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first
replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes and
continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits must
be between 9 and 16.

After the bits limit is reached, compress periodically checks the compression ratio. If it is increasing,
compress continues to use the existing code dictionary. However, if the compression ratio decreases,
compress discards the table of substrings and rebuilds it from scratch. This allows the algorithm to adapt
to the next "block” of the file.

The amount of compression obtained depends on the size of the input, the number of bits per code, and
the distribution of common substrings. Typically, text such as source code or English is reduced by
50-60%.

Exit Status
* 0 on success

e >0 if an error occurs.

Related information

* [‘pax - Portable archive interchange” on page 114

¢ [‘uncompress - Expand compressed data” on page 132|

* [‘zcat - Expand and concatenate data” on page 133]

cp - Copy files
Synopsis

cp [-xr | -R[-H | -L | -P]] [-fhipt] source_file target_file

cp [-r | -R[-H | -L | -P]] [-fhipt] source_file ... target_directory

Description

In the first synopsis form, the cp utility copies the contents of the source_file to the target_file.

In the second synopsis form, the cp utility copies the contents of each named source_file to a file in the
destination target_directory. The names of the files themselves are not changed. The target_directory must

exist unless there is only one named source_file which is a directory and the -R flag is specified.

If cp detects an attempt to copy a file to itself, the copy will fail.

Qshell 97

If target_file does not exist, the mode of the source_file is used, as modified by the file creation mask, when
creating target_file. The S_ISUID and S_ISGID file permission bits are never set when creating a new file.

If target_file already exists and the -t option is not specified, its contents are overwritten as binary data

and the CCSID attribute is changed to match the CCSID attribute of source_file. The file permission bits,
owner, and group of farget_file are unchanged. You can force the data to be copied as text data by using
the -t option. You can force the file permission bits, owner, and group to be copied using the -p option.

Note that when copying to members in the QSYS.LIB file system, many attributes of source_file cannot be
preserved because they are associated with the file object and not the member.

Symbolic links are always followed unless the -h option is specified or the -R option is specified with the
-H or the -L options. The -H, -L and -P options are ignored unless the -R option is specified. In addition,
these options override each other and the command’s actions are determined by the last one specified.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed and the symbolic link is copied instead of the
file pointed to by the symbolic link.

-L If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed. A symbolic link encountered in the
tree traversal is copied instead of the file pointed to by the symbolic link.

-R If source_file designates a directory, cp copies the directory and the entire subtree connected at
that point. This option causes cp to create special files rather than copying them as normal files.
Created directories have the same mode as the corresponding source directory, unmodified by the
file creation mask.

-f Remove target_file if it cannot be opened for write operations. A new file is created before the
data is copied.

-h Copy symbolic links instead of the file pointed to by the symbolic link.

-i Write a prompt to standard error before copying a file that would overwrite an existing file. If the
response from the standard input begins with the first character for the YES response in the
current locale, the file copy is attempted.

P Preserve in the copy as many of the modification time, access time, file permission bits, owner,
and group as allowed by permissions.

If the owner and group cannot be preserved, no error message is displayed and the exit value is
not altered.

The S_ISUID and S_ISGID file permission bits are only copied when both the owner and group of
the file are successfully copied.

Note: This option has no effect when copying to the QSYS.LIB

file system.

-r Same as -R except this option copies special files in the same manner as regular files. The -R flag
is preferred to the -r flag.

-t When the target file exists, treat the data in source_file as text data and translate the data to the
CCSID associated with target_file as it is copied. The CCSID attribute of target_file is not changed.

Exit Status

* 0 on success

98 iSeries: Qshell

e >0 if an error occurred.

Related information

* ["In - Link files” on page 106

* [“Is - List directory contents” on page 107

* [‘mv - Move files” on page 112

* [‘’rm - Remove directory entries” on page 125

* [‘rmdir - Remove directories” on page 126|

* ["umask - Get or set the file mode creation mask” on page 131|

Examples
1. Copy the file, "filel”, into the subdirectory, "data.dir".
cp filel data.dir

2. Copy all the files with the ;java extension from the "code” subdirectory into the subdirectory,
"code/old_code.dir” and prompt the user for overwrite verification only if the file already exists in
the subdirectory, "code/old_code.dir".

cp -i code/*.java code/old_code.dir

dirname - Return directory portion of path name
Synopsis

dirname string
Description

You can use dirname to delete the filename portion, beginning with the last slash character (/) to the end
of string, and write the result to standard output. The string is processed using the following rules:

* If string consists entirely of slash characters, a single slash character is written to standard output and
processing ends.

* If there are any trailing slash characters in string, they are removed.

* If there are no slash characters remaining in string, a period character is written to standard output and
processing ends.

e If there are trailing non-slash characters in string, they are removed.
e If there are any trailing slash characters in string, they are removed.
* If the remaining string is empty, string is set to a single slash character.

Operands
The string operand is the pathname of which dirname will return the directory portion of.

Exit Status
* 0 on success

e >0 if an error occurs.

Related information

* ["basename - Return non-directory portion of path name” on page 88|

Examples
1. Set the shell variable FOO to "/usr/bin".
FOO=$ (dirname /usr/bin/trail)

Qshell 99

file - Determine file type
Synopsis

file [-m MagicFile] [-f ListFile] [file ...]
file [-c] [-m MagicFile]
Description

In the first synopsis form, the file utility determines the type of object for the specified file. The file
utility will make a best guess determination of the type. The file type is then written to standard output.
If the pathname is determined to be a regular file, file examines the first 1024 bytes to determine the
type. By default, the file utility uses the /etc/magic file to help identify files that have defined patterns
at specified byte offsets within the object.

In the second synopsis form, the file utility checks the specified MagicFile for format errors.

Options
-c Checks a specified magic file for format errors.

-f ListFile
Specifies a file containing a list of file names to be tested. This ListFile must have only one file per
line and not contain leading or trailing spaces.

-m MagicFile
Specifies the name of the magic file to use. The default magic file is /etc/magic.

Operands
Each file is a pathname of a file to be tested.

Exit Status
* 0 when successful

* >0 when an error occurred

Related information
* [‘find - Find files”]|

find - Find files
Synopsis

find [-H | -L | -P] [-Xdx] [-f file] file ... [expression]
Description

The find utility recursively descends the directory tree for each file listed, evaluating an expression
(composed of the "primaries” and "operands” listed below) in terms of each file in the tree.
Options

-H Symbolic links on the command line are followed. Symbolic links encountered in the tree
traversal are not followed. The file information and file type returned for each symbolic link
specified on the command line is for the file referenced by the link. If the referenced file does not
exist, the file information and type will be for the link itself.

-L Both symbolic links on the command line and symbolic links encountered in the tree traversal are

100 iSeries: Qshell

followed. The file information and file type returned for each symbolic link is for the file
referenced by the link. If the referenced file does not exist, the file information and type will be
for the link itself.

-P No symbolic links are followed. The file information and file type returned for each symbolic link
are for the link itself.

-X A modification to permit find to be safely used in conjunction with xargs. If a file name contains
any of the delimiting characters used by xargs, a diagnostic message is displayed on standard
error, and the file is skipped. The delimiting characters include single (") and double (") quotation
marks, backslash (\), space, tab and newline characters.

-d find performs a depth-first traversal. The directories are visited in post-order and all entries in a
directory will be acted on before the directory itself. By default, find visits directories in
pre-order, or before their contents. Note, the default is not a breadth-first traversal.

-f Specify a file hierarchy for find to traverse. File hierarchies may also be specified as the operands
immediately following the options.

-X Prevent find from descending into directories that have a device number different than that of
the file from which the descent began.

Primaries

-atime n
True if the difference between the file last access time and the time find was started, rounded up
to the next full 24-hour period, is n 24-hour periods.

-ctime n
True if the difference between the time of last change of file status information and the time find
was started, rounded up to the next full 24-hour period, is n 24-hour periods.

-exec utility [argument ...] ;
True if the program named utility returns a zero value as its exit status. Optional arguments may
be passed to the utility. The expression must be terminated by a semicolon (;). If the string "{}"
appears anywhere in the utility name or the arguments it is replaced by the path name of the
current file. The utility is run from the directory from which find was run. Since the semicolon is
also a special character for the shell, you may need to escape the semicolon so it is passed as an
argument to find.

-group gname
True if the file belongs to the group gname. If gname is numeric and there is no such group name,
then gname is treated as a group identifier.

-inum n
True if the file has inode number 7.

-links n
True if the file has n links.

-Is This primary always evaluates to true. The following information for the current file is written to
standard output:
* inode number
* size in kilobytes
* file permissions
¢ number of hard links
* owner
s group
* size in bytes

* last modification time

Qshell 101

* path name

If the file is a block or character special file, the major and minor numbers will be displayed
instead of the size in bytes. If the file is a symbolic link, the path name of the linked-to file will
be displayed preceded by "->'.

-mtime 7
True if the difference between the file last modification time and the time find was started,
rounded up to the next full 24-hour period, is n 24-hour periods.

-ok utility [argument...] ;
The -ok primary is identical to the -exec primary with the exception that find requests user
affirmation for running the utility by printing a message to standard error and reading a
response. If the response is other than the first character of the YES response in the current locale,
the utility is not run and the value of the ok expression is false.

-name pattern
True if the last component of the path name being examined matches pattern. Special shell pattern
matching characters ([,], ¥, and ?) may be used as part of pattern. These characters may be
matched explicitly by escaping them with a backslash (\).

-newer file
True if the current file has a more recent last modification time than file.

-nouser
True if the file belongs to an unknown user.

-nogroup
True if the file belongs to an unknown group.

-path pattern
True if the path name being examined matches pattern. Special shell pattern matching characters
([, 1, *, and ?) may be used as part of pattern. These characters may be matched explicitly by
escaping them with a backslash (\). Slashes (/) are treated as normal characters and do not need
to be matched explicitly.

-perm [-]mode
The mode may be either symbolic or an octal number in the formats supported by the
[Change file modes” on page 92| command. If the mode is symbolic, a starting value of zero is
assumed and the mode sets or clears permissions without regard to the process file mode creation
mask. If the mode is octal, only bits 00777 (S_IRWXU | S_IRWXG | S_IRWXO) of the file’s mode
bits participate in the comparison. If the mode is preceded by a dash (-), this primary evaluates to
true if at least all of the bits in the mode are set in the file’s mode bits. If the mode is not preceded
by a dash, this primary evaluates to true if the bits in the mode exactly match the file’s mode bits.
Note, the first character of a symbolic mode may not be a dash (-).

-print This primary always evaluates to true. It prints the path name of the current file to standard
output. The expression is appended to the user specified expression if neither -exec, -Is nor -ok is
specified.

-prune
This primary always evaluates to true. It causes find to not descend into the current file. Note,
the -prune primary has no effect if the -d option was specified.

-size n[c]
True if the file’s size, rounded up, in 512-byte blocks is n. If n is followed by ¢, then the primary
is true if the file’s size is n bytes.

-type t
True if the file is of the specified type. Possible file types are as follows:
* b for block special

* c for character special

102 iSeries: Qshell

¢ d for directory
¢ f for regular file
* 1 for symbolic link
* p for FIFO
* s for socket
-user uname

True if the file belongs to the user uname. If uname is numeric and there is no such user name,
then uname is treated as a user identifier.

All primaries which take a numeric argument allow the number to be preceded by a plus sign (+) or a
minus sign (-). A preceding plus sign means "more than n”, a preceding minus sign means "less than n”
and neither means "exactly n".

Operators

The primaries may be combined using the following operators. The operators are listed in order of
decreasing precedence.

(expression)
This evaluates to true if the parenthesized expression evaluates to true.

lexpression
This is the unary NOT operator. It evaluates to true if the expression is false.

expression -and expression
The -and operator is the logical AND operator. As it is implied by the juxtaposition of two
expressions it does not need to be specified. The expression evaluates to true if both expressions
are true. The second expression is not evaluated if the first expression is false.

expression -or expression
The -or operator is the logical OR operator. The expression evaluates to true if either the first or
the second expression is true. The second expression is not evaluated if the first expression is
true.

All operands and primaries must be separate arguments to the find utility. Primaries which themselves
take arguments expect each argument to be a separate argument to find. Notes

1. The special characters used by find are also special characters to many shell programs. In particular,
the characters *, [,], ?, (,), !, and ; may need to be escaped from the shell.

Exit Status
* 0 on success
e >0 if an error occurs

Related information

+ [“chmod - Change file modes” on page 92|

* [‘file - Determine file type” on page 100

» ['xargs - Construct argument lists and invoke utility” on page 63|

Examples
1. Find all *.class files starting at the directory "/project/java/class”.
find /project/java/class -name 'x.class'

2. Find all the *java files that have the "import java.awt;” string in them starting at the directory,
"/project/java/code”.
find /project/java/code -name '*.java' -exec grep 'import java.awt;' {} \;

Qshell 103

3. Find all the *.class files starting at the directory "/project/java/class” and remove the files.
find /project/java/class -name 'x.class' -exec rm {} \;

4. Find all the files that belong to the user "abbey” starting at the directory, "/project”.
find /project -user abbey

gencat - Generate a formatted message catalog
Synopsis

gencat [-C ccsid] [-m mode] [-t text] catfile msgfile ...
Description

The gencat utility generates a formatted message catalog catfile from the message text source file msgfile.
You can specify up to 300 message text source files. Message text source files are processed in the
sequence specified. Each successive source file modifies the catalog. If a message number in the source
file already exists in the message catalog, the new message text defined in the source file replaces the old
message text in the message catalog file. If a message number in the source file does not already exist in
the message catalog, the message information is added to the message catalog.

Options

-C ccsid
Create the message catalog and store the message text in the specified ccsid.

-m mode
Set the file permission bits of the message catalog to the specified mode. The mode argument can
be in any of the formats supported by the|’chmod - Change file modes” on page 92| command. If
a symbolic mode is specified, the operation characters + and - are interpreted relative to an initial
mode of "a=rw".

-t text Assign the specified fext to the message catalog object. Assigning text to objects is dependent on
the support provided by the file system or object type used for the message catalog.

Operands
The catfile operand specifies the path to the message catalog to be changed or created. If the -m option is
not specified, the message catalog is created using a default mode that allows read and write permission

for the owner, group, and others (0666) as modified by the current file creation mask.

Each msgfile specifies the path to an input message text source file. There is a limit of 300 message text
source files.

Exit Status
* 0 when successful

¢ >0 when unsuccessful

Related information

“dspmsg - Display message from message catalog” on page 133|

Examples

1. Create a message catalog using one message text source file.
gencat product.cat msg.src

2. Create a message catalog using multiple message text source files.
gencat product.cat msgl.src msg2.src msg3.src

3. Create a message catalog and set the mode and ccsid.

104 iSeries: Qshell

gencat -C 37 -m a-w product.cat msg.src

getconf - Get configuration values
Synopsis

getconf [name [pathname]]

Description

The getconf utility displays the POSIX configuration variables. If you specify name, getconf displays the

value of the configuration variable on standard output. When the configuration variable depends on a

path name you must specify pathname.

When no arguments are specified, getconf displays a list of all the configuration variables and their
values. For those configuration variables that depend on a path name, getconf uses /.

Options
None.
Operands

If specified, name is one of these values:

CCSID

Represents the default coded character set identifier (CCSID) used internally for integrated file

system path names.

CHOWN_RESTRICTED
Restrict the use of chown on the object represented by pathname to a job with appropriate

privileges.
CLK_TCK

The number of clock ticks in a second.
LINK_MAX

Maximum number of links the object represented by pathname can have.
NAME_MAX

Maximum number of bytes in a file name (the last component of the path name).

NGROUPS_MAX
Maximum number of supplementary group IDs that can be associated with a job.

NO_TRUNC
Generate an error if a file name is longer than NAME_MAX.

OPEN_MAX
Maximum number of files a single job can have open at one time.

PAGE_SIZE
Represents the system hardware page size.

PAGESIZE
Represents the system hardware page size.

PATH_MAX
Maximum number of bytes in a complete path name.

PIPE_BUF
Maximum number of bytes that can be written atomically to a pipe.

Qshell

105

STREAM_MAX
Maximum number of streams that a job can have open at one time.

THREAD_SAFE
The object represented by pathname resides in a thread-safe file system.

Exit Status
* 0 when successful.
¢ >0 when successful.

Examples

1. Determine if the directory /home is in a thread-safe file system:
getconf THREAD_SAFE /home

2. Display the maximum number of bytes in a file name:
getconf NAME_MAX

3. Display all of the configuration variables:
getconf

head - Copy the first part of files
Synopsis

head [-n count] [file ...]
Description

The head utility displays the first count lines of each of the specified files, or of standard input if no files
are specified. If -n is not specified, then the first 10 lines of the file are displayed.

If more than one file is specified, each file is preceded by a header consisting of the string "==> XXX <=="
where XXX is the name of the file.

Options

-n Display count number of lines.

Exit Status
* 0 on success

e >0 if an error occurs.

Related information

* [‘cat - Concatenate and print files” on page 88

+ [“tail - Display the last part of a file” on page 12§

Examples
1. To display the first 20 lines in the file "myfile”.
head -n 20 myfile

In - Link files
Synopsis

In [-fs] source_file [target_file]

In [-fs] source_file ... [target_dir]

106 iSeries: Qshell

Description

The In utility creates a new directory entry (linked file) which has the same modes as the original file. It
is useful for maintaining multiple copies of a file in many places at once without using up storage for the
copies. Instead, a link "points to” the original copy. There are two types of links: hard links and symbolic
links. How a link "points to” a file is one of the differences between a hard or symbolic link.

By default In makes hard links. A hard link to a file is indistinguishable from the original directory entry;
any changes to a file are effective independent of the name used to reference the file. Hard links may not
normally refer to directories and may not span file systems.

A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems
and may refer to directories.

Given one or two arguments, In creates a link to an existing file source_file. If target_file is given, the link
has that name. Target_file may also be a directory in which to place the link. Otherwise it is placed in the
current directory. If only the directory is specified, the link will be made to the last component of
source_file.

Given more than two arguments, In makes links in target_dir to all the named source files. The links
made will have the same name as the files being linked to.

Options
-f Unlink any already existing file, permitting the link to occur.
-s Create a symbolic link.

Exit Status
* 0 when success

* >0 when an error occurs

Related information

* [“cp - Copy files” on page 97|

[‘s - List directory contents”]

* ['mv - Move files” on page 112|

* ['rm - Remove directory entries” on page 125

¢ [‘rmdir - Remove directories” on page 126|

Examples
1. Create a symbolic link from the file, "/usr/bin/perl5” to the file "/usr/bin/perl”.
Tn -s /usr/bin/per15 /usr/bin/perl

2. Create a new link from the file " /usr/bin/qsh” to the file "/bin/qsh” and unlink the file "/bin/qsh” if
it exists.

In -f /usr/bin/gsh /bin/gsh

Is - List directory contents
Synopsis

Is [-ACFLRSTacdfiloqrstul] [file ...]

Description

Qshell 107

For each operand that names a file of a type other than directory, Is displays its name as well as any
requested, associated information. For each operand that names a file of type directory, Is displays the
names of files contained within that directory, as well as any requested, associated information.

If no operands are given, the contents of the current directory are displayed. If more than one operand is
given, non-directory operands are displayed first; directory and non-directory operands are sorted
separately and in lexicographical order.

Options

-A List all entries except for ".” and "..".

-C Force multi-column output; this is the default when output is to a terminal.

-F Display a slash (/) immediately after each path name that is a directory, an asterisk (*) after each
that is executable, and an at sign (@) after each symbolic link.

-L If argument is a symbolic link, list the file or directory the link references rather than the link
itself.

-R Recursively list subdirectories.

-S Display the CCSID attribute for the file.

-T Display complete time information for the file, including month, day, hour, minute, second, and
year when the -1 option is also specified.

-a Include directory entries whose names begin with a dot (.).

-c Use time when file status was last changed for sorting or printing.

-d Directories are listed as plain files (not searched recursively) and symbolic links in the argument
list are not indirected through.

-f Output is not sorted.

-i For each file, print the file’s file serial number (inode number).

-1 (Lowercase letter “ell.”) List in long format. See Extended Description below for details. If the
output is to a terminal, a total sum for all the file sizes is output on a line before the long listing.

-0 Include the file flags in a long (1) output.

-q Force printing of non-graphic characters in file names as the question mark (?) character. This is
the default when output is to a terminal.

-r Reverse the order of the sort to get reverse lexicographical order or the oldest entries first.

-5 Display the number of bytes actually allocated for each file, in units of 1024 bytes, where partial
units are rounded up to the next integer value.

-t Sort by time modified (most recently modified first) before sorting the operands by
lexicographical order.

-u Use time of last access, instead of last modification of the file for sorting (-t) or printing (-1).

-1 (The numeric digit one) Force output to be one entry per line. This is the default when output is

not to a terminal.

The -1, -C, and -1 options all override each other. The last one specified determines the format used.

The -c, and -u options override each other. The last one specified determines the file time used.

By default, Is lists one entry per line to standard output; the exceptions are to terminals or when the -C
option is specified.

108

iSeries: Qshell

File information is displayed with one or more blanks separating the information associated with the -i,
-s, -1, and -S options.

Extended Description

If the -1 option is specified, the following long format information is displayed for each file:
e file mode,

* number of links,

* owner name,

* group name,

¢ number of bytes in the file,

e time the file was last modified, and

¢ the path name.

If the file was modified within six months of the current date, the time is displayed as the abbreviated
month, day-of-month, hour, and minute. Otherwise the time is displayed as the abbreviated month,
day-of-month, and four-digit year.

In addition, for each directory whose contents are displayed, the total number of bytes used by the files
in the directory is displayed on a line by itself immediately before the information for the files in the
directory.

If the owner or group names are not a known user or group name the numeric identifiers are displayed.

If the file is a character special or block special file, the major and minor device numbers for the file are
displayed in the size field. If the file is a symbolic link the pathname of the linked-to file is preceded by
//_>N‘

The file mode consists of the entry type, owner permissions, group permissions, and other permissions.
The entry type character describes the type of file, as follows:

* b for a block special file.

* c for a character special file.
¢ d for a directory.

* 1 for a symbolic link.

* p for a pipe.

* s for a socket.

* - for a regular file.

The owner permissions, group permissions, and other permissions are each three characters. Each field
has three character positions:

* For the first position, if the value is 1, the file is readable. If the value is -, it is not readable.
* For the second position, if the value is w, the file is writable. If the value is -, it is not writable.
* For the third position,

— If the value is S for the owner permissions, the set-user-ID mode is set. If the value is S for the
group permissions, the set-group-ID mode is set.

— If the value is s for the owner permissions, the file is executable and the set-user-ID mode is set. If
the value is s for the group permissions, the file is executable and the set-group-ID mode is set.

— If the value is X, the file is executable or the directory is searchable.

— If the value is -, the object is not executable or searchable.

Environment Variables

Qshell 109

Is is affected by the following environment variables:

COLUMNS
If this variable contains a string representing a decimal integer, it is used as the column position
width for displaying multiple-text-column output. The 1s utility calculates how many path name
text columns to display based on the width provided. See the -C option.

Exit Status
* 0 on success

e >0 if an error occurs.

Related information

* [“chgrp - Change file group ownership” on page 91|

* ["chmod - Change file modes” on page 92|

* [‘chown - Change file ownership” on page 95|

* [“cp - Copy files” on page 97

* ["In - Link files” on page 106|
[“mkdir - Make directories”]

+ [‘mv - Move files” on page 112|

[‘rm - Remove directory entries” on page 125

[‘rmdir - Remove directories” on page 126]

Examples

1. Display the list of files in the current directory using the long format.
Is -1

2. Display all date and time details for the file "myfile”.
1s -1T myfile
-rwxrwxrwx 1 abbey 0 592 Sep 12 22:47:01 1998 myfile

mkdir - Make directories
Synopsis

mkdir [-p] [-m mode] directory ...
Description

The mkdir utility creates the directories named as operands, in the order specified, using mode
rwxrwxrwx (0777) as modified by the current file creation mask.

The user must have write permission in the parent directory.

Options

-m Set the file permission bits of the final created directory to the specified mode. The mode
argument can be in any of the formats supported by the [“chmod - Change file modes” on page|
ﬁcommand. If a symbolic mode is specified, the operation characters + and - are interpreted
relative to an initial mode of "a=rwx".

&Y Create intermediate directories as required. If this option is not specified, the full path prefix of
each operand must already exist. Intermediate directories are created with permission bits of
rwxrwxrwx (0777) as modified by the current file creation mask, plus write and search
permission for the owner.

Exit Status

110 iSeries: Qshell

e 0 if successful

e >0 if an error occurred.

Related information

* [“‘chmod - Change file modes” on page 92|

* [‘rmdir - Remove directories” on page 126|

* [‘umask - Get or set the file mode creation mask” on page 131|

Examples

non

1. Create the directories "new”, "java”, "test”, "dir”, "4"” and "bob” and set the mode to read, write and
execute for owner.

mkdir -p -m 700 /new/java/test/dir/4/bob

mkfifo - Make FIFO special files
Synopsis

mkfifo [-p] [-m mode] file ...
Description

The mkfifo utility creates the FIFO special files named as operands, in the order specified, using a
default mode that allows read and write permission for the owner, group, and others (0666) as modified
by the current file creation mask.

The user must have write permission in the parent directory.

Options

-m mode
Set the file permission bits of the FIFO special file to the specified mode. The mode argument can
be in any of the formats supported by the|’chmod - Change file modes” on page 92| command. If
a symbolic mode is specified, the operation characters + and - are interpreted relative to an initial
mode of "a=rw".

P Create intermediate directories as required. If this option is not specified, the full path prefix of
each file must already exist. Intermediate directories are created with a default mode that allows
read, write, and search permission for the owner, group, and others (0777) as modified by the
current file creation mask.

Operands
Each file is the path name of FIFO special file.

Exit Status
e 0 if successful
e >0 if an error occurred.

Related information

* ["chmod - Change file modes” on page 92|

* [‘mkdir - Make directories” on page 11(}

* ["umask - Get or set the file mode creation mask” on page 131|

Examples
1. Create the FIFO special files “fifol” and “fifol”:

Qshell 111

mkfifo fifol fifo2

2. Create the the FIFO special file “fifol” and set the permissons to read, write and execute for the
owner:

mkfifo -m 700 myfifo
3. Create the the FIFO special file “/dirl/dir2/fifol” and each directory in the path that does not exist:
mkfifo -p /dirl/dir2/fifol

mv - Move files
Synopsis

mv [-f | -i] source_file target_file
mv [-f | -i] source_file ... target_dir
Description

In its first form, the mv utility renames the file named by the source_file operand to the destination path
named by the target_file operand. This form is assumed when the last operand does not name an already
existing directory.

In its second form, mv moves each file named by a source_file operand to a destination file in the existing
directory named by the farget_dir operand. The destination path for each source_file operand is the path
name produced by the concatenation of target_dir, a slash, and the final path name component from
source_file.

It is an error for either the source_file operand or the destination path to specify a directory except when
both are directories.

If the destination path does not have a mode which permits writing, mv prompts the user for
confirmation as specified for the -i option.

Options

-f Do not prompt for confirmation before overwriting the destination path. The -i option is ignored
if the -f option is specified.

-i Write a prompt to standard error before moving a file that would overwrite an existing file. If the
response from the standard input begins with the first character for the YES response in the
current locale, the move is attempted.

Exit Status
* 0 on success

¢ >0 if an error occurs

Related information

* [‘cp - Copy files” on page 97

* ["In - Link files” on page 106

* ["ls - List directory contents” on page 107

* ['rm - Remove directory entries” on page 125

Examples
1. Move the file "perl5” into the directory "/usr/bin” and prompt the user to overwrite if the file exists.

mv -i perl5 /usr/bin

112 iSeries: Qshell

od - Dump files in various formats
Synopsis

od [-A address_base] [-j skip] [-N count] [-t type_string] [-Cbcdosvx] [file...]
Description

The od utility writes the contents of the specified files to standard output in a user-specified format. If the
file parameter is not given, the od command reads standard input. The format is specified by the -t flag.
If no format type is specified, -t oS is the default.

Options
-A address_base
Specifies the format for the output offset base. The address_base can be one of these values:
* d for decimal,
* o for octal,
* x for hexadecimal, or

* n for none.

In the case of n, the offset base is not displayed. If -A is not specified, -A o is the default.
-b Output bytes in octal. It is equivalent to -t 01.
-C Display the CCSID of the file to standard output before the rest of the output is written.
-c Output bytes as characters. It is equivalent to -t c.
-d Output bytes in unsigned decimal. It is equivalent to -t u2.

-j skip Specifies the number of bytes to skip before beginning to display output. If more than one file is
specified, the number of bytes will be used on the concatenated input of all files specified. An
error will occur if this number is larger than the size of the concatenated inputs. This value can
be specified in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal (default).

-N count
Specifies the number of bytes to be written. By default, the whole file will be written. This value
can be specified in hexadecimal (preceded by 0x or 0X), octal (preceded by 0), or decimal

(default).
-0 Output bytes in octal. It is equivalent to -t 02.
-s Output bytes in signed decimal. It is equivalent to -t d2.

-t type_string
Specifies one or more output types. The type specified must be a string containing all of the
formatting types that you want. The type_string can contain these values:

 a for character,

* ¢ for character,

* d for signed decimal,

* f for floating point,

* o for octal,

* u for unsigned decimal, or

* x for hexadecimal.

The type specifications of a and ¢ may give unexpected results since they depend on the CCSID

on the data. The a type specifier displays non-printable characters as named characters. The ¢
type specifier displays non-printable characters as three digit octal numbers.

Qshell 113

The type specifications of d, o, u and x can also be followed by 1, 2, 4, C, S, I or L. These specify
the number of bytes to be transformed by each instance of the output type. The values C, S, I
and L correspond to char, short, int and long.

The type specification of f can be followed by by 4, 8, F, D or L. These specify the number of
bytes to be transformed by each instance of the output type. The values E D and L correspond to
float, double, and long double. If -t is not specified, the default is -t oS.

-V Write all input data. Without this option, repeated output lines will not be written. When repeats
occur, only an asterisk (*) will be written.

-X Output bytes in hexadecimal. It is equivalent to -t x2.

Operands

Each file is a path name of an object to be written to standard output. If no file operands are specified,
standard input will be used.

Exit Status
* 0 when successful

¢ >0 when an error occurred.

Related information

* [“cat - Concatenate and print files” on page 88

s [‘pr - Print files” on page 121]

Examples

1. Dump a file in hexadecimal format.
od -tx output.txt

2. Dump the first 50 bytes of a file.
od -N50 output.txt

3. Skip the first 100 bytes and then dump the rest of a file.
od -j100 output.txt

4. Dump a file in both hexadecimal and character format.
od -txl -tc output.txt

pax - Portable archive interchange
Synopsis

pax [-cdnv] [-E limit] [-f archive] [-s replstr ...] [-U user ...] [-G group ...]1 [-T [from_date][,to_date] ...] [pattern
.l

pax -r [-ediknuvDYZ] [-C ccsid] [-E limit] [-f archive] [-o options ...] [-p string ...] [-s replstr ...] [-U user ...]
[-G group ...] [-T [from_date][,to_date] ...] [pattern ...]

pax -w [-dituvHLPX] [-b blocksize] [[-a] [-f archivell [-x format] [-B bytes] [-s replstr ...] [-o options ...] [-U
user ...] [-G group ...] [-T [from_date][,to_date]l/[c]lm]] ...] [file ...]

pax -r -w [-dikIntuvDHLPXYZ] [-p string ...] [-s replstr ...] [-U user ...] [-G group ...] [-T
[from_date][,to_date][/[c]lm]] ...] [file ...] directory

Description

114 iSeries: Qshell

The pax utility reads, writes, and lists the members of an archive file, and copies directory hierarchies.
pax operation is independent of the specific archive format, and supports a wide variety of different
archive formats. A list of supported archive formats can be found under the description of the -x option.

The presence of the -r and the -w options specifies which of the following functional modes pax will
operate under: list, read, write, and copy.

<none>List
pax writes a table of contents of the members of the archive file read from whose path names
match the specified patterns. The table of contents contains one file name per line and is written
using single line buffering.

-r Read
pax extracts the members of the archive file read from the with path names matching the
specified patterns. The archive format and blocking is automatically determined on input. When
an extracted file is a directory, the entire file hierarchy rooted at that directory is extracted. All
extracted files are created relative to the current file hierarchy. The setting of ownership, access
and modification times, and file mode of the extracted files are discussed in more detail under
the -p option.

-w Write
pax writes an archive containing the file operands to standard output using the specified archive
format. When no file operands are specified, a list of files to copy with one per line is read from
standard input. When a file operand is also a directory, the entire file hierarchy rooted at that
directory will be included.

-1 -w Copy
pax copies the file operands to the destination directory. When no file operands are specified, a list
of files to copy with one per line is read from standard input. When a file operand is also a
directory the entire file hierarchy rooted at that directory will be included. The effect of the copy
is as if the copied files were written to an archive file and then subsequently extracted, except
that there may be hard links between the original and the copied files (see the -1 option below).

Warning: The destination directory must not be one of the file
operands or a member of a file hierarchy rooted at one of
the file operands. The result of a copy under these
conditions is unpredictable.

Note: Archive files must be in CCSID 819 for portability with
other platforms.

While processing a damaged archive during a read or list operation, pax will attempt to recover from
media defects and will search through the archive to locate and process the largest number of archive
members possible (see the -E option for more details on error handling).

Options

-r Read an archive file from standard input and extract the specified files. If any intermediate
directories are needed in order to extract an archive member, these directories will be created as if
mkdir was called with the bitwise inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO as the
mode argument. When the selected archive format supports the specification of linked files and
these files cannot be linked while the archive is being extracted, pax will write a diagnostic
message to standard error and exit with a nonzero exit status at the completion of operation.

-w Write files to the standard output in the specified archive format. When no file operands are
specified, standard input is read for a list of path names with one per line without any leading or
trailing <blanks>.

-a Append files to the end of an archive that was previously written. If an archive format is not

Qshell 115

specified with a -x option, the format currently being used in the archive will be selected. Any
attempt to append to an archive in a format different from the format already used in the archive
will cause pax to exit immediately with a non-zero exit status. The blocking size used in the
archive volume where writing starts will continue to be used for the remainder of that archive
volume.

-b blocksize

-C

When writing an archive, block the output at a positive decimal integer number of bytes per
write to the archive file. The blocksize must be a multiple of 512 bytes with a maximum of 32256
bytes. A blocksize can end with k or b to specify multiplication by 1024 (1K) or 512. A pair of
blocksizes can be separated by x to indicate a product. When blocking is not specified, the default
blocksize is dependent on the specific archive format being used (see the -x option).

Match all file or archive members except those specified by the pattern and file operands.

Cause files of type directory being copied or archived, or archive members of type directory
being extracted, to match only the directory file or archive member and not the file hierarchy
rooted at the directory.

-f archive

-i

-n

-0

Specify archive as the path name of the input or output archive, overriding the default standard
input (for list and read) or standard output (for write). A single archive may span multiple files
and different archive devices. When required, pax will prompt for the path name of the file or
device of the next volume in the archive.

Interactively rename files or archive members. For each archive member matching a pattern
operand or each file matching a file operand, pax will prompt to the terminal giving the name of
the file, its file mode and its modification time. pax then reads a line from the terminal. If this
line is blank, the file or archive member is skipped. If this line consists of a single period, the file
or archive member is processed with no modification to its name. Otherwise, its name is replaced
with the contents of the line. pax will immediately exit with a non-zero exit status if EOF is
encountered when reading a response. If the LC_TIME environment variable is set, the
modification time is formatted using the format specified by the d_t_fmt keyword in the
LC_TIME category of the specified locale.

Do not overwrite existing files.

(The lowercase letter ell) Link files. In the copy mode (-r -w), hard links are made between the
source and destination file hierarchies whenever possible.

Select the first archive member that matches each pattern operand. No more than one archive
member is matched for each pattern. When members of type directory are matched, the file
hierarchy rooted at that directory is also matched (unless -d is also specified).

Information to modify the algorithm for extracting or writing archive files which is specific to the
archive format specified by -x. In general, options take the form: name=value.

-p string

116

Specify one or more file characteristic options (privileges). The string is a string specifying file
characteristics to be retained or discarded on extraction. The string consists of the specification
characters a, e, m, o, and p. Multiple characteristics can be concatenated within the same string
and multiple -p options can be specified. The meaning of the specification characters are as
follows:

a Do not preserve file access times. By default, file access times are preserved whenever
possible.

e Preserve everything, the user ID, group ID, file mode bits, file access time, and file
modification time. This is intended to be used by someone with all the appropriate
privileges in order to preserve all aspects of the files as they are recorded in the archive.
The e flag is the sum of the o and p flags.

iSeries: Qshell

-S

'

m Do not preserve file modification times. By default, file modification times are preserved
whenever possible.

o Preserve the user ID and group ID.

p Preserve the file mode bits. This intended to be used by a user with regular privileges
who wants to preserve all aspects of the file other than the ownership. The file times are
preserved by default, but two other flags are offered to disable this and use the time of
extraction instead.

In the preceding list, preserve indicates that an attribute stored in the archive is given to the
extracted file, subject to the permissions of the invoking process. Otherwise the attribute of the
extracted file is determined as part of the normal file creation action. If the preservation of any of
these items fails for any reason, pax will write a diagnostic message to standard error. Failure to
preserve these items affects the final exit status, but will not cause the extracted file to be deleted.
If the file characteristic letters in any of the strings are duplicated or conflict with each other, the
one given last will take precedence. For example, if -p eme is specified, file modification times
are still preserved.

Modify the file or archive member names specified by the pattern or file operands according to
the substitution expression replstr, using the syntax of the regular expressions. The format of these
regular expressions are:

/old/new/ [gp]

Old is a basic regular expression and new can contain an ampersand (&), n (where n is a digit)
back-references, or subexpression matching. The old string may also contain <newline>
characters. Any non-null character can be used as a delimiter (/ is shown here). Multiple -s
expressions can be specified. The expressions are applied in the order they are specified on the
command line, terminating with the first successful substitution. The optional trailing g continues
to apply the substitution expression to the path name substring which starts with the first
character following the end of the last successful substitution. The first unsuccessful substitution
stops the operation of the g option. The optional trailing p will cause the final result of a
successful substitution to be written to standard error in the following format:

<original path name> >> <new path name>

File or archive member names that substitute to the empty string are not selected and will be
skipped.

Reset the access times of any file or directory read or accessed by pax to be the same as they
were before being read or accessed by pax.

Ignore files that are older (having a less recent file modification time) than a pre-existing file or
archive member with the same name. During read, an archive member with the same name as a
file in the file system will be extracted if the archive member is newer than the file. During write,
a file system member with the same name as an archive member will be written to the archive if
it is newer than the archive member. During copy, the file in the destination hierarchy is replaced
by the file in the source hierarchy or by a link to the file in the source hierarchy if the file in the
source hierarchy is newer.

During a list operation, produce a verbose table of contents using the format of the Is utility with
the -1 option. For path names representing a hard link to a previous member of the archive, the
output has the format: <Is -1 listing> == <link name> For path names representing a symbolic
link, the output has the format: <Is -1 listing> = ><link name> Where <lIs -1 listing> is the output
format specified by the 1s utility when used with the -1 option. Otherwise for all the other
operational modes (read, write, and copy), path names are written and flushed to standard error
without a trailing newline as soon as processing begins on that file or archive member. The
trailing newline is not buffered, and is written only after the file has been read or written. If the

Qshell 117

=X

LC_TIME environment variable is set, the output time is formatted using the format specified by
the d_t_fmt keyword in the LC_TIME category of the specified locale.

Specify the output archive format, with the default format being ustar. pax currently supports the
following formats:

cpio The extended cpio interchange format specified in the 1003.2 standard. The default
blocksize for this format is 5120 bytes.

bepio The old binary cpio format. The default blocksize for this format is 5120 bytes. This
format is not very portable and should not be used when other formats are available.

svédcpio
The System V release 4 cpio. The default blocksize for this format is 5120 bytes.

svdcrc The System V release 4 cpio with file crc checksums. The default blocksize for this format
is 5120 bytes.

tar The old BSD tar format as found in BSD4.3. The default blocksize for this format is 10240
bytes. Path names stored by this format must be 100 characters or less in length. Only
regular files, hard links, soft links, and directories will be archived (other file system
types are not supported). For backward compatibility with even older tar formats, a -o
option can be used when writing an archive to omit the storage of directories. This option
takes the form: -o -Cm -write_opt=nodir

ustar The extended tar interchange format specified in the 1003.2 standard. The default
blocksize for this format is 10240 bytes. Path names stored by this format must be 250
characters or less in length.

pax will detect and report any file that it is unable to store or extract as the result of any specific
archive format restrictions. The individual archive formats may impose additional restrictions on
use. Typical archive format restrictions include (but are not limited to): file path name length, file
size, link path name length and the type of the file.

Run pax as old tar.

Limit the number of bytes written to a single archive volume to bytes. The bytes limit can end
with m, k, or b to specify multiplication by 1048576 (1M), 1024 (1K) or 512. A pair of bytes limits
can be separated by x to indicate a product.

-C ccsid

Create the files extracted from the archive in the specified ccsid. There must be a valid translation
from CCSID 819 to the specified ccsid. This option overrides the value of the QIBM_CCSID
environment variable.

This option is the same as the -u option, except that the file inode change time is checked instead
of the file modification time. The file inode change time can be used to select files whose inode
information (for example, uid, gid, and so on) is newer than a copy of the file in the destination
directory.

Limit the number of consecutive read faults while trying to read a flawed archives. With a
positive limit, pax will attempt to recover from an archive read error and will continue processing
starting with the next file stored in the archive. A limit of 0 will cause pax to stop operation after
the first read error is detected on an archive volume. A limit of NONE will cause pax to attempt
to recover from read errors forever. The default limit is a small positive number of retries.

Warning: Using this option with NONE should be used with

118

extreme caution as pax may get stuck in an infinite loop
on a very badly flawed archive.

iSeries: Qshell

Select a file based on its group name, or when starting with a #, a numeric gid. A " can be used
to escape the #. Multiple -G options may be supplied and checking stops with the first match.

Follow only command line symbolic links while performing a physical file system traversal.
Follow all symbolic links to perform a logical file system traversal.
Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

Allow files to be selected based on a file modification or inode change time falling within a
specified time range of from_date to to_date (the dates are inclusive). If only a from_date is
supplied, all files with a modification or inode change time equal to or younger are selected. If
only a to_date is supplied, all files with a modification or inode change time equal to or older will
be selected. When the from_date is equal to the to_date, only files with a modification or inode
change time of exactly that time will be selected.

When pax is in the write or copy mode, the optional trailing field [c][m] can be used to
determine which file time (inode change, file modification or both) are used in the comparison. If
neither is specified, the default is to use file modification time only. The m specifies the
comparison of file modification time (the time when the file was last written). The ¢ specifies the
comparison of inode change time (the time when the file inode was last changed; for example, a
change of owner, group, mode, and so on). When ¢ and m are both specified, then the
modification and inode change times are both compared. The inode change time comparison is
useful in selecting files whose attributes were recently changed or selecting files which were
recently created and had their modification time reset to an older time (as what happens when a
file is extracted from an archive and the modification time is preserved). Time comparisons using
both file times is useful when pax is used to create a time based incremental archive (only files
that were changed during a specified time range will be archived).

A time range is made up of seven different fields and each field must contain two digits. The
format is:

[ccLyy[mm[dd[hh]1]1]1]mm[.ss]

where cc is the century, yy is the last two digits of the year, the first mm is the month (from 01 to
12), dd is the day of the month (from 01 to 31), hh is the hour of the day (from 00 to 23), the
second mm is the minute (from 00 to 59), and ss is the seconds (from 00 to 59). The minute field
mm is required, while the other fields are optional and must be added in the following order: hh,
dd, mm, yy, cc.

The ss field may be added independently of the other fields. Time ranges are relative to the
current time, so -T 1234/cm would select all files with a modification or inode change time of
12:34 p.m. today or later. Multiple -T time range can be supplied and checking stops with the first
match.

Select a file based on its user name, or when starting with a #, a numeric uid. A "’ can be used to
escape the #. Multiple -U options may be supplied and checking stops with the first match.

When traversing the file hierarchy specified by a path name, do not descend into directories that
have a different device ID.

This option is the same as the -D option, except that the inode change time is checked using the
path name created after all the file name modifications have completed.

This option is the same as the -u option, except that the modification time is checked using the
path name created after all the file name modifications have completed.

The options that operate on the names of files or archive members (-c, -i, -n, -s, -u, -v, -D, -G, -T, -U, -Y,
and -Z) interact as follows.

* When extracting files during a read operation, archive members are selected based only on the user
specified pattern operands as modified by the -c, -n, -u, -D, -G, -T, -U options. Then any -s and -i

Qshell 119

options will modify in that order, the names of these selected files. Then the -Y and -Z options will be
applied based on the final path name. Finally the -v option will write the names resulting from these
modifications.

* When archiving files during a write operation, or copying files during a copy operation, archive
members are selected based only on the user specified path names as modified by the -n, -u, -D, -G,
-T, and -U options (the -D option only applies during a copy operation). Then any -s and -i options
will modify in that order, the names of these selected files. Then during a copy operation the -Y and
the -Z options will be applied based on the final path name. Finally the -v option will write the names
resulting from these modifications.

* When one or both of the -u or -D options are specified along with the -n option, a file is not
considered selected unless it is newer than the file to which it is compared.

Operands

The directory operand specifies a destination directory path name. If the directory operand does not exist,
or it is not writable by the user, or it is not of type directory, pax will exit with a non-zero exit status.

The pattern operand is used to select one or more path names of archive members. When the pattern
operand is not supplied, all members of the archive will be selected. When a pattern matches a directory,
the entire file hierarchy rooted at that directory will be selected. When a pattern operand does not select
at least one archive member, pax will write these pattern operands in a diagnostic message to standard
error and then exit with a non-zero exit status.

The file operand specifies the path name of a file to be copied or archived. When a file operand does not
select at least one archive member, pax will write these file operand path names in a diagnostic message
to standard error and then exit with a non-zero exit status.

Environment Variables

pax is affected by the following environment variables:

LANG
Provides a default value for locale categories that are not specifically set with a variable starting
with LC_.

LC_TIME
Defines the date and time format used in displaying file times.

QIBM_CCSID
pax creates the file extracted from the archive in the CCSID specified by the value of the
environment variable.

Exit Status
* 0 All files were processed successfully

* 1 An error occurred

Related information

* [“compress - Compress data” on page 96|

» [tar - File archiver” on page 129

Examples

1. Copy the contents of the current directory to an archive file:
pax -w -f saved.ar

2. Display the verbose table of contents for an archive file:
pax -r -v -f saved.ar

120 iSeries: Qshell

3. The following commands copy the entire directory tree anchored at /home/abbey/olddir to
/home/abbey/newdir:

mkdir /home/abbey/newdir
cd /home/abbey/olddir
pax -rw . /home/abbey/newdir

4. Interactively select the files to copy from the current directory to the directory destination:
pax -rw -i . destination

5. Extract all files from an archive file that are owned by user root and group bin and preserve all file
permissions:
pax -r -pe -U root -G bin -f saved.ar

6. List and update only those files in the destination directory /backup which are older than files with
the same name found in the source directory /sourcecode:

pax -r -w -v -Y -Z /sourcecode /backup

pr - Print files
Synopsis

pr [+pagel [-column] [-adFmrt] [-e [char][gap]] [-h header] [-ilchar][gap]] [-] line] [-nlchar][width]] [-o offset]
[-s[char]] [-w width] [-] [file ...]

Description

The pr utility is a printing and pagination filter for text files. When multiple input files are specified, each
is read, formatted, and written to standard output. By default, the input is separated into 66-line pages,
each with a 5-line header with the page number, date, time, and the path name of the file and a 5-line
trailer consisting of blank lines. If the LC_TIME environment variable is set, the date and time in the
header is formatted using the format specified by the d_t_fmt keyword in the LC_TIME category of the
specified locale.

When multiple column output is specified, text columns are of equal width. By default text columns are
separated by at least one <space>. Input lines that do not fit into a text column are truncated. Lines are
not truncated under single column output.

Error messages are written to standard error during the printing process (if output is redirected) or after
all successful file printing is complete (when printing to a terminal).

If pr receives an interrupt while printing to a terminal, it flushes all accumulated error messages to the
screen before terminating.

Options

Notes:

1. In the following option descriptions, column, lines, offset, page, and width are positive decimal integers
and gap is a nonnegative decimal integer.

2. The -s option does not allow the option letter to be separated from its argument.

3. The -e, -i, and -n options require that both arguments, if present, not be separated from the option
letter.

+page Begin output at page number page of the formatted input.

-column
Produce output that is columns wide (default is 1) that is written vertically down each column in
the order in which the text is received from the input file. The options -e and -i are assumed. This
option should not be used with the -m option. When used with the -t option the minimum
number of lines is used to display the output.

Qshell 121

-a Modify the effect of the column option so that the columns are filled across the page in a
round-robin order (for example, when column is 2, the first input line heads column 1, the second
heads column 2, the third is the second line in column 1, and so on). This option requires the use
of the column option.

-d Produce output that is double spaced. An extra <newline> character is output following every
<newline> found in the input.

-e [char][gap]
Expand each input <tab> to the next greater column position specified by the formula n*gap+1,
where 7 is an integer > 0. If gap is zero or is omitted the default is 8. All <tab> characters in the
input are expanded into the appropriate number of <space>s . If any nondigit character, char, is
specified, it is used as the input tab character.

-F Use a <form-feed> character for new pages, instead of the default behavior that uses a sequence
of <newline> characters.
-h header

Use the string header to replace the file name in the header line.

-i [char][gap]
In output, replace multiple <space>s with <tab>s whenever two or more adjacent <space>s reach
column positions gap+1, 2*gap+1, and so on. If gap is zero or omitted, default <tab> settings at
every eighth column position is used. If any nondigit character, char, is specified, it is used as the
output <tab> character.

-1 lines Override the 66 line default and reset the page length to lines. If lines is not greater than the sum
of both the header and trailer depths (in lines), the pr utility suppresses output of both the
header and trailer, as if the -t option were in effect.

-m Merge the contents of multiple files. One line from each file specified by a file operand is written
side by side into text columns of equal fixed widths, in terms of the number of column positions.
The number of text columns depends on the number of file operands successfully opened. The
maximum number of files merged depends on page width and the per process open file limit.
The options -e and i are assumed.

-n [char][width]
Provide width digit line numbering. The default for width, if not specified, is 5. The number
occupies the first width column positions of each text column or each line of -m output. If char
(any nondigit character) is given, it is appended to the line number to separate it from whatever
follows. The default for char is a <tab>. Line numbers longer than width columns are truncated.

-0 offset

Each line of output is preceded by offset <spaces>s. If this option is not specified, the default is
zero. The space taken is in addition to the output line width.

T Write no diagnostic reports on failure to open a file.

-s char Separate text columns by the single character char instead of by the appropriate number of
<space>s (default for char is the <tab> character).

-t Print neither the five-line identifying header nor the five-line trailer typically supplied for each
page. Quit printing after the last line of each file without spacing to the end of the page.

-w width
Set the width of the line to width column positions for multiple text-column output only. If this
option is not specified and the -s option is not specified, the default width is 72. If this option is
not specified and the -s option is specified, the default width is 512.

Operands

122 iSeries: Qshell

Each file is a path name of a file to be printed. If no file operands are specified, or if a file operand is -, the

standard input is used.
Environment Variables

pr is affected by the following environment variables:

LANG

Provides a default value for locale categories that are not specifically set with a variable starting

with LC_.
LC_TIME
Defines the format of the date and time used in writing header lines.

Exit Status
* 0 on success

e >0 if an error occurs

Related information

+ [“cat - Concatenate and print files” on page 88

* [“od - Dump files in various formats” on page 113

Examples

1. Print a file starting at page 3:
pr +3 source.java

2. Print every *java file and change the header message:
pr -h 'JDK source files and examples' code/*.java

pwd - Return working directory name
Synopsis

pwd

Description

You can use pwd to display the working directory on standard output.
Options

None.

Operands

None.

Exit Status
* 0 when successful.

Related information

* [‘cd - Change working directory” on page 90|

* [’pwdx - Print working directory expanded” on page 124|

Qshell

123

pwdx - Print working directory expanded
Synopsis

pwdx
Description
You can use pwdx to display the working directory with symbolic links expanded on standard output.

Exit Status
* 0 when successful

Related information

* [‘cd - Change working directory” on page 90|

* [’pwd - Return working directory name” on page 123|

Rfile - Read or write record files
Synopsis

Rfile -r | -w | -h [-abK1qQs] [-c CL-command] [-C CL-command] file ...
Description

The Rfile utility reads i5/ OS™ record files (database or device files) and writes the data to standard
output, or reads standard input and writes the data to record files.

Note: This utility is unique to i5/0S™".
Options
-a Append the contents of standard input to the record file. This option only applies when -w is

specified. If -w is specified without -a, any physical file member is cleared before writing the
contents of the stream.

-b Process binary data. This option prevents normal processing for newline characters in the input
or output stream. When -b is omitted, newline characters are removed from standard input lines
written to a record file, and newline characters are inserted at the end of records written to
standard output.

-¢ CL-command
Run a CL command in the utility process before processing any record file. This option can be
used to run a CL override command that specifies device-dependent parameters for a record file.
If more than one -c option is specified, the CL commands are processed in sequence before
processing any record file.

-C CL-command
Run a CL command in the utility process after processing all record files. If more than one -C
option is specified, the CL commands are processed in sequence after processing all record files.

-h Write a brief description of command syntax to standard error.

-K Keep the job log at job termination. The system normally deletes the job log after running a
QShell utility. This option forces the system to produce a job log listing (which may assist with
problem determination) when the job that runs Rfile ends.

-1 Do not truncate long text lines. This option only applies to text data. When -1 is specified, any
standard input line longer than one output record is folded onto as many records as necessary,
and no trailing blanks are removed from records written to standard output.

124 iSeries: Qshell

-q Suppress warning messages. This option suppresses messages normally written to standard error
when long text lines are truncated or folded in the output file.

-Q Use i5/0S™ qualified name syntax for file names. When this option is specified, the file names
specified as command operands are i5/0S™ qualified names (instead of Integrated File System
path names).

T Read the specified record files and write their contents to standard output. Either -r or -w, but
not both, must be specified.

-s Process source sequence number and date fields as text. This option only applies to text
processing of FILETYPE(*SRC) record files. When -s is specified, the entire contents of every
record is processed as a text line. If -s is omitted, the first 12 bytes is stripped from every source
record read, and the first 12 bytes of every source record written is filled with a sequence number
and zeros for the date field.

-w Read standard input and write its contents to the specified record file. The output file must
already exist, or an error is reported (and no file is created). Either -r or -w, but not both, must be
specified.

Operands

At least one i5/0S™ record file name must be specified. If more than one file is specified, they are
processed in sequence as end of file is reached on each input source. When option -Q is omitted, files are
identified by path names in the Integrated File System. If option -Q is specified, file names are specified
in any of these forms:

file

library/file

'file(member) '

"Tibrary/file(member)"'

If the library name is omitted or *LIBL is specified for the library name, the file is located using the job
library list. If the member name is omitted or *FIRST is specified as the member name, the first member
of a database file is opened. Specifying *LAST for the member name opens the last member of a database
file. Member name *ALL can be used with option -r to read all members of a database file (from first to
last). Member names are ignored for device files (when specified in i5/0S™ qualified name form).

Examples

1. Read the contents of source database member QSYSINC/H(SQLCLI), and write it to standard output.
Trailing blanks are removed from each line, as are the first 12 characters of each line (containing
sequence number and date information):

Rfile -rQ 'gsysinc/h(sqlcli)’
2. Write the contents of stream file mydoc.ps to spooled printer device file QPRINT as unconverted
ASCII data, and then use the CL LPR command to send the spool file to another system:

before="ovrprtf gprint devtype(xuserascii) spool(*yes)'
after="1pr file(qprint) system(usrchprt0l) prtq('rchdps') transform(xno)"
cat -c mydoc.ps | Rfile -wbQ -c "$before" -C "$after" gprint

3. Copy the contents of save file INSAVF in library QGPL to another save file named OUTSAVF located
using the job library list. Note that the data is read and written in binary mode to avoid
ASCII/EBCDIC conversion and newline processing:

Rfile -rb /qsys.1ib/qgpl.lib/insavf.file | Rfile -wbQ outsavf

rm - Remove directory entries
Synopsis

rm [-f | -i] [-dPRr] file ...

Qshell 125

Description

The rm utility attempts to remove the non-directory type files specified on the command line. If the
permissions of the file do not permit writing, and the standard input device is a terminal, the user is
prompted (on standard error) for confirmation.

The rm utility removes symbolic links, not the files referenced by the links.

It is an error to attempt to remove the files "." and "..".

Options
-d Attempt to remove directories as well as other types of files.
-f Attempt to remove the files without prompting for confirmation, regardless of the file’s

permissions. If the file does not exist, do not display a diagnostic message or modify the exit
status to reflect an error. The -f option overrides any previous -i options.

-i Request confirmation before attempting to remove each file, regardless of the file’s permissions, or
whether the standard input device is a terminal. If the response from the standard input begins
with the first character for the YES response in the current locale, the file is removed. The -i
option overrides any previous -f options.

-P Overwrite regular files before deleting them. Files are overwritten three times, first with the byte
pattern Oxff, then 0x00, and then Oxff again, before they are deleted.

-R Attempt to remove the file hierarchy rooted in each file argument. The -R option implies the -d
option. If the -i option is specified, the user is prompted for confirmation before each directory’s
contents are processed (as well as before the attempt is made to remove the directory). If the user
does not respond affirmatively, the file hierarchy rooted in that directory is skipped.

-r Equivalent to -R.

Exit Status

* 0 if all of the named files or file hierarchies were removed, or if the -f option was specified and all of
the existing files or file hierarchies were removed.

e >0 if an error occurs.

Related information

* [“cp - Copy files” on page 97|

¢ ['In - Link files” on page 106]

* ['Is - List directory contents” on page 107|

¢ [‘'mv - Move files” on page 112|

* [‘rmdir - Remove directories’

Examples

1. Remove all the files and the directory "java”, as well as any subdirectories or files, or both, and do not
prompt for conformation.

rm -r -f /home/bob/examples/code/java
2. Remove the files "filel”, "file2” and "file3".
rm filel file2 file3

rmdir - Remove directories
Synopsis

rmdir directory ...

126 iSeries: Qshell

Description

The rmdir utility removes the directory entry specified by each directory argument, provided it is empty.
Arguments are processed in the order given. In order to remove both a parent directory and a
subdirectory of that parent, the subdirectory must be specified first so the parent directory is empty when

rmdir tries to remove it.

Exit Status
* 0 if each directory entry specified referred to an empty directory and was removed successfully.
* >0 An error occurred.

Related information

* [“mkdir - Make directories” on page 110}

* ['rm - Remove directory entries” on page 125

setccsid - Set CCSID attribute for file
Synopsis

setcesid [-R [-H | -L | -P]] [-h] ccsid file ...
Description

The setcesid utility sets the CCSID attribute for the specified files to the specified ccsid. The data
contained in file is not changed.

Options

-H If the -R option is specified, symbolic links on the command line are followed. Symbolic links
encountered in the tree traversal are not followed.

-L If the -R option is specified, both symbolic links on the command line and symbolic links
encountered in the tree traversal are followed.

-P If the -R option is specified, no symbolic links are followed.

-R If file designates a directory, setccsid sets the CCSID of each file in the entire subtree connected at
that point.

-h Set the CCSID of a symbolic link instead of the file pointed to by the symbolic link.
Operands

The ccsid is an integer number identifying the coded character set id. Each file is a pathname of a file to
set the CCSID.

Related information

« [“attr - Get or set attributes for files” on page 83

* [‘’chmod - Change file modes” on page 92

+ [“chown - Change file ownership” on page 95|

* [Yiconv - Convert characters from one CCSID to another CCSID” on page 69

» [“touch - Change file access and modification times” on page 130

Examples
1. Set the CCSID of the files “filel” and “file2” to 819:
setccsid 819 filel file2

Qshell 127

tail - Display the last part of a file
Synopsis

tail [-f | -r] [-b number | -c number | -k number |-n number] [file ...]

Description

The tail utility displays the contents of file or, by default, standard input, to the standard output.

The display begins at a byte, line, 512-byte block, or kilobyte location in the input. Numbers having a
leading plus sign (+) are relative to the beginning of the input, for example, "-c +2" starts the display at
the second byte of the input. Numbers having a leading minus sign (-) or no explicit sign are relative to
the end of the input, for example, "-n 2" displays the last two lines of the input. The default starting

location is "-n 10", or the last 10 lines of the input.

If more than one file is specified, each file is preceded by a header consisting of the string "==> XXX <=="
where XXX is the name of the file.

Note: tail does not support large files (files greater than 2GB in
size).

Options

-b number

The location is number 512-byte blocks.

-c number
The location is number bytes.

-f Causes tail to not stop when end of file is reached, but rather to wait for additional data to be
appended to the input. The -f option is ignored if the standard input is a pipe, but not if it is a
FIFO.

-k number

The location is number kilobytes.

-n number
The location is number lines.

T Causes the input to be displayed in reverse order, by line. Additionally, this option changes the
meaning of the -b, -c and -n options. When the -r option is specified, these options specify the
number of bytes, lines or 512-byte blocks to display, instead of the bytes, lines or blocks from the
beginning or end of the input from which to begin the display. The default for the -r option is to
display all of the input.

Exit Status
* 0 on success

e >0 if an error occurs

Related information

* [‘cat - Concatenate and print files” on page 8§

* ["head - Copy the first part of files” on page 106|

Examples

1. Display the last 100 lines from the file "donkeys". If the file "donkeys” is less than 100 lines, then tail
displays the entire file.

tail -n 100 donkeys

128 iSeries: Qshell

tar - File archiver
Synopsis

tar -crtux[befmopvwHLPX] [archive] [blocksize] file ...

Description

The tar utility reads, writes, and lists files from an archive file.

Options

The following options select the function tar performs. One of these options must be specified.

-C

-

=X

Create a new archive.
Add the specified file to end of the achive.
List the names of the files in the archive to standard output.

Update the specified file in the archive if it has been modified since last written to the archive or
add file to the archive if it is not in the archive.

Extract the specified files from the archive. If no files are specified, all files are extracted from the
archive.

The following options affect the operation of tar.

-b Use the first operand (or the second, if f has already been specified) as the block size for the
archive.

-e Exit after the first error is found.

-f Use the first operand (or the second, if b has already been specified) as the name of the archive
instead of the default name. If the name of the file is -, tar writes to the standard output or reads
from the standard input depending on the function.

-m Do not restore the modification times. The modification time of the file is the time of extraction.

-0 Set the owner and group of extracted files to the user running tar instead of to the user and
group saved with the archive.

-p Preserve the owner, group, file mode, access time, and modification time of files extracted from
the archive.

-v Verbose mode. Write to standard error the name of each file being processed. When the t function
is specified, the output also includes the mode, number of links, owner, group, size, and
modification date of each file.

-w Write the action to be taken, followed by the name of the file, and then wait for the user’s
confirmation. If an affirmative response is given, the action is performed. Any other input
suppresses the action.

-H Follow only command line symbolic links while performing a physical file system traversal.

-L Follow all symbolic links to perform a logical file system traversal.

-P Do not follow symbolic links, perform a physical file system traversal. This is the default mode.

-X When traversing the file hierarchy specified by a path name, do not descend into directories that
have a different device ID.

Operands

Qshell 129

Each file is an object that is either added to the archive or extracted from the archive depending on the
function.

Environment Variables

tar is affected by the following environment variables:

QIBM_CCSID
The value of the environment variable is the CCSID used to create files extracted from the
archive. There must be a valid translation from CCSID 819 to the specified CCSID.

Exit Status
* 0 when successful

¢ >0 when unsuccessful

Related information

« [‘pax - Portable archive interchange” on page 114

touch - Change file access and modification times
Synopsis

touch [-acfm] [-r ref_file] [-t [[CC]YY]MMDDhhmm[.SS] 1 [-C ccsid] file ...
Description

The touch utility sets the modification and access times of files to the current time of day. If the file
doesn’t exist, it is created with default permissions.

Options
-a Change the access time of file. The modification time of the file is not changed unless the -m flag

is also specified.

-C ccsid
If file does not exist, create the file with the specified ccsid. This option overrides the value of the
QIBM_CCSID environment variable.

-c Do not create file if it does not exist. The touch utility does not treat this as an error. No error
messages are displayed and the exit value is not affected.

-f Attempt to force the update, even if the file permissions do not currently permit it.

-m Change the modification time of file. The access time of the file is not changed unless the -a flag
is also specified.

-1 ref_file
Use the access and modifications times from the specified ref_file instead of the current time of
day.

-t Change the access and modification times to the specified time. The argument should be in the
form:

[[CC]YYIMMDDhhmm[.SS]

where each pair of letters represents the following;:
CC The first two digits of the year (the century).

YY The second two digits of the year. If YY is specified, but CC is not, a value for CC
between 69 and 99 results in a YY value of 19. Otherwise, a CC value of 20 is used.

MM The month of the year, from 1 to 12.

130 iSeries: Qshell

DD The day of the month, from 1 to 31.

hh The hour of the day, from 0 to 23.

mm The minute of the hour, from 0 to 59.
SS The second of the minute, from 0 to 59.

If the CC and YY letter pairs are not specified, the values default to the current year. If the SS
letter pair is not specified, the value defaults to 0.

Environment Variables

touch is affected by the following environment variables:

QIBM_CCSID
If file does not exist, touch creates the file with the CCSID specified by the value of the
environment variable.

Exit Status
* 0 on success

¢ >0 if an error occurs

Examples

1. Change the time-date stamp of the file myfile to match the time-date stamp of the file yourfile.
touch -r yourfile myfile

2. Change the time-date stamp of the file myfile to a specific time-date stamp.
touch -t 200001010000.00 myfile

umask - Get or set the file mode creation mask
Synopsis

umask [-S | [mask]
Description

You can use umask to set or display the file creation mask. The mask allows you to control the file
permission bits that are set when creating a file or directory.

If you specify mask, qsh sets the file creation mask to mask. If you do not specify mask, gsh displays the
current file creation mask on standard output.

Options
* -S Use symbolic permissions.

Operands

When using symbolic permissions, mask is an expression that defines which permissions should not be
removed. A symbolic permission is an expression with the format [who] op [permission] where:

* who is a combination of the letters:
— u for owner permissions.
- g for group permissions
— o for other (or public) permissions
— a for all permissions (the default value).

Qshell 131

* op is one of the following:
— - (minus) to delete the permission.
— + (plus) to add the permission.
* permission is one or more of the following:
— 1 for read permission.
— w for write permission.

— x for execute or search permission.

Exit Status
* 0 when successful.

¢ >0 when mask is invalid.

Related information

* [‘chmod - Change file modes” on page 92|

* [“touch - Change file access and modification times” on page 130|

Examples

—_

Display the current file creation mask in symbolic form: umask -S

2. Display the current file creation mask: umask

3. Set the file creation mask to remove read permission for others: umask 004

4. Set the file creation mask to remove write permission for group: umask -S g-w

uncompress - Expand compressed data
Synopsis

uncompress [-cv] [-b bits] [file ...]
Description

The uncompress utility restores the compressed files to their original form, renaming the files by deleting
the ".Z" extension.

If renaming file would cause files to be overwritten and the standard input device is a terminal, the user
is prompted (on standard error) for confirmation. If prompting is not possible or confirmation is not
received, the files are not overwritten.

Options

-b bits Specify the bits code limit (see below for details).

-c Uncompressed output is written to the standard output. No files are modified.

-v Print the percentage of expansion for each file.

Operands

Each file is a pathname of a file to uncompress. If no files are specified, the standard input is
uncompressed to the standard output. If either the input and output files are not regular files, the checks
for reduction in size and file overwriting are not performed, the input file is not removed, and the

attributes of the input file are not retained.

Extended Description

132 iSeries: Qshell

The uncompress utility uses a modified Lempel-Ziv algorithm. Common substrings in the file are first
replaced by 9-bit codes 257 and up. When code 512 is reached, the algorithm switches to 10-bit codes and
continues to use more bits until the limit specified by the -b flag is reached (the default is 16). Bits must
be between 9 and 16.

The amount of compression obtained depends on the size of the input, the number of bits per code, and
the distribution of common substrings. Typically, text such as source code or English is reduced by
50-60%.

Exit Status
* (0 on success

e >0 if an error occurs.

Related information

* [‘compress - Compress data” on page 96|

* |“zcat - Expand and concatenate data_”|

zcat - Expand and concatenate data
Synopsis

zcat [file ...]
Description

The zcat utility expands the compressed data from the specified files and the uncompressed output is
written to standard output.

Operands
Each file is a pathname of a file that contains compressed data.

Exit Status
* 0 on success
e >0 if an error occurs.

Related information

* [‘compress - Compress data” on page 96|

* ["uncompress - Expand compressed data” on page 132

Utilities for reading and writing input and output

The following are Qshell utilities for reading and writing input and output:

+ [“dspmsg - Display message from message catalog”|

* [“echo - Write arguments to standard output” on page 134|

* [‘print - Write output” on page 135

» ['printf - Write formatted output” on page 136|

* ['read - Read a line from standard input” on page 137

dspmsg - Display message from message catalog
Synopsis

dspmsg [-n] [-s set] catalog msgid [defaultMsg [arquments ... 1]

Qshell 133

Description

The dspmsg utility displays a message from a message catalog created by the GENCAT CL command.
The message is written to standard output. The dspmsg utility can be used as a replacement for echo or
print when a script needs to display messages that are translated to multiple languages.

Options

-n Display the specified message with no substitution.

-s set Retrieve the message from the specified set in the message catalog. The default value for set is 1.
Operands

The catalog operand specifies the path name to a message catalog. If the catalog is specified using a
relative path name, the NLSPATH variable and the LC_MESSAGES locale catagory are used to find the
catalog.

The msgid operand specifies the message identifier to retrieve from the message catalog.

When the specified catalog or msgid is not found, the optional defaultMsg is displayed instead. If the
defaultMsg operand is not specified, a system generated message is displayed.

The optional arguments are substituted into the output message if it contains the %s, %n$s, %Id, or %n$ld
printf() conversion specifications. Any other conversion specifications are not valid. Also, the normal
control character escapes (for example, \n) are supported.

Exit Status
e 0 if successful

¢ >0 if an error occurred.

Related information

* [“echo - Write arguments to standard output”|

* [‘gencat - Generate a formatted message catalog” on page 104|

* ["print - Write output” on page 135

* ['printf - Write formatted output” on page 136

Examples
1. Display message 5 from catalog mycat.
dspmsg mycat 5 "Message not found" hello

echo - Write arguments to standard output

Synopsis
echo [arg ..]
Description

You can use echo to display each arg on standard output separated by a space character and followed by
a newline character.

Operands

Each arg is echoed on standard output.

134 iSeries: Qshell

Exit Status
* 0 when successful

* >0 when an error occurs

Related information

* [“dspmsg - Display message from message catalog” on page 133

* [“print - Write output”|

* [“printf - Write formatted output” on page 136|

* ["tee - Duplicate standard input” on page 185

print - Write output
Synopsis

print [-nrR | [-u [n]] [arqument ...]
Description

You can use print to display each argument on standard output separated by a <space> character and
followed by a <newline> character.

Unless you specify -r or -R, print formats the output using the following conventions:
* \a Bell.

* \b Backspace.

* \c Print without adding newline character. The remaining arquments are ignored.
¢ \f Formfeed.

* \n Newline.

* \r Return.

* \t Tab.

* \v Vertical tab.

* \\ Backslash.

* \0x The character whose EBCDIC code is the 1, 2, or 3-digit octal number x.

Options

-n Do not add a trailing newline character to the output.
-r Do not use the conventions listed above.

-R Do not use the conventions listed above.

-un Write output to descriptor n if specified or descriptor 1 by default. The descriptor must be 1, 2, or
one you opened with exec.

Operands
Each argument is printed on standard output.

Exit Status
* 0 when successful.
* >0 wnen unsuccessful.

Related information

+ [“dspmsg - Display message from message catalog” on page 133

Qshell 135

* ["exec - Run commands and open, close, or copy descriptors” on page 54

* [‘echo - Write arguments to standard output” on page 134|

o [‘printf - Write formatted output’]

printf - Write formatted output
Synopsis

printf format [arqument ... |
Description

You can use printf to format and display output on standard output. The syntax is similar to the ILE C
printf() function. printf formats using the following conversion control string syntax:

Y%[flags][width].[precision]conversion

conversion specifies how the corresponding arqument is displayed. You must specify one of the following
conversion characters:

c Unsigned character.

d Signed decimal number.

e,E Scientific notation.

f Floating point number.

8,G Scientific notation with significant digits.

i Signed decimal number.

o Unsigned octal number.

s String.

u Unsigned decimal number.

X Unsigned hexadecimal number with digits 0123456789abcdef.
X Unsigned hexadecimal number with digits 0123456789 ABCDEF.

flags control how the arqument is displayed in the following ways:

- (minus)
Left align argument within the field.

+ (plus)
Prefix all numbers with a + or -.

space Prefix positive numbers with <space> and negative numbers with -.
0 Pad field width with leading zeros for d, e, E, f, g, or G.

Use an alternate output form depending on conversion character. For o, prefix octal numbers
with "0". For x, prefix hexadecimal numbers with "0x". For X, prefix hexadecimal numbers with
"0X". For e, E, f, g, or G, display decimal point. For g or G, display trailing zeros.

width is the minimum number of character positions displayed. Using an asterisk (*) character for the
width means the value of the next argument is the field width.

The meaning of precision depends on the conversion character.
* For d, i, o, u, x, or X precision specifies the minimum number of digits to be displayed.
* For e, E, or f precision specifies the number of digits to be displayed after the decimal point.

136 iSeries: Qshell

* For g, or G precision specifies the maximum number of significant digits.
* For s precision specifies the maximum number of characters to be displayed.

Options

None.

Operands

Each argument is converted and displayed as specified by the format.

Exit Status
¢ 0 when successful.
* >0 when unsuccessful.

Related information

* [“dspmsg - Display message from message catalog” on page 133

* [“echo - Write arguments to standard output” on page 134|

* [“print - Write output” on page 139

read - Read a line from standard input
Synopsis

read [-r] [-p prompt | [-u[n]] [name ...]
Description

You can use read to read a line and split it into fields using the characters from the IFS variable as
delimiters. By default, a backslash (\) at the end of a line causes the line to be continued on the next line.
qsh removes both the backslash and the <newline>.

Options

-p prompt
When the interactive option is set, display prompt on stderr.

T A backslash at the end of a line does not mean continue the line.
-un Read from descriptor n if specified or descriptor 0 by default. The descriptor must be 0 or one
that you opened with exec.

Operands

Each name is assigned to the corresponding field from the input line. Any leftover fields are assigned to
the last name. The default name is the REPLY variable.

Exit Status
* 0 when successful.

¢ >0 when unsuccessful.

Related information

* ["exec - Run commands and open, close, or copy descriptors” on page 54

« ["print - Write output” on page 135

Examples

Qshell 137

1. Read a line from stdin after displaying a prompt: read -p “Enter a name: ’ firstname lastname
2. Read a line from descriptor 5: read -u5

Utilities for developing Java™ programs

The following are Qshell utilities for developing Java™ programs:

“ajar - Alternative Java™ archive”|

* [“appletviewer - View Java™ applet” on page 141|
* [“extcheck - A utility to detect JAR conflicts” on page 141|
* [jar - Archive Java™ files” on page 141]

* [jarsigner - JAR signing and verification” on page 142|

* [‘java - Run Java™ interpreter” on page 142|

* [javac - Compile a Java™ program” on page 143|

* [‘javadoc - Generate Java™ documentation” on page 143
* [“javah - Generate C header or stub file” on page FTS'
* [javakey - Manage Java™ security keys and certificates” on page 144|

* [“javap - Disassemble a compiled Java™ program” on page 144}

+ [“keytool - Key and certificate management tool” on page 145

* [‘native2ascii - Convert native characters to ASCII” on page 145

* [“policytool - Policy file creation and management tool” on page 145

* [“rmic - Compile Java™ RMI stubs” on page 145|

[‘rmid - The Java™ RMI activation system” on page 145|

* [‘rmiregistry - Start a remote object registry” on page 145

* [“serialver - Return serial version” on page 146|

* [‘thameserv - Naming service” on page 146|

ajar - Alternative Java™ archive
Synopsis

ajar {-h | —help}
ajar {-1 | —list} [-v | —verbose] [-q | —quiet] jarfile [{file | pattern} ..1 [{-x | -i} {file | pattern} ..] ...

ajar {-x | —extract} [-v | —verbose] [-q | —quiet] [-N | —neverWrite] [-p | —pipel] jarfile [{file |
pattern} ...]
[{-x | -i} {file | pattern} ..] ...

ajar {-c | —create} [-0 | —store-only] [-v | —verbose] [-r | —recurse] [-@ | —stdin] [-D | —nodirs] [-q
| —quiet]

[{-m | —manifest} mffile] [-M | —no-manifest] [{-n | —no-deflate} suffix..] jarfile file ... [{-x | -i} {file |
pattern} ..] ...

ajar {-a | —add} [-0 | —store-only] [-v | —verbose] [-r | —recurse] [-@ | —stdin] [-D | —nodirs] [-q |
—quiet]

[{-m | —manifest} mffile] [-M | —no-manifest] [{-n | —no-deflate} suffix..] jarfile file ... [{-x | -i} {file |
pattern} ...] ...

ajar {-d | —delete} [-v | —verbose] [-q | —quiet] [{-m | —manifest} mffile] [-M | —no-manifest] jarfile
{file | pattern} ... [{-x | -i} {file | pattern} ...] ...

Description

138 iSeries: Qshell

ajar may be used as an alternative interface for creating and manipulating Java™ Archive (JAR) files. The
ajar utility combines several of the features found in zip /unzip tools with those of the IBM® Developer
Kit for Java jar tool. Use ajar instead of the jar command when you need a zip or unzip like interface.

Like the jar tool, ajar lists the contents of jar files, extracts from jar files, creates new jar files and
supports many of the zip formats.. Additionally, ajar supports adding and deleting files in existing jars.

Actions

-h | —help
Writes command syntax to stdout.

-1 | —list
Writes table of contents to stdout.

-x | —extract
Extracts files to the current directory.

-¢ | —create
Creates a new archive.
-a | —add
Adds new files to the archive and replaces existing files.
-d | —delete
Deletes files from the archive.
Options
-@ | —stdin

Read file list from stdin. The file list consists of parameters that would normally follow the jarfile
parameter on the command line. The file list may consist of multiple lines with one item per line
and no leading blanks. Comments begin with '# and extend to the end of the line.

-0 | —store-only
Store only. Do not compress/deflate files. Used when adding files and creating jars.

-m | —manifest
Include manifest information from the specified file.

-n | —no-deflate
Do not deflate files with the specified suffixes. The list of suffixes must be terminated by another
option or "—". See examples below.

-p | —pipe

Extract to stdout.

-q | —quiet
Quiet mode. Do not write informational and warning messages.

-t | —recurse
Recurse into directories. Used when adding files and creating jars.

-v | —verbose
Verbose mode. Write diagnostic information to stderr.

-D | —nodirs
Suppress directory entries. Used when adding files and creating jars.

-M | —no-manifest
Do not create a manifest.

-N | —neverWrite
Never overwrite any files when extracting.

Qshell 139

Operands

The jarfile operand specifies the pathname of the jar file being operated on. jarfile must be an Integrated
File System (IFS) name.

The file operand specifies the pathname of a file or directory. file must be an IFS name.

The pattern operand specifies a pattern to match pathnames of files and directories. pattern will match to
IFS names. A pattern is a sequence of characters containing one or more of the following meta characters:

* matches 0 or more characters
? matches any single character
[...] matches any single character found within the brackets where "..." represents a set of characters.

Ranges are specified by a beginning character, a hyphen, and an ending character. A exclamation
(") or carrot (") following the left bracket means the characters within the brackets are
complemented (match anything except the characters within the brackets).

Patterns must be contained within quotation marks or the meta characters must be preceded by a back
slash ("\") to prevent Qshell from interpreting them.

The file and pattern operands are used to select the files to be acted upon. Selected files are determined
using three sets of files, a candidate set, an exclusion set, and an inclusion set.

candidate set
The candidate set is determined using the operands listed after jarfile and before any -x or -i. For
the list and extract actions the candidate set defaults to all files contained in the jar file. For all
other actions there is no default value for the candidate set.

exclusion set
The exclusion set is determined using all lists of file and pattern operands preceded by a -x and
followed by another -x, a -i or the end of the command string. The exclusion set defaults to the
empty set.

inclusion set
The inclusion set is determined using all lists of file and pattern operands preceded by a -i and
followed by another -i, a -x or the end of the command string. The inclusion set defaults to all
files in the candidate set.

All candidate files are selected that are in the inclusion set and not in the exclusion set.

Exit Status
* 0 when all files were processed successfully
* >0 when an error occurred

Examples
1. To list all files in a jar file named myjar which is located in the current directory: ajar -1 myjar
2. To list all java files in myjar: ajar -1 myjar *java
3. To extract all files from myjar into the current directory: ajar -x myjar
4

To create a jar named myjar containing all directories and files in the file system hierarchy rooted in
the current directory (Note in this example Qshell interprets the *" and expands it so that the list of
candidate files contains all files and directories in the current directory.): ajar -c -r myjar *

5. To create a jar named myjar containing entries for only the files in the current directory: ajar -c -D
myjar *

6. To create the same jar file without a manifest (which is a zip file for all practical purposes): ajar -c -D
-M myjar *

140 iSeries: Qshell

7. To create a jar named myjar containing all files except .java files in the file system hierarchy rooted
in the current directory: ajar -c -r myjar * -x *java
8. To create a jar named myjar containing only the .class files in a file system hierarchy rooted in the
current directory: ajar -c -r myjar * -i *.class
9. To create a jar named myjar without deflating the .java files: ajar -c -r -n java — myjar *
10. To create a jar named myjar while reading the file list from stdin: ajar -@ -c -r myjar
Sample stdin data:

docs
source
classes

-X
docs/foo/*

11. To add a file named bar to a jar named myjar: ajar -a myjar bar
12. To delete a file named foo/bar from a jar named myjar: ajar -d myjar foo/bar

Notes

1. Short options can be clustered (for example, -c -v -D is the same as -cvD). Long options (—create,
—verbose, —nodirs, ..., and so on.) can be abbreviated as long as the abbreviations are unique.

2. File names can be changed when creating a jar or adding a file to a jar. For example, "ajar -c x.jar
bin/foo : bin/bar” creates the jar file x.jar from the file bin/foo with a single entry, bin/bar. This can
also be done using stdin, "ajar -c@ x.jar”, where stdin contains:

bin/foo : bin/bar
3. Use of ajar requires the QIBM_MULTI_THREADED environment variable must be set to "Y’.

appletviewer - View Java™ applet
The appletviewer tool allows you to run applets without a web browser. It is compatible with the
appletviewer tool that is supplied by Sun Microsystems, Inc.

The appletviewer tool is available using the Qshell Interpreter.

For more information about the appletviewer tool, see the [appletviewer tool| -l& by Sun Microsystems,
Inc.

extcheck - A utility to detect JAR conflicts

In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2, the extcheck tool detects version conflicts
between a target JAR file and currently installed extension JAR files. It is compatible with the keytool
that is supplied by Sun Microsystems, Inc.

The extcheck tool is available using the Qshell Interpreter.

For more information about the extcheck tool, see the |extcheck tool -5 by Sun Microsystems, Inc.

jar - Archive Java™ files
The jar tool combines multiple files into a single Java™ ARchive (JAR) file. It is compatible with the jar
tool that is supplied by Sun Microsystems, Inc.

The jar tool is available using the Qshell Interpreter.

For more information about file systems, see [[ntegrated File System Informationl on IBM® Toolbox for
Java or [“Files in the integrated file system” on page 142]

For more information about the jar tool, see the 'ld' by Sun Microsystems, Inc.

Qshell 141

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/appletviewer.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/extcheck.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/jar.html

Files in the integrated file system: The integrated file system stores Java™-related class files, source
files, ZIP files, and JAR files in a hierarchical file structure. You can also store source files in the
integrated file system. You may store the files in these integrated file systems:

* "root” (/) file system

* open systems file system (QOpenSys)
* user-defined file system

* library file system (QSYS.LIB)

* optical file system (QOPT)

Note: Other integrated file systems are not supported, because they are not thread safe.

jarsigner - JAR signing and verification

In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2, the jarsigner tool signs JAR files and verfies
signatures on signed JAR files. The jarsigner tool accesses the keystore, which the keytool creates and
manages, when it needs to find the private key for signing a JAR file. In J25DK, the jarsigner and
keytool tools replace the javakey tool. It is compatible with the jarsigner tool that is supplied by Sun
Microsystems, Inc.

The jarsigner tool is available using the Qshell Interpreter.

For more information about the jarsigner tool, see the -l& by Sun Microsystems, Inc.

java - Run Java™ interpreter
The java Qshell command runs Java™ programs. It is compatible with the java tool that is supplied by
Sun Microsystems, Inc. with a few exceptions.

The IBM Developer Kit for Java ignores the following options of the java Qshell command:

Ignored option Description
-cs Not supported.
-checksource | Not supported.
-debug Supported by the iSeries internal debugger.
-noasyncgc Garbage collection is always running with the IBM Developer Kit for Java.
-noclassgc Garbage collection is always running with the IBM Developer Kit for Java.
-prof iSeries has its own performance tools.
-ss Not applicable.
-0ss Not applicable.
-t iSeries uses its own trace function.
-verify Always verify on iSeries.

-verifyremote | Always verify on iSeries.

-noverify Always verify on iSeries.

The java Qshell command supports new options. These are the new supported options:

Supported option Description
-secure Checks for public write access to directories in the CLASSPATH.
-gcfrq Specifies the garbage collection frequency.
-gepty Specifies the garbage collection priority.

142 iSeries: Qshell

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jarsigner.html

Supported option Description

-opt Specifies the optimization level.

-verbosegc A message is displayed for each garbage collection sweep.

The Run Java (RUNJVA) command in the CL command reference documentation describes these new
options in detail. The CL command reference documentation for the Create Java Program (CRTJVAPGM)
command, Delete Java Program (DLTJVAPGM) command, and Display Java Program (DSPJVAPGM)
command contains information about managing Java programs.

The java Qshell command is available using the Qshell Interpreter.

For more information about the java Qshell command, see the-.ld' by Sun Microsystems, Inc.

javac - Compile a Java™ program
The javac tool compiles Java™ programs. It is compatible with the javac tool that is supplied by Sun
Microsystems, Inc.

The javac tool is available using the Qshell Interpreter.

For more information about the javac tool, see the-.ldr by Sun Microsystems, Inc.

javadoc - Generate Java™ documentation
The javadoc tool generates APl documentation. It is compatible with the javadoc tool that is supplied by
Sun Microsystems, Inc.

The javadoc tool is available using the Qshell Interpreter.

For more information about the javadoc tool, see the [javadoc tool 'ld’ by Sun Microsystems, Inc.

javah - Generate C header or stub file
The javah tool facilitates the implementation of Java™ native methods. It is compatible with the javah
tool that is supplied by Sun Microsystems, Inc. with a few exceptions.

Note: Writing native methods means that your application is
not 100% pure Java. It also means that your application is
not directly portable across platforms. Native methods
are, by nature, platform or system specific. Using native
methods may increase your development and
maintenance costs for your applications.

The javah tool is available using the Qshell Interpreter. It reads a Java class file and creates a C-language
header file in the current working directory. The header file that is written is a Stream File (STMF). It
must be copied to a file member before it can be included in a C program on i5/0S.

The javah tool is compatible with the tool that is provided by Sun Microsystems, Inc. If the following
options are specified; however, iSeries 400 ignores them:

Ignored option Description
-td The javah tool does not require a temporary directory.
-stubs Java on iSeries only supports the Java Native Interface

(JNI) form of native methods. Stubs were only required
for the pre-JNI form of native methods.

Qshell 143

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/java.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javac.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

Ignored option Description

-trace Relates to the .c stub file output, which Java on iSeries
does not support.

-v Not supported.

Note: The -jni option must always be specified. The iSeries
server does not support native method implementations
before JNI.

For more information about the javah tool, see the -lé' by Sun Microsystems, Inc.

javakey - Manage Java™ security keys and certificates

Use the javakey tool for encryption key, and certificate generation and management, including generation
of digital signatures for applets. It is compatible with the javakey tool that is supplied by Sun
Microsystems, Inc.

Applet packaging and applet signing is dependent on your browser. Check your browser documentation
to ensure that your browser is compatible with the Java™ JAR file format and javakey applet signing.

Note: The files that are created by the javakey tool contain
sensitive information. Appropriate Integrated File System
security measures protect the public and private key files.

The javakey tool is available using the Qshell Interpreter.

For more information about file systems, see the information about [Integrated File System| or [‘Files in|
the integrated file system” on page 142

For more information about the javakey tool, see the 'ld' by Sun Microsystems, Inc.

javap - Disassemble a compiled Java™ program
The javap tool disassembles compiled Java™ files and prints out a representation of the Java program.
This may be helpful when the original source code is no longer available on a system.

It is compatible with the javap tool that is supplied by Sun Microsystems, Inc. with a few exceptions:

Ignored option Description

-b This option is ignored. Backward compatibility is not
required, because Java on iSeries only supports Java
Developer Kit (JDK) 1.1.4 and later.

- On iSeries -p is not a valid option. You must spell out
-private.
-verify This option is ignored. The javap tool does not perform
verification.

The javap tool is available using the Qshell Interpreter.

Note: The use of the javap tool to disassemble classes may
violate the license agreement for those classes. Consult
the license agreement for the classes before using the
Jjavap tool.

144 iSeries: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javah.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javakey.html

For more information about the javap tool, see the-'lﬁr by Sun Microsystems, Inc.

keytool - Key and certificate management tool

In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2, the keytool creates public and private key pairs,
self-signed certificates, and manages keystores. In J2SDK, the jarsigner and keytool tools replace the
Jjavakey tool. It is compatible with the keytool that is supplied by Sun Microsystems, Inc.

The keytool is available using the Qshell Interpreter.

For more information about the keytool, see the -lé by Sun Microsystems, Inc.

native2ascii - Convert native characters to ASCII

The native2ascii tool converts a file with native-encoded characters (characters which are non-Latin 1
and non-Unicode) to one with Unicode-encoded characters. It is compatible with the native2ascii tool
that is supplied by Sun Microsystems, Inc.

The native2ascii tool is available using the Qshell Interpreter.

For more information about the native2ascii tool, see the [native2ascii tool -lﬁ' by Sun Microsystems,
Inc.

policytool - Policy file creation and management tool

In Java™ 2 SDK, Standard Edition, version 1.2, the policytool creates and changes the external policy
configuration files that define the Java security policy of your installation. It is compatible with the
policytool that is supplied by Sun Microsystems, Inc.

The policytool is a graphical user interface (GUI) tool that is available using the Qshell Interpreter and
the Native Abstract Windowing Toolkit. See [BM Developer Kit for Java Native Abstract Windowing]
for more information.

For more information about the policytool, see the 'ld’ by Sun Microsystems, Inc.

rmic - Compile Java™ RMI stubs
The rmic tool generates stub files and class files for Java™ objects. It is compatible with the rmic tool that
is supplied by Sun Microsystems, Inc.

The rmic tool is available using the Qshell Interpreter.

For more information about the rmic tool, see the-.ld by Sun Microsystems, Inc.

rmid - The Java™ RMI activation system

In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2, the rmid tool starts the activation system daemon,
so objects can be registered and activated in a Java virtual machine. It is compatible with the rmid tool
that is supplied by Sun Microsystems, Inc.

The rmid tool is available using the Qshell Interpreter.

For more information about the rmid tool, see the -ld' by Sun Microsystems, Inc.

rmiregistry - Start a remote object registry
The rmiregistry tool starts a remote object registry on a specified port. It is compatible with the
rmiregistry tool that is supplied by Sun Microsystems, Inc.

Qshell 145

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/javap.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/native2ascii.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/policytool.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmic.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/rmid.html

The rmiregistry tool is available using the Qshell Interpreter.

For more information about the rmiregistry tool, see the [rmiregistry tool| -l& by Sun Microsystems, Inc.

serialver - Return serial version
The serialver tool returns the version number or serialization-unique identifier for one or more classes.
It is compatible with the serialver tool that is supplied by Sun Microsystems, Inc.

The serialver tool is available using the Qshell Interpreter.

For more information about the serialver tool, see the -lﬁ’ by Sun Microsystems, Inc.

tnameserv - Naming service
In Java™ 2 SDK (J2SDK), Standard Edition, version 1.2, the tnameserv tool provides access to the naming
service. It is compatible with the tnameserv tool that is supplied by Sun Microsystems, Inc.

The tnameserv tool is available using the Qshell Interpreter.

For more information about the tnameserv tool, see the -lﬁ’ by Sun Microsystems, Inc.

Utilities for managing jobs

The following are Qshell utilities for managing jobs:

* [“getjobid - Display job information’]

* [“hash - Remember or report utility locations” on page 147

* [‘jobs - Display status of jobs in current session” on page 148

[“kill - Terminate or signal processes” on page 149

« [“liblist - Manage library list” on page 150)

* ['ps - Display process status” on page 151

* [‘sleep - Suspend invocation for an interval” on page 153

* [‘trap - Trap signals” on page 153

* ['wait - Wait for process completion” on page 155|

getjobid - Display job information
Synopsis

getjobid [-csv] [pid ...]

getjobid -j [-csv] [qualified-job ...]

Description

The getjobid utility writes the qualified job name and process ID for the specified process to standard
output. The qualified job name is a string in the form number/user/name. The number is a six-digit

decimal number, user is the user profile under which the job was started, and name is the name of job.

In the first synopsis form, the process is identified using the process ID. In the second synopsis form, the
process is identified using the qualified job name.

When the -v option is specified, getjobid displays the process ID, parent’s process ID, process group,
current status, and qualified job name for the specified process.

Note: This utility is unique to i5/0S™?.

146 iSeries: Qshell

http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/rmiregistry.html
http://java.sun.com:80/products/jdk/1.1/docs/tooldocs/win32/serialver.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl/jidlNaming.html

Options

-C Display information about all of the current child processes of the specified process.

-j Processes are identified using the qualified job name.

-s Display a short form with just the qualified job name.

-v Display detailed information about the specified process, including the process ID, the parent’s

process ID, process group, current status, and qualified job name.
Operands

Each pid is the decimal process ID of an active process on the system. When pid is not specified, getjobid
displays information for the current process.

Each qualified-job is the qualified job name of an active process on the system. The qualified job name is a
string in the form number/user/name. The number is a six-digit decimal number, user is the user profile
under which the job was started, and name is the name of job.

Exit Status
* 0 when successful.

¢ >0 when an error occurred. The exit status is the number of processes for which information could not
be obtained.

Related information

* [jobs - Display status of jobs in current session” on page 148

* ['ps - Display process status” on page 151

Examples
1. Display the qualified job name of the current process.
getjobid
2. Display detailed information for three processes.
getjobid -v 318 942 1130
3. Display the short form of the qualified job name for one process.
getjobid -s 325
4. Display detailed information for a process identified with the qualified job name.
getjobid -jv 325411/SHELLTST/QZSHCHLD

hash - Remember or report utility locations
hash [-p filename 1 [utility ...]

hash -r
Description

The hash utility adds utility to the list of remembered utility locations or removes all remembered utilities
from the list. By default, hash uses a path search to find utility.

When no arguments are specified, hash reports the contents of the list. An entry that has not been looked
at since the last [“cd - Change working directory” on page 90| command is marked with an asterisk; it is
possible for the entry to be invalid.

Qshell 147

Options

-p filename
Do not use a path search to find utility. Use the specified filename as the location of utility.

-1 Remove all previously remembered utility locations.
Operands
Each utility is added to the list of remembered utility locations.

Exit Status

* 0 when successful.

Related information

“cd - Change working directory” on page 90|

jobs - Display status of jobs in current session
Synopsis

jobs [-In][job ...]
Description

You can use jobs to display information about active jobs started by qsh. For each job, gsh displays:
* Job number in brackets ([]).
 Status (Running, Done, Terminated, and so on).

* Return value of the job in parenthesis () when the return value is greater than zero and the job status is
Done.

* Command line for the job.

Options
-1 Display status for each process in the specified job.

-n Display status only for those jobs whose status has changed but has not been reported yet.
Operands

Each job specifies an active job. The job can be specified as a:
* Number to refer to a process id.
¢ %number to refer to a job number.
* string to refer to a job whose name begins with string.
If job is not specified, qsh displays status for all active jobs.

Exit Status
* 0 when successful.

¢ >0 when unsuccessful.

Related information

* [’kill - Terminate or signal processes” on page 142|

* ['wait - Wait for process completion” on page 155

Examples

148 iSeries: Qshell

Display status for job number 1: jobs %1
Display status for process id 16107: jobs 16107
Display status for a job running the Is utility: jobs %ls

ML~

Display status for all active jobs: jobs

kill - Terminate or signal processes
Synopsis

kill [-s signame] job ...
kill [-n signum]| job ...
kill [-sig] job ...

kill -1 [signal ...]
Description

You can use kill to send a signal to the specified jobs. You can specify a signal using;:

* signame - A signal name.

 signum - A signal number.

* sig - Either a signal name or signal number with no space after the minus (-).

Note: The valid signal numbers on i5/0S™ may be different
than the signal numbers on other systems. You can list

the valid signal names by specifying the -1 option. For
portability, you should always specify the signal name.

Options

-1 List signal names. If there are no arguments, qsh displays all of the signal names. If signal is a
name, qsh displays the corresponding signal number. If signal is a number, gsh displays the
corresponding signal name.

-n A signal number.
-5 A signal name in either uppercase or lowercase.
Operands

Each job specifies an active job. The job can be specified as a:
* Number to refer to a process id.
¢ %number to refer to a job number.

* %string to refer to a job whose name begins with string.

Exit Status
e 0 when successful.

* >0 when unsuccessful. If the -1 option was not specified, the exit status is the number of jobs to which
gsh could not send the signal.

Related information

* ["jobs - Display status of jobs in current session” on page 14§

* [“trap - Trap signals” on page 153

* [‘wait - Wait for process completion” on page 155|

Qshell 149

Examples

1. Send the USR1 signal to process id 16711: kill -s USR1 16711
2. Send the USRI signal to job 1: kill -n 7 %1

3. List the valid signal names: kill -1

liblist - Manage library list
Synopsis

liblist [-acdfl] [library ...]
Description

You can use liblist to add or delete a library from the user portion of the library list, set the current
library, or display the library list for the current job.

You can add libraries to the user portion of the library list by specifying the -a option and a list of
libraries. By default, the libraries are added to user portion of the beginning of the library list.

You can remove libraries from the user portion of the library list by specifying the -d option and a list of
libraries.

The current library is set to library when the -c option is specified. The current library can be unset by
specifying both the -c and -d options.

When no arguments are specified, qsh displays the current library list. Each line in the output includes
the library name and the type of the library. A library can be one of the following types:

* SYS for a library in the system portion of the library list.

¢ PRD for a library in the product portion of the library list.
* CUR for the current library.

* USR for a library in the user portion of the library list.

Options

-a Add library to the user portion of the library list.

-c Set the current library to library.

-d Remove library from the user portion of the library list or unset the current library if the -c option
is also specified.

-f When the -a option is specified, add library to the beginning of the user portion of the library list.

-1 When the -a option is specified, add library to the end of the user portion of the library list.

Operands

Each library is a library to either add or delete from the user portion of the library list depending on the
options specified.

Exit Status
* 0 when successful.

¢ >0 when unsuccessful.

Examples
1. Add the library MYLIB to the library list: liblist -a MYLIB
2. Remove the library MYLIB from the library list: liblist -d MYLIB

150 iSeries: Qshell

3. Set the current library to MYLIB: liblist -c MYLIB
4. Unset the current library: liblist -cd
5. Display the library list: liblist

ps - Display process status
Synopsis

ps [-Aaefjlt] [-o format 1 [-p pidlist 1 [-s sbslist 1 [-u userlist]
Description

The ps utility displays information about processes. The output from ps can include the following fields:

CGROUP
The current primary group profile of the process.

CMD Program, menu, or command most recently run by the process.

CUSER
The current user profile of the process.

DEVICE
Name of the device description object that is associated with the process.

ETIME
The elapsed time since the process started. The time is displayed in the format [[dd-]hh:]mm:ss
where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss
is the number of seconds.

FUNCTION
Program, menu, or command most recently run by the process.

JOBID Qualified job name of the process. The qualified job name is a string in the form
number /user /name. The number is a six-digit decimal number, user is the user profile under which
the job was started, and name is the name of job.

JOBNAME
Job name component of the qualified job name.

JOBNUM
Job number component of the qualified job name.

NTHREADS
The number of threads currently running in the process as a decimal number.

PCPU The ratio of CPU time used recently to CPU time available, expressed as a percentage.

PGID Process group ID number as a decimal number.

PID Process ID number as a decimal number.

PPID Parent process ID number as a decimal number.

PRI Current priority of the process as a decimal number. Lower numbers mean a higher priority.
SBS Subsytem in which the process is running.

STATUS
Current status of the process.

STIME
Date and time the process was started. By default, the date and time is displayed in the format
mm-dd-yyyy hh:nn:ss where mm is the month, dd is the day, yyyy is the year, Ih is the hour, nn is

Qshell 151

the minute, and ss is the second. If the LC_TIME environment variable is set, the date and time is
displayed with the format specified by the d_t_fmt keyword in the LC_TIME category of the
specified locale.

THCOUNT
The number of threads currently running in the process as a decimal number.

TIME CPU time used by the process in seconds. The time is displayed in the format [[dd-]hh:]mm:ss
where dd is the number of days, hh is the number of hours, mm is the number of minutes, and ss
is the number of seconds.

TMPSZ
The amount of temporary storage used by the process in megabytes as a decimal number.

TYPE The type of the process.
USER User profile component of the qualified job name.
UID User id number corresponding to the user profile component of the qualified job name.

By default, ps displays the PID, DEVICE, TIME, FUNCTION, STATUS, and JOBID fields about processes
owned by the current user. Use the -o option to select the fields displayed by ps.

To display information about other processes, you must have *JOBCTL special authority.

Options

-a Display information for all processes associated with a 5250 terminal.

-A Display information for all processes. This includes processes that are active, on a job queue, or
on an output queue.

-e Include active processes in the output.

-f Display a full listing. The output includes the USER, PID, PPID, STIME, DEVICE, TIME and
FUNCTION fields.

-j Include processes on a job queue in the output.

-1 Display a long listing. The output includes the USER, PID, PPID, PRI, STATUS, JOBID, STIME,

DEVICE, TIME and FUNCTION fields.

-0 format
Display information according to the format specification given in format. Multiple -0 options can
be specified.

-p pidlist
Write information for processes whose process ID numbers are specified in pidlist. The pidlist
must be a single argument in the form of a blank- or comma-separated list.

-s sbslist
Write information for processes running in the subsystems specified in sbslist. The sbslist must be
a single argument in the form of a blank- or comma-separated list.

-t Include processes on an out queue in the output.

-u userlist
Write information for processes whose user ID numbers or user names are specified in userlist.
The userlist must be a single argument in the form of a blank- or comma-separated list.

Environment Variables

ps is affected by the following environment variables:

152 iSeries: Qshell

LANG
Provides a default value for locale categories that are not specifically set with a variable starting
with LC_.

LC_TIME
Defines the output format for date and time attributes.

Exit Status
* 0 when successful
* >0 when unsuccessful

Related information

* [“getjobid - Display job information” on page 146|

* ["jobs - Display status of jobs in current session” on page 14§

sleep - Suspend invocation for an interval
Synopsis

sleep time

Description

You can use sleep to suspend a process from running for time seconds.
Options

None.

Operands

The value of time must be a positive integer.

Exit Status
¢ 0 when successful.
* >0 when time is invalid.

trap - Trap signals
Synopsis

trap [action condition ...]
trap -p [condition ...]
trap -1

Description

The trap utility sets the action for gsh to take when a condition arises. qsh expands action once when
running trap and again when condition arises.

When the -p option is specified, trap displays the current action for the specified conditions.
When the -1 option is specified, trap displays a list of all of the signal names and their corresponding

numbers.

Qshell 153

When no arguments are specified, trap displays a list of the currently defined traps.

Options
-1 Display a list of all of the signal names and their corresponding numbers.

P Display each trap in a re-enterable format.
Operands

For action, you can specify:

* Null to ignore condition when it arises

* Minus (-) to reset condition to its original value.
* A command to be run each time condition arises.

For condition, you can specify:

¢ Name or number of a signal. You can use trap -1 to display a list of valid signals. For portability, you
should always specify the signal name.

* 0 or EXIT. gsh runs action when the shell exits.
* ERR. gsh runs action when a command has a non-zero exit status.
¢ DEBUG. gsh runs action after each simple command.

If more than one condition arises at the same time, qsh runs the traps in this order:
1. DEBUG, if it is specified, then

2. ERR, if it is specified and applicable, then

3. Any other specified traps in signal number order, then

4. EXIT.

Exit Status
¢ 0 when successful.

* >0 when an invalid condition is specified.

Related information

* [’kill - Terminate or signal processes” on page 149

* ['wait - Wait for process completion” on page 155|

Examples

1. Set a trap for the ERR condition:
trap “print Command failed' ERR

2. Ignore the ERR condition:

trap "" ERR

3. Reset the ERR condition to its original value:
trap - ERR

4. Display the current action for the ERR condition:
trap -p ERR

5. Display all of the currently defined traps:
trap

154 iSeries: Qshell

wait - Wait for process completion
Synopsis

wait [job ...]
Description

You can use wait to wait for the specified jobs to end. If job is not specified, gsh waits for all child
processes to end.

Options
None.
Operands

Each job specifies an active job. The job can be specified as a:
* Number to refer to a process id. qsh waits for the given process to end.
* %number to refer to a job number. gsh waits for all processes in the job to end.

* %string to refer to a job whose name begins with string. qsh waits for all processes in the job to end.
Exit Status

When no job was specified, the exit status is:
* 0 when all running jobs have ended.
* >0 when unsuccessful.

When at least one job was specified, the exit status is the exit status of the last job.

Related information

* [“jobs - Display status of jobs in current session” on page 148

* [‘kill - Terminate or signal processes” on page 149

s [“trap - Trap signals” on page 153

Examples
1. Wait for process id 16825 to end: wait 16825
2. Wait for job number 5 to end: wait %5

Utilities for Kerberos credentials and key tables

The following are Qshell utilities for working with Kerberos credentials and key tables:

+ |kdestroy - Destroy a Kerberos credentials cache]

¢ |keytab - Manage a Kerberos key table file]

+ |kinit - Obtain or renew a Kerberos ticket-granting ticket

+ |klist - Display the contents of a Kerberos credentials cache or key table file|

* |ksetup - Manage Kerberos service entries in the LDAP directory for a Kerberos realm|

Utilities for LDAP directory server

The following are Qshell utilities for working with the LDAP directory server:
+ [ldapadd - Add LDAP entry tool|

+ [[dapmodify - Change LDAP entry too]

Qshell 155

* [ldapchangepwd - Change LDAP password tool|

* [[dapmodrdn - Change LDAP Relative Distinguished Name (RDN"™) tool]|
* [l dapdiff - Compare LDAP replication synchronization tool|

* [dapdelete - Delete LDAP entry tool|

+ [ldapexop - Extend LDAP operation tool|

« [ldapsearch - Search LDAP server tool|

Utilities for working with parameters and variables
The following are Qshell utilities for working with parameters and variables:

“declare - Declare variables and set attributes’]

* [“export - Set export attribute for variables” on page 157

* ["local - Assign a local variable in a function” on page 158]

* [‘printenv - Display values of environment variables” on page 159

* [“readonly - Set read-only attribute for variables” on page 15_9|

[“set - Set or unset options and positional parameters” on page 160|

[“shift - Shift positional parameters” on page 162|

+ [“typeset - Declare variables and set attributes” on page 162

* [‘unset - Unset values of variables and functions” on page 163

declare - Declare variables and set attributes
Synopsis

declare [-Eilrux | name [=value] ...

declare [+Eilrux] name [=value] ...

declare -fF [name ...]

declare -p name ...

declare

Description

The declare utility declares variables, assigns values to variables, sets or unsets attributes for variables,
and displays the definitions for . If used in a shell function, declare makes the variable
name local to the function.

In the first synopsis form, declare declares a variable name and optionally assigns it the specified value. If
an option is specified, the corresponding attribute is turned on for the variable.

In the second synopsis form, declare declares a variable name and optionally assigns it the specified value.
If an option is specified, the corresponding attribute is turned off for the variable.

In the third synopsis form, declare displays the names and definitions for all shell functions if no names
are specified or the shell functions specified by name.

In the fourth synopsis form, declare displays the attributes and value of the variables specified by name
in a re-enterable format.

In the fifth synopsis form, declare displays the names and values of all variables.

156 iSeries: Qshell

cmpdcmds.htm#FUNCTIONS

Options

-E Set the floating point attribute for the variable. On assignments to the variable the value is
evaluated as a floating point number.

-f Display the names and definitions of shell functions.

-F Display the names of shell functions.

-i Set the integer attribute for the variable. On assignments to the variable the value is evaluated as
an integer number.

-1 Set the lowercase attribute for the variable. On assignments to the variable the value is set to
lowercase characters.

P Display each variable in a re-enterable format.

-r Set the read-only attribute for the variable. The variable cannot have its value changed by a

subsequent assignment and cannot be unset. If a value is also specified, the value of the variable
is updated before setting the read-only attribute.

-u Set the uppercase attribute for the variable. On assignments to the variable the value is set to
uppercase characters.

-X Set the export attribute for the variable. The variable is automatically placed in the environment
of subsequently executed commands.

Operands

Each name must be a valid [“Variables” on page 10| name.

Exit Status
* 0 when successful

* >0 when unsuccessful

Related information

* [“export - Set export attribute for variables”|

* [‘let - Evaluate arithmetic expression” on page 166

[“local - Assign a local variable in a function” on page 158|

* [‘readonly - Set read-only attribute for variables” on page 159|

* [‘set - Set or unset options and positional parameters” on page 160

* [‘unset - Unset values of variables and functions” on page 163

export - Set export attribute for variables
Synopsis

export [-ps 1 [name [=value] ...]
Description

You can use export to set the export attribute for the variables specified by name. A variable with the
export attribute is automatically placed in the environment of subsequently executed commands.

When no arguments are specified, qsh displays a list of all the variables with the export attribute and
their values.

Options

P Precede each line of the output with the word "export " so it is displayed in a re-enterable format.

Qshell 157

-s Also set the variable as an environment variable in the current process.
Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated.

Exit Status

¢ 0 when successful.

Related information

» ["declare - Declare variables and set attributes” on page 156|

* [“local - Assign a local variable in a function”]

* ['readonly - Set read-only attribute for variables” on page 159

* [‘set - Set or unset options and positional parameters” on page 160

* ["unset - Unset values of variables and functions” on page 16—3|

Examples

1. Set the export attribute for an existing variable:
export ALPHA

2. Set the value and export attribute of a new variable:
export ALPHA=one

3. List all variables with the export attribute:
export

local - Assign a local variable in a function
Synopsis

local [name [=value | ...]

Description

You can use local to make a variable local to a function. When a variable is made local, it inherits the
initial value and exported and read-only attributes from the variable with the same name in the
surrounding scope, if there is one. Otherwise, the variable is initially unset.

qsh uses dynamic scoping, so that if you make the variable alpha local to function foo, which then calls
function bar, references to the variable alpha made inside bar will refer to the variable declared inside foo,
not to the global variable named alpha.

The special parameter - is the only special parameter that can be made local . By making - local, any shell
options that are changed with set inside the function are restored to their original values when the
function returns.

Options

None.

Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated.

158 iSeries: Qshell

Exit Status
* 0 when successful.

¢ >0 when called from outside of a function.

Related information

* [“export - Set export attribute for variables” on page 157]

* [‘readonly - Set read-only attribute for variables”|

* [“set - Set or unset options and positional parameters” on page 160|

* ["unset - Unset values of variables and functions” on page 163|

printenv - Display values of environment variables
Synopsis

printenv [-s] [name]

Description

The printenv utility displays the value of the environment variable name. If no name is specified, printenv
displays all of the current environment variables, one per line, in the format "name=value”. By default,

printenv displays job environment variables.

Options

-s Display system environment variables.
Operands

The name is the name of an environment variable in the current environment or a system environment
variable.

Exit Status
* 0 when successful

* >0 if name is not currently defined

Related information

* [‘env - Set environment for command invocation” on page 53

* ["export - Set export attribute for variables” on page 157

readonly - Set read-only attribute for variables
Synopsis

readonly [-p] [name [=value] ...]
Description

You can use readonly to set the read-only attribute for the variables specified by name. A variable with
the read-only attribute cannot have its value changed by a subsequent assignment and cannot be unset.

Note that gsh can change the value of a variable with the read-only attribute. For example, if PWD has
the read-only attribute, it’s value will be changed when you change the current working directory.

When no arguments are specified, qsh displays a list of the variables with the read-only attribute and
their values.

Qshell 159

Options

P Precede each line of the output with the word "readonly " so it is displayed in a re-enterable
format.
Operands

Each name specifies a variable in the current environment. If a value is also specified, the value of the
variable is updated before setting the read-only attribute.

Exit Status
* 0 when successful.

¢ >0 when unsuccessful.

Related information

* [‘declare - Declare variables and set attributes” on page 156|

* [“export - Set export attribute for variables” on page 1?7|

[“local - Assign a local variable in a function” on page 158]

[“set - Set or unset options and positional parameters”]

* [“unset - Unset values of variables and functions” on page 163

Examples

1. Set the read-only attribute for an existing variable:
readonly ALPHA

2. Set the value and read-only attribute of a new variable:
readonly ALPHA=one

3. List all variables with the read-only attribute:
readonly

set - Set or unset options and positional parameters
Synopsis

set [-abCefFjlmntuvx-] [-o option] [arqument ...]
set [+abCefFjlmntuvx- | [+o option] [argument ...]
Description

The set utility can:

 Display the names and values of all shell variables by specifying no options or arguments.

* Display the option settings by specifying the -0 option but no option.

* Set an option by specifying a - (minus) followed by the option letter or by specifying -o option.

* Unset an option by specifying a + (plus) followed by the option letter or by specifying +o option.
* Set positional parameters by specifying arguments.

* Unset positional parameters by specifying — but no argument.

Options
All of the single letter options have a corresponding -o option. The option value is listed in parenthesis

following the letter option below. qsh supports the following options:

-a (allexport)
Set the export attribute to each variable that is assigned a value.

160 iSeries: Qshell

-b (notify)
Enable asynchronous notification of background job completion.

-C (noclobber)
Do not overwrite existing files with the > redirection operator.

-e (errexit)
If the interactive option is not set, exit immediately if any untested command fails. The exit status
of a command is considered to be explicitly tested if the command is used to control an if, elif,
while, or until; or if the command is the left hand operand of an && or | | operator.

-f (noglob)
Disable path name expansion.

-F (float)
Enable floating point arithmetic in [’Arithmetic expansions” on page 18]

-j (jobtrace)
Enable job tracing. Each time qsh starts a i5/0S™ job, it displays a message to standard error
with the fully-qualified job name and process id.

-1 logemds)
Enable command logging. Write each command to a message in the job log before it is run.

-m (monitor)
Display a message when a job completes. qsh implicitly turns on this option when the interactive
option is set.

-n (noexec)
If the interactive option is not set, read commands but do not run them. This is useful for
checking the syntax of shell scripts.

-t (trace)
Enable internal tracing. qsh traces internal information to the file specified by TRACEFILE
variable or the gsh_trace file in the user’s home directory.

-u (nounset)
Write a message to standard error when attempting to expand a variable that is not set, and if the
interactive option is not set exit immediately.

-v (verbose)
Write input to standard error as it is read.

-x (xtrace)
Write each command to standard error before it is run, preceded by the expansion of the PS4
variable.

Operands

Each argument is assigned in order to the positional parameters.

Exit Status

* 0 when successful.

Related information

* ["export - Set export attribute for variables” on page 157

* [‘gsh - Qshell command language interpreter” on page 57

* ['readonly - Set read-only attribute for variables” on page 159

* [‘shift - Shift positional parameters” on page 162

* [“unset - Unset values of variables and functions” on page 163

Qshell 161

Examples

1. List all variables and their values:
set

2. List all option settings:
set -o

3. Set positional parameters $1, $2, $3:
set alpha beta gamma

4. Set the allexport and notify options:
set -0 allexport -o notify

5. Set the verbose and xtrace options:
set -xv

6. Unset the xtrace option:
set +x

7. Unset the notify option:
set +o0 notify

8. Unset all positional parameters:
set --

shift - Shift positional parameters
Synopsis

shift [n]

Description

You can use shift to shift the positional parameters to the left by n. Positional parameter 1 is assigned the
value of positional parameter (1+7), positional parameter 2 is assigned the value of positional parameter
(24n), and so forth. The special parameter # is updated with the new number of positional parameters.
Options

None.

Operands

The value of n must be an unsigned integer less than or equal to the special parameter #. If n is not
specified, the default value is 1. If n is O, there are no changes to the positional parameters.

Exit Status
* 0 when successful.

¢ >0 when # is invalid.

Related information

“set - Set or unset options and positional parameters” on page 160|

Examples
1. Shift the positional parameters by two: shift 2

typeset - Declare variables and set attributes
Synopsis

typeset [-Eilrux] name [=value] ...

162 iSeries: Qshell

typeset [+Eilrux | name [=value] ...
typeset -fF [name ...]

typeset -p name ...

typeset

Description

The typeset utility declares variables, assigns values to variables, sets attributes for variables, and
displays the definitions for |she11 functionﬁ It is a synonym for the [“declare - Declare variables and sef
lattributes” on page 156 utility.

Related information

* [‘declare - Declare variables and set attributes” on page 156|

* [“export - Set export attribute for variables” on page 15_7|

* [“local - Assign a local variable in a function” on page 158]

* [‘readonly - Set read-only attribute for variables” on page 159|

* [“set - Set or unset options and positional parameters” on page 160

* [“unset - Unset values of variables and functions”|

unset - Unset values of variables and functions
Synopsis

unset [-fv | [name ...]
Description

You can use unset to unset each variable or function specified by name. If no option is specified, name
refers to a variable. Variables with the read-only attribute cannot be unset.

Options
-f name refers to a function.

-V name refers to a variable.
Operands
Each name is a variable or function.

Exit Status
* 0 when successful.

* >0 when at least one name could not be found. The value is the number of names that are not found.

Related information

* [“export - Set export attribute for variables” on page 157]

* ["local - Assign a local variable in a function” on page 158]
* [‘readonly - Set read-only attribute for variables” on page 152|
* ['set - Set or unset options and positional parameters” on page 160

Examples
1. Unset the variable alpha: unset alpha

Qshell 163

cmpdcmds.htm#FUNCTIONS

2. Unset the function foo: unset -f foo

Utilities for writing scripts

The following are Qshell utilities for writing scripts:

* [‘break - Exit from for, while, or until loop”]
* [“colon () - Null utility”|
* [“continue - Continue for, while, or until loop” on page 165|

* [‘false - Return false value” on page 165

* [‘getopts - Parse utility options” on page 166|

* ["let - Evaluate arithmetic expression” on page 166

* [‘return - Return from a function” on page 167

* [“test - Evaluate expression” on page 167|

* ["true - Return true value” on page 169

break - Exit from for, while, or until loop
Synopsis

break|[n]
Description

You can use break to exit from the smallest enclosing for, while, or until loop or from the nth enclosing
loop. Processing resumes with the command immediately following the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit Status
* 0 when successful.

Related information

* [’continue - Continue for, while, or until loop” on page 165|

colon (:) - Null utility
Synopsis

: [arqument ...]
Description

You can use colon where you must have a command, but you do not want the command to do anything.
For example, in the then condition of an if command.

Options
None.
Operands

164 iSeries: Qshell

Each arqument is expanded.

Exit Status
* 0 when successful.

continue - Continue for, while, or until loop
Synopsis

continue [7 |
Description

You can use continue to go to the top of the smallest enclosing for, while, or until loop or to the nth
enclosing loop. Processing resumes with the first command at the top of the loop.

Options

None.

Operands

The value of n must be greater than or equal to 1.

Exit Status
* 0 when successful.

Related information

* [‘break - Exit from for, while, or until loop” on page 164|

false - Return false value
Synopsis

false

Description

false returns with an exit code that is non-zero.
Options

None.

Operands

None.

Exit Status
* >0 when successful.

Related information

* ["true - Return true value” on page 169

Qshell 165

getopts - Parse utility options
Synopsis

getopts optstring varname

Description

You can use getopts to check the positional parameters for legal options. An option argument begins with
a minus (-). The end of the the options is marked by the first argument that does not begin with a minus
or an argument of —.

Each time you call getopts, it places the next option letter it finds in varname. qsh stores the index of the
next parameter to be processed in the variable OPTIND. When an option requires an argument, qsh
stores the argument in the variable OPTARG.

Options

None.

Operands

The option letters recognized by getopts are identified in optstring. If a letter is followed by a colon (:),
that option is expected to have an argument. The argument can be separated from the option letter by
<space>s.

With each call to getopts, varname is updated with the option letter.

Exit Status
* 0 when successful.
* >0 when unsuccessful.

let - Evaluate arithmetic expression
Synopsis

let arg ...

Description

You can use let to evaluate each arg as an|”Arithmetic expansions” on page 18, You may need to quote
each arg since many arithmetic operators have a special meaning to qsh.

Operands

Each arg is evaluated as an |“Arithmetic expansions” on page 18.|

Exit Status
* 0 when the value of the last expression is non-zero

* 1 when the value of the last expression is zero

Examples
1. Add one to the variable x.
let x=x+1

166 iSeries: Qshell

return - Return from a function
Synopsis

return [7 |
Description

You can use return to cause a function or dot script to return to the invoking shell script. If return is
called outside a function or dot script, it is equivalent to exit.

Options

None.

Operands

The value of n is an integer that is greater than or equal to 0 and less than or equal to 255.
Exit Status

n if specified. Otherwise, the exit status of the preceding command.

Related information

* [“exit - Exit from the shell” on page 55

test - Evaluate expression
Synopsis

test expression
[expression]
Description

The test utility checks the type of a file, checks permissions on files, compares two strings, or compares
two arithmetic expressions.

The test utility tests conditions for files using the following primaries:
-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists regardless of type.

-f file True if file exists and is a regular file.

-g file True if file exists and its set group id flag is set.

-G file True if file exists and is owned by the effective group id.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its restricted deletion flag is set.

-L file True if file exists and is a symbolic link.

-N file True if file exists and is a native object.

-O file True if file exists and is owned by the effective user id.

Qshell 167

-p file True if file exists and is a pipe.

-1 file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.
-S file True if file exists and is a socket.

-u file True if file exists and its set user id flag is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable. This only means that the execute bit is on. If file is a directory,
the directory can be searched.

filel -ef file2
True if filel and file? are different names for the same file (they have the same device and inode
numbers).

filel -nt file2
True if filel is newer than file2 or file2 does not exist.

filel -ot file2
True if filel is older than file2 or file2 does not exist.
The test utility tests conditions for checking status using the following primaries:

-0 optname
True if shell option optname is enabled.

-t fd True if file descriptor fd is open and associated with a terminal.

The test utility tests conditions for comparing strings using the following primaries:

-n string
True if the length of string is non-zero.

-z string
True if the length of string is zero.

string True if string is not the null string.
stringl = string2

True if the strings are identical.
stringl == string2

True if the strings are identical.
stringl != string2

True if the strings are not identical.

stringl < string2
True if stringl sorts before string? in the collation sequence of the current locale.

stringl > string2
True if stringl sorts after string2 in the collation sequence of the current locale.

The test utility tests conditions for comparing [“Arithmetic expansions” on page 18 using the following
primaries:

expl -eq exp?2
True if the arithmetic expressions are equal.

expl -ne exp2
True if the arithmetic expressions are not equal.

168 iSeries: Qshell

expl -gt exp2

True if the first arithmetic expression is greater than the second arithmetic expression.
expl -ge exp2

True if the first arithmetic expression is greater than or equal to the second arithmetic expression.
expl -1t exp2

True if the first arithmetic expression is less than the second arithmetic expression.

expl -le exp?2
True if the first arithmetic expression is less than or equal to the second arithmetic expression.

The above primaries can be combined to form complex expressions using the following operators:
 !expr True if expr is false.

* exprl -a expr2 True if both expressions are true.

* exprl & expr2 True if both expressions are true.

* exprl && expr2 True if both expressions are true.

* exprl -o expr2 True if either expression is true.

e exprl | expr2 True if either expression is true.

e exprl || expr2 True if either expression is true.

* (expr) Parentheses are for grouping.

The -a, &, and && operators have higher precedence than the -o, | operators, and | | operators.
Options

See above.

Operands

All operators and flags are separate arguments.

Exit Status

* 0 when expression is true.
* 1 when expression is false.
* >1 when there is an error.

Examples

1. See if /home is a directory:
test -d /home

2. See if one integer is less than or equal to another:
test "$index" -le "$count"

3. See if two strings are equal:
test "$REPLY" = "Yes"

true - Return true value
Synopsis

true
Description

true returns with an exit code of zero.

Qshell 169

Options
None.
Operands
None.

Exit Status
Zero.

Related information

“false - Return false value” on page 165|

Miscellaneous utilities

The following are miscellaneous Qshell utilities:

* [“clrtmp - Clear the /tmp directory”]

[“dataq - Send or receive messages from i5/0S™ data queue” on page 171

+ [“datarea - Read or write i5/0S™ data area” on page 172|
+ [“date - Write the date and time” on page 173
* [“expr - Evaluate arguments as an expression” on page 174

* [‘hostname - Display the name of the current host system” on page 175|

* [id - Return user identity” on page 175|

* [“ipcrm - Remove interprocess communication identifier” on page 176|

* [“ipcs - Report interprocess communication status” on page 177

+ [“locale - Get locale specific information” on page 182|

* [‘logger - Log messages” on page 183

* [logname - Display user’s login name” on page 184

* [‘sysval - Retrieve system values or network attributes” on page 184

* [“tee - Duplicate standard input” on page 185|

* [‘ulimit - Set or display resource limits” on page 185|

* [‘uname - Return system name” on page 186|

clrtmp - Clear the /tmp directory
Synopsis

clrtmp [-c]

Description

The clrtmp utility clears the /tmp directory by removing all of the objects from it. On other systems, the
/tmp directory is cleared each time the system is started. On i5/0S™, the /tmp directory is not cleared
when the system is started. You can include a call to the clrtmp utility from the startup program specified
by the QSTRUPPGM system value to have the /tmp directory cleared when i5/0S™ is started.

To remove objects from the /tmp directory the caller of clrtmp must have *WX authority to each

subdirectory contained in /tmp and *OBJEXIST authority to each object. If the caller does not have the
required authority those objects are not removed from the /tmp directory.

170 iSeries: Qshell

Unpredictable results may occur if clrtmp is called while the system is running. For example, if another
program is writing to a file in the /tmp directory, the path to the file is removed and you will not be able
use the file.

Note: This utility is unique to i5/0S™?.
Options
-C Create /tmp if it does not exist.

Exit Status
* 0 when successful

* >0 when an error occurs or at least one object could not be removed from the /tmp directory

dataq - Send or receive messages from i5/0S™ data queue
Synopsis

dataq -c [-1] queue

dataq -r [-1p] [-n number] [-t seconds] queue
dataq -w [-1] [-n number] queue [data ...]
Description

The dataq utility clears messages from a data queue, reads messages from a data queue, or writes
messages to a data queue.

In the first synopsis form, dataq clears all of the messages from the queue.

In the second synopsis form, dataq reads messages from the queue and writes them to standard output.
By default, it reads one message from the queue. If no messages are available from the gueue, dataq waits
for a message.

In the third synopsis form, dataq writes messages to the queue. If data is specified, it is written as one
message to the gueue. Otherwise, each line read from standard input is written as a message to the queue.
Options

-c Clear all of the messages from the gueue.

-1 When a relative path name is specified, use the library list to find the gueue.

-n number
If the -r option is specified, read number messages from the queue. If the -w option is specified,
write number messages to the queue.

P Peek mode. When reading messages, the messages are left on the gueue.
-r Read messages from the queue.
-t seconds

When reading messages, exit if no messages have been received after seconds seconds of waiting.

-w Write messages from the queue.
Operands
The queue is the path name to a data queue. A data queue can only exist in the QSYS.LIB file system.

Qshell 171

Exit Status
* 0 when successful

* >0 when unsuccessful

Related information
+ [“datarea - Read or write i5/0S™ data area’]

+ [“Rfile - Read or write record files” on page 124

datarea - Read or write i5/0S™ data area
Synopsis

datarea -r [-1] [-s substring] data-area

datarea -w [-1] [-s substring] data-area [data ...]
Description

The datarea utility reads or writes a data area.

In the first synopsis form, datarea reads the contents of the data-area and writes it to standard output. By
default, it reads the entire data area.

In the second synopsis form, datarea writes to the data-area. If data is specified, it is written to the
data-area. Otherwise, one line is read from standard input and written to the data-area.

Options
-1 When a relative path name is specified, use the library list to find the data-area.
-r Read from the data-area.

-s substring
For a character type data area, read or write the character positions specified by substring. The
substring is specified as a number range that consists of a number, a dash (-), and a second
number to select the character positions from the first number to the second number, inclusive. If
the first number is omitted, character positions from 1 to the second number are selected. If the
second number is omitted, character positions from the first number to the end of the data area
are selected.

-w Write to the data-area.
Operands
The data-area is the path name to a data area. A data area can only exist in the QSYS.LIB file system.

Exit Status
* 0 when successful

¢ >0 when unsuccessful

Related information

* [‘dataq - Send or receive messages from i5/ 0S™) data queue” on page 171]

* ['Rfile - Read or write record files” on page 124

172 iSeries: Qshell

date - Write the date and time
Synopsis

date [-u] [+format]
Description

The date utility writes the date and time to standard output. By default, the current date and time are

written.

Options

-u Give time in universal coordinated time (UTC). The QUTCOFFSET system value must be set
correctly for date to return the correct time.

Operands

The +format operand specifies the format of the output from the date command. Each field descriptor is
replaced in the standard output by its corresponding value. All other characters are copied to the output
without change. The output is always terminated with a newline character.

You can use these field descriptors:

%a Insert abbreviated weekday name from locale.

%A Insert full weekday name from locale.

%b Insert abbreviated month name from locale.
%B Insert full month name from locale.
%c Insert date and time from locale.

%d Insert day of the month (01-31).

%H Insert hour (24-hour clock) as a decimal number (00-23).

%I Insert hour (12-hour clock) as a decimal number (01-12).

%j Insert day of the year (001-366).

%m Insert month (01-12).

%M Insert minute (00-59).

%p Insert equivalent of either AM or PM from locale.

%S Insert second (00-61).

%U Insert week number of the year (00-53) where Sunday is the first day of the week.
%w Insert weekday (0-6) where Sunday is 0. first day of the week.

%W Insert week number of the year (00-53) where Monday is the first day of the week
Yox Insert date representation from locale.

%X Insert time representation from locale.

Y%y Insert year without the century (00-99).

%Y Insert year.

%L Insert name of time zone, or no characters if time zone is not available.

% % Insert %.

Qshell 173

Exit Status

* 0 when successful

* >0 when an error occurred

Examples

1. Print the full weekday name, the full month name, the day and the full year.

date +@(#) 89 1.41@(#), O %d%, %Y
Friday, August 14, 1998

2. Print the day, the abbreviated month name, and the abbreviated year.

date +%d%.%b%.%y

14.Aug.98

3. Print the numeric month, day, and abbreviated year.

date +%m%/%d%/%

08/14/98

expr - Evaluate arguments as an expression

Synopsis

expr operand ...

Description

The expr utility evaluates an expression formed by the operands and writes the result to standard output.

Operands

The format of the expression to evaluate is shown as follows. expr, exprl, and expr2 can be decimal

integers or strings.

Note:

Expression
exprl | expr2

exprl & expr2

exprl = expr2
exprl > expr2
exprl >= expr2
exprl < expr2
exprl <= expr2
exprl != expr2
exprl + expr2
exprl - expr2
exprl * expr2
exprl / expr2
exprl % expr2
exprl : expr2
(expr)

174 iSeries: Qshell

The six relational expressions return the result of a
decimal integer comparison if both arguments are
integers. Otherwise, they return the result of a string
comparison. The result of each comparison is 1 if the
specified relationship is true, or 0 if the relationship is
false.

Description

Returns the evaluation of expr1 if it is neither null nor
zero; otherwise, returns the evaluation of expr2.
Returns the evaluation of expr1 if neither expression
evaluates to null or zero; otherwise, returns zero.
Equal.

Greater than.

Greater than or equal.

Less than.

Less than or equal.

Not equal.

Addition of decimal integers.

Subtraction of decimal integers.

Multiplication of decimal integers.

Division of decimal integers.

Remainder of decimal integer division.

Matching expression.

Grouping symbols.

Exit Status

* 0 when the expression evaluates to neither null nor zero.
* 1 when the expression evaluates to null or zero.

* 2 when the expression is invalid.

e >2 when an error occurred.

Examples

1. Evaluate an arithmetic expression.
expr 10+10+10/10-10

2. Evaluate a true or false condition.
expr 10 = 10

hostname - Display the name of the current host system
Synopsis

hostname [-is]
Description

The hostname utility writes the name of the current host system to standard output.

Options
-i Also display the IP address of the host system.
-s Display the short name of the host system without the domain information.

Exit Status
* 0 when successful
* >0 when an error occurs

id - Return user identity
Synopsis

id [user]

id -G [-n] [user]

id -g [-nr] [user]

id -p [user]

id -u [-nr] [user]

Description

The id utility displays the user and group names and numeric identifiers, of the calling process, to
standard output. If the real and effective identifiers are different, both are displayed, otherwise only the

real identifier is displayed.

If a user (login name or user identifier) is specified, the user and group identifiers of that user are
displayed. In this case, the real and effective identifiers are assumed to be the same.

Options

Qshell 175

-G Display the different group identifiers (effective, real and supplementary) as white-space
separated numbers, in no particular order.

-g Display the effective group identifier as a number.

-n Display the name of the user or group identifier for the -G, -g and -u options instead of the
number. If any of the identifier numbers cannot be mapped into names, the number will be
displayed as usual.

&Y Make the output human-readable. The user identifier as a name is displayed, preceded by the
keyword "uid". If the effective user identifier is different from the real user identifier, the real user
identifier is displayed as a name, preceded by the keyword "euid”. If the effective group identifier
is different from the real group identifier, the real group identifier is displayed as a name,
preceded by the keyword "rgid”. The list of groups to which the user belongs is then displayed as
names, preceded by the keyword "groups”. Each display is on a separate line.

T Display the real identifier for the -g and -u options instead of the effective identifier.

-u Display the effective user identifier as a number.

Exit Status
* 0 on success

¢ >0 if an error occurs.

Related information

* [“logname - Display user’s login name” on page 184|

Examples
1. Display all user and groups identifiers that belong to the user "SAM".

id -p SAM
uid SAM
groups 500, 1

ipcrm - Remove interprocess communication identifier
Synopsis

ipcrm [-m shmid] [-M shmkey] [-q msgid] [-Q msgkeyl [-s semid] [-S semkey]
Description

The ipcrm utility removes an interprocess communication (IPC) entry if the caller has the necessary
authority to the IPC entry. The caller can specify an entry either by the key or by the identifier. The caller
can remove multiple entries at once.

Options

-M shmkey
Remove the shared memory segment with the specified key.

-m shmid
Remove the shared memory segment with the specified id.

-Q msgkey
Remove the message queue with the specified key.

-q msgid
Remove the message queue with the specified id.

-S semKey
Remove the semaphore set with the specified key.

176 iSeries: Qshell

-s semid
Remove the semaphore set with the specified id.

Operands
There are no operands.

Exit Status
* 0 on success
e >0 if an error occurs

Related Information

“ipcs - Report interprocess communication status”|

Examples
* Remove a semaphore with key 1283 and a message queue with id 10:
ipcrm -S 1283 -q 10

ipcs - Report interprocess communication status
Synopsis

s ipcs [-ETabcjmnopgqstu] <%
Description

The ipcs utility reports information about existing interprocess communication (IPC) entries on the
system and displays the output on standard output. The ipcs utility is shipped with public authority set
to *EXCLUDE. The user must have *SERVICE special authority to run ipcs.

ipcs automatically reports some information for all entries that match the IPC mechanism specified.
Additional information is reported based on the specified options.

If no IPC mechanism is specified, all five mechanisms are reported. An IPC mechanism is specified by
using the -m option for shared memory, -n option of named semaphores, -s option for semaphores sets,
-q option for message queues, or -u option for unnamed sempahores.

The following information is reported for every shared memory, semaphore set, and message queue
entry:

* The type of the mechanism (column T).

* The id of the entry in decimal form (column ID).

¢ The key of the entry in hexadecimal form (column KEY).

* The entry’s access modes and flags (column MODE).

* The user profile of the owner of the entry (column OWNER).
* The group profile of the owner of the entry (column GROUP).

The following information is reported for every named semaphore entry:
* The type of the mechanism (column T).

* The title for the semaphore (column TITLE).

¢ The entry’s access modes and flags (column MODE).

The following information is reported for every unnamed semaphore entry:

* The type of the mechanism (column T).

Qshell 177

* The title for the semaphore (column TITLE).

Warning: Running ipcs locks system-scoped resources that can affect the performance of other IPC
operations.

Options

The following options are used to select the IPC mechanism to report on.

-m
-n
-q
-s

-u

Show the shared memory entries on the system.
Show the named semaphore entries on the system.
Show the message queue entries on the system.
Show the semaphore set entries on the system.

Show the unnamed semaphore entries on the system.

The following options select the additional information that is reported for the IPC mechanism.

-a

-b

-C

-

P

-T

178

Report all information as if the -b, -c, -0, -p, and -t options were specified.

Display the maximum allowable size. If message queues are specified, the report includes the
QBYTES column. If shared memory is specified, the report includes the SEGSZ column. If

semaphore sets are specified, the report includes the NSEMS column. If named semaphores or
unnamed semaphores are specified, the report includes the VALUE and NWAITERS columns.

Display the user profile and group profile of the creator of the entry. For all mechanisms, the
report includes the CREATOR and CGROUP columns.

Display extended information. If message queues are specified, the report includes the WPID,
WTID, MSGTYPE, and SIZE columns. If shared memory is specified, the report includes the
APID and NUMATT columns. If semaphore sets are specified, the report includes the SEMNUM,
SEMVAL, LOPID, WAITZ, WAITP, and WAITVAL columns. If named semaphores are specified,
the report includes the NAME, LPOST, LWAIT, WAITER, JOB, and THREAD columns. If
unnamed semaphores are specified, the report includes the LPOST, LWAIT, WAITER, JOB, and
THREAD columns.

Since this level of detail is not available on other systems, this option is kept separate from the -a
option. When this option is specified, at least one row is added for each entry.

Display the qualified job name instead of the process ID when the -E option is also specified. If
message queues are specified, the report includes the WJOBID column instead of WPID. If shared
memory is specifed, the report includes the AJOBID column instead of APID. If semaphore sets
are specified, the report includes the LOJOBID column instead of LOPID, the WAITZJID column
instead of WAITZ, and the WAITPJID column instead of WAITP. ¥

Display information about outstanding usage. If message queues are specified, the report includes
the CBYTES and QNUM columns. If shared memory is specified, the report includes the
NATTCH column.

Display process ID information. If message queues are specified, the report includes the LSPID
and LRPID columns. If shared memory is specified, the report includes the CPID and LPID
columns.

Display time information. If message queues are specified, the report includes the CTIME,
RTIME, and STIME columns. If shared memory is specified, the report includes the CTIME,
ATIME, and DTIME columns. If semaphore sets are specified, the report includes the CTIME and
OTIME columns.

Display thread information. If message queues are specified, the report includes the LSTID and

iSeries: Qshell

LRTID columns. If shared memory is specified, the report includes the CTID and LTID columns.
If semaphore sets are specified and the -E option is specified, the report includes the LOTID,
WAITZTID, and WAITPTID columns.

Operands
There are no operands.
Extended Description

Listed below are descriptions for all of the columns that can be reported in the output. After the column
name, the options that display the column are shown. A value of “default” means that the column is
always displayed, no matter what option is specified.
» AJOBID (-Ej)

The qualified job name of the jobs attached to the shared memory segment. <%

ATIME (-t, -a)
The last time a job attached to the shared memory segment.

APID (-E)
The process ID of the job or jobs attached to the shared memory segment.

CBYTES (-o, -a)
The total number of bytes in the messages currently on the message queue.

CGROUP (-, -a)
The group profile of the creator of the entry.

CPID (-p, -a)
The process ID of the job that created the shared memory segment.

CTID (-T)
The thread ID of the thread that created the shared memory segment.

CREATOR (-c, -a)
The user profile of the creator of the entry.

CTIME (-t, -a)
The last time the entry was either created or the owner or permissions, or both, were changed.

DTIME (-, -a)
The last time a job detached from the shared memory segment.

GROUP (default)
The group profile of the owner of the entry.

ID (default)
The id of the entry in decimal.

JOB (-E)
The fully-qualified job name of the job waiting on the named semaphore or unnamed semaphore.

KEY (default)
The key of the entry in hexadecimal.

3 LOJOBID (-Ej)
The qualified job name of the last job to change the value of the semaphore using semop(). 4%

LOPID (-E)
The process ID of the last job to change the value of the semaphore using semop().

LOTID (-TE)
The thread ID of the last thread to change the value of the semaphore using semop().

Qshell 179

LPID (-p, -a)
The process ID of the last job to attach or detach from the shared memory segment or change the
semaphore value.

LPOST (-E)
The fully-qualified job name and thread id of the last thread to post the named semaphore or
unnamed semaphore.

LRPID (-p, -a)
The process ID of the last job to receive a message from the message queue using msgrcv().

LRTID (-T)
The thread ID of the last thread to receive a message from the message queue using msgrcvy().

LSPID (-p, -a)
The process ID of the last job to send a message to the message queue using msgsndy().

LSTID (-T)
The thread ID of the last thread to send a message to the message queue using msgsnd().

LTID (-T)
The thread ID of the last thread to attach or detach from the shared memory segment.

LWAIT (-E)
The fully-qualified job name and thread id of the last thread to wait for the named semaphore or
unnamed semaphore.

MODE (default)
An 11 character field that provides information about the state and permissions of the entry.

The first character can be one of the following;:

D The entry has sustained damage, and no operations can be performed on it. The entry
should only be marked damaged if an internal error has occurred.

T The entry is a shared memory segment and the segment uses teraspace storage.

Y The entry is a shared memory segment and the segment uses teraspace storage and the

entry has sustained damage.
- None of the above applies.

The second character can be one of the following:

R The entry is a message queue and a thread is waiting on a call to msgrcv().
S The entry is a message queue and a thread is waiting on a call to msgsnd().
D The entry is a shared memory segment and the shared memory segment is marked to be

removed when all the jobs detach from the shared memory.
- None of the above applies.

The next nine characters are interpreted as three sets of three permissions each. The first set refers
to the owner’s permissions, the second set to group’s permissions, and the third set to other’s
permissions. Within each set, the first character indicates permission to read, the second character
indicates permission to write, and the last character is currently unused.

The permissions are indicated as follows:
r If read permission is granted.
w If write permission is granted.

- If the indicated permission is not granted.

180 iSeries: Qshell

MSGTYPE (-E)
The type of the messages that are currently on the message queue.

NAME (-E)
The path name of the named semaphore.

NATTCH (-o, -a)
The current number of attaches to the shared memory segment.

NUMATT (-E)
The number of times the job is attached to the shared memory segment.

NSEMS (-b, -a)
The number of semaphores in the semaphore set.

NWAITERS (-b, -a)
The number of threads waiting on the named semaphore or unnamed semaphore.

OTIME (-t, -a)
The last time that semop() was called using the semaphore set.

OWNER (default)
The user profile of the owner of the entry.

QBYTES (-b, -a)
The maximum number of bytes allowed on the message queue.

ONUM (-0, -a)
The number of messages currently on the message queue.

RTIME (-, -a)
The last time a msgrcv() was called using the message queue.

SEGSZ (-b, -a)
The size of the shared memory segment.

SEMNUM (-E)
The semaphore number in the semaphore set.

SEMVAL (-E)
The value of the semaphore.

SIZE (-E)
The size of the message on the message queue.

STIME (-, -a)
The last time a msgsnd() was called using the message queue.

T (default)

The entry type. The value is M for a shared memory segment, N for a named semaphore, Q for a

message queue, S for a semaphore set, or U for an unnamed semaphore.

THREAD (-E)
The thread ID of the thread waiting on the named semaphore or unnamed semaphore.

TITLE (default)
The title of the named semaphore or unnamed semaphore.

VALUE (-b, -a)
The current value of the named semaphore or unnamed semaphore.

WAITER (-E)
The index number of the thread waiting on the named semaphore or unnamed semaphore.

WAITP (-E)
The process ID of the job waiting for the semaphore value to reach a positive number.

Qshell

181

¥ WAITPJID (-Ej)
The qualified job name of the job waiting for the semaphore value to reach a positive number. <%,

WAITPTID (-ET)
The thread ID of the thread or threads waiting for the semaphore value to reach a positive
number.

WAITVAL (-E)
The value that the thread is waiting for the semaphore to reach.

WAITZ (-E)
The process ID of the job waiting for the semaphore value to reach zero.

» WAITZJID (-Ej)
The qualified job name of the job waiting for the semaphore value to reach zero. <,

WAITZTID (-ET)
The thread ID of the thread or thread waiting for the semaphore value to reach zero.

¥ WJOBID (-Ej)
The qualified job names of the jobs waiting to receive a message. <%

WPID (-E)
The process ID of the job or jobs waiting to receive a message.

WTID (-E)
The thread ID of the thread waiting to receive a message.

Exit Status
* 0 on success
e >0 if an error occurs

Related Information

* [“ipcrm - Remove interprocess communication identifier” on page 176|

locale - Get locale specific information
Synopsis

locale [-a]

locale [-ck] name ...

Description

The locale utility displays information about the current locale environment to standard output.

In the first synopsis form, locale writes the names and values of locale environment variables. When the
-a option is specified, locale writes the names of all of the available locales on the system.

In the second synopsis form, locale writes detailed information about the locale category or keyword
specified by name.

Options
-a Write information about all available locales.
-c Display the names of the locale categories.

-k Display the names of the locale keywords.

Operands

182 iSeries: Qshell

The name operand can be one of the following locale categories or keywords:

* For category LC_CTYPE the keywords include alnum, alpha, blank, cntrl, digit, graph, lower, print,
punct, space, upper, xdigit, and codeset.

* For category LC_MESSAGES the keywords include yesexpr, noexpz, yesstr, and nostr.

* For category LC_MONETARY the keywords include int_curr_symbol, currency_symbol,
mon_decimal_point, mon_grouping, mon_thousands_sep, positive_sign, negative_sign, int_frac_digits,
frac_digits, p_cs_precedes, p_sep_by_space, n_cs_precedes, n_sep_by_space, p_sign_posn, n_sign_posn,
debit_sign, credit_sign, left_parenthesis, right_parenthesis, and crncystr.

 For category LC_NUMERIC the keywords include decimal_point, thousands_sep, grouping, and
radixchar.

* For category LC_TIME the keywords include abday, abday_1, abday_2, abday_3, abday_4, abday_5,
abday_6, abday_7, day, day_1, day_2, day_3, day_4, day_5, day_6, day_7, abmon, ab_mon1, abmon_2,
abmon_3, abmon_4, abmon_5, abmon_6, abmon_7, abmon_8, abmon_9, abmon_10, abmon_11,
abmon_12, mon, mon_1 mon_2 mon_3 mon_4 mon_5 mon_6 mon_7 mon_8 mon_9 mon_10 mon_11
mon_12, d_t_fmt, d_fmt, t_fmt, am_pm, am_str, pm_str, era, era_d_fmt, era_year, t_fmt_ampm,
era_t_fmt, era_d_t_fmt, alt_digits.

Exit Status
* 0 when successful
¢ >0 when unsuccessful

Related information

* [“iconv - Convert characters from one CCSID to another CCSID” on page 69|

* [“tr - Translate characters” on page 77|

+ [Locale overview]|

Examples

1. Display the current values of the locale environment variables.
Tocale

2. Display the list of available locales on the system.
Tocale -a

logger - Log messages
Synopsis

logger [-is] [-f file] [-t tag] [message ...]
Description

The logger utility provides a shell command interface for writing messages to the QHST system log. If
message is not specified, and the -f flag is not provided, standard input is logged.

Options

-i Log the process id of the logger process with each line.

-5 Log the message to standard error, as well as the system log.
-f Log the specified file.

-t Mark every line in the log with the specified tag.

Exit Status

* 0 on success

Qshell 183

e >0 if an error occurs.

Examples

1. Send the file "test.output.log” to the system log.
logger -f test.output.log

2. Send a message to the system log and standard error, and include a tag.
logger -s -t 'Tag your are it' My message is simple

logname - Display user’s login name
Synopsis

logname
Description
The logname utility writes the user’s login name to standard output followed by a newline.

The logname utility explicitly ignores the LOGNAME and USER environment variables because the
environment cannot be trusted.

Exit Status
* 0 on success
e >0 if an error occurs

Related information

* [id - Return user identity” on page 175|

sysval - Retrieve system values or network attributes
Synopsis

sysval [-p] systemValue ...
sysval -n [-p] networkAttr ...
Description

The sysval utility displays the value of an i5/0S™

or network attribute is displayed per line of output.

system value or network attribute. One system value

Note: This utility is unique to i5/0S™.

Options
-n Display network attributes.

P Display the system value or network attribute name with the value.

Operands

See the [Retrieve System Value| API for the names and descriptions of the valid system values. See the
[Retrieve Network Attributeg API for the names and descriptions of the valid network attributes.

Examples
1. Display the QDATE system value.
sysval QDATE

184 iSeries: Qshell

2. Display the SYSNAME network attribute.
sysval -n SYSNAME

tee - Duplicate standard input
Synopsis

tee [-ai] [file ...]
Description

The tee utility copies standard input to standard output, making a copy in zero or more files. The output
is unbuffered.

The tee utility takes the default action for all signals, except when the -i option is specified.

Options
-a Append the output to the files rather than overwriting them.
-i Ignore the SIGINT signal.

Environment Variables

tee is affected by the following environment variables:

QIBM_CCSID
The files created by tee are created with the CCSID specified by the value of the environment
variable.

Exit Status
* 0 on success

¢ >0 if an error occurs

Related information

* ["echo - Write arguments to standard output” on page 134

Examples
1. Save the output of a command into three different files.

grep 'off_set=' code/*.java | tee filel file2 file3 > logfile
2. Make a working and backup copy of the file, "back9”.

cat back9 | tee pro.tees pro.tees.bak

ulimit - Set or display resource limits
Synopsis

ulimit [-HS] [-acdfmnst] [limit]
Description

The ulimit utility sets or displays resource limits. The resource limits apply to the current process and to
any processes that are started after the resource limit is set.

For each resource, there is a hard or maximum limit and a soft or current limit. The soft limit can be
changed to any value that is less than or equal to the hard limit. The hard limit can be changed to any
value that is greater than or equal to the soft limit. The hard limit can only be increased by a user with
*JOBCTL special authority.

Qshell 185

On i5/08™), only the file size (-f) and number of descriptors (-n) resource limits can be set. All of the
resource limits can be displayed.

Options

-a Display all of the resource limits.

-C Display the resource limit for the maximum size of a core file in kilobytes.

-d Display the resource limit for the maximum size of a process” data segment in kilobytes.
-f Set or display the resource limit for the maximum size of a file in kilobytes.

-H Set or display the hard limit for the resource.

-m Display the resource limit for the maximum size of a process’ total available storage.

-n Set or display the resource limit for the maximum number of file descriptors that can be opened
by the process.

-s Display the resource limit for the maximum size of the process’ stack in kilobytes.

-S Set or display the soft limit for the resource.

-t Display the resource limit for the maximum amount of CPU time in seconds.

Operands

When limit is not specified, the value of the resource limit is displayed. When the -H option is specified,
the hard limit is displayed. Otherwise, the soft limit is displayed.

When limit is specified, the value of the resource limit is set. The limit can be an [“Arithmetic expansions”]
or the string "unlimited” for no limit. If neither the -H or -S options are specified, both the
hard and soft limits are set.

If no resource is specified, the default is the file size (-f) resource limit.

Exit Status
* 0 when successful

¢ >0 when unsuccessful

Related information

* [‘umask - Get or set the file mode creation mask” on page 131|

uname - Return system name
Synopsis

uname [-amnrsv]

Description

The uname utility writes the name of the operating system implementation to standard output. When
options are specified, strings representing one or more system characteristics are written to standard

output.

If the -a flag is specified, or multiple flags are specified, all output is written on a single line, separated
by spaces.

Options

-a Behave as though the -m, -n, -r, -s, and -v options were specified.

186 iSeries: Qshell

-m Write the name of the hardware type of the system to standard output.

-n Write the name of the system to standard output.

-r Write the current release level of the operating system to standard output.

-5 Write the name of the operating system implementation to standard output.

-V Write the version level of this release of the operating system to standard output.

Exit Status
* 0 on success

¢ >0 if an error occurs

Related information

“ulimit - Set or display resource limits” on page 185|

Application Programming Interfaces

Qshell provides the following application program interfaces (APIs):

[“QzshSystem() - Run a QSH Command”|

[“QzshCheckShellCommand() - Find QSH Command” on page 191|

QzshSystem() - Run a QSH Command

Syntax
#include <gshell.h>

int QzshSystem(const char *command);

Threadsafe: Yes

The QzshSystem() function runs the specified shell command by spawning a child process and invoking

gsh in the child process. qsh interprets and runs command and then exits.

The QzshSystem() function returns when the child process has ended. While the QzshSystem() function
is waiting for the child process to end, it ignores the SIGQUIT and SIGINT signals, and blocks the

SIGCHLD signal. The QzshSystem() function does not affect the status information of any other child

processes started by the calling process.
Parameters

*command
(Input) Pointer to null-terminated string that contains the shell command to run.

Authorities

Object Referred To Authority Required |errno
Each directory in the path name preceding the executable file *X EACCES
Executable file *X EACCES
If executable file is a shell script *RX EACCES

Return value

Qshell

187

value QzshSystem() was successful. The return value is the status returned from the waitpid() function.
An application can use the macros provided in the sys/wait.h header file to interpret the status
information from the child process. The return value can be a negative number.

-1 QzshSystem() was not successful. The errno value is set to indicate the error.
Error conditions

If QzshSystem() is not successful, errno typically indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]
Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

[ECHILD]
Calling process has no remaining child processes on which wait operation can be performed.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address
that is not valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object
and the operation specified is not supported for that type of object.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

[ENOSYSRSC]
System resources not available to complete request.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then try the operation again.

Related information

* ["QzshCheckShellCommand() - Find QSH Command” on page 191|
* Ispawn() - Spawn Process
* [waitpid() - Wait for Specific Child Process|

2

Use the QzshSystem() function
The QzshSystem() function provides an interface similar to the system() function from the X/Open

standard. The input is a shell command string, and the QzshSystem() function returns the status of the
command as reported by the waitpid() function. The QzshSystem() function starts a new process, invokes

188 iSeries: Qshell

the shell to run the command in the new process, and waits for the new process to end. You can
determine the results of the command by using the macros from the sys/wait.h header file.

Before calling the QzshSystem() function, ensure that descriptors 0, 1, and 2 are available and that the
appropriate environment variables are set. If your program is called from the QCMD command line or is
run using the Submit Job (SBMJOB) command, your program needs to make sure the environment is set
correctly.

This option gives you more control over the environment while providing a standard interface that hides
the details of starting a new process. In the example below, the QzshSystem() function is used to run the
command specified by the first input parameter. The output is stored in the file specified by the second
input parameter. Note that the descriptors are opened only if they are not currently allocated in the
process.

The compiler and debugger often open descriptors and do not close them. For this reason, you should
run the program from a newly started job.

Example: QzshSystem() function

#include
#include
#include
#include
#include
#include

/* NOTE: You may want to include exception and/or cancel
handlers to clean up the descriptors that are
opened. x/

int main(int argc, char xargv[])
{

char *command;

char *filename;

int status;

char envbuf[50];

char oldvalue;

char *value;

int fdo = -1;
int fdl = -1;
int fd2 = -1;

/* Set the command and the name of the output file. */

switch (argc) {

case 1:
command = "Ts";
filename = "/dev/null";
break;

case 2:
command = argv[1];
filename = "/dev/null";
break;

default:
command = argv[1];
filename = argv[2];

}

/* Make sure the standard descriptors are allocated in
this process. =/
if (fcnt1(0, F_GETFL) == -1) {
fd0 = open("/dev/nul1", O _RDONLY);
if (fdo == -1) {
printf("Error %d opening file /dev/null
", errno);

Qshell 189

}
}
if (fent1(1, F_GETFL) == -1) {
fdl = open(filename, O_WRONLY|O_CREAT|O_TRUNC, S_IRWXU);
if (fdl == -1) {
fprintf(stderr, "Error %d opening file %s
", errno, filename);
}
}
if (fent1(2, F_GETFL) == -1) {
fd2 = open(filename, O_WRONLY|O CREAT|O_TRUNC, S_IRWXU);
if (fd2 == -1) {
fprintf(stderr, "Error %d opening file %s
", errno, filename);
}
}

/* Run the specified command while saving and restoring the value of
the QIBM_USE_DESCRIPTOR_STDIO environment variable. */
if ((value = getenv("QIBM_USE DESCRIPTOR STDIO")) != NULL) {
oldvalue = *value;

}

else {

oldvalue = 'N';

1
putenv("QIBM_USE_DESCRIPTOR STDIO=I");
status = QzshSystem(command);
sprintf(envbuf, "QIBM_USE_DESCRIPTOR_STDIO=%c", oldvalue);
putenv(envbuf);

/* Check the results of the command. */
if (WIFEXITED(status)) {
printf("Command %s completed with exit status %d.

command, WEXITSTATUS(status));

}
else if (WIFSIGNALED(status)) {
printf("Command %s ended with signal %d.

command, WTERMSIG(status));

}

else if (WIFEXCEPTION(status)) {
printf("Command %s ended with exception.
", command) ;

1
if (fdo != -1) {
close(fdo);

}
if (fdl !'= -1) {
close(fdl);
}
if (fd2 != -1) {
close(fd2);
}
exit(0);
1

b

190 iSeries: Qshell

QzshCheckShellCommand() - Find QSH Command

Syntax
#include <gshell.h>

int QzshCheckShellCommand(const char *command, const char *path);

Threadsafe: Yes

The QzshCheckShellCommand() function finds the specified shell command by searching:
* for a built-in utility, then
* in each directory in the list specified by path or the PATH environment variable in turn.

An application can use QzshCheckShellCommand() to verify that command exists and the user has
authority to command before running it.

Parameters

*command
(Input) Pointer to null-terminated string that contains the shell command to find.

*path
(Input) Pointer to null-terminated string that contains a colon delimited list of directories to search. If this
parameter is NULL, QzshCheckShellCommand() uses the value of the PATH environment variable.

Authorities

When command is an executable file, the user must have the following authorities.

Object Referred To Authority Required |errno

Each directory in the path name preceding the executable file *X EACCES
Executable file *X EACCES
If executable file is a shell script *RX EACCES

Return value
0 QzshCheckShellCommand() was successful. The command was found in the current environment.

-1 Qp0zCheckShellCommand() was not successful. The errno value is set to indicate the error.
Error conditions
If QzshCheckShellCommand() is not successful, errno typically indicates one of the following errors.

Under some conditions, errno could indicate an error other than those listed here.

[EACCES]
Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

Qshell 191

While attempting to access a parameter passed to this function, the system detected an address
that is not valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object
and the operation specified is not supported for that type of object.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

[ENOENT]
No such path or directory.

The directory or component of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated. Then retry the operation.

Related information
* [“QzshSystem() - Run a QSH Command” on page 187

Example: Using the QzshCheckShellCommand() function

For an example of using this function, see the|“QzshSystem() - Run a QSH Command” on page 187
function.

Examples: Using a remote client that connects to a qsh session

The following two example programs show how to use a remote client that connects to an interactive gsh
session on the server.

* ["Example: Server program” on page 193

¢ [‘Example: Client program” on page 200|

The server program is compiled and run on i5/ Os™),

* See[’Example: Creating and running the server program” on page 209|for more information.

The client program is compiled and run on a remote system.

* See ["Example: Creating and running the client program” on page 211| for more information.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

192 iSeries: Qshell

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC
CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

Example: Server program

/**/

/* */
/* Name: server.c */
/* */
/* Description: This program is a server for starting interactive =/
/* gsh sessions on remote clients. The program */
/* listens for connections from clients. When a */
/* connection is accepted, it reads the user name */
/* and password of the client. It then swaps to the =/
/* the specified user profile and spawns a new x/
/* process running the gsh shell interpreter that */
/* handles the connection. x/
/* */
/* Parameters: 1. Port number to Tisten for connections on. */
/* */
/* Notes: 1. The user name and password are sent as plain text =*/
/* from the client. */
/* 2. The user profile running this program must have */
/* authority to the QSYGETPH, QSYRLSPH, and x/
/* QWTSETP APIs. */
/* 3. You will need to change the value of the NLSPATH =/
/* environment variable if your system is using a */
/* different language than 2924. */
/* */

/**/

/**/

/* Includes */
/**/

#include <stdio.h> /* fopen(), vfprintf() =/

#include <sys/socket.h> /* socket(), bind(), and so on. */
#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on */
#include <arpa/inet.h> /* inet_ntoa() */

#include <spawn.h> /* spawn() =/

#include <unistd.h> /* close(), read(), and so on */
#include <stdlib.h> /% exit()x/

#include <stdarg.h> /* va_start(), va_end() */

#include <qp0z1170.h> /* QpOzInitEnv() */

#include <qgsygetph.h> /* QSYGETPH() =/

#include <qwtsetp.h> /% QWTSETP() =/

#include <qgsyrlsph.h> /* QSYRLSPH() =/

#include <qusec.h> /* Qus_EC_t */

#include <pwd.h> /* getpwnam() =/

#include <ctype.h> /* toupper() =/

#include <time.h> /% ctime(), time() =/

#include <except.h> /* Exception and cancel handling =/
#include <errno.h> /* errno and constants */

/**/
/* Constants */

Qshell 193

/**/

#define DEFAULT_BUF 4096

#define DEFAULT_PORT 6042

#define NULL_PH "\0\0\0\0\0\0\0\0\0\0\0\0"
#define PH_SIZE 12

#define NAME_SIZE 11

#undef PATH_MAX

#define PATH_MAX 4096

/**************** """"""""" *************************************/

/* Global Variables */

/**/

/* For logging errors =/

FILE *1og_fp;

char log file[] = "/tmp/qsh_server.log";
char log_buffer[DEFAULT_BUF];

/**/

/* Function Prototypes */

/**/

int strtoupper(char *);

int GetString(int, char *, size_t);

void LogError(char =, ...);

void SendError(int, char *, ...);

void CleanupHandler(_CNL_Hndlr_Parms_T *);

int main(int argc, char xargv[])

{
int sfd; /* Server's listening socket */
int cfd; /* Socket connected to client */
int on=1; /* Flag for setsockopt() */

struct sockaddr_in my_addr; /+ Address server binds to */

struct sockaddr_in client_addr; /* Addrress of connected client %/
int client_addr_len; /* Length of client's socket address =*/
unsigned short port; /* Server's TCP port */

char server_ph[PH_SIZE+1] = NULL_PH; /* Server's profile handle */
char client_ph[PH_SIZE+1] = NULL_PH; /* Client's profile handle */
char profile[NAME_SIZE]; /* User profile read from client =/
char password[NAME_SIZE]; /* Password read from client */

char sy profile[NAME_SIZE]; /* User profile for i5/0S™ APIs */
char sy _password[NAME_SIZE]; /* Password for i5/0S‘™ APIs x/

char server_profile[NAME_SIZE] = "*CURRENT ";

char no_pwd [NAME_SIZE] = "sNOPWD "

struct passwd *cpw; /* User information for client x*/
Qus_EC_t error = { sizeof(Qus_EC t), O }; /* Error code for SPIs */

/* Parameters for spawn() to shell process =*/
char gsh_pgm[] = "/QSYS.LIB/QSHELL.LIB/QZSHSH.PGM";

char *args[5]; /* Argument array =/

char *envs[10]; /* Environment variable array */

int fd_count; /* Number of descriptors =*/

int fd_map[3]; /* Map of descriptors */

struct inheritance inherit; /* Inheritance options */

char server dir[] = "/"; /* Default current working directory */

/* Environment variables */

char home_var[PATH_MAX+10];

char Togname_var[NAME_SIZE+10];

char path_var[] = "PATH=/usr/bin:";

char stdio_var[] = "QIBM_USE_DESCRIPTOR_STDIO=I";

char terminal_type var[] = "TERMINAL TYPE=REMOTE";

char nlspath_var[] = "NLSPATH=/QIBM/ProdData/0S400/Shel1/MRI2924/%N";

volatile _INTRPT Hndlr_Parms T ca; /* For exception handler */

194 iSeries: Qshell

/**/

/* Process the input parameters. */
JEZT I KhK KT KKK IR KKK R T P *xk [

/* Use the default port if one is not specified. */
if (argc < 2) {

port = DEFAULT_PORT;
}

else {
port = atoi(argv[1]);
}

/**/

/* Initialize the server environment. =*/
/**/

/* Initialize for environment variables. =*/
QpOzInitEnv();

/* Change to default directory. =/
chdir(server_dir);

/* Initialize the server's profile handle. */
QSYGETPH(server_profile, no_pwd, server_ph, &error);
if (error.Bytes Available != 0) {

LogError("Could not get profile handle for server, "
"QSYGETPH() failed with exception %7.7s\n",
error.Exception_Id);

exit(1l);

}

/**/

/* Set up the Tistening socket. */

/**/

/* Create a socket. =/

if ((sfd = socket(AF_INET, SOCK_STREAM, IPPROTO IP)) < 0) f{
LogError("socket() failed, errno=%d\n", errno);
exit(1);

}

#pragma cancel_handler(CleanupHandler, sfd)
#pragma exception_handler(Cleanup, ca, _C1 ALL, _C2_ALL)

/* Allow re-use of this socket address. */
if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (char x)&on,
sizeof(int)) != 0) {
LogError("setsockopt() failed, errno=%d\n", errno);
exit(1);
}

/* Bind to a port. */

memset (&my_addr, '\0', sizeof(my_addr));

my_addr.sin_family = AF_INET;

my_addr.sin_port = port;

my_addr.sin_addr.s_addr = INADDR_ANY;

if (bind(sfd, (struct sockaddr *)&my_addr, sizeof(my_addr)) != 0) {
LogError("bind() failed for port %d, errno=%d\n", port, errno);
close(sfd);
exit(1);

}

/* Make this a Tistening socket. */
if (1isten(sfd, 10) != 0) {
LogError("listen() failed, errno=%d\n", errno);

Qshell

195

}

/*
/*

close(sfd);
exit(1);

***/
Accept connections from clients. */

/**/

wh

196

ile (1) {

if ((cfd = accept(sfd, NULL, 0)) < 0) {
LogError("accept() failed, errno=%d\n", errno);
close(sfd);
exit(1);

/* Read the user profile and password from the client. The client
sends two null-terminated strings - the first one is the user
profile and the second one is the password. */

if (GetString(cfd, profile, 11) != 0) {

getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);

LogError("Could not read profile from client at %s, port %hu\n",
inet_ntoa(client_addr.sin_addr), client_addr.sin_port);

close(cfd);

continue;

}

if (GetString(cfd, password, 11) != 0) {
getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);
LogError("Could not read password from client at %s, port %hu\n",
inet_ntoa(client_addr.sin_addr), client_addr.sin_port);
close(cfd);
continue;

}

/* Check for the special values that turn off password checking in QSYGETPH().

if ((profile[0] == '=') || (password[0] == '=')) {
getpeername(cfd, (struct sockaddr *)&client_addr, &client_addr_len);
LogError("Invalid password sent from client at %s, port %hu\n",
inet_ntoa(client_addr.sin_addr), client_addr.sin_port);
close(cfd);
continue;

}

/* QSYGETPH() requires that the profile be exactly ten characters,
left-aligned in the field, and padded with blanks. */

strtoupper(profile);

sprintf(sy_profile, "%-10.10s", profile);

/* Get the profile handle for the client's user profile. */
QSYGETPH(sy profile, password, client ph, &error, strlen(password), 0);
if (error.Bytes_Available != 0) {

LogError("Could not get profile handle for profile %s,
"QSYGETPH() failed with exception %7.7s\n",
sy_profile, error.Exception_Id);

SendError(cfd, "Could not get profile handle for profile %s\n",

sy_profile);

close(cfd);

continue;

}

/* Switch to client's user profile. */
QWTSETP(client_ph, &error);
if (error.Bytes_Available != 0) {
LogError("Could not switch to profile %s,
"QWTSETP() failed with exception %7.7s\n",
sy_profile, error.Exception_Id);
SendError(cfd, "Could not switch to profile %s\n", sy profile);

iSeries: Qshell

*/

QSYRLSPH(client_ph, NULL);
close(cfd);
continue;

}

/* Get the info for this user profile. %/
if ((cpw = getpwnam(profile)) == NULL) {
/* Log error. */
LogError("Could not retrieve information for profile %s, "
"getpwnam() failed with errno=%d\n",
profile, errno);
SendError(cfd, "Could not retrieve information for profile %s\n",
profile);

/* Switch back to the server's user profile. */
QWTSETP(server_ph, &error);
if (error.Bytes Available != 0) {

LogError("Could not switch back to server's profile, "
"QWTSETP() failed with exception %7.7s\n",
error.Exception_Id);

break;

}

/* Release the client's profile handle. */
QSYRLSPH(cTient_ph, NULL);
if (error.Bytes Available != 0) {

LogError("Could not release client's profile handle, "
"QSYRLSPH() failed with exception %7.7s\n",
error.Exception_Id);

break;

}
close(cfd);

continue;
}
/* Build the file descriptor map for the child. =*/
fd_count = 3;
fd_map[0] = cfd;
fd_map[1] = cfd;
fd_map[2] = cfd;

/* Build the argv array for the child. */
args[0] = gsh_pgm;

args[1] = "-Togin"; /* Do Togin processing x/
args[2] = "-s"; /* Take input from stdin */
args[3] = "-i"; /* Run as an interactive shell */

args[4] = NULL;

/* Build the environ array for the child. */
sprintf(home_var, "HOME=%s", cpw->pw_dir);
sprintf(logname_var, "LOGNAME=%s", cpw->pw_name);
envs[0] = home_var;

envs[1] = logname_var;

envs[2] = path_var;

envs[3] = stdio_var;

envs[4] = terminal_type var;

envs[5] = nlspath_var;

envs[6] = NULL;

/* Set up the inheritance structure. */

memset (&inherit, '\0', sizeof(struct inheritance));
inherit.flags = SPAWN_SETTHREAD_NP;

inherit.pgroup = SPAWN_NEWPGROUP;

/* Change to the home directory for the client. The child process

inherits this as its current working directory. =/
chdir(cpw->pw_dir);

Qshell

197

/* Start a child process running the shell interpreter. */
if (spawn(args[0], fd_count, fd map, &inherit, args, envs) < 0) {
LogError("Could not start gsh process, spawn() failed with "
"errno=%d\n", errno);
SendError(cfd, "Could not start gsh process\n");

}

/* Clean up for the next connection. */
chdir(server_dir);
close(cfd);

/* Switch back to server's user profile. */
QWTSETP(server_ph, &error);
if (error.Bytes Available != 0) {

LogError("Could not switch back to server's profile, "
"QWTSETP() failed with exception %7.7s\n",
error.Exception_Id);

break;

}

/* Release the client's profile handle. x/
QSYRLSPH(client_ph, &error);
if (error.Bytes Available != 0) {

LogError("Could not release client's profile handle, "
"QSYRLSPH() failed with exception %7.7s\n",
error.Exception_Id);

break;

1
} /* End of while */

/* Clean up. */
close(sfd);

#pragma disable_handler /* Exception handler */
#pragma disable handler /* Cancel handler */

exit(0);
return 0;

/* Exception handler =/
Cleanup:

LogError("Unexpected exception %7.7s\n", ca.Msg_Id);
close(sfd);
exit(1);

} /* End of main() */

/*
* Convert a string to uppercase.
*/

int
strtoupper(char *string)

for (3 *string != '\0'; ++string)
*string = toupper(*string);

return 0;

} /* End of strtoupper() */

/*
* Read a string from a socket.
*/

198 iSeries: Qshell

int
GetString(int fd, char *buffer, size t nbytes)
{

char c;
do {
if (read(fd, &c, 1) != 1) {
return -1;
1

*puffer+t+ = c;
if (--nbytes == 0) {
return 0;

}
} while (c !'= '\0');

return 0;
} /* End of GetString() */

/*
* Write an error message to the Tog file.
*/

void LogError(char *format, ...)

va_list ap;
time_t now; /* Time stamp */

/* 1f needed, open the log file. */
if (log_fp == NULL) {
Tog_fp = fopen(log_file, "w");
if (Tog_fp == NULL) {
return;
}
}

/* Write timestamp to the log file. */
now=time (NULL) ;
fprintf(log fp, "\n%s", ctime(&now));

/* Write the formatted string to the log file. */
va_start(ap, format);

vfprintf(log_fp, format, ap);

va_end(ap);

/* Flush output to log file. */
fflush(log_fp);

return;
} /* End of LogError() */

/*
* Send an error message to the client.
*/

void SendError(int fd, char *format, ...)

{

va_list ap;

/* Build the formatted string. */
va_start(ap, format);
vsprintf(log_buffer, format, ap);
va_end(ap);

/* Write the formatted string. =/
write(fd, log_buffer, strlen(log_buffer));

Qshell

199

return;
} /* End of SendError() */

/*
* Handler to clean up when the program is canceled.
*/

void CleanupHandler(_CNL_Hnd1r_Parms_T *cancel_info)
{

int sfd;

sfd = *((int *)cancel_info->Com Area);

close(sfd);
} /* End of CleanupHandler() =/

Note: By using the code examples, you agree to the terms of the [‘Code license and disclaimer]|
finformation” on page 216)

Example: Client program

/**************** """"""""" *************************************/
/* */
/* Name: gshc.c */
/* */
/* Description: This program is a client for an interactive gsh */
/* session running on a server. The program */
/* first connects to a server on the specified */
/* server and sends the user name and password of */
/* the client. After the gsh session is started, */
/* the program takes input from stdin and sends it */
/* to the server and receives output from the server =/
/* and displays it on stdout. */
/* */
/* Parameters: 1. Host running the gsh server (either host name or =/
/* IP address). */
/* */
/* Options: 1. -n to force prompt for user name and password. */
/* 2. -p to specify port of gsh server. */
/* */
/* Notes: 1. The user name and password are sent as plain text =*/
/* to the server. */
/* 2. A11 translations from ASCII to EBCDIC are done by =/
/* this program on the client. */
/* 3. The program includes translation tables for */
/* converting between EBCDIC code page 37 (US English)=*/
/* and ASCII code page 850 (US English). You can */
/* modify these tables to support other code pages. */
/* Or if your system supports the iconv APIs, you */
/* can define USE_ICONV to translate using iconv(). =%/
/* 4. This program has been tested on AIX®™ 4.1.5 and */
/* Linux™ 2.0.29. */
/* */

/**/

/* Remove the comments from the following Tine to use iconv(). */
/* #define USE_ICONV 1 =/

/**/

/* Includes */
/**/

#include <stdio.h> /* perror() */

#include <sys/socket.h> /* socket(), bind(), and so on */
#include <netinet/in.h> /* sockaddr_in, INADDR_ANY, and so on =*/
#include <unistd.h> /* close(), read(), write() and so on */
#include <stdlib.h> /* exit() =/

200 iSeries: Qshell

#include <stdlib.h> /* exit(), memset() =/

#include <sys/ioctl.h> /* ioct1() =/

#include <errno.h> /* errno and values */
#include <string.h> /* strien() */

#include <arpa/inet.h> /* inet_addr() =/
#include <netdb.h> /* gethostbyname() =*/
#include <pwd.h> /* getpwuid() =/

#include <signal.h> /* sigaction(), and so on */
#ifdef AIX

#include <sys/select.h> /% select() =/

#include <strings.h> /* bzero() for FD_ZERO */
#endif

#ifdef _ linux__

#include <sys/time.h> /* FD_SET(), select */
#endif

#ifdef USE_ICONV

#include <iconv.h> /* iconv(), and so on */
#endif

/**/

/* Constants =/
/**/

#define QSH_PORT 6042
#define DEFAULT_BUF 4096

/**/

/* Types */

/**/

typedef unsigned char uchar;

/**/

/* Global Variables */
JEZZETITED kK xx I IR hhhh ko xhhh kKK k% kK rx I IR hhhhhkkxrhh kK Kk k Kk kkkhh kK ok *xk [
char *sysname; /* Long host name of server system */

#ifdef USE_ICONV

jconv_t ecd; /* Conversion descriptor for ASCII to EBCDIC */
iconv_t acd; /* Conversion descriptor for EBCDIC to ASCII */
#else

/* EBCDIC to ASCII translation table */

static uchar AsciiTable[256] =

{
0x00,0x01,0x02,0x03,0x20,0x09,0x20,0x7f, /* 00-07 */
0x20,0x20,0x20,0x0b,0x0c,0x0d,0x0e,0x0f, /* 08-0f =/
0x10,0x11,0x12,0x13,0x20,0x0a,0x08,0x20, /* 10-17 */
0x18,0x19,0x20,0%x20,0x20,0x1d,0x1e,0x1f, /* 18-1f x/
0x20,0x20,0x1c,0x20,0x20,0x0a,0x17,0x1b, /* 20-27 */
0x20,0x20,0x20,0x20,0x20,0x05,0x06,0x07, /* 28-2f */
0x20,0x20,0x16,0%x20,0x20,0x20,0x20,0x04, /* 30-37 */
0x20,0x20,0x20,0%x20,0x14,0x15,0x20,0x1a, /* 38-3f */
0x20,0x20,0x83,0x84,0x85,0xa0,0xc6,0x86, /* 40-47 =/
0x87,0xa4,0xbd,0x2e,0x3c,0x28,0x2b,0x7c, /* 48-4f */
0x26,0x82,0x88,0x89,0x8a,0xal,0x8c,0x8b, /* 50-57 */
0x8d,0xel,0x21,0x24,0x2a,0x29,0x3b,0xaa, /* 58-5f */
0x2d,0x2f,0xb6,0x8e,0xb7,0xb5,0xc7,0x8f, /* 60-67 */
0x80,0xa5,0xdd,0x2c,0x25,0x5f,0x3e,0x3f, /* 68-6f =/
0x9b,0x90,0xd2,0xd3,0xd4,0xd6,0xd7,0xd8, /* 70-77 */
0xde,0x60,0x3a,0x23,0x40,0x27,0x3d,0x22, /* 78-7f =/
0x9d,0x61,0x62,0x63,0x64,0x65,0x66,0x67, /* 80-87 */
0x68,0x69,0xae,0xaf,0xd0,0xec,0xe7,0xfl, /* 88-8f x/
0xf8,0x6a,0x6b,0x6c,0x6d,0x6e,0x6T,0x70, /* 90-97 *x/

Qshell

201

0x71,0x72,0xa6,0xa7,0x91,0xf7,0x92,0xcf,
0xeb,0x7e,0x73,0x74,0x75,0x76,0x77,0x78,
0x79,0x7a,0xad,0xa8,0xd1,0xed,0xe8,0xa9,
0x5e,0x9c,0xbe,0xfa,0xb8,0x15,0x14,0xac,
Oxab,0xf3,0x5b,0x5d,0xee,0xf9,0xef,0x%e,
0x7b,0x41,0x42,0x43,0x44,0x45,0x46,0x47,
0x48,0x49,0xf0,0x93,0x94,0x95,0xa2,0xe4,
0x7d,0x4a,0x4b,0x4c,0x4d,0xde,0x4f,0x50,
0x51,0x52,0xfb,0x96,0x81,0x97,0xa3,0x98,
0x5c,0xf6,0x53,0x54,0x55,0x56,0x57,0x58,
0x59,0x5a,0xfc,0xe2,0x99,0xe3,0xe0d,0xe5,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,
0x38,0x39,0xfd,0xea,0x9a,0xeb,0xe9,0xff
1

/* ASCII to EBCDIC translation table */

static uchar EbcdicTable[256] =

{
0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f,
0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26,
0x18,0x19,0x3f,0x27,0x22,0x1d,0x1e,0x1f,
0x40,0x5a,0x7f,0x7b,0x5b,0x6¢c,0x50,0x7d,
0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,
0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0xb6e,0x6f,
0x7c¢,0xcl,0xc2,0xc3,0xc4,0xc5,0xch,0xc7,
0xc8,0xc9,0xdl,0xd2,0xd3,0xd4,0xd5,0xd6,
0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xeb,
Oxe7,0xe8,0xe9,0xba,0xed,0xbb,0xb0,0x6d,
0x79,0x81,0x82,0x83,0x84,0x85,0x86,0x87,
0x88,0x89,0x91,0%x92,0x93,0x94,0x95,0x96,
0x97,0x98,0x99,0xa2,0xa3,0xa4,0xab,0xab,
0Oxa7,0xa8,0xa9,0xcO,0x4f,0xd0,0xal,0x07,
0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48,
0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67,
0x71,0x9c,0x9e,0xch,0xcc,0xcd,O0xdb,0xdd,
0Oxdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0x40,
0x45,0x55,0xee,0xde,0x49,0x69,0x9a,0x9b,
Oxab,0xaf,0x5f,0xb8,0xb7,0xaa,0x8a,0x8b,
0x40,0x40,0x40,0x40,0x40,0x65,0x62,0x64,
0xb4,0x40,0x40,0x40,0x40,0x4a,0xb2,0x40,
0x40,0x40,0x40,0x40,0x40,0x40,0x46,0x66,
0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x9f,
0x8c,0xac,0x72,0x73,0x74,0x89,0x75,0x76,
0x77,0x40,0x40,0x40,0x40,0x6a,0x78,0x40,
Oxee,0x59,0xeb,0xed,0xcf,0xef,0xa0d,0x8e,
Oxae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe,
Oxca,0x8f,0x40,0xb9,0xb6,0xb5,0xel,0x9d,
0x90,0xbd,0xb3,0xda,0xea,0xfa,0x40,0x40

}s

#endif /x USE_ICONV */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

98-9f
a8-a7
a8-af
b0-b7
b8-bf
c0-c7
c8-cf
do-d7
d8-df
e0-e7
e8-ef
f0-f7
f8-ff

00-07
08-0f
10-17
18-1f
20-27
28-2f
30-37
38-3f
40-47
48-4f
50-57
58-5f
60-67
68-6f
70-77
78-7f
80-87
88-8f
90-97
98-9f
a8-a7
a8-af
b0-b7
b8-bf
c0-c7
c8-cf
do-d7
d8-df
e0-e7
e8-ef
f0-f7
f8-ff

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

/* Function Prototypes

*/

/**/

int ConvertToEBCDIC(char *, size_t, char *, size_ t);

int ConvertToASCII(char *, size t, char *, size t);

int GetPassword(char *, char *, char *);

int Translate(uchar *, size_t, uchar *, uchar *);

void MySignalHandler(int);
void usage(void);

int main (int argc, char =*argv[])

{

struct sigaction sigact; /* Signal action */

202 iSeries: Qshell

int c; /* Option letter */

int nflag=0; /* True when -n option is specified */
int port=QSH_PORT; /* Port to connect to on server =/

int sd; /* Socket to server */

fd_set read_set; /* For select() */

int rc; /* Return code =/

struct sockaddr_in svr_addr; /+ AF_INET socket address */

long ip_addr; /* 1P address of server system x/
struct in_addr host_addr; /* Host address for gethostbyaddr() */
char *hostname; /* Short host name of server system */
size_t Ten; /* Length of input string */

char *ascii_user; /* Username in ASCII =/

char xebcdic_user; /* Username in EBCDIC */

char *ascii_pwd; /* Password in ASCII x/

char *ebcdic_pwd; /* Password in EBCDIC */

struct hostent *host_p; /* Pointer to hostent structure returned by
gethostbyname() */

char *ascii_buf; /* Buffer for ASCII text x/
char *ebcdic_buf; /* Buffer for EBCDIC text */
int buf_size; /* Amount of data read from server */

/**/

/* Initialization. */
/**/

#ifdef USE_ICONV
/* Open the conversion descriptors for converting between ASCII and
EBCDIC. Assume the server job is running in CCSID 37.
This must be changed if the server job is running in a
different CCSID. The input parameters to iconv_open() may need to
be changed depending on the operating system. This joonv_open() is
coded for AIX. */
if ((acd = iconv_open("IBM-850", "IBM-037")) < 0) {
perror("gshc: iconv_open() failed for ASCII to EBCDIC");
exit(1);
}

if ((ecd = iconv_open("IBM-037", "IBM-850")) < 0) {
perror("gshc: iconv_open() failed for EBCDIC to ASCII");
exit(1);

}

#endif /* USE_TOONV */

/* Set up a signal handler for SIGINT. The signal is sent to the
process when the user presses <ctrl>c. */
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigact.sa_handler = MySignalHandler;
if (sigaction(SIGINT, &sigact, NULL) != 0) {
perror("qshc: sigaction(SIGINT) failed");
exit(1);
}

/**/

/* Process the input parameters. =/
[Fkk ke gk ke kkok Kok ok ko ok ok ke ok kok ok k ok ok kh Khkhxhhhhrhhhhrhhhhxhkx Kkkkkkkkkkkhk [

if (argc < 2) {
usage();

}

/* Process the options. */
while ((c = getopt(argc, argv, "hnp:")) != EOF) {
switch (c) {
case 'n':
nflag = 1;
break;

Qshell

203

case 'p':
port = atoi(optarg);
break;

case 'h':

default:
usage();
break;

} /* End of switch */
} /* End of while */

/* Convert a dotted decimal address to a 32-bit IP address. */
hostname = argv[optind];
ip_addr = inet_addr(hostname);

/* When inet_addr() returns -1 assume the user specified
a host name. =/
if (ip_addr == -1) {
/* Try to find the host by name. =*/
host_p = gethostbyname(hostname);
if (host_p) {
memcpy (&ip_addr, host_p->h_addr, host_p->h_length);
sysname = host_p->h_name;

1

else {
fprintf(stderr, "gshc: Could not find host %s\n", hostname);
exit(1);

1
} /* End of if */

/* The user specified a IP address. */
else {
/* Try to find the host by address. =*/
host_addr.s_addr = ip_addr;
host_p = gethostbyaddr((char *)&host_addr.s_addr, sizeof(host_addr),

AF_INET);
if (host_p) {
sysname = host_p->h name;
1
else {
fprintf(stderr, "gshc: Could not find host %s\n", hostname);
exit(1l);
1

} /* End of else x/

/**/

/* Connect to the gsh server on the specified system. */
/**/

/* Create a socket. */

if ((sd = socket(AF_INET, SOCK STREAM, IPPROTO IP)) < 0) {
perror("gshc: socket() failed");
exit(1);

}

/* Connect to the gsh server on the specified system. */

memset (&svr_addr, '\0', sizeof(svr_addr));

svr_addr.sin_family = AF_INET;

svr_addr.sin_port = htons(port);

svr_addr.sin_addr.s_addr = ip_addr;

if (connect(sd, (struct sockaddr *)&svr_addr, sizeof(svr_addr)) != 0) {
perror("gshc: connect() failed");
exit(1l);

}

/**/

204 iSeries: Qshell

/* Send the user name and password to the server. %/
/**/

/* Allocate buffers for translating input and output. */
ascii_buf = (char *)malloc(DEFAULT_BUF);

memset (ascii_buf, '\0', DEFAULT_ BUF);

ebcdic_buf = (char *)malloc(DEFAULT_BUF);

memset (ebcdic_buf, '\0', DEFAULT BUF);

ascii_user = ascii_buf;
ascii_pwd = ascii_buf + 100;
ebcdic_user = ebcdic_buf;
ebcdic_pwd = ebcdic_buf + 100;

/* Prompt the user for the user name and password. */
if (nflag) {

printf("Enter user name: ");

gets(ascii_user);

ascii_pwd = getpass("Enter password: ");

}

/* Get the user name and password from the ~/.netrc file. */
else {
if (GetPassword(hostname, ascii_user, ascii_pwd) != 0) {

fprintf(stderr, "gshc: Could not find user or password in ~/.netrc\n");

exit(1);
}

/* Convert the user name and password to EBCDIC. x/

if (ConvertToEBCDIC(ascii_user, strlen(ascii_user)+l, ebcdic_user, 11) < 0) {
fprintf(stderr, "gshc: Could not convert user %s to EBCDIC\n", ascii_user);

exit(1);
}

if (ConvertToEBCDIC(ascii_pwd, strlen(ascii_pwd)+1l, ebcdic_pwd, 11) < 0) {

fprintf(stderr, "gshc: Could not convert password %s to EBCDIC\n",
ascii_pwd);
exit(1);
}

/* Send the user name and password to the gsh server. Note that the
user name and password are sent as plain text. */
if ((rc = write(sd, (void *)ebcdic_user, strlen(ebcdic_user)+l)) < 0) {
perror("qshc: write() failed sending username\n");
close(sd);
exit(1);
}

if ((rc = write(sd, (void *)ebcdic_pwd, strlen(ebcdic_pwd)+1)) < 0) {
perror("gshc: write() failed sending password\n");
close(sd);
exit(1);

}

printf("Started gsh session on %s\n\n", sysname);

/**/

/* Process input and output between the user and the remote shell. x/
/**/

/* Loop forever. x/
while (1) {
/* Select on stdin and the socket connected to the remote shell. */
FD_ZERO(&read_set);
FD_SET(0, &read_set);
FD_SET(sd, &read_set);

Qshell

205

rc = select(sd+1l, &read set, NULL, NULL, NULL);

if ((rc < 0) && (errno != EINTR)) {
perror("gshc: select() failed");
exit(1l);

1

if (rc == 0) {
continue;

}

/* Process data entered by the terminal user. */
if (FD_ISSET(0, &read_set)) {
/* Read the data from the terminal. */
gets(ascii_buf);

/* Convert the string to EBCDIC. */

len = strlen(ascii_buf);

if (ConvertToEBCDIC(ascii_buf, len, ebcdic_buf, DEFAULT BUF) < 0) {
fprintf(stderr, "gshc: Could not convert input string to EBCDIC\n");
continue;

}

/* Put a newline on the end of the string. */
*(ebcdic_buf+len) = 0x25;

/* Send the data to the remote shell. =/
if (write(sd, ebcdic_buf, Ten+l) < 0) {
perror("gshc: write() failed sending input");
}
}

/* Process data from the remote shell. */
if (FD_ISSET(sd, &read_set)) {
/* Read the data from the remote shell. */
buf size = read(sd, ebcdic_buf, DEFAULT BUF-1);

/* There was a failure reading from the remote shell. */
if (buf_size < 0) {
perror("\ngshc: error reading data from remote shell");
printf("Ended gsh session on %s\n", sysname);
exit(0);
}

/* The remote shell process ended. */

else if (buf_size == 0) {
printf("\nEnded gsh session on %s\n", sysname);
exit(0);

}

/* Process the data from the remote shell. =/
else {
/* Convert to ASCII. */
*(ebcdic_buf+buf_size) = '\0';
if (ConvertToASCII(ebcdic_buf, buf size+l, ascii_buf,
DEFAULT BUF) >= 0) {
write(l, ascii_buf, buf size);
1
}
1
} /* End of while */
exit(0);
} /* End of main() =/

/*

206 iSeries: Qshell

* Convert a string from ASCII to EBCDIC.
*/

int
ConvertToEBCDIC(char *ibuf, size_t ileft, char *obuf, size_t oleft)
{

int rc;

#ifdef USE_ICONV
rc = iconv(ecd, (const char**)&ibuf, &ileft, &obuf, &oleft);
#else
rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, EbcdicTable);
#endif
if (rc < 0)

perror("gshc: error converting to EBCDIC");

return rc;
} /% End of ConvertToEBCDIC() */

/*
* Convert a string from EBCDIC to ASCII.
*/
int
ConvertToASCII(char *ibuf, size_t ileft, char *xobuf, size_t oleft)
{
int rc;

#ifdef USE_ICONV
rc = iconv(acd, (const char**)&ibuf, &ileft, &obuf, &oleft);
#else
rc = Translate((uchar *)ibuf, ileft, (uchar *)obuf, AsciiTable);
#endif
if (rc < 0)

perror("gshc: error converting to ASCII");

return rc;
} /* End of ConvertToASCII() =/

/*

* Get the user name and password for the specified system from the
* ~/.netrc file.

*/

int
GetPassword(char *sysname, char *logname, char *password)
{

#define BUFSIZE 256

char buffer[BUFSIZE];

char *systag, *logtag;

int lTogflag = 0, pwdflag = 0;

FILE *netrc;

struct passwd *pwdbuf;

int rc=0;

/* Get user's home directory. */
pwdbuf = getpwuid(getuid());

/* Does user have a .netrc file in their home directory? =/
strcat(strcpy(buffer, pwdbuf->pw_dir), "/.netrc");

if ((netrc = fopen(buffer, "r")) == NULL) {
perror("gshc: open() failed for ~/.netrc file");
return -1;

}

Qshell

207

while (!(logflag || pwdflag) && fgets(buffer, BUFSIZE, netrc) != NULL) {
/* Find system name in ~/.netrc. =/
if ((systag = (char*)strtok(buffer, " \t\n")) != NULL &&
Istrncmp(systag, "machine", 7)) {
systag = (char *)strtok(NULL, " \t\n");
if (!strcmp(systag, sysname)) {
/* Find login and password. »*/
while (!logflag || !pwdflag) {
if ((logtag = (char =*)strtok(NULL, " \t\n")) == NULL) {
/* Nothing else on that Tine... get another. x/
while (!logtag) {
fgets(buffer, BUFSIZE, netrc);
logtag = (char x)strtok(buffer, " \t\n");

}

if (!strncmp(logtag, "login", 5)) {
strcpy(logname, strtok(NULL, " \n\t"));
++logflag;

}

else if (!strncmp(logtag, "password", 8)) {
strcpy(password, strtok(NULL, " \n\t"));
++pwdflag;

1

else

} /* while flags not set */
} /* if found login and passwd in .netrc =*/
} /* if machine in .netrc x/
} /% while fgets x/

fclose(netrc);

/* Login and password not found for system. */
if ('(logflag && pwdflag)) {
rc = -1;

}

return rc;
} /* End of GetPassword() =/

#ifndef USE_ICONV

/*

* Translate bytes using the specified translation table.
*/

int
Translate(uchar *ip, size t ilen, uchar *op, uchar *table)
{
int index;
for (index = 0; index < ilen; ++index) {
*0p = table[*ip];
ipt++;
op++;

}

return 0;
} /* End of Translate() */
#endif

/*
* Signal handler.
*/

208 iSeries: Qshell

void
MySignalHandler(int signo)
{

switch (signo) {
case SIGINT:
printf("\ngshc: <ctrl>c ends this program\n");
printf("Ended gsh session on %s\n", sysname);
exit(0);
break;

default:
exit(1);
break;
} /* End of switch =/

return;
} /* End of MySignalHandler() */

/*
* Display usage message.

*/
void usage(void)
fprintf(stderr, "Usage: gshc [-n] [-p port] hostname\n");

exit(1l);
} /* End of usage() =/

Note: By using the code examples, you agree to the terms of the [‘Code license and disclaimer|
information” on page 216

Example: Creating and running the server program

Creating the server program The following example shows how to create the server program on
i5/0S™). The example assumes that the source for the server program is in member SERVER in the file
QGPL/QCSRC. The server program is owned by a special user profile QSHSVR that has minimal
authorities but private authority to the QSYGETPH(), QSYRLSPHY(), and QWTSETP() APIs. It is not
possible to sign on using the QSHSVR user profile. The server program adopts the authority of QSHSVR
so it can switch to the client’s user profile.

CRTBNDC PGM(QGPL/SERVER)
SRCFILE (QGPL/QCSRC)
SRCMBR(SERVER)
OPTIMIZE(40)
SYSIFCOPT (*IFSIO)
LOCALETYPE (*LOCALE)
USRPRF (*OWNER)

AUT (*USE)
TEXT('Shell server')

CRTUSRPRF USRPRF (QSHSVR)
PASSWORD (*NONE)
USRCLS (*USER)
TEXT('Shell server profile')

CHGOBJOWN OBJ(QGPL/SERVER)
OBJTYPE (*PGM)
NEWOWN (QSHSVR)

GRTOBJAUT 0BJ(QSYS/QSYGETPH)
OBJTYPE (*PGM)
USER(QSHSVR)

AUT (*USE)

GRTOBJAUT 0BJ(QSYS/QSYRLSPH)
OBJTYPE (*PGM)
USER(QSHSVR)

AUT (*USE)

Qshell 209

GRTOBJAUT 0BJ(QSYS/QWTSETP)
OBJTYPE (*PGM)
USER(QSHSVR)

AUT (*USE)

Running the server program You may want to run the server program and any child processes started
by the server in their own subsystem. The following example shows how to create the following objects:

* A subsystem description and related routing entry and prestart job entries for both non-threaded and
multi-thread capable jobs.

e A class.
* A job description.
* Ajob queue.

CRTSBSD SBSD(QGPL/SHELL)
POOLS ((1 =BASE))
AUT (*USE)
TEXT('Shell server subsystem')
CRTCLS CLS(QGPL/SHELL)
RUNPTY (20)
TIMESLICE (2000)
DFTWAIT(30)
AUT (*USE)
TEXT('Shell server class')
CRTJOBQ JOBQ(QGPL/SHELL)
AUTCHK (*DTAAUT)
AUT (*USE)
TEXT('Shell server job queue')
CRTJOBD JOBD(QGPL/SHELL)
JOBQ(QGPL/SHELL)
AUT (*USE)
TEXT('Shell server job description')
ADDJOBQE SBSD(QGPL/SHELL)
JOBQ(QGPL/SHELL)
MAXACT (*NOMAX)
ADDRTGE ~ SBSD(QGPL/SHELL)
SEQNBR(1)
CMPVAL (*ANY)
PGM(*LIBL/QCMD)
ADDPJE SBSD(QGPL/SHELL)
PGM(QSYS/QPOZSPWP)
USER(QSHSVR)
STRJOBS (*YES)
INLJOBS (10)
THRESHOLD(2)
ADLJOBS(3)
MAXJOBS (*NOMAX)
JOBD (QGPL/SHELL)
ADDPJE SBSD(QGPL/SHELL)
PGM(QSYS/QPOZSPWT)
USER(QSHSVR)
STRJOBS (*YES)
INLJOBS(10)
THRESHOLD(2)
ADLJOBS (3)
MAXJOBS (*NOMAX)
JOBD(QSYS/QAMTJOBD)

Starting the subsystem The following example shows how to start the subsystem described in the
previous example and the server program.

210 iSeries: Qshell

STRSBS SBSD(QGPL/QSHELL)
SBMJOB CMD(CALL QGPL/SERVER)
JOB(SERVER)
JOBD(QGPL/SHELL)
JOBQ(QGPL/SHELL)

USER(QSHSVR)

Example: Creating and running the client program

Creating the client program The following example shows how to create the client program on AIX
using xlc. The example assumes that the source for the client program is in file gshc.c in the current
working directory. The client program has been compiled and tested on AIX 4.1.5 using xlc and Linux
2.0.29 using gecc 2.7.2.1.

x1c -0 gshc gshc.c

Running the client program The following example shows how to run the client program and connect to
a server running on system myas400. Before running the command, there must be an entry in your
~/ netrc file for the specified system and the server must be started and listening on TCP/IP port 6042.

gshc myas400

Related information for Qshell

Listed here are sources that relate to the Qshell topic.

Warning: Temporary Level 3 Header

Warning: Temporary Level 4 Header

Books: [Qshell for iSeries| 'ld’

IBM Redbooks: [Building AS/400 Internet-Based Applications with Javal @

Other information:

+ [[BM Developer Kit for Javal

« [[BM Directory Server for iSeries (LDAP)|
« [[BM Toolbox for Java|

Saving PDF files: To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF in your browser (right-click the link above).

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.

4. Click Save.

Downloading Adobe Reader: You need Adobe Reader installed on your system to view or print these
PDFs. You can download a free copy from the IAdobe Web site| (www.adobe.com/products/acrobat/

readstep.html) -lﬁ' .

Qshell 211

http://store.yahoo.com/mcpressonline/5061.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/723cd529d5595808862566cc0060397c?OpenDocument
http://www.adobe.com/products/acrobat/readstep.html

212 iSeries: Qshell

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 213

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

214 iSeries: Qshell

Programming Interface Information

This Qshell publication documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX

AS/400

DB2

DB2 Universal Database
eServer

IBM

iSeries

i5/0S

0s/2

RDN

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 215

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC
CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

216 iSeries: Qshell

Printed in USA

	Contents
	Qshell
	What's new
	What's new as of 31 March 2006
	What's new as of 31 August 2006
	How to see what's new or changed

	Printable PDF
	Tutorial
	Qshell command language features
	Qshell utility features
	Putting it all together in a script

	Command language
	Quoting
	Parameters
	Variables
	Variables set by qsh
	Variables used by qsh
	Other variables

	Word expansions
	Tilde expansions
	Parameter expansions
	Command substitutions
	Arithmetic expansions
	Field splitting
	Path name expansion
	Quote removal
	Patterns

	Redirection
	Simple commands
	Pipelines
	Lists
	Compound commands
	Grouping commands
	If command
	Conditional command
	Case command
	Select command
	While command
	Until command
	For command
	Functions

	Using Qshell
	Using a Qshell interactive session
	Running Qshell commands from CL
	Running Qshell commands from PASE
	Customizing your Qshell environment
	National language support (NLS) considerations
	Performance considerations
	Developing your own utilities
	Editing files with Qshell Interpreter
	Differences with other interpreters

	Utilities
	Utilities for defining aliases
	alias - Define or display aliases
	unalias - Remove alias definitions

	Utilities for running commands
	builtin - Run a shell built-in utility
	command - Run a simple command
	dot (.) - Run commands in current environment
	env - Set environment for command invocation
	eval - Construct command by concatenating arguments
	exec - Run commands and open, close, or copy descriptors
	exit - Exit from the shell
	help - Display information for built-in utility
	nohup - Run utility without hangups
	qsh - Qshell command language interpreter
	rexec - Run remote command
	rexx - Run REXX procedure
	source - Run commands in current environment
	system - Run CL command
	type - Find type of command
	whence - Determine how command is interpreted
	xargs - Construct argument lists and invoke utility

	Utilities for managing data
	cmp - Compare two files
	cut - Cut out selected fields of each line of a file
	egrep - Search a file for an extended regular expression pattern
	fgrep - Search a file for a fixed string pattern
	grep - Search a file for a pattern
	iconv - Convert characters from one CCSID to another CCSID
	sed - Stream editor
	sort - Sort, merge, or sequence check text files
	split - Split files into pieces
	tr - Translate characters
	uniq - Report or filter out repeated lines in a file
	wc - Word, line and byte/character count

	Utilities for DB2 Universal Database(TM)
	Qshell db2 utility
	Perl utility

	Utilities for working with files and directories
	attr - Get or set attributes for files
	basename - Return non-directory portion of path name
	cat - Concatenate and print files
	catsplf - Concatenate and print spool files
	cd - Change working directory
	chgrp - Change file group ownership
	chmod - Change file modes
	chown - Change file ownership
	compress - Compress data
	cp - Copy files
	dirname - Return directory portion of path name
	file - Determine file type
	find - Find files
	gencat - Generate a formatted message catalog
	getconf - Get configuration values
	head - Copy the first part of files
	ln - Link files
	ls - List directory contents
	mkdir - Make directories
	mkfifo - Make FIFO special files
	mv - Move files
	od - Dump files in various formats
	pax - Portable archive interchange
	pr - Print files
	pwd - Return working directory name
	pwdx - Print working directory expanded
	Rfile - Read or write record files
	rm - Remove directory entries
	rmdir - Remove directories
	setccsid - Set CCSID attribute for file
	tail - Display the last part of a file
	tar - File archiver
	touch - Change file access and modification times
	umask - Get or set the file mode creation mask
	uncompress - Expand compressed data
	zcat - Expand and concatenate data

	Utilities for reading and writing input and output
	dspmsg - Display message from message catalog
	echo - Write arguments to standard output
	print - Write output
	printf - Write formatted output
	read - Read a line from standard input

	Utilities for developing Javatm programs
	ajar - Alternative Java(TM) archive
	appletviewer - View Javatm applet
	extcheck - A utility to detect JAR conflicts
	jar - Archive Javatm files
	Files in the integrated file system

	jarsigner - JAR signing and verification
	java - Run Javatm interpreter
	javac - Compile a Javatm program
	javadoc - Generate Javatm documentation
	javah - Generate C header or stub file
	javakey - Manage Javatm security keys and certificates
	javap - Disassemble a compiled Javatm program
	keytool - Key and certificate management tool
	native2ascii - Convert native characters to ASCII
	policytool - Policy file creation and management tool
	rmic - Compile Javatm RMI stubs
	rmid - The Javatm RMI activation system
	rmiregistry - Start a remote object registry
	serialver - Return serial version
	tnameserv - Naming service

	Utilities for managing jobs
	getjobid - Display job information
	hash - Remember or report utility locations
	jobs - Display status of jobs in current session
	kill - Terminate or signal processes
	liblist - Manage library list
	ps - Display process status
	sleep - Suspend invocation for an interval
	trap - Trap signals
	wait - Wait for process completion

	Utilities for Kerberos credentials and key tables
	Utilities for LDAP directory server
	Utilities for working with parameters and variables
	declare - Declare variables and set attributes
	export - Set export attribute for variables
	local - Assign a local variable in a function
	printenv - Display values of environment variables
	readonly - Set read-only attribute for variables
	set - Set or unset options and positional parameters
	shift - Shift positional parameters
	typeset - Declare variables and set attributes
	unset - Unset values of variables and functions

	Utilities for writing scripts
	break - Exit from for, while, or until loop
	colon (:) - Null utility
	continue - Continue for, while, or until loop
	false - Return false value
	getopts - Parse utility options
	let - Evaluate arithmetic expression
	return - Return from a function
	test - Evaluate expression
	true - Return true value

	Miscellaneous utilities
	clrtmp - Clear the /tmp directory
	dataq - Send or receive messages from i5/OS(TM) data queue
	datarea - Read or write i5/OS(TM) data area
	date - Write the date and time
	expr - Evaluate arguments as an expression
	hostname - Display the name of the current host system
	id - Return user identity
	ipcrm - Remove interprocess communication identifier
	ipcs - Report interprocess communication status
	locale - Get locale specific information
	logger - Log messages
	logname - Display user's login name
	sysval - Retrieve system values or network attributes
	tee - Duplicate standard input
	ulimit - Set or display resource limits
	uname - Return system name

	Application Programming Interfaces
	QzshSystem() - Run a QSH Command
	QzshCheckShellCommand() - Find QSH Command

	Examples: Using a remote client that connects to a qsh session
	Example: Server program
	Example: Client program
	Example: Creating and running the server program
	Example: Creating and running the client program

	Related information for Qshell
	Warning: Temporary Level 3 Header
	Warning: Temporary Level 4 Header
	Books
	IBM Redbooks
	Other information
	Saving PDF files
	Downloading Adobe Reader

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions
	Code license and disclaimer information

