Connecting to System i
Developing iSeries Navigator plug-ins

Version 5 Release 4

System i

Connecting to System |
Developing iSeries Navigator plug-ins

Version 5 Release 4

Note
Before using this information and the product it supports, read the information in

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of i5/0S (5722-SS1) and to all subsequent releases and
modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set
computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2004, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Developing iSeries Navigator plug ins. 1 cwbUN_GetSystemNameFromPidl. . . . 44
What's new for V5R4 1 cwbUN_GetTypeFromName.45
Printable PDF . 1 cwbUN_GetTypeFromPidl45
Plug-in support in iSeries NaVlgator 2 cwbUN_RefreshAll.46
What you can do with a plug-in. 2 cwbUN_RefreshList46
How plug-ins work 2 cwbUN_RefreshListltems.46
Plug-in requirements4 cwbUN_UpdateStatusBar.47
Distributing plug-ins 5 cwbUN_GetODBCConnection47
Setup.ini file . L7 cwbUN_EndODBCConnections. 48
Example: Information sectlon of setup ini. .7 cwbUN_Getlconlndex.48
Example: Service section of setup.ini 8 cwbUN_GetSharedImageList49
Example: Identify files section of setup.ini . 8 cwbUN_GetAdminValue49
Example: Exit programs section of the cwbUN_GetAdminValueEx50
setup.ini S) cwbUN_GetAdminCacheState51
MRI setup ﬁle L. R) cwbUN_GetAdminCacheStateEx52
Identifying plug-ins to iSeries Nav1gator .. .13 cwbUN_IsSubcomponentInstalled 53
Installing and running sample plug-ins13 cwbUN_OpenLocalLdapServer53
Setting up sample C++ plug-ins13 cwbUN_FreeLocalLdapServer54
Setting up sample Visual Basic plug-ins15 cwbUN_GetLdapSvrPort54
Sample Visual Basic plug-in directory of files 16 cwbUN_GetLdapSvrSuffixCount55
Setting up the sample Java plug-ins17 cwbUN_GetLdapSvrSuffixName55
Sample Java plug-in directory of files. . . . 18 cwbUN_OpenLdapPublishing56
Plug-in programming reference.20 cwbUN_FreeLdapPublishing57
C++ reference20 cwbUN_GetLdapPublishCount.57
iSeries Navigator structure and flow of control cwbUN_GetlLdapPublishType58
for C++ plug-ins.20 cwbUN_GetLdapPublishServer.59
iSeries Navigator COM mterfaces for C++ LoL21 cwbUN_GetLdapPublishPort59
Description of IA4HierarchyFolder cwbUN_GetLdapPublishParentDn. . . . 60
Interface22 Return codes unique to iSeries Navigator APIs 61
IA4H1erarchyFolder mterface spec1f1cat10ns Visual Basic reference 63
listing23 iSeries Navigator structure and flow of control
Description of IA4PropSheetNot1fy for Visual Basic plug-ins63
interface29 iSeries Navigator Visual Basic 1nterfaces . .64
IA4Pr0pSheetNot1fy interface spec1f1cat10ns iSeries Navigator ListManager interface
listing . . L.30 class. 64
iSeries Nav1gator APIs PG ¥ | iSeries Nav1gator ActlonsManager mterface
iSeries Navigator API listing.31 class.65
cwbUN_GetSystemValue33 iSeries Nav1gator DropTargetManager
cwbUN_GetSystemHandle34 interface class.65
cwbUN_ReleaseSystemHandle35 Java reference . . . 65
cwbUN_CheckObjectAuthority35 iSeries Navigator structure and flow of control
cwbUN_CheckSpecialAuthority. 36 for Java plug-ins.65
cwbUN_CheckAS400Name36 Customizing the plug-in reglstry flles66
cwbUN_GetUserAttribute37 Customizing the C++ registry values. . . . 67
cwbUN_ConvertPidlToString38 Primary registry key67
cwbUN GetDlsplayNameFromItemId . .38 Data server implementation.69
cwbUN_GetDisplayNameFromName . . . 39 Shell plug-in implementation class. . . . 69
cwbUN_GetDisplayPathFromName . . . 40 Shell plug-in implementation for objects. . 70
cwbUN_GetIndexFromltemld40 Global changes for C++ plug-in registry
cwbUN_GetIndexFromName41 files72
cwbUN_GetIndexFromPidl41 Customizing the Vlsual Basm plug in reglstry
cwbUN_GetListObject. . . .41 values . . . e e T2
cwbUN_ GetParentFolderNameFromName 42 Primary reglstry key - .73
cwbUN_GetParentFolderPathFromName . 42 Visual Basic plug-in 1mplementat10n class 75
cwbUN_GetParentFolderPidl43 Visual Basic plug-in implementation objects 77

cwbUN_GetSystemNameFromName . . . 43

© Copyright IBM Corp. 2004, 2006 iii

iv

Global changes for Visual Basic plug in
registry files . . .
Sample Java registry file . .

Property pages for a property sheet handler
Description of QueryContextMenu flags .
Example: Constructing Visual Basic property
pages for a property sheet handler

Property sheet handling in Java

. 78
. 78

83

. 84

. 85
. 87

Example: Java Properties Manager.

Secure Sockets Layer registry entry

Appendix. Notices.
Programming Interface Information
Trademarks

Terms and conditions .

System i: Connecting to System i Developing iSeries Navigator plug-ins

. 87
. 89

. 91
.92
.92
. 93

Developing iSeries Navigator plug-ins

With the plug-in feature of iSeries’ Navigator, you can integrate your system administration tasks and
client/server programs into a single application environment.

You can use plug-ins to consolidate third-party applications and specialized functions written in C++,
Visual Basic, or Java™ into the iSeries Navigator interface. Use this topic collection to help you
understand what plug-ins are, how to create or customize them, and how to distribute them to your
users.

Note: By using the code examples, you agree to the terms of the |”Code license and disclaimeti
[information” on page 90

What’s new for V5R4

Find out what’s new in this release.
V5R4 includes support for Java runtime environment (JRE) 1.4.2.

Developing iSeries Navigator Plug-ins has an expanded section on the setup.ini file with new examples
for exit program sections.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:
* The # image to mark where new or changed information begins.

¢ The 4% image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the

Printable PDF

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select(Developing iSeries Navigator plug-ing
(about 960 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDFE.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free

copy from the [Adobe Web site| (www.adobe.com /products/acrobat/ readstep.html)--lzjr .

© Copyright IBM Corp. 2004, 2006

http://www.adobe.com/products/acrobat/readstep.html

Plug-in support in iSeries Navigator

iSeries Navigator Plug-in support provides a convenient way to integrate your own functions and
applications into a single user interface: iSeries Navigator.

These new functions and applications can vary in complexity from simple new behaviors to whole
applications. Regardless of what specific new ability your plug-in provides, integrating it into iSeries
Navigator provides several important benefits. For example, bundling common system tasks into a single
location in iSeries Navigator can dramatically simplify common administration and operation functions.
Also, iSeries Navigator’s GUI interface ensures that your integrated functions can be completed easily,
and with only minimal prerequisite skills.

What you can do with a plug-in

Plug-ins are sets of predefined classes and methods that iSeries Navigator starts in response to a
particular user action.

You can use plug-ins to add or modify objects and folders in the iSeries Navigator hierarchy that
represent your tools and applications. You can completely customize the support for your folders and
objects by adding or modifying the following items:

Context menus
Use context menus to launch applications, present new dialogs and add or modify behaviors.

Property pages
Use property pages to support customized attributes, for example additional security settings.
You can add property pages to any object or folder that has a property sheet.

Toolbars
You can completely customize toolbars and buttons.

Custom folders and objects
You can add your own customized folders and objects into the iSeries Navigator tree hierarchy.

How plug-ins work

After identifying the new plug-in to the Windows® registry, iSeries Navigator finds the new plug-in and
installs it in a new configuration. Afterward, the new container appears in the iSeries Navigator
hierarchy. When the user selects the container, the plug-in’s code is called to obtain the container’s
contents.

iSeries Navigator communicates with the plug-in by calling methods defined on the ListManager
interface. This interface enables applications to supply list data to the iSeries Navigator tree and to list
views. To integrate your application into iSeries Navigator, you create a new class that implements this
interface. The methods on the new class call your existing application to obtain the list data.

[Figure 1 on page 3 shows how a Java plug-in that adds a new container to the iSeries Navigator tree can
work.

2 System i: Connecting to System i Developing iSeries Navigator plug-ins

B iSeries Navigator
File Edt “iew Help
u:li'E || El Xll 'ﬁll & |EI minutes ald
Environment: My Connechions Syztem: Applicationdl
@ b anagement Central [Spztem01] | Test Date
=-Ef My Connections This is atest.. Wed Sep 02 14:0
=- E Systeml] Job 004897, ‘wed Sep 08 135
i1 Basic Operations Job 004896... ‘wed Sep 05 135
B wiork Management Job 004889, ‘wed Sep 08134
ﬁi‘ Configuration and Service Job 004890, ‘wed Sep 08 13:4
Eﬁ Metwark,
-- Secrty
+-gif® Users and Groups
- Databases
--4“:-% File Sypstems
Applicationdl
J | | o
| |1-Baf 5 objects] | i

Figure 1. iSeries Navigator dialog that shows messages in the message queue

shows how iSeries Navigator communicates with the Java plug-in to obtain the list data.

iSeries Navigator

§E BE T P

famiad

—

e .- - . Mew Your
== Flug-in -

<5 «—| interface | g o | existing
-i— il classes application

Figure 2. How iSeries Navigator calls an application to obtain list data

Use the ActionsManager Java interface to make your application’s specialized functions available to your
users through iSeries Navigator. When a user selects a menu item, iSeries Navigator calls another
ActionsManager method to perform the action (you need to create a new Java class that implements this

Developing iSeries Navigator plug-ins 3

interface). Your ActionsManager implementation calls your existing Java application, which then displays
a confirmation dialog or some other more complex user interface panel that helps the user perform a
specialized task.

shows what happens when a user right-clicks a message object to display its context menu.

B iSeries Navigator
File Edt “iew Help

d ||E'| }(ll I:ill'ﬁ' |Dminutes old

Enviranment: My Connections Syztem: Application0l
@ t anagement Central [System01]) | Text Drate
Em M_|r| EDnnectiDnS m LT N o R o [B . M |
=@ SystemD1 Job 004897 . =55
@ﬁ. Basic Operations (= Jab 004896,
% Witk Management Job 0048589, T mETSep Ug 130

- Configuration and Service | & | b noagan.. wed Sep 08 13:4
b Metwork

-- Security

[+ g™ Jzers and Groups
#- Databases
[#-=2 File Systems

----- Al Applicationd

1| | M= | il
i

'\ |1-5ofSobjects) |

Figure 3. iSeries Navigator object context menu

When a user selects a menu item, iSeries Navigator calls another ActionsManager method to perform the
action. iSeries Navigator calls a predefined method on the ActionsManager Java interface. This interface
obtains the list of menu items supported for message objects. The iSeries Navigator user interface is
designed to help users work with system resources. The architecture of the plug-in feature reflects this
user interface design, both by defining interfaces for working with lists of objects in a hierarchy, and by
defining actions on those objects. A third interface, DropTargetManager, handles drag operations.

Plug-in requirements

iSeries Navigator plug-in requirements differ according to the programming language that you use.
C++ plug-ins

Plug-ins that are developed by using Microsoft’s Visual C++ programming language must be written in
Version 4.2 or later.

4 System i: Connecting to System i Developing iSeries Navigator plug-ins

C++ plug-ins also require the following iSeries Navigator APIs.

Header file Import library Dynamic link library
cwbun.h cwbunapi.lib cwbunapi.dll
cwbunpla.h (Application cwbapi.lib cwbunpla.dll
Administration APIs)

Java plug-ins

Java plug-ins run on the IBM® runtime environment for Windows, Java Technology Edition. The
following table indicates the version of Java installed with iSeries Access for Windows.

Release JRE Swing JavaHelp
V5R4 1.4.2 N/A 1.1.1
V5R3 141 N/A 1.1.1
V5R2 1.3.1 N/A 1.1.1
V5R1 1.3.0 N/A 1.1.1
V4R5 1.1.8 1.1 N/A
V4R4 1.1.7 1.0.3 N/A

All Java plug-ins require a small Windows resource DLL that contains information about your plug-in.
This allows iSeries Navigator to represent your function in the iSeries Navigator object hierarchy without
having to load your plug-in’s implementation. The sample’s resource DLL was created by using
Microsoft’s Visual C++ version 4.2, but you can use any C compiler that supports compiling and linking
Windows resources.

iSeries Navigator provides a Java console as an aid to debugging. The console is activated by selecting a
registry file to write the required console indicators to the Windows registry. When the console is
activated, the JIT compiler is turned off to allow source code line numbers to appear in the stack trace,
and any exceptions that are encountered in iSeries Navigator’s Java infrastructure will be displayed in
message boxes. The registry files for activating and for deactivating the console are provided with the
sample Java plug-in, found in the iSeries Access for Windows Toolkit.

The sample’s user interface was developed by using the Graphical Toolbox for Java, which is a part of the
IBM Toolbox for Java component. The Toolbox is an optionally installable component of iSeries Access for
Windows. It can be installed with the initial installation of the iSeries Access for Windows product or
selectively installed later, by using the iSeries Access for Windows Selective Setup program.

Visual Basic plug-ins

Visual Basic plug-ins run on Version 5.0 of the Visual Basic runtime environment.
Related concepts

[“Installing and running sample plug-ins” on page 13|
The Programmer’s Toolkit supplies sample plug-ins in each of the supported programming languages.

Distributing plug-ins
You can deliver your plug-in code to iSeries Navigator users by including the code with your i5/0S®
applications.

The application’s installation program writes the plug-in’s code binaries, registry file, and translatable
resources to a folder in the integrated file system. After completing this process, your users can use the

Developing iSeries Navigator plug-ins 5

iSeries Access for Windows Selective Setup program and an iSeries NetServer mapped network drive to
obtain the plug-in from the iSeries Access for Windows folder. Selective Setup copies your plug-in code to
the user’s workstation, downloads the appropriate translatable resources, based on the language settings
on the user’s PC, and runs the registry file to write your plug-in’s registry information to the Windows
registry. If iSeries Access for Windows has not already been installed, you can install plug-ins on the
initial installation using the custom option.

For this type of plug-in... Install in this directory... And include these files...

C++ /QIBM/USERDATA /OpNavPlugin/
<vendor>.<component> (To prevent
installation without iSeries Access for

The registry file for the plug-in.

¢ The iSeries Access for Windows
setup file for the plug-in.

Windows)
* The ActiveX server DLL for the
plug-in, and any associated code
DLLs.
Java /QIBM/USERDATA/OpNavPlugin/ |+ The registry file for the plug-in.

<vendor>.<component> (Java

- o * The iSeries Access for Windows
plug-ins require iSeries Access for

setup file for the plug-in.

Windows)
e The Java JAR file contains all Java
classes, AUIML, HTML, .gif,
PDML, PCML, and serialization
files.
Visual Basic /QIBM/USERDATA /OpNavPlugin/ |. The registry file for the plug-in.

<vendor>.<component> (Visual Basic
plug-ins require iSeries Access for
Windows)

¢ The iSeries Access for Windows
setup file for the plug-in.

¢ The ActiveX server DLL for the
plug-in, and any associated code
DLLs.

Notes:
* The <vendor>.<component> subdirectory must match the one specified in the registry file.

* Support for the GUIPlugin location will be removed in a future release, so you should migrate your
plug-ins to the OpNavPlugin location.

Additionally, all plug-ins must create at least one directory below the <vendor>.<component>
subdirectory called MRI29XX, where XX identifies a supported language. For example, MRI12924
(English). This directory should contain the correct national language version of the following items:

* The resource DLL for the plug-in
* The help files for the plug-in
* The MRI setup file for the plug-in

Upgrading or uninstalling the plug-in

After the users have installed your plug-in, you can choose either to upgrade it at a later date or to ship
bug fixes. When the code is upgraded on the system, the iSeries Access Check Version program detects
that this process has occurred and automatically downloads the updates onto the users” workstations.
iSeries Access for Windows provides uninstallation support, so your users can completely remove the

plug-in from their workstations anytime. Users can learn what plug-ins are installed on their
workstations by clicking the Plug-ins tab on the iSeries Navigator Properties page for the system.

6 System i: Connecting to System i Developing iSeries Navigator plug-ins

Restricting access to the plug-in with system policies and Application
Administration

If you provide a Windows policy template with your plug-in, you can take advantage of Windows
system policies to control on which network users can install your plug-in. Additionally, you can use the
system-based Application Administration support in iSeries Navigator to control which users and user
groups can access your plug-in.

Setup.ini file

Your plug-in’s setup.ini file provides the installation wizard with the information needed to install an
iSeries Navigator plug-in on a client workstation. It also provides information that allows the Check
Service Level program to determine when the plug-in needs to be upgraded or serviced.

The setup file must be named SETUP.INI, and it must reside in the primary
<VENDOR>.<COMPONENT> directory for the plug-in on the system.

The format of the file conforms to that of a standard Windows configuration (.INI) file. The file is divided
into four parts:

* Plug-in information

* Service

* Sections to identify the files to install on the client workstation

* Sections to identify exit programs to run on the client workstation
Related concepts

[‘Sample Visual Basic plug-in directory of files” on page 16|
These tables describe all of the files included with the sample Visual Basic plug-in.

Example: Information section of setup.ini:

The first section of the setup file, Plug-in Info, contains global information about the plug-in.

[PTugin Info]

Name=Sample plug-in
NameDLL=sampmri.d11

NameResID=128

Description=Sample plug-in description
DescriptionDLL=sampmri.d11
DescriptionResID=129

Version=0

VendorID=IBM.Sample

JavaPlugin=YES

Field in [Plugin Info] Description of field
section of Setup.ini

Name English name of the plug-in. This name is displayed during installation of the plug-in
when the translated name cannot be determined.

NameDLL Name of the resource DLL that contains the translated name of the plug-in. This DLL is
located in the MRI directories of the plug-in.

NameResID Resource ID of the translated name in the MRI DLL. This field must contain the same
value as the NamelD field defined in the primary registry key for the plug-in.

Description English description of the plug-in. This description is displayed during installation of the
plug-in when the translated description cannot be determined.

DescriptionDLL Name of the resource DLL that contains the translated description of the plug-in. This
DLL is located in the MRI directories of the plug-in.

Developing iSeries Navigator plug-ins 7

Field in [Plugin Info] Description of field
section of Setup.ini

DescriptionResID Resource ID of the translated description in the MRI DLL. This field must contain the
same value as the DescriptionlID field that is defined in the primary registry key for the
plug-in.

Version A numeric value that indicates the release level of the plug-in. The Check Service Level

program uses this value to determine whether the plug-in needs to be upgraded on the
client workstation. This value is incremented by some amount for each new release of
the plug-in.

The Version value is compared with the current Version value of the installed plug-in on
the client workstation. When this Version value is greater than the one that already exists
on the client workstation, the Check Service Level program upgrades the plug-in to the
new version.

VendorID The <VENDOR>.<COMPONENT> string that is used to identify the plug-in. This string
is used to create the registry key for the plug-in in the iSeries Access for Windows
registry tree. The VendorID must be identical to the <VENDOR>.<COMPONENT>
portion of the path where the plug-in will be installed on the system.

JavaPlugin A field that indicates whether this is a Java plug-in. For Java plug-ins, all JAR files must
be installed into the \PLUGINS\<VENDOR>.<COMPONENT> directory, and this value
is used to determine whether the installation process should do this. If it is a Java
plug-in and this value is set to NO or does not exist, the plug-in cannot work after it is
installed.

Example: Service section of setup.ini:

The second section of the setup file, Service, gives the Check Service Level program the information it
needs to determine whether a new fix level of the plug-in should be applied to the client workstation.
[Service]

FixLevel=0
AdditionalSize=0

Field in [Service] section | Description of field
of Setup.ini

FixLevel A numeric value that indicates the service level of the plug-in. The Check Service Level
program uses this value to determine whether the plug-in requires servicing. This value
must be incremented by some amount with each service release for a particular Version.

The FixLevel value is compared with the current FixLevel value of the installed plug-in
on the client’s computer. When this FixLevel value is greater than that of the plug-in
installed on the client workstation, the Check Service Level program upgrades the
plug-in to the appropriate fix level. The value must be reset to zero, when a plug-in is
upgraded to a new version or release level.

AdditionalSize The amount of disk space that is required to store any new or additional executable files
that will be added to the plug-in during servicing. The installation uses this value to
determine whether the workstation has adequate disk space for the plug-in.

Example: Identify files section of setup.ini:

This part of the setup.ini file contains the information that identifies the files to be installed on the client
workstation.

The section in which a file appears identifies the locations of the source and target for each file. These file
sections are used during initial installations or during an upgrade to a new version or release level.

8 System i: Connecting to System i Developing iSeries Navigator plug-ins

The format for file entries in each file section should be n=file.ext, where n is the number of the file in
that section. The numbering must start with one (1) and increment by one (1) until all of the files are
listed in the section. For example:

[Base Files]
1=filel.d11
2=file2.d11
3=file3.dl1

In all cases, only the file name and plug-in should be specified. Do not specify directory path names. If a
file section contains no entries, the section simply is ignored.

Note: The Programmer’s Toolkit provides a sample setup file for three different sample plug-ins: C++,
Java, and Visual Basic.

Section in Setup.ini

Description

[Base Files]

Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the Client
Access installation directory. Normally, the ActiveX server DLL (and associated code
DLLs) for the plug-in reside here.

For C++ and Visual Basic, the ActiveX server DLL (and associated code DLLs) for the
plug-in reside here.

For Java, the Code JAR file name resides here.

[Shared Files]

Files that are copied to the Client Access Shared directory.

[System Files]

Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Core Files]

Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.
These files are use counted in the registry and are never removed. They are typically
re-distributable files.

[MRI Files]

Files that are copied from the MRI directories of the plug-in on the system to the
CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT> directories on the
workstation. This is typically where the locale-dependent resources for a plug-in
reside. This includes your Resource MRI DLL name.

[Java MRI29xx] (where 29xx
is the NLV feature code for
the files)

Java files that are copied from the MRI29xx directory of the plug-in on the system to
the same directory to which the base files are installed. This is typically where the
JAR MRI29xx resources for the plug-in reside. For each MRI29xx directory supported
by the Java plug-in, a Java MRI29xx section needs to list those files. This is used only
by Java plug-ins.

[Help files]

The .HLP and .CNT files that are copied from the MRI directories of the plug-in on
the system to the CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT>
directories on the workstation. The directory path to these files is written to
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS\HELP in the
Windows registry.

[Registry files]

The Windows registry file that is associated with the plug-in.

Developing iSeries Navigator plug-ins 9

Section in Setup.ini

Description

[Dependencies]

The section that defines the subcomponents that must be installed before the plug-in
can be installed. AS400_Client_Access_Express is needed only if the plug-in requires
other subcomponents, besides the iSeries Navigator base support subcomponent, to
be installed.

AS400_Client_Access_Express

* The subcomponents are specified in a comma-delimited list. A single subcomponent
is specified as a single number (AS400_Client_Access_Express=3). The CWBAD.H
header file contains a list of constants that have the prefix CWBAD_COMP_. These
constants provide the numeric values that are used in the comma-delimited list for
AS400_Client_Access_Express. These CWBAD_COMP_ constants identify PC5250
font sub-components and must not be used in the AS400_Client_Access_Express
value:

//5250 Display and Printer Emulator subcomponents
#define CWBAD_COMP_PC5250 BASE_KOREAN (150)
#define CWBAD_COMP_PC5250 PDFPDT_KOREAN (151)
#define CWBAD_COMP_PC5250 BASE_SIMPCHIN (152)
#define CWBAD_COMP_PC5250 PDFPDT_SIMPCHIN (153)
#define CWBAD_COMP_PC5250 BASE TRADCHIN (154)
#define CWBAD_COMP_PC5250 PDFPDT_TRADCHIN (155)
#define CWBAD_COMP_PC5250 BASE_STANDARD (156)
#define CWBAD_COMP_PC5250 PDFPDT_STANDARD (157)

#define CWBAD_COMP_PC5250_FONT ARABIC (158)
#define CWBAD_COMP_PC5250_FONT BALTIC (159)
#define CWBAD_COMP_PC5250_FONT LATIN2 (160)
#define CWBAD_COMP_PC5250_FONT CYRILLIC (161)
#define CWBAD_COMP_PC5250 FONT GREEK (162)
#define CWBAD_COMP_PC5250_FONT HEBREW (163)
#define CWBAD_COMP_PC5250_FONT_LAOQ (164)
#define CWBAD_COMP_PC5250_FONT THAI (165)
#define CWBAD_COMP_PC5250_FONT TURKISH (166)
#define CWBAD_COMP_PC5250_FONT VIET (167)

Note: The AS400_Client_Access_Express value is used if it exists, otherwise, this
section is ignored.

[Service Base Files]

Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the iSeries
Access for Windows installation directory.

[Service Shared Files]

Files that are copied to the iSeries Access for Windows Shared directory.

[Service System Files]

Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Service Core Files]

Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.
These files are use counted in the registry and are never removed. They are typically
re-distributable files.

[Service Registry Files]

The Windows registry file that is associated with the plug-in.

Example: Exit programs section of the setup.ini:

The final portion of the setup file contains sections that identify the programs that are to be run on the
client workstation before or after an installation, upgrade, or uninstallation.

The following examples show the syntax used in these exit programs sections to identify and run these

programs.

10 System i: Connecting to System i Developing iSeries Navigator plug-ins

Example 1: Optional program to be called before files are installed during an initial installation

[PreInstallProgram]
Program=whatever.exe
CmdLine=
CheckReturnCode=
Wait=

Field in [PreInstallProgram]

Description

Program Required. Only the file name is used if a path is specified. The program must reside
in the plug-in’s <vendor>.<component> path in the installation source.

CmdLine Optional. Whatever commands are required by the specific program.

CheckReturnCode Optional. Default is N. Installation of this plug-in will not continue if this is set to Y
and the return is non-zero. A message will not be displayed if the program returns a
non-zero return code, but a message will be logged in the INSTLOG.TXT

Wait Optional. Wait for program to end before continuing to run. The default is Y. If

CheckReturnCode=Y, then Wait=Y is used no matter what is specified here.

Example 2: Optional program to be called after files are installed during an initial installation

[PostInstallProgram]
Program=whatever.exe
CmdLine=

CheckReturnCode=

Wait=

Field in Description

[PostInstallProgram]

Program Required. Only the file name is used if a path is specified. The program must reside
in the plug-in’s <vendor>.<component> directory on the PC.

CmdLine Optional. Whatever commands are required by the specific program.

CheckReturnCode Optional. The same values are supported for the PostInstallProgram as are
supported in the PreInstal1Program. However, because the plug-in is already
installed at this point, the CheckReturnCode value is not as significant.

Wait Optional. Wait for program to end before continuing to run. Again, the same values

are supported for the PostInstallProgram as are supported for the
PreInstallProgram. However, because the plug-in is already installed at this point,
the CheckReturnCode value is not as significant.

Example 3: Optional program to be called before files are uninstalled

[UninstallProgram]
Program=whatever.exe
CmdLine=
CheckReturnCode=
Wait=

Field in [UninstallProgram]

Description

Program Required. Only the file name is used if a path is specified. The program must reside
in the plug-in’s <vendor>.<component> directory on the PC.

CmdLine Optional. Whatever commands are required by the specific program.

CheckReturnCode Optional. Default is N. If the CheckReturnCode value is set to Y, the uninstallation of

the plug-in will not continue if the return value is non-zero. A message will not be
displayed if the program returns a non-zero return code, but a message will be
logged in the INSTLOG.TXT

Developing iSeries Navigator plug-ins

11

Field in [UninstallProgram] | Description

Wait Optional. Wait for program to end before continuing to run. The default is Y. If

CheckReturnCode=Y, then Wait=Y is used no matter what is specified here.

Example 4: Optional program to be called before files are upgraded

[PreUpgradeProgram]

Program=whatever.exe

CmdLine=

CheckReturnCode=

Wait=

Field in Description

[PreUpgradeProgram]

Program Required. Only the file name is used if a path is specified. The program must reside
in the plug-in’s <vendor>.<component> path in the installation source.

CmdLine Optional. Whatever commands are required by the specific program.

CheckReturnCode Optional. Default is N. Installation of this plug-in will not continue if this is set to Y
and the return is non-zero. A message will not be displayed if the program returns a
non-zero return code, but a message will be logged in the INSTLOG.TXT

Wait Optional. Wait for program to end before continuing to run. The default is Y. If
CheckReturnCode=Y, then Wait=Y is used no matter what is specified here.

Example 5: Optional program to be called after files have been upgraded

[PostUpgradeProgram]

Program=whatever.exe

CmdLine=

CheckReturnCode=

Wait=

Field in Description

[PostUpgradeProgram]

Program Required. Only the file name is used if a path is specified. The program must reside
in the plug-in’s <vendor>.<component> path in the installation source.

CmdLine Optional. Whatever commands are required by the specific program.

CheckReturnCode Optional. The same values are supported for the PostUpgradeProgram as are
supported in the PreUpgradeProgram. However, because the plug-in is already
installed at this point, the CheckReturnCode value is not as significant.

Wait Optional. Wait for program to end before continuing to run. The default is Y. If
CheckReturnCode=Y, then Wait=Y is used no matter what is specified here.

MRI setup file

The MRI setup file gives the iSeries Access for Windows Selective Setup program the information it needs
to install the locale-dependent resources that are associated with an iSeries Navigator plug-in on a client
PC.

You must name the MRI setup file MRISETUPINIL A version of this file must reside in the MRI29XX
subdirectory on the System i platform for each national language that the plug-in supports.

The format of the file conforms to that of a standard Windows configuration (.INI) file. The file contains a
single section, MRI Info. The MRI Info section provides the Version value for the MRI of the plug-in. The
MRI for the plug-in includes all resource DLLs, as well as Help files (HLP and .CNT) for a particular
language. For example:

12 System i: Connecting to System i Developing iSeries Navigator plug-ins

[MRI Info]
Version=0

The iSeries Access for Windows Selective Setup program checks the Version value of the MRI during an
initial installation and during an upgrade of the plug-in, when incrementing the version or release level
of the plug-in. The MRI Version value in this file must match the Version value in the SETUPINI file of
the plug-in during the installation or upgrade. When these values do not match, the plug-in is not listed
by the Selective Setup program and no files are copied to the client PC. The Programmer’s Toolkit
provides a sample MRI setup file with the sample plug-in.

Related concepts

[“Sample Visual Basic plug-in directory of files” on page 16|
These tables describe all of the files included with the sample Visual Basic plug-in.

Identifying plug-ins to iSeries Navigator

Plug-ins identify themselves to iSeries Navigator by supplying information in the Windows registry when
the plug-in software is installed on the Windows desktops of your users.

The registry entries specify the location of the plug-in code and identify the classes that implement the
special iSeries Navigator interfaces. You can supply additional registry information that iSeries Navigator
uses to determine whether the plug-in’s function should be activated for a particular system. For
example, a plug-in might require a certain minimum release of i5/0S , or it might specify that a certain
product needs to be installed on the system in order for it to function.

When a user selects a system in the iSeries Navigator hierarchy tree after installing a plug-in, iSeries
Navigator examines the system to determine whether it is capable of supporting the new plug-in. The
software prerequisites (specified in the plug-in’s registry entries) are compared against the software
installed on the system. If the plug-in’s requirements are satisfied, the new function will be displayed in
the hierarchy tree. If the requirements are not met, the plug-in’s function will not appear for that system,
unless the registry file specifies otherwise.

Installing and running sample plug-ins

The Programmer’s Toolkit supplies sample plug-ins in each of the supported programming languages.

These samples provide an excellent way to learn how plug-ins work, and an efficient starting point for
developing your own plug-ins. If you don’t already have the Programmer’s Toolkit installed, you will
need to install it before working with any of the sample plug-ins. You can install the Toolkit through
iSeries Access for Windows Selective Setup.

Note: Before starting to work on any of the sample plug-ins, you need to be aware of the unique
requirements for developing plug-ins in each of the three languages.

Related concepts

[“Plug-in requirements” on page 4|
iSeries Navigator plug-in requirements differ according to the programming language that you use.

Setting up sample C++ plug-ins
This task involves building and running the sample ActiveX server DLL.
The sample provides a functioning Developer Studio workspace that you can use to set breakpoints and

to observe the behavior of a typical iSeries Navigator plug-in. It also allows you to verify that your
Developer Studio environment is set up correctly for compiling and linking plug-in code.

Developing iSeries Navigator plug-ins 13

To set the sample C++ plug-in running on your PC, follow these steps:

Download the | Download the executable file cppsmppq.exe. When you run the file, it extracts all the files
C++ plug-in | associated with the plug-in. Make a new directory, C:\MyProject, and copy all the files into it. If you
create a different directory, you have to modify the registry file to specify the correct location for the

plug-in.
Pre‘:pare to 1. Create a new directory that is named "MyProject” on your local hard drive. This example
build an assumes that the local drive is the C: drive.
ActlveXdH Note: If the new directory is not C:\MyProject, you will need to change the registry file.
server. 2. Copy all of the sample files into this directory. You can download the samples from the
Programmer’s Toolkit - iSeries Navigator Plug-ins Web page.
3. In the Developer Studio, open the File menu and select Open Workspace.
4. In the Open Project Workspace dialog, switch to the MyProject directory, and in Files of Type,
select Makefiles (*.mak).
5. Select sampext.mak and click Open.
6. Open the Tools menu and select Options.
7. In the Directories tab, make sure that the Client Access Include directory appears at the top of
your Include files search path.
8. In Show directories for, select Library files. Make sure that the Client Access Lib directory
appears at the top of your Library files search path.
9. Click OK to save the changes, then close and reopen Developer Studio. This is the only known
way to force Developer Studio to save the search path changes to your hard disk.
i‘m_d t)l(\e 1. In the Developer Studio, open the Build menu and select Set Default Configuration.
seCrJSZre DLL 2. In the Default Project Configuration dialog, select samptext Win32 Debug Configuration.
3. Open the Build menu and select Rebuild All to compile and link the DLL.
Note: If the DLL does not compile and link cleanly, double-click the error messages in the Build
window to locate and fix the errors. Then open the Build menu and select sampext.dll to restart
the build.
Build the The resource DLL that contains the translatable text strings and other locale-dependent resources for
resource the plug-in is included with the sample. This means that you do not have to create this DLL on
library your own. Even if your plug-in supports only one language, your plug-in code must load its text

strings and locale-specific resources from this resource library.

To build the resource DLL, complete the following steps:

1. In Developer Studio, open the File menu, select Open Workspace, and select the MyProject
directory.

2. Specify Makefiles (*.mak) in Files of Type.
3. Select sampmri.mak and click Open.
4. Open the Build menu and select Rebuild All to compile and link the DLL.

Register the | The SAMPDBG.REG file in the MyProject directory contains registry keys that communicate the

ActiveX location of the sample plug-in on your workstation to the iSeries Navigator. If you specified a

server .dll directory other than C:\MyProject, complete the following steps.

1. Open the SAMPDBG.REG file in the Developer Studio (or use your chosen text editor).

2. Replace all occurrences of "C:\\MyProject\\" with "x:\\<dir>\\,” where x is the drive letter
where your directory resides and <dir> is the name of the directory.

3. Save the file.

4. In Windows Explorer, double-click the SAMPDBG.REG file. This will write the entries in the
registry file to the Windows registry on your machine.

14 System i: Connecting to System i Developing iSeries Navigator plug-ins

Run iSeries
Navigator in
the debugger

To run iSeries Navigator and observe the sample plug-in in action, follow these steps:
1. In Developer Studio, open the Build menu and select Debug » Go.

2. At the prompt, type the fully qualified path to the iSeries Navigator executable file in the iSeries
Access for Windows installation directory on your workstation. The path is C:\PROGRAM
FILES\IBM\CLIENT ACCESS\CWBUNNAV.EXE, or something similar.

3. Click OK. The main window of the iSeries Navigator opens.

4. Because you have just registered a new Navigator plug-in, a dialog in iSeries Navigator prompts
you to scan for the new plug-in.

After the progress indicator finishes, click OK in the resulting dialog.
After the iSeries Navigator window refreshes, a new folder (3rd Party Sample Folder) appears in the

hierarchy under the system that was initially selected. You can now interact with the plug-in in
iSeries Navigator and observe its behavior in the debugger.

Related information

[[[BM Client Access Express Toolkit - iSeries Navigator Plug-ins Web page]

Setting up sample Visual Basic plug-ins
The sample Visual Basic plug-in adds a folder to the iSeries Navigator hierarchy that provides a list of
i5/0S libraries, and illustrates how to implement properties and actions on those library objects.

In addition to installing the plug-in code, the sample plug-in includes a Readme.txt file, and two registry
files, one for use during development, and another for distribution with the retail version. See the sample
Visual Basic plug-in directory of files for detailed description of all the files included with the Visual

Basic plug-in.

To get the sample Visual Basic plug-in running on your PC, follow these steps:

Visual Basic

Download the

Download the executable file vbopnav.exe. When you run the file, it extracts all the files associated
with the plug-in. Make a new directory, C:\VBSample, and copy all the files into it. If you create a

plug-in different directory, you have to modify the registry file to specify the correct location for the plug-in.

Create the Open vbsample.vpb in Visual Basic. In the Reference dialog, select IBM iSeries Access for Windows

Visual Basic | ActiveX Object Library and iSeries Navigator Visual Basic Plug-in Support.

project Note: If either of these references does not appear in your References dialog, select Browse and
look for cwbx.dll and cwbunvbi.dll in the iSeries Access for Windows shared directory. The IBM
iSeries Access ActiveX Object Library contains OLE automation objects that the sample application
requires to make remote command calls to the system. The iSeries Navigator Visual Basic Plug-in
support contains classes and interfaces required to create a Visual Basic Plug-in directory.

Build the Select Make from the Visual Basic file menu to build the DLL. If it does not compile or link, locate

ActiveX and fix the errors, and then rebuild the DLL.

server DLL

Build the 1. Open Microsoft® Developer Studio, open the File menu, select Open Workspace and then select

resource the VBSample\win32 directory.

library

2. In the Files of Type field, specify Makefiles (*.mak).

3. Select vbsmpmri.mak and click Open.

4. Open the Build menu and select Rebuild All to compile and link the DLL.

Note: You do not have to create this DLL on your own. The sample includes a resource DLL that
contains the translatable text strings and other locale-dependent resources for the plug-in is included

with the sample. Even if your plug-in supports only one language, your plug-in code must load its
text strings and locale-specific resources from this resource library.

Register the
plug-in

Double-click the file vbsmpdbg.reg in order to register the plug-in. If you did not use the directory
C:\VBSample, edit the registry file, and replace all occurrences of "C:\\VBSample\\" with the fully
qualified path to the plug-in code. You must use double back slashes in the path.

Developing iSeries Navigator plug-ins 15

http://www.ibm.com/servers/eserver/iseries/access/toolkit/opnav_plugins.htm

Run the
plug-in in
iSeries

In iSeries Navigator, expand the system that you want to scan. iSeries Navigator detects the changes
to the registry and prompts you to scan the system to verify that it is capable of supporting the new
plug-in. After completing the scan, iSeries Navigator displays the new plug-in in the tree hierarchy.

Navigator

Related information

[[IBM Client Access Express Toolkit - iSeries Navigator Plug-ins Web page]

Sample Visual Basic plug-in directory of files

These tables describe all of the files included with the sample Visual Basic plug-in.

Visual Basic project file

Description

vbsample.vbp Visual Basic 5.0 project file
Visual Basic forms Description

authorty.frm Set authority form
delete.frm Confirm delete form
propsht.frm Property Sheet form

sysstat.frm

System status form

wizard.frm

Create new library wizard form

Visual Basic modules

Description

global.bas

Global declarations.

Visual Basic class modules

Description

actnman.cls

SampleActions Manager class

dropman.cls

Sample Drop Target Manager class

library.cls

Library class

listman.cls

Sample List Manager class

Visual Basic binary files

Description

authorty.frx Set authority form binary
delete.frx Confirm delete form binary
propsht.frx Property Sheet form binary

sysstat.frx

System status form binary

wizard.frx Create new library wizard form binary
vbsample.bin Vbsample binary
Configuration settings Description

mrisetup.ini

Installation information for plug-in’s translatable resources

setup.ini

Installation information for plug-in’s executable files

Registry entries

Description

vbsmpdbg.reg

Registry file for use during development.

16 System i: Connecting to System i Developing iSeries Navigator plug-ins

http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

Registry entries

Description

vbsmprls.reg

Registry file used during installation.

Files for constructing the Description
resource DLL

vbsmpmri.mak Make File
vbsmpmri.rc RC file

vbsmpres.h

Header file

Images

Description

compass.bmp

iSeries Navigator icon

lib.ico

vbsmpflr.ico

Visual Basic Sample plug-in folder in open and closed state.

vbsmplib.ico

Visual Basic Sample plug-in library icon.

Related concepts

[“MRI setup file” on page 12|

The MRI setup file gives the iSeries Access for Windows Selective Setup program the information it
needs to install the locale-dependent resources that are associated with an iSeries Navigator plug-in

on a client PC.

[“Setup.ini file” on page 7|

Your plug-in’s setup.ini file provides the installation wizard with the information needed to install an
iSeries Navigator plug-in on a client workstation. It also provides information that allows the Check
Service Level program to determine when the plug-in needs to be upgraded or serviced.

Setting up the sample Java plug-ins

The sample Java plug-ins work with message queues in the QUSRSYS library on a given system.

The first plug-in allows you to view, add, and delete messages in your default message queue, the one
with the same name as your System i user ID. The second plug-in adds support for multiple message
queues. The third plug-in adds the ability to drag messages between queues.

In addition to installing the plug-in code, the sample plug-in includes Java docs, a Readme.txt file, and
two registry files, one for use during development and another for distribution with the retail version.
See the Sample Java plug-in directory of files for a detailed description of all files included with the Java

plug-ins.

To set up these sample Java plug-ins, follow these steps:

Download the sample Java
plug-ins

Download the executable file jvopnav.exe. When you run this file, it extracts all of the
previously mentioned files. You should allow the executable file to install the files in
the default directory: jvopnav\com\ibm\as400\opnav.

Identify the plug-in to
iSeries Navigator

1. Edit the file MsgQueueSampleX.reg in jvopnav\com\ibm\as400\opnav\
MsgQueueSampleX. (X=1, 2 or 3, depending on which sample you are installing.)

2. Find the lines: "NLS"="C:\\jvopnav\\win32\\mri\ \MessageQueuesMRI.dIl" and
"JavaPath”"="C:\\jvopnav"

3. Replace "C:\\" with the fully qualified path to the jvopnav directory on your PC.
You must double all back slashes in the path.

4. Save your changes, and double click the registry file.

Developing iSeries Navigator plug-ins 17

Run the sample Java 1
plug-in.

. In iSeries Navigator, expand the system that you want to scan.

2. iSeries Navigator detects the changes to the registry, and prompts you to scan the
system to verify that it is capable of supporting the new plug-in.
Click Scan Now.

3. iSeries Navigator scans the system. When the scan finishes, iSeries Navigator
displays a new folder in the hierarchy tree, Java Message Queue Sample 1, 2 or 3.
Double click the new folder.

4. The first sample plug-in displays the contents of your default message queue in

the QUSRSYS library on the system. The second and third samples display a list
of message queues.

To add a new message, right-click the message queue folder and select New -
Message. Enter the message text in the dialog that the plug-in displays.

To delete a message, right-click a message and select Delete.

5. 1If you are using the third sample plug-in, you can select a message and drag it to
another queue. The plug-in then moves the message to the other queue.

Related information

[[[BM Client Access Express Toolkit - iSeries Navigator Plug-ins Web page]

Sample Java plug-in directory of files
These tables describe all of the files included with the sample Java plug-ins.

For more information, read the plug-in’s javadoc documentation. These were installed in your
jvopnav\com\ibm\as400\opnav\MsgQueueSamplel\docs directory. Start with the file
Package-com.ibm.as400.opnav.MsgQueueSamplel.html. The sample’s package name is
com.ibm.as400.opnav.MsgQueueSamplel. All class names have the prefix Mq to differentiate them from
like-named classes in other packages.

Java source code files; first sample
plug-in

Description

MgActionsManager.java

The ActionsManager implementation that handles all context menus for the
plug-in.

MqDeleteMessageBean.java

The Ul DataBean implementation for the Confirm Delete dialog.

MgMessage.java

An object representing a system message.

MgMessageQueue.java

A collection of system message objects on a message queue.

MgMessagesListManager.java

The ListManager for lists of messages.

MgNewMessageBean.java

The Ul DataBean implementation for the New Message dialog.

Java source code files; second sample
plug-in

Description

MgActionsManager.java

The ActionsManager implementation that handles all context menus for the
plug-in.

MgDeleteMessageBean.java

The UI DataBean implementation for the Confirm Delete dialog.

MqListManager.java The master ListManager implementation for the plug-in.
MgMessage.java An object representing a system message.
MgMessageQueue.java A collection of system message objects on a particular queue.

MgMessageQueueList.java

A collection of system message queues.

MgMessageQueuesListManager.java

A slave ListManager for lists of message queues.

18

System i: Connecting to System i Developing iSeries Navigator plug-ins

http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

Java source code files; second sample
plug-in

Description

MgMessagesListManager.java

A slave ListManager for lists of messages.

MgNewMessageBean.java

The UI DataBean implementation for the New Message dialog.

Java source code files; third sample
plug-in

Description

MgActionsManager.java

The ActionsManager implementation that handles all context menus for the
plug-in.

MqDeleteMessageBean.java

The UI DataBean implementation for the Confirm Delete dialog.

MgDropTargetManager.java

The DropTargetManager implementation that handles drag/drop for the
plug-in.

MgqListManager.java The master ListManager implementation for the plug-in.
MgMessage.java An object representing a system message.
MgMessageQueue.java A collection of system message objects on a particular queue.

MgMessageQueueList.java

A collection of system message queues.

MqgMessageQueuesListManager.java

A slave ListManager for lists of message queues.

MgMessagesListManager.java

A slave ListManager for lists of messages.

MgNewMessageBean.java The UI DataBean implementation for the New Message dialog.
PDML files Description

MessageQueueGUILpdml Contains all Java Ul panel definitions for the plug-in.
MessageQueueGUI java The associated Java resource bundle (subclasses

java.util.ListResourceBundle).

Online help files

Description

IDD_MSGQ_ADD.html

Online help skeleton for the New Message dialog.

IDD_MSGQ_CONFIRM_DELETE html

Online help skeleton for the Confirm Delete dialog.

Serialized files

Description

IDD_MSGQ_ADD.pdml.ser

Serialized panel definition for the New Message dialog.

IDD_MSGQ_CONFIRM_DELETE.pdml.ser

Serialized panel definition for the Confirm Delete dialog.
Note: If you make changes to MessageQueueGUILpdml, rename these
files. Otherwise your changes will not be reflected in the panels.

Registry entries

Description

MsgQueueSamplel.reg
MsgQueueSample2.reg
MsgQueueSample3.reg

Windows registry entries that tell iSeries Navigator that this plug-in exists,
and identifies its Java interface implementation classes.

19

Developing iSeries Navigator plug-ins

Registry entries Description

MsgQueueSamplelinstall.reg The registry file for distribution with the retail version of your plug-in. This
MsgQueueSample2install.reg version of the registry file cannot be read directly by the Windows operating
MsgQueueSample3install.reg system. It contains substitution variables that represent the directory path of

the iSeries Access for Windows installation directory. When the user starts
the iSeries Access for Windows Selective Setup program to install your
plug-in from the System i platform, Selective Setup reads this registry file,
fills in the correct directory paths, and writes the entries to the registry on
the user’s workstation. The entries in this file should therefore be kept in
synchronization with the registry file used in development.

Plug-in programming reference

iSeries Navigator handles plug-ins in each programming language in a different way.

You can use the following topics to learn about the flow of control in iSeries Navigator for each type of
plug-in, as well as specific reference information regarding the unique interfaces for each language.

In addition to reference information specific to each language, each plug-in requires some customization
to Windows registry files.

C++ reference

C++ plug-ins have a unique flow of control in iSeries Navigator. You can use a variety of iSeries
Navigator APIs to develop C++ plug-ins. Each plug-in can implement one or more Component Object
Model (COM) interfaces.

iSeries Navigator structure and flow of control for C++ plug-ins
The internal architecture of the iSeries Navigator product is intended to serve as an integration point for
an extensible, broad-based operations interface for the System i platform.

Each functional component of the interface is packaged as an ActiveX server DLL. iSeries Navigator uses
Microsoft’s Component Object Model (COM) technology to activate only the component implementations
that currently are needed to service a user request. This avoids the problem of having to load the entire
product at startup, which can consume the majority of Windows resources and impact the performance of
the entire system. Multiple systems can register their request to add menu items and dialogs to a given
object type in the iSeries Navigator hierarchy.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to
user actions. For example, when a user right-clicks on an object in the iSeries Navigator hierarchy, iSeries
Navigator constructs a context menu for the object, and displays the menu on the screen. iSeries
Navigator obtains the menu items by calling each plug-in that has registered its intention to supply
context menu items for the selected object type.

The functions that are implemented by a plug-in logically are grouped into interfaces. An interface is a
set of logically related methods on a class that iSeries Navigator can call to perform a specific function.
The Component Object Model supports the definition of interfaces in C++ through the declaration of an
abstract class that defines a set of pure virtual functions. Classes that call the interface are known as
implementation classes. Implementation classes subclass the abstract class definition and provide C++
code for each of the functions defined on the interface.

A given implementation class can implement as many interfaces as the developer chooses. When creating
a new project workspace for an ActiveX server DLL in the Developer Studio, the AppWizard generates
macros that facilitate interface implementation. Each interface is declared as a nested class on a
containing implementation class. The nested class has no member data and does not use any functions

20 System i: Connecting to System i Developing iSeries Navigator plug-ins

other than those that are defined on its interface. Its methods typically call functions on the
implementation class to get and set state data, and to perform the actual work that is defined by the

interface specification.

iSeries Navigator COM interfaces for C++
The functions implemented by a plug-in logically are grouped into Component Object Model (COM)

interfaces.

An interface is a set of logically related methods on a class that iSeries Navigator can call to perform a
specific function. A plug-in can implement one or more COM interfaces, depending on the type of
function that the developer intends to provide. For example, when a user right-clicks an object in the tree
hierarchy, iSeries Navigator constructs a context menu for the object and displays it. iSeries Navigator
obtains the menu items by calling each plug-in that has registered that it supplies context menu items for
the selected object type. The plug-ins pass their menu items to iSeries Navigator when it calls their
implementation of the QueryContextMenu method on the IContextMenu interface.

Interface

Method

Description

IContextMenu

QueryContextMenu

Supplies context menu items when a
user right-clicks an object.

GetCommandString

Supplies help text for context menu
items and, based on the state of the
object, also indicates whether the
item should be enabled or not.

InvokeCommand

Displays the appropriate dialog and
performs the requested action. It’s
called when the user clicks a given
menu item.

IPropSheetExt

AddPages

Creates the property page or pages
being added by using standard
Windows APIs. It then adds the
pages by calling a function that was
passed to it as a parameter.

IDropTarget

DragEnter

Active when the user drags an object
over the drop area.

DraglLeave

Active when the user drags an object
out of the drop area.

DragOver

Active while the user is over the
drop area.

Drop

Active when the user drops the
object.

IPersistFile

Load

Called to initialize the extension with
the fully qualified object name of the
selected folder.

[A4SortingHierarchyFolder

IsSortingEnabled

Indicates whether sorting is enabled
for a folder.

SortOnColumn

Sorts the list on the specified list
view column.

IA4FilteringHierarchyFolder

GetFilterDescription

Returns a text description of the
current include criteria.

IA4PublicObjectHierarchyFolder

GetPublicListObject

Implemented by a plug-in when it
desires to make its list objects
available for use by other by other
plug-ins

Developing iSeries Navigator plug-ins 21

Interface Method Description

IA4ListObject GetAttributes Returns a list of supported attribute
IDs and the type of data associated
with each.

GetValue Given an attribute ID, returns the

current value of the attribute.

IA4TasksManager QueryTasks Returns a list of tasks supported by
this object

TaskSelected Informs the IA4TasksManager
implementation that a particular task
has been selected by the user.

1A4 interfaces

In addition to Microsoft’s COM interfaces, IBM supplies the IA4HierarchyFolder and IA4PropSheetNotify
interfaces.

The 1A4PropSheetNotify interface notifies third-party property pages when the main dialog closes. It also
defines methods that communicate information to the plug-in. For example, the method can communicate
whether the user whose properties are being displayed already exists or is being defined, and whether
changes should be saved or discarded.

The IA4HierarchyFolder interface allows a plug-in to add new folders to the iSeries Navigator hierarchy.
The purpose of this interface is to supply the data that is used to populate the contents of a new folder
that your plug-in added to the iSeries Navigator hierarchy. It also defines methods for specifying list
view columns and their headings, and for defining a custom toolbar that is associated with a folder.

Description of IA4HierarchyFolder Interface:

The IA4HierarchyFolder interface describes a set of functions that the independent software vendor will
implement. IA4HierarchyFolder is a component object model (COM) interface that IBM defined for the
purpose of allowing third parties to add new folders and objects to the iSeries Navigator hierarchy.

For a description of the Microsoft COM, see the Microsoft Web site.

The iSeries Navigator program calls the methods on the IA4HierarchyFolder interface whenever it needs
to communicate with the third-party plug-in. The primary purpose of the interface is to supply iSeries
Navigator with list data that will be used when iSeries Navigator displays the contents of a folder
defined by the plug-in. The methods on the interface allow iSeries Navigator to bind to a particular
third-party folder and list its contents. There are methods for returning the number of columns in the
details view and their associated headings. There are additional methods that supply the specifications
for a custom toolbar to be associated with the folder.

The interface implementation is typically compiled and linked into an ActiveX server Dynamic Link
Library (DLL). iSeries Navigator learns about the existence of the new DLL by means of entries in the
Windows registry. These entries specify the location of the DLL on the user’s personal computer and the
junction point in the object hierarchy where the new folder or folders are to be inserted. iSeries Navigator
then loads the DLL at the appropriate time and calls methods on the IA4HierarchyFolder interface as
needed.

The header file CWBA4HYFE.H contains declarations of the interface prototype and associated data
structures and return codes.

Related information

22 System i: Connecting to System i Developing iSeries Navigator plug-ins

[[Microsoft Web site

IA4HierarchyFolder interface specifications listing:

An item identifier data entity identifies all folders and objects in the Windows namespace. Item
identifiers are like filenames in a hierarchical file system. The Windows namespace is, in fact, a
hierarchical namespace with its root at the Desktop.

An item identifier consists of a 2 byte count field, followed by a binary data structure of variable length
(see the SHITEMID structure in the Microsoft header file SHLOB].H). This item identifier uniquely
describes an object relative to the parent folder of the object.

iSeries Navigator uses item identifiers that adhere to the following structure that must be returned by
IA4HierarchyFolder::ItemAt.

<cb><item name>\x0l<item type>\x02<item index>

where

<cb> is the size in bytes of the item identifier, including the count field itself.

<item name> is the translated name of the object, suitable for displaying to the user.

<item type> is a unique language-independent string that identifies the object type. It must be at least
four characters in length.

<item index> is the zero-based index that identifies the position of the object within the list of parent
folder objects.

IA4HierarchyFolder::Activate:

This specification places the IA4HierarchyFolder instance in an activated state. This function also
performs any processing that is needed to prepare a folder for enumeration, including calling the system
to prime the cache of folder objects on the client.

The function is called from a data thread so that long running operations will not degrade the
performance of the user interface. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE Activate();

Parameters
None.

Return Codes
Returns NOERROR if successful, or E_FAIL if unable to obtain the contents of the folder.

Comments

iSeries Navigator calls this function the first time a user selects or expands a folder. It is called
again, after a call to close, when the user has requested a refresh operation of the folder contents.

The function can be called whenever a pointer to the folder interface needs to be reestablished;
for example, when a user selects a folder a second time. After another folder is selected, the
function should simply return TRUE if the associated processing has already been performed.

For extremely large lists, you might choose to return from the Activate method before the list is
completely constructed, after having first created a worker thread to continue building the list. If
this is the case, make sure that your implementation of GetListSize returns the correct indication
of whether the list is completely constructed.

Developing iSeries Navigator plug-ins 23

http://www.microsoft.com

IA4HierarchyFolder::BindToList:

This specification returns an instance of IA4HierarchyFolder that corresponds to a particular folder in the
iSeries Navigator hierarchy. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE BindToList(
HWND hwnd,
LPCITEMIDLIST pidl,
REFIID riid,
LPVOID* ppvOut

B

Parameters

hwnd The handle of the view window that displays the list, which can be either a tree or list
control. A component should use this handle to determine whether a list of objects for
this view is already stored in the cache on the client.

pidl Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies the folder
to be enumerated.

riid Identifier of the interface to return. This parameter points to the IID_IA4HierarchyFolder
interface identifier.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer should be
returned at this address.

Return Codes
Returns NOERROR if successful, or E_FAIL if a general error occurred.

Comments

If an instance of IA4HierarchyFolder already exists for the specified folder, then this member
function should return the instance in the cache instead of instantiating and initializing a separate
instance. However, if the window handle associated with the object in the cache is not the same
as the value specified on the hwnd parameter, then a new instance should be created.

The function should initialize implementation class member variables from the parameters
supplied.
IA4HierarchyFolder::DisplayErrorMessage:
This specification is called to display an error message to the end user whenever the Activate method
returns an error. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE DisplayErrorMessage();

Parameters
None.

Return Codes
Returns NOERROR if successful, or an E_FAIL if there is no message to display.

Comments
None.

IA4HierarchyFolder::GetAttributesOf:

This specification returns the attributes of a particular folder in the iSeries Navigator hierarchy. The
attribute indicators are the same as those defined for the Microsoft interface method
IShellFolder::GetAttributesOf. This is a required member function.

24 System i: Connecting to System i Developing iSeries Navigator plug-ins

Syntax
HRESULT STDMETHODCALLTYPE GetAttributesOf (
LPCITEMIDLIST pidl,
ULONG#* ulfInOut

)
Parameters

pidl Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies the object
whose attributes are to be retrieved.

ulfInOut
The returned object attributes. On input, this parameter will be set to indicate which
object attributes to retrieve.

Return Codes
Returns NOERROR if successful, or E_FAIL if unable to locate the object attributes.

Comments
Refer to the Windows include file shlobj.h for constants that define the bit flags.
iSeries Navigator repeatedly calls this function when populating a tree or list view. Long running
operations should therefore be avoided.

IA4HierarchyFolder::GetColumnDataltem:

This specification returns a data field for a folder or object to be displayed in a column in the list view of
iSeries Navigator. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE GetColumnDatalItem(
LPCITEMIDLIST pidl,
LPARAM 1Param,
char * TpszColumnData,
UINT cchMax
)s

Parameters

pidl Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies the object
whose column data is to be obtained.

IParam
The value that was previously associated with the column for which data is requested by
the component (see GetColumnInfo).

IpszColumnData
Address of the buffer that will receive the null-terminated data string.

cchMax
Size of the buffer that will receive the null-terminated data string.

Return Codes
Returns NOERROR if successful, or an E_FAIL if unable to retrieve the column data.

Comments

iSeries Navigator repeatedly calls this function when populating a list view. Long running
operations should therefore be avoided.

IA4HierarchyFolder::GetColumnlInfo:

This specification returns a data structure that describes the columns needed to display the contents of a
particular folder in a details view. This is an optional member function.

Developing iSeries Navigator plug-ins 25

Syntax
HRESULT STDMETHODCALLTYPE GetColumnInfo(
LPVOID* ppvInfo

Parameters
ppvinfo

The returned data structure. The returned structure should consist of an instance of the
A4hyfColumnInfo structure. This structure contains an array of A4hyfColumnltem
structures, one for each column in the list view.

Each column item structure supplies the translated string for the column heading, the
default width of the column, and an integer value that uniquely identifies the data field
that supplies data for the column. Refer to CWBA4HYFEH.

Return Codes
Returns NOERROR if successful, or E_ZNOTIMPL if unable to implement the function.

Comments

iSeries Navigator calls this function after the call to Open has returned, to create the column
headings for a details view.

If this function is not implemented, iSeries Navigator inserts two columns: Name and
Description. The GetColumnDataltem function must be capable of returning data for these two
fields, which are identified with integer values of 0 and 1.

Use the Windows IMalloc interface to allocate memory for the returned structures. iSeries
Navigator is responsible for deleting this memory.

IA4HierarchyFolder::GetlconlndexOf:

This specification returns the index into the component resource DLL that can be used to load the icon
for the hierarchy folder. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE GetIconIndexOf(
LPCITEMIDLIST pidTl,
UINT uFlags,
int* pilndex

)s
Parameters

pidl Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies the object
whose icon index is to be retrieved.

uFlags This parameter might be zero, or it might contain the value GIL_OPENICON, indicating
that the icon that should be supplied is an open folder. GIL_OPENICON is defined in the
Windows include file SHLOBJ.H.

pilndex
Pointer to an integer that receives the icon index.

Return Codes
Returns NOERROR if successful, or E_FAIL if unable to determine the index.

Comments

iSeries Navigator repeatedly calls this function when populating a tree or list view. Long running
operations should therefore be avoided.

IA4HierarchyFolder::GetltemCount:

26 System i: Connecting to System i Developing iSeries Navigator plug-ins

This specification returns the total count of objects contained in a particular folder in the iSeries
Navigator hierarchy. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE GetItemCount (
ULONG* pCount
)s

Parameters

pCount
Pointer to a long integer that will receive the count of items in the list.

Return Codes

* Returns A4HYF_OK_LISTCOMPLETE if the list is completely built and the total count of items
is known.

* Returns A4HYF_OK_LISTNOTCOMPLETE if the list is still being constructed. In this situation,
the item count represents the count of items in the partially constructed list.

¢ Returns A4HYF_E_LISTDATAERROR if an error is encountered while the list is being
constructed. In this situation, the item count represents only the items that are already stored in
the cache on the client.

Comments

Following a successful return from the Activate method, iSeries Navigator calls this function to
obtain the count of objects for the folder that is about to be populated. Following the call to this
function, iSeries Navigator repeatedly calls ItemAt to obtain the item identifiers for the objects in
the folder.

For extremely large lists, you can choose to return from the Activate function before the entire list
has been stored in the cache on the client. If this is the case, you need to return
A4HYF_OK_LISTNOTCOMPLETE from the GetltemCount function. From that point on, iSeries
Navigator calls the GetltemCount function every 10 seconds until A4HYF OK_LISTCOMPLETE
or AAHYF E_LISTDATAERROR is returned.

IA4HierarchyFolder::GetToolBarInfo:

This specification returns a structure that describes the custom toolbar that is associated with the
specified folder in the iSeries Navigator hierarchy. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE GetToolBarInfo(
LPCITEMIDLIST pidl,
LPVOID* ppvInfo

E]
Parameters

pidl Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies the object
for which toolbar information is to be retrieved.

ppvinfo
The returned data structure. An instance of A4hyfToolBarInfo should be returned in this
pointer. This structure supplies the count of toolbar buttons for the object, the address of
an array of TBBUTTON structures containing the attributes for each button, and the
instance handle of the plug-in. Refer to CWBA4HYFH.

Return Codes
Returns NOERROR if successful, or E_NOTIMPL if you choose not to implement the function.

Comments

Developing iSeries Navigator plug-ins 27

This function is called each time a user selects a folder or object that belongs to an iSeries
Navigator plug-in.

Use the Windows IMalloc interface to allocate memory for the returned structure. iSeries
Navigator is responsible for deleting this memory.

If this member function is not implemented, the default iSeries Navigator toolbar is used. This
toolbar contains Copy, Paste, Delete, and Properties buttons for the four list views, and Refresh.
iSeries Navigator calls the implementation of IContextMenu::GetCommandString (with the
GCS_VALIDATE flag set) that is in your product to discover which of the toolbar buttons should
be enabled for your objects.

IA4HierarchyFolder::GetListObject:

Given a fully qualified object name, this function returns a pointer to a proxy object (created by the
plug-in) in the cache. This is an optional member function.

Syntax
HRESULT STDMETHODCALLTYPE GetListObject(
const char * TpszObjectName,
LPVOID* ppvObj

Parameters

IpszObjectName
The fully qualified object name for which a list object will be returned.

ppvODb;j
The returned pointer to an implementation-defined object. The calling routine should cast
this pointer to an appropriate object type.

Return Codes
Returns NOERROR if successful, or E_ZNOTIMPL if you choose not to implement the function.

Comments

Calls to this function occur whenever your plug-in code calls the
cwbUN_GetListObjectFromName or cwbUN_GetListObjectFromPidl API to obtain a proxy object
that was instantiated by the Activate method. The plug-in uses this proxy object to access data on
the system, or to perform actions on the system. Because the IA4HierarchyFolder implementation
maintains the cache of proxy objects, the calling program should not delete the object.

IA4HierarchyFolder::ItemAt:

This specification returns as SHITEMID (item identifier) structure for the folder object at the specified
position in the list of folder contents. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE ItemAt (
ULONG ulIndex,
LPITEMIDLIST* ppidl

)s
Parameters

ullndex
The zero-based index of the item for which an item identifier is requested.

ppidl Address of the pointer that will receive the requested item identifier.

Return Codes
Returns NOERROR if successful, or E_FAIL if the item is not available. Returns
E_OUTOFMEMORY if insufficient memory was available for the item identifier.

28 System i: Connecting to System i Developing iSeries Navigator plug-ins

Comments

iSeries Navigator repeatedly calls this function to populate a folder in realtime. Long running
operations should therefore be avoided. Refer to CWBA4HYFE.H for the format of iSeries
Navigator item identifiers. Use the Windows IMalloc interface to allocate memory for the item
identifier.

IA4HierarchyFolder::ProcessTerminating:

This function is called when the user closes the iSeries Navigator window. It allows the plug-in to save
persistent data. This is an optional member function.

Syntax
HRESULT STDMETHODCALLTYPE ProcessTerminating();

Return Codes
Returns NOERROR if successful or E_NOTIMPL if you choose not to implement the function.
Error returns are ignored.

Comments

None
[A4HierarchyFolder::Refresh:

This specification destroys any folder objects that are stored in the cache and rebuilds the cache using
new data obtained from the system. This is a required member function.

Syntax
HRESULT STDMETHODCALLTYPE Refresh();

Return Codes
Returns NOERROR if successful or A4HYF_E_LISTDATAERROR if an error occurred when
accessing the objects in the folder.

Comments

iSeries Navigator calls this function is called whenever a performing a global refresh of the main
iSeries Navigator window.

Description of IA4PropSheetNotify interface:

Like the IA4HierarchyFolder interface, the IA4PropSheetNotify interface describes a set of functions that
the independent software vendor will implement. IA4PropSheetNotify is a Component Object Model
(COM) interface that IBM defined to allow third parties to add new property pages to any property sheet
that iSeries Navigator defines for a user.

The iSeries Navigator program calls the methods on the IA4PropSheetNotify interface whenever it needs
to communicate with the third-party plug-in. The purpose of the interface is to provide notification when
the main Properties dialog for a user is closing. The notification indicates whether any changes that are
made by the user should be saved or discarded. The intention is that the interface be added to the same
implementation class that is used for IPropSheetExt.

The interface implementation is compiled and linked into the ActiveX server DLL for the plug-in. iSeries
Navigator learns of the existence of the new DLL by means of entries in the Windows registry. These
entries specify the location of the DLL on the user’s personal computer. iSeries Navigator then loads the
DLL at the appropriate time, calling methods on the IA4PropSheetNotify interface as needed.

CWBA4HYEH contains declarations of the interface prototype and associated data structures and return
codes.

Developing iSeries Navigator plug-ins 29

IA4PropSheetNotify interface specifications listing:

The IA4PropSheetNotify interface supplies notifications to the implementation of IShellPropSheetExt.
These notifications are needed when you add additional property pages to one of the Users and Groups
property sheets.

These notifications are necessary because creating and destroying Users and Groups property sheets
might occur many times before the user clicks OK on the main Properties dialog. The
IA4PropSheetNotify interface informs the IShellPropSheetExt implementation when changes that are
made by the user should be saved.

iSeries Navigator learns about an IA4PropSheetNotify implementation by means of the normal registry
entries that are defined for iSeries Navigator plug-ins. In addition, when a property sheet handler for the
Users and Groups component is registered, a special registry value, which lets the plug-in specify to
which property sheet it will add pages, is supported.

Related concepts

[“Property pages for a property sheet handler” on page 83|

The Microsoft Foundation Class (MFC) Library classes do not support the creation of property pages
for a property sheet handler. However, you can use IBM-provided CExtPropertyPage in place of the
MEC class CPropertyPage.

IA4PropSheetNotify::ApplyChanges:

This function is called to inform the implementation that data that belongs to the user should now be
saved.

Syntax
HRESULT STDMETHODCALLTYPE ApplyChanges (
const char * pszNewUserName

)s
Parameters

pszNewUserName
This parameter supplies the name of the new user if the user is created for the first time;
for example, if InformUserState specifies a value other than IUS_USEREXISTS.

Return Codes
Returns NOERROR if successful, or E_FAIL if a general error occurred.

Comments
None

IA4PropSheetNotify::GetErrorMessage:

This function is called when errors are returned on ApplyChanges to retrieve the implementation’s error
message text.

Syntax
HRESULT STDMETHODCALLTYPE GetErrorMessage (
char * pszErrMsg,
UINT cchMax

)s
Parameters

pszErrMsg
Address of the buffer that will receive the null-terminated error message.

cchMax
Size of the buffer that will receive the null-terminated error message.

30 System i: Connecting to System i Developing iSeries Navigator plug-ins

Return Codes

Returns NOERROR if successful, or E_FAIL if unable to retrieve the message text or if message

text was too large to fit in the buffer.

Comments
None

IA4PropSheetNotify:: InformUserState:

This function is called immediately following the creation of the IShellPropSheetExt instance. It informs
the implementation whether this user already exists on the system or is being created for the first time.

Syntax
HRESULT STDMETHODCALLTYPE InformUserState(
UINT wUserState

)s
Parameters

wUserState

The current state of the user. The system supplies these mutually exclusive values:

* IUS_NEWUSER

Creating a user based on attributes that are supplied by the iSeries Navigator user.

* JUS_NEWUSERBASEDON

Creating a user based on the attributes of an existing user.

* TUS_USEREXISTS

The user already exists on the system.

Return Codes

Returns NOERROR if successful, or E_FAIL if a general error occurred.

Comments
None

iSeries Navigator APIs

iSeries Navigator APIs help plug-in developers obtain and manage certain types of global information.

iSeries Navigator API listing:

The table lists iSeries Navigator APIs grouped by function.

Function

iSeries Navigator APIs

System values: This API allows the plug-in developer to
obtain the current value of a system value.

[“cwbUN_GetSystemValue” on page 33|

System handles: These APIs allow the plug-in developer
to obtain and release the current value of a system object
handle that contains connection properties including the
Secure Sockets Layer (SSL) settings to be used for the
specified system.

[“cwbUN_GetSystemHandle” on page 34|

[“cwbUN_ReleaseSystemHandle” on page 35|

User input validation: These APIs allow the plug-in
developer to check whether the current user has
authority to a particular System i object. The APIs also
allow the developer to determine whether the user has
one or more special authorities.

|“cwbUN_CheckObjectAuthority” on page 35|

|“cwbUN_CheckSpecial Authority” on page 36

User authority checking: This API allows the plug-in
developer to check whether certain types of
user-supplied strings are valid before transmitting them
to the system.

[“cwbUN_CheckAS400Name” on page 36|

Developing iSeries Navigator plug-ins

31

Function

iSeries Navigator APIs

User profile attributes: This API allows the plug-in
developer to obtain the value of any of the user profile
attributes for the current iSeries Navigator user.

[“cwbUN_GetUserAttribute” on page 37|

Data management: Objects that the user has selected are
identified to the third-party plug-in by two data entities,
the item identifier list, and the object name. Data
management APIs provide the plug-in developer with a
means of extracting information from these structures.

|“ewbUN_ConvertPidlToString” on page 38|

[“cwbUN_GetDisplayNameFromItemId” on page 38|

[“cwbUN_GetDisplayNameFromName” on page 39

[“ewbUN_GetDisplayPathFromName” on page 40|

[“cwbUN_GetIndexFromItemId” on page 40|

[“cwbUN_GetIndexFromName” on page 41|

|“ewbUN_GetIndexFromPidl” on page 41|

[“ewbUN_GetListObject” on page 41|

|“ewbUN_GetParentFolderNameFromName” on page 42|

|“cwbUN_GetParentFolderPathFromName” on page 42|

[“cwbUN_GetParentFolderPidl” on page 43|

[“cwbUN_GetSystemNameFromName” on page 43|

|“cwbUN_GetSystemNameFromPidl” on page 44|

[“cwbUN_GetSystemNameFromPidl” on page 44|

[“cwbUN_GetTypeFromName” on page 45|

I“cwbUN_GetTypeFromPidl” on page 45|

Refresh the iSeries Navigator window: Following the
completion of an operation on behalf of the user, these
APIs enable execution of a request by the plug-in to
refresh the tree and list views or to place a message in
the iSeries Navigator status bar.

[“cwbUN_RefreshAll” on page 46|

[“cwbUN RefreshList” on page 46|

[“cwbUN_RefreshListltems” on page 46|

[“cwbUN_UpdateStatusBar” on page 47]

ODBC connections: These APIs allow the plug-in
developer to reuse and end the handle for an ODBC
connection that already has been obtained by the
Database component of iSeries Navigator.

[“cwbUN_GetODBCConnection” on page 47

[“cwbUN_EndODBCConnections” on page 4§

Access iSeries Navigator icons: These APIs allow the
plug-in developer to access the icon image lists for
objects that appear in the iSeries Navigator object
hierarchy.

[“cwbUN_GetlconIndex” on page 48|

[“cwbUN_GetSharedImageList” on page 49|

Application Administration: These APIs allow the
plug-in developer to programmatically determine
whether a user is denied or allowed use of an
Administrable function. An Administrable function is any
function whose use can be controlled through the
Application Administration subcomponent of iSeries
Navigator.

|“cwbUN_GetAdminCacheState” on page 51|

|“cwbUN_GetAdminCacheStateEx” on page 52|

[“ewbUN_GetAdminValue” on page 49|

[“cwbUN_GetAdminValueEx” on page 50

Install: This API allows the plug-in developer to
determine if an iSeries Navigator subcomponent is
installed.

|“ewbUN_IsSubcomponentInstalled” on page 53|

32

System i: Connecting to System i Developing iSeries Navigator plug-ins

Function iSeries Navigator APIs

Directory Services: These APIs provide information |“cwbUN_FreeLdapPublishing” on page 57

about the Lightweight Directory Access Protocol (LDAP)

server on a System i platform. These APIs also provide |[“cwbUN_OpenLdapPublishing” on page 56|

functions to connect to the server. The connection

[“cwbUN_GetLdapPublishCount” on page 57|

functions enable you to connect to a server using

information that iSeries Access for Windows stores in the

|“cwbUN_GetLdapPublishParentDn” on page 60|

cache, such as distinguished names and a password. The

connection functions use the LDAP client that is included [FcwbUN_GetLdapPublishPort” on page 59|

with iSeries Access for Windows (LDAP.LIB and

LDAPDLL) and therefore require that your application |[“cwbUN_GetLdapPublishServer” on page 59

use that client.

[“cwbUN_GetLdapPublishType” on page 58

Functions that use strings are available in American

National Standards Institute (ANSI) and Unicode [‘cwbUN_GetLdapSvrPort” on page 54|

versions.

[“ewbUN_GetLdapSvrSuffixCount” on page 55

Functions that return distinguished names and other

strings for use with LDAP client APIs are provided in a

[“cwbUN_GetLdapSvrSuffixName” on page 55|

UTE-8 version for use with LDAP version 3 servers.

[“cwbUN_FreeLocall.dapServer” on page 54|

[“cwbUN_OpenlLocallLdapServer” on page 53|

cwbUN_GetSystemValue:

This API returns a string that contains a system value.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetSystemValue(

USHORT usSystemValueld,
const char * szSystemName,
char * szSystemValue,

UINT cchMax

)

Parameters

const char * szSystemValueld - input

A numeric value that identifies the system value to be retrieved. Definitions for the
system value constants are in the header file CWBA4SVL.H.

char * szSystemValue - output

Address of the buffer that will receive the null-terminated system value string.

UINT cchMax - input

Size of the buffer that will receive the null-terminated value string.

Return Codes

The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_INTERNAL_ERROR
Could not retrieve the system value.

CWB_BUFFER_OVERFLOW

The buffer is too small to contain the returned string.

Usage The value that is returned by this API is not a National Language Support (NLS) string and is not
translated. For example, “NONE’ will be returned instead of "None.’

Developing iSeries Navigator plug-ins

33

cwbUN_GetSystemHandle:

This API returns a system handle that contains the security, user ID, and password settings that are used
for the system. The system handle has the settings that are configured in iSeries Navigator for the input
system name.

If the application name is set to NULL, the returned system handle will be unique. If the application
name is set, the same system handle that matches the application name will be returned.

If an application needs a unique i5/0S job for a system, then NULL or a unique name should be passed
for the application name.

If an application needs to share an i5/0S job, then all callers of this function should pass the same
application name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetSystemHandle(
char * szSystemName,
char * szAppName,
cwbCO_SysHandle * systemHandle
)s

Parameters

char * szSystemName - input
Pointer to an ASCIIZ string that contains the name of the system for which you want a
system handle to be created.

char * szAppName - input
Pointer to an ASCIIZ string of no more than 12 characters. This uniquely identifies the
application that will share a single system handle.

cwbCO_SysHandle * systemHandle - output
Pointer to the handle of the system for this system name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_NULL_PARM
System name was NULL.

CWBUN_INVALID_NAME_PARM
The system name is not valid.

CWB_NON_REPRESENTABLE_UNICODE_CHAR
One or more input UNICODE characters have no representation in the code page that is
being used.

CWB_API_ERROR
The system handle could not be returned.

Usage

This function must be used by all third-party applications that want to support SSL using the
iSeries Access for Windows APIs. For example, all iSeries Access for Windows communications
APIs require a system handle to support SSL.

When the caller of this function no longer needs the system handle for communications, the
handle can be released by calling function cwbUN_ReleaseSystemHandle.

All handles are released when the iSeries Navigator application (cwbunnav.exe) ends.

34 System i: Connecting to System i Developing iSeries Navigator plug-ins

cwbUN_ReleaseSystemHandle:

This API releases a system handle that contains the security settings to be used for the system. The
system handle is obtained using the cwbUN_GetSystemHandle function. If the caller of this function has
the last reference to the handle, the handle resources will be destroyed.

Syntax
CWBAPI unsigned int WINAPI cwbUN_ReleaseSystemHandle(
cwbCO_SysHandle * systemHandle
)

Parameters

cwbCO_SysHandle * systemHandle - input
Pointer to the handle of the system that was obtained on a cwbUN_GetSystemHandle
call.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_API_ERROR
The system handle could not be released.

Usage When the caller of this function no longer needs the system handle for communications, the
handle can be released.

cwbUN_CheckObjectAuthority:

This API returns an indication of whether the iSeries Navigator user has the authority to a particular
object on the system.

Syntax
CWBAPI unsigned int WINAPI cwbUN_CheckObjectAuthority(
const char * szObjectPath,
const char * szObjectType,
const char * szAuthorityType,
const char * szSystemName

)
Parameters

const char * szObjectPath - input
The System i object path for which authority is to be checked.

const char * szObjectType - input
The System i object type of the object for which authority is to be checked; for example,
*DTAQ.

const char * szAuthorityType - input
The System i object authority to be checked.

If more than one authority is to be checked, the authorities should be concatenated (for
example, *OBJMGT*OBJEXIST). Up to eleven authority types can be specified on a single
call. The function returns CWB_OK only if the user has all of the specified authorities to
the object.

const char * szSystemName - input
The name of the system on which to perform the check.

Return Codes
The following list shows common return values:

Developing iSeries Navigator plug-ins 35

CWB_OK
The user has the specified authority to the object.

CWBUN_USER_NOT_AUTHORIZED
The user does not have the specified authority.

CWBUN_OBJECT_NOT_FOUND
The specified object could not be checked.

CWBUN_INTERNAL_ERROR
Object authority could not be checked.

Usage If *EXCLUDE is specified as an authority, no other authority types can be specified. “AUTLMGT
is valid only if szObjectType is *AUTL.

cwbUN_CheckSpecial Authority:

This API returns an indication of whether the iSeries Navigator user has a particular special authority on
the system.

Syntax
CWBAPI unsigned int WINAPI cwbUN_CheckSpecialAuthority(
const char * szSpecialAuthority,
const char * szSystemName

)s
Parameters

const char * szSpecial Authority - input
The System i special authority to be checked.

const char * szSystemName - input
The name of the system on which to perform the check.

Return Codes
The following list shows common return values:

CWB_OK
The user has the specified special authority.

CWBUN_USER_NOT_AUTHORIZED
The user does not have the specified authority.

CWBUN_INTERNAL_ERROR
Special authority could not be checked.

Usage None

cwbUN_CheckAS400Name:

This API returns an indication of whether a specified string is a valid name parameter on the system.

Syntax
CWBAPI unsigned int WINAPI cwbUN_CheckAS400Name (
const char * szAS400Name,
const char * szSystemName,
USHORT usTypeld

Parameters

const char * szAS400Name - input
The system name whose validity is to be checked.

const char * szSystemName - input
The name of the system on which to perform the check.

36 System i: Connecting to System i Developing iSeries Navigator plug-ins

USHORT usTypeld - input

A numeric value that indicates how the input string should be interpreted: as a long
object name, a short object name, a communications name, or a string (type constants are

defined above).

Return Codes

Usage

The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_NAME_TOO_LONG
Name is too long.

CWBUN_NAME_NULLSTRING
String is empty - no characters at all.

CWBUN_NAME_INVALIDCHAR
Character not valid.

CWBUN_NAME_STRINGTOOLONG
String is too long.

CWBUN_NAME_MISSINGENDQUOTE
End quote is missing.

CWBUN_NAME_INVALIDQUOTECHAR
Character not valid for quote string.

CWBUN_NAME_ONLYBLANKS
Found a string of only blanks.

CWBUN_NAME_STRINGTOOSHORT
String is too short.

CWBUN_NAME_TOOLONGFORIBM

String is OK, but too long for IBM command.

CWBUN_NAME_INVALIDFIRSTCHAR
The first character is not valid.

None

cwbUN_GetUserAttribute:

This API returns a string that contains the value of a user profile attribute for the current iSeries
Navigator user.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetUserAttribute(

USHORT usAttributeld,
const char * szSystemName,
char * szValue,

UINT cchMax

)s

Parameters

USHORT usAttributeld - input

A numeric value which identifies the user attribute value to be retrieved. Definitions for
the user attribute constants are in the header file ' CWBA4USR.H.

const char * szSystemName - input

The name of the system from which to retrieve the user attribute.

Developing iSeries Navigator plug-ins

37

char * szValue - output
Address of the buffer that will receive the null-terminated attribute value string.

UINT cchMax - input
Size of the buffer that will receive the null-terminated value string.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_INTERNAL_ERROR
Could not retrieve attribute value.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage The value that is returned by this API is not an NLS string and is not translated. For example,
“NONE’ will be returned instead of "None.’

cwbUN_ConvertPidlToString:

This API converts an item identifier list in iSeries Navigator to a fully qualified object name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_ConvertPid1ToString(
LPCITEMIDLIST pidTl,
char * szObjectName,
UINT cchMax

)s
Parameters

LPCITEMIDLIST pidl - input
Pointer to the ITEMIDLIST (item identifier list) structure that is to be converted.

char * szObjectName - output
Address of the buffer that will receive the null-terminated object name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated object name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
The specified item identifier list is not valid.

WB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetDisplayNameFromItemId:

This API extracts the item name field from a Unity item identifier.

38 System i: Connecting to System i Developing iSeries Navigator plug-ins

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetDisplayNameFromItemId(
const char * szItemld,
char * szItemName,
UINT cchMax
)s

Parameters

const char * szltemld - input
The Unity item identifier from which the item name will be extracted.

char * szItemName - output
Address of the buffer that will receive the null-terminated item name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated item name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified item identifier not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetDisplayNameFromName:

This API extracts the item name field from a fully qualified Unity object name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetDisplayNameFromName (
const char * szObjectName,
char * szItemName,
UINT cchMax
)

Parameters

const char * szObjectName - input
The Unity object name from which the item name will be extracted.

char * szItemName - output
Address of the buffer that will receive the null-terminated item name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated item name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT _NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None

Developing iSeries Navigator plug-ins

39

cwbUN_GetDisplayPathFromName:

This API converts a fully qualified Unity object name to a fully qualified path name suitable for
displaying to the user.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetDisplayPathFromName (
const char * szObjectName,
char * szPathName,
UINT cchMax
)s

Parameters

const char * szObjectName - input
The Unity object name from which the path name will be derived.

char * szPathName - output
Address of the buffer that will receive the null-terminated path name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated path name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetIndexFromItemId:

This API extracts the item index field from a Unity item identifier.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetIndexFromItemId(
const char * szItemld,
ULONG* pilIndex
)s

Parameters

const char * szItemld - input
The Unity item identifier from which the item index will be extracted.

ULONG* pilndex - output
Address of an unsigned long integer that will receive the item index.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified item identifier not valid.

Usage None

40 System i: Connecting to System i Developing iSeries Navigator plug-ins

cwbUN_GetIndexFromName:

This API extracts the item index field from a fully qualified Unity object name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetIndexFromName (
const char * szObjectName,
ULONG* pilIndex
)s

Parameters

const char * szObjectName - input
The Unity object name from which the item index will be extracted.

ULONG* pilndex - output
Address of an unsigned long integer that will receive the item index.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified object name is not valid.

Usage None

cwbUN_ GetIndexFromPidl:

This API extracts the item index field from a fully qualified Unity item identifier list.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetIndexFromPid1 (
LPCITEMIDLIST pidT,
ULONG* pilIndex
)

Parameters

LPCITEMIDLIST pidl - input
Pointer to an ITEMIDLIST (item identifier list) structure from which the item index will
be extracted.

ULONG* pilndex - output
Address of an unsigned long integer that will receive the item index.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
The specified item identifier list is not valid.

Usage None
cwbUN_GetListObject:

This API gets a pointer to the object associated with the specified list object name.

Developing iSeries Navigator plug-ins

41

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetListObject(
const char * szFileName,
LPVOID *pListObject
)s

Parameters

const char * szFileName - input
The Unity object name from which the object pointer will be found and returned.

LPVOID pListObject - output
Address of a pointer to the request Unity object.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Usage None
cwbUN_GetParentFolderNameFromName:

This API extracts the name of an object’s parent folder from a fully qualified Unity object name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetParentFolderNameFromName (
const char * szObjectName,
char * szParentFolderName,
UINT cchMax
)s

Parameters

const char * szObjectName - input
The Unity object name from which the parent folder name will be extracted.

char * szParentFolderPath - output
Address of the buffer that will receive the null-terminated parent folder name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated parent folder name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetParentFolderPathFromName:

Given a fully qualified Unity object name, this API returns the fully qualified object name of the object’s
parent folder.

42 System i: Connecting to System i Developing iSeries Navigator plug-ins

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetParentFolderPathFromName (
const char * szObjectName,
char * szParentFolderPath,
UINT cchMax
)s

Parameters

const char * szObjectName - input
The Unity object name from which the parent folder object name will be extracted.

char * szParentFolderPath - output
Address of the buffer that will receive the null-terminated parent folder object name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated parent folder object name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT _NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetParentFolderPidl:

Given a fully qualified Unity item identifier list, this API returns the fully qualified item identifier list of
the object’s parent folder.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetParentFolderPidl(
LPCITEMIDLIST pidl,
LPITEMIDLIST *ppid]l

)
Parameters

LPCITEMIDLIST pidl - input
Pointer to an ITEMIDLIST (item identifier list) structure from which the parent folder
item identifier list will be extracted.

LPITEMIDLIST* ppidl - output
Address of an item identifier list pointer that will receive the parent folder item identifier
list.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
The specified item identifier list is not valid.

Usage None

cwbUN_GetSystemNameFromName:

Developing iSeries Navigator plug-ins 43

This API extracts the system name from a fully qualified Unity object name.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetSystemNameFromName (
const char * szObjectName,
char * szSystemName,
UINT cchMax
)s

Parameters

const char * szObjectName - input
The Unity object name from which the system name will be extracted.

char * szSystemName - output
Address of the buffer that will receive the null-terminated system name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated system name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None

cwbUN_GetSystemNameFromPidl:

This API extracts the system name from a fully qualified Unity item identifier list.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetSystemNameFromPid1(
LPCITEMIDLIST pidTl,
char * szSystemName,
UINT cchMax
)s
Parameters
LPCITEMIDLIST pidl - input

Pointer to an ITEMIDLIST (item identifier list) structure from which the system name will
be extracted.

char * szSystemName - output
Address of the buffer that will receive the null-terminated system name.

UINT cchMax - input
Size of the buffer that will receive the null-terminated system name.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
The specified item identifier list is not valid.

44 System i: Connecting to System i Developing iSeries Navigator plug-ins

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetTypeFromName:

This API extracts the item type field from a fully qualified Unity object name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetTypeFromName (
const char * szObjectName,
char * szType,
UINT cchMax
)

Parameters

const char * szObjectName - input
The Unity object name from which the item index will be extracted.

char * szType - output
Address of the buffer that will receive the null-terminated item type.

UINT cchMax - input
Size of the buffer that will receive the null-terminated item type.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
Specified object name is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None
cwbUN_GetTypeFromPidl:

This API extracts the item index field from a fully qualified Unity item identifier list.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetTypeFromPid1(
LPCITEMIDLIST pidT,
char * szType,
UINT cchMax
)s

Parameters

LPCITEMIDLIST pidl - input
Pointer to an ITEMIDLIST (item identifier list) structure from which the item index will
be extracted.

char * szType - output
Address of the buffer that will receive the null-terminated item type.

UINT cchMax - input
Size of the buffer that will receive the null-terminated item type.

Return Codes
The following list shows common return values:

Developing iSeries Navigator plug-ins 45

CWB_OK
Successful completion.

CWBUN_FORMAT_NOT_VALID
The specified item identifier list is not valid.

CWB_BUFFER_OVERFLOW
The buffer is too small to contain the returned string.

Usage None

cwbUN_RefreshAll:

This API refreshes the contents of the tree window and the list window for iSeries Navigator.

Syntax
CWBAPI unsigned int WINAPI cwbUN_RefreshAl1(
const char * pszStatusText
)3
Parameters
const char * pszStatusText - input
A null-terminated string to be placed in the status bar window on completion. This
parameter can be NULL.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_WINDOW_NOTAVAIL
Could not find the view windows.

Usage Use this function to refresh the entire contents of iSeries Navigator after the system performs an
action that is requested by the user.

cwbUN_RefreshList:

This API refreshes the contents of the list view window for iSeries Navigator.

Syntax
CWBAPI unsigned int WINAPI cwbUN_RefreshList(
const char * pszStatusText

)s
Parameters

const char * pszStatusText - input
A null-terminated string to be placed in the status bar window on completion. This
parameter can be NULL.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_WINDOW_NOTAVAIL
Could not find list view window.

Usage Use this function to refresh the contents of the list window after performing an action that is
requested by the user.

cwbUN_RefreshListItems:

46 System i: Connecting to System i Developing iSeries Navigator plug-ins

This API refreshes the currently selected item (or items) in the list view window of iSeries Navigator.

Syntax
CWBAPI unsigned int WINAPI cwbUN_RefreshListItems(
const char * pszStatusText

)s
Parameters

const char * pszStatusText - input
A null-terminated string to be placed in the status bar window on completion. This
parameter can be NULL.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_WINDOW_NOTAVAIL
Could not find list view window.

Usage Use this function to refresh the selected items in the list window after performing an action that
was requested by the user.

cwbUN_UpdateStatusBar:

This API inserts a text string into the status bar of iSeries Navigator window.

Syntax
CWBAPI unsigned int WINAPI cwbUN_UpdateStatusBar(
const char * pszStatusText

)s
Parameters

const char * pszStatusText - input
A null-terminated string to be placed in the status bar window on completion.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_WINDOW_NOTAVAIL
Could not find status bar window.

Usage Use this function to inform the user that an action that was requested by clicking the OK button
on a dialog has completed successfully.

cwbUN_GetODBCConnection:

This API returns the handle to an Open Database Connectivity (ODBC) connection on the specified
system. If no connection exists to the specified system, the API obtains a new handle.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetODBCConnection(
const char * szSystemName,
HDBC *phDBC
)
Parameters

const char * szSystemName - input
The name of the system on which to retrieve an ODBC connection.

Developing iSeries Navigator plug-ins 47

HDBC *phDBC - output
Address to return the ODBC connection handle.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

Usage None
cwbUN_EndODBCConnections:

This API ends all Open Database Connectivity (ODBC) connections previously opened by the
cwbUN_GetODBCConnection API.

Syntax
CWBAPI unsigned int WINAPI cwbUN_EndODBCConnections(
)s
Parameters

None

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API HANDLE
Handle was not created.

Usage

It is important to remember that the EndODBCConnections function only closes connections that
were opened using the GetODBCConnection function. The EndODBCConnections function is
unaware of ODBC connections opened directly or by using other interfaces.

Also ensure that the destructor for the folder of your application extension invokes the
EndODBCConnections if any code in your extension uses GetODBCConnection.

See also cwbUN_GetODBCConnection.

cwbUN_ GetlconIndex:

This API gets the index in the image list of the specified icon.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetIconIndex(
LPCITEMIDLIST pidTl,
UINT uFlags,
int* pilndex

)s
Parameters

LPCITEMIDLIST pidl - input
Pointer to the ITEMIDLIST (item identifier list) structure that is used to identify the icon
to be referenced.

UINT uFlags - input
Specification of the type of icon index to retrieve (defined above). The following flag
types are allowed:

int * pilndex - output
Address of the integer that will receive the icon index.

48 System i: Connecting to System i Developing iSeries Navigator plug-ins

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUNL_INVALID_FLAG_VALUE
Not a valid supported flag value.

Usage None

cwbUN_GetSharedImageList:

This API retrieves the icon image list associated with iSeries Navigator.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetSharedImageList(
UINT uFlags,
HIMAGELIST *phImagelist
)3
Parameters
UINT uFlags - input
Specification of the type of image list to retrieve (defined above).

HIMAGELIST* phlmageList -
Address of the variable that will receive the image list handle.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWBUN_INVALID_FLAG_VALUE
Not a valid supported flag value.

CWBUN_CANT_GET_IMAGELIST
A failure occurred while attempting to get the icon image list.

Usage None

cwbUN_GetAdminValue:

This API returns an indication of whether the current iSeries Navigator user on the specified system is
allowed or denied use of a specific administrable function. An Administrable function is any function
whose use can be controlled through the Application Administration subcomponent of iSeries Navigator.

For example, an administrator can use Application Administration to control whether a user can access
several functions in iSeries Navigator. One of these functions is job management. The
cwbUN_GetAdminValue API can be used to programmatically determine whether the current iSeries
Navigator user can use the job management function by specifying the name of the administrable
function that corresponds to job management. See the cwbunpla.h header file for a list of administrable
function names that are supported in iSeries Navigator.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetAdminValue(
const char * szSystemName,
char* adminFunction,
cwbUN_Usage& usageValue);

Parameters

Developing iSeries Navigator plug-ins 49

const char * szSystemName
The name of the system on which to perform the check.

char* adminFunction
A pointer to an ASCII string that contains the name of the Administrable function. The
string must be null terminated and has a maximum length of 30 bytes + 1 byte for the
NULL terminator. See cwbunpla.h for a list of supported input values.

cwbUN_Usage & usageValue
This value is only valid if the return code of CWB_OK is returned. One of two values
will be returned:

* cwbUN_granted -- User is allowed use of the function.

¢ cwbUN_denied -- User is denied use of the function.

Return Codes
The following list shows common return values:

CWB_OK
The API was successful.

CWBSY_USER_CANCELLED
The user cancelled the user ID and password prompt presented by the APL

Usage

This API determines whether the current iSeries Navigator user for the specified system is
allowed to use the specified function. If no user is currently signed on to the specified system, the
API signs the user on, possibly displaying a user ID and password prompt.

This API can only be used to check administrable functions that are in iSeries Navigator or in the
Client Applications function category.

cwbUN_GetAdminValueEx:

This API returns an indication of whether the current user on the specified system is allowed or denied
use of a specific administrable function. An Administrable function is any function whose use can be
controlled through the Application Administration subcomponent of iSeries Navigator.

Note: iSeries Navigator plug-ins should use the cwbUN_GetAdminValue API instead of
cwbUN_GetAdminValueEx.

For example, an administrator can use Application Administration to control whether a user can access
several functions in iSeries Navigator. One of these functions is job management. The
cwbUN_GetAdminValueEx API can be used to programmatically determine whether the current user can
use the job management function by specifying the name of the Administrable function that corresponds
to job management. See the CWBUNPLA.H header file for a list of Administrable function names that are
supported in iSeries Navigator.

This API provides the same function as cwbUN_GetAdminValue, except that it is designed to accept a
system object handle instead of a system name.

Syntax
CWBAPI unsigned int WINAPI cwbUN_GetAdminValueEx (
cwbCO_SysHandlex pSysHandle,
char* adminFunction,
cwbUN_Usage& usageValue);

Parameters

cwbCO_SysHandle* pSysHandle
A pointer to a system object handle. The system name must be specified in the system

50 System i: Connecting to System i Developing iSeries Navigator plug-ins

object before this API is called. The cwbUN_GetAdminValueEx API’s behavior is based
on whether the system object has obtained a sign-on to the system:

Not Signed On->
cwbUN_GetAdminValueEx will sign on to the system. The latest Application
Administration settings for the user will be downloaded from the system if they
are not already stored in the cache on the client PC.

Signed On->
If the system object was signed on to a system that specifies that the System i
user ID and password should be validated (Validate Mode), then the
cwbUN_GetAdminValueEx API uses a snapshot of Application Administration
settings that were accurate when the sign-on was completed. If the sign-on was
done without validating the user ID and password, then it is possible that
cwbUN_GetAdminValueEx is using a copy of the Application Administration
settings that might be as much as 24 hours old.

char* adminFunction
A pointer to an ASCII string that contains the name of the Administrable function. The
string must be null terminated and has a maximum length of 30 bytes + 1 byte for the
NULL terminator. See CWBUNPLA.H for a list of supported input values.

cwbUN_Usage& usageValue
This value is only valid if the return code of CWB_OK is returned. One of two values
will be returned:

cwbUN_granted
User is allowed use of the function.

cwbUN _denied
User is denied use of the function.

Return Codes

Usage

The following list shows common return values:

CWB_OK
The API was successful.

CWBSY_USER_CANCELLED
The user cancelled the user ID and password prompt presented by the API.

This API determines whether the current system user (as defined by the input system object) is
allowed to use the specified function. If no user is currently signed on to the specified system, the
API signs the user on, possibly displaying a user ID and password prompt.

This API can only be used to check Administrable functions that are in iSeries Navigator or in the
Client Applications function category.

cwbUN_GetAdminCacheState:

This API indicates whether the next invocation of the cwbUN_GetAdminValue API will be long running.
The cwbUN_GetAdminValue API stores data in the cache on the PC. If the cache is not current,
cwbUN_GetAdminValue can present a sign-on prompt or perform other processing to update its cache.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetAdminCacheState(
const char * szSystemName,
cwbUN_State& adminState);

Parameters

Developing iSeries Navigator plug-ins 51

const char * szSystemName
The name of the system on which to perform the check.

cwbUN_State& adminState
A parameter that indicates whether the next invocation of the cwbUN_GetAdminValue
API will be long running, or whether it will use its internal cache to return without
accessing the host system.

One of these values is returned:

cwbUN_logon
There is no current user for the specified system. The cwbUN_GetAdminValue
API can present a sign-on prompt.

cwbUN_refresh
cwbUN_GetAdminValue will access the system to update its internal cache.

cwbUN_cache
cwbUN_GetAdminValue has a current cache and should not be long running.

Return Codes
The following list shows common return values:

CWB_OK
The API was successful.

Usage This API can be used by users of cwbUN_GetAdminValue to determine whether the next
invocation of cwbUN_GetAdminValue will be long running.

cwbUN_GetAdminCacheStateEx:

This API indicates whether the next invocation of the cwbUN_GetAdminValueEx API will be long
running. The cwbUN_GetAdminValueEx API stores data in the cache on the PC. If the cache is not
current, the cwbUN_GetAdminValueEx API can present a sign-on prompt or perform other processing to
update its cache.

Syntax

CWBAPI unsigned int WINAPI cwbUN_GetAdminCacheStateEx(
cwbCO_SysHandlex pSysHandle,
cwbUN_State& adminState);

Parameters

cwbCO_SysHandle* pSysHandle - input
A pointer to a system object handle. The system name must be specified in the system
object prior to calling this APL

cwbUN_State& adminState
A parameter that indicates whether the next invocation of the cwbUN_GetAdminValue
API will be long running, or whether it will use its internal cache to return without
accessing the host system.

One of these values is returned:

cwbUN_logon
There is no current user for the specified system. The cwbUN_GetAdminValue
API can present a sign-on prompt.

cwbUN_refresh
cwbUN_GetAdminValue will access the system to update its internal cache.

cwbUN _cache
cwbUN_GetAdminValue has a current cache and should not be long running.

52 System i: Connecting to System i Developing iSeries Navigator plug-ins

Return Codes
The following list shows common return values:

CWB_OK
The API was successful.

Usage This API can be used by users of cwbUN_GetAdminValueEx to determine whether the next
invocation of cwbUN_GetAdminValueEx will be long running.

cwbUN_IsSubcomponentInstalled:

This API determines whether an iSeries Navigator subcomponent is installed on the PC.

Syntax
CWBAPI BOOL WINAPI cwbUN_IsSubcomponentInstalled(
UNIT uOption);

Parameters

UNIT uOption
This parameter specifies the iSeries Navigator subcomponent to check. See the API's
prolog in cwbun.h for a list of supported values.

Return Codes
Returns a boolean value.

TRUE If the subcomponent is installed.

FALSE
If the subcomponent is not installed.

Usage None.
cwbUN_OpenLocalLdapServer:

This API creates a handle that can be used to access configuration information about the Lightweight
Directory Access Protocol (LDAP) server on the system.

Syntax
int cwbUN_OpenLocallLdapServeri
(' LPCWSTR system,
cwbUN_TdapSvrHandle +*pHandle
)s

int cwbUN_OpenlLocalLdapServerA
(LPCSTR system,
cwbUN_TdapSvrHandle +*pHandle
)s

Parameters

LPCSTR system - input
A pointer to the system name.

cwbUN_ldapSvrHandle *pHandle - output
On return, contains a handle that can be used with the following APIs:
* cwbUN_FreeLocalLdapServer
* cwbUN_GetLdapSvrPort
* cwbUN_GetLdapSvrSuffixCount
* cwbUN_GetLdapSuffixName

Note: This handle should be released with a call to cwbUN_FreeLocalLdapServer.

Developing iSeries Navigator plug-ins

53

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_PARAMETER
Invalid parameter specified.

CWB_INVALID_POINTER
A NULL pointer was specified.

CWBUN_LDAP_NOT_AVAIL
Directory Services is not installed or the server has not been configured.

Usage None

cwbUN_FreeLocalLdapServer:

This API frees resources associated with the input handle.

Syntax
int cwbUN_FreelocallLdapServer
(cwbUN_1dapSvrHandle handle
)s

Parameters

cwbUN_ldapSvrHandle handle - input
The handle for which resources should be freed.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
handle was not created by cwbUN_OpenLocalLdapServer()

Usage The handle is obtained by a call to cwbUN_OpenLocalLdapServer.

cwbUN_GetLdapSvrPort:

This API returns the port number that is used by the Lightweight Directory Access Protocol (LDAP)
server.

Syntax
int cwbUN_GetLdapSvrPort
(cwbUN_1dapSvrHandle handle,
int *port,
int *ss1Port
)3

Parameters

cwbUN_ldapSvrHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLocalLdapServer().

int * port - output
The port number used for LDAP connections.

int * sslPort - output
The port number used for SSL connections.

54 System i: Connecting to System i Developing iSeries Navigator plug-ins

Return Codes

Usage

The following list shows common return values:

CWB_OK

Successful completion.

CWB_INVALID_API HANDLE

Invalid handle.

CWB_INVALID_POINTER

None

A NULL pointer was specified.

cwbUN_GetLdapSvrSuffixCount:

This API returns the number of suffixes configured for this server. A suffix is the distinguished name

(DN) of a starting point in the directory tree.

Syntax

int cwbUN_GetLdapSvrSuffixCount

(cwbUN_1dapSvrHandle handle,
int *count

)s

Parameters

Return Codes
The following list shows common return values:

Usage

cwbUN_IldapSvrHandle handle - input

A handle previously obtained by a call to cwbUN_OpenLocalLdapServer().

int * count - output

The number of suffixes present on the server.

CWB_OK

Successful completion.

CWB_INVALID_API_HANDLE

Invalid handle.

CWB_INVALID_POINTER

None

A NULL pointer was specified.

cwbUN_GetLdapSvrSuffixName:

This API returns the distinguished name of the suffix.

Syntax

int cwbUN_GetLdapSuffixNameA

(

)

cwbUN_TdapSvrHandle
int

LPSTR

int

int cwbUN_GetLdapSuffixNameW

(

)

cwbUN_TdapSvrHandle
int

LPWSTR

int

handle,
index,

suffix,
*1ength

handle,
index,

suffix,
*1ength

Developing iSeries Navigator plug-ins

55

int cwbUN_GetLdapSuffixName8 /* returns suffix in UTF-8 */

(cwbUN_1dapSvrHandle handle,
int index,
LPSTR suffix,
int *]ength

)s
Parameters

cwbUN_ldapSuffixHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLocalLdapServer().

int index - input
Zero-based index of the suffix. This value must be less than the count returned by
cwbUN_GetLdapSvrSuffixCount().

LPSTR suffix - output
Pointer to the buffer that will contain the distinguished name of the suffix.

int * length - input/output
Pointer to the length of the suffix buffer. If the buffer is too small to hold the string,
including space for the terminating NULL, the size of the buffer needed will be filled into
this parameter.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid handle.

CWB_INVALID _API PARAMETER
Invalid index.

CWB_INVALID_POINTER
A NULL pointer was specified.

CWB_BUFFER_OVERFLOW
The suffix buffer is not large enough to hold the entire result.

Usage None
cwbUN_OpenLdapPublishing:

This API creates a handle that can be used to access configuration information about information that is
published by the system to Lightweight Directory Access Protocol (LDAP) directories.

Syntax
int cwbUN_OpenLdapPublishingW
(LPCWSTR system,
cwbUN_TdapPubHandle +*pHandle
)s

int cwbUN_OpenlLdapPublishingA
(LPCSTR system,
cwbUN_TdapPubHandle =pHandle
)s

Parameters

LPCSTR system - input
A pointer to the system name.

56 System i: Connecting to System i Developing iSeries Navigator plug-ins

cwbUN_IldapSvrHandle *pHandle - output
On return, contains a handle that can be used with APIs.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_PARAMETER
Invalid parameter specified.

CWB_INVALID_API_HANDLE
Invalid handle.

CWB_INVALID_POINTER
A NULL pointer was specified.

CWBUN_LDAP_NOT_AVAIL
Directory services is not installed, or the server has not been configured.

Usage None
cwbUN_FreeLdapPublishing:

This API frees resources associated with the input handle.

Syntax
int cwbUN_FreelLdapPubTlishing
(cwbUN_1dapPubHandle handle
)s

Parameters

cwbUN_ldapPubHandle handle - input
The handle for which resources should be freed.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Handle was not created by cwbUN_OpenLdapPublishingy().

Usage The handle is obtained by a call to cwbUN_OpenLdapPublishing().
cwbUN_GetLdapPublishCount:

This API returns the number of publishing records configured for the server. A publish record identifies a
category of information to be published, and how and where it is to be published.

Syntax
int cwbUN_GetLdapPublishCount
(cwbUN_1dapPubHandle handle,
int *count

)
Parameters

cwbUN_ldapPubHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLdapPublishing().

int * count - output
The number of publish records configured on the server.

Developing iSeries Navigator plug-ins 57

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid handle.

CWB_INVALID_POINTER
A NULL pointer was specified.

Usage None
cwbUN_GetLdapPublishType:

This API returns the publish record information type.

Syntax
int cwbUN_GetLdapPublishType
(cwbUN_1dapPubHandle handle,
int index,
cwbUN_LdapPubCategories =*information
)s
Parameters

cwbUN_ldapPubHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLdapPublishing().

int index - input
Zero-based index of the publish record. This value must be less than the count returned
by cwbUN_GetLdapPublishCount().

cwbUN_LdapPubCategories * information - output
The type of information for which this publish record is. Possible values include:

CWBUN_LDAP_PUBLISH_USERS
User information.

CWBUN_LDAP_PUBLISH_COMPUTERS
System i platforms.

CWBUN_LDAP_PUBLISH_NETWORK_INVENTORY
NetFinity.
CWBUN_LDAP_PUBLISH_PRINTERS

Printers connected to the System i platform.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID API HANDLE
Invalid handle.

CWB_INVALID_API_PARAMETER
Invalid index.

CWB_INVALID_POINTER
A NULL pointer was specified.

Usage None

58 System i: Connecting to System i Developing iSeries Navigator plug-ins

cwbUN_GetLdapPublishServer:

This API returns the name of the server to which this information is published.

Syntax
int cwbUN_GetLdapPublishServerW
(cwbUN_1dapPubHandle handle,

int index,
LPWSTR server,
int *1ength

)

int cwbUN_GetLdapPublishServerA
(cwbUN_1dapPubHandle handle,

int index,
LPSTR server,
int *1ength

)
Parameters

cwbUN_ldapPubHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLdapPublishing().

int index - input
Zero-based index of the publish record. This value must be less than the count returned
by cwbUN_GetLdapPublishCount().

LPSTR server - output
Pointer to the buffer that will contain the name of the server.

int * length - input/output
Pointer to the length of the server buffer. If the buffer is too small to hold the string,
including space for the terminating NULL, the size of the buffer needed will be filled into
this parameter.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid handle.

CWB_INVALID_API PARAMETER
Invalid index.

CWB_INVALID_POINTER
A NULL pointer was specified.

CWB_BUFFER_OVERFLOW
The suffix buffer is not large enough to hold the entire result.

Usage None
cwbUN_GetLdapPublishPort:

This API returns the port number of the server used to publish this information.

Developing iSeries Navigator plug-ins 59

Syntax
int cwbUN_GetLdapPublishPort

(cwbUN_1dapPubHandle handle,
int index,
int *port,

cwbUN_LdapCnnSecurity *connectionSecurity

)s
Parameters

cwbUN_ldapPubHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLdapPublishing().
int index - input
Zero-based index of the publish record. This value must be less than the count returned
by cwbUN_GetLdapPublishCount().
int * port - output
The port number used to connect to the server.
cwbUN_LdapCnnSecurity * connectionSecurity - output

The type of connection used to connect to the server. This indicates the type of connection
that can be established over the associated port. This parameter allows these values:

CWBUN_LDAPCNN_NORMAL
A normal connection is used.

CWBUN_LDAPCNN_SSL
An SSL connection is used.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API_HANDLE
Invalid handle.

CWB_INVALID_API PARAMETER
Invalid index.

CWB_INVALID_POINTER
A NULL pointer was specified.

Usage None
cwbUN_GetLdapPublishParentDn:
This API returns the parent distinguished name of the published objects.

For example, if the parentDN for publishing users was cn=users,o=ace industry,c=us, and user
information was published for John Smith, the dn of the published object could be cn=john
smith,cn=users,ou=ace industry,c=us.

Syntax
int cwbUN_GetLdapPublishParentDni
(cwbUN_1dapPubHandle handle,

int index,
LPWSTR parentDn,
int *]ength

)s
int cwbUN_GetLdapPublishParentDnA
(cwbUN_1dapPubHandle handle,
int index,

60 System i: Connecting to System i Developing iSeries Navigator plug-ins

LPSTR parentDn,
int *1ength
)s

int cwbUN_GetLdapPublishParentDn8 /x return parentDn in UTF-8 */
(cwbUN_1dapPubHandle handle,

int index,
LPSTR parentDn,
int *1ength

)s
Parameters

cwbUN_ldapPubHandle handle - input
A handle previously obtained by a call to cwbUN_OpenLdapPublishingy().

int index - input
Zero-based index of the publish record. This value must be less than the count returned
by cwbUN_GetLdapPublishCount().

LPSTR parentDn - output
Pointer to the buffer that will contain the name of the parentDn.

int * length - input/output
Pointer to the length of the parentDn buffer. If the buffer is too small to hold the string,
including space for the terminating NULL, the size of the buffer needed will be filled into
this parameter.

Return Codes
The following list shows common return values:

CWB_OK
Successful completion.

CWB_INVALID_API HANDLE
Invalid handle.

CWB_INVALID_API_PARAMETER
Invalid index.

CWB_INVALID_POINTER
A NULL pointer was specified.

CWB_BUFFER_OVERFLOW
The suffix buffer is not large enough to hold the entire result.

Usage None

Return codes unique to iSeries Navigator APIs
iSeries Navigator has a specific set of return codes. Each code has its own associated meaning.

6000 CWBUN_BAD_PARAMETER

An input parameter was not valid.
6001 CWBUN_FORMAT_NOT_VALID

The input object name was not valid.
6002 CWBUN_WINDOW_NOTAVAIL

View window not found.
6003 CWBUN_INTERNAL_ERROR

Processing error occurred.
6004 CWBUN_USER_NOT_AUTHORIZED

User does not have specified authority.
6005 CWBUN_OBJECT_NOT_FOUND

Object not found on the iSeries.
6006 CWBUN_INVALID_ITEM_ID

Invalid item ID parameter.
6007 CWBUN_NULL_PARM

NULL parameter passed.

Developing iSeries Navigator plug-ins 61

6008 CWBUN_RTN_STR_TOO_LONG
String too Tong for return buffer.
6009 CWBUN_INVALID 0BJ NAME
Invalid object name parameter.
6010 CWBUN_INVALID_PIDL
Invalid PIDL parameter.
6011 CWBUN_NULL_PIDL_RETURNED
Parent folder PIDL was NULL.
6012 CWBUN_REFRESH_FAILED
Refresh Tist failed.
6012 CWBUN_UPDATE_FAILED
Update toolbar failed.
6013 CWBUN_INVALID_NAME_TYPE
Invalid iSeries name type.
6014 CWBUN_INVALID_AUTH_TYPE
Invalid authority type.
6016 CWBUN_HOST_COMM_ERROR
iSeries communications error.
6017 CWBUN_INVALID_NAME_PARM
Invalid name parameter.
6018 CWBUN_NULL_DISPLAY_STRING
Null display string returned.
6019 CWBUN_GENERAL_FAILURE
General iSeries operation failure.
6020 CWBUN_INVALID_SYSVAL_ID
Invalid system value ID.
6021 CWBUN_INVALID_LIST_OBJECT
Can not get 1ist object from name.
6022 CWBUN_INVALID_IFS PATH
Invalid IFS path specified.
6023 CWBUN_LANG_NOT_FOUND
Extension does not support any of the languages
installed.
6024 CWBUN_INVALID_USER_ATTR_ID
Invalid user attribute ID.
6025 CWBUN_GET_USER_ATTR_FAILED
Unable to retrieve user attribute.
6026 CWBUN_INVALID FLAG_VALUE
Invalid flag parameter value set.
6027 CWBUN_CANT_GET_IMAGELIST
Cannot get icon image Tist.

The following return codes are for name check APIs.

6050 CWBUN_NAME_TO00_LONG
Name is too Tong.
6051 CWBUN_NAME_NULLSTRING
String in empty - no chars at all.
6054 CWBUN_NAME_INVALIDCHAR
Invalid character.
6055 CWBUN_NAME_STRINGTOOLONG
String too Tong.
6056 CWBUN_NAME_MISSINGENDQUOTE
End quote missing.
6057 CWBUN_NAME_INVALIDQUOTECHAR
Char invalid for quote string.
6058 CWBUN_NAME_ONLYBLANKS
A string of only blanks found.
6059 CWBUN_NAME_STRINGTOOSHORT
String is too short.
6060 CWBUN_NAME_TOOLONGFORIBM
String OK, too long for IBM® cmd.
6011 CWBUN_NAME_INVALIDFIRSTCHAR
The first char is invalid.
6020 CWBUN_NAME_CHECK_LAST
Reserved range.

The following return codes are for LDAP-related APIs.

62 System i: Connecting to System i Developing iSeries Navigator plug-ins

6101 CWBUN_LDAP_NOT_AVAIL

LDAP is not installed or configured.
6102 CWBUN_LDAP_BIND_FAILED

LDAP bind failed.

The following return codes are for check iSeries™ name APIs.

1001 CWBUN_NULLSTRING

String is empty.
1004 CWBUN_INVALIDCHAR

Invalid character.
1005 CWBUN_STRINGTOOLONG

String is too long.
1006 CWBUN_MISSINGENDQUOTE

End quote for quoted string missing.
1007 CWBUN_INVALIDQUOTECHAR

Character invalid for quoted string.
1008 CWBUN_ONLYBLANKS

String contains only blanks.
1009 CWBUN_STRINGTOOSHORT

String is Tess than the defined minimum.
1011 CWBUN_TOOLONGFORIBM

String is OK, but too long for IBM commands.
1012 CWBUN_INVALIDFIRSTCHAR

First character is invalid.
1999 CWBUN_GENERALFAILURE

Unspecified error.

Visual Basic reference

Visual Basic plug-ins have a unique flow of control in iSeries Navigator. In addition, Visual Basic plug-ins
must be implemented at least on one iSeries Navigator interface class.

iSeries Navigator structure and flow of control for Visual Basic plug-ins
For Visual Basic plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the
communication between iSeries Navigator and the plug-in.

Visual Basic programmers who are developing iSeries Navigator plug-ins can use the facilities that are
provided by Microsoft’s Visual Basic 5.0 to create their plug-in classes and then package them in an
ActiveX server DLL.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to
user actions. For example, when a user right-clicks an object in the iSeries Navigator hierarchy, iSeries
Navigator constructs a context menu for the object and displays the menu on the screen. iSeries
Navigator obtains the menu items by calling each plug-in that has registered its intent to supply context
menu items for the selected object type.

The functions that are implemented by a plug-in are logically grouped into interfaces. An interface is a
set of logically related methods on a class that iSeries Navigator can call to perform a specific function.
For Visual Basic plug-ins, three interfaces are defined:

* ListManager
¢ ActionsManager
* DropTargetManager

iSeries Navigator data for Visual Basic plug-ins
When iSeries Navigator calls a function implemented by a plug-in, the request typically involves an

object or objects that the user selected in the main iSeries Navigator window. The plug-in must be able to
determine which objects have been selected. The plug-in receives this information as a list of fully

Developing iSeries Navigator plug-ins 63

qualified object names. For Visual Basic plug-ins, an ObjectName class that provides information about
the selected objects is defined. Plug-ins that add folders to the object hierarchy must return items in the
folder to iSeries Navigator in the form of item identifiers. For Visual Basic plug-ins, an ItemlIdentifier
class is defined and is used by the plug-in to return the requested information.

iSeries Navigator services for Visual Basic plug-ins

An iSeries Navigator plug-in sometimes needs to affect the behavior of the main iSeries Navigator
window. For example, following completion of a user operation, it might be necessary to refresh the
iSeries Navigator list view, or to insert text into the iSeries Navigator’s status area. A utility class called
UlServices is supplied in the Visual Basic environment. It provides the required services. A Visual Basic
plug-in can also use the C++ APIs in the cwbun.h header file to achieve similar results. For detailed
descriptions of this class and its methods, see the online help that is provided with the iSeries Navigator
Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

Related concepts

[“iSeries Navigator ListManager interface class’|

The ListManager interface class is used for data serving in iSeries Navigator. For example, when a
list view needs to be created and filled with objects, iSeries Navigator will call methods in the
ListManager class to do this.

[“iSeries Navigator ActionsManager interface class” on page 65|

The ActionsManager interface class is used to build context menus, and to implement commands of
the context menu actions. For example, when a user performs a right mouse-click on a Visual Basic
list object in iSeries Navigator, the queryActions method in the ActionsManager interface class will be
called to return the context menu item strings.

[‘iSeries Navigator DropTargetManager interface class” on page 65|
The DropTargetManager interface class is used to handle drag-and-drop operations in iSeries
Navigator.

iSeries Navigator Visual Basic interfaces
A Visual Basic plug-in must implement one or more iSeries Navigator interface classes, depending on the
type of function that the developer intends to provide to iSeries Navigator.

The Programmer’s Toolkit contains a link to the Visual Basic interface definition help file.

There are three iSeries Navigator interface classes:

* iSeries Navigator ActionsManager interface class

* iSeries Navigator DropTargetManager interface class
* iSeries Navigator ListManager interface class

Note: Your application does not have to implement all three interface classes.

iSeries Navigator ListManager interface class:

The ListManager interface class is used for data serving in iSeries Navigator. For example, when a list
view needs to be created and filled with objects, iSeries Navigator will call methods in the ListManager

class to do this.

The Visual Basic Sample plug-in provides an example of this class in the file listman.cls. You must have a
ListManager class if your plug-in needs to populate iSeries Navigator component lists.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

Related concepts

64 System i: Connecting to System i Developing iSeries Navigator plug-ins

[‘iSeries Navigator structure and flow of control for Visual Basic plug-ins” on page 63
For Visual Basic plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the
communication between iSeries Navigator and the plug-in.

iSeries Navigator ActionsManager interface class:

The ActionsManager interface class is used to build context menus, and to implement commands of the
context menu actions. For example, when a user performs a right mouse-click on a Visual Basic list object
in iSeries Navigator, the queryActions method in the ActionsManager interface class will be called to
return the context menu item strings.

The Visual Basic Sample plug-in provides an example of this class in the file actnman.cls. You must
define an ActionsManager interface class for each unique object type that your plug-in supports. You can
specify the same ActionsManager interface class for different object types, but your code logic must
handle being called with multiple types of objects.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp files).

Related concepts

[“iSeries Navigator structure and flow of control for Visual Basic plug-ins” on page 63
For Visual Basic plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the
communication between iSeries Navigator and the plug-in.

iSeries Navigator DropTargetManager interface class:
The DropTargetManager interface class is used to handle drag-and-drop operations in iSeries Navigator.

When a user selects a Visual Basic list object, and performs mouse drag-and-drop operations on it,
methods in this class will be called to perform the drag-and-drop operations.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

Related concepts

[‘iSeries Navigator structure and flow of control for Visual Basic plug-ins” on page 63
For Visual Basic plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the
communication between iSeries Navigator and the plug-in.

Java reference

Java plug-ins have a unique flow of control in iSeries Navigator.

iSeries Navigator structure and flow of control for Java plug-ins
For Java plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the communication
between iSeries Navigator and the plug-in’s Java classes.

The server component uses the Java Native Interface (JNI) API to create the plug-in’s objects and to call
their methods. Thus, Java programmers who are developing iSeries Navigator plug-ins do not need to be

concerned with the details of ActiveX server implementation.

When a user is interacting with iSeries Navigator Java plug-ins, calls will be generated to the different
registered Java interface classes for the implementation of the specific request.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to
user actions. For example, when a user right-clicks an object in the iSeries Navigator hierarchy, iSeries

Developing iSeries Navigator plug-ins 65

Navigator constructs a context menu for the object and displays the menu on the screen. iSeries
Navigator obtains the menu items by calling each plug-in that has registered its intent to supply context
menu items for the selected object type.

The functions that are implemented by a plug-in logically are grouped into interfaces. An interface is a
set of logically related methods on a class that iSeries Navigator can call to perform a specific function.
For Java plug-ins, the following three Java interfaces are defined:

* ActionsManager
* DropTargetManager
 ListManager

Product architecture for iSeries Navigator plug-ins

The internal architecture of the iSeries Navigator product reflects that it is intended to serve as an
integration point for an extensible, broad-based operations interface for the System i platform. Each
functional component of the interface is packaged as an ActiveX server. iSeries Navigator learns about the
existence of a particular server component by means of entries in the Windows registry. Multiple servers
can register their requests to add menu items and dialogs to a given object type in the iSeries Navigator
hierarchy.

Note: For third-party Java plug-ins to be available to iSeries Navigator users, iSeries Access for Windows
users must have Version 4 Release 4 Modification Level 0 of iSeries Access for Windows installed
on their personal computers.

iSeries Navigator data for Java plug-ins

When iSeries Navigator calls a function implemented by a plug-in, the request typically involves an
object or objects that the user selected in the main iSeries Navigator window. The plug-in must be able to
determine which objects have been selected. The plug-in receives this information as a list of fully
qualified object names. For Java plug-ins, an ObjectName class is defined. It provides information about
the selected objects. Plug-ins that add folders to the object hierarchy must return items in the folder to
iSeries Navigator in the form of item identifiers. For Java plug-ins, an Itemldentifier class is defined. It is
used by the plug-in to return the requested information.

An iSeries Navigator plug-in sometimes needs to affect the behavior of the main iSeries Navigator
window. For example, following completion of a user operation, it might be necessary to refresh the
iSeries Navigator list view, or to insert text into the iSeries Navigator’s status area. Utility classes are
supplied in the package com.ibm.as400.opnav that provide the required services.

Customizing the plug-in registry files

The sample plug-ins include two registry files: a windows-readable copy for use during development,
and a copy for distribution on the system. You need to modify these registry files to develop your
plug-in. This topic provides an overview of the registry files, and detailed descriptions of the required
sections of each registry file.

iSeries Navigator uses the registry files to learn about the plug-in’s existence, requirements, and
functions. To provide that information, every plug-in must specify at least the following information:

* A primary registry key that provides global information about the plug-in.

This section includes the Programmatic Identifier (ProgID) that specifies the vendor and component
name for your plug-in and names the folder in which your plug-in resides on the system. The ProgID
must follow the form <vendor>.<component>; for example, IBM.Sample.

* Registry keys that identify the object types in the iSeries Navigator hierarchy for which a plug-in
intends to supply additional function.

66 System i: Connecting to System i Developing iSeries Navigator plug-ins

* A separate registry key for the root of each subtree of objects that a plug-in adds to the object
hierarchy.

This key contains information about the root folder of the subtree.

Customizing the C++ registry values

The sample plug-in includes two registry files: SAMDBG.REG, a registry file for use during development,
and SAMPRLS.REG, a registry file for distribution on the system. Both files can be read by the Windows
operating system. You can customize the sample registry files for your own plug-ins.

A plug-in registry file consists of several sections. When you develop your own plug-ins, you need to

customize each section as described in this information.

Primary registry key:

The primary registry key defines a set of fields that specify global information for the plug-in. This

information is required.

; Define the primary registry key for the plugin

; NOTE: NLS and ServerEntryPoint DLL names must not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]

IITypeII=IIPLUGINII
"NLS"="sampmri.d11"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="030701"
"ProductID"="NONE"
"ServerkEntryPoint"="sampext.d11"

Primary registry key field

Field description

Type

If the plug-in adds new folders to the iSeries Navigator
hierarchy, the value of this field should be PLUGIN.
Otherwise, it should be EXT.

NLS

Identifies the name of the resource DLL that contains the
locale-dependent resources for the plug-in. In the
development version of the registry file, this may be a
fully qualified pathname.

NamelD

A double word containing the resource identifier of the
text string in the resource DLL which will be used to
identify the plug-in in the iSeries Navigator user
interface.

DescriptionID

A double word that contains the resource identifier of the
text string in the resource DLL. This resource DLL is
used to describe the function of the plug-in in the iSeries
Navigator user interface.

Developing iSeries Navigator plug-ins 67

Primary registry key field

Field description

MinimumIMPIRelease

A 6-character string that identifies the minimum release
of i5/0S that runs on the IMPI hardware that the plug-in
requires. The string should be of the form vvrrmm,
where vv is the i5/0S Version, tr is the Release, and mm
is the Modification Level. For example, if the plug-in
requires Version 3 Release 2 Modification Level 0, the
value of this field should be "030200.”

If the plug-in does not support any i5/0S release that
runs on IMPI hardware (releases prior to Version 3
Release 6), the value of this field should be "NONE." If
the plug-in can support any release that runs on IMPI
hardware, the value of this field should be "ANY.”

MinimumRISCRelease

A 6-character string that identifies the minimum release
of i5/0S that runs on RISC hardware that the plug-in
requires. The string should be of the form vvrrmm,
where vv is the i5/0S Version, rr is the Release, and mm
is the Modification Level. For example, if the plug-in
requires Version 3 Release 7 Modification Level 1, the
value of this field should be "030701".

If the plug-in does not support any i5/0S release that
runs on RISC hardware (Version 3 Release 6 and above),
the value of this field should be "NONE.” If the plug-in
can support any release that runs on RISC hardware, the
value of this field should be "ANY.”

ProductID

A 7-character string that specifies the product ID of a
prerequisite System i licensed program that is required
by the plug-in. If the plug-in does not require that a
particular licensed program be installed on the system,
the value of this field should be NONE.

Multiple comma-separated product IDs can be specified
if multiple IDs exist for the same product.

ServerEntryPoint

The name of the code DLL that implements the server
entry point. This entry point is called by iSeries
Navigator when it needs to determine whether the
plug-in is supported on a particular system. If the
plug-in does not implement the entry point, the value of
this field should be "NONE." In the development version
of the registry file, this may be a fully qualified
pathname.

JavaPath

The classpath string that identifies the location of your
plug-in’s Java classes. During development of your
plug-in, this field might contain the directory paths for
the directories where your class files reside. In the
production version of the registry file, it should identify
your JAR file names relative to the iSeries Access for
Windows installation path, each preceded by the iSeries
Access for Windows substitution variable that represents
the installation path.

68 System i: Connecting to System i Developing iSeries Navigator plug-ins

Primary registry key field Field description

JavaMRI The base names of the JAR files that contain
locale-dependent resources for the plug-in. iSeries
Navigator will search for each JAR file after first
suffixing the name with the appropriate Java language
and country identifiers. If no MRI JAR files exist for a
given locale, iSeries Navigator will expect the MRI for
the base locale (usually US English) to reside in the code
JAR files.

Data server implementation:

This section registers an IA4HierarchyFolder implementation for each new folder added to the iSeries
Navigator hierarchy.

5 This section will register an IA4HierarchyFolder implementation
for each new
; folder added to the iSeries Navigator hierarchy.

[HKEY_CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}]
©="AS/400 Data Server - Sample Data"

[HKEY _CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}\InprocServer32]
@="%CLIENTACCESS%\PTugins\IBM.Sample\sampext.d11"
"ThreadingModel"="Apartment"

If your plug-in adds more than one new folder to the hierarchy, you must duplicate this section of the
registry file for each additional folder. Make sure to generate a separate Globally Unique Identifier
(GUID) for each folder. If your plug-in does not add any folders, you can remove this section.

If you duplicate SAMPDATA.CPP as follows, all of your new folders initially contain library objects:

1. Change the name of the DLL to match the name of the DLL that is generated by your new project
workspace.

2. Generate and copy a new GUID. See [’Global changes for C++ plug-in registry files” on page 72|

3. Replace both occurrences of the class identifier (CLSID) in this section of the registry with the new
GUID string you just generated.

4. Search for the string IMPLEMENT_OLECREATE in your version of the file SAMPDATA.CPP.

5. Paste the new GUID over the existing CLSID in the comment line, and then change the CLSID in the
IMPLEMENT_OLECREATE macro call to match the hexadecimal values in your new GUID. Replace
the word Sample with the name of your new folder.

6. Create two new source files for each new GUID, using a renamed copy of SAMPDATA H and
SAMPDATA.CPP as a base.

Note: The header file (.H) contains the class declaration for the new implementation class. The
implementation file (.CPP) contains the code that obtains the data for the new folder.

7. Replace all occurrences of the class name CSampleData in the two source files with a class name that
is meaningful in the context of your plug-in.

8. To add the new implementation files to the project workspace, open the Insert menu and select Files
Into Project.

Shell plug-in implementation class:

This section registers the shell plug-in implementation class. Every c++ plug-in must use this section.

Developing iSeries Navigator plug-ins 69

This section will register the shell plug-in implementation class.
A shell plug-in adds context menu items and/or property pages
for new or existing objects in the hierarchy.

s
s
B
B

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]
@="AS/400 Shell plug-ins - Sample"

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}\InprocServer32]
@="%CLIENTACCESS%\PTugins\IBM.Sample\sampext.d11"
"ThreadingModel"="Apartment"

; Approve shell plug-in (required under Windows NT®)

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Shell Extensions\Approved]
"{3D7907A1-9080-11d0-82BD-08005AA74F5C}"="AS/400 Shell plug-ins - Sample"

To customize this section for you own plug-ins, follow these steps:
1. Change the DLL name to match the name of the DLL generated by your new project workspace.

2. Generate and copy a new Globally Unique Identifier (GUID). See [“Global changes for C++ plug-in|
fregistry files” on page 72)

3. Replace all occurrences of the class identifier (CLSID) in the entries with the new GUID you just
generated.

4. Search for the string IMPLEMENT_OLECREATE in your version of the file EXTINTFC.CPP.

5. Paste the new GUID over the existing CLSID in the comment line, and then change the CLSID in the
IMPLEMENT_OLECREATE macro call to match the hexadecimal values in your new GUID.

Shell plug-in implementation for objects:

The final section of the registry specifies which objects in the iSeries Navigator hierarchy are affected by
implementation of the plug-in.

; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample\x
\ContextMenuHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

; Register a property sheet handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\shellex\Sample\x
\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

; Register the Auto Refresh property sheet handler for the new folder and its objects
; (this will allow your folder to take advantage of the iSeries Navigator
5 Auto Refresh function)

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample\=*
\PropertySheetHandlers\{5E44E520-2F69-11d1-9318-0004AC946C18}]

; Register drag and drop context menu handlers

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample\=*
\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\File Systems*
\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

70 System i: Connecting to System i Developing iSeries Navigator plug-ins

; Register Drop Handler to accept drops of objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*\DropHandler]
@="{3D7907A1-9080-11d0-82BD-08005AA74F5C}"

; Register that this plug-in supports Secure Socket Layer (SSL) Connection
; Note: "Support Level"=dword:00000001 says the plugin supports SSL
; Note: "Support Level"=dword:00000000 says the plugin does not support SSL

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL]
"Support Level"=dword:00000001

To customize this section for you own plug-ins, follow these steps:
1. Replace the class identifier (CLSID) in this section with the new Globally Unique Identifiers (GUIDs).

2. If your plug-in does not add additional property pages to a property sheet for a folder or object, then
remove the registry entry for the property sheet handler.

3. If your plug-in is not a drop handler for objects, remove the drop-context menu handler and handler
registry entries.

4. Edit the subkeys \Sample*\. For more information, see [“Shell plug-ins.”]

5. Edit or remove the code in your version of EXTINTFC.CPP, that checks for the object types defined by
the sample.

You should see the folders, context menu items, property pages, and drop actions from the sample,
depending on how much function from the sample you decided to retain.

Note: The code file based on the sample file EXTINTFC.CPP contains the code that will be called for
context menus, property pages, and drop actions. The sample code contains checks for the
object types that the sample defines. You must edit this file and either remove these tests or
change them to check for the object types for which you wish to provide new function.

Shell plug-ins:

These registry keys map a particular node or set of nodes in the hierarchy to the type of function
supplied by the plug-in, and to the CLSID of the implementation class which implements the function.

Remember that any number of shell plug-ins may register their intent to add function to a given object
type in the iSeries Navigator hierarchy. The plug-in should never assume that it is the only server
component which is providing function for a given object type. This applies not only to existing object
types, but also to any new objects that a plug-in may choose to define. If your plug-in is widely used,
there is nothing to prevent another vendor from extending object types that are defined by your plug-in.

Object type identifiers

A pair of object type identifiers, subkeys \Sample*\, are always expected at this level in the subkey
hierarchy.

The first identifier in the pair specifies the root folder for an iSeries Navigator component. For plug-ins
that add new folders, this identifier should always match the registry key name for a root folder specified
in the previous section. For plug-ins that add behaviors to existing object types, this subkey should
generally be the object type of the first-level folder under a System i container object. These type strings
are defined under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If * is
specified, the plug-in will be called the for the folder type identified in the parent subkey, plus all folders

Developing iSeries Navigator plug-ins 71

and objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier must be
specified, and the plug-in will then only be called for that object type.

Checking for object types

When performing checks for existing object types, you need to use the 3-character type identifiers that are
defined under the key HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry. When
performing checks for new object types that are defined by your plug-in, use a registry key. Use the
registry key that identifies the folder that you specified as your junction point, or whatever type you will
return to iSeries Navigator when serving data for a folder that is defined by your plug-in.

Global changes for C++ plug-in registry files:

When developing your own plug-ins, you need to make some global changes to the sample plug-in
registry files. You must specify a unique programmatic identifier (ProgID) and Globally Unique
Identifiers (GUIDs) for use throughout the plug-in registry file.

Defining a unique ProgID for your plug-in

The ProglID should match the <vendor>.<component> text string, where vendor identifies the name of the
vendor who developed the plug-in, and component describes the function provided. In the sample plug-in,
the string IBM.Sample identifies IBM as the vendor, and Sample as the description of the function
provided by the plug-in. This is used throughout the registry file. It names the directory where your
plug-in resides on both the system and the workstation. Replace every occurrence of IBM.Sample in the
registry file with your ProgID.

Generating new GUIDs and replacing the CLSID values in the registry file

For your iSeries Navigator C++ plug-in to work properly, you must replace specific class identifiers
(CLSIDs) in your new registry file with GUIDs that you generate.

The Component Object Model from Microsoft uses 16-byte hexadecimal integers to uniquely identify
ActiveX implementation classes and interfaces. These integers are known as GUIDs. GUIDs that identify
implementation classes are called CLSIDs. iSeries Navigator uses the Windows ActiveX runtime support
to load a plug-in’s components, and to obtain a pointer to an instance of the plug-in’s implementation of
a particular interface. A CLSID in the registry uniquely identifies a specific implementation class that
resides in a specific ActiveX server DLL. The first stage of this mapping, from the CLSID to the name and
location of the server DLL, is accomplished by means of a registry entry. Therefore, an iSeries Navigator
plug-in must register a CLSID for each implementation class that it provides.

To generate your GUIDs, follow these steps:

From the Windows task bar, select Start and then Run.
Type GUIDGEN and click OK.

Make sure that Registry Format is selected.

To generate a new GUID value, select New GUID.

5. To copy the new GUID value to the clipboard, select Copy.

N

Customizing the Visual Basic plug-in registry values

The sample plug-includes two registry files: VBSMPDBG.REG, a registry file for use during development,
and VBSMPRLS.REG, a registry file for distribution on the system. Both files can be read by the Windows
operating system. You can customize the sample registry files for your own plug-ins.

A plug-in registry file consists of several sections. When you develop your own plug-ins, you need to
customize each section as described in this information.

72 System i: Connecting to System i Developing iSeries Navigator plug-ins

Primary registry key:

The primary registry key defines a set of fields that specify global information for the plug-in. This

information is required.

Note: The subkey name must match the ProgID for your plug-in.

[HKEY_CLASSES_ROOT\IBM.AS400.Network
\3RD PARTY EXTENSIONS\IBM.VBSample]

"Type"="Plugin"
"NLS"="vbsmpmri.dl1"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="040200"
"ProductID"="NONE"

"ServerEntryPoint"="vbsample.d11"

Primary registry key field

Field description

Type

If the plug-in adds new folders to the iSeries Navigator
hierarchy, the value of this field should be PLUGIN.
Otherwise, it should be EXT.

NLS

Identifies the name of the resource DLL that contains the
locale-dependent resources for the plug-in. In the
development version of the registry file, this may be a
fully qualified pathname.

NamelD

A double word containing the resource identifier of the
text string in the resource DLL which will be used to
identify the plug-in in the iSeries Navigator user
interface.

DescriptionID

A double word that contains the resource identifier of the
text string in the resource DLL. This resource DLL is
used to describe the function of the plug-in in the iSeries
Navigator user interface.

MinimumIMPIRelease

A 6-character string that identifies the minimum release
of i5/0S that runs on the IMPI hardware that the plug-in
requires. The string should be of the form vvrrmm,
where vv is the i5/0S Version, rr is the Release, and mm
is the Modification Level. For example, if the plug-in
requires Version 3 Release 2 Modification Level 0, the
value of this field should be "030200.”

If the plug-in does not support any i5/0S release that
runs on IMPI hardware (releases prior to Version 3
Release 6), the value of this field should be "NONE." If
the plug-in can support any release that runs on IMPI
hardware, the value of this field should be "ANY.”

Developing iSeries Navigator plug-ins 73

Primary registry key field

Field description

MinimumRISCRelease

A 6-character string that identifies the minimum release
of i5/0S that runs on RISC hardware that the plug-in
requires. The string should be of the form vvrrmm,
where vv is the i5/0S Version, tr is the Release, and mm
is the Modification Level. For example, if the plug-in
requires Version 3 Release 7 Modification Level 1, the
value of this field should be "030701".

If the plug-in does not support any i5/0S release that
runs on RISC hardware (Version 3 Release 6 and above),
the value of this field should be "NONE." If the plug-in
can support any release that runs on RISC hardware, the
value of this field should be "ANY.”

ProductID

A 7-character string that specifies the product ID of a
prerequisite System i licensed program that is required
by the plug-in. If the plug-in does not require that a
particular licensed program be installed on the system,
the value of this field should be NONE.

Multiple comma-separated product IDs can be specified
if multiple IDs exist for the same product.

ServerEntryPoint

The name of the code DLL that implements the server
entry point. This entry point is called by iSeries
Navigator when it needs to determine whether the
plug-in is supported on a particular system. If the
plug-in does not implement the entry point, the value of
this field should be "NONE."” In the development version
of the registry file, this may be a fully qualified
pathname.

JavaPath

The classpath string that identifies the location of your
plug-in’s Java classes. During development of your
plug-in, this field might contain the directory paths for
the directories where your class files reside. In the
production version of the registry file, it should identify
your JAR file names relative to the iSeries Access for
Windows installation path, each preceded by the iSeries
Access for Windows substitution variable that represents
the installation path.

JavaMRI

The base names of the JAR files that contain
locale-dependent resources for the plug-in. iSeries
Navigator will search for each JAR file after first
suffixing the name with the appropriate Java language
and country identifiers. If no MRI JAR files exist for a
given locale, iSeries Navigator will expect the MRI for
the base locale (usually US English) to reside in the code
JAR files.

To customize the primary registry key for you own plug-ins, follow these steps:

1. Change the name "vbsample.dll” in the ServerEntryPoint key to match the name of the plug-in

ActiveX server DLL.

2. Change the name "vbsmpmri.dll” in the NLS key to match the name of the C++ MRI resource DLL
for your plug-in. Each Visual Basic plug-in must have a unique C++ MRI DLL name.

Note: Do not include the path in either of these changes.

Related concepts

74 System i: Connecting to System i Developing iSeries Navigator plug-ins

[‘Global changes for Visual Basic plug-in registry files” on page 78|
When developing your own plug-ins, you need to define a unique programmatic identifier (ProgID)
for your plug-in. You must specify a unique ProgID for use throughout the file.

Visual Basic plug-in implementation class:

This section registers a Visual Basic Plug-in ListManager class implementation for each new folder added
to the iSeries Navigator hierarchy.

If your plug-in does not add any new folders to the iSeries Navigator hierarchy, delete this section.
The Visual Basic ListManager class is the main interface to serve data to your plug-in folder.

The sample places the Sample Visual Basic Folder into the root level of a system named AS4 in the iSeries
Navigator hierarchy. If you want your folder to appear at some other point in the hierarchy, you must
change the Parent key value.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\

3RD PARTY EXTENSIONS\IBM.VBSample\
folders\SampleVBFolder]

"Parent"="AS4"

"Attributes"=hex:00,01,00,20
"CLSID"="{040606B1-1C19-11d2-AA12-08005AD17735}"
"VBClass"="vbsample.SampleListManager"
"VBInterface"="{OFC5EC72-8E00-11D2-AA9A-08005AD17735}"
"NameID"=dword:00000082
"DescriptionID"=dword:00000083
"DefaultIconIndex"=dword:00000001
"OpenIconIndex"=dword:00000001

To customize this section for you own plug-ins, follow these steps:

1. Change all occurrences of the name "SampleVBFolder” in the registry file to a unique name that will
identify your folder object. The name that is specified in the registry file must match the object name
that is specified in your ListManager and ActionsManager Visual Basic classes. For the sample plug-in
these Visual Basic source files are: listman.cls and actnman.cls.

2. Change the name "vbsample.SampleListManager” in the VBClass key to match the program identifier
name of your ListManager class. For example, if your ActiveX Server DLL is named foo.dll, and your
ListManager implementation class is MyListManager, then the program identifier is
"foo.MyListManager”. This name is case-sensitive.

3. Change the value of the "VBInterface” key to the ListManager implementation class interface ID.
Parent field values:

A 3 character ID is used to identify the parent of the folder to be added. iSeries Navigator provides a set
of IDs for the parent key value.

You can specify one of the following IDs:

AS4 System folder

Developing iSeries Navigator plug-ins 75

BKF Backup folder

BOF Basic Operations folder

CFG Configuration and Service folder

DBF Database folder

FSF File Systems folder

JMF Job Management folder

MCN Management Central folder

MCS Management Central Configuration and Service folder
MDF Management Central Definitions folder
MST Management Central Scheduled Tasks
MSM Management Central Monitors

MTA Management Central Task Activity
MXS Management Central Extreme Support
NSR Network Servers folder

NWE Network folder

SCF Security folder

UGF Users and Groups folder

Related concepts

[“Example: New folder registry key”]

You must define a separate registry key for the root of each subtree of objects that a plug-in adds to
the object hierarchy. This key contains information specific to the root folder of the subtree. This topic
describes each new folder registry key field and possible values.

Example: New folder registry key:

You must define a separate registry key for the root of each subtree of objects that a plug-in adds to the
object hierarchy. This key contains information specific to the root folder of the subtree. This topic
describes each new folder registry key field and possible values.

Assign the registry key a meaningful folder name that is at least four characters in length.

; Register a new folder

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\folders\Sample]
"Parent"="AS4"

"Attributes"=hex:00,01,00,20

"CLSID"="{D09970E1-9073-11d0-82BD-08005AA74F5C}"

"NameID"=dword:00000082

"DescriptionID"=dword:00000083

"DefaultIconIndex"=dword:00000000

"OpenIconIndex"=dword:00000001

"AdminItem"="QIBM_SAMPLE_SMPFLR"

Parent A three-character ID that identifies the parent of the folder to be added.

Attributes A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in
reverse order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf
method in the Microsoft include file SHLOBJ.H.

CLSID The CLSID of the IA4HierarchyFolder implementation that should be called by iSeries
Navigator to obtain the contents of the folder.

For Java plug-ins, the CLSID always should be: 1827A856-9C20-11d1-96C3-
00062912C9B2.

For Visual Basic plug-ins, the CLSID should always be: 040606B1-1C19-11d2-AA12-
08005AD17735}.

76 System i: Connecting to System i Developing iSeries Navigator plug-ins

JavaClass The fully qualified Java class name of the ListManager implementation that should be
called by iSeries Navigator to obtain the contents of the folder. This field should be
omitted if the plug-in is not a Java plug-in.

VBClass The Program Identifier (ProgID) of the ListManager implementation class that should be
called by iSeries Navigator to obtain the contents of the folder.

VBInterface The GUID of the ListManager implementation class” interface.

NamelD A double word that contains the resource ID of the string that should appear as the

name of the folder in the iSeries Navigator hierarchy.

DescriptionID A double word that contains the resource ID of the string that should appear as the
description of the folder in the iSeries Navigator hierarchy.

DefaultlconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the
icon that should be displayed for the folder in the iSeries Navigator hierarchy. This is a
zero-based index into the resource DLL, not the resource ID of the icon. For indexing to
work properly, the icon resource IDs should be assigned sequentially.

OpenlconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the
icon that should be displayed for the folder in the iSeries Navigator hierarchy whenever
it is selected by the user.

Adminltem A STRING that contains the Function ID of the Application Administration function that
controls access to the folder. If this field is omitted, no Application Administration
function controls access to the folder. If specified, this must be the function ID of a
Group or Administrable function. It cannot be the function ID of a Product Function.

Related concepts

[‘Parent field values” on page 75
A 3 character ID is used to identify the parent of the folder to be added. iSeries Navigator provides a
set of IDs for the parent key value.

Visual Basic plug-in implementation objects:

The final section of the registry specifies which objects in the iSeries Navigator hierarchy are affected by
implementation of the Visual Basic plug-in.

On many of the ActionsManager, ListManager and DropTargetManager class methods, you will be passed
in items or objects. To determine which folder object is being referenced, use the object type string that is
defined in the Windows registry.

Property sheets still can be added to your plug-in by using a context menu item. You cannot use a
registry key for a property sheet that is the mechanism that is used for a C++ plug-in. Property sheet
handlers including the Auto Refresh property sheet handler are not supported for Visual Basic plug-ins.

; Register a context menu handler for the new folder and its objects
[HKEY CLASSES ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\

IBM.VBSample\shellex\SampleVBFolder*\
ContextMenuHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]
"VBClass"="vbsample.SampleActionsManager"
"VBInterface"="{0OFC5EC7A-8E00-11D2-AA9A-08005AD17735}"

; Register drag and drop context menu handlers
[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\
IBM.VBSample\shellex\SampleVBFolder\\

DragDropHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]
"VBClass"="vbsample.SampleActionsManager"

Developing iSeries Navigator plug-ins 77

"VBInterface"="{0OFC5EC7A-8E00-11D2-AA9A-08005AD17735}"

s Register Drop Handler to accept drops of objects
[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.VBSample\

shellex\SampleVBFolder\\

DropHandler]
@="{040606B2-1C19-11d2-AA12-08005AD17735}"
"VBCTass"="vbsample.SampleDropTargetManager"
"VBInterface"="{0FC5EC6E-8EO0-11D2-AA9A-08005AD17735}"

To customize this section for you own plug-ins, follow these steps:

1. Ensure that the class identifier (CLSID) in the entries above always has the following string:
{040606B2-1C19-11d2-AA12-08005AD17735}.

2. The VBClass key contains the program identifier (ProgID) of the Visual Basic implementation class.
3. The VBInterface key contains the Visual Basic implementation class’s interface ID.

4. If your plug-in is not a drop handler for objects, remove the drop-context menu handler and handler
registry entries.

5. Rename the subkeys \SampleVBFolder*\, and use a unique string to identify your folder object. This
name is the object type that is used in your Visual Basic source to identify when actions are taken on
this folder in iSeries Navigator.

6. In the file that you created based on the ActionsManager interface, edit the code that checks for the
object types that are defined by the sample to reflect the name of your new folder object. The
sample’s ActionsManager interface is located in actnman.cls.

Global changes for Visual Basic plug-in registry files:

When developing your own plug-ins, you need to define a unique programmatic identifier (ProgID) for
your plug-in. You must specify a unique ProglID for use throughout the file.

The ProgID should match the <vendor>.<component> text string, where vendor identifies the name of the
vendor who developed the plug-in, and component describes the function provided. In the sample plug-in,
the string IBM.Sample identifies IBM as the vendor, and Sample as the description of the function
provided by the plug-in. This is used throughout the registry file. It names the directory where your
plug-in resides on both the system and the workstation. Replace every occurrence of IBM.Sample in the
registry file with your ProgID.

Replace all instances of IBM.VBSample with your new [vendor].ProgID.

Note: iSeries Navigator provides built-in ActiveX server DLLs that manage plug-ins written in Java and
in Visual Basic. Therefore, all Java and Visual Basic plug-ins register their own respective CLSID.
The registry files that are provided with the programming samples already contain these
predefined CLSIDs.

Related concepts

[‘Primary registry key” on page 73|
The primary registry key defines a set of fields that specify global information for the plug-in. This
information is required.

Sample Java registry file
Each of the sample plug-ins written in Java provides its own registry file.

The following sections describe the important parts of the registry file and illustrate how to create
appropriate entries for your own plug-ins. The examples are taken from the appropriate sample which

illustrates the function described.

78 System i: Connecting to System i Developing iSeries Navigator plug-ins

Programmatic Identifier (ProgID)
Your plug-in is uniquely identified to iSeries Navigator by means of a text string of the form
<vendor>.<component>, where vendor identifies the vendor who developed the plug-in, and
component describes the function provided. In the following examples, the string
IBM.MsgQueueSample3 identifies IBM as the vendor, and MsgQueueSample3 as the description of
the function provided by the plug-in. This string is known as the programmatic identifier
(ProgID). It is used throughout the registry file when you specify the function your plug-in
provides. It also names the directory where your plug-in resides on both the system and the
client workstation.

Globally unique identifiers (GUIDs)

Microsoft’'s Component Object Model uses 16-byte hex integers to uniquely identify ActiveX
implementation classes and interfaces. These integers are known as Globally Unique Identifiers, or
GUIDs. GUIDs that identify implementation classes are called CLSIDs (pronounced "“class IDs").

For iSeries Navigator components written in Java, you should not define new GUIDs. All Java
plug-ins use a set of standard GUIDs that specify the built-in ActiveX server component which
manages Java plug-ins. The standard CLSIDs to use are provided in the examples below.

Defining your plug-in’s primary attributes

; Define the primary registry key for Message Queue Sample 3.

[HKEY _CLASSES ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3]
IITypeII=IIPLUGINII
"NLS"="MessageQueuesMRI.d11"
"NameID"=dword:00000001
"DescriptionID"=dword:00000002
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="ANY"
"ProductID"="NONE"
"ServerEntryPoint"="NONE"
"JavaPath"="MsgQueueSample3.jar"
"JavaMRI"="MsgQueueSampTe3MRI.jar"

Type If the plug-in adds new folders to the iSeries Navigator hierarchy, the value of this field should
be PLUGIN. Otherwise, it should be EXT.

NLS Identifies the name of the resource DLL that contains locale-dependent resources for the plug-in.
In the development version of the registry file, this may be a fully qualified pathname.

NamelD
A double word containing the resource identifier of the text string in the resource DLL which will
be used to identify the plug-in in the iSeries Navigator user interface.

DescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This
resource DLL is used to describe the function of the plug-in in the iSeries Navigator user
interface.

MinimumIMPIRelease
A 6-character string that identifies the minimum release of i5/0S running on IMPI hardware that
the plug-in requires. The string should be of the form vvrrmm, where vv is the i5/0S Version, rr is
the Release, and mm is the Modification Level. For example, if the plug-in requires Version 3
Release 2 Modification Level 0, the value of this field should be 030200.

If the plug-in does not support any i5/0S release that runs on IMPI hardware (releases prior to Version 3

Release 6), the value of this field should be "NONE.” If the plug-in can support any release that runs on
IMPI hardware, the value of this field should be ANY.

Developing iSeries Navigator plug-ins 79

MinimumRISCRelease
A 6-character string that identifies the minimum release of i5/0S running on RISC hardware that
the plug-in requires. The string should be of the form vvrrmm, where vv is the i5/0S Version, rr is
the Release, and mm is the Modification Level. For example, if the plug-in requires Version 3
Release 7 Modification Level 1, the value of this field should be 030701.

If the plug-in does not support any i5/0S release that runs on RISC hardware (Version 3 Release
6 and above), the value of this field should be NONE. If the plug-in can support any release that
runs on RISC hardware, the value of this field should be "ANY.”

ProductID
A 7-character string that specifies the product ID of a prerequisite System i licensed program that
is required by the plug-in. If the plug-in does not require that a particular licensed program be
installed on the system, the value of this field should be NONE.

Multiple comma-separated product IDs can be specified if multiple IDs exist for the same
product.

ServerEntryPoint
The name of the code DLL that implements the server entry point. This entry point is called by
iSeries Navigator when it needs to determine whether the plug-in is supported on a particular
System i platform. If the plug-in does not implement the entry point, the value of this field
should be NONE. In the development version of the registry file, this can be a fully qualified
pathname.

JavaPath
The classpath string that identifies the location of your plug-in’s Java classes. During
development of your plug-in, this field might contain the directory paths for the directories
where your class files reside. In the production version of the registry file, it should identify your
JAR files. The JAR file names should not be qualified with any directory names - iSeries
Navigator will qualify them automatically when it constructs the classpath string to be passed to
the Java VM.

JavaMRI
The base names of the JAR files that contain locale-dependent resources for the plug-in. iSeries
Navigator searches for each JAR file after first adding a suffix to the name with the appropriate
Java language and country identifiers. In the development version of the registry file, this field
can contain an empty string because the resources for the base locale (typically US English)
should reside in the code JAR.

Defining new folders

s Register a new folder

[HKEY _CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\folders\Sample3]
"Parent"="AS4"

"Attributes"=hex:00,01,00,a0
"CLSID"="{1827A856-9C20-11d1-96C3-00062912C9B2}"
"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MgListManager"
"NameID"=dword:0000000b

"DescriptionID"=dword:0000000c
"DefaultIconIndex"=dword:00000001
"OpenIconIndex"=dword:00000000

"AdminItem"="QIBM_SAMPLE_SMPFLR"

"TaskpadNameID"=dword:00000003
"TaskpadDescriptionID"=dword:00000004

Type Each new folder that your plug-in adds to the iSeries Navigator hierarchy has a unique logical
type. In the example above, the string Sample3 is the type which will be used to identify the
currently selected folder when control is passed to your plug-in at run time.

Parent A three-character ID that identifies the parent of the folder to be added. One of the following IDs

80 System i: Connecting to System i Developing iSeries Navigator plug-ins

can be specified:

ADF Application Development folder

AS4 System folder

BKF Backup folder

BOF Basic Operations folder

CFG Configuration and Service folder

DBF Database folder

FSF File Systems folder

MCN Management Central folder

MCS Management Central Configuration and Service folder
MDEF Management Central Definitions folder
MMN Management Central Monitors

MST Management Central Scheduled Tasks
MTA Management Central Task Activity
MXS Management Central Extreme Support
NSR Network Servers folder

NWF Network folder

SCF Security folder

UGF Users and Groups folder

WMF Work Management folder

Attributes

A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in reverse
order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf method in the
Microsoft include file SHLOBJ.H. To indicate that your folder has a taskpad, use 0x00000008.

CLSID
The CLSID of the IA4HierarchyFolder implementation that should be called by iSeries Navigator

to obtain the contents of the folder. For Java plug-ins this CLSID should always be
{1827A856-9C20-11d1-96C3-00062912C9B2}.

JavaClass
The fully qualified Java class name of the ListManager implementation that should be called by
the iSeries Navigator to obtain the contents of the folder.

NameID
A double word that contains the resource ID of the string that should appear as the name of the
folder in the iSeries Navigator hierarchy.

DescriptionID
A double word that contains the resource ID of the string that should appear as the description of
the folder in the iSeries Navigator hierarchy.

DefaultIconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy. This is a zero-based index
into the resource DLL, not the resource ID of the icon. For indexing to work properly, the icon
resource IDs should be assigned sequentially.

OpenlconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy whenever it is selected by
the user. This may be the same as the default icon index.

Adminltem
A STRING that contains the Function ID of the Application Administration function that controls

Developing iSeries Navigator plug-ins 81

access to the folder. If this field is omitted, no Application Administration function controls access
to the folder. If specified, this must be the function ID of a Group or Administrable function. It
cannot be the function ID of a Product Function.

TaskpadNamelID
A double word that contains the resource ID of the string that should appear as the name of the
taskpad in the iSeries Navigator hierarchy.

TaskpadDescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This
resource DLL is used to describe the function of the taskpad in the iSeries Navigator user
interface.

Adding context menu items

; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\ContextMenuHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MgActionsManager"

; Register a drag/drop context menu handler for the new folder and

its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\DragDropHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]
"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MgActionsManager"

Adding taskpad tasks

; Register a task handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample5\

shellex\Sample5*\TaskHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]
"JavaClass"="com.ibm.as400.opnav.MsgQueueSample5.MgTasksManager"
"JavaClassType"="TasksManager"

Supporting drag/drop

; Register a drop handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\DropHandler]

@="{1827A857-9C20-11d1-96(C3-00062912C9B2}"

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MgDropTargetManager"

Specifying the objects to be managed

A pair of object type identifiers is required under the shellex key. The first identifier in the pair specifies
the root folder for an iSeries Navigator component. For new folders added by your plug-in, this identifier
should match the logical type of the folder you specified as your junction point. For existing folders, this
subkey should generally be the object type of the first-level folder under a System i container object.
These type strings are defined under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If "*" is
specified, the plug-in will be called the for the folder type identified in the first identifier, plus all folders
and objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier should
be specified, and the plug-in will only be called when the user performs an action on an object of that

type.

82 System i: Connecting to System i Developing iSeries Navigator plug-ins

Remember that any number of plug-ins can register their intent to add functions to a given object type in
the iSeries Navigator hierarchy. The plug-in should never assume that it is the only system component
that is providing functions for a given object type. This applies not only to existing object types, but also
to any new objects that a plug-in might define. If your plug-in is widely used, nothing prevents another
vendor from extending object types that are defined by your plug-in.

CLSIDs
The CLSIDs shown in the above examples specify the built-in ActiveX server component which
manages Java plug-ins. For all non-folder related function this CLSID should always be
{1827A857-9C20-11d1-96C3-00062912C9B2}.

JavaClass
The fully qualified Java class name of the interface implementation that should be called by the
iSeries Navigator to support the designated function.

SSL support

If a plug-in’s communications with the system are performed by the Sockets API or some other low-level
communications service, then it is the responsibility of the plug-in to support SSL if SSL has been
requested. If the plug-in does not provide this support, it should specify "Support
Level"=dword:00000000. This indicates that the plug-in does not support SSL. When this is done, the
plug-in’s function is disabled if the user has requested a secure connection.

s Indicate that this plug-in supports SSL.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\SSL]
"Support Level"=dword:00000001

Support Level
If the plug-in supports SSL, this value should be 1. Otherwise, it should be 0.

Property pages for a property sheet handler

The Microsoft Foundation Class (MFC) Library classes do not support the creation of property pages for
a property sheet handler. However, you can use IBM-provided CExtPropertyPage in place of the MFC
class CPropertyPage.

Property pages implemented by iSeries Navigator plug-ins should have subclass CExtPropertyPage. The
class declaration can be found in the header file PROPEXT.H, and the implementation is contained in the
file PROPEXT.CPP. Both files are provided as part of the sample plug-in.

Note: It is necessary to include PROPEXT.CPP in the project workspace for your plug-in.

If a plug-in requires that a property sheet is associated with one of its own object types, the
SFGAO_HASPROPSHEET flag must be returned as part of the attributes of the object. When this flag is
on, iSeries Navigator automatically adds Properties to the context menu for the object and calls any
registered property sheet handlers to add pages to the property sheet if the context menu item is selected.

In certain cases, a plug-in might implement a Properties context menu item that is defined for one of its
own object types as a standard Windows dialog instead of as a property sheet. A flag is defined for this
situation. It might be returned to iSeries Navigator on calls to IContextMenu::QueryContextMenu. If the
flag is returned, no automatic processing for Properties is performed, and it is up to the plug-in to add
the context menu item and implement the associated dialog. This flag is documented in Description of
QueryContextMenu flags.

If a plug-in intends to add property pages to a user’s property sheets, the key that specifies the CLSID of

the property sheet handler must specify a PropSheet field. This field identifies the property sheet to
which the specified handler will add pages. Here is an example.

Developing iSeries Navigator plug-ins 83

Register a property sheet handler for the Network property sheet for iSeries users
[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Users
and Groups\User\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

"PropSheet"="Networks"

Valid values for the PropSheet field are:

PropSheet field valid values

Groups

Personal

Security or
capabilities

Jobs

Networks

Groups-Before-All

Groups-After-Info

Personal-Before-All
Personal-After-Name

Personal-After-
Location

Personal-After-Mail

Capabilities-Before-
All

Capabilities-After-
Privileges

Capabilities-After-
Auditing

Capabilities-Before-
Other

Capabilities-After-
Other

Jobs-Before-All

Jobs-After-General
Jobs-After-Startup
Jobs-After-Display
Jobs-After-Output

Jobs-After-
International

Networks-Before-All

Networks-After-
Servers

Networks-After-
General

To add pages to a property sheet for a system user, the plug-in must implement the IA4PropSheetNotify
interface (see IA4PropSheetNotify interface specifications listing).

Restriction: Property sheets for System i user objects currently have this restriction. Multiple property
sheet handlers for the various property sheets associated with a system user cannot be
implemented on the same implementation class. Each property sheet requires a separate

CLSID.
Related concepts

[‘TA4PropSheetNotify interface specifications listing” on page 30|

The IA4PropSheetNotify interface supplies notifications to the implementation of IShellPropSheetExt.
These notifications are needed when you add additional property pages to one of the Users and
Groups property sheets.

Description of QueryContextMenu flags:

iSeries Navigator has enhanced its support for the IContextMenu interface.

Ordering of context menu items

iSeries Navigator has extended the IContextMenu interface to obtain more precise control over the order
in which menu items are added to the menu for a particular folder or object. iSeries Navigator structures
its context menus in three sections. This structure ensures that when more than one component adds
items to the context menu for an object, the items will still appear in the correct order that is defined for
the Windows user interface.

The first section contains actions which are specific to the object type, such as Reorganize for a database
table. The second section contains "object creation” items; these items are object types which cascade off
of a New menu item. Lastly there are the so-called "standard” Windows menu items, such as Delete or
Properties. You may choose to add menu items to any section of the context menu.

84 System i: Connecting to System i Developing iSeries Navigator plug-ins

iSeries Navigator calls the QueryContextMenu method for a component three times in succession, once
for each section of the menu. The following additional flags are defined in the uFlags parameter so that
you can determine which section of the context menu is serviced.

UNITY_CMF_CUSTOM
This flag indicates that you should add object-specific actions to the menu.

UNITY_CMF_NEW
This flag indicates that you should add object creation items to the menu.

UNITY_CMF_STANDARD
This flag indicates that you should add standard actions to the menu.

UNITY_CMF_FILEMENU

This flag changes UNITY_CMF_STANDARD. It indicates construction of the File menu pull down
for your object, as opposed to the menu that is displayed when the user clicks on an object with
mouse button 2.

Items on the File pull down are arranged slightly differently. If you add Properties to the menu,
you should avoid inserting a separator as is normally done before this item. Also, edit actions
such as Copy or Paste should not be added to the File menu, because they appear on the Edit
pull down instead. (iSeries Navigator calls your shell plug-in at the appropriate time to obtain the
items for the Edit menu, and does not set UNITY_CMF_FILEMENU).

Unique property dialogs

In certain cases, a plug-in may desire to implement a Properties context menu item that is defined for one
of its own object types as a standard Windows dialog instead of a property sheet. A flag that is defined
for this situation may be returned to iSeries Navigator on calls to IContextMenu::QueryContextMenu
when the UNITY_CMF_STANDARD flag is set. This flag, A4HYF_INFO_PROPERTIESADDED, should be
OR’d with the HRESULT value that is returned by QueryContextMenu.

Returning this flag means that automatic processing for Properties is not performed. In this case, the
plug-in must add the context menu item and construct the associated dialog.

Example: Constructing Visual Basic property pages for a property sheet handler
You cannot use a registry key to specify property pages that are implemented by iSeries Navigator Visual
Basic plug-ins. You must add a specific property page context menu item in your ListManager class to
implement a property page. You cannot add a property page to any existing property sheet objects.

In the Visual Basic Sample plug-in, a property page is supported for libraries in the iSeries Navigator list.
This is done with the following steps:

1. In listman.cls, the Library object type specifies a properties page in the getAttributes method:

' Returns the attributes of an object in the list.

Public Function ListManager getAttributes(ByVal item As Object) As Long
Dim ultem As ItemIdentifier
Dim nAttributes As ObjectTypeConstants

If Not IsEmpty(item) Then
Set ultem = item
End If

If ultem.getType = "SampleVBFolder" Then
nAttributes = OBJECT_ISCONTAINER

Elself item.getType = "SampleLibrary" Then
nAttributes = OBJECT_IMPLEMENTSPROPERTIES

Else
nAttributes = 0

Developing iSeries Navigator plug-ins 85

End If

ListManager getAttributes = nAttributes
End Function

2. In actnman.cls, the queryActions method specifies that properties should be shown on the Library
object context menu.

Public Function ActionsManager queryActions(ByVal flags As Long) As Variant

" Add menu items to a Sample Library
If selectedFolderType = "SampleLibrary" Then
' Standard Actions
If (flags And STANDARD ACTIONS) = STANDARD ACTIONS Then
ReDim actions(0)

' Properties
Set actions(0) = New ActionDescriptor
With actions(0)
.Create
.setID IDPROPERTIES
.SetText m_ulLoader.getString(IDS_ACTIONTEXT_PROPERTIES)
.setHelpText m_ulLoader.getString(IDS_ACTIONHELP_PROPERTIES)
.setVerb "PROPERTIES"
.setEnabled True
.setDefault True
End With

" Properties is only selectable if there is ONLY 1 object selected
If Not IsEmpty(m_ObjectNames) Then
If UBound(m ObjectNames) > 0 Then
actions(2).setEnabled False
End If
End If
End If
End If

End Function

3. In actnman.cls, the actionsSelected method displays a properties form when the properties context
menu is selected.
Public Sub ActionsManager_actionSelected(ByVal action As Integer, ByVal owner As Long)

Select Case action

Case IDPROPERTIES
If (Not IsEmpty(m ObjectNames)) Then
' Pass the System Name into a hidden field on the form for later use
frmProperties.1b1SystemName = m_ObjectNames(0).getSystemName

' Pass the Display Name of the selected object into a hidden field on the form
frmProperties.TblLibName = m_ObjectNames(0).getDisplayName

' Show the properties

frmProperties.Show vbModal
End If

Case Else
'Do Nothing

86 System i: Connecting to System i Developing iSeries Navigator plug-ins

End Select

End Sub

Note: The code to create and display the property sheet can be seen in propsht.frm

Property sheet handling in Java
You can add property pages to Java plug-in property sheets. Then, you can build object names, display
properties, share objects with third parties, and mix C++ and Java code in the same plug-in.

To use property pages, you must build the properties manager interface, which provides the following
methods:

¢ Initialize

Identifies the container object for the properties.
* getPages

Construct and provide a vector of PanelManager objects.
* CommitHandlers

Returns a vector of handlers to be called upon Commit.
* CancelHandlers

Returns a vector of handlers to be called upon Cancel.

Then enable the properties menu by having the ListManager getAttributes method return
ListManager.OBJECT_HASPROPERTIES.

Finally, create a registry entry that identifies the PopertiesManagerInterface. For example:

[HKEY _CLASSES_ROOT\IBM.AS400.Network\AS/400 Network\=*
\shellex\PropertySheetHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]
"JavaClass"="com.ibm.as400.opnav.TestPages.TestPropertiesManager"
"JavaClassType"="PropertiesManager"

Note: Multiple PropertiesManager implementations may register to provide property pages for a given
object type. Do not assume that your entity is the only one supplying pages, or the order that the
pages will be added.

Example: Java Properties Manager:

This example shows a Java Properties Manager code sample.

Note: By using the code examples, you agree to the terms of the [“Code license and disclaimer|
[information” on page 90

package com.ibm.as400.opnav.Sample;
import com.ibm.as400.opnav.*;

import java.awt.Frame;

import com.ibm.as400.ui.framework.java.*;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class SamplePropertiesManager implements
PropertiesManager

{

// The 1list of selected objects.
ObjectName[] m_objectNames;

Developing iSeries Navigator plug-ins 87

// Save the array of selected object names
//

public void initialize(ObjectName[] objectNames)

{

m_objectNames = objectNames;

}

// Return an array of Panel Managers
//
public PanelManager[] getPages()

{

// Instantiate the data beans

MyDataBean dataBean = new MyDataBean();
dataBean.load();

AnotherDataBean dataBean2 = new AnotherDataBean();
dataBean2.load();

DataBean[] dataBeans = { dataBean };
DataBean[] dataBeans2 = { dataBean2 };

// Create the panel
PanelManager pm = null;
PanelManager pm2 = null; try

{

pm = new PanelManager("com.ibm.as400.opnav.Sample.Sample",
"PAGE1",

dataBeans);

pm2 = new PanelManager("com.ibm.as400.opnav.Sample.Sample",

"PAGE2",
dataBeans?2);

}

catch (com.ibm.as400.ui.framework.java.DisplayManagerException
e)
{

Monitor.logError("SamplePropertiesManager: Exception when
creating pages "+e);

}

pm.setTitle("First Java Page");
pm2.setTitle("Second Java Page");

PanelManager[] PMArray = {pm, pm2};
return PMArray;

}

// Return a list of ActionListener objects to be notified when
commit is processed

public ActionListener[] getCommitListeners()

{

ActionListener[] al = new ActionListener[1];
al[0] = new ActionListener()

{

88 System i: Connecting to System i Developing iSeries Navigator plug-ins

public void actionPerformed(ActionEvent evt)

{

Monitor.logError("SamplePropertiesManager: Processing Commit
Listener");

}
}s

return al;

// Return a list of ActionListener objects to be notified when
cancel is selected
public ActionListener[] getCancelListeners()

{

ActionListener[] al = new ActionListener[1];
al[0] = new ActionListener()

public void actionPerformed(ActionEvent evt)

{

Monitor.logError("SamplePropertiesManager: Processing Cancel
Listener");

}
}s

return al;
1
1

Secure Sockets Layer registry entry

iSeries Navigator users can request a secure connection to a system by selecting the Use Secure Sockets
Layer checkbox on the Connection tabbed page of the property sheet for System i objects. When this is
done, only iSeries Navigator components that are capable of supporting Secure Sockets Layer (SSL)
communications are enabled for activation by the user.

If all of a plug-in’s communications with the system are managed by using the iSeries Access for
Windows system handle (enter cwbCO_SysHandle) or by using the class com.ibm.as400.access.AS400 in
the case of a Java plug-in, then the plug-in should indicate that it supports secure connections to the
system. For C++ plug-ins, the cwbCO_SysHandle is obtained by calling the cwbUN_GetSystemHandle
APL When the user requests a secure connection, iSeries Navigator automatically enables SSL. In the case
of Java plug-ins, the System i object obtained by calling the getSystemObject method on the class
com.ibm.as400.opnav.ObjectName is actually an instance of com.ibm.as400.access.SecureAS400.

Note: If you are running Java over SSL, and creating your own CA certificate, iSeries Access for
Windows GA service pack is required.

When a plug-in’s communications with the system are performed by using the Sockets API or some other
low-level communications service, then it is the responsibility of the plug-in to support SSL, if SSL has
been requested. If the plug-in does not provide this support, the plug-in should indicate that it does not
support SSL as shown in the following example. When this is done, the plug-in’s function is disabled, if
the user has requested a secure connection.

Developing iSeries Navigator plug-ins 89

Example: Adding a registry key to enable SSL

The key is SSL under [HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL]
"Support Level"=dword:00000001 where IBM.Sample is the plug-in supplied product component.

Note: "Support Level"=dword:00000001 = supports SSL, and "Support Level"=dword:00000000 = does
NOT support SSL.

; Example registry key that

says this plug-in supports SSL

{HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL}
"Support Level"=dword:00000001

Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC
CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

90 System i: Connecting to System i Developing iSeries Navigator plug-ins

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2004, 2006 91

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

US.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Developing iSeries Navigator plug-ins publication documents intended Programming Interfaces that
allow the customer to write programs to obtain the services of IBM i5/OS.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

i5/0S

IBM

IBM (logo)
iSeries
NetServer
System i

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

92 System i: Connecting to System i Developing iSeries Navigator plug-ins

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 93

94 System i: Connecting to System i Developing iSeries Navigator plug-ins

Printed in USA

	Contents
	Developing iSeries Navigator plug-ins
	What's new for V5R4
	Printable PDF
	Plug-in support in iSeries Navigator
	What you can do with a plug-in
	How plug-ins work
	Plug-in requirements
	Distributing plug-ins
	Setup.ini file
	Example: Information section of setup.ini
	Example: Service section of setup.ini
	Example: Identify files section of setup.ini
	Example: Exit programs section of the setup.ini

	MRI setup file

	Identifying plug-ins to iSeries Navigator

	Installing and running sample plug-ins
	Setting up sample C++ plug-ins
	Setting up sample Visual Basic plug-ins
	Sample Visual Basic plug-in directory of files

	Setting up the sample Java plug-ins
	Sample Java plug-in directory of files

	Plug-in programming reference
	C++ reference
	iSeries Navigator structure and flow of control for C++ plug-ins
	iSeries Navigator COM interfaces for C++
	Description of IA4HierarchyFolder Interface
	IA4HierarchyFolder interface specifications listing
	IA4HierarchyFolder::Activate
	IA4HierarchyFolder::BindToList
	IA4HierarchyFolder::DisplayErrorMessage
	IA4HierarchyFolder::GetAttributesOf
	IA4HierarchyFolder::GetColumnDataItem
	IA4HierarchyFolder::GetColumnInfo
	IA4HierarchyFolder::GetIconIndexOf
	IA4HierarchyFolder::GetItemCount
	IA4HierarchyFolder::GetToolBarInfo
	IA4HierarchyFolder::GetListObject
	IA4HierarchyFolder::ItemAt
	IA4HierarchyFolder::ProcessTerminating
	IA4HierarchyFolder::Refresh

	Description of IA4PropSheetNotify interface
	IA4PropSheetNotify interface specifications listing
	IA4PropSheetNotify::ApplyChanges
	IA4PropSheetNotify::GetErrorMessage
	IA4PropSheetNotify::InformUserState

	iSeries Navigator APIs
	iSeries Navigator API listing
	cwbUN_GetSystemValue
	cwbUN_GetSystemHandle
	cwbUN_ReleaseSystemHandle
	cwbUN_CheckObjectAuthority
	cwbUN_CheckSpecialAuthority
	cwbUN_CheckAS400Name
	cwbUN_GetUserAttribute
	cwbUN_ConvertPidlToString
	cwbUN_GetDisplayNameFromItemId
	cwbUN_GetDisplayNameFromName
	cwbUN_GetDisplayPathFromName
	cwbUN_GetIndexFromItemId
	cwbUN_GetIndexFromName
	cwbUN_GetIndexFromPidl
	cwbUN_GetListObject
	cwbUN_GetParentFolderNameFromName
	cwbUN_GetParentFolderPathFromName
	cwbUN_GetParentFolderPidl
	cwbUN_GetSystemNameFromName
	cwbUN_GetSystemNameFromPidl
	cwbUN_GetTypeFromName
	cwbUN_GetTypeFromPidl
	cwbUN_RefreshAll
	cwbUN_RefreshList
	cwbUN_RefreshListItems
	cwbUN_UpdateStatusBar
	cwbUN_GetODBCConnection
	cwbUN_EndODBCConnections
	cwbUN_GetIconIndex
	cwbUN_GetSharedImageList
	cwbUN_GetAdminValue
	cwbUN_GetAdminValueEx
	cwbUN_GetAdminCacheState
	cwbUN_GetAdminCacheStateEx
	cwbUN_IsSubcomponentInstalled
	cwbUN_OpenLocalLdapServer
	cwbUN_FreeLocalLdapServer
	cwbUN_GetLdapSvrPort
	cwbUN_GetLdapSvrSuffixCount
	cwbUN_GetLdapSvrSuffixName
	cwbUN_OpenLdapPublishing
	cwbUN_FreeLdapPublishing
	cwbUN_GetLdapPublishCount
	cwbUN_GetLdapPublishType
	cwbUN_GetLdapPublishServer
	cwbUN_GetLdapPublishPort
	cwbUN_GetLdapPublishParentDn

	Return codes unique to iSeries Navigator APIs

	Visual Basic reference
	iSeries Navigator structure and flow of control for Visual Basic plug-ins
	iSeries Navigator Visual Basic interfaces
	iSeries Navigator ListManager interface class
	iSeries Navigator ActionsManager interface class
	iSeries Navigator DropTargetManager interface class

	Java reference
	iSeries Navigator structure and flow of control for Java plug-ins

	Customizing the plug-in registry files
	Customizing the C++ registry values
	Primary registry key
	Data server implementation
	Shell plug-in implementation class
	Shell plug-in implementation for objects
	Shell plug-ins

	Global changes for C++ plug-in registry files

	Customizing the Visual Basic plug-in registry values
	Primary registry key
	Visual Basic plug-in implementation class
	Parent field values
	Example: New folder registry key

	Visual Basic plug-in implementation objects
	Global changes for Visual Basic plug-in registry files

	Sample Java registry file
	Property pages for a property sheet handler
	Description of QueryContextMenu flags

	Example: Constructing Visual Basic property pages for a property sheet handler
	Property sheet handling in Java
	Example: Java Properties Manager

	Secure Sockets Layer registry entry

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions

