

AS/400 IBM

ICF Programming
Version 4

 SC41-5442-00

AS/400 IBM

ICF Programming
Version 4

 SC41-5442-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

First Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto Rico, or
Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail your
comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth
in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Programming Interface Information ix
Trademarks and Service Marks ix

About ICF Programming, SC41-5442 xi
Who Should Use This Book xi
Prerequisite and Related Information xi
Information Available on the World Wide Web xi

Chapter 1. Introduction to AS/400 System
Communications 1-1

Planning for Data Communications 1-1
Installing Communications Hardware 1-1
Configuring Your System for Data Communications . . 1-1
Writing Programs that Use the Intersystem

Communications Function (ICF) 1-1
Operating Communications on the AS/400 System . . 1-1

Chapter 2. Communications Features 2-1
Intersystem Communications Function Communications

Types . 2-1
AS/400 System Communications Types 2-1
Non-Intersystem Communications Function

Communications 2-3
Communicating with Remote Work Stations 2-3
Combinations of Communications Types 2-3

AS/400 System Communications Line Support 2-3
Operating System/400 2-4

Communications Configuration 2-4
Intersystem Communications Function File 2-4
Data Description Specifications (DDS) 2-4
System-Supplied Formats 2-4
Control Language 2-4
Security . 2-5
Error Handling . 2-5

High-Level Language Support 2-5
Additional Programming Support 2-5

Chapter 3. Introduction to Intersystem
Communications Function 3-1

Configuring for Communications 3-2
Varying on Communications Configurations 3-3
The Intersystem Communications Function File 3-3

Defining the File 3-3
Using the File . 3-3

Starting Your Program 3-4
Opening the Intersystem Communications Function File 3-4
Starting Communications with the Remote System . . 3-4
Starting a Program on the Remote System 3-6
Connecting to the Session — Target Program 3-7
Sending and Receiving Data 3-9
Ending Communications with the Remote System . . 3-10

Ending the Transaction 3-10
Ending the Session 3-11

Closing the Intersystem Communications Function File 3-12
Varying off Communications Configurations 3-12

Additional Information on Sessions and Transactions 3-12
Multiple Transactions 3-12
Multiple Sessions 3-13

Summary . 3-14
Source Program 3-14
Target Program 3-16

Chapter 4. Intersystem Communications Function
Files . 4-1

Introduction to Intersystem Communications Function
Files . 4-1

Intersystem Communications Function File Commands 4-2
File-Level Attribute Commands 4-2
Program Device Entry Commands 4-2
Display Information Commands 4-2

Creating an Intersystem Communications Function File 4-3
Defining the Record Formats for an Intersystem

Communications Function File 4-3
File Attributes . 4-3
Acquiring a Program Device when the File Is Opened 4-3

Changing an Intersystem Communications Function File 4-5
Overriding an Intersystem Communications Function File 4-6
Identifying the Devices Used with an Intersystem

Communications Function File 4-7
Defining Program Device Entries Permanently . . . 4-7
Defining Program Device Entries Temporarily . . . 4-7
Mapping Program Device Name to Communications

Configurations 4-10
Communications-Type-Dependent Attributes . . . 4-12

Intersystem Communications Function Command
Summary . 4-15

Chapter 5. Using an Intersystem Communications
Function File . 5-1

Opening an Intersystem Communications Function File 5-1
Obtaining Information about the Open Intersystem

Communications Function File 5-1
Acquiring a Program Device 5-2

Acquiring a Program Device – Source Program . . 5-2
Acquiring a Program Device – Target Program . . . 5-3

Obtaining Information about a Particular Program Device 5-3
Program Device Definition List 5-3
Get-Attributes Operation 5-3

Sending and Receiving Data 5-6
Common I/O Feedback Area 5-6
File-Dependent I/O Feedback Area 5-6
Checking Return Codes 5-7
Writing to a Program Device 5-7
Inviting a Program Device 5-7
Format Selection Processing 5-8
Reading from Invited Program Devices 5-10
Reading from One Program Device 5-14
Writing and Then Reading from One Program

Device . 5-15
Canceling an Invite of a Program Device 5-15

 Copyright IBM Corp. 1997 iii

Waiting for a Display File, an ICF File, and a Data
Queue . 5-15

Releasing a Program Device 5-16
Closing an Intersystem Communications Function File 5-17
Summary . 5-17

Local System 5-18
Remote System 5-19

Chapter 6. Using Communications DDS Keywords 6-1
Starting a Program on the Remote System 6-1

Evoke (EVOKE, DFREVOKE, SECURITY, and
SYNLVL) . 6-1

Differences between DDS and System-Supplied
Evoke Functions 6-3

Sending Data . 6-3
Variable-Length Data (VARLEN) 6-4
Variable-Buffer-Management (VARBUFMGT) 6-4
Force-Data (FRCDTA) 6-4
Confirm (CONFIRM) 6-4
Format-Name (FMTNAME) 6-4
Subdevice-Selection (SUBDEV) 6-4
End-of-Group (ENDGRP) 6-4
Function-Management-Header (FMH) 6-5
Control-Data (CTLDTA) 6-5
Prepare-for-Commit Function 6-5
Transaction-Synchronization-Level Function 6-5
Examples of Sending Data 6-6

Receiving Data . 6-7
Invite (INVITE) . 6-7
Timer (TIMER) . 6-8
Record-Identification (RECID) 6-8

Problem Notification 6-9
Fail (FAIL) . 6-9
Cancel (CANCEL) 6-10
Negative-Response (NEGRSP) 6-11

Additional Keywords 6-12
Respond-to-Confirm (RSPCONFIRM) 6-12
Request-to-Write (RQSWRT) 6-13
Allow-Write (ALWWRT) 6-15
Cancel-Invite (CNLINVITE) 6-16

Ending a Communications Transaction 6-16
Detach (DETACH) 6-16
Using the Detach Function When the

Synchronization Level is None 6-17
Using the Detach Function When the

Synchronization Level is Confirm 6-17
Using the Detach Function When the

Synchronization Level is Commit 6-17
Using the Detach Function From a Target Program 6-18

Ending the Communications Session 6-18
End-of-Session (EOS) 6-18

Using Response Indicator Keywords 6-18
Receive-Confirm 6-19
Receive-Control-Data 6-19
Receive-End-of-Group 6-19
Receive-Function-Management Header 6-19
Receive-Fail . 6-19
Receive-Cancel 6-19
Receive-Negative-Response 6-19
Receive-Turnaround 6-19

Receive-Detach 6-19
Receive-Rollback 6-19
Receive-Take-Commit 6-20

Example DDS Files for Creating an Intersystem
Communications Function File 6-20

Keyword Processing Charts 6-21

Chapter 7. Using System-Supplied Communications
Formats . 7-1

General Description 7-1
Starting a Program on the Remote System 7-1

Evoke . 7-2
Sending Data . 7-4
Receiving Data . 7-6

Invite . 7-6
Timer . 7-7

Problem Notification 7-8
Fail . 7-8
Cancel . 7-10
Negative-Response 7-11

Additional System-Supplied Formats 7-13
Positive-Response 7-13
Request-to-Write 7-13
Cancel-Invite . 7-16

Ending a Communications Transaction 7-17
Detach . 7-17

Ending the Communications Session 7-19
End of Session 7-19

System-Supplied Format Support 7-20
Mapping System-Supplied Formats to DDS Keywords 7-21

Chapter 8. Programming Considerations 8-1
Return Codes . 8-1

Major Codes . 8-1
Minor Codes . 8-1

ICF Environment Considerations 8-1
Open or Acquire Considerations 8-2
Output Considerations 8-2
Input Considerations 8-3
Release, End-of-Session, and Close Considerations . 8-3

Release Considerations 8-3
End-of-Session Considerations 8-4
Close Considerations 8-4

Two-Phase Commit Considerations 8-4
Committing Resources 8-4
Rolling Back Resources 8-5
Exchanging Log Names 8-5
Performance . 8-5

Remote Program Start Considerations 8-5
Defining the Environment 8-5
Handling Program Start Requests 8-6

Prestarting Jobs for Program Start Requests 8-8
Commands . 8-8
Application Considerations 8-8
Security Considerations for Prestart Jobs 8-9
Prestart Jobs Program 8-9

System Considerations 8-12
Security Considerations 8-12
File Considerations 8-13
File Redirection . 8-13

iv ICF Programming V4R1

Additional Considerations 8-13

Chapter 9. ILE C Communications Applications . . 9-1
Introduction to the ILE C Interface 9-1
Multiple-Session Inquiry 9-1
Error Handling . 9-1
Accessing the Feedback Areas 9-2
Source Program Multiple-Session Inquiry 9-10

Chapter 10. COBOL/400 Communications
Applications . 10-1

Introduction to the COBOL/400 Interface 10-1
Example Programs 10-2
Batch Data Transfer (Example I) 10-4
Multiple-Session Inquiry (Example II) 10-25

Chapter 11. RPG/400 Communications
Applications . 11-1

Introduction to the RPG/400 Interface 11-1
Example Programs 11-2
Batch Data Transfer (Example I) 11-3
Multiple-Session Inquiry (Example II) 11-25

Chapter 12. Tracing Intersystem Communications
Function Operations and Functions 12-1

Starting the Trace 12-1
Stopping the Trace 12-2

Trace Records Sent to a Spooled File 12-3
Trace Records Sent to a Database File 12-4

Ending the Trace 12-5
Additional Considerations 12-5
Displaying Communications Status 12-5

Appendix A. Language Operations, Data
Description Specifications Keywords, and
System-Supplied Formats A-1

Language Operations A-1
DDS Keyword Support A-2
System-Supplied Format Support A-6

Appendix B. Communications Error Handling . . . B-1
System Error Classification B-1
System Messages B-1
User Program Error Detection B-2
Control Language (CL) Commands for Determining

Configuration Status B-3
Major/Minor Return Codes B-3
Major Code 00 . B-4
Major Code 02 . B-6

Major Code 03 . B-10
Major Code 04 . B-11
Major Codes 08–11 B-12
Major Code 34 . B-12
Major Code 80 . B-13
Major Code 81 . B-14
Major Code 82 . B-17
Major Code 83 . B-20
Failed Program Start Requests B-23

Appendix C. Open Feedback and I/O Feedback . . C-1
Open Feedback Area C-1

Program Device Definition List C-2
Input/Output Feedback Area C-3

Common I/O Feedback Area C-3
File-Dependent I/O Feedback Area C-3

Appendix D. EBCDIC and ASCII Character Sets . . D-1
EBCDIC Character Set D-1
ASCII Character Set D-2

Appendix E. File Transfer Support E-1
File Transfer Support Overview E-1

Data Compression E-1
File Transfer Considerations E-1

To and From an AS/400 System E-1
AS/400 System Retrieving from System/36 E-2
AS/400 System Sending to System/36 E-2

Multiple Communication-Type Support E-2
File Transfer Parameters E-3

To and From an AS/400 System E-3
AS/400 System Sending to System/36 E-6
AS/400 System Retrieving a File from System/36 . E-9
Retrieving a Library Member from System/36 . . E-12

Calling File Transfer Support for the ILE C
Programming Language E-16

Calling File Transfer Support for COBOL/400
Programming Language E-23

Calling File Transfer Support for RPG/400
Programming Language E-28

Calling File Transfer Support for a CL Program . . . E-32
File Transfer Support Messages E-34

Bibliography . H-1
Communications Books H-1
Programming Language Books H-1
System/36-Related Books H-2

Index . X-1

 Contents v

 Figures

3-1. Sending Data from a Local Program to a
Remote Program 3-1

3-2. Major Parts of ICF Data Management 3-2
3-3. ICF File-Configuration Relationship 3-4
3-4. Establishing a Session 3-5
3-5. Communications Session Established 3-6
3-6. Program Started at Remote System by Evoke

Function 3-7
3-7. Requesting Program Device Relationship . . 3-8
3-8. Establishing a Logical Connection between the

Target Program and the Session 3-9
3-9. Data Sent by a Send Request 3-10

3-10. Ending a Communications Transaction:
Detach Function 3-11

3-11. Ending a Session: Release Operation and
End-of-Session Function 3-12

3-12. Starting and Ending Sessions and
Transactions 3-13

3-13. Remotely Started Program Starts a Session
and Transaction 3-14

3-14. The AS/400 System Application Starts a
Session with a Remote System 3-15

3-15. Remote System Starts a Session with a
Program Start Request 3-16

4-1. ICF File Overview 4-1
4-2. Creating an ICF File 4-3
4-3. ICF File Attributes 4-3
4-4. File Attributes for Changing an ICF File . . . 4-5
4-5. File Attributes for Overriding an ICF File . . 4-6
4-6. Defining a Program Device Entry to an ICF

File . 4-8
4-7. Mapping Parameters for All Communications

Types . 4-10
4-8. Relationship of Remote Location Name to

Device Description 4-12
 4-9. Communications-Type-Dependent Attributes 4-12

4-10. Relationship between ICF Commands . . . 4-16
5-1. Relationship of Program Device Entries to

Operations 5-2
5-2. Attribute Information Fields 5-3
5-3. Using Write Operation When Sending Data . 5-8
5-4. Format Selection Options 5-9
5-5. Using the Invite Function and

Read-from-Invited-Program-Devices
Operation to Receive Data 5-11

5-6. Relationship between Timer and
Read-from-Invited-Program-Devices
Operations 5-12

5-7. Using the Read Operation 5-15
5-8. Display File and ICF File Entry Field

Attributes 5-16
5-9. Relationship of Program, File, and

Configuration 5-18
5-10. ILE C Program, File, and Configuration

Mapping 5-20

5-11. COBOL/400 Program, File, and Configuration
Mapping 5-21

5-12. RPG/400 Program, File, and Configuration
Mapping 5-22

6-1. Starting a Target Program 6-3
6-2. Using the CONFIRM, FRCDTA, and

FMTNAME Keywords to Send Data 6-6
6-3. Using the ENDGRP and FMH Keywords to

Send Data 6-7
6-4. TNSSYNLVL Function with Invite 6-8
6-5. Using the FAIL Keyword to Send an Error

Indication 6-10
6-6. Using the CANCEL Keyword to Send an

Error Indication 6-11
6-7. Sending a Negative Response with Sense

Code to Remote System 6-12
6-8. Using the Respond-to-Confirm Function . . 6-13
6-9. Using the Request-to-Write Function . . . 6-14

6-10. TNSSYNLVL Function with ALWWRT . . . 6-15
6-11. Using the Allow-Write Function 6-15
6-12. Using the Cancel-Invite Function 6-16
6-13. Ending a Communications Transaction . . 6-17
6-14. Using the Release and End-of-Session

Functions 6-18
6-15. DDS Source File for a Batch Data Transfer

Program 6-20
6-16. DDS Source File for a Multiple Session

Program 6-21
6-17. Output DDS Processing Keyword Support 6-21
6-18. Input DDS Processing Keyword Support . 6-22
6-19. Keyword Processing Chart 6-23

7-1. Starting a Target Program 7-2
7-2. Evoke Parameter List 7-3
7-3. Evoke RPG/400 Output Specification 7-4
7-4. Using $$SENDNF, $$SENDNI, and $$SENDE

to Send Data 7-5
7-5. Required Output Fields 7-5
7-6. Send RPG/400 Output Specification 7-6
7-7. Timer RPG/400 Output Specification 7-8
7-8. Using $$FAIL to Send an Error Signal . . . 7-9
7-9. Fail RPG/400 Output Specification 7-10

7-10. Using $$CANL to Send an Error Indication 7-10
7-11. Cancel RPG/400 Output Specification . . . 7-11
7-12. Using $$NRSP to Send an Error Condition 7-12
7-13. Sense Data Format 7-12
7-14. Negative-Response RPG/400 Output

Specifications 7-13
7-15. Using $$RCD to Request Write 7-14
7-16. Request-to-Write RPG/400 Output

Specification 7-15
7-17. Using $$CNLINV to Cancel an Invite . . . 7-16
7-18. Cancel-Invite RPG/400 Output Specifications 7-17
7-19. Ending the Communications Transaction . 7-18
7-20. Detach RPG/400 Output Specification . . . 7-19
7-21. Using the Release Operation and

End-of-Session Function 7-19

vi ICF Programming V4R1

7-22. End-of-Session RPG/400 Output
Specification 7-20

7-23. System-Supplied Format Support 7-20
7-24. Mapping of System-Supplied Formats to DDS

Keywords 7-21
8-1. Sample ICF Communications Environment . 8-7
8-2. COBOL/400 Coding for a Prestart Job

Program 8-10
9-1. ILE C Function 9-1
9-2. Program Starts at Display Station 9-3
9-3. Program Devices Explicitly Acquired 9-4
9-4. Evoke Starts Target Programs 9-5
9-5. Main Menu Written to Display Station 9-6
9-6. Program Sends Inquiry Request to Remote

System . 9-7
9-7. Target Program Sends a Reply 9-8
9-8. Program Ends the Session 9-9
9-9. Source Program Example — CSRCDMUL

(User-Defined Formats) 9-13
9-10. Target Program Example — CTGTDMUL

(User-Defined Formats) 9-27
10-1. COBOL/400 Statements 10-1
10-2. File Status Values for Major and Minor

Return Codes 10-1
10-3. Batch Data Transfer 10-2
10-4. Multiple-Session Inquiry 10-3
10-5. Evoke Request Starts a Target Program . 10-4
10-6. Target Program Prints Records 10-4
10-7. Source Program Prints the Received Records 10-4
10-8. Target Program Ends the Transaction . . . 10-5
10-9. Source Program Example — CSDBAT

(User-Defined Formats) 10-7
10-10. Source Program Example — CSFBAT

(System-Supplied Formats) 10-13
10-11. Target Program Example — CTDBAT

(User-Defined Formats) 10-19
10-12. Target Program Example — CTFBAT

(System-Supplied Formats) 10-23
10-13. Program Starts at Display Station 10-26
10-14. Program Devices Explicitly Acquired . . . 10-27
10-15. Evoke Starts Target Programs 10-28
10-16. Main Menu Written to Display Station . . . 10-29
10-17. Program Sends Inquiry Request to Remote

System 10-30
10-18. Target Program Sends a Reply 10-31
10-19. Program Ends the Session 10-32
10-20. DDS for Source Program Multiple Session

Inquiry Using CMNFIL 10-33
10-21. DDS for Source Program Multiple Session

Inquiry Using DSPFIL 10-34
10-22. Source Program Example — CSDMUL

(User-Defined Formats) 10-37
10-23. Source Program Example — CSFMUL

(System-Supplied Formats) 10-51
10-24. DDS Source for ICF File Used in Target

Program Multiple Session Inquiry 10-65
10-25. DDS Source for Database File Used in

Target Program Multiple Session Inquiry . 10-65
10-26. Target Program Example — CTDMUL

(User-Defined Formats) 10-67

10-27. Target Program Example — CTFMUL
(System-Supplied Formats) 10-72

11-1. RPG/400 Statements 11-1
11-2. *STATUS Values for Major and Minor Return

Codes 11-1
11-3. Batch Data Transfer 11-2
11-4. Multiple-Session Inquiry 11-3
11-5. Evoke Request Starts a Target Program . 11-4
11-6. Target Program Prints Records 11-4
11-7. Source Program Prints the Received Records 11-4
11-8. Target Program Ends the Transaction . . . 11-5
11-9. Source Program Example — RSDBAT

(User-Defined Formats) 11-7
11-10. Source Program Example — RSFBAT

(System-Supplied Formats) 11-12
11-11. Target Program Example — RTDBAT

(User-Defined Formats) 11-18
11-12. Target Program Example — RTFBAT

(System-Supplied Formats) 11-22
11-13. Program Starts at Display Station 11-26
11-14. Program Devices Explicitly Acquired . . . 11-27
11-15. Evoke Starts Target Programs 11-28
11-16. Main Menu Written to Display Station . . . 11-29
11-17. Program Sends Inquiry Request to Remote

System 11-30
11-18. Target Program Sends a Reply 11-31
11-19. Program Ends the Session 11-32
11-20. Source Program Example — RSDMUL

(User-Defined Formats) 11-38
11-21. Source Program Example — RSFMUL

(System-Supplied Formats) 11-52
11-22. DDS Source for ICF File Used by Target

Program Multiple-Session Inquiry 11-66
11-23. DDS Source for Database File Used by

Target Program Multiple Session Inquiry . 11-66
11-24. Target Program Example — RTDMUL

(User-Defined Formats) 11-68
11-25. Target Program Example — RTFMUL

(System-Supplied Formats) 11-73
12-1. Spooled Trace Records 12-3
A-1. Language Operations A-1
A-2. Language Operations A-1
A-3. Processing Control DDS Keywords A-2
A-4. System-Supplied Format Support A-6
B-1. File Error Message Identifier Groups B-2
B-2. Major Code 00 B-4
B-3. Major Code 02 B-7
B-4. Major Code 03 B-10
B-5. Major Code 04 B-12
B-6. Major Codes 08-11 B-12
B-7. Major Code 34 B-12
B-8. Major Code 80 B-13
B-9. Major Code 81 B-15

B-10. Major Code 82 B-17
B-11. Major Code 83 B-20

C-1. Offset Values for ILE COBOL, and ILE RPG C-1
C-2. Open Feedback Area C-1
C-3. Program Device Definition List C-2
C-4. Common I/O Feedback Area C-3
C-5. File-dependent I/O Feedback Area C-4

 Figures vii

D-1. EBCDIC Character Set D-1
D-2. ASCII Character Set D-2
E-1. Example of File Transfer Support E-1
E-2. Transferring Files to and from an AS/400

System—Required Parameters E-3
E-3. Transferring Files to and from an AS/400

System—Optional Parameters E-5
E-4. AS/400 System Sending to

System/36—Required Parameters E-6
E-5. Transferring Files to and from an AS/400

System—Optional Parameters E-9
E-6. AS/400 System Retrieving a File from

System/36—Required Parameters E-10

E-7. Retrieving Files from System/36—Optional
Parameters E-12

E-8. Retrieving a Library Member from
System/36—Required Parameters E-13

E-9. Retrieving a library member from
System/36—Optional Parameters E-15

E-10. ILE C Coding for File Transfer Support . . E-16
E-11. COBOL/400 Coding for File Transfer Support E-23
E-12. RPG/400 Coding for File Transfer Support E-28
E-13. CL Coding for File Transfer Support E-32
E-14. File Transfer Messages E-34

viii ICF Programming V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM's valid intellectual property or other legally protectable
rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service.
The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this docu-
ment does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the software interoperability coordinator. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This publication may also
refer to products that have not been announced in your country. IBM makes no commitment to make available any unan-
nounced products referred to herein. The final decision to announce any product is based on IBM's business and technical
judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an illustration. These exam-
ples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interface Information

This programming book is intended to help application programmers write communications programs that use the intersystem
communications function (ICF). It primarily contains reference information which allows the customer to write programs that
use the services of ICF. ICF contains no programming interfaces for customers.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation in the United States
or other countries or both:

 Copyright IBM Corp. 1997 ix

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service
marks of others.

Advanced Peer-to-Peer Networking
AnyNet
Application System/400
APPN
AS/400
C/400
CICS
COBOL/400
FORTRAN/400
IBM
ILE
Integrated Language Environment

Operating System/2
Operating System/400
OS/2
OS/400
RPG IV
RPG/400
SAA
Systems Application Architecture
System/370
System/390
VTAM
400

x ICF Programming V4R1

About ICF Programming, SC41-5442

This book contains programming information for writing appli-
cation programs that use the intersystem communications
function (ICF).

For a list of publications related to this book, see the Bibli-
ography.

Who Should Use This Book

This book is intended primarily for AS/400 system and
remote system application programmers who write commu-
nications programs that use ICF.

To work with the information in this book, you should have
knowledge of general communications concepts. AS/400
communications concepts are covered in the AS/400
Advanced Series Handbook.

Before using this book, you should be familiar with the fol-
lowing information:

AS/400 system programming terminology and programming
using the ILE C, ILE COBOL, or ILE RPG languages.

Prerequisite and Related Information

For information about other AS/400 publications (except
Advanced 36), see either of the following:

� The Publications Reference book, SC41-5003, in the
AS/400 Softcopy Library.

� The AS/400 Information Directory, a unique, multimedia
interface to a searchable database that contains
descriptions of titles available from IBM or from selected
other publishers. The AS/400 Information Directory is
shipped with the OS/400 operating system at no charge.

Information Available on the World Wide
Web

More AS/400 information is available on the World Wide
Web. You can access this information from the AS/400
home page, which is at the following uniform resource locator
(URL) address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able to access a
variety of AS/400 information topics from that page.

 Copyright IBM Corp. 1997 xi

xii ICF Programming V4R1

Chapter 1. Introduction to AS/400 System Communications

This chapter describes, in general, the different sources and
background information needed to use intersystem commu-
nications function (ICF) communications on the IBM* AS/400
Advanced Series* (AS/400*) system. ICF is a function of the
operating system that allows a program to communicate
interactively with another program or system. Detailed
instructions are available in other books referred to in this
chapter.

Planning for Data Communications

Data communications planning should already be complete.

Installing Communications Hardware

Communications hardware, such as modems and cables,
must be installed before you can start running your pro-
grams. (The exception is intrasystem communications, which
requires no hardware installation.) However, if your hard-
ware is not yet installed, you can read this book and begin
writing your programs.

Configuring Your System for Data
Communications

The Communications Configuration book explains how to
configure for communications. Although you cannot run your
application programs until the system is properly configured,
you can read this book and begin writing your programs.

You need to configure the remote system to allow commu-
nications with the AS/400 system. The Communications
Configuration book contains configuration considerations for
some remote systems when communicating with an AS/400
system.

Writing Programs that Use the Intersystem
Communications Function (ICF)

You can write communications programs using the Integrated
Language Environment* (ILE*) C/400*, ILE COBOL*, and ILE
RPG* languages. For an explanation of the communications
application interface provided by the intersystem communica-
tions function (ICF), read Chapter 3 through Chapter 8. You
can then refer to Chapter 9 through Chapter 11 for program-
ming examples that you can use to help write and run pro-
grams on the AS/400 system.

You also need the appropriate communications programming
book for the communications type you are using (for
example, the APPC Programming book), the programming
language books for the language you plan to use, and the
DDS Reference book.

Operating Communications on the AS/400
System

To use communications on the AS/400 system, you must be
familiar with the base operating system as well as the com-
mands unique to communications. Refer to the System
Operation book and the CL Reference book for information
on the general operation of the system.

 Copyright IBM Corp. 1997 1-1

1-2 ICF Programming V4R1

 Chapter 2. Communications Features

This chapter introduces the AS/400 system communications
features, including:

� ICF communications types
� AS/400 system communications line support
� Base operating system support
� High-level language support
� Additional programming support

Intersystem Communications Function
Communications Types

Communications between application programs are accom-
plished using the AS/400 system ICF and underlying support
provided by various communications types . Several com-
munications types are provided so that the AS/400 system
can communicate with remote systems having different com-
munications methods. Some of the communications
methods are:

� Binary synchronous communications (BSC)

� Systems Network Architecture (SNA). Examples of SNA
are:

– Systems Network Architecture upline facility (SNUF)

– Advanced program-to-program communications
(APPC)

– APPC over Transmission Control Protocol/Internet
Protocol (TCP/IP)

 – Finance communications

 – Retail communications

 � Asynchronous communications

A communications type, designed for a specific remote
system, makes it unnecessary to handle most system-
dependent and protocol considerations when coding the
AS/400 system application programs. The following commu-
nications types are supported by ICF:

� Advanced program-to-program communications (APPC)

� Systems Network Architecture upline facility (SNUF)

� Binary synchronous communications equivalence link
(BSCEL)

 � Asynchronous communications

 � Intrasystem communications

 � Finance communications

 � Retail communications

An AS/400 system program uses high-level language oper-
ations and communications functions to communicate with a
remote system through ICF. A return code, made up of
major and minor return codes, informs the program of the
success or failure of each operation. You can use several of

the communications functions and return codes with any of
the communications types. You can use some functions and
return codes with only one or two communications types.
You can use a program written for use with one communica-
tions type, with little or no change, to communicate with a
different communications type. The level of change required
in the program depends on the two communications types,
the communications functions, and the return codes.

Your configuration device descriptions identify the devices on
your local system with which communications occur. Each
communications type has a corresponding configuration
device description of the same type.

AS/400 System Communications Types

The following is a description of the AS/400 system commu-
nications types supported by ICF, including a brief overview
of the remote systems and devices supported by each type.

Advanced Program-to-Program Communications
(APPC): APPC allows the system to communicate with
other IBM and non-IBM systems that support the SNA logical
unit type 6.2 (LU 6.2) architecture. Using APPC allows
system functions and application programs on the system to
communicate with other system functions or application pro-
grams on:

� The same system
� Another AS/400 system

 � A System/38
 � A System/36
� Any other system (such as CICS* with similar levels of

APPC support.

APPC allows AS/400 system application programs to start
programs on remote systems, and allows remote programs
to start programs on the AS/400 system. APPC also allows
AS/400 system application programs to start other application
programs on the local system. The networking capability of
data communications support that routes data in a network
between two or more APPC systems that do not need to be
adjacent, called Advanced Peer-to-Peer Networking*
(APPN*) support, is available through the APPC interface.

An APPC conversation cannot be used by both the
System/38 environment and the AS/400 operating environ-
ment. A diagnostic message is sent to an application
attempting to open an ICF file in the AS/400 operating envi-
ronment, to accept a conversation using Common Program-
ming Interface (CPI) Communications, or to open either a
communications file or a mixed device file in the System/38
environment for the same APPC conversation. Only one
interface can be used for any conversation.

Refer to the APPC Programming book for more information.

 Copyright IBM Corp. 1997 2-1

APPC over TCP/IP: APPC over TCP/IP allows the
system to communicate with other systems that support the
SNA logical unit type 6.2 (LU 6.2) architecture running over
TCP/IP. This support must be compliant with the Multipro-
tocol Transport Networking (MPTN) architecture, such as the
support in the IBM AnyNet* products. Refer to the Multipro-
tocol Transport Networking (MPTN) Architecture: Technical
Overview book, GC31-7073, for more information about
MPTN.

APPC programs running over TCP/IP networks should see
little or no difference than if they ran over SNA networks.
Therefore, information in this book that applies to APPC also
applies to APPC over TCP/IP (unless otherwise noted).
Some additional configuration is required for APPC over
TCP/IP. Refer to the Communications Configuration book for
information about configuring for APPC over TCP/IP.

Examples of systems that support APPC over TCP/IP
include:

� Operating System/400* (OS/400*)
� Operating System/2* (OS/2*)
� Multiple Virtual Storage (MVS)

Systems Network Architecture Upline Facility
(SNUF): SNUF allows the system to communicate with
CICS and Information Management System (IMS) applica-
tions on other IBM systems. You can use SNUF to commu-
nicate with the following host systems:

 � System/370* computer
 � System/390* computer

SNUF allows AS/400 system application programs to start
programs on remote host systems, and allows programs on
remote host systems to start programs on the AS/400
system. Both interactive and batch operations are sup-
ported.

SNA 3270 Program Interface: The SNA 3270 program
interface allows an AS/400 application to communicate with a
host application by sending and receiving 3270 data streams.

Refer to the SNA Upline Facility Programming book for more
information.

Binary Synchronous Communication Equivalence
Link (BSCEL): AS/400 system BSCEL provides the fol-
lowing:

� Distributed data processing support to the AS/400
system users who want to communicate with another
system or device at a remote location using BSC.

� Online and batch communications between application
programs on different systems (such as System/38)
using BSC.

� Communications with another AS/400 system,
System/36, or System/34 using BSCEL.

� Communications with another AS/400 system,
System/36, or System/34, with RPG II support for tele-
communications.

BSCEL allows AS/400 system applications to start programs
on remote systems that support BSCEL, and allows remote
programs to start programs on the AS/400 system.

Refer to the BSC Equivalence Link Programming book for
more information.

 Asynchronous Communications: Asynchronous com-
munications is a method of communications supported by the
operating system that allows an exchange of data with a
remote device, using either a start-stop line or an X.25 line.
The system can use asynchronous communications support
to communicate with another asynchronous communications
location or with a packet assembler/disassembler (PAD) that
gives the system access to an X.25 packet-switching data
network (PSDN). The system can use X.25 support to com-
municate directly through an X.25 network, or to emulate a
PAD using the International Telegraph and Telephone
Consultative Committee (CCITT) recommendations X.3,
X.28, and X.29.

The system can use the AS/400 system asynchronous com-
munications support to communicate with:

� Another AS/400 system
 � A System/36
 � Asynchronous devices

Asynchronous communications support allows AS/400
system application programs to start programs on remote
systems, and allows remote programs to start programs on
the AS/400 system.

Refer to the Asynchronous Communications Programming
book for more information.

 Intrasystem Communications: Intrasystem commu-
nications allows communication between two application pro-
grams on the same AS/400 system. A source program can
acquire more than one session for a given device
description, and can have more than one transaction at the
same time. However, a source program cannot have a
transaction with two different programs on the same session.

Note: Intrasystem communications does not support the
concept of a remote system or a remote program. When
these terms are used in this book with regard to intrasystem
communications, they refer to the program with which your
program is communicating.

Refer to the Intrasystem Communications Programming book
for more information.

2-2 ICF Programming V4R1

 Finance Communications: Finance communications
allows you to attach 3601, 3694, 4701, 4702, 4730, 4731,
4732, 4736, 4737, and Financial Branch System Services
(FBSS) controllers to your AS/400 system using synchro-
nous data link control (SDLC) . SDLC is a form of commu-
nications line control that uses commands to control the
transfer of data over a communications line. You can also
attach the 4701, 4702, 4737, and Financial Branch System
Services controllers using X.25.

Note: 4737 self-service transaction station controllers are
configured as FBSS controllers.

In addition, you can attach controllers configured as FBSS
controllers using a token-ring or Ethernet local area network
(LAN). Since these controllers do not support Ethernet net-
works, you must use an 8209 bridge when you use an
Ethernet configuration on the AS/400 system.

While programs using ICF can communicate with any of the
finance controllers, programs that do not use ICF can com-
municate only with controllers configured as a 3694, 4701,
and 4702 on the AS/400 system.

Refer to the Finance Communications Programming book for
more information.

Retail Communications: Retail communications allows
you to attach retail controllers (3651, 3684, 4680, 4681,
4684, and 4692) to the AS/400 system using the SDLC pro-
tocol. X.25 is supported for a 4684 controller, provided it has
Retail Industry Programming Support Services (RIPSS) 3.01,
a program that provides access to the application files on the
4684 controller.

Note: The 4681 controller is the double-byte character set
(DBCS) equivalent of the 4680 controller, and the 4692 is the
DBCS equivalent of the 4684 controller. In addition, retail
communications allows the AS/400 system to act as an in-
store processor in the retail environment.

You can use the AS/400 system in several different retail
environments:

� Retail in-store processor environment

You can have a host system such as a System/370 at a
remote site with several retail controllers and terminals in
your store. The AS/400 system can be installed in your
store as an in-store processor to coordinate communica-
tions between the host and the retail controllers.

� Retail host processor environment

The AS/400 system can also function as a host system
to several retail controllers.

Refer to the Retail Communications Programming book for
more information.

 Non-Intersystem Communications
Function Communications

You can also run non-ICF communications on the AS/400
system, such as the following:

� 3270 device emulation and 3270 BSC application
program interface

� Remote job entry (RJE)

 � Finance communications

� Transmission Control Protocol/Internet Protocol pro-
grams (TCP/IP)

� Common Programming Interface (CPI) Communications

 � User-defined communications

 � Sockets

Because these communications functions are not part of ICF,
they are described in other books, which are identified in the
list of related books in the Bibliography. Refer also to the
Publications Reference book.

Communicating with Remote Work
Stations

No communications programming is required to communicate
with remote work stations. The necessary communications
programs are provided by the system based on the informa-
tion provided when the remote work station is configured.
The program interface for remote work stations is the same
as the program interface for local work stations. Refer to the
Application Display Programming book for information on the
application interface to remote work stations.

Combinations of Communications Types

You can configure multiple communications device
descriptions in the AS/400 system. Multiple communica-
tions configurations , or the physical placement of commu-
nications controllers, the attachment of communications lines,
and so on, can be active at the same time. All active config-
urations do not have to be of the same type. The number of
configurations that can be active is determined by the
number of communications lines available, and whether any
lines are being shared by SNA-type communications. A con-
figuration becomes active when you vary on the configura-
tion, as described in “Varying on Communications
Configurations” on page 3-3.

AS/400 System Communications Line
Support

The AS/400 system supports the following telecommunication
lines (all the lines do not have to be the same):

� Switched point-to-point (manual or automatic answer,
manual or automatic call)

 Chapter 2. Communications Features 2-3

 � Nonswitched point-to-point

 � Nonswitched multipoint

� IBM Token-Ring Local Area Network

 � X.25 network

 � Ethernet network

 � Frame Relay

 � IDLC

 � DDI

 � Wireless

Each ICF communications type (except intrasystem commu-
nications) requires at least one communications line to com-
municate with a remote system.

 Operating System/400

Following is a description of the Operating System/400
(OS/400) support provided for AS/400 system communica-
tions.

 Communications Configuration

Before you can use communications on the AS/400 system,
you must define the environment through the communica-
tions configuration function. This support allows you to
create, change, display, and delete the communications
network interface, network server, line, controller, and device
descriptions.

APPC/APPN support requires mode descriptions and class-
of-service descriptions. The configuration support provides
this function.

An integrated services digital network (ISDN) , which is a
network that can provide voice, data, and image over the
same communications line, requires network interface
descriptions and connection lists. The configuration support
provides this function.

A File Server I/O Processor (FSIOP) , which is an
input/output processor (IOP) that serves files, requires a
network server description.

Refer to the Communications Configuration book for more
information on communications configuration. APPN support
provides the ability to communicate with a remote system
without having to manually configure the remote system.
Refer to the APPN Support book for more information.

Intersystem Communications Function File

The ICF file is used to send and receive data between two
application programs, and to describe how to present that
data. The ICF file contains the file description identifying the
record formats used by the communications application
program.

The ICF file allows you to define a single file and the
program devices used by that file. An ICF file supports any
combination of program devices for all the supported commu-
nications types. The application program can then write data
to or receive data from any of the program devices defined in
the file.

Refer to Chapter 4 for information on creating and using the
ICF file.

Data Description Specifications (DDS)

DDS defines the format of the data and the characteristics of
the operation used on the data. This information is specified
as part of the ICF file, the display file, and the printer file.

Certain DDS functions are unique to communications. These
functions are described in Chapter 6. (For general informa-
tion on coding DDS, refer to the DDS Reference book.)

 System-Supplied Formats
System-supplied formats that provide functions similar to
those accomplished by using DDS keywords are provided as
part of the ICF support, and can be used to do specific com-
munications functions. Refer to Chapter 7 for more informa-
tion about system-supplied formats.

 Control Language

With control language (CL) commands, you can create,
change, display, and delete the various communications con-
figurations. A menu interface is also provided to assist you
in this function.

ICF file commands are provided that allow you to create,
change, and override the file descriptions. Commands are
also provided that allow you to add, change, remove or over-
ride device entries for the file. Chapter 4 describes the file
commands and their use.

You cannot use CL commands to do ICF communications
functions.

For more information on the CL commands for configuring
communications, refer to the Communications Configuration
book.

2-4 ICF Programming V4R1

 Security

The security provided on the AS/400 system controls who
can use communications device descriptions, and the com-
mands that are used with the device descriptions. Security
on both the local and remote systems must be considered in
writing and running applications.

See the Security – Reference book for general system secu-
rity information and Chapter 8 for communications-specific
security considerations.

 Error Handling

Major and minor return codes are provided to the application
program so that error conditions can be properly handled.
Applications written in the ILE C, ILE COBOL, and ILE RPG
programming languages can access the return codes to help
diagnose problems. In addition, messages are entered in the
job log to identify the error that occurred. The ILE COBOL
and ILE RPG programming languages provide language-
defined file status that can be used either in place of, or in
addition to, the major and minor return code. The ILE C pro-
gramming language does not have file status values.

You can recover from many communications errors with little
or no operator involvement. You may be able to reestablish
the session or close and reopen the file to accomplish

recovery within the user program. The Communications
Management book describes line errors.
Appendix B discusses program error recovery.

High-Level Language Support

You can use AS/400 system communications support to write
application programs in the supported high-level languages.

The ILE C, ILE COBOL, and ILE RPG programming lan-
guages support the ICF interface. Chapter 9 through
Chapter 11 provide program examples written in the ILE C,
COBOL/400, and RPG/400 languages.

The programs presented in this book serve as examples
only. They are used to show concepts and techniques and
may not represent the most efficient programming methods.

Additional Programming Support

Support is also provided in addition to the ICF interface to
allow the application program to send or retrieve database
file members from one system to another. This support is
provided by file transfer support (FTS).

Appendix E describes this support.

 Chapter 2. Communications Features 2-5

2-6 ICF Programming V4R1

Chapter 3. Introduction to Intersystem Communications Function

ICF allows program-to-program communications between the
AS/400 system and other systems. It also provides program-
to-device communications between the AS/400 system and
hardware devices.

This chapter provides an introduction to:

� How ICF works
� Some of the terms used to describe ICF
� Configuring for and starting communications
� Defining your ICF file
� How to write a program to use ICF

Notes:

1. The two examples shown in this chapter allow two
AS/400 systems to communicate with each other. One
program is started by the local AS/400 system operator;
this program then starts the program on the remote
AS/400 system.

2. Although communications types in these examples are
advanced program-to-program communications (APPC)
and binary synchronous communications equivalence
link (BSCEL), the examples provide a general under-
standing of how to write a program that uses any com-
munications type under ICF.

3. Not all communications types require all the operations
shown in this chapter. Refer to the appropriate commu-
nications programming book for the communications
type you are using for information about a specific com-
munications type.

In Figure 3-1, an application program on the local AS/400
system (local program) sends data to an application program
on a remote AS/400 system (remote program) and then
receives data.

Either program can send data first. You must determine
which system is to send data first before you write a
program, so you know which operations to do first. Use ICF
communications functions and high-level language operations
to handle communications within an application program.
The ICF functions are described in Chapter 6 and
Chapter 7. The language operations you use are the same
operations you use when your program is not using ICF.
Although these operations are summarized in Chapter 9
through Chapter 11, they are not fully described in this book.
Refer to the appropriate language reference book for more
information.

ReceiveSendSend Receive

Remote
Application
Program

Data Flow

Local
Application
Program

Data Link

Local
AS/400 System

Remote
AS/400 System

RSLS106-3

Figure 3-1. Sending Data from a Local Program to a Remote Program

 Copyright IBM Corp. 1997 3-1

Remote

Application

Program

Send Receive ReceiveSend

Communications

Support

Communications

Support

Local

Application

Program

Data Link

ICF

Data

Management

ICF

Data

Management

RSLS107-3

Remote

AS/400 System

Local

AS/400 System

Data Data Data Data

Figure 3-2. Major Parts of ICF Data Management

Figure 3-2 shows the major parts of ICF. The local applica-
tion program is the program you write to allow your system
to communicate with a remote system. ICF data manage-
ment handles the communications functions and data from
your program. The underlying support provided by the com-
munications type handles the communications protocol
needed to connect your AS/400 system to the remote
system.

ICF data management supports several communications
types. Use the communications type that enables you to
communicate with your remote system. Refer to Chapter 2
for a list of the communications types and for an overview of
the remote systems they support. See the appropriate com-
munications programming book for a complete description of
the remote systems supported by a specific communications
type.

Hardware and system-supplied programs handle sending and
receiving data on the communications line. Since you do not
need to know about these system programs to write an appli-
cation program using ICF, these programs and hardware are
not described in this book.

Configuring for Communications

Before communications can occur between two systems,
both systems must be configured. You must configure your
system to define the appropriate communications hardware
and characteristics before you can use your programs. The
AS/400 system communications configuration support allows
you to create, change, delete, display, and print the following
configuration objects:

 � Line descriptions
 � Controller descriptions
 � Device descriptions
 � Mode descriptions
 � Class-of-service descriptions
� Network interface descriptions
� Network server descriptions

 � Connection lists
 � Configuration lists

Not all of the listed configurations are used by all the com-
munications types.

Part of the connection between the application and configura-
tion is through the remote location name that is defined as
part of the device description. Refer to “The Intersystem
Communications Function File” for more information on how
this connection is made.

3-2 ICF Programming V4R1

If programs on your system can be started from a remote
system, you can define the distribution of work across your
subsystems. The AS/400 system considers the communica-
tions device to be another source of work for a subsystem.
Therefore, you must define a communications entry within
the subsystem description to identify the communications
devices for which work can be received by the subsystem.

Default communications entries are shipped with the system.
However, you can change these entries with the Add,
Change, and Remove Communications Entry (ADDCMNE,
CHGCMNE, and RMVCMNE) commands. Refer to the Com-
munications Management book for more information on using
these commands. Refer to the Work Management book for
information on subsystems and communications entries.

Varying on Communications
Configurations

You must vary on the particular communications configura-
tions you want to use before running your communications
applications. (The configurations must already be defined.)
The Vary Configuration (VRYCFG) command is used to vary
on the appropriate network interface, line, controller, network
server, and device descriptions.

Note: You can specify that the configurations be automat-
ically varied on at IPL when you create your configurations.

The VRYCFG command does the following:

� Ensures compatibility between the configuration and the
communications hardware

� Determines whether the requested data link is available

� Establishes a physical connection with the remote
system

Note: For SNA configurations, SNA communications
may be established with the remote system, depending
on the line type (switched or nonswitched) and the con-
figuration parameters you have chosen.

The VRYCFG command prepares only the local end of the
link to communicate with the remote system. You must also
prepare the remote system. Communication can begin when
you have prepared both ends and have established a phys-
ical connection between the two. For APPC communica-
tions, a mode must be started before you establish a
session. Generally, the mode starts automatically when the
device is varied on or when a request to establish a session
is received. You can also use the Start Mode (STRMOD)
command to start a mode.

Refer to the Communications Management book for more
information on the VRYCFG command on starting modes.

The Intersystem Communications Function
File

An ICF device file defines the layout of the data sent and
received between two application programs and links you to
the configuration objects that you will use to communicate
with the remote system. You identify and use this file in your
high-level language application.

Defining the File

The following commands are used to define the file:

� The Create Intersystem Communications Function File
(CRTICFF) command is used to create the ICF file.

Note: If you use system-supplied formats (described in
Chapter 7), IBM supplies a file called QICDMF for your
use and you do not need to do this step.

� The Add Intersystem Communications Function Device
Entry (ADDICFDEVE) or Override Intersystem Commu-
nications Function Device Entry (OVRICFDEVE)
command is used to define a program device entry.
This program device entry is that part of the file that pro-
vides the connection to the configuration objects that you
will use to communicate with the remote system.

Using the File

An application program uses the file as follows:

� A program communicates through a program device
name. The program device name used in the applica-
tion maps you to the program device entry in the ICF file
that contains the same program device name.

� The program device entry also contains a remote
location name. This remote location name (specified as
part of the device description) provides the final step in
completing the link between the application and the
device description.

Refer to Chapter 4 for more information on creating the ICF
file and on defining program device entries to the ICF file.
Also refer to Chapter 4 for more information on the remote
location name.

Figure 3-3 on page 3-4 shows the relationship between the
program, the ICF file, and the communications configura-
tions.

Not all of the communications types require that all of these
configurations be explicitly created. Also note that the
network interface description is only required when communi-
cating across an ISDN.

 Chapter 3. Introduction to Intersystem Communications Function 3-3

Program Device
Name

Remote Location
Name

Program Device Entry

Program Device
Name

Remote Location Name

Controller Description

Device Description

Application Program

ICF File

RSLS680-2

Line Description

Network Interface
Description (ISDN only)

Figure 3-3. ICF File-Configuration Relationship

Starting Your Program

Your application program can be started by an operator at
your system, or by a request from the remote system.

A remote system starts an application program on your local
AS/400 system by sending a special record, called a
program start request , to your system. Refer to “Starting a
Program on the Remote System” on page 3-6 for more infor-
mation about the program start request. Refer to the appro-
priate communications programming book for the
communications type you are using for a description of this
special record.

Opening the Intersystem Communications
Function File

Before communications can occur, your program must open
an ICF file (previously created with the CRTICFF command).
All communications functions are issued through the ICF file.

Starting Communications with the Remote
System

Before your local program can communicate with the remote
system, you must establish a communications session . A
communications session is a logical connection between two
systems through which a local program can communicate
with a program at a remote location. A communications
session is established with an acquire operation and is
ended with a release operation or end-of-session function.

In Figure 3-4 on page 3-5, your program establishes a
session using an acquire operation with PGMDEVA specified
as the program device name.

The program device name specified on an acquire operation
must correspond to a program device entry in the ICF file
with the same program device name. The remote location
name associated with that program device entry identifies the
remote system with which the session is to be established.

The program device entry is defined with the ADDICFDEVE
or OVRICFDEVE command. The PGMDEV parameter spec-
ifies the program device name. The RMTLOCNAME param-
eter specifies the remote location name. The remote location

3-4 ICF Programming V4R1

name (also specified as part of the device description) pro-
vides the link between the program device entry and the
device description.

Return

Code

Communications

Support

Communications

Support

Local

Program

Data Link

Acquire

PGMDEVA

Local

AS/400 System

Remote

AS/400 System

ICF

Data

Management

ICF

Data

Management

RSLS110-5

Figure 3-4. Establishing a Session

The following is an example of how a control language
program and a high-level language application program are
used to acquire a program device. You can use either the
ADDICFDEVE or OVRICFDEVE command. This example
uses the ADDICFDEVE command.

 YOURCL

ADDICFDEVE FILE(ICFFILE) PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

 | | |

| | Identifies the remote

| | location with which

| | your program will

 | | communicate.

 | |

| Identifies the name known

| by the program (PGMDEVA).

 |

Identifies the ICF file

to which the definition is added.

 CALL YOURPROG

YOURPROG

 .

 .

 .

 OPEN ICFFILE

 .

 .

 .

 ACQUIRE PGMDEVA

 .

 .

 .

Note: You can use other parameters with the
ADDICFDEVE and OVRICFDEVE commands to define attri-
butes, such as format selection (FMTSLT), to be used during
this session. See Chapter 4 for more information about the

 Chapter 3. Introduction to Intersystem Communications Function 3-5

ADDICFDEVE and OVRICFDEVE commands and their
parameters.

When the program issues an acquire operation, ICF data
management returns a return code to your program indi-
cating whether it can communicate (whether a session is
established) with the remote system at this time. If commu-
nications cannot be established, the return code tells your

program why communications failed. See Appendix B for
more information about return codes.

Your program cannot send or receive data until the acquire
operation succeeds. Therefore, your program must check
the return code. In our example, the return code indicates
that communications was started. Therefore, a communica-
tions session exists between the local AS/400 system and
the remote AS/400 system, as shown in Figure 3-5.

Communications
Session

Communications
Support

Communications
Support

Local
Program

Data Link

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

RSLS111-4

Figure 3-5. Communications Session Established

The acquire can be done automatically as a part of the open
file operation by specifying the desired program device name
(in this example PGMDEVA) on the ACQPGMDEV param-
eter of the CRTICFF command. Refer to Chapter 4 for more
information.

Even though the session has been started, the application
program at the remote system has not yet started. “Starting
a Program on the Remote System” describes how an appli-
cation program is started at the remote system.

Starting a Program on the Remote System

Your program must specify and start the program at the
remote system with which it will communicate. After this
remote program has been started, a communications trans-
action has been started. A communications transaction is a
logical connection between two programs on a session. A
communications transaction is started by an evoke function

and is ended by a detach function. After the communications
transaction starts, data can be exchanged between the two
programs.

Use the evoke function with the necessary parameters to
send the name of the program that you want started at the
remote system. These parameters include the program
name (from either a high-level language program or a control
language program), the remote system library where the
program is stored, and security information (when required).
When your program issues a write operation with the evoke
function specified, a program start request is sent to the
remote system.

The program that issues the evoke function is the source
program . The program started on the remote system is the
target program . In this example, the local program is the
source program (it issued the evoke), and the remote
program is the target program.

3-6 ICF Programming V4R1

In Figure 3-6 on page 3-7, the evoke function is used to
start the program named TGTPGM at the remote system.

Return
Code

TGTPGM

Target
Program

Program
Start
Request

Evoke
TGTPGM

Communications
Support

Communications
Support

Source
Program

Communications
Transaction

Data Link

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

RSLS112-4

Figure 3-6. Program Started at Remote System by Evoke Function

A return code is always given to your program to indicate the
status of the evoke function unless the program start request
is delayed by use of the DFREVOKE keyword. In
Figure 3-6, the return code tells your program that the evoke
request was accepted and a program start request was sent
to the remote system. If the program start request succeeds,
the remote system program and the communications trans-
action start.

Your program can also send program initialization parame-
ters with the evoke function. If the remote system is an
AS/400 system, the target program can access any parame-
ters specified with the evoke as if they were parameters
passed on a call command.

The type of evoke function you use depends on the commu-
nications type you use and on the type of remote system
with which you communicate. For more information about
the evoke functions, refer to Chapter 6, Chapter 7, and to
the appropriate communications programming book for the
communications type you are using.

Connecting to the Session — Target
Program

Before a target program can send or receive data, it must
first be associated with the session in which the program
start request was received. This association is established
by opening an ICF file and acquiring a program device asso-
ciated with a special remote location name of *REQUESTER.

A remote location name of *REQUESTER specifies that:

� The remote location used is the remote location speci-
fied in the device description that received the program
start request.

� There is no specific remote location assigned to the
program device by the ADDICFDEVE or the
OVRICFDEVE command.

Any program device name defined in a program device entry
with a remote location name of *REQUESTER is referred to
as a requesting program device .

The target program identifies the requesting program device
in the same way that the source program does. The target
program specifies, on an acquire operation, the same
program device name as the name specified on the
PGMDEV parameter on the ADDICFDEVE or the
OVRICFDEVE command.

 Chapter 3. Introduction to Intersystem Communications Function 3-7

Program Device
Name

Remote Location
Name
(*REQUESTER)

Program Device Entry

Remote Location Name

Controller Description

Device Description

Line Description

Application Program

Program Device Name
(Requesting Program
Device)

ICF File

RSLS681-1

Figure 3-7. Requesting Program Device Relationship

Figure 3-7 on page 3-8 shows the relationship between the
program, the ICF file, and the communications configurations
for a requesting program device.

Note: The device description that receives the program start
request is the device description that is selected when the
acquire operation is issued to the requesting program device.

When the target program issues an acquire operation to the
requesting program device, a new session does not start.
The acquire only establishes a logical connection between
the target program and the session and transaction that were
started by the source program.

The remote program cannot send or receive data until the
acquire operation is successful.

The following shows how a control language program and
high-level language application program can be used to
acquire a requesting program device.

 TGTCLPGM

 OVRICFDEVE PGMDEV(PGMDEVB) RMTLOCNAME(\REQUESTER)

 | |

| Identifies that you want to

| communicate with the device

| description that receives the

| program start request.

 |

Identifies the name known

by the program (PGMDEVB).

 CALL TGTPGM

TGTPGM

 .

 .

 .

 OPEN ICFFILE

 .

 .

 .

 ACQUIRE PGMDEVB

 .

 .

 .

Note: The target program started as a result of a program
start request can be a high-level language program or a
control language (CL) program. In this example, the CL
program containing the OVRICFDEVE command and the call
statement is the program that is started as a result of the
program start request. The CL program calls the high-level
language program. In Figure 3-8 on page 3-9, the target
program establishes a logical connection to the session and
transaction (started by the source program) by acquiring the

3-8 ICF Programming V4R1

requesting program device named PGMDEVB (as assigned
by the ADDICFDEVE or OVRICFDEVE command).

Source
Program

Target
Program

Communications
Support

Communications
Support

Return
Code

Data Link

Acquire
PGMDEVB

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

RSLS659-4

Figure 3-8. Establishing a Logical Connection between the Target Program and the Session

The acquire can be done automatically as part of the open
file operation, by specifying the requesting program device
name (in this example, PGMDEVB) on the ACQPGMDEV
parameter of the CRTICFF command. Refer to Chapter 4
for more information.

Sending and Receiving Data

In Figure 3-9 on page 3-10, the source program sends data
first. To obtain that data, the target program must issue a
receive request as the first operation following the acquire.

You use the same program device name specified on the
acquire operation on each send and receive request. In the

example, the source program uses the program device name
PGMDEVA and the target program uses PGMDEVB.

Again, the source program gets a return code indicating the
status of the send request. Since the remote system in this
example is an AS/400 system, the target program is also
given a return code indicating the status of the receive
request.

 Chapter 3. Introduction to Intersystem Communications Function 3-9

Return
Code

Return
Code

Communications
Support

Communications
Support

Send Receive

Target
Program

Source
Program

Data Link

PGMDEVA PGMDEVB

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

RSLS113-5

Data Data

Figure 3-9. Data Sent by a Send Request

Ending Communications with the Remote
System

You must end both the communications transaction and the
communications session to end communications with the
remote system. You can end the communications session in
one of the following two ways:

� Explicitly by the program, as shown in Figure 3-10 on
page 3-11 and Figure 3-11 on page 3-12

� Implicitly ending all sessions and transactions associated
with the source program by a close of the ICF file

The transaction and session can be ended by either the
source or target program.

Ending the Transaction

The sending and receiving of data continues until one of the
two programs ends the communications transaction (either
the source or target program can end the transaction). The
detach function is used to tell the remote program that your
program has no more data to send and has ended the com-
munications transaction.

Figure 3-10 on page 3-11 shows the source program issuing
a detach function to end the communication transaction.

In this example, the target program is given a return code
indicating that the transaction has ended. The target
program can continue or end processing, but it can no longer
communicate with the source program. However, the target
program must end the logical connection to the session by
ending the session.

The communications session still exists for the source
program. The source program can start another program at
the remote system and another transaction, or it can end the
communications session and stop communicating with the
remote system.

If a target program issues the detach, its logical connection
to the session as well as the transaction is ended.

3-10 ICF Programming V4R1

Receive

Return
Code

Return Code
(transaction
ended)

Communications
Support

Communications
Support

Target
Program

Source
Program

Data Link

Detach the
Transaction

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

Detach the
Transaction

RSLS114-7

Figure 3-10. Ending a Communications Transaction: Detach Function

Ending the Session

When a session is no longer needed, it should be ended. A
source program ends the session by issuing a release opera-
tion or end-of-session function. However, a target program
must also sever the connection to the session by issuing a
release operation or end-of-session function.

Figure 3-11 on page 3-12 shows the source program using
the release operation and the target program using an end-
of-session function to end the session.

When the source program issues the release operation, ICF
data management tries to end the session. If the commu-
nications transaction has ended, the session ends and the
source program receives a return code indicating that the
session has ended.

If the session cannot be ended, the source program receives
a return code indicating that the release operation was not
successful. (For example, the transaction may not have

ended.) If your program cannot recover from the error, you
can use the end-of-session function to force the session to
end. The end-of-session function always ends the session.

If you issue an end-of-session, you may not be able to deter-
mine:

� If the transaction has ended normally
� If all the data has been sent or received

Note: When you use the end-of-session function, your
program must make sure all data is received.

The program at the remote system may (depending on the
communications type) receive a return code indicating that
the session did not end normally.

After ending the transaction and session, a source program
can start another session and transaction, continue local pro-
cessing, or end.

A target program can continue local processing or end after
ending a session.

 Chapter 3. Introduction to Intersystem Communications Function 3-11

End the
Session

Return
Code

Return
Code

Communications
Support

Communications
Support

Target
Program

Source
Program

Release

Data Link

Local
AS/400 System

Remote
AS/400 System

ICF
Data
Management

ICF
Data
Management

RSLS115-4

Figure 3-11. Ending a Session: Release Operation and End-of-Session Function

Closing the Intersystem Communications
Function File

Your program should close the ICF file when you are done
processing. Closing the ICF file also implicitly ends any
active transactions or sessions for the program.

Varying off Communications
Configurations

When you no longer need a communications configuration,
you can use the Vary Configuration (VRYCFG) command to
vary off the configurations you previously varied on.

If you are using an APPC device, you can end any active
modes with the End Mode (ENDMOD) command before you
use the VRYCFG command. If you do not use the ENDMOD
command, any active modes associated with the device are
ended automatically as part of the VRYCFG.

Refer to the Communications Management book for informa-
tion on the VRYCFG and ENDMOD commands.

Additional Information on Sessions and
Transactions

The information presented in this chapter has only described
the flow of two programs using a single session and trans-
action to communicate with each other.

The following sections describe variations of sessions and
transactions.

 Multiple Transactions

Figure 3-12 on page 3-13 shows how a source program on
a single session can start and end multiple transactions.
Only one transaction can be active on a session at a time.

3-12 ICF Programming V4R1

Open

Acquire

Evoke

Send

Receive

Detach

Evoke

Receive

Receive

Receive

Evoke

Send

Receive

Detach

Release or EOS

Close

(start a transaction)

(end the transaction)

(start a transaction)

(end the transaction)

(end the session)

(end the transaction)

Program B Starts

Program B Starts

Program C Starts

Program B Ends

Program B Ends

Program C Ends

Session

Ends and

Program A

Ends

Session

Started

Program A

and

Session

Continue

Target Program B

Target Program C

Target Program B

Source Program A

(start a session)

(start a transaction)

Local

AS/400 System

Remote

AS/400 System

RSLS116-4

Open

Acquire

Receive

Send

Receive

Release

Close

Open

Acquire

Send

Send

Detach

Release

Close

Open

Acquire

Receive

Send

Receive

Release

Close

Figure 3-12. Starting and Ending Sessions and Transactions

.1/ Program A, on the local AS/400 system, opens the ICF
file and then issues an acquire operation to start a
session with the remote AS/400 system.

.2/ Program A issues the evoke function, which starts the
communications transaction, to start Program B on the
remote AS/400 system.

.3/ Program B must open the ICF file on the remote
AS/400 system and issue an acquire operation for the
requesting program device to establish a logical con-
nection to the session and transaction.

.4/ Programs A and B exchange data. Program A ends
the transaction. Program B can end (as shown) or
continue processing. Program B cannot, however,
communicate with the local AS/400 system.

.5/ Program B releases the session it previously acquired
and closes the ICF file.

.6/ Program A starts a transaction with Program C on the
remote AS/400 system and exchanges data.

.7/ Program C on the remote AS/400 system ends the
transaction. (Either program can end the communica-
tions transaction.) Program C releases the session
and closes the ICF file.

.8/ Program A starts and ends another transaction with
Program B. Program A then releases the session with
the remote AS/400 system, and closes the file on the
local AS/400 system.

 Multiple Sessions

A program can communicate over multiple sessions to the
same system or different systems, and can have all the ses-
sions at the same time. When a program is communicating
over multiple sessions, it can be both a target and a source
program, but it cannot be both on the same session.

A program started by a program start request is the target
program for that session. However, this program can also

 Chapter 3. Introduction to Intersystem Communications Function 3-13

become a source program by establishing a session with
another remote system. Figure 3-13 on page 3-14 shows
how a target program can start a session and a transaction.

.1/ Program A, on the local AS/400 system, opens the ICF
file and then issues an acquire operation to start a
session with the remote AS/400 system.

.2/ Program A uses the evoke function to start Program B
on the remote AS/400 system-I, which starts a commu-
nications transaction.

.3/ Program B must open the ICF file and issue an acquire
operation for the requesting program device to estab-
lish a logical connection with the session and trans-
action.

.4/ Programs A and B can exchange data.

.5/ Program B issues an acquire operation to start a
session with the remote AS/400 system-II.

.6/ Program B uses the evoke function to start Program C
on the remote AS/400 system-II, which starts a com-
munications transaction.

.7/ Program C must open the ICF file and issue an acquire
operation for the requesting program device to estab-
lish a logical connection.

.8/ Programs B and C can exchange data.

Session

Started

Open

Acquire

Evoke

Send

Receive

Source

Program A

(start a transaction)

(start a session)

Target

Program C

Target/Source

Program B

Open

Acquire

Receive

Send

Open

Acquire

Receive

Send

Acquire

Evoke

Send

Receive

Local

AS/400 System

Remote

AS/400 System-I

RSLS660-5

Remote

AS/400 System-II

Figure 3-13. Remotely Started Program Starts a Session and Transaction

 Summary

The major tasks you do to use ICF for a source program and
a target program are explained in the following sections.

 Source Program

Figure 3-14 on page 3-15 shows the sequence of events
your AS/400 system application program follows when it
starts a session with the remote system.

.1/ You must vary on the communications configurations
before programs can use them to communicate with a
remote system. Use the VRYCFG command to vary

on the configurations. You can do the VRYCFG either
within the application CL or interactively.

.2/ You must start the AS/400 system application program
(source program) that communicates with the program
at the remote system.

.3/ The application program must open an ICF file.

.4/ The AS/400 system program must start a session with
the remote system before communications can begin.
Your program starts a session when it issues an
acquire operation.

When your program starts (establishes) the session
with an acquire operation, an ADDICFDEVE or

3-14 ICF Programming V4R1

Send/Receive

Detach

(start a session)

(either program can end

the transaction)

Acquire

Evoke

(ends the session with

the remote system)

(send and/or receive data)

(end the transaction)

Send/Receive

Detach

Remote System

Release

VRYCFG

(deactivate the

configuration)

VRYCFG

(activate the

configuration)

(Acquire *Requester)

The target program

can end or continue

local processing.

Start the target program

(transaction)

The source program can

end, start another

session, and/or continue

local processing.

Source Program

Target Program

Data Link

RSLS102-4

ICF

Open ICF File

Close ICF File

AS/400 System

Figure 3-14. The AS/400 System Application Starts a Session with a Remote System

OVRICFDEVE command specifies the program device
name and the remote location name (identifying the
remote system) associated with the session.

Note: The acquire can be done implicitly as part of
the open operation.

.5/ Within each session, you can start (evoke) transactions
to allow your program to communicate with target pro-
grams. A transaction starts when your program uses
the evoke function to start a specified target program.

.6/ Within each transaction, data can be sent and received
between the source program and the target.

.7/ Either program can end the transaction when all data
has been sent or received. Your program uses the
detach function to end the transaction. When the

remote system ends the transaction, your program
receives a return code indicating that the transaction
has ended. If a target program issues the detach, the
logical connection to the session is ended implicitly by
the detach (a release operation is not needed).

.8/ When all transactions have ended, your program
should end the session. Your program can end the
session by using the release operation or the end-of-
session function.

.9/ Your program must close the ICF file.

.1ð/ Use the VRYCFG command to vary off the commu-
nications configurations when they are no longer
needed. You can use the VRYCFG command either
within the application CL or interactively.

 Chapter 3. Introduction to Intersystem Communications Function 3-15

VRYCFG
(vary on the
configuration)

Send/Receive

(end the transaction)

Send/Receive

Remote System

Start Request
(start a program)

This program can
end or continue
local processing.

VRYCFG
(vary off the
configuration)

Acquire

Program
.
.
.

Detach Detach

The source program
can end or continue
local processing.

Data Link

Target Program

Remote Program

Source Program

(send and/or receive data)

Session and transaction
are started when the
program start request
is received.

Establish connection
with the session
and transaction.

Open ICF File

Close ICF File

AS/400 System

ICF

RSLS103-6

Either program can end
the transaction. When the
transaction ends, the
session also ends for the
AS/400 System application
program.

Figure 3-15. Remote System Starts a Session with a Program Start Request

 Target Program

Figure 3-15 shows the sequence of events that occurs when
the remote system starts the session by sending a program
start request.

.1/ You must vary on the communications configurations
before programs can use them to communicate with a
remote system. Use the VRYCFG command to vary
on the configurations.

Note: Before your system can process incoming
program start requests, you must define subsystem
communications entries using the ADDCMNE
command. Refer to the Communications Management
book for more information.

.2/ A program on the AS/400 system is started when your
system receives the program start request from the
remote system.

.3/ The program must open the ICF file.

.4/ The program must acquire the requesting program
device to establish a logical connection to the session
and the transaction. The program device name speci-
fied on the acquire operation must be associated with a
remote location name of *REQUESTER
(RMTLOCNAME(*REQUESTER), specified on either
the ADDICFDEVE or the OVRICFDEVE command).

.5/ Your program can send or receive data, depending on
the procedures previously set up with the remote
system.

.6/ Either program can end the transaction when all data
has been sent or received.

.7/ Your program must close the ICF file.

.8/ Use the VRYCFG command to vary off the commu-
nications configurations when they are no longer
needed.

3-16 ICF Programming V4R1

The previous outline summarizes the sequence of events
needed for both source and target programs. Overall, every
event is required, but different subsets of events can be
repeated without repeating the whole series of events. For

example, you can acquire and release multiple program
devices in the same program. You can also run multiple pro-
grams without varying on and varying off the communications
configurations.

 Chapter 3. Introduction to Intersystem Communications Function 3-17

3-18 ICF Programming V4R1

Chapter 4. Intersystem Communications Function Files

This chapter describes the ICF files, including:

� Using ICF file commands
� Creating and changing ICF files
� Identifying the program devices used with ICF files

Chapter 5 describes how you use ICF files.

Introduction to Intersystem
Communications Function Files

A device file is a description of how input data is presented
to a program from a device and how output data is presented
to a device from a program. A device can be a physical
device or a remote system. For example:

� For asynchronous communications, a device can be an
ASCII terminal.

� For advanced program-to-program communications
(APPC), a device can be a logical unit on a remote
system.

Device files do not contain data. Device files contain the file
description identifying the device to be used and the record
formats used by the application programs. The record
formats and associated processing keywords are defined in
the data description specifications (DDS) source.

The type of device file used for communications is the ICF
file. The ICF file allows the definition of program devices for
different communications types. The communications types
are advanced program-to-program communications (APPC),
Systems Network Architecture upline facility (SNUF), binary
synchronous communications equivalence link (BSCEL),
asynchronous, intrasystem, finance, and retail communica-
tions. Your application program writes data to and reads

data from the file. You can specify whether the data is to be
read from a specific program device or from the first program
device that responds to a request. You always write data to
a specific program device.

Note: References to APPC apply to APPC over TCP/IP
communications also.

The ICF file allows multiple sessions with different remote
systems. You can define and use up to 256 program
devices with an ICF file. The program devices can be a
combination of different communications types. You must
create the necessary communications configuration
descriptions for the program devices defined to the file.

Multiple programs (in the same job or separate jobs) can use
the same ICF file simultaneously. Each program can have
256 program devices per file.

The file description information for an ICF file is derived from
the parameters on the Create Intersystem Communications
Function File (CRTICFF) command or the Change Inter-
system Communications Function File (CHGICFF) command.
The record format information is derived from the DDS that
define each record format in the device file and from the
fields within each format.

You must also use either the Add Intersystem Communica-
tions Function Device Entry (ADDICFDEVE) or the Override
Intersystem Communications Function Device Entry
(OVRICFDEVE) command to specify the program devices
used with the file. These commands provide the connection
between the program device name and the remote location
name.

The ICF file has attributes unique to ICF and attributes
common to other types of device files. Figure 4-1 provides
an overview of ICF files.

PGMDEV

Communications

Device

Description

Remote Location

(RMTLOCNAME)

Application

Program

Reads/Writes

to Program Device

in File

ICF File

RMTLOCNAME

RSLS661-6

Figure 4-1. ICF File Overview

 Copyright IBM Corp. 1997 4-1

Notes:

1. The ICF file is created by using the CRTICFF command.

2. The RMTLOCNAME parameter on the ADDICFDEVE
command associates a remote location name to a
program device. The remote location name is used to
select the appropriate device description.

3. Not all communications types require an explicitly-
created device description. For more information, see
the appropriate communications programming book for
the communications type you are using.

If you use system-supplied formats (described in Chapter 7),
ICF supplies a file for your use. This file is QICDMF in
QSYS. If you use this file in your program, you do not need
to define DDS or create a file. However, you do need to
define the program device entry with the OVRICFDEVE
command.

DDS and system-supplied formats provide parallel functions
for ICF. System-supplied formats provide a majority of the
function without the need to code DDS or to create an ICF
file. DDS provides the following additional functions:

� Externally described data

� Additional processing (for example, CONFIRM pro-
cessing for APPC)

� Indicators to determine session state information

� More flexibility — DDS keywords can be used together
in multiple combinations

Intersystem Communications Function File
Commands

Three types of commands apply to ICF files: file-level attri-
bute commands, program device entry commands, and com-
mands for displaying information.

File-Level Attribute Commands

The file-level attribute commands are:

Create Intersystem Communications Function File
(CRTICFF)
This command creates an ICF file that can be used with
communications devices. After the command runs, the
file contains the file attributes and the record format defi-
nitions.

Change Intersystem Communications Function File
(CHGICFF)
This command changes the file attributes of an ICF file.

Override with Intersystem Communications Function File
(OVRICFF)
This command can (1) override (replace) the file named
in the program, (2) override certain parameters of a file

used by the program, or (3) override the file named in
the program and override certain parameters of the file
to process.

Delete Override (DLTOVR)
This command deletes the effect of the OVRICFF
command.

Delete File (DLTF)
This commands deletes the file from the system and
frees the storage space allocated to that file.

Program Device Entry Commands

The program device entry commands are:

Add Intersystem Communications Function Device Entry
(ADDICFDEVE)
This command adds a program device entry with the
specified device name and attributes to the file. You can
use this command multiple times to add multiple
program device entries to the same file.

Change Intersystem Communications Function Device
Entry (CHGICFDEVE)
This command changes the program device entry that
was defined with the ADDICFDEVE command.

Override Intersystem Communications Function Device
Entry (OVRICFDEVE)
This command is used either (1) to override attributes
specified in the ADDICFDEVE command or (2) to tem-
porarily associate the specified program device name
and attributes to the file. This command is different from
the ADDICFDEVE command because it does not perma-
nently change the ICF file. The association between the
program device entry and the file is only for the job in
which the command runs. You can use this command
multiple times to override multiple program device
entries to the file.

Delete Override Device Entry (DLTOVRDEVE)
This command deletes the effect of the OVRICFDEVE
command.

Remove Intersystem Communications Function Device
Entry (RMVICFDEVE)
This command removes one or more program device
entries from the file.

Display Information Commands

The commands used to display information are:

Display File Description (DSPFD)
This command displays information about the attributes
of a device file.

Display File Field Description (DSPFFD)
This command displays field-level information for a
device file.

4-2 ICF Programming V4R1

Display Override (DSPOVR)
This command displays file overrides at any active call
level for a job.

Creating an Intersystem Communications
Function File

Use the CRTICFF command to create an ICF file. The ICF
file contains a file description made up of information speci-
fied in two places:

� The source file containing the DDS
� The CRTICFF command

Figure 4-2 shows ICF file creation.

CRTICFF
Command

DDS
Source
File

File Attributes
ACQPGMDEV
MAXPGMDEV

TEXT

Record Information
Field Layout
DDS Keywords

ICF File

RSLS662-3

Figure 4-2. Creating an ICF File

Defining the Record Formats for an
Intersystem Communications Function File

DDS provides two functions. The first function is to describe
the data format as used by the program, by defining record
formats and the fields within the records. The second func-
tion is to define the characteristics of the operation to be
done on the record by the use of DDS keywords. DDS is
supplied in the source file specified on the SRCFILE param-
eter of the CRTICFF file command.

Refer to the DDS Reference book for information on using
DDS to define record formats and fields. Chapter 6
describes the function of DDS keywords unique to commu-
nications. Information on coding the DDS keywords is in the
DDS Reference book.

 File Attributes

Figure 4-3 identifies the attributes used with an ICF file.
These attributes are specified by the parameters on the
CRTICFF command.

Acquiring a Program Device when the File
Is Opened

Use the acquire program device (ACQPGMDEV) parameter
on the CRTICFF command to specify the program device
you want to acquire when the file opens. The values for the
ACQPGMDEV parameter are described below.

*NONE: Specifies that no program devices are acquired
when the file opens. This value is the default for the
ACQPGMDEV parameter.

When you specify *NONE, the program can open the file
without consideration of whether the devices to be used
are available. In addition, the program does not need a

Figure 4-3. ICF File Attributes

Parameter Description

FILE Name of the file

SRCFILE Name of the source file containing the DDS

SRCMBR Name of the member within the source file
containing the DDS

OPTION Output listing options

GENLVL Severity level of DDS messages that cause
the file create to fail

FLAG Minimum security level of error messages to
be listed

ACQPGMDEV Program device to acquire when the file is
opened

MAXPGMDEV Maximum number of program devices the
program can acquire using this file (This
parameter also restricts the number of device
entries that can be added with the
ADDICFDEVE command.)

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the
file is shared with other opens of the same file
in the routing step

LVLCHK Record format level indicators check

AUT Default authority granted to the public

REPLACE Specifies whether an existing ICF file is
replaced

TEXT Descriptive text describing the file

 Chapter 4. Intersystem Communications Function Files 4-3

routine to handle errors that occur if the program device
cannot be acquired when the file is opened.

The program must acquire at least one program device
to the file before doing any input/output (I/O) operations.

Program Device Name: Specifies the name of a
program device to be acquired to the file when the file is
opened. You can specify the name of any program
device associated with the file using the ADDICFDEVE
or OVRICFDEVE commands. See “Identifying the
Devices Used with an Intersystem Communications
Function File” on page 4-7 for more information on how
to define a program device to an ICF file. The specified
program device must be associated with the file before
the file is opened.

When you specify a program device name for the
ACQPGMDEV parameter, space is reserved in the file
for the specified program device. Refer to the next
section for information about reserving space in the file
for program devices.

Determining the Maximum Number of Program
Devices: The maximum program device (MAXPGMDEV)
parameter on the CRTICFF command specifies the
maximum number of program devices you want to use in the
file. Use the ADDICFDEVE or the OVRICFDEVE command
to associate program devices to the file. Following are
guidelines for specifying the value for the MAXPGMDEV
parameter:

� An ICF file can either be a single- or a multiple-device
file. If your program uses the file as a single-device file,
specify a value of 1 on the MAXPGMDEV parameter. If
your program uses the file as a multiple-device file,
specify the number of program devices simultaneously
active to the file. If your file is a single-device file, only
one session can be active in the program and the use of
the read-from-invited-program-devices operation is
restricted. If your file is a multiple-device file, more than
one session can be active simultaneously and the read-
from-invited-program-devices operation is allowed.
Refer to the appropriate language reference book to
learn:

– How to indicate that the program should use the file
as a single- or multiple-device file

– The differences between single- and multiple-device
files

� The value specified on the MAXPGMDEV parameter
restricts the number of program device entries you can
add to the file using the ADDICFDEVE command.

� The value specified for the MAXPGMDEV parameter
indicates the maximum number of program devices you
want to have simultaneously active for this file. If you
specify a program device name on the ACQPGMDEV
parameter, space is reserved in the file for the program
device to be acquired when the file opens, and this

device must be counted when determining the
MAXPGMDEV value. You must, however, still define a
program device entry to the file for this program device.

For example, if you specify a program device name of
PGMDEVA on the ACQPGMDEV parameter and a 1 on
the MAXPGMDEV parameter, the only device that can
be added to the file with the ADDICFDEVE command is
PGMDEVA. PGMDEVA is also the only device that can
be used with the file. If you specify a 2 for the
MAXPGMDEV parameter, you can add and use
PGMDEVA and one additional device with the file.

� The value you specify on the MAXPGMDEV parameter
should be no larger than necessary. If you specify a
larger number of program devices than your program
requires, the program uses unnecessary system
resources. If the requirements for the maximum number
of devices change, you can use the CHGICFF command
to change the MAXPGMDEV parameter. Refer to
“Changing an Intersystem Communications Function
File” on page 4-5 for more information.

� The number of devices a program can handle (while
maintaining a reasonable response time) is determined
by the amount of processing the program does for each
program device.

Determining the Maximum Record Length: Use the
maximum record length (MAXRCDLEN) parameter on the
CRTICFF command to specify the maximum record length
you want to use with the file. This length is used in calcu-
lating the size of allocated I/O buffers and this determines
the largest I/O operation that can be performed against the
file. The following are guidelines for specifying the value for
the MAXRCDLEN parameter:

� If your program uses externally described data and you
do not vary the defined length of record formats, use the
default value of *CALC. The system then generates the
maximum record length based on the largest record
defined in the file.

� If you use system-supplied formats in combination with
an externally described file, this parameter defines the
maximum length you can specify on the system-supplied
formats. Since this parameter determines the allocation
of I/O buffers and the system rejects output requests
that are longer than the allocated I/O buffers, this param-
eter is important if you try to use a system-supplied
format to write a record larger than the largest record in
the file. Refer to Chapter 7 for more information about
system-supplied formats.

� The value specified on the MAXRCDLEN parameter
should be no larger than necessary. The value specified
can be smaller than the largest record in the file. This
can be used to minimize the size of I/O buffers allocated
for a program that is using a common file that contains a
larger record length than is used by the program.

4-4 ICF Programming V4R1

Determining the Wait-for-File Resources Value:
Use the wait file (WAITFILE) parameter on the CRTICFF
command to specify the maximum amount of time the open
and acquire operations wait before a file resource (such as a
device description) becomes available for use by the file.
When a file resource is available to an ICF file, the resource
is allocated to the job using that file, and is not available to
other jobs.

Some communications types also use the WAITFILE param-
eter to determine the amount of time to wait for remote com-
munications session resources to become available.

The following are guidelines for specifying the value for the
WAITFILE parameter:

� If a session is not available for allocation to the job in
which your program is running, the system waits until the
session is available or until the specified amount of time
elapses.

� If you specify an extremely large value, your program
waits a long time before it is notified that the session
cannot be established.

� The wait time needs to be increased if your program
fails at open or acquire time while trying to acquire a
program device to a session that appears to be avail-
able.

Determining the Wait-for-Record Value: Use the wait
record (WAITRCD) parameter on the CRTICFF command to
specify the maximum number of seconds that the read-from-
invited-program-devices operation waits for a response from
the invited program devices. Although the normal response
is from an invited program device, the read-from-invited-
program-devices operation may also complete with a job-
being-canceled (controlled) indication.

The value specified for the WAITRCD parameter has no
effect on input operations directed to a specific program
device. Instead, a read operation to a specific program
device waits until a response is available from that program
device.

Refer to Chapter 5 for more information on the read-from-
invited-program-devices and read operations.

If your program does not use the read-from-invited-program-
devices operation, you need not be concerned about the
value specified on this parameter.

The following are guidelines for selecting the WAITRCD
parameter value if your program uses the read-from-invited-
program-devices operation:

*NOMAX: Indicates that the read-from-invited-program-
devices operation should wait until a response is avail-
able from an invited program device. This is the default.

When *NOMAX is specified on the WAITRCD param-
eter, the read-from-invited-program-devices operation

does not return control to the program unless a
response is available from an invited program device or
the job is ending in a controlled way. If the invited
program devices are unable to return a response, the
program waits until the job is ended.

*IMMED: Indicates that the read-from-invited-program-
devices operation should not wait for a response from an
invited program device.

Specifying *IMMED allows the program to receive a
response (if available) from an invited program device.
If no response is available, the program receives a 0310
return code without waiting for a time limit to end.

Number of Seconds: Specifies the number of seconds
that the read-from-invited-program-devices operation
waits for a response from an invited program device. If
no response is received from the invited program
devices within the specified amount of time, the program
is informed through a major/minor return code.

Specifying the number of seconds allows the program to
receive a response from an invited program device if a
response is available within the specified amount of
time. If no response is available within the specified
amount of time, the program receives a 0310 return
code, indicating that the time limit has ended.

Using a Data Queue: If you want your program to wait
for an ICF file and a data queue at the same time, use the
data queue (DTAQ) parameter on the CRTICFF command.
The program can also wait for a display file if the same data
queue is specified on the CRTDSPF, CHGDSPF, or
OVRDSPF commands. Refer to “Waiting for a Display File,
an ICF File, and a Data Queue” on page 5-15 for more infor-
mation.

Determining Other CRTICFF Command Parameter
Values: Refer to the CRTICFF command in the CL Refer-
ence book to determine the appropriate values for the
SRCFILE, SRCMBR, OPTION, GENLVL, FLAG, LVLCHK,
SHARE, AUT, REPLACE, and TEXT parameters.

Changing an Intersystem Communications
Function File

Use the CHGICFF command to change the file-level attri-
butes of an ICF file. The changes made to the file are
system-wide and affect all programs that open the file after
the CHGICFF has been done. Any programs that already
have opened the file are not affected during the current run.
Use the parameters in Figure 4-4 for changing file-level attri-
butes values specified on the CRTICFF command.

Figure 4-4 (Page 1 of 2). File Attributes for Changing an ICF File

Parameter Description

ACQPGMDEV Program device to be acquired when the file is
opened

 Chapter 4. Intersystem Communications Function Files 4-5

Overriding an Intersystem
Communications Function File

Use the OVRICFF command to temporarily override the file
named in the program, the file-level attributes of the file, or
both. The OVRICFF command affects only the job in which
it is run. Use the parameters in Figure 4-5 for overriding file-
level attribute values specified on either the CRTICFF or
CHGICFF command.

Override commands can be scoped to the job level, the acti-
vation group level (the default), or the call level. Overrides
scoped to the job level remain in effect until they are deleted,
replaced, or until the job in which they are specified ends.
Overrides scoped to the activation group level remain in
effect until they are deleted, replaced, or until the activation
group is deleted. Overrides scoped to the call level remain
in effect until they are deleted, replaced, or until the program
in which they were issued ends.

There are two common ways of using the override pro-
cessing. One way is to scope all your override processing to
the job level, as shown in the following example:
MAINCLPGM

OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(2) OVRSCOPE(\JOB)

 CALL CPGM

 CALL CBLPGM

 CALL RPGPGM

In the example, the OVRICFF applies to all the other pro-
grams, because overrides that are scoped to the job level
affect all programs in the job. The WAITRCD value of 2
seconds is in effect for the programs CPGM, CBLPGM, and
RPGPGM.

The second approach is to do your override processing at
the highest possible call level, as shown in the following
example:
MAINCLPGM

 CALL CCLPGM

 CALL CBLCLPGM

 CALL RPGCLPGM

CCLPGM

OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(2)

 CALL CPGM

CBLCLPGM

OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(4)

 CALL CBLPGM

RPGCLPGM

OVRICFF FILE(ICFFILE) TOFILE(ICFFILE) WAITRCD(4)

 CALL RPGPGM

When CPGM is called, the WAITRCD value in effect is 2
seconds. The effects of the OVRICFF in CCLPGM are
deleted when CCLPGM exits to the MAINCLPGM program.
The WAITRCD specified on the CRTICFF is now in effect
again. When CBLPGM or RPGPGM is called, the WAITRCD
value in effect is 4 seconds.

Refer to the Data Management book for the rules governing
the use of override commands.

Use the DLTOVR command to delete the effect of the
OVRICFF command.

You can use the DSPOVR command to display the file over-
ride in effect.

The WAITRCD parameter has no meaning in the
FORTRAN/400 language, as the FORTRAN/400 language
does not allow the read-from-invited-program-device opera-
tion.

Figure 4-4 (Page 2 of 2). File Attributes for Changing an ICF File

Parameter Description

MAXPGMDEV Maximum number of program devices that can
be acquired by the program using this file; this
parameter also restricts the number of device
entries that can be added with the
ADDICFDEVE command.

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the file
is shared with other opens of the same file in
the routing step

LVLCHK Record format level indicators check

TEXT Descriptive text for describing the file

Figure 4-5. File Attributes for Overriding an ICF File

Parameter Description

FILE Name of file to override (same file name as
application)

TOFILE Name of file

ACQPGMDEV Program device to be acquired when the file is
opened

MAXRCDLEN Maximum record length used with the file

WAITFILE Length of time to wait for file resources to
become available

WAITRCD Length of time to wait for a record to be
returned when performing a read-from-invited-
program-devices operation

DTAQ Name and library of the data queue on which
entries are placed

SHARE Specifies whether the open data path for the file
is shared with other opens of the same file in
the routing step

LVLCHK Record format level indicators check

TEXT Descriptive text for describing the file

SECURE Specifies whether this file is secure from previ-
ously called override commands

4-6 ICF Programming V4R1

Identifying the Devices Used with an
Intersystem Communications Function File

A program communicates through a program device in an
ICF file. A program device entry has two functions:

� Associates a program device name with a remote
location name

� Establishes a set of program communications-type-
dependent attributes

The program device name need not be the same as the
name of the device description. To establish an association
between the name used in the program (program device
name) and the communications configurations, you must
define a program device entry to the file.

You must define one program device entry for each name
used in the program (even if the name of the configuration is
the same as the name used in the program). If the program
is written to handle the requesting program device, you must
define a program device entry for the requester by specifying
a special value of *REQUESTER for the RMTLOCNAME
parameter on the ADDICFDEVE or the OVRICFDEVE
command.

You must define the program device entry before the
program device can be acquired. If you specified a program
device on the ACQPGMDEV parameter of the CRTICFF
command, you must define the appropriate program device
before the file can be opened.

Note: The FORTRAN/400 language does not support
program device names. To establish an ICF session using
the FORTRAN/400 language, you must use the
ACQPGMDEV parameter on the CRTICFF, CHGICFF, or
OVRICFF commands. You can have only one ICF session
for each ICF file opened using the FORTRAN/400 language.

Defining Program Device Entries
Permanently

You can define a program device entry in numerous ways.
For example, the ADDICFDEVE command permanently adds
the program device entry to the file, while the OVRICFDEVE
command provides the same function without changing the
file. Figure 4-6 on page 4-8 shows how to define a program
device entry to an ICF file.

Note: Figure 4-6 on page 4-8 shows only one program
device entry. Multiple program device entries can be
defined. The maximum number of entries is determined by
the MAXPGMDEV parameter specified at file creation.

You can define a program device entry to an ICF file perma-
nently or temporarily. A permanent definition is system-wide
and affects all users of the file. A permanent definition adds
the program device entry to the specified file. A temporary
definition does not change an ICF file. The definition is only
associated with the job in which the command is entered.
Because temporary changes are not directed to a specific

ICF file, all ICF files associated with the job or call level are
affected.

Use the ADDICFDEVE command to add a program device
entry to an ICF file. The program device entry is added to
the file specified in the FILE parameter.

Use the CHGICFDEVE command to change a program
device entry previously added to an ICF file with the
ADDICFDEVE command. The PGMDEV parameter identi-
fies the entry to change. You can use the CHGICFDEVE
command to change the association to the communications
configurations, the program communications-type-dependent
attributes, or both.

Use the RMVICFDEVE command to remove a program
device entry previously added to an ICF file with the
ADDICFDEVE command. The PGMDEV parameter identi-
fies the entry to remove.

Defining Program Device Entries
Temporarily

In addition to the file attributes and record formats similar to
those in other device files, an ICF file also contains program
device entries that provide the link between the application
and each of the remote systems or devices with which your
program communicates.

The following lists the CL commands that provide override
functions for device entries:

DLTOVRDEVE
Delete Override Device Entry: Deletes one or more
program device overrides that were previously spec-
ified in a call level.

OVRICFDEVE
Override with Intersystem Communications Program
Function Device Entry: Used to temporarily add the
program device entry and the remote location name
to the ICF file or to override a program device entry
with the specified remote location name and attri-
butes for an ICF file.

A program device entry has two functions:

� It associates a program device name with a remote
location.

� It establishes a set of program communications-type
dependent attributes.

Multiple program device entries can be defined. Each
program device entry must have a unique program device
name. The maximum number of entries is determined by the
MAXPGMDEV parameter specified at file creation.

Program device entries may be defined by the ADDICFDEVE
command or the OVRICFDEVE command. The
ADDICFDEVE command makes a permanent addition to the
file, and the OVRICFDEVE command makes a temporary
change to the program device information. It is not neces-

 Chapter 4. Intersystem Communications Function Files 4-7

Program Device Entry

Mapping to

Configuration

Device Attributes

File Attributes

ACQPGMDEV

MAXPGMDEV

TEXT

Record Information

Field Layout

DDS Keywords

ICF File

Remote Location

(RMTLOCNAME)

Communications

Device

Description

ADDICFDEVE

Command

RSLS663-4

Figure 4-6. Defining a Program Device Entry to an ICF File

sary to add a program device entry before overriding it.
Several ADDICFDEVE commands may be used to add mul-
tiple program devices to the same file. Several
OVRICFDEVE commands may be used to change different
device entries.

Overriding Remote Location Name: The device entry
override may be used to temporarily define or change the
remote location name associated with the program device
entry.

The following example demonstrates the use of the
OVRICFDEVE command to override the remote location
name:

OVRICFDEVE PGMDEV(PGMDEVA) RMTLOCNAME(CHICAGO)

CALL RPGPGM

In this example, when RPGPGM specifies PGMDEVA,
remote location CHICAGO is used.

Overriding Session Attributes: The device entry over-
ride may also be used to temporarily change the character-
istics of the communications session that is established when
the program device is acquired.

Although some of the session attributes have system-level
defaults, the default for the majority of these attributes is
information supplied during communications configuration.

Session attributes are identified as parameters on the
ADDICFDEVE or OVRICFDEVE command. Parameters not
specified on either command take on the appropriate system
default or specified configuration value. If the same param-
eter is specified on both the ADDICFDEVE and
OVRICFDEVE commands, the value specified on

OVRICFDEVE overrides the value declared on the
ADDICFDEVE command.

The following example demonstrates the use of the
OVRICFDEVE command to override the format selection pro-
cessing attribute:

OVRICFDEVE PGMDEV(PGMDEVA) FMTSLT(\PGM)

In this example, format selection is changed to *PGM. This
overrides what was previously defined in the program device
entry. Refer to the appropriate communications program-
ming book for more information on the use of the session
attributes. Refer to the CL Reference book for more informa-
tion on the format and allowable values of the parameters on
the OVRICFDEVE command.

Overriding Remote Location Name and Session
Attributes: This form of the override device entry is a
combination of the previous two forms. With this form of
override, you can override the remote location that is used by
a program, and you can also override the session attributes.

Applying OVRICFDEVE Command: Device entry
overrides follow most of the same rules as file overrides.
They are effective from the time they are specified until they
are replaced or deleted or until the program in which they
were specified ends. Any program device entry overrides
that are in effect at the time the device is acquired are
applied.

The OVRICFDEVE command can be used to initialize an
environment or change the environment while running.

In the following example, the OVRICFDEVE commands are
initializing an environment:

4-8 ICF Programming V4R1

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(BOSTON) . . .

Override 2 OVRICFDEVE PGMDEV(PGMDEV2) +

RMTLOCNAME(ROCHMN) . . .

CALL PGM(A)

CALL PGM(B)

.

.

.

CALL PGM(X)

When the program uses any ICF file and acquires the
program device named PGMDEV1, then the remote location
named BOSTON and attributes from override 1 are used
when establishing the communication session.

When the program uses an ICF file and acquires the
program device named PGMDEV2, then the remote location
named ROCHMN and attributes from override 2 are used
when establishing the communication session.

In the following example, the OVRICFDEVE commands are
used to change the running environment:

Override 1 OVRICFDEVE PGMDEVE(PGMDEV1) +

RMTLOCNAME(BOSTON) . . .

CALL PGM(A)

Override 2 OVRICFDEVE PGMDEVE(PGMDEV2) +

RMTLOCNAME(ROCHMN) . . .

CALL PGM(A)

The first time program A is called, an ICF file is opened and
the program device named PGMDEV1 acquired. The remote
location named BOSTON and attributes from override 1 are
used when establishing the communication session.

The second time program A is called, an ICF file is opened
and the program device named PGMDEV2 is acquired. The
remote location named ROCHMN and attributes from over-
ride 2 are used when establishing the communication
session.

Applying OVRICFDEVE from Multiple Call Levels: When
you have more than one override for the same program
device at several call levels (nested calls), the order in which
the overrides are applied to the program device is from the
highest call level to the lowest call level. Any job level over-
rides are applied last.

To prevent overrides at lower call levels from being applied,
see “Applying OVRICFDEVE with SECURE.”

In the following example, override 2 is in the highest call
level and override 1 is in the lowest call level.

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +

FMTSLT(\PGM) BATCH(\NO)

CALL PGM(A)

Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

FMTSLT(\RECID) APPID(PAYROLL)

CALL PGM(X)

When program X acquires program device PGMDEV1, the
following attributes are used:

FMTSLT(*PGM) From Override 1
BATCH(*NO) From Override 1
APPID(PAYROLL) From Override 2

The attribute of FMTSLT(RECID) specified in override 2 is
not used because it was overridden by FMTSLT(*PGM)
specified in override 1. Override 1 overrides override 2. If
there is a third override for program device PGMDEV1
embedded in program X, it is overridden by override 2 and
then override 1.

A similar situation exists when you change the remote
location to be used with the program device and you also
change some of the attributes of the program device. For
example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(NYCAPPC)

CALL PGM(A)

Program A
Override 2 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(MPLSAPPC) +

CNVTYPE(\USER)

CALL PGM(X)

When program X is ready to acquire PGMDEV1, it acquires
remote location NYCAPPC instead of MPLSAPPC (because
override 1 overrides override 2 remote location). Also, the
conversation type is *USER (because of override 2).

Applying OVRICFDEVE with SECURE: On occasion,
you may want to protect program devices used by a program
from overrides at lower call levels.

You can prevent additional program device overrides by
coding the SECURE(*YES) parameter on a program device
override command for each program device needing pro-
tection. This protects you from overrides at lower call levels.

The following shows an example of a protected program
device:

 Chapter 4. Intersystem Communications Function Files 4-9

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(BOSTON)

Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +

RMTLOCNAME(ROCHMN)

CALL PGM(A)

Program A
Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +

RMTLOCNAME(NYC)

CALL PGM(B)

Program B
Override 4 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(MPLS) SECURE(\YES)

CALL PGM(X)

When program X acquires program device PGMDEV1 for an
ICF file, the remote location MPLS and attributes from over-
ride 4 are used. Because override 4 specifies
SECURE(*YES), override 1 is not applied.

Deleting Device Entry Overrides: When a program
returns from a call level containing program device entry
overrides, the overrides are deleted, just as any file overrides
are deleted. When control is transferred to another program
(TFRCTL command) so that the program is running at the
same call level, the overrides are not deleted. If you want to
delete an override before the run is completed, you can use
the Delete Override Device Entry (DLTOVRDEVE) command.
This command only deletes overrides in the call level in
which the command is entered. A DLTOVRDEVE command
does not delete the effects of an ADDICFDEVE command.
To remove an ADDICFDEVE command, you must use the
Remove Intersystem Communications Function Program
Device Entry (RMVICFDEVE) command. To identify an
override, use the program device name specified on the
PGMDEV parameter of the override. You can delete all
overrides at this call level by specifying value *ALL for the
PGMDEV parameter. For example:

Override 1 OVRICFDEVE PGMDEV(PGMDEV1) +

RMTLOCNAME(BOSTON)

Override 2 OVRICFDEVE PGMDEV(PGMDEV4) +

RMTLOCNAME(ROCHMN)

Override 3 OVRICFDEVE PGMDEV(PGMDEV5) +

RMTLOCNAME(NYC)

Delete Override 1 DLTOVRDEVE PGMDEV(PGMDEV1)

Delete Override 2 DLTOVRDEVE PGMDEV(\ALL)

Delete override 1 causes override 1 to be deleted. Delete
override 2 causes the remaining overrides (overrides 2 and
3) to be deleted.

Displaying Device Entry Overrides: Device entry
overrides are not displayed by the Display Override
(DSPOVR) command. There is no corresponding command
to display device entry overrides.

Mapping Program Device Name to
Communications Configurations

The first purpose of the program device entry is to associate
a program device name with a device description. This
mapping uses the parameters shown in Figure 4-7 on the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands.

Note: References to APPC apply to APPC over TCP/IP
communications also.

PGMDEV
Specifies the program device name being defined (the
name used by the program to do operations). The
program device name must be unique throughout all
entries in the file. You can map two or more different
program device names to the same communications
configurations. This mapping allows you to have mul-
tiple sessions through the same configurations, and to
have different device attributes for the same configura-
tions. PGMDEV is a required parameter.

Figure 4-7. Mapping Parameters for All Communications Types

Parameter Description APPC SNUF BSCEL Async
Intra-

system Finance Retail

PGMDEV Program
device name

X X X X X X X

RMTLOCNAME Remote
location name

X X X X X X X

DEV Communica-
tions device
description

X X X

LCLLOCNAME Local location
name

X

MODE Mode X

RMTNETID Remote
network ID

X

4-10 ICF Programming V4R1

The other parameters are associated with information sup-
plied at various times during configuration. The following
descriptions show the relationship of these parameters to the
program device definition.

RMTLOCNAME
Specifies the name of the remote location associated
with the program device. The remote location name is
the primary mapping to communications configurations.
A remote location is associated with any device
description that contains the same remote location name
(RMTLOCNAME parameter on the Create Device XXXX
(CRTDEVXXXX) command). For APPC, intrasystem,
and SNUF communications, there can be a one-to-many
relationship between the remote location name and the
device description. For asynchronous, BSCEL, finance,
and retail communications, there is a one-to-one
relationship.

The remote location name is used by the system to
select the device description. For those communications
types that support multiple device descriptions per
remote location, each communications type defines the
criteria for selecting the best device. For a given remote
location name, a list of devices (one or more) may be
available for use.

Each communications type has specific rules for defining
what constitutes an available device. Because asyn-
chronous, BSCEL, finance, and retail communications
have a one-to-one relationship between the device and
remote location name, no device selection process is
necessary. APPC, intrasystem, and SNUF communica-
tions all have a means for selecting the best available
device for use.

For APPC, intrasystem, and SNUF communications, if
you want to use a specific device description instead of
allowing the system to select it for you, use the DEV
parameter to further qualify the remote location to a spe-
cific device description.

Figure 4-8 on page 4-12 shows the relationship of the
remote location to the device description. Your program
selects the communications type and communications
link by acquiring a program device associated with a
remote location name. The system selects a device
description, based on availability (such as varied on and
not in use), and other parameters that were specified
when the program device entry was defined (such as
device description). Note that multiple device
descriptions can contain the same remote location
name. In Figure 4-8 on page 4-12, if your program
acquires a program device associated with a remote
location of 'A', the system either selects DEVD1 or
DEVD2, and the session established uses the APPC
communications type.

For additional information on how the system processes
the RMTLOCNAME, DEV, LCLLOCNAME, and
RMTNETID parameters for APPC, refer to the APPC
Programming book.

The remote location need not exist at the time you
define the program device entry. However, the remote
location must exist (either as a device description on the
system, or as a remote location in the network) when the
program device is acquired.

If the communications type you are using allows multiple
sessions per remote location, the same remote location
can be mapped to different program device names.

If the program device entry is being defined to process
incoming program start requests, the special value of
*REQUESTER must be used for the RMTLOCNAME
parameter. The remaining parameters on the
ADDICFDEVE, OVRICFDEVE, and CHGICFDEVE com-
mands in Figure 4-7 on page 4-10 do not apply (except
PGMDEV) and should not be specified.

RMTLOCNAME is a required parameter.

DEV
Further qualifies the remote location to a specific com-
munications device description.

DEV is an optional parameter. If you do not specify the
DEV parameter, and there are several communications
device descriptions associated with the remote location,
the system determines which device to use. Note that
the device used may not be the one you want (for
example, the device you want may not be varied on).

Note: If you rename a device after specifying the
device name and remote location, you must update your
ICF file accordingly.

LCLLOCNAME
Specifies the local location name of the local system.
LCLLOCNAME is an optional parameter.

MODE
Specifies the mode used for the remote location. When
you specify the special value *NETATR (the default) the
mode in the network attributes is used. BLANK indi-
cates that a mode name consisting of all blanks is used.
MODE is an optional parameter.

RMTNETID
Specifies the remote network identifier of the remote
location. When you specify the special value *NETATR
(the default) the network identifier in the network attri-
butes is used. *NONE indicates that a network identifier
consisting of all blanks is used. RMTNETID is an
optional parameter.

 Chapter 4. Intersystem Communications Function Files 4-11

RMTLOCNAME (A)

RMTLOCNAME (A)

RMTLOCNAME (B)

RMTLOCNAME (C)

Remote Location Name A

Remote Location Name B

Remote Location Name C

Remote Location Name D

DEVD1

DEVD2

DEVD3

DEVD4

APPC

APPC

ASYNCHRONOUS

SNUF

Device Descriptions

RMTLOCNAME (F)

DEVD7

FINANCE

DEVD8

RMTLOCNAME (G) RETAIL

RMTLOCNAME (D)

DEVD5

BSCEL

DEVD6

RMTLOCNAME (E)

Remote Location Name E

Remote Location Name G

RSLS682-3

Remote Location Name F INTRASYSTEM

Figure 4-8. Relationship of Remote Location Name to Device Description

If any of the information supplied in the RMTLOCNAME,
DEV, LCLLOCNAME, MODE, or RMTNETID parameters
conflicts, the acquire operation to the program device fails.

For more specific information, refer to Communications Con-
figuration book and the appropriate communications pro-
gramming book for the communications type you are using.

 Communications-Type-Dependent
Attributes

The second purpose of a program device entry is to establish
the characteristics of the communications session. These
communications-type-dependent attributes are specified as
parameters on the ADDICFDEVE, CHGICFDEVE, and
OVRICFDEVE commands.

Figure 4-9 describes the communications-dependent attri-
butes used with an ICF file and the communication types that
support each attribute.

Note: References to APPC apply to APPC over TCP/IP
communications also.

Figure 4-9 (Page 1 of 3). Communications-Type-Dependent Attributes

Parameter Description APPC SNUF BSCEL Async
Intra-

system Finance Retail

FMTSLT Record format
selection technique.

X X X X X X X

4-12 ICF Programming V4R1

Figure 4-9 (Page 2 of 3). Communications-Type-Dependent Attributes

Parameter Description APPC SNUF BSCEL Async
Intra-

system Finance Retail

CMNTYPE Identifies the commu-
nications type you are
using to select
prompting on the
command.

X X X X X X X

APPID VTAM* identifier of the
Customer Information
Control (CICS/VS) or
the Information Man-
agement System for
Virtual Storage
(IMS/VS) host system.

X

BATCH Specifies whether this
session is used for
batch activity with
IMS/VS host system.

X X

HOST Identifies type of host
system with which to
communicate.

X

ENDSSNHOST Specifies the command
used to end a session
with the host system.

X

SPCHOSTAPP Specifies whether the
support should be cus-
tomized for special
host applications
outside the CICS/VS or
IMS/VS application
layer.

X

INZSELF Specifies whether a
formatted INIT-SELF is
used in place of the
unformatted logon
normally sent to the
host system.

X

HDRPROC Specifies whether
received function man-
agement headers
should be passed to
the application.

X

MSGPTC Specifies whether
message protection
should be used.

X

EMLDEV Specifies whether the
application is using
3270 data streams.

X

CNVTYPE Conversation type. X

BLOCK Specifies whether
system or user will
block and unblock
transmitted records.

X

RCDLEN Maximum record length
to transmit and receive.

X X X X

BLKLEN Maximum block length
to transmit and receive.

X X

 Chapter 4. Intersystem Communications Function Files 4-13

Figure 4-9 (Page 3 of 3). Communications-Type-Dependent Attributes

Parameter Description APPC SNUF BSCEL Async
Intra-

system Finance Retail

TRNSPY Specifies whether text
transparency is used
when sending blocked
records.

X

DTACPR Specifies whether
blanks are compressed
when sending and
receiving data.

X

TRUNC Specifies whether
trailing blanks are
removed when sending
data.

X

OVRFLWDTA Specifies whether over-
flow data (data in
excess of what can be
contained in the input
buffer) is discarded or
retained.

X

GRPSEP Specifies separator for
groups of data (data
sets and documents).

X

RMTBSCEL Specifies whether the
session supports
BSCEL commands and
online messages.

X

INLCNN Specifies the method of
making a connection
on the line when a
session is established.

X

SECURE Specifies whether this
program device is
secured from previ-
ously called override
commands.

X X X X X X X

You can specify any parameter on any communications type,
but the parameter is ignored if it is not supported by the
specified communications type.

Although some attributes, like FMTSLT and CNVTYPE, have
system-level defaults, the default for the majority of the
parameters is the information supplied during communica-
tions configuration.

Parameters not specified on an ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command take on the
appropriate system default or specified configuration value.
If the same parameter is specified on both an ADDICFDEVE
and OVRICFDEVE command, the value specified on the
OVRICFDEVE overrides the value declared on the
ADDICFDEVE command.

The OVRICFDEVE command follows the general rules for
override processing. For information on determining the
result when two OVRICFDEVE commands are specified for

the same program device entry, refer to “Applying
OVRICFDEVE from Multiple Call Levels” on page 4-9.

Format Selection (FMTSLT): The FMTSLT parameter
specifies the type of record selection used for input oper-
ations for the program device specified in the PGMDEV
parameter.

Following are the values for the FMTSLT parameter:

*PGM
The record format is determined by the program.

*RECID
The record format is based on the use of the RECID
DDS keyword.

*RMTFMT
The remote program determines the record format
to use.

These different values have meaning only when used in con-
junction with specific DDS keywords. Refer to Chapter 5 for
more information on format selection processing.

4-14 ICF Programming V4R1

Communications Type (CMNTYPE): The CMNTYPE
parameter identifies the communications type for which you
are defining a program device entry. This identification
prompts you for the communications-type-dependent attri-
butes associated with the communications type you are
using.

These values are available for the CMNTYPE parameter
when *REQUESTER is not specified for the remote location
name:

*ALL
Prompt for all possible communications-type-
dependent attributes

*APPC
Prompt for all APPC-supported and APPC over
TCP/IP supported attributes

*SNUF
Prompt for all SNUF-supported attributes

*BSCEL
Prompt for all BSCEL-supported attributes

*ASYNC
Prompt for all asynchronous communications-
supported attributes

*INTRA
Prompt for all intrasystem communications-
supported attributes

*FINANCE
Prompt for all finance communications-supported
attributes

*RETAIL
Prompt for all retail communications-supported attri-
butes

This parameter is valid only if you enter the command inter-
actively.

However, when you specify *REQUESTER for the remote
location name (RMTLOCNAME), you are only prompted for
selected values based on the CMNTYPE parameter:

*ALL
Prompt for FMTSLT, CNVTYPE, RCDLEN,
BLKLEN, and SECURE parameters

*APPC
Prompt for FMTSLT, CNVTYPE, and SECURE
parameters

*ASYNC
Prompt for the FMTSLT and SECURE parameters

*SNUF
Prompt for FMTSLT, RCDLEN, BLKLEN, and
SECURE parameters

*BSCEL
Prompt for the FMTSLT and SECURE parameters

*INTRA
Prompt for the FMTSLT and SECURE parameters

*FINANCE
Prompt for the FMTSLT and SECURE parameters

*RETAIL
Prompt for the FMTSLT and SECURE parameters

Note: You can still specify values for the parameters that
you are not prompted for (when *REQUESTER is specified
for the remote location name) by typing those values and
parameters on any command line with any of the program
device entry commands. However, the parameter values you
specify are ignored and no error return codes are issued.

Secure from Override (SECURE): The SECURE
parameter is valid only on the OVRICFDEVE command.
This parameter does not apply to the ADDICFDEVE or
CHGICFDEVE commands. This parameter is used to restrict
the effects of override processing.

Refer to the Data Management book for information about
how the SECURE parameter works. Refer to the CL Refer-
ence book for more information about the format and allow-
able values.

Other Communications-Type-Dependent Parame-
ters: Each of these parameters has specific meaning and
function, depending on the communications type you are
using. Also, some of these parameters are ignored if the
program device being defined is for a
RMTLOCNAME(*REQUESTER). Refer to the appropriate
communications programming book for more information on
the use of these parameters.

Refer to the CL Reference book for more information on the
format and allowable values for these parameters.

Intersystem Communications Function
Command Summary

Figure 4-10 on page 4-16 shows the relationship between
ICF commands.

.1/ The CRTICFF and CHGICFF commands are used to
create the ICF file and work with file-level attributes.
(The DLTF command is used to delete the ICF file.)

.2/ The ADDICFDEVE, CHGICFDEVE, and RMVICFDEVE
commands allow defining program device- or
communications-type-dependent information in the ICF
file. The ADDICFDEVE command is optional, and is
used only to support early binding, and setting of
system-wide defaults.

.3/ The OVRICFF command allows the changing of file-
level attributes at the job level only. This command
does not cause any permanent change, and it is not
system-wide. (The DSPOVR command displays the
information entered on the OVRICFF command. The
DLTOVR command is used to delete the effects of the
OVRICFF command.)

 Chapter 4. Intersystem Communications Function Files 4-15

.4/ The OVRICFDEVE command affects the processing of
the ICF file at the job level only. You do not specify
the file on the override. Whatever ICF file is active at
the time is the file that is overridden. It does not cause
any permanent change, and it is not system wide. The
OVRICFDEVE command uses a late binding function
that ties the program device and the remote location at

job time. The OVRICFDEVE command is also used to
temporarily change communications-type-dependent
attributes. The OVRICFDEVE command is job-wide,
and has the characteristics of an override command.
(The DLTOVRDEVE command is used to delete the
effects of the OVRICFDEVE command.)

File
Attributes

Device
Attributes

CRTICFF
CHGICFF

ADDICFDEVE
CHGICFDEVE
RMVICFDEVE

Creation Time Frame
(permanent change)

ICF File

OVRICFDEVE

OVRICFF

Processing Time Frame
(job-level change)

RSLS664-4

Figure 4-10. Relationship between ICF Commands

4-16 ICF Programming V4R1

Chapter 5. Using an Intersystem Communications Function File

This chapter describes how an application uses an ICF file.

To use an ICF file, identify it as a WORKSTN file in the ILE
RPG programming language or as a TRANSACTION file in
the ILE COBOL programming language. For the ILE C pro-
gramming language, the type of file need not be specified.

The ILE C, ILE COBOL, and ILE RPG programming lan-
guages support an interface that allows the application to
perform the following operations:

� Open the file
� Acquire a program device
� Read from a program device
� Write to a program device
� Release a program device
� Close the file

The FORTRAN/400 language supports an interface that
allows the application to perform the following operations:

� Open the file

� Read from the file (program device is implied)

� Write to the file (program device is implied)

� Close the file

Read and write operations are done using a record that con-
tains data description specifications (DDS) keywords. These
DDS keywords allow more specific communications functions
to be done with the read and write operations. ICF also sup-
ports system-supplied record formats that can be used in
place of user-defined DDS record formats. Refer to
Chapter 6 and Chapter 7 for more information about the
communications functions that can be performed with the
read and write operations.

Sample programs in Chapter 9 through Chapter 11 provide
an overview of the language interface that supports these
functions. For more information on the language interface,
refer to the appropriate language reference book.

Opening an Intersystem Communications
Function File

The processing done by the open operation depends on
whether the open is a subsequent open of a shared file. The
open is a subsequent open of a shared file if you specify
SHARE(*YES) and the file is currently open with
SHARE(*YES) specified.

If the open is not a subsequent open of a shared file in the
same job, the open operation allocates the file and any other
resources needed to support the acquiring of program

devices to the file, and allocates the input/output (I/O)
buffers.

If the open is a subsequent open of a shared file, the
program is simply attached to the already open file. Any
program devices acquired by other programs are available
for use by this program. The state or attributes of the file do
not change during a subsequent open. For example, if the
program device specified as the ACQPGMDEV parameter
has been released, the subsequent open does not cause it to
be acquired.

After the file and other resources have been allocated, the
open operation implicitly acquires the program device speci-
fied by the ACQPGMDEV parameter, on the Create Inter-
system Communications Function File (CRTICFF), Change
Intersystem Communications Function File (CHGICFF), or
Override Intersystem Communications Function File
(OVRICFF) command. See “Acquiring a Program Device
when the File Is Opened” on page 4-3 for information on
how to specify the ACQPGMDEV parameter.

The following is a description of the processing done by the
open operation based on the ACQPGMDEV parameter value
specified for the file:

� If you did not specify the ACQPGMDEV parameter, or if
you specified *NONE, the open operation does not
acquire any program devices. A program device must
be explicitly acquired for the file before the program tries
any I/O operations to the file, or before another program
opens the same file if the file is opened with
SHARE(*YES) specified.

� If you specify a program device name on the
ACQPGMDEV parameter, the open operation acquires
the specified program device. See “Acquiring a Program
Device” on page 5-2 for information about acquiring a
specific program device.

If the open operation is not successful, the only allowable
operation is closing the file. See “Closing an Intersystem
Communications Function File” on page 5-17 for more infor-
mation.

Obtaining Information about the Open
Intersystem Communications Function File

After the program opens the file, an open feedback area is
available to the program. This area contains information
about the open file such as the file name, library name, and
program device information. You can use the information in
this area as long as the file is open. See Appendix C for a
summary chart of the open feedback fields. Refer to the
appropriate language reference book for information on
accessing the fields.

 Copyright IBM Corp. 1997 5-1

Acquiring a Program Device

Before any input or output operations can be directed to a
program device, the program device must be acquired.

Only program devices defined to the file by use of the Add
Intersystem Communications Function Device Entry
(ADDICFDEVE) or the Override Intersystem Communications
Function Device Entry (OVRICFDEVE) command can be
acquired. See “Identifying the Devices Used with an Inter-
system Communications Function File” on page 4-7 for more
information about defining program device entries.

A program device can be acquired in two ways:

� One program device can be implicitly acquired through
the open operation. Refer to “Opening an Intersystem

Communications Function File” on page 5-1 for more
information on an implicit acquire through the open oper-
ation.

� A program device can be explicitly acquired through the
acquire operation. The acquire operation can be used
many times with different program device names.

When a program device is explicitly acquired with an acquire
operation, you identify the session to establish by using the
same program device name on the acquire as specified on
the PGMDEV parameter on the ADDICFDEVE or the
OVRICFDEVE command.

The examples in Figure 5-1 show the relationship between
the program device entry (defined using an ADDICFDEVE or
an OVRICFDEVE command) and an ILE C, COBOL/400,
and RPG/400 operation.

Example 1

Example 2

Example 3

A D D I CF D E V E F I L E (I CF F I L E) P G M D E V (P G M D E V A) R M T L O C N A M E (C H I C A G O)

R P G / 4 0 0 P r o g r a m

O VR I CF D E V E P G M D E V (P G M D E V A) R M T L O C N A M E (C H I C A G O)

C O B O L / 4 0 0 P r o g r a m

O VR I CF D E V E P G M D E V (P G M D E V A) R M T L O C N A M E (C H I C A G O)

C / 4 0 0 P r o g r a m

' P G M D E V A ' A C Q I CF F I L E

A C Q U IR E ' P G M D E V A ' F OR I CF F I L E .

R a c q u ir e (F P , " P G M D E V A ") ;

RV2P921-2

Figure 5-1. Relationship of Program Device Entries to Operations

Note: For FORTRAN/400 programs, the acquire operation
can be done implicitly by the system only when the ICF file is
opened by specifying a program device name on the
ACQPGMDEV parameter of the CRTICFF, CHGICFF, or
OVRICFF command. The FORTRAN/400 language does not
support program device names for ICF files; the program
device is implied on read and write operations.

Acquiring the program device automatically allows any I/O
operations valid for that program device to be issued. For
example, if the file is opened for input only, the read opera-
tion is allowed, but the write operation is not allowed.

The amount of time the system waits for resources to
become available to complete the acquire request is speci-
fied on the WAITFILE parameter of the CRTICFF, CHGICFF,
or OVRICFF command.

The following sections describe some of the functions per-
formed when a program device is acquired.

Acquiring a Program Device – Source
Program

The system tries to allocate a new session with the remote
location for the job in which the program is running.

Some causes of a failed acquire operation are:

� The device associated with the program device is not
varied on.

� The device description for the device associated with the
program device is allocated to another job.

� A session is not available for the remote location.

5-2 ICF Programming V4R1

Acquiring a Program Device – Target
Program

The system tries to establish a connection with the
requesting program device. An acquire operation to the
requesting program device does not allocate a new session.
It only establishes a logical connection to the session and
transaction on which the target program was started.

The acquire operation fails if any of the following occur:

� The session was previously ended by the target
program.

� A program not started by an evoke function issues an
acquire for a requesting program device.

� The requesting program device is acquired for another
file in the job.

Obtaining Information about a Particular
Program Device

You can obtain information about a program device in two
ways:

� Using the program device definition list
� Using the get-attributes operation

Program Device Definition List

After a program device is acquired, the program device
becomes part of the program device definition list. The
program device definition list contains information about the
program device, such as the program device class, device
type, and invite state.

You can use the information in the program device definition
list as long as the program device is acquired. The support
provided by the high-level language you use determines
whether you can access this information.

See Appendix C for a summary chart of the program device
definition list. Refer to the appropriate language reference
book for information on accessing these fields.

 Get-Attributes Operation

The get-attributes operation can be used at any time after a
file has been opened to determine the status of a particular
program device. The program device does not need to be
acquired. The operation gets the current status about the
session in which your program is communicating based on
the last ICF operation performed. The value for position 41
is an exception; this value is updated asynchronously by the
system. If the program device is not acquired, the informa-
tion is obtained from the program device entry defined with
the ADDICFDEVE or OVRICFDEVE command.

The status information received by the get-attributes opera-
tion contains the fields shown in Figure 5-2.

Figure 5-2 (Page 1 of 3). Attribute Information Fields

Position Value Meaning

1 through 10 Name Program device name: The name the program used to identify the program device in the file to read
and write from.

11 through 20 Name Device description name: The device description associated with the program device name (specified
during configuration and optionally on the ADDICFDEVE or OVRICFDEVE command).

21 through 30 Name User ID: If the program was started locally, this is the user ID used to sign on to the work station. If
the program was started as a result of a program start request, this is the user ID used to start the
target program.

31 I
D
U

The device is an ICF device type.
The device is a display device.
Unknown.

32 through 37 APPC
SNUF
BSCEL
ASYNC
INTRA
FINANC
RETAIL

APPC or APPC over TCP/IP communications type.
SNUF communications type.
BSCEL communications type.
Asynchronous communications type.
Intrasystem communications type.
Finance communications type.
Retail communications type.

38 Y
N

This is a requesting program device.
This is a program device acquired by a source program.

39 Y
N

Program device has been acquired.
Program device has not been acquired.

40 Y
N

Input is invited for this program device.
Input is not invited for this program device.

 Chapter 5. Using an Intersystem Communications Function File 5-3

Figure 5-2 (Page 2 of 3). Attribute Information Fields

Position Value Meaning

41 Y
N

Invited input is available for this program device.
Invited input is not available for this program device.

42 through 50 Reserved Not applicable to communications.

51 Y
N

Session has an active transaction.
Session does not have an active transaction.

521 0
1
2

Synchronization level is NONE.
Synchronization level is CONFIRM.
Synchronization level is COMMIT.

531 M
B

Mapped conversation.
Basic conversation.

54 through 61 Name Remote location name: This is the remote location associated with the program device name (speci-
fied during configuration and on the ADDICFDEVE or OVRICFDEVE command).

62 through 691 Name Local logical unit (LU) name.

70 through 771 Name Local network ID.

78 through 851 Name Remote LU name.

86 through 931 Name Remote network ID.

94 through 1011 Name Mode: This is the mode associated with the program device name (specified during configuration and
optionally on the ADDICFDEVE or OVRICFDEVE command).

102 through 1041 Reserved Not applicable to communications.

1051 APPC conversation state.

 X'00' Reset. No conversation exists.

 X'01' Send. Program can send data.

 X'02' Defer receive. Program enters receive state after a confirm, flush, or commit operation completes
successfully.

 X'03' Defer deallocate. Program enters deallocate state after a commit operation completes successfully.

 X'04' Receive. Program can receive data.

 X'05' Confirm. Program received a confirmation request.

 X'06' Confirm send. Program received a confirmation request and send control.

 X'07' Confirm deallocate. Program received a confirmation request and deallocate notification.

 X'08' Commit. Program received a commit request.

 X'09' Commit send. Program received a commit request and send control.

 X'0A' Commit deallocate. Program received a commit request and deallocate notification.

 X'0B' Deallocate. Program received a deallocate notification.

 X'0C' Rollback required. Program must roll back changes to protected resources.

106 through 1131 Name LU 6.2 conversation correlator

114 through 1441 Reserved

145 through 1461 Binary ISDN remote number length in bytes, including type and plan.

147 through 1481 00
01
02
03
04
06

ISDN unknown remote number type.
ISDN international remote number type.
ISDN national remote number type.
ISDN network specific remote number type.
ISDN subscriber remote number type.
ISDN abbreviated remote number type.

149 through 1501 00
01
03
04
08
09

ISDN unknown remote number plan.
ISDN/telephony remote number plan.
ISDN data remote number plan.
ISDN telex remote number plan.
ISDN national standard remote number plan.
ISDN private remote number plan.

5-4 ICF Programming V4R1

Figure 5-2 (Page 3 of 3). Attribute Information Fields

Position Value Meaning

151 through 1541 Reserved

155 through 1901 Character ISDN remote number (blank-padded EBCDIC).

191 through 194 Reserved

195 through 1961 Binary ISDN remote subaddress length in bytes, including type.

197 through 1981 00
02

ISDN NSAP remote subaddress type.
ISDN user defined remote subaddress type.

199 through 2381 Character ISDN remote subaddress (EBCDIC representation of hexadecimal data padded on the right with
zeros)

2391 Reserved

240 0
1
2

Incoming ISDN call.
Outgoing ISDN call.
Not a switched ISDN connection.

241 through 2421 Binary X.25 remote network address length in bytes.

243 through 2741 Character X.25 remote network address (blank-padded EBCDIC).

275 through 2781 Reserved

279 through 2801 Binary X.25 remote address extension length in bytes, including type and extension.

2811 0
2

X.25 address assigned according to ISO 8348/AD2.
Not X.25 ISO 8348/AD2 address type.

282 through 3211 Character X.25 remote address extension (EBCDIC representation of hexadecimal data)

322 through 3251 Reserved

326 0
1
2

Incoming X.25 switched virtual circuit (SVC).
Outgoing X.25 SVC.
Not X.25 SVC.

327 through 3901 Character Name of program specified to be started as a result of the received program start request, even if a
routing list caused a different program to be started.

391 Binary Length of the protected logical unit of work identifier (LUWID). Must be from 0 to 26.

392 Binary Length of the qualified LU name. Must be from 0 to 17.

393 through 409 Character Network-qualified protected LU name in the following form: netid.luname. netid is the network identi-
fier. luname is the logical unit name. This field may be blank.

410 through 415 Character Protected LUWID instance number.

416 through 417 Binary Protected LUWID sequence number.

Note: The protected LUWID identifies the current logical unit of work for a protected conversation.

418 Binary Length of the unprotected LUWID. Must be from 0 to 26.

419 Binary Length of the qualified LU name. Must be from 0 to 17.

420 through 436 Character Network-qualified unprotected LU name in the following form: netid.luname. netid is the network
identifier. luname is the logical unit name. This field may be blank.

437 through 442 Character Unprotected LUWID instance number.

443 through 444 Binary Unprotected LUWID sequence number.

Note: The unprotected LUWID identifies the current logical unit of work for conversations with a syn-
chronization level of none or confirm.

1 This information is valid only for some of the communications types. These fields will be blank if the information does not pertain to the
communications type you are using.

 Chapter 5. Using an Intersystem Communications Function File 5-5

Sending and Receiving Data

Data is sent between systems by using output (or write) and
input (or read) operations. The read and write operations are
done using a record format. The results of read and write
operations are communicated to the program with ICF mes-
sages, major/minor return codes, high-level language status
values, and an I/O feedback area .

The I/O feedback area is updated for every read/write opera-
tion. The I/O feedback area consists of two sections:

� The common I/O feedback area contains information
relevant to all communications types.

� The file-dependent I/O feedback area contains infor-
mation that can apply to one or more of the communica-
tions types.

Common I/O Feedback Area

The common I/O feedback area contains information in the
following fields:

� Output operation count. A count of the number of suc-
cessful output operations. This count is updated only
when an output operation completes successfully.

� Input operation count. A count of the number of suc-
cessful input operations. This count is updated only
when an input operation completes successfully and
data is received.

� Output then input operation count. A count of the
number of successful output then input operations.

� Count of other operations. A count of the number of
successful operations other than output and input oper-
ations (such as acquire and release operations).

� Current operation. A hex value representing the
current (last requested) operation, sent as follows:

Hex 01 Input
Hex 05 Output
Hex 06 Output then Input
Hex 11 Release
Hex 12 Acquire

� Record format name. Name of the record format just
processed. The record format is either specified on the
I/O request or determined by the specified format
selection processing option.

� Device class and type. A hex code representing a
device class for ICF and the communications type used
as follows:

Hex 0B0E APPC
Hex 0B20 SNUF
Hex 0B0A BSCEL
Hex 0B1F Asynchronous
Hex 0B1E Intrasystem
Hex 0B42 Finance
Hex 0B43 Retail

� Program device name. The program device name to
which the last operation was issued.

� Record length. The record length of the last I/O opera-
tion based on the record format processed, not including
any indicators or program-to-system fields (P-data
fields).

� Blocked record count. The number of records sent or
received on an I/O operation. For ICF, the value is
always 1.

� Record length. The record length of the last I/O opera-
tion based on the record format processed, including
indicators and P-data.

File-Dependent I/O Feedback Area

The file-dependent I/O feedback area contains information in
the following fields:

� Actual record length. On input, this is the actual length
of user data received from the remote system or device.
When the data received is longer than the data
requested (all the received data cannot be contained in
the record format used), the length of data is provided, if
known. If the actual length cannot be determined, the
field is set to hex FFFFFFFF. When a partial record is
received (the remainder of the record is never sent), the
length of the data received is provided. If the input oper-
ation completes with an error (other than partial record
or truncated record), the contents of the field are unpre-
dictable.

On output, the actual length is the length of data moved
from the user’s buffer to the output buffer to send to the
remote system. If the output operation completes with
an error, the contents of the field are undetermined.

� ICF major/minor return code. A 4-character code (2
characters representing the major code, 2 characters
representing the minor code) indicating the results of
each operation.

� Negative response error data. For some return codes,
this field contains more detailed information about the
reason for the error. Refer to the following books:

 – APPC Programming
– Finance Communications Programming
– SNA Upline Facility Programming
– Retail Communications Programming

for more information on this field, depending on what
communications type you are using.

� Request-to-write indication. This indication tells you if
the remote system requested that the application
program stop sending data and give permission (by
issuing a read or an allow-write request) to the remote
system to begin sending.

� Remote format name. The remote format name
received from the program device on an input operation.
This is valid when the FMTSLT option on the
ADDICFDEVE or OVRICFDEVE command is *RMTFMT.

5-6 ICF Programming V4R1

See Chapter 6 for more information on the FMTNAME
DDS keyword.

� Mode. Mode associated with the program device.
Mode is for APPC only. Refer to the APPC Program-
ming book for more information on modes.

� Safe indicator. This field shows that an end-of-text
(ETX) control character has been received in the buffer,
and it is only valid for BSCEL. The safe indicator is not
set if BLOCK(*USER) was specified on the
ADDICFDEVE or OVRICFDEVE command. Refer to the
BSC Equivalence Link Programming book for more infor-
mation on this indicator.

Refer to Appendix C for a summary of the fields and the
communications types to which the information applies.
Refer to the appropriate communications programming book
for specific details on pertinent fields.

Like the open feedback area, the support provided by the
high-level language you use determines whether you can
access this information.

Checking Return Codes

After each operation, an ICF return code is returned to your
program. Your program checks this return code to deter-
mine:

� The status of the operation just completed
� The operation that should be done next

It is recommended that your program check these return
codes at the completion of every operation to ensure that the
operation completed successfully or that the appropriate
recovery action is taken.

A summary of these return codes is described in
Appendix B. These codes, or groups of codes, are also con-
verted to language return codes. For example, the ICF
codes are converted to RPG *STATUS values or to ILE
COBOL file status values. The ILE C programming language
does not have file status values. These values are shown in
a chart in the appropriate language chapter of this book.

Each ICF return code consists of a 2-digit major code and a
2-digit minor code . The major code identifies the general
condition for a group of return codes, and is usually sufficient
to determine the action to be taken. The minor code identi-
fies the specific condition and may indicate the specific
action that should be taken next. For example:

 8233
 | |
 | Minor code
 |
 Major code

In this example the major code 82 indicates that an acquire
or open operation was not successful. The minor code 33
indicates that the operation failed because an ADDICFDEVE
command or OVRICFDEVE command was not issued for the
program device you are trying to acquire.

Usually, your program determines the action to take by
checking only the major code or the language status code.
However, you may need to check minor codes for specific
conditions that occur for your particular application or com-
munications configuration.

For more information about major and minor return codes,
refer to Chapter 8.

Writing to a Program Device

Use a write operation to send data to the remote system.

The ICF file supports a set of DDS processing keywords and
system-supplied formats, used in conjunction with the write
operation, to perform various communications functions.
Refer to Chapter 6 and Chapter 7 for more information
about specifying the communications function to be used with
the write operation.

Note: Data can be written to only one program device for
each write operation.

Figure 5-3 on page 5-8 shows the use of the write operation
when sending data.

.1/ Your program uses a write operation to send data to
the remote system.

.2/ Your program receives a return code indicating the
completion status of the operation.

.3/ If a successful return code is received, your program
continues sending several records.

Inviting a Program Device

Your program indicates it wants to start an asynchronous
input operation by inviting a program device. The invite func-
tion prepares your program to receive data. Your program
can continue processing after issuing the invite request, and
does not have to wait for the data.

An invite function is specified by:

� Issuing a write operation to a program device using a
record format with the INVITE DDS keyword in effect.

� Issuing a write operation to a program device using a
system-supplied format whose definition contains the
invite function.

For more information about specifying the invite function, see
Chapter 6 and Chapter 7.

 Chapter 5. Using an Intersystem Communications Function File 5-7

Communications
Support

Return Code

Source
Program

Write

Return Code
Write

ICF
Data
Management

RSLS669-3

AS/400 System

Figure 5-3. Using Write Operation When Sending Data

You can receive the response from an invited program
device by doing an input operation. See “Reading from
Invited Program Devices” on page 5-10 and “Reading from
One Program Device” on page 5-14 for more information.

At least one program device must be invited before a read-
from-invited-program-devices operation can return a
response from a program device.

A program would invite a program device because:

� Inviting several program devices allows the program to
do a read-from-invited-program-devices operation and
receive data from one of the invited program devices
with a response available. Therefore, using the invite
function of the ICF file, the program can handle receiving
a record from any one of several invited program
devices by reading from a single point in the program.
The program issues an input operation for the response.

� A program wants to use the time-out capability of the
read-from-invited-program-devices operation.

Format Selection Processing

The format selection (FMTSLT) parameter on the
ADDICFDEVE and OVRICFDEVE commands determines
how ICF data management selects the record format to use
when receiving data with the read and read-from-invited-
program-devices operations. The three different methods of
selecting a record format are discussed here. The name of
the record format selected is placed in the I/O feedback area.

Refer to “Determining the Record Format Returned” on
page 5-14 for more information about determining the record
format selected.

Program Selection (*PGM): If you specify
FMTSLT(*PGM), which is the default, on the ADDICFDEVE
or OVRICFDEVE command, your program must specify the
record format to use when your program does an input oper-
ation. If no record format name is given, ICF data manage-
ment uses the default record format. The default format is
always the first format defined in the file.

The only selection process that is applicable when using the
system-supplied QICDMF file is FMTSLT(*PGM). The
default record format in this file is a 4096-byte data record
called DFTRCD. You should either specify this format on the
input operation or allow the system to default. Your program
must then examine the input data to determine what data
processing to perform on the fields in the record.

Record-Identifier Selection (*RECID): Selecting
FMTSLT(*RECID) on the ADDICFDEVE or OVRICFDEVE
command provides a means of identifying and selecting the
record format to use based on the data received. If you
specify FMTSLT(*RECID), the file is searched for the RECID
keyword on each input operation. The RECID keyword pro-
vides a definition for determining which record format to use.

When you specify the RECID keyword, you define a compare
value. You must define the beginning position in the record
format and the compare value to use. When data is
received, the corresponding positions in the record are com-

5-8 ICF Programming V4R1

pared to the defined RECID values. When a match is found,
that record format is used to process the received data. If no
match is found, or if no data is received, the default record
format is used.

When the FMTSLT(*RECID) is specified, the default format
for an ICF file is one of the following:

� The first format in the file without the RECID keyword
specified

� The first format in the file if all formats have the RECID
keyword specified (applies only when no data is
received)

Notes:

1. An ICF return code of 81E9 is returned to your program
if the default format has the RECID keyword specified
and no match is found for the received data. Refer to
Appendix B for a complete list of return codes.

2. If a read with a record format specified is issued, the
format specified must match the name determined by
the RECID keyword selection process. If not, return
code 3441 is returned to your program.

Refer to Chapter 6 for more information about the RECID
keyword.

Remote Format Selection (*RMTFMT): Remote
format selection is supported by APPC and intrasystem com-
munications.

If you specify FMTSLT(*RMTFMT) on the ADDICFDEVE or
OVRICFDEVE command, your program does not need to
enter a format name when it does an input operation.
Instead, the format name passed with the data from the

remote program is used. If the remote system is an AS/400
system, the remote program must specify the FMTNAME
keyword in the record used to send the data to ensure the
format name is sent.

If the remote system does not send a format name (for
example, a record is sent without a FMTNAME keyword
specified) and a format name is specified with the input oper-
ation in your program, that name is used to process the data
received. If no format name is specified on the input opera-
tion, the default record format in the ICF file is used. The
default record format is the first record format in the file.

If the remote program sends a format name and your
program specifies a format name, the names must match. If
they do not match, return code 3441 is returned to your
program.

If the remote program sends a format name and
FMTSLT(*RMTFMT) was not specified on the ADDICFDEVE
or OVRICFDEVE commands, the remote format name sent
is ignored by ICF.

The record format name received from the remote system on
a successful input operation is put in the file-dependent
section of the I/O feedback area. The high-level language
may access this area to determine the remote record format
name received from the remote system. Refer to the appro-
priate language reference book for more information about
accessing the I/O feedback area.

Summary of Format Selection Processing:
Figure 5-4 summarizes the record format that is selected
based on the format selection option specified on the
FMTSLT parameter and the record format name specified on
the input operation (if one was specified). This chart also
shows what return codes can result from the format selection
process on an input operation.

Figure 5-4 (Page 1 of 2). Format Selection Options

FMTSLT
Option Input Data Record Format Name Specified on Input Operation

Record Format Name Not
Specified on Input Opera-
tion

*PGM Does not apply to format
selection.

If specified format name is defined in ICF file, specified
format selected. Otherwise, return code 83E0 returned to
program.

Default format1 selected.

 Chapter 5. Using an Intersystem Communications Function File 5-9

Figure 5-4 (Page 2 of 2). Format Selection Options

FMTSLT
Option Input Data Record Format Name Specified on Input Operation

Record Format Name Not
Specified on Input Opera-
tion

*RECID Data received matches
record format in file with
RECID keyword.

If matched format is same as specified format, matched
format selected. Otherwise, return code 3441 returned to
program.

Matched format selected.

Data received does not
match any record in file
with RECID keyword.

If default format2 does not have RECID keyword, default
format selected. Otherwise, return code 81E9 returned to
program.

If format selected (default2) is not same as specified
format, error return code 3441 returned to program.

If default format2 does not
have RECID keyword,
default format selected. Oth-
erwise, return code 81E9
returned to program.

No data received. If default format2 is same as specified format, default
format selected. Otherwise, return code 3441 returned to
program.

Default format2 selected.

*RMTFMT Record format name
(remote format) received
from the remote system

If remote format name is defined in the ICF file, remote
format selected. Otherwise, default 1 format selected.

If format selected is not same as specified format, return
code 3441 returned to program.

If remote format is defined in
the ICF file, remote format
selected. Otherwise, default
format1 selected.

Record format name
(remote format) not
received from the remote
system

If specified format name is defined in the ICF file, specified
format selected. Otherwise, error return code 83E0
returned to program.

Default format1 selected.

1 The default record format for FMTSLT(*PGM) and FMTSLT(*RMTFMT) is the first record format in the ICF file.

2 The default format for FMTSLT(*RECID) is the first record format in the ICF file that does not have a *RECID keyword specified, or the
first record format if all record formats have the *RECID keyword specified.

Reading from Invited Program Devices

The primary purpose of the read-from-invited-program-
devices operation is to provide a single point in the program
at which the program can wait for and receive a record from
one of several program devices. The read-from-invited-
program-devices operation can wait for and return a record
to the program from one of the invited program devices with
an available record.

The read-from-invited-program-devices operation is also used
to check whether the timer that was set by the timer function
has ended. Refer to Chapter 6 and Chapter 7 for more
information on the timer function.

The read-from-invited-program-devices operation can com-
plete when:

� A complete record arrives for an invited program device.

� A communications failure is detected on one of the
invited program devices.

� The job is being canceled (controlled).

� The time specified by either the timer function or the
WAITRCD parameter on the CRTICFF command is
reached.

The read-from-invited-program-devices operation is only valid
if the high-level language you are using considers the ICF file
to be a multiple device file. The ILE C, ILE COBOL, and ILE
RPG languages consider the ICF file to be a multiple device
file, while the FORTRAN/400 language does not. See the
appropriate language reference book for more information.

Figure 5-5 on page 5-11 shows how you can use the invite
function and read-from-invited-program-devices operation to
receive data from two different program devices.

5-10 ICF Programming V4R1

Return Code

Return Code

Return Code

Return Code

Return Code

Read-from-

Invited-

Program

Devices

and Data

Communications

Support

Source

Program

Program

Device

PGMDEVA

Program

Device

PGMDEVA

Request

Data for

PGMDEVA

Request

Data for

PGMDEVA

Read-from-

Invited-

Program

Devices

Data Received

for Program

Device

PGMDEVC

Data Received

for Program

Device

PGMDEVA

Request

Data for

PGMDEVC

Write with

INVITE

Write with

INVITE

Write with

INVITE

Program

Device

PGMDEVC

Data Link

AS/400 System

RSLS126-7

ICF

Data

Management

Figure 5-5. Using the Invite Function and Read-from-Invited-Program-Devices Operation to Receive Data

.1/ Your program uses the invite function to ask the
remote system to send data for program device
PGMDEVA.

.2/ A successful completion return code tells your program
that ICF data management received the operation and
is asking the remote system to send data. No data
has yet been received.

.3/ Your program issues another invite function. This
invite is for program device PGMDEVC. Data has not
yet been received for the first invite for program device
PGMDEVA.

.4/ The system receives data for program device
PGMDEVA. (Data is not necessarily received in the
order in which the invite functions were issued. For

example, data can be received for program device
PGMDEVC before data is received for PGMDEVA.
Your program must check the program device name to
determine for which program device the data is
received.)

.5/ A read-from-invited-program-devices operation is used
to receive the data sent.

.6/ This time a successful completion return code tells
your program that data has been received and is in
your program buffer.

.7/ Data is received for program device PGMDEVC.

.8/ Another invite function is used to ask for program
device PGMDEVA data.

 Chapter 5. Using an Intersystem Communications Function File 5-11

.9/ Another read-from-invited-program-devices operation is
used to receive the data for program device
PGMDEVC.

Specifying Maximum Wait Interval: You can specify
the maximum amount of time your program will wait for a
read-from-invited-program-devices operation to complete.

The time interval can be specified by:

� Specifying the WAITRCD parameter on the CRTICFF,
CHGICFF, and OVRICFF commands

� Issuing the timer function

The WAITRCD parameter establishes the maximum time
interval used for all read-from-invited-program-devices oper-
ations issued against the file.

The timer function is used to specify the maximum time
interval used for read-from-invited-program-devices oper-
ations until either the timer ends or a new interval is set
using the timer function. When the interval for the timer
operation is in effect, the value specified on the WAITRCD
parameter is ignored.

If a response is not received from the invited program
devices within the specified amount of time, the program is
notified with an ICF return code (0310) indicating that the
timer interval has ended.

Figure 5-6 shows the relationship between the timer function
and the read-from-invited-program-devices operation.

Your
Program

Return Code

Return Code

Return Code

Return Code

Return Code

Return Code

and Data

Time
Elapses

Data Record
Is Sent

Data Record
Is Received

Data Record
Is Sent

Communications
Support

Read-from-
Invited-
Program
Devices

Read-from-
Invited-
Program
Devices

Write with
INVITE

Write with
INVITE

Write with
TIMER

Write with
TIMER

Data Link

AS/400 System

ICF
Data
Management

RSLS127-6

Figure 5-6. Relationship between Timer and Read-from-Invited-Program-Devices Operations

.1/ Your program issues an invite function. .2/ A successful completion return code tells your program
that ICF data management accepted the request and
that the remote system is expected to respond. No
data has yet been received.

5-12 ICF Programming V4R1

.3/ Your program uses the timer function to set the
maximum length of time to wait for a response.

.4/ A read-from-invited-program-devices operation is used
to read the data or, if the data is not received within
the length of time specified, the return code indicates
that the time you set has elapsed.

.5/ The data is received before the time elapses. There-
fore, a successful completion return code is passed to
the program with the response from the remote
system.

.6/ Your program again uses the invite function to send
data and ask for a response. The time interval is again
set, and another read-from-invited-program-devices
operation is issued.

.7/ This time the read-from-invited-program-devices opera-
tion results in a return code that tells your program the
time elapsed before a response was received from the
remote system. When this happens, you may want to
send a message to the operator, continue processing,
or both.

The ILE COBOL programming language provides a means of
calling the read-from-invited-program-devices operation as if
WAITRCD(*IMMED) is specified. Refer to the ILE
COBOL/400 Reference book for information about the NO
DATA phrase of the READ statement. See “Determining the
Wait-for-Record Value” on page 4-5 for information about
specifying the WAITRCD parameter.

Note: WAITRCD has no meaning to the FORTRAN/400 lan-
guage, since the read-from-invited-program-devices operation
is not supported.

Refer to Chapter 6 and Chapter 7 for information on speci-
fying the timer function.

Responses: A program can receive one of many
responses from the read-from-invited-program-devices opera-
tion. These responses are communicated to your program
through an ICF return code.

The ICF file also supports a set of DDS response indicators
that can be used in conjunction with the read-from-invited-
program-devices operation to indicate status information
about the operation. Refer to Chapter 6 for more information
about response indicators.

The following sections describe possible responses from the
read-from-invited-program-devices operation and the condi-
tions under which the program receives the response.

Data from One of the Invited Program Devices with Data
Available: If at least one invited program device has data
available and the job has not been ended (controlled), the
read-from-invited-program-devices operation returns data
from one of the invited program devices.

After the read-from-invited-program-devices operation com-
pletes, the program can examine feedback that allows it to

identify the program device that returned the data and the
record format of the data returned. See “Determining Which
Invited Program Device Had Data Available” on page 5-14
for information about how to determine which program device
responded. See “Determining the Record Format Returned”
on page 5-14 for information about determining the format of
the returned record.

The program device returning the data is no longer in the
invited state. The program device must be invited before it
can return any more data using the read-from-invited-
program-devices operation. Other invited program devices
remain invited.

Job Ended (Controlled): The read-from-invited-program-
devices operation returns this response if the job is ended
(controlled) before or during the wait for data to become
available from an invited program device.

Receiving the job ended response does not cancel the invite.
All invited program devices remain invited.

If any program in the job is notified that the job is being
ended (controlled), that program should notify all other pro-
grams in the job. The system notifies only one program
regardless of how many ICF files are used in the job.

When a program receives a job ended (controlled) indication,
the program should complete operations and end before the
system changes the job ended (controlled) to job ended
(immediate) and forces all processing to stop. This action is
important if a program needs to complete some processing
before it ends.

No Invited Program Devices Have Data Available: The
read-from-invited-program-devices operation returns this
response when the job is not being ended and:

� At least one program device is invited.

� No data is available from any of the invited program
devices.

� The WAITRCD(*IMMED) parameter is specified.

All invited program devices remain invited.

Time-Out on Wait for Data from Invited Program
Devices: The read-from-invited-program-devices operation
returns this response when:

� No data is available from any of the invited program
devices in the amount of time specified as the
WAITRCD parameter or the timer function.

� The job is not being ended.

All invited program devices remain invited.

No Program Devices Invited: If no program devices are in
the invited state and the timer function is not in effect, the
program is notified that no program devices were invited.

 Chapter 5. Using an Intersystem Communications Function File 5-13

Error from One of the Invited Program Devices: The
read-from-invited-program-devices operation can return an
error condition instead of data from one of the invited
program devices if:

� The job is not being ended.
� At least one invited program device has a response

available.

If an invited program device detects an error while it does the
input operation, the error (like the data) is held until the
program device is read using a read-from-invited-program-
devices or read operation.

Determining Which Invited Program Device Had
Data Available: After a read-from-invited-program-devices
operation returns data from an invited program device, the
program may need to identify the name of the program
device from which the data was returned. This identification
is necessary if the program wants to handle one program
device differently from other program devices.

The program can determine the name of the program device
that returned the data from a field in the I/O feedback area.
Refer to the appropriate language reference book to learn
about other ways to get this information, and about how to
access the I/O feedback area.

If the program needs the name of the program device that
returned the data, the program must get that information
before doing any other I/O operations to the file.

If the read-from-invited-program-devices operation did not
return a data available response (some other response, like
job ended (controlled) was returned to the program), the field
containing the name of the program device to which I/O was
last directed in the I/O feedback area is set to *N (not appli-
cable).

Determining the Record Format Returned: Because
a read-from-invited-program-devices operation returns a
record from one of the invited program devices with an avail-
able record, regardless of that record’s format, you cannot
specify a record format on the read-from-invited-program-
devices operation.

The system uses the FMTSLT parameter on the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands to determine the record format. Therefore, the
program may have to determine the format of the record

returned before handling the record (if a program device can
return a record in one of several record formats).

The program can determine the record format of the data
returned from a field in the I/O feedback area that indicates
the name of the last record format used for I/O. Refer to the
appropriate language reference book to learn about other
ways of getting this information and about how to access the
I/O feedback area.

Note that if the program needs the name of the record format
used to receive the data, the program must get that informa-
tion before doing any other I/O operations to the file.

Reading from One Program Device

A read operation waits for and receives data from one
program device. There is no time limit on a read operation
(the WAITRCD parameter and the interval specified on a
timer function are ignored). The program waits until data is
available from that program device. The read operation
differs from the read-from-invited-program-devices operation
in that a read operation is directed to a specific program
device, whereas the read-from-invited-program-devices oper-
ation receives data from any program device that was previ-
ously invited.

Note: When a program device is invited, it is recommended
that a read-from-invited-program-devices operation be per-
formed rather than a read operation to receive data. Perfor-
mance may be degraded if your program issues multiple
read operations to invited program devices.

The program can indicate to the system that a read operation
must be done in three ways:

� Explicitly, by specifying the name of a program device
on the read operation

� Implicitly, by specifying the name of a record format on
the read operation

� Implicitly, by specifying neither a record format or
program device name, and the high-level language con-
siders the ICF file a single device file

Because you cannot specify a record format on a read-from-
invited-program-devices operation, the system interprets a
read with a record format specified as a read operation. See
the appropriate language reference book for information
about calling the read operation explicitly or implicitly and
about which program device is used if the read operation is
implicitly called.

5-14 ICF Programming V4R1

Return Code

Data Record Data Is Sent

Communications
Support

Write

Read for
Program
Device
PGMDEVA

Source
Program

Return Code

and Data

Data Link

AS/400 System

ICF
Data
Management

Data Is
Received for
Program
Device
PGMDEVA

RSLS140-8

Figure 5-7. Using the Read Operation

Figure 5-7 shows how to use the read operation.

.1/ Your program uses a write operation to send data to
the remote system.

.2/ A read operation is then issued to receive data from
PGMDEVA. The program waits to receive the data
before continuing.

If the program device specified on the read operation has
been invited, the invite is satisfied and the input operation
started when the program device was invited is completed
before control is returned to the program.

The ICF file supports a set of DDS response indicators that
can be used in conjunction with the read operation to indi-
cate status information about the operation. Refer to
Chapter 6 for more information about response indicators.

Writing and Then Reading from One
Program Device
Some high-level languages support an interface to send a
single I/O operation that does a write operation followed by a
read operation to a program device.

The same record format is used on both the write and read
operation.

Canceling an Invite of a Program Device

If a program device is invited, it is possible to cancel the
invite:

� Explicitly, by issuing a cancel-invite function to the
program device

� Implicitly, by issuing a write operation to the program
device

Refer to Chapter 6 and Chapter 7 for information about
specifying the cancel-invite function.

Waiting for a Display File, an ICF File, and
a Data Queue

You can use data queues for a program that waits for data
on a display file, an ICF file, and a data queue at the same
time (in any combination). When you specify the DTAQ
parameter for certain commands, you can indicate a data
queue that will have entries placed on it when any of the fol-
lowing occurs:

� An enabled function key or the Enter key is pressed
from an invited display device.

� Data becomes available from an invited ICF session.

� A user-defined entry is made to the data queue by a job
running on the system.

The commands that allow you to indicate a data queue with
the DTAQ parameter are:

� Create Display File (CRTDSPF)
� Change Display File (CHGDSPF)
� Override Display File (OVRDSPF)

 Chapter 5. Using an Intersystem Communications Function File 5-15

� Create ICF File (CRTICFF)
� Change ICF File (CHGICFF)
� Override ICF File (OVRICFF)

By using the IBM-supplied QSNDDTAQ program, jobs
running on the system can also place entries on the same
data queue as the one specified in the DTAQ parameter.

For an ICF or display file, the application program uses the
IBM-supplied QRCVDTAQ program to receive each entry
placed on the data queue and then processes the entry
based on whether it was placed there by the display file, the
ICF file, or the QSNDDTAQ program. For a display file, the
application then issues a read or read-from-invited-devices

operation to receive the data. For more information on the
QRCVDTAQ function and syntax, and examples of waiting
on one or more files and a data queue, see the CL Program-
ming book.

The display file and ICF file entry that is put on the data
queue is 80 characters in length and contains the field attri-
butes described in Figure 5-8. Therefore, the data queue
that is specified using the commands listed above must have
a length of at least 80 characters.

Entries placed on the data queue by jobs using QSNDDTAQ
are defined by the user.

Figure 5-8. Display File and ICF File Entry Field Attributes

Position Data Type Meaning

1 through 10 Character The type of file that placed the entry on the data queue. This field can have one of two values:

*ICFF (ICF file)
*DSPF (display file)

If the job receiving the data from the data queue has only one display file or one ICF file open, then
this is the only field that needs to be used to determine what type of entry has been received from the
data queue.

11 through 12 Binary Unique identifier for the file. The value of the identifier is the same as the value in the open feedback
area for the file. This field should be used by the program receiving the entry from the data queue only
if more than one file with the same name is placing entries on the data queue.

13 through 22 Character The name of the display or ICF file. This is the name of the file actually opened after all overrides
have been processed, and is the same as the file name found in the open feedback area for the file.
This field should be used by the program receiving the entry from the data queue only if more than one
display file or ICF file is placing entries on the data queue.

23 through 32 Character The library where the file is located. This is the name of the library after all overrides have been
processed, and is the same as the library name found in the open feedback area for the file. This field
should be used by the program receiving the entry from the data queue only if more than one display
file or ICF file is placing entries on the data queue.

33 through 42 Character The program device name after all overrides have been processed. This name is the same as that
found in the program device definition list of the open feedback area. For file type *DSPF, this is the
name of the display device where the command was entered or the Enter key was pressed. For file
type *ICFF, this is the name of the program device where data is available. This field should be used
by the program receiving the entry from the data queue only if the file that placed the entry on the data
queue has more than one device or session invited prior to receiving the data queue entry.

43 through 80 Character Reserved.

Releasing a Program Device

You can explicitly release a program device from an ICF file
by using the release operation, or you can implicitly release
the device by closing the file.

If you release the program device, you must reacquire it
before you can use it again for I/O operations.

The release operation ends the session only when certain
criteria are met. The end-of-session function always ends
the session. Refer to Chapter 6 and Chapter 7 for more
information about specifying an end-of-session function.

The following processing is done by the release operation:

 � Source program

– If the program device is invited, the release opera-
tion fails.

– If a transaction is still active on the session, the
release operation fails.

– If a transaction is not active on the session, the
session ends.

– If the device description associated with the
program device is allocated when the program
device is acquired, it is deallocated when the
program device is released.

– If an error occurs due to the hardware or an SNA
protocol violation, the release operation fails.

 � Target program

5-16 ICF Programming V4R1

– The release operation severs the logical connection
between the application and the requesting program
device. The session is not ended.

– The program (or another program in the same job
structure) can reestablish the connection to the
same session by acquiring the requesting program
device. The communications session, including the
state of the session, remains intact.

Closing an Intersystem Communications
Function File

The processing done by the close operation depends on
whether the file is shared. If the file is not shared, the fol-
lowing processing is done:

� All sessions associated with the source program are
ended.

� All sessions associated with the target program are
released.

� The file resources allocated by the open operation are
deallocated and returned to the system.

If the file is shared, the program cannot do I/O operations to
the file. Other programs that have the file open can still use
the file.

If the close operation is successful, an open operation is the
only program operation allowed to the file. If the close oper-
ation fails, the program should call the close operation a
second time. A second close operation is always successful.

 Summary

Figure 5-9 on page 5-18 shows the relationship between the
program, the ICF file, and the communications configuration
on a local and remote AS/400 system.

 Chapter 5. Using an Intersystem Communications Function File 5-17

Mode

Description

Device

Description

Mode

Description

Target Job

Subsystem

Device

Description

Local System

Program

Start

Request

Line

Description

Program

Device

Name

RMTLOCNAME

(*REQUESTER)

Source Job

Controller

Description

Controller

Description

RMTLOCNAME

(CHICAGO)

Class-of-

Service

Description

Class-of-

Service

Description

Line

Description

Remote System

Network

Interface

Description

Network

Interface

Description

RSLS177-6

Source

Program

Program

Device

Name

Target

Program

File

File

Figure 5-9. Relationship of Program, File, and Configuration

Notes:

1. The mode description and class-of-service description
apply to APPC only.

2. Network interface description applies only to ISDN.

 Local System

The source program is your ILE C, ILE COBOL, or ILE RPG
application, which is communicating with the target program
through an ICF file. You can create this file using the
CRTICFF command, and change it using the CHGICFF or
OVRICFF command.

The source program:

� Opens the file

5-18 ICF Programming V4R1

� Acquires one or more program devices (Only one is
allowed per ICF file for FORTRAN/400 applications.)

� Reads and writes to program devices in the file to
receive and send data

� Releases the acquired program devices

� Closes the file

The device entries defined in the file with the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command provide:

� Mapping to the communications configurations

� Communications-type-dependent definitions of program
device attributes

The local configurations selected by the program device
entry define the connection to the remote system.

 Remote System

An incoming program start request from the local system
starts a target job.

The target program is your ILE C, ILE COBOL, or ILE RPG
application, which is communicating with the source program
through an ICF file. You can create this file using the

CRTICFF command and change it using the CHGICFF or
OVRICFF command.

The target program:

� Opens the file

� Acquires the requesting program device (This must be
done implicitly on the open for FORTRAN/400 pro-
grams.)

� Reads and writes to the requesting program device for
the file to receive and send data

� Releases the requesting program device (This must be
done implicitly on the close for FORTRAN/400 pro-
grams.)

� Closes the file

The device entries defined in the file with the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command provide:

� A relationship to the requesting program device

� Communications-type-dependent definitions of program
device attributes

Refer to “Remote Program Start Considerations” on
page 8-5 for more information on subsystems.

 Chapter 5. Using an Intersystem Communications Function File 5-19

Figure 5-10 shows how the program, file, and configuration
names are mapped to each other in ILE C programming lan-
guage.

C r e a t e C / 4 0 0 P r o g r a m

C r e a t e I C F F i l e

C r e a t e C o m m u n i c a t i o n s C o n f i g u r a t i o n s

R e m o t e l o c a t i o n

L o c a l l o c a t i o n

N e t w o r k I D

.

.

.

i n c l u d e s t d i o . h

i n c l u d e r e c i o . n

R V 2 P 9 2 2 - 3

R F I L E * I C F P T R ;

.

.

.

I C F P T R = R o p e n (" I C F F I L E " , " a r + ") ;

.

.

.

R a c q u i r e (I C F P T R , " P G M D E V A ") ;

.

.

.

R w r i t e (I C F P T R , & r e c o r d , s i z e o f (r e c o r d)) ;

.

.

.

R r e a d n (I C F P T R , & r e c o r d , s i z e o f (r e c o r d) , D F T) ;

.

.

.

C R T I C F F F I L E (I C F F I L E) . . .

A D D I C F D E V E F I L E (I C F F I L E) P G M D E V (P G M D E V A) R M T L O C N A M E (C H I C A G O)

Figure 5-10. ILE C Program, File, and Configuration Mapping

5-20 ICF Programming V4R1

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-

fied remote location name is used to select the device
description.

Figure 5-11 shows how the program, file, and configuration
names are mapped to each other in the COBOL/400 pro-
gramming language.

RV2P923-0

S E L E C T I CF F I L E A S S I G N T O W OR K S T A T I O N - I CF F I L E

.

.

.

F D I CF F I L E .

.

.

.

A C Q U IR E " P G M D E V A " F OR I CF F I L E .

.

.

.

WR I T E I CF - B UF F ER

F OR M A T I S "R E C OR D " ,

T ER M I N A L I S " P G M D E V A "

.

.

.

R E A D I CF F I L E

.

.

.

CR T I CF F F I L E (I CF F I L E) . . .

A D D I CF D E V E F I L E (I CF F I L E) P G M D E V (P G M D E V A) R M T L O C N A M E (C H I C A G O)

R e m o t e lo c a t io n

L o c a l lo c a t io n

N e t w o r k I D

Create COBOL/400 Program

Create ICF File

Create Communications Configurations

.

.

.

Figure 5-11. COBOL/400 Program, File, and Configuration Mapping

 Chapter 5. Using an Intersystem Communications Function File 5-21

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-
fied remote location name is used to select the device
description.

Figure 5-12 shows how the program, file and configuration
names are mapped to each other in RPG/400 programming
language.

You create various configuration objects when you use the
communications configuration function. The remote location
name provides the primary mapping between the program
device and the communications configurations. The speci-
fied remote location name is used to select the device
description.

RV2P924-0

Create RPG/400 Program

Create Communications Configurations

F I CF F IL E
F
F

.

.

.
C

.

.

.
C

.

.

.
C

.

.

.
C

.

.

.

K ID D E V I C E
K N U M 2

'P G MD E V A ' A C Q I CF F IL E

R e m o t e lo c a t io n

L o c a l lo c a t io n

N e t w o r k ID

.

.

.

R E AD I CF F IL E

M O V EL 'P G MD E V A ' D E V I C E 1 0

R E AD R E C OR D

Create ICF File
CR T I CF F F IL E (I CF F IL E) . . .

AD D I CF D E V E F IL E (I CF F IL E) P G MD E V (P G MD E V A) R M TL O C N A M E (C H I C A G O)

Figure 5-12. RPG/400 Program, File, and Configuration Mapping

5-22 ICF Programming V4R1

Chapter 6. Using Communications DDS Keywords

This chapter explains how to use data description specifica-
tions (DDS) keywords on input and output operations to
perform communications functions with the remote system.
These DDS keywords are associated with the defined record
format used on the read or write operation. The record
formats associated with the DDS source for your ICF file are
referred to as user-defined formats. This is in contrast to the
system-supplied formats discussed in Chapter 7. It is
assumed that you have opened your file and established
your session as described in Chapter 5.

The information and illustrations provided describe the func-
tion of each of the processing keywords supported by the
ICF file. Although all of the parameters supported by each
keyword are described, the information on coding the
keywords is found in the DDS Reference book. The DDS
Reference book also contains general information on defining
record formats.

You can use several DDS keywords and combinations of
keywords on a single input/output (I/O) operation.
Figure 6-19 on page 6-23 shows the processing sequence
when multiple DDS keywords are specified together.

All the keywords described in this chapter may not be sup-
ported by the communications type you are using. Further-
more, some keywords may operate differently depending on
the communications type. Figure 6-17 on page 6-21 and
Figure 6-18 on page 6-22 summarize the support provided
by each communications type. Refer to the appropriate com-
munications programming book for the communications type
you are using for more detail about supported keywords.

Several DDS keywords that do processing-control, refer-
encing, and text-definition functions that are valid in ICF files
and other types of files are not discussed in this book.
These keywords are ALIAS, FLTPCN, INDARA, INDTXT,
REF, REFFLD, and TEXT. Refer to the DDS Reference
book for more information on how to code and use these
keywords. These keywords are supported by all communica-
tions types.

Examples of source DDS and the commands used to create
and use an ICF file are found at the end of this chapter.

Refer to Chapter 10 for complete program examples that use
DDS keyword processing.

You can use system-supplied communications formats
instead of DDS keywords to do communications-specific
functions. Refer to Chapter 7 for more information on
system-supplied formats.

Starting a Program on the Remote System

Your program must specify the target program it will commu-
nicate with before it can send or receive data. The target
program is started by specifying an output operation with the
EVOKE keyword in effect. Generally, the necessary parame-
ters to identify the target program you want to start must be
specified. However, for some communications types, these
parameters are not required.

These parameters include items such as the program name,
the name of the remote library where the program is stored,
and security information (when required). You may also
include data with the evoke function, which will be sent to the
target program when the evoke function is done. A program
start request is sent to the remote system when your
program issues the evoke function (unless, for APPC appli-
cations, the evoke is delayed by specifying the DFREVOKE
keyword).

Use the EVOKE, SECURITY, and SYNLVL keywords to start
a program at the remote system.

Evoke (EVOKE, DFREVOKE, SECURITY,
and SYNLVL)

The EVOKE keyword allows your program to start a program
on the remote system. EVOKE is valid only when the source
program is not already communicating with the target
program on the same transaction.

The format of the EVOKE keyword is:

EVOKE([library-name/]program-name [parameter-1...

 [parameter-255]])

The program-name parameter is required on the EVOKE
DDS keyword to identify the program to be started on the
remote system. However, some communications types do
not require the program name. In these cases, blanks
should be used for the program name instead. Refer to the
appropriate communications book to determine if the commu-
nications type you are using requires a program name on the
EVOKE DDS keyword.

The optional library-name parameter specifies the library
where the program is stored on the remote system. In
general, it is best to specify the library separate from the
program. If you specify the target program as a single literal,
then it must be specified in the format required by the remote
system or in the architected format. For example, if you are
using APPC with another AS/400 system, the program name
can be in the form library/program or program.library. If the
remote system is an AS/400 system and a library name is
not given, the library list for the subsystem that is handling
the request on the remote system is searched for the
program name. The library list for the subsystem consists of

 Copyright IBM Corp. 1997 6-1

the values from the QSYSLIBL and QUSRLIBL system
values at the time the subsystem was started.

In addition to passing the program-name and library-name to
the remote system, you can also use the EVOKE DDS
keyword to send up to 255 user-defined parameters to the
remote system. (Some communications types do not support
255 parameters. Refer to the appropriate communications
programming book for any additional restrictions.) The target
program defines the number and format of the parameters.
If the remote system is another AS/400 system, the following
apply:

� The parameters are passed to the program as if they
were passed from a Call a Program (CALL) command.

� If the parameters contain embedded commas, the
remote AS/400 system considers these to be multiple
parameters rather than a single parameter.

Any transaction status information sent by the source
program is received on the first read operation of the target
program. For example, if the target AS/400 system program
is started from an AS/400 system with an evoke-with-invite
function using advanced program-to-program communica-
tions (APPC), the first read operation on the target program
completes with an 0300 (change direction received)
major/minor return code.

DFREVOKE Keyword: You can use the DFREVOKE
DDS keyword to delay sending a program start request until
the output buffer is full of data or until the output buffer is
flushed, using the FRCDTA or CONFIRM keyword, for
example.

The DFREVOKE keyword is valid only for APPC and used
only for specialized applications that must have data sent
with the EVOKE keyword. See the APPC Programming
book for more information.

SECURITY Keyword: You can use the SECURITY DDS
keyword to include security information with the evoke
request. The SECURITY keyword is only valid in conjunction
with the EVOKE keyword. All security specifications must
satisfy the requirements of the remote system.

The format of the SECURITY keyword is:

SECURITY(n reserved-word|'literal'|field-name-1

 |&field-name-1[.3.])

The n parameter required by the remote system identifies the
security subfield being described. The n parameter can be
specified as:

� 1 for a profile ID
� 2 for a password
� 3 for a user ID

You can specify the following values for the security fields:

reserved-word. This value can be specified as one of
the following:

� *USER. Specifies that the user’s profile name on
the local AS/400 system is used as the security
field.

� *NONE. Specifies that the security field is not sup-
plied.

'literal'. A literal value of up to 10 characters that con-
tains the needed security information.

field-name (or &field-name). The name of a field in the
record format that contains the needed security informa-
tion. If you want to send blanks as the security field,
you must specify this as a literal value or use a field
name.

If you do not explicitly define the security values on the
SECURITY keyword for an evoke request, no security values
are sent.

Refer to Chapter 8 for information about remote program
start considerations on the AS/400 system.

SYNLVL Keyword: Use the SYNLVL DDS keyword to
specify the level of synchronization supported on this trans-
action. It determines whether the programs support no syn-
chronization, confirmation-level synchronization (using
CONFIRM and RSPCONFIRM keywords), or commit-level
synchronization. Commit-level synchronization is a two-
phase commit protocol using the PRPCMT keyword and
commit and rollback operations. The SYNLVL keyword is
valid only in conjunction with the EVOKE keyword.

The format of the SYNLVL keyword is:

SYNLVL[(\NONE|\CONFIRM|\COMMIT)]

You can specify the following optional values for the SYNLVL
keyword:

*NONE. Specifies that confirmation of the receipt of
data is not allowed on this transaction. For example, on
the AS/400 system the CONFIRM keyword is not
allowed with SYNLVL (*NONE).

*CONFIRM. Specifies that the sending program can
request that the receiving program responds to receipt of
the data. The receiving program can send a positive
response, or the receiving program or system can send
a negative response. For example, on the AS/400
system the CONFIRM keyword is allowed on write oper-
ations.

Refer to the keyword descriptions for “Confirm
(CONFIRM)” on page 6-4, “Receive-Confirm” on
page 6-19, and “Respond-to-Confirm (RSPCONFIRM)”
on page 6-12 for additional information on CONFIRM
processing.

*COMMIT. Allows the programs to operate as described
for the *CONFIRM value. Moreover, *COMMIT requires
programs to use two-phase commit processing to protect
their resources. Two-phase commit processing allows
programs to synchronize updates to protected resources
(such as databases). If necessary, updates can be

6-2 ICF Programming V4R1

rolled back, so that the resources remain synchronized.
Refer to the descriptions of the PRPCMT, RCVROLLB,
and RCVTKCMT keywords for more information on two-
phase commit processing. The Backup and Recovery
book has information about commitment control and the
commit and rollback operations, which are an essential
part of two-phase commit processing.

Evoke Illustration: Figure 6-1 shows how to start a
target program on the remote system.

.1/ The source program issues an evoke request to start
the program at the remote system.

.2/ The evoke parameters, including program name, library
name, and security information are sent to the remote
system. Program initialization parameters can also be
sent with the program start request (optional).

.3/ A successful completion return code tells the source
program that the evoke request was accepted and a
program start request was sent to the remote system.
If the program start request is successful, both the
program at the remote system and the communications
transaction are started.

Return Code

Answer from

Remote System

Communications

Support

Program Start

Request to

Remote System

Source

Program

Write with

Evoke

Data Link

AS/400 System

ICF

Data

Management

RSLS125-5

Figure 6-1. Starting a Target Program

Differences between DDS and
System-Supplied Evoke Functions

The DDS EVOKE keyword is handled differently from the
system-supplied evoke formats when data is also sent. The
data passed on a system-supplied evoke format is treated as
a parameter and is passed along with the program start
request to the remote system. Any data passed using the
EVOKE keyword, except for user-defined parameters,
program names, and library names, is not treated as a
parameter. This information is sent separately from the
program start request after the evoke request completes suc-
cessfully. Therefore, the remote program must issue a read
operation to receive the data when the DDS EVOKE keyword
is used.

 Sending Data

You may begin sending and receiving data when both
systems are communicating with each other. This section
discusses sending data. See “Receiving Data” on page 6-7
for a discussion on receiving data.

You can use several DDS keywords and combinations of
keywords in conjunction with sending data. These keywords
provide additional information about how to process the data
being sent to the remote program.

The following are valid functions that can be done when
sending data. The DDS keywords associated with these
functions are valid only with output operations.

 Chapter 6. Using Communications DDS Keywords 6-3

Variable-Length Data (VARLEN)

The length of an output operation is determined by the
record format specified. The record format length is deter-
mined by the record definition in DDS. You can use the
VARLEN keyword to change the length of the data record
sent with each write operation, while using the same record
format.

The format of the VARLEN keyword is:

VARLEN(&field-name)

The field-name parameter specifies the length of the record
sent on a write operation. The length cannot be greater than
the length of the data field defined for this record format.
The length you specify with the VARLEN keyword overrides
any length specified elsewhere in your write operation.

 Variable-Buffer-Management
(VARBUFMGT)

Use the VARBUFMGT keyword to send or receive multiple or
partial records, rather than just one record, with one record
format per write or read operation.

Using the VARBUFMGT keyword allows you to specify the
length of data independently of the data itself. A program
uses the data length specified as the value passed in the
variable length (VARLEN) DDS keyword, or if VARLEN is not
used, the length of the record format specified on the read or
write operation. The length specified must be greater than
zero.

This function is valid only for APPC. Refer to the APPC Pro-
gramming book for more information.

 Force-Data (FRCDTA)

Use the FRCDTA keyword on a write request to cause the
communications support to immediately send any data cur-
rently held in the output buffer. The communications support
does not wait for the buffer to fill. Any data specified on the
same operation as the force-data request is also sent. No
operation is done if there is no data in the buffer to send.

Note: This causes the data to be sent to the other system,
but not necessarily to the remote program.

 Confirm (CONFIRM)

Use the CONFIRM keyword to request that the remote
program respond when it has received the data you sent. An
output operation with the CONFIRM keyword specified forces
any data in the output buffer to be sent. The CONFIRM
keyword also asks the remote program to respond when the
data is received. The operation does not complete, and your
program does not continue, until a response is received.
The remote program must respond with either a positive or

negative reply as to whether the data was successfully
received.

Note: Refer to the RCVCONFIRM keyword described in
“Using Response Indicator Keywords” on page 6-18 and the
RSPCONFIRM keyword described in “Additional Keywords”
on page 6-12 for information on how to receive and respond
to a confirm request.

If a positive response is received, the output operation com-
pletes normally. If a negative response is received, the
major/minor return code and ICF message indicate the
reason.

CONFIRM is valid only on a transaction with a synchroniza-
tion level of confirm.

 Format-Name (FMTNAME)

Use the FMTNAME keyword to pass the name of the record
format used for this output operation to the remote system.
If the remote system is an AS/400 system, ICF uses this
name to find the record format to use when receiving the
data at the remote system.

Note: If you use the FMTNAME keyword while sending data
to another AS/400 system, you should specify *RMTFMT for
the format selection (FMTSLT) parameter on the Add Inter-
system Communications Function Device Entry
(ADDICFDEVE), Change Intersystem Communications Func-
tion Device Entry (CHGICFDEVE), or Override Intersystem
Communications Function Device Entry (OVRICFDEVE)
command at the system at which the data is received.

 Subdevice-Selection (SUBDEV)

Use the SUBDEV keyword to specify the remote system
device (such as a printer or diskette) to which you are
sending data. The receiving controller then directs output
from your program to the appropriate device. The subdevice
selection is designed primarily to support specific hardware
devices, such as 3776, 3777, and 3780.

The format of the SUBDEV keyword is:

SUBDEV(type)

The type parameter values, *DC1, *DC2, *DC3, and *DC4,
are required to specify the device control character used by
the receiving controller so that output can be directed to the
appropriate device.

 End-of-Group (ENDGRP)

Use the ENDGRP keyword to indicate to the remote system
the end of a user-defined group of records. The communica-
tions type you are using determines the type of indication
sent to the remote system to indicate the end of a group of
records.

6-4 ICF Programming V4R1

Note: Refer to the RCVENDGRP keyword described in
“Using Response Indicator Keywords” on page 6-18 for infor-
mation on how to handle receiving an end-of-group indi-
cation.

 Function-Management-Header (FMH)

Use the function-management-header (FMH) keyword to
send control information about the data that follows to the
remote system. A function-management-header is valid only
with the first record of a group.

Note: Refer to the RCVFMH keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on how to handle receiving a function-management-header.

 Control-Data (CTLDTA)

Use the CTLDTA keyword to send control data to the remote
program. Control data has meaning only to the partner
transaction programs. For example, this data can be used
as prefix control information for application data that follows
it, or it can be used to carry special data for mapped conver-
sation transactions.

This keyword is valid only for APPC. See the APPC Pro-
gramming book for more information.

 Prepare-for-Commit Function

Your program uses the prepare-for-commit (PRPCMT)
function to request one of its partners to prepare to commit
its protected resources. The partner can respond with a
commit, a rollback, or a FAIL operation. If the partner
responds with a FAIL operation, the partner program is in
control and can attempt to correct any errors that it detected.

The PRPCMT function contrasts with the commit operation in
the following ways:

� PRPCMT only works with one conversation at a time.
The commit operation attempts to commit all protected
resources in the two-phase commit transaction.

� PRPCMT only prepares the remote protected resources
to be committed. In other words, the remote resources
have been locked and cannot be changed. They are in
a state in which they can either be committed or rolled
backed. Eventually, the remote resources are com-
mitted or rolled back depending on whether the rest of
the two-phase commit transaction commits or rolls back
its protected resources.

The commit operation ends only after all remote pro-
tected resources in the two-phase commit transaction.
have either been committed or rolled back.

� PRPCMT allows the application program to attempt error
recovery without rolling back the protected logical unit of
work (LUW). When the application program issues a
PRPCMT and the partner responds with a fail function,
the PRPCMT function completes. The application
program can then attempt error recovery, and issue the
PRPCMT function again.

Note: The remote program is in send state after
responding with the fail function. The local application
program cannot issue the PRPCMT function again until
the conversation states change.

When the application program issues a commit operation
and the partner responds with a fail function, the logical
unit of work is rolled back.

An operation that includes the prepare-for-commit function
does not complete until the remote program responds with a
commit or rollback operation or a FAIL or EOS function.

After the PRPCMT function completes successfully, your
program can do any one of the following.

� Use the commit operation to commit protected
resources.

� Use the rollback operation to roll back the protected
logical unit of work (LUW).

� Use the end-of-session function to end the attachment of
the program to a session and roll back the protected
LUW.

Note: The prepare-for-commit function only applies when
SYNLVL(*COMMIT) is specified in the EVOKE DDS record
format used by the source program, or when the program
start request received by a target program establishes a syn-
chronization level of commit. An AS/400 target program can
determine the synchronization level established by the
source program by using the get-attributes operation.

The prepare-for-commit function causes any data currently
held in the buffer to be sent, including any data on a write
operation that specified the prepare-for-commit function.

 Transaction-Synchronization-Level
Function

Your program uses the transaction-synchronization-level
(TNSSYNLVL) function to specify that synchronization for this
transaction should be done at the level that the SYNLVL
keyword specified on the evoke.

The TNSSYNLVL keyword can only be used if specified with
one of the following keywords.

 � ALWWRT
 � DETACH
 � INVITE

 Chapter 6. Using Communications DDS Keywords 6-5

RSLS180-4

Data Is Sent

Data Includes

Format Name

Return Code

Return Code

Communications

Support

Data Is Sent

Return Code

Wri te

Return Code

Source

Program

Data Link

Write with

FRCDTA

Write with

FMTNAME

Write with

CONFIRM

AS/400 System

ICF

Data

Management

Response

Received

Figure 6-2. Using the CONFIRM, FRCDTA, and FMTNAME Keywords to Send Data

Examples of Sending Data

Figure 6-2 shows how to use the CONFIRM, FRCDTA, and
FMTNAME keywords when sending data.

.1/ Your program issues a write-with-confirm operation to
send data to the remote system and asks the remote
system for a response.

.2/ Your program cannot continue processing until a
response is received from the remote system. Your
program checks the return code to determine if the
remote system issued a positive or negative response.

.3/ If a successful return code is received, your program
continues sending several records. On the last record,
your program also specifies the force-data function.
The FRCDTA causes all buffered data to be sent. The
return code indicates the data is successfully sent.
The force-data request does not wait for a response
from the remote system.

.4/ Your program sends a record. The format-name func-
tion indicates that the record format name used on this
write is also sent to the remote system. The remote
system uses this record format when receiving the
data.

Figure 6-3 on page 6-7 shows how to use the ENDGRP and
FMH keywords when sending data.

6-6 ICF Programming V4R1

Data
Includes
FMH

Data
with
ENDGRP
Indicator

Return Code

Communications
Support

Data Is Sent
Return Code

Write

Return Code

Data

Source
Program

Data Link

Write with
FMH

Write with
ENDGRP

AS/400 System

ICF
Data
Management

RSLS181-3

Figure 6-3. Using the ENDGRP and FMH Keywords to Send Data

.1/ Your program sends a record to the remote system
and, with the FMH keyword, indicates that the first part
of the data is function-management-header data, which
contains information about the user data that follows.

.2/ Your program continues sending data records to the
remote system. Your program uses the end-of-group
function on the last record to indicate it is the last in
this group of records.

 Receiving Data

You can use two operations to receive data: read and read-
from-invited-program-devices. In addition, you can use the
invite, timer, and record-identification functions with the pre-
ceding operations to provide additional functions when
receiving data.

The read operation receives data from the program device
you specify. This operation differs from the read-from-
invited-program-devices operation, which receives data from
any program device with a previously issued invite request.

 Invite (INVITE)

The INVITE keyword prepares your program to receive data.
You must do an output operation with the INVITE keyword
specified to issue an invite function. You can combine addi-
tional output keywords or data with the invite function. Your
program can continue processing after issuing the invite
request, and does not need to wait for the data.

The read-from invited-program-devices operation is a com-
panion to the invite function. After issuing an invite function,
you use the read-from-invited-program-devices operation to
receive the data from the remote system.

You do not need to issue an invite function before a read
operation to receive data. However, if an invite is out-
standing for a program device to which a read is issued, the
read completes the invite and receives the data.

Note: When a program device is invited, it is recommended
that a read-from-invited-program-devices operation be per-
formed rather than a read operation to receive data. Perfor-
mance may be degraded if your program issues multiple
read operations to invited program devices.

Refer to Chapter 5 for additional information about the read
and read-from-invited-program-devices operations and their
relationship to the invite function.

 Chapter 6. Using Communications DDS Keywords 6-7

Invite with Transaction Synchronization Level:
When your application program specifies the TNSSYNLVL
keyword with the invite function, the additional function per-
formed depends on the synchronization level of the conver-
sation. The TNSSYNLVL keyword can be specified with the
invite function only if the synchronization level is *NONE or
*CONFIRM. Figure 6-4 on page 6-8 shows the details.

 Timer (TIMER)

Your program can use the timer function before performing
some specified function, such as a read-from-invited-
program-devices operation. The timer function specifies an
interval of time (in hours, minutes, and seconds) to wait
before your program receives a timer-expired (0310) return
code.

Use the TIMER keyword to set the timer for the specified
interval of time. The TIMER keyword is issued on an output
operation.

The format of the TIMER keyword is:

TIMER(HHMMSS | &field-name)

The parameter specified with the TIMER keyword can be one
of the following:

HHMMSS
A literal value where HH is the number of hours,
MM is minutes, and SS is seconds.

&field-name
A value where the field contains the TIMER value in
the same HHMMSS format.

Your program continues to run, and all operations and func-
tions are valid during the time interval. Your program must
issue a read-from-invited-program-devices operation some
time after it has issued the timer function, so it can accept
the return code indicating that the timer interval has ended.

Only one time interval can be maintained for your program.
If a previous timer function has been issued and the timer
has not yet ended, the old time interval is replaced by the
new interval.

The timer function can be used to vary the maximum amount
of time that a read-from-invited-program-devices operation
will wait for a response. When the time interval set by the
TIMER keyword is in effect, the value specified for the
WAITRCD parameter on the CRTICFF command is ignored.

There is a minor difference between the functions of the
TIMER keyword and the WAITRCD parameter. When a
write operation is done using the TIMER keyword, the timer
starts immediately. The time interval is no longer in effect
when a subsequent read-from-invited-program-devices oper-
ation completes or when the end of the interval is reached.
When the WAITRCD parameter is used, the timer starts
when a read-from-invited-program-devices operation is per-
formed.

You can use the timer function to retry other operations that
may not be successful, possibly because of a temporary lack
of resources (for example, during an acquire operation). To
do this, issue the timer function, and then perform read-from-
invited-program-devices operations until the timer interval
ends. (The read-from-invited-program-devices operation
allows the program to continue receiving input from other
invited program devices while waiting for the timer.)

Refer to Chapter 5 for additional information on the read-
from-invited-program-devices operation and its relationship to
the timer function.

 Record-Identification (RECID)

The RECID keyword identifies and selects the record format
to use with an input operation based on the data received
from the remote program. This keyword is applicable only if
you specify FMTSLT(*RECID) on the ADDICFDEVE or
OVRICFDEVE command.

The format of the RECID keyword is:

RECID(starting-position compare-value)

Specify the starting-position parameter as either nnnnn or
*POSnnnnn, where nnnnn defines the beginning position of
the compare value within the record format. The first posi-
tion in the record is position 1. Specify the compare-value
parameter as:

*ZERO. The data character in the position specified
must be 0 (hex F0) to match the record identifier.

*BLANK. The data character in the position specified
must be a blank (hex 40) to match the record identifier.

'literal'. The data received, beginning with the position
defined by the starting-position value, must match the
literal specified here.

If the length of the record received is less than the number of
positions examined for RECID value, the positions past the
end of the record are treated as if they contained blanks. If
the RECID keyword compare value specifies blanks for those
positions, the data is considered a match.

For example, if your program receives both header and detail
records from the remote program, you can specify the fol-
lowing in your ICF file:

 RECID(1 'H')
 RECID(1 'D')

Figure 6-4. TNSSYNLVL Function with Invite

Synchronization
Level

Function

*NONE The force-data function is performed in addi-
tion to the invite function.

*CONFIRM The confirm function is performed in addition
to the invite function.

*COMMIT Not allowed

6-8 ICF Programming V4R1

Your program issues input operations to the file without spec-
ifying a record format name. You do not specify a record
format name because the correct record format is not known
until the data is received. Your program receives the records
(either headers or detail) in the order they are sent by the
remote program. For this example, the sending and
receiving programs provide for an explicit code (an H for
header records and a D for detail records) to identify the type
of record being sent and received. The RECID keyword
identifies the input buffer location where the H or D appears,
and specifies the value (starting in the position specified) that
identifies the record type.

The remote program must identify the type of record (either
header or detail) by placing H or D in the first position of the
data buffer.

For each input operation, the value specified in the first posi-
tion of the buffer is compared with the value specified on the
RECID keyword. If the value in a record is H, the format
associated with the RECID(1 'H') specification is selected.
Duplicate RECID keyword compare values are not checked.
The first format with a compare value that matches the
received value is used.

Be careful how you specify more than one RECID keyword
within a file if more than one compare value begins in the
same record position. For example, the following compare
values begin in the same position:

 RECID(1 'A')
 RECID(1 'AB')
 RECID(1 'ABC')

The first format is always selected if the data starts with an
A, because any received records matching the last two
compare values also match the first. Specify the longest
value first to prevent confusion.

 RECID(1 'ABC')
 RECID(1 'AB')
 RECID(1 'A')

You can use the RECID DDS keyword to eliminate pro-
cessing of alphanumeric data in fields that should contain
only numeric data. Refer to “Input Considerations” on
page 8-3 for more information on eliminating data decimal
errors.

 Problem Notification

Use the fail, cancel, and negative-response functions to
inform the application program of an error that has occurred
in the data being sent or received. The DDS keywords asso-
ciated with these functions are specified on an output opera-
tion.

 Fail (FAIL)

Use the FAIL keyword to indicate that an error has occurred
when sending and receiving data.

If a program that is sending data issues a fail, it may indicate
that the data just sent was in error. Your program can con-
tinue to send data and is usually responsible for the first
error recovery. The communications type you are using
determines whether data that is in the output buffer before
issuing the fail function is sent to the remote system with the
fail indication. The communications type determines the type
of notification sent.

You can also use a fail function if your program receives
data and detects an error in the received data. Figure 6-5
on page 6-10 shows how to use the fail function when your
program is receiving data and detects an error.

 Chapter 6. Using Communications DDS Keywords 6-9

Return Code

Return Code

Return Code

Return Code

Return Code

and Data

Return Code

and Data
Fail Indication
Sent to Other
Program

Data Is Received

Communications
Support

Source
Program

Write with
INVITE

Read-from-
Invited-
Program
Devices

Read-from-
Invited-
Program
Devices

Write

Write with
INVITE

Write with
FAIL

Data Link

AS/400 System

ICF
Data
Management

Message Is Sent
to Remote
System

RSLS134-6

Figure 6-5. Using the FAIL Keyword to Send an Error Indication

.1/ Your program is receiving data from the remote
program.

.2/ While receiving data, your program determines that it
must send a fail indication to the other program.

.3/ A message or data is then sent (write operation) to tell
the other program why you sent the fail indication.

When a fail function is the response to a commit oper-
ation, the system rolls back the protected LUW on the
side that issued the commit operation. The side that
issued the fail function must do a rollback operation
after the request to roll back is received from the
partner. When a fail function is the response to a
PRPCMT function, APPC does not roll back the pro-
tected LUW. Since APPC does not do a rollback for

PRPCMT, the application program can try to correct
the problem.

Refer to the RCVFAIL keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a fail indication.

 Cancel (CANCEL)

Use the CANCEL keyword to tell the remote system to
cancel the group of records you are currently sending. Your
program can use the cancel function only when sending data
(similar to issuing a fail when your program is sending data).
Figure 6-6 on page 6-11 shows how to use the cancel func-
tion when a program is sending data and detects an error.

6-10 ICF Programming V4R1

Message

or Data

Is Sent

Return Code

Return Code

Return Code

Communications

Support

Write

Write

Data Is Sent

Source

Program

Write with

CANCEL

Data Link

Cancel

Indication

Is Sent

AS/400 System

ICF

Data

Management

RSLS132-6

Figure 6-6. Using the CANCEL Keyword to Send an Error Indication

.1/ Your program is sending data to the remote system.

.2/ Your program checks the data and determines that
something is wrong with it.

.3/ Your program uses a cancel function to tell the remote
system to discard the data you have sent.

.4/ Your program can send a message indicating the
problem, send the data again, receive more data, or
end the transaction.

Refer to the RCVCANCEL keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a cancel indication.

 Negative-Response (NEGRSP)

Use the NEGRSP keyword to tell the remote system that the
data just received is not correct. The format of the NEGRSP
keyword is:

NEGRSP[(&field-name)]

The optional parameter on the NEGRSP keyword specifies
the name of the field that contains sense data to be sent to
the remote program with the negative response.

Issuing a negative-response function is similar to issuing a
fail function while receiving data, except that you can also
include 8 characters of sense data with the negative-
response function. The sense data tells the remote system
what is wrong with the data you received. The first 4 charac-
ters of the sense data must begin with 10XX, 08XX, or 0000.
The last 4 characters are user-defined. Refer to the appro-
priate communications programming book for the commu-
nications type you are using for more information about the
allowed sense values.

The sense data is sent in the normal output buffer. No other
data is allowed to be sent with a negative-response function.

Figure 6-7 on page 6-12 shows how to send a negative
response with a sense code to the remote system.

 Chapter 6. Using Communications DDS Keywords 6-11

Return Code

Return Code

Return Code

and Data

Data Is Received

Negative

Response Is

Sent with

Sense Data

Communications

Support

Source

Program

Write with

INVITE

Read-from-

Invited-

Program

Devices

Write with

NEGRSP

Data Link

AS/400 System

ICF

Data

Management

RSLS130-5

Figure 6-7. Sending a Negative Response with Sense Code to Remote System

.1/ Your program finds that the data it is receiving is not
correct.

.2/ The program sends a negative response to the remote
system, including the sense data 08110000. The neg-
ative response tells the remote system that the data
received is wrong, and the sense data 08110000 asks
the remote system to cancel the current group of data
records.

Refer to the RCVNEGRSP keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a negative response indication.

 Additional Keywords

You can use the respond-to-confirm, request-to-write, allow-
write, and cancel-invite functions to perform additional func-
tions.

 Respond-to-Confirm (RSPCONFIRM)

Use the RSPCONFIRM keyword to send a positive response
to a received confirm request. The respond-to-confirm func-
tion can be used only when a confirm request is outstanding.
You can check the major/minor return codes or use the
RCVCONFIRM indicator to determine when to issue a
respond-to-confirm function. After sending the response,
your program can continue processing as indicated by any
other information received.

Figure 6-8 on page 6-13 shows how to use the respond-to-
confirm function.

6-12 ICF Programming V4R1

Communications

Support

Return Code

Data

Source

Program

Read

Read

Positive Response

Sent

Data Link

Write with

RSPCONFIRM

Data Is Received

Data Is Received

with Confirm

Request

RSLS679-2

AS/400 System

ICF

Data

Management

Figure 6-8. Using the Respond-to-Confirm Function

.1/ Your program is receiving data from the remote
system. The return code indicates data and a confirm
request. The read could have also been done with the
RCVCONFIRM keyword to indicate that a confirm
request was received.

.2/ Your program issues a write operation with the
RSPCONFIRM keyword in effect to acknowledge the
receipt of data.

.3/ Your program continues to receive because the remote
program is still in send state.

 Request-to-Write (RQSWRT)

Use the RQSWRT keyword, while your program is receiving
data, to ask the remote system to stop sending so your
program can send. The request-to-write function tells the
remote system you want to change the direction of data
transmission. If the remote system allows the change, your
program can send either data or a message, or both, to the
remote system. After issuing the request-to-write, your
program must continue receiving data until the remote
system sends a notification indicating it is ready to receive.

Figure 6-9 on page 6-14 shows how to use the request-to-
write function.

 Chapter 6. Using Communications DDS Keywords 6-13

Return Code

Return Code

Return Code

Your
Program

Data and

Return Code

Return Code

and Data

Data Is Received

Change Direction
Indication Is
Received

Communications
Support

Read-from-
Invited-
Program
Devices

Read-from-
Invited-
Program
Devices

Write with
RQSWRT
and INVITE

Request
to Write
Sent to the
Remote System

Read-from-
Invited-
Program
Devices

Data Link

Write with
INVITE

Write with
INVITE

Write with
INVITE

AS/400 System

ICF
Data
Management

RSLS128-5

Figure 6-9. Using the Request-to-Write Function

.1/ Your program is receiving data from the remote
system. The program processes the data received,
then receives data again.

.2/ At some time while data is being received, your
program determines that it needs to send a message
to the remote system. Your program issues a write
operation, with the RQSWRT and INVITE keywords in
effect, to ask the remote system to stop sending so
your program can send the message. The request-
write indication is sent to the remote system at the first
available opportunity. Since the session is in receive
state, the indication may be held until the next data
record is received.

.3/ After issuing the request-to-write function, your
program must continue receiving data until it gets a
return code indicating that the remote system is ready
to receive. To continue receiving, another read-from-
invited-program-devices operation is used.

.4/ Another invite and read-from-invited-program-devices
operation is issued to continue receiving data.

.5/ When the remote system is ready to receive, it sends
one more data record with a change-direction indi-
cation. The record says the remote system is now
ready to receive data or, as in this example, a
message.

.6/ A write operation with the INVITE keyword in effect is
used to send the message to the remote system and
ask the remote system to continue sending data.

When your program receives a request-to-write request from
the remote system, a code is set in the I/O feedback file-
dependent section. Refer to Figure C-5 on page C-3 for
more information about where this field is in the I/O feedback
area.

The code indicates the following conditions:

6-14 ICF Programming V4R1

0 Continue sending as normal.

1 A request-to-write has been received.

Refer to the appropriate communications programming book
for the communications type you are using for more specific
information on what this code means for the communications
type you are using.

 Allow-Write (ALWWRT)
Use the ALWWRT keyword to explicitly inform the remote
system that your program is done sending. The allow-write
function clears the buffers, forcing any data to be sent. The
same function occurs automatically if you issue an input
operation after a write operation. In that case, the ALWWRT
DDS keyword is not required. After issuing an allow-write,
your application program can issue an input operation to
receive data from the remote system.

Figure 6-11 shows how to use the allow-write function.

.1/ Your program sends several data records to the
remote system.

.2/ You use an allow-write with the last record to inform
the remote system you are done sending.

.3/ The remote system can now send data, and your
program must begin receiving.

Refer to “Receive-Turnaround” on page 6-19 for information
on handling receipt of an allow-write indication.

Your application program uses the allow-write (ALWWRT)
function to inform the remote program that your program is
done sending data and is ready to receive. This causes a
change-direction indicator to be sent to the remote program.

After issuing the allow-write function, your program can then
issue an input operation to receive data from the remote
program.

When your application program specifies the TNSSYNLVL
keyword with the ALWWRT keyword, the additional function
performed depends on the synchronization level of the con-
versation. Figure 6-10 shows the details.

Figure 6-10. TNSSYNLVL Function with ALWWRT

Synchronization
Level

Function

*NONE The force-data function is performed in addi-
tion to the allow-write function.

*CONFIRM The confirm function is performed in addition
to the allow-write function.

*COMMIT The conversation enters defer receive state
until your application program issues a
commit operation, a force-data function, or a
confirm function. Once the commit operation,
force-data function, or confirm function com-
pletes successfully, the conversation is in
receive state.

Data Is Sent

Data Is
Received

Communications
Support

Write

Return Code

Write

Read

Data with
ALWWRT

Return Code

Return Code

Write with
ALWWRT

Source
Program

Data Link

AS/400 System

ICF
Data
Management

RSLS182-3

Figure 6-11. Using the Allow-Write Function

 Chapter 6. Using Communications DDS Keywords 6-15

No Data

Yet Received

Communications

Support

Data Link

Return Code

Write

Return Code

Data

Data

Sent

Source

Program

Write with

INVITE

AS/400 System

ICF

Data

Management

Write with

CNLINVITE

RSLS183-5

Figure 6-12. Using the Cancel-Invite Function

 Cancel-Invite (CNLINVITE)

Use the CNLINVITE keyword to cancel a valid invite for
which no data has yet been received from an invited program
device. Your program can continue to send data.

Figure 6-12 shows how to use the CNLINVITE keyword.

.1/ Your program issues an invite operation to receive data
from the remote program, then continues processing.

.2/ Your program uses the cancel-invite function to cancel
the previous invite operation. Your program must
check the return code it receives to determine if any
data has already been received from the remote
system.

.3/ Your program can continue to send data if data was
not received.

Ending a Communications Transaction

A communications transaction can be ended by your
program or by the program at the remote system. Your job
and the remote system that your system is communicating
with determine the program that ends the transaction.

Communications with the remote program end when your
program ends the transaction. However, the session may
still exist if your program started the session. If the session
still exists, you can end the session or you may be able to
start another program at the remote system.

 Detach (DETACH)
Use the DETACH DDS keyword to end the transaction. The
detach explicitly informs the remote program that your
program is done sending and has ended the transaction.

Figure 6-13 on page 6-17 shows how your program can end
a communications transaction.

6-16 ICF Programming V4R1

Write with
DETACH

Return Code

Communications
Support

Detach Sent
to Remote System

Source
Program

Data Link

AS/400 System

ICF
Data
Management

RSLS136-5

Figure 6-13. Ending a Communications Transaction

.1/ Your program issues the detach to tell the remote
system that your program ended the communications
transaction.

Refer to the RCVDETACH keyword described in “Using
Response Indicator Keywords” on page 6-18 for information
on handling receipt of a detach indication.

If a detach function is issued by the target program, the EOS
function is issued after the detach function is completed.

This should be done since neither the EOS, Detach, or any
other ICF function can end the session (that is, cause an
UNBIND to be sent).

Using the Detach Function When the
Synchronization Level is None

When the synchronization level is none and the detach and
transaction-synchronization-level functions are used together,
force-data and detach functions are performed.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Confirm

When a detach function and a confirm function or
transaction-synchronization-level function are used together,
a confirm function is performed. If the remote program
responds positively, the detach function is performed. If the
remote program responds negatively, or has already sent a

negative response, the transaction may not end immediately.
The sender of the negative response is responsible for the
initial error recovery. The point at which action is taken to
recover from the error determines when the transaction is
ended.

To respond positively to the detach function with a confirm or
transaction-synchronization-level function, the remote
program must use the respond-to-confirm function.

To respond negatively to the detach function with a confirm
or transaction-synchronization-level function, the remote
program should use the fail function.

After a detach function is accepted by your program, no
further input or output operations with the remote program
are allowed.

Using the Detach Function When the
Synchronization Level is Commit

For two-phase commit processing, the detach function must
be accompanied by the transaction-synchronization-level
function. The transaction does not end until your program
issues a commit operation, and the commit operation com-
pletes successfully. If the commit operation fails, the fol-
lowing is done.

� The logical unit of work is rolled back.
� The transaction is not ended.
� The conversation state is returned to what it was at the

last commit boundary.

 Chapter 6. Using Communications DDS Keywords 6-17

Using the Detach Function From a Target
Program

After a target program issues a detach function, both the
session and the transaction end. No further operations are
valid on the program device.

Ending the Communications Session

How the communications session is ended depends on
whether your program or the remote system started the
session.

The release operation ends the session only if all processing
is complete. The end-of-session operation always ends the
session.

 End-of-Session (EOS)
Use the EOS DDS keyword to issue an end-of-session func-
tion. The only possible return codes from end-of-session are
0000 or 830B (program device not acquired).

If the target program ends the transaction by the detach
function, the session is ended implicitly. If the source
program ends the transaction, the target program must issue
an end-of-session or go to the end of the job to end the
session. Figure 6-14 shows how you can end the session
using the release operation and the end-of-session function.

For conversations started using EVOKE with SYNLVL(\COMMIT)
specified:

� If EOS is issued after a TAKE_COMMIT_\ indication has
been received by the transaction program (TP), resyn-
chronization processing is performed.

� In all other cases, the EOS causes the logical unit of
work (LUW) to be put into rollback required state. The
TP must perform a rollback operation before working
with any other resources involved in that LUW.

RSLS138-6

Return Code

Session
EndedReturn Code

AS/400 System

Communications
Support

Source
Program

Write
with EOS

Release

ICF
Data
Management

Data Link

Figure 6-14. Using the Release and End-of-Session Functions

.1/ Your program issues the release operation to end the
current communications session.

.2/ The return code tells your program whether the session
was ended, or if an error occurred while trying to end
the session. If, for example, all transactions have not
ended when the release operation is issued, an error
occurs and the session is not ended.

.3/ If an error occurs and normal recovery is not possible,
your program can use the end-of-session function to
end the session.

.4/ The end-of-session function always ends the session.

Using Response Indicator Keywords

Response keywords provide information to your program
about the data record being received or the actions taken by
the remote program. Check which response indicators are
set when your program does an input operation to determine:

� What the remote program sent

� What the remote program expects from your program

� What your program’s next operation should be

Response keywords are only effective for input operations or
a combined output then input. They have no effect on an
output operation. Multiple response keywords can be used
on a single input operation.

6-18 ICF Programming V4R1

 Receive-Confirm
Use the RCVCONFIRM keyword to request that a response
indicator be set on if the record received from the remote
system contains a confirm request. A received confirm
request indicates that the remote program expects your
program to do a specific action to synchronize the programs.
The action can be a write with the RSPCONFIRM keyword
(positive response), or a write with the FAIL keyword (nega-
tive response). If the session is abnormally ended (end-of-
session or job end before ending the transaction), a negative
response is sent.

This same type of information can be determined by
checking the major/minor return code returned in the I/O
feedback area at the completion of each operation.

The program receiving the confirm indication is responsible
for making sure that the response (positive or negative) is
returned to the program requesting the confirmation.

If you want to return a positive response to the remote
system, issue a write with the RSPCONFIRM DDS keyword
in effect. If you want a negative response returned, either
issue a write with the FAIL DDS keyword in effect, or abnor-
mally end the session (end-of-session or job end before
ending the transaction).

 Receive-Control-Data

Use the RCVCTLDTA keyword to request that a response
indicator be set on if the record received from the remote
system contains a control-data indication. The response indi-
cator is set if the data received in the input buffer is control
data.

 Receive-End-of-Group

Use the RCVENDGRP keyword to request that a response
indicator be set on if the record received from the remote
system contains an end-of-group indicator. The response
indicator is set if the last record received in the input buffer
was the end of a user-defined group of records.

 Receive-Function-Management Header

Use the RCVFMH keyword to request that a response indi-
cator be set on if the record received from the remote system
contains a function-management-header indication. The
response indicator is set if the data received in the input
buffer is function-management-header data. Asynchronous,
finance, intrasystem, and retail communications give the user
data along with the function-management-header indication
in one operation. If you are using SNUF, however, you must
do an additional input operation to get the remaining user
data that accompanied the function-management-header.

 Receive-Fail

Use the RCVFAIL keyword to request that a response indi-
cator be set on if the record received from the remote system
contains a fail indication. The remote program informs your
program that it found something wrong while sending or
receiving data. Your program should issue an input opera-
tion after receiving a fail indication. The program sending the
fail indication must start the error recovery.

 Receive-Cancel

Use the RCVCANCEL keyword to request that a response
indicator be set on if the record received from the remote
system contains a cancel indication. The remote system
informs your program that the current chain of data is not
correct. Your program should discard the data, then con-
tinue to receive or end the job.

 Receive-Negative-Response

Use the RCVNEGRSP keyword to request that a response
indicator be set on if the data received from the remote
system contains a negative-response indication. The remote
system informs your program that an error was detected in
the data it just received. You may receive an 8-byte sense
code with the negative response signal.

 Receive-Turnaround

Use the RCVTRNRND keyword to request that a response
indicator be set on if the data received from the remote
system contains a change-in-transmission-direction indi-
cation. The remote system informs your program that it is
finished sending data, and is ready to receive data. Your
program can begin sending data.

 Receive-Detach

Use the RCVDETACH keyword to request that a response
indicator be set on if the record received from the remote
system contains a detach indication. The remote system
informs your program that it is ending this communications
transaction with your program. Your program can no longer
communicate with the remote program. The session with the
remote system may still exist if your program started the
session. If the remote system started the session, commu-
nications with the remote system are ended.

 Receive-Rollback

Use the RCVROLLB keyword to request that a response
indicator be set on as an indication of one of the following
conditions:

� The remote program sent a ROLLBACK. This indicates
that the remote program expects your program to
rollback its protected resources.

 Chapter 6. Using Communications DDS Keywords 6-19

� The protected LUW entered the rollback required state.

Your program must respond with a rollback operation. Your
program can only get this response indicator if it has a con-
versation with a synchronization level of commit.

This response indicator can be received with the following
return codes.

 � 0054
 � 0254
� 80F9, 80FA, 80FB
� 81F0, 81F1, 81F2, 81F3, 81F4, 81F5
� 83FB, 83FC, 83FD, 83FE, 83FF

 Receive-Take-Commit

Use the RCVTKCMT keyword to request that a response
indicator be set on as an indication that the remote program
sent a PRPCMT function or a commit operation. This indi-
cates that the remote program expects your program to
determine if it can commit its protected resources. Your
program must either do a commit or rollback operation or a
FAIL or EOS function. Your program can only get this
response indicator if it has a conversation with a synchroni-
zation level of commit.

This response indicator can be received with major return
codes 02 (end job or end subsystem in progress) or 03 (no
data received). The major return code can be accompanied
by a minor return code of 57, 58, or 59.

Example DDS Files for Creating an
Intersystem Communications Function File

Figure 6-15 and Figure 6-16 on page 6-21 are DDS source
files that can be used to create an ICF file. Files created
using this source DDS are used in the application program
examples in Chapter 9 through Chapter 11.

A\\\

A\ \

A\ ICF FILE \

A\ USED IN BATCH DATA TRANSFER PROGRAM \

A\ \

A\\\

A\

A\ FILE LEVEL INDICATORS:

A\

A INDARA

A\

A RCVTRNRND(15 'END OF DATA')

A\

A 3ð DETACH

A\

A INDTXT(3ð '3ð->DETACH TAR-

A GET PROGRAM.')

A\

A RCVDETACH(35 'RECEIVED -

A DETACH.')

A\

A\

A\\

A\ ICF RECORD FORMATS \

A\\

 R RCVDATA

 RCVFLD 8ðA

 R SNDDATA

 SNDFLD 8ðA

 R EVOKPGM

A 5ð EVOKE(&LIB/&PGMID)

A PGMID 1ðA P

A LIB 1ðA P

A R ENDREC

A R INVITE

A 45 INVITE

Figure 6-15. DDS Source File for a Batch Data Transfer Program

6-20 ICF Programming V4R1

A\\

A\ \

A\ ICF FILE \

A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \

A\ \

A\\

A INDARA

A R ITMRSP

A RECID(1 'I')

A RECITM 1

A ITEMNO 6 ð

A DESC 3ð

A QTYLST 7 ð

A QTYOH 7 ð

A QTYOO 7 ð

A QTYBO 7 ð

A UNITQ 2

A PRð1 7 2

A PRð5 7 ð

A UFRT 5 2

A SLSTM 9 2

A SLSTY 11 2

A CSTTM 9 2

A CSTTY 11 2

A PRO 5 2

A LOS 9 2

A FILL1 56

A R DTLRSP

A RECID(1 'C')

A RCVTRNRND(9ð)

A RECCUS 1

A CUSTNO 6 ð

A DNAME 3ð

A DLSTOR 6 ð

A DSLSTM 9 ð

A DSPMð1 9 ð

A DSPMð2 9 ð

A DSPMð3 9 ð

A DSTTYD 11 ð

A IDEPT 3 ð

A FILL2 57

A R DETACH

A DETACH

A R EOS

A EOS

A R EVKREQ

A EVOKE(&LIB/&PGMID)

A PGMID 1ðA P

A LIB 1ðA P

A R ITMREQ

A INVITE

A ITEMNO 6 ð

A R DTLREQ

A INVITE

A CUSTNO 6 ð

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 6-16. DDS Source File for a Multiple Session Program

The following is an example of a Create Intersystem Commu-
nications Function (CRTICFF) command used to create an
ICF file from a DDS source file:

CRTICFF FILE(ICFLIB/ICFFILE) SRCFILE(ICFLIB/QDDSSRC)

 SRCMBR(\FILE) ACQPGMDEV(\NONE) MAXPGMDEV(1ð)

TEXT('ICF FILE EXAMPLE')

The created file has the following attributes:

� The file name is ICFFILE and it is stored in library
ICFLIB, as specified on the FILE parameter.

� The SRCFILE parameter indicates that the DDS source
file, from which this ICF file is created, is a member in
file QDDSSRC in library ICFLIB.

� The SRCMBR parameter indicates the source file has
the same name as the file you are creating.

� The ACQPGMDEV parameter indicates that no program
device is automatically acquired when the file is opened.
Your program must explicitly issue the acquire.

� The MAXPGMDEV parameter indicates that up to 10
program devices can be acquired and active with this
file.

� The TEXT parameter describes the file.

The remaining parameters not specified on the CRTICFF
command are assigned default values. Refer to Chapter 4
and the CL Reference book for more information on these
parameters and their default values.

The following is an example of an ADDICFDEVE command
used to add a program device entry to the ICF file just
created:

ADDICFDEVE FILE(ICFLIB/ICFFILE) PGMDEV(PGMDEVA)

 RMTLOCNAME(CHICAGO) FMTSLT(\PGM)

The file now has a program device entry with the following
attributes:

� The PGMDEV parameter indicates that PGMDEVA is
the program device name added to the file. This is the
program device name used in your program.

� The RMTLOCNAME parameter indicates that CHICAGO
is the name of the remote location associated with
PGMDEVA. CHICAGO is the remote location name
specified on the device description when you configured
your system for communications.

� The FMTSLT parameter indicates that *PGM is the
format selection option used on input operations. For
more information on this parameter, refer to “Format
Selection Processing” on page 5-8.

The remaining parameters not specified on the
ADDICFDEVE command have assigned default values.
Refer to Chapter 4 and the CL Reference book for more
information on these parameters and their default values.

Keyword Processing Charts

Figure 6-17 and Figure 6-18 on page 6-22 summarize the
DDS keywords discussed in this chapter. Use these charts
for a quick reference when defining and creating an ICF file,
and when writing application programs.

Figure 6-17 lists the DDS keywords defined in this chapter
that are supported by the various communications types for
output operations.

Figure 6-17 (Page 1 of 2). Output DDS Processing Keyword Support

DDS Keyword APPC SNUF BSCEL
Asyn-

chronous
Intra-

system Finance Retail

ALWWRT X X X X

 Chapter 6. Using Communications DDS Keywords 6-21

Figure 6-17 (Page 2 of 2). Output DDS Processing Keyword Support

DDS Keyword APPC SNUF BSCEL
Asyn-

chronous
Intra-

system Finance Retail

CANCEL X X X2 X

CNLINVITE X X X X X X

CONFIRM X X

CTLDTA X

DETACH X X X X1 X X

DFREVOKE X

ENDGRP X X X X X

EOS X X X X X X X

EVOKE X X X X X X

FAIL X X X X X X

FMH X X1 X X X

FMTNAME X X

FRCDTA X X X X

INVITE X X X X X X X

NEGRSP X X X X

PRPCMT X

RQSWRT X X X X

RSPCONFIRM X X X

SECURITY X X X X X

SUBDEV X X

SYNLVL X X

TIMER X X X X X X X

TNSSYNLVL X

VARBUFMGT3 X

VARLEN X X X X X X X

1 Use of these keywords are restricted. Refer to the Asynchronous Communications Programming book for more details.

2 This keyword is not valid for the 3694 controller. Refer to the Finance Communications Programming book for more details.

3 Use of this keyword is restricted. Refer to the APPC Programming book.

Figure 6-18 lists the DDS keywords defined in this chapter
that are supported by the various communications types for
input operations.

Figure 6-18 (Page 1 of 2). Input DDS Processing Keyword Support

DDS Keyword APPC SNUF BSCEL
Asyn-

chronous
Intra-

system Finance Retail

RCVCANCEL X X X

RCVCONFIRM X X X

RCVCTLDTA X

RCVDETACH X X X X X

RCVENDGRP X X X X X

RCVFAIL X X X

RCVFMH X X X X

RCVNEGRSP X X X X

6-22 ICF Programming V4R1

Figure 6-18 (Page 2 of 2). Input DDS Processing Keyword Support

DDS Keyword APPC SNUF BSCEL
Asyn-

chronous
Intra-

system Finance Retail

RCVROLLB X

RCVTKCMT X

RCVTRNRND X X X X

RECID X X X X X X X

Figure 6-19 shows the priority sequence used by ICF in pro-
cessing these DDS keywords and data during output oper-
ations.

1 Is EOS specified?

 | no | yes

 | |

| | Do EOS Function

 |

 | 14

 |

2 Is FAIL specified?

 | no | yes

 | |

| | Do FAIL Function

 |

 | 12

 |

3 Is NEGRSP specified?

 | no | yes

 | |

| | Do NEGRSP Function

| | (Send sense code if specified)

 |

 | 12

 |

4 Is CANCEL specified?

 | no | yes

 | |

| | Do CANCEL Function

 |

 | 12

 |

5 Is CNLINVITE specified?

 | no | yes

 | |

| | Do CNLINVITE Function

 |

 | 11

 |

6 Is RSPCONFIRM specified?

 | no | yes

 | |

| | Do RSPCONFIRM Function

 |

 | 14

 |

7 Is RQSWRT specified?

 | no | yes

 | |

| Is INVITE or READ specified?

 | | yes | no

 | | |

| | Do RQSWRT Function | Do RQSWRT

| | with Invite or Read | Function

 |

 | 14 14

 |

Figure 6-19 (Part 1 of 2). Keyword Processing Chart

8 Is EVOKE specified?

 | no | yes

 | |

| Incorporate DFREVOKE, SECURITY, and SYNLVL keywords

 | |

| Is user data specified? (Not program initialization

 | parameters)

 | | yes | no

 | | |

| | Do EVOKE Function | Do EVOKE

| | (Incorporate FMH keyword | Function

| | and program initial- | (Incorporate

| | ization parameters if | rest of

 | | specified) | keywords and

 | | | program

 | | | initialization

 | 11 14 parameters

 | appropriately)

9 Is TIMER specified?

 | no | yes

 | |

| | Do TIMER Function

 | 14

1ð Is PRPCMT specified?

 | no | yes

 | |

| | Perform PRPCMT function

 | |

 | |

 |

 | 14

 |

11 Process data (Incorporate VARLEN keyword)

| (Incorporate VARBUFMGT keyword)

 |

12 Is DETACH specified?

 | no | yes

 | |

| Is CONFIRM specified?

 | | yes | no

 | | |

 | | |

| | Do DETACH Function | Do DETACH function

 | | with CONFIRM | without CONFIRM

| | (Also process format name |

| | if FMTNAME keyword |

 | | specified) |

 | 14 14

 |

13 Is INVITE, ALWWRT, ENDGRP, FMH, SUBDEV, FMTNAME, FRCDTA,

| no | yes CONFIRM or GET specified?

 | |

| | Perform INVITE or GET function if specified

| | Perform ALWWRT function if specified

| | Perform ENDGRP function if specified

| | Perform FMH function if specified

| | Perform SUBDEV function if specified

| | Perform FMTNAME function if specified

| | Perform FRCDTA function if specified

| | Perform CONFIRM function if specified

| | Perform TNSSYNLVL function if specified

| | Perform CTLDTA function if specified

 |

 | 14

 |

14 END

Figure 6-19 (Part 2 of 2). Keyword Processing Chart

 Chapter 6. Using Communications DDS Keywords 6-23

6-24 ICF Programming V4R1

Chapter 7. Using System-Supplied Communications Formats

This chapter defines the system-supplied communications
formats you can use in your program to control data commu-
nications with the remote system. These system-supplied
formats are used in place of user-defined data description
specifications (DDS) record formats on the write operation.
This chapter also maps these system-supplied communica-
tions formats to their DDS keyword counterparts in
Figure 7-24 on page 7-21.

Programming examples are included to show you how these
system-supplied formats are used. These examples are
program segments only. You can find complete ILE C,
COBOL/400., and RPG/400 programming examples in
Chapter 9 through Chapter 11.

All system-supplied formats described in this chapter may not
be supported by the communications type you are using.
Figure 7-23 on page 7-20 summarizes the support provided
by each communications type. For more detail, refer to the
appropriate communications programming book for the com-
munications type you are using.

 General Description

You can use system-supplied formats for communications
only when using an ICF file. You can either create your own
file or use the default file provided by ICF for communica-
tions when using system-supplied formats. This file,
QICDMF, is in library QSYS. You must still perform the
override commands for QICDMF to define your program
device names.

The QICDMF file was created with the following character-
istics:

� The INDARA keyword is used in this file; therefore, a
separate indicator area must be specified in your
program when this file is used.

� *NONE was specified for the ACQPGMDEV parameter.
Therefore, no program device is acquired when the file
is opened.

� The maximum record length for the file is 4096 bytes.
The maximum record length is used in allocating I/O
buffers. If your program does not need this large a
record, you may want to override this value by using the
Override Intersystem Communications Function File
(OVRICFF) command, specifying the MAXRCDLEN
parameter.

� The maximum number of program devices that can be
acquired with this file is five. If your program uses more
than five program devices, you will need to change this
file by using the Change Intersystem Communications

Function File (CHGICFF) command and specifying a
larger value for the MAXPGMDEV parameter.

� 30 SECONDS was specified for the WAITFILE param-
eter.

� *NOMAX was specified for the WAITRCD parameter.

� *NO was specified for the SHARE parameter.

� *USE was specified for the AUT parameter. Refer to the
Security – Reference book for information on what rights
this characteristic provides.

Do not change this file with the CHGICFF command unless
you need to change the maximum number of program
devices or want to provide different default characteristics
system-wide than those provided at file creation. Use the
Override Intersystem Communications Function File
(OVRICFF) command to temporarily override any character-
istics needed by a particular application.

Do not add any program device entries to the file using the
Add Intersystem Communications Function Device Entry
(ADDICFDEVE) command. Define program device entries
using the Override Intersystem Communications Function
Device Entry (OVRICFDEVE) command.

The primary communications functions you can perform
using system-supplied formats are:

� Evoke functions (starting remote programs)

� Output functions (sending data)

� Detach functions (ending communications transactions)

� End-of-session functions (ending the session)

These functions are described on the following pages.

All of the system-supplied formats are specified on output
operations. The system-supplied formats that allow you to
perform the invite and timer functions do, however, affect
input processing.

Note: This chapter discusses only how you can use
system-supplied formats to do specific communications func-
tions, such as starting and stopping a communications trans-
action and sending data. Your program will, of course, need
to perform additional operations such as starting a session
and receiving data. Refer to the appropriate sections in
Chapter 5 for information on these operations.

Starting a Program on the Remote System

The target program must be started before communications
can begin between your program and a target program. To
start a target program and to start a communications trans-
action, your program must issue an evoke function.

 Copyright IBM Corp. 1997 7-1

 Evoke

You can use one of the following three system-supplied
formats to perform an evoke function:

� Evoke ($$EVOKNI). Starts the specified program on
the remote system. Your program remains in send
state, so it can send data to the target program.

� Evoke with Invite ($$EVOK). Starts the specified
program on the remote system and invites that program
to send data.

� Evoke with Detach ($$EVOKET). Starts the specified
program on the remote system and ends the commu-

nications transaction, without allowing the target program
to communicate in return. Refer to “Ending a Commu-
nications Transaction” on page 7-17 for more informa-
tion on the detach function.

Figure 7-1 shows how to start a target program on the
remote system.

.1/ The source program uses an evoke function to start
the program at the remote system.

.2/ The evoke parameters, including program name, library
name, and security information, are sent to the remote
system.

Return Code

Answer from
Remote System

Communications
Support

Program Start
Request to
Remote System

Source
Program

Write with
$$EVOKNI

Data Link

AS/400 System
ICF
Data
Management

RSLS670-2

Figure 7-1. Starting a Target Program

7-2 ICF Programming V4R1

.3/ A successful completion return code tells the source
program that the evoke function was accepted and a
program start request was sent to the remote system.
If the program start request is successful, both the
program at the remote system and the communications
transaction are started.

You must specify an evoke parameter list in the output
buffer with an evoke function. The evoke parameter list con-
tains information for the remote system, such as what
program to start on the remote system. Specify the field
parameters in that list using the format shown in Figure 7-2.

If a field is not used, enter the correct number of blanks for
the unused field.

If multiple program initialization parameters are used, the
program is responsible for using the proper separation char-
acters for the remote system. For example, if the remote
system is an AS/400 system, multiple parameters must be
separated by a comma.

If the remote system is another AS/400 system, the program
parameters are passed to the target program as if they were
passed from a Call a Program (CALL) command. Data sent
with an evoke function are parameters used by the target
program.

System-supplied formats do not allow a synchronization level
of CONFIRM and always revert to the default synchronization
level of NONE.

The following is an example of an ILE C write statement that
can be used to issue an evoke.
struct {

 char program_name??(8??);

 char password??(8??);

 char user_id??(8??);

 char library_name??(8??);

 char filler??(2ð??);

 char data_length??(4??);

 char data??(1ððð??);

} evoke_rec;

...

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$EVOKNI");

/\ Set evoke w/no invite format \/

_Rpgmdev(icffptr, "CM1");

/\ Set default device to CM1 \/

_Rwrite(icffptr, &evoke_rec, sizeof(evoke_rec));/\ Do the evoke \/

The following is an example of a COBOL/400 WRITE state-
ment which can be used to issue an evoke.
ð1 DATA-RECORD.

 ð3 PROGRAM-NAME PIC X(8).

 ð3 PASSWORD PIC X(8).

 ð3 USER-ID PIC X(8).

 ð3 LIBRARY-NAME PIC X(8).

 ð3 FILLER PIC X(2ð).

 ð3 DATA-LENGTH PIC 9(4).

 ð3 THE-DATA PIC X(256).

 .

 .

 .

WRITE TRANSACTION-RECORD FROM DATA-RECORD,

FORMAT IS '$$EVOKNI', TERMINAL IS ICF-PGMDEV.

Figure 7-3 on page 7-4 is an example of an RPG/400 output
specification used to issue an evoke function.

Figure 7-2. Evoke Parameter List

Positions Field Description

1 through 8 The name of the program to be evoked
(left-adjusted)

9 through 16 The password you use to sign on the
remote system (left-adjusted)

17 through
24

The user identifier you use to sign on the
remote system (left-adjusted)

25 through
32

The name of the remote system library that
contains the program to be evoked (left-
adjusted)

33 through
52

Reserved

53 through
56

The length of data (program parameters)

57 through
xxxx

Program initialization parameters

 Chapter 7. Using System-Supplied Communications Formats 7-3

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS184-1

O

O

O

O

O

O

O

O

O

Figure 7-3. Evoke RPG/400 Output Specification

 Sending Data

A data record can be sent from your program to the remote
program. The following list describes each of the system-
supplied send formats that can be used to send data:

� Send ($$SENDNI) . Sends one data record to the
remote program.

� Send with Invite ($$SEND) . Sends one data record to
the remote program and issues an invite to the remote
program. Your program must use an input operation to
receive the data sent from the remote system.

� Send with Function-Management-Header
($$SENDNF). Sends a data record that includes a
function-management-header to the remote program.
Function-management-header data contains control
information that tells the remote system about the data
being sent.

� Send with Function-Management-Header and Invite
($$SENDFM). Sends a data record that includes a

function-management-header and an invite to the remote
program.

� Send with End-of-Group ($$SENDE) . Sends a data
record to the remote program and tells the remote
program that the record is the last in a group or chain of
records.

� Send with Detach ($$SENDET) . Sends a data record
to the remote program and tells the remote program that
your program is ending this communications transaction.
Communications between the two programs have ended.
Refer to “Ending a Communications Transaction” on
page 7-17 for more information on the detach function.

Note: Except for $$SENDFM and $$SENDNF, you can
specify a length of zero and perform any of the preceding
functions without sending any data.

Figure 7-4 on page 7-5 shows how to use system-supplied
formats to send data.

7-4 ICF Programming V4R1

Return Code

Communications

Support

Data Is Sent

Return Code

Return Code

Data

Source

Program

Write with

$$SENDNF

Write with

$$SENDNI

Write with

$$SENDE

Data with

End-of-Group

Indicator

Data Link

AS/400 System

ICF

Data

Management

Data

Includes

FMH

RSLS671-3

Figure 7-4. Using $$SENDNF, $$SENDNI, and $$SENDE to Send Data

.1/ Your program sends a record to the remote system
and, with the $$SENDNF communications format, indi-
cates that the first part of the data is function-
management-header data. The
function-management-header data contains information
about the user data that follows.

.2/ Your program continues sending data records to the
remote system. Your program uses the $$SENDE
communications format on the last record to indicate it
is the last in this group of records.

Each of the preceding functions requires the fields shown in
Figure 7-5 in the output buffer.

The following is an example of an ILE C write statement that
sends one data record.

struct {

 char record_length??(4??);

 char data??(8ð??);

} data_rec;

...

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$SENDNI");

/\ Set write w/no invite format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

strncpy(data_rec.record_length, "ðð8ð", 4);/\Set record length\/

_Rwrite(icffptr, &data_rec, sizeof(data_rec));/\ Do the write \/

The following is an example of a COBOL/400 WRITE state-
ment that sends one data record.
ð1 DATA-RECORD.

 ð3 RECORD-LENGTH PIC 9(4).

 ð3 THE-RECORD PIC X(256).

 .

 .

 .

WRITE TRANSACTION-RECORD FROM DATA-RECORD,

FORMAT IS '$$SENDNI', TERMINAL IS ICF-PGMDEV.

Figure 7-6 on page 7-6 is an example of an RPG/400 output
specification to send one data record.

Figure 7-5. Required Output Fields

Positions Description

1 through 4 Length of user data (in decimal)

5 through xxxx The user data to be sent

 Chapter 7. Using System-Supplied Communications Formats 7-5

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS185-1

O

O

O

O

O

O

O

Figure 7-6. Send RPG/400 Output Specification

 Receiving Data

You can use two operations to receive data: read and read-
from-invited-program-devices. In addition, you can use the
invite and timer functions to provide additional functions
when receiving data.

The read operation receives data from the program device
you specify. This operation differs from the read-from-
invited-program-devices operation, which receives data from
any program device with a previously issued invite.

 Invite

The invite function prepares your program to receive data.
You can use one of the following system-supplied formats (in
combination with other functions) to perform an invite func-
tion:

� Evoke with Invite ($$EVOK) . Starts the specified
program on the remote system and invites that program
to send data.

� Send with Invite ($$SEND) . Sends one data record to
the remote program, and issues an invite to the remote
program, asking it to send. Your program must issue an
input operation to receive the data sent from the remote
program.

� Send with Function-Management-Header and Invite
(SENDFM). Sends a data record that includes a
function-management-header to the remote program, fol-
lowed by an invite.

� Cancel with Invite ($$CANL) . Cancels the current
chain of data, then invites the remote program to send
its own data. Refer to “Problem Notification” on
page 7-8 for more information about the cancel function.

� Negative Response with Invite ($$NRSP) . Sends a
negative-response indication to the remote program, fol-
lowed by an invite. Refer to “Problem Notification” on
page 7-8 for more information about the negative-
response function.

� Request-to-Write with Invite ($$RCD) . Sends a
request-to-write indication to the remote program, fol-
lowed by an invite. Refer to “Additional System-Supplied
Formats” on page 7-13 for more information about the
request-to-write function.

Refer to “Starting a Program on the Remote System” on
page 7-1, “Problem Notification” on page 7-8, and “Addi-
tional System-Supplied Formats” on page 7-13 for informa-
tion about the output format of these functions.

Note: You can use the $$SEND communications format
with an output length of zero to issue an invite function by
itself.

The read-from-invited-program-devices operation is a com-
panion to the invite function. After issuing an invite function,
use the read-from-invited-program-devices operation to
receive data from the remote system.

Note: When a program device is invited, it is recommended
that a read-from-invited-program-devices operation be per-
formed rather than a read operation to receive data. Perfor-
mance may be degraded if your program issues multiple
read operations to invited program devices.

You do not need to issue an invite function before a read
operation to receive data. However, if an invite is out-
standing for a program device to which a read is issued, the
read completes the invite and receives the data.

Refer to Chapter 5 for additional information about the read
and read-from-invited-program-devices operations and their
relationship to the invite function.

7-6 ICF Programming V4R1

 Timer

Your program can use the timer function to set a timer before
performing a specified function, such as a read-from-invited-
program-devices operation. The timer function specifies an
interval of time (in hours, minutes, and seconds) to wait
before your program receives a timer-expired (0310) return
code.

Use the $$TIMER system-supplied format to issue the timer
function. The output field for the timer request must be in
the following format:

hhmmss

where hh is hours, mm is minutes, and ss is seconds.

The following is an ILE C example that shows how to use
$$TIMER and set the timer to 30 seconds.
_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$TIMER"); /\ Set timer format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite("ðððð3ð", 6); /\ Issue timer function \/

_Rreadindv(icffptr, &record, sizeof(record), __DFT);

/\ Issue RFI \/

/\ See if the timer ended by checking ð31ð return code \/

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == ð &&

strncmp(_Maj_Min_rc.minor_rc, "1ð", 2) == ð)

timer_exp(); /\ Timer ended, call timer_exp \/

/\ routine to handle the time out \/

The following is a COBOL/400 example that shows how to
use $$TIMER and set the timer to 30 seconds. A read-from-
invited-program-devices operation is used to receive the
data. The return code must be checked for the timer-expired
return code.
ð1 TIMER PIC X(6) VALUE 'ðððð3ð'.

 .

 .

 .

WRITE TRANSACTION-RECORD FROM TIMER,

FORMAT IS '$$TIMER', TERMINAL IS ICF-PGMDEV.

 .

 .

 .

 READ TRANSACTION-FILE,

IF RETURN-CODE EQUAL 'ð31ð',

 THEN

GO TO TIMER-EXPIRED.

Your program continues to run, and all operations and func-
tions are valid during the time interval. Your program must
issue a read-from-invited-program-devices operation some
time after it has issued the timer function, so it can accept
the timer-expired return code.

Only one time interval can be maintained for your program.
If a previous timer function has been issued and the timer
has not yet ended, the old time interval is replaced by the
new interval.

The timer function can be used to vary the maximum amount
of time that a read-from-invited-program-devices operation
will wait for a response. When the time interval set by the
TIMER keyword is in effect, the value specified for the
WAITRCD parameter on the CRTICFF command is ignored.

There is a minor difference between the functions of the
$$TIMER format and the WAITRCD parameter. When a
write operation is done using the $$TIMER format, the timer
starts immediately. The time interval is no longer in effect
when a subsequent read-from-invited-program-devices oper-
ation completes or when the end of the interval is reached.
When the WAITRCD parameter is used, the timer starts
when a read-from-invited-program-devices operation is per-
formed.

You can use the timer function to retry other operations that
may not be successful, possibly because of a temporary lack
of resources (for example, during an acquire operation). To
do this, issue the timer function, and then perform read-from-
invited-program-devices operations until the timer ends. (The
read-from-invited-program-devices operation allows the
program to continue receiving input from other invited
program devices while waiting for the timer.)

Refer to Chapter 5 for additional information on the read-
from-invited-program-devices operation and its relationship to
the timer function.

Figure 7-7 on page 7-8 is an example of using RPG/400
programming language to enter the value on the output spec-
ifications to set the timer for 30 seconds.

 Chapter 7. Using System-Supplied Communications Formats 7-7

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS191-1

O

O

O

O

O

O

O

Figure 7-7. Timer RPG/400 Output Specification

 Problem Notification

The following are the system-supplied formats that may be
used to indicate that some type of error has occurred.

 Fail

Use the fail to indicate that your program detected an
abnormal condition while sending or receiving data. Use the
$$FAIL system-supplied format to issue a fail. No data can
be sent with the fail.

Figure 7-8 on page 7-9 shows how to use the $$FAIL com-

munications format when your program is receiving data and
detects an error.

.1/ Your program is receiving data from the remote
program.

.2/ While receiving data, your program determines that it
must send a fail indication to the other program. A
write with the $$FAIL communications format is used to
send the fail indication.

.3/ A message or data is then sent (write operation) to tell
the other program why you sent the fail.

7-8 ICF Programming V4R1

Return Code

Return Code

Return Code

Return Code

Return Code

and Data

Return Code

and Data
Fail Indication
Sent to Other
Program

Data Is Received

Message Is Sent
to Remote
System

Communications
Support

Source
Program

Read-from-
Invited-
Program
Devices

Read-from-
Invited-
Program
Devices

Write with
$$SEND

Write with
$$SENDNI

Write with
$$SEND

Write with
$$FAIL

Data Link

AS/400 System

ICF
Data
Management

RSLS672-2

Figure 7-8. Using $$FAIL to Send an Error Signal

No output fields are associated with the $$FAIL communica-
tions format.

The following is an ILE C write statement example that sends
a fail indication.
_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$FAIL"); /\ Set fail format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite(icffptr, NULL, ð); /\ Send the fail \/

The following is a COBOL/400 WRITE statement example
that sends a fail indication.
WRITE TRANSACTION-RECORD,

FORMAT IS '$$FAIL', TERMINAL IS ICF-PGMDEV.

Figure 7-9 on page 7-10 is an example of an RPG/400
output specification to send a fail indication.

 Chapter 7. Using System-Supplied Communications Formats 7-9

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS186-1

O

O

O

O

O

O

O

Figure 7-9. Fail RPG/400 Output Specification

 Cancel
Use the cancel function to cancel the current chain of data
(group of records) that is being sent to the remote program.
The receiving program disregards all the records sent in the
current chain. You can use two system-supplied formats to
perform the cancel function:

� Cancel ($$CANLNI) . Cancels the current chain of data.

� Cancel with Invite ($$CANL) . Cancels the current
chain of data, and then invites the remote program to
send its own data.

Figure 7-10 shows how to use the $$CANLNI communica-
tions format when your program is sending data and detects
an error.

Cancel

Indication

Is Sent

Return Code

Return Code

Return Code

Communications

Support

Data Is Sent

Source

Program

Write with

$$SENDNI

Write with

$$SENDNI

Write with

$$SENDNI

Write with

$$CANLNI

Data Link

RSLS673-3

AS/400 System

ICF

Data

Management

Figure 7-10. Using $$CANL to Send an Error Indication

7-10 ICF Programming V4R1

.1/ Your program is sending data to the remote system.

.2/ Your program checks the data and determines that
something is wrong with it.

.3/ A write operation with the $$CANLNI communications
format is used to tell the remote system to discard the
data you have sent.

.4/ Your program can send a message indicating the
problem, send the data again, receive more data, or
end the transaction.

No output fields are associated with the $$CANLNI and
$$CANL communications formats.

The following is an ILE C write statement example that
cancels the current chain of records.

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$CANLNI");/\ Set cancel w/no invite format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite(icffptr, NULL, ð); /\ Send the cancel \/

The following is a COBOL/400 WRITE statement example
that cancels the current chain of records.
WRITE TRANSACTION-RECORD

FORMAT IS '$$CANLNI', TERMINAL IS ICF-PGMDEV.

Figure 7-11 is an example of an RPG/400 output specifica-
tion to cancel the current chain of records.

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4A N D

St
k
r

#
/F

e
tc

h
 (

F)

Be
fo

re

A
ft

e
r

Ty
p

e
 (

H
/D

/T
/E

)

Be
fo

re

A
ft

e
r

N
o

t

N
o

t

N
o

t

Ed
it

C
o

d
e

s

P
/B

/L
/R

Fo
rm

 T
yp

e

Line

Filename
or

Record Name

Space Skip Output Indicators

And And

AUTO
*

End

Position

in

Output

Record

Yes

Yes

No

No

Yes

No

Yes

No

1

2

3

4

A

B

C

D

J

K

L

M

5 - 9 =

User

Defined

Commas
Zero Balances
to Print No Sign CR _

Constant or Edit WordO R

A D D

D E L

R

Date

Graphic

Key

Page of

GX21-9090-4 UM/050*

Printed in U.S.A.

75 76 77 78 79 80

Programmer

Program Card Electro Number

1 2

Program
Identification

International Business Machines Corporation

0 1

0 2

0 3

0 4

0 5

0 6

0 7

Keying
Instruction

Field Name
or

EXCPT Name

x = Remove

Plus Sign

Y = Date

Field Edit

Z = Zero

Suppress

B/
A

/C
/1

-9
/R

O

RPG OUTPUT SPECIFICATIONS

O

O

O

O

O

O

O

RSLS187-2

Figure 7-11. Cancel RPG/400 Output Specification

 Negative-Response

Your program uses the negative-response function to indi-
cate it detected something wrong with the data it received.
You can use two system-supplied formats to issue the nega-
tive response function:

� Negative-Response ($$NRSPNI) . Sends a negative-
response indication to the remote program.

� Negative-Response with Invite ($$NRSP) . Sends a
negative-response indication to the remote program, fol-
lowed by an invite.

Your program must use an input operation to determine the
action taken by the remote program after issuing a negative
response. You can send 8 bytes of user data (sense data)
indicating the reason for the negative response with the
negative-response indication.

Figure 7-12 on page 7-12 shows how to send a negative
response with a sense code to the remote system.

 Chapter 7. Using System-Supplied Communications Formats 7-11

Return Code

Return Code

Return Code

and Data

Data Is Received

Negative

Response Is

Sent with

Sense Data

Communications

Support

Source

Program

Write with

$$NRSPNI

Data Link

AS/400 System

ICF

Data

Management

RSLS674-2

Write with

$$SEND

Read-from-

invited-

program-

devices

Figure 7-12. Using $$NRSP to Send an Error Condition

.1/ Your program finds the data it is receiving is not
correct.

.2/ The program sends a negative response, by issuing a
write with the $$NRSPNI communications format, to
the remote system including the sense data 08110000.
The negative response tells the remote system that the
data received is wrong, and the sense data 08110000
asks the remote system to cancel the current group of
data records.

The negative-response function requires the fields shown in
Figure 7-13 in the output buffer:

For more information about the allowed sense values, refer
to the appropriate communications programming book for the
communications type you are using.

The following shows an ILE C write statement that sends a
negative (−) response with invite function that includes the
sense data 08110000.
struct {

 char length;

 char data??(8??);

} neg_resp_rec = {"8", "ð811ðððð"};

...

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_RFORMAT(icffptr, "$$NRSP");/\ Set negative response format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

/\ Send negative response with sense data \/

_Rwrite(icffptr, &neg_resp_rec, sizeof(neg_resp_rec));

The following shows a COBOL/400 WRITE statement that
sends a negative response with invite function that includes
the sense data 08008000.
ð1 NEG-RESP-REC.

ð3 REC-LEN PIC X(1) VALUE '8'.

ð3 RESP-DATA PIC X(ð8) VALUE 'ð8ðð8ððð'.

 .

 .

 .

WRITE TRANSACTION-RECORD FROM NEG-RESP-REC,

FORMAT IS '$$NRSP', TERMINAL IS ICF-PGMDEV.

Figure 7-14 on page 7-13 shows the RPG/400 output spec-
ifications you can use to send a negative response that
includes the sense data 08110000.

Figure 7-13. Sense Data Format

Positions Description

1 Indicates whether sense data is being sent: 0 or
blank indicates that no sense data is being sent; 8
indicates that sense data is being sent.

2 through 9 The sense data sent with the negative response.
The first four positions of the sense data must
begin with 10xx, 08xx, or 0000. The last four posi-
tions are user-defined.

7-12 ICF Programming V4R1

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

O

O

O

O

O

O

O

Figure 7-14. Negative-Response RPG/400 Output Specifications

Additional System-Supplied Formats

You can use the following additional system-supplied formats
to perform specific tasks when communicating with the
remote system.

 Positive-Response
Use the $$POSRSP system-supplied format to send a posi-
tive response to the host system when you are using the
SNUF protocol. Using this format can increase your
application’s performance when the host is waiting for a
response. Refer to the SNA Upline Facility Programming
book for more information.

 Request-to-Write

Your program uses the request-to-write function to indicate
that it wants to send something to the remote program rather
than to continue receiving data.

Use the $$RCD system-supplied format to issue the request-
to-write function. This format issues the request-to-write with
an invite. After you issue the request-to-write, your program
must continue to receive data until it receives a return code
indicating that the remote system is ready to begin receiving
data. The request-to-write function has no additional associ-
ated parameters or data.

 Chapter 7. Using System-Supplied Communications Formats 7-13

Return Code

Return Code

Return Code

Your
Program

Data and

Return Code

Return Code

and Data

Data Is Received

Change Direction
Indication Is
Received

Communications
Support

Data Link

Request
to Write
Sent to the
Remote System

Write with
$$SEND

Read-from-
invited-
program-
devices

Read-from-
invited-
program-
devices

Write with
$$SEND

Write with
$$RCD

Write with
$$SEND

Read-from-
invited-
program-
devices

AS/400 System

ICF
Data
Management

RSLS676-2

Figure 7-15. Using $$RCD to Request Write

Figure 7-15 shows how to use the $$RCD communications
format to request permission to send.

.1/ Your program is receiving data from the remote
system. The first program processes the data
received, then receives data again.

.2/ At some time while data is being received, your
program determines that it needs to send a message
to the remote system. A write with the $$RCD commu-
nications format is used to ask the remote system to
stop sending so your program can send the message.

.3/ After issuing the request-to-write, your program must
continue receiving data until it gets a return code indi-
cating that the remote system is ready to receive. To
continue receiving, your program issues another read-
from-invited-program-devices operation.

.4/ Another invite function and another read-from-invited-
program-devices operation are issued to continue
receiving data.

.5/ When the remote system is ready to receive, it sends
one more data record with a change-direction indi-
cation. The record says the remote system is now
ready to receive data or, as in this example, a
message.

.6/ A write with the $$SEND communications format is
used to send the message to the remote system and
ask the remote system to continue sending data.

No output fields are associated with the $$RCD communica-
tions format.

When your program receives a request-to-write indication
from the remote system, a code is set in the input/output
(I/O) feedback communications-dependent section. Refer to
Figure C-5 on page C-3 for more information about where
this field is in the I/O feedback area.

The code indicates the following conditions:

7-14 ICF Programming V4R1

0 Continue sending as normal.

1 A request-to-write has been received.

For more specific information on what this code means for
the communications type you are using, refer to the appro-
priate communications programmer’s book.

The following is an example of an ILE C write statement to
request the remote system to stop sending data.

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$RCD"); /\ Set request-to-write format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite(icffptr, NULL, ð); /\ Send the request-to-write \/

The following is an example of a COBOL/400 WRITE state-
ment to request the remote system to stop sending data.
WRITE TRANSACTION-RECORD,

FORMAT IS '$$RCD', TERMINAL IS ICF-PGMDEV.

Figure 7-16 is an example of an RPG/400 output specifica-
tion to request that the remote system stop sending data.

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS190-1

O

O

O

O

O

O

O

Figure 7-16. Request-to-Write RPG/400 Output Specification

 Chapter 7. Using System-Supplied Communications Formats 7-15

Communications

Support

Data Link

Return Code

Return Code

Data

Data

Sent

No Data

yet Received

Source

Program

Write with

$$SEND

Write with

$$CNLINV

Write with

$$SENDNI

AS/400 System

ICF

Data

Management

RSLS675-2

Figure 7-17. Using $$CNLINV to Cancel an Invite

 Cancel-Invite
Your program uses the cancel-invite function to cancel any
valid invite for which no data has yet been received. Use the
$$CNLINV system-supplied format to issue the cancel-invite
function.

Figure 7-17 shows how to use the $$CNLINV communica-
tions format to issue the cancel-invite function.

.1/ Your program issues an invite to receive data from the
remote program, then continues processing.

.2/ Your program can cancel the invite issued previously
using the cancel-invite function (issuing a write opera-
tion with the $$CNLINV communications format). Your
program must check the return code it receives to
determine if the invite was canceled.

.3/ If a successful return code is received, your program
can send data.

No output fields are associated with the $$CNLINV commu-
nications format.

The following is an example of an ILE C write statement that
issues a cancel-invite function to a program device that has
not received input.
_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$CNLINV"); /\ Set cancel-invite format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite(icffptr, NULL, ð); /\ Issue the cancel-invite \/

The following is an example COBOL/400 WRITE statement
that issues a cancel-invite function to a program device that
has not received input.
WRITE TRANSACTION-RECORD

FORMAT IS '$$CNLINV', TERMINAL IS ICF-PGMDEV.

Figure 7-18 on page 7-17 is an example RPG/400 output
specification to issue a cancel-invite to a program device that
has not received input.

7-16 ICF Programming V4R1

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS189-1

O

O

O

O

O

O

O

Figure 7-18. Cancel-Invite RPG/400 Output Specifications

Ending a Communications Transaction

A communications transaction can be ended by your
program or by the program at the remote system. Your job
and the remote system your system is communicating with
determine the program that ends the transaction.

Communications with the remote program end when your
program ends the transaction. However, the session may
still exist if your program started the session. If the session
still exists, you can end the session or you may be able to
start another program at the remote system.

 Detach

Use the detach function to end the transaction. The detach
function explicitly informs the remote program that your
program is done sending, and ends the transaction.

You can use one of the following system-supplied formats to
perform a detach function (in combination with other func-
tions):

� Evoke with Detach ($$EVOKET) . Starts the specified
program on the remote system and ends the transaction
without allowing the target program to communicate in
return.

� Send with Detach ($$SENDET) . Sends a data record
to the remote program and ends the transaction. Note
that not all communications types support sending a
data record and the detach function on the same opera-
tion. Refer to the appropriate communications book to
determine if you can send data with the detach function.

You can use the $$SENDET communications format with an
output length of zero to issue a detach function by itself.

Figure 7-19 on page 7-18 shows how to use the $$SENDET
communications format to end the transaction.

 Chapter 7. Using System-Supplied Communications Formats 7-17

Return Code

Communications
Support

Detach Sent
to Remote System

Source
Program

Write with
$$SENDET

Data Link

AS/400 System

ICF
Data
Management

RSLS678-2

Figure 7-19. Ending the Communications Transaction

.1/ Your program issues the detach function, by using a
write with the $$SENDET system-supplied format, to
tell the remote system that your program ended the
communications transaction.

Refer to “Starting a Program on the Remote System” on
page 7-1 and “Sending Data” on page 7-4 for information
about the output format of these functions.

The following is an example of an ILE C write statement to
issue a detach.
struct {

 char data_length??(4??);

 char data??(8ð??);

} data_rec;

...

_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$SENDET"); /\ Set write-with-detach format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

strncpy(data_rec.data_length, "ðð8ð", 4); /\ Set record length \/

_Rwrite(icffptr, &data_rec, sizeof(data_rec));/\ Send detach \/

The following is an example of an COBOL/400 WRITE state-
ment to issue a detach.
ð1 DATA_RECORD.

 ð3 RECORD-LENGTH PIC 9(4).

 ð3 THE-RECORD PIC X(256).

 .

 .

 .

WRITE TRANSACTION-RECORD FROM DATA-RECORD,

FORMAT IS '$$SENDET', TERMINAL IS ICF-PGMDEV.

If a detach function is issued by a target program, the EOS
function is issued after the detach function has completed.

This should be done since neither the EOS, Detach, or any
other ICF function can end the session (that is, cause an
UNBIND to be sent).

Figure 7-20 on page 7-19 is an example of an RPG/400
output specification to issue a detach.

7-18 ICF Programming V4R1

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

RSLS192-1

O

O

O

O

O

O

O

Figure 7-20. Detach RPG/400 Output Specification

Ending the Communications Session

How the communications session is ended depends on
whether your program or the remote system started the
session.

If your program started the session (source program), your
program must end the session using either the release oper-
ation or the end-of-session function. You should primarily
use the release operation. Use the end-of-session function
only when you want to force the session to end.

The release operation ends the session only if all processing
is complete. The end-of-session function always ends the
session. The only possible return codes from end-of-session
are 0000 or 830B (program device not acquired).

End of Session

Use the $$EOS system-supplied format to issue the end-of-
session function. No data can be sent with the end-of-
session function. Figure 7-21 shows how you can end the
session by using the release operation and the end-of-
session function.

Return Code

Session
EndedReturn Code

Communications
Support

Communications
Link

Source
Program

Release

Write with
$$EOS

AS/400 System
ICF
Data
Management

RSLS677-2

Figure 7-21. Using the Release Operation and End-of-Session Function

 Chapter 7. Using System-Supplied Communications Formats 7-19

.1/ Your program uses the release operation to end the
current communications session.

.2/ The return code tells your program whether the session
was ended or an error occurred while trying to end the
session. If, for example, all transactions have not
ended when the release operation is issued, an error
occurs and the session is not ended.

.3/ If an error occurs and normal recovery is not possible,
your program can use the end-of-session function to
end the session.

.4/ The end-of-session function always ends the session.

If the target program ends the transaction by the detach
function, the session is ended implicitly. If the source
program ends the transaction, the target program must issue
an end-of-session function or go to the end of the job to end
the session.

No output fields are associated with the $$EOS communica-
tions format.

The following is an example of an ILE C write statement
specifying the $$EOS format.
_RFILE \icffptr; /\ Pointer to the ICF file \/

...

icffptr = _Ropen("ICFFILE","ab+ indicators=y riofb=y");

...

_Rformat(icffptr, "$$EOS"); /\ Set end-of-session format \/

_Rpgmdev(icffptr, "CM1"); /\ Set default device to CM1 \/

_Rwrite(icffptr, NULL, ð); /\ Send an end-of-session \/

The following is an example of a COBOL/400 WRITE state-
ment specifying the $$EOS format.
WRITE TRANSACTION-RECORD,

FORMAT IS '$$EOS', TERMINAL IS ICF-PGMDEV.

Figure 7-22 is an example of an RPG/400 output specifica-
tion to issue the end-of-session function using the $$EOS
format.

I n t e r n a t i o n a l B u s i n e s s M a c h i n e s C o r p o r a t i o n

O

RPG OUTPUT SPECIFICATIONS

O

O

O

O

O

O

O

Figure 7-22. End-of-Session RPG/400 Output Specification

System-Supplied Format Support

Figure 7-23 shows which system-supplied formats are supported by each communications type.

Note: APPC support applies to APPC over TCP/IP, as well.

Figure 7-23 (Page 1 of 2). System-Supplied Format Support

System-
Supplied
Format APPC SNUF BSCEL Async Intra- system Finance Retail

$$CANL X X X1 X

$$CANLNI X X X1 X

$$CNLINV X X X X X X

$$EOS X X X X X X X

$$EVOK X X X X X X

7-20 ICF Programming V4R1

Figure 7-23 (Page 2 of 2). System-Supplied Format Support

System-
Supplied
Format APPC SNUF BSCEL Async Intra- system Finance Retail

$$EVOKET X X X X X X

$$EVOKNI X X X X X X

$$FAIL X X X X X X

$$NRSP X X X X

$$NRSPNI X X X X

$$POSRSP X

$$RCD X X X X

$$SEND X X X X X X X

$$SENDE X X X X X

$$SENDET X X X X X

$$SENDFM X X X X

$$SENDNF X X X X X

$$SENDNI X X X X X X X

$$TIMER X X X X X X X

1 These keywords are not valid for the 3694 controller. Refer to the Finance Communications Programming book for more details.

Mapping System-Supplied Formats to DDS
Keywords

Figure 7-24 maps system-supplied formats to DDS
keywords.

Figure 7-24. Mapping of System-Supplied Formats to DDS
Keywords

System-Supplied
Formats

DDS Keywords

$$TIMER TIMER

Figure 7-24. Mapping of System-Supplied Formats to DDS
Keywords

System-Supplied
Formats

DDS Keywords

$$CANL CANCEL with INVITE

$$CANLNI CANCEL

$$CNLINV CNLINVITE

$$EOS EOS

$$EVOK EVOKE, SECURITY, and INVITE

$$EVOKET EVOKE, SECURITY, and DETACH

$$EVOKNI EVOKE and SECURITY

$$FAIL FAIL

$$NRSP NEGRSP with INVITE

$$NRSPNI NEGRSP

$$POSRSP RSPCONFIRM

$$RCD RQSWRT with INVITE

$$SEND INVITE

$$SENDE ENDGRP

$$SENDET DETACH

$$SENDFM FMH with INVITE

$$SENDNF FMH

$$SENDNI No DDS keywords

 Chapter 7. Using System-Supplied Communications Formats 7-21

7-22 ICF Programming V4R1

 Chapter 8. Programming Considerations

This chapter presents general communications programming
considerations related to the ICF file. Programming consid-
erations specific to a communications type are not discussed.
Refer to the appropriate communications programming book
for more information on the programming considerations for a
particular communications type.

 Return Codes

Return codes are used by the communications application
program to determine the program state. Program states are
receive, send, or exception. The program checks the return
codes and completes the action required by the contents of
the return codes.

The meaning of the major ICF return codes and some exam-
ples of minor return codes follow. These definitions help you
determine the return codes you need to check in your
program. For a complete list of return codes, see
Appendix B.

 Major Codes

All major return codes that represent normal conditions have
values 00xx, 02xx, and 03xx. Major return codes that repre-
sent input/output (I/O) exceptions have values of 04xx and
34xx. Major return codes that represent error conditions
have values 08xx, 11xx, and 80xx through 83xx. This divi-
sion lets you quickly compare codes and determine the type
of action required.

The main groups of major return codes are:

� Operation was successfully completed (00xx, 02xx).

� Successful operation. No data was received, but some
control information may have been received (03xx).

� Output exception occurred (04xx).

� Miscellaneous program errors occurred (08xx and 11xx).

� Input exception occurred (34xx).

� Irrecoverable error occurred. The session has been
ended and the underlying communications support may
no longer be active (80xx).

� Irrecoverable session error occurred. Session has been
ended but the underlying communications support is still
active (81xx).

� Open or acquire operation failed. Session was not
started but recovery might be possible (82xx).

� Session error occurred. Recovery might be possible
(83xx).

 Minor Codes

The minor part of a return code identifies the specific condi-
tion within the general condition that is identified by the major
part of the code. Some examples of the minor codes are:

� A detach was received (xx08), a detach was received
with a system message (xx18), or a detach was received
with a confirm (xx1C).

� An invalid evoke function was issued (xx29).

ICF Environment Considerations

You must understand the following considerations before you
write programs for ICF communications:

� Your program should check the major/minor return code
after every operation to determine the success or failure
of the operation.

� Information in the open and I/O feedback areas can be
useful to your program. Refer to Chapter 5 for informa-
tion about these areas and Appendix C for a summary
of the fields available in these areas.

� A target program can communicate with the source
program by acquiring the program device whose remote
location name is *REQUESTER.

� If a target program never acquires a program device for
the requesting program device, a diagnostic message is
written to the job log when the target job completes.
The message indicates that the program ended with an
active connection to the session. The message is
normal if there is no need for the target program to com-
municate with the source program. If the target program
must communicate with the source program, this
message indicates a possible logic problem in your
program.

� For most communications types, the first I/O operation
following the acquire by the source program must
include an evoke function. This operation starts the
target program on the remote system with which the
source program is to communicate. You can start the
target program with program initialization parameters
specified as part of the evoke function.

� When a single program is written to function as either a
source or a target program, the program may need to
determine its role (source or target). A suggested
method of making this analysis for a program is to define
a CALL parameter that contains one value when the
program is started by the remote system and another
value when the program is started by the local user or
program.

� A target program cannot start error recovery. If a per-
manent session error occurs, the target program should
finish any needed processing and end the program. The

 Copyright IBM Corp. 1997 8-1

source program is responsible for reestablishing the
session and transaction. See Appendix B for more
information about communications error recovery.

Open or Acquire Considerations

The following open or acquire considerations apply when you
write programs for ICF communications:

� If an ICF file open is a subsequent open of a shared file,
the program is attached to the already open file. The
state and attributes of the file do not change. Refer to
the Data Management book for more information on
shared file processing.

� Your program can establish more than one session.
These sessions can be to the same remote system (if
the remote system supports multiple sessions) or to dif-
ferent remote systems. The program device names are
used to distinguish between sessions within your
program.

� A program device can either be acquired automatically
when the ICF file is opened (ACQPGMDEV = program
device) or explicitly with the acquire operation. Only one
program device can be acquired as part of the open
operation. If a program is using multiple sessions, all of
the program devices, except the first one, must be
explicitly acquired.

Note: With a FORTRAN/400 program, a separate ICF
file must be used for each ICF session. FORTRAN/400
programs can implicitly acquire a program device only
when the ICF file is opened (ACQPGMDEV = program
device).

� If a target program acquires a program device other than
a program device associated with a remote location with
the name of *REQUESTER, a new session is allocated
and a logical link to the source program is not estab-
lished. No error is indicated because a target program
on one session can also be a source program on
another session.

 Output Considerations

The following output considerations apply when you write
programs for ICF communications:

� Your program should check the major/minor return code
after every output operation to determine if the remote
system wants to send data. You can also use a field in
the I/O feedback to determine this information. See
Appendix C for a summary chart of the I/O feedback
area.

� When the program is communicating with multiple ses-
sions, the appropriate program device name must be
specified on the write statement in the control area
(depending on the language used) before issuing the
output operation. Refer to examples in Chapter 9
through Chapter 11.

� The output length of the operation is determined by the
specified record format. If you use user-defined formats,
the record format length, as determined by the record
definition in data description specifications (DDS), is the
output length. You can vary this output length at run
time by using the VARLEN DDS keyword. If you use
system-supplied formats and data is allowed as part of
the function, the output length is specified as part of the
record format.

� If an output operation is issued with a zero record
length, ICF assumes that the needed functions are only
the functions indicated by the operation specified, and
the data is not placed in the output buffer. For example,
if a zero-length write operation is issued with a user-
defined format with the INVITE keyword in effect, the
program device is invited, but no data is sent to the
remote system.

� Multiple output operations can be done with a single
write operation. For example, if a write operation is
issued with a user-defined format with the FMH and
INVITE keywords in effect, or with the system-supplied
$$SENDFM format, data is sent to the remote system
with FMH information and the program device is invited.
Refer to Chapter 6 to determine the processing
sequence of the DDS keywords.

� If your program issues an output operation with an
output length greater than the length supported for the
session, the operation completes with an 831F return
code. The maximum output length supported is deter-
mined by the communications type you are using, the
record length specified in configuration, or the record
length specified on the Add Intersystem Communications
Function Device Entry (ADDICFDEVE) or Override Inter-
system Communications Function Device Entry
(OVRICFDEVE) command.

� If your program issues an output operation while a
session is in receive state, the operation may complete
with an output exception (a major/minor return code of
0412). If the operation completes with an output excep-
tion, the data is not sent to the remote system. Your
program must issue an input operation to receive the
data or system message that is pending.

� If your program issues an output operation to an invited
program device and the communications type you are
using supports the cancel-invite function, ICF tries to
cancel the invite. If the invite cannot be canceled, the
output operation completes with a 0412 return code.

� When your program is reading data from a local source,
such as a database file, it may not determine until the
next read that it has just read the last record in the file.
If this is the case and your program uses a specific indi-
cation, such as the end-of-group or detach function, to
inform the remote system when the end-of-file indication
is reached, then you must ensure that this end-of-file
indication is sent with a zero-length record format. If
not, then any data in the output buffer from a previous

8-2 ICF Programming V4R1

operation is sent to the remote system as user data (for
example, the last record may be sent twice).

 Input Considerations

The following input considerations apply when you write pro-
grams for ICF communications:

� Your program must examine the major/minor return code
to determine if the input operation completed with data.
A major code of 00 indicates data reception. A major
code of 02 indicates that data was received, but the job
is being canceled. A major code of 03 indicates that no
data was received. Refer to Appendix B for a complete
summary of major/minor return codes.

� When the program is communicating with multiple ses-
sions, the appropriate program device name must be
specified on the read statement in the control area
(depending on the language used) before issuing the
input operation. Refer to examples in Chapter 9 through
Chapter 11.

� The input length of the operation is determined by the
specified record format. If you use user-defined formats,
the record format length, as determined by the record
definition in DDS, is the input length. If you use the
system-supplied QICDMF file, the input length is always
4096.

� When the actual length of the data received is less than
the input length, the system pads the remainder of the
record with blanks (except for basic conversations in
APPC). A field in the I/O feedback area indicates the
actual length of the data received from the remote
system. Refer to Appendix C for a summary chart of
the I/O feedback area.

� For most communication types, when your program
issues an input operation that completes with a return
code of 0000 or 0300:

– The operation is successful.
– Your program controls the session and can send

data.

When the operation completes with a return code of
0001 or 0301:

– The operation is successful.
– The remote program controls the session and your

program should continue issuing input operations.

� Response indicators (RCVTRNRND, RCVDETACH,
RCVCONFIRM, RCVNEGRSP, RCVCANCEL,
RCVFMH, RCVFAIL, and RCVENDGRP) can be
received either with data or without data (indicators
only). Your program must examine the major/minor
return code to determine if the record contains data.

� For most communications types, if an input operation is
issued before an evoke is sent or after a detach function
is sent or received, the operation completes with a 8327
return code.

� When processing input data, consideration should be
given to detecting invalid data within a numeric field.
The program can detect invalid data by verifying numeric
field contents through program logic, or by permitting the
system to detect a decimal-data error when the field is
used in an arithmetic operation within the program.

The format selection processing used (as determined by
the FMTSLT parameter on the ADDICFDEVE or
OVRICFDEVE command) determines how the record
format name is selected to process incoming data.

If the FMTSLT(*RECID) option is used, ICF returns the
record format based on the data received from the
remote system. Therefore, the proper record (the one
that matches the data received) will be selected.

If the layout of the record format is described within the
program, the program logic determines the placement
and types of fields within the record. The program is
responsible for processing the data according to a spe-
cific record type.

Release, End-of-Session, and Close
Considerations

The following release, end-of-session, and close consider-
ations apply when you write programs for ICF
communications:

 Release Considerations

The following are release operation considerations for ICF
programs:

� If a target program issues a release operation, the
logical connection between the current program and the
communications session is ended. The communications
session remains intact, and can, by using an acquire
operation, be used again in the same job. The session
state will be the same as it was when it was released.

� If a source program issues a release operation, the state
of the operation is verified, and the release request can
be rejected. If the program device is invited, the release
operation is rejected with an 832C return code.

If the release operation is successful, the communica-
tions session ends.

Note: The FORTRAN/400 language does not support a
release operation. Instead, an end-of-session function
or a close operation must be issued. Refer to “End-of-
Session Considerations” and to “Close Considerations”
for more information.

 Chapter 8. Programming Considerations 8-3

 End-of-Session Considerations

The following are end-of-session function considerations for
ICF programs:

� An end-of-session function is always successful if a
session exists. The system ends the communications
session regardless of the state of the session.

� If a target program issues an end-of-session function,
the session is ended and cannot be reestablished with
an acquire operation.

� A session remains allocated to the target program until
an end-of-session function is performed or until the job
ends.

� An end-of-session function issued to an unacquired
device results in an 830B return code.

� For conversations started using EVOKE with
SYNLVL(\COMMIT) specified:

– If EOS is issued after a TAKE_COMMIT_ indication has
been received by the transaction program (TP),
resynchronization processing is performed.

– In all other cases, the EOS causes the logical unit
of work (LUW) to be put into rollback required state.
The TP must perform a rollback operation before
working with any other resources involved in that
LUW.

 Close Considerations

The following are close operation considerations for ICF pro-
grams:

� If a close operation is issued to a shared file, the
program issuing the close cannot do I/O operations to
the file, but other programs that have the file open can
still use the file. Refer to the Data Management book for
more information on shared file processing.

� When a close operation is issued to an ICF file, all ses-
sions associated with a source program for the specified
file are ended regardless of the state of the session.
Depending on the communications type, any buffered
data may or may not be sent to the remote system.

� If a session is associated with a requesting program
device, the logical connection between the current
program and the communications session is ended. The
communications session remains intact, and can, by
using an acquire operation, be used again in the same
job. The session remains intact. The state of the
session remains the same when the program device is
acquired again.

� Any active transactions associated with the file may be
abnormally ended.

� Protected conversations are conversations that use
two-phase commit protocols. Protected conversations
must commit the current logical unit of work before they
can end normally. If an end-of-session function is
issued before the logical unit of work is committed,
APPC rolls back the logical unit of work.

� Application programs using protected conversations
should detach the conversation before ending the
session. The DETACH keyword issued with the
TNSSYNLVL keyword and followed by a commit opera-
tion causes the system to commit all changes in the
current logical unit of work and end the conversations.
Ignoring this advice and issuing a write with EOS when
there are still active protected conversations causes
APPC to do the following.

– Issue a DEALLOCATE_ABEND on those conversa-
tions.

– Roll back the current logical unit of work.

Two-Phase Commit Considerations
The following should be considered when programming for
two-phase commit.

 Committing Resources

Your program requests that protected resources are com-
mitted by using the commit operation or the PRPCMT func-
tion.

Your program is notified that it has received a commit
request from the remote program in the following ways:

� A major return code of 02 or 03 with minor return codes
of 57, 58, or 59.

� The RCVTKCMT response indicator is set. The
RCVTRNRND and RCVDETACH response indicators
may also be set.

When your program receives a commit request, it must
respond positively or negatively to the request as follows:

� To respond positively, do a commit operation.

� To respond negatively to the request, do one of the fol-
lowing:

– Do a rollback operation.

– Issue a fail function. This causes the logical unit of
work to be rolled back if the partner issued a
commit operation. Otherwise, if the partner issued a
prepare-for-commit function, your program can
attempt error recovery.

– Abnormally end the transaction and session by
issuing either an end-of-session function or a close
operation.

8-4 ICF Programming V4R1

Rolling Back Resources

Your program requests that protected resources are rolled
back by using the rollback operation.

Your program is notified that it has received a rollback
request from the remote program or that rollback is required
because of an error on the conversation in the following
ways.

� One of the following return codes is received.

 – 0054
 – 0254

– 80F9, 80FA, 80FB
– 81F0, 81F1, 81F2, 81F3, 81F4, 81F5
– 83FB, 83FC, 83FD, 83FE, 83FF

� The RCVROLLB response indicator is set.

When your program receives a rollback request, it must
respond with a rollback operation.

Exchanging Log Names

APPC uses a mechanism called exchange log name to
negotiate the exact two-phase commit capabilities used for a
protected conversation. The two systems at each end of the
conversation exchange information about their level of two-
phase commit support. Together, they decide which func-
tions to use.

Exchange log name processing is performed when the
system attempts to evoke its first protected conversation after
communications have been established between the two
systems. (The active session count between the two
systems goes from 0 to 1.) The evoke is pended until the
exchange log name processing has completed successfully.

Exchange log name processing brings up its own session to
do the negotiation. You need to configure the mode
description with one extra session that the system can use
for exchange log name processing.

 Performance

The following are performance considerations for two-phase
commit processing.

� The first protected conversation evoke between two
systems takes longer to complete because of the
exchange log name processing that takes place between
the systems.

� The user may experience slower response times due to
the two-phase commit processing needed to process the
commit and rollback operations. Commit and rollback
operations are done for each transaction program in the
two-phase commit transaction.

� The bigger the two-phase commit transaction and the
greater the number of commits issued for each trans-
action, the slower the response time.

� If data integrity is critical to your application, you should
use two-phase commit processing. The extra pro-
cessing that is done to ensure data integrity slows the
performance of applications that use two-phase commit
processing.

Remote Program Start Considerations

Program start requests that are received from a remote
system result in an attempt to start the job. The program
specified by the program start request runs within a routing
step of the job. All jobs on the AS/400 system operate in an
environment called a subsystem.

In order to receive program start requests from a remote
system and to start a job to run the program specified on the
program start request, a subsystem must be defined on the
AS/400 system. You can define a new subsystem, or
change an IBM-supplied subsystem such as QBASE or
QCMN, to receive and process program start requests.

Refer to the Work Management book for more information
about QBASE and QCMN.

Defining the Environment

Subsystem descriptions are created using the Create Sub-
system Description (CRTSBSD) command. The CRTSBSD
command is described in the Work Management book.

The AS/400 system considers a communications device to
be another source of work for a subsystem. Therefore, you
must define a communications entry in the subsystem
description to identify the communications devices and
remote locations for which work (program start requests) can
be received by the subsystem. Default communications
entries are shipped with the system. However, you can
change these entries with the following commands:

� Add Communications Entry (ADDCMNE)
� Remove Communications Entry (RMVCMNE)
� Change Communications Entry (CHGCMNE)

You can specify a default user on the communications entry
for a subsystem description on the DFTUSR parameter on
the ADDCMNE command or CHGCMNE command. Refer to
the CL Reference book for more information on the use of
these commands.

Use the Add Routing Entry (ADDRTGE) command to define
the routing information for remotely started jobs. You can
specify that the program identified in the program start
request be used. Or, you can define routing entries that
select the program based on the device description name,
mode name, or user profile name. Refer to the Work Man-
agement book for more information on the use of this
command.

 Chapter 8. Programming Considerations 8-5

Handling Program Start Requests

When a subsystem receives a program start request from a
remote system, it locates a user profile for the job based on
one of the following:

� The user ID from the program start request (if one was
specified)

� The user ID from the DFTUSR parameter of the
ADDCMNE command

If the user ID is not passed as part of the program start
request (for example, *NONE specified on the SECURITY
keyword), the system checks the communications entry in
the subsystem handling the program start request to see if it
allows a default user. If the entry is not found, the program
start request is rejected with a security violation error.

The user profile contains the authorization to the objects and
functions the job can reference.

The subsystem also locates a job description for the job.
The job description defines job attributes, such as the job
output queue and the first library list made. You can specify
a job description on the ADDCMNE command or in the user
profile.

The program name and the library name are passed as part
of the program start request. This information is used along
with the subsystem description routing entries to start a
routing step and to select the program that starts running on
the routing step.

If a program start request is received on the AS/400 system
with an unqualified program name, the system uses the
library list for the subsystem handling the program start
request. The library list for the subsystem consists of the
values from the QSYSLIBL and QUSRLIBL system values at
the time the subsystem was started.

If a program start request is received on the AS/400 system
with a qualified program name, the acceptable format varies
by communication type. Most communication types (for
example, asynchronous, BSCEL, and SNUF) separate the
library and program as part of the program start request.
Intrasystem communications allows the program name to be
in the form library/program. APPC accepts either
library/program or the architected form program.library.

Note: Program and library names on the AS/400 system
are limited to 10 characters. If you are using BSCEL to start
a remote program, the program and library name is limited to
8 characters.

The subsystem searches its routing table to determine the
name of the program to be run in the job’s routing step. In
an interactive or batch environment, the routing data normally
selects the program QSYS/QCMD, which processes control

language (CL) commands. However, QCMD does not
process data received with program start requests, and
should not be selected as a communications target program.
For remotely started jobs, the program to be run is commonly
specified on the program start request from the remote
system.

The subsystem also uses the routing entry to select a class
for the job. The job class defines operation attributes, such
as operation priority and time slice.

The system sends message CPF1269 to the QSYSOPR
message queue if it is unable to start the requested program.
The information in the message can help determine and
correct the cause of the problem when working with the
remote system programmer. Refer to Appendix B for addi-
tional information on the message generated for failed
program start requests.

When the communications target job is started and the target
program begins running, the target job can access any
parameters specified on the evoke request as if they were
parameters passed on a Call a Program (CALL) command.
The target job communicates with the source program by
opening an ICF file, acquiring the requesting program device,
and issuing I/O requests to read and write data.

If program initialization parameters are passed on an evoke
function or program start request, the following points should
be noted:

� If multiple program initialization parameters are passed,
the system uses commas to separate these parameters.
Therefore, do not include commas in your program
initialization parameter data.

� If you specify program initialization parameters with the
evoke function, each parameter that is sent should be
equal in length to the corresponding parameter specified
in the target program. If it is longer than the parameter
length in the target program, truncation occurs. If it is
shorter than the parameter length in the target program,
results may occur that cannot be predicted.

The target job runs as a normal batch job, and is subject to
all job control commands, such as Display Job (DSPJOB),
Work Job (WRKJOB), and End Job (ENDJOB). The job can
be transferred using the Transfer Job (TFRJOB) command,
but not the Transfer Batch Job (TFRBCHJOB) command.

Once the transaction ends (when a detach is successfully
sent or received), the target program can no longer commu-
nicate with the source program. For most communications
types, if the program is started with an evoke-with-detach
function and you do an acquire operation to the requesting
program device, the acquire fails with a 82A9 return code.

Figure 8-1 on page 8-7 shows a sample ICF communica-
tions environment.

8-6 ICF Programming V4R1

Chicago DEV=CHICAGO

CMPVAL=PGMEVOKE 29

CLASS=QGPL/ICFCLASS

Subsystem Description QGPL/QBATCH

Communications Entry

Determines

Routing Entry

User Profile Class QGPL/ICFCLASS

Job Description

QGPL/ICFJOBD

Routing

Step

Job

Attributes

Job

Attributes

Execution

Attributes

Authority
QGPL/ICFPGM

J O B D =

QGPL/ICFJOBD

Execution

Attributes

JOBD=*USRPRF

PGM=*RTGDTA

EVOKE(QGPL/ICFPGM)

SECURITY(3 *USER)

RSLS666-2

Figure 8-1. Sample ICF Communications Environment

 Chapter 8. Programming Considerations 8-7

Refer to the Work Management book for more information on
job structures and job processing.

Prestarting Jobs for Program Start
Requests

To minimize the time required to carry out a program start
request, you can use the prestart job entry to start a job on
the AS/400 system before the remote program sends a
program start request. Because a job is already started and
running before the program start request is received,
improved program response time results.

You can use prestart jobs for all communications types that
support program start request processing: APPC, asynchro-
nous, BSCEL, intrasystem, finance, retail, and SNUF com-
munications.

To use prestart jobs, you must define a prestart job entry and
a communications entry in the subsystem description. Each
prestart job entry contains a program name, library name,
user profile, and other attributes, which the subsystem uses
to create and manage a pool of prestart jobs.

Both the communications and prestart job entries must be
specified in the same subsystem. If a program start request
is received on a subsystem that does not have a prestart job
entry with the matching program name, the usual processing
required to start a communications batch job occurs when
the program start request is received. The subsystem
attempts to allocate the communications devices that are
identified by the communications entries. When a program
start request is received, it is sent to the subsystem that has
the required communications device allocated. For more
information about adding, changing, and removing commu-
nications entries in subsystem descriptions, refer to the Com-
munications Management book.

When a subsystem is initially started, prestart jobs are
started based on the information contained in the prestart job
entries. Each prestart job entry identifies the program that is
to be started, the number of jobs that need to be started with
the program, and the user profile under which the jobs will
run when it is not servicing a program start request.
However, when a program start request is received, the sub-
system determines if the program name sent on the program
start request matches the program name on one of the pre-
start job entries. If so, the subsystem ensures that the
program start request user ID and password are valid and
that the user is authorized to use the device and the library
and program. The program start request is then attached to
a prestart job. The prestart job runs under the user profile
specified on the program start request while it is servicing
that request.

Protected conversations must commit the current logical unit
of work before they can end normally. If an end-of-session
function is issued before the logical unit of work is com-
mitted, APPC rolls back the logical unit of work.

Application programs using protected conversations should
detach the conversation before ending the session. The
DETACH keyword issued with the TNSSYNLVL keyword and
followed by a commit operation causes the system to commit
all changes in the current logical unit of work and end the
conversations. Ignoring this advice and issuing a write with
EOS when there are still active protected conversations
causes APPC to do the following.

� Issue a DEALLOCATE_ABEND on those conversations.
� Roll back the current logical unit of work.

 Commands

Prestart jobs can start at the same time the subsystem is
started, or you can use the Start Prestart Jobs (STRPJ)
command to start jobs for a prestart job entry in an active
subsystem.

The Change Prestart Job (CHGPJ) command allows you to
change some of the attributes for a prestart job based on
either the attributes of the job description for a prestart job
entry or the attributes of the job description defined in the
user profile of a program start request.

The End Prestart Job (ENDPJ) command allows you to end
all jobs for a prestart job entry in an active subsystem.

The following commands should be used when working with
prestart job entries in the subsystem description:

� The Add Prestart Job Entry (ADDPJE) command adds a
prestart job entry to the specified subsystem description.

� The Change Prestart Job Entry (CHGPJE) command
changes a prestart job entry in the specified subsystem
description.

� The Remove Prestart Job Entry (RMVPJE) command
removes a prestart job entry from the specified sub-
system description.

� The Display Active Prestart Jobs (DSPACTPJ) command
displays the run time statistics and performance informa-
tion for prestart jobs associated with a prestart job entry
in an active subsystem.

For more information about the parameters and attributes
associated with these commands, refer to the CL Reference
book.

 Application Considerations

Certain programming changes need to be made to the pre-
start job program to allow it to be started by and communi-
cate with the remote program. The following points must be
taken into account when writing prestart job applications:

� A prestart job program should do as much work as pos-
sible, for example, allocating objects and opening data-
base files, before attempting to acquire a requesting
program device. Once a prestart job is started, this
initial processing is done before the acquire of a
requesting program device. The acquire operation

8-8 ICF Programming V4R1

causes the job to wait until a program start request is
received. When a program start request is received, the
program then continues with the acquire operation.

� When a prestart job program is done servicing a
program start request, it must do an end-of-session func-
tion followed by the acquire of a requesting program
device. This is the only way the prestart job makes itself
available for the next program start request. If a release
operation is performed instead of an end-of-session
function, the acquire of the requesting program device
does not cause the program to wait, and the program
device continues to run on the current session.

� Because a job is already started and running before a
program start request with program initialization parame-
ters is received, the subsystem stores these parameters
in the program initialization parameter data area for the
prestart job to which the program start request attaches.
After the acquire of the requesting program device, you
must use the Retrieve Data Area (RTVDTAARA)
command (specifying *PDA as the data area) or the high
level language Retrieve Data Area operation (for
example, COBOL ACCEPT) to retrieve the program
initialization parameters (if any) passed on the program
start request.

Note: A maximum length of 2000 bytes is allowed for
program initialization parameters passed on a program
start request for a prestart job.

� Only resources that are used specifically for a trans-
action should be deallocated. Any resource that is com-
monly used for most transactions performed by the
prestart job program should remain allocated while the
job is waiting for the next request to be received.

� When a program start request attaches to a prestart job,
none of the attributes associated with the user profile on
the program start request are used. To change the attri-
butes for a job to those of the job description on the user
profile specified on the program start request, use the
CHGPJ command.

� Your application should check for an 8209 return code
after completion of the acquire to the requesting program
device to determine if the prestarted job is being can-
celed.

See Figure 8-2 on page 8-10 for a sample prestart job
program. For information about sharing database files in the
same job and across jobs, see the DB2 for AS/400 Database
Programming book.

Security Considerations for Prestart Jobs

When a prestart job is initially started, authority checking for
a prestart job entry user profile is performed on every object
that is needed to run the job. When a program start request
attaches to a prestart job, however, it runs under the user
profile specified on the program start request. Before a
program start request is allowed to attach to a prestart job,
only the program start request user ID and password and its
authority to the communications device, library, and program
are checked. To avoid cases where the program start
request user profile is not authorized to objects to which the
prestart job entry user profile is authorized, you should
ensure that the user profile specified on the program start
request is authorized to at least as many objects as that on
the prestart job entry.

To accomplish this, you can do one of the following:

� Create your prestart job program when you are running
under the prestart job entry user profile, and specify the
value *OWNER for the user profile when you create your
prestart jobs program. In other words, for the ILE C, ILE
COBOL, or ILE RPG programming language, specify
USRPRF(*OWNER) on the CRTPGM, CRTSRVPGM,
CRTBNDC, CRTBNDRPG, or CRTBNDCBL command.
For the COBOL/400 or RPG/400 programming language,
specify USRPRF(*OWNER) on the CRTRPGPGM or
CRTCBLPGM command.

� Explicitly check for object authorization (using the Check
Object (CHKOBJ) command) before you change or
access any objects.

Files and objects to which a prestart job entry user profile is
not authorized should be deallocated before you end your
transaction.

Prestart Jobs Program

Figure 8-2 on page 8-10 is a COBOL/400 prestart jobs
program that can be used to handle program start requests.
The initial processing, for example, opening the ICF file and
printer file, is done first before the acquire of a requesting
program device. The acquire operation then causes the pre-
start job program to wait for a program start request. After
acquiring the requesting program device, an accept is done
to retrieve the program initialization parameters, and a CL
program is called to change some of the job attributes based
on the program start request user profile (using the CHGPJ
command). After the main body of the program is done pro-
cessing, the communications session is ended, and the
program loops back to the acquire operation and waits for
the next program start request to be received.

 Chapter 8. Programming Considerations 8-9

 Program : PJPGM

Library : QNETUSER

 Source file : QCBLSRC

Library : QNETUSER

 Source member : PJPGM ð3/ð8/9ð 13:ð4:36

 Generation severity level : 29

 Text 'description' : COBOL program for prestart job example in C.P.G.

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ðððð1ð IDENTIFICATION DIVISION.

 2 ðððð3ð PROGRAM-ID. PJPGM. ð3/ð7/9ð

 ðððð5ð\\ ð3/ð7/9ð

ðððð6ð\ THIS IS A PRESTART JOB TARGET PROGRAM \ ð3/ð7/9ð

ðððð7ð\ THIS PROGRAM WILL LOOP FOREVER \ ð3/ð7/9ð

 ððð18ð\\ ð3/ð7/9ð

3 ððð2ðð ENVIRONMENT DIVISION.

4 ððð22ð CONFIGURATION SECTION.

5 ððð24ð SOURCE-COMPUTER. IBM-AS4ðð. ð3/ð7/9ð

6 ððð25ð OBJECT-COMPUTER. IBM-AS4ðð. ð3/ð7/9ð

7 ððð26ð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK

8 ððð27ð OPEN-FEEDBACK IS OPEN-FBA ð3/ð8/9ð

9 ððð271 PIP-DATA IS PIP-PARM. ð3/ð8/9ð

 ððð28ð

1ð ððð29ð INPUT-OUTPUT SECTION.

 11 ððð31ð FILE-CONTROL.

 ððð311\\ ð3/ð7/9ð

ððð312\ F I L E S P E C I F I C A T I O N S \ ð3/ð7/9ð

ððð313\ ICFFILE : ICF FILE \ ð3/ð7/9ð

ððð314\ QSYSPRT : PRINTER FILE \ ð3/ð7/9ð

 ððð315\\ ð3/ð7/9ð

12 ððð33ð SELECT ICFFILE ASSIGN TO WORKSTATION-PJDDS-SI ð3/ð7/9ð

13 ððð34ð ORGANIZATION IS TRANSACTION

14 ððð36ð FILE STATUS IS STATUS-IND MAJ-MIN.

15 ððð37ð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. ð3/ð7/9ð

Figure 8-2 (Part 1 of 3). COBOL/400 Coding for a Prestart Job Program

8-10 ICF Programming V4R1

16 ððð42ð DATA DIVISION.

17 ððð44ð FILE SECTION.

 18 ððð5ðð FD ICFFILE ð3/ð7/9ð

19 ððð51ð LABEL RECORDS ARE STANDARD.

 2ð ððð52ð ð1 ICFREC. ð3/ð7/9ð

21 ððð53ð COPY DDS-ALL-FORMATS-I-O OF PJDDS. ð3/ð7/9ð

22 +ððððð1 ð5 PJDDS-RECORD PIC X(41ð1). <-ALL-FMTS

+ððððð2\ I-O FORMAT:INPFMT FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 23 +ððððð4 ð5 INPFMT REDEFINES PJDDS-RECORD. <-ALL-FMTS

 24 +ððððð5 ð6 INPDATA PIC X(4ð96). <-ALL-FMTS

+ððððð6\ I-O FORMAT:DETACH FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 +ððððð8\ ð5 DETACH REDEFINES PJDDS-RECORD. <-ALL-FMTS

+ððððð9\ I-O FORMAT:EOS FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ðððð1ð\ <-ALL-FMTS

 +ðððð11\ ð5 EOS REDEFINES PJDDS-RECORD. <-ALL-FMTS

+ðððð12\ I-O FORMAT:INVITE FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ðððð13\ <-ALL-FMTS

 +ðððð14\ ð5 INVITE REDEFINES PJDDS-RECORD. <-ALL-FMTS

+ðððð15\ I-O FORMAT:FAIL FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ðððð16\ <-ALL-FMTS

 +ðððð17\ ð5 FAIL REDEFINES PJDDS-RECORD. <-ALL-FMTS

+ðððð18\ I-O FORMAT:IOFMT FROM FILE PJDDS OF LIBRARY QNETUSER <-ALL-FMTS

 +ðððð19\ <-ALL-FMTS

 25 +ðððð2ð ð5 IOFMT REDEFINES PJDDS-RECORD. <-ALL-FMTS

 26 +ðððð21 ð6 IODATA PIC X(4ð96). <-ALL-FMTS

 27 +ðððð22 ð6 OUTLEN PIC S9(5). <-ALL-FMTS

 28 ððð59ð FD QPRINT ð3/ð7/9ð

29 ððð6ðð LABEL RECORDS ARE OMITTED. ð3/ð7/9ð

 3ð ððð61ð ð1 PRINTREC. ð3/ð7/9ð

 31 ððð62ð ð5 PRTNOTE PIC X(132). ð3/ð7/9ð

32 ððð64ð WORKING-STORAGE SECTION.

33 ððð66ð 77 STATUS-IND PIC X(2). ð3/ð7/9ð

34 ððð661 77 PIP PIC X(6). ð3/ð8/9ð

35 ððð662 ð1 MAJ-MIN. ð3/ð7/9ð

 36 ððð663 ð5 MAJ PIC X(2). ð3/ð7/9ð

 37 ððð664 ð5 MIN PIC X(2). ð3/ð7/9ð

38 ððð84ð ð1 IO-FEEDBACK. ð3/ð7/9ð

 39 ððð85ð ð5 FILLER PIC X(149). ð3/ð7/9ð

4ð ððð86ð ð5 ACTUAL-LEN PIC 9(5) COMP-4. ð3/ð7/9ð

 ððð87ð\ ð3/ð7/9ð

41 ðð1ð9ð PROCEDURE DIVISION. ð3/ð8/9ð

 ðð1ð91 ð3/ð8/9ð

 ðð11ð1\ ð3/ð7/9ð

 ðð145ð START-PROGRAM-PARAGRAPH.

 ðð1451\\ ð3/ð7/9ð

ðð1452\ OPEN ICF FILE AND PRINTER FILE \ ð3/ð7/9ð

 ðð1454\\ ð3/ð7/9ð

42 ðð147ð OPEN OUTPUT QPRINT. ð3/ð7/9ð

 43 ðð1471 OPEN I-O ICFFILE. ð3/ð7/9ð

 ðð148ð MAIN-LOOP. ð3/ð7/9ð

44 ðð1481 MOVE "WAITING FOR TRANSACTION" TO PRTNOTE. ð3/ð7/9ð

 45 ðð1482 WRITE PRINTREC. ð3/ð7/9ð

 ðð1483\\ ð3/ð7/9ð

ðð1484\ ACQUIRING THE REQUESTER PROGRAM DEVICE CAUSES THIS PRESTART \ ð3/ð7/9ð

ðð1485\ JOB PROGRAM TO WAIT FOR A PROGRAM START REQUEST. \ ð3/ð7/9ð

 ðð1486\\ ð3/ð7/9ð

46 ðð159ð ACQUIRE "REQDEVICE " FOR ICFFILE. ð3/ð7/9ð

 ðð1591\\ ð3/ð7/9ð

ðð1592\ IF THIS PRESTART JOB IS BEING ENDED WITH THE CONTROLLED OPTION, \ ð3/ð7/9ð

ðð1593\ PERFORM END-OF-JOB PROCESSING AND EXIT. \ ð3/ð7/9ð

 ðð1594\\ ð3/ð7/9ð

47 ðð16ðð IF MAJ-MIN = "82ð9" GO TO END-JOB. ð3/ð7/9ð

49 ðð161ð MOVE "TRANSACTION ATTACHED" TO PRTNOTE. ð3/ð7/9ð

 5ð ðð162ð WRITE PRINTREC. ð3/ð7/9ð

 ðð1621\\ ð3/ð7/9ð

ðð1622\ CALL A CL PROGRAM TO USE SOME JOB ATTRIBUTES FROM THE PROGRAM \ ð3/ð7/9ð

ðð1624\ START REQUEST USER PROFILE (CHGPJ). \ ð3/ð7/9ð

 ðð1625\\ ð3/ð7/9ð

 51 ðð163ð CALL "CLPGM". ð3/ð7/9ð

Figure 8-2 (Part 2 of 3). COBOL/400 Coding for a Prestart Job Program

 Chapter 8. Programming Considerations 8-11

 ðð1631\\ ð3/ð8/9ð

ðð1632\ MOVE THE PIP DATA FROM THE PIP DATA AREA INTO IDENTIFIER PIP. \ ð3/ð8/9ð

 ðð1634\\ ð3/ð8/9ð

52 ðð1635 ACCEPT PIP FROM PIP-PARM END-ACCEPT. ð3/ð8/9ð

 ðð1636\\ ð3/ð7/9ð

ðð1637\ MAIN BODY OF THE PROGRAM, THAT DOES THE COMMUNICATIONS I/O \ ð3/ð7/9ð

ðð1638\ WITH THE SOURCE PROGRAM, SHOULD BE PLACED HERE. \ ð3/ð7/9ð

 ðð1639\\ ð3/ð7/9ð

 ðð164ð\\ ð3/ð7/9ð

ðð1641\ WHEN THE MAIN BODY OF THE PROGRAM IS DONE PROCESSING, END \ ð3/ð7/9ð

ðð1642\ THE COMMUNICATIONS SESSION AND LOOP BACK TO WAIT FOR THE NEXT \ ð3/ð7/9ð

ðð1643\ PROGRAM START REQUEST TO COME IN. \ ð3/ð7/9ð

 ðð1644\\ ð3/ð7/9ð

53 ðð1645 WRITE ICFREC FORMAT IS "EOS". ð3/ð8/9ð

54 ðð165ð GO TO MAIN-LOOP. ð3/ð7/9ð

 ðð166ð END-JOB. ð3/ð7/9ð

55 ðð167ð MOVE "PRESTART JOB BEING ENDED CONTROLLED" TO PRTNOTE. ð3/ð7/9ð

 56 ðð168ð WRITE PRINTREC. ð3/ð7/9ð

 57 ðð169ð CLOSE ICFFILE. ð3/ð7/9ð

 58 ðð1691 CLOSE QPRINT. ð3/ð7/9ð

 59 ðð1692 STOP RUN. ð3/ð7/9ð

 ðð1693 MAIN-EXIT. ð3/ð7/9ð

 ðð17ðð EXIT. ð3/ð7/9ð

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 21 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð53ð

Message : No INPUT fields found for format DETACH.

\ 21 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð53ð

Message : No INPUT fields found for format EOS.

\ 21 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð53ð

Message : No INPUT fields found for format INVITE.

\ 21 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ððð53ð

Message : No INPUT fields found for format FAIL.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

4 ð 4 ð ð ð

 Source records read : 97

 Copy records read : 22

 Copy members processed : 1

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program PJPGM created in library QNETUSER.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 8-2 (Part 3 of 3). COBOL/400 Coding for a Prestart Job Program

 System Considerations

The specification of the PURGE parameter on the Create
Class (CRTCLS) command for the routing entry used for
communications can affect communications performance.
The PURGE parameter controls the way the job’s operating
resources are used when the job enters a wait state. If
PURGE(*YES) is specified, the job’s operating resources are
exchanged to auxiliary storage when the job enters a wait
state. If PURGE(*NO) is specified, the job’s operating
resources are not exchanged to auxiliary storage when the
job enters a wait state.

For communications, PURGE(*YES) is normally used for
interactive applications because the application is normally
waiting for a response from a work station operator. The
wait delay time can be long enough for another job to do
useful processing with the resources. PURGE(*NO) is
normally used for batch applications when the AS/400
system is sending data to or receiving data from another
computer and the wait delay will be nominal.

For a complete description of these parameters or the
CRTCLS command, see the Work Management book.

 Security Considerations

The security provided on the AS/400 system is used to
control who can use a communications device description
and its associated commands.

When a program issues an evoke to a remote AS/400
system, you must ensure that proper security information is
passed on the evoke request. See Chapter 6 and
Chapter 7 for a discussion on how to specify the security
information on the evoke.

Although the security officer or service user has all object
authority, explicit authorization to a target communications
device description must be made. For example, if the secu-
rity officer or service user has not been explicitly granted
authority to the target device description, the program start

8-12 ICF Programming V4R1

request is rejected by the target system. This aspect of
system security is consistent with the work station security
implementation for the security officer and service user pro-
files. Anyone with object management authority for a device
description can grant authority for the device description to
the security officer or service user. If the security officer or
service user creates a device description, the security officer
or service user (like anyone else who creates device
descriptions) is explicitly authorized to the device description.
When a communications device description is authorized to
all users (*ALL), the security officer and service user are not
included. This allows the security officer or service user to
specify the device description from which the security officer
or service functions can be performed.

Refer to the appropriate communications programming book
for more information about security considerations.

 File Considerations

You should consider the following when deciding whether to
use the system-supplied QICDMF file in your program:

� System-supplied formats can be used either with the
system-supplied QICDMF file or with an ICF file made
using DDS processing keywords and the CRTICFF
command.

� User-defined formats cannot be added to the QICDMF
file. Therefore, if your program uses the QICDMF file, it
cannot use DDS processing keywords or externally
described data.

� If your program uses an ICF file created using DDS and
the CRTICFF command, your program can use both the

record formats defined as part of your ICF file and
system-supplied formats. The high-level language you
are using may have some restrictions on mixing system-
supplied formats and user-defined formats.

 File Redirection

You can override ICF files by using the override with file
commands.

When you change the file used in a program without
changing the file type, the new file being used in the program
is processed in the same manner as the original file. The
format levels in the file must agree with the compiled
program if level checking is done. If level checking is not
done, the format of the changed-to file must be compatible
with the compiled program or the results cannot be predicted.

If you change from one file type to another, the file-
dependent characteristics of the file are ignored and certain
defaults are used.

For a complete description of file redirection and the defaults
used, see the Data Management book.

 Additional Considerations

When using a particular communications type, you must be
familiar with the requirements and restrictions unique to that
communications type. For specific details, refer to the appro-
priate programming book for the communications type you
are using.

 Chapter 8. Programming Considerations 8-13

8-14 ICF Programming V4R1

Chapter 9. ILE C Communications Applications

Previous chapters in this book describe the functions pro-
vided by ICF. This chapter introduces you to the ILE C inter-
face for ICF and provides program examples.

One program example is presented in this chapter, and both
the source and target programs are provided. The example
is a multiple-session inquiry application using one display file
and four ICF sessions, and is written using user-defined
formats (data description specifications or DDS).

Not all programming considerations or techniques are illus-
trated in the examples in this chapter. Review these exam-
ples and the examples provided in the appropriate
programming book before beginning application design and
coding.

Note: The examples in this chapter were written to the
APPC communications type. Minor changes might be
required if another communications type is used.

Introduction to the ILE C Interface

Before you write an ILE C communications application, you
must understand the high-level language interface provided
by ILE C programming language.

The operations you use in the communications portion of
your program are similar to work station operations. In the
noncommunications portion of your program, you can use all
noncommunications operations you normally use to process
data that is sent or received between your program and the
remote program.

Figure 9-1 briefly introduces the ILE C functions you use in
the communications portion of your program.

Note: ILE C functions are case sensitive.

Refer to the ILE C/400 Programmer’s Guide for details on
the syntax and function of each operation.

Figure 9-1. ILE C Function

ICF Operation ILE C Function Function

Open fopen, _Ropen Opens the ICF file

Acquire _Racquire Establishes a session

Get-Attributes _Rdevatr Gets the attributes of a session

Read fread, _Rreadn Receives data from a specific program device

Read-from-
invited-
program-
devices

_Rreadindv Receives data from any invited program device1

Write fwrite, _Rwrite Performs many of the ICF communications functions within a session

Write/Read _Rwriterd Performs the specified function and then receives data from the remote system.

Release _Rrelease Releases the session

Close fclose, _Rclose Closes the ICF file

1 The read-from-invited-program-devices operation could complete without data if the timer interval established with either the timer function
or WAITRCD ends, or your job is ended (controlled).

 Multiple-Session Inquiry

This example illustrates an interactive inquiry application that
communicates with multiple ICF sessions. A source AS/400
system program accepts inquiries from a display device and
sends a request to one of four AS/400 systems. The source
program communicates with the display device through a
display file, and with the four remote systems through a
single ICF file.

The purpose of this example is to show multiple sessions
from a single ICF file. The source program communicates
with four sessions. From the viewpoint of each of the four
target programs, there is only one session (with the
requesting program device). Therefore, the target programs

do not require any unique logic to support the multiple-
session source.

Both the source program and the target program are
described. The same target program is evoked in each of
the four separate remote systems. Therefore, only one
target program is shown in the programming example.

 Error Handling

ILE C programming language provides an external variable,
Maj_Min_rc, in the header file <stdio.h>, which contains the
ICF major and minor codes after a read or write operation.
The major and minor codes can also be obtained from the
I/O feedback area.

 Copyright IBM Corp. 1997 9-1

A global variable, ERRNO, is defined in the header file
<errno.h>. Two ERRNO values indicate that an exception
has occurred:

EIOERROR
An I/O error has occurred that is not recoverable.

EIORECERR
A recoverable I/O error has occurred.

Accessing the Feedback Areas

Your program can obtain a copy of the open feedback area
by using the _Ropnfbk routine. The _Riofbk routine can be
used to obtain a copy of the I/O feedback area.

9-2 ICF Programming V4R1

Transaction Flow of the Multiple-Session Inquiry:
The program shown in Figure 9-2 is started from a display
station, and both the display and the ICF file are opened.
CIWS00 is the *REQUESTER device, acquired when the
display file opens. CIWS00 is acquired because
DEV(*REQUESTER) was specified when the display file was
created. Since the ICF file was created with
ACQPGMDEV(*NONE), no ICF program devices are
acquired during open processing.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Open

Open

Display
Station

RSLS199-4

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 9-2. Program Starts at Display Station

 Chapter 9. ILE C Communications Applications 9-3

All other program devices are explicitly acquired by the
program, as shown in Figure 9-3.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ACQ

ACQ

ACQ

ACQ

Display
Station

ICF File

Local AS/400 System

RSLS651-4

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 9-3. Program Devices Explicitly Acquired

9-4 ICF Programming V4R1

All target programs are started with the evoke, as shown in
Figure 9-4.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Write

Write

Write

Write

Evoke

Evoke

Evoke

Evoke

Display
Station

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database
File

Database
File

Database
File

Database
File

Program

Program

Program

Program

ICF
File

ICF
File

ICF
File

ICF
File

RSLS652-4

Figure 9-4. Evoke Starts Target Programs

 Chapter 9. ILE C Communications Applications 9-5

The source program uses a specific program device name.
Each target program uses an ICF file with a program device
name that is associated with the requesting program device.
The target program’s only session is the one used to com-
municate with the source program. The ICF file on the
remote system must be opened by the ILE C language

support using the open operation, and the requesting
program device is acquired when the file is opened using the
acquire operation. The main menu is written to the display
station on the local system, and the program waits for a
request from the display station, as shown in Figure 9-5.

Program

Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Display

Station

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS653-5

Figure 9-5. Main Menu Written to Display Station

9-6 ICF Programming V4R1

The source program sends an inquiry request to one of the
remote systems based on the request made from the display
station, as shown in Figure 9-6.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program
Write

with

Invite

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Read

Display

Station

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS654-4

Figure 9-6. Program Sends Inquiry Request to Remote System

 Chapter 9. ILE C Communications Applications 9-7

The target program responds to the inquiry by sending a
reply, as shown in Figure 9-7.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ReadRead

Display
Station

Program

Program

Program

Program

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

RSLS655-4

Database
File

Database
File

Database
File

Database
File

Figure 9-7. Target Program Sends a Reply

9-8 ICF Programming V4R1

The program sends a detach request and ends the session
when function key 1 is pressed (while the main inquiry menu
is present), as shown in Figure 9-8.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Write

CIWS00

ICF00

ICF01

ICF02

ICF03

Detach Read

Display File

Display
Station

Program

Database
File

Database
File

Database
File

Database
File

Program

Program

Program

Program

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

RSLS656-5

Figure 9-8. Program Ends the Session

 Chapter 9. ILE C Communications Applications 9-9

Source Program Multiple-Session Inquiry

The following describes an ILE C source program multiple-
session inquiry.

Program Files: The ILE C multiple session source
program uses the following files:

CMNFIL
An ICF file used to send records to and receive
records from the target program.

DSPFIL
A display file used to enter requests that are to be
sent to the target program.

QSYSPRT
A printer file used to print error messages resulting
from communications errors.

DDS Source: The DDS for the ICF file (CMNFIL) is illus-
trated below.
 A\\

 A\ \

 A\ ICF FILE \

A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

 A R ITMRSP

 A RECID(1 'I')

 A RECITM 1

 A ITEMNO 6 ð

 A DESC 3ð

 A QTYLST 7 ð

 A QTYOH 7 ð

 A QTYOO 7 ð

 A QTYBO 7 ð

 A UNITQ 2

 A PRð1 7 2

 A PRð5 7 ð

 A UFRT 5 2

 A SLSTM 9 2

 A SLSTY 11 2

 A CSTTM 9 2

 A CSTTY 11 2

A PRO 5 2

A LOS 9 2

 A FILL1 56

 A R DTLRSP

 A RECID(1 'C')

 A RECCUS 1

 A CUSTNO 6 ð

 A DNAME 3ð

 A DLSTOR 6 ð

 A DSLSTM 9 ð

 A DSPMð1 9 ð

 A DSPMð2 9 ð

 A DSPMð3 9 ð

 A DSTTYD 11 ð

 A IDEPT 3 ð

 A FILL2 57

 A R DETACH

 A DETACH

 A R EOS

 A EOS

 A R EVKREQ

 A EVOKE(CICFLIB/CTGTDMULCL)

A SECURITY(2 \USER 3 \USER)

 A R ITMREQ

 A INVITE

 A ITEMNO 6 ð

 A R DTLREQ

 A INVITE

 A CUSTNO 6 ð

The DDS for the display file (DSPFIL) is illustrated below.

 A\\

 A\ \

 A\ DISPLAY FILE \

A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \

 A\ \

 A\\

 A\ BEGINNING MENU

 A\\\\\\\\\\\\\\\\\\\\

 A INDARA

 A DSPSIZ(\DS3)

A CFð1(99) CFð2(98) CFð3(97)

A R CIMENU TEXT('MENU FOR INQUIRY')

A 1 34'INQUIRY MENU'

A 3 1'Select one of the following:'

A 4 3'1. Item inquiry'

A 5 3'2. Customer inquiry'

 A 11 1'Option:'

 A OPTION 1N I 11 9VALUES('1' '2')

A 19 5DFT('CMD KEY 1 - END ')

A R DTLMNU TEXT('CUSTOMER INQUIRY SCREEN 1')

 A 2 2DFT('ENTER CUSTOMER')

 A CUSTNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ CUSTOMER INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R DTLSCR TEXT('CUSTOMER INQUIRY SCR. #2')

A 1 3DFT('CUST DPT LAST ORD & THIS +

 A $MTH1 &MTH2 $MTH3 THIS+

 A YTD NAME')

 A CUSTN 6N 2 2

 A DEPT 3N ð 2 9

 A DLSTR 6N ð 2 13

 A DSLSM 9N ð 2 22

 A DSPM1 9N ð 2 32

 A DSPM2 9N ð 2 42

 A DSPM3 9N ð 2 52

 A DSTYD 11N ð 2 62

 A CNAME 3ð 2 74

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\

 A\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM INQUIRY SCREEN

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMMNU TEXT('ITEM INQUIRY SCREEN ONE')

A 2 2DFT('ENTER ITEM NUMBER')

 A ITEMNO 6N ðI 2 2ð

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ ITEM DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC2 TEXT('ITEM INQUIRY SCREEN TWO') OVE+

 A RLAY

 A 4 2DFT('DESC-')

 A DSC 3ð 4 8

 A 5 2DFT('QUANTITY AVAILABLE')

 A QAVAIL 7N ð 5 25

A 6 11DFT('ON HAND')

 A QTYH 7N ð 6 25

A 7 11DFT('ON ORDER')

 A QTYO 7N ð 7 25

A 8 11DFT('BACK ORDER')

 A QTYB 7N ð 8 25

A 9 2DFT('UNIT OF MEASURE')

A UNT 2 9 3ð

A 1ð 2DFT('PRICE PER UNIT')

A PR1 7Y 2 1ð 24EDTCDE(3)

 A 11 8DFT('QUANTITY')

A PR5 7Y ð 11 25EDTCDE(3)

 A 12 8DFT('FREIGHT')

A UFR 5Y 2 12 26EDTCDE(3)

A 13 32DFT('MORE... ')

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

A 19 4ðDFT(' 3 - ITEM MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A\ ITEM ADDITIONAL DISPLAY

 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A R ITMSC3 TEXT('ITEM INQUIRY SCREEN 3 ') OVE+

 A RLAY

 A 5 2DFT('SALES MONTH')

 A SLSM 9Y 2 5 16EDTCDE(1)

 A 6 8DFT('Y-T-D')

 A SLSY 11Y 2 6 14EDTCDE(1)

 A 7 2DFT('COSTS MONTH')

 A CSTM 9Y 2 7 16EDTCDE(1)

 A 8 8DFT('Y-T-D')

 A CSTY 11Y 2 8 14EDTCDE(1)

 A 9 2DFT('PROFIT PCT')

 A PROFIT 5Y 2 9 22EDTCDE(1)

 A 1ð 2DFT('LOST SALES')

 A LOSTS 11Y 2 1ð 14EDTCDE(1)

A 19 5DFT('CMD KEY 1 - END ')

A 19 23DFT(' 2 - MAIN MENU ')

 A\\\\\\\\\\\\\\\\\\\\\\\\

 A\ TIMOUT SCREEN.

 A\\\\\\\\\\\\\\\\\\\\\\\\

A R TIMOUT TEXT('TIME OUT SCREEN') OVE+

 A RLAY

A 2ð 2DFT('REMOTE SYSTEM TIMED OUT. ENTER+

A 1 TO TRY AGAIN OR 2 TO END.')

A TIMRSP 1 I 2ð 61

9-10 ICF Programming V4R1

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(CICFLIB/CMNFIL) SRCFILE(CICFLIB/QICFPUB)

SRCMBR(CMNFIL) ACQPGMDEV(\NONE) MAXPGMDEV(4)

WAITRCD(3ð) TEXT("SOURCE ICF FILE FOR MULTIPLE

 SESSION PROGRAM")

The commands needed to define the four program device
entries are:
OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(CHICAGO) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð1) RMTLOCNAME(NEWYORK) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð2) RMTLOCNAME(DETROIT) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð3) RMTLOCNAME(MADISON) FMTSLT(\RECID)

Program Explanation: The following explains the structure
of the program example illustrated in Figure 9-9 on
page 9-13. The ICF file used is defined by the user, and
uses externally described data formats (DDS). The refer-
ence numbers in the explanation below correspond to the
numbers in the following program example.

.1/ External file descriptions are included for the display
file (DSPFIL).

DSPFIL is the display file used to receive user’s
requests and to report the information received based
on the request. DSPFIL is implemented with the file-
level keyword, INDARA, indicating a separate indicator
area is used.

.2/ External file descriptions are included for the ICF file
(CMNFIL).

CMNFIL is the ICF file used to send records to and
receive records from each of the four target programs.
CMNFIL is implemented with the file-level keyword,
INDARA, indicating a separate indicator area is used.

.3/ This structure is used to print the major or minor return
code to the printer file QSYSPRT. Output to
QSYSPRT is by record, so the filler field is used to
blank out characters that may have been set by a pre-
vious write to the printer file. See section .25/.

.4/ The variables to be used globally by the program are
defined here. The common and display/ICF feedback
area pointers, the file pointers, and the display file sep-
arate indicator area are defined.

.5/ The routines, except the main routine, are prototyped
so the compiler knows the type of value returned and
the type of parameters passed, if any.

.6/ The ICF and display files are opened for record
input/output, and the printer file is opened for output.
The ICF and display files are opened with the separate
indicator area option specified.

.7/ The separate indicator area is initialized and defined.
The variable dsp_indic is a character array of size 99.

.8/ The four program devices used by the program are
explicitly acquired.

The device for the work station is implicitly acquired
when the DSPFIL file is opened.

.9/ The program devices are specified before calling the
evoke function four times to start transactions with the
target program.

.1ð/ The main menu is displayed, and the user is asked to
type a 1 to process a request for item information, or a
2 to process a request for customer information.

If CMD 1 is pressed, indicator 99 is set by the system,
a detach is sent to the remote program, the sessions
are released, the files are closed, and the program
ends. The separate indicator area array must be ini-
tialized to character zeros before each input operation
where indicators are checked.

.11/ This function evokes the target program. If an error
occurs, the program is ended.

When the program start request is received at the
remote system, CICFLIB is searched for
CTGTDMULCL and that program then starts.
CTGTDMULCL is a CL program that contains the fol-
lowing statements:

ADDLIBLE CICFLIB

CALL CICFLIB/CTGTDMUL

.12/ This procedure displays the item number inquiry
display, and reads input from the user. If CMD 1 is
pressed, the end-program flag is set, and the program
ends on return to the main section of the program
(main). If CMD 2 is pressed, control goes back to the
main menu and a new main menu is displayed.

If a valid number was entered, then a function to send
the item number to the remote program is called and, if
no errors were encountered, a function is called to
issue a read to the ICF file to get the item information.

.13/ This function selects the proper program device to use
to send the item number to the target program and
issues a write with an invite to the ICF file. ICF01 is
used for numbers less than 400000, ICF02 for
numbers greater than 400000 and less than 700000,
and ICF03 for larger numbers. The number is copied
from a display file structure to an ICF file structure, and
then it is sent to the other program. The value
returned from checking the return code (0 for 0000
return code, 1 for all other return codes) is returned to
the caller.

.14/ This function gets called to receive item information
from the target program after the user has specified a
valid item number and that number has been sent to
the target program.

The read is a read-from-invited-devices operation. The
item number was previously sent with an invite.

A check is made to see if the remote system has timed
out. (The wait time was specified on the CRTICFF
command). A 0310 return code means a time-out has
occurred after a read-from-invited-devices operation
was issued. If a time-out did occur, a message is
written to the display asking the user to try again (by
typing 1) or to end the program (by typing 2). This

 Chapter 9. ILE C Communications Applications 9-11

function gets called again if the user types 1. If 2 is
entered, control returns to .1ð/ and the end-program
flag is set.

If no data is received and the return code is 03XX, the
request is sent again.

If the data returns in the wrong format, an error indi-
cation is returned to .1ð/.

The target program may not have found the record cor-
responding to the item number sent, in which case
000000 would be returned from the target as the item
number. If 000000 was received, then control goes to
.12/ to read another number from the display.

The record received from the remote system is copied
into the record used to print the information on the
display, and then the information is written to the
display using format ITMSC2.

If CMD 1 is pressed from this display, the end-program
flag is set causing the program to end on return to the
main section of the program (main). If CMD 2 is
pressed, the main menu is written to the display. If
CMD 3 is pressed, the item inquiry menu is written to
the display. By pressing the Enter key, the profit and
loss figures are calculated and written to the work
station.

.15/ This procedure converts some of the values from char-
acter strings to integers, so that profit and loss figures
may be calculated. The integers must then be con-
verted back to character strings to conform with the
character data types in the ICF file.

.16/ This procedure processes customer information
requests, and is much like .12/. The customer inquiry
display is displayed, indicators are checked, and func-
tions are called to handle the sending and receiving of
data.

.17/ This function sends the customer number to the remote
system with an invite. Program device ICF00 is used
for processing customer information.

.18/ This function receives information about a customer
from the remote system and is structured like .14/.
The major difference between this routine and the one
in .14/ is that if the record format is valid, a check for
a 000000 customer number received from the remote
system is made before any other checks. If the target
program cannot find the record corresponding to the
item or customer number, the record ID field is set to
‘I’, since the record ID does not exist.

.19/ This function calls a procedure (section .26/) to access
the display/ICF feedback area. It then checks for a 00
major return code, which indicates that the previous I/O
operation was successful.

.2ð/ This function calls a procedure (section .26/) to access
the display/ICF feedback area. It then checks for a 03
major return code, which indicates that data was not
received.

.21/ This function calls a procedure (section .26/) to access
the display/ICF feedback area. It then checks for a
0310 return code, which indicates that the timer interval
has ended.

.22/ This procedure issues a detach function to each of the
program devices that were acquired, indicating to the
remote systems that this program is about to end.

.23/ This procedure releases the sessions that were
acquired, and then calls another procedure to close the
files.

.24/ This procedure closes the ICF, display, and printer
files.

.25/ This procedure retrieves the return code to be printed
from the display/ICF feedback area, and then prints the
appropriate message to the printer file.

.26/ This procedure accesses the common I/O feedback
area and the display/ICF feedback area. The pointers
must be reset after each I/O operation, after which
information is to be retrieved from the feedback areas.
Therefore, this procedure is called before any checking
of return codes is done.

9-12 ICF Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program name : CSRCDMUL

Library name : CICFLIB

 Source file : QICFPUB

Library name : CICFLIB

 Source member name : CSRCDMUL

 Text Description : Source C program for ICF Prog

 Compiler options : \SOURCE \NOXREF \NOSHOWUSR \NOSHOWSYS \NOSHOWSKP \NOEXPMAC \NOAGR

: \NOPPONLY \NODEBUG \GEN \NOSECLVL \PRINT \LOGMSG

 Language level options : \EXTENDED

 Source margins:

Left margin : 1

Right margin : 32767

 Sequence columns:

Left Column :

Right Column :

 Define name :

 Generation options : \NOLIST \NOXREF \GEN \NOATR \NODUMP \NOOPTIMIZE \NOALWBND

 : \NOANNO

 Print file : QSYSPRT

Library name : \LIBL

 Message flagging level : ð

 Compiler message:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace program object : \YES

 User profile : \USER

 Authority : \CHANGE

 Target Release : \CURRENT

 Last change : 9ð/ð8/2ð 18:18:16

 Source description : Source C program for ICF Prog

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 |.1/ |

1 |#pragma mapinc("dspf", "cicflib/dspfil(\all)", "both", "p z") | 1

 2 |#include "dspf" | 2

 |.2/ |

3 |#pragma mapinc("icff/itmrsp", "cicflib/cmnfil(itmrsp)", "input", "p z") | 3

4 |#pragma mapinc("icff/dtlrsp", "cicflib/cmnfil(dtlrsp)", "input", "p z") | 4

5 |#pragma mapinc("icff/itmreq", "cicflib/cmnfil(itmreq)", "output", "p z") | 5

6 |#pragma mapinc("icff/dtlreq", "cicflib/cmnfil(dtlreq)", "output", "p z") | 6

 7 |#include "icff/itmrsp" | 7

 8 |#include "icff/dtlrsp" | 8

 9 |#include "icff/itmreq" | 9

 1ð |#include "icff/dtlreq" | 1ð

 11 |/\--\/ | 11

12 |/\ This program assigns four sessions as follows: \/ | 12

13 |/\ 'ICFðð' to inquire about a customer account before an order is \/ | 13

 14 |/\ processed. \/ | 14

15 |/\ 'ICFð1' to inquire about the inventory status of an item being \/ | 15

16 |/\ ordered (item ððððð1 thru 399999). \/ | 16

17 |/\ 'ICFð2' to inquire about the inventory status of an item being \/ | 17

18 |/\ ordered (item 4ððððð thru 699999). \/ | 18

19 |/\ 'ICFð3' to inquire about the inventory status of an item being \/ | 19

2ð |/\ ordered (item 7ððððð thru 999999). \/ | 2ð

21 |/\ A display device is used to enter the request (using a customer \/ | 21

22 |/\ and an item menu) that is sent to the remote system. \/ | 22

 23 |/\--\/ | 23

Figure 9-9 (Part 1 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-13

 24 | | 24

25 |#define ON 1 | 25

26 |#define OFF ð | 26

27 |#define ION '1' /\ Indicator is set on \/ | 27

28 |#define IOFF 'ð' | 28

29 |#define ERROR 1 /\ Error occurred \/ | 29

3ð |#define NOERROR ð | 3ð

31 |#define NORM_END 1 /\ Print normal end message \/ | 31

32 |#define RCD_ERR 2 /\ Print wrong record error msg \/ | 32

33 |#define ERR_END 3 /\ Print generic error message \/ | 33

34 |#include <stdio.h> /\ Standard I/O header \/ | 34

35 |#include <recio.h> /\ Record I/O header \/ | 35

36 |#include <stdlib.h> /\ General utilities \/ | 36

37 |#include <stddef.h> /\ Standard definitions \/ | 37

38 |#include <string.h> /\ String handling utilities \/ | 38

39 |#include <xxfdbk.h> /\ Feedback area structures \/ | 39

 4ð | | 4ð

41 |#include <xxcvt.h> /\ EPM conversion routines \/ | 41

 42 | | 42

 43 |CICFLIB_DSPFIL_CIMENU_both_t cimenu_dsp_i; | 43

 44 |CICFLIB_DSPFIL_DTLMNU_both_t dtlmnu_dsp_i; | 44

 45 |CICFLIB_DSPFIL_DTLSCR_both_t dtlscr_dsp_o; | 45

 46 |CICFLIB_DSPFIL_ITMMNU_both_t itmmnu_dsp_i; | 46

 47 |CICFLIB_DSPFIL_ITMSC2_both_t itmsc2_dsp_o; | 47

 48 |CICFLIB_DSPFIL_ITMSC3_both_t itmsc3_dsp_o; | 48

 49 |CICFLIB_DSPFIL_TIMOUT_both_t timout_dsp_i_o; | 49

 5ð | | 5ð

 51 |CICFLIB_CMNFIL_ITMRSP_i_t itmrsp_icf_i; | 51

 52 |CICFLIB_CMNFIL_DTLRSP_i_t dtlrsp_icf_i; | 52

 53 |CICFLIB_CMNFIL_ITMREQ_o_t itmreq_icf_o; | 53

 54 |CICFLIB_CMNFIL_DTLREQ_o_t dtlreq_icf_o; | 54

 55 |.3/ | 55

 56 |/\--\/ | 56

57 |/\ Define structure used to write to the print file. \/ | 57

 58 |/\--\/ | 58

 59 | | 59

 6ð |struct { | 6ð

 61 | char major??(2??); | 61

 62 | char minor??(2??); | 62

63 | char filler??(32??); /\ Used for padding with blanks \/ | 63

 64 |} print_rec; | 64

 65 |.4/ | 65

 66 |/\--\/ | 66

67 |/\ Declare global variables. \/ | 67

 68 |/\--\/ | 68

 69 | | 69

7ð |_RFILE \icffptr; /\ Ptr to ICF file \/ | 7ð

71 |_RFILE \dspfptr; /\ Ptr to display file \/ | 71

72 |_RFILE \prtfptr; /\ Ptr to print file \/ | 72

73 |_XXIOFB_T \comm_fdbk; /\ Ptr to common I/O feedback \/ | 73

74 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ Ptr to dsp/ICF I/O feedback \/ | 74

75 |char dsp_indic??(99??); /\ Display separate indic area \/ | 75

 76 |.5/ | 76

 77 |int evoke_target(void); | 77

78 |void process_item_req(int \); | 78

 79 |int send_item_req(void); | 79

8ð |int rec_item_info(int \); | 8ð

 81 |void calc_profit_loss(void); | 81

82 |void process_cust_req(int \); | 82

 83 |int send_cust_req(void); | 83

84 |int rec_cust_info(int \); | 84

 85 |int pos_ret_code(void); | 85

 86 |int pos_ret_code(void); | 86

 87 |int check_no_data(void); | 87

 88 |int check_timeout(void); | 88

 89 |void detach(void); | 89

 9ð |void end_job(void); | 9ð

 91 |void close_files(void); | 91

 92 |void print_msg(int); | 92

 93 |void get_access_to_fb(void); | 93

Figure 9-9 (Part 2 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

9-14 ICF Programming V4R1

 94 | | 94

 95 |main() | 95

 96 |{ | 96

97 | int end_pgm_flag = OFF; /\ Signals program end request \/ | 97

 98 |.6/ | 98

 99 | /\---\/ | 99

1ðð | /\ Open ICF, display, and printer files. If an error occurs,\/ | 1ðð

1ð1 | /\ the program will end. \/ | 1ð1

 1ð2 | /\---\/ | 1ð2

 1ð3 | | 1ð3

1ð4 | if ((icffptr = _Ropen("CICFLIB/CMNFIL", "ar+ indicators=y riofb=y")) | 1ð4

 1ð5 1 | == NULL) | 1ð5

 1ð6 2 | exit(ERROR); | 1ð6

1ð7 | if ((dspfptr = _Ropen("CICFLIB/DSPFIL", "ar+ indicators=y riofb=y")) | 1ð7

1ð8 3 | == NULL) { | 1ð8

 1ð9 4 | _Rclose(icffptr); | 1ð9

 11ð 5 | exit(ERROR); | 11ð

 111 | } | 111

112 6 | if ((prtfptr = _Ropen("CICFLIB/QSYSPRT", "wr")) == NULL) { | 112

 113 7 | _Rclose(icffptr); | 113

 114 8 | _Rclose(dspfptr); | 114

 115 9 | exit(ERROR); | 115

 116 | } | 116

 117 |.7/ | 117

 118 | /\---\/ | 118

119 | /\ Set up separate indicator area for the display file. \/ | 119

 12ð | /\---\/ | 12ð

 121 | | 121

122 1ð | memset(dsp_indic, IOFF, 99); | 122

 123 11 | _Rindara(dspfptr, dsp_indic); | 123

 124 |.8/ | 124

 125 | /\---\/ | 125

126 | /\ Explicitly acquire four sessions. If an error occurs on \/ | 126

127 | /\ any of the acquire operations then the ICF and display \/ | 127

128 | /\ files will be closed, an error message will be printed, \/ | 128

129 | /\ and the program will end. \/ | 129

 13ð | /\---\/ | 13ð

 131 | | 131

 132 12 | _Racquire(icffptr, "ICFðð"); | 132

133 13 | if (pos_ret_code() == ERROR) { | 133

 134 14 | close_files(); | 134

 135 15 | exit(ERROR); | 135

 136 | } | 136

 137 16 | _Racquire(icffptr, "ICFð1"); | 137

138 17 | if (pos_ret_code() == ERROR) { | 138

 139 18 | close_files(); | 139

 14ð 19 | exit(ERROR); | 14ð

 141 | } | 141

 142 2ð | _Racquire(icffptr, "ICFð2"); | 142

143 21 | if (pos_ret_code() == ERROR) { | 143

 144 22 | close_files(); | 144

 145 23 | exit(ERROR); | 145

 146 | } | 146

 147 24 | _Racquire(icffptr, "ICFð3"); | 147

148 25 | if (pos_ret_code() == ERROR) { | 148

 149 26 | close_files(); | 149

 15ð 27 | exit(ERROR); | 15ð

 151 | } | 151

 152 |.9/ | 152

Figure 9-9 (Part 3 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-15

 153 | /\---\/ | 153

154 | /\ Evoke the target four times. If an error occurs on any of \/ | 154

155 | /\ the evoke operations then detach, release, and close \/ | 155

156 | /\ operations will be issued, an error message printed, and \/ | 156

157 | /\ the program will end. \/ | 157

 158 | /\---\/ | 158

 159 | | 159

 16ð 28 | _Rpgmdev(icffptr, "ICFðð"); | 16ð

161 29 | if (evoke_target() == ERROR) | 161

 162 3ð | exit(ERROR); | 162

 163 31 | _Rpgmdev(icffptr, "ICFð1"); | 163

164 32 | if (evoke_target() == ERROR) | 164

 165 33 | exit(ERROR); | 165

 166 34 | _Rpgmdev(icffptr, "ICFð2"); | 166

167 35 | if (evoke_target() == ERROR) | 167

 168 36 | exit(ERROR); | 168

 169 37 | _Rpgmdev(icffptr, "ICFð3"); | 169

17ð 38 | if (evoke_target() == ERROR) | 17ð

 171 39 | exit(ERROR); | 171

 172 |.1ð/ | 172

 173 | /\---\/ | 173

174 | /\ Put out the main menu to the display, and depending on \/ | 174

175 | /\ the input, either request item information or customer \/ | 175

176 | /\ information from remote system. If CMD 1 (indicator 99) \/ | 176

177 | /\ is pressed on any screen, the program ends. If the user \/ | 177

178 | /\ picks option 1, an item inquiry is processed, and if the \/ | 178

179 | /\ user picks option 2 a customer inquiry is processed. If \/ | 179

18ð | /\ CMD 1 wasn't pressed, nor option 1 or 2, then the input \/ | 18ð

181 | /\ is invalid. \/ | 181

 182 | /\---\/ | 182

 183 | | 183

184 4ð | while (end_pgm_flag == OFF) { | 184

 185 41 | _Rformat(dspfptr, "CIMENU"); | 185

186 42 | _Rwrite(dspfptr, NULL, ð); | 186

187 43 | memset(dsp_indic, IOFF, 99); | 187

188 44 | _Rreadn(dspfptr, &cimenu_dsp_i, sizeof(cimenu_dsp_i), __DFT); | 188

189 45 | if (dsp_indic??(98??) == IOFF) { | 189

19ð 46 | if (cimenu_dsp_i.OPTION == '1') | 19ð

 191 47 | process_item_req(&end_pgm_flag); | 191

 192 | else | 192

193 48 | if (cimenu_dsp_i.OPTION == '2') | 193

 194 49 | process_cust_req(&end_pgm_flag); | 194

 195 | } | 195

 196 | else { | 196

 197 5ð | print_msg(NORM_END); | 197

198 51 | end_pgm_flag = ON; | 198

 199 | } | 199

 2ðð | } | 2ðð

 2ð1 52 | detach(); | 2ð1

 2ð2 53 | end_job(); | 2ð2

 2ð3 |} | 2ð3

 2ð4 | | 2ð4

 2ð5 | | 2ð5

Figure 9-9 (Part 4 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

9-16 ICF Programming V4R1

 2ð6 |/\--\/ | 2ð6

2ð7 |/\ Evoke the Target Program \/ | 2ð7

2ð8 |/\ Evoke the target program. If an error occurs then a detach will be \/ | 2ð8

2ð9 |/\ sent, a release will be issued, and the ICF, display, and printer \/ | 2ð9

21ð |/\ files will be closed. \/ | 21ð

 211 |/\--\/ | 211

 212 |.11/ | 212

 213 |evoke_target() | 213

 214 |{ | 214

 215 1 | _Rformat(icffptr, "EVKREQ"); | 215

216 2 | _Rwrite(icffptr, NULL, ð); | 216

217 3 | if (pos_ret_code() == ERROR) { | 217

 218 4 | print_msg(ERR_END); | 218

 219 5 | detach(); | 219

 22ð 6 | end_job(); | 22ð

 221 7 | return(ERROR); | 221

 222 | } | 222

 223 8 | return(NOERROR); | 223

 224 |} | 224

 225 | | 225

 226 | | 226

 227 |/\--\/ | 227

228 |/\ Process Item Request Screen \/ | 228

229 |/\ This routine puts out the item request screen and reads the input \/ | 229

23ð |/\ from the user. CMD 1 (end job), CMD 2 (go to main menu), and CMD 3 \/ | 23ð

231 |/\ (reenter item number) are checked. Routines to send a valid item \/ | 231

232 |/\ number and to receive item information are called. \/ | 232

 233 |/\--\/ | 233

 234 |.12/ | 234

235 |void process_item_req(int \end_pgm_flag) | 235

 236 |{ | 236

 237 1 | _Rformat(dspfptr, "ITMMNU"); | 237

238 2 | _Rwrite(dspfptr, NULL, ð); | 238

239 3 | memset(dsp_indic, IOFF, 99); | 239

24ð 4 | _Rreadn(dspfptr, &itmmnu_dsp_i, sizeof(itmmnu_dsp_i), __DFT); | 24ð

241 5 | if (dsp_indic??(98??) == ION) { /\ CMD 1, indic 99 \/ | 241

 242 6 | print_msg(NORM_END); | 242

243 7 | \end_pgm_flag = ON; | 243

 244 | } | 244

 245 | else | 245

246 8 | if (dsp_indic??(97??) == IOFF) /\ CMD 2, indic 98 \/ | 246

247 9 | if (send_item_req() == NOERROR) { | 247

248 1ð | if (rec_item_info(end_pgm_flag) == ERROR) { | 248

 249 11 | print_msg(ERR_END); | 249

25ð 12 | \end_pgm_flag = ON; | 25ð

 251 | } | 251

 252 | } | 252

 253 | else { | 253

 254 13 | print_msg(ERR_END); | 254

255 14 | \end_pgm_flag = ON; | 255

 256 | } | 256

 257 |} | 257

 258 | | 258

 259 | | 259

Figure 9-9 (Part 5 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-17

 26ð |/\--\/ | 26ð

261 |/\ Send Item Request \/ | 261

262 |/\ This routine sends the item number entered to the appropriate target \/ | 262

263 |/\ program based on the range of the number. \/ | 263

 264 |/\--\/ | 264

 265 |.13/ | 265

 266 |send_item_req() | 266

 267 |{ | 267

 268 1 | _Rformat(icffptr, "ITMREQ"); | 268

269 2 | if (strncmp(itmmnu_dsp_i.ITEMNO, "399999", 6) != 1) | 269

 27ð 3 | _Rpgmdev(icffptr, "ICFð1"); | 27ð

 271 | else | 271

272 4 | if (strncmp(itmmnu_dsp_i.ITEMNO, "699999", 6) != 1) | 272

 273 5 | _Rpgmdev(icffptr, "ICFð2"); | 273

 274 | else | 274

 275 6 | _Rpgmdev(icffptr, "ICFð3"); | 275

276 7 | strncpy(itmreq_icf_o.ITEMNO, itmmnu_dsp_i.ITEMNO, 6); | 276

277 8 | _Rwrite(icffptr, &itmreq_icf_o, sizeof(itmreq_icf_o)); | 277

 278 9 | return(pos_ret_code()); | 278

 279 |} | 279

 28ð | | 28ð

 281 | | 281

 282 |/\--\/ | 282

283 |/\ Receive Item Information \/ | 283

284 |/\ The item information is read from the remote system. A check is \/ | 284

285 |/\ made for three conditions following the read: 1) The remote system \/ | 285

286 |/\ timed out, 2) no data was received, and 3) data was returned in an \/ | 286

287 |/\ unexpected format. \/ | 287

288 |/\ If the remote system times out (maj/min ð31ð), a message is written \/ | 288

289 |/\ to the screen asking to try again (enter 1) or to end the program \/ | 289

29ð |/\ (enter 2). \/ | 29ð

291 |/\ If no data is received (major ð3) the request is sent again to the \/ | 291

292 |/\ remote system. \/ | 292

293 |/\ If the record returns with the wrong record format, the program will \/ | 293

294 |/\ end on error. \/ | 294

295 |/\ If CMD 1 (in99) is pressed, the end program flag is set causing the \/ | 295

296 |/\ program to end upon return to main. If CMD 2 (in98) is pressed, \/ | 296

297 |/\ the main menu is written to the screen. If CMD 3 (in97) is pressed, \/ | 297

298 |/\ the item inquiry menu is written to the screen. \/ | 298

299 |/\ If the remote program didn't find the item, and the item number \/ | 299

3ðð |/\ "ðððððð" was returned, then the item request screen is displayed. \/ | 3ðð

 3ð1 |/\--\/ | 3ð1

 3ð2 |.14/ | 3ð2

 3ð3 |rec_item_info(int \end_pgm_flag) | 3ð3

 3ð4 |{ | 3ð4

3ð5 1 | _Rreadindv(icffptr, &itmrsp_icf_i, sizeof(itmrsp_icf_i), __DFT); | 3ð5

3ð6 3 | if (check_timeout() == ð) { | 3ð6

 3ð7 4 | _Rformat(dspfptr, "TIMOUT"); | 3ð7

3ð8 5 | _Rwrite(dspfptr, NULL, ð); | 3ð8

3ð9 6 | _Rreadn(dspfptr, &timout_dsp_i_o, sizeof(timout_dsp_i_o), __DFT); | 3ð9

31ð 7 | if (timout_dsp_i_o.TIMRSP == '1') | 31ð

 311 8 | return(rec_item_info(end_pgm_flag)); | 311

 312 | else | 312

313 9 | if (timout_dsp_i_o.TIMRSP == '2') { | 313

 314 1ð | print_msg(NORM_END); | 314

315 11 | \end_pgm_flag = ON; | 315

 316 12 | return(NOERROR); | 316

 317 | } | 317

 318 | } | 318

Figure 9-9 (Part 6 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

9-18 ICF Programming V4R1

 319 | else | 319

32ð 13 | if (check_no_data() == ð) { /\ No data received \/ | 32ð

 321 14 | _Rformat(icffptr, "ITMREQ"); | 321

322 15 | _Rwrite(icffptr, &itmreq_icf_o, sizeof(itmreq_icf_o)); | 322

 323 16 | return(pos_ret_code()); | 323

 324 | } | 324

325 | else { /\ Check for valid record fmt \/ | 325

326 17 | comm_fdbk = _Riofbk(icffptr); | 326

327 18 | if (strncmp(comm_fdbk->rec_format, "ITMRSP ", 1ð) != ð) { | 327

 328 19 | print_msg(RCD_ERR); | 328

 329 2ð | return(ERROR); | 329

 33ð | } | 33ð

 331 | } | 331

332 21 | if (strncmp(itmrsp_icf_i.ITEMNO, "ðððððð", 6) != 1) /\ Item not found \/ | 332

 333 22 | process_item_req(end_pgm_flag); | 333

 334 | else { | 334

335 23 | strncpy(itmsc2_dsp_o.DSC, itmrsp_icf_i.DESC, 3ð); | 335

336 24 | strncpy(itmsc2_dsp_o.QAVAIL, itmrsp_icf_i.QTYLST, 7); | 336

337 25 | strncpy(itmsc2_dsp_o.QTYO, itmrsp_icf_i.QTYOO, 7); | 337

338 26 | strncpy(itmsc2_dsp_o.QTYH, itmrsp_icf_i.QTYOH, 7); | 338

339 27 | strncpy(itmsc2_dsp_o.QTYB, itmrsp_icf_i.QTYBO, 7); | 339

34ð 28 | strncpy(itmsc2_dsp_o.UNT, itmrsp_icf_i.UNITQ, 2); | 34ð

341 29 | strncpy(itmsc2_dsp_o.PR1, itmrsp_icf_i.PRð1, 7); | 341

342 3ð | strncpy(itmsc2_dsp_o.PR5, itmrsp_icf_i.PRð5, 7); | 342

343 31 | strncpy(itmsc2_dsp_o.UFR, itmrsp_icf_i.UFRT, 5); | 343

344 32 | _Rformat(dspfptr, "ITMSC2"); /\ Display item screen 2 \/ | 344

345 33 | _Rwrite(dspfptr, &itmsc2_dsp_o, sizeof(itmsc2_dsp_o)); | 345

346 34 | memset(dsp_indic, IOFF, 99); | 346

347 35 | _Rreadn(dspfptr, NULL, ð, __DFT); | 347

348 36 | if (dsp_indic??(98??) == ION) { /\ CMD 1, indic 99 \/ | 348

 349 37 | print_msg(NORM_END); | 349

35ð 38 | \end_pgm_flag = ON; | 35ð

 351 | } | 351

 352 | else | 352

353 39 | if (dsp_indic??(96??) == ION) /\ CMD 3, indic 97 \/ | 353

 354 4ð | process_item_req(end_pgm_flag); | 354

 355 | else | 355

356 41 | if (dsp_indic??(97??) == IOFF) { | 356

 357 42 | calc_profit_loss(); | 357

358 43 | _Rformat(dspfptr, "ITMSC3"); /\ Display screen 3 \/ | 358

359 44 | _Rwrite(dspfptr, &itmsc3_dsp_o, sizeof(itmsc3_dsp_o)); | 359

36ð 45 | memset(dsp_indic, IOFF, 99); | 36ð

361 46 | _Rreadn(dspfptr, NULL, ð, __DFT); | 361

 362 | } | 362

 363 | } | 363

 364 47 | return(NOERROR); | 364

 365 |} | 365

 366 | | 366

 367 | | 367

Figure 9-9 (Part 7 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-19

 368 |/\--\/ | 368

 369 |/\ Calculate Profit/Loss \/ | 369

37ð |/\ This routine calculates profit and loss figures and displays them \/ | 37ð

371 |/\ on screen two of the item. \/ | 371

 372 |/\--\/ | 372

 373 |.15/ | 373

 374 |void calc_profit_loss() | 374

 375 |{ | 375

 376 | long qtylst_l; | 376

377 | double slstm_d, csttm_d; | 377

378 | double prð1_d, losts_d, profit_d; | 378

 379 | | 379

38ð 1 | csttm_d = QXXZTOD(itmrsp_icf_i.CSTTM, 9, 2); | 38ð

381 2 | qtylst_l = QXXZTOI(itmrsp_icf_i.QTYLST, 7, ð); | 381

382 3 | prð1_d = QXXZTOD(itmrsp_icf_i.PRð1, 7, 2); | 382

383 4 | slstm_d = QXXZTOD(itmrsp_icf_i.SLSTM, 9, 2); | 383

384 5 | profit_d = csttm_d - slstm_d; | 384

385 6 | profit_d \= 1ðð; | 385

386 7 | if (slstm_d > ð) | 386

387 8 | profit_d /= slstm_d; | 387

388 9 | losts_d = qtylst_l \ prð1_d; | 388

389 1ð | strncpy(itmsc3_dsp_o.SLSM, itmrsp_icf_i.SLSTM, 9); | 389

39ð 11 | strncpy(itmsc3_dsp_o.SLSY, itmrsp_icf_i.SLSTY, 11); | 39ð

391 12 | strncpy(itmsc3_dsp_o.CSTM, itmrsp_icf_i.CSTTM, 9); | 391

392 13 | strncpy(itmsc3_dsp_o.CSTY, itmrsp_icf_i.CSTTY, 11); | 392

393 14 | QXXDTOZ(itmsc3_dsp_o.LOSTS, 11, 2, losts_d); | 393

394 15 | QXXDTOZ(itmsc3_dsp_o.PROFIT, 5, 2, profit_d); | 394

 395 |} | 395

 396 | | 396

 397 | | 397

 398 |/\--\/ | 398

399 |/\ Process Customer Request \/ | 399

4ðð |/\ This routine puts out the customer request screen and reads the \/ | 4ðð

4ð1 |/\ input from the user. CMD 1 (end job) and CMD 2 (go to main menu) \/ | 4ð1

4ð2 |/\ are checked. Routines to send the customer number and to receive \/ | 4ð2

4ð3 |/\ customer information are called. \/ | 4ð3

 4ð4 |/\--\/ | 4ð4

 4ð5 |.16/ | 4ð5

4ð6 |void process_cust_req(int \end_pgm_flag) | 4ð6

 4ð7 |{ | 4ð7

 4ð8 1 | _Rformat(dspfptr, "DTLMNU"); | 4ð8

4ð9 2 | _Rwrite(dspfptr, NULL, ð); | 4ð9

41ð 3 | memset(dsp_indic, IOFF, 99); | 41ð

411 4 | _Rreadn(dspfptr, &dtlmnu_dsp_i, sizeof(dtlmnu_dsp_i), __DFT); | 411

412 5 | if (dsp_indic??(98??) == ION) { /\ CMD 1, indic 99 \/ | 412

 413 6 | print_msg(NORM_END); | 413

414 7 | \end_pgm_flag = ON; | 414

 415 | } | 415

 416 | else | 416

417 8 | if (dsp_indic??(97??) == IOFF) /\ CMD 2, indic 98 \/ | 417

418 9 | if (send_cust_req() == NOERROR) { | 418

419 1ð | if (rec_cust_info(end_pgm_flag) == ERROR) { | 419

 42ð 11 | print_msg(ERR_END); | 42ð

421 12 | \end_pgm_flag = ON; | 421

 422 | } | 422

 423 | } | 423

 424 | else { | 424

 425 13 | print_msg(ERR_END); | 425

426 14 | \end_pgm_flag = ON; | 426

 427 | } | 427

 428 |} | 428

 429 | | 429

 43ð | | 43ð

Figure 9-9 (Part 8 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

9-20 ICF Programming V4R1

 431 |/\--\/ | 431

432 |/\ Send Customer Request \/ | 432

433 |/\ This routine sends the customer number entered by the user to the \/ | 433

434 |/\ remote program. The number has already been read in. \/ | 434

 435 |/\--\/ | 435

 436 |.17/ | 436

 437 |send_cust_req() | 437

 438 |{ | 438

439 1 | strncpy(dtlreq_icf_o.CUSTNO, dtlmnu_dsp_i.CUSTNO, 6); | 439

 44ð 2 | _Rformat(icffptr, "DTLREQ"); | 44ð

 441 3 | _Rpgmdev(icffptr, "ICFðð"); | 441

442 4 | _Rwrite(icffptr, &dtlreq_icf_o, sizeof(dtlreq_icf_o)); | 442

 443 5 | return(pos_ret_code()); | 443

 444 |} | 444

 445 | | 445

 446 | | 446

 447 |/\--\/ | 447

448 |/\ Receive Customer Information \/ | 448

449 |/\ This routine attempts to receive customer information from the \/ | 449

45ð |/\ target program. A check is made for the following three conditions \/ | 45ð

451 |/\ following the read operation: 1) The remote system timed out, 2) no \/ | 451

452 |/\ data was received, and 3) data returned in an unexpected format. \/ | 452

453 |/\ If the remote system times out (maj/min ð31ð), a message is written \/ | 453

454 |/\ to the screen asking user to try again (enter 1) or to end the \/ | 454

455 |/\ program (enter 2). \/ | 455

456 |/\ If no data is received (major ð3) the request is sent again to the \/ | 456

457 |/\ remote system. \/ | 457

458 |/\ If the record returns with the wrong record format, the program will \/ | 458

459 |/\ end on error. \/ | 459

46ð |/\ If the remote program didn't find the customer, and the item number \/ | 46ð

461 |/\ "ðððððð" was returned, the main menu is displayed. \/ | 461

 462 |/\--\/ | 462

 463 |.18/ | 463

 464 |rec_cust_info(int \end_pgm_flag) | 464

 465 |{ | 465

466 1 | _Rreadindv(icffptr, &dtlrsp_icf_i, sizeof(dtlrsp_icf_i), __DFT); | 466

467 3 | if (check_timeout() == ð) { | 467

 468 4 | _Rformat(dspfptr, "TIMOUT"); | 468

469 5 | _Rwrite(dspfptr, NULL, ð); | 469

47ð 6 | _Rreadn(dspfptr, &timout_dsp_i_o, sizeof(timout_dsp_i_o), __DFT); | 47ð

471 7 | if (timout_dsp_i_o.TIMRSP == '1') | 471

 472 8 | return(rec_cust_info(end_pgm_flag)); | 472

 473 | else | 473

474 9 | if (timout_dsp_i_o.TIMRSP == '2') { | 474

 475 1ð | print_msg(NORM_END); | 475

476 11 | \end_pgm_flag = ON; | 476

 477 12 | return(NOERROR); | 477

 478 | } | 478

 479 | } | 479

 48ð | else | 48ð

481 13 | if (check_no_data() == ð) { /\ No data received \/ | 481

 482 14 | _Rformat(icffptr, "DTLREQ"); | 482

483 15 | _Rwrite(icffptr, &dtlreq_icf_o, sizeof(dtlreq_icf_o)); | 483

 484 16 | return(pos_ret_code()); | 484

 485 | } | 485

486 | else { /\ Was item found ? \/ | 486

487 17 | if (strncmp(dtlrsp_icf_i.CUSTNO, "ðððððð", 6) != 1) | 487

 488 18 | return(NOERROR); | 488

489 | else { /\ Check record format \/ | 489

49ð 19 | comm_fdbk = _Riofbk(icffptr); | 49ð

491 2ð | if (strncmp(comm_fdbk->rec_format, "DTLRSP ", 1ð) != ð) { | 491

 492 21 | print_msg(RCD_ERR); | 492

 493 22 | return(ERROR); | 493

 494 | } | 494

 495 | } | 495

 496 | } | 496

Figure 9-9 (Part 9 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-21

497 23 | strncpy(dtlscr_dsp_o.CUSTN, dtlrsp_icf_i.CUSTNO, 6); | 497

498 24 | strncpy(dtlscr_dsp_o.CNAME, dtlrsp_icf_i.DNAME, 3ð); | 498

499 25 | strncpy(dtlscr_dsp_o.DLSTR, dtlrsp_icf_i.DLSTOR, 6); | 499

5ðð 26 | strncpy(dtlscr_dsp_o.DSLSM, dtlrsp_icf_i.DSLSTM, 9); | 5ðð

5ð1 27 | strncpy(dtlscr_dsp_o.DSPM1, dtlrsp_icf_i.DSPMð1, 9); | 5ð1

5ð2 28 | strncpy(dtlscr_dsp_o.DSPM2, dtlrsp_icf_i.DSPMð2, 9); | 5ð2

5ð3 29 | strncpy(dtlscr_dsp_o.DSTYD, dtlrsp_icf_i.DSTTYD, 11); | 5ð3

5ð4 3ð | strncpy(dtlscr_dsp_o.DEPT, dtlrsp_icf_i.IDEPT, 3); | 5ð4

5ð5 31 | _Rformat(dspfptr, "DTLSCR"); /\ Display customer info \/ | 5ð5

5ð6 32 | _Rwrite(dspfptr, &dtlscr_dsp_o, sizeof(dtlscr_dsp_o)); | 5ð6

5ð7 33 | memset(dsp_indic, IOFF, 99); | 5ð7

5ð8 34 | _Rreadn(dspfptr, NULL, ð, __DFT); | 5ð8

5ð9 35 | if (dsp_indic??(98??) == ION) { | 5ð9

 51ð 36 | print_msg(NORM_END); | 51ð

511 37 | \end_pgm_flag = ON; | 511

 512 | } | 512

 513 38 | return(NOERROR); | 513

 514 |} | 514

 515 | | 515

 516 | | 516

 517 |/\--\/ | 517

518 |/\ Check For Successful Operation \/ | 518

519 |/\ If the major return code is ðð the last operation attempted was \/ | 519

52ð |/\ successful, otherwise an error occurred. \/ | 52ð

 521 |/\--\/ | 521

 522 |.19/ | 522

 523 |pos_ret_code() | 523

 524 |{ | 524

 525 1 | get_access_to_fb(); | 525

526 2 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð) | 526

 527 3 | return(NOERROR); | 527

 528 | else | 528

 529 4 | return(ERROR); | 529

 53ð |} | 53ð

 531 | | 531

 532 | | 532

 533 |/\--\/ | 533

534 |/\ Check for No Data Received \/ | 534

535 |/\ If the major return code is ð3 then no data was received on an input \/ | 535

 536 |/\ operation. \/ | 536

 537 |/\--\/ | 537

 538 |.2ð/ | 538

 539 |check_no_data() | 539

 54ð |{ | 54ð

 541 1 | get_access_to_fb(); | 541

542 2 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ð3", 2) == ð) | 542

 543 3 | return(ð); | 543

 544 | else | 544

 545 4 | return(1); | 545

 546 |} | 546

 547 | | 547

 548 | | 548

 549 |/\--\/ | 549

55ð |/\ Check for Timeout \/ | 55ð

551 |/\ If the major/minor return code is ð31ð, then a timeout occurred when \/ | 551

552 |/\ reading from an invited program device. Return 1 if timeout occurred\/ | 552

553 |/\ otherwise return ð. \/ | 553

 554 |/\--\/ | 554

 555 |.21/ | 555

 556 |check_timeout() | 556

 557 |{ | 557

 558 1 | get_access_to_fb(); | 558

559 | if ((strncmp(dsp_icf_fdbk->major_ret_code, "ð3", 2) == ð) && | 559

56ð 2 | (strncmp(dsp_icf_fdbk->minor_ret_code, "1ð", 2) == ð)) | 56ð

 561 3 | return(ð); | 561

 562 | else | 562

 563 4 | return(1); | 563

 564 |} | 564

 565 | | 565

 566 | | 566

Figure 9-9 (Part 10 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

9-22 ICF Programming V4R1

 567 |/\--\/ | 567

 568 |/\ Issue Detach \/ | 568

569 |/\ A detach is sent to each program device to end the transaction with \/ | 569

57ð |/\ the remote system. \/ | 57ð

 571 |/\--\/ | 571

 572 |.22/ | 572

 573 |void detach() | 573

 574 |{ | 574

 575 1 | _Rformat(icffptr, "DETACH"); | 575

 576 2 | _Rpgmdev(icffptr, "ICFðð"); | 576

577 3 | _Rwrite(icffptr, NULL, ð); | 577

 578 4 | _Rpgmdev(icffptr, "ICFð1"); | 578

579 5 | _Rwrite(icffptr, NULL, ð); | 579

 58ð 6 | _Rpgmdev(icffptr, "ICFð2"); | 58ð

581 7 | _Rwrite(icffptr, NULL, ð); | 581

 582 8 | _Rpgmdev(icffptr, "ICFð3"); | 582

583 9 | _Rwrite(icffptr, NULL, ð); | 583

 584 |} | 584

 585 | | 585

 586 | | 586

 587 |/\--\/ | 587

588 |/\ End the Job \/ | 588

589 |/\ A release is sent to each program device to end the sessions, and \/ | 589

59ð |/\ the ICF, display, and printer files are closed. \/ | 59ð

 591 |/\--\/ | 591

 592 |.23/ | 592

 593 |void end_job() | 593

 594 |{ | 594

 595 1 | _Rrelease(icffptr, "ICFðð"); | 595

 596 2 | _Rrelease(icffptr, "ICFð1"); | 596

 597 3 | _Rrelease(icffptr, "ICFð2"); | 597

 598 4 | _Rrelease(icffptr, "ICFð3"); | 598

 599 5 | close_files(); | 599

 6ðð |} | 6ðð

 6ð1 | | 6ð1

 6ð2 | | 6ð2

 6ð3 |/\--\/ | 6ð3

6ð4 |/\ Close the Files \/ | 6ð4

6ð5 |/\ Close the ICF, display, and print files. \/ | 6ð5

 6ð6 |/\--\/ | 6ð6

 6ð7 |.24/ | 6ð7

 6ð8 |void close_files() | 6ð8

 6ð9 |{ | 6ð9

 61ð 1 | _Rclose(icffptr); | 61ð

 611 2 | _Rclose(dspfptr); | 611

 612 3 | _Rclose(prtfptr); | 612

 613 |} | 613

 614 | | 614

 615 | | 615

 616 |/\--\/ | 616

 617 |/\ Print Message \/ | 617

618 |/\ Write message and return code to print file. \/ | 618

 619 |/\--\/ | 619

 62ð |.25/ | 62ð

621 |void print_msg(int mtype) | 621

 622 |{ | 622

 623 1 | get_access_to_fb(); | 623

624 2 | strncpy(print_rec.major, dsp_icf_fdbk->major_ret_code, 2); | 624

625 3 | strncpy(print_rec.minor, dsp_icf_fdbk->minor_ret_code, 2); | 625

 626 4 | strncpy(print_rec.filler, " ", 32); | 626

627 5 | _Rwrite(prtfptr, "RETURN CODE: ", 36); | 627

628 6 | _Rwrite(prtfptr, &print_rec, sizeof(print_rec)); | 628

629 7 | if (mtype == NORM_END) | 629

63ð 8 | _Rwrite(prtfptr, "PROGRAM CSRCDMUL COMPLETED NORMALLY ", 36); | 63ð

 631 | else | 631

632 9 | if (mtype == RCD_ERR) | 632

633 1ð | _Rwrite(prtfptr, "RECORD FORMAT IS INCORRECT ON READ ", 36); | 633

 634 | else | 634

635 11 | _Rwrite(prtfptr, "PROGRAM ENDED DUE TO ERROR IN CMNFIL", 36); | 635

 636 |} | 636

 637 | | 637

Figure 9-9 (Part 11 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-23

 638 | | 638

 639 |/\--\/ | 639

64ð |/\ Get Access to DSP/ICF Feedback \/ | 64ð

641 |/\ The feedback areas are updated after each display or ICF file I/O \/ | 641

642 |/\ operation, and so the pointers must be updated to point to the "new" \/ | 642

643 |/\ feedback areas to get the return code. The offset to the display/ \/ | 643

644 |/\ ICF feedback area is contained in the common I/O feedback and is \/ | 644

645 |/\ added to the pointer to the common feedback area to get access to \/ | 645

646 |/\ display/ICF feedback area. \/ | 646

 647 |/\--\/ | 647

 648 |.26/ | 648

 649 |void get_access_to_fb() | 649

 65ð |{ | 65ð

651 1 | comm_fdbk = _Riofbk(icffptr); | 651

652 | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \)((char \)comm_fdbk + | 652

 653 2 | comm_fdbk->file_dep_fb_offset); | 653

 654 |} | 654

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNO Include Name Actual Include Name

 1 dspf CICFLIB/dspfil(\all)

 2 icff/itmrsp CICFLIB/cmnfil(itmrsp)

 3 icff/dtlrsp CICFLIB/cmnfil(dtlrsp)

 4 icff/itmreq CICFLIB/cmnfil(itmreq)

 5 icff/dtlreq CICFLIB/cmnfil(dtlreq)

 6 stdio.h QCC/H/STDIO

 7 stddef.h QCC/H/STDDEF

 8 errno.h QCC/H/ERRNO

 9 signal.h QCC/H/SIGNAL

 1ð ctype.h QCC/H/CTYPE

 11 stdarg.h QCC/H/STDARG

 12 recio.h QCC/H/RECIO

 13 xxfdbk.h QCC/H/XXFDBK

 14 stdlib.h QCC/H/STDLIB

 15 stddef.h QCC/H/STDDEF

 16 string.h QCC/H/STRING

 17 xxfdbk.h QCC/H/XXFDBK

 18 xxcvt.h QCC/H/XXCVT

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

 Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

ð ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

ROUTINE BLOCK NUMBER SCOPE TYPE

 <MAIN> 2 LOCAL MAIN-PROGRAM

 __reads 115 LOCAL PROCEDURE

 __rwrite 118 LOCAL PROCEDURE

 __rfmt 125 LOCAL PROCEDURE

 __memset 172 LOCAL PROCEDURE

 __strncmp 19ð LOCAL PROCEDURE

 __strncpy 192 LOCAL PROCEDURE

 QXXDTOZ 2ð4 LOCAL PROCEDURE

 QXXZTOD 2ð9 LOCAL PROCEDURE

 QXXZTOI 21ð LOCAL PROCEDURE

 evoke_target 229 ENTRY PROCEDURE

 process_item_req 23ð ENTRY PROCEDURE

 send_item_req 231 ENTRY PROCEDURE

 rec_item_info 232 ENTRY PROCEDURE

 calc_profit_loss 233 ENTRY PROCEDURE

 process_cust_req 234 ENTRY PROCEDURE

 send_cust_req 235 ENTRY PROCEDURE

 rec_cust_info 236 ENTRY PROCEDURE

 pos_ret_code 237 ENTRY PROCEDURE

 check_no_data 238 ENTRY PROCEDURE

 check_timeout 239 ENTRY PROCEDURE

 detach 24ð ENTRY PROCEDURE

 end_job 241 ENTRY PROCEDURE

 close_files 242 ENTRY PROCEDURE

 print_msg 243 ENTRY PROCEDURE

 get_access_to_fb 244 ENTRY PROCEDURE

 main 245 ENTRY PROCEDURE

Figure 9-9 (Part 12 of 12). Source Program Example — CSRCDMUL (User-Defined Formats)

Target Program Multiple-Session Inquiry: The fol-
lowing describes the ILE C target program for multiple-
session inquiry program example.

Program Files: The ILE C multiple-session target program
uses the following files:

9-24 ICF Programming V4R1

CFILE
An ICF file used to send records to and receive
records from the source program. It is done with
the file-level INDARA DDS keyword, indicating a
separate indicator area.

PFILE
A database file used to retrieve the record for the
item requested from the remote system.

QSYSPRT
A printer file used to print error messages resulting
from communications errors.

DDS Source: The DDS for the ICF file (CFILE) is illustrated
below.

 A\\

 A\ \

 A\ ICF FILE \

 A\ USED IN TARGET MULTIPLE SESSION PROGRAM \

 A\ \

 A\\

 A INDARA

 A ð5 RQSWRT

 A 1ð ALWWRT

 A INDTXT(1ð '1ð END TRANS.')

 A 15 EOS

 A 2ð FAIL

 A INDTXT(2ð '2ð F ABORT ST')

 A RCVFAIL(25 'RECEIVED FAIL')

 A 3ð DETACH

 A INDTXT(3ð '3ð>DETACH TGT')

 A RCVDETACH(44 'RECV DETACH')

 A RCVTRNRND(4ð 'END OF TRN')

 A R SNDPART

 A INVITE

 A RECTYP 1

 A ITEMNO 6

 A EDATA 13ð

 A FILL1 13

 A R RCVPART

 A RECID2 6

The command needed to create the ICF file is:
CRTICFF FILE(CICFLIB/CFILE) SRCFILE(CICFLIB/QICFPUB)

SRCMBR(CFILE) ACQPGMDEV(\NONE) TEXT("TARGET ICF FILE

FOR MULTIPLE SESSION PROGRAM")

The command needed to define the program device entry is:
OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(\REQUESTER)

The DDS source for the database file (PFILE) is illustrated
below:

SOURCE FILE QICFPUB/ICFLIB

 MEMBER PFILE

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A LIFO ð7/ð2/87

 2ðð A R DBREC ð5/ð6/87

 3ðð A RECCUS 1 1ð/ð1/87

 4ðð A DBSEQ 6 ð8/18/87

 5ðð A DBDATA 13ð ð7/ð2/87

 6ðð A DBFILL 13 1ð/ð1/87

 7ðð A K DBSEQ ð7/ð4/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Program Explanation: The following explains the structure
of the program example illustrated in Figure 9-10 on
page 9-27. The ICF file used is defined by the user, and
uses externally described data formats (DDS). The refer-
ence numbers in the explanation below correspond to the
numbers in the following program example.

.1/ External file descriptions are included for the ICF file
(CFILE).

CFILE is the ICF file used to send records to and
receive records from the remote system. CFILE is
implemented with the file-level keyword, INDARA, indi-
cating that a separate indicator area is used.

.2/ This structure is used to print the return code to the
printer file QSYSPRT. Output to QSYSPRT is by
record, so the filler field is used to blank out characters
that may have been set by a previous write operation
to the printer file. See .15/ and .16/.

.3/ The variables to be used globally by the program are
defined here. The common and display/ICF feedback
area pointers, the file pointers, and the ICF file sepa-
rate indicator area are defined.

.4/ The routines, except the main routine, are prototyped
so the compiler knows the type of value returned and
the type of parameters passed, if any.

.5/ The ICF, printer, and database files are opened for
record input, output, or both. The ICF file is opened
with the separate indicator area option specified.

.6/ The separate indicator area is initialized and defined.
The variable icf_indic is a character array of size 99.

.7/ The program device ICF00 used by the program is
explicitly acquired.

.8/ This program continues reading from and writing to the
ICF file until either a detach is received from the
source program, the source program ends abnormally,
or an error occurs in the transaction.

A call to a procedure (section .13/) to close the files is
made before the program ends.

.9/ This function reads data from the ICF file (CFILE) that
was sent from the remote system.

A check is made to see if a detach was received (indi-
cator 44 in CFILE) from the remote system, in which
case control returns to .8/ and the program ends.
Note that the subscript to the indicator in the separate

 Chapter 9. ILE C Communications Applications 9-25

indicator area array is offset by one since the first indi-
cator starts at position zero in the array.

If a turnaround indication is received (indicator 40 in
CFILE), then the return code is checked for a value of
3431 (not a serious error) or a 0000. Any other return
code received causes an error message to be printed
and the program to end on return to .8/. If the turn-
around is not received, the program ends.

.1ð/ The number received from the remote system is used
to find the corresponding item or customer record by
key in PFILE. If the record is not found, 000000 is
sent to the source program. The record ID is set to ‘I’.

The data is sent to the remote system with an invite,
and the return code is checked for a successful opera-
tion. If the major return code is not 00, the program
ends.

.11/ This function calls a procedure (section .16/) to access
the display/ICF feedback area. It then checks for a
3431 return code or a 00 major return code.

.12/ This function calls a procedure (section .16/) to access
the display/ICF feedback area. It then checks for a 00
major return code, which indicates that the last opera-
tion was successful.

.13/ This procedure closes the ICF, printer, and database
files.

.14/ This procedure retrieves the return code to be printed
from the display/ICF feedback area and prints a normal
end message to the printer file.

.15/ This procedure retrieves the return code to be printed
from the display/ICF feedback area and prints an
abnormal end message to the printer file.

.16/ This procedure accesses the common I/O feedback
and the display/ICF feedback areas. The pointers
must be reset after each I/O operation where informa-
tion from the feedback areas is needed, so this proce-
dure is called before checking the return code.

9-26 ICF Programming V4R1

\ \ \ \ \ P R O L O G \ \ \ \ \

 Program name : CTGTDMUL

Library name : CICFLIB

 Source file : QICFPUB

Library name : CICFLIB

 Source member name : CTGTDMUL

 Text Description : Target C program for ICF Programming

 Compiler options : \SOURCE \NOXREF \NOSHOWUSR \NOSHOWSYS \NOSHOWSKP \NOEXPMAC \NOAGR

: \NOPPONLY \NODEBUG \GEN \NOSECLVL \PRINT \LOGMSG

 Language level options : \EXTENDED

 Source margins:

Left margin : 1

Right margin : 32767

 Sequence columns:

Left Column :

Right Column :

 Define name :

 Generation options : \NOLIST \NOXREF \GEN \NOATR \NODUMP \NOOPTIMIZE \NOALWBND

 : \NOANNO

 Print file : QSYSPRT

Library name : \LIBL

 Message flagging level : ð

 Compiler message:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace program object : \YES

 User profile : \USER

 Authority : \LIBCRTAUT

 Target Release : \CURRENT

 Last change : 9ð/ð9/2ð 14:46:14

 Source description : Target C program for ICF Programming

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT SEQNBR INCNO

 \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9........

 |.1/ |

1 |#pragma mapinc("icff/snd", "cicflib/cfile(sndpart)", "output", "p z") | 1

 2 |#include "icff/snd" | 2

3 |#pragma mapinc("icff/rcv", "cicflib/cfile(rcvpart)", "input", "p z") | 3

 4 |#include "icff/rcv" | 4

 5 |/\--\/ | 5

6 |/\ This program will handle the request for either a customer number or \/ | 6

7 |/\ an item number. This is accomplished by making the data base file \/ | 7

8 |/\ structure (key length, key position, record length, record size, \/ | 8

9 |/\ etc.) the same for both files with only the record contents \/ | 9

1ð |/\ different. The database file is searched with a customer number or \/ | 1ð

11 |/\ item number as a key. \/ | 11

12 |/\ This program ends when a detach request is received from the source \/ | 12

 13 |/\ program. \/ | 13

14 |/\ Indicators associated with the ICF file are defined and are \/ | 14

15 |/\ referenced for every I/O operation issued. \/ | 15

 16 |/\--\/ | 16

 17 | | 17

18 |#define ION '1' /\ Indicator set on \/ | 18

19 |#define IOFF 'ð' | 19

2ð |#define ERROR 1 /\ Error occurred \/ | 2ð

21 |#define NOERROR ð | 21

22 |#define TRUE 1 | 22

23 |#define FALSE ð | 23

24 |#include <stdio.h> /\ Standard I/O header \/ | 24

25 |#include <recio.h> /\ Record I/O header \/ | 25

26 |#include <stdlib.h> /\ General utilities \/ | 26

27 |#include <stddef.h> /\ Standard definitions \/ | 27

28 |#include <string.h> /\ String handling utilities \/ | 28

29 |#include <xxfdbk.h> /\ Feedback area structures \/ | 29

 3ð | | 3ð

Figure 9-10 (Part 1 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-27

 31 |.2/ | 31

 32 |/\--\/ | 32

33 |/\ Define the structure to be used to write to the print file. \/ | 33

 34 |/\--\/ | 34

 35 | | 35

 36 |struct { | 36

 37 | char major??(2??); | 37

 38 | char minor??(2??); | 38

39 | char filler??(29??); /\ Used for padding with blanks \/ | 39

 4ð |} print_rec; | 4ð

 41 |.3/ | 41

 42 |/\--\/ | 42

43 |/\ Declare global variables. \/ | 43

 44 |/\--\/ | 44

 45 | | 45

46 |_RFILE \icffptr; /\ Ptr to ICF file \/ | 46

47 |_RFILE \prtfptr; /\ Ptr to print file \/ | 47

48 |_RFILE \dbfptr; /\ Ptr to database file \/ | 48

49 |_RIOFB_T \rio_fdbk; /\ Ptr to partial I/O feedback \/ | 49

5ð |_XXIOFB_T \comm_fdbk; /\ Ptr to common I/O feedback \/ | 5ð

51 |_XXIOFB_DSP_ICF_T \dsp_icf_fdbk; /\ Ptr to dsp/ICF I/O feedback \/ | 51

52 |char icf_indic??(99??); /\ ICF file separate indic area \/ | 52

 53 | | 53

 54 |CICFLIB_CFILE_SNDPART_o_t sndpart_icf_o; | 54

 55 |CICFLIB_CFILE_RCVPART_i_t rcvpart_icf_i; | 55

 56 |.4/ | 56

 57 |int read_cfile(void); | 57

 58 |int send_data(void); | 58

 59 |int check_ret_code(void); | 59

 6ð |int pos_ret_code(void); | 6ð

 61 |void close_files(void); | 61

 62 |void print_norm_end(void); | 62

 63 |void print_error_end(void); | 63

 64 |void get_access_to_fb(void); | 64

 65 | | 65

 66 |main() | 66

 67 |{ | 67

68 | int error_or_end = FALSE; /\ Set if I/O error occured \/ | 68

 69 |.5/ | 69

 7ð | /\---\/ | 7ð

71 | /\ Open the ICF and printer files. If an error occurs the \/ | 71

72 | /\ program ends. \/ | 72

 73 | /\---\/ | 73

 74 | | 74

75 | if ((icffptr = _Ropen("CICFLIB/CFILE", "ar+ indicators=y riofb=y")) | 75

 76 1 | == NULL) | 76

 77 2 | exit(ERROR); | 77

78 3 | if ((prtfptr = _Ropen("CICFLIB/QSYSPRT", "wr")) == NULL) { | 78

 79 4 | _Rclose(icffptr); | 79

 8ð 5 | exit(ERROR); | 8ð

 81 | } | 81

 82 | | 82

83 6 | if ((dbfptr = _Ropen("CICFLIB/PFILE", "rr riofb=y")) == NULL) { | 83

 84 7 | _Rclose(icffptr); | 84

 85 8 | _Rclose(prtfptr); | 85

 86 9 | exit(ERROR); | 86

 87 | } | 87

 88 |.6/ | 88

 89 | /\---\/ | 89

9ð | /\ Set up separate indicator area for the ICF file. \/ | 9ð

 91 | /\---\/ | 91

 92 | | 92

93 1ð | memset(icf_indic, IOFF, 99); | 93

 94 11 | _Rindara(icffptr, icf_indic); | 94

 95 |.7/ | 95

 96 | /\---\/ | 96

97 | /\ Explicitly acquire a session. If an error occurs the \/ | 97

98 | /\ files will be closed and the program will end. \/ | 98

 99 | /\---\/ | 99

 1ðð | | 1ðð

Figure 9-10 (Part 2 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

9-28 ICF Programming V4R1

 1ð1 12 | _Racquire(icffptr, "ICFðð"); | 1ð1

1ð2 13 | if (pos_ret_code() == ERROR) { | 1ð2

 1ð3 14 | print_error_end(); | 1ð3

 1ð4 15 | close_files(); | 1ð4

 1ð5 16 | exit(ERROR); | 1ð5

 1ð6 | } | 1ð6

 1ð7 |.8/ | 1ð7

 1ð8 | /\---\/ | 1ð8

1ð9 | /\ Process requests from the source program until a detach \/ | 1ð9

11ð | /\ is received or an error occurs. \/ | 11ð

 111 | /\---\/ | 111

 112 | | 112

 113 17 | _Rpgmdev(icffptr, "ICFðð"); | 113

114 18 | while (error_or_end == FALSE) { | 114

115 19 | if (read_cfile() == NOERROR) { | 115

116 2ð | if (send_data() == ERROR) | 116

117 21 | error_or_end = TRUE; | 117

 118 | } | 118

 119 | else | 119

12ð 22 | error_or_end = TRUE; | 12ð

 121 | } | 121

 122 23 | close_files(); | 122

 123 |} | 123

 124 | | 124

 125 | | 125

 126 |/\--\/ | 126

127 |/\ Read ICF File \/ | 127

128 |/\ This routine issues a read operation to the program device. The \/ | 128

129 |/\ detach indication is checked, and if it was signaled main is \/ | 129

13ð |/\ notified. If the receive turnaround indicator isn't set, or an \/ | 13ð

131 |/\ unexpected return code is received, main is notified of an error. \/ | 131

 132 |/\--\/ | 132

 133 |.9/ | 133

 134 |read_cfile() | 134

 135 |{ | 135

 136 1 | _Rformat(icffptr, "RCVPART"); | 136

137 2 | memset(icf_indic, IOFF, 99); | 137

138 3 | _Rreadn(icffptr, &rcvpart_icf_i, sizeof(rcvpart_icf_i), __DFT); | 138

139 4 | if (icf_indic??(43??) == ION) { /\ Detach indicator (44) set \/ | 139

 14ð 5 | print_norm_end(); | 14ð

 141 6 | return(ERROR); | 141

 142 | } | 142

 143 | else | 143

144 7 | if (icf_indic??(39??) == ION) /\ Rec. turnaround (4ð) set \/ | 144

145 8 | if (check_ret_code() == NOERROR) | 145

 146 9 | return(NOERROR); | 146

 147 | else { | 147

 148 1ð | print_error_end(); | 148

 149 11 | return(ERROR); | 149

 15ð | } | 15ð

 151 | else { | 151

 152 12 | print_error_end(); | 152

 153 13 | return(ERROR); | 153

 154 | } | 154

 155 |} | 155

 156 | | 156

 157 | | 157

 158 |/\--\/ | 158

159 |/\ Write to ICF File \/ | 159

16ð |/\ A request from the source program results in reading a single record \/ | 16ð

161 |/\ containing the requested customer or order number. The response will\/ | 161

162 |/\ be returned in a single record containing either the item or customer\/ | 162

163 |/\ information, depending on the data base content. \/ | 163

164 |/\ The response is sent to the source program by writing to the program \/ | 164

165 |/\ device file using format sndpart. \/ | 165

166 |/\ The database file is searched by key. If the number of bytes \/ | 166

167 |/\ returned is ð, then the record was not found on the read, in which \/ | 167

168 |/\ case "ðððððð" is sent back to the source program. \/ | 168

 169 |/\--\/ | 169

 17ð |.1ð/ | 17ð

Figure 9-10 (Part 3 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-29

 171 |send_data() | 171

 172 |{ | 172

173 | rio_fdbk = _Rreadk(dbfptr, &sndpart_icf_o, sizeof(sndpart_icf_o), | 173

174 1 | __KEY_EQ, rcvpart_icf_i.RECID2, 6); | 174

175 2 | if (rio_fdbk->num_bytes == ð) { | 175

176 3 | sndpart_icf_o.RECTYP = 'I'; | 176

177 4 | strncpy(sndpart_icf_o.ITEMNO, "ðððððð", 6); | 177

 178 | } | 178

 179 5 | _Rformat(icffptr, "SNDPART"); | 179

18ð 6 | _Rwrite(icffptr, &sndpart_icf_o, sizeof(sndpart_icf_o)); | 18ð

181 7 | if (pos_ret_code() == NOERROR) | 181

 182 8 | return(NOERROR); | 182

 183 | else { | 183

 184 9 | print_error_end(); | 184

 185 1ð | return(ERROR); | 185

 186 | } | 186

 187 |} | 187

 188 | | 188

 189 | | 189

 19ð |/\--\/ | 19ð

191 |/\ Check Return Code \/ | 191

192 |/\ This routine checks the return code after a receive operation for \/ | 192

193 |/\ ðððð and 3431. Anything else is considered an error. \/ | 193

 194 |/\--\/ | 194

 195 |.11/ | 195

 196 |check_ret_code() | 196

 197 |{ | 197

 198 1 | get_access_to_fb(); | 198

199 | if (strncmp(dsp_icf_fdbk->major_ret_code, "34", 2) == ð && | 199

2ðð 2 | strncmp(dsp_icf_fdbk->minor_ret_code, "31", 2) == ð) | 2ðð

 2ð1 3 | return(NOERROR); | 2ð1

 2ð2 | else | 2ð2

 2ð3 4 | return(pos_ret_code()); | 2ð3

 2ð4 |} | 2ð4

 2ð5 | | 2ð5

 2ð6 | | 2ð6

 2ð7 |/\--\/ | 2ð7

2ð8 |/\ Check for Successful Operation \/ | 2ð8

2ð9 |/\ This routine checks the major return code of ðð to see if the last \/ | 2ð9

21ð |/\ operation was successful. \/ | 21ð

 211 |/\--\/ | 211

 212 |.12/ | 212

 213 |pos_ret_code() | 213

 214 |{ | 214

 215 1 | get_access_to_fb(); | 215

216 2 | if (strncmp(dsp_icf_fdbk->major_ret_code, "ðð", 2) == ð) | 216

 217 3 | return(NOERROR); | 217

 218 | else | 218

 219 4 | return(ERROR); | 219

 22ð |} | 22ð

 221 | | 221

 222 | | 222

 223 |/\--\/ | 223

224 |/\ Close the Files \/ | 224

225 |/\ Close the ICF, print, and database files. \/ | 225

 226 |/\--\/ | 226

 227 |.13/ | 227

 228 |void close_files() | 228

 229 |{ | 229

 23ð 1 | _Rclose(icffptr); | 23ð

 231 2 | _Rclose(prtfptr); | 231

 232 3 | _Rclose(dbfptr); | 232

 233 |} | 233

 234 | | 234

 235 | | 235

Figure 9-10 (Part 4 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

9-30 ICF Programming V4R1

 236 |/\--\/ | 236

237 |/\ Print Normal End Message \/ | 237

238 |/\ Write normal end message and return code to print file. \/ | 238

 239 |/\--\/ | 239

 24ð |.14/ | 24ð

 241 |void print_norm_end() | 241

 242 |{ | 242

 243 1 | get_access_to_fb(); | 243

244 2 | strncpy(print_rec.major, dsp_icf_fdbk->major_ret_code, 2); | 244

245 3 | strncpy(print_rec.minor, dsp_icf_fdbk->minor_ret_code, 2); | 245

 246 4 | strncpy(print_rec.filler, " ", 29); | 246

247 5 | _Rwrite(prtfptr, "RETURN CODE: ", 33); | 247

248 6 | _Rwrite(prtfptr, &print_rec, sizeof(print_rec)); | 248

249 7 | _Rwrite(prtfptr, "CTGTDMUL HAS COMPLETED NORMALLY ", 33); | 249

 25ð |} | 25ð

 251 | | 251

 252 | | 252

 253 |/\--\/ | 253

254 |/\ Print Abnormal End Message \/ | 254

255 |/\ Write abnormal end message and return code to print file. \/ | 255

 256 |/\--\/ | 256

 257 |.15/ | 257

 258 |void print_error_end() | 258

 259 |{ | 259

 26ð 1 | get_access_to_fb(); | 26ð

261 2 | strncpy(print_rec.major, dsp_icf_fdbk->major_ret_code, 2); | 261

262 3 | strncpy(print_rec.minor, dsp_icf_fdbk->minor_ret_code, 2); | 262

 263 4 | strncpy(print_rec.filler, " ", 29); | 263

264 5 | _Rwrite(prtfptr, "RETURN CODE: ", 33); | 264

265 6 | _Rwrite(prtfptr, &print_rec, sizeof(print_rec)); | 265

266 7 | _Rwrite(prtfptr, "CTGTDMUL HAS COMPLETED ABNORMALLY", 33); | 266

 267 |} | 267

 268 | | 268

 269 | | 269

 27ð |/\--\/ | 27ð

271 |/\ Get Access to DSP/ICF Feedback \/ | 271

272 |/\ The feedback areas are updated after each display or ICF file I/O \/ | 272

273 |/\ operation, and so the pointers must be updated to point to the "new" \/ | 273

274 |/\ feedback areas to get the return code. The offset to the display/ \/ | 274

275 |/\ ICF feedback area is contained in the common I/O feedback and is \/ | 275

276 |/\ added to the pointer to the common feedback area to get access to \/ | 276

277 |/\ display/ICF feedback area. \/ | 277

 278 |/\--\/ | 278

 279 |.16/ | 279

 28ð |void get_access_to_fb() | 28ð

 281 |{ | 281

282 1 | comm_fdbk = _Riofbk(icffptr); | 282

283 | dsp_icf_fdbk = (_XXIOFB_DSP_ICF_T \)((char \)comm_fdbk + | 283

 284 2 | comm_fdbk->file_dep_fb_offset); | 284

 285 |} | 285

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure 9-10 (Part 5 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

 Chapter 9. ILE C Communications Applications 9-31

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNO Include Name Last change Actual Include Name

 1 icff/snd CICFLIB/cfile(sndpart)

 2 icff/rcv CICFLIB/cfile(rcvpart)

 3 stdio.h 9ð/ð9/12 14:42:23 QCC/H/STDIO

 4 stddef.h 9ð/ð9/12 14:42:22 QCC/H/STDDEF

 5 errno.h 9ð/ð9/12 14:42:18 QCC/H/ERRNO

 6 signal.h 9ð/ð9/12 14:42:22 QCC/H/SIGNAL

 7 ctype.h 9ð/ð9/12 14:42:18 QCC/H/CTYPE

 8 stdarg.h 9ð/ð9/12 14:42:22 QCC/H/STDARG

 9 recio.h 9ð/ð9/12 14:42:21 QCC/H/RECIO

 1ð xxfdbk.h 9ð/ð9/12 14:42:28 QCC/H/XXFDBK

 11 stdlib.h 9ð/ð9/12 14:42:24 QCC/H/STDLIB

 12 stddef.h 9ð/ð9/12 14:42:22 QCC/H/STDDEF

 13 string.h 9ð/ð9/12 14:42:24 QCC/H/STRING

 14 xxfdbk.h 9ð/ð9/12 14:42:28 QCC/H/XXFDBK

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

 Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

ð ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

ROUTINE BLOCK NUMBER SCOPE TYPE

 <MAIN> 2 LOCAL MAIN-PROGRAM

 __reads 115 LOCAL PROCEDURE

 __readk 117 LOCAL PROCEDURE

 __rwrite 118 LOCAL PROCEDURE

 __rfmt 125 LOCAL PROCEDURE

 __memset 172 LOCAL PROCEDURE

 __strncmp 19ð LOCAL PROCEDURE

 __strncpy 192 LOCAL PROCEDURE

 read_cfile 213 ENTRY PROCEDURE

 send_data 214 ENTRY PROCEDURE

check_ret_code 215 ENTRY PROCEDURE

 pos_ret_code 216 ENTRY PROCEDURE

 close_files 217 ENTRY PROCEDURE

print_norm_end 218 ENTRY PROCEDURE

 print_error_end 219 ENTRY PROCEDURE

 get_access_to_fb 22ð ENTRY PROCEDURE

 main 221 ENTRY PROCEDURE

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 9-10 (Part 6 of 6). Target Program Example — CTGTDMUL (User-Defined Formats)

9-32 ICF Programming V4R1

Chapter 10. COBOL/400 Communications Applications

Previous chapters in this book describe the functions pro-
vided by ICF. This chapter introduces you to the
COBOL/400 interfaces for ICF and provides program exam-
ples.

Two application examples are presented in this chapter. For
each example, both the source and target programs are pro-
vided. Each program is written first with user-defined formats
(data description specifications, DDS) and then with system-
supplied formats.

The first example in this section is a batch data transfer
application using a single session. The second example is a
multiple-session inquiry application using one display file and
four ICF sessions.

Not all programming considerations or techniques are illus-
trated in each example in this section. Review these exam-
ples and the examples provided in the appropriate
programming book before beginning application design and
coding.

Note: The examples in this section were written to the
APPC communications type. Minor changes might be
required if another communications type is used.

Introduction to the COBOL/400 Interface

Before you write a COBOL/400 communications application,
you must understand the high-level language interface pro-
vided by the COBOL/400 programming language.

The operations you use in the communications portion of
your program are similar to work station operations. ICF files
are defined as transaction files in the COBOL/400 program-
ming language. In the noncommunications portion of your
program, you can use all noncommunications operations you
normally use to process data that is sent or received
between your program and the remote program.

Figure 10-1 briefly introduces the COBOL/400 statements
you use in the communications portion of your program.

Refer to the ILE COBOL/400 Reference for details on the
syntax and function of each operation.

Error Handling: The FILE STATUS clause of the
FILE-CONTROL paragraph is used in COBOL/400 program-
ming to specify the variables for the COBOL file status and
the ICF major and minor return codes.

Figure 10-2 shows the file status values as returned by
COBOL/400 after an input/output (I/O) operation for each
major and minor return code. Use this list to determine the
ICF return code or group of codes that corresponds to the
file status value.

Figure 10-1. COBOL/400 Statements

ICF
Operation

COBOL/400
Statement

Function

Write WRITE Performs many of the ICF com-
munications functions within a
session

Release DROP Releases the session

Close CLOSE Closes the ICF file

1 A COBOL/400 read operation can be directed either to a spe-
cific program device or to all invited program devices. The
support provided by the COBOL/400 compiler determines
whether to issue an ICF read or read-from-invited-program-
devices operation based on the presence of a format name or
a terminal name on the read operation. For example, if a
READ is sent with a specific format or terminal specified, the
read operation is interpreted as an ICF read operation. Refer
to the COBOL/400 language book for more information.

2 The read-from-invited-program-devices operation could com-
plete without data if the timer interval established with either
the timer function or WAITRCD expires, or your job is ended
(controlled).

Figure 10-2 (Page 1 of 2). File Status
Values for Major and Minor Return Codes

ICF
Return Code

COBOL/400
Return Code

00xx 00

Figure 10-1. COBOL/400 Statements 02xx 9A

ICF
Operation

COBOL/400
Statement

Function

03xx 00

0309 9A
Open OPEN Opens the ICF file

04xx 9I
Acquire ACQUIRE Establishes a session

0800 00
Get-Attributes ACCEPT Gets the attributes of a session

1100 10
Read READ1 Receives data from a specific

program device
34xx 9G

80xx 30
Read-from-
invited-
program-devices

READ1 Receives data from any invited
program device2 81xx 92

82xx 9C

83xx 9N

 Copyright IBM Corp. 1997 10-1

Accessing the Feedback Areas: Use the COBOL/400
ACCEPT statement to obtain the open or I/O feedback infor-
mation for an ICF file.

The COBOL/400 offset values for the open and I/O feedback
areas are the same as those listed in Appendix C.

 Example Programs

The programs presented in this section are:

� Example I (Batch Data Transfer)

Figure 10-3 shows a batch data transfer program that
reads a database file and sends the data to a remote
system. When the source program finishes sending its

records, it sends an indication that it is done sending
records to the target program. The target program then
starts sending its records until it reaches end-of-file. At
end-of-file, the target program sends a detach indication
to the source program. The two programs end their ses-
sions.

� Example II (Multiple-Session Inquiry)

Figure 10-4 on page 10-3 shows an inquiry program
that accepts inquiries from a display device, sends the
request to one of four remote AS/400 systems, and
waits for a response to the inquiry. Based on the input
received from the display device, the program deter-
mines the target program to which it sends the inquiry
request. The same program resides in each of the
remote systems.

Figure 10-4 on page 10-3 contains a display device and
four ICF communication program devices.

The remainder of this chapter discusses the details of the
two application examples. The DDS file, program listings,
and an explanation of the programs are included.

Figure 10-2 (Page 2 of 2). File Status
Values for Major and Minor Return Codes

ICF
Return Code

COBOL/400
Return Code

83E0 9K

Local AS/400 System Remote AS/400 System

Database
File

Database
File

RSLS142-5

Program ProgramICF
File

ICF
File

Figure 10-3. Batch Data Transfer

10-2 ICF Programming V4R1

Display File

Display
Station

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database
File

Database
File

Database
File

Database
File

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

Program

Program

Program

Program

Program

RSLS198-4

Figure 10-4. Multiple-Session Inquiry

 Chapter 10. COBOL/400 Communications Applications 10-3

Batch Data Transfer (Example I)

The following figures show a batch data transfer program. A
source AS/400 system program communicates with a target
program on another AS/400 system using the ICF support.
The source program starts a target program on a remote
AS/400 system and transfers a file to that target program.

The target program responds, after receiving an indication
that the source is done sending, by reading its own file and
then sends the records to the source program until it reaches
end of file. At end-of-file, the target program sends a detach
request to the source program and ends its session.

Both the source program and the target program are
described.

Transaction Flow of the Batch Data Transfer
(Example I): In Figure 10-5, the source program issues
an evoke to start a program at the remote AS/400 system.

Note: An acquire operation is not necessary since the
device was acquired during the open operation. The device
was acquired during the open operation because the
ACQPGMDEV parameter was used when the ICF file was
created.

EvokeWrite

Local AS/400 System Remote AS/400 System

Database

File

Program ProgramICF

File

ICF

File

RSLS146-4

Figure 10-5. Evoke Request Starts a Target Program

After issuing the evoke request, the source program sends a
database file to the target program, which prints the records
as shown in Figure 10-6.

Local AS/400 System Remote AS/400 System

Database

File

Program ProgramICF

File

ICF

File

Printer

File

RSLS147-4

Read

Read

Read

Write

Write

Write

Write

Write

Write

Read

Read

Read

Figure 10-6. Target Program Prints Records

After the target program receives and prints the file, a data-
base file is sent to the source program. The source program

prints the records as they are received, as shown in
Figure 10-7.

AS/400 System Remote AS/400 System

Database
File

Printer
File

Program ProgramICF
File

ICF
File

RSLS148-4

Write

Write

Write

Read

Read

Read

Write

Write

Write

Read

Read

Read

Figure 10-7. Source Program Prints the Received Records

10-4 ICF Programming V4R1

Once all the records have been sent by the target program,
the target program issues a detach to the source program to
end the transaction, as shown in Figure 10-8 on page 10-5.

Read WriteDetach

Remote AS/400 SystemLocal AS/400 System

Database

File

Printer

File

Program ProgramICF

File

ICF

File

RSLS149-4

Figure 10-8. Target Program Ends the Transaction

Source Program Batch Transfer (Example I): The
following describes the COBOL/400 batch data transfer
source program.

Program Files: The COBOL/400 batch transfer source
program uses the following files:

SRCICF
An ICF file used to send records to and receive
records from the target program.

DBFILE
A database file that contains the records to be sent
to the target program.

QPRINT
A printer file used to print the records received from
the target program.

DDS Source: The DDS source used in the ICF file is illus-
trated in the following example. The other files (DBFILE and
QPRINT) are program-described and therefore require no
DDS.

 A\\\

 A\ \

 A\ ICF FILE \

A\ USED IN BATCH DATA TRANSFER PROGRAM \

 A\ \

 A\\\

 A\

A\ FILE LEVEL INDICATORS:

 A\

 A INDARA

 A\

A RCVTRNRND(15 'END OF DATA')

 A\

 A 3ð DETACH

 A\

A INDTXT(3ð '3ð->DETACH TARG-

 A ET PROGRAM.')

 A\

 A RCVDETACH(35 'RECEIVED -

 A DETACHED.')

 A\

 A\

 A\\

A\ ICF RECORD FORMATS \

 A\\

 R RCVDATA

 RCVFLD 8ðA

 R SNDDATA

 SNDFLD 8ðA

 R EVOKPGM

 A 5ð EVOKE(&LIB/&PGMID)

A 5ð SECURITY(2 'PASSWRD' +

 3 'USERID')

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ENDREC

 A R INVITE

 A 45 INVITE

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/SRCICF) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(SRCICF) ACQPGMDEV(PGMDEVA) TEXT('ICF FILE FOR

BATCH DATA TRANSFER')

The command needed to define the program device entry is:
ADDICFDEVE FILE(ICFLIB/SRCICF) PGMDEV(PGMDEVA)

 RMTLOCNAME(CHICAGO)

Program Explanation: The following describes the struc-
ture of the program examples illustrated in Figure 10-9 on
page 10-7 and Figure 10-10 on page 10-13. The ICF file
used in the first example id defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference numbers
in the explanation below correspond to the numbers in the
following program examples.

 Chapter 10. COBOL/400 Communications Applications 10-5

Although the basic structure of the two examples provided is
the same, there are differences because of the use of user-
defined formats and system-supplied formats.

Differences between the first and second example are docu-
mented as notes in each of the descriptions.

.1/ This section identifies the files used in the program.
SRCICF is the ICF file used to send records to the
target program.

This section also contains declarations of I/O variables,
work areas and constants needed. MAJ-MIN contains
the major/minor return code from the I/O feedback
area.

Note: In the program using system-supplied formats,
the input records for SRCICF are explicitly coded since
SRCICF is now treated as a program-described file.
The system-supplied file, QICDMF, can be used
instead of SRCICF. This can be done by specifying
QICDMF in the file specification, or by using an over-
ride ICF file (OVRICFF) command to change the file
name from SRCICF to QICDMF. The OVRICFF
command can also be used to change the
ACQPGMDEV parameter of the file.

.2/ This section defines the error handling for the program.
The major/minor return code is checked to determine
whether the error is recoverable. If the error is recov-
erable (major/minor code 83xx or 03xx), it sets a flag
(ERR-SW) to 1 and returns to the program.

If any other error has occurred, the program writes the
feedback data to a file (DFILE), calls a program to print
DFILE, and then ends.

.3/ The program opens the files that are going to be used
as follows:

DBFILE
The database file used as input for transmit-
ting to the target program.

QPRINT
The printer file used as output for records
received

SRCICF
The ICF file used to send data to and receive
data from the target program

Because the ICF file was created using the
ACQPGMDEV parameter, the program device is auto-
matically acquired when the file is opened. Therefore,
no acquire operation is coded in the program.

.4/ If the ERR-SW flag is set to 1, indicating that a recov-
erable error has occurred, the program determines
whether the open retry count limit (9) has been
exceeded. If it has, the program goes to .11/. If the
limit count is less than 9, one is added to the count
and control passes to .1ð/. Control then passes to .3/
to attempt to open the file.

.5/ The evoke request is built and sent to the remote
system. Because the DDS for the record format only
specifies the field identifiers with the record, the code
in this section of the program moves the literal value
CTDBATCL to the field PGMID, and ICFLIB to the field
LIB. Indicator 50 is set to indicate that the program
start request is to be sent.

When the program start request is received at the
remote system, ICFLIB is searched for CTDBATCL and
that program is then started. CTDBATCL is a control
language (CL) program that contains the following
statements:

ADDLIBLE ICFLIB

CALL ICFLIB/CTDBAT

Note: In the program using system-supplied formats,
the library and program (ICFLIB/CTFBATCL) are speci-
fied as part of the $$EVOKNI format. CTFBATCL is a
CL program that contains the following statements:

ADDLIBLE ICFLIB

CALL ICFLIB/CTFBAT

.6/ Data is read from the database file. If the record read
is end-of-file, the program sets the EOF-DBFILE-SW,
performs routine .12/ to invite the program device, and
goes to .7/.

If it is not the last record, the data is moved to the
output buffer and the program goes to .9/ to write the
record to the program device. When control returns
from .9/, the process is repeated (DBFILE read) until
end-of-file.

.7/ Data is read from the ICF file (SRCICF). If the opera-
tion was successful, and data was received (major
return code not = ‘03’), then the data is written to the
printer file (QPRINT). If an error occurs on the read,
control passes to .1ð/ to attempt recovery. When
control returns from .1ð/, control passes to .3/ to
attempt to open the files.

Data is read until the detach indication is received from
the target program. When detach is received, indicator
35 is set on, as defined by the RCVDETACH keyword
in the DDS for the ICF file. Note that RCVDETACH is
a file-level keyword.

Note: In the program using system-supplied formats,
the minor return code of '08' is checked to verify
whether detach is received.

.8/ After the detach request has been received, this
routine writes the following message to the printer file:

CSDBAT HAS COMPLETED NORMALLY

The files are closed. The program device is automat-
ically released as a result of the close operation.

Note: In the program using system-supplied formats,
the program name is CSFBAT.

.9/ This routine is performed to write data to the ICF file
using the format SNDDATA. If an error occurs on the
write, control passes to .1ð/ and then finally to .3/.

10-6 ICF Programming V4R1

Note: In the program using system-supplied formats,
the $$SENDNI format is used instead of the user-
defined SNDDATA format.

.1ð/ This routine is performed when a recoverable session
error has occurred. It closes the files (SRCICF,
QPRINT and DBFILE) and sets the error switch
(ERR-SW) to 0. Control then returns to the statement
immediately following the PERFORM statement that
passed control to this routine.

.11/ This routine is performed when the application receives
a major/minor return code of 03xx or 83xx after it has
already attempted to recover 9 times from session
errors that caused the error. The program is designed

to tolerate only nine failures. It writes the following
message to the printer file:

CSDBAT HAS COMPLETED ABNORMALLY

The session is ended.

Note: In the program using system-supplied formats,
the program name is CSFBAT.

.12/ This routine is performed to issue an invite request to
the program device using format INVITE. If an error
occurs, control passes to .1ð/ and then finally to .3/.

Note: In the program using system-supplied formats,
the $$SEND format is used instead of the user-defined
INVITE format.

 Program : CSDBAT

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CSDBAT ð2/28/89 13:51:38

 Generation severity level : 29

 Text 'description' : cobol batch file transfer using dds (source)

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. ð2/21/89

 2 ððð2ðð PROGRAM-ID. CSDBAT. ð2/21/89

 ððð3ðð\\ ð2/21/89

ððð4ðð\ THIS IS A BATCH FILE TRANSFER PROGRAM THAT READS A SEQUENTIAL \ ð2/21/89

ððð5ðð\ FILE AND SENDS THE RECORDS TO THE REMOTE SYSTEM UNTIL THE END \ ð2/21/89

ððð6ðð\ OF FILE IS REACHED. AT THIS TIME, THE PROGRAM STOPS SENDING \ ð2/21/89

ððð7ðð\ AND STARTS RECEIVING RECORDS FROM THE REMOTE SYSTEM UNTIL \ ð2/21/89

ððð8ðð\ A DETACH INDICATION IS RECEIVED. \ ð2/21/89

 ððð9ðð\\ ð2/21/89

3 ðð1ððð ENVIRONMENT DIVISION. 1ð/16/87

4 ðð11ðð CONFIGURATION SECTION. 1ð/16/87

 5 ðð12ðð SOURCE-COMPUTER. IBM-AS4ðð. ð2/21/89

 6 ðð13ðð OBJECT-COMPUTER. IBM-AS4ðð. ð2/21/89

7 ðð14ðð SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-AREA 1ð/16/87

8 ðð15ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/16/87

Figure 10-9 (Part 1 of 6). Source Program Example — CSDBAT (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-7

9 ðð16ðð INPUT-OUTPUT SECTION. 1ð/16/87

 1ð ðð17ðð FILE-CONTROL. 1ð/16/87

 ðð18ðð\.1/ 1ð/16/87

11 ðð19ðð SELECT DBFILE ASSIGN TO DATABASE-DBFILE. 1ð/16/87

12 ðð2ððð SELECT SRCICF ASSIGN TO WORKSTATION-SRCICF-SI 1ð/16/87

13 ðð21ðð ORGANIZATION IS TRANSACTION 1ð/16/87

14 ðð22ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/16/87

15 ðð23ðð SELECT DFILE ASSIGN TO DATABASE-HEXDUMP. 1ð/16/87

16 ðð24ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/16/87

17 ðð25ðð DATA DIVISION. 1ð/16/87

18 ðð26ðð FILE SECTION. 1ð/16/87

 19 ðð27ðð FD DBFILE 1ð/16/87

2ð ðð28ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 21 ðð29ðð ð1 DBREC. 1ð/16/87

 22 ðð3ððð ð5 DBREC-DATA PIC X(8ð). 1ð/16/87

 23 ðð31ðð FD SRCICF 1ð/16/87

24 ðð32ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 25 ðð33ðð ð1 ICFREC. 1ð/16/87

26 ðð34ðð COPY DDS-ALL-FORMATS OF SRCICF. 1ð/16/87

27 +ððððð1 ð5 SRCICF-RECORD PIC X(8ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:RCVDATA FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 28 +ððððð4 ð5 RCVDATA-I REDEFINES SRCICF-RECORD. <-ALL-FMTS

 29 +ððððð5 ð6 RCVFLD PIC X(8ð). <-ALL-FMTS

+ððððð6\ OUTPUT FORMAT:RCVDATA FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 3ð +ððððð8 ð5 RCVDATA-O REDEFINES SRCICF-RECORD. <-ALL-FMTS

 31 +ððððð9 ð6 RCVFLD PIC X(8ð). <-ALL-FMTS

+ðððð1ð\ INPUT FORMAT:SNDDATA FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð11\ <-ALL-FMTS

 32 +ðððð12 ð5 SNDDATA-I REDEFINES SRCICF-RECORD. <-ALL-FMTS

 33 +ðððð13 ð6 SNDFLD PIC X(8ð). <-ALL-FMTS

+ðððð14\ OUTPUT FORMAT:SNDDATA FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð15\ <-ALL-FMTS

 34 +ðððð16 ð5 SNDDATA-O REDEFINES SRCICF-RECORD. <-ALL-FMTS

 35 +ðððð17 ð6 SNDFLD PIC X(8ð). <-ALL-FMTS

+ðððð18\ INPUT FORMAT:EVOKPGM FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð19\ <-ALL-FMTS

 +ðððð2ð\ ð5 EVOKPGM-I REDEFINES SRCICF-RECORD. <-ALL-FMTS

+ðððð21\ OUTPUT FORMAT:EVOKPGM FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

 36 +ðððð23 ð5 EVOKPGM-O REDEFINES SRCICF-RECORD. <-ALL-FMTS

 37 +ðððð24 ð6 PGMID PIC X(1ð). <-ALL-FMTS

 38 +ðððð25 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð26\ INPUT FORMAT:ENDREC FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð27\ <-ALL-FMTS

 +ðððð28\ ð5 ENDREC-I REDEFINES SRCICF-RECORD. <-ALL-FMTS

+ðððð29\ OUTPUT FORMAT:ENDREC FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð3ð\ <-ALL-FMTS

 +ðððð31\ ð5 ENDREC-O REDEFINES SRCICF-RECORD. <-ALL-FMTS

+ðððð32\ INPUT FORMAT:INVITE FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð33\ <-ALL-FMTS

 +ðððð34\ ð5 INVITE-I REDEFINES SRCICF-RECORD. <-ALL-FMTS

+ðððð35\ OUTPUT FORMAT:INVITE FROM FILE SRCICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð36\ <-ALL-FMTS

 +ðððð37\ ð5 INVITE-O REDEFINES SRCICF-RECORD. <-ALL-FMTS

 39 ðð35ðð FD DFILE 1ð/16/87

4ð ðð36ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 41 ðð37ðð ð1 DUMPREC. 1ð/16/87

 42 ðð38ðð ð5 DUMP-MAJ-MIN PIC X(4). 1ð/16/87

 43 ðð39ðð ð5 DUMP-RECORD PIC X(4ðð). 1ð/16/87

 44 ðð4ððð FD QPRINT 1ð/16/87

45 ðð41ðð LABEL RECORDS ARE OMITTED. 1ð/16/87

 46 ðð42ðð ð1 PRINTREC PIC X(132). 1ð/16/87

Figure 10-9 (Part 2 of 6). Source Program Example — CSDBAT (User-Defined Formats)

10-8 ICF Programming V4R1

47 ðð43ðð WORKING-STORAGE SECTION. 1ð/16/87

 48 ðð44ðð 77 STATUS-IND PIC X(2). 1ð/16/87

 49 ðð45ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/16/87

5ð ðð46ðð 77 EOF-DBFILE-SW PIC X VALUE "ð". 1ð/16/87

51 ðð47ðð 77 ERR-SW PIC X VALUE "ð". 1ð/16/87

52 ðð48ðð 77 INDON PIC 1 VALUE B"1". 1ð/16/87

53 ðð49ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/16/87

54 ðð5ððð 77 OPEN-COUNT PIC 9(1) VALUE ð. 1ð/16/87

55 ðð51ðð 77 LEN PIC 9(1ð)V9(5) COMP. 1ð/16/87

 ðð52ðð 1ð/16/87

 56 ðð53ðð 77 CMD2 PIC X(31) 1ð/16/87

57 ðð54ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/16/87

 58 ðð55ðð ð1 CMNF-INDIC-AREA. 1ð/16/87

59 ðð56ðð ð5 CMNF-INDIC PIC 1 OCCURS 99 TIMES 1ð/16/87

 6ð ðð57ðð INDICATOR 1. 1ð/16/87

 61 ðð58ðð ð1 OPEN-FBA. 1ð/16/87

 62 ðð59ðð ð5 FILLER PIC X(75). 1ð/16/87

63 ðð6ððð ð5 RECS-IN-DB PIC 9(ð9) COMP-4. 1ð/16/87

 64 ðð61ðð ð5 FILLER PIC X(45). 1ð/16/87

 65 ðð62ðð ð1 MAJ-MIN. 1ð/16/87

 66 ðð63ðð ð5 MAJ PIC X(2). 1ð/16/87

 67 ðð64ðð ð5 MIN PIC X(2). 1ð/16/87

 ðð65ðð/ 1ð/16/87

68 ðð66ðð PROCEDURE DIVISION. 1ð/16/87

 ðð67ðð DECLARATIVES. 1ð/16/87

ðð68ðð ERR-SECTION SECTION. 1ð/16/87

 ðð69ðð\.2/ 1ð/16/87

ðð7ððð USE AFTER STANDARD ERROR PROCEDURE ON SRCICF. 1ð/16/87

 ðð71ðð SRCICF-EXCEPTION. 1ð/16/87

 ðð72ðð\ 1ð/16/87

ðð73ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION 1ð/16/87

 ðð74ðð\ 1ð/16/87

ðð75ðð\ RECOVERABLE SESSION ERROR. CLOSE XPF-ICF FILE. 1ð/16/87

69 ðð76ðð IF MAJ = "ð3" OR MAJ = "83" ð2/21/89

7ð ðð77ðð MOVE "PROGRAM STARTED AGAIN DUE TO SESSION ERROR" 1ð/16/87

 ðð78ðð TO PRINTREC 1ð/16/87

 71 ðð79ðð WRITE PRINTREC 1ð/16/87

72 ðð8ððð MOVE "1" TO ERR-SW 1ð/16/87

73 ðð81ðð GO TO EXIT-DECLARATIVES. 1ð/16/87

 ðð82ðð\ 1ð/16/87

 ðð83ðð\\ ð2/21/89

ðð84ðð\ WHEN THERE IS A PERMANENT SESSION ERROR DETECTED, THE MAJOR- \ ð2/21/89

ðð85ðð\ MINOR CODE IS PLACED INTO A DATABASE FILE AND THE FILE IS \ ð2/21/89

ðð86ðð\ PRINTED IN HEX USING COPYFILE. \ ð2/21/89

 ðð87ðð\\ ð2/21/89

 ðð88ðð\ 1ð/16/87

 ðð89ðð GETFBA. 1ð/16/87

74 ðð9ððð OPEN OUTPUT DFILE. 1ð/16/87

75 ðð91ðð MOVE MAJ-MIN TO DUMP-MAJ-MIN. 1ð/16/87

76 ðð92ðð MOVE ICFREC TO DUMP-RECORD. 1ð/16/87

 77 ðð93ðð WRITE DUMPREC. 1ð/16/87

 78 ðð94ðð CLOSE DFILE. 1ð/16/87

79 ðð95ðð MOVE 31 TO LEN. 1ð/16/87

8ð ðð96ðð CALL "QCMDEXC" USING CMD2 LEN. 1ð/16/87

81 ðð97ðð MOVE "PROGRAM TERMINATED DUE TO ERROR IN XPF-ICF FILE" 1ð/16/87

 ðð98ðð TO PRINTREC. 1ð/16/87

 82 ðð99ðð WRITE PRINTREC. 1ð/16/87

 83 ð1ðððð STOP RUN. 1ð/16/87

 ð1ð1ðð\ 1ð/16/87

 ð1ð2ðð EXIT-DECLARATIVES. 1ð/16/87

 ð1ð3ðð EXIT. ð2/28/89

 ð1ð4ðð\ 1ð/16/87

84 ð1ð5ðð END DECLARATIVES. 1ð/16/87

Figure 10-9 (Part 3 of 6). Source Program Example — CSDBAT (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-9

 ð1ð6ðð/ 1ð/16/87

 ð1ð7ðð START-PROGRAM SECTION. 1ð/16/87

 ð1ð8ðð\ 1ð/16/87

 ð1ð9ðð START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð11ððð\.3/ 1ð/16/87

 85 ð111ðð OPEN INPUT DBFILE 1ð/16/87

 ð112ðð I-O SRCICF 1ð/16/87

 ð113ðð OUTPUT QPRINT. 1ð/16/87

 ð114ðð\ 1ð/16/87

 ð115ðð\\ ð2/21/89

ð116ðð\ THE FOLLOWING TEST IS TO ATTEMPT RECOVERY IF AN ERROR OCCURS \ ð2/21/89

ð117ðð\ WHEN OPENING THE ICF FILE. \ ð2/21/89

 ð118ðð\\ ð2/21/89

 ð119ðð\.4/ 1ð/16/87

86 ð12ððð IF ERR-SW = "1" 1ð/16/87

87 ð121ðð THEN IF OPEN-COUNT IS = 9 1ð/16/87

88 ð122ðð THEN GO TO ABNORMAL-TERMINATION 1ð/16/87

 ð123ðð ELSE 1ð/16/87

89 ð124ðð ADD 1 TO OPEN-COUNT 1ð/16/87

 9ð ð125ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

91 ð126ðð GO TO START-PROGRAM-PARAGRAPH 1ð/16/87

 ð127ðð ELSE 1ð/16/87

92 ð128ðð MOVE ð TO OPEN-COUNT. 1ð/16/87

 ð129ðð\ 1ð/16/87

 ð13ððð\\ ð2/21/89

ð131ðð\ EVOKE THE PROGRAM "CTDBATCL" ON THE REMOTE SYSTEM IN LIBRARY \ ð2/21/89

ð132ðð\ ICFLIB. INDICATOR IN5ð IS THE EVOKE KEYWORD. \ ð2/21/89

 ð133ðð\\ ð2/21/89

 ð134ðð\.5/ 1ð/16/87

93 ð135ðð MOVE "CTDBATCL" TO PGMID OF EVOKPGM-O. 1ð/16/87

94 ð136ðð MOVE "ICFLIB" TO LIB OF EVOKPGM-O. 1ð/16/87

95 ð137ðð MOVE INDON TO CMNF-INDIC(5ð). 1ð/16/87

96 ð138ðð WRITE ICFREC FORMAT IS "EVOKPGM" 1ð/16/87

 ð139ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

97 ð14ððð MOVE INDOFF TO CMNF-INDIC(5ð) 1ð/16/87

98 ð141ðð IF ERR-SW = "1" 1ð/16/87

 99 ð142ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

1ðð ð143ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð144ðð\ 1ð/16/87

 ð145ðð\\ ð2/21/89

ð146ðð\ WHEN THE EVOKE OPERATION IS SUCCESSFUL, A RECORD FROM THE DATA- \ ð2/21/89

ð147ðð\ BASE FILE IS READ AND THEN SENT TO THE TARGET SYSTEM. THIS WILL \ ð2/21/89

ð148ðð\ BE REPEATED UNTIL THE END OF FILE IS REACHED ON THE DATABASE \ ð2/21/89

ð149ðð\ FILE. AT END OF FILE, THE PROGRAM DEVICE IS INVITED AND THE READ \ ð2/21/89

ð15ððð\ OPERATION IS ISSUED TO GET THE DATA FROM THE REMOTE SYSTEM. \ ð2/21/89

 ð151ðð\\ ð2/21/89

 ð152ðð\ 1ð/16/87

 ð153ðð SEND-DATA. 1ð/16/87

 ð154ðð\.6/ 1ð/16/87

 1ð1 ð155ðð READ DBFILE 1ð/16/87

 ð156ðð AT END 1ð/16/87

 1ð2 ð157ðð PERFORM INVITE-TO-SEND. 1ð/16/87

1ð3 ð158ðð IF EOF-DBFILE-SW NOT = "1" 1ð/16/87

1ð4 ð159ðð MOVE DBREC-DATA TO SNDFLD OF SNDDATA-O 1ð/16/87

 1ð5 ð16ððð PERFORM WRITE-SRCICF-RTN 1ð/16/87

1ð6 ð161ðð GO TO SEND-DATA. 1ð/16/87

 ð162ðð\ 1ð/16/87

 ð163ðð\\ ð2/21/89

ð164ðð\ A READ OPERATION IS ISSUED TO PROGRAM DEVICE TO CONTINUE \ ð2/21/89

ð165ðð\ RECEIVING DATA FROM THE REMOTE SYSTEM UNTIL THE RCVDETACH INDI- \ ð2/21/89

ð166ðð\ CATOR IS SET. EACH RECORD RECEIVED WILL BE PRINTED ON THE PRINT \ ð2/21/89

 ð167ðð\ FILE. \ ð2/21/89

 ð168ðð\\ ð2/21/89

 ð169ðð\ 1ð/16/87

 ð17ððð RECEIVE-DATA. 1ð/16/87

Figure 10-9 (Part 4 of 6). Source Program Example — CSDBAT (User-Defined Formats)

10-10 ICF Programming V4R1

 ð171ðð\.7/ 1ð/16/87

1ð7 ð172ðð READ SRCICF INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

1ð8 ð173ðð IF ERR-SW = "1" 1ð/16/87

 1ð9 ð174ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

11ð ð175ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

111 ð176ðð IF MAJ NOT = "ð3" 1ð/16/87

112 ð177ðð MOVE ICFREC TO PRINTREC 1ð/16/87

 113 ð178ðð WRITE PRINTREC. 1ð/16/87

114 ð179ðð IF CMNF-INDIC(35) NOT = INDON 1ð/16/87

115 ð18ððð GO TO RECEIVE-DATA. 1ð/16/87

 ð181ðð\ 1ð/16/87

 ð182ðð\\ ð2/21/89

ð183ðð\ WHEN PROCESSING IS COMPLETED, END OF JOB MESSAGE IS PRINTED. \ ð2/21/89

ð184ðð\ FILES ARE CLOSED AND THE SESSION IS RELEASED. \ ð2/21/89

 ð185ðð\\ ð2/21/89

 ð186ðð\ 1ð/16/87

 ð187ðð\.8/ 1ð/16/87

116 ð188ðð MOVE "CSDBAT HAS COMPLETED NORMALLY" TO PRINTREC. 1ð/16/87

 117 ð189ðð WRITE PRINTREC. 1ð/16/87

 118 ð19ððð CLOSE DBFILE 1ð/16/87

 ð191ðð SRCICF 1ð/16/87

 ð192ðð QPRINT. 1ð/16/87

 119 ð193ðð STOP RUN. 1ð/16/87

 ð194ðð\ 1ð/16/87

 ð195ðð\\ ð2/21/89

ð196ðð\ THIS SUBROUTINE SENDS DATA TO THE REMOTE SYSTEM \ ð2/21/89

 ð197ðð\\ ð2/21/89

 ð198ðð WRITE-SRCICF-RTN. 1ð/16/87

 ð199ðð\.9/ 1ð/16/87

12ð ð2ðððð WRITE ICFREC FORMAT IS "SNDDATA" 1ð/16/87

 ð2ð1ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

121 ð2ð2ðð IF ERR-SW = "1" 1ð/16/87

 122 ð2ð3ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

123 ð2ð4ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð2ð5ðð\ 1ð/16/87

 ð2ð6ðð ERROR-RECOVERY-RTN. 1ð/16/87

 ð2ð7ðð\.1ð/ 1ð/16/87

 124 ð2ð8ðð CLOSE SRCICF 1ð/16/87

 ð2ð9ðð DBFILE 1ð/16/87

 ð21ððð QPRINT. 1ð/16/87

125 ð211ðð MOVE "ð" TO ERR-SW. 1ð/16/87

 ð212ðð\ 1ð/16/87

 ð213ðð\\ ð2/21/89

ð214ðð\ WHEN AN ERROR OCCURS ON AN ICF SESSION, INFORMATION ABOUT THE \ ð2/21/89

ð215ðð\ ERROR IS PRINTED. \ ð2/21/89

 ð216ðð\\ ð2/21/89

 ð217ðð ABNORMAL-TERMINATION. 1ð/16/87

 ð218ðð\.11/ 1ð/16/87

126 ð219ðð MOVE "CSDBAT HAS COMPLETED ABNORMALLY" 1ð/16/87

 ð22ððð TO PRINTREC. 1ð/16/87

 127 ð221ðð WRITE PRINTREC. 1ð/16/87

 128 ð222ðð STOP RUN. 1ð/16/87

 ð223ðð\ 1ð/16/87

 ð224ðð\\ ð2/21/89

ð225ðð\ WHEN END OF FILE IS DETECTED, AN INVITE OPERATION IS ISSUED TO \ ð2/21/89

ð226ðð\ NOTIFY THE TARGET THAT IT CAN START SENDING DATA. \ ð2/21/89

 ð227ðð\\ ð2/21/89

 ð228ðð INVITE-TO-SEND. 1ð/16/87

 ð229ðð\.12/ 1ð/16/87

129 ð23ððð MOVE INDON TO CMNF-INDIC(45). 1ð/16/87

13ð ð231ðð MOVE "1" TO EOF-DBFILE-SW. 1ð/16/87

131 ð232ðð WRITE ICFREC FORMAT IS "INVITE" 1ð/16/87

 ð233ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

132 ð234ðð IF ERR-SW = "1" 1ð/16/87

 133 ð235ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

134 ð236ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure 10-9 (Part 5 of 6). Source Program Example — CSDBAT (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-11

\ 19 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð27ðð

Message : Blocking/Deblocking for file 'DBFILE' will

be performed by compiler-generated code.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format EVOKPGM.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format ENDREC.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No OUTPUT fields found for format ENDREC.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format INVITE.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No OUTPUT fields found for format INVITE.

\ 39 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð35ðð

Message : Blocking/Deblocking for file 'DFILE' will be

performed by compiler-generated code.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

7 2 5 ð ð ð

 Source records read : 236

 Copy records read : 37

 Copy members processed : 1

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CSDBAT created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-9 (Part 6 of 6). Source Program Example — CSDBAT (User-Defined Formats)

10-12 ICF Programming V4R1

 Program : CSFBAT

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CSFBAT 1ð/ð3/9ð 14:27:28

 Generation severity level : 29

 Text 'description' : cobol batch file transfer using $$FORMAT (source)

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. ð2/21/89

 2 ððð2ðð PROGRAM-ID. CSFBAT. ð2/21/89

 ððð3ðð\\ ð2/21/89

ððð4ðð\ THIS IS A BATCH FILE TRANSFER PROGRAM THAT READS A SEQUENTIAL \ ð2/21/89

ððð5ðð\ FILE AND SENDS THE RECORDS TO THE REMOTE SYSTEM UNTIL THE END \ ð2/21/89

ððð6ðð\ OF FILE IS REACHED. AT THIS TIME, THE PROGRAM STOPS SENDING \ ð2/21/89

ððð7ðð\ AND STARTS RECEIVING RECORDS FROM THE REMOTE SYSTEM UNTIL \ ð2/21/89

ððð8ðð\ A DETACH INDICATION IS RECEIVED. \ ð2/21/89

 ððð9ðð\\ ð2/21/89

3 ðð1ððð ENVIRONMENT DIVISION. 1ð/16/87

4 ðð11ðð CONFIGURATION SECTION. 1ð/16/87

 5 ðð12ðð SOURCE-COMPUTER. IBM-AS4ðð. ð2/21/89

 6 ðð13ðð OBJECT-COMPUTER. IBM-AS4ðð. ð2/21/89

7 ðð14ðð SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-AREA 1ð/16/87

8 ðð15ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/16/87

9 ðð16ðð INPUT-OUTPUT SECTION. 1ð/16/87

 1ð ðð17ðð FILE-CONTROL. 1ð/16/87

 ðð18ðð\.1/ 1ð/16/87

11 ðð19ðð SELECT DBFILE ASSIGN TO DATABASE-DBFILE. 1ð/16/87

12 ðð2ððð SELECT SRCICF ASSIGN TO WORKSTATION-SRCICF-SI 1ð/16/87

13 ðð21ðð ORGANIZATION IS TRANSACTION 1ð/16/87

14 ðð22ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/16/87

15 ðð23ðð SELECT DFILE ASSIGN TO DATABASE-HEXDUMP. 1ð/16/87

16 ðð24ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/16/87

17 ðð25ðð DATA DIVISION. 1ð/16/87

18 ðð26ðð FILE SECTION. 1ð/16/87

 19 ðð27ðð FD DBFILE 1ð/16/87

2ð ðð28ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 21 ðð29ðð ð1 DBREC. 1ð/16/87

 22 ðð3ððð ð5 DBREC-DATA PIC X(8ð). 1ð/16/87

 23 ðð31ðð FD SRCICF 1ð/16/87

24 ðð32ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 25 ðð33ðð ð1 ICFREC. 1ð/16/87

 26 ðð34ðð ð5 EVOKPGM-O. 1ð/16/87

 27 ðð35ðð 1ð PGMID PIC X(8). 1ð/16/87

 28 ðð36ðð 1ð PASSWD PIC X(8). 11/16/88

 29 ðð37ðð 1ð USERID PIC X(8). 11/16/88

 3ð ðð38ðð 1ð LIB PIC X(8). 1ð/16/87

 31 ðð39ðð 1ð FILLER PIC X(52). 1ð/16/87

32 ðð4ððð ð5 SNDDATA-O REDEFINES EVOKPGM-O. 1ð/16/87

 33 ðð41ðð 1ð SNDLENGTH PIC 9(4). 1ð/16/87

 34 ðð42ðð 1ð SNDFIELD PIC X(8ð). 1ð/16/87

35 ðð43ðð ð5 INVITE-O REDEFINES EVOKPGM-O. ð2/27/89

 36 ðð44ðð 1ð INVLENGTH PIC 9(4). 1ð/16/87

 37 ðð45ðð 1ð INVFIELD PIC X(8ð). 1ð/16/87

 38 ðð46ðð FD DFILE 1ð/16/87

39 ðð47ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 4ð ðð48ðð ð1 DUMPREC. 1ð/16/87

Figure 10-10 (Part 1 of 5). Source Program Example — CSFBAT (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-13

 41 ðð49ðð ð5 DUMP-MAJ-MIN PIC X(4). 1ð/16/87

 42 ðð5ððð ð5 DUMP-RECORD PIC X(4ðð). 1ð/16/87

 43 ðð51ðð FD QPRINT 1ð/16/87

44 ðð52ðð LABEL RECORDS ARE OMITTED. 1ð/16/87

 45 ðð53ðð ð1 PRINTREC PIC X(132). 1ð/16/87

46 ðð54ðð WORKING-STORAGE SECTION. 1ð/16/87

 47 ðð55ðð 77 STATUS-IND PIC X(2). 1ð/16/87

 48 ðð56ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/16/87

49 ðð57ðð 77 EOF-DBFILE-SW PIC X VALUE "ð". 1ð/16/87

5ð ðð58ðð 77 ERR-SW PIC X VALUE "ð". 1ð/16/87

51 ðð59ðð 77 OPEN-COUNT PIC 9(1) VALUE ð. 1ð/16/87

52 ðð6ððð 77 LEN PIC 9(1ð)V9(5) COMP. 1ð/16/87

 ðð61ðð 1ð/16/87

 53 ðð62ðð 77 CMD2 PIC X(31) 1ð/16/87

54 ðð63ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/16/87

 55 ðð64ðð ð1 OPEN-FBA. 1ð/16/87

 56 ðð65ðð ð5 FILLER PIC X(75). 1ð/16/87

57 ðð66ðð ð5 RECS-IN-DB PIC 9(ð9) COMP-4. 1ð/16/87

 58 ðð67ðð ð5 FILLER PIC X(45). 1ð/16/87

 59 ðð68ðð ð1 MAJ-MIN. 1ð/16/87

 6ð ðð69ðð ð5 MAJ PIC X(2). 1ð/16/87

 61 ðð7ððð ð5 MIN PIC X(2). 1ð/16/87

 ðð71ðð/ 1ð/16/87

62 ðð72ðð PROCEDURE DIVISION. 1ð/16/87

 ðð73ðð DECLARATIVES. 1ð/16/87

ðð74ðð ERR-SECTION SECTION. 1ð/16/87

 ðð75ðð\.2/ 1ð/16/87

ðð76ðð USE AFTER STANDARD ERROR PROCEDURE ON SRCICF. 1ð/16/87

 ðð77ðð SRCICF-EXCEPTION. 1ð/16/87

 ðð78ðð\ 1ð/16/87

ðð79ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION 1ð/16/87

 ðð8ððð\ 1ð/16/87

ðð81ðð\ RECOVERABLE SESSION ERROR. CLOSE ICF FILE. 1ð/ð3/9ð

63 ðð82ðð IF MAJ = "ð3" OR MAJ = "83" 1ð/16/87

64 ðð83ðð MOVE "PROGRAM STARTED AGAIN DUE TO SESSION ERROR" 1ð/16/87

 ðð84ðð TO PRINTREC 1ð/16/87

 65 ðð85ðð WRITE PRINTREC 1ð/16/87

66 ðð86ðð MOVE "1" TO ERR-SW 1ð/16/87

67 ðð87ðð GO TO EXIT-DECLARATIVES. 1ð/16/87

 ðð88ðð\ 1ð/16/87

 ðð89ðð\\ ð2/21/89

ðð9ððð\ WHEN THERE IS A PERMANENT SESSION ERROR DETECTED, THE MAJOR-MINOR\ ð2/21/89

ðð91ðð\ CODE IS PLACED INTO A DATABASE FILE AND THE FILE IS PRINTED IN \ ð2/21/89

ðð92ðð\ HEX USING COPYFILE. \ ð2/21/89

 ðð93ðð\\ ð2/21/89

 ðð94ðð\ 1ð/16/87

 ðð95ðð GETFBA. 1ð/16/87

68 ðð96ðð OPEN OUTPUT DFILE. 1ð/16/87

69 ðð97ðð MOVE MAJ-MIN TO DUMP-MAJ-MIN. 1ð/16/87

7ð ðð98ðð MOVE ICFREC TO DUMP-RECORD. 1ð/16/87

 71 ðð99ðð WRITE DUMPREC. 1ð/16/87

 72 ð1ðððð CLOSE DFILE. 1ð/16/87

73 ð1ð1ðð MOVE 31 TO LEN. 1ð/16/87

74 ð1ð2ðð CALL "QCMDEXC" USING CMD2 LEN. 1ð/16/87

75 ð1ð3ðð MOVE "PROGRAM TERMINATED DUE TO ERROR IN ICF FILE" 1ð/ð3/9ð

 ð1ð4ðð TO PRINTREC. 1ð/16/87

 76 ð1ð5ðð WRITE PRINTREC. 1ð/16/87

 77 ð1ð6ðð STOP RUN. 1ð/16/87

 ð1ð7ðð\ 1ð/16/87

 ð1ð8ðð EXIT-DECLARATIVES. 1ð/16/87

 ð1ð9ðð EXIT. ð2/28/89

 ð11ððð\ 1ð/16/87

78 ð111ðð END DECLARATIVES. 1ð/16/87

 ð112ðð/ 1ð/16/87

Figure 10-10 (Part 2 of 5). Source Program Example — CSFBAT (System-Supplied Formats)

10-14 ICF Programming V4R1

 ð113ðð START-PROGRAM SECTION. 1ð/16/87

 ð114ðð\ 1ð/16/87

 ð115ðð START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð116ðð\.3/ 1ð/16/87

79 ð117ðð OPEN INPUT DBFILE 1ð/16/87

 ð118ðð I-O SRCICF 1ð/16/87

 ð119ðð OUTPUT QPRINT. 1ð/16/87

 ð12ððð\ 1ð/16/87

 ð121ðð\\ ð2/21/89

ð122ðð\ THE FOLLOWING TEST IS TO ATTEMPT RECOVERY IF AN ERROR OCCURS \ ð2/21/89

ð123ðð\ WHEN OPENING THE ICF FILE. \ ð2/21/89

 ð124ðð\\ ð2/21/89

 ð125ðð\.4/ 1ð/16/87

8ð ð126ðð IF ERR-SW = "1" 1ð/16/87

81 ð127ðð THEN IF OPEN-COUNT IS = 9 1ð/16/87

82 ð128ðð THEN GO TO ABNORMAL-TERMINATION 1ð/16/87

 ð129ðð ELSE 1ð/16/87

83 ð13ððð ADD 1 TO OPEN-COUNT 1ð/16/87

 84 ð131ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

85 ð132ðð GO TO START-PROGRAM-PARAGRAPH 1ð/16/87

 ð133ðð ELSE 1ð/16/87

86 ð134ðð MOVE ð TO OPEN-COUNT. 1ð/16/87

 ð135ðð\ 1ð/16/87

 ð136ðð\\ ð2/21/89

ð137ðð\ EVOKE THE PROGRAM "CTDBATCL" ON THE REMOTE SYSTEM IN LIBRARY \ ð2/21/89

ð138ðð\ ICFLIB. INDICATOR IN5ð IS THE EVOKE KEYWORD. \ ð2/21/89

 ð139ðð\\ ð2/21/89

 ð14ððð\.5/ 1ð/16/87

87 ð141ðð MOVE SPACES TO EVOKPGM-O. 1ð/16/87

88 ð142ðð MOVE "CTFBATCL" TO PGMID OF EVOKPGM-O. 1ð/16/87

89 ð143ðð MOVE "QSECOFR" TO PASSWD OF EVOKPGM-O. 11/16/88

9ð ð144ðð MOVE "QSECOFR" TO USERID OF EVOKPGM-O. 11/16/88

91 ð145ðð MOVE "ICFLIB" TO LIB OF EVOKPGM-O. 1ð/16/87

92 ð146ðð WRITE ICFREC FORMAT IS "$$EVOKNI". 1ð/16/87

93 ð147ðð IF ERR-SW = "1" 1ð/16/87

 94 ð148ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

95 ð149ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð15ððð\ 1ð/16/87

 ð151ðð\\ ð2/21/89

ð152ðð\ WHEN THE EVOKE OPERATION IS SUCCESSFUL, A RECORD FROM THE DATA- \ ð2/21/89

ð153ðð\ BASE FILE IS READ AND THEN SENT TO THE TARGET SYSTEM. THIS WILL \ ð2/21/89

ð154ðð\ BE REPEATED UNTIL THE END OF FILE IS REACHED ON THE DATABASE \ ð2/21/89

ð155ðð\ FILE. AT END OF FILE, THE PROGRAM DEVICE IS INVITED AND THE READ \ ð2/21/89

ð156ðð\ OPERATION IS ISSUED TO GET THE DATA FROM THE REMOTE SYSTEM. \ ð2/21/89

 ð157ðð\\ ð2/21/89

 ð158ðð\ 1ð/16/87

 ð159ðð SEND-DATA. 1ð/16/87

 ð16ððð\.6/ 1ð/16/87

 96 ð161ðð READ DBFILE 1ð/16/87

 ð162ðð AT END 1ð/16/87

 97 ð163ðð PERFORM INVITE-TO-SEND. 1ð/16/87

98 ð164ðð IF EOF-DBFILE-SW NOT = "1" 1ð/16/87

99 ð165ðð MOVE DBREC-DATA TO SNDFIELD OF SNDDATA-O 1ð/16/87

1ðð ð166ðð MOVE +8ð TO SNDLENGTH OF SNDDATA-O 1ð/16/87

 1ð1 ð167ðð PERFORM WRITE-SRCICF-RTN 1ð/16/87

1ð2 ð168ðð GO TO SEND-DATA. 1ð/16/87

 ð169ðð\ 1ð/16/87

Figure 10-10 (Part 3 of 5). Source Program Example — CSFBAT (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-15

 ð17ððð\\ ð2/21/89

ð171ðð\ A READ OPERATION IS ISSUED TO PROGRAM DEVICE TO CONTINUE \ ð2/21/89

ð172ðð\ RECEIVING DATA FROM THE REMOTE SYSTEM UNTIL THE RCVDETACH \ ð2/21/89

ð173ðð\ INDICATOR IS SET. EACH RECORD RECEIVED WILL BE PRINTED TO THE \ ð2/21/89

ð174ðð\ PRINT FILE. \ ð2/21/89

 ð175ðð\\ ð2/21/89

 ð176ðð\ 1ð/16/87

 ð177ðð RECEIVE-DATA. 1ð/16/87

 ð178ðð\.7/ 1ð/16/87

 1ð3 ð179ðð READ SRCICF. 1ð/16/87

1ð4 ð18ððð IF ERR-SW = "1" 1ð/16/87

 1ð5 ð181ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

1ð6 ð182ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

1ð7 ð183ðð IF MAJ NOT = "ð3" 1ð/16/87

1ð8 ð184ðð MOVE ICFREC TO PRINTREC 1ð/16/87

 1ð9 ð185ðð WRITE PRINTREC. 1ð/16/87

11ð ð186ðð IF MIN NOT = "ð8" 1ð/16/87

111 ð187ðð GO TO RECEIVE-DATA. 1ð/16/87

 ð188ðð\ 1ð/16/87

 ð189ðð\\\ ð2/21/89

ð19ððð\ WHEN PROCESSING IS COMPLETED, END OF JOB MESSAGE IS PRINTED. \ ð2/21/89

ð191ðð\ FILES ARE CLOSED AND THE SESSION IS ENDED. \ ð2/21/89

 ð192ðð\\\ ð2/21/89

 ð193ðð\ 1ð/16/87

 ð194ðð\.8/ 1ð/16/87

112 ð195ðð MOVE "CSFBAT HAS COMPLETED NORMALLY" TO PRINTREC. 1ð/16/87

 113 ð196ðð WRITE PRINTREC. 1ð/16/87

 114 ð197ðð CLOSE DBFILE 1ð/16/87

 ð198ðð SRCICF 1ð/16/87

 ð199ðð QPRINT. 1ð/16/87

 115 ð2ðððð STOP RUN. 1ð/16/87

 ð2ð1ðð\ 1ð/16/87

 ð2ð2ðð\\ ð2/21/89

ð2ð3ðð\ THIS SUBROUTINE SENDS DATA TO THE REMOTE SYSTEM \ ð2/21/89

 ð2ð4ðð\\ ð2/21/89

 ð2ð5ðð WRITE-SRCICF-RTN. 1ð/16/87

 ð2ð6ðð\.9/ 1ð/16/87

116 ð2ð7ðð WRITE ICFREC FORMAT IS "$$SENDNI". 1ð/16/87

117 ð2ð8ðð IF ERR-SW = "1" 1ð/16/87

 118 ð2ð9ðð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

119 ð21ððð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

 ð211ðð\ 1ð/16/87

 ð212ðð ERROR-RECOVERY-RTN. 1ð/16/87

 ð213ðð\.1ð/ 1ð/16/87

 12ð ð214ðð CLOSE SRCICF 1ð/16/87

 ð215ðð DBFILE 1ð/16/87

 ð216ðð QPRINT. 1ð/16/87

121 ð217ðð MOVE "ð" TO ERR-SW. 1ð/16/87

 ð218ðð\ 1ð/16/87

 ð219ðð\\ ð2/21/89

ð22ððð\ WHEN AN ERROR OCCURS ON AN ICF SESSION, INFORMATION ABOUT \ 1ð/ð3/9ð

ð221ðð\ THE ERROR IS PRINTED. \ ð2/21/89

 ð222ðð\\ ð2/21/89

 ð223ðð ABNORMAL-TERMINATION. 1ð/16/87

 ð224ðð\.11/ 1ð/16/87

122 ð225ðð MOVE "CSFBAT HAS COMPLETED ABNORMALLY" 1ð/16/87

 ð226ðð TO PRINTREC. 1ð/16/87

 123 ð227ðð WRITE PRINTREC. 1ð/16/87

 124 ð228ðð STOP RUN. 1ð/16/87

 ð229ðð\ 1ð/16/87

Figure 10-10 (Part 4 of 5). Source Program Example — CSFBAT (System-Supplied Formats)

10-16 ICF Programming V4R1

 ð23ððð\\ ð2/21/89

ð231ðð\ WHEN END OF FILE IS DETECTED, AN INVITE OPERATION IS ISSUED TO \ ð2/21/89

ð232ðð\ NOTIFY THE TARGET THAT IT CAN START SENDING DATA. \ ð2/21/89

 ð233ðð\\ ð2/21/89

 ð234ðð INVITE-TO-SEND. 1ð/16/87

 ð235ðð\.12/ 1ð/16/87

125 ð236ðð MOVE "1" TO EOF-DBFILE-SW. 1ð/16/87

126 ð237ðð MOVE +ð TO INVLENGTH OF INVITE-O. 1ð/16/87

127 ð238ðð WRITE ICFREC FORMAT IS "$$SEND". 1ð/16/87

128 ð239ðð IF ERR-SW = "1" 1ð/16/87

 129 ð24ððð PERFORM ERROR-RECOVERY-RTN 1ð/16/87

13ð ð241ðð GO TO START-PROGRAM-PARAGRAPH. 1ð/16/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 19 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð27ðð

Message : Blocking/Deblocking for file 'DBFILE' will

be performed by compiler-generated code.

\ 38 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð46ðð

Message : Blocking/Deblocking for file 'DFILE' will be

performed by compiler-generated code.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

2 2 ð ð ð ð

 Source records read : 241

 Copy records read : ð

 Copy members processed : ð

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program CSFBAT created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-10 (Part 5 of 5). Source Program Example — CSFBAT (System-Supplied Formats)

Target Program Batch Transfer (Example I): The
following describes a COBOL target program batch transfer
program.

Program Files: The COBOL batch transfer target program
uses the following files:

TGTICF
An ICF file used to send records to and receive
records from the source program.

DBFILE
A database file that contains the records to be sent
to the source program.

QPRINT
A printer file used to print the records received from
the source program.

DDS Source: The DDS source used in the ICF file is illus-
trated in the following example. The other files (DBFILE and
QPRINT) are program-described and therefore requires no
DDS.

 A\\\

 A\ \

 A\ ICF FILE \

A\ USED IN BATCH DATA TRANSFER PROGRAM \

 A\ \

 A\\\

 A\

A\ FILE LEVEL INDICATORS:

 A\

 A INDARA

 A\

A RCVTRNRND(15 'END OF DATA')

 A\

 A 3ð DETACH

 A\

A INDTXT(3ð '3ð->DETACH TARG-

 A GET PROGRAM.')

 A\

 A RCVDETACH(35 'RECEIVED -

 A DETACHED.')

 A\

 A\

 A\\

A\ ICF RECORD FORMATS \

 A\\

 R RCVDATA

 RCVFLD 8ðA

 R SNDDATA

 SNDFLD 8ðA

 R EVOKPGM

 A 5ð EVOKE(&LIB/&PGMID)

A 5ð SECURITY(2 'PASSWRD' +

 3 'USERID')

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ENDREC

 A R INVITE

 A 45 INVITE

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/TGTICF) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(TGTICF) ACQPGMDEV(PGMDEVB) TEXT('TARGET ICF

FILE FOR BATCH DATA TRANSFER')

The command needed to define the program device entry is:
ADDICFDEVE FILE(ICFLIB/TGTICF) PGMDEV(PGMDEVB)

 RMTLOCNAME(\REQUESTER)

 Chapter 10. COBOL/400 Communications Applications 10-17

This example acquires all sessions at the beginning of the
program. For performance considerations, you may not want
to acquire sessions until they are actually needed in the
program.

Program Explanation: The following describes the struc-
ture of the program examples illustrated in Figure 10-11 on
page 10-19 and Figure 10-12 on page 10-23. The ICF file
used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference numbers
in the explanation below correspond to the numbers in the
following program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the use of user-
defined formats and system-supplied formats.

Differences between the first and second example are docu-
mented as notes in each of the descriptions.

.1/ This section identifies the files used in the program.
TGTICF is the ICF file used to send records to the
source program.

This section also contains declarations of I/O variables,
work areas, and constants needed. MAJ-MIN contains
the major/minor return code from the I/O feedback
area.

Note: In the program using system-supplied formats,
the input records for TGTICF are explicitly coded in the
program since TGTICF is now treated as a program-
described file. The system-supplied file, QICDMF, can
be used instead of TGTICF. Using the system-
supplied file can be done by specifying QICDMF in the
file specification, or by using an OVRICFF command to
change the file name from TGTICF to QICDMF. The
OVRICFF command can also be used to change the
ACQPGMDEV parameter of the file.

.2/ The program defines the error handling for the
program. If an error occurs, the program writes the fol-
lowing message to the printer file:

CTDBAT HAS COMPLETED ABNORMALLY

The session is released.

Note: In the program using system-supplied formats,
the program name is CTFBAT.

.3/ The program opens the files that are going to be used
as follows:

DBFILE
The database file used as input for transmit-
ting to the source program

QPRINT
The printer file used as output for records
received

TGTICF
The ICF file used to receive data from and
send data to the source program

Because the ICF file was created using the
ACQPGMDEV parameter, the program device
is automatically acquired when the file is
opened. Therefore, no acquire operation is
coded in the program.

.4/ Data is read from the program device (TGTICF file).

If an error occurs on the read (major return code
greater than '03'), control passes to .2/. Otherwise if
data was received (major return code not = '03'), then
the data is written to the printer file (QPRINT).

.5/ Data records are read until the change-direction indi-
cator is received from the source program. When
change direction is received, indicator 15 is set on, as
defined by the RCVTRNRND keyword in the DDS for
the ICF file, and control is passed to .6/.

Note: In the program using system-supplied formats,
the minor return code of '00' is checked to verify
whether change direction is received.

.6/ The database file is read and the records sent to the
source program until the end of the database file. At
end-of-file, the program passes control to .7/.

If it is not the last record, then the data is written to the
program device using the format SNDDATA, and the
next database record is read. If an error occurs on the
write operation, the program goes to .2/ and a
message is printed.

Note: In the program using system-supplied formats,
the $$SENDNI format is used instead of the user-
defined SNDDATA format.

.7/ This routine issues a detach request to the program
device using format ENDREC. Indicator 30 is associ-
ated with the DETACH keyword. If an error occurs, the
program goes to .2/ and a message is printed.

Note: In the program using system-supplied formats,
the $$SENDET format is used instead of the user-
defined ENDREC format.

.8/ After the detach request has been sent, the following
message is written to the printer file:

CTDBAT HAS COMPLETED NORMALLY

The files are closed. The program device is automat-
ically released as a result of the close operation, and
the program ends.

Note: In the program using system-supplied formats,
the program name is CTFBAT.

10-18 ICF Programming V4R1

 Program : CTDBAT

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CTDBAT ð2/21/89 17:51:2ð

 Generation severity level : 29

 Text 'description' : cobol batch file transfer using dds (target)

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. ð2/21/89

 2 ððð2ðð PROGRAM-ID. CTDBAT. ð2/21/89

 ððð3ðð\\ ð2/21/89

ððð4ðð\ THIS TARGET PROGRAM IS EVOKED BY THE SOURCE PROGRAM AND \ ð2/21/89

ððð5ðð\ RECEIVES RECORDS FROM IT. WHEN THE SOURCE PROGRAM IS DONE \ ð2/21/89

ððð6ðð\ SENDING DATA, THIS PROGRAM SENDS ITS OWN RECORDS UNTIL IT IS \ ð2/21/89

ððð7ðð\ DONE. WHEN IT IS DONE, IT SENDS A DETACH REQUEST TO THE SOURCE\ ð2/21/89

ððð8ðð\ PROGRAM AND ENDS ITS SESSION AND JOB. \ ð2/21/89

 ððð9ðð\\ ð2/21/89

3 ðð1ððð ENVIRONMENT DIVISION. 1ð/16/87

4 ðð11ðð CONFIGURATION SECTION. 1ð/16/87

 5 ðð12ðð SOURCE-COMPUTER. IBM-AS4ðð. ð2/21/89

 6 ðð13ðð OBJECT-COMPUTER. IBM-AS4ðð. ð2/21/89

7 ðð14ðð SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-AREA 1ð/16/87

8 ðð15ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/16/87

9 ðð16ðð INPUT-OUTPUT SECTION. 1ð/16/87

 ðð17ðð\.1/ 1ð/16/87

 1ð ðð18ðð FILE-CONTROL. 1ð/16/87

11 ðð19ðð SELECT DBFILE ASSIGN TO DATABASE-DBFILE. 1ð/16/87

12 ðð2ððð SELECT TGTICF ASSIGN TO WORKSTATION-TGTICF-SI 1ð/16/87

13 ðð21ðð ORGANIZATION IS TRANSACTION 1ð/16/87

14 ðð22ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/16/87

15 ðð23ðð SELECT DFILE ASSIGN TO DATABASE-HEXDUMP. 1ð/16/87

16 ðð24ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/16/87

17 ðð25ðð DATA DIVISION. 1ð/16/87

18 ðð26ðð FILE SECTION. 1ð/16/87

 19 ðð27ðð FD DBFILE 1ð/16/87

2ð ðð28ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 21 ðð29ðð ð1 DBREC. 1ð/16/87

 22 ðð3ððð ð5 DBREC-DATA PIC X(8ð). 1ð/16/87

 23 ðð31ðð FD TGTICF 1ð/16/87

24 ðð32ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 25 ðð33ðð ð1 ICFREC. 1ð/16/87

26 ðð34ðð COPY DDS-ALL-FORMATS OF TGTICF. 1ð/16/87

27 +ððððð1 ð5 TGTICF-RECORD PIC X(8ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:RCVDATA FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 28 +ððððð4 ð5 RCVDATA-I REDEFINES TGTICF-RECORD. <-ALL-FMTS

 29 +ððððð5 ð6 RCVFLD PIC X(8ð). <-ALL-FMTS

+ððððð6\ OUTPUT FORMAT:RCVDATA FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 3ð +ððððð8 ð5 RCVDATA-O REDEFINES TGTICF-RECORD. <-ALL-FMTS

 31 +ððððð9 ð6 RCVFLD PIC X(8ð). <-ALL-FMTS

+ðððð1ð\ INPUT FORMAT:SNDDATA FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð11\ <-ALL-FMTS

 32 +ðððð12 ð5 SNDDATA-I REDEFINES TGTICF-RECORD. <-ALL-FMTS

 33 +ðððð13 ð6 SNDFLD PIC X(8ð). <-ALL-FMTS

Figure 10-11 (Part 1 of 5). Target Program Example — CTDBAT (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-19

+ðððð14\ OUTPUT FORMAT:SNDDATA FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð15\ <-ALL-FMTS

 34 +ðððð16 ð5 SNDDATA-O REDEFINES TGTICF-RECORD. <-ALL-FMTS

 35 +ðððð17 ð6 SNDFLD PIC X(8ð). <-ALL-FMTS

+ðððð18\ INPUT FORMAT:EVOKPGM FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð19\ <-ALL-FMTS

 +ðððð2ð\ ð5 EVOKPGM-I REDEFINES TGTICF-RECORD. <-ALL-FMTS

+ðððð21\ OUTPUT FORMAT:EVOKPGM FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

 36 +ðððð23 ð5 EVOKPGM-O REDEFINES TGTICF-RECORD. <-ALL-FMTS

 37 +ðððð24 ð6 PGMID PIC X(1ð). <-ALL-FMTS

 38 +ðððð25 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð26\ INPUT FORMAT:ENDREC FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð27\ <-ALL-FMTS

 +ðððð28\ ð5 ENDREC-I REDEFINES TGTICF-RECORD. <-ALL-FMTS

+ðððð29\ OUTPUT FORMAT:ENDREC FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð3ð\ <-ALL-FMTS

 +ðððð31\ ð5 ENDREC-O REDEFINES TGTICF-RECORD. <-ALL-FMTS

+ðððð32\ INPUT FORMAT:INVITE FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð33\ <-ALL-FMTS

 +ðððð34\ ð5 INVITE-I REDEFINES TGTICF-RECORD. <-ALL-FMTS

+ðððð35\ OUTPUT FORMAT:INVITE FROM FILE TGTICF OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð36\ <-ALL-FMTS

 +ðððð37\ ð5 INVITE-O REDEFINES TGTICF-RECORD. <-ALL-FMTS

 39 ðð35ðð FD DFILE 1ð/16/87

4ð ðð36ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 41 ðð37ðð ð1 DUMPREC. 1ð/16/87

 42 ðð38ðð ð5 DUMP-MAJ-MIN PIC X(4). 1ð/16/87

 43 ðð39ðð ð5 DUMP-RECORD PIC X(8ð). 1ð/16/87

 44 ðð4ððð FD QPRINT 1ð/16/87

45 ðð41ðð LABEL RECORDS ARE OMITTED. 1ð/16/87

 46 ðð42ðð ð1 PRINTREC PIC X(132). 1ð/16/87

47 ðð43ðð WORKING-STORAGE SECTION. 1ð/16/87

 48 ðð44ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/16/87

 49 ðð45ðð 77 STATUS-IND PIC X(2). 1ð/16/87

5ð ðð46ðð 77 INDON PIC 1 VALUE B"1". 1ð/16/87

51 ðð47ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/16/87

52 ðð48ðð 77 LEN PIC 9(1ð)V9(5) COMP 1ð/16/87

 53 ðð49ðð VALUE ð. 1ð/16/87

 54 ðð5ððð 77 CMD2 PIC X(31) 1ð/16/87

55 ðð51ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/16/87

 56 ðð52ðð ð1 CMNF-INDIC-AREA. 1ð/16/87

57 ðð53ðð ð5 CMNF-INDIC PIC 1 OCCURS 99 TIMES 1ð/16/87

 58 ðð54ðð INDICATOR 1. 1ð/16/87

 59 ðð55ðð ð1 OPEN-FBA. 1ð/16/87

 6ð ðð56ðð ð5 FILLER PIC X(75). 1ð/16/87

61 ðð57ðð ð5 RECS-IN-DB PIC 9(ð9) COMP-4. 1ð/16/87

 62 ðð58ðð ð5 FILLER PIC X(45). 1ð/16/87

 63 ðð59ðð ð1 MAJ-MIN. 1ð/16/87

 64 ðð6ððð ð5 MAJ PIC X(2). 1ð/16/87

 65 ðð61ðð ð5 MIN PIC X(2). 1ð/16/87

 ðð62ðð/ 1ð/16/87

66 ðð63ðð PROCEDURE DIVISION. 1ð/16/87

 ðð64ðð DECLARATIVES. 1ð/16/87

ðð65ðð ERR-SECTION SECTION. 1ð/16/87

 ðð66ðð\.2/ 1ð/16/87

 ðð67ðð\ 1ð/16/87

ðð68ðð USE AFTER STANDARD ERROR PROCEDURE ON TGTICF. 1ð/16/87

 ðð69ðð TGTICF-EXCEPTION. 1ð/16/87

 ðð7ððð\ 1ð/16/87

Figure 10-11 (Part 2 of 5). Target Program Example — CTDBAT (User-Defined Formats)

10-20 ICF Programming V4R1

 ðð71ðð\\ ð2/21/89

ðð72ðð\ GET INFORMATION FROM THE MAJOR-MINOR CODE AND PLACE IT INTO \ ð2/21/89

ðð73ðð\ A DATABASE FILE. THEN PRINT THE FILE IN HEX USING COPYFILE. \ ð2/21/89

 ðð74ðð\\ ð2/21/89

 ðð75ðð\ 1ð/16/87

 ðð76ðð GETFBA. 1ð/16/87

67 ðð77ðð MOVE "CTDBAT HAS COMPLETED ABNORMALLY" TO PRINTREC. 1ð/16/87

 68 ðð78ðð WRITE PRINTREC. 1ð/16/87

69 ðð79ðð OPEN OUTPUT DFILE. 1ð/16/87

7ð ðð8ððð MOVE MAJ-MIN TO DUMP-MAJ-MIN. 1ð/16/87

71 ðð81ðð MOVE ICFREC TO DUMP-RECORD. 1ð/16/87

 72 ðð82ðð WRITE DUMPREC. 1ð/16/87

 73 ðð83ðð CLOSE DFILE. 1ð/16/87

74 ðð84ðð MOVE 31 TO LEN. 1ð/16/87

75 ðð85ðð CALL "QCMDEXC" USING CMD2 LEN. 1ð/16/87

 76 ðð86ðð STOP RUN. 1ð/16/87

 ðð87ðð\ 1ð/16/87

 ðð88ðð EXIT-DECLARATIVES. 1ð/16/87

 ðð89ðð EXIT. 1ð/16/87

 ðð9ððð\ 1ð/16/87

77 ðð91ðð END DECLARATIVES. 1ð/16/87

 ðð92ðð/ 1ð/16/87

Figure 10-11 (Part 3 of 5). Target Program Example — CTDBAT (User-Defined Formats)

 ðð93ðð START-PROGRAM SECTION. 1ð/16/87

 ðð94ðð START-PROGRAM-PARAGRAPH. 1ð/16/87

 ðð95ðð\.3/ 1ð/16/87

78 ðð96ðð OPEN OUTPUT QPRINT 1ð/16/87

 ðð97ðð I-O TGTICF 1ð/16/87

 ðð98ðð INPUT DBFILE. 1ð/16/87

 ðð99ðð\ 1ð/16/87

 ð1ðððð\\ ð2/21/89

ð1ð1ðð\ DATA CONTINUES TO BE RECEIVED FROM THE PROGRAM DEVICE UNTIL THE \ ð2/21/89

ð1ð2ðð\ RCVTRNRND INDICATOR IS SET. EACH RECORD RECEIVED IS PRINTED TO \ ð2/21/89

ð1ð3ðð\ THE PRINT FILE. \ ð2/21/89

 ð1ð4ðð\\ ð2/21/89

 ð1ð5ðð\ 1ð/16/87

 ð1ð6ðð RECEIVE-DATA. 1ð/16/87

 ð1ð7ðð\.4/ 1ð/16/87

79 ð1ð8ðð READ TGTICF INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

8ð ð1ð9ðð IF MAJ NOT = "ð3" 1ð/16/87

81 ð11ððð MOVE ICFREC TO PRINTREC 1ð/16/87

 82 ð111ðð WRITE PRINTREC. 1ð/16/87

 ð112ðð\.5/ 1ð/16/87

83 ð113ðð IF CMNF-INDIC(15) NOT = INDON 1ð/16/87

84 ð114ðð GO TO RECEIVE-DATA. 1ð/16/87

 ð115ðð\ 1ð/16/87

 ð116ðð\\ ð2/21/89

ð117ðð\ RECORD IS READ FROM THE DATABASE FILE AND SENT TO THE SOURCE \ ð2/21/89

ð118ðð\ PROGRAM. DATA TRANSMISSION CONTINUES UNTIL END OF FILE IS \ ð2/21/89

ð119ðð\ DETECTED ON THE DATABASE FILE. AT THIS TIME, A DETACH REQUEST \ ð2/21/89

ð12ððð\ IS SENT TO THE SOURCE PROGRAM. \ ð2/21/89

 ð121ðð\\ ð2/21/89

 ð122ðð\ 1ð/16/87

 ð123ðð SEND-DATA. 1ð/16/87

 ð124ðð\.6/ 1ð/16/87

85 ð125ðð READ DBFILE AT END GO TO SIGNAL-DETACH. 1ð/16/87

87 ð126ðð WRITE ICFREC FROM DBREC FORMAT IS "SNDDATA" 1ð/16/87

ð127ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

88 ð128ðð GO TO SEND-DATA. 1ð/16/87

 ð129ðð\ 1ð/16/87

 ð13ððð\\ ð2/21/89

ð131ðð\ SIGNAL DETACH TO THE SOURCE PROGRAM. \ ð2/21/89

 ð132ðð\\ ð2/21/89

 ð133ðð\ 1ð/16/87

 ð134ðð SIGNAL-DETACH. 1ð/16/87

 ð135ðð\.7/ 1ð/16/87

89 ð136ðð MOVE INDON TO CMNF-INDIC(3ð). 1ð/16/87

9ð ð137ðð WRITE ICFREC FORMAT IS "ENDREC" 1ð/16/87

 ð138ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/16/87

Figure 10-11 (Part 4 of 5). Target Program Example — CTDBAT (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-21

 ð139ðð\\\ ð2/21/89

ð14ððð\ WHEN THE END OF FILE IS REACHED, AN EOJ MESSAGE IS PRINTED \ ð2/21/89

ð141ðð\ AND THE PROGRAM ENDS. \ ð2/21/89

 ð142ðð\\\ ð2/21/89

 ð143ðð\.8/ 1ð/16/87

91 ð144ðð MOVE "CTDBAT HAS COMPLETED NORMALLY" TO PRINTREC 1ð/16/87

 92 ð145ðð WRITE PRINTREC. 1ð/16/87

 93 ð146ðð CLOSE DBFILE 1ð/16/87

 ð147ðð TGTICF 1ð/16/87

 ð148ðð QPRINT. 1ð/16/87

 94 ð149ðð STOP RUN. 1ð/16/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 19 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð27ðð

Message : Blocking/Deblocking for file 'DBFILE' will

be performed by compiler-generated code.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format EVOKPGM.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format ENDREC.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No OUTPUT fields found for format ENDREC.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No INPUT fields found for format INVITE.

\ 26 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð34ðð

Message : No OUTPUT fields found for format INVITE.

\ 39 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð35ðð

Message : Blocking/Deblocking for file 'DFILE' will be

performed by compiler-generated code.

\ 67 MSGID: LBLð335 SEVERITY: ðð SEQNBR: ðð76ðð

Message : Empty paragraph or section precedes 'GETFBA'

paragraph or section.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5–-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

8 3 5 ð ð ð

 Source records read : 149

 Copy records read : 37

 Copy members processed : 1

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CTDBAT created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-11 (Part 5 of 5). Target Program Example — CTDBAT (User-Defined Formats)

10-22 ICF Programming V4R1

 Program : CTFBAT

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CTFBAT ð2/27/89 ð9:38:46

 Generation severity level : 29

 Text 'description' : cobol batch file transfer using $$FORMAT (target)

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. ð2/21/89

 2 ððð2ðð PROGRAM-ID. CTFBAT. ð2/21/89

 ððð3ðð\\ ð2/22/89

ððð4ðð\ THIS TARGET PROGRAM IS EVOKED BY THE SOURCE PROGRAM AND \ ð2/22/89

ððð5ðð\ RECEIVES RECORDS FROM IT. WHEN THE SOURCE PROGRAM IS DONE \ ð2/22/89

ððð6ðð\ SENDING DATA, THIS PROGRAM SENDS ITS OWN RECORDS UNTIL IT IS \ ð2/22/89

ððð7ðð\ DONE. WHEN THIS PROGRAM IS DONE, IT SENDS A DETACH REQUEST TO \ ð2/22/89

ððð8ðð\ THE SOURCE PROGRAM AND ENDS ITS SESSION AND JOB. \ ð2/22/89

 ððð9ðð\\ ð2/22/89

3 ðð1ððð ENVIRONMENT DIVISION. 1ð/16/87

4 ðð11ðð CONFIGURATION SECTION. 1ð/16/87

 5 ðð12ðð SOURCE-COMPUTER. IBM-AS4ðð. ð2/21/89

 6 ðð13ðð OBJECT-COMPUTER. IBM-AS4ðð. ð2/21/89

7 ðð14ðð SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-AREA 1ð/16/87

8 ðð15ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/16/87

9 ðð16ðð INPUT-OUTPUT SECTION. 1ð/16/87

 ðð17ðð\.1/ 1ð/16/87

 1ð ðð18ðð FILE-CONTROL. 1ð/16/87

11 ðð19ðð SELECT DBFILE ASSIGN TO DATABASE-DBFILE. 1ð/16/87

12 ðð2ððð SELECT TGTICF ASSIGN TO WORKSTATION-TGTICF-SI 1ð/16/87

13 ðð21ðð ORGANIZATION IS TRANSACTION 1ð/16/87

14 ðð22ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/16/87

15 ðð23ðð SELECT DFILE ASSIGN TO DATABASE-HEXDUMP. 1ð/16/87

16 ðð24ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/16/87

17 ðð25ðð DATA DIVISION. 1ð/16/87

18 ðð26ðð FILE SECTION. 1ð/16/87

 19 ðð27ðð FD DBFILE 1ð/16/87

2ð ðð28ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 21 ðð29ðð ð1 PREC. 1ð/16/87

 22 ðð3ððð ð5 PREC-DATA PIC X(8ð). 1ð/16/87

 23 ðð31ðð FD TGTICF 1ð/16/87

24 ðð32ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 25 ðð33ðð ð1 ICFREC. 1ð/16/87

 26 ðð34ðð ð5 SNDDATA-O. 1ð/16/87

 27 ðð35ðð 1ð SNDLENGTH PIC 9(4). 1ð/16/87

 28 ðð36ðð 1ð SNDFIELD PIC X(8ð). 1ð/16/87

29 ðð37ðð ð5 ENDREC-O REDEFINES SNDDATA-O. 1ð/16/87

 3ð ðð38ðð 1ð ENDLENGTH PIC 9(4). 1ð/16/87

 31 ðð39ðð 1ð FILLER PIC X(8ð). 1ð/16/87

 32 ðð4ððð FD DFILE 1ð/16/87

33 ðð41ðð LABEL RECORDS ARE STANDARD. 1ð/16/87

 34 ðð42ðð ð1 DUMPREC. 1ð/16/87

 35 ðð43ðð ð5 DUMP-MAJ-MIN PIC X(4). 1ð/16/87

 36 ðð44ðð ð5 DUMP-RECORD PIC X(8ð). 1ð/16/87

 37 ðð45ðð FD QPRINT 1ð/16/87

38 ðð46ðð LABEL RECORDS ARE OMITTED. 1ð/16/87

 39 ðð47ðð ð1 PRINTREC PIC X(132). 1ð/16/87

Figure 10-12 (Part 1 of 3). Target Program Example — CTFBAT (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-23

4ð ðð48ðð WORKING-STORAGE SECTION. 1ð/16/87

 41 ðð49ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/16/87

 42 ðð5ððð 77 STATUS-IND PIC X(2). 1ð/16/87

43 ðð51ðð 77 INDON PIC 1 VALUE B"1". 1ð/16/87

44 ðð52ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/16/87

45 ðð53ðð 77 LEN PIC 9(1ð)V9(5) COMP 1ð/16/87

 46 ðð54ðð VALUE ð. 1ð/16/87

 47 ðð55ðð 77 CMD2 PIC X(31) 1ð/16/87

48 ðð56ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/16/87

 49 ðð57ðð ð1 OPEN-FBA. 1ð/16/87

 5ð ðð58ðð ð5 FILLER PIC X(75). 1ð/16/87

51 ðð59ðð ð5 RECS-IN-DB PIC 9(ð9) COMP-4. 1ð/16/87

 52 ðð6ððð ð5 FILLER PIC X(45). 1ð/16/87

 53 ðð61ðð ð1 MAJ-MIN. 1ð/16/87

 54 ðð62ðð ð5 MAJ PIC X(2). 1ð/16/87

 55 ðð63ðð ð5 MIN PIC X(2). 1ð/16/87

 ðð64ðð/ 1ð/16/87

56 ðð65ðð PROCEDURE DIVISION. 1ð/16/87

 ðð66ðð DECLARATIVES. 1ð/16/87

ðð67ðð ERR-SECTION SECTION. 1ð/16/87

 ðð68ðð\.2/ 1ð/16/87

 ðð69ðð\ 1ð/16/87

ðð7ððð USE AFTER STANDARD ERROR PROCEDURE ON TGTICF. 1ð/16/87

 ðð71ðð TGTICF-EXCEPTION. 1ð/16/87

 ðð72ðð\ ð2/27/89

 ðð73ðð\\ ð2/27/89

ðð74ðð\ GET INFORMATION FROM THE MAJOR-MINOR CODE AND PLACE IT INTO \ ð2/27/89

ðð75ðð\ A DATABASE FILE. THEN PRINT THE FILE IN HEX USING COPYFILE. \ ð2/27/89

 ðð76ðð\\ ð2/27/89

 ðð77ðð\ ð2/27/89

 ðð78ðð GETFBA. 1ð/16/87

57 ðð79ðð MOVE "CTFBAT HAS COMPLETED ABNORMALLY" TO PRINTREC. 1ð/16/87

 58 ðð8ððð WRITE PRINTREC. 1ð/16/87

59 ðð81ðð OPEN OUTPUT DFILE. 1ð/16/87

6ð ðð82ðð MOVE MAJ-MIN TO DUMP-MAJ-MIN. 1ð/16/87

61 ðð83ðð MOVE ICFREC TO DUMP-RECORD. 1ð/16/87

 62 ðð84ðð WRITE DUMPREC. 1ð/16/87

 63 ðð85ðð CLOSE DFILE. 1ð/16/87

64 ðð86ðð MOVE 31 TO LEN. 1ð/16/87

65 ðð87ðð CALL "QCMDEXC" USING CMD2 LEN. 1ð/16/87

 66 ðð88ðð STOP RUN. 1ð/16/87

 ðð89ðð\ 1ð/16/87

 ðð9ððð EXIT-DECLARATIVES. 1ð/16/87

 ðð91ðð EXIT. 1ð/16/87

 ðð92ðð\ 1ð/16/87

67 ðð93ðð END DECLARATIVES. 1ð/16/87

 ðð94ðð/ 1ð/16/87

 ðð95ðð START-PROGRAM SECTION. 1ð/16/87

 ðð96ðð START-PROGRAM-PARAGRAPH. 1ð/16/87

 ðð97ðð\.3/ 1ð/16/87

68 ðð98ðð OPEN OUTPUT QPRINT 1ð/16/87

 ðð99ðð I-O TGTICF 1ð/16/87

 ð1ðððð INPUT DBFILE. 1ð/16/87

 ð1ð1ðð\ 1ð/16/87

 ð1ð2ðð\\ ð2/22/89

ð1ð3ðð\ DATA CONTINUES TO BE RECEIVED FROM THE PROGRAM DEVICE UNTIL THE \ ð2/22/89

ð1ð4ðð\ RCVTRNRND INDICATOR IS SET. EACH RECORD RECEIVED IS PRINTED TO \ ð2/22/89

ð1ð5ðð\ THE PRINT FILE. \ ð2/22/89

 ð1ð6ðð\\ ð2/22/89

 ð1ð7ðð\ 1ð/16/87

 ð1ð8ðð RECEIVE-DATA. 1ð/16/87

 ð1ð9ðð\.4/ 1ð/16/87

 69 ð11ððð READ TGTICF. 1ð/16/87

7ð ð111ðð IF MAJ NOT = "ð3" 1ð/16/87

71 ð112ðð MOVE ICFREC TO PRINTREC 1ð/16/87

 72 ð113ðð WRITE PRINTREC. 1ð/16/87

 ð114ðð\.5/ 1ð/16/87

73 ð115ðð IF MIN = "ð1" THEN 1ð/16/87

74 ð116ðð GO TO RECEIVE-DATA. 1ð/16/87

 ð117ðð\ 1ð/16/87

Figure 10-12 (Part 2 of 3). Target Program Example — CTFBAT (System-Supplied Formats)

10-24 ICF Programming V4R1

 ð118ðð\\ ð2/22/89

ð119ðð\ RECORD IS READ FROM THE DATABASE FILE AND IS SENT TO THE SOURCE \ ð2/22/89

ð12ððð\ PROGRAM. DATA TRANSMISSION CONTINUES UNTIL END OF FILE IS \ ð2/22/89

ð121ðð\ DETECTED ON THE DATABASE FILE. AT THIS TIME, A DETACH SIGNAL IS \ ð2/22/89

ð122ðð\ SENT TO THE SOURCE PROGRAM. \ ð2/22/89

 ð123ðð\\ ð2/22/89

 ð124ðð\ 1ð/16/87

 ð125ðð SEND-DATA. 1ð/16/87

 ð126ðð\.6/ 1ð/16/87

75 ð127ðð READ DBFILE AT END GO TO SIGNAL-DETACH. 1ð/16/87

77 ð128ðð MOVE PREC TO SNDFIELD OF SNDDATA-O. 1ð/16/87

78 ð129ðð MOVE +8ð TO SNDLENGTH OF SNDDATA-O. 1ð/16/87

79 ð13ððð WRITE ICFREC FORMAT IS "$$SENDNI". 1ð/16/87

8ð ð131ðð GO TO SEND-DATA. 1ð/16/87

 ð132ðð\ 1ð/16/87

 ð133ðð\\ ð2/22/89

ð134ðð\ SIGNAL DETACH TO THE SOURCE PROGRAM. \ ð2/22/89

 ð135ðð\\ ð2/22/89

 ð136ðð\ 1ð/16/87

 ð137ðð SIGNAL-DETACH. 1ð/16/87

 ð138ðð\.7/ 1ð/16/87

81 ð139ðð MOVE SPACES TO ENDREC-O. 1ð/16/87

82 ð14ððð MOVE +ð TO ENDLENGTH OF ENDREC-O. 1ð/16/87

83 ð141ðð WRITE ICFREC FORMAT IS "$$SENDET". 1ð/16/87

 ð142ðð\\ ð2/22/89

ð143ðð\ WHEN THE END OF FILE IS REACHED, AN EOJ MESSAGE IS PRINTED AND \ ð2/22/89

ð144ðð\ THE PROGRAM ENDS. \ ð2/22/89

 ð145ðð\\ ð2/22/89

 ð146ðð\.8/ 1ð/16/87

84 ð147ðð MOVE "CTFBAT HAS COMPLETED NORMALLY" TO PRINTREC 1ð/16/87

 85 ð148ðð WRITE PRINTREC. 1ð/16/87

 86 ð149ðð CLOSE DBFILE 1ð/16/87

 ð15ððð TGTICF 1ð/16/87

 ð151ðð QPRINT. 1ð/16/87

 87 ð152ðð STOP RUN. 1ð/16/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 19 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð27ðð

Message : Blocking/Deblocking for file 'DBFILE' will

be performed by compiler-generated code.

\ 32 MSGID: LBLð65ð SEVERITY: ðð SEQNBR: ðð4ððð

Message : Blocking/Deblocking for file 'DFILE' will be

performed by compiler-generated code.

\ 57 MSGID: LBLð335 SEVERITY: ðð SEQNBR: ðð78ðð

Message : Empty paragraph or section precedes 'GETFBA'

paragraph or section.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

3 3 ð ð ð ð

 Source records read : 152

 Copy records read : ð

 Copy members processed : ð

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program CTFBAT created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-12 (Part 3 of 3). Target Program Example — CTFBAT (System-Supplied Formats)

Multiple-Session Inquiry (Example II)

This example illustrates an interactive inquiry application that
communicates with multiple ICF sessions. A source AS/400
system program accepts inquiries from a display device and
sends a request to one of four AS/400 systems. The source
program communicates with the display device through a
display file, and with the four remote systems through a
single ICF file.

The purpose of this example is to show multiple sessions
from a single ICF file. The source program communicates
with four sessions. From the viewpoint of each of the four
target programs, there is only one session (with the
requesting program device). Therefore, the target programs
do not require any unique logic to support the multiple-
session source.

Both the source program and the target program are
described. The same target program is evoked in each of

 Chapter 10. COBOL/400 Communications Applications 10-25

the four separate remote systems. Therefore, only one
target program is shown in the programming example.

Transaction Flow of the Multiple-Session Inquiry
(Example II): The program shown in Figure 10-13 is
started from a display station, and both the display and the
ICF file are opened. CIWS00 is the *REQUESTER device,
acquired when the display file opens. CIWS00 is acquired
because DEV(*REQUESTER) was specified when the
display file was created. Since the ICF file was created with
ACQPGMDEV(*NONE), no ICF program devices are
acquired during open processing.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Open

Open

Display
Station

RSLS199-4

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 10-13. Program Starts at Display Station

10-26 ICF Programming V4R1

All other program devices must be explicitly acquired by the
program, as shown in Figure 10-14.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ACQ

ACQ

ACQ

ACQ

Display
Station

ICF File

Local AS/400 System

RSLS651-4

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 10-14. Program Devices Explicitly Acquired

 Chapter 10. COBOL/400 Communications Applications 10-27

All target programs are started with the evoke, as shown in
Figure 10-15.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Write

Write

Write

Write

Evoke

Evoke

Evoke

Evoke

Display
Station

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database
File

Database
File

Database
File

Database
File

Program

Program

Program

Program

ICF
File

ICF
File

ICF
File

ICF
File

RSLS652-4

Figure 10-15. Evoke Starts Target Programs

10-28 ICF Programming V4R1

The source program uses a specific program device name.
Each target program uses an ICF file with a program device
name that is associated with the requesting program device.
The target program’s only session is the one used to com-
municate with the source program. The ICF file on the
remote system must be opened by the COBOL language
support using the open operation. Since the file was created

with the requesting program device specified on the
ACQPGMDEV parameter, the requesting program device is
acquired when the file is opened. The main menu is written
to the display station on the local system, and the program
waits for a request from the display station, as shown in
Figure 10-16.

Program

Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Display

Station

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS653-5

Figure 10-16. Main Menu Written to Display Station

 Chapter 10. COBOL/400 Communications Applications 10-29

The source program sends an inquiry request to one of the
remote systems based on the request made from the display
station, as shown in Figure 10-17.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program
Write

with

Invite

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Read

Display

Station

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS654-4

Figure 10-17. Program Sends Inquiry Request to Remote System

10-30 ICF Programming V4R1

The target program responds to the inquiry by sending a
reply, as shown in Figure 10-18.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ReadRead

Display
Station

Program

Program

Program

Program

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

RSLS655-4

Database
File

Database
File

Database
File

Database
File

Figure 10-18. Target Program Sends a Reply

 Chapter 10. COBOL/400 Communications Applications 10-31

The program sends a detach request and ends the session
when function key 1 is pressed (while the main inquiry menu
is present), as shown in Figure 10-19.

Source Program Multiple-Session Inquiry (Example
II): The following describes a COBOL source program
multiple-session inquiry.

Program Files: The COBOL multiple session source
program uses the following files:

CMNFIL
An ICF file used to send records to and receive
records from the target program.

DSPFIL
A display file used to enter requests that are to be
sent to the target program.

QPRINT
A printer file used to print error messages resulting
from communications errors.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Write

CIWS00

ICF00

ICF01

ICF02

ICF03

Detach Read

Display File

Display

Station

Program

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS656-5

Figure 10-19. Program Ends the Session

10-32 ICF Programming V4R1

DDS Source: The DDS for the ICF file (CMNFIL) is illus-
trated in Figure 10-20.

SOURCE FILE QICFPUB/ICFLIB

 MEMBER CMNFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð 1ð/ð6/87

 2ðð 1ð/ð6/87

 3ðð A\\ 1ð/14/87

 4ðð A\ \ 1ð/14/87

 5ðð A\ ICF FILE \ 1ð/14/87

6ðð A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \ 1ð/14/87

 7ðð A\ \ 1ð/14/87

 8ðð A\\ 1ð/14/87

 9ðð A INDARA 1ð/ð7/87

 1ððð A R ITMRSP 1ð/ð6/87

 11ðð A RECID(1 'I') 1ð/ð6/87

 12ðð A RECITM 1 1ð/ð6/87

 13ðð A ITEMNO 6 ð 1ð/13/87

 14ðð A DESC 3ð 1ð/ð6/87

 15ðð A QTYLST 7 ð 1ð/ð6/87

 16ðð A QTYOH 7 ð 1ð/ð6/87

 17ðð A QTYOO 7 ð 1ð/ð6/87

 18ðð A QTYBO 7 ð 1ð/ð6/87

 19ðð A UNITQ 2 1ð/ð6/87

 2ððð A PRð1 7 2 1ð/ð6/87

 21ðð A PRð5 7 ð 1ð/ð6/87

 22ðð A UFRT 5 2 1ð/ð6/87

 23ðð A SLSTM 9 2 1ð/ð6/87

 24ðð A SLSTY 11 2 1ð/ð6/87

 25ðð A CSTTM 9 2 1ð/ð6/87

 26ðð A CSTTY 11 2 1ð/ð6/87

27ðð A PRO 5 2 1ð/ð6/87

28ðð A LOS 9 2 1ð/ð6/87

 29ðð A FILL1 56 1ð/ð6/87

 3ððð A R DTLRSP 1ð/ð6/87

 31ðð A RECID(1 'C') 1ð/ð6/87

 32ðð A RCVTRNRND(9ð) 1ð/ð6/87

 33ðð A RECCUS 1 1ð/ð6/87

 34ðð A CUSTNO 6 ð 1ð/13/87

 35ðð A DNAME 3ð 1ð/ð6/87

 36ðð A DLSTOR 6 ð 1ð/ð6/87

 37ðð A DSLSTM 9 ð 1ð/ð6/87

 38ðð A DSPMð1 9 ð 1ð/ð6/87

 39ðð A DSPMð2 9 ð 1ð/ð6/87

 4ððð A DSPMð3 9 ð 1ð/ð6/87

 41ðð A DSTTYD 11 ð 1ð/ð6/87

 42ðð A IDEPT 3 ð 1ð/ð6/87

 43ðð A FILL2 57 1ð/ð6/87

 44ðð A R DETACH 1ð/ð6/87

 45ðð A DETACH 1ð/ð6/87

 46ðð A R EOS 1ð/ð6/87

 47ðð A EOS 1ð/ð6/87

 48ðð A R EVKREQ 1ð/ð6/87

 49ðð A EVOKE(&LIB/&PGMID) 1ð/12/87

 5ððð A PGMID 1ðA P 1ð/ð6/87

 51ðð A LIB 1ðA P 1ð/ð6/87

 52ðð A R ITMREQ 1ð/ð6/87

 53ðð A INVITE 1ð/ð6/87

 54ðð A ITEMNO 6 ð 1ð/13/87

 55ðð A R DTLREQ 1ð/ð6/87

 56ðð A INVITE 1ð/ð6/87

 57ðð A CUSTNO 6 ð 1ð/13/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 10-20. DDS for Source Program Multiple Session Inquiry Using CMNFIL

 Chapter 10. COBOL/400 Communications Applications 10-33

The DDS for the display file (DSPFIL) is illustrated in
Figure 10-21.

ððð1ðð871ðð7 A\\

ððð2ðð871ðð7 A\ \

ððð3ðð871ðð7 A\ DISPLAY FILE \

ððð4ðð871ðð7 A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \

ððð5ðð871ðð7 A\ \

ððð6ðð871ðð7 A\\

ððð7ðð871ðð8 A\ BEGINNING MENU

ððð8ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\

ððð9ðð871ðð7 A DSPSIZ(\DS3)

ðð1ððð871ðð7 A CFð1(99) CFð2(98) CFð3(97)

ðð11ðð871ðð7 A R CIMENU TEXT('MENU FOR INQUIRY')

ðð12ðð871ðð7 A 1 34'INQUIRY MENU'

ðð13ðð871ðð7 A 3 1'Select one of the following:'

ðð14ðð871ðð7 A 4 3'1. Item inquiry'

ðð15ðð871ðð7 A 5 3'2. Customer inquiry'

ðð16ðð871ðð7 A 11 1'Option:'

ðð17ðð871ðð7 A OPTION 1N I 11 9VALUES('1' '2')

ðð18ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð19ðð871ðð8 A R DTLMNU TEXT('CUSTOMER INQUIRY SCREEN 1')

ðð2ððð871ðð7 A 2 2DFT('ENTER CUSTOMER')

ðð21ðð871ð13 A CUSTNO 6N ðI 2 2ð

ðð22ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð23ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð24ðð871ðð8 A\

ðð25ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð26ðð871ðð7 A\ CUSTOMER INQUIRY SCREEN

ðð27ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð28ðð871ðð7 A R DTLSCR TEXT('CUSTOMER INQUIRY SCR. #2')

ðð29ðð871ðð7 A 1 3DFT('CUST DPT LAST ORD & THIS

ðð3ððð871ðð7 A $MTH1 &MTH2 $MTH3

ðð31ðð871ðð8 A THIS YTD NAME')

ðð32ðð871ðð8 A CUSTN 6N 2 2

ðð33ðð871ðð7 A DEPT 3N ð 2 9

ðð34ðð871ðð7 A DLSTR 6N ð 2 13

ðð35ðð871ðð7 A DSLSM 9N ð 2 22

ðð36ðð871ðð7 A DSPM1 9N ð 2 32

ðð37ðð871ðð7 A DSPM2 9N ð 2 42

ðð38ðð871ðð7 A DSPM3 9N ð 2 52

ðð39ðð871ðð7 A DSTYD 11N ð 2 62

ðð4ððð89ð321 A CNAME 5 2 74

ðð41ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð42ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð43ðð871ðð7 A\

ðð44ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð45ðð871ðð7 A\ ITEM INQUIRY SCREEN

ðð46ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð47ðð871ðð7 A R ITMMNU TEXT('ITEM INQUIRY SCREEN ONE')

ðð48ðð871ðð8 A 2 2DFT('ENTER ITEM NUMBER')

ðð49ðð871ð13 A ITEMNO 6N ðI 2 2ð

ðð5ððð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð51ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð52ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð53ðð871ðð8 A\ ITEM DISPLAY

ðð54ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð55ðð871ðð7 A R ITMSC2 TEXT('ITEM INQUIRY SCREEN TWO')

ðð56ðð871ðð7 A OVERLAY

ðð57ðð871ðð7 A 4 2DFT('DESC-')

ðð58ðð871ðð7 A DSC 3ð 4 8

ðð59ðð871ðð7 A 5 2DFT('QUANTITY AVAILABLE')

ðð6ððð871ðð7 A QAVAIL 7N ð 5 25

ðð61ðð871ðð7 A 6 11DFT('ON HAND')

ðð62ðð871ðð7 A QTYH 7N ð 6 25

ðð63ðð871ðð7 A 7 11DFT('ON ORDER')

ðð64ðð871ðð7 A QTYO 7N ð 7 25

ðð65ðð871ðð7 A 8 11DFT('BACK ORDER')

ðð66ðð871ðð7 A QTYB 7N ð 8 25

ðð67ðð871ðð7 A 9 2DFT('UNIT OF MEASURE')

ðð68ðð871ðð7 A UNT 2 9 3ð

ðð69ðð871ðð7 A 1ð 2DFT('PRICE PER UNIT')

ðð7ððð871ðð7 A PR1 7Y 2 1ð 24EDTCDE(3)

ðð71ðð871ðð7 A 11 8DFT('QUANTITY')

ðð72ðð871ðð7 A PR5 7Y ð 11 25EDTCDE(3)

ðð73ðð871ðð7 A 12 8DFT('FREIGHT')

ðð74ðð871ðð7 A UFR 5Y 2 12 26EDTCDE(3)

ðð75ðð871ðð8 A 13 32DFT('MORE... ')

ðð76ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð77ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð78ðð871ðð8 A 19 4ðDFT(' 3 - ITEM MENU ')

Figure 10-21 (Part 1 of 2). DDS for Source Program Multiple
Session Inquiry Using DSPFIL

ðð79ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð8ððð871ðð8 A\ ITEM ADDITIONAL DISPLAY

ðð81ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð82ðð871ðð7 A R ITMSC3 TEXT('ITEM INQUIRY SCREEN 3 ')

ðð83ðð871ðð7 A OVERLAY

ðð84ðð871ðð7 A 5 2DFT('SALES MONTH')

ðð85ðð871ðð7 A SLSM 9Y 2 5 16EDTCDE(1)

ðð86ðð871ðð7 A 6 8DFT('Y-T-D')

ðð87ðð871ðð7 A SLSY 11Y 2 6 14EDTCDE(1)

ðð88ðð871ðð7 A 7 2DFT('COSTS MONTH')

ðð89ðð871ðð7 A CSTM 9Y 2 7 16EDTCDE(1)

ðð9ððð871ðð7 A 8 8DFT('Y-T-D')

ðð91ðð871ðð7 A CSTY 11Y 2 8 14EDTCDE(1)

ðð92ðð871ðð7 A 9 2DFT('PROFIT PCT')

ðð93ðð871ðð7 A PROFIT 5Y 2 9 22EDTCDE(1)

ðð94ðð871ðð7 A 1ð 2DFT('LOST SALES')

ðð95ðð871ðð7 A LOSTS 9Y 2 1ð 16EDTCDE(1)

ðð96ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð97ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð98ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð99ðð871ðð7 A\ TIMOUT SCREEN.

ð1ðððð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ð1ð1ðð871ðð7 A R TIMOUT TEXT('TIME OUT SCREEN')

ð1ð2ðð871ðð7 A OVERLAY

ð1ð3ðð871ðð7 A 2ð 2DFT('REMOTE SYSTEM TIMED OUT. ENTER

ð1ð4ðð871ðð7 1 TO TRY AGAIN OR 2 TO END.')

ð1ð5ðð871ðð7 A TIMRSP 1 I 2ð 61

Figure 10-21 (Part 2 of 2). DDS for Source Program Multiple
Session Inquiry Using DSPFIL

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/CMNFIL) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(CMNFIL) ACQPGMDEV(\NONE) MAXPGMDEV(4)

WAITRCD(3ð) TEXT("SOURCE ICF FILE FOR MULTIPLE

 SESSION PROGRAM")

The commands needed to define the four program device
entries are:
OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(CHICAGO) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð1) RMTLOCNAME(NEWYORK) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð2) RMTLOCNAME(DETROIT) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð3) RMTLOCNAME(MADISON) FMTSLT(\RECID)

Program Explanation: The following explains the structure
of the program examples illustrated in Figure 10-22 on
page 10-37 and Figure 10-23 on page 10-51. The ICF file
used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference numbers
in the explanation below correspond to the numbers in the
following program examples.

In the following examples, the ICF file used in the first
example is externally described, whereas the ICF file used in
the second example is a program-described file.

Although the basic structure of the two examples provided is
the same, there are differences because of the way the user-
defined formats and the system-supplied formats are used.
All output operations to the ICF file in the first example are
done using the WRITE statement with the record format
name coded as an operand. The output operations to the
ICF file in the second example using system-supplied
formats are issued with the system-supplied format coded as
literal operand.

Differences between the first and second example are
described in each of the following descriptions as necessary.

10-34 ICF Programming V4R1

.1/ This section defines the ICF file (CMNFIL) and the
display file (DSPFIL) used in the program.

CMNFIL is the ICF file used to send records to and
receive records from each of the four target programs.
CMNFIL is implemented with the file-level keyword,
INDARA, indicating a separate indicator area is used.

DSPFIL is the display file used to receive user’s
requests and to report the information received based
on the request.

The control area clause in the select statements of
CMNFIL and DSPFIL is used to define the I/O feed-
back area. Information from the I/O feedback is used
to determine the major/minor return code, record
format, and command key pressed.

Note: In the program using system-supplied formats,
the input records for CMNFIL are explicitly coded in the
program since CMNFIL is now treated as a program-
described file. The system-supplied file, QICDMF,
could have been used instead of CMNFIL. Using the
system-supplied file can be done by specifying
QICDMF in the file specification, or by using an
OVRICFF command to change the name from CMNFIL
to QICDMF.

.2/ DSP-ERROR SECTION and CMN-ERROR SECTION
define the error handling procedures for I/O errors on
the DSPFIL and CMNFIL. A DSPFIL I/O error causes
the program to end, and an error message to be sent
to the printer file. The section for CMNFIL file I/O
errors checks the major/minor return code to determine
if the error is recoverable. If the error is recoverable
(major code 83), it sets a flag (ERR-SW) to 1 and
returns to the program. Furthermore, when
major/minor code 3431 (input data truncated) is
received, it is saved but not considered as an error,
and takes an exit.

.3/ The program opens the files to be used and initializes
the ICF file separate indicator area.

.4/ If the ERR-SW switch is set to 1, indicating that a
recoverable error has occurred, the program deter-
mines whether the open retry count limit nine has been
exceeded. If it has, the program goes to .19/ and then
ends. If the limit count is less than nine, one is added
to the count and control passes to .17/ and then to .3/
to try to open the file.

.5/ The four program devices used by the program are
explicitly acquired.

The device for the work station is implicitly acquired
when the DSPFIL file is opened.

Also, the evoke requests are issued to the remote
systems by passing control to .16/.

When control returns from .16/, the main menu (record
format CIMENU) is then written to the work station.

.6/ A read operation is issued to the display device, and
the program waits for an input request from the user.
When a record is returned, the last record format used

(as specified in the RCD-FMT field in the I/O control
area) is checked. Based on the value in RCD-FMT,
the program branches to the appropriate routine.

If a match is not found for the display record format,
the main menu (CIMENU) is written to the work station
and control is returned to .6/.

.7/ This routine is called if the request is made from the
main menu (CIMENU). If the CMD-KEY variable is set
to '01', indicating that the operator pressed command
key 1, the four transactions and sessions are ended
and the program ends. If the operator entered option
1, the program writes the Item Inquiry menu (ITMMNU)
to the work station and returns to .6/.

If the option is not 1, the Customer Inquiry menu
(DTLMNU) is written to the work station and control is
passed to .6/.

The rest of this chapter discusses the details of the
control is passed to .6/.

.8/ This routine is called when the user is requesting an
item inquiry (record format ITMMNU). If command key
1 (CMD-KEY = '01') is pressed, control passes to .19/,
and then to .2ð/, the four transactions end, and the
program ends. If command key 2 is pressed, the
inquiry request is canceled, the main menu (CMENU)
is written to the work station, and the program returns
to .16/.

The item number read from the work station is checked
for value range. If the range is from 0 to 399999, then
the request is sent to the target program on program
device ICF01.

If the range is from 400000 to 699999, the request is
sent to the target program on program device ICF02.

If the range is from 700000 to 899999, the request is
sent to the target program on program device ICF03.

The request is sent to the appropriate target program
by writing data to the program device using format
ITMREQ. The INVITE keyword is specified as part of
the ITMREQ format to give the target program permis-
sion to send.

A read request is issued to the program device to
receive the response to the inquiry.

The read is an implied read-from-invited-program-
devices because no record format is specified in the
read statement.

Control goes to .9/ to process the item information
based on the input data received and the result written
to the screen using format ITMSC2.

After returning from .9/, the program returns to .6/.

Note: In the program using system-supplied formats,
the $$SEND format is used as a literal instead of the
user-defined ITMREQ record format name.

.9/ This routine is called when the target program
responds to a request for an item record. If the
returned item number is 0 or less, the request is not

 Chapter 10. COBOL/400 Communications Applications 10-35

valid and a new Item Inquiry menu (ITMMNU) is written
to the work station.

The program then performs the calculations to set the
quantity fields and writes the result to the requesting
work station using record format ITMSC2.

The program then returns to the calling routine.

.1ð/ This routine is called to process the next user request.
If command key 1 (CMD-KEY = '01') is pressed, the
transactions and session are ended .19/, and control
goes to .2ð/ to end the program.

If command key 2 is pressed, the main menu
(CMENU) is written to the work station. If command
key 3 is pressed, the Item Inquiry menu is written to
the work station, and the program returns to .6/. By
pressing Enter, the profit and loss figures are calcu-
lated and written to the work station before returning
control to .6/.

.11/ This routine calculates the profit and loss figures for
the second screen of the requested item number.

.12/ This routine is called when a request is read from the
Customer Inquiry menu (DTLMNU). If command key 1
(CMD-KEY = '01') is pressed, the transactions and ses-
sions are ended. If command key 2 (CMD-KEY = '02')
is pressed, the main menu (CIMENU) is written to the
work station and the program returns to .6/.

The customer inquiry request is sent to the target
program by writing data to the program device ICF00
using format DTLREQ. The INVITE keyword is speci-
fied as part of the DLTREQ format to give the target
program permission to send.

Control goes to .13/ to retrieve the customer detail
information.

Routine .14/ is called to continue the customer infor-
mation processing.

The program returns to .6/.

Note: In the program using system-supplied formats,
the write operation is issued with the $$SEND format
specified as literal, in the user-supplied format, WRITE
was issued with a record format name DTLREQ.

.13/ The information supplied by the target program in
response to a request for a customer detail is pro-
cessed in this routine. If the customer number is 0 or
less, the request is not valid and the main menu
(record format CIMENU) is written to the work station.
The program then returns to .6/.

Control goes to .15/ to retrieve the customer detail
information, and the result is written to the work station
using record format DTLSCR.

The program then returns to .6/.

.14/ This routine is called from .6/, and handles the user’s
request following the display of the customer informa-
tion. Command key 1 ends the job, command key 2
displays the main menu (CMENU), and pressing Enter

displays the Customer Inquiry menu (DTLMNU). Then,
control returns to .6/.

.15/ This routine issues the read operation to the program
device.

This read is an implied read-from-invited-program-
devices because no record format is specified on the
read statement.

A check is made of the MAJ-MIN return code for pos-
sible error conditions on a successful return (control is
automatically passed to .2/ for non-successful I/O
operations). A 0310 major-minor return code means
the remote system has timed out. (The wait time was
specified on the CRTICFF command.) If no data was
received (MAJ-MIN - 03xx), the request is sent again to
the remote system. Finally, if the data returns in the
wrong format, Control is passed to .17/.

The customer information received from the target
program is processed, and the result is written to the
user work station using screen format DTLBLK.

Control returns to the calling routine.

Note: The program using system-supplied formats
issues the READ statement with the file name CMNFIL
specified in the operand without a record format name.

.16/ This routine builds the evoke requests to send to the
remote systems. Because the DDS keyword for the
record format only specifies the field identifiers with the
record, this code moves the literal value CTDMULCL to
the field PGMID, and ICFLIB to the field LIB.

When the program start request is received at the
remote system, ICFLIB is searched for CTDMULCL
and that program then starts. CTDMULCL is a CL
program that contains the following statements:

ADDLIBLE ICFLIB

CALL ICFLIB/CTDMUL

Note: In the program using system-supplied formats,
the evoke request is issued using the WRITE state-
ment followed with a $$EVOKNI format coded as literal
in the operand.

The library and program (ICFLIB/CTFMULCL) are
specified as part of the $$EVOKNI format. CTFMULCL
is a CL program that contains the following statements:

ADDLIBLE ICFLIB

CALL ICFLIB/CTFMUL

.17/ This routine ends the transactions and closes the files.
The ERR-SW indicator is set again, and control returns
to the calling routine.

.18/ This routine is run when the program detects data in
an incorrect record format. It writes an error message
to the printer file, ends the program, and implicitly ends
the session.

.19/ This routine issues the detach function to the ICF file
for each of the four program devices. In the program
using the system-supplied format, the write operation is
issued using $$SENDET format, but in the program

10-36 ICF Programming V4R1

using the user-supplied format, it is the record format
name DETACH.

.2ð/ This routine releases the program devices and close
the files. The program ends.

 Program : CSDMUL

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CSDMUL 1ð/ð3/9ð 14:28:28

 Generation severity level : 29

 Text 'description' : CBL Multiple Session Inquiry - Source DDS

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. ð9/3ð/87

 2 ððð2ðð PROGRAM-ID. CSDMUL. ð9/3ð/87

 ððð3ðð\\ ð9/3ð/87

ððð4ðð\ THIS PROGRAM ASSIGNS FOUR SESSIONS AS FOLLOWS: \ ð9/3ð/87

ððð5ðð\ 'ICFðð' TO INQUIRE ABOUT A CUSTOMER ACCOUNT BEFORE AN \ ð9/3ð/87

ððð6ðð\ ORDER IS PROCESSED. \ ð9/3ð/87

ððð7ðð\ 'ICFð1' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ ð9/3ð/87

ððð8ðð\ BEING ORDERED (ITEM ððððð1 THRU 399999). \ ð9/3ð/87

ððð9ðð\ 'ICFð2' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ ð9/3ð/87

ðð1ððð\ BEING ORDERED (ITEM 4ððððð THRU 699999). \ ð9/3ð/87

ðð11ðð\ 'ICFð3' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ ð9/3ð/87

ðð12ðð\ BEING ORDERED (ITEM 7ððððð THRU 999999). \ ð9/3ð/87

ðð13ðð\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A \ ð9/3ð/87

ðð14ðð\ CUSTOMER AND AN ITEM MENU) THAT IS SENT TO THE REMOTE \ ð9/3ð/87

 ðð15ðð\ SYSTEM. \ 1ð/15/87

 ðð16ðð\\ ð9/3ð/87

3 ðð17ðð ENVIRONMENT DIVISION. ð9/3ð/87

4 ðð18ðð CONFIGURATION SECTION. ð9/3ð/87

 5 ðð19ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð2ððð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð21ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK ð9/3ð/87

8 ðð22ðð OPEN-FEEDBACK IS OPEN-FBA. ð9/3ð/87

Figure 10-22 (Part 1 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-37

9 ðð23ðð INPUT-OUTPUT SECTION. ð9/3ð/87

 1ð ðð24ðð FILE-CONTROL. ð9/3ð/87

 ðð25ðð\.1/ ð9/3ð/87

 ðð26ðð\\ ð9/3ð/87

 ðð27ðð\ \ ð9/3ð/87

ðð28ðð\ F I L E S P E C I F I C A T I O N S \ ð9/3ð/87

 ðð29ðð\ \ ð9/3ð/87

ðð3ððð\ CMNFIL : ICF FILE USED TO SEND A REQUEST TO ONE \ 1ð/ð3/9ð

ðð31ðð\ OF FOUR DIFFERENT TARGET PROGRAMS. MULTIPLE \ ð9/3ð/87

ðð32ðð\ SESSIONS ARE ACTIVE CONCURRENTLY. \ ð9/3ð/87

 ðð33ðð\ \ ð9/3ð/87

ðð34ðð\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE \ ð9/3ð/87

ðð35ðð\ SENT TO A REMOTE SYSTEM. \ ð9/3ð/87

 ðð36ðð\ \ ð9/3ð/87

 ðð37ðð\\ ð9/3ð/87

11 ðð38ðð SELECT CMNFIL ASSIGN TO WORKSTATION-CMNFIL-SI 1ð/13/87

12 ðð39ðð ORGANIZATION IS TRANSACTION ð9/3ð/87

13 ðð4ððð CONTROL-AREA IS TR-CTL-AREA ð9/3ð/87

14 ðð41ðð FILE STATUS IS STATUS-IND MAJ-MIN. ð9/3ð/87

15 ðð42ðð SELECT DSPFIL ASSIGN TO WORKSTATION-DSPFIL ð9/3ð/87

16 ðð43ðð ORGANIZATION IS TRANSACTION ð9/3ð/87

17 ðð44ðð CONTROL-AREA IS DISPLAY-FEEDBACK ð9/3ð/87

18 ðð45ðð FILE STATUS IS STATUS-DSP. ð9/3ð/87

19 ðð46ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. ð9/3ð/87

2ð ðð47ðð DATA DIVISION. ð9/3ð/87

21 ðð48ðð FILE SECTION. ð9/3ð/87

 22 ðð49ðð FD CMNFIL ð9/3ð/87

23 ðð5ððð LABEL RECORDS ARE STANDARD. ð9/3ð/87

 24 ðð51ðð ð1 CMNREC. ð9/3ð/87

25 ðð52ðð COPY DDS-ALL-FORMATS-I-O OF CMNFIL. ð2/28/89

26 +ððððð1 ð5 CMNFIL-RECORD PIC X(196). <-ALL-FMTS

+ððððð2\ I-O FORMAT:ITMRSP FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 27 +ððððð4 ð5 ITMRSP REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 28 +ððððð5 ð6 RECITM PIC X(1). <-ALL-FMTS

 29 +ððððð6 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

 3ð +ððððð7 ð6 DESC PIC X(3ð). <-ALL-FMTS

 31 +ððððð8 ð6 QTYLST PIC S9(7). <-ALL-FMTS

 32 +ððððð9 ð6 QTYOH PIC S9(7). <-ALL-FMTS

 33 +ðððð1ð ð6 QTYOO PIC S9(7). <-ALL-FMTS

 34 +ðððð11 ð6 QTYBO PIC S9(7). <-ALL-FMTS

 35 +ðððð12 ð6 UNITQ PIC X(2). <-ALL-FMTS

 36 +ðððð13 ð6 PRð1 PIC S9(5)V9(2). <-ALL-FMTS

 37 +ðððð14 ð6 PRð5 PIC S9(7). <-ALL-FMTS

 38 +ðððð15 ð6 UFRT PIC S9(3)V9(2). <-ALL-FMTS

 39 +ðððð16 ð6 SLSTM PIC S9(7)V9(2). <-ALL-FMTS

 4ð +ðððð17 ð6 SLSTY PIC S9(9)V9(2). <-ALL-FMTS

 41 +ðððð18 ð6 CSTTM PIC S9(7)V9(2). <-ALL-FMTS

 42 +ðððð19 ð6 CSTTY PIC S9(9)V9(2). <-ALL-FMTS

 43 +ðððð2ð ð6 PRO PIC S9(3)V9(2). <-ALL-FMTS

 44 +ðððð21 ð6 LOS PIC S9(7)V9(2). <-ALL-FMTS

 45 +ðððð22 ð6 FILL1 PIC X(56). <-ALL-FMTS

+ðððð23\ INPUT FORMAT:DTLRSP FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð24\ <-ALL-FMTS

 46 +ðððð25 ð5 DTLRSP-I REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 47 +ðððð26 ð6 RECCUS PIC X(1). <-ALL-FMTS

 48 +ðððð27 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

 49 +ðððð28 ð6 DNAME PIC X(3ð). <-ALL-FMTS

 5ð +ðððð29 ð6 DLSTOR PIC S9(6). <-ALL-FMTS

 51 +ðððð3ð ð6 DSLSTM PIC S9(9). <-ALL-FMTS

 52 +ðððð31 ð6 DSPMð1 PIC S9(9). <-ALL-FMTS

 53 +ðððð32 ð6 DSPMð2 PIC S9(9). <-ALL-FMTS

 54 +ðððð33 ð6 DSPMð3 PIC S9(9). <-ALL-FMTS

 55 +ðððð34 ð6 DSTTYD PIC S9(11). <-ALL-FMTS

 56 +ðððð35 ð6 IDEPT PIC S9(3). <-ALL-FMTS

 57 +ðððð36 ð6 FILL2 PIC X(57). <-ALL-FMTS

Figure 10-22 (Part 2 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-38 ICF Programming V4R1

+ðððð37\ OUTPUT FORMAT:DTLRSP FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð38\ <-ALL-FMTS

 58 +ðððð39 ð5 DTLRSP-O REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 59 +ðððð4ð ð6 RECCUS PIC X(1). <-ALL-FMTS

 6ð +ðððð41 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

 61 +ðððð42 ð6 DNAME PIC X(3ð). <-ALL-FMTS

 62 +ðððð43 ð6 DLSTOR PIC S9(6). <-ALL-FMTS

 63 +ðððð44 ð6 DSLSTM PIC S9(9). <-ALL-FMTS

 64 +ðððð45 ð6 DSPMð1 PIC S9(9). <-ALL-FMTS

 65 +ðððð46 ð6 DSPMð2 PIC S9(9). <-ALL-FMTS

 66 +ðððð47 ð6 DSPMð3 PIC S9(9). <-ALL-FMTS

 67 +ðððð48 ð6 DSTTYD PIC S9(11). <-ALL-FMTS

 68 +ðððð49 ð6 IDEPT PIC S9(3). <-ALL-FMTS

 69 +ðððð5ð ð6 FILL2 PIC X(57). <-ALL-FMTS

+ðððð51\ I-O FORMAT:DETACH FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð52\ <-ALL-FMTS

 +ðððð53\ ð5 DETACH REDEFINES CMNFIL-RECORD. <-ALL-FMTS

+ðððð54\ I-O FORMAT:EOS FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð55\ <-ALL-FMTS

 +ðððð56\ ð5 EOS REDEFINES CMNFIL-RECORD. <-ALL-FMTS

+ðððð57\ INPUT FORMAT:EVKREQ FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð58\ <-ALL-FMTS

 +ðððð59\ ð5 EVKREQ-I REDEFINES CMNFIL-RECORD. <-ALL-FMTS

+ðððð6ð\ OUTPUT FORMAT:EVKREQ FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð61\ <-ALL-FMTS

 7ð +ðððð62 ð5 EVKREQ-O REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 71 +ðððð63 ð6 PGMID PIC X(1ð). <-ALL-FMTS

 72 +ðððð64 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð65\ I-O FORMAT:ITMREQ FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð66\ <-ALL-FMTS

 73 +ðððð67 ð5 ITMREQ REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 74 +ðððð68 ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ðððð69\ I-O FORMAT:DTLREQ FROM FILE CMNFIL OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð7ð\ <-ALL-FMTS

 75 +ðððð71 ð5 DTLREQ REDEFINES CMNFIL-RECORD. <-ALL-FMTS

 76 +ðððð72 ð6 CUSTNO PIC S9(6). <-ALL-FMTS

 77 ðð53ðð FD DSPFIL ð9/3ð/87

78 ðð54ðð LABEL RECORDS ARE STANDARD. ð9/3ð/87

 79 ðð55ðð ð1 DSPREC. ð9/3ð/87

8ð ðð56ðð COPY DDS-ALL-FORMATS-I-O OF DSPFIL. ð2/27/89

81 +ððððð1 ð5 DSPFIL-RECORD PIC X(79). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ððððð3\ MENU FOR INQUIRY <-ALL-FMTS

 82 +ððððð4 ð5 CIMENU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 83 +ððððð5 ð6 CIMENU-I-INDIC. <-ALL-FMTS

 84 +ððððð6 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 85 +ððððð7 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 86 +ððððð8 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 87 +ððððð9 ð6 OPTION PIC X(1). <-ALL-FMTS

+ðððð1ð\ OUTPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð11\ MENU FOR INQUIRY <-ALL-FMTS

 +ðððð12\ ð5 CIMENU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð13\ INPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð14\ CUSTOMER INQUIRY SCREEN 1 <-ALL-FMTS

 88 +ðððð15 ð5 DTLMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 89 +ðððð16 ð6 DTLMNU-I-INDIC. <-ALL-FMTS

 9ð +ðððð17 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 91 +ðððð18 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 92 +ðððð19 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 93 +ðððð2ð ð6 CUSTNO PIC S9(6). <-ALL-FMTS

+ðððð21\ OUTPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð22\ CUSTOMER INQUIRY SCREEN 1 <-ALL-FMTS

 +ðððð23\ ð5 DTLMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð24\ INPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð25\ CUSTOMER INQUIRY SCR. #2 <-ALL-FMTS

 94 +ðððð26 ð5 DTLSCR-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 95 +ðððð27 ð6 DTLSCR-I-INDIC. <-ALL-FMTS

 96 +ðððð28 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 97 +ðððð29 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 98 +ðððð3ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

Figure 10-22 (Part 3 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-39

+ðððð31\ OUTPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð32\ CUSTOMER INQUIRY SCR. #2 <-ALL-FMTS

 99 +ðððð33 ð5 DTLSCR-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 1ðð +ðððð34 ð6 CUSTN PIC X(6). <-ALL-FMTS

 1ð1 +ðððð35 ð6 DEPT PIC S9(3). <-ALL-FMTS

 1ð2 +ðððð36 ð6 DLSTR PIC S9(6). <-ALL-FMTS

 1ð3 +ðððð37 ð6 DSLSM PIC S9(9). <-ALL-FMTS

 1ð4 +ðððð38 ð6 DSPM1 PIC S9(9). <-ALL-FMTS

 1ð5 +ðððð39 ð6 DSPM2 PIC S9(9). <-ALL-FMTS

 1ð6 +ðððð4ð ð6 DSPM3 PIC S9(9). <-ALL-FMTS

 1ð7 +ðððð41 ð6 DSTYD PIC S9(11). <-ALL-FMTS

 1ð8 +ðððð42 ð6 CNAME PIC X(5). <-ALL-FMTS

+ðððð43\ INPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð44\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 1ð9 +ðððð45 ð5 ITMMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 11ð +ðððð46 ð6 ITMMNU-I-INDIC. <-ALL-FMTS

 111 +ðððð47 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 112 +ðððð48 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 113 +ðððð49 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 114 +ðððð5ð ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ðððð51\ OUTPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð52\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 +ðððð53\ ð5 ITMMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð54\ INPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð55\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 115 +ðððð56 ð5 ITMSC2-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 116 +ðððð57 ð6 ITMSC2-I-INDIC. <-ALL-FMTS

 117 +ðððð58 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 118 +ðððð59 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 119 +ðððð6ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð61\ OUTPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð62\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 12ð +ðððð63 ð5 ITMSC2-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 121 +ðððð64 ð6 DSC PIC X(3ð). <-ALL-FMTS

 122 +ðððð65 ð6 QAVAIL PIC S9(7). <-ALL-FMTS

 123 +ðððð66 ð6 QTYH PIC S9(7). <-ALL-FMTS

 124 +ðððð67 ð6 QTYO PIC S9(7). <-ALL-FMTS

 125 +ðððð68 ð6 QTYB PIC S9(7). <-ALL-FMTS

 126 +ðððð69 ð6 UNT PIC X(2). <-ALL-FMTS

 127 +ðððð7ð ð6 PR1 PIC S9(5)V9(2). <-ALL-FMTS

 128 +ðððð71 ð6 PR5 PIC S9(7). <-ALL-FMTS

 129 +ðððð72 ð6 UFR PIC S9(3)V9(2). <-ALL-FMTS

+ðððð73\ INPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð74\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 13ð +ðððð75 ð5 ITMSC3-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 131 +ðððð76 ð6 ITMSC3-I-INDIC. <-ALL-FMTS

 132 +ðððð77 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 133 +ðððð78 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 134 +ðððð79 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð8ð\ OUTPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð81\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 135 +ðððð82 ð5 ITMSC3-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 136 +ðððð83 ð6 SLSM PIC S9(7)V9(2). <-ALL-FMTS

 137 +ðððð84 ð6 SLSY PIC S9(9)V9(2). <-ALL-FMTS

 138 +ðððð85 ð6 CSTM PIC S9(7)V9(2). <-ALL-FMTS

 139 +ðððð86 ð6 CSTY PIC S9(9)V9(2). <-ALL-FMTS

 14ð +ðððð87 ð6 PROFIT PIC S9(3)V9(2). <-ALL-FMTS

 141 +ðððð88 ð6 LOSTS PIC S9(7)V9(2). <-ALL-FMTS

Figure 10-22 (Part 4 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-40 ICF Programming V4R1

+ðððð89\ INPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð9ð\ TIME OUT SCREEN <-ALL-FMTS

 142 +ðððð91 ð5 TIMOUT-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 143 +ðððð92 ð6 TIMOUT-I-INDIC. <-ALL-FMTS

 144 +ðððð93 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 145 +ðððð94 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 146 +ðððð95 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 147 +ðððð96 ð6 TIMRSP PIC X(1). <-ALL-FMTS

+ðððð97\ OUTPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð98\ TIME OUT SCREEN <-ALL-FMTS

 +ðððð99\ ð5 TIMOUT-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 148 ðð57ðð FD QPRINT ð9/3ð/87

149 ðð58ðð LABEL RECORDS ARE OMITTED. ð9/3ð/87

 15ð ðð59ðð ð1 PRINTREC. ð1/14/88

 151 ðð6ððð ð5 RC PIC 9999. ð1/15/88

 152 ðð61ðð ð5 ERRMSG PIC X(128). ð1/14/88

153 ðð62ðð WORKING-STORAGE SECTION. ð9/3ð/87

 154 ðð63ðð 77 STATUS-IND PIC X(2). ð9/3ð/87

 155 ðð64ðð 77 STATUS-DSP PIC X(2). ð9/3ð/87

 156 ðð65ðð 77 MAJ-MIN-SAV PIC X(4). ð9/3ð/87

157 ðð66ðð 77 EOF-PFILE-SW PIC X VALUE "ð". ð9/3ð/87

158 ðð67ðð 77 ERR-SW PIC X VALUE "ð". ð9/3ð/87

159 ðð68ðð 77 INDON PIC 1 VALUE B"1". ð9/3ð/87

16ð ðð69ðð 77 INDOFF PIC 1 VALUE B"ð". ð9/3ð/87

161 ðð7ððð 77 OPEN-COUNT PIC 9(1) VALUE ð. ð9/3ð/87

162 ðð71ðð 77 LEN PIC 9(1ð)V9(5) COMP. ð9/3ð/87

163 ðð72ðð 77 PROFM PIC 9(7)V9(2) COMP-4. ð9/3ð/87

 164 ðð73ðð 77 CMD2 PIC X(31) ð9/3ð/87

165 ðð74ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". ð9/3ð/87

 166 ðð75ðð ð1 SUBKEY-VALUE. ð9/3ð/87

167 ðð76ðð ð5 SUBKEY PIC 9(3) VALUE ð. ð9/3ð/87

 168 ðð77ðð ð1 TR-CTL-AREA. ð9/3ð/87

 169 ðð78ðð ð5 FILLER PIC X(2). ð9/3ð/87

 17ð ðð79ðð ð5 PGM-DEV-NME PIC X(1ð). ð9/3ð/87

 171 ðð8ððð ð5 RCD-FMT-NME PIC X(1ð). ð9/3ð/87

 172 ðð81ðð ð1 CMNF-INDIC-AREA. ð9/3ð/87

173 ðð82ðð ð5 IN9ð PIC 1 INDIC 9ð. ð9/3ð/87

 174 ðð83ðð 88 IN9ð-ON VALUE B"1". ð9/3ð/87

 175 ðð84ðð 88 IN9ð-OFF VALUE B"ð". ð9/3ð/87

 176 ðð85ðð ð1 DSPF-INDIC-AREA. ð9/3ð/87

177 ðð86ðð ð5 IN23 PIC 1 INDIC 23. ð9/3ð/87

 178 ðð87ðð 88 IN23-ON VALUE B"1". ð9/3ð/87

 179 ðð88ðð 88 IN23-OFF VALUE B"ð". ð9/3ð/87

18ð ðð89ðð ð5 IN97 PIC 1 INDIC 97. ð9/3ð/87

 181 ðð9ððð 88 IN97-ON VALUE B"1". ð9/3ð/87

 182 ðð91ðð 88 IN97-OFF VALUE B"ð". ð9/3ð/87

183 ðð92ðð ð5 IN98 PIC 1 INDIC 98. ð9/3ð/87

 184 ðð93ðð 88 IN98-ON VALUE B"1". ð9/3ð/87

 185 ðð94ðð 88 IN98-OFF VALUE B"ð". ð9/3ð/87

186 ðð95ðð ð5 IN99 PIC 1 INDIC 99. ð9/3ð/87

 187 ðð96ðð 88 IN99-ON VALUE B"1". ð9/3ð/87

 188 ðð97ðð 88 IN99-OFF VALUE B"ð". ð9/3ð/87

 189 ðð98ðð ð1 MAJ-MIN. ð9/3ð/87

 19ð ðð99ðð ð5 MAJ PIC X(2). ð9/3ð/87

 191 ð1ðððð ð5 MIN PIC X(2). ð9/3ð/87

 192 ð1ð1ðð ð1 DISPLAY-FEEDBACK. ð9/3ð/87

 193 ð1ð2ðð ð5 CMD-KEY PIC X(2). ð9/3ð/87

 194 ð1ð3ðð ð5 FILLER PIC X(1ð). ð9/3ð/87

 195 ð1ð4ðð ð5 RCD-FMT PIC X(1ð). ð9/3ð/87

 ð1ð5ðð/ ð9/3ð/87

196 ð1ð6ðð PROCEDURE DIVISION. ð9/3ð/87

 ð1ð7ðð DECLARATIVES. ð9/3ð/87

 ð1ð8ðð\.2/ 1ð/14/87

 ð1ð9ðð\\ ð2/21/89

 ð11ððð\ \ ð2/21/89

ð111ðð\ AN ERROR ON THE DISPLAY FILE - DSPFIL - MAKES IT INACTIVE \ ð2/21/89

ð112ðð\ THE JOB IS ENDED. \ ð2/21/89

 ð113ðð\ \ ð2/21/89

 ð114ðð\\ ð2/21/89

Figure 10-22 (Part 5 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-41

ð115ðð DSP-ERROR SECTION. 1ð/ð5/87

ð116ðð USE AFTER STANDARD ERROR PROCEDURE ON DSPFIL. 1ð/ð5/87

 ð117ðð\ 1ð/ð5/87

 ð118ðð DSPFIL-EXCEPTION. 1ð/ð5/87

197 ð119ðð MOVE "DISPLAY ERROR. JOB TERMINATED" TO ERRMSG. ð2/21/89

 198 ð12ððð WRITE PRINTREC. ð2/21/89

199 ð121ðð CLOSE CMNFIL DSPFIL QPRINT. ð2/21/89

 2ðð ð122ðð STOP RUN. ð2/21/89

 ð123ðð\ 1ð/13/87

 ð124ðð\\ ð2/21/89

 ð125ðð\ \ ð2/21/89

ð126ðð\ THIS SECTION HANDLES ERRORS ON THE CMNFIL. A PERMANENT \ ð2/21/89

ð127ðð\ SESSION ERROR WILL END THE JOB. \ ð2/21/89

 ð128ðð\ \ ð2/21/89

 ð129ðð\\ ð2/21/89

ð13ððð CMN-ERROR SECTION. 1ð/14/87

ð131ðð USE AFTER STANDARD ERROR PROCEDURE ON CMNFIL. ð9/3ð/87

 ð132ðð CMNFIL-EXCEPTION. ð9/3ð/87

 ð133ðð\\ ð2/21/89

ð134ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION \ ð2/21/89

ð135ðð\ MAJOR CODE 34 - INPUT EXCEPTION. \ ð2/21/89

 ð136ðð\\ ð2/21/89

2ð1 ð137ðð IF MAJ-MIN = "3431" ð9/3ð/87

ð138ðð\ DATA TRUNCATED IN INPUT AREA. SAVE RETURN CODE. ð2/22/89

2ð2 ð139ðð MOVE MAJ-MIN TO MAJ-MIN-SAV ð9/3ð/87

2ð3 ð14ððð GO TO EXIT-DECLARATIVES. 1ð/13/87

ð141ðð\ RECOVERABLE SESSION ERROR. CLOSE ICF FILE. 1ð/ð3/9ð

2ð4 ð142ðð IF MAJ = "83" ð9/3ð/87

2ð5 ð143ðð MOVE MAJ-MIN TO RC ð1/14/88

2ð6 ð144ðð MOVE "PROGRAM STARTED AGAIN DUE TO SESSION ERROR" ð9/3ð/87

 ð145ðð TO ERRMSG ð1/14/88

 2ð7 ð146ðð WRITE PRINTREC ð9/3ð/87

2ð8 ð147ðð MOVE "1" TO ERR-SW ð9/3ð/87

2ð9 ð148ðð GO TO EXIT-DECLARATIVES. ð9/3ð/87

 ð149ðð\ ð9/3ð/87

 ð15ððð\\ ð2/21/89

ð151ðð\ WHEN THERE IS A PERMANENT SESSION ERROR DETECTED, \ ð2/21/89

ð152ðð\ THE MAJOR-MINOR CODE IS PLACED INTO A DATABASE \ ð2/21/89

ð153ðð\ FILE AND THE FILE IS PRINTED IN HEX USING COPYFILE. \ ð2/21/89

 ð154ðð\\ ð2/21/89

 ð155ðð\ ð9/3ð/87

 ð156ðð GETFBA. ð9/3ð/87

21ð ð157ðð MOVE MAJ-MIN TO RC. ð1/14/88

211 ð158ðð MOVE "PROGRAM TERMINATED DUE TO ERROR IN CMNFIL FILE" ð9/3ð/87

 ð159ðð TO ERRMSG. ð1/14/88

 212 ð16ððð WRITE PRINTREC. ð9/3ð/87

213 ð161ðð CLOSE CMNFIL DSPFIL QPRINT. ð9/3ð/87

 214 ð162ðð STOP RUN. ð9/3ð/87

 ð163ðð\ 1ð/ð2/87

 ð164ðð EXIT-DECLARATIVES. ð9/3ð/87

 ð165ðð EXIT. ð2/28/89

 ð166ðð\ ð9/3ð/87

215 ð167ðð END DECLARATIVES. ð9/3ð/87

 ð168ðð/ ð9/3ð/87

 ð169ðð START-PROGRAM SECTION. ð9/3ð/87

 ð17ððð\ ð9/3ð/87

 ð171ðð START-PROGRAM-PARAGRAPH. ð9/3ð/87

 ð172ðð\.3/ ð9/3ð/87

 216 ð173ðð OPEN I-O CMNFIL DSPFIL ð9/3ð/87

 ð174ðð OUTPUT QPRINT. ð9/3ð/87

217 ð175ðð MOVE ZEROS TO CMNF-INDIC-AREA. ð9/3ð/87

 ð176ðð\ ð9/3ð/87

Figure 10-22 (Part 6 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-42 ICF Programming V4R1

 ð177ðð\\ ð9/3ð/87

ð178ðð\ THE FOLLOWING TEST IS TO ATTEMPT RECOVERY IF AN ERROR \ ð9/3ð/87

ð179ðð\ OCCURS WHEN OPENING THE ICF FILE. \ 1ð/ð3/9ð

 ð18ððð\\ ð9/3ð/87

 ð181ðð\.4/ ð9/3ð/87

218 ð182ðð IF ERR-SW = "1" ð9/3ð/87

219 ð183ðð THEN IF OPEN-COUNT IS = 9 ð9/3ð/87

22ð ð184ðð THEN PERFORM DETACH-ROUTINE THRU DETACH-EXIT ð9/3ð/87

221 ð185ðð GO TO END-JOB ð9/3ð/87

 ð186ðð ELSE ð9/3ð/87

222 ð187ðð ADD 1 TO OPEN-COUNT ð9/3ð/87

 223 ð188ðð PERFORM ERROR-RECOVERY ð9/3ð/87

224 ð189ðð GO TO START-PROGRAM-PARAGRAPH ð9/3ð/87

 ð19ððð ELSE ð9/3ð/87

225 ð191ðð MOVE ð TO OPEN-COUNT. ð9/3ð/87

 ð192ðð\ ð9/3ð/87

 ð193ðð\\ ð9/3ð/87

 ð194ðð\ \ ð9/3ð/87

ð195ðð\ THE DISPLAY DEVICE IS IMPLICITLY ACQUIRED WHEN THE \ 1ð/15/87

ð196ðð\ FILE IS OPENED. \ ð9/3ð/87

 ð197ðð\ \ ð9/3ð/87

ð198ðð\ ALL OF THE ICF PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. \ 1ð/ð3/9ð

 ð199ðð\ \ ð9/3ð/87

ð2ðððð\ EACH OF THE FOUR TARGET PROGRAMS ARE EVOKED TO ESTABLISH \ ð9/3ð/87

ð2ð1ðð\ TRANSACTIONS WITH THE REMOTE SYSTEMS. \ ð9/3ð/87

 ð2ð2ðð\ \ ð9/3ð/87

ð2ð3ðð\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S \ ð9/3ð/87

 ð2ð4ðð\ DISPLAY. \ ð9/3ð/87

 ð2ð5ðð\ \ ð9/3ð/87

ð2ð6ðð\ EVOKE PROGRAM "CTDMUL" ON REMOTE SYSTEM IN LIBRARY ICFLIB. \ 1ð/13/87

 ð2ð7ðð\\ ð9/3ð/87

 ð2ð8ðð\.5/ ð9/3ð/87

226 ð2ð9ðð ACQUIRE "ICFðð " FOR CMNFIL. ð9/3ð/87

227 ð21ððð ACQUIRE "ICFð1 " FOR CMNFIL. ð9/3ð/87

228 ð211ðð ACQUIRE "ICFð2 " FOR CMNFIL. ð9/3ð/87

229 ð212ðð ACQUIRE "ICFð3 " FOR CMNFIL. ð9/3ð/87

23ð ð213ðð PERFORM EVOKE-ROUTINE THRU EVOKE-EXIT. ð9/3ð/87

 ð214ðð\ ð9/3ð/87

231 ð215ðð WRITE DSPREC FORMAT IS "CIMENU" ð9/3ð/87

 ð216ðð INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

 ð217ðð\ 1ð/14/87

 ð218ðð\\ ð9/3ð/87

 ð219ðð\ \ ð9/3ð/87

ð22ððð\ DETERMINE USER'S REQUEST \ ð9/3ð/87

 ð221ðð\ \ ð9/3ð/87

ð222ðð\ A READ TO THE DISPLAY DEVICE IS ISSUED TO RECEIVE \ 1ð/15/87

ð223ðð\ THE USER'S REQUEST. THE TYPE OF REQUEST MADE IS BASED ON THE \ 1ð/13/87

ð224ðð\ DISPLAY FORMAT CURRENTLY ON THE SCREEN. THE RECORD FORMAT \ 1ð/13/87

ð225ðð\ NAME IS EXTRACTED FROM THE I/O FEEDBACK AREA FOR THE DISPLAY \ 1ð/13/87

ð226ðð\ FILE AND USED TO DETERMINE WHAT ACTION SHOULD BE TAKEN NEXT. \ 1ð/13/87

 ð227ðð\ \ ð9/3ð/87

 ð228ðð\\ ð9/3ð/87

 ð229ðð\.6/ ð9/3ð/87

Figure 10-22 (Part 7 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-43

 ð23ððð READRQ. ð9/3ð/87

232 ð231ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

233 ð232ðð IF RCD-FMT = "CIMENU" ð9/3ð/87

234 ð233ðð PERFORM MENU-ROUTINE THRU MENU-EXIT ð9/3ð/87

235 ð234ðð GO TO READRQ. ð9/3ð/87

236 ð235ðð IF RCD-FMT = "ITMMNU" ð9/3ð/87

237 ð236ðð PERFORM ITMIN-ROUTINE THRU ITMIN-EXIT ð9/3ð/87

238 ð237ðð GO TO READRQ. ð9/3ð/87

239 ð238ðð IF RCD-FMT = "ITMSC2" ð9/3ð/87

24ð ð239ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT ð9/3ð/87

241 ð24ððð GO TO READRQ. ð9/3ð/87

242 ð241ðð IF RCD-FMT = "ITMSC3" ð9/3ð/87

243 ð242ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT ð9/3ð/87

244 ð243ðð GO TO READRQ. ð9/3ð/87

245 ð244ðð IF RCD-FMT = "DTLMNU" ð9/3ð/87

246 ð245ðð PERFORM DTLIN-ROUTINE THRU DTLIN-EXIT ð9/3ð/87

247 ð246ðð GO TO READRQ. ð9/3ð/87

248 ð247ðð IF RCD-FMT = "DTLSCR" 1ð/12/87

249 ð248ðð PERFORM DTLRTN-ROUTINE THRU DTLRTN-EXIT 1ð/12/87

25ð ð249ðð GO TO READRQ. 1ð/12/87

251 ð25ððð WRITE DSPREC FORMAT IS "CIMENU". ð9/3ð/87

 ð251ðð 1ð/12/87

252 ð252ðð GO TO READRQ. ð9/3ð/87

 ð253ðð/ ð9/3ð/87

 ð254ðð\\ ð9/3ð/87

 ð255ðð\ \ ð9/3ð/87

 ð256ðð\ MAIN MENU \ ð9/3ð/87

 ð257ðð\ \ ð9/3ð/87

ð258ðð\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED \ 1ð/12/87

ð259ðð\ BY THE USER. IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM \ 1ð/12/87

ð26ððð\ IS ENDED. IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN TO \ 1ð/12/87

ð261ðð\ TO SCREEN. IF OPTION = 2, A CUSTOMER INQUIRY MENU IS \ 1ð/12/87

ð262ðð\ WRITTEN TO THE SCREEN. \ 1ð/12/87

 ð263ðð\ \ ð9/3ð/87

 ð264ðð\\ ð9/3ð/87

 ð265ðð\.7/ ð9/3ð/87

 ð266ðð MENU-ROUTINE. ð9/3ð/87

253 ð267ðð IF CMD-KEY = "ð1" ð9/3ð/87

254 ð268ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT ð9/3ð/87

255 ð269ðð GO TO END-JOB. ð9/3ð/87

256 ð27ððð IF OPTION = "1" ð9/3ð/87

257 ð271ðð WRITE DSPREC FORMAT IS "ITMMNU" ð9/3ð/87

 ð272ðð ELSE ð9/3ð/87

258 ð273ðð WRITE DSPREC FORMAT IS "DTLMNU". ð9/3ð/87

 ð274ðð MENU-EXIT. ð9/3ð/87

 ð275ðð EXIT. ð9/3ð/87

 ð276ðð/ ð9/3ð/87

 ð277ðð\\ ð9/3ð/87

 ð278ðð\ \ ð9/3ð/87

 ð279ðð\ ITEM INQUIRY \ ð9/3ð/87

 ð28ððð\ \ ð9/3ð/87

ð281ðð\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY \ ð9/3ð/87

ð282ðð\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE \ ð9/3ð/87

ð283ðð\ DISPLAY RECORD FORMAT BEING PROCESSED - IN THIS CASE ITMMNU. \ ð9/3ð/87

 ð284ðð\ \ ð2/21/89

ð285ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

ð286ðð\ IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, AND THE \ ð9/3ð/87

ð287ðð\ MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ ð9/3ð/87

 ð288ðð\ \ ð9/3ð/87

ð289ðð\ IF AN ITEM NUMBER IS ENTERED, AN ITEM INQUIRY REQUEST IS \ ð9/3ð/87

ð29ððð\ SENT TO THE APPROPRIATE REMOTE SYSTEM. THE REMOTE SYSTEM \ ð9/3ð/87

ð291ðð\ IS SELECTED BASED ON THE ITEM NUMBER REQUESTED. \ ð9/3ð/87

 ð292ðð\ \ ð9/3ð/87

Figure 10-22 (Part 8 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-44 ICF Programming V4R1

ð293ðð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ 1ð/14/87

ð294ðð\ 1) THE REMOTE SYSTEM TIMED OUT, 2) NO DATA RECEIVED, AND \ 1ð/14/87

ð295ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ 1ð/14/87

 ð296ðð\ \ 1ð/14/87

ð297ðð\ IF THE REMOTE SYSTEM TIMES OUT (MAJ-MIN = ð31ð) A MESSAGE \ 1ð/14/87

ð298ðð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ 1ð/14/87

 ð299ðð\ PROGRAM. \ 1ð/14/87

 ð3ðððð\ \ 1ð/14/87

ð3ð1ðð\ IF NO DATA IS RECEIVED AFTER THE READ OPERATION TO THE \ 1ð/15/87

ð3ð2ðð\ PROGRAM DEVICE (MAJ-MIN = ð3__) THE REQUEST IS SENT AGAIN \ 1ð/14/87

ð3ð3ðð\ TO THE REMOTE SYSTEM AND THE READ OPERATION IS ISSUED TO \ 1ð/14/87

ð3ð4ðð\ THE PROGRAM DEVICE. \ 1ð/15/87

 ð3ð5ðð\ \ 1ð/14/87

ð3ð6ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ 1ð/14/87

ð3ð7ðð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ 1ð/14/87

 ð3ð8ðð\ \ 1ð/14/87

 ð3ð9ðð\\ ð9/3ð/87

 ð31ððð\.8/ ð9/3ð/87

 259 ð311ðð ITMIN-ROUTINE. ð9/3ð/87

26ð ð312ðð IF CMD-KEY = "ð1" ð9/3ð/87

261 ð313ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

262 ð314ðð GO TO END-JOB. 1ð/12/87

263 ð315ðð IF CMD-KEY = "ð2" 1ð/12/87

264 ð316ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

265 ð317ðð GO TO ITMIN-EXIT. 1ð/12/87

266 ð318ðð MOVE CORR ITMMNU-I TO ITMREQ. ð9/3ð/87

\ \\ CORRESPONDING items for statement 266:

 \ \\ ITEMNO

\ \\ End of CORRESPONDING items for statement 266

267 ð319ðð IF ITEMNO OF ITMMNU-I LESS THAN 399999 GO TO XICFð1. ð9/3ð/87

269 ð32ððð IF ITEMNO OF ITMMNU-I LESS THAN 699999 GO TO XICFð2. ð9/3ð/87

271 ð321ðð IF ITEMNO OF ITMMNU-I LESS THAN 899999 GO TO XICFð3. ð9/3ð/87

 ð322ðð XICFð1. ð9/3ð/87

273 ð323ðð MOVE "ICFð1 " TO PGM-DEV-NME. ð9/3ð/87

274 ð324ðð GO TO XITMIN. ð9/3ð/87

 ð325ðð XICFð2. ð9/3ð/87

275 ð326ðð MOVE "ICFð2 " TO PGM-DEV-NME. ð9/3ð/87

276 ð327ðð GO TO XITMIN. ð9/3ð/87

 ð328ðð XICFð3. ð9/3ð/87

277 ð329ðð MOVE "ICFð3 " TO PGM-DEV-NME. ð9/3ð/87

 ð33ððð XITMIN. ð9/3ð/87

278 ð331ðð MOVE ZEROS TO CMNF-INDIC-AREA. ð9/3ð/87

279 ð332ðð WRITE CMNREC FORMAT IS "ITMREQ" ð9/3ð/87

 ð333ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð334ðð TRY-AGAIN. 1ð/ð1/87

 28ð ð335ðð READ CMNFIL. ð9/3ð/87

281 ð336ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

282 ð337ðð WRITE DSPREC FORMAT IS "TIMOUT" ð9/3ð/87

283 ð338ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA ð9/3ð/87

284 ð339ðð IF TIMRSP = "1" GO TO TRY-AGAIN END-IF ð1/21/88

286 ð34ððð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

288 ð341ðð IF MAJ = "ð3" ð9/3ð/87

289 ð342ðð GO TO XITMIN. ð9/3ð/87

29ð ð343ðð IF RCD-FMT-NME IS NOT EQUAL "ITMRSP" GO TO EXIT-FORMAT-ERR. 1ð/ð2/87

292 ð344ðð PERFORM ITMOUT-ROUTINE THRU ITMOUT-EXIT. ð9/3ð/87

 ð345ðð ITMIN-EXIT. ð9/3ð/87

 ð346ðð EXIT. ð9/3ð/87

 ð347ðð/ 1ð/14/87

Figure 10-22 (Part 9 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-45

 ð348ðð\\ ð9/3ð/87

 ð349ðð\ \ ð9/3ð/87

ð35ððð\ PROCESS ITEM INFORMATION \ ð9/3ð/87

 ð351ðð\ \ ð9/3ð/87

ð352ðð\ THE ITEM RECORD RECEIVED FROM THE TARGET PROGRAM AND THE \ ð9/3ð/87

ð353ðð\ INFORMATION ABOUT THE ITEM IS PROCESSED AND DISPLAYED. \ ð9/3ð/87

ð354ðð\ IF ITEMNO IS ð OR LESS, IT IS AN INVALID REQUEST AND A FRESH \ ð9/3ð/87

ð355ðð\ ITEM MENU IS WRITTEN TO THE SCREEN. IF THE REQUEST IS \ ð9/3ð/87

ð356ðð\ VALID, VALUES ARE CALCULATED BASED ON THE INFORMATION \ ð9/3ð/87

 ð357ðð\ RECEIVED. \ ð9/3ð/87

 ð358ðð\ \ ð9/3ð/87

 ð359ðð\\ ð9/3ð/87

 ð36ððð\.9/ ð9/3ð/87

 293 ð361ðð ITMOUT-ROUTINE. ð9/3ð/87

294 ð362ðð IF ITEMNO OF ITMRSP NOT GREATER THAN ð ð9/3ð/87

295 ð363ðð WRITE DSPREC FORMAT IS "ITMMNU" ð9/3ð/87

296 ð364ðð GO TO ITMOUT-EXIT. ð9/3ð/87

297 ð365ðð MOVE DESC TO DSC OF ITMSC2-O. ð9/3ð/87

298 ð366ðð MOVE QTYLST TO QAVAIL OF ITMSC2-O. ð9/3ð/87

299 ð367ðð MOVE QTYOO TO QTYO OF ITMSC2-O. ð9/3ð/87

3ðð ð368ðð MOVE QTYOH TO QTYH OF ITMSC2-O. ð9/3ð/87

3ð1 ð369ðð MOVE QTYBO TO QTYB OF ITMSC2-O. ð9/3ð/87

3ð2 ð37ððð MOVE UNITQ TO UNT OF ITMSC2-O. ð9/3ð/87

3ð3 ð371ðð MOVE PRð1 TO PR1 OF ITMSC2-O. ð9/3ð/87

3ð4 ð372ðð MOVE PRð5 TO PR5 OF ITMSC2-O. ð9/3ð/87

3ð5 ð373ðð MOVE UFRT TO UFR OF ITMSC2-O. ð9/3ð/87

3ð6 ð374ðð WRITE DSPREC FORMAT IS "ITMSC2" ð9/3ð/87

 ð375ðð INDICATORS ARE DSPF-INDIC-AREA. ð9/3ð/87

 ð376ðð ITMOUT-EXIT. ð9/3ð/87

 ð377ðð EXIT. ð9/3ð/87

 ð378ðð\ 1ð/14/87

 ð379ðð\\ ð2/21/89

 ð38ððð\ \ ð2/21/89

ð381ðð\ ADDITIONAL ITEM INFORMATION \ ð2/21/89

 ð382ðð\ \ ð2/21/89

ð383ðð\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT \ ð2/21/89

ð384ðð\ DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ FROM THE \ ð2/21/89

ð385ðð\ DISPLAY STATION WITH AN ITEM SCREEN RECORD FORMAT. \ ð2/21/89

 ð386ðð\ \ ð2/21/89

ð387ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ ð2/21/89

ð388ðð\ IS PRESSED, THE ITEM INQUIRY IS ENDED, AND THE MAIN MENU \ ð2/21/89

ð389ðð\ (CIMENU) IS WRITTEN TO THE SCREEN. IF CMD KEY 3 IS PRESSED, \ ð2/21/89

ð39ððð\ THE ITEM INQUIRY MENU IS WRITTEN TO THE SCREEN. BY PRESSING \ ð2/21/89

ð391ðð\ ENTER WHEN SCREEN 2 IS DISPLAYED, MORE INFORMATION (PROFIT- \ ð2/21/89

ð392ðð\ LOSS) IS WRITTEN TO THE SCREEN. IF SCREEN 3 IS DISPLAYED, \ ð2/21/89

ð393ðð\ PRESSING ENTER WILL CAUSE THE ITEM INQUIRY MENU TO BE \ ð2/21/89

ð394ðð\ WRITTEN TO THE SCREEN. \ ð2/21/89

 ð395ðð\ \ ð2/21/89

 ð396ðð\\ ð2/21/89

 ð397ðð\.1ð/ ð9/3ð/87

 3ð7 ð398ðð ITMRTN-ROUTINE. ð9/3ð/87

3ð8 ð399ðð IF CMD-KEY = "ð1" ð9/3ð/87

3ð9 ð4ðððð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

31ð ð4ð1ðð GO TO END-JOB. 1ð/12/87

311 ð4ð2ðð IF CMD-KEY = "ð2" ð9/3ð/87

312 ð4ð3ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

313 ð4ð4ðð GO TO ITMRTN-EXIT. 1ð/12/87

314 ð4ð5ðð IF CMD-KEY = "ð3" ð9/3ð/87

315 ð4ð6ðð WRITE DSPREC FORMAT IS "ITMMNU" 1ð/12/87

316 ð4ð7ðð GO TO ITMRTN-EXIT. 1ð/12/87

317 ð4ð8ðð IF RCD-FMT = "ITMSC2" 1ð/12/87

318 ð4ð9ðð PERFORM PROFIT-LOSS THRU PROFIT-LOSS-EXIT 1ð/12/87

319 ð41ððð WRITE DSPREC FORMAT IS "ITMSC3" 1ð/12/87

32ð ð411ðð GO TO ITMRTN-EXIT. 1ð/12/87

321 ð412ðð WRITE DSPREC FORMAT IS "ITMMNU". 1ð/12/87

 ð413ðð ITMRTN-EXIT. ð9/3ð/87

 ð414ðð EXIT. ð9/3ð/87

 ð415ðð\ ð9/3ð/87

Figure 10-22 (Part 10 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-46 ICF Programming V4R1

 ð416ðð\\ ð2/21/89

 ð417ðð\ \ ð2/21/89

ð418ðð\ PROFIT AND LOSS FIGURES ARE CALCULATED FOR THE ITEM NUMBER \ ð2/21/89

ð419ðð\ REQUESTED. THESE ARE USED IN SCREEN 2 OF THE ITEM. \ ð2/21/89

 ð42ððð\ \ ð2/21/89

 ð421ðð\\ ð2/21/89

 ð422ðð\ ð9/3ð/87

 322 ð423ðð PROFIT-LOSS. ð9/3ð/87

 ð424ðð\.11/ ð9/3ð/87

323 ð425ðð SUBTRACT SLSTM FROM CSTTM GIVING PROFM. ð9/3ð/87

324 ð426ðð MULTIPLY PROFM BY 1ðð GIVING PROFM. ð9/3ð/87

325 ð427ðð IF SLSTM GREATER THAN ð ð9/3ð/87

326 ð428ðð DIVIDE PROFM BY SLSTM GIVING PROFM. ð9/3ð/87

327 ð429ðð MULTIPLY QTYLST BY PRð1 GIVING LOSTS. ð9/3ð/87

 328 ð43ððð MOVE SLSTM TO SLSM. ð9/3ð/87

 329 ð431ðð MOVE SLSTY TO SLSY. ð9/3ð/87

 33ð ð432ðð MOVE CSTTM TO CSTM. ð9/3ð/87

 331 ð433ðð MOVE PROFM TO PROFIT. ð9/3ð/87

 332 ð434ðð MOVE CSTTY TO CSTY. ð9/3ð/87

 ð435ðð PROFIT-LOSS-EXIT. ð9/3ð/87

 ð436ðð EXIT. ð9/3ð/87

 ð437ðð/ ð9/3ð/87

 ð438ðð\\ ð9/3ð/87

 ð439ðð\ \ ð9/3ð/87

 ð44ððð\ CUSTOMER INQUIRY \ ð9/3ð/87

 ð441ðð\ \ ð9/3ð/87

ð442ðð\ THE REQUEST FROM THE CUSTOMER INQUIRY MENU IS PROCESSED. \ ð9/3ð/87

ð443ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

ð444ðð\ IS PRESSED, THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ 1ð/14/87

 ð445ðð\ \ ð9/3ð/87

ð446ðð\ IF A CUSTOMER NUMBER IS ENTERED, THE CUSTOMER INQUIRY \ ð9/3ð/87

ð447ðð\ REQUEST IS SENT TO THE REMOTE SYSTEM. THEN DTOUT-ROUTINE \ 1ð/13/87

ð448ðð\ THRU DTOUT-EXIT ARE PERFORMED. \ 1ð/14/87

 ð449ðð\ \ ð9/3ð/87

 ð45ððð\\ ð9/3ð/87

 ð451ðð\.12/ ð9/3ð/87

 333 ð452ðð DTLIN-ROUTINE. ð9/3ð/87

334 ð453ðð IF CMD-KEY = "ð1" ð9/3ð/87

335 ð454ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

336 ð455ðð GO TO END-JOB. 1ð/12/87

337 ð456ðð IF CMD-KEY = "ð2" 1ð/12/87

338 ð457ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

339 ð458ðð GO TO DTLIN-EXIT. 1ð/12/87

 ð459ðð EVDTL. ð9/3ð/87

34ð ð46ððð MOVE "ICFðð " TO PGM-DEV-NME. ð9/3ð/87

341 ð461ðð MOVE CORR DTLMNU-I TO DTLREQ. ð9/3ð/87

\ \\ CORRESPONDING items for statement 341:

 \ \\ CUSTNO

\ \\ End of CORRESPONDING items for statement 341

342 ð462ðð MOVE ZEROS TO CMNF-INDIC-AREA. ð9/3ð/87

343 ð463ðð WRITE CMNREC FORMAT IS "DTLREQ" ð9/3ð/87

 ð464ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

344 ð465ðð PERFORM DTOUT-ROUTINE THRU DTOUT-EXIT. ð9/3ð/87

 ð466ðð DTLIN-EXIT. ð9/3ð/87

 ð467ðð EXIT. ð9/3ð/87

 ð468ðð\ 1ð/14/87

 ð469ðð\\ ð9/3ð/87

 ð47ððð\ \ ð9/3ð/87

ð471ðð\ PROCESS CUSTOMER INFORMATION \ ð9/3ð/87

 ð472ðð\ \ ð9/3ð/87

ð473ðð\ THE CUSTOMER DATA RECEIVED FROM THE TARGET PROGRAM IS \ 1ð/13/87

ð474ðð\ PROCESSED. IF CUSTOMER NUMBER IS ZERO OR LESS, IT IS AN \ 1ð/13/87

ð475ðð\ INVALID REQUEST AND THE MAIN MENU IS WRITTEN TO THE SCREEN. \ 1ð/13/87

 ð476ðð\ \ ð9/3ð/87

 ð477ðð\\ ð9/3ð/87

 ð478ðð\.13/ ð9/3ð/87

 345 ð479ðð DTOUT-ROUTINE. ð9/3ð/87

346 ð48ððð IF CUSTNO OF DTLRSP-I NOT GREATER THAN ð ð9/3ð/87

347 ð481ðð WRITE DSPREC FORMAT IS "CIMENU" ð9/3ð/87

348 ð482ðð GO TO DTOUT-EXIT. ð9/3ð/87

349 ð483ðð PERFORM CUSTOMER-DETAIL THRU CUSTOMER-DETAIL-EXIT. 1ð/12/87

Figure 10-22 (Part 11 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-47

 ð484ðð DTOUT-EXIT. ð9/3ð/87

 ð485ðð EXIT. ð9/3ð/87

 ð486ðð\ 1ð/14/87

 ð487ðð\\ ð2/22/89

 ð488ðð\ \ ð2/22/89

ð489ðð\ THIS ROUTINE HANDLES THE USER'S REQUEST FOLLOWING THE DISPLAY \ ð2/22/89

ð49ððð\ OF THE CUSTOMER INFORMATION. CMD KEY 1 WILL EXIT THE JOB, \ ð2/22/89

ð491ðð\ CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND "ENTER" WILL BRING \ ð2/22/89

ð492ðð\ UP THE CUSTOMER INQUIRY MENU. \ ð2/22/89

 ð493ðð\ \ ð2/22/89

 ð494ðð\\ ð2/22/89

 ð495ðð\.14/ 1ð/14/87

 35ð ð496ðð DTLRTN-ROUTINE. 1ð/12/87

351 ð497ðð IF CMD-KEY = "ð1" 1ð/12/87

352 ð498ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/12/87

353 ð499ðð GO TO END-JOB. 1ð/12/87

354 ð5ðððð IF CMD-KEY = "ð2" 1ð/12/87

355 ð5ð1ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/12/87

356 ð5ð2ðð GO TO DTLRTN-EXIT. 1ð/12/87

357 ð5ð3ðð WRITE DSPREC FORMAT IS "DTLMNU". 1ð/12/87

 ð5ð4ðð DTLRTN-EXIT. 1ð/12/87

 ð5ð5ðð EXIT. 1ð/12/87

 ð5ð6ðð\ 1ð/12/87

 ð5ð7ðð\\ ð2/21/89

 ð5ð8ðð\ \ ð2/21/89

ð5ð9ðð\ THE READ OPERATION TO THE PROGRAM DEVICE IS ISSUED. \ ð2/21/89

ð51ððð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ ð2/21/89

ð511ðð\ 1) THE REMOTE SYSTEM TIMED OUT, 2) NO DATA RECEIVED, AND \ ð2/21/89

ð512ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ ð2/21/89

 ð513ðð\ \ ð2/21/89

ð514ðð\ IF THE REMOTE SYSTEM TIMES OUT (MAJ-MIN = ð31ð) A MESSAGE \ ð2/21/89

ð515ðð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ ð2/21/89

 ð516ðð\ PROGRAM. \ ð2/21/89

 ð517ðð\ \ ð2/21/89

ð518ðð\ IF NO DATA IS RECEIVED AFTER THE READ OPERATION TO THE \ ð2/21/89

ð519ðð\ PROGRAM DEVICE (MAJ-MIN = ð3__) THE REQUEST IS SENT AGAIN \ ð2/21/89

ð52ððð\ TO THE REMOTE SYSTEM AND THE READ OPERATION IS ISSUED TO \ ð2/21/89

ð521ðð\ THE ICF PROGRAM DEVICE. \ 1ð/ð3/9ð

 ð522ðð\ \ ð2/21/89

ð523ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ ð2/21/89

ð524ðð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ ð2/21/89

 ð525ðð\ \ ð2/22/89

 ð526ðð\\ ð2/21/89

 ð527ðð\.15/ 1ð/14/87

 ð528ðð\ ð9/3ð/87

 358 ð529ðð CUSTOMER-DETAIL. ð9/3ð/87

359 ð53ððð MOVE ZEROS TO CMNF-INDIC-AREA. ð9/3ð/87

 36ð ð531ðð READ CMNFIL. ð9/3ð/87

361 ð532ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

362 ð533ðð WRITE DSPREC FORMAT IS "TIMOUT" ð9/3ð/87

363 ð534ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA ð9/3ð/87

364 ð535ðð IF TIMRSP = "1" GO TO CUSTOMER-DETAIL END-IF ð1/21/88

366 ð536ðð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

368 ð537ðð IF MAJ = "ð3" ð9/3ð/87

369 ð538ðð MOVE ZEROS TO CMNF-INDIC-AREA ð9/3ð/87

37ð ð539ðð WRITE CMNREC FORMAT IS "DTLREQ" ð9/3ð/87

ð54ððð TERMINAL IS PGM-DEV-NME ð9/3ð/87

371 ð541ðð GO TO CUSTOMER-DETAIL. ð9/3ð/87

372 ð542ðð IF RCD-FMT-NME IS NOT EQUAL "DTLRSP" GO TO EXIT-FORMAT-ERR. 1ð/ð2/87

374 ð543ðð MOVE CUSTNO OF DTLRSP-I TO CUSTN OF DTLSCR-O. 1ð/12/87

375 ð544ðð MOVE DNAME OF DTLRSP-I TO CNAME OF DTLSCR-O. ð3/21/89

376 ð545ðð MOVE DLSTOR OF DTLRSP-I TO DLSTR OF DTLSCR-O. 1ð/12/87

377 ð546ðð MOVE DSLSTM OF DTLRSP-I TO DSLSM OF DTLSCR-O. 1ð/12/87

378 ð547ðð MOVE DSPMð1 OF DTLRSP-I TO DSPM1 OF DTLSCR-O. 1ð/12/87

379 ð548ðð MOVE DSPMð2 OF DTLRSP-I TO DSPM2 OF DTLSCR-O. 1ð/12/87

38ð ð549ðð MOVE DSTTYD OF DTLRSP-I TO DSTYD OF DTLSCR-O. 1ð/12/87

381 ð55ððð MOVE IDEPT OF DTLRSP-I TO DEPT OF DTLSCR-O. 1ð/12/87

382 ð551ðð WRITE DSPREC FORMAT IS "DTLSCR". 1ð/12/87

 ð552ðð CUSTOMER-DETAIL-EXIT. ð9/3ð/87

 ð553ðð EXIT. ð9/3ð/87

 ð554ðð/ ð9/3ð/87

Figure 10-22 (Part 12 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-48 ICF Programming V4R1

 ð555ðð\\ ð2/21/89

 ð556ðð\ \ ð2/21/89

ð557ðð\ THE EVOKE-ROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. \ ð2/21/89

ð558ðð\ THE SAME TARGET PROGRAM (ICFLIB/CTDMULCL) IS EVOKED AT \ ð2/21/89

ð559ðð\ FOUR DIFFERENT REMOTE SYSTEMS. THE PROGRAM DEVICE \ ð2/21/89

ð56ððð\ IDENTIFIES WHICH SESSION SHOULD BE EVOKED. THE PROGRAM \ ð2/21/89

ð561ðð\ DEVICE WAS SPECIFIED IN CMID PRIOR TO CALLING THIS ROUTINE. \ ð2/21/89

 ð562ðð\ \ ð2/21/89

 ð563ðð\\ ð2/21/89

 ð564ðð\.16/ 1ð/14/87

 ð565ðð\ ð9/3ð/87

 383 ð566ðð EVOKE-ROUTINE. ð9/3ð/87

384 ð567ðð MOVE "CTDMULCL" TO PGMID OF EVKREQ-O. ð9/3ð/87

385 ð568ðð MOVE "ICFLIB" TO LIB OF EVKREQ-O. ð9/3ð/87

386 ð569ðð MOVE "ICFðð " TO PGM-DEV-NME ð9/3ð/87

387 ð57ððð WRITE CMNREC FORMAT IS "EVKREQ" ð9/3ð/87

ð571ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

388 ð572ðð MOVE "ICFð1 " TO PGM-DEV-NME ð9/3ð/87

389 ð573ðð WRITE CMNREC FORMAT IS "EVKREQ" ð9/3ð/87

ð574ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

39ð ð575ðð MOVE "ICFð2 " TO PGM-DEV-NME ð9/3ð/87

391 ð576ðð WRITE CMNREC FORMAT IS "EVKREQ" ð9/3ð/87

ð577ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

392 ð578ðð MOVE "ICFð3 " TO PGM-DEV-NME ð9/3ð/87

393 ð579ðð WRITE CMNREC FORMAT IS "EVKREQ" ð9/3ð/87

ð58ððð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð581ðð EVOKE-EXIT. ð9/3ð/87

 ð582ðð EXIT. ð9/3ð/87

 ð583ðð\ ð9/3ð/87

 ð584ðð\\ ð2/21/89

 ð585ðð\ \ ð2/21/89

ð586ðð\ THE TRANSACTION AND SESSION ARE ENDED FOR EACH OF THE \ ð2/21/89

 ð587ðð\ REMOTE SYSTEMS. \ ð2/21/89

 ð588ðð\ \ ð2/21/89

 ð589ðð\\ ð2/21/89

 ð59ððð\.17/ 1ð/14/87

 394 ð591ðð ERROR-RECOVERY. ð9/3ð/87

395 ð592ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT. ð9/3ð/87

396 ð593ðð CLOSE CMNFIL DSPFIL ð9/3ð/87

 ð594ðð QPRINT. ð9/3ð/87

397 ð595ðð MOVE "ð" TO ERR-SW. ð9/3ð/87

 ð596ðð ERROR-RECOVERY-EXIT. ð9/3ð/87

 ð597ðð EXIT. ð9/3ð/87

 ð598ðð\\ ð2/21/89

 ð599ðð\ \ ð2/21/89

ð6ðððð\ EXIT-FORMAT-ERR IS PERFORMED WHEN A READ TO CMNFIL RETURNS WITH \ ð2/21/89

ð6ð1ðð\ AN UNEXPECTED RCD-FMT-NME IN THE I-O-FEEDBACK AREA FOR CMNFIL. \ ð2/21/89

ð6ð2ðð\ AN ERROR MESSAGE IS PRINTED AND THE PROGRAM ENDS. \ ð2/21/89

 ð6ð3ðð\ \ ð2/21/89

 ð6ð4ðð\\ ð2/21/89

 ð6ð5ðð\.18/ 1ð/14/87

 398 ð6ð6ðð EXIT-FORMAT-ERR. 1ð/ð1/87

399 ð6ð7ðð MOVE MAJ-MIN TO RC. ð1/14/88

4ðð ð6ð8ðð MOVE "RECORD FORMAT IS INCORRECT ON READ " 1ð/ð1/87

 ð6ð9ðð TO ERRMSG. ð1/14/88

 4ð1 ð61ððð WRITE PRINTREC. 1ð/ð1/87

4ð2 ð611ðð CLOSE CMNFIL DSPFIL QPRINT. 1ð/ð1/87

 4ð3 ð612ðð STOP RUN. 1ð/ð1/87

 ð613ðð\ ð9/3ð/87

Figure 10-22 (Part 13 of 14). Source Program Example — CSDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-49

 ð614ðð\\ ð2/21/89

 ð615ðð\ \ ð2/21/89

ð616ðð\ THIS ROUTINE IS CALLED TO END THE TRANSACTION WITH THE \ ð2/21/89

 ð617ðð\ REMOTE SYSTEM. \ ð2/21/89

 ð618ðð\ \ ð2/21/89

 ð619ðð\\ ð2/21/89

 ð62ððð\.19/ 1ð/14/87

 ð621ðð DETACH-ROUTINE. ð9/3ð/87

4ð4 ð622ðð MOVE "ICFðð " TO PGM-DEV-NME ð9/3ð/87

4ð5 ð623ðð WRITE CMNREC FORMAT IS "DETACH" ð9/3ð/87

 ð624ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

4ð6 ð625ðð MOVE "ICFð1 " TO PGM-DEV-NME ð9/3ð/87

4ð7 ð626ðð WRITE CMNREC FORMAT IS "DETACH" ð9/3ð/87

 ð627ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

4ð8 ð628ðð MOVE "ICFð2 " TO PGM-DEV-NME ð9/3ð/87

4ð9 ð629ðð WRITE CMNREC FORMAT IS "DETACH" ð9/3ð/87

 ð63ððð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

41ð ð631ðð MOVE "ICFð3 " TO PGM-DEV-NME ð9/3ð/87

411 ð632ðð WRITE CMNREC FORMAT IS "DETACH" ð9/3ð/87

 ð633ðð TERMINAL IS PGM-DEV-NME. ð9/3ð/87

 ð634ðð DETACH-EXIT. ð9/3ð/87

 ð635ðð EXIT. ð9/3ð/87

 ð636ðð\ ð9/3ð/87

 ð637ðð\\ ð2/21/89

 ð638ðð\ \ ð2/21/89

ð639ðð\ THIS ROUTINE IS CALLED TO RELEASE THE PROGRAM DEVICES, END \ ð2/21/89

ð64ððð\ THE SESSION AND END THE PROGRAM. \ ð2/21/89

 ð641ðð\ \ ð2/21/89

 ð642ðð\\ ð2/21/89

 ð643ðð\.2ð/ 1ð/14/87

 ð644ðð\ ð9/3ð/87

 412 ð645ðð END-JOB. ð9/3ð/87

413 ð646ðð DROP "ICFðð " FROM CMNFIL. ð9/3ð/87

414 ð647ðð DROP "ICFð1 " FROM CMNFIL. ð9/3ð/87

415 ð648ðð DROP "ICFð2 " FROM CMNFIL. ð9/3ð/87

416 ð649ðð DROP "ICFð3 " FROM CMNFIL. ð9/3ð/87

417 ð65ððð CLOSE CMNFIL DSPFIL QPRINT. ð9/3ð/87

 418 ð651ðð STOP RUN. ð9/3ð/87

 ð652ðð\ ð9/3ð/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð52ðð

Message : No INPUT fields found for format DETACH.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð52ðð

Message : No INPUT fields found for format EOS.

\ 25 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð52ðð

Message : No INPUT fields found for format EVKREQ.

\ 8ð MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð56ðð

Message : No OUTPUT fields found for format CIMENU.

\ 8ð MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð56ðð

Message : No OUTPUT fields found for format DTLMNU.

\ 8ð MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð56ðð

Message : No OUTPUT fields found for format ITMMNU.

\ 8ð MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð56ðð

Message : No OUTPUT fields found for format TIMOUT.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

7 ð 7 ð ð ð

 Source records read : 652

 Copy records read : 171

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CSDMUL created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-22 (Part 14 of 14). Source Program Example — CSDMUL (User-Defined Formats)

10-50 ICF Programming V4R1

 Program : CSFMUL

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CSFMUL 1ð/ð3/9ð 14:26:27

 Generation severity level : 29

 Text 'description' : CBL Multiple Session Inquiry - Source $$

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. 1ð/ð1/87

 2 ððð2ðð PROGRAM-ID. CSFMUL. 1ð/ð1/87

 ððð3ðð\\ 1ð/ð1/87

ððð4ðð\ THIS PROGRAM ASSIGNS FOUR SESSIONS AS FOLLOWS: \ 1ð/ð1/87

ððð5ðð\ 'ICFðð' TO INQUIRE ABOUT A CUSTOMER ACCOUNT BEFORE AN \ 1ð/ð1/87

ððð6ðð\ ORDER IS PROCESSED. \ 1ð/ð1/87

ððð7ðð\ 'ICFð1' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/ð1/87

ððð8ðð\ BEING ORDERED (ITEM ððððð1 THRU 399999). \ 1ð/ð1/87

ððð9ðð\ 'ICFð2' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/ð1/87

ðð1ððð\ BEING ORDERED (ITEM 4ððððð THRU 699999). \ 1ð/ð1/87

ðð11ðð\ 'ICFð3' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/ð1/87

ðð12ðð\ BEING ORDERED (ITEM 7ððððð THRU 999999). \ 1ð/ð1/87

ðð13ðð\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A \ 1ð/ð1/87

ðð14ðð\ CUSTOMER AND AN ITEM MENU) THAT IS SENT TO THE REMOTE \ 1ð/ð1/87

 ðð15ðð\ SYSTEM. \ 1ð/15/87

 ðð16ðð\\ 1ð/ð1/87

3 ðð17ðð ENVIRONMENT DIVISION. 1ð/ð1/87

4 ðð18ðð CONFIGURATION SECTION. 1ð/ð1/87

 5 ðð19ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð2ððð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð21ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK 1ð/ð1/87

8 ðð22ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/ð1/87

9 ðð23ðð INPUT-OUTPUT SECTION. 1ð/ð1/87

 1ð ðð24ðð FILE-CONTROL. 1ð/ð1/87

 ðð25ðð\.1/ 1ð/14/87

 ðð26ðð\\ 1ð/ð1/87

 ðð27ðð\ \ 1ð/ð1/87

ðð28ðð\ F I L E S P E C I F I C A T I O N S \ 1ð/ð1/87

 ðð29ðð\ \ 1ð/ð1/87

ðð3ððð\ CMNFIL : ICF FILE USED TO SEND A REQUEST TO ONE \ 1ð/ð3/9ð

ðð31ðð\ OF FOUR DIFFERENT TARGET PROGRAMS. MULTIPLE \ 1ð/ð1/87

ðð32ðð\ SESSIONS ARE ACTIVE CONCURRENTLY. \ 1ð/ð1/87

 ðð33ðð\ \ 1ð/ð1/87

ðð34ðð\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE \ 1ð/14/87

ðð35ðð\ SENT TO A REMOTE SYSTEM. \ 1ð/ð1/87

 ðð36ðð\ \ 1ð/ð1/87

 ðð37ðð\\ 1ð/ð1/87

Figure 10-23 (Part 1 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-51

11 ðð38ðð SELECT CMNFIL ASSIGN TO WORKSTATION-CMNFIL-SI 1ð/ð8/87

12 ðð39ðð ORGANIZATION IS TRANSACTION 1ð/ð1/87

13 ðð4ððð CONTROL-AREA IS TR-CTL-AREA 1ð/ð1/87

14 ðð41ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/ð1/87

15 ðð42ðð SELECT DSPFIL ASSIGN TO WORKSTATION-DSPFIL 1ð/ð8/87

16 ðð43ðð ORGANIZATION IS TRANSACTION 1ð/ð1/87

17 ðð44ðð CONTROL-AREA IS DISPLAY-FEEDBACK 1ð/ð1/87

18 ðð45ðð FILE STATUS IS STATUS-DSP. 1ð/ð1/87

19 ðð46ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/ð1/87

2ð ðð47ðð DATA DIVISION. 1ð/ð1/87

21 ðð48ðð FILE SECTION. 1ð/ð1/87

 22 ðð49ðð FD CMNFIL 1ð/ð8/87

23 ðð5ððð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 24 ðð51ðð ð1 CMNREC. 1ð/ð1/87

 25 ðð52ðð ð5 ITMRSP. 1ð/ð1/87

 26 ðð53ðð ð7 RECITM PIC X. 1ð/ð1/87

 27 ðð54ðð ð7 ITEMNO PIC 9(6). 1ð/ð1/87

 28 ðð55ðð ð7 DESC PIC X(3ð). 1ð/ð1/87

 29 ðð56ðð ð7 QTYLST PIC 9(7). 1ð/ð1/87

 3ð ðð57ðð ð7 QTYOH PIC 9(7). 1ð/ð1/87

 31 ðð58ðð ð7 QTYOO PIC 9(7). 1ð/ð1/87

 32 ðð59ðð ð7 QTYBO PIC 9(7). 1ð/ð1/87

 33 ðð6ððð ð7 UNITQ PIC 99. 1ð/ð1/87

 34 ðð61ðð ð7 PRð1 PIC 9(5)V99. 1ð/ð1/87

 35 ðð62ðð ð7 PRð5 PIC 9(7). 1ð/ð1/87

 36 ðð63ðð ð7 UFRT PIC 999V99. 1ð/ð1/87

 37 ðð64ðð ð7 SLSTM PIC 9(7)V99. 1ð/ð1/87

 38 ðð65ðð ð7 SLSTY PIC 9(9)V99. 1ð/ð1/87

 39 ðð66ðð ð7 CSTTM PIC 9(7)V99. 1ð/ð1/87

 4ð ðð67ðð ð7 CSTTY PIC 9(9)V99. 1ð/ð1/87

 41 ðð68ðð ð7 PRO PIC 999V99. 1ð/ð1/87

 42 ðð69ðð ð7 LOS PIC 9(7)V99. 1ð/ð1/87

 43 ðð7ððð ð7 FILL1 PIC X(56). 1ð/ð1/87

44 ðð71ðð ð5 ITMREQ REDEFINES ITMRSP. 1ð/ð1/87

 45 ðð72ðð ð7 LNGTH PIC 9(4). ð2/22/89

 46 ðð73ðð ð7 ITEMNO PIC 9(6). 1ð/ð1/87

47 ðð74ðð ð5 DTLREQ REDEFINES ITMRSP. 1ð/ð1/87

 48 ðð75ðð ð7 LNGTH PIC 9(4). ð2/22/89

 49 ðð76ðð ð7 CUSTNO PIC 9(6). 1ð/ð1/87

5ð ðð77ðð ð5 DTLRSP REDEFINES ITMRSP. 1ð/ð1/87

 51 ðð78ðð ð7 RECCUS PIC X. 1ð/ð1/87

 52 ðð79ðð ð7 CUSTNO PIC 9(6). 1ð/ð1/87

 53 ðð8ððð ð7 DNAME PIC X(3ð). 1ð/ð1/87

 54 ðð81ðð ð7 DLSTOR PIC 9(6). 1ð/ð1/87

 55 ðð82ðð ð7 DSLSTM PIC 9(9). 1ð/ð1/87

 56 ðð83ðð ð7 DSPMð1 PIC 9(9). 1ð/ð1/87

 57 ðð84ðð ð7 DSPMð2 PIC 9(9). 1ð/ð1/87

 58 ðð85ðð ð7 DSPMð3 PIC 9(9). 1ð/ð1/87

 59 ðð86ðð ð7 DSTTYD PIC 9(11). 1ð/ð1/87

 6ð ðð87ðð ð7 IDEPT PIC 999. 1ð/ð1/87

 61 ðð88ðð ð7 FILL2 PIC X(57). 1ð/ð1/87

62 ðð89ðð ð5 EVKREQ REDEFINES ITMRSP. 1ð/ð1/87

 63 ðð9ððð ð7 PGMID PIC X(8). 1ð/ð1/87

 64 ðð91ðð ð7 FILLER PIC X(16). 1ð/ð1/87

 65 ðð92ðð ð7 LIB PIC X(8). 1ð/ð1/87

 66 ðð93ðð ð7 FILLER PIC X(2ð). 1ð/ð1/87

 67 ðð94ðð ð7 LNGTH PIC 9(4). ð2/22/89

 68 ðð95ðð FD DSPFIL 1ð/ð8/87

69 ðð96ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 7ð ðð97ðð ð1 DSPREC. 1ð/ð1/87

71 ðð98ðð COPY DDS-ALL-FORMATS-I-O OF DSPFIL. 1ð/ð8/87

72 +ððððð1 ð5 DSPFIL-RECORD PIC X(79). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ððððð3\ MENU FOR INQUIRY <-ALL-FMTS

 73 +ððððð4 ð5 CIMENU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 74 +ððððð5 ð6 CIMENU-I-INDIC. <-ALL-FMTS

 75 +ððððð6 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 76 +ððððð7 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 77 +ððððð8 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 78 +ððððð9 ð6 OPTION PIC X(1). <-ALL-FMTS

Figure 10-23 (Part 2 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-52 ICF Programming V4R1

+ðððð1ð\ OUTPUT FORMAT:CIMENU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð11\ MENU FOR INQUIRY <-ALL-FMTS

 +ðððð12\ ð5 CIMENU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð13\ INPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð14\ CUSTOMER INQUIRY SCREEN 1 <-ALL-FMTS

 79 +ðððð15 ð5 DTLMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 8ð +ðððð16 ð6 DTLMNU-I-INDIC. <-ALL-FMTS

 81 +ðððð17 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 82 +ðððð18 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 83 +ðððð19 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 84 +ðððð2ð ð6 CUSTNO PIC S9(6). <-ALL-FMTS

+ðððð21\ OUTPUT FORMAT:DTLMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð22\ CUSTOMER INQUIRY SCREEN 1 <-ALL-FMTS

 +ðððð23\ ð5 DTLMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð24\ INPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð25\ CUSTOMER INQUIRY SCR. #2 <-ALL-FMTS

 85 +ðððð26 ð5 DTLSCR-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 86 +ðððð27 ð6 DTLSCR-I-INDIC. <-ALL-FMTS

 87 +ðððð28 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 88 +ðððð29 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 89 +ðððð3ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð31\ OUTPUT FORMAT:DTLSCR FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð32\ CUSTOMER INQUIRY SCR. #2 <-ALL-FMTS

 9ð +ðððð33 ð5 DTLSCR-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 91 +ðððð34 ð6 CUSTN PIC X(6). <-ALL-FMTS

 92 +ðððð35 ð6 DEPT PIC S9(3). <-ALL-FMTS

 93 +ðððð36 ð6 DLSTR PIC S9(6). <-ALL-FMTS

 94 +ðððð37 ð6 DSLSM PIC S9(9). <-ALL-FMTS

 95 +ðððð38 ð6 DSPM1 PIC S9(9). <-ALL-FMTS

 96 +ðððð39 ð6 DSPM2 PIC S9(9). <-ALL-FMTS

 97 +ðððð4ð ð6 DSPM3 PIC S9(9). <-ALL-FMTS

 98 +ðððð41 ð6 DSTYD PIC S9(11). <-ALL-FMTS

 99 +ðððð42 ð6 CNAME PIC X(5). <-ALL-FMTS

+ðððð43\ INPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð44\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 1ðð +ðððð45 ð5 ITMMNU-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 1ð1 +ðððð46 ð6 ITMMNU-I-INDIC. <-ALL-FMTS

 1ð2 +ðððð47 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 1ð3 +ðððð48 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 1ð4 +ðððð49 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 1ð5 +ðððð5ð ð6 ITEMNO PIC S9(6). <-ALL-FMTS

+ðððð51\ OUTPUT FORMAT:ITMMNU FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð52\ ITEM INQUIRY SCREEN ONE <-ALL-FMTS

 +ðððð53\ ð5 ITMMNU-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

+ðððð54\ INPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð55\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 1ð6 +ðððð56 ð5 ITMSC2-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 1ð7 +ðððð57 ð6 ITMSC2-I-INDIC. <-ALL-FMTS

 1ð8 +ðððð58 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 1ð9 +ðððð59 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 11ð +ðððð6ð ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

+ðððð61\ OUTPUT FORMAT:ITMSC2 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð62\ ITEM INQUIRY SCREEN TWO <-ALL-FMTS

 111 +ðððð63 ð5 ITMSC2-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 112 +ðððð64 ð6 DSC PIC X(3ð). <-ALL-FMTS

 113 +ðððð65 ð6 QAVAIL PIC S9(7). <-ALL-FMTS

 114 +ðððð66 ð6 QTYH PIC S9(7). <-ALL-FMTS

 115 +ðððð67 ð6 QTYO PIC S9(7). <-ALL-FMTS

 116 +ðððð68 ð6 QTYB PIC S9(7). <-ALL-FMTS

 117 +ðððð69 ð6 UNT PIC X(2). <-ALL-FMTS

 118 +ðððð7ð ð6 PR1 PIC S9(5)V9(2). <-ALL-FMTS

 119 +ðððð71 ð6 PR5 PIC S9(7). <-ALL-FMTS

 12ð +ðððð72 ð6 UFR PIC S9(3)V9(2). <-ALL-FMTS

+ðððð73\ INPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð74\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 121 +ðððð75 ð5 ITMSC3-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 122 +ðððð76 ð6 ITMSC3-I-INDIC. <-ALL-FMTS

 123 +ðððð77 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 124 +ðððð78 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 125 +ðððð79 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

Figure 10-23 (Part 3 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-53

+ðððð8ð\ OUTPUT FORMAT:ITMSC3 FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð81\ ITEM INQUIRY SCREEN 3 <-ALL-FMTS

 126 +ðððð82 ð5 ITMSC3-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 127 +ðððð83 ð6 SLSM PIC S9(7)V9(2). <-ALL-FMTS

 128 +ðððð84 ð6 SLSY PIC S9(9)V9(2). <-ALL-FMTS

 129 +ðððð85 ð6 CSTM PIC S9(7)V9(2). <-ALL-FMTS

 13ð +ðððð86 ð6 CSTY PIC S9(9)V9(2). <-ALL-FMTS

 131 +ðððð87 ð6 PROFIT PIC S9(3)V9(2). <-ALL-FMTS

 132 +ðððð88 ð6 LOSTS PIC S9(7)V9(2). <-ALL-FMTS

+ðððð89\ INPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð9ð\ TIME OUT SCREEN <-ALL-FMTS

 133 +ðððð91 ð5 TIMOUT-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 134 +ðððð92 ð6 TIMOUT-I-INDIC. <-ALL-FMTS

 135 +ðððð93 ð7 IN99 PIC 1 INDIC 99. <-ALL-FMTS

 136 +ðððð94 ð7 IN98 PIC 1 INDIC 98. <-ALL-FMTS

 137 +ðððð95 ð7 IN97 PIC 1 INDIC 97. <-ALL-FMTS

 138 +ðððð96 ð6 TIMRSP PIC X(1). <-ALL-FMTS

+ðððð97\ OUTPUT FORMAT:TIMOUT FROM FILE DSPFIL OF LIBRARY ICFLIB <-ALL-FMTS

+ðððð98\ TIME OUT SCREEN <-ALL-FMTS

 +ðððð99\ ð5 TIMOUT-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 139 ðð99ðð FD QPRINT 1ð/ð1/87

14ð ð1ðððð LABEL RECORDS ARE OMITTED. 1ð/ð1/87

 141 ð1ð1ðð ð1 PRINTREC. ð1/14/88

 142 ð1ð2ðð ð5 RC PIC 9999. ð1/15/88

 143 ð1ð3ðð ð5 ERRMSG PIC X(128). ð1/14/88

144 ð1ð4ðð WORKING-STORAGE SECTION. 1ð/ð1/87

 145 ð1ð5ðð 77 STATUS-IND PIC X(2). 1ð/ð1/87

 146 ð1ð6ðð 77 STATUS-DSP PIC X(2). 1ð/ð1/87

 147 ð1ð7ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/ð1/87

148 ð1ð8ðð 77 EOF-PFILE-SW PIC X VALUE "ð". 1ð/ð1/87

149 ð1ð9ðð 77 ERR-SW PIC X VALUE "ð". 1ð/ð1/87

15ð ð11ððð 77 INDON PIC 1 VALUE B"1". 1ð/ð1/87

151 ð111ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/ð1/87

152 ð112ðð 77 OPEN-COUNT PIC 9(1) VALUE ð. 1ð/ð1/87

153 ð113ðð 77 LEN PIC 9(1ð)V9(5) COMP. 1ð/ð1/87

154 ð114ðð 77 PROFM PIC 9(7)V9(2) COMP-4. 1ð/ð1/87

 155 ð115ðð 77 CMD2 PIC X(31) 1ð/ð1/87

156 ð116ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/ð1/87

 157 ð117ðð ð1 TR-CTL-AREA. 1ð/ð1/87

 158 ð118ðð ð5 FILLER PIC X(2). 1ð/ð1/87

 159 ð119ðð ð5 PGM-DEV-NME PIC X(1ð). 1ð/ð1/87

 16ð ð12ððð ð5 RCD-FMT-NME PIC X(1ð). 1ð/ð1/87

 161 ð121ðð ð1 DSPF-INDIC-AREA. 1ð/ð1/87

162 ð122ðð ð5 IN23 PIC 1 INDIC 23. 1ð/ð1/87

 163 ð123ðð 88 IN23-ON VALUE B"1". 1ð/ð1/87

 164 ð124ðð 88 IN23-OFF VALUE B"ð". 1ð/ð1/87

165 ð125ðð ð5 IN97 PIC 1 INDIC 97. 1ð/ð1/87

 166 ð126ðð 88 IN97-ON VALUE B"1". 1ð/ð1/87

 167 ð127ðð 88 IN97-OFF VALUE B"ð". 1ð/ð1/87

168 ð128ðð ð5 IN98 PIC 1 INDIC 98. 1ð/ð1/87

 169 ð129ðð 88 IN98-ON VALUE B"1". 1ð/ð1/87

 17ð ð13ððð 88 IN98-OFF VALUE B"ð". 1ð/ð1/87

171 ð131ðð ð5 IN99 PIC 1 INDIC 99. 1ð/ð1/87

 172 ð132ðð 88 IN99-ON VALUE B"1". 1ð/ð1/87

 173 ð133ðð 88 IN99-OFF VALUE B"ð". 1ð/ð1/87

 174 ð134ðð ð1 MAJ-MIN. 1ð/ð1/87

 175 ð135ðð ð5 MAJ PIC X(2). 1ð/ð1/87

 176 ð136ðð ð5 MIN PIC X(2). 1ð/ð1/87

 177 ð137ðð ð1 DISPLAY-FEEDBACK. 1ð/ð1/87

 178 ð138ðð ð5 CMD-KEY PIC X(2). 1ð/ð1/87

 179 ð139ðð ð5 FILLER PIC X(1ð). 1ð/ð1/87

 18ð ð14ððð ð5 RCD-FMT PIC X(1ð). 1ð/ð1/87

 ð141ðð/ 1ð/ð1/87

Figure 10-23 (Part 4 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-54 ICF Programming V4R1

181 ð142ðð PROCEDURE DIVISION. 1ð/ð1/87

 ð143ðð DECLARATIVES. 1ð/ð1/87

 ð144ðð\.2/ 1ð/14/87

 ð145ðð\\ ð2/22/89

 ð146ðð\ \ ð2/22/89

ð147ðð\ AN ERROR ON THE DISPLAY FILE - DSPFIL - MAKES IT INACTIVE \ ð2/22/89

ð148ðð\ AN ERROR MESSAGE IS PRINTED, THE FILES ARE CLOSED AND THE \ ð2/22/89

ð149ðð\ PROGRAM IS ENDED. \ ð2/22/89

 ð15ððð\ \ ð2/22/89

 ð151ðð\\ ð2/22/89

 ð152ðð\ 1ð/ð8/87

ð153ðð DSP-ERROR SECTION. 1ð/ð5/87

ð154ðð USE AFTER STANDARD ERROR PROCEDURE ON DSPFIL. 1ð/ð8/87

 ð155ðð\ 1ð/ð5/87

 ð156ðð DSPFIL-EXCEPTION. 1ð/ð8/87

182 ð157ðð MOVE "DISPLAY ERROR. JOB TERMINATED" TO ERRMSG. ð2/21/89

 183 ð158ðð WRITE PRINTREC. ð2/21/89

184 ð159ðð CLOSE CMNFIL DSPFIL QPRINT. ð2/21/89

 185 ð16ððð STOP RUN. ð2/21/89

 ð161ðð\ 1ð/ð5/87

ð162ðð CMN-ERROR SECTION. 1ð/14/87

ð163ðð USE AFTER STANDARD ERROR PROCEDURE ON CMNFIL. 1ð/ð8/87

 ð164ðð CMNFIL-EXCEPTION. 1ð/ð8/87

 ð165ðð\\ ð2/22/89

ð166ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION \ ð2/22/89

ð167ðð\ MAJOR CODE 34 IS AN INPUT EXCEPTION \ ð2/22/89

 ð168ðð\\ ð2/22/89

186 ð169ðð IF MAJ-MIN = "3431" 1ð/ð1/87

ð17ððð\ DATA TRUNCATED IN INPUT AREA. SAVE RETURN CODE . 1ð/ð1/87

187 ð171ðð MOVE MAJ-MIN TO MAJ-MIN-SAV 1ð/ð1/87

188 ð172ðð GO TO EXIT-DECLARATIVES. 1ð/13/87

 ð173ðð\ 1ð/ð8/87

ð174ðð\ RECOVERABLE SESSION ERROR. CLOSE ICF FILE. 1ð/ð3/9ð

189 ð175ðð IF MAJ = "83" 1ð/ð1/87

19ð ð176ðð MOVE MAJ-MIN TO RC ð1/14/88

191 ð177ðð MOVE "PROGRAM STARTED AGAIN DUE TO SESSION ERROR" 1ð/ð1/87

 ð178ðð TO ERRMSG ð1/14/88

 192 ð179ðð WRITE PRINTREC 1ð/ð1/87

193 ð18ððð MOVE "1" TO ERR-SW 1ð/ð1/87

194 ð181ðð GO TO EXIT-DECLARATIVES. 1ð/ð1/87

 ð182ðð\ 1ð/ð1/87

 ð183ðð\\ ð2/21/89

ð184ðð\ THIS ROUTINE IS CALLED WHEN THERE IS A PERMANENT SESSION ERROR. \ ð2/21/89

ð185ðð\ GET INFORMATION FROM THE MAJOR-MINOR CODE AND PLACE IT INTO \ ð2/21/89

ð186ðð\ A DATABASE FILE. THEN PRINT THE FILE IN HEX USING COPYFILE. \ ð2/21/89

 ð187ðð\\ ð2/21/89

 ð188ðð\ 1ð/ð1/87

 ð189ðð GETFBA. 1ð/ð1/87

195 ð19ððð MOVE MAJ-MIN TO RC. ð1/14/88

196 ð191ðð MOVE "PROGRAM TERMINATED DUE TO ERROR IN CMNFIL FILE" 1ð/ð8/87

 ð192ðð TO ERRMSG. ð1/14/88

 197 ð193ðð WRITE PRINTREC. 1ð/ð1/87

 198 ð194ðð CLOSE CMNFIL DSPFIL 1ð/ð8/87

 ð195ðð QPRINT. 1ð/ð1/87

 199 ð196ðð STOP RUN. 1ð/ð1/87

 ð197ðð\ 1ð/ð1/87

 ð198ðð EXIT-DECLARATIVES. 1ð/ð1/87

 ð199ðð EXIT. ð2/28/89

 ð2ðððð\ 1ð/ð1/87

2ðð ð2ð1ðð END DECLARATIVES. 1ð/ð1/87

 ð2ð2ðð/ 1ð/ð1/87

 ð2ð3ðð START-PROGRAM SECTION. 1ð/ð1/87

 ð2ð4ðð\ 1ð/ð1/87

 ð2ð5ðð START-PROGRAM-PARAGRAPH. 1ð/ð1/87

 ð2ð6ðð\.3/ 1ð/14/87

 2ð1 ð2ð7ðð OPEN I-O CMNFIL DSPFIL 1ð/ð8/87

 ð2ð8ðð OUTPUT QPRINT. 1ð/ð1/87

 ð2ð9ðð\ 1ð/ð1/87

Figure 10-23 (Part 5 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-55

 ð21ððð\\ ð2/21/89

ð211ðð\ THE FOLLOWING TEST IS TO ATTEMPT RECOVERY IF AN ERROR OCCURS \ ð2/21/89

ð212ðð\ WHEN OPENING THE ICF FILE. \ 1ð/ð3/9ð

 ð213ðð\\ ð2/21/89

 ð214ðð\.4/ 1ð/14/87

2ð2 ð215ðð IF ERR-SW = "1" 1ð/ð1/87

2ð3 ð216ðð THEN IF OPEN-COUNT IS = 9 1ð/ð1/87

2ð4 ð217ðð THEN PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð1/87

2ð5 ð218ðð GO TO END-JOB 1ð/ð1/87

 ð219ðð ELSE 1ð/ð1/87

2ð6 ð22ððð ADD 1 TO OPEN-COUNT 1ð/ð1/87

 2ð7 ð221ðð PERFORM ERROR-RECOVERY 1ð/ð1/87

2ð8 ð222ðð GO TO START-PROGRAM-PARAGRAPH 1ð/ð1/87

 ð223ðð ELSE 1ð/ð1/87

2ð9 ð224ðð MOVE ð TO OPEN-COUNT. 1ð/ð1/87

 ð225ðð\ 1ð/ð1/87

 ð226ðð\\ 1ð/14/87

 ð227ðð\ \ 1ð/ð1/87

ð228ðð\ THE DISPLAY DEVICE IS IMPLICITLY ACQUIRED WHEN THE \ 1ð/15/87

ð229ðð\ FILE IS OPENED. \ 1ð/ð1/87

 ð23ððð\ \ 1ð/ð1/87

ð231ðð\ ALL OF THE ICF PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. \ 1ð/ð3/9ð

 ð232ðð\ \ 1ð/ð1/87

ð233ðð\ EACH OF THE FOUR TARGET PROGRAMS ARE EVOKED TO ESTABLISH \ 1ð/ð1/87

ð234ðð\ TRANSACTIONS WITH THE REMOTE SYSTEMS. \ 1ð/ð1/87

 ð235ðð\ \ 1ð/ð1/87

ð236ðð\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S \ 1ð/ð1/87

 ð237ðð\ DISPLAY. \ 1ð/ð1/87

 ð238ðð\ \ 1ð/ð1/87

ð239ðð\ EVOKE PROGRAM "CTFMULCL" ON REMOTE SYSTEM IN LIBRARY ICFLIB. \ 1ð/ð3/9ð

 ð24ððð\ \ ð2/22/89

 ð241ðð\\ 1ð/14/87

 ð242ðð\.5/ 1ð/14/87

21ð ð243ðð ACQUIRE "ICFðð " FOR CMNFIL. 1ð/ð8/87

211 ð244ðð ACQUIRE "ICFð1 " FOR CMNFIL. 1ð/ð8/87

212 ð245ðð ACQUIRE "ICFð2 " FOR CMNFIL. 1ð/ð8/87

213 ð246ðð ACQUIRE "ICFð3 " FOR CMNFIL. 1ð/ð8/87

214 ð247ðð PERFORM EVOKE-ROUTINE THRU EVOKE-EXIT. 1ð/ð1/87

 ð248ðð\ 1ð/ð1/87

215 ð249ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð1/87

 ð25ððð INDICATORS ARE DSPF-INDIC-AREA. 1ð/ð1/87

 ð251ðð\\ 1ð/ð1/87

 ð252ðð\ \ 1ð/ð1/87

ð253ðð\ DETERMINE USER'S REQUEST \ 1ð/ð1/87

 ð254ðð\ \ 1ð/ð1/87

ð255ðð\ THIS PORTION OF THE PROGRAM ISSUES A READ TO THE DISPLAY \ 1ð/ð1/87

ð256ðð\ DEVICE TO RECEIVE THE USER'S REQUEST. THE TYPE \ 1ð/15/87

ð257ðð\ OF REQUEST MADE IS BASED ON THE DISPLAY FORMAT CURRENTLY \ 1ð/ð1/87

ð258ðð\ ON THE SCREEN. THE RECORD FORMAT NAME IS EXTRACTED FROM \ 1ð/ð1/87

ð259ðð\ THE I/O FEEDBACK AREA OF THE DISPLAY FILE AND USED TO \ 1ð/13/87

ð26ððð\ DETERMINE WHICH ACTION SHOULD BE TAKEN NEXT. \ 1ð/13/87

 ð261ðð\ \ 1ð/ð1/87

 ð262ðð\\ 1ð/14/87

Figure 10-23 (Part 6 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-56 ICF Programming V4R1

 ð263ðð\.6/ 1ð/14/87

 ð264ðð READRQ. 1ð/ð1/87

216 ð265ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA. 1ð/ð8/87

217 ð266ðð IF RCD-FMT = "CIMENU" 1ð/ð1/87

218 ð267ðð PERFORM MENU-ROUTINE THRU MENU-EXIT 1ð/ð1/87

219 ð268ðð GO TO READRQ. 1ð/ð1/87

22ð ð269ðð IF RCD-FMT = "ITMMNU" 1ð/ð1/87

221 ð27ððð PERFORM ITMIN-ROUTINE THRU ITMIN-EXIT 1ð/ð1/87

222 ð271ðð GO TO READRQ. 1ð/ð1/87

223 ð272ðð IF RCD-FMT = "ITMSC2" 1ð/ð1/87

224 ð273ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT 1ð/ð1/87

225 ð274ðð GO TO READRQ. 1ð/ð1/87

226 ð275ðð IF RCD-FMT = "ITMSC3" 1ð/ð1/87

227 ð276ðð PERFORM ITMRTN-ROUTINE THRU ITMRTN-EXIT 1ð/ð1/87

228 ð277ðð GO TO READRQ. 1ð/ð1/87

229 ð278ðð IF RCD-FMT = "DTLMNU" 1ð/ð1/87

23ð ð279ðð PERFORM DTLIN-ROUTINE THRU DTLIN-EXIT 1ð/ð1/87

231 ð28ððð GO TO READRQ. 1ð/ð1/87

232 ð281ðð IF RCD-FMT = "DTLSCR" 1ð/ð8/87

233 ð282ðð PERFORM DTLRTN-ROUTINE THRU DTLRTN-EXIT 1ð/ð8/87

234 ð283ðð GO TO READRQ. 1ð/ð8/87

235 ð284ðð WRITE DSPREC FORMAT IS "CIMENU". 1ð/ð1/87

236 ð285ðð GO TO READRQ. 1ð/ð1/87

 ð286ðð/ 1ð/ð1/87

 ð287ðð\\ 1ð/13/87

 ð288ðð\ \ 1ð/13/87

 ð289ðð\ MAIN MENU \ 1ð/13/87

 ð29ððð\ \ 1ð/13/87

ð291ðð\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED \ 1ð/13/87

ð292ðð\ BY THE USER. IF CMD 1 IS PRESSED, THE PROGRAM IS ENDED. \ 1ð/13/87

ð293ðð\ IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN TO \ 1ð/13/87

ð294ðð\ THE SCREEN. IF OPTION = 2, A CUSTOMER INQUIRY MENU IS \ 1ð/13/87

ð295ðð\ WRITTEN TO THE SCREEN. \ 1ð/13/87

 ð296ðð\ \ 1ð/13/87

 ð297ðð\\ 1ð/13/87

 ð298ðð\.7/ 1ð/14/87

 ð299ðð MENU-ROUTINE. 1ð/ð1/87

237 ð3ðððð IF CMD-KEY = "ð1" 1ð/ð1/87

238 ð3ð1ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð1/87

239 ð3ð2ðð GO TO END-JOB. 1ð/ð1/87

24ð ð3ð3ðð IF OPTION = "1" 1ð/ð1/87

241 ð3ð4ðð WRITE DSPREC FORMAT IS "ITMMNU" 1ð/ð1/87

 ð3ð5ðð ELSE 1ð/ð1/87

242 ð3ð6ðð WRITE DSPREC FORMAT IS "DTLMNU". 1ð/ð1/87

 ð3ð7ðð MENU-EXIT. 1ð/ð1/87

 ð3ð8ðð EXIT. 1ð/ð1/87

 ð3ð9ðð/ 1ð/ð1/87

Figure 10-23 (Part 7 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-57

 ð31ððð\\ 1ð/13/87

 ð311ðð\ \ 1ð/13/87

 ð312ðð\ ITEM INQUIRY \ 1ð/13/87

 ð313ðð\ \ 1ð/13/87

ð314ðð\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY \ 1ð/13/87

ð315ðð\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE \ 1ð/13/87

ð316ðð\ DISPLAY RECORD FORMAT BEING PROCESSED - IN THIS CASE ITMMNU. \ 1ð/13/87

 ð317ðð\ \ ð2/21/89

ð318ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

ð319ðð\ IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, AND THE \ 1ð/13/87

ð32ððð\ MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ 1ð/13/87

 ð321ðð\ \ 1ð/13/87

ð322ðð\ IF AN ITEM NUMBER IS ENTERED, A ITEM INQUIRY REQUEST IS \ 1ð/13/87

ð323ðð\ SENT TO THE APPROPRIATE REMOTE SYSTEM. THE REMOTE SYSTEM \ 1ð/13/87

ð324ðð\ IS SELECTED BASED ON THE ITEM NUMBER REQUESTED. \ 1ð/13/87

 ð325ðð\ \ 1ð/13/87

ð326ðð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ 1ð/14/87

ð327ðð\ 1) THE REMOTE SYSTEM TIMED OUT, 2) NO DATA RECEIVED, AND \ 1ð/14/87

ð328ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ 1ð/14/87

 ð329ðð\ \ 1ð/14/87

ð33ððð\ IF THE REMOTE SYSTEM TIMES OUT (MAJ-MIN = ð31ð) A MESSAGE \ 1ð/14/87

ð331ðð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ 1ð/14/87

 ð332ðð\ PROGRAM. \ 1ð/14/87

 ð333ðð\ \ 1ð/14/87

ð334ðð\ IF NO DATA IS RECEIVED AFTER THE READ OPERATION TO THE \ 1ð/15/87

ð335ðð\ PROGRAM DEVICE (MAJ-MIN = ð3__) THE REQUEST IS SENT AGAIN \ 1ð/14/87

ð336ðð\ TO THE REMOTE SYSTEM AND THE READ OPERATION IS ISSUED TO \ 1ð/14/87

ð337ðð\ THE PROGRAM DEVICE. \ 1ð/15/87

 ð338ðð\ \ 1ð/14/87

ð339ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ 1ð/14/87

ð34ððð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ 1ð/14/87

 ð341ðð\ \ 1ð/14/87

 ð342ðð\\ 1ð/13/87

 ð343ðð\.8/ 1ð/14/87

 243 ð344ðð ITMIN-ROUTINE. 1ð/ð1/87

244 ð345ðð IF CMD-KEY = "ð1" 1ð/ð8/87

245 ð346ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð8/87

246 ð347ðð GO TO END-JOB. 1ð/ð8/87

247 ð348ðð IF CMD-KEY = "ð2" 1ð/ð8/87

248 ð349ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð1/87

249 ð35ððð GO TO ITMIN-EXIT. 1ð/ð1/87

25ð ð351ðð MOVE CORR ITMMNU-I TO ITMREQ. 1ð/ð1/87

\ \\ CORRESPONDING items for statement 25ð:

 \ \\ ITEMNO

\ \\ End of CORRESPONDING items for statement 25ð

251 ð352ðð IF ITEMNO OF ITMMNU-I LESS THAN 399999 GO TO XICFð1. 1ð/ð1/87

253 ð353ðð IF ITEMNO OF ITMMNU-I LESS THAN 699999 GO TO XICFð2. 1ð/ð1/87

255 ð354ðð IF ITEMNO OF ITMMNU-I LESS THAN 899999 GO TO XICFð3. 1ð/ð1/87

 ð355ðð XICFð1. 1ð/ð1/87

257 ð356ðð MOVE "ICFð1 " TO PGM-DEV-NME. 1ð/ð1/87

258 ð357ðð GO TO XITMIN. 1ð/ð1/87

 ð358ðð XICFð2. 1ð/ð1/87

259 ð359ðð MOVE "ICFð2 " TO PGM-DEV-NME. 1ð/ð1/87

26ð ð36ððð GO TO XITMIN. 1ð/ð1/87

 ð361ðð XICFð3. 1ð/ð1/87

261 ð362ðð MOVE "ICFð3 " TO PGM-DEV-NME. 1ð/ð1/87

 ð363ðð XITMIN. 1ð/ð1/87

262 ð364ðð MOVE 15ð TO LNGTH OF ITMREQ. ð2/22/89

263 ð365ðð WRITE CMNREC FORMAT IS "$$SEND" 1ð/ð1/87

 ð366ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

Figure 10-23 (Part 8 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-58 ICF Programming V4R1

 ð367ðð RETRY-ITEM. 1ð/ð1/87

 264 ð368ðð READ CMNFIL. 1ð/ð8/87

265 ð369ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

266 ð37ððð WRITE DSPREC FORMAT IS "TIMOUT" 1ð/ð1/87

267 ð371ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA 1ð/ð8/87

268 ð372ðð IF TIMRSP = "1" GO TO RETRY-ITEM END-IF ð1/21/88

27ð ð373ðð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

272 ð374ðð IF MAJ = "ð3" 1ð/ð1/87

273 ð375ðð GO TO XITMIN. 1ð/ð1/87

274 ð376ðð IF RCD-FMT-NME IS NOT EQUAL "ITMRSP" GO TO EXIT-FORMAT-ERR. 1ð/ð2/87

276 ð377ðð PERFORM ITMOUT-ROUTINE THRU ITMOUT-EXIT. 1ð/ð1/87

 ð378ðð ITMIN-EXIT. 1ð/ð1/87

 ð379ðð EXIT. 1ð/ð1/87

 ð38ððð/ 1ð/14/87

 ð381ðð\\ 1ð/ð1/87

 ð382ðð\ \ 1ð/ð1/87

ð383ðð\ PROCESS ITEM INFORMATION \ 1ð/ð1/87

 ð384ðð\ \ 1ð/ð1/87

ð385ðð\ THIS SECTION PROCESSES THE ITEM RECORD RECEIVED FROM THE \ 1ð/ð1/87

ð386ðð\ TARGET PROGRAM AND THE INFORMATION ABOUT THE ITEM IS \ ð2/21/89

ð387ðð\ DISPLAYED. IF ITEMNO IS ð OR LESS, IT IS AN INVALID REQUEST \ 1ð/15/87

ð388ðð\ AND A FRESH ITEM MENU IS WRITTEN TO THE SCREEN. IF THE \ 1ð/15/87

ð389ðð\ REQUEST IS VALID, VALUES ARE CALCULATED BASED ON THE \ 1ð/15/87

 ð39ððð\ INFORMATION RECEIVED. \ 1ð/15/87

 ð391ðð\ \ 1ð/ð1/87

 ð392ðð\\ 1ð/ð1/87

 ð393ðð\.9/ 1ð/14/87

 277 ð394ðð ITMOUT-ROUTINE. 1ð/ð1/87

278 ð395ðð IF ITEMNO OF ITMRSP NOT GREATER THAN ð 1ð/ð1/87

279 ð396ðð WRITE DSPREC FORMAT IS "ITMMNU" 1ð/ð1/87

28ð ð397ðð GO TO ITMOUT-EXIT. 1ð/ð1/87

281 ð398ðð MOVE QTYLST TO QAVAIL OF ITMSC2-O. 1ð/ð1/87

282 ð399ðð MOVE QTYOO TO QTYO OF ITMSC2-O. 1ð/ð1/87

283 ð4ðððð MOVE QTYOH TO QTYH OF ITMSC2-O. 1ð/ð1/87

284 ð4ð1ðð MOVE QTYBO TO QTYB OF ITMSC2-O. 1ð/ð1/87

285 ð4ð2ðð MOVE UNITQ TO UNT OF ITMSC2-O. 1ð/ð1/87

286 ð4ð3ðð MOVE PRð1 TO PR1 OF ITMSC2-O. 1ð/ð1/87

287 ð4ð4ðð MOVE PRð5 TO PR5 OF ITMSC2-O. 1ð/ð1/87

288 ð4ð5ðð MOVE UFRT TO UFR OF ITMSC2-O. 1ð/ð1/87

289 ð4ð6ðð MOVE DESC TO DSC OF ITMSC2-O. 1ð/ð7/87

29ð ð4ð7ðð WRITE DSPREC FORMAT IS "ITMSC2". 1ð/ð7/87

 ð4ð8ðð ITMOUT-EXIT. 1ð/ð1/87

 ð4ð9ðð EXIT. 1ð/ð1/87

 ð41ððð\ 1ð/14/87

 ð411ðð\\ ð2/21/89

 ð412ðð\ \ ð2/21/89

ð413ðð\ ADDITIONAL ITEM INFORMATION \ ð2/21/89

 ð414ðð\ \ ð2/21/89

ð415ðð\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT \ ð2/21/89

ð416ðð\ DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ FROM THE \ ð2/21/89

ð417ðð\ DISPLAY STATION WITH AN ITEM SCREEN RECORD FORMAT. \ ð2/21/89

 ð418ðð\ \ ð2/21/89

ð419ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ ð2/21/89

ð42ððð\ IS PRESSED, THE ITEM INQUIRY IS ENDED, AND THE MAIN MENU \ ð2/21/89

ð421ðð\ (CIMENU) IS WRITTEN TO THE SCREEN. IF CMD KEY 3 IS PRESSED, \ ð2/21/89

ð422ðð\ THE ITEM INQUIRY MENU IS WRITTEN TO THE SCREEN. BY PRESSING \ ð2/21/89

ð423ðð\ ENTER WHEN SCREEN 2 IS DISPLAYED, MORE INFORMATION (PROFIT- \ ð2/21/89

ð424ðð\ LOSS) WILL BE DISPLAYED TO THE SCREEN. WHEN SCREEN 3 IS \ ð2/21/89

ð425ðð\ DISPLAYED, AN ENTER WILL WILL CAUSE THE ITEM INQUIRY MENU \ ð2/21/89

ð426ðð\ TO BE WRITTEN TO THE SCREEN. \ ð2/21/89

 ð427ðð\ \ ð2/21/89

Figure 10-23 (Part 9 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-59

 ð428ðð\\ ð2/21/89

 ð429ðð\.1ð/ 1ð/14/87

 291 ð43ððð ITMRTN-ROUTINE. 1ð/ð1/87

292 ð431ðð IF CMD-KEY = "ð1" 1ð/ð8/87

293 ð432ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð8/87

294 ð433ðð GO TO END-JOB. 1ð/ð8/87

295 ð434ðð IF CMD-KEY = "ð2" 1ð/ð8/87

296 ð435ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð1/87

297 ð436ðð GO TO ITMRTN-EXIT. 1ð/ð1/87

298 ð437ðð IF CMD-KEY = "ð3" 1ð/ð8/87

299 ð438ðð WRITE DSPREC FORMAT IS "ITMMNU" 1ð/ð8/87

3ðð ð439ðð GO TO ITMRTN-EXIT. 1ð/ð8/87

3ð1 ð44ððð IF RCD-FMT = "ITMSC2" 1ð/ð8/87

3ð2 ð441ðð PERFORM PROFIT-LOSS THRU PROFIT-LOSS-EXIT 1ð/ð1/87

3ð3 ð442ðð WRITE DSPREC FORMAT IS "ITMSC3" 1ð/ð1/87

3ð4 ð443ðð GO TO ITMRTN-EXIT. 1ð/ð1/87

3ð5 ð444ðð WRITE DSPREC FORMAT IS "ITMMNU". 1ð/ð1/87

 ð445ðð ITMRTN-EXIT. 1ð/ð1/87

 ð446ðð EXIT. 1ð/ð1/87

 ð447ðð\ 1ð/ð1/87

 ð448ðð\\ ð2/21/89

 ð449ðð\ \ ð2/21/89

ð45ððð\ THIS SECTION OF THE PROGRAM IS CALLED TO PROCESS \ ð2/21/89

ð451ðð\ THE INFORMATION FOR THE ITEM NUMBER REQUESTED BEFORE \ ð2/21/89

ð452ðð\ IT IS SENT BACK TO THE REQUESTING REMOTE SYSTEM. \ ð2/21/89

 ð453ðð\ \ ð2/21/89

 ð454ðð\\ ð2/21/89

 ð455ðð\.11/ 1ð/14/87

 ð456ðð\ 1ð/ð1/87

 3ð6 ð457ðð PROFIT-LOSS. 1ð/ð1/87

3ð7 ð458ðð SUBTRACT SLSTM FROM CSTTM GIVING PROFM. 1ð/ð1/87

3ð8 ð459ðð MULTIPLY PROFM BY 1ðð GIVING PROFM. 1ð/ð1/87

3ð9 ð46ððð IF SLSTM GREATER THAN ð 1ð/ð1/87

31ð ð461ðð DIVIDE PROFM BY SLSTM GIVING PROFM. 1ð/ð1/87

311 ð462ðð MULTIPLY QTYLST BY PRð1 GIVING LOSTS. 1ð/ð1/87

 312 ð463ðð MOVE SLSTM TO SLSM. 1ð/ð1/87

 313 ð464ðð MOVE SLSTY TO SLSY. 1ð/ð1/87

 314 ð465ðð MOVE CSTTM TO CSTM. 1ð/ð1/87

 315 ð466ðð MOVE PROFM TO PROFIT. 1ð/ð1/87

 316 ð467ðð MOVE CSTTY TO CSTY. 1ð/ð1/87

 ð468ðð PROFIT-LOSS-EXIT. 1ð/ð1/87

 ð469ðð EXIT. 1ð/ð1/87

 ð47ððð/ 1ð/ð1/87

 ð471ðð\\ 1ð/13/87

 ð472ðð\ \ 1ð/13/87

 ð473ðð\ CUSTOMER INQUIRY \ 1ð/13/87

 ð474ðð\ \ 1ð/13/87

ð475ðð\ THE REQUEST FROM THE CUSTOMER INQUIRY MENU IS PROCESSED. \ 1ð/13/87

ð476ðð\ IF CMD KEY 1 IS PRESSED, THE PROGRAM IS ENDED. IF CMD KEY 2 \ 1ð/13/87

ð477ðð\ IS PRESSED, THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. \ 1ð/13/87

 ð478ðð\ \ 1ð/13/87

ð479ðð\ IF A CUSTOMER NUMBER IS ENTERED, THE CUSTOMER INQUIRY \ 1ð/13/87

ð48ððð\ REQUEST IS SENT TO THE REMOTE SYSTEM. THEN DTOUT-ROUTINE \ 1ð/13/87

ð481ðð\ THRU DTOUT-EXIT ARE PERFORMED. \ 1ð/14/87

 ð482ðð\ \ 1ð/13/87

 ð483ðð\\ 1ð/13/87

 ð484ðð\.12/ 1ð/14/87

 317 ð485ðð DTLIN-ROUTINE. 1ð/ð1/87

318 ð486ðð IF CMD-KEY = "ð1" 1ð/ð8/87

319 ð487ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð8/87

32ð ð488ðð GO TO END-JOB. 1ð/ð8/87

321 ð489ðð IF CMD-KEY = "ð2" 1ð/ð8/87

322 ð49ððð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð8/87

323 ð491ðð GO TO DTLIN-EXIT. 1ð/ð1/87

 ð492ðð EVDTL. 1ð/ð1/87

324 ð493ðð MOVE 15ð TO LNGTH OF DTLREQ. ð2/22/89

325 ð494ðð MOVE "ICFðð " TO PGM-DEV-NME. 1ð/ð1/87

326 ð495ðð MOVE CORR DTLMNU-I TO DTLREQ. 1ð/ð1/87

\ \\ CORRESPONDING items for statement 326:

 \ \\ CUSTNO

\ \\ End of CORRESPONDING items for statement 326

Figure 10-23 (Part 10 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-60 ICF Programming V4R1

327 ð496ðð WRITE CMNREC FORMAT IS "$$SEND" 1ð/ð1/87

 ð497ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

328 ð498ðð PERFORM DTOUT-ROUTINE THRU DTOUT-EXIT. 1ð/ð1/87

 ð499ðð DTLIN-EXIT. 1ð/ð1/87

 ð5ðððð EXIT. 1ð/ð1/87

 ð5ð1ðð\ 1ð/14/87

 ð5ð2ðð\\ 1ð/13/87

 ð5ð3ðð\ \ 1ð/13/87

ð5ð4ðð\ PROCESS CUSTOMER INFORMATION \ 1ð/13/87

 ð5ð5ðð\ \ 1ð/13/87

ð5ð6ðð\ THE CUSTOMER DATA RECEIVED FROM THE TARGET PROGRAM IS \ 1ð/13/87

ð5ð7ðð\ PROCESSED. IF CUSTOMER NUMBER IS ZERO OR LESS, IT IS AN \ 1ð/13/87

ð5ð8ðð\ INVALID REQUEST AND THE MAIN MENU IS WRITTEN TO THE SCREEN. \ 1ð/13/87

 ð5ð9ðð\ \ 1ð/13/87

 ð51ððð\\ 1ð/13/87

 ð511ðð\.13/ 1ð/14/87

 329 ð512ðð DTOUT-ROUTINE. 1ð/ð1/87

33ð ð513ðð IF CUSTNO OF DTLRSP NOT GREATER THAN ð 1ð/ð1/87

331 ð514ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð1/87

332 ð515ðð GO TO DTOUT-EXIT. 1ð/ð1/87

333 ð516ðð PERFORM CUSTOMER-DETAIL THRU CUSTOMER-DETAIL-EXIT. 1ð/ð7/87

 ð517ðð DTOUT-EXIT. 1ð/ð1/87

 ð518ðð EXIT. 1ð/ð1/87

 ð519ðð\ 1ð/ð1/87

 ð52ððð\\ ð2/21/89

 ð521ðð\ \ ð2/21/89

ð522ðð\ THIS SECTION OF THE PROGRAM HANDLES THE REQUEST FOLLOWING \ ð2/21/89

ð523ðð\ THE DISPLAY OF THE CUSTOMER INFORMATION. CMD KEY 1 WILL \ ð2/21/89

ð524ðð\ EXIT THE JOB, CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND \ ð2/21/89

ð525ðð\ AN "ENTER" WILL BRING UP THE CUSTOMER INQUIRY MENU. \ ð2/21/89

 ð526ðð\ \ ð2/21/89

 ð527ðð\\ ð2/21/89

 ð528ðð\.14/ 1ð/14/87

 334 ð529ðð DTLRTN-ROUTINE. 1ð/ð8/87

335 ð53ððð IF CMD-KEY = "ð1" 1ð/ð8/87

336 ð531ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT 1ð/ð8/87

337 ð532ðð GO TO END-JOB. 1ð/ð8/87

338 ð533ðð IF CMD-KEY = "ð2" 1ð/ð8/87

339 ð534ðð WRITE DSPREC FORMAT IS "CIMENU" 1ð/ð8/87

34ð ð535ðð GO TO DTLRTN-EXIT. 1ð/ð8/87

341 ð536ðð WRITE DSPREC FORMAT IS "DTLMNU". 1ð/ð8/87

 ð537ðð DTLRTN-EXIT. 1ð/ð8/87

 ð538ðð EXIT. 1ð/ð8/87

 ð539ðð/ 1ð/14/87

 ð54ððð\\ ð2/21/89

 ð541ðð\ \ ð2/21/89

ð542ðð\ THE READ OPERATION TO THE PROGRAM DEVICE IS ISSUED. \ ð2/21/89

ð543ðð\ A CHECK IS MADE FOR THREE CONDITIONS FOLLOWING THE READ. \ ð2/21/89

ð544ðð\ 1) THE REMOTE SYSTEM TIMED OUT, 2) NO DATA RECEIVED, AND \ ð2/21/89

ð545ðð\ 3) DATA RETURNED IN AN UNEXPECTED RECORD FORMAT. \ ð2/21/89

 ð546ðð\ \ ð2/21/89

ð547ðð\ IF THE REMOTE SYSTEM TIMES OUT (MAJ-MIN = ð31ð) A MESSAGE \ ð2/21/89

ð548ðð\ IS WRITTEN TO THE SCREEN, ASKING TO TRY AGAIN OR END THE \ ð2/21/89

 ð549ðð\ PROGRAM. \ ð2/21/89

 ð55ððð\ \ ð2/21/89

ð551ðð\ IF NO DATA IS RECEIVED AFTER THE READ OPERATION TO THE \ ð2/21/89

ð552ðð\ PROGRAM DEVICE (MAJ-MIN = ð3__) THE REQUEST IS SENT AGAIN \ ð2/21/89

ð553ðð\ TO THE REMOTE SYSTEM AND THE READ OPERATION IS ISSUED TO \ ð2/21/89

ð554ðð\ THE ICF PROGRAM DEVICE. \ 1ð/ð3/9ð

 ð555ðð\ \ ð2/21/89

ð556ðð\ IF THE RECORD RETURNS WITH THE WRONG RECORD FORMAT, THE \ ð2/21/89

ð557ðð\ PROGRAM WILL GO TO EXIT-FORMAT-ERR ROUTINE. \ ð2/21/89

 ð558ðð\\ ð2/21/89

 ð559ðð\.15/ 1ð/14/87

 ð56ððð\ 1ð/ð1/87

Figure 10-23 (Part 11 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-61

 342 ð561ðð CUSTOMER-DETAIL. 1ð/ð1/87

 343 ð562ðð READ CMNFIL. 1ð/ð8/87

344 ð563ðð IF MAJ-MIN = "ð31ð" 1ð/ð1/87

345 ð564ðð WRITE DSPREC FORMAT IS "TIMOUT" 1ð/ð1/87

346 ð565ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA 1ð/ð8/87

347 ð566ðð IF TIMRSP = "1" GO TO CUSTOMER-DETAIL END-IF ð1/21/88

349 ð567ðð IF TIMRSP = "2" GO TO END-JOB END-IF. ð1/21/88

351 ð568ðð IF MAJ = "ð3" 1ð/ð1/87

352 ð569ðð WRITE CMNREC FORMAT IS "$$SEND" 1ð/ð1/87

ð57ððð TERMINAL IS PGM-DEV-NME 1ð/ð1/87

353 ð571ðð GO TO CUSTOMER-DETAIL. 1ð/ð1/87

354 ð572ðð IF RCD-FMT-NME IS NOT EQUAL "DTLRSP" GO TO EXIT-FORMAT-ERR. 1ð/ð2/87

356 ð573ðð MOVE CUSTNO OF DTLRSP TO CUSTN OF DTLSCR-O. 1ð/ð7/87

357 ð574ðð MOVE DNAME OF DTLRSP TO CNAME OF DTLSCR-O. ð3/21/89

358 ð575ðð MOVE DLSTOR OF DTLRSP TO DLSTR OF DTLSCR-O. 1ð/ð7/87

359 ð576ðð MOVE DSLSTM OF DTLRSP TO DSLSM OF DTLSCR-O. 1ð/ð7/87

36ð ð577ðð MOVE DSPMð1 OF DTLRSP TO DSPM1 OF DTLSCR-O. 1ð/ð7/87

361 ð578ðð MOVE DSPMð2 OF DTLRSP TO DSPM2 OF DTLSCR-O. 1ð/ð7/87

362 ð579ðð MOVE DSPMð3 OF DTLRSP TO DSPM3 OF DTLSCR-O. 1ð/ð7/87

363 ð58ððð MOVE DSTTYD OF DTLRSP TO DSTYD OF DTLSCR-O. 1ð/ð7/87

364 ð581ðð MOVE IDEPT OF DTLRSP TO DEPT OF DTLSCR-O. 1ð/ð7/87

365 ð582ðð WRITE DSPREC FORMAT IS "DTLSCR". 1ð/ð7/87

 ð583ðð CUSTOMER-DETAIL-EXIT. 1ð/ð1/87

 ð584ðð EXIT. 1ð/ð1/87

 ð585ðð/ 1ð/ð1/87

 ð586ðð\\ ð2/21/89

 ð587ðð\ \ ð2/21/89

ð588ðð\ THIS SUBROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. \ ð2/21/89

ð589ðð\ THE SAME TARGET PROGRAM (ICFLIB/CTFMULCL) IS EVOKED AT \ ð2/21/89

ð59ððð\ FOUR DIFFERENT REMOTE SYSTEMS. THE PROGRAM DEVICE \ ð2/21/89

ð591ðð\ IDENTIFIES WHICH SESSION SHOULD BE EVOKED. THE PROGRAM \ ð2/21/89

ð592ðð\ DEVICE WAS SPECIFIED IN CMID PRIOR TO CALLING THIS ROUTINE. \ ð2/21/89

 ð593ðð\ \ ð2/21/89

 ð594ðð\\ ð2/21/89

 ð595ðð\.16/ 1ð/14/87

 ð596ðð\ 1ð/ð1/87

 366 ð597ðð EVOKE-ROUTINE. 1ð/ð1/87

367 ð598ðð MOVE ð TO LNGTH OF EVKREQ. ð2/22/89

368 ð599ðð MOVE "CTFMULCL" TO PGMID OF EVKREQ. 1ð/ð1/87

369 ð6ðððð MOVE "ICFLIB" TO LIB OF EVKREQ. 1ð/ð8/87

37ð ð6ð1ðð MOVE "ICFðð " TO PGM-DEV-NME 1ð/ð1/87

371 ð6ð2ðð WRITE CMNREC FORMAT IS "$$EVOKNI" 1ð/ð1/87

ð6ð3ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

372 ð6ð4ðð MOVE "ICFð1 " TO PGM-DEV-NME 1ð/ð1/87

373 ð6ð5ðð WRITE CMNREC FORMAT IS "$$EVOKNI" 1ð/ð1/87

ð6ð6ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

374 ð6ð7ðð MOVE "ICFð2 " TO PGM-DEV-NME 1ð/ð1/87

375 ð6ð8ðð WRITE CMNREC FORMAT IS "$$EVOKNI" 1ð/ð1/87

ð6ð9ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

376 ð61ððð MOVE "ICFð3 " TO PGM-DEV-NME 1ð/ð1/87

377 ð611ðð WRITE CMNREC FORMAT IS "$$EVOKNI" 1ð/ð1/87

ð612ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

 ð613ðð EVOKE-EXIT. 1ð/ð1/87

 ð614ðð EXIT. 1ð/ð1/87

 ð615ðð\ 1ð/ð1/87

 ð616ðð\\ ð2/21/89

 ð617ðð\ \ ð2/21/89

ð618ðð\ THE TRANSACTION AND SESSION ARE ENDED FOR EACH OF THE \ ð2/21/89

 ð619ðð\ REMOTE SYSTEMS. \ ð2/21/89

 ð62ððð\ \ ð2/21/89

 ð621ðð\\ ð2/21/89

Figure 10-23 (Part 12 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-62 ICF Programming V4R1

 ð622ðð\.17/ 1ð/14/87

 378 ð623ðð ERROR-RECOVERY. 1ð/ð1/87

379 ð624ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT. 1ð/ð1/87

38ð ð625ðð CLOSE CMNFIL DSPFIL 1ð/ð8/87

 ð626ðð QPRINT. 1ð/ð1/87

381 ð627ðð MOVE "ð" TO ERR-SW. 1ð/ð1/87

 ð628ðð ERROR-RECOVERY-EXIT. 1ð/ð1/87

 ð629ðð EXIT. 1ð/ð1/87

 ð63ððð\\ ð2/21/89

 ð631ðð\ \ ð2/21/89

ð632ðð\ EXIT-FORMAT-ERR IS BRANCHED TO AFTER A READ TO CMNFIL. THE \ ð2/21/89

ð633ðð\ RCD-FMT-NME RETURNED IN THE I-O-FEEDBACK AREA DOES NOT MATCH \ ð2/21/89

ð634ðð\ THE FORMAT EXPECTED BY THE PROGRAM. AN ERROR MESSAGE IS \ ð2/21/89

ð635ðð\ PRINTED AND THE PROGRAM ENDS. \ ð2/21/89

 ð636ðð\ \ ð2/21/89

 ð637ðð\\ ð2/21/89

 ð638ðð\.18/ 1ð/14/87

 382 ð639ðð EXIT-FORMAT-ERR. 1ð/ð1/87

383 ð64ððð MOVE MAJ-MIN TO RC. ð1/14/88

384 ð641ðð MOVE "RECORD FORMAT IS INCORRECT ON READ " 1ð/ð1/87

 ð642ðð TO ERRMSG. ð1/14/88

 385 ð643ðð WRITE PRINTREC. 1ð/ð1/87

386 ð644ðð CLOSE CMNFIL DSPFIL QPRINT. 1ð/ð8/87

 387 ð645ðð STOP RUN. 1ð/ð1/87

 ð646ðð\ 1ð/ð1/87

 ð647ðð\\ ð2/21/89

 ð648ðð\ \ ð2/21/89

ð649ðð\ THIS SECTION OF THE PROGRAM IS CALLED TO END \ ð2/21/89

ð65ððð\ THE TRANSACTION WITH THE REMOTE SYSTEM. \ ð2/21/89

 ð651ðð\ \ ð2/21/89

 ð652ðð\\ ð2/21/89

 ð653ðð\.19/ 1ð/14/87

 ð654ðð DETACH-ROUTINE. 1ð/ð1/87

388 ð655ðð MOVE ð TO LNGTH OF ITMREQ. ð2/22/89

389 ð656ðð MOVE "ICFðð " TO PGM-DEV-NME 1ð/ð1/87

39ð ð657ðð WRITE CMNREC FORMAT IS "$$SENDET" 1ð/ð1/87

ð658ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

391 ð659ðð MOVE "ICFð1 " TO PGM-DEV-NME 1ð/ð1/87

392 ð66ððð WRITE CMNREC FORMAT IS "$$SENDET" 1ð/ð1/87

ð661ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

393 ð662ðð MOVE "ICFð2 " TO PGM-DEV-NME 1ð/ð1/87

394 ð663ðð WRITE CMNREC FORMAT IS "$$SENDET" 1ð/ð1/87

ð664ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

395 ð665ðð MOVE "ICFð3 " TO PGM-DEV-NME 1ð/ð1/87

396 ð666ðð WRITE CMNREC FORMAT IS "$$SENDET" 1ð/ð1/87

ð667ðð TERMINAL IS PGM-DEV-NME. 1ð/ð1/87

 ð668ðð DETACH-EXIT. 1ð/ð1/87

 ð669ðð EXIT. 1ð/ð1/87

 ð67ððð\ 1ð/ð1/87

 ð671ðð\\ ð2/21/89

 ð672ðð\ \ ð2/21/89

ð673ðð\ THIS SECTION OF THE PROGRAM IS CALLED TO RELEASE THE PROGRAM \ ð2/21/89

ð674ðð\ DEVICES, END THE SESSION AND END THE PROGRAM. \ ð2/21/89

 ð675ðð\ \ ð2/21/89

 ð676ðð\\ ð2/21/89

 ð677ðð\.2ð/ 1ð/14/87

 ð678ðð\ 1ð/ð1/87

 397 ð679ðð END-JOB. 1ð/ð1/87

398 ð68ððð DROP "ICFðð " FROM CMNFIL. 1ð/ð8/87

399 ð681ðð DROP "ICFð1 " FROM CMNFIL. 1ð/ð8/87

4ðð ð682ðð DROP "ICFð2 " FROM CMNFIL. 1ð/ð8/87

4ð1 ð683ðð DROP "ICFð3 " FROM CMNFIL. 1ð/ð8/87

4ð2 ð684ðð CLOSE CMNFIL DSPFIL QPRINT. 1ð/ð8/87

 4ð3 ð685ðð STOP RUN. 1ð/ð1/87

 ð686ðð\ 1ð/ð1/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure 10-23 (Part 13 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-63

\ 71 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð98ðð

Message : No OUTPUT fields found for format CIMENU.

\ 71 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð98ðð

Message : No OUTPUT fields found for format DTLMNU.

\ 71 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð98ðð

Message : No OUTPUT fields found for format ITMMNU.

\ 71 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð98ðð

Message : No OUTPUT fields found for format TIMOUT.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

4 ð 4 ð ð ð

 Source records read : 686

 Copy records read : 99

 Copy members processed : 1

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CSFMUL created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-23 (Part 14 of 14). Source Program Example — CSFMUL (System-Supplied Formats)

10-64 ICF Programming V4R1

Target Program Multiple-Session Inquiry (Example
II): The following describes the COBOL target program for
multiple-session inquiry program example.

Program Files: The COBOL multiple-session target
program uses the following files:

CFILE
A ICF file used to send records to and receive
records from the source program. It is done with

the file-level INDARA DDS keyword, indicating a
separate indicator area.

PFILE
A database file used to retrieve the record for the
item requested from the remote system.

QPRINT
A printer file used to print error messages resulting
from communications errors.

DDS Source: The DDS for the ICF file (CFILE) is illustrated
in Figure 10-24.

SOURCE FILE QICFPUB/ICFLIB

 MEMBER CFILE

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A\\ 1ð/14/87

 2ðð A\ \ 1ð/14/87

 3ðð A\ ICF FILE \ 1ð/14/87

4ðð A\ USED IN TARGET MULTIPLE SESSION PROGRAM \ 1ð/14/87

 5ðð A\ \ 1ð/14/87

 6ðð A\\ 1ð/14/87

 7ðð A INDARA ð8/ð4/87

 8ðð A ð5 RQSWRT ð8/ð4/87

 9ðð A 1ð ALWWRT ð8/ð4/87

1ððð A INDTXT(1ð '1ð END TRANS.') ð8/ð4/87

 11ðð A 15 EOS ð8/ð4/87

 12ðð A 2ð FAIL ð8/ð6/87

13ðð A INDTXT(2ð '2ð F ABORT ST') ð8/ð6/87

14ðð A RCVFAIL(25 'RECEIVED FAIL') ð8/ð4/87

 15ðð A 3ð DETACH ð8/ð6/87

16ðð A INDTXT(3ð '3ð>DETACH TGT') ð8/ð6/87

17ðð A RCVDETACH(44 'RECV DETACH') ð8/ð4/87

 18ðð A R SNDPART ð8/ð4/87

 19ðð A INVITE ð8/14/87

 2ððð A RECTYP 1 1ð/ð1/87

 21ðð A ITEMNO 6 1ð/ð8/87

 22ðð A EDATA 13ð ð8/ð4/87

 23ðð A FILL1 13 1ð/ð8/87

 24ðð A R RCVPART ð8/ð4/87

 25ðð A RECID2 6 1ð/ð8/87

 26ðð A PARTDS 8ð 1ð/ð8/87

 27ðð A FILL4 64 ð8/ð4/87

 28ðð A R RCVTRND ð8/ð7/87

29ðð A RCVTRNRND(4ð 'END OF TRN') ð8/ð7/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 10-24. DDS Source for ICF File Used in Target Program Multiple Session Inquiry

The DDS source for the database file (PFILE) is illustrated in
Figure 10-25.

SOURCE FILE QICFPUB/ICFLIB

 MEMBER PFILE

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A LIFO ð7/ð2/87

 2ðð A R DBREC ð5/ð6/87

 3ðð A RECCUS 1 1ð/ð1/87

 4ðð A DBSEQ 6 ð8/18/87

 5ðð A DBDATA 13ð ð7/ð2/87

 6ðð A DBFILL 13 1ð/ð1/87

 7ðð A K DBSEQ ð7/ð4/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 10-25. DDS Source for Database File Used in Target Program Multiple Session Inquiry

 Chapter 10. COBOL/400 Communications Applications 10-65

The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/CFILE) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(CFILE) ACQPGMDEV(RQSDEV) TEXT("TARGET ICF

FILE FOR MULTIPLE SESSION PROGRAM")

The command needed to define the program device entry is:
OVRICFDEVE PGMDEV(RQSDEV) RMTLOCNAME(\REQUESTER)

Program Explanation: The following explains the structure
of the program examples illustrated in Figure 10-26 on
page 10-67 and Figure 10-27 on page 10-72. The ICF file
used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference letters in
the example below correspond to those in the following
program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the way the user-
defined formats and the system-supplied formats are used.
All output operations to the ICF file in the first example are
done using the WRITE statement with the record format
name coded as operand. The output operations to the ICF
file in the second example using system-supplied formats are
issued with the name of the system-supplied format coded as
a literal operand.

Differences between the first and second example are
described as notes in each of the following descriptions
where necessary.

.1/ This section defines the ICF file (CFILE) and the data-
base file (PFILE) used in the program.

CFILE is the ICF file used to send records to and
receive records from the remote system.

MAJ-MIN is the variable name used to check for the
ICF file return codes.

CMNF-INDIC-AREA is the indicator area used with the
ICF file to choose options on DDS keywords and oper-
ations, and receive response indicators on input oper-
ations.

Note: In the program using system-supplied formats,
the input records for CFILE are explicitly coded in the
program since CFILE is now treated as a program-
described file. The system-supplied file, QICDMF,
could have been used instead of CFILE. Using
system-supplied files can be done by specifying
QICDMF in the file specification, or by using an
OVRICFF command to change the file name from
CFILE to QICDMF.

.2/ This section defines the error handling for the program.
The routine first checks the major/minor return code to
determine if the error is recoverable. If return code
3431 is received, it is saved, and control is passed
back to the main calling program. Return code 3431 is
not considered a serious error in this example. The
program then exits the declaratives.

If any other error has occurred, the program prints a
message saying that the program ended abnormally,
and then ends.

.3/ This routine opens all the files.

Because the ICF file was created using the
ACQPGMDEV parameter, the target session is auto-
matically acquired when the file is opened.

.4/ This routine reads data from the program device
(CFILE) through a perform statement until a change
direction is received. The program then goes to .5/ to
read the database file. When change direction is
received, indicator 40 is set on, as defined by the
RCVTRNRND DDS keyword in the DDS source file for
ICF file.

Note: In the program using system-supplied formats,
a minor return code of '00' is checked to determine if
change direction has been received.

.5/ The program uses the requested number received from
the source program to access the record from the data-
base. The information retrieved from the database file
(PFILE) is moved to the work area for the ICF file. A
write operation is issued to the program device using
record format SNDPART. The write operation sends
the requested information back to the source program.

If the requested number is not found, zero is propa-
gated into the field.

If an error occurs on the write operation, control passes
to .2/.

If no error occurs on the write, control goes back to
.4/.

Note: In the program using the system-supplied
format, the WRITE statement uses the $$SEND format
to send the data.

.6/ A read operation is issued to the program device.

If a detach indication is received, the program goes to
.8/ to end the program. When a detach is received,
indicator 44 is set on, as defined by the RCVDETACH
keyword in the DDS for the ICF file.

Note: In the system-supplied format example, the
read operation is sent without using a record format
name. Also, a minor return code of '08' is checked for
the detach received condition.

.7/ This routine is called to issue the read operation to the
program device until the RCVTRNRND indication is
received.

Note: In the system-supplied format example, there is
no .7/. Instead, a minor return code of '00' is checked
for the turnaround indication in .4/.

.8/ This routine is called to end the program.

The following message is written to the print file:

CTDMUL HAS COMPLETED NORMALLY

10-66 ICF Programming V4R1

The files are closed. The program device is automat-
ically released as a result of the close operation, and
the program ends.

Note: In the program using system-supplied formats,
the following message is printed:

CTFMUL HAS COMPLETED NORMALLY

 Program : CTDMUL

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CTDMUL 1ð/ð3/9ð 14:3ð:28

 Generation severity level : 29

 Text 'description' : CBL Multiple Session Inquiry - Target DDS

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. 1ð/ð1/87

 2 ððð2ðð PROGRAM-ID. CTDMUL. 1ð/ð1/87

 ððð3ðð\\ 1ð/ð1/87

ððð4ðð\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A CUSTOMER \ 1ð/ð1/87

ððð5ðð\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING \ 1ð/ð1/87

ððð6ðð\ THE DATABASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, RECORD \ 1ð/ð1/87

ððð7ðð\ LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES WITH ONLY \ 1ð/ð1/87

ððð8ðð\ THE RECORD CONTENTS DIFFERENT. \ 1ð/ð1/87

 ððð9ðð\ \ 1ð/ð1/87

ðð1ððð\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM \ 1ð/ð1/87

ðð11ðð\ THE SOURCE PROGRAM. \ 1ð/ð1/87

 ðð12ðð\ \ 1ð/ð1/87

ðð13ðð\ INDICATORS ASSOCIATED WITH THE ICF FILE I/O OPERATION \ 1ð/ð3/9ð

ðð14ðð\ ARE DECLARED IN THE WORKING-STORAGE SECTION AND ARE REFERENCED \ 1ð/15/87

ðð15ðð\ FOR EVERY I/O OPERATION ISSUED. \ 1ð/15/87

 ðð16ðð\\ 1ð/ð1/87

3 ðð17ðð ENVIRONMENT DIVISION. 1ð/ð1/87

4 ðð18ðð CONFIGURATION SECTION. 1ð/ð1/87

 5 ðð19ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð2ððð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð21ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FBA 1ð/ð1/87

8 ðð22ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/ð1/87

9 ðð23ðð INPUT-OUTPUT SECTION. 1ð/ð1/87

 ðð24ðð\.1/ 1ð/ð1/87

 1ð ðð25ðð FILE-CONTROL. 1ð/ð1/87

11 ðð26ðð SELECT PFILE ASSIGN TO DATABASE-PFILE 1ð/ð1/87

12 ðð27ðð ORGANIZATION IS INDEXED 1ð/ð1/87

13 ðð28ðð ACCESS IS RANDOM 1ð/ð1/87

14 ðð29ðð RECORD KEY IS EXTERNALLY-DESCRIBED-KEY 1ð/ð1/87

 15 ðð3ððð WITH DUPLICATES. 1ð/ð1/87

16 ðð31ðð SELECT CFILE ASSIGN TO WORKSTATION-CFILE-SI 1ð/ð1/87

17 ðð32ðð ORGANIZATION IS TRANSACTION 1ð/ð1/87

18 ðð33ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/ð1/87

19 ðð34ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/ð1/87

Figure 10-26 (Part 1 of 5). Target Program Example — CTDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-67

2ð ðð35ðð DATA DIVISION. 1ð/ð1/87

21 ðð36ðð FILE SECTION. 1ð/ð1/87

 22 ðð37ðð FD PFILE 1ð/ð1/87

23 ðð38ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 24 ðð39ðð ð1 PREC. 1ð/ð1/87

25 ðð4ððð COPY DDS-ALL-FORMATS OF PFILE. 1ð/ð1/87

26 +ððððð1 ð5 PFILE-RECORD PIC X(15ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBREC FROM FILE PFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

+ððððð4\THE KEY DEFINITIONS FOR RECORD FORMAT DBREC <-ALL-FMTS

+ððððð5\ NUMBER NAME RETRIEVAL TYPE ALTSEQ <-ALL-FMTS

+ððððð6\ ððð1 DBSEQ ASCENDING AN NO <-ALL-FMTS

 27 +ððððð7 ð5 DBREC REDEFINES PFILE-RECORD. <-ALL-FMTS

 28 +ððððð8 ð6 RECCUS PIC X(1). <-ALL-FMTS

 29 +ððððð9 ð6 DBSEQ PIC X(6). <-ALL-FMTS

 3ð +ðððð1ð ð6 DBDATA PIC X(13ð). <-ALL-FMTS

 31 +ðððð11 ð6 DBFILL PIC X(13). <-ALL-FMTS

 32 ðð41ðð FD CFILE 1ð/ð1/87

33 ðð42ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 34 ðð43ðð ð1 ICFREC. 1ð/ð1/87

35 ðð44ðð COPY DDS-ALL-FORMATS-I-O OF CFILE. 1ð/ð1/87

36 +ððððð1 ð5 CFILE-RECORD PIC X(15ð). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:SNDPART FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 37 +ððððð4 ð5 SNDPART-I REDEFINES CFILE-RECORD. <-ALL-FMTS

 38 +ððððð5 ð6 RECTYP PIC X(1). <-ALL-FMTS

 39 +ððððð6 ð6 ITEMNO PIC X(6). <-ALL-FMTS

 4ð +ððððð7 ð6 EDATA PIC X(13ð). <-ALL-FMTS

 41 +ððððð8 ð6 FILL1 PIC X(13). <-ALL-FMTS

+ððððð9\ OUTPUT FORMAT:SNDPART FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð1ð\ <-ALL-FMTS

 42 +ðððð11 ð5 SNDPART-O REDEFINES CFILE-RECORD. <-ALL-FMTS

 43 +ðððð12 ð6 RECTYP PIC X(1). <-ALL-FMTS

 44 +ðððð13 ð6 ITEMNO PIC X(6). <-ALL-FMTS

 45 +ðððð14 ð6 EDATA PIC X(13ð). <-ALL-FMTS

 46 +ðððð15 ð6 FILL1 PIC X(13). <-ALL-FMTS

+ðððð16\ INPUT FORMAT:RCVPART FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð17\ <-ALL-FMTS

 47 +ðððð18 ð5 RCVPART-I REDEFINES CFILE-RECORD. <-ALL-FMTS

 48 +ðððð19 ð6 RECID2 PIC X(6). <-ALL-FMTS

 49 +ðððð2ð ð6 PARTDS PIC X(8ð). <-ALL-FMTS

 5ð +ðððð21 ð6 FILL4 PIC X(64). <-ALL-FMTS

+ðððð22\ OUTPUT FORMAT:RCVPART FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð23\ <-ALL-FMTS

 51 +ðððð24 ð5 RCVPART-O REDEFINES CFILE-RECORD. <-ALL-FMTS

 52 +ðððð25 ð6 RECID2 PIC X(6). <-ALL-FMTS

 53 +ðððð26 ð6 PARTDS PIC X(8ð). <-ALL-FMTS

 54 +ðððð27 ð6 FILL4 PIC X(64). <-ALL-FMTS

+ðððð28\ INPUT FORMAT:RCVTRND FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð29\ <-ALL-FMTS

 +ðððð3ð\ ð5 RCVTRND-I REDEFINES CFILE-RECORD. <-ALL-FMTS

+ðððð31\ OUTPUT FORMAT:RCVTRND FROM FILE CFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ðððð32\ <-ALL-FMTS

 +ðððð33\ ð5 RCVTRND-O REDEFINES CFILE-RECORD. <-ALL-FMTS

 55 ðð45ðð FD QPRINT 1ð/ð1/87

56 ðð46ðð LABEL RECORDS ARE OMITTED. 1ð/ð1/87

 57 ðð47ðð ð1 PRINTREC. ð1/14/88

 58 ðð48ðð ð5 RC PIC 9999. ð1/15/88

 59 ðð49ðð ð5 ERRMSG PIC X(128). ð1/14/88

6ð ðð5ððð WORKING-STORAGE SECTION. 1ð/ð1/87

 61 ðð51ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/ð1/87

 62 ðð52ðð 77 STATUS-IND PIC X(2). 1ð/ð1/87

63 ðð53ðð 77 INDON PIC 1 VALUE B"1". 1ð/ð1/87

64 ðð54ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/ð1/87

65 ðð55ðð 77 LEN PIC 9(1ð)V9(5) COMP 1ð/ð1/87

 66 ðð56ðð VALUE ð. 1ð/ð1/87

 67 ðð57ðð 77 CMD2 PIC X(31) 1ð/ð1/87

Figure 10-26 (Part 2 of 5). Target Program Example — CTDMUL (User-Defined Formats)

10-68 ICF Programming V4R1

68 ðð58ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/ð1/87

 69 ðð59ðð ð1 CMNF-INDIC-AREA. 1ð/ð1/87

ðð6ððð\ ALLOW WRITE (ALWWRT) INDICATOR 1ð/ð1/87

7ð ðð61ðð ð5 IN1ð PIC 1 INDIC 1ð. 1ð/ð1/87

 71 ðð62ðð 88 IN1ð-ON VALUE B"1". 1ð/ð1/87

 72 ðð63ðð 88 IN1ð-OFF VALUE B"ð". 1ð/ð1/87

ðð64ðð\ RECEIVE TURNAROUND (RCVTRNRND) INDICATOR 1ð/ð1/87

73 ðð65ðð ð5 IN4ð PIC 1 INDIC 4ð. 1ð/ð1/87

 74 ðð66ðð 88 IN4ð-ON VALUE B"1". 1ð/ð1/87

 75 ðð67ðð 88 IN4ð-OFF VALUE B"ð". 1ð/ð1/87

ðð68ðð\ RECEIVE DETACH (RCVDETACH) INDICATOR 1ð/ð1/87

76 ðð69ðð ð5 IN44 PIC 1 INDIC 44. 1ð/ð1/87

 77 ðð7ððð 88 IN44-ON VALUE B"1". 1ð/ð1/87

 78 ðð71ðð 88 IN44-OFF VALUE B"ð". 1ð/ð1/87

 79 ðð72ðð ð1 MAJ-MIN. 1ð/ð1/87

 8ð ðð73ðð ð5 MAJ PIC X(2). 1ð/ð1/87

 81 ðð74ðð ð5 MIN PIC X(2). 1ð/ð1/87

 ðð75ðð/ 1ð/ð1/87

82 ðð76ðð PROCEDURE DIVISION. 1ð/ð1/87

 ðð77ðð DECLARATIVES. 1ð/ð1/87

ðð78ðð ERR-SECTION SECTION. 1ð/ð1/87

 ðð79ðð\\ 1ð/ð1/87

 ðð8ððð\.2/ 1ð/ð1/87

 ðð81ðð\ 1ð/ð1/87

ðð82ðð USE AFTER STANDARD ERROR PROCEDURE ON CFILE. 1ð/ð1/87

 ðð83ðð CFILE-EXCEPTION. 1ð/ð1/87

 ðð84ðð\ 1ð/ð1/87

ðð85ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION 1ð/ð1/87

 ðð86ðð\ 1ð/ð1/87

ðð87ðð\ MAJOR CODE 34 - INPUT EXCEPTION. 1ð/ð1/87

83 ðð88ðð IF MAJ = "34" 1ð/ð1/87

ðð89ðð\ DATA TRUNCATED IN INPUT AREA. 1ð/ð1/87

84 ðð9ððð IF MIN = "31" 1ð/ð1/87

85 ðð91ðð MOVE MAJ-MIN TO MAJ-MIN-SAV 1ð/12/87

86 ðð92ðð GO TO EXIT-DECLARATIVES 1ð/12/87

 ðð93ðð ELSE 1ð/12/87

87 ðð94ðð GO TO EXIT-DECLARATIVES. 1ð/12/87

 ðð95ðð\\ 1ð/ð1/87

 ðð96ðð\ \ ð2/21/89

ðð97ðð\ PRINT A MESSAGE SAYING CTDMUL PROGRAM ENDED ABNORMALLY. \ ð2/21/89

ðð98ðð\ CLOSE ALL THE FILES AND END THE PROGRAM. THIS ROUTINE IS CALLED \ ð2/21/89

ðð99ðð\ WHEN A NON-RECOVERABLE ERROR OCCURS IN ICF FILE. \ 1ð/ð3/9ð

 ð1ðððð\ \ ð2/21/89

 ð1ð1ðð\\ 1ð/ð1/87

 ð1ð2ðð GETFBA. 1ð/ð1/87

88 ð1ð3ðð MOVE MAJ-MIN TO RC. ð1/14/88

89 ð1ð4ðð MOVE "CTDMUL HAS COMPLETED ABNORMALLY" TO ERRMSG. ð1/14/88

 9ð ð1ð5ðð WRITE PRINTREC. 1ð/ð1/87

 91 ð1ð6ðð CLOSE PFILE 1ð/ð1/87

 ð1ð7ðð CFILE 1ð/ð1/87

 ð1ð8ðð QPRINT. 1ð/ð1/87

 92 ð1ð9ðð STOP RUN. 1ð/ð1/87

 ð11ððð\ 1ð/ð1/87

 ð111ðð EXIT-DECLARATIVES. 1ð/ð1/87

 ð112ðð EXIT. 1ð/ð1/87

 ð113ðð\ 1ð/ð1/87

93 ð114ðð END DECLARATIVES. 1ð/ð1/87

 ð115ðð\\ 1ð/ð1/87

 ð116ðð/ 1ð/ð1/87

 ð117ðð START-PROGRAM SECTION. 1ð/ð1/87

 ð118ðð\ ð2/27/89

 ð119ðð START-PROGRAM-PARAGRAPH. 1ð/ð1/87

 ð12ððð\.3/ 1ð/ð1/87

94 ð121ðð OPEN OUTPUT QPRINT 1ð/ð1/87

 ð122ðð I-O CFILE 1ð/ð1/87

 ð123ðð INPUT PFILE. 1ð/ð1/87

Figure 10-26 (Part 3 of 5). Target Program Example — CTDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-69

 ð124ðð\\ 1ð/ð1/87

 ð125ðð\ \ 1ð/ð1/87

ð126ðð\ READ THE REQUEST FROM THE SOURCE PROGRAM. INDICATOR 4ð \ 1ð/ð1/87

ð127ðð\ INDICATES RCVTRNRND OCCURRED. INDICATOR 44 INDICATES THAT \ 1ð/ð1/87

ð128ðð\ DETACH INDICATOR HAS BEEN RECEIVED FROM THE REMOTE SYSTEM. \ 1ð/ð1/87

 ð129ðð\ \ 1ð/ð1/87

ð13ððð\ THIS PROGRAM CHECKS FOR ERRORS ON EVERY ICF FILE \ 1ð/ð3/9ð

ð131ðð\ FILE OPERATION. A MAJOR CODE GREATER THAN ð3 INDICATES \ 1ð/ð1/87

 ð132ðð\ AN ERROR. \ 1ð/ð1/87

 ð133ðð\ \ 1ð/ð1/87

 ð134ðð\\ 1ð/ð1/87

 ð135ðð\.4/ 1ð/ð1/87

 ð136ðð RECEIVE-DATA. 1ð/ð1/87

95 ð137ðð PERFORM READ-CFILE THRU READ-CFILE-EXIT. 1ð/ð1/87

 96 ð138ðð IF IN4ð-ON 1ð/ð1/87

97 ð139ðð GO TO SEND-DATA. 1ð/ð1/87

98 ð14ððð PERFORM RCVTRNRND THRU RCVTRNRND-EXIT 1ð/ð1/87

 ð141ðð UNTIL IN4ð-ON. 1ð/ð1/87

 ð142ðð\\ 1ð/ð1/87

 ð143ðð\ \ 1ð/ð1/87

ð144ðð\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A SINGLE \ 1ð/ð1/87

ð145ðð\ RECORD CONTAINING THE REQUESTED CUSTOMER OR ORDER NUMBER. THE \ 1ð/ð1/87

ð146ðð\ RESPONSE WILL BE RETURNED IN A SINGLE RECORD CONTAINING EITHER \ 1ð/ð1/87

ð147ðð\ THE ITEM OR CUSTOMER INFORMATION, DEPENDING ON THE DATA BASE \ 1ð/ð1/87

 ð148ðð\ CONTENT. \ 1ð/ð1/87

 ð149ðð\ \ 1ð/ð1/87

ð15ððð\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO THE \ 1ð/ð1/87

ð151ðð\ PROGRAM DEVICE FILE USING FORMAT SNDPART. \ 1ð/15/87

 ð152ðð\ \ 1ð/ð1/87

ð153ðð\ WHEN THE REQUESTED CUSTOMER OR ITEM NUMBER IS NOT FOUND, \ 1ð/ð1/87

ð154ðð\ ðððððð IS PROPAGATED TO THE KEY FIELD BEFORE THE RESPONSE \ 1ð/ð1/87

ð155ðð\ IS SENT BACK TO THE SOURCE PROGRAM. \ 1ð/ð1/87

 ð156ðð\ \ ð2/22/89

 ð157ðð\\ 1ð/ð1/87

 ð158ðð\ 1ð/ð1/87

 ð159ðð\.5/ 1ð/ð1/87

 ð16ððð SEND-DATA. 1ð/ð1/87

99 ð161ðð MOVE RECID2 OF RCVPART-I TO DBSEQ. 1ð/ð1/87

1ðð ð162ðð READ PFILE INVALID KEY MOVE ð TO DBSEQ. 1ð/ð1/87

1ð2 ð163ðð MOVE RECCUS TO RECTYP OF SNDPART-O. 1ð/ð1/87

1ð3 ð164ðð MOVE ZEROS TO CMNF-INDIC-AREA. 1ð/ð1/87

1ð4 ð165ðð MOVE DBSEQ TO ITEMNO OF SNDPART-O. 1ð/ð1/87

1ð5 ð166ðð MOVE DBDATA TO EDATA OF SNDPART-O 1ð/ð1/87

1ð6 ð167ðð WRITE ICFREC FROM PREC FORMAT IS "SNDPART" 1ð/ð1/87

 ð168ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

1ð7 ð169ðð GO TO RECEIVE-DATA. 1ð/ð1/87

 ð17ððð\\ 1ð/ð1/87

 ð171ðð\ \ 1ð/ð1/87

ð172ðð\ THIS ROUTINE ISSUES READ OPERATION TO THE PROGRAM DEVICE. \ 1ð/15/87

ð173ðð\ DETACH INDICATION IS CHECKED FOR AND IF IT OCCURRED, THE \ 1ð/ð1/87

ð174ðð\ PROGRAM IS ENDED (IN44-ON). \ 1ð/ð1/87

 ð175ðð\ \ 1ð/ð1/87

 ð176ðð\\ 1ð/ð1/87

 ð177ðð\.6/ 1ð/ð1/87

 ð178ðð READ-CFILE. 1ð/ð1/87

1ð8 ð179ðð MOVE ZEROS TO CMNF-INDIC-AREA. 1ð/ð1/87

1ð9 ð18ððð READ CFILE FORMAT IS "RCVPART" 1ð/ð1/87

 ð181ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

11ð ð182ðð SET IN4ð-ON TO TRUE. ð1/25/88

 111 ð183ðð IF IN44-ON 1ð/ð1/87

112 ð184ðð GO TO END-PROGRAM. 1ð/ð1/87

 ð185ðð READ-CFILE-EXIT. 1ð/ð1/87

 ð186ðð EXIT. ð2/28/89

 ð187ðð\ 1ð/ð1/87

 ð188ðð\\ 1ð/ð1/87

 ð189ðð\ \ ð2/21/89

ð19ððð\ THIS ROUTINE READS THE ICF FILE UNTIL RCVTRNRND OCCURS. \ 1ð/ð3/9ð

ð191ðð\ DETACH INDICATION IS CHECKED FOR AND IF IT OCCURRED, THE \ 1ð/ð1/87

ð192ðð\ PROGRAM IS ENDED (IN44-ON). \ 1ð/ð1/87

 ð193ðð\ \ ð2/21/89

 ð194ðð\\ 1ð/ð1/87

 ð195ðð\.7/ 1ð/ð1/87

Figure 10-26 (Part 4 of 5). Target Program Example — CTDMUL (User-Defined Formats)

10-70 ICF Programming V4R1

 113 ð196ðð RCVTRNRND. 1ð/ð1/87

114 ð197ðð MOVE ZEROS TO CMNF-INDIC-AREA. 1ð/ð1/87

115 ð198ðð READ CFILE FORMAT IS "RCVTRND" 1ð/ð1/87

 ð199ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

 116 ð2ðððð IF IN44-ON 1ð/ð1/87

117 ð2ð1ðð GO TO END-PROGRAM. 1ð/ð1/87

 ð2ð2ðð RCVTRNRND-EXIT. 1ð/ð1/87

 ð2ð3ðð EXIT. ð2/28/89

 ð2ð4ðð\ 1ð/ð1/87

 ð2ð5ðð\\ 1ð/ð1/87

 ð2ð6ðð\ \ ð2/21/89

ð2ð7ðð\ ROUTINE TO END THE JOB AND CLOSE THE FILES. \ ð2/21/89

 ð2ð8ðð\ \ ð2/21/89

 ð2ð9ðð\\ 1ð/ð1/87

 ð21ððð\ 1ð/ð1/87

 ð211ðð\.8/ 1ð/14/87

 118 ð212ðð END-PROGRAM. 1ð/ð1/87

119 ð213ðð MOVE MAJ-MIN TO RC. ð1/14/88

12ð ð214ðð MOVE "CTDMUL HAS COMPLETED NORMALLY" TO ERRMSG. ð1/14/88

 121 ð215ðð WRITE PRINTREC. 1ð/ð1/87

 122 ð216ðð CLOSE PFILE 1ð/ð1/87

 ð217ðð CFILE 1ð/ð1/87

 ð218ðð QPRINT. 1ð/ð1/87

 123 ð219ðð STOP RUN. 1ð/ð1/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ 35 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð44ðð

Message : No INPUT fields found for format RCVTRND.

\ 35 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð44ðð

Message : No OUTPUT fields found for format RCVTRND.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

2 ð 2 ð ð ð

 Source records read : 219

 Copy records read : 44

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program CTDMUL created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-26 (Part 5 of 5). Target Program Example — CTDMUL (User-Defined Formats)

 Chapter 10. COBOL/400 Communications Applications 10-71

 Program : CTFMUL

Library : ICFLIB

 Source file : QICFPUB

Library : ICFLIB

 Source member : CTFMUL 1ð/ð3/9ð 14:32:29

 Generation severity level : 29

 Text 'description' : CBL Multiple Session Inquiry - Target $$

 Source listing options : \SOURCE

 Generation options : \NONE

 Message limit:

Number of messages : \NOMAX

Message limit severity : 29

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. 1ð/ð1/87

 2 ððð2ðð PROGRAM-ID. CTFMUL. 1ð/ð1/87

 ððð3ðð\\ 1ð/ð1/87

ððð4ðð\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A CUSTOMER \ 1ð/ð1/87

ððð5ðð\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING \ 1ð/ð1/87

ððð6ðð\ THE DATABASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, RECORD \ 1ð/ð1/87

ððð7ðð\ LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES WITH ONLY \ 1ð/ð1/87

ððð8ðð\ THE RECORD CONTENTS DIFFERENT. \ 1ð/ð1/87

 ððð9ðð\ \ 1ð/ð1/87

ðð1ððð\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM \ 1ð/ð1/87

ðð11ðð\ THE SOURCE PROGRAM. \ 1ð/ð1/87

 ðð12ðð\ \ 1ð/ð1/87

ðð13ðð\ THIS PROGRAM USES THE SYSTEM-SUPPLIED FORMAT TO ISSUE THE I/O \ 1ð/ð1/87

ðð14ðð\ OPERATION AND THEREFORE, DOES NOT USE THE OPTION INDICATORS \ 1ð/ð1/87

ðð15ðð\ ASSOCIATED WITH THE KEYWORDS. NOTICE THAT THE ICF FILE \ 1ð/ð3/9ð

ðð16ðð\ FILE DECLARATION SELECT STATEMENT REFLECTS THE USE OF A \ 1ð/15/87

ðð17ðð\ SEPARATE INDICATOR AREA FOR INDICATORS. \ 1ð/15/87

 ðð18ðð\\ 1ð/ð1/87

3 ðð19ðð ENVIRONMENT DIVISION. 1ð/ð1/87

4 ðð2ððð CONFIGURATION SECTION. 1ð/ð1/87

 5 ðð21ðð SOURCE-COMPUTER. IBM-AS4ðð. ð1/15/88

 6 ðð22ðð OBJECT-COMPUTER. IBM-AS4ðð. ð1/15/88

7 ðð23ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FBA 1ð/ð1/87

8 ðð24ðð OPEN-FEEDBACK IS OPEN-FBA. 1ð/ð1/87

9 ðð25ðð INPUT-OUTPUT SECTION. 1ð/ð1/87

 ðð26ðð\.1/ 1ð/ð1/87

 1ð ðð27ðð FILE-CONTROL. 1ð/ð1/87

11 ðð28ðð SELECT PFILE ASSIGN TO DATABASE-PFILE 1ð/ð1/87

12 ðð29ðð ORGANIZATION IS INDEXED 1ð/ð1/87

13 ðð3ððð ACCESS IS RANDOM 1ð/ð1/87

14 ðð31ðð RECORD KEY IS EXTERNALLY-DESCRIBED-KEY 1ð/ð1/87

 15 ðð32ðð WITH DUPLICATES. 1ð/ð1/87

16 ðð33ðð SELECT CFILE ASSIGN TO WORKSTATION-CFILE-SI 1ð/ð1/87

17 ðð34ðð ORGANIZATION IS TRANSACTION 1ð/ð1/87

18 ðð35ðð FILE STATUS IS STATUS-IND MAJ-MIN. 1ð/ð1/87

19 ðð36ðð SELECT QPRINT ASSIGN TO PRINTER-QSYSPRT. 1ð/ð1/87

2ð ðð37ðð DATA DIVISION. 1ð/ð1/87

21 ðð38ðð FILE SECTION. 1ð/ð1/87

 22 ðð39ðð FD PFILE 1ð/ð1/87

23 ðð4ððð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 24 ðð41ðð ð1 PREC. 1ð/ð1/87

25 ðð42ðð COPY DDS-ALL-FORMATS OF PFILE. 1ð/ð1/87

26 +ððððð1 ð5 PFILE-RECORD PIC X(15ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBREC FROM FILE PFILE OF LIBRARY ICFLIB <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

Figure 10-27 (Part 1 of 4). Target Program Example — CTFMUL (System-Supplied Formats)

10-72 ICF Programming V4R1

+ððððð4\THE KEY DEFINITIONS FOR RECORD FORMAT DBREC <-ALL-FMTS

+ððððð5\ NUMBER NAME RETRIEVAL TYPE ALTSEQ <-ALL-FMTS

+ððððð6\ ððð1 DBSEQ ASCENDING AN NO <-ALL-FMTS

 27 +ððððð7 ð5 DBREC REDEFINES PFILE-RECORD. <-ALL-FMTS

 28 +ððððð8 ð6 RECCUS PIC X(1). <-ALL-FMTS

 29 +ððððð9 ð6 DBSEQ PIC X(6). <-ALL-FMTS

 3ð +ðððð1ð ð6 DBDATA PIC X(13ð). <-ALL-FMTS

 31 +ðððð11 ð6 DBFILL PIC X(13). <-ALL-FMTS

 32 ðð43ðð FD CFILE 1ð/ð1/87

33 ðð44ðð LABEL RECORDS ARE STANDARD. 1ð/ð1/87

 34 ðð45ðð ð1 ICFREC. 1ð/ð1/87

 35 ðð46ðð ð5 SNDPART. 1ð/ð1/87

 36 ðð47ðð 1ð LNGTH PIC 9(4). ð2/22/89

 37 ðð48ðð 1ð RECTYP PIC X. 1ð/ð1/87

 38 ðð49ðð 1ð ITEMNO PIC X(6). 1ð/ð1/87

 39 ðð5ððð 1ð EDATA PIC X(13ð). 1ð/ð1/87

 4ð ðð51ðð 1ð FILL1 PIC X(13). 1ð/ð1/87

41 ðð52ðð ð5 RCVPART REDEFINES SNDPART. 1ð/ð1/87

 42 ðð53ðð 1ð RECID2 PIC 9(6). 1ð/ð1/87

 43 ðð54ðð 1ð PARTDS PIC X(8ð). 1ð/ð1/87

 44 ðð55ðð 1ð FILL4 PIC X(64). 1ð/ð1/87

 45 ðð56ðð FD QPRINT 1ð/ð1/87

46 ðð57ðð LABEL RECORDS ARE OMITTED. 1ð/ð1/87

 47 ðð58ðð ð1 PRINTREC. ð1/14/88

 48 ðð59ðð ð5 RC PIC 9999. ð1/14/88

 49 ðð6ððð ð5 ERRMSG PIC X(128). ð1/14/88

5ð ðð61ðð WORKING-STORAGE SECTION. 1ð/ð1/87

 51 ðð62ðð 77 MAJ-MIN-SAV PIC X(4). 1ð/ð1/87

 52 ðð63ðð 77 STATUS-IND PIC X(2). 1ð/ð1/87

53 ðð64ðð 77 INDON PIC 1 VALUE B"1". 1ð/ð1/87

54 ðð65ðð 77 INDOFF PIC 1 VALUE B"ð". 1ð/ð1/87

55 ðð66ðð 77 LEN PIC 9(1ð)V9(5) COMP 1ð/ð1/87

 56 ðð67ðð VALUE ð. 1ð/ð1/87

 57 ðð68ðð 77 CMD2 PIC X(31) 1ð/ð1/87

58 ðð69ðð VALUE "CPYF HEXDUMP \LIST PRTFMT(\HEX)". 1ð/ð1/87

 ðð7ððð\ 1ð/ð8/87

 59 ðð71ðð ð1 CMNF-INDIC-AREA. 1ð/ð1/87

ðð72ðð\ RECEIVE TURNAROUND (RCVTRNRND) INDICATOR 1ð/ð1/87

6ð ðð73ðð ð5 IN4ð PIC 1 INDIC 4ð. 1ð/ð1/87

 61 ðð74ðð 88 IN4ð-ON VALUE B"1". 1ð/ð1/87

 62 ðð75ðð 88 IN4ð-OFF VALUE B"ð". 1ð/ð1/87

ðð76ðð\ RECEIVE DETACH (RCVDETACH) INDICATOR 1ð/ð1/87

63 ðð77ðð ð5 IN44 PIC 1 INDIC 44. 1ð/ð1/87

 64 ðð78ðð 88 IN44-ON VALUE B"1". 1ð/ð1/87

 65 ðð79ðð 88 IN44-OFF VALUE B"ð". 1ð/ð1/87

 ðð8ððð\ 1ð/ð8/87

 66 ðð81ðð ð1 MAJ-MIN. 1ð/ð1/87

 67 ðð82ðð ð5 MAJ PIC X(2). 1ð/ð1/87

 68 ðð83ðð ð5 MIN PIC X(2). 1ð/ð1/87

 ðð84ðð/ 1ð/ð1/87

69 ðð85ðð PROCEDURE DIVISION. 1ð/ð1/87

 ðð86ðð DECLARATIVES. 1ð/ð1/87

ðð87ðð ERR-SECTION SECTION. 1ð/ð1/87

 ðð88ðð\\ 1ð/ð1/87

 ðð89ðð\.2/ 1ð/ð1/87

 ðð9ððð\ 1ð/ð1/87

ðð91ðð USE AFTER STANDARD ERROR PROCEDURE ON CFILE. 1ð/ð1/87

 ðð92ðð CFILE-EXCEPTION. 1ð/ð1/87

 ðð93ðð\ 1ð/ð1/87

ðð94ðð\ CHECK THE MAJOR/MINOR CODES AND TAKE APPROPRIATE ACTION 1ð/ð1/87

ðð95ðð\ MAJOR CODE 34 - INPUT EXCEPTION. 1ð/ð8/87

 ðð96ðð\ 1ð/ð1/87

7ð ðð97ðð IF MAJ = "34" 1ð/ð1/87

ðð98ðð\ DATA TRUNCATED IN INPUT AREA. 1ð/ð1/87

71 ðð99ðð IF MIN = "31" 1ð/ð1/87

72 ð1ðððð MOVE MAJ-MIN TO MAJ-MIN-SAV 1ð/1ð/87

73 ð1ð1ðð GO TO EXIT-DECLARATIVES 1ð/1ð/87

 ð1ð2ðð ELSE 1ð/1ð/87

74 ð1ð3ðð GO TO EXIT-DECLARATIVES. 1ð/1ð/87

 ð1ð4ðð\ 1ð/ð8/87

Figure 10-27 (Part 2 of 4). Target Program Example — CTFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-73

 ð1ð5ðð\\ 1ð/ð1/87

 ð1ð6ðð\ \ ð2/21/89

ð1ð7ðð\ PRINT A MESSAGE SAYING CTDMUL PROGRAM ENDED ABNORMALLY. \ ð2/21/89

ð1ð8ðð\ CLOSE ALL THE FILES AND END THE PROGRAM. THIS ROUTINE IS CALLED \ ð2/21/89

ð1ð9ðð\ WHEN A NON-RECOVERABLE ERROR OCCURS IN THE ICF FILE. \ 1ð/ð3/9ð

 ð11ððð\ \ ð2/21/89

 ð111ðð\\ 1ð/ð1/87

 ð112ðð\ 1ð/ð8/87

 ð113ðð GETFBA. 1ð/ð1/87

75 ð114ðð MOVE MAJ-MIN TO RC. ð1/14/88

76 ð115ðð MOVE "CTFMUL HAS COMPLETED ABNORMALLY" TO ERRMSG. ð1/14/88

 77 ð116ðð WRITE PRINTREC. 1ð/ð1/87

 78 ð117ðð CLOSE PFILE 1ð/ð1/87

 ð118ðð CFILE 1ð/ð1/87

 ð119ðð QPRINT. 1ð/ð1/87

 79 ð12ððð STOP RUN. 1ð/ð1/87

 ð121ðð\ 1ð/ð1/87

 ð122ðð EXIT-DECLARATIVES. 1ð/ð1/87

 ð123ðð EXIT. 1ð/ð1/87

 ð124ðð\ 1ð/ð1/87

8ð ð125ðð END DECLARATIVES. 1ð/ð1/87

 ð126ðð\\ 1ð/ð1/87

 ð127ðð/ 1ð/ð1/87

 ð128ðð START-PROGRAM SECTION. 1ð/ð1/87

 ð129ðð START-PROGRAM-PARAGRAPH. 1ð/ð1/87

 ð13ððð\.3/ 1ð/ð1/87

81 ð131ðð OPEN OUTPUT QPRINT 1ð/ð1/87

 ð132ðð I-O CFILE 1ð/ð1/87

 ð133ðð INPUT PFILE. 1ð/ð1/87

 ð134ðð\\ 1ð/ð1/87

 ð135ðð\ \ 1ð/ð1/87

ð136ðð\ READ THE REQUEST FROM THE SOURCE PROGRAM. MINOR RETURN CODE 'ðð'\ 1ð/ð1/87

ð137ðð\ INDICATES RCVTRNRND OCCURRED. MINOR RETURN CODE OF 'ð8' \ ð2/21/89

ð138ðð\ INDICATES DETACH HAS BEEN RECEIVED. \ 1ð/15/87

 ð139ðð\ \ 1ð/ð1/87

ð14ððð\ THIS PROGRAM CHECKS FOR ERRORS ON EVERY ICF FILE I/O \ 1ð/ð3/9ð

ð141ðð\ OPERATION. A MAJOR CODE GREATER THAN ð3 INDICATES AN ERROR. \ ð2/22/89

 ð142ðð\ \ 1ð/ð1/87

 ð143ðð\\ 1ð/ð1/87

 ð144ðð\.4/ 1ð/ð1/87

 ð145ðð RECEIVE-DATA. 1ð/ð1/87

82 ð146ðð MOVE SPACES TO MAJ-MIN. 1ð/1ð/87

83 ð147ðð PERFORM READ-CFILE THRU READ-CFILE-EXIT UNTIL 1ð/ð1/87

 ð148ðð MIN IS EQUAL TO "ðð". 1ð/ð1/87

 ð149ðð\\ 1ð/ð1/87

 ð15ððð\ \ 1ð/ð1/87

ð151ðð\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A SINGLE \ 1ð/ð1/87

ð152ðð\ RECORD CONTAINING THE REQUESTED CUSTOMER OR ORDER NUMBER. THE \ 1ð/ð1/87

ð153ðð\ RESPONSE WILL BE RETURNED IN A SINGLE RECORD CONTAINING EITHER \ 1ð/ð1/87

ð154ðð\ THE ITEM OR CUSTOMER INFORMATION, DEPENDING ON THE DATABASE \ 1ð/ð1/87

 ð155ðð\ CONTENT. \ 1ð/ð1/87

 ð156ðð\ \ 1ð/ð1/87

ð157ðð\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO THE \ 1ð/ð1/87

ð158ðð\ PROGRAM DEVICE FILE USING FORMAT SNDPART. \ 1ð/15/87

 ð159ðð\ \ 1ð/ð1/87

ð16ððð\ WHEN THE REQUESTED CUSTOMER OR ITEM NUMBER IS NOT FOUND, \ 1ð/ð1/87

ð161ðð\ ðððððð IS PROPAGATED TO THE KEY FIELD BEFORE THE RESPONSE \ 1ð/ð1/87

ð162ðð\ IS SENT BACK TO THE SOURCE PROGRAM. \ 1ð/ð1/87

 ð163ðð\ \ ð2/22/89

 ð164ðð\\ 1ð/ð1/87

 ð165ðð\ 1ð/ð1/87

 ð166ðð\.5/ 1ð/ð1/87

 ð167ðð SEND-DATA. 1ð/ð1/87

84 ð168ðð MOVE RECID2 OF RCVPART TO DBSEQ. 1ð/ð1/87

85 ð169ðð READ PFILE INVALID KEY MOVE ðððððð TO DBSEQ. 1ð/ð1/87

87 ð17ððð MOVE RECCUS TO RECTYP. 1ð/ð1/87

88 ð171ðð MOVE 15ð TO LNGTH OF SNDPART. ð2/22/89

89 ð172ðð MOVE DBSEQ TO ITEMNO OF SNDPART. 1ð/ð1/87

9ð ð173ðð MOVE DBDATA TO EDATA OF SNDPART. 1ð/ð1/87

91 ð174ðð WRITE ICFREC FORMAT IS "$$SEND". 1ð/ð1/87

92 ð175ðð GO TO RECEIVE-DATA. 1ð/ð1/87

Figure 10-27 (Part 3 of 4). Target Program Example — CTFMUL (System-Supplied Formats)

10-74 ICF Programming V4R1

 ð176ðð\\ 1ð/ð1/87

 ð177ðð\ \ ð2/21/89

ð178ðð\ THIS ROUTINE ISSUES THE READ OPERATION TO THE PROGRAM DEVICE \ ð2/21/89

ð179ðð\ UNTIL RCVTRNRND OCCURS. \ ð2/21/89

ð18ððð\ DETACH INDICATION IS CHECKED FOR AND IF IT OCCURRED, THE \ 1ð/ð1/87

ð181ðð\ PROGRAM IS ENDED (RC=__ð8). \ 1ð/ð1/87

 ð182ðð\ \ ð2/21/89

 ð183ðð\\ 1ð/15/87

 ð184ðð\.6/ 1ð/ð1/87

 ð185ðð READ-CFILE. 1ð/ð1/87

 93 ð186ðð READ CFILE 1ð/ð1/87

 ð187ðð INDICATORS ARE CMNF-INDIC-AREA. 1ð/ð1/87

94 ð188ðð IF MIN = "ð8" 1ð/ð1/87

95 ð189ðð GO TO END-PROGRAM. 1ð/ð1/87

 ð19ððð READ-CFILE-EXIT. 1ð/ð1/87

 ð191ðð EXIT. ð2/28/89

 ð192ðð\ 1ð/ð1/87

 ð193ðð\\ 1ð/ð1/87

 ð194ðð\ \ ð2/21/89

ð195ðð\ ROUTINE TO END THE JOB AND CLOSE THE FILES. \ ð2/21/89

 ð196ðð\ \ ð2/21/89

 ð197ðð\\ 1ð/ð1/87

 ð198ðð\ 1ð/ð1/87

 ð199ðð\(H) 1ð/14/87

 96 ð2ðððð END-PROGRAM. 1ð/ð1/87

97 ð2ð1ðð MOVE MAJ-MIN TO RC. ð1/14/88

98 ð2ð2ðð MOVE "CTFMUL HAS COMPLETED NORMALLY" TO ERRMSG. ð1/14/88

 99 ð2ð3ðð WRITE PRINTREC. 1ð/ð1/87

 1ðð ð2ð4ðð CLOSE PFILE 1ð/ð1/87

 ð2ð5ðð CFILE 1ð/ð1/87

 ð2ð6ðð QPRINT. 1ð/ð1/87

 1ð1 ð2ð7ðð STOP RUN. 1ð/ð1/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

ð ð ð ð ð ð

 Source records read : 2ð7

 Copy records read : 11

 Copy members processed : 1

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program CTFMUL created in library ICFLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 10-27 (Part 4 of 4). Target Program Example — CTFMUL (System-Supplied Formats)

 Chapter 10. COBOL/400 Communications Applications 10-75

10-76 ICF Programming V4R1

Chapter 11. RPG/400 Communications Applications

Previous chapters in this book describe the functions pro-
vided by ICF. This chapter introduces you to the RPG/400
interface for ICF and provides program examples.

Two program examples are presented in this chapter. For
each example, both the source and target programs are pro-
vided. Each program is written first with user-defined formats
(data description specifications or DDS) and then with
system-supplied formats.

The first example is a batch data transfer application using a
single session. The second example is a multiple-session
inquiry application using one display file and four ICF ses-
sions.

Not all programming considerations or techniques are illus-
trated in each example in this chapter. Review these exam-
ples and the examples provided in the appropriate
programming book before beginning application design and
coding.

Note: The examples in this chapter were written to the
APPC communications type. Minor changes might be
required if another communications type is used.

Introduction to the RPG/400 Interface

Before you write an RPG/400 communications application,
you must understand the high-level language interface pro-
vided by RPG/400 ICF files are defined as WORKSTN files
in RPG/400.

The operations you use in the communications portion of
your program are similar to work station operations. In the
noncommunications portion of your program, you can use all
noncommunications operations you normally use to process
data that is sent or received between your program and the
remote program.

Figure 11-1 briefly introduces the RPG/400 statements you
use in the communications portion of your program.

Refer to the appropriate RPG/400 book for details on the
syntax and function of each operation.

Error Handling: The INFDS option of the RPG/400 file
specification allows you to obtain specific exception or error
information for a file by defining and naming a data structure
to contain error information, such as the ICF major and minor
return codes.

You must understand the relationship between RPG
*STATUS values and ICF major/minor return codes.

Figure 11-2 shows the *STATUS values as returned in the
RPG/400 INFDS for each major and minor return code. Use
this list to determine the ICF return code or group of codes
that corresponds to the *STATUS value.

Figure 11-1. RPG/400 Statements

ICF
Operation

RPG/400
Operation
Code

Function

Write WRITE Performs many of the ICF com-
munications functions in a
session

Write/Read EXFMT Performs the specified function
and then receives data from the
remote system

Release REL Releases the program device to
end the session

Close CLOSE Closes the ICF file

1 The POST operation can retrieve either input/output (I/O) feed-
back information or the get-attributes. The information you get
depends on the factors specified with the POST.

2 An RPG/400 read operation can be directed either to a specific
program device or to all invited program devices. The support
provided by the RPG/400 compiler determines whether to issue
an ICF read or read-from-invited-program-devices operation
based on the format of the read operation. For example, if a
read is sent with a specific format or terminal specified, the read
operation is interpreted as an ICF READ operation. Refer to the
RPG/400 language book for more information.

3 The read-from-invited-program-devices operation could complete
without data if the timer interval established with either the timer
function or wait record (WAITRCD) ends, or your job is ended
(controlled).

Figure 11-1. RPG/400 Statements

ICF
Operation

RPG/400
Operation
Code

Function

Open OPEN Opens the ICF file
Figure 11-2 (Page 1 of 2). *STATUS Values for Major and Minor
Return Codes

Acquire ACQ Acquires a program device to
establish a session

Major Code Minor Code *STATUS ValueGet-attributes POST1 Gets the status information of a
program device 00 All 00000

Read READ2 Receives data from a specific
program device

02 All 00000

03 All (except 09 and 10) 00000
Read-from-
invited-program-
devices

READ2 Receives data from any invited
program device3 03 09 01282

03 10 01331

 Copyright IBM Corp. 1997 11-1

Note: The mapping in Figure 11-2 on page 11-1 applies to
major/minor codes set as a result of acquire, release, and
general I/O operations. Certain major/minor codes are set
for open and close errors as well as for other I/O errors. In
cases where a major/minor code is set as a result of an open
or close error, the return code will map to either the 01205,
01216, or 01217 *STATUS value, depending on which is
applicable.

The return code field will not be updated for a *STATUS
value of 01285, 01261, or 01281 when an I/O operation was
attempted to an unacquired program device, because
RPG/400 detects these conditions before calling ICF data
management. This mapping is shown in order to note the
appropriate RPG/400 *STATUS value to check for the given
error condition.

Accessing the Feedback Areas: Use the RPG/400
POST operation to obtain the open or I/O feedback areas for
an ICF file. For the RPG/400 support to access information
from the I/O feedback area, add the following RPG/400 offset
values to the offset values listed in Appendix C.

81 Open Feedback Area

241 Common I/O Feedback Area

367 File Dependent Feedback Area

 Example Programs

The programs presented in this section are:

� Example I (Batch Data Transfer)

Figure 11-3 shows a batch data transfer program that
reads a database file and sends the data to a remote
system. When the source program finishes sending its
records, it sends an indication that it is done sending
records to the target program. The target program then
starts sending its records until it reaches the end-of-file.
At end-of-file, the target program sends a detach indi-
cation to the source program. The two programs end
their sessions.

� Example II (Multiple-Session Inquiry)

Figure 11-4 on page 11-3 shows an inquiry program
that accepts inquiries from a display device, sends the
request to one of four remote AS/400 systems, and
waits for a response to the inquiry. Based on the input
received from the display device, the program deter-
mines the target program to which it sends the inquiry
request. The same program resides in each of the
remote systems.

Figure 11-4 on page 11-3 contains a display device and
four ICF communications program devices.

Figure 11-2 (Page 2 of 2). *STATUS Values for Major and Minor
Return Codes

Major Code Minor Code *STATUS Value

04 All 01299

08 00 01285

11 00 00011

34 All 01201

80, 81 All 01251

82, 83 All 01255

Local AS/400 System Remote AS/400 System

Database

File

Database

File

RSLS142-5

Program ProgramICF

File

ICF

File

Figure 11-3. Batch Data Transfer

11-2 ICF Programming V4R1

Display File

Display
Station

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database
File

Database
File

Database
File

Database
File

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

Program

Program

Program

Program

Program

RSLS198-4

Figure 11-4. Multiple-Session Inquiry

The remainder of this chapter discusses the details of the
two application examples. The DDS source for the ICF file,
program listings, and an explanation of the programs are
included.

Batch Data Transfer (Example I)

The following figures show a batch data transfer program. A
source AS/400 system program communicates with a target
program on another AS/400 program using the ICF support.
The source program starts a target program on a remote
AS/400 system, and transfers a file to that target program.

The target program responds, after receiving an indication
that the source is done sending, by reading its own file and

then sends the records to the source program until it reaches
end-of-file. At end-of-file, the target program sends a detach
request to the source program and ends its session.

Both the source program and the target program are
described.

Transaction Flow of the Batch Data Transfer
(Example I): In Figure 11-5, the source program issues
an evoke to start a program at the remote AS/400 system.

Note: An acquire operation is not necessary since the
device was acquired during the open operation. The device
was acquired during the open operation because the
ACQPGMDEV parameter was used when the ICF file was
created.

 Chapter 11. RPG/400 Communications Applications 11-3

EvokeWrite

Local AS/400 System Remote AS/400 System

Database
File

Program ProgramICF
File

ICF
File

RSLS146-4

Figure 11-5. Evoke Request Starts a Target Program

After issuing the evoke request, the source program sends a
database file to the target program, which prints the records
as shown in Figure 11-6.

Local AS/400 System Remote AS/400 System

Database

File

Program ProgramICF

File

ICF

File

Printer

File

RSLS147-4

Read

Read

Read

Write

Write

Write

Write

Write

Write

Read

Read

Read

Figure 11-6. Target Program Prints Records

After the target program receives and prints the file, a data-
base file is sent to the source program. The source program

prints the records as they are received as shown in
Figure 11-7.

AS/400 System Remote AS/400 System

Database

File

Printer

File

Program ProgramICF

File

ICF

File

RSLS148-4

Write

Write

Write

Read

Read

Read

Write

Write

Write

Read

Read

Read

Figure 11-7. Source Program Prints the Received Records

Once all the records have been sent by the target program,
the target program issues a detach to the source program to
end the transaction, as shown in Figure 11-8 on page 11-5.

11-4 ICF Programming V4R1

Read WriteDetach

Remote AS/400 SystemLocal AS/400 System

Database
File

Printer
File

Program ProgramICF
File

ICF
File

RSLS149-4

Figure 11-8. Target Program Ends the Transaction

Source Program Batch Transfer (Example I): The
following describes the RPG/400 batch data transfer source
program.

Program Files: The RPG/400 batch data transfer source
program uses the following files:

SRCICF
An ICF file used to send records to and receive
records from the target program.

DBFILE
A database file that contains the records to be sent
to the target program.

QPRINT
A printer file that is used to print the records
received from the target program.

DDS Source: The DDS used in the ICF file is illustrated
below. The other files (DBFILE and QPRINT) are program-
described and therefore do not require DDS.

 A\\\

 A\ \

 A\ ICF FILE \

A\ USED IN BATCH DATA TRANSFER PROGRAM \

 A\ \

 A\\\

 A\

A\ FILE LEVEL INDICATORS:

 A\

 A INDARA

 A\

A RCVTRNRND(15 'END OF DATA')

 A\

 A 3ð DETACH

 A\

A INDTXT(3ð '3ð->DETACH TARG-

 A ET PROGRAM.')

 A\

 A RCVDETACH(35 'RECEIVED -

 A DETACHED.')

 A\

 A\

 A\\

A\ ICF RECORD FORMATS \

 A\\

 R RCVDATA

 RCVFLD 8ðA

 R SNDDATA

 SNDFLD 8ðA

 R EVOKPGM

 A 5ð EVOKE(&LIB/&PGMID)

A 5ð SECURITY(2 'PASSWRD' +

 3 'USERID')

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ENDREC

 A R INVITE

 A 45 INVITE

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/SRCICF) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(SRCICF) ACQPGMDEV(PGMDEVA) TEXT('ICF FILE

FOR BATCH DATA TRANSFER')

The command needed to define the program device entry is:
ADDICFDEVE FILE(ICFLIB/SRCICF) PGMDEV(PGMDEVA)

 RMTLOCNAME(CHICAGO)

Program Explanation: The following describes the struc-
ture of the program examples illustrated in Figure 11-9 on
page 11-7 and Figure 11-10 on page 11-12. The ICF file
used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference numbers
in the explanation below correspond to those in the following
program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the use of user-
defined formats and system-supplied formats. All output
operations to the ICF file in the first example are done using
the WRITE statement. All output operations to the ICF file in
the second example using system-supplied formats are done
using the EXCPT statement.

Differences between the first and second example are
described in notes in each of the descriptions.

.1/ The files used in this program are defined in the file
specifications section. SRCICF is the ICF file used to
send records to the target program.

The files used in the program are opened at the begin-
ning of the RPG/400 cycle and the ICF program device

 Chapter 11. RPG/400 Communications Applications 11-5

is implicitly acquired because the ACQPGMDEV
parameter was specified on the create ICF file
(CRTICFF) command.

Note: The input records for SRCICF are explicitly
coded in the program using system-supplied formats,
because SRCICF is now treated as a program-
described file. The system-supplied file QICDMF can
be used instead of SRCICF. You can use the system-
supplied file by specifying QICDMF in the file specifica-
tion, or by using an OVRICFF command to change the
file name from SRCICF to QICDMF. The OVRICFF
command can also be used to change the
ACQPGMDEV parameter of the file.

.2/ FEEDBK is the name of the file information data struc-
ture (INFDS) used with SRCICF. It contains the fol-
lowing information:

� Record format name (FMTNM)
� Program device name (PGMDEV)
� Major/minor return code (MAJMIN, MAJCOD,

MINCOD)

.3/ This section builds and sends the evoke request to the
remote system. Because the DDS for the record
format only specifies the field identifiers with the
record, the program moves the literal value RTDBATCL
to the field PGMID, and ICFLIB to the field LIB. Indi-
cator 50 is set to indicate that the program start
request is to be sent.

When the program start request is received at the
remote system, ICFLIB is searched for RTDBATCL and
that program is then started. RTDBATCL is a control
language (CL) program that contains the following:

ADDLIBLE ICFLIB

CALL ICFLIB/RTDBAT

Note: In the program using system-supplied formats,
the library and program (ICFLIB/RTFBATCL) are speci-
fied as part of the $$EVOKNI format. RTFBATCL is a
CL program that contains the following:

ADDLIBLE ICFLIB

CALL ICFLIB/RTFBAT

.4/ This section reads a record from the database file. If
the record read is the end-of-file, the program sets indi-
cator 98 on and then goes to .11/.

If it is not the last record, the data is moved to field
SNDFLD and the program goes to .1ð/ to write the
record to the ICF program device. When control
returns from .1ð/, the next database record is read.

.5/ Data is read from the program device associated with
the ICF file (SRCICF).

.6/ If an error occurs on the read (return code greater than
03), the error is handled. Otherwise, if data is received
(return code not = 03), the data is written to the printer
file (QPRINT).

This section reads data records until the detach indi-
cation is received from the target program. When the
detach is received, indicator 35 is set on, as defined by
the RCVDETACH keyword in the DDS for the ICF file.
Note that RCVDETACH is a file level-keyword.

Note: In the program using system-supplied formats,
the minor return code of ‘08’ is checked to verify
whether the detach is received.

.7/ After the detach request has been received, the fol-
lowing message is written to the printer file:

RSDBAT HAS COMPLETED NORMALLY

The session is ended in .9/.

Note: The program name is RSFBAT in the program
using system-supplied formats.

.8/ When an I/O operation to the ICF file (SRCICF) com-
pletes unsuccessfully, the following message is written
to the printer file:

RSDBAT HAS COMPLETED ABNORMALLY

The session is ended in .9/.

Note: The program name is RSFBAT in the program
using system-supplied formats.

.9/ The program ends the job by setting on last run (LR)
indicator and returning to caller of the program. The
ICF file is closed, and the session ends at the end of
the RPG/400 cycle.

.1ð/ This subroutine is called to write data to the program
device associated with the ICF file using the format
SNDDATA. If an error occurs, the program goes to
.8/ and a message is printed.

Note: The $$SENDNI format is used instead of the
user-defined SNDDATA format in the program using
system-supplied formats.

.11/ This subroutine is called to perform an invite request to
the ICF program device using format INVITE. If an
error occurs, the program goes to .8/ and a message
is printed.

Note: The $$SEND format is used instead of the
user-defined INVITE format in the program using
system-supplied formats.

11-6 ICF Programming V4R1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RSDBAT

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RSDBAT

File : QICFPUB

Library : ICFLIB

Last Change : ð3/2ð/89 15:26:21

Description : rpg batch file transfer using dds source

S o u r c e L i s t i n g

 1ðð H\\ 12/15/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS IS A BATCH FILE TRANSFER PROGRAM THAT READS A SEQUENTIAL 1ð/14/87

4ðð H\ FILE AND SENDS THE RECORDS TO THE REMOTE SYSTEM UNTIL THE END 1ð/14/87

5ðð H\ OF FILE IS REACHED. AT THIS TIME, THE PROGRAM STOPS SENDING 1ð/14/87

6ðð H\ AND STARTS RECEIVING RECORDS FROM THE REMOTE SYSTEM UNTIL A 1ð/14/87

7ðð H\ DETACH INDICATION IS RECEIVED. 1ð/14/87

 8ðð H\ ð3/2ð/89

 9ðð H\\ 1ð/14/87

 1ððð \.1/ 1ð/14/87

 H \\\\\

11ðð FSRCICF CF E WORKSTN 1ð/14/87

 12ðð F KINFDS FEEDBK 1ð/14/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE SRCICF.

EXTERNAL FORMAT RCVDATA RPG NAME RCVDATA

EXTERNAL FORMAT SNDDATA RPG NAME SNDDATA

EXTERNAL FORMAT EVOKPGM RPG NAME EVOKPGM

EXTERNAL FORMAT ENDREC RPG NAME ENDREC

EXTERNAL FORMAT INVITE RPG NAME INVITE

13ðð FDBFILE IF F 8ð DISK 1ð/14/87

14ðð FQPRINT O F 132 PRINTER 1ð/14/87

15ðð IDBFILE NS 8ð 1ð/14/87

 16ðð I 1 8ð DBDATA 1ð/14/87

Figure 11-9 (Part 1 of 5). Source Program Example — RSDBAT (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-7

 17ðð I\ .2/ 1ð/14/87

Aðððððð INPUT FIELDS FOR RECORD RCVDATA FILE SRCICF FORMAT RCVDATA.

 Aððððð1 1 8ð RCVFLD

Bðððððð INPUT FIELDS FOR RECORD SNDDATA FILE SRCICF FORMAT SNDDATA.

 Bððððð1 1 8ð SNDFLD

Cðððððð INPUT FIELDS FOR RECORD EVOKPGM FILE SRCICF FORMAT EVOKPGM.

Dðððððð INPUT FIELDS FOR RECORD ENDREC FILE SRCICF FORMAT ENDREC.

Eðððððð INPUT FIELDS FOR RECORD INVITE FILE SRCICF FORMAT INVITE.

 18ðð IFEEDBK DS 1ð/14/87

 19ðð I 38 45 FMTNM 1ð/14/87

2ððð I 273 282 PGMDEV 1ð/14/87

21ðð I 4ð1 4ð4 MAJMIN 1ð/14/87

22ðð I 4ð1 4ð2 MAJCOD 1ð/14/87

23ðð I 4ð3 4ð4 MINCOD 1ð/14/87

 24ðð C\\\ 1ð/14/87

 25ðð C\ ð3/2ð/89

26ðð C\ EVOKE PROGRAM 'RTDBATCL' ON REMOTE SYSTEM IN LIBRARY ICFLIB. 1ð/14/87

27ðð C\ INDICATOR 5ð (\IN5ð) IS ASSOCIATED WITH THE EVOKE KEYWORD. 1ð/14/87

 28ðð C\ ð3/2ð/89

 29ðð C\\\ 1ð/14/87

 3ððð C\.3/ 1ð/14/87

 31ðð C ITMIN TAG 1ð/14/87

 32ðð C MOVEL'RTDBATCL'PGMID 1ð/14/87

 33ðð C MOVEL'ICFLIB 'LIB 1ð/14/87

 34ðð C MOVE '1' \IN5ð 1ð/14/87

 35ðð C WRITEEVOKPGM ISSUE EVOKE 1ð/14/87

 36ðð C MOVE 'ð' \IN5ð 1ð/14/87

 37ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/14/87

 38ðð C\\ 1ð/14/87

 39ðð C\ ð3/2ð/89

4ððð C\ AFTER SUCCESSFUL EXECUTION OF THE EVOKE OPERATION, A RECORD ð3/2ð/89

41ðð C\ IS READ FROM THE DATABASE FILE AND SENT TO THE REMOTE SYSTEM. ð3/2ð/89

42ðð C\ THIS IS REPEATED UNTIL END OF FILE IS REACHED ON THE DATABASE ð3/2ð/89

43ðð C\ FILE. AT END OF FILE, THE PROGRAM DEVICE IS INVITED AND ð3/2ð/89

44ðð C\ CONTROL GOES TO RECDTA TO GET DATA FROM THE REMOTE SYSTEM. 1ð/16/87

 45ðð C\ ð3/2ð/89

 46ðð C\\ 1ð/14/87

 47ðð C\.4/ 1ð/14/87

 48ðð C SENDTA TAG 1ð/14/87

 49ðð C READ DBFILE 98 3 1ð/14/87

 5ððð C 98 EXSR INVSND INVITE 1ð/14/87

 51ðð C EOFPSW IFNE '1' Bðð1 1ð/14/87

 52ðð C MOVE DBDATA SNDFLD ðð1 1ð/14/87

 53ðð C EXSR WCFRTN ðð1 1ð/14/87

 54ðð C GOTO SENDTA SEND DATA ðð1 1ð/14/87

 55ðð C END Eðð1 1ð/14/87

 56ðð C\\ 1ð/14/87

 57ðð C\ ð3/2ð/89

58ðð C\ RECEIVE RECORDS FROM THE REMOTE SYSTEM UNTIL THE RCVDETACH ð3/2ð/89

59ðð C\ INDICATOR IS SET ON. EACH RECORD RECEIVED IS PRINTED TO ð3/2ð/89

6ððð C\ THE PRINT FILE. ð3/2ð/89

 61ðð C\ ð3/2ð/89

 62ðð C\\ 1ð/14/87

 63ðð C\.5/ 1ð/14/87

 64ðð C RECDTA TAG 1ð/14/87

 65ðð C READ SRCICF 98 3 1ð/14/87

 66ðð C\\ 1ð/14/87

 67ðð C\ ð3/2ð/89

68ðð C\ IF ANY ICF FILE ERROR OCCURS, PRINT A LINE CONTAINING ð3/2ð/89

69ðð C\ INFORMATION ABOUT THE ERROR. 1ð/14/87

 7ððð C\ ð3/2ð/89

 71ðð C\\ 1ð/14/87

 72ðð \.6/ 1ð/14/87

 73ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/14/87

 74ðð C MAJCOD CABEQ'ð3' CHKDET NO DATA? 1ð/14/87

 75ðð C EXCPTPTREC 1ð/14/87

 76ðð C CHKDET TAG 1ð/14/87

 77ðð C \IN35 CABNE'1' RECDTA DETACH? 1ð/14/87

 78ðð C\\ 1ð/14/87

 79ðð C\ ð3/2ð/89

8ððð C\ AFTER A DETACH INDICATION IS RECEIVED, AN EOJ MESSAGE ð3/2ð/89

81ðð C\ IS PRINTED AND THE SESSION IS ENDED. ð3/2ð/89

 82ðð C\ ð3/2ð/89

Figure 11-9 (Part 2 of 5). Source Program Example — RSDBAT (User-Defined Formats)

11-8 ICF Programming V4R1

 83ðð C\\ 1ð/14/87

 84ðð C\.7/ 1ð/14/87

 85ðð C EXCPTOKEND 1ð/14/87

 86ðð C GOTO END 1ð/14/87

 87ðð C\\ 1ð/14/87

 88ðð C\ ð3/2ð/89

89ðð C\ WHEN AN ERROR OCCURS ON AN ICF SESSION, INFORMATION ð3/2ð/89

9ððð C\ ABOUT THE ERROR IS PRINTED. ð3/2ð/89

 91ðð C\ ð3/2ð/89

 92ðð C\\ 1ð/14/87

 93ðð C\.8/ 1ð/14/87

 94ðð C NOTOKR TAG 1ð/14/87

 95ðð C EXCPTNOTOK 1ð/14/87

 96ðð C\\ 1ð/14/87

 97ðð C\ ð3/2ð/89

98ðð C\ WHEN PROCESSING IS FINISHED, THE LAST RECORD SWITCH 1ð/14/87

99ðð C\ IS TURNED ON AND THE PROGRAM IS ENDED. 1ð/14/87

 1ðððð C\ ð3/2ð/89

 1ð1ðð C\\ 1ð/14/87

 1ð2ðð C\.9/ 1ð/14/87

 1ð3ðð C END TAG 1ð/14/87

1ð4ðð C SETON LR 1 1ð/14/87

 1ð5ðð C RETRN 1ð/14/87

 1ð6ðð C\\\ 1ð/14/87

 1ð7ðð C\ ð3/2ð/89

1ð8ðð C\ THIS SUBROUTINE SENDS DATA TO THE REMOTE SYSTEM. 1ð/14/87

 1ð9ðð C\ ð3/2ð/89

 11ððð C\\\ 1ð/14/87

 111ðð C\.1ð/ 1ð/14/87

 112ðð C WCFRTN BEGSR 1ð/14/87

 113ðð C WRITESNDDATA 1ð/14/87

 114ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/14/87

 115ðð C ENDSR 1ð/14/87

 116ðð C\\\ 1ð/14/87

 117ðð C\ ð3/2ð/89

118ðð C\ THIS SUBROUTINE IS CALLED AT END OF FILE TO REQUEST THE REMOTE 1ð/14/87

119ðð C\ PROGRAM TO START SENDING DATA. AN INVITE OPERATION IS ISSUED 1ð/14/87

12ððð C\ TO NOTIFY THE TARGET PROGRAM THAT IT CAN START SENDING DATA. 1ð/14/87

 121ðð C\ ð3/2ð/89

 122ðð C\\\ 1ð/14/87

 123ðð C\.11/ 1ð/14/87

 124ðð C INVSND BEGSR 1ð/14/87

 125ðð C MOVE '1' EOFPSW 1 1ð/14/87

 126ðð C MOVE '1' \IN45 1ð/14/87

 127ðð C WRITEINVITE 1ð/14/87

 128ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/14/87

 129ðð C ENDSR 1ð/14/87

 13ððð C\\ 1ð/14/87

131ðð OQPRINT E 1 PTREC 1ð/14/87

 132ðð O RCVFLD 8ð 1ð/14/87

 133ðð O E 1 OKEND 1ð/14/87

134ðð O 21 'RSDBAT HAS COMPLETED ' 1ð/14/87

 135ðð O 3ð 'NORMALLY.' 1ð/14/87

 136ðð O E 1 NOTOK 1ð/14/87

137ðð O 21 'RSDBAT HAS COMPLETED ' 1ð/14/87

 138ðð O 32 'ABNORMALLY.' 1ð/14/87

 139ðð O MAJCOD 35 1ð/14/87

 14ððð O 36 '/' 1ð/14/87

 141ðð O MINCOD 39 1ð/14/87

 142ðð O 46 'FORMAT:' 1ð/14/87

 143ðð O FMTNM 56 1ð/14/87

 144ðð O 63 'DEVICE:' 1ð/14/87

 145ðð O PGMDEV 8ð ð3/2ð/89

\ 61ð3 145ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Fðððððð OUTPUT FIELDS FOR RECORD SNDDATA FILE SRCICF FORMAT SNDDATA.

 Fððððð1 SNDFLD 8ð CHAR 8ð

Gðððððð OUTPUT FIELDS FOR RECORD EVOKPGM FILE SRCICF FORMAT EVOKPGM.

 Gððððð1 PGMID 1ð CHAR 1ð

 Gððððð2 LIB 2ð CHAR 1ð

Hðððððð OUTPUT FIELDS FOR RECORD INVITE FILE SRCICF FORMAT INVITE.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure 11-9 (Part 3 of 5). Source Program Example — RSDBAT (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-9

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 11ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE SRCICF.

\ 7ð86 13ðð RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE DBFILE.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð2 DBFILE DISK 13ððD 15ðð 49ðð

 ð3 QPRINT PRINTER 14ððD 131ðð 133ðð 136ðð 145ð1

 ð1 SRCICF WORKSTN 11ððD 65ðð

 ENDREC 11ððD Dðððððð

 EVOKPGM 11ððD Cðððððð 35ðð Gðððððð

 INVITE 11ððD Eðððððð 127ðð Hðððððð

 RCVDATA 11ððD Aðððððð

 SNDDATA 11ððD Bðððððð 113ðð Fðððððð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN35 A(1) 77ðð

 \IN45 A(1) 126ððM

\IN5ð A(1) 34ððM 36ððM

 CHKDET TAG 74ðð 76ððD

DBDATA A(8ð) 16ððD 52ðð

 END TAG 86ðð 1ð3ððD

 EOFPSW A(1) 51ðð 125ððD

 FEEDBK DS(4ð4) 11ðð 18ððD

FMTNM A(8) 19ððD 143ðð

INVSND BEGSR 5ððð 124ððD

\ 7ð31 ITMIN TAG 31ððD

 LIB A(1ð) 33ððM Gððððð2D

MAJCOD A(2) 22ððD 37ðð 73ðð 74ðð 114ðð

 128ðð 139ðð

\ 7ð31 MAJMIN A(4) 21ððD

 MINCOD A(2) 23ððD 141ðð

 NOTOK EXCPT 95ðð 136ðð

NOTOKR TAG 37ðð 73ðð 94ððD 114ðð 128ðð

 OKEND EXCPT 85ðð 133ðð

PGMDEV A(1ð) 2ðððD 145ðð

 PGMID A(1ð) 32ððM Gððððð1D

 PTREC EXCPT 75ðð 131ðð

RCVFLD A(8ð) Aððððð1D 132ðð

 RECDTA TAG 64ððD 77ðð

 SENDTA TAG 48ððD 54ðð

 SNDFLD A(8ð) Bððððð1D 52ððM Fððððð1D

WCFRTN BEGSR 53ðð 112ððD

'ICFLIB ' LITERAL 33ðð

 'RTDBATCL' LITERAL 32ðð

 'ð' LITERAL 36ðð

 'ð3' LITERAL 37ðð 73ðð 74ðð 114ðð 128ðð

'1' LITERAL 34ðð 51ðð 77ðð 125ðð 126ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

\IN 34ððM 36ððM 77ðð 126ððM

 LR 1ð4ððM

 OA 14ððD 145ð1

\ 7ð31 15

\ 7ð31 3ð

 35 77ðð

 45 126ððM

 5ð 34ððM 36ððM

\ 7ð31 8ð 15ððM

 98 49ððM 5ððð 65ððM

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

Figure 11-9 (Part 4 of 5). Source Program Example — RSDBAT (User-Defined Formats)

11-10 ICF Programming V4R1

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 5

Message : The Name or indicator is not referenced.

\ QRG7ð86 Severity: ðð Number: 1

Message : The RPG handles blocking function for file.

INFDS contents updated only when blocks of data transferred.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

8 8 ð ð ð ð ð

 Program Source Totals:

Records : 145

Specifications : 66

Table Records : ð

Comments : 79

 PRM has been called.

 Program RSDBAT is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-9 (Part 5 of 5). Source Program Example — RSDBAT (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-11

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RSFBAT

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RSFBAT

File : QICFPUB

Library : ICFLIB

Last Change : ð3/2ð/89 15:3ð:19

Description : rpg batch file transfer using $$FORMAT

S o u r c e L i s t i n g

 1ðð H\\ 1ð/16/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS IS A BATCH FILE TRANSFER PROGRAM THAT READS A SEQUENTIAL 1ð/16/87

4ðð H\ FILE AND SENDS THE RECORDS TO THE REMOTE SYSTEM UNTIL THE END 1ð/16/87

5ðð H\ OF FILE IS REACHED. AT THIS TIME, THE PROGRAM STOPS SENDING 1ð/16/87

6ðð H\ AND STARTS RECEIVING RECORDS FROM THE REMOTE SYSTEM UNTIL 1ð/16/87

7ðð H\ A DETACH INDICATION IS RECEIVED. 1ð/16/87

 8ðð H\ ð3/2ð/89

 9ðð H\\ 1ð/16/87

 1ððð H\.1/ 1ð/16/87

11ðð FSRCICF CF F 84 WORKSTN 1ð/16/87

 12ðð F KINFDS FEEDBK 1ð/16/87

13ðð FDBFILE IF F 8ð DISK 1ð/16/87

14ðð FQPRINT O F 132 PRINTER 1ð/16/87

15ðð ISRCICF NS 82 1ð/16/87

 16ðð I 1 8ð RCVFLD 1ð/16/87

17ðð IDBFILE NS 8ð 1ð/16/87

 18ðð I 1 8ð DBDATA 1ð/16/87

 19ðð I\.2/ 1ð/16/87

 2ððð IFEEDBK DS 1ð/16/87

 21ðð I 38 45 FMTNM 1ð/16/87

22ðð I 273 282 PGMDEV 1ð/16/87

23ðð I 4ð1 4ð4 MAJMIN 1ð/16/87

24ðð I 4ð1 4ð2 MAJCOD 1ð/16/87

25ðð I 4ð3 4ð4 MINCOD 1ð/16/87

 26ðð C\\ 1ð/16/87

 27ðð C\ ð3/2ð/89

28ðð C\ EVOKE PROGRAM 'RTFBATCL' ON REMOTE SYSTEM IN LIBRARY ICFLIB. 1ð/16/87

29ðð C\ THE USER ID AND PASSWORD ARE DEFINED AS PART OF THE $$EVOKNI 1ð/16/87

 3ððð C\ FORMAT. ð3/2ð/89

 31ðð C\ ð3/2ð/89

 32ðð C\\ 1ð/16/87

 33ðð C\.3/ 1ð/16/87

 34ðð C ITMIN TAG 1ð/16/87

 35ðð C EXCPTEVOKE ISSUE EVOKE 1ð/16/87

 36ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

Figure 11-10 (Part 1 of 4). Source Program Example — RSFBAT (System-Supplied Formats)

11-12 ICF Programming V4R1

 37ðð C\\\ 1ð/16/87

 38ðð C\ ð3/2ð/89

39ðð C\ AFTER THE SUCCESSFUL EXECUTION OF THE EVOKE OPERATION, A ð3/2ð/89

4ððð C\ RECORD IS READ FROM THE DATABASE FILE, AND SENT TO THE REMOTE ð3/2ð/89

41ðð C\ SYSTEM. THIS IS REPEATED UNTIL AN END OF FILE IS REACHED ON ð3/2ð/89

42ðð C\ THE DATABASE FILE. AT THIS TIME, THE PROGRAM DEVICE IS INVI- ð3/2ð/89

43ðð C\ TED, AND CONTROL GOES TO RECDTA TO GET DATA FROM THE REMOTE ð3/2ð/89

 44ðð C\ SYSTEM. ð3/2ð/89

 45ðð C\ ð3/2ð/89

 46ðð C\\\ 1ð/16/87

 47ðð C\.4/ 1ð/16/87

 48ðð C SENDTA TAG 1ð/16/87

 49ðð C READ DBFILE 98 3 1ð/16/87

 5ððð C 98 EXSR INVSND INVITE 1ð/16/87

 51ðð C EOFPSW IFNE '1' Bðð1 1ð/16/87

 52ðð C EXSR WCFRTN ðð1 1ð/16/87

 53ðð C GOTO SENDTA SEND DATA ðð1 1ð/16/87

 54ðð C END Eðð1 1ð/16/87

 55ðð C\\ 1ð/16/87

 56ðð C\ ð3/2ð/89

57ðð C\ THE PROGRAM STARTS RECEIVING RECORDS AT THIS POINT FROM THE ð3/2ð/89

58ðð C\ REMOTE SYSTEM UNTIL A DETACH INDICATION IS RECEIVED. EACH ð3/2ð/89

59ðð C\ RECORD RECEIVED IS PRINTED TO THE PRINT FILE. ð3/2ð/89

 6ððð C\ ð3/2ð/89

 61ðð C\\ 1ð/16/87

 62ðð C\.5/ 1ð/16/87

 63ðð C RECDTA TAG 1ð/16/87

 64ðð C READ SRCICF 98 3 1ð/16/87

 65ðð C\\ 1ð/16/87

 66ðð C\ ð3/2ð/89

67ðð C\ IF AN ICF FILE ERROR OCCURS, PRINT A LINE CONTAINING ð3/2ð/89

68ðð C\ INFORMATION ABOUT THE ERROR. 1ð/16/87

 69ðð C\ ð3/2ð/89

 7ððð C\\ 1ð/16/87

 71ðð C\.6/ 1ð/16/87

 72ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/16/87

 73ðð C MAJCOD CABEQ'ð3' CHKDET NO DATA? 1ð/16/87

 74ðð C EXCPTPTREC 1ð/16/87

 75ðð C CHKDET TAG 1ð/16/87

 76ðð C MINCOD CABNE'ð8' RECDTA DETACH? 1ð/16/87

 77ðð C\\ 1ð/16/87

 78ðð C\ ð3/2ð/89

79ðð C\ AFTER A DETACH INDICATION IS RECEIVED, AN EOJ MESSAGE IS ð3/2ð/89

8ððð C\ PRINTED AND THE SESSION IS ENDED. ð3/2ð/89

 81ðð C\ ð3/2ð/89

 82ðð C\\ 1ð/16/87

 83ðð C\.7/ 1ð/16/87

 84ðð C EXCPTOKEND 1ð/16/87

 85ðð C GOTO END 1ð/16/87

 86ðð C\\ 1ð/16/87

 87ðð C\ ð3/2ð/89

88ðð C\ WHEN AN ERROR OCCURS ON AN ICF SESSION, INFORMATION ð3/2ð/89

89ðð C\ ABOUT THE ERROR IS PRINTED. ð3/2ð/89

 9ððð C\ ð3/2ð/89

 91ðð C\\ 1ð/16/87

 92ðð C\.8/ 1ð/16/87

 93ðð C NOTOKR TAG 1ð/16/87

 94ðð C EXCPTNOTOK 1ð/16/87

 95ðð C\\ 1ð/16/87

 96ðð C\ ð3/2ð/89

97ðð C\ WHEN PROCESSING IS FINISHED, THE LAST RECORD SWITCH IS ð3/2ð/89

98ðð C\ TURNED ON AND THE PROGRAM IS ENDED. ð3/2ð/89

 99ðð C\ ð3/2ð/89

 1ðððð C\\ 1ð/16/87

 1ð1ðð C\.9/ 1ð/16/87

 1ð2ðð C END TAG 1ð/16/87

1ð3ðð C SETON LR 1 1ð/16/87

 1ð4ðð C RETRN 1ð/16/87

Figure 11-10 (Part 2 of 4). Source Program Example — RSFBAT (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-13

 1ð5ðð C\\\ 1ð/16/87

 1ð6ðð C\ ð3/2ð/89

1ð7ðð C\ THIS SUBROUTINE SENDS DATA TO THE REMOTE SYSTEM. 1ð/16/87

 1ð8ðð C\ ð3/2ð/89

 1ð9ðð C\\\ 1ð/16/87

 11ððð C\.1ð/ 1ð/16/87

 111ðð C WCFRTN BEGSR 1ð/16/87

 112ðð C EXCPTSNDATA 1ð/16/87

 113ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/16/87

 114ðð C ENDSR 1ð/16/87

 115ðð C\\ 1ð/16/87

 116ðð C\ ð3/2ð/89

117ðð C\ THIS SUBROUTINE IS CALLED AT END OF FILE TO REQUEST THE REMOTE 1ð/16/87

118ðð C\ PROGRAM TO START SENDING DATA. AN INVITE OPERATION IS ISSUED 1ð/16/87

119ðð C\ TO NOTIFY THE TARGET PROGRAM THAT IT CAN START SENDING DATA. 1ð/16/87

 12ððð C\ ð3/2ð/89

 121ðð C\\ 1ð/16/87

 122ðð C\.11/ 1ð/16/87

 123ðð C INVSND BEGSR 1ð/16/87

 124ðð C MOVE '1' EOFPSW 1 1ð/16/87

 125ðð C EXCPTINVITE 1ð/16/87

 126ðð C MAJCOD CABGT'ð3' NOTOKR 1ð/16/87

 127ðð C ENDSR 1ð/16/87

 128ðð C\\ 1ð/16/87

129ðð OQPRINT E 1 PTREC 1ð/16/87

 13ððð O RCVFLD 8ð 1ð/16/87

 131ðð O E 1 OKEND 1ð/16/87

132ðð O 21 'RSFBAT HAS COMPLETED ' 1ð/16/87

 133ðð O 3ð 'NORMALLY.' 1ð/16/87

 134ðð O E 1 NOTOK 1ð/16/87

135ðð O 21 'RSFBAT HAS COMPLETED ' 1ð/16/87

 136ðð O 32 'ABNORMALLY.' 1ð/16/87

 137ðð O MAJCOD 35 1ð/16/87

 138ðð O 36 '/' 1ð/16/87

 139ðð O MINCOD 39 1ð/16/87

 14ððð O 46 'FORMAT:' 1ð/16/87

 141ðð O FMTNM 56 1ð/16/87

 142ðð O 63 'DEVICE:' 1ð/16/87

 143ðð O PGMDEV 8ð ð3/2ð/89

144ðð OSRCICF E EVOKE 1ð/16/87

 145ðð O K8 '$$EVOKNI' 1ð/16/87

 146ðð O 8 'RTFBATCL' 1ð/16/87

147ðð O 16 'QSECOFR ' 11/16/88

148ðð O 24 'QSECOFR ' 11/16/88

 149ðð O 32 'ICFLIB ' 1ð/16/87

 15ððð O E SNDATA 1ð/16/87

 151ðð O K8 '$$SENDNI' 1ð/16/87

 152ðð O 4 'ðð8ð' 1ð/16/87

 153ðð O DBDATA 84 1ð/16/87

 154ðð O E INVITE 1ð/16/87

 155ðð O K6 '$$SEND' 1ð/16/87

 156ðð O 4 'ðððð' 1ð/16/87

\ 61ð3 156ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 11ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE SRCICF.

\ 7ð86 13ðð RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE DBFILE.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð2 DBFILE DISK 13ððD 17ðð 49ðð

ð3 QPRINT PRINTER 14ððD 129ðð 131ðð 134ðð 156ð1

ð1 SRCICF WORKSTN 11ððD 15ðð 64ðð 144ðð 15ððð 154ðð

 $$EVOKNI 145ðð

 $$SEND 155ðð

 $$SENDNI 151ðð

Figure 11-10 (Part 3 of 4). Source Program Example — RSFBAT (System-Supplied Formats)

11-14 ICF Programming V4R1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

CHKDET TAG 73ðð 75ððD

 DBDATA A(8ð) 18ððD 153ðð

 END TAG 85ðð 1ð2ððD

 EOFPSW A(1) 51ðð 124ððD

 EVOKE EXCPT 35ðð 144ðð

 FEEDBK DS(4ð4) 11ðð 2ðððD

 FMTNM A(8) 21ððD 141ðð

 INVITE EXCPT 125ðð 154ðð

 INVSND BEGSR 5ððð 123ððD

\ 7ð31 ITMIN TAG 34ððD

MAJCOD A(2) 24ððD 36ðð 72ðð 73ðð 113ðð 126ðð 137ðð

\ 7ð31 MAJMIN A(4) 23ððD

MINCOD A(2) 25ððD 76ðð 139ðð

 NOTOK EXCPT 94ðð 134ðð

NOTOKR TAG 36ðð 72ðð 93ððD 113ðð 126ðð

 OKEND EXCPT 84ðð 131ðð

 PGMDEV A(1ð) 22ððD 143ðð

 PTREC EXCPT 74ðð 129ðð

 RCVFLD A(8ð) 16ððD 13ððð

RECDTA TAG 63ððD 76ðð

SENDTA TAG 48ððD 53ðð

 SNDATA EXCPT 112ðð 15ððð

 WCFRTN BEGSR 52ðð 111ððD

 'ð3' LITERAL 36ðð 72ðð 73ðð 113ðð 126ðð

 'ð8' LITERAL 76ðð

'1' LITERAL 51ðð 124ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 1ð3ððM

 OA 14ððD 156ð1

\ 7ð31 8ð 17ððM

\ 7ð31 82 15ððM

 98 49ððM 5ððð 64ððM

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 4

Message : The Name or indicator is not referenced.

\ QRG7ð86 Severity: ðð Number: 1

Message : The RPG handles blocking function for file.

INFDS contents updated only when blocks of data transferred.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

7 7 ð ð ð ð ð

 Program Source Totals:

Records : 156

Specifications : 75

Table Records : ð

Comments : 81

 PRM has been called.

 Program RSFBAT is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-10 (Part 4 of 4). Source Program Example — RSFBAT (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-15

Target Program Batch Transfer (Example I): The
following describes an RPG/400 batch data transfer target
program.

Program Files: The RPG/400 batch transfer target program
uses the following files:

TGTICF
An ICF file used to send records to and receive
records from the source program.

DBFILE
A database file that contains the records to be sent
to the source program.

QPRINT
A printer file used to print the records received from
the source program.

DDS Source: The DDS used in the ICF file is illustrated in
the following example. The other files (DBFILE and
QPRINT) are program-described and therefore do not require
DDS.
 A\\\

 A\ \

 A\ ICF FILE \

A\ USED IN BATCH DATA TRANSFER PROGRAM \

 A\ \

 A\\\

 A\

 A\ FILE LEVEL INDICATORS:

 A\

 A INDARA

 A\

A RCVTRNRND(15 'END OF DATA')

 A\

 A 3ð DETACH

 A\

A INDTXT(3ð '3ð->DETACH TARG-

 A ET PROGRAM.')

 A\

 A RCVDETACH(35 'RECEIVED -

 A DETACHED.')

 A\

 A\

 A\\

A\ ICF RECORD FORMATS \

 A\\

 R RCVDATA

 RCVFLD 8ðA

 R SNDDATA

 SNDFLD 8ðA

 R EVOKPGM

 A 5ð EVOKE(&LIB/&PGMID)

 A 5ð SECURITY(2 'PASSWRD' +

 3 'USERID')

 A PGMID 1ðA P

 A LIB 1ðA P

 A R ENDREC

 A R INVITE

 A 45 INVITE

This example acquires all program devices at the beginning
of the program. For performance considerations, you may
not want to acquire program devices until they are actually
needed in the program.

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/TGTICF) SRCFILE(ICFLIB/QICFPUB)

 SRCMBR(TGTICF) ACQPGMDEV(PGMDEVB)

TEXT('TARGET ICF FILE FOR BATCH DATA TRANSFER')

The command needed to define the program device entry is:
ADDICFDEVE FILE(ICFLIB/TGTICF) PGMDEV(PGMDEVB)

 RMTLOCNAME(\REQUESTER)

Program Explanation: The following describes the struc-
ture of the program examples illustrated in Figure 11-11 on
page 11-18 and Figure 11-12 on page 11-22. The ICF file
used in the first example is defined by the user and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference letters in
the explanation below correspond to those in the following
program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the use of user-
defined formats and system-supplied formats. All output
operations to the ICF file in the first example are done using
the WRITE statement. All output operations to the ICF file in
the second example using system-supplied formats are done
using the EXCPT statement.

Differences between the first and second example are
described in notes in each of the descriptions.

.1/ The file specification identifies the files used in the
program. TGTICF is the ICF file used to send records
to the source program.

The files used in the program are opened at the begin-
ning of the RPG/400 cycle and the ICF program device
is implicitly acquired because the ACQPGMDEV
parameter was specified on the CRTICFF command.

Note: In the program using system-supplied formats,
the input records for TGTICF are explicitly coded since
TGTICF is treated as a program-described file. The
system-supplied file, QICDMF, can be be used instead
of TGTICF. Using the system-supplied file is done by
specifying QICDMF in the file specification, or by using
an OVRICFF command to change the file name from
TGTICF to QICDMF. The OVRICFF command can
also be used to change the ACQPGMDEV parameter
of the file.

.2/ FEEDBK is the name of the file information data struc-
ture (INFDS) used with TGTICF. It contains the fol-
lowing information:

� Record format-name (FMTNM)
� Program device name (PGMDEV)
� Major/minor return code (MAJMIN, MAJCOD,

MINCOD)

.3/ Read data from the ICF program device (TGTICF) file.

If an error occurs on the read (major return code
greater than 03), control passes to .6/. Otherwise, if
data is received (major return code not = 03), the data
is written to the printer file (QPRINT).

Data records are read until the change-direction indi-
cation is received from the source program. When
change direction is received, indicator 15 is set on, as
defined by the RCVTRNRND keyword in the DDS for
the ICF file, and control is passed to .4/.

11-16 ICF Programming V4R1

Note: In the program using system-supplied formats,
the minor return code of '00' is checked to verify
whether change direction is received.

.4/ The database file is read and the records sent to the
source program until the end of the database file. At
this time, the program sets indicator 98 and goes to
.9/. After returning from .9/, control is passed to .5/.

If it is not the last record, the data is moved to field
SNDFLD, and the program goes to .8/ to write the
record to the ICF program device. When control
returns from .8/, the next database record is read.

.5/ After the last database record has been read, the fol-
lowing message is written to the printer file:

RTDBAT HAS COMPLETED NORMALLY

Control passes to .7/.

Note: The program name is RSFBAT in the program
using system-supplied formats.

.6/ When an I/O operation to the ICF file (TGTICF) com-
pletes unsuccessfully, the following message is written
to the printer file:

RTDBAT HAS COMPLETED ABNORMALLY

Control passes to .7/.

Note: The program name is RTFBAT in the program
using system-supplied formats.

.7/ The program ends the job by setting on the LR indi-
cator and returning to caller of the program. The ICF
file is closed and the session is ended at the end of the
RPG cycle.

.8/ This subroutine is called to write data to the ICF
program device using the format SNDDATA. If an
error occurs, the program goes to .6/ and a message
is printed.

Note: The $$SENDNI format is used instead of the
user-defined SNDDATA format in the program using
system-supplied formats.

.9/ This subroutine is called to issue a detach request to
the ICF program device using format ENDREC. If an
error occurs, the program goes to .6/ and a message
is printed.

Note: The $$SENDET format is used instead of the
user-defined ENDREC format in the program using
system-supplied formats.

 Chapter 11. RPG/400 Communications Applications 11-17

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RTDBAT

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RTDBAT

File : QICFPUB

Library : ICFLIB

Last Change : ð3/2ð/89 15:4ð:57

Description : rpg batch file transfer using dds source

S o u r c e L i s t i n g

 1ðð H\\ 1ð/16/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS PROGRAM IS EVOKED BY THE SOURCE PROGRAM AND RECEIVES ð3/2ð/89

4ðð H\ RECORDS FROM IT. WHEN THE SOURCE PROGRAM IS DONE SENDING ð3/2ð/89

5ðð H\ DATA, THIS PROGRAM SENDS ITS OWN RECORDS. WHEN FINISHED, ð3/2ð/89

6ðð H\ THIS PROGRAM WILL SEND A DETACH REQUEST TO THE SOURCE ð3/2ð/89

7ðð H\ PROGRAM TO END THE SESSION AND JOB. ð3/2ð/89

 8ðð H\ ð3/2ð/89

 9ðð H\\ 1ð/16/87

 1ððð \.1/ 1ð/16/87

 H \\\\\

11ðð FTGTICF CF E WORKSTN 1ð/16/87

 12ðð F KINFDS FEEDBK 1ð/16/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE TGTICF.

EXTERNAL FORMAT RCVDATA RPG NAME RCVDATA

EXTERNAL FORMAT SNDDATA RPG NAME SNDDATA

EXTERNAL FORMAT EVOKPGM RPG NAME EVOKPGM

EXTERNAL FORMAT ENDREC RPG NAME ENDREC

EXTERNAL FORMAT INVITE RPG NAME INVITE

13ðð FDBFILE IF F 8ð DISK 1ð/16/87

14ðð FQPRINT O F 132 PRINTER 1ð/16/87

15ðð IDBFILE NS 8ð 1ð/16/87

 16ðð I 1 8ð DBDATA 1ð/16/87

 17ðð I\.2/ 1ð/16/87

Aðððððð INPUT FIELDS FOR RECORD RCVDATA FILE TGTICF FORMAT RCVDATA.

 Aððððð1 1 8ð RCVFLD

Bðððððð INPUT FIELDS FOR RECORD SNDDATA FILE TGTICF FORMAT SNDDATA.

 Bððððð1 1 8ð SNDFLD

Cðððððð INPUT FIELDS FOR RECORD EVOKPGM FILE TGTICF FORMAT EVOKPGM.

Dðððððð INPUT FIELDS FOR RECORD ENDREC FILE TGTICF FORMAT ENDREC.

Eðððððð INPUT FIELDS FOR RECORD INVITE FILE TGTICF FORMAT INVITE.

 18ðð IFEEDBK DS 1ð/16/87

 19ðð I 38 45 FMTNM 1ð/16/87

2ððð I 273 282 PGMDEV 1ð/16/87

21ðð I 4ð1 4ð4 MAJMIN 1ð/16/87

22ðð I 4ð1 4ð2 MAJCOD 1ð/16/87

23ðð I 4ð3 4ð4 MINCOD 1ð/16/87

Figure 11-11 (Part 1 of 4). Target Program Example — RTDBAT (User-Defined Formats)

11-18 ICF Programming V4R1

 24ðð C\\\ 1ð/16/87

 25ðð C\ ð3/2ð/89

26ðð C\ THIS PROGRAM ISSUES A READ OPERATION TO THE PROGRAM DEVICE ð3/2ð/89

27ðð C\ TO RECEIVE RECORDS FROM THE SOURCE PROGRAM UNTIL THE ð3/2ð/89

28ðð C\ RCVTRNRND INDICATOR (\IN15) IS SET. EACH RECORD RECEIVED IS ð3/2ð/89

29ðð C\ PRINTED TO THE PRINT FILE. ð3/2ð/89

 3ððð C\ 1ð/16/87

31ðð C\ IF AN ERROR OCCURS, AN ERROR MESSAGE IS PRINTED AND THE 1ð/16/87

32ðð C\ JOB IS ENDED. 1ð/16/87

 33ðð C\ ð3/2ð/89

 34ðð C\\\ 1ð/16/87

 35ðð C\.3/ 1ð/16/87

 36ðð C RECDTA TAG 1ð/16/87

 37ðð C READ TGTICF 98 3 1ð/16/87

 38ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

39ðð C MAJCOD CABEQ'ð3' CHKTRN NO DATA ? 1ð/16/87

 4ððð C EXCPTPTREC 1ð/16/87

 41ðð C CHKTRN TAG 1ð/16/87

 42ðð C \IN15 CABNE'1' RECDTA RCVTRNRND ? 1ð/16/87

 43ðð C\\ 1ð/16/87

 44ðð C\ ð3/2ð/89

45ðð C\ WHEN A RCVTRNRND INDICATION IS RECEIVED, THE PROGRAM STARTS 1ð/16/87

46ðð C\ SENDING THE RECORDS TO THE SOURCE PROGRAM. RECORDS ARE SENT 1ð/16/87

47ðð C\ UNTIL AN END OF FILE IS REACHED ON THE DATABASE FILE. AT ð3/2ð/89

48ðð C\ THIS TIME, A DETACH REQUEST IS SENT TO THE SOURCE PROGRAM. ð3/2ð/89

 49ðð C\ ð3/2ð/89

 5ððð C\\ 1ð/16/87

 51ðð C\.4/ 1ð/16/87

 52ðð C SENDTA TAG 1ð/16/87

 53ðð C READ DBFILE 98 3 1ð/16/87

 54ðð C 98 EXSR ENDSES SEND DETACH 1ð/16/87

 55ðð C EOFPSW IFNE '1' Bðð1 1ð/16/87

 56ðð C MOVE DBDATA SNDFLD ðð1 1ð/16/87

 57ðð C EXSR WCFRTN ðð1 1ð/16/87

 58ðð C GOTO SENDTA SEND DATA ðð1 1ð/16/87

 59ðð C END Eðð1 1ð/16/87

 6ððð C\\ 1ð/16/87

 61ðð C\ ð3/2ð/89

62ðð C\ WHEN THE END OF FILE IS REACHED, AN EOJ MESSAGE IS ð3/2ð/89

63ðð C\ PRINTED AND THE PROGRAM GOES TO END. ð3/2ð/89

 64ðð C\ ð3/2ð/89

 65ðð C\\ 1ð/16/87

 66ðð C\.5/ 1ð/16/87

 67ðð C EXCPTOKEND 1ð/16/87

 68ðð C GOTO END 1ð/16/87

 69ðð C\\ 1ð/16/87

 7ððð C\ ð3/2ð/89

71ðð C\ WHEN AN I/O OPERATION ERROR IS DETECTED, AN ABNORMAL 1ð/16/87

72ðð C\ TERMINATION MESSAGE IS PRINTED AND THE PROGRAM ENDS. 1ð/16/87

 73ðð C\ ð3/2ð/89

 74ðð C\\ 1ð/16/87

 75ðð C\.6/ 1ð/16/87

 76ðð C NOTOKR TAG 1ð/16/87

 77ðð C EXCPTNOTOK 1ð/16/87

 78ðð C\\\ 1ð/16/87

 79ðð C\ ð3/2ð/89

8ððð C\ WHEN PROCESSING IS FINISHED, THE LAST RECORD SWITCH IS SET 1ð/16/87

81ðð C\ AND THE PROGRAM IS ENDED. 1ð/16/87

 82ðð C\ ð3/2ð/89

 83ðð C\\\ 1ð/16/87

 84ðð C\.7/ 1ð/16/87

 85ðð C END TAG 1ð/16/87

86ðð C SETON LR 1 1ð/16/87

 87ðð C RETRN 1ð/16/87

Figure 11-11 (Part 2 of 4). Target Program Example — RTDBAT (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-19

 88ðð C\\\ 1ð/16/87

 89ðð C\ ð3/2ð/89

9ððð C\ THIS SUBROUTINE IS CALLED TO SEND DATA TO THE SOURCE PRO- ð3/2ð/89

91ðð C\ GRAM. IF A SESSION ERROR OCCURS, AN ABNORMAL TERMINATION ð3/2ð/89

92ðð C\ MESSAGE IS PRINTED, THE LR SWITCH IS SET, AND THE JOB ENDS. ð3/2ð/89

 93ðð C\ ð3/2ð/89

 94ðð C\\\ 1ð/16/87

 95ðð C\.8/ 1ð/16/87

 96ðð C WCFRTN BEGSR 1ð/16/87

 97ðð C WRITESNDDATA 1ð/16/87

 98ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

 99ðð C ENDSR 1ð/16/87

 1ðððð C\\ 1ð/16/87

 1ð1ðð C\ ð3/2ð/89

1ð2ðð C\ THIS SUBROUTINE IS CALLED AT END OF FILE TO SEND AN 1ð/16/87

1ð3ðð C\ INDICATION TO THE SOURCE SYSTEM THAT TRANSMISSION IS ENDED. ð3/2ð/89

1ð4ðð C\ THE END OF FILE SWITCH IS ALSO SET TO END THE JOB. 1ð/16/87

 1ð5ðð C\ ð3/2ð/89

 1ð6ðð C\\ 1ð/16/87

 1ð7ðð C\.9/ 1ð/16/87

 1ð8ðð C ENDSES BEGSR 1ð/16/87

 1ð9ðð C MOVE '1' \IN3ð ACTV DETACH 1ð/16/87

 11ððð C MOVE '1' EOFPSW 1 1ð/16/87

111ðð C WRITEENDREC SEND DETACH 1ð/16/87

 112ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

 113ðð C ENDSR 1ð/16/87

 114ðð C\\ 1ð/16/87

115ðð OQPRINT E 1 PTREC 1ð/16/87

 116ðð O RCVFLD 8ð 1ð/16/87

 117ðð O E 1 OKEND 1ð/16/87

118ðð O 21 'RTDBAT HAS COMPLETED ' 1ð/16/87

 119ðð O 3ð 'NORMALLY.' 1ð/16/87

 12ððð O E 1 NOTOK 1ð/16/87

121ðð O 21 'RTDBAT HAS COMPLETED ' 1ð/16/87

 122ðð O 32 'ABNORMALLY.' 1ð/16/87

 123ðð O MAJCOD 37 1ð/16/87

 124ðð O 38 '/' 1ð/16/87

 125ðð O MINCOD 4ð 1ð/16/87

 126ðð O 49 'FORMAT:' 1ð/16/87

 127ðð O FMTNM 6ð 1ð/16/87

 128ðð O 69 'DEVICE:' 1ð/16/87

 129ðð O PGMDEV 8ð ð3/2ð/89

\ 61ð3 129ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Fðððððð OUTPUT FIELDS FOR RECORD SNDDATA FILE TGTICF FORMAT SNDDATA.

 Fððððð1 SNDFLD 8ð CHAR 8ð

Gðððððð OUTPUT FIELDS FOR RECORD ENDREC FILE TGTICF FORMAT ENDREC.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 11ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE TGTICF.

\ 7ð86 13ðð RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE DBFILE.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð2 DBFILE DISK 13ððD 15ðð 53ðð

 ð3 QPRINT PRINTER 14ððD 115ðð 117ðð 12ððð 129ð1

 ð1 TGTICF WORKSTN 11ððD 37ðð

 ENDREC 11ððD Dðððððð 111ðð Gðððððð

 EVOKPGM 11ððD Cðððððð

 INVITE 11ððD Eðððððð

 RCVDATA 11ððD Aðððððð

 SNDDATA 11ððD Bðððððð 97ðð Fðððððð

Figure 11-11 (Part 3 of 4). Target Program Example — RTDBAT (User-Defined Formats)

11-20 ICF Programming V4R1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN15 A(1) 42ðð

 \IN3ð A(1) 1ð9ððM

 CHKTRN TAG 39ðð 41ððD

DBDATA A(8ð) 16ððD 56ðð

 END TAG 68ðð 85ððD

ENDSES BEGSR 54ðð 1ð8ððD

 EOFPSW A(1) 55ðð 11ðððD

 FEEDBK DS(4ð4) 11ðð 18ððD

FMTNM A(8) 19ððD 127ðð

MAJCOD A(2) 22ððD 38ðð 39ðð 98ðð 112ðð

 123ðð

\ 7ð31 MAJMIN A(4) 21ððD

 MINCOD A(2) 23ððD 125ðð

 NOTOK EXCPT 77ðð 12ððð

NOTOKR TAG 38ðð 76ððD 98ðð 112ðð

 OKEND EXCPT 67ðð 117ðð

PGMDEV A(1ð) 2ðððD 129ðð

 PTREC EXCPT 4ððð 115ðð

RCVFLD A(8ð) Aððððð1D 116ðð

 RECDTA TAG 36ððD 42ðð

 SENDTA TAG 52ððD 58ðð

 SNDFLD A(8ð) Bððððð1D 56ððM Fððððð1D

WCFRTN BEGSR 57ðð 96ððD

 'ð3' LITERAL 38ðð 39ðð 98ðð 112ðð

'1' LITERAL 42ðð 55ðð 1ð9ðð 11ððð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN 42ðð 1ð9ððM

 LR 86ððM

 OA 14ððD 129ð1

 15 42ðð

 3ð 1ð9ððM

\ 7ð31 35

\ 7ð31 45

\ 7ð31 5ð

\ 7ð31 8ð 15ððM

98 37ððM 53ððM 54ðð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 5

Message : The Name or indicator is not referenced.

\ QRG7ð86 Severity: ðð Number: 1

Message : The RPG handles blocking function for file.

INFDS contents updated only when blocks of data transferred.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

8 8 ð ð ð ð ð

 Program Source Totals:

Records : 129

Specifications : 59

Table Records : ð

Comments : 7ð

 PRM has been called.

 Program RTDBAT is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-11 (Part 4 of 4). Target Program Example — RTDBAT (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-21

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RTFBAT

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RTFBAT

File : QICFPUB

Library : ICFLIB

Last Change : ð3/2ð/89 15:15:51

Description : rpg batch file transfer using $$FORMAT

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ðð H\\ 1ð/16/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS PROGRAM IS EVOKED BY A SOURCE PROGRAM AND RECEIVES ð3/2ð/89

4ðð H\ RECORDS FROM IT. WHEN THE SOURCE PROGRAM IS DONE SENDING ð3/2ð/89

5ðð H\ DATA, THIS PROGRAM SENDS ITS OWN RECORDS TO THE SOURCE. ð3/2ð/89

6ðð H\ WHEN FINISHED, THIS PROGRAM SENDS A DETACH REQUEST TO THE ð3/2ð/89

7ðð H\ SOURCE PROGRAM TO END THE SESSION AND JOB. ð3/2ð/89

 8ðð H\ ð3/2ð/89

 9ðð H\\ 1ð/16/87

 1ððð H\.1/ 1ð/16/87

11ðð FTGTICF CF F 84 WORKSTN 1ð/16/87

 12ðð F KINFDS FEEDBK 1ð/16/87

13ðð FDBFILE IF F 8ð DISK 1ð/16/87

14ðð FQPRINT O F 132 PRINTER 1ð/16/87

15ðð ITGTICF NS 8ð 1ð/16/87

 16ðð I 1 8ð RCVFLD 1ð/16/87

17ðð IDBFILE NS 8ð 1ð/16/87

 18ðð I 1 8ð DBDATA 1ð/16/87

 19ðð I\ 1ð/16/87

 2ððð I\.2/ 1ð/16/87

 21ðð IFEEDBK DS 1ð/16/87

 22ðð I 38 45 FMTNM 1ð/16/87

23ðð I 273 282 PGMDEV 1ð/16/87

24ðð I 4ð1 4ð4 MAJMIN 1ð/16/87

25ðð I 4ð1 4ð2 MAJCOD 1ð/16/87

26ðð I 4ð3 4ð4 MINCOD 1ð/16/87

 27ðð C\\\ 1ð/16/87

 28ðð C\ ð3/2ð/89

29ðð C\ THIS PROGRAM ISSUES THE READ OPERATION TO THE PROGRAM DEVICE ð3/2ð/89

3ððð C\ TO RECEIVE RECORDS FROM THE SOURCE PROGRAM UNTIL THE CHANGE ð3/2ð/89

31ðð C\ DIRECTION INDICATION IS RECEIVED. EACH RECORD RECEIVED IS ð3/2ð/89

32ðð C\ PRINTED TO THE PRINT FILE. ð3/2ð/89

 33ðð C\ 1ð/16/87

34ðð C\ IF AN ERROR OCCURS, AN ERROR MESSAGE IS PRINTED AND THE 1ð/16/87

35ðð C\ JOB IS ENDED. 1ð/16/87

 36ðð C\ ð3/2ð/89

Figure 11-12 (Part 1 of 4). Target Program Example — RTFBAT (System-Supplied Formats)

11-22 ICF Programming V4R1

 37ðð C\\\ 1ð/16/87

 38ðð C\.3/ 1ð/16/87

 39ðð C RECDTA TAG 1ð/16/87

 4ððð C READ TGTICF 98 3 1ð/16/87

 41ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

42ðð C MAJCOD CABEQ'ð3' CHKTRN NO DATA ? 1ð/16/87

 43ðð C EXCPTPTREC 1ð/16/87

 44ðð C CHKTRN TAG 1ð/16/87

 45ðð C MINCOD CABNE'ðð' RECDTA RCVTRNRND ? 1ð/16/87

 46ðð C\\ 1ð/16/87

 47ðð C\ ð3/2ð/89

48ðð C\ WHEN A RCVTRNRND INDICATION IS RECEIVED, THE PROGRAM STARTS 1ð/16/87

49ðð C\ SENDING RECORDS TO THE SOURCE PROGRAM. RECORDS ARE SENT UNTIL 1ð/16/87

5ððð C\ THE END OF FILE IS REACHED ON THE DATABASE FILE. AT THIS TIME ð3/2ð/89

51ðð C\ A DETACH REQUEST IS SENT TO THE SOURCE PROGRAM. ð3/2ð/89

 52ðð C\ ð3/2ð/89

 53ðð C\\\ 1ð/16/87

 54ðð C\.4/ 1ð/16/87

 55ðð C SENDTA TAG 1ð/16/87

 56ðð C READ DBFILE 98 3 1ð/16/87

 57ðð C 98 EXSR ENDSES SEND DETACH 1ð/16/87

 58ðð C EOFPSW IFNE '1' Bðð1 1ð/16/87

 59ðð C EXSR WCFRTN ðð1 1ð/16/87

 6ððð C GOTO SENDTA SEND DATA ðð1 1ð/16/87

 61ðð C END Eðð1 1ð/16/87

 62ðð C\\ 1ð/16/87

 63ðð C\ ð3/2ð/89

64ðð C\ WHEN THE END OF FILE IS REACHED, AN EOJ MESSAGE IS 1ð/16/87

65ðð C\ PRINTED, AND CONTROL GOES TO END. ð3/2ð/89

 66ðð C\ ð3/2ð/89

 67ðð C\\ 1ð/16/87

 68ðð C\.5/ 1ð/16/87

 69ðð C EXCPTOKEND 1ð/16/87

 7ððð C GOTO END 1ð/16/87

 71ðð C\\ 1ð/16/87

 72ðð C\ ð3/2ð/89

73ðð C\ WHEN AN I/O OPERATION ERROR IS DETECTED, AN ABNORMAL 1ð/16/87

74ðð C\ TERMINATION MESSAGE IS PRINTED AND THE PROGRAM ENDS. 1ð/16/87

 75ðð C\ ð3/2ð/89

 76ðð C\\ 1ð/16/87

 77ðð C\.6/ 1ð/16/87

 78ðð C NOTOKR TAG 1ð/16/87

 79ðð C EXCPTNOTOK 1ð/16/87

 8ððð C\\ 1ð/16/87

 81ðð C\ ð3/2ð/89

82ðð C\ WHEN PROCESSING IS FINISHED, THE LAST RECORD SWITCH IS SET 1ð/16/87

83ðð C\ AND THE PROGRAM IS ENDED. 1ð/16/87

 84ðð C\ ð3/2ð/89

 85ðð C\\\ 1ð/16/87

 86ðð C\.7/ 1ð/16/87

 87ðð C END TAG 1ð/16/87

88ðð C SETON LR 1 1ð/16/87

 89ðð C RETRN 1ð/16/87

 9ððð C\\\ 1ð/16/87

 91ðð C\ ð3/2ð/89

92ðð C\ THIS SUBROUTINE IS CALLED TO SEND DATA TO THE SOURCE PROGRAM. ð3/2ð/89

93ðð C\ IF A SESSION ERROR OCCURS, AN ABNORMAL TERMINATION MESSAGE IS ð3/2ð/89

94ðð C\ PRINTED, THE LR SWITCH IS SET, AND THE JOB IS ENDED. ð3/2ð/89

 95ðð C\ ð3/2ð/89

 96ðð C\\ 1ð/16/87

Figure 11-12 (Part 2 of 4). Target Program Example — RTFBAT (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-23

 97ðð C\.8/ 1ð/16/87

 98ðð C WCFRTN BEGSR 1ð/16/87

 99ðð C EXCPTSNDATA 1ð/16/87

 1ðððð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

 1ð1ðð C ENDSR 1ð/16/87

 1ð2ðð C\\ 1ð/16/87

 1ð3ðð C\ ð3/2ð/89

1ð4ðð C\ THIS SUBROUTINE IS CALLED AT END OF FILE TO SEND AN 1ð/16/87

1ð5ðð C\ INDICATION TO THE LOCAL SYSTEM THAT TRANSMISSION IS ENDED. 1ð/16/87

1ð6ðð C\ THE END OF FILE SWITCH IS SET TO END THE JOB. ð3/2ð/89

 1ð7ðð C\ ð3/2ð/89

 1ð8ðð C\\ 1ð/16/87

 1ð9ðð C\.9/ 1ð/16/87

 11ððð C ENDSES BEGSR 1ð/16/87

 111ðð C MOVE '1' \IN3ð ACTV DETACH 1ð/16/87

 112ðð C MOVE '1' EOFPSW 1 1ð/16/87

113ðð C EXCPTENDREC SEND DETACH 1ð/16/87

 114ðð C MAJCOD CABGT'ð3' NOTOKR ERROR? 1ð/16/87

 115ðð C ENDSR 1ð/16/87

 116ðð C\\\ 1ð/16/87

117ðð OQPRINT E 1 PTREC 1ð/16/87

 118ðð O RCVFLD 8ð 1ð/16/87

 119ðð O E 1 OKEND 1ð/16/87

12ððð O 21 'RTFBAT HAS COMPLETED ' 1ð/16/87

 121ðð O 3ð 'NORMALLY.' 1ð/16/87

 122ðð O E 1 NOTOK 1ð/16/87

123ðð O 21 'RTFBAT HAS COMPLETED ' 1ð/16/87

 124ðð O 32 'ABNORMALLY.' 1ð/16/87

 125ðð O MAJCOD 37 1ð/16/87

 126ðð O 38 '/' 1ð/16/87

 127ðð O MINCOD 4ð 1ð/16/87

 128ðð O 49 'FORMAT:' 1ð/16/87

 129ðð O FMTNM 6ð 1ð/16/87

 13ððð O 69 'DEVICE:' 1ð/16/87

 131ðð O PGMDEV 8ð ð3/2ð/89

132ðð OTGTICF E SNDATA 1ð/16/87

 133ðð O K8 '$$SENDNI' 1ð/16/87

 134ðð O 4 'ðð8ð' 1ð/16/87

 135ðð O DBDATA 84 1ð/16/87

 136ðð O E ENDREC 1ð/16/87

 137ðð O K8 '$$SENDET' 1ð/16/87

 138ðð O 4 'ðððð' 1ð/16/87

\ 61ð3 138ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 11ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE TGTICF.

\ 7ð86 13ðð RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE DBFILE.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð2 DBFILE DISK 13ððD 17ðð 56ðð

ð3 QPRINT PRINTER 14ððD 117ðð 119ðð 122ðð 138ð1

ð1 TGTICF WORKSTN 11ððD 15ðð 4ððð 132ðð 136ðð

 $$SENDET 137ðð

 $$SENDNI 133ðð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

 \IN3ð A(1) 111ððM

CHKTRN TAG 42ðð 44ððD

 DBDATA A(8ð) 18ððD 135ðð

 END TAG 7ððð 87ððD

 ENDREC EXCPT 113ðð 136ðð

 ENDSES BEGSR 57ðð 11ðððD

 EOFPSW A(1) 58ðð 112ððD

 FEEDBK DS(4ð4) 11ðð 21ððD

 FMTNM A(8) 22ððD 129ðð

Figure 11-12 (Part 3 of 4). Target Program Example — RTFBAT (System-Supplied Formats)

11-24 ICF Programming V4R1

MAJCOD A(2) 25ððD 41ðð 42ðð 1ðððð 114ðð 125ðð

\ 7ð31 MAJMIN A(4) 24ððD

MINCOD A(2) 26ððD 45ðð 127ðð

 NOTOK EXCPT 79ðð 122ðð

NOTOKR TAG 41ðð 78ððD 1ðððð 114ðð

 OKEND EXCPT 69ðð 119ðð

 PGMDEV A(1ð) 23ððD 131ðð

 PTREC EXCPT 43ðð 117ðð

 RCVFLD A(8ð) 16ððD 118ðð

RECDTA TAG 39ððD 45ðð

SENDTA TAG 55ððD 6ððð

 SNDATA EXCPT 99ðð 132ðð

 WCFRTN BEGSR 59ðð 98ððD

 'ðð' LITERAL 45ðð

 'ð3' LITERAL 41ðð 42ðð 1ðððð 114ðð

'1' LITERAL 58ðð 111ðð 112ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN 111ððM

 LR 88ððM

 OA 14ððD 138ð1

 3ð 111ððM

\ 7ð31 8ð 15ððM 17ððM

98 4ðððM 56ððM 57ðð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 2

Message : The Name or indicator is not referenced.

\ QRG7ð86 Severity: ðð Number: 1

Message : The RPG handles blocking function for file.

INFDS contents updated only when blocks of data transferred.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

5 5 ð ð ð ð ð

 Program Source Totals:

Records : 138

Specifications : 67

Table Records : ð

Comments : 71

 PRM has been called.

 Program RTFBAT is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-12 (Part 4 of 4). Target Program Example — RTFBAT (System-Supplied Formats)

Multiple-Session Inquiry (Example II)

This example illustrates an interactive inquiry application that
communicates with multiple ICF sessions. A source AS/400
system program accepts inquiries from a display device and
sends a request to one of four AS/400 systems. The source
program communicates with the display device through a
display file, and with the four remote systems through a
single ICF file.

The purpose of this example is to show multiple sessions
from a single ICF file. The source program communicates
with four sessions. From the viewpoint of each of the four
target programs, the requester is the only session. There-
fore, the target programs do not require any unique logic to
support the multiple-session source.

Both the source program and the target program are
described. The same target program is evoked in each of
the four separate remote systems. Therefore, only one
target program is shown in the programming example.

 Chapter 11. RPG/400 Communications Applications 11-25

Transaction Flow of the Multiple-Session Inquiry
(Example II): The program shown in Figure 11-13 is
started from a display station. Both the display and the ICF
files are opened. CIWS00 is the *REQUESTER device, and
is acquired when the display file opens. CIWS00 is acquired
because DEV(*REQUESTER) was specified when the
display file was created. Since the ICF file was created with
ACQPGMDEV(*NONE), no ICF devices are acquired during
open processing.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Open

Open

Display
Station

RSLS199-4

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 11-13. Program Starts at Display Station

11-26 ICF Programming V4R1

All other program devices must be explicitly acquired by the
program, as shown in Figure 11-14.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ACQ

ACQ

ACQ

ACQ

Display
Station

ICF File

Local AS/400 System

RSLS651-4

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Figure 11-14. Program Devices Explicitly Acquired

 Chapter 11. RPG/400 Communications Applications 11-27

All target programs are started with an evoke, as shown in
Figure 11-15.

Program

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Write

Write

Write

Write

Evoke

Evoke

Evoke

Evoke

Display
Station

ICF File

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database
File

Database
File

Database
File

Database
File

Program

Program

Program

Program

ICF
File

ICF
File

ICF
File

ICF
File

RSLS652-4

Figure 11-15. Evoke Starts Target Programs

11-28 ICF Programming V4R1

The source program uses a specific program device name.
Each target program uses an ICF file with a program device
name that is associated with the requester. The target
program’s only session is the one used to communicate with
the source program. The ICF file is implicitly opened by the
RPG/400 language support when the target program is

started. Since the file was created with the requesting
program device specified on the ACQPGMDEV parameter,
the requesting program device is acquired with the implicit
open. The main menu is written to the display station on the
local system and the program waits for a request from the
display station, as shown in Figure 11-16.

Program

Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Display

Station

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS653-5

Figure 11-16. Main Menu Written to Display Station

 Chapter 11. RPG/400 Communications Applications 11-29

The source program sends an inquiry request to one of the
remote systems based on the request made from the display
station, as shown in Figure 11-17.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program
Write

with

Invite

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

Read

Display

Station

Database

File

Database

File

Database

File

Database

File

Program

Program

Program

Program

ICF File

ICF

File

ICF

File

ICF

File

ICF

File

RSLS654-4

Figure 11-17. Program Sends Inquiry Request to Remote System

11-30 ICF Programming V4R1

The target program responds to the inquiry by sending a
reply, as shown in Figure 11-18.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Program Write

Display File

CIWS00

ICF00

ICF01

ICF02

ICF03

ReadRead

Display
Station

Program

Program

Program

Program

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

RSLS655-4

Database
File

Database
File

Database
File

Database
File

Figure 11-18. Target Program Sends a Reply

 Chapter 11. RPG/400 Communications Applications 11-31

The program sends a detach request and ends the session
when command function key 1 is pressed (while the main
inquiry menu is present), as shown in Figure 11-19.

Local AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Remote AS/400 System

Write

CIWS00

ICF00

ICF01

ICF02

ICF03

Detach Read

Display File

Display
Station

Program

Database
File

Database
File

Database
File

Database
File

Program

Program

Program

Program

ICF File

ICF
File

ICF
File

ICF
File

ICF
File

RSLS656-5

Figure 11-19. Program Ends the Session

11-32 ICF Programming V4R1

Source Program Multiple-Session Inquiry (Example
II): The following describes a source program multiple-
session inquiry.

Program Files: The RPG/400 multiple-session source
program uses the following files:

CMNFIL
A ICF file used to send records to and receive
records from the target program.

DSPFIL
A display file used to enter requests to be sent to
the target program.

QPRINT
A printer file used to print error messages resulting
from communications errors.

DDS Source: The DDS for the ICF file (CMNFIL) is illus-
trated below.

 Chapter 11. RPG/400 Communications Applications 11-33

SOURCE FILE QICFPUB/ICFLIB

 MEMBER CMNFIL

SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð 1ð/ð6/87

 2ðð 1ð/ð6/87

 3ðð A\\ 1ð/14/87

 4ðð A\ \ 1ð/14/87

 5ðð A\ ICF FILE \ 1ð/14/87

6ðð A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \ 1ð/14/87

 7ðð A\ \ 1ð/14/87

 8ðð A\\ 1ð/14/87

 9ðð A INDARA 1ð/ð7/87

 1ððð A R ITMRSP 1ð/ð6/87

 11ðð A RECID(1 'I') 1ð/ð6/87

 12ðð A RECITM 1 1ð/ð6/87

 13ðð A ITEMNO 6 ð 1ð/13/87

 14ðð A DESC 3ð 1ð/ð6/87

 15ðð A QTYLST 7 ð 1ð/ð6/87

 16ðð A QTYOH 7 ð 1ð/ð6/87

 17ðð A QTYOO 7 ð 1ð/ð6/87

 18ðð A QTYBO 7 ð 1ð/ð6/87

 19ðð A UNITQ 2 1ð/ð6/87

 2ððð A PRð1 7 2 1ð/ð6/87

 21ðð A PRð5 7 ð 1ð/ð6/87

 22ðð A UFRT 5 2 1ð/ð6/87

 23ðð A SLSTM 9 2 1ð/ð6/87

 24ðð A SLSTY 11 2 1ð/ð6/87

 25ðð A CSTTM 9 2 1ð/ð6/87

 26ðð A CSTTY 11 2 1ð/ð6/87

27ðð A PRO 5 2 1ð/ð6/87

28ðð A LOS 9 2 1ð/ð6/87

 29ðð A FILL1 56 1ð/ð6/87

 3ððð A R DTLRSP 1ð/ð6/87

 31ðð A RECID(1 'C') 1ð/ð6/87

 32ðð A RCVTRNRND(9ð) 1ð/ð6/87

 33ðð A RECCUS 1 1ð/ð6/87

 34ðð A CUSTNO 6 ð 1ð/13/87

 35ðð A DNAME 3ð 1ð/ð6/87

 36ðð A DLSTOR 6 ð 1ð/ð6/87

 37ðð A DSLSTM 9 ð 1ð/ð6/87

 38ðð A DSPMð1 9 ð 1ð/ð6/87

 39ðð A DSPMð2 9 ð 1ð/ð6/87

 4ððð A DSPMð3 9 ð 1ð/ð6/87

 41ðð A DSTTYD 11 ð 1ð/ð6/87

 42ðð A IDEPT 3 ð 1ð/ð6/87

 43ðð A FILL2 57 1ð/ð6/87

 44ðð A R DETACH 1ð/ð6/87

 45ðð A DETACH 1ð/ð6/87

 46ðð A R EOS 1ð/ð6/87

 47ðð A EOS 1ð/ð6/87

 48ðð A R EVKREQ 1ð/ð6/87

 49ðð A EVOKE(&LIB/&PGMID) 1ð/12/87

 5ððð A PGMID 1ðA P 1ð/ð6/87

 51ðð A LIB 1ðA P 1ð/ð6/87

 52ðð A R ITMREQ 1ð/ð6/87

 53ðð A INVITE 1ð/ð6/87

 54ðð A ITEMNO 6 ð 1ð/13/87

 55ðð A R DTLREQ 1ð/ð6/87

 56ðð A INVITE 1ð/ð6/87

 57ðð A CUSTNO 6 ð 1ð/13/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

11-34 ICF Programming V4R1

The DDS source file for the display file (DSPFIL) is shown
below.

ððð1ðð871ðð7 A\\

ððð2ðð871ðð7 A\ \

ððð3ðð871ðð7 A\ DISPLAY FILE \

ððð4ðð871ðð7 A\ USED IN SOURCE MULTIPLE SESSION PROGRAM \

ððð5ðð871ðð7 A\ \

ððð6ðð871ðð7 A\\

ððð7ðð871ðð8 A\ BEGINNING MENU

ððð8ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\

ððð9ðð871ðð7 A DSPSIZ(\DS3)

ðð1ððð871ðð7 A CFð1(99) CFð2(98) CFð3(97)

ðð11ðð871ðð7 A R CIMENU TEXT('MENU FOR INQUIRY')

ðð12ðð871ðð7 A 1 34'INQUIRY MENU'

ðð13ðð871ðð7 A 3 1'Select one of the following:'

ðð14ðð871ðð7 A 4 3'1. Item inquiry'

ðð15ðð871ðð7 A 5 3'2. Customer inquiry'

ðð16ðð871ðð7 A 11 1'Option:'

ðð17ðð871ðð7 A OPTION 1N I 11 9VALUES('1' '2')

ðð18ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð19ðð871ðð8 A R DTLMNU TEXT('CUSTOMER INQUIRY SCREEN 1')

ðð2ððð871ðð7 A 2 2DFT('ENTER CUSTOMER')

ðð21ðð871ð13 A CUSTNO 6N ðI 2 2ð

ðð22ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð23ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð24ðð871ðð8 A\

ðð25ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð26ðð871ðð7 A\ CUSTOMER INQUIRY SCREEN

ðð27ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð28ðð871ðð7 A R DTLSCR TEXT('CUSTOMER INQUIRY SCR. #2')

ðð29ðð871ðð7 A 1 3DFT('CUST DPT LAST ORD & THIS

ðð3ððð871ðð7 A $MTH1 &MTH2 $MTH3

ðð31ðð871ðð8 A THIS YTD NAME')

ðð32ðð871ðð8 A CUSTN 6N 2 2

ðð33ðð871ðð7 A DEPT 3N ð 2 9

ðð34ðð871ðð7 A DLSTR 6N ð 2 13

ðð35ðð871ðð7 A DSLSM 9N ð 2 22

ðð36ðð871ðð7 A DSPM1 9N ð 2 32

ðð37ðð871ðð7 A DSPM2 9N ð 2 42

ðð38ðð871ðð7 A DSPM3 9N ð 2 52

ðð39ðð871ðð7 A DSTYD 11N ð 2 62

ðð4ððð89ð321 A CNAME 5 2 74

ðð41ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð42ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð43ðð871ðð7 A\

ðð44ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð45ðð871ðð7 A\ ITEM INQUIRY SCREEN

ðð46ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð47ðð871ðð7 A R ITMMNU TEXT('ITEM INQUIRY SCREEN ONE')

ðð48ðð871ðð8 A 2 2DFT('ENTER ITEM NUMBER')

ðð49ðð871ð13 A ITEMNO 6N ðI 2 2ð

ðð5ððð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð51ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð52ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð53ðð871ðð8 A\ ITEM DISPLAY

ðð54ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð55ðð871ðð7 A R ITMSC2 TEXT('ITEM INQUIRY SCREEN TWO')

ðð56ðð871ðð7 A OVERLAY

ðð57ðð871ðð7 A 4 2DFT('DESC-')

ðð58ðð871ðð7 A DSC 3ð 4 8

ðð59ðð871ðð7 A 5 2DFT('QUANTITY AVAILABLE')

ðð6ððð871ðð7 A QAVAIL 7N ð 5 25

ðð61ðð871ðð7 A 6 11DFT('ON HAND')

ðð62ðð871ðð7 A QTYH 7N ð 6 25

ðð63ðð871ðð7 A 7 11DFT('ON ORDER')

ðð64ðð871ðð7 A QTYO 7N ð 7 25

ðð65ðð871ðð7 A 8 11DFT('BACK ORDER')

ðð66ðð871ðð7 A QTYB 7N ð 8 25

ðð67ðð871ðð7 A 9 2DFT('UNIT OF MEASURE')

ðð68ðð871ðð7 A UNT 2 9 3ð

ðð69ðð871ðð7 A 1ð 2DFT('PRICE PER UNIT')

ðð7ððð871ðð7 A PR1 7Y 2 1ð 24EDTCDE(3)

ðð71ðð871ðð7 A 11 8DFT('QUANTITY')

ðð72ðð871ðð7 A PR5 7Y ð 11 25EDTCDE(3)

ðð73ðð871ðð7 A 12 8DFT('FREIGHT')

ðð74ðð871ðð7 A UFR 5Y 2 12 26EDTCDE(3)

ðð75ðð871ðð8 A 13 32DFT('MORE... ')

ðð76ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð77ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð78ðð871ðð8 A 19 4ðDFT(' 3 - ITEM MENU ')

ðð79ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð8ððð871ðð8 A\ ITEM ADDITIONAL DISPLAY

ðð81ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ðð82ðð871ðð7 A R ITMSC3 TEXT('ITEM INQUIRY SCREEN 3 ')

ðð83ðð871ðð7 A OVERLAY

ðð84ðð871ðð7 A 5 2DFT('SALES MONTH')

ðð85ðð871ðð7 A SLSM 9Y 2 5 16EDTCDE(1)

ðð86ðð871ðð7 A 6 8DFT('Y-T-D')

ðð87ðð871ðð7 A SLSY 11Y 2 6 14EDTCDE(1)

ðð88ðð871ðð7 A 7 2DFT('COSTS MONTH')

ðð89ðð871ðð7 A CSTM 9Y 2 7 16EDTCDE(1)

ðð9ððð871ðð7 A 8 8DFT('Y-T-D')

ðð91ðð871ðð7 A CSTY 11Y 2 8 14EDTCDE(1)

ðð92ðð871ðð7 A 9 2DFT('PROFIT PCT')

ðð93ðð871ðð7 A PROFIT 5Y 2 9 22EDTCDE(1)

ðð94ðð871ðð7 A 1ð 2DFT('LOST SALES')

ðð95ðð871ðð7 A LOSTS 9Y 2 1ð 16EDTCDE(1)

ðð96ðð871ðð8 A 19 5DFT('CMD KEY 1 - END ')

ðð97ðð871ðð8 A 19 23DFT(' 2 - MAIN MENU ')

ðð98ðð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ðð99ðð871ðð7 A\ TIMOUT SCREEN

ð1ðððð871ðð8 A\\\\\\\\\\\\\\\\\\\\\\\\

ð1ð1ðð871ðð7 A R TIMOUT TEXT('TIME OUT SCREEN')

ð1ð2ðð871ðð7 A OVERLAY

ð1ð3ðð871ðð7 A 2ð 2DFT('REMOTE SYSTEM TIMED OUT. ENTER

ð1ð4ðð871ðð7 1 TO TRY AGAIN OR 2 TO END.')

ð1ð5ðð871ðð7 A TIMRSP 1 I 2ð 61

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/CMNFIL) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(CMNFIL) ACQPGMDEV(\NONE) MAXPGMDEV(4) WAITRCD(3ð)

TEXT("SOURCE ICF FILE FOR MULTIPLE SESSION PROGRAM")

The commands needed to define the four program device
entries are:
OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(CHICAGO) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð1) RMTLOCNAME(NEWYORK) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð2) RMTLOCNAME(DETROIT) FMTSLT(\RECID)

OVRICFDEVE PGMDEV(ICFð3) RMTLOCNAME(MADISON) FMTSLT(\RECID)

Program Explanation: The following explains the structure
of the program examples illustrated in Figure 11-20 on
page 11-38 and in Figure 11-21 on page 11-52. The ICF
file used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described
data and system-supplied formats. The reference numbers
in the explanation below correspond to the numbers in the
following program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the way the user-
defined formats and the system-supplied formats are used.
All output operations to the ICF file in the first example are
done using the WRITE statement. All output operations in
the ICF file in the second example using system-supplied
formats are done using the EXCPT statement.

Differences between the first and second example are
described as notes in each of the following descriptions
where necessary.

.1/ The file specifications define the ICF file (CMNFIL) and
the display file (DSPFIL) used in the program.

CMNFIL is the ICF file used to send records to and
receive records from each of the four target programs.

DSPFIL is the display file used to receive user’s
requests and to report the information received based
on the request.

The files used in the program are opened at the begin-
ning of the RPG/400 cycle.

Note: In the program using system-supplied formats,
the input records for CMNFIL are explicitly coded in the
program since CMNFIL is now treated as a program-
described file. The system-supplied file, QICDMF, can
be used instead of CMNFIL. To use QICDMF, specify
QICDMF in the file specification, or use an OVRICFF
command to change the file name from CMNFIL to
QICDMF.

The continuation lines on the file specification define
the following:

� The data structure names, IOFB and IODS, used
for the feedback area (INFDS) for CMNFIL and
DSPFIL respectively.

 Chapter 11. RPG/400 Communications Applications 11-35

� The number of program devices that can be
attached to the files (four for CMNFIL).

� The program device name in CMID field to which it
issues the I/O operation.

.2/ The file information data structure (IOFB) is provided to
receive the I/O feedback area following an ICF file I/O
operation.

For the display file, the file information data structure
(IODS) is used by the program to determine the record
format used for the last display file I/O operation. The
field name referenced in the program is RECID, found
in positions 261 through 268 of the feedback area.

.3/ The four ICF program devices used by the program are
explicitly acquired.

The work station is implicitly acquired when the
DSPFIL file opens.

Also, the evoke requests are issued to the remote
systems by the subroutine at .13/.

When control returns from .13/, the main menu (record
format CIMENU) is written to the work station.

.4/ A read operation is issued to the display program
device and the program waits for an input request from
the user. When a record is returned, the last record
format used (as specified in the RECID field in the I/O
feedback area) is checked. The program branches to
the appropriate routine according to the value in
RECID.

.5/ The request entered by the user from the main menu
(CIMENU) is checked. If indicator 99 is set to 1, indi-
cating that the operator pressed function key 1, the
four transactions and sessions end and the program
ends. If the operator entered option 1, the program
writes the item inquiry menu (ITMMNU) to the work
station and returns to .4/.

If the option is not 1, the customer inquiry menu
(DTLMNU) is written to the work station and control is
passed to .4/.

.6/ The item number requested by the user from the Item
Inquiry Screen (record format ITMMNU) is processed
here. If function key 1 is pressed (indicator 99), control
passes to .12/, the four transactions and sessions are
ended, and the program ends. If function key 2 is
pressed, the inquiry request is canceled, the main
menu (CIMENU) is written to the work station, and the
program returns to .4/.

The item number read from the work station is checked
for value range. If the range is from 0 to 399999, then
the request is sent to the target program on program
device ICF01.

If the range is from 400000 to 699999, then the
request is sent to the target program on program
device ICF02.

If the range is from 700000 to 899999, then the
request is sent to the target program on program
device ICF03.

The request is sent to the appropriate target program
by writing data to the program device using format
ITMREQ. The INVITE keyword is specified as part of
the ITMREQ format to give the target program permis-
sion to send.

A read-from-invited-program-devices operation is
issued to the invited program device to receive the
response to the inquiry. The operation is interpreted
as a read-from-invited-program-devices because the
program device name field (CMID) is blank. Indicator
89 is set on after I/O operation, if the operation does
not complete. Subroutine .14/ gets control, and further
checks are made.

The return codes are checked after every I/O request.
If there are any errors, control is passed to .12/.

The program returns to .4/.

Note: In the program using system-supplied formats,
the $$SEND format is used instead of the user-defined
ITMREQ format. Also, the EXCPT statement is used
instead of the WRITE statement.

.7/ The information received from the target program is
processed. If the returned item number is 0 or less,
the request is not valid, a new item inquiry menu
(ITMMNU) is written to the work station, and control
goes to .4/.

The program then performs the calculations to set the
quantity fields and writes the result to the requesting
work station using record format ITMSC2.

The program then returns to .4/.

.8/ This section processes the user requests for additional
information (record format ITMSC2). If function key 2
(indicator 98) was pressed, the main menu (record
format CIMENU) writes to the work station and control
goes to .4/.

If function key 2 was pressed (as indicated by indicator
98), the profit and loss figures are calculated. Those
values are then written to the work station using format
ITMSC3 (item inquiry work station 3). The program
then returns to .4/. If function key 1 (indicator 99) was
pressed, control goes to .12/.

If function key 3 (indicator 97) was pressed, the Item
Inquiry Menu (ITMMNU) is written to the work station
and the program returns to .4/.

.9/ This section processes requests read from the cus-
tomer menu (DTLMNU). If function key 2 (indicator 98)
was pressed, the main menu (CIMENU) is written to
the work station and the program returns to .4/. If
function key 1 (indicator 99) was pressed, control goes
to .12/.

The customer inquiry request is send to the target
program by writing data to the program device (ICF00)

11-36 ICF Programming V4R1

using format DTLREQ. The INVITE keyword is speci-
fied as part of the DLTREQ format to give the target
program permission to send.

A read operation is issued to the invited program
device to receive the response to the inquiry. This is
accomplished by blanking out CMID. Indicator 88 is
set on if the I/O operation did not complete.

The return codes are checked after every I/O request.
If there are any errors, control is passed to .12/.

Note: In the program using system-supplied formats,
the $$SEND format is used instead of the user-defined
DTLREQ format. Also, the EXCPT operation is used
instead of the WRITE operation. The READ operation
is issued using ICF file CMNFIL in factor 2.

.1ð/ The information supplied by the target program in
response to a request for a customer detail is pro-
cessed. If the customer number is 0 or less, the
request is no valid and the main menu (record format
CIMENU) is written to the work station. The program
then returns to .4/.

The detail information is written to the work station
using record format DTLSCR.

The program then returns to .4/.

The return codes are checked after every I/O request
to verify the success of the operation.

Note: The READ operation is issued using file name
CMNFIL in factor 2 in the program using system-
supplied formats.

.11/ Control is passed here if the customer detail record
format (DLTSCR) is displayed. If function key 1 (indi-
cator 99) was pressed, control goes to .12/. If function
key 2 (indicator 98) was pressed, the main menu
(CIMENU) is written to the work station and control is
returned to .4/.

.12/ If the record format name is not found on a read opera-
tion, an error message prints. If an error occurs on
any ICF operation, control is passed here and an error

message is printed containing the program device and
error that occurred.

For each of the four sessions, the transaction is ended
by issuing a detach request to the appropriate program
device using format DETACH, and the session is
ended by the release operation. The last record indi-
cator is turned on to end the program. The ICF file is
implicitly closed at the end of the RPG/400 cycle.

.13/ This subroutine builds the evoke requests to send to
the remote systems. Because the DDS keyword for
the record format only specifies the field identifiers with
the record, this code moves the literal value
RTDMULCL to the field PGMID, and ICFLIB to the field
LIB.

When the program start request is received at the
remote system, ICFLIB is searched for RTDMULCL
and that program is then started. RTDMULCL is a CL
program that contains the following:

ADDLIBLE ICFLIB

CALL ICFLIB/RTDMUL

Note: In the program using system-supplied formats,
the library and program (ICFLIB/RTFMULCL) are spec-
ified as part of the $$EVOKNI format. RTFMULCL is a
CL program that contains the following:

ADDLIBLE ICFLIB

CALL ICFLIB/RTFMUL

.14/ This subroutine is called when the read operation to
the program device does not complete. The indication
that the timer has ended is checked (RC=0310), and, if
it is set, a message displays to the user. The message
asks whether to try the read operation again, or to end
the job. In this example, the time interval is specified
at .1ð/.

.15/ This subroutine is called for I/O operation errors that
are not handled by subroutine .14/. It checks whether
the program device is already acquired when an
acquire operation is requested, and, if it is, the second
acquire is ignored. Otherwise the program ends.

 Chapter 11. RPG/400 Communications Applications 11-37

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RSDMUL

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RSDMUL

File : QICFPUB

Library : ICFLIB

Last Change : 1ð/ð3/9ð 14:46:ð7

Description : RPG Multi-Session example w/DDS (source)

S o u r c e L i s t i n g

 1ðð H\\ 1ð/13/87

 2ðð H\ \ ð3/2ð/89

3ðð H\ THIS PROGRAM ASSIGNS FOUR SESSIONS AS FOLLOWS: \ 1ð/13/87

4ðð H\ 'ICFðð' TO INQUIRE ABOUT A CUSTOMER ACCOUNT BEFORE AN \ 1ð/13/87

5ðð H\ ORDER IS PROCESSED. \ 1ð/13/87

6ðð H\ 'ICFð1' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/13/87

7ðð H\ BEING ORDERED (ITEM ððððð1 THRU 399999). \ 1ð/13/87

8ðð H\ 'ICFð2' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/13/87

9ðð H\ BEING ORDERED (ITEM 4ððððð THRU 699999). \ 1ð/13/87

1ððð H\ 'ICFð3' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM \ 1ð/13/87

11ðð H\ BEING ORDERED (ITEM 7ððððð THRU 999999). \ 1ð/13/87

12ðð H\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A \ ð3/2ð/89

13ðð H\ CUSTOMER AND AN ITEM MENU) THAT IS SENT TO THE REMOTE \ 1ð/13/87

14ðð H\ SYSTEM. \ 1ð/16/87

 15ðð H\ \ ð3/2ð/89

 16ðð H\\ 1ð/13/87

Figure 11-20 (Part 1 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-38 ICF Programming V4R1

 17ðð F\\ 1ð/13/87

 18ðð F\ 1ð/13/87

19ðð F\ F I L E S P E C I F I C A T I O N S 1ð/13/87

 2ððð F\ 1ð/13/87

21ðð F\ CMNFIL : ICF FILE USED TO SEND A REQUEST TO ONE 1ð/ð3/9ð

22ðð F\ OF FOUR DIFFERENT TARGET PROGRAMS. MULTIPLE 1ð/13/87

23ðð F\ SESSIONS ARE ACTIVE CONCURRENTLY. 1ð/13/87

 24ðð F\ 1ð/13/87

25ðð F\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE 1ð/13/87

26ðð F\ SENT TO A REMOTE SYSTEM. 1ð/13/87

 27ðð F\ 1ð/13/87

28ðð F\ THE FOLLOWING INFORMATION IS SPECIFIED AS PART OF THE 1ð/13/87

 29ðð F\ FILE SPECIFICATION: 1ð/13/87

3ððð F\ INFDS : I/O FEEDBACK AREA 1ð/13/87

31ðð F\ NUM : SPECIFIES THE MAXIMUM NUMBER OF 1ð/13/87

32ðð F\ PROGRAM DEVICES THAT CAN BE ATTACHED 1ð/13/87

33ðð F\ TO THIS FILE. A VALUE OF 4 IS 1ð/13/87

34ðð F\ SPECIFIED FOR THE ICF FILE. 1ð/ð3/9ð

35ðð F\ THIS DEFINES THE FILE AS A 1ð/13/87

36ðð F\ MULTIPLE DEVICE FILE. 1ð/13/87

37ðð F\ ID : 1ð CHARACTER PROGRAM DEVICE NAME 1ð/13/87

38ðð F\ FIELD WHICH SPECIFIES WHICH PROGRAM 1ð/13/87

39ðð F\ DEVICE TO DIRECT THE OPERATION. 1ð/13/87

 4ððð F\ 1ð/13/87

 41ðð F\ 1ð/13/87

 42ðð F\\ 1ð/13/87

 43ðð \.1/ 1ð/13/87

 H \\\\\

44ðð FCMNFIL CF E WORKSTN 1ð/13/87

 45ðð F KINFDS IOFB 1ð/13/87

 46ðð F KINFSR \PSSR 1ð/14/87

 47ðð F KNUM 4 1ð/13/87

 48ðð F KID CMID 1ð/13/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE CMNFIL.

EXTERNAL FORMAT ITMRSP RPG NAME ITMRSP

EXTERNAL FORMAT DTLRSP RPG NAME DTLRSP

EXTERNAL FORMAT DETACH RPG NAME DETACH

EXTERNAL FORMAT EOS RPG NAME EOS

EXTERNAL FORMAT EVKREQ RPG NAME EVKREQ

EXTERNAL FORMAT ITMREQ RPG NAME ITMREQ

EXTERNAL FORMAT DTLREQ RPG NAME DTLREQ

49ðð FDSPFIL CF E WORKSTN 1ð/13/87

 5ððð F KINFDS IODS 1ð/13/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE DSPFIL.

EXTERNAL FORMAT CIMENU RPG NAME CIMENU

EXTERNAL FORMAT DTLMNU RPG NAME DTLMNU

EXTERNAL FORMAT DTLSCR RPG NAME DTLSCR

EXTERNAL FORMAT ITMMNU RPG NAME ITMMNU

EXTERNAL FORMAT ITMSC2 RPG NAME ITMSC2

EXTERNAL FORMAT ITMSC3 RPG NAME ITMSC3

EXTERNAL FORMAT TIMOUT RPG NAME TIMOUT

51ðð FQPRINT O F 132 PRINTER 1ð/13/87

 52ðð I\\ 1ð/13/87

 53ðð I\ 1ð/13/87

54ðð I\ I N P U T S P E C I F I C A T I O N S 1ð/13/87

 55ðð I\ 1ð/13/87

56ðð I\ IODS : REDEFINES THE I/O FEEDBACK AREA OF THE DISPLAY 1ð/13/87

57ðð I\ FILE. THIS AREA CONTAINS THE NAME OF THE LAST 1ð/13/87

58ðð I\ RECORD PROCESSED. THIS FIELD IS CALLED RECID. 1ð/13/87

59ðð I\ IOFB : REDEFINES THE I/O FEEDBACK AREA FOR THE ICF 1ð/ð3/9ð

 6ððð I\ FILE. 1ð/13/87

 61ðð I\ 1ð/13/87

 62ðð I\\ 1ð/13/87

Figure 11-20 (Part 2 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-39

 63ðð I\.2/ 1ð/13/87

Aðððððð INPUT FIELDS FOR RECORD ITMRSP FILE CMNFIL FORMAT ITMRSP.

 Aððððð1 1 1 RECITM

 Aððððð2 2 7ðITEMNO

 Aððððð3 8 37 DESC

 Aððððð4 38 44ðQTYLST

 Aððððð5 45 51ðQTYOH

 Aððððð6 52 58ðQTYOO

 Aððððð7 59 65ðQTYBO

 Aððððð8 66 67 UNITQ

 Aððððð9 68 742PRð1

 Aðððð1ð 75 81ðPRð5

 Aðððð11 82 862UFRT

 Aðððð12 87 952SLSTM

 Aðððð13 96 1ð62SLSTY

 Aðððð14 1ð7 1152CSTTM

 Aðððð15 116 1262CSTTY

 Aðððð16 127 1312PRO

 Aðððð17 132 14ð2LOS

Aðððð18 141 196 FILL1

Bðððððð INPUT FIELDS FOR RECORD DTLRSP FILE CMNFIL FORMAT DTLRSP.

 Bððððð1 1 1 RECCUS

 Bððððð2 2 7ðCUSTNO

 Bððððð3 8 37 DNAME

 Bððððð4 38 43ðDLSTOR

 Bððððð5 44 52ðDSLSTM

 Bððððð6 53 61ðDSPMð1

 Bððððð7 62 7ððDSPMð2

 Bððððð8 71 79ðDSPMð3

 Bððððð9 8ð 9ððDSTTYD

 Bðððð1ð 91 93ðIDEPT

Bðððð11 94 15ð FILL2

Cðððððð INPUT FIELDS FOR RECORD DETACH FILE CMNFIL FORMAT DETACH.

Dðððððð INPUT FIELDS FOR RECORD EOS FILE CMNFIL FORMAT EOS.

Eðððððð INPUT FIELDS FOR RECORD EVKREQ FILE CMNFIL FORMAT EVKREQ.

Fðððððð INPUT FIELDS FOR RECORD ITMREQ FILE CMNFIL FORMAT ITMREQ.

 Fððððð1 1 6ðITEMNO

Gðððððð INPUT FIELDS FOR RECORD DTLREQ FILE CMNFIL FORMAT DTLREQ.

 Gððððð1 1 6ðCUSTNO

Hðððððð INPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Hðððððð MENU FOR INQUIRY

 Hððððð1 3 3 \IN97

 Hððððð2 2 2 \IN98

 Hððððð3 1 1 \IN99

 Hððððð4 4 4 OPTION

Iðððððð INPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Iðððððð CUSTOMER INQUIRY SCREEN 1

 Iððððð1 3 3 \IN97

 Iððððð2 2 2 \IN98

 Iððððð3 1 1 \IN99

 Iððððð4 4 9ðCUSTNO

Jðððððð INPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Jðððððð CUSTOMER INQUIRY SCR. #2

 Jððððð1 3 3 \IN97

 Jððððð2 2 2 \IN98

 Jððððð3 1 1 \IN99

Kðððððð INPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Kðððððð ITEM INQUIRY SCREEN ONE

 Kððððð1 3 3 \IN97

 Kððððð2 2 2 \IN98

 Kððððð3 1 1 \IN99

 Kððððð4 4 9ðITEMNO

Lðððððð INPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Lðððððð ITEM INQUIRY SCREEN TWO

 Lððððð1 3 3 \IN97

 Lððððð2 2 2 \IN98

 Lððððð3 1 1 \IN99

Mðððððð INPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

Mðððððð ITEM INQUIRY SCREEN 3

 Mððððð1 3 3 \IN97

 Mððððð2 2 2 \IN98

Figure 11-20 (Part 3 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-40 ICF Programming V4R1

 Mððððð3 1 1 \IN99

Nðððððð INPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

Nðððððð TIME OUT SCREEN

 Nððððð1 3 3 \IN97

 Nððððð2 2 2 \IN98

 Nððððð3 1 1 \IN99

 Nððððð4 4 4 TIMRSP

 64ðð IIODS DS 1ð/13/87

65ðð I 1 24ð FILLð1 1ð/13/87

66ðð I 261 268 RECID 1ð/13/87

67ðð I 271 415 FILLð2 1ð/13/87

 68ðð IIOFB DS 1ð/13/87

 69ðð I \ROUTINE LOC 1ð/14/87

 7ððð I \STATUS ERR 1ð/14/87

71ðð I 1 24ð FILLð3 1ð/13/87

 72ðð I 38 45 FMTNM 1ð/13/87

73ðð I 273 282 CMID 1ð/13/87

74ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

75ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

76ðð I 4ð3 4ð4 MINCOD 1ð/13/87

77ðð I 261 268 RECID2 1ð/13/87

78ðð I 271 415 FILLð4 1ð/13/87

 79ðð C\\ 1ð/13/87

 8ððð C\ 1ð/13/87

81ðð C\ C A L C U L A T I O N S P E C I F I C A T I O N S 1ð/13/87

 82ðð C\ 1ð/13/87

83ðð C\ THE DISPLAY PROGRAM DEVICE IS IMPLICITLY ACQUIRED WHEN THE 1ð/13/87

84ðð C\ FILE IS OPENED. 1ð/13/87

 85ðð C\ 1ð/13/87

86ðð C\ ALL OF THE ICF PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. 1ð/ð3/9ð

 87ðð C\ 1ð/13/87

88ðð C\ EACH OF THE FOUR TARGET PROGRAMS ARE EVOKED TO ESTABLISH 1ð/13/87

89ðð C\ TRANSACTIONS WITH THE REMOTE SYSTEMS. 1ð/13/87

 9ððð C\ 1ð/13/87

91ðð C\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S 1ð/13/87

 92ðð C\ DISPLAY. 1ð/13/87

 93ðð C\ 1ð/13/87

 94ðð C\\ 1ð/13/87

 95ðð \.3/ 1ð/13/87

 96ðð C ENTRY TAG 1ð/13/87

 97ðð C 'ICFðð 'ACQ CMNFIL 1ST SESSION 1ð/13/87

 98ðð C 'ICFð1 'ACQ CMNFIL 2ND SESSION 1ð/13/87

 99ðð C 'ICFð2 'ACQ CMNFIL 3RD SESSION 1ð/13/87

 1ðððð C 'ICFð3 'ACQ CMNFIL 4TH SESSION 1ð/13/87

 1ð1ðð C MOVEL'ICFðð 'CMID 1ST PROGRAM 1ð/13/87

 1ð2ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 1ð3ðð C MOVEL'ICFð1 'CMID 2ND PROGRAM 1ð/13/87

 1ð4ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 1ð5ðð C MOVEL'ICFð2 'CMID 3RD PROGRAM 1ð/13/87

 1ð6ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 1ð7ðð C MOVEL'ICFð3 'CMID 4TH PROGRAM 1ð/13/87

 1ð8ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 1ð9ðð C MAIN TAG 1ð/13/87

 11ððð C WRITECIMENU 1ð/13/87

 111ðð C\\ 1ð/13/87

 112ðð C\ 1ð/13/87

113ðð C\ DETERMINE USER'S REQUEST 1ð/13/87

 114ðð C\ 1ð/13/87

115ðð C\ A READ TO THE DISPLAY DEVICE IS ISSUED TO RECEIVE THE USER'S ð3/2ð/89

116ðð C\ REQUEST. THE TYPE OF REQUEST MADE IS BASED ON THE DISPLAY ð3/2ð/89

117ðð C\ FORMAT CURRENTLY ON THE SCREEN. THE RECORD FORMAT NAME IS ð3/2ð/89

118ðð C\ EXTRACTED FROM THE I/O FEEDBACK AREA AND IS USED TO DETER- ð3/2ð/89

119ðð C\ MINE WHAT ACTION SHOULD BE TAKEN NEXT. ð3/2ð/89

 12ððð C\ 1ð/13/87

 121ðð C\\ 1ð/13/87

Figure 11-20 (Part 4 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-41

 122ðð \.4/ 1ð/13/87

 123ðð C READRQ TAG 1ð/13/87

124ðð C SETOF 8889 TIMEOUT IND 1 2 1ð/13/87

 125ðð C READ DSPFIL 87 3 1ð/13/87

 126ðð C RECID CABEQ'CIMENU 'MENU MAIN MENU? ð3/2ð/89

 127ðð C RECID CABEQ'ITMMNU 'ITMIN ITEM MENU? ð3/2ð/89

 128ðð C RECID CABEQ'ITMSC2 'ITMRTN ITM SCR? 1ð/13/87

 129ðð C RECID CABEQ'ITMSC3 'ITMRTN ITM SCR? 1ð/13/87

 13ððð C RECID CABEQ'DTLMNU 'DTLIN DETAIL SCR? 1ð/13/87

 131ðð C RECID CABEQ'DTLSCR 'DTLRTN CUST SCR? 1ð/13/87

132ðð C WRITECIMENU MAIN MENU IF 1ð/13/87

133ðð C GOTO READRQ THERE IS ERR 1ð/13/87

 134ðð C\\ 1ð/13/87

 135ðð C\ 1ð/13/87

 136ðð C\ MAIN MENU 1ð/13/87

 137ðð C\ 1ð/13/87

138ðð C\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED 1ð/13/87

139ðð C\ BY THE USER. IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM 1ð/13/87

14ððð C\ IS ENDED. IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN 1ð/13/87

141ðð C\ TO THE SCREEN. IF OPTION = 2, A CUSTOMER INQUIRY MENU IS 1ð/13/87

142ðð C\ WRITTEN TO THE SCREEN. 1ð/13/87

 143ðð C\ 1ð/13/87

 144ðð C\\ 1ð/13/87

 145ðð \.5/ 1ð/13/87

 146ðð C MENU TAG 1ð/13/87

 147ðð C \IN99 CABEQ'1' END JOB ENDS 1ð/13/87

 148ðð C OPTION IFEQ '1' Bðð1 1ð/13/87

149ðð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 15ððð C ELSE Xðð1 1ð/13/87

151ðð C WRITEDTLMNU CUST MENU ðð1 1ð/13/87

 152ðð C END Eðð1 1ð/13/87

 153ðð C GOTO READRQ 1ð/13/87

 154ðð C\\ 1ð/13/87

 155ðð C\ 1ð/13/87

 156ðð C\ ITEM INQUIRY 1ð/13/87

 157ðð C\ 1ð/13/87

158ðð C\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY 1ð/13/87

159ðð C\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE DISPLAY ð3/2ð/89

16ððð C\ RECORD FORMAT BEING PROCESSED - IN THIS CASE ITMMNU. ð3/2ð/89

 161ðð C\ 1ð/13/87

162ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. IF CMD 2 1ð/13/87

163ðð C\ IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, AND THE ð3/2ð/89

164ðð C\ MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. 1ð/13/87

 165ðð C\ 1ð/13/87

166ðð C\ IF AN ITEM NUMBER IS ENTERED, A ITEM INQUIRY REQUEST IS 1ð/13/87

167ðð C\ SENT TO THE APPROPRIATE REMOTE SYSTEM. THE REMOTE SYSTEM 1ð/13/87

168ðð C\ IS SELECTED BASED ON THE ITEM NUMBER REQUESTED. 1ð/13/87

 169ðð C\ 1ð/13/87

17ððð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB 1ð/13/87

 171ðð C\ IS ENDED. 1ð/13/87

 172ðð C\ 1ð/13/87

 173ðð C\\ 1ð/13/87

 174ðð \.6/ 1ð/13/87

 175ðð C ITMIN TAG 1ð/13/87

176ðð C \IN99 CABEQ'1' END EXIT ON CMD3 1ð/13/87

 177ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

178ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 179ðð C GOTO READRQ ðð1 1ð/13/87

 18ððð C END Eðð1 1ð/13/87

 181ðð C ITEMNO CABLE399999 XICFð1 1ð/13/87

 182ðð C ITEMNO CABLE699999 XICFð2 1ð/13/87

 183ðð C ITEMNO CABLE899999 XICFð3 1ð/13/87

 184ðð C XICFð1 TAG 1ð/13/87

 185ðð C MOVEL'ICFð1 'CMID 1ð/13/87

 186ðð C GOTO XITMIN 1ð/13/87

 187ðð C XICFð2 TAG 1ð/13/87

 188ðð C MOVEL'ICFð2 'CMID 1ð/13/87

 189ðð C GOTO XITMIN 1ð/13/87

 19ððð C XICFð3 TAG 1ð/13/87

 191ðð C MOVEL'ICFð3 'CMID 1ð/13/87

 192ðð C XITMIN TAG 1ð/13/87

193ðð C WRITEITMREQ INQ W/INVITE 1ð/13/87

Figure 11-20 (Part 5 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-42 ICF Programming V4R1

 194ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 195ðð C TRY89 TAG 1ð/13/87

 196ðð C SETOF 89 3 1ð/13/87 OQ

 197ðð C MOVEL' 'CMID 1ð/13/87

198ðð C READ CMNFIL 891ðRECV ITM INFO 2 3 1ð/13/87

199ðð C 89 EXSR ERRCHK CHCK ERR INFO 1ð/13/87

 2ðððð C MAJMIN CABGE'ð3ðð' ITMIN NODATATRYAGN 1ð/13/87

 2ð1ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 2ð2ðð C RECID2 CABNE'ITMRSP' RECERR PRINT MSG 1ð/13/87

 2ð3ðð C\\\ 1ð/13/87

 2ð4ðð C\ 1ð/13/87

2ð5ðð C\ PROCESS ITEM INFORMATION 1ð/13/87

 2ð6ðð C\ 1ð/13/87

2ð7ðð C\ THE ITEM RECORD RECEIVED FROM THE TARGET PROGRAM AND THE 1ð/13/87

2ð8ðð C\ INFORMATION ABOUT THE ITEM IS PROCESSED AND DISPLAYED. 1ð/13/87

2ð9ðð C\ IF ITEMNO IS ð OR LESS, IT IS AN INVALID REQUEST AND A FRESH 1ð/13/87

21ððð C\ ITEM MENU IS WRITTEN TO THE SCREEN. IF THE REQUEST IS 1ð/13/87

211ðð C\ VALID, VALUES ARE CALCULATED BASED ON THE INFORMATION 1ð/13/87

 212ðð C\ RECEIVED. 1ð/13/87

 213ðð C\ 1ð/13/87

 214ðð C\\ 1ð/13/87

 215ðð \.7/ 1ð/13/87

 216ðð C ITMOUT TAG 1ð/13/87

 217ðð C ITEMNO IFLE ðððððð Bðð1 1ð/13/87

218ðð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 219ðð C GOTO READRQ READ DISPLY ðð1 1ð/13/87

 22ððð C ELSE Xðð1 1ð/13/87

 221ðð C Z-ADDð QAVAIL 7ð QTY AVAIL. ðð1 1ð/13/87

 222ðð C ADD QTYOH QAVAIL ðð1 1ð/13/87

 223ðð C SUB QTYOO QAVAIL ðð1 1ð/13/87

 224ðð C ADD QTYBO QAVAIL ðð1 1ð/13/87

 225ðð C MOVELDESC DSC ðð1 1ð/13/87

 226ðð C MOVE QTYOO QTYO ðð1 1ð/13/87

 227ðð C MOVE QTYOH QTYH ðð1 1ð/13/87

 228ðð C MOVE QTYBO QTYB ðð1 1ð/13/87

 229ðð C MOVE UNITQ UNT ðð1 1ð/13/87

 23ððð C MOVE PRð1 PR1 ðð1 1ð/13/87

 231ðð C MOVE PRð5 PR5 ðð1 1ð/13/87

 232ðð C MOVE UFRT UFR ðð1 1ð/13/87

233ðð C WRITEITMSC2 DSP DETAIL ðð1 1ð/13/87

 234ðð C GOTO READRQ ðð1 1ð/13/87

 235ðð C\\ 1ð/13/87

 236ðð C\ 1ð/13/87

237ðð C\ ADDITIONAL ITEM INFORMATION 1ð/13/87

 238ðð C\ 1ð/13/87

239ðð C\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT 1ð/13/87

24ððð C\ DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ FROM THE ð3/2ð/89

241ðð C\ DISPLAY WITH AN ITEM SCREEN RECORD FORMAT. ð3/2ð/89

 242ðð C\ 1ð/13/87

243ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. 1ð/13/87

 244ðð C\ 1ð/13/87

245ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE ITEM INQUIRY IS ENDED, AND ð3/2ð/89

246ðð C\ THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. ð3/2ð/89

 247ðð C\ 1ð/13/87

248ðð C\ IF CMD 3 (\IN97) IS PRESSED, THE ITEM INQUIRY MENU IS 1ð/14/87

249ðð C\ WRITTEN ON THE SCREEN. 1ð/14/87

 25ððð C\ 1ð/14/87

251ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 2 FOR ITEM REQUESTED IS 1ð/16/87

252ðð C\ CURRENTLY DISPLAYED, MORE INFORMATION IS CALCULATED AND 1ð/16/87

 253ðð C\ DISPLAYED. 1ð/16/87

 254ðð C\ 1ð/16/87

255ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 3 FOR ITEM REQUESTED IS 1ð/16/87

256ðð C\ CURRENTLY DISPLAYED, THEN THE ITEM INQUIRY MENU IS WRITTEN ð3/2ð/89

257ðð C\ TO THE SCREEN. ð3/2ð/89

 258ðð C\ 1ð/13/87

 259ðð C\\\ 1ð/13/87

Figure 11-20 (Part 6 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-43

 26ððð \.8/ 1ð/13/87

 261ðð C ITMRTN TAG ðð1 1ð/13/87

 262ðð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 263ðð C \IN98 IFEQ '1' Bðð2 1ð/13/87

264ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 265ðð C GOTO READRQ ðð2 1ð/13/87

 266ðð C END Eðð2 1ð/13/87

267ðð C \IN97 IFEQ '1' CMD 3 ? Bðð2 1ð/13/87

268ðð C RECID IFEQ 'ITMSC2 ' ITM SCR 2 ? Bðð3 1ð/13/87

269ðð C WRITEITMMNU YES,THEN ITS ðð3 1ð/13/87

 27ððð C GOTO READRQ ITEM MENU ðð3 1ð/13/87

 271ðð C END Eðð3 1ð/13/87

 272ðð C END Eðð2 1ð/13/87

273ðð C RECID IFEQ 'ITMSC3 ' ITM SCR 3 ? Bðð2 1ð/13/87

274ðð C WRITEITMMNU YES,THEN ITS ðð2 1ð/13/87

 275ðð C GOTO READRQ ITEM MENU ðð2 1ð/13/87

 276ðð C END Eðð2 1ð/13/87

 277ðð C SLSTM SUB CSTTM PROFM 92 PROF MONTH ðð1 1ð/13/87

 278ðð C MULT 1ðð PROFM ðð1 1ð/13/87

279ðð C SLSTM COMP ð 46 3 ðð1 1ð/13/87

 28ððð C N46 PROFM DIV SLSTM PROFM PROF PCT ðð1 1ð/13/87

 281ðð C QTYLST MULT PRð1 LOSTS LOST SALES ðð1 1ð/13/87

 282ðð C MOVE SLSTM SLSM ðð1 1ð/13/87

 283ðð C MOVE SLSTY SLSY ðð1 1ð/13/87

 284ðð C MOVE CSTTM CSTM ðð1 1ð/13/87

 285ðð C MOVE PROFM PROFIT ðð1 1ð/13/87

 286ðð C MOVE CSTTY CSTY ðð1 1ð/13/87

287ðð C WRITEITMSC3 DET ITM INF ðð1 1ð/13/87

 288ðð C GOTO READRQ ðð1 1ð/13/87

 289ðð C\\ 1ð/13/87

 29ððð C\ 1ð/13/87

 291ðð C\ CUSTOMER INQUIRY 1ð/13/87

 292ðð C\ 1ð/13/87

293ðð C\ THE REQUEST FROM THE CUSTOMER INQUIRY MENU IS PROCESSED. 1ð/13/87

 294ðð C\ 1ð/13/87

295ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. 1ð/13/87

 296ðð C\ 1ð/13/87

297ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE CUSTOMER INQUIRY IS ENDED, 1ð/13/87

298ðð C\ AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. 1ð/13/87

 299ðð C\ 1ð/13/87

3ðððð C\ IF A CUSTOMER NUMBER IS ENTERED, THE CUSTOMER INQUIRY 1ð/13/87

3ð1ðð C\ REQUEST IS SENT TO THE REMOTE SYSTEM. 1ð/13/87

 3ð2ðð C\ 1ð/13/87

3ð3ðð C\ A READ TO THE ICF PROGRAM DEVICE IS ISSUED TO RECEIVE THE ð3/2ð/89

3ð4ðð C\ INFORMATION FROM THE TARGET PROGRAM. 1ð/13/87

 3ð5ðð C\ 1ð/13/87

3ð6ðð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB IS 1ð/13/87

 3ð7ðð C\ ENDED. 1ð/13/87

 3ð8ðð C\ 1ð/13/87

 3ð9ðð C\\ 1ð/13/87

 31ððð \.9/ 1ð/13/87

 311ðð C DTLIN TAG ðð1 1ð/13/87

 312ðð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 313ðð C \IN98 IFEQ '1' Bðð2 1ð/13/87

314ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 315ðð C GOTO READRQ ðð2 1ð/13/87

 316ðð C END Eðð2 1ð/13/87

 317ðð C EVDTL TAG ðð1 1ð/13/87

 318ðð C MOVEL'ICFðð 'CMID ðð1 1ð/13/87

319ðð C WRITEDTLREQ CUST INQ ðð1 1ð/13/87

 32ððð C MAJCOD CABGE'ð4' ERROR ERROR RTN ðð1 1ð/13/87

 321ðð C TRY88 TAG ðð1 1ð/13/87

322ðð C SETOF 88 3 ðð1 1ð/13/87

 323ðð C MOVEL' 'CMID ðð1 1ð/13/87

324ðð C READ CMNFIL 881ðRCV CUS INF 2 3 ðð1 1ð/13/87

 325ðð C 88 EXSR ERRCHK CHECK ERR ðð1 1ð/13/87

 326ðð C MAJMIN CABGE'ð3ðð' EVDTL NODATATRYAGN ðð1 1ð/13/87

 327ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN ðð1 1ð/13/87

 328ðð C RECID2 CABNE'DTLRSP' RECERR PRINT MSG ðð1 1ð/13/87

Figure 11-20 (Part 7 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-44 ICF Programming V4R1

 329ðð C\\ 1ð/13/87

 33ððð C\ 1ð/13/87

331ðð C\ PROCESS CUSTOMER INFORMATION 1ð/13/87

 332ðð C\ 1ð/13/87

333ðð C\ THE CUSTOMER DATA RECEIVED FROM THE TARGET PROGRAM IS ð3/2ð/89

334ðð C\ PROCESSED. IF CUSTOMER NUMBER IS ZERO OR LESS, IT IS AN ð3/2ð/89

335ðð C\ INVALID REQUEST AND THE MAIN MENU IS WRITTEN TO THE SCREEN. ð3/2ð/89

336ðð C\ WHEN THE RCVTRNRND INDICATOR(IN9ð) IS RECEIVED, THE CUSTOMER ð3/2ð/89

337ðð C\ INFORMATION IS WRITTEN TO THE SCREEN. IF DURING THE READ ð3/2ð/89

338ðð C\ OPERATION AN ERROR IS RECEIVED, CONTROL GOES TO THE ERROR ð3/2ð/89

339ðð C\ ROUTINE TO END THE JOB. ð3/2ð/89

 34ððð C\ 1ð/13/87

 341ðð C\\ 1ð/13/87

 342ðð \.1ð/ 1ð/13/87

 343ðð C DTOUT TAG ðð1 1ð/13/87

 344ðð C CUSTNO IFEQ ðððððð Bðð2 1ð/13/87

345ðð C SETOF 66 3 ðð2 1ð/13/87

346ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 347ðð C GOTO READRQ ðð2 1ð/13/87

 348ðð C END Eðð2 1ð/13/87

 349ðð C MOVE CUSTNO CUSTN ðð1 1ð/13/87

 35ððð C MOVELDNAME CNAME ðð1 ð8/ð8/89

 351ðð C MOVE DLSTOR DLSTR ðð1 1ð/13/87

 352ðð C MOVE DSLSTM DSLSM ðð1 1ð/13/87

 353ðð C MOVE DSPMð1 DSPM1 ðð1 1ð/13/87

 354ðð C MOVE DSPMð2 DSPM2 ðð1 1ð/13/87

 355ðð C MOVE DSTTYD DSTYD ðð1 1ð/13/87

 356ðð C MOVE IDEPT DEPT ðð1 1ð/13/87

357ðð C WRITEDTLSCR BLD CUS SCR ðð1 1ð/13/87

 358ðð C GOTO READRQ ðð1 1ð/13/87

 359ðð C\\ 1ð/13/87

 36ððð C\ 1ð/13/87

361ðð C\ THIS ROUTINE HANDLES THE USER'S REQUEST FOLLOWING THE ð3/2ð/89

362ðð C\ DISPLAY OF THE CUSTOMER INFORMATION. CMD KEY 1 WILL END ð3/2ð/89

363ðð C\ THE JOB, CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND "ENTER" ð3/2ð/89

364ðð C\ WILL BRING UP THE CUSTOMER INQUIRY MENU. ð3/2ð/89

 365ðð C\ 1ð/13/87

 366ðð C\\ 1ð/13/87

 367ðð \.11/ 1ð/13/87

 368ðð C DTLRTN TAG ðð1 1ð/13/87

 369ðð C \IN99 CABEQ'1' END JOB ENDS ðð1 1ð/13/87

 37ððð C \IN98 IFEQ '1' Bðð2 1ð/13/87

371ðð C WRITECIMENU MAIN MENU ðð2 1ð/13/87

 372ðð C GOTO READRQ ðð2 1ð/13/87

 373ðð C END Eðð2 1ð/13/87

374ðð C WRITEDTLMNU CUSTOMER INQ ðð1 1ð/13/87

 375ðð C GOTO READRQ ðð1 1ð/13/87

 376ðð C\\ 1ð/13/87

 377ðð C\ 1ð/13/87

378ðð C\ WHEN AN I/O OPERATION ERROR IS DETECTED, A MESSAGE IS 1ð/13/87

379ðð C\ PRINTED AND THE TRANSACTION AND SESSION ARE ENDED FOR EACH ð3/2ð/89

38ððð C\ OF THE REMOTE SYSTEMS. ð3/2ð/89

 381ðð C\ 1ð/13/87

 382ðð C\\ 1ð/13/87

 383ðð \.12/ 1ð/13/87

 384ðð C RECERR TAG ðð1 1ð/13/87

 385ðð C EXCPTRECER WRONG RECID ðð1 1ð/13/87

 386ðð C GOTO END END PROGRAM ðð1 1ð/13/87

 387ðð C ERROR TAG ðð1 1ð/13/87

 388ðð C EXCPTMMERR ðð1 1ð/13/87

 389ðð C END TAG ðð1 1ð/13/87

 39ððð C MOVEL'ICFðð 'CMID ðð1 1ð/13/87

391ðð C WRITEDETACH DET 1ST TRN ðð1 1ð/13/87

 392ðð C MOVEL'ICFð1 'CMID ðð1 1ð/13/87

393ðð C WRITEDETACH DET 2ND TRN ðð1 1ð/13/87

 394ðð C MOVEL'ICFð2 'CMID ðð1 1ð/13/87

395ðð C WRITEDETACH DET 3RD TRN ðð1 1ð/13/87

 396ðð C MOVEL'ICFð3 'CMID ðð1 1ð/13/87

397ðð C WRITEDETACH DET 4TH TRN ðð1 1ð/13/87

Figure 11-20 (Part 8 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-45

 398ðð C ABORT TAG ðð1 1ð/13/87

399ðð C 'ICFðð 'REL CMNFIL 86 REL 1ST SES 2 ðð1 1ð/13/87

4ðððð C 'ICFð1 'REL CMNFIL 86 REL 2ND SES 2 ðð1 1ð/13/87

4ð1ðð C 'ICFð2 'REL CMNFIL 86 REL 3RD SES 2 ðð1 1ð/13/87

4ð2ðð C 'ICFð3 'REL CMNFIL 86 REL 4TH SES 2 ðð1 1ð/13/87

 4ð3ðð C FORCE TAG ðð1 1ð/13/87

4ð4ðð C SETON LR 1 ðð1 1ð/13/87

 4ð5ðð C RETRN ðð1 1ð/13/87

 4ð6ðð C END Eðð1 1ð/13/87

 4ð7ðð C\\ 1ð/13/87

 4ð8ðð C\ 1ð/13/87

4ð9ðð C\ THIS SUBROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. THE ð3/2ð/89

41ððð C\ SAME TARGET PROGRAM (ICFLIB/RTDMULCL) IS EVOKED AT FOUR ð3/2ð/89

411ðð C\ DIFFERENT REMOTE SYSTEMS. THE PROGRAM DEVICE IDENTIFIES ð3/2ð/89

412ðð C\ WHICH SESSION SHOULD BE EVOKED. THE PROGRAM DEVICE WAS ð3/2ð/89

413ðð C\ SPECIFIED IN CMID PRIOR TO CALLING THIS ROUTINE. ð3/2ð/89

 414ðð C\ 1ð/13/87

 415ðð C\\ 1ð/13/87

 416ðð \.13/ 1ð/13/87

 417ðð C EVKSR BEGSR 1ð/13/87

 418ðð C MOVE \BLANK PGMID BLANK OUT 1ð/13/87

 419ðð C MOVE \BLANK LIB BLANK OUT 1ð/13/87

 42ððð C MOVEL'RTDMULCL'PGMID PROGR NAME 1ð/13/87

 421ðð C MOVEL'ICFLIB 'LIB LIBRARY 1ð/13/87

 422ðð C WRITEEVKREQ 1ð/13/87

423ðð C MAJCOD CABGE'ð4' END TO END PGM 1ð/13/87

 424ðð C ENDSR 1ð/13/87

 425ðð C\\ 1ð/13/87

 426ðð C\ 1ð/13/87

427ðð C\ THIS SUBROUTINE IS CALLED TO PERFORM FURTHER CHECKS ON FILE ð3/2ð/89

428ðð C\ ERRORS RESULTING FROM THE READ OPERATION ISSUED TO THE PRO- ð3/2ð/89

429ðð C\ GRAM DEVICE. THIS ROUTINE CHECKS FOR THE TIME OUT INDICATION. ð3/2ð/89

43ððð C\ IF THERE IS A TIME OUT, A MESSAGE IS SENT TO THE USER'S ð3/2ð/89

431ðð C\ DISPLAY SCREEN REQUESTING ACTION, OTHERWISE PROGRAM ENDS. 1ð/16/87

 432ðð C\ 1ð/13/87

 433ðð C\\ 1ð/13/87

 434ðð \.14/ 1ð/13/87

 435ðð C ERRCHK BEGSR 1ð/13/87

 436ðð C MAJMIN IFEQ 'ð31ð' TIMER EXPD? Bðð1 1ð/13/87

 437ðð C CHKAGN TAG ðð1 1ð/13/87

438ðð C WRITETIMOUT DISPLAY MSG ðð1 1ð/13/87

439ðð C READ DSPFIL 86READ REPLY 3 ðð1 1ð/13/87

 44ððð C 88 TIMRSP CABEQ'1' TRY88 CUST INQUIR ðð1 1ð/13/87

 441ðð C 89 TIMRSP CABEQ'1' TRY89 ITEM INQUIR ðð1 1ð/13/87

 442ðð C TIMRSP IFEQ '2' END PROGRAM Bðð2 1ð/13/87

 443ðð C WRITEEOS END SESSION ðð2 1ð/13/87

 444ðð C GOTO FORCE END PROGRAM ðð2 1ð/13/87

 445ðð C END Eðð2 1ð/13/87

 446ðð C GOTO CHKAGN ASK AGAIN ðð1 1ð/13/87

 447ðð C END Eðð1 1ð/13/87

 448ðð C GOTO ERROR ABEND 1ð/13/87

 449ðð C ENDSR 1ð/13/87

 45ððð C\\ 1ð/14/87

 451ðð C\ 1ð/14/87

452ðð C\ THIS IS THE PROGRAM ERROR SUBROUTINE THAT RECEIVES CONTROL ð3/2ð/89

453ðð C\ WHEN AN ERROR OCCURS AFTER AN I/O OPERATION IS ISSUED TO ð3/2ð/89

454ðð C\ THE PROGRAM DEVICE AND THERE IS A NON-ZERO VALUE IN THE RPG ð3/2ð/89

455ðð C\ STATUS FIELD (ERR). THIS ROUTINE CHECKS FOR STATUS VALUES ð3/2ð/89

456ðð C\ THAT RELATE TO ICF OPERATIONS. IF THE PROGRAM DEVICE 1ð/ð3/9ð

457ðð C\ IS ALREADY ACQUIRED, THE ERROR IS IGNORED, OTHERWISE, THE ð3/2ð/89

458ðð C\ PROGRAM IS TERMINATED. ð3/2ð/89

 459ðð C\ 1ð/14/87

 46ððð C\\ 1ð/14/87

 461ðð \.15/ 1ð/14/87

 462ðð C \PSSR BEGSR 1ð/14/87

463ðð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 464ðð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 465ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

466ðð C ENDPSR ENDSRRETURN BACK TO MAIN 1ð/14/87

 467ðð C\\ 1ð/13/87

Figure 11-20 (Part 9 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-46 ICF Programming V4R1

468ðð OQPRINT E 1 MMERR ð2/24/89

469ðð O 21 'COMMUNICATION ERROR.' ð2/24/89

 47ððð O 34 'MAJOR/MINOR:' ð2/24/89

 471ðð O MAJCOD 37 ð2/24/89

 472ðð O 38 '/' ð2/24/89

 473ðð O MINCOD 4ð ð2/24/89

 474ðð O 49 'FORMAT:' ð2/24/89

 475ðð O FMTNM 6ð ð2/24/89

 476ðð O 69 'PGMDEV:' ð2/24/89

 477ðð O CMID 8ð ð2/24/89

 478ðð O E 1 RECER ð2/24/89

479ðð O 2ð 'UNMATCH RECD FORMAT' ð2/24/89

48ððð O 31 '-JOB ENDS.' ð2/24/89

 481ðð O MAJCOD 37 ð2/24/89

 482ðð O 38 '/' ð2/24/89

 483ðð O MINCOD 4ð ð2/24/89

 484ðð O 49 'FORMAT:' ð2/24/89

 485ðð O RECID2 6ð ð2/24/89

 486ðð O 69 'PGMDEV:' ð2/24/89

 487ðð O CMID 8ð ð2/24/89

\ 61ð3 487ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Oðððððð OUTPUT FIELDS FOR RECORD DETACH FILE CMNFIL FORMAT DETACH.

Pðððððð OUTPUT FIELDS FOR RECORD EOS FILE CMNFIL FORMAT EOS.

Qðððððð OUTPUT FIELDS FOR RECORD EVKREQ FILE CMNFIL FORMAT EVKREQ.

 Qððððð1 PGMID 1ð CHAR 1ð

 Qððððð2 LIB 2ð CHAR 1ð

Rðððððð OUTPUT FIELDS FOR RECORD ITMREQ FILE CMNFIL FORMAT ITMREQ.

 Rððððð1 ITEMNO 6 ZONE 6,ð

Sðððððð OUTPUT FIELDS FOR RECORD DTLREQ FILE CMNFIL FORMAT DTLREQ.

 Sððððð1 CUSTNO 6 ZONE 6,ð

Tðððððð OUTPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Tðððððð MENU FOR INQUIRY

Uðððððð OUTPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Uðððððð CUSTOMER INQUIRY SCREEN 1

Vðððððð OUTPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Vðððððð CUSTOMER INQUIRY SCR. #2

 Vððððð1 CUSTN 6 CHAR 6

 Vððððð2 DEPT 9 ZONE 3,ð

 Vððððð3 DLSTR 15 ZONE 6,ð

 Vððððð4 DSLSM 24 ZONE 9,ð

 Vððððð5 DSPM1 33 ZONE 9,ð

 Vððððð6 DSPM2 42 ZONE 9,ð

 Vððððð7 DSPM3 51 ZONE 9,ð

 Vððððð8 DSTYD 62 ZONE 11,ð

 Vððððð9 CNAME 67 CHAR 5

Wðððððð OUTPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Wðððððð ITEM INQUIRY SCREEN ONE

Xðððððð OUTPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Xðððððð ITEM INQUIRY SCREEN TWO

 Xððððð1 DSC 3ð CHAR 3ð

 Xððððð2 QAVAIL 37 ZONE 7,ð

 Xððððð3 QTYH 44 ZONE 7,ð

 Xððððð4 QTYO 51 ZONE 7,ð

 Xððððð5 QTYB 58 ZONE 7,ð

 Xððððð6 UNT 6ð CHAR 2

 Xððððð7 PR1 67 ZONE 7,2

 Xððððð8 PR5 74 ZONE 7,ð

 Xððððð9 UFR 79 ZONE 5,2

Yðððððð OUTPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

Yðððððð ITEM INQUIRY SCREEN 3

 Yððððð1 SLSM 9 ZONE 9,2

 Yððððð2 SLSY 2ð ZONE 11,2

 Yððððð3 CSTM 29 ZONE 9,2

 Yððððð4 CSTY 4ð ZONE 11,2

 Yððððð5 PROFIT 45 ZONE 5,2

 Yððððð6 LOSTS 54 ZONE 9,2

Zðððððð OUTPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

Zðððððð TIME OUT SCREEN

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 44ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE CMNFIL.

Figure 11-20 (Part 10 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-47

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

ð1 CMNFIL WORKSTN 44ððD 97ðð 98ðð 99ðð 1ðððð

198ðð 324ðð 399ðð 4ðððð 4ð1ðð

 4ð2ðð

DETACH 44ððD Cðððððð 391ðð 393ðð 395ðð

 397ðð Oðððððð

 DTLREQ 44ððD Gðððððð 319ðð Sðððððð

 DTLRSP 44ððD Bðððððð

 EOS 44ððD Dðððððð 443ðð Pðððððð

 EVKREQ 44ððD Eðððððð 422ðð Qðððððð

 ITMREQ 44ððD Fðððððð 193ðð Rðððððð

 ITMRSP 44ððD Aðððððð

 ð2 DSPFIL WORKSTN 49ððD 125ðð 439ðð

CIMENU 49ððD Hðððððð 11ððð 132ðð 178ðð

264ðð 314ðð 346ðð 371ðð Tðððððð

DTLMNU 49ððD Iðððððð 151ðð 374ðð Uðððððð

 DTLSCR 49ððD Jðððððð 357ðð Vðððððð

ITMMNU 49ððD Kðððððð 149ðð 218ðð 269ðð

 274ðð Wðððððð

 ITMSC2 49ððD Lðððððð 233ðð Xðððððð

 ITMSC3 49ððD Mðððððð 287ðð Yðððððð

 TIMOUT 49ððD Nðððððð 438ðð Zðððððð

 ð3 QPRINT PRINTER 51ððD 468ðð 478ðð 487ð1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN97 A(1) Hððððð1 Iððððð1 Jððððð1 Kððððð1 Lððððð1

 Mððððð1 Nððððð1 267ðð

\IN98 A(1) Hððððð2 Iððððð2 Jððððð2 Kððððð2 Lððððð2

Mððððð2 Nððððð2 177ðð 263ðð 313ðð

 37ððð

\IN99 A(1) Hððððð3 Iððððð3 Jððððð3 Kððððð3 Lððððð3

Mððððð3 Nððððð3 147ðð 176ðð 262ðð

 312ðð 369ðð

 \PSSR BEGSR 44ðð 462ððD

\ 7ð31 ABORT TAG 398ððD

 CHKAGN TAG 437ððD 446ðð

 CMID A(1ð) 73ððD 1ð1ððM 1ð3ððM 1ð5ððM 1ð7ððM

185ððM 188ððM 191ððM 197ððM 318ððM

323ððM 39ðððM 392ððM 394ððM 396ððM

 477ðð 487ðð

 CNAME A(5) 35ðððM Vððððð9D

 CSTM P(9,2) 284ððM Yððððð3D

 CSTTM P(9,2) Aðððð14D 277ðð 284ðð

 CSTTY P(11,2) Aðððð15D 286ðð

 CSTY P(11,2) 286ððM Yððððð4D

 CUSTN A(6) 349ððM Vððððð1D

CUSTNO P(6,ð) Bððððð2D Gððððð1D Iððððð4D 344ðð 349ðð

 Sððððð1D

 DEPT P(3,ð) 356ððM Vððððð2D

 DESC A(3ð) Aððððð3D 225ðð

 DLSTOR P(6,ð) Bððððð4D 351ðð

 DLSTR P(6,ð) 351ððM Vððððð3D

DNAME A(3ð) Bððððð3D 35ððð

 DSC A(3ð) 225ððM Xððððð1D

 DSLSM P(9,ð) 352ððM Vððððð4D

 DSLSTM P(9,ð) Bððððð5D 352ðð

 DSPMð1 P(9,ð) Bððððð6D 353ðð

 DSPMð2 P(9,ð) Bððððð7D 354ðð

Figure 11-20 (Part 11 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-48 ICF Programming V4R1

\ 7ð31 DSPMð3 P(9,ð) Bððððð8D

 DSPM1 P(9,ð) 353ððM Vððððð5D

 DSPM2 P(9,ð) 354ððM Vððððð6D

 DSPM3 P(9,ð) Vððððð7D

 DSTTYD P(11,ð) Bððððð9D 355ðð

 DSTYD P(11,ð) 355ððM Vððððð8D

DTLIN TAG 13ððð 311ððD

 DTLRTN TAG 131ðð 368ððD

\ 7ð31 DTOUT TAG 343ððD

END TAG 147ðð 176ðð 262ðð 312ðð 369ðð

 386ðð 389ððD 423ðð

 ENDPSR ENDSR 464ðð 466ððD

\ 7ð31 ENTRY TAG 96ððD

 ERR Z(5,ð) 7ðððD 464ðð

ERRCHK BEGSR 199ðð 325ðð 435ððD

ERROR TAG 194ðð 2ð1ðð 32ððð 327ðð 387ððD

 448ðð

EVDTL TAG 317ððD 326ðð

EVKSR BEGSR 1ð2ðð 1ð4ðð 1ð6ðð 1ð8ðð 417ððD

\ 7ð31 FILLð1 A(24ð) 65ððD

\ 7ð31 FILLð2 A(145) 67ððD

\ 7ð31 FILLð3 A(24ð) 71ððD

\ 7ð31 FILLð4 A(145) 78ððD

\ 7ð31 FILL1 A(56) Aðððð18D

\ 7ð31 FILL2 A(57) Bðððð11D

FMTNM A(8) 72ððD 475ðð

FORCE TAG 4ð3ððD 444ðð

 IDEPT P(3,ð) Bðððð1ðD 356ðð

 IODS DS(415) 49ðð 64ððD

 IOFB DS(415) 44ðð 68ððD

ITEMNO P(6,ð) Aððððð2D Fððððð1D Kððððð4D 181ðð 182ðð

 183ðð 217ðð Rððððð1D

ITMIN TAG 127ðð 175ððD 2ðððð

\ 7ð31 ITMOUT TAG 216ððD

ITMRTN TAG 128ðð 129ðð 261ððD

 LIB A(1ð) 419ððM 421ððM Qððððð2D

\ 7ð31 LOC A(8) 69ððD

\ 7ð31 LOS P(9,2) Aðððð17D

 LOSTS P(9,2) 281ððM Yððððð6D

\ 7ð31 MAIN TAG 1ð9ððD

MAJCOD A(2) 75ððD 194ðð 2ð1ðð 32ððð 327ðð

423ðð 471ðð 481ðð

MAJMIN A(4) 74ððD 2ðððð 326ðð 436ðð

 MENU TAG 126ðð 146ððD

 MINCOD A(2) 76ððD 473ðð 483ðð

 MMERR EXCPT 388ðð 468ðð

 OPTION A(1) Hððððð4D 148ðð

 PGMID A(1ð) 418ððM 42ðððM Qððððð1D

\ 7ð31 PRO P(5,2) Aðððð16D

 PROFIT P(5,2) 285ððM Yððððð5D

PROFM P(9,2) 277ððD 278ððM 28ððð 28ðððM 285ðð

 PRð1 P(7,2) Aððððð9D 23ððð 281ðð

 PRð5 P(7,ð) Aðððð1ðD 231ðð

 PR1 P(7,2) 23ðððM Xððððð7D

 PR5 P(7,ð) 231ððM Xððððð8D

QAVAIL P(7,ð) 221ððD 222ððM 223ððM 224ððM Xððððð2D

 QTYB P(7,ð) 228ððM Xððððð5D

 QTYBO P(7,ð) Aððððð7D 224ðð 228ðð

 QTYH P(7,ð) 227ððM Xððððð3D

 QTYLST P(7,ð) Aððððð4D 281ðð

 QTYO P(7,ð) 226ððM Xððððð4D

 QTYOH P(7,ð) Aððððð5D 222ðð 227ðð

 QTYOO P(7,ð) Aððððð6D 223ðð 226ðð

READRQ TAG 123ððD 133ðð 153ðð 179ðð 219ðð

234ðð 265ðð 27ððð 275ðð 288ðð

315ðð 347ðð 358ðð 372ðð 375ðð

\ 7ð31 RECCUS A(1) Bððððð1D

 RECER EXCPT 385ðð 478ðð

RECERR TAG 2ð2ðð 328ðð 384ððD

Figure 11-20 (Part 12 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-49

RECID A(8) 66ððD 126ðð 127ðð 128ðð 129ðð

13ððð 131ðð 268ðð 273ðð

RECID2 A(8) 77ððD 2ð2ðð 328ðð 485ðð

\ 7ð31 RECITM A(1) Aððððð1D

RETURN A(6) 463ððD 465ððM 466ðð

 SLSM P(9,2) 282ððM Yððððð1D

SLSTM P(9,2) Aðððð12D 277ðð 279ðð 28ððð 282ðð

 SLSTY P(11,2) Aðððð13D 283ðð

 SLSY P(11,2) 283ððM Yððððð2D

TIMRSP A(1) Nððððð4D 44ððð 441ðð 442ðð

TRY88 TAG 321ððD 44ððð

TRY89 TAG 195ððD 441ðð

 UFR P(5,2) 232ððM Xððððð9D

 UFRT P(5,2) Aðððð11D 232ðð

 UNITQ A(2) Aððððð8D 229ðð

 UNT A(2) 229ððM Xððððð6D

 XICFð1 TAG 181ðð 184ððD

 XICFð2 TAG 182ðð 187ððD

 XICFð3 TAG 183ðð 19ðððD

XITMIN TAG 186ðð 189ðð 192ððD

 \BLANK LITERAL 418ðð 419ðð

 ' ' LITERAL 197ðð 323ðð

 ' ' LITERAL 463ðð

 '\CANCL' LITERAL 465ðð

'CIMENU ' LITERAL 126ðð

'DTLMNU ' LITERAL 13ððð

 'DTLRSP' LITERAL 328ðð

'DTLSCR ' LITERAL 131ðð

'ICFLIB ' LITERAL 421ðð

'ICFðð ' LITERAL 97ðð 1ð1ðð 318ðð 39ððð 399ðð

'ICFð1 ' LITERAL 98ðð 1ð3ðð 185ðð 392ðð 4ðððð

'ICFð2 ' LITERAL 99ðð 1ð5ðð 188ðð 394ðð 4ð1ðð

'ICFð3 ' LITERAL 1ðððð 1ð7ðð 191ðð 396ðð 4ð2ðð

'ITMMNU ' LITERAL 127ðð

 'ITMRSP' LITERAL 2ð2ðð

'ITMSC2 ' LITERAL 128ðð 268ðð

'ITMSC3 ' LITERAL 129ðð 273ðð

 'RTDMULCL' LITERAL 42ððð

 'ð3ðð' LITERAL 2ðððð 326ðð

 'ð31ð' LITERAL 436ðð

 'ð4' LITERAL 194ðð 2ð1ðð 32ððð 327ðð 423ðð

'1' LITERAL 147ðð 148ðð 176ðð 177ðð 262ðð

263ðð 267ðð 312ðð 313ðð 369ðð

37ððð 44ððð 441ðð

 '2' LITERAL 442ðð

 ð LITERAL 221ðð 279ðð

 ðððððð LITERAL 217ðð 344ðð

 ð1285 LITERAL 464ðð

 1ðð LITERAL 278ðð

 399999 LITERAL 181ðð

 699999 LITERAL 182ðð

 899999 LITERAL 183ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN Hððððð1 Hððððð2 Hððððð3 Iððððð1 Iððððð2 Iððððð3

Jððððð1 Jððððð2 Jððððð3 Kððððð1 Kððððð2 Kððððð3

Lððððð1 Lððððð2 Lððððð3 Mððððð1 Mððððð2 Mððððð3

Nððððð1 Nððððð2 Nððððð3 147ðð 176ðð 177ðð

262ðð 263ðð 267ðð 312ðð 313ðð 369ðð

 37ððð

 LR 4ð4ððM

 OA 51ððD 487ð1

\ 7ð31 1ð 198ððM 324ððM

 46 279ððM 28ððð

\ 7ð31 66 345ððM

\ 7ð31 86 399ððM 4ððððM 4ð1ððM 4ð2ððM 439ððM

\ 7ð31 87 125ððM

88 124ððM 322ððM 324ððM 325ðð 44ððð

89 124ððM 196ððM 198ððM 199ðð 441ðð

Figure 11-20 (Part 13 of 14). Source Program Example — RSDMUL (User-Defined Formats)

11-50 ICF Programming V4R1

\ 7ð31 9ð

97 Hððððð1 Iððððð1 Jððððð1 Kððððð1 Lððððð1 Mððððð1

 Nððððð1 267ðð

98 Hððððð2 Iððððð2 Jððððð2 Kððððð2 Lððððð2 Mððððð2

Nððððð2 177ðð 263ðð 313ðð 37ððð

99 Hððððð3 Iððððð3 Jððððð3 Kððððð3 Lððððð3 Mððððð3

Nððððð3 147ðð 176ðð 262ðð 312ðð 369ðð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 22

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

24 24 ð ð ð ð ð

 Program Source Totals:

Records : 487

Specifications : 245

Table Records : ð

Comments : 242

 PRM has been called.

 Program RSDMUL is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-20 (Part 14 of 14). Source Program Example — RSDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-51

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RSFMUL

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RSFMUL

File : QICFPUB

Library : ICFLIB

Last Change : 1ð/ð3/9ð 14:47:52

Description : RPG Multi-Session example w/$$FORMAT (source)

S o u r c e L i s t i n g

 1ðð H\\ 1ð/13/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS PROGRAM ASSIGNS FOUR SESSIONS AS FOLLOWS: 1ð/13/87

4ðð H\ 'ICFðð' TO INQUIRE ABOUT A CUSTOMER ACCOUNT BEFORE AN 1ð/13/87

5ðð H\ ORDER IS PROCESSED. 1ð/13/87

6ðð H\ 'ICFð1' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM 1ð/13/87

7ðð H\ BEING ORDERED (ITEM ððððð1 THRU 399999). 1ð/13/87

8ðð H\ 'ICFð2' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM 1ð/13/87

9ðð H\ BEING ORDERED (ITEM 4ððððð THRU 699999). 1ð/13/87

1ððð H\ 'ICFð3' TO INQUIRE ABOUT THE INVENTORY STATUS OF AN ITEM 1ð/13/87

11ðð H\ BEING ORDERED (ITEM 7ððððð THRU 999999). 1ð/13/87

12ðð H\ A DISPLAY DEVICE IS USED TO ENTER THE REQUEST (USING A 1ð/13/87

13ðð H\ CUSTOMER AND AN ITEM MENU) THAT IS SENT TO THE REMOTE 1ð/13/87

14ðð H\ SYSTEM. 1ð/13/87

 15ðð H\ ð3/2ð/89

 16ðð F\\ 1ð/13/87

 17ðð F\ 1ð/13/87

18ðð F\ F I L E S P E C I F I C A T I O N S 1ð/13/87

 19ðð F\ 1ð/13/87

2ððð F\ CMNFIL : ICF FILE USED TO SEND A REQUEST TO ONE 1ð/ð3/9ð

21ðð F\ OF FOUR DIFFERENT TARGET PROGRAMS. MULTIPLE 1ð/13/87

22ðð F\ SESSIONS ARE ACTIVE CONCURRENTLY. 1ð/13/87

 23ðð F\ 1ð/13/87

24ðð F\ DSPFIL : DISPLAY FILE USED TO ENTER A REQUEST TO BE 1ð/13/87

25ðð F\ SENT TO A REMOTE SYSTEM. 1ð/13/87

 26ðð F\ 1ð/13/87

Figure 11-21 (Part 1 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-52 ICF Programming V4R1

27ðð F\ THE FOLLOWING INFORMATION IS SPECIFIED AS PART OF THE 1ð/13/87

 28ðð F\ FILE SPECIFICATION: 1ð/13/87

29ðð F\ INFDS : I/O FEEDBACK AREA 1ð/13/87

3ððð F\ NUM : SPECIFIES THE MAXIMUM NUMBER OF PRO- ð3/2ð/89

31ðð F\ GRAM DEVICES THAT CAN BE ATTACHED TO ð3/2ð/89

32ðð F\ THIS FILE. A VALUE OF 4 IS SPECIFIED ð3/2ð/89

33ðð F\ FOR THE ICF FILE. THIS DEFINES 1ð/ð3/9ð

34ðð F\ THE FILE AS A MULTIPLE DEVICE FILE. ð3/2ð/89

35ðð F\ ID : 1ð CHARACTER PROGRAM DEVICE NAME FIELD ð3/2ð/89

36ðð F\ WHICH SPECIFIES WHICH PROGRAM DEVICE TO ð3/2ð/89

37ðð F\ DIRECT THE OPERATION. ð3/2ð/89

38ðð F\ ID : 1ð CHARACTER PROGRAM DEVICE NAME 1ð/13/87

39ðð F\ FIELD THAT SPECIFIES WHICH PROGRAM ð3/2ð/89

4ððð F\ DEVICE TO DIRECT THE OPERATION. ð3/2ð/89

 41ðð F\ 1ð/13/87

 42ðð F\ 1ð/13/87

 43ðð F\\\ 1ð/13/87

 44ðð \.1/ 1ð/13/87

 H \\\\\

45ðð FCMNFIL CF F 15ð WORKSTN 1ð/13/87

 46ðð F KINFDS IOFB 1ð/13/87

 47ðð F KINFSR \PSSR 1ð/14/87

 48ðð F KNUM 4 1ð/13/87

 49ðð F KID CMID 1ð/13/87

5ððð FDSPFIL CF E WORKSTN 1ð/13/87

 51ðð F KINFDS IODS 1ð/13/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE DSPFIL.

EXTERNAL FORMAT CIMENU RPG NAME CIMENU

EXTERNAL FORMAT DTLMNU RPG NAME DTLMNU

EXTERNAL FORMAT DTLSCR RPG NAME DTLSCR

EXTERNAL FORMAT ITMMNU RPG NAME ITMMNU

EXTERNAL FORMAT ITMSC2 RPG NAME ITMSC2

EXTERNAL FORMAT ITMSC3 RPG NAME ITMSC3

EXTERNAL FORMAT TIMOUT RPG NAME TIMOUT

52ðð FQPRINT O F 132 PRINTER 1ð/13/87

 53ðð I\\\ 1ð/13/87

 54ðð I\ 1ð/13/87

55ðð I\ I N P U T S P E C I F I C A T I O N S 1ð/13/87

 56ðð I\ 1ð/13/87

57ðð I\ IODS : REDEFINES THE I/O FEEDBACK AREA OF THE DISPLAY 1ð/13/87

58ðð I\ FILE. THIS AREA CONTAINS THE NAME OF THE LAST 1ð/13/87

59ðð I\ RECORD PROCESSED. THIS FIELD IS CALLED RECID. 1ð/13/87

6ððð I\ IOFB : REDEFINES THE I/O FEEDBACK AREA FOR THE ICF 1ð/ð3/9ð

 61ðð I\ FILE. 1ð/13/87

 62ðð I\ ð3/2ð/89

 63ðð I\\ 1ð/13/87

 64ðð \.2/ ð3/2ð/89

65ðð ICMNFIL NS 8ð 1 CC ð3/2ð/89

 66ðð I 1 1 RECCUS 1ð/13/87

 67ðð I 2 7ðCUSTNO 1ð/13/87

 68ðð I 8 37 DNAME 1ð/13/87

 69ðð I 38 43 DLSTOR 1ð/13/87

 7ððð I 44 52 DSLSTM 1ð/13/87

 71ðð I 53 61 DSPMð1 1ð/13/87

 72ðð I 62 7ð DSPMð2 1ð/13/87

 73ðð I 71 79 DSPMð3 1ð/13/87

 74ðð I 8ð 9ð DSTTYD 1ð/13/87

 75ðð I 91 93 IDEPT 1ð/13/87

76ðð I 94 15ð FILL2ð 1ð/13/87

Figure 11-21 (Part 2 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-53

 77ðð I NS 81 1 CI 1ð/13/87

 78ðð I 1 1 RECITM 1ð/13/87

 79ðð I 2 7ðITEMNO 1ð/13/87

 8ððð I 8 37 DESC 1ð/13/87

 81ðð I 38 44ðQTYLST 1ð/13/87

 82ðð I 45 51ðQTYOH 1ð/13/87

 83ðð I 52 58ðQTYOO 1ð/13/87

 84ðð I 59 65ðQTYBO 1ð/13/87

 85ðð I 66 67 UNIT 1ð/13/87

 86ðð I 68 742PRð1 1ð/13/87

 87ðð I 75 8ððPRð5 1ð/13/87

 88ðð I 81 852UFRT 1ð/13/87

 89ðð I 86 942SLSTM 1ð/13/87

 9ððð I 95 1ð52SLSTY 1ð/13/87

 91ðð I 1ð6 1142CSTTM 1ð/13/87

 92ðð I 115 1252CSTTY 1ð/13/87

 93ðð I 126 13ð2PRO 1ð/13/87

 94ðð I 131 1392LOS 1ð/13/87

95ðð I 14ð 15ð FILL1ð 1ð/13/87

 96ðð I\\ 1ð/13/87

Aðððððð INPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Aðððððð MENU FOR INQUIRY

 Aððððð1 3 3 \IN97

 Aððððð2 2 2 \IN98

 Aððððð3 1 1 \IN99

 Aððððð4 4 4 OPTION

Bðððððð INPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Bðððððð CUSTOMER INQUIRY SCREEN 1

 Bððððð1 3 3 \IN97

 Bððððð2 2 2 \IN98

 Bððððð3 1 1 \IN99

 Bððððð4 4 9ðCUSTNO

Cðððððð INPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Cðððððð CUSTOMER INQUIRY SCR. #2

 Cððððð1 3 3 \IN97

 Cððððð2 2 2 \IN98

 Cððððð3 1 1 \IN99

Dðððððð INPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Dðððððð ITEM INQUIRY SCREEN ONE

 Dððððð1 3 3 \IN97

 Dððððð2 2 2 \IN98

 Dððððð3 1 1 \IN99

 Dððððð4 4 9ðITEMNO

Eðððððð INPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Eðððððð ITEM INQUIRY SCREEN TWO

 Eððððð1 3 3 \IN97

 Eððððð2 2 2 \IN98

 Eððððð3 1 1 \IN99

Fðððððð INPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

Fðððððð ITEM INQUIRY SCREEN 3

 Fððððð1 3 3 \IN97

 Fððððð2 2 2 \IN98

 Fððððð3 1 1 \IN99

Gðððððð INPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

Gðððððð TIME OUT SCREEN

 Gððððð1 3 3 \IN97

 Gððððð2 2 2 \IN98

 Gððððð3 1 1 \IN99

 Gððððð4 4 4 TIMRSP

 97ðð IIODS DS 1ð/13/87

98ðð I 1 24ð FILLð1 1ð/13/87

99ðð I 261 268 RECID 1ð/13/87

1ðððð I 271 415 FILLð2 1ð/13/87

Figure 11-21 (Part 3 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-54 ICF Programming V4R1

 1ð1ðð IIOFB DS 1ð/13/87

 1ð2ðð I \ROUTINE LOC 1ð/14/87

 1ð3ðð I \STATUS ERR 1ð/14/87

1ð4ðð I 1 24ð FILLð3 1ð/13/87

 1ð5ðð I 38 45 FMTNM 1ð/13/87

1ð6ðð I 273 282 CMID 1ð/13/87

1ð7ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

1ð8ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

1ð9ðð I 4ð3 4ð4 MINCOD 1ð/13/87

11ððð I 261 268 RECID2 1ð/13/87

111ðð I 271 415 FILLð4 1ð/13/87

 112ðð C\\ 1ð/13/87

 113ðð C\ 1ð/13/87

114ðð C\ C A L C U L A T I O N S P E C I F I C A T I O N S 1ð/13/87

115ðð C\ THE DISPLAY DEVICE IS IMPLICITLY ACQUIRED WHEN THE 1ð/16/87

116ðð C\ FILE IS OPENED. 1ð/13/87

 117ðð C\ 1ð/13/87

118ðð C\ ALL OF THE PROGRAM DEVICES ARE EXPLICITLY ACQUIRED. 1ð/16/87

 119ðð C\ 1ð/13/87

12ððð C\ EACH OF THE FOUR TARGET PROGRAMS ARE EVOKED TO ESTABLISH 1ð/13/87

121ðð C\ TRANSACTIONS WITH THE REMOTE SYSTEMS. 1ð/13/87

 122ðð C\ 1ð/13/87

123ðð C\ THE MAIN INQUIRY MENU (CIMENU) IS WRITTEN TO THE USER'S 1ð/13/87

 124ðð C\ DISPLAY. 1ð/13/87

 125ðð C\ 1ð/13/87

 126ðð C\\ 1ð/13/87

 127ðð \.3/ ð3/2ð/89

 128ðð C BEGIN TAG 1ð/13/87

 129ðð C 'ICFðð 'ACQ CMNFIL 1ST SESSION 1ð/13/87

 13ððð C 'ICFð1 'ACQ CMNFIL 2ND SESSION 1ð/13/87

 131ðð C 'ICFð2 'ACQ CMNFIL 3RD SESSION 1ð/13/87

 132ðð C 'ICFð3 'ACQ CMNFIL 4TH SESSION 1ð/13/87

 133ðð C MOVEL'ICFðð 'CMID 1ST PROGRAM 1ð/13/87

 134ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 135ðð C MOVEL'ICFð1 'CMID 2ND PROGRAM 1ð/13/87

 136ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 137ðð C MOVEL'ICFð2 'CMID 3RD PROGRAM 1ð/13/87

 138ðð C EXSR EVKSR CALL EVOKE 1ð/13/87

 139ðð C MOVEL'ICFð3 'CMID 4TH PROGRAM 1ð/13/87

 14ððð C EXSR EVKSR CALL EVOKE 1ð/13/87

 141ðð C MAIN TAG 1ð/13/87

 142ðð C WRITECIMENU 1ð/13/87

 143ðð C\\ 1ð/13/87

 144ðð C\ 1ð/13/87

145ðð C\ DETERMINE USER'S REQUEST 1ð/13/87

 146ðð C\ 1ð/13/87

147ðð C\ A READ OPERATION IS ISSUED TO THE DISPLAY PROGRAM DEVICE 1ð/13/87

148ðð C\ TO RECEIVE THE USER'S REQUEST. THE TYPE OF REQUEST MADE IS ð3/2ð/89

149ðð C\ BASED ON THE DISPLAY FORMAT CURRENTLY ON THE SCREEN. THE ð3/2ð/89

15ððð C\ RECORD FORMAT NAME IS EXTRACTED FROM THE I/O FEEDBACK AREA ð3/2ð/89

151ðð C\ AND USED TO DETERMINE WHAT ACTION SHOULD BE TAKEN NEXT. ð3/2ð/89

 152ðð C\ 1ð/13/87

 153ðð C\\ 1ð/13/87

 154ðð \.4/ 1ð/13/87

 155ðð C READRQ TAG 1ð/13/87

 156ðð C READ DSPFIL 88 3 1ð/13/87

 157ðð C RECID CABEQ'CIMENU 'MENU MAIN MENU 1ð/13/87

158ðð C RECID CABEQ'ITMMNU 'ITMIN AT ITEM SCR? 1ð/13/87

159ðð C RECID CABEQ'ITMSC2 'ITMRTN AT ITM SCR? 1ð/13/87

16ððð C RECID CABEQ'ITMSC3 'ITMRTN AT ITM SCR? 1ð/13/87

 161ðð C RECID CABEQ'DTLMNU 'DTLIN FOR DETAIL? 1ð/13/87

 162ðð C RECID CABEQ'DTLSCR 'DTLRTN CUST SCR? 1ð/13/87

163ðð C WRITECIMENU MAIN MENU 1ð/13/87

164ðð C GOTO READRQ THERE IS ERR 1ð/13/87

Figure 11-21 (Part 4 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-55

 165ðð C\\ 1ð/13/87

 166ðð C\ 1ð/13/87

 167ðð C\ MAIN MENU 1ð/13/87

 168ðð C\ 1ð/13/87

169ðð C\ THE MAIN MENU IS READ TO DETERMINE THE REQUEST ENTERED BY ð3/2ð/89

17ððð C\ THE USER. IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. ð3/2ð/89

171ðð C\ IF OPTION = 1, AN ITEM INQUIRY MENU IS WRITTEN TO THE SCREEN. ð3/2ð/89

172ðð C\ IF OPTION = 2, A CUSTOMER INQUIRY MENU IS WRITTEN TO THE ð3/2ð/89

 173ðð C\ SCREEN. ð3/2ð/89

 174ðð C\ 1ð/13/87

 175ðð C\\ 1ð/13/87

 176ðð \.5/ 1ð/13/87

 177ðð C MENU TAG 1ð/13/87

 178ðð C \IN99 CABEQ'1' END END PROGRAM 1ð/13/87

 179ðð C OPTION IFEQ '1' Bðð1 1ð/13/87

18ððð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 181ðð C ELSE Xðð1 1ð/13/87

182ðð C WRITEDTLMNU CUST MENU ðð1 1ð/13/87

 183ðð C END Eðð1 1ð/13/87

 184ðð C GOTO READRQ 1ð/13/87

 185ðð C\\\ 1ð/13/87

 186ðð C\ 1ð/13/87

 187ðð C\ ITEM INQUIRY 1ð/13/87

 188ðð C\ 1ð/13/87

189ðð C\ THE ITEM NUMBER REQUESTED BY THE USER ON THE ITEM INQUIRY 1ð/13/87

19ððð C\ SCREEN IS CHECKED. THIS IS DETERMINED BY THE DISPLAY ð3/2ð/89

191ðð C\ RECORD FORMAT BEING PROCESSED - IN THIS CASE ITMMNU. ð3/2ð/89

 192ðð C\ 1ð/13/87

193ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. IF CMD 2 1ð/13/87

194ðð C\ IS PRESSED, THE ITEM INQUIRY REQUEST IS CANCELED, AND THE 1ð/13/87

195ðð C\ MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. 1ð/13/87

 196ðð C\ 1ð/13/87

197ðð C\ IF AN ITEM NUMBER IS ENTERED, A ITEM INQUIRY REQUEST IS 1ð/13/87

198ðð C\ SENT TO THE APPROPRIATE REMOTE SYSTEM. THE REMOTE SYSTEM 1ð/13/87

199ðð C\ IS SELECTED BASED ON THE ITEM NUMBER REQUESTED. 1ð/13/87

 2ðððð C\ 1ð/13/87

2ð1ðð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB 1ð/13/87

 2ð2ðð C\ IS ENDED. 1ð/13/87

 2ð3ðð C\ 1ð/13/87

 2ð4ðð C\\\ 1ð/13/87

 2ð5ðð \.6/ 1ð/13/87

 2ð6ðð C ITMIN TAG 1ð/13/87

2ð7ðð C \IN99 CABEQ'1' END EXIT ON CMD3 1ð/13/87

 2ð8ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

2ð9ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 21ððð C GOTO READRQ ðð1 1ð/13/87

 211ðð C END Eðð1 1ð/13/87

 212ðð C ITEMNO CABLE399999 XICFð1 1ð/13/87

 213ðð C ITEMNO CABLE699999 XICFð2 1ð/13/87

 214ðð C ITEMNO CABLE899999 XICFð3 1ð/13/87

 215ðð C XICFð1 TAG 1ð/13/87

 216ðð C MOVEL'ICFð1 'CMID 1ð/13/87

 217ðð C GOTO XITMIN 1ð/13/87

 218ðð C XICFð2 TAG 1ð/13/87

 219ðð C MOVEL'ICFð2 'CMID 1ð/13/87

 22ððð C GOTO XITMIN 1ð/13/87

 221ðð C XICFð3 TAG 1ð/13/87

 222ðð C MOVEL'ICFð3 'CMID 1ð/13/87

 223ðð C XITMIN TAG 1ð/13/87

224ðð C EXCPTITEMRQ INQ W/INV 1ð/13/87

 225ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

Figure 11-21 (Part 5 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-56 ICF Programming V4R1

 226ðð C TRY89 TAG 1ð/13/87

227ðð C SETOF 89 1 1ð/13/87

 228ðð C MOVEL' ' RECITM RESET RECID 1ð/13/87

 229ðð C MOVEL' 'CMID 1ð/13/87

 23ððð C READ CMNFIL 891ð 2 3 1ð/13/87

 231ðð C 89 EXSR ERRCHK FILE ERROR? 1ð/13/87

 232ðð C MAJMIN CABGE'ð3ðð' ITMIN NODATA? 1ð/13/87

233ðð C N81 EXCPTNOTITM REC NOT FD? 1ð/13/87

234ðð C SETOF 81 1 1ð/13/87

 235ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 236ðð C RECITM CABNE'I' RECERR PRINT MSG 1ð/13/87

 237ðð C\\\ 1ð/13/87

 238ðð C\ 1ð/13/87

239ðð C\ PROCESS ITEM INFORMATION 1ð/13/87

 24ððð C\ 1ð/13/87

241ðð C\ THE ITEM RECORD RECEIVED FROM THE TARGET PROGRAM AND THE ð3/2ð/89

242ðð C\ INFORMATION ABOUT THE ITEM IS PROCESSED AND DISPLAYED. IF ð3/2ð/89

243ðð C\ ITEMNO IS ð OR LESS, IT IS AN INVALID REQUEST AND A FRESH ð3/2ð/89

244ðð C\ ITEM MENU IS WRITTEN TO THE SCREEN. IF REQUEST IS VALID, ð3/2ð/89

245ðð C\ VALUES ARE CALCULATED BASED ON THE INFORMATION RECEIVED. ð3/2ð/89

 246ðð C\ 1ð/13/87

 247ðð C\\\ 1ð/13/87

 248ðð \.7/ ð3/2ð/89

 249ðð C ITMOUT TAG 1ð/13/87

 25ððð C ITEMNO IFLE ðððððð Bðð1 1ð/13/87

251ðð C WRITEITMMNU ITEM MENU ðð1 1ð/13/87

 252ðð C GOTO READRQ READ DISPLAY ðð1 1ð/13/87

 253ðð C ELSE Xðð1 1ð/13/87

 254ðð C Z-ADDð QAVAIL 7ð QTY AVAIL. ðð1 1ð/13/87

 255ðð C ADD QTYOH QAVAIL ðð1 1ð/13/87

 256ðð C SUB QTYOO QAVAIL ðð1 1ð/13/87

 257ðð C ADD QTYBO QAVAIL ðð1 1ð/13/87

 258ðð C MOVELDESC DSC ðð1 1ð/13/87

 259ðð C MOVE QTYOO QTYO ðð1 1ð/13/87

 26ððð C MOVE QTYOH QTYH ðð1 1ð/13/87

 261ðð C MOVE QTYBO QTYB ðð1 1ð/13/87

 262ðð C MOVE UNIT UNT ðð1 1ð/13/87

 263ðð C MOVE PRð1 PR1 ðð1 1ð/13/87

 264ðð C MOVE PRð5 PR5 ðð1 1ð/13/87

 265ðð C MOVE UFRT UFR ðð1 1ð/13/87

266ðð C WRITEITMSC2 ITEM DETAIL ðð1 1ð/13/87

 267ðð C GOTO READRQ ðð1 1ð/13/87

 268ðð C END Eðð1 1ð/13/87

 269ðð C\\ 1ð/13/87

 27ððð C\ 1ð/13/87

271ðð C\ ADDITIONAL ITEM INFORMATION 1ð/13/87

 272ðð C\ 1ð/13/87

273ðð C\ ADDITIONAL ITEM INFORMATION IS PROCESSED AND THE RESULT 1ð/13/87

274ðð C\ IS DISPLAYED ON THE SCREEN WHEN A RESPONSE IS READ ð3/2ð/89

275ðð C\ FROM THE DISPLAY WITH AN ITEM SCREEN RECORD FORMAT. ð3/2ð/89

 276ðð C\ 1ð/13/87

277ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. 1ð/13/87

 278ðð C\ 1ð/13/87

279ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE ITEM INQUIRY IS ENDED, ð3/2ð/89

28ððð C\ AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. ð3/2ð/89

 281ðð C\ 1ð/13/87

282ðð C\ IF CMD 3 (\IN97) IS PRESSED, THE ITEM INQUIRY MENU IS 1ð/14/87

283ðð C\ WRITTEN ON THE SCREEN. 1ð/14/87

 284ðð C\ 1ð/14/87

285ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 2 FOR ITEM REQUESTED IS 1ð/16/87

286ðð C\ CURRENTLY DISPLAYED, MORE INFORMATION IS CALCULATED AND 1ð/16/87

 287ðð C\ DISPLAYED. 1ð/16/87

 288ðð C\ 1ð/16/87

289ðð C\ IF 'ENTER' IS PRESSED WHILE SCREEN 3 FOR ITEM REQUESTED IS 1ð/16/87

29ððð C\ CURRENTLY DISPLAYED, THEN THE ITEM INQUIRY MENU IS WRITTEN ð3/2ð/89

291ðð C\ TO THE SCREEN. ð3/2ð/89

 292ðð C\ 1ð/13/87

 293ðð C\\ 1ð/13/87

Figure 11-21 (Part 6 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-57

 294ðð \.8/ ð3/2ð/89

 295ðð C ITMRTN TAG 1ð/13/87

 296ðð C \IN99 CABEQ'1' END JOB ENDS 1ð/13/87

 297ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

298ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 299ðð C GOTO READRQ ðð1 1ð/13/87

 3ðððð C END Eðð1 1ð/13/87

3ð1ðð C \IN97 IFEQ '1' CMD 3 ? Bðð1 1ð/13/87

3ð2ðð C RECID IFEQ 'ITMSC2 ' ITM SCR 2 ? Bðð2 1ð/13/87

3ð3ðð C WRITEITMMNU YES,THEN ITS ðð2 1ð/13/87

 3ð4ðð C GOTO READRQ ITEM MENU ðð2 1ð/13/87

 3ð5ðð C END Eðð2 1ð/13/87

 3ð6ðð C END Eðð1 1ð/13/87

3ð7ðð C RECID IFEQ 'ITMSC3 ' ITM SCR 3 ? Bðð1 1ð/13/87

3ð8ðð C WRITEITMMNU YES,THEN ITS ðð1 1ð/13/87

 3ð9ðð C GOTO READRQ ITEM MENU ðð1 1ð/13/87

 31ððð C END Eðð1 1ð/13/87

 311ðð C SLSTM SUB CSTTM PROFM 92 PROFIT MONTH 1ð/13/87

 312ðð C MULT 1ðð PROFM 1ð/13/87

 313ðð C SLSTM COMP ð 46 3 1ð/13/87

 314ðð C N46 PROFM DIV SLSTM PROFM PROFIT PCT 1ð/13/87

 315ðð C QTYLST MULT PRð1 LOSTS LOST SALES 1ð/13/87

 316ðð C MOVE SLSTM SLSM 1ð/13/87

 317ðð C MOVE SLSTY SLSY 1ð/13/87

 318ðð C MOVE CSTTM CSTM 1ð/13/87

 319ðð C MOVE PROFM PROFIT 1ð/13/87

 32ððð C MOVE CSTTY CSTY 1ð/13/87

321ðð C WRITEITMSC3 ITEM DTL 2 1ð/13/87

 322ðð C GOTO READRQ 1ð/13/87

 323ðð C\\\ 1ð/13/87

 324ðð C\ 1ð/13/87

 325ðð C\ CUSTOMER INQUIRY 1ð/13/87

 326ðð C\ 1ð/13/87

327ðð C\ THE REQUEST FROM THE CUSTOMER INQUIRY MENU IS PROCESSED. 1ð/13/87

 328ðð C\ 1ð/13/87

329ðð C\ IF CMD 1 (\IN99) IS PRESSED, THE PROGRAM IS ENDED. 1ð/13/87

 33ððð C\ 1ð/13/87

331ðð C\ IF CMD 2 (\IN98) IS PRESSED, THE CUSTOMER INQUIRY IS ENDED, 1ð/13/87

332ðð C\ AND THE MAIN MENU (CIMENU) IS WRITTEN TO THE SCREEN. 1ð/13/87

 333ðð C\ 1ð/13/87

334ðð C\ IF A CUSTOMER NUMBER IS ENTERED, THE CUSTOMER INQUIRY 1ð/13/87

335ðð C\ REQUEST IS SENT TO THE REMOTE SYSTEM. 1ð/13/87

 336ðð C\ 1ð/13/87

337ðð C\ A READ TO THE PROGRAM DEVICE IS ISSUED TO RECEIVE THE ð3/2ð/89

338ðð C\ INFORMATION FROM THE TARGET PROGRAM. 1ð/13/87

 339ðð C\ 1ð/13/87

34ððð C\ IF AN ERROR OCCURS, THE ERROR IS PRINTED AND THE JOB IS 1ð/13/87

 341ðð C\ ENDED. 1ð/13/87

 342ðð C\ 1ð/13/87

 343ðð C\\ 1ð/13/87

 344ðð \.9/ ð3/2ð/89

 345ðð C DTLIN TAG 1ð/13/87

 346ðð C \IN99 CABEQ'1' END JOB ENDS 1ð/13/87

 347ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

348ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 349ðð C GOTO READRQ ðð1 1ð/13/87

 35ððð C END Eðð1 1ð/13/87

 351ðð C EVDTL TAG 1ð/13/87

 352ðð C MOVE CUSTNO ITEMNO 1ð/13/87

 353ðð C MOVEL'ICFðð 'CMID 1ð/13/87

354ðð C EXCPTITEMRQ SEND CUST # 1ð/13/87

 355ðð C MAJCOD CABGE'ð4' ERROR ERROR RTN 1ð/13/87

 356ðð C TRY88 TAG 1ð/13/87

 357ðð C MOVEL' 'CMID 1ð/13/87

 358ðð C MOVEL' ' RECCUS RESET RECID 1ð/13/87

359ðð C SETOF 88 1 1ð/13/87

36ððð C READ CMNFIL 881ðREC CUS INF 2 3 1ð/13/87

 361ðð C 88 EXSR ERRCHK FILE ERR? 1ð/13/87

 362ðð C MAJMIN CABGE'ð3ðð' EVDTL NODATATRYAGN 1ð/13/87

363ðð C N8ð EXCPTNOTCUS RECD NOT FD? 1ð/13/87

 364ðð C RECCUS CABNE'C' RECERR PRINT MSG 1ð/13/87

365ðð C SETOF 8ð 1 1ð/13/87

Figure 11-21 (Part 7 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-58 ICF Programming V4R1

 366ðð C\\ 1ð/13/87

 367ðð C\ 1ð/13/87

368ðð C\ PROCESS CUSTOMER INFORMATION 1ð/13/87

 369ðð C\ 1ð/13/87

37ððð C\ THE CUSTOMER DATA RECEIVED FROM THE TARGET PROGRAM IS ð3/2ð/89

371ðð C\ PROCESSED. IF CUSTOMER NUMBER IS ZERO OR LESS, IT IS AN ð3/2ð/89

372ðð C\ INVALID REQUEST AND THE MAIN MENU IS WRITTEN TO THE SCREEN. ð3/2ð/89

 373ðð C\ 1ð/14/87

374ðð C\ WHEN THE RCVTRNRND INDICATOR(\IN9ð) IS RECEIVED, THE ð3/2ð/89

375ðð C\ CUSTOMER INFORMATION IS WRITTEN TO THE SCREEN. ð3/2ð/89

 376ðð C\ 1ð/14/87

377ðð C\ IF DURING THE READ OPERATION AN ERROR IS RECEIVED, 1ð/13/87

378ðð C\ CONTROL GOES TO THE ERROR ROUTINE TO END THE JOB. 1ð/13/87

 379ðð C\ 1ð/13/87

 38ððð C\\\ 1ð/13/87

 381ðð \.1ð/ 1ð/13/87

 382ðð C DTOUT TAG 1ð/13/87

 383ðð C CUSTNO IFEQ ðððððð Bðð1 1ð/13/87

384ðð C SETOF 66 3 ðð1 1ð/13/87

385ðð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 386ðð C GOTO READRQ ðð1 1ð/13/87

 387ðð C END Eðð1 1ð/13/87

 388ðð C MOVE CUSTNO CUSTN 1ð/13/87

 389ðð C MOVELDNAME CNAME ð8/ð8/89

 39ððð C MOVE DLSTOR DLSTR 1ð/13/87

 391ðð C MOVE DSLSTM DSLSM 1ð/13/87

 392ðð C MOVE DSPMð1 DSPM1 1ð/13/87

 393ðð C MOVE DSPMð2 DSPM2 1ð/13/87

 394ðð C MOVE DSTTYD DSTYD 1ð/13/87

 395ðð C MOVE IDEPT DEPT 1ð/13/87

396ðð C WRITEDTLSCR DETAIL INFO 1ð/13/87

 397ðð C GOTO READRQ 1ð/13/87

 398ðð C\\ 1ð/13/87

 399ðð C\ 1ð/13/87

4ðððð C\ THIS ROUTINE HANDLES THE USER'S REQUEST FOLLOWING THE 1ð/14/87

4ð1ðð C\ DISPLAY OF THE CUSTOMER INFORMATION. CMD KEY 1 WILL END ð3/2ð/89

4ð2ðð C\ THE JOB, CMD KEY 2 WILL DISPLAY THE MAIN MENU, AND "ENTER" ð3/2ð/89

4ð3ðð C\ WILL BRING UP THE CUSTOMER INQUIRY MENU. ð3/2ð/89

 4ð4ðð C\ 1ð/13/87

 4ð5ðð C\\ 1ð/13/87

 4ð6ðð \.11/ 1ð/13/87

 4ð7ðð C DTLRTN TAG 1ð/13/87

 4ð8ðð C \IN99 CABEQ'1' END JOB ENDS 1ð/13/87

 4ð9ðð C \IN98 IFEQ '1' Bðð1 1ð/13/87

41ððð C WRITECIMENU MAIN MENU ðð1 1ð/13/87

 411ðð C GOTO READRQ ðð1 1ð/13/87

 412ðð C END Eðð1 1ð/13/87

413ðð C WRITEDTLMNU CUSTOMER INQ 1ð/13/87

 414ðð C GOTO READRQ 1ð/13/87

 415ðð C\\\ 1ð/13/87

 416ðð C\ 1ð/13/87

417ðð C\ WHEN AN I/O OPERATION ERROR IS DETECTED, A MESSAGE IS PRINTED ð3/2ð/89

418ðð C\ AND THE TRANSACTION AND SESSION ARE ENDED FOR EACH OF THE ð3/2ð/89

 419ðð C\ REMOTE SYSTEMS. ð3/2ð/89

 42ððð C\ 1ð/13/87

 421ðð C\\\ 1ð/13/87

 422ðð \.12/ 1ð/13/87

 423ðð C RECERR TAG 1ð/13/87

 424ðð C EXCPTRECER WRONG RECID 1ð/13/87

 425ðð C GOTO END END PROGRAM 1ð/13/87

 426ðð C ERROR TAG 1ð/13/87

 427ðð C EXCPTMMERR 1ð/13/87

 428ðð C END TAG 1ð/13/87

 429ðð C MOVEL'ICFðð 'CMID 1ð/13/87

43ððð C EXCPTDETACH DET 1ST TRANS 1ð/13/87

 431ðð C MOVEL'ICFð1 'CMID 1ð/13/87

432ðð C EXCPTDETACH DET 2ND TRANS 1ð/13/87

 433ðð C MOVEL'ICFð2 'CMID 1ð/13/87

434ðð C EXCPTDETACH DET 3RD TRANS 1ð/13/87

 435ðð C MOVEL'ICFð3 'CMID 1ð/13/87

436ðð C EXCPTDETACH DET 4TH TRANS 1ð/13/87

Figure 11-21 (Part 8 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-59

 437ðð C ABORT TAG 1ð/13/87

438ðð C 'ICFðð 'REL CMNFIL 86 REL 1ST SESS 2 1ð/13/87

439ðð C 'ICFð1 'REL CMNFIL 86 REL 2ND SESS 2 1ð/13/87

44ððð C 'ICFð2 'REL CMNFIL 86 REL 3RD SESS 2 1ð/13/87

441ðð C 'ICFð3 'REL CMNFIL 86 REL 4TH SESS 2 1ð/13/87

 442ðð C FORCE TAG 1ð/13/87

443ðð C SETON LR 1 1ð/13/87

 444ðð C RETRN 1ð/13/87

 445ðð C\\ 1ð/13/87

 446ðð C\ 1ð/13/87

447ðð C\ THIS SUBROUTINE IS CALLED TO EVOKE THE TARGET PROGRAM. THE ð3/2ð/89

448ðð C\ SAME TARGET PROGRAM (ICFLIB/RTDMULCL) IS EVOKED AT FOUR ð3/2ð/89

449ðð C\ DIFFERENT REMOTE SYSTEMS. THE PROGRAM DEVICE IDENTIFIES ð3/2ð/89

45ððð C\ WHICH SESSION SHOULD BE EVOKED. THE PROGRAM DEVICE WAS ð3/2ð/89

451ðð C\ SPECIFIED IN CMID PRIOR TO CALLING THIS ROUTINE. ð3/2ð/89

 452ðð C\ 1ð/13/87

 453ðð C\\\ 1ð/13/87

 454ðð \.13/ 1ð/13/87

 455ðð C EVKSR BEGSR 1ð/13/87

 456ðð C EXCPTEVOKE EVOKE TARGET 1ð/13/87

 457ðð C ENDSR 1ð/13/87

 458ðð C\\ 1ð/13/87

 459ðð C\ 1ð/13/87

46ððð C\ THIS SUBROUTINE IS CALLED TO PERFORM FURTHER CHECKS ON FILE ð3/2ð/89

461ðð C\ ERRORS RESULTING FROM THE READ OPERATION ISSUED TO THE PRO- ð3/2ð/89

462ðð C\ GRAM DEVICE. THIS ROUTINE CHECKS FOR THE TIME OUT INDICATION. ð3/2ð/89

463ðð C\ IF THERE IS A TIME OUT, THEN A MESSAGE IS SENT TO THE USER'S ð3/2ð/89

464ðð C\ DISPLAY SCREEN REQUESTING ACTION, OTHERWISE PROGRAM ENDS. 1ð/16/87

 465ðð C\ 1ð/13/87

 466ðð C\\ 1ð/13/87

 467ðð \.14/ 1ð/13/87

 468ðð C ERRCHK BEGSR 1ð/13/87

 469ðð C MAJMIN IFEQ 'ð31ð' TIMER EXPD? Bðð1 1ð/13/87

 47ððð C CHKAGN TAG ðð1 1ð/13/87

471ðð C WRITETIMOUT DISPLAY MSG ðð1 1ð/13/87

472ðð C READ DSPFIL 87READ REPLY 3 ðð1 1ð/13/87

 473ðð C 88 TIMRSP CABEQ'1' TRY88 CUST INQUIR ðð1 1ð/13/87

 474ðð C 89 TIMRSP CABEQ'1' TRY89 ITEM INQUIR ðð1 1ð/13/87

 475ðð C TIMRSP IFEQ '2' END PROGRAM Bðð2 1ð/13/87

 476ðð C EXCPTEOS END SESSION ðð2 1ð/13/87

 477ðð C GOTO FORCE END PROGRAM ðð2 1ð/13/87

 478ðð C END Eðð2 1ð/13/87

 479ðð C GOTO CHKAGN ASK AGAIN ðð1 1ð/13/87

 48ððð C END Eðð1 1ð/13/87

 481ðð C MAJMIN CABEQ'ð3ðð' ERRESR TRN/NODATA 1ð/13/87

 482ðð C MAJMIN CABEQ'ðððð' ERRESR TRN W/DATA 1ð/13/87

 483ðð C GOTO ERROR ABEND 1ð/13/87

 484ðð C ERRESR TAG 1ð/13/87

 485ðð C ENDSR 1ð/13/87

 486ðð C\\ 1ð/14/87

 487ðð C\ 1ð/14/87

488ðð C\ THIS IS THE PROGRAM ERROR SUBROUTINE THAT RECEIVES CONTROL ð3/2ð/89

489ðð C\ WHEN AN ERROR OCCURS AFTER AN I/O OPERATION IS ISSUED TO THE ð3/2ð/89

49ððð C\ PROGRAM DEVICE AND THERE IS A NON-ZERO VALUE IN THE RPG ð3/2ð/89

491ðð C\ STATUS FIELD (ERR). THIS ROUTINE CHECKS FOR STATUS VALUES ð3/2ð/89

492ðð C\ THAT RELATE TO ICF OPERATIONS. IF THE PROGRAM DEVICE 1ð/ð3/9ð

493ðð C\ IS ALREADY ACQUIRED, THE ERROR IS IGNORED, OTHERWISE THE ð3/2ð/89

494ðð C\ PROGRAM IS TERMINATED. ð3/2ð/89

 495ðð C\ 1ð/14/87

 496ðð C\\ 1ð/14/87

 497ðð \.15/ 1ð/14/87

 498ðð C \PSSR BEGSR 1ð/14/87

499ðð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 5ðððð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 5ð1ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

5ð2ðð C ENDPSR ENDSRRETURN BACK TO MAIN 1ð/14/87

 5ð3ðð C\\ 1ð/13/87

Figure 11-21 (Part 9 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-60 ICF Programming V4R1

5ð4ðð OQPRINT E 1 MMERR 1ð/13/87

5ð5ðð O 21 'COMMUNICATION ERROR.' 1ð/13/87

 5ð6ðð O 34 'MAJOR/MINOR:' 1ð/13/87

 5ð7ðð O MAJCOD 37 1ð/13/87

 5ð8ðð O 38 '/' 1ð/13/87

 5ð9ðð O MINCOD 4ð 1ð/13/87

 51ððð O 49 'FORMAT:' 1ð/13/87

 511ðð O FMTNM 6ð 1ð/13/87

 512ðð O 69 'PGMDEV:' 1ð/13/87

 513ðð O CMID 8ð 1ð/13/87

 514ðð O E 1 RECER 1ð/13/87

515ðð O 22 'UNMATCH RECORD FORMAT' 1ð/13/87

516ðð O 34 '-JOB ENDED.' 1ð/13/87

 517ðð O E 1 NOTITM 1ð/13/87

518ðð O 21 'NOT ITEM RECD-' 1ð/13/87

 519ðð O ITEMNO 28 1ð/13/87

 52ððð O 29 '/' 1ð/13/87

 521ðð O DESC 6ð 1ð/13/87

 522ðð O E 1 NOTCUS 1ð/13/87

523ðð O 21 'NOT CUST RECD-' 1ð/13/87

 524ðð O CUSTNO 28 1ð/13/87

 525ðð O 29 '/' 1ð/13/87

 526ðð O DNAME 6ð 1ð/13/87

527ðð OCMNFIL E EVOKE 1ð/13/87

 528ðð O K8 '$$EVOKNI' 1ð/13/87

 529ðð O 8 'RTFMULCL' 1ð/13/87

 53ððð O 32 'ICFLIB ' 1ð/13/87

 531ðð O E ITEMRQ 1ð/13/87

 532ðð O K6 '$$SEND' 1ð/13/87

 533ðð O 4 'ððð6' 1ð/13/87

 534ðð O ITEMNO 1ð 1ð/13/87

 535ðð O E DETACH 1ð/13/87

 536ðð O K8 '$$SENDET' 1ð/13/87

 537ðð O 4 'ðððð' 1ð/13/87

 538ðð O E EOS 1ð/13/87

 539ðð O K5 '$$EOS' 1ð/13/87

 54ððð O 4 'ðððð' 1ð/13/87

\ 61ð3 54ðð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Hðððððð OUTPUT FIELDS FOR RECORD CIMENU FILE DSPFIL FORMAT CIMENU.

Hðððððð MENU FOR INQUIRY

Iðððððð OUTPUT FIELDS FOR RECORD DTLMNU FILE DSPFIL FORMAT DTLMNU.

Iðððððð CUSTOMER INQUIRY SCREEN 1

Jðððððð OUTPUT FIELDS FOR RECORD DTLSCR FILE DSPFIL FORMAT DTLSCR.

Jðððððð CUSTOMER INQUIRY SCR. #2

 Jððððð1 CUSTN 6 CHAR 6

 Jððððð2 DEPT 9 ZONE 3,ð

 Jððððð3 DLSTR 15 ZONE 6,ð

 Jððððð4 DSLSM 24 ZONE 9,ð

 Jððððð5 DSPM1 33 ZONE 9,ð

 Jððððð6 DSPM2 42 ZONE 9,ð

 Jððððð7 DSPM3 51 ZONE 9,ð

 Jððððð8 DSTYD 62 ZONE 11,ð

 Jððððð9 CNAME 67 CHAR 5

Kðððððð OUTPUT FIELDS FOR RECORD ITMMNU FILE DSPFIL FORMAT ITMMNU.

Kðððððð ITEM INQUIRY SCREEN ONE

Lðððððð OUTPUT FIELDS FOR RECORD ITMSC2 FILE DSPFIL FORMAT ITMSC2.

Lðððððð ITEM INQUIRY SCREEN TWO

 Lððððð1 DSC 3ð CHAR 3ð

 Lððððð2 QAVAIL 37 ZONE 7,ð

 Lððððð3 QTYH 44 ZONE 7,ð

 Lððððð4 QTYO 51 ZONE 7,ð

 Lððððð5 QTYB 58 ZONE 7,ð

 Lððððð6 UNT 6ð CHAR 2

 Lððððð7 PR1 67 ZONE 7,2

 Lððððð8 PR5 74 ZONE 7,ð

 Lððððð9 UFR 79 ZONE 5,2

Figure 11-21 (Part 10 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-61

Mðððððð OUTPUT FIELDS FOR RECORD ITMSC3 FILE DSPFIL FORMAT ITMSC3.

Mðððððð ITEM INQUIRY SCREEN 3

 Mððððð1 SLSM 9 ZONE 9,2

 Mððððð2 SLSY 2ð ZONE 11,2

 Mððððð3 CSTM 29 ZONE 9,2

 Mððððð4 CSTY 4ð ZONE 11,2

 Mððððð5 PROFIT 45 ZONE 5,2

 Mððððð6 LOSTS 54 ZONE 9,2

Nðððððð OUTPUT FIELDS FOR RECORD TIMOUT FILE DSPFIL FORMAT TIMOUT.

Nðððððð TIME OUT SCREEN

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 45ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE CMNFIL.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 CMNFIL WORKSTN 45ððD 65ðð 77ðð 129ðð 13ððð

131ðð 132ðð 23ððð 36ððð 438ðð

439ðð 44ððð 441ðð 527ðð 531ðð

 535ðð 538ðð

 $$EOS 539ðð

 $$EVOKNI 528ðð

 $$SEND 532ðð

 $$SENDET 536ðð

 ð2 DSPFIL WORKSTN 5ðððD 156ðð 472ðð

CIMENU 5ðððD Aðððððð 142ðð 163ðð 2ð9ðð

298ðð 348ðð 385ðð 41ððð Hðððððð

DTLMNU 5ðððD Bðððððð 182ðð 413ðð Iðððððð

 DTLSCR 5ðððD Cðððððð 396ðð Jðððððð

ITMMNU 5ðððD Dðððððð 18ððð 251ðð 3ð3ðð

 3ð8ðð Kðððððð

 ITMSC2 5ðððD Eðððððð 266ðð Lðððððð

 ITMSC3 5ðððD Fðððððð 321ðð Mðððððð

 TIMOUT 5ðððD Gðððððð 471ðð Nðððððð

 ð3 QPRINT PRINTER 52ððD 5ð4ðð 514ðð 517ðð 522ðð

 54ðð1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN97 A(1) Aððððð1 Bððððð1 Cððððð1 Dððððð1 Eððððð1

 Fððððð1 Gððððð1 3ð1ðð

\IN98 A(1) Aððððð2 Bððððð2 Cððððð2 Dððððð2 Eððððð2

Fððððð2 Gððððð2 2ð8ðð 297ðð 347ðð

 4ð9ðð

\IN99 A(1) Aððððð3 Bððððð3 Cððððð3 Dððððð3 Eððððð3

Fððððð3 Gððððð3 178ðð 2ð7ðð 296ðð

 346ðð 4ð8ðð

 \PSSR BEGSR 45ðð 498ððD

\ 7ð31 ABORT TAG 437ððD

Figure 11-21 (Part 11 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-62 ICF Programming V4R1

\ 7ð31 BEGIN TAG 128ððD

 CHKAGN TAG 47ðððD 479ðð

 CMID A(1ð) 1ð6ððD 133ððM 135ððM 137ððM 139ððM

216ððM 219ððM 222ððM 229ððM 353ððM

357ððM 429ððM 431ððM 433ððM 435ððM

 513ðð

 CNAME A(5) 389ððM Jððððð9D

 CSTM P(9,2) 318ððM Mððððð3D

 CSTTM P(9,2) 91ððD 311ðð 318ðð

 CSTTY P(11,2) 92ððD 32ððð

 CSTY P(11,2) 32ðððM Mððððð4D

 CUSTN A(6) 388ððM Jððððð1D

CUSTNO P(6,ð) 67ððD Bððððð4D 352ðð 383ðð 388ðð

 524ðð

 DEPT P(3,ð) 395ððM Jððððð2D

 DESC A(3ð) 8ðððD 258ðð 521ðð

DETACH EXCPT 43ððð 432ðð 434ðð 436ðð 535ðð

 DLSTOR A(6) 69ððD 39ððð

 DLSTR P(6,ð) 39ðððM Jððððð3D

 DNAME A(3ð) 68ððD 389ðð 526ðð

 DSC A(3ð) 258ððM Lððððð1D

 DSLSM P(9,ð) 391ððM Jððððð4D

 DSLSTM A(9) 7ðððD 391ðð

 DSPMð1 A(9) 71ððD 392ðð

 DSPMð2 A(9) 72ððD 393ðð

\ 7ð31 DSPMð3 A(9) 73ððD

 DSPM1 P(9,ð) 392ððM Jððððð5D

 DSPM2 P(9,ð) 393ððM Jððððð6D

 DSPM3 P(9,ð) Jððððð7D

DSTTYD A(11) 74ððD 394ðð

 DSTYD P(11,ð) 394ððM Jððððð8D

DTLIN TAG 161ðð 345ððD

 DTLRTN TAG 162ðð 4ð7ððD

\ 7ð31 DTOUT TAG 382ððD

END TAG 178ðð 2ð7ðð 296ðð 346ðð 4ð8ðð

 425ðð 428ððD

 ENDPSR ENDSR 5ðððð 5ð2ððD

 EOS EXCPT 476ðð 538ðð

 ERR Z(5,ð) 1ð3ððD 5ðððð

ERRCHK BEGSR 231ðð 361ðð 468ððD

ERRESR TAG 481ðð 482ðð 484ððD

ERROR TAG 225ðð 235ðð 355ðð 426ððD 483ðð

EVDTL TAG 351ððD 362ðð

EVKSR BEGSR 134ðð 136ðð 138ðð 14ððð 455ððD

 EVOKE EXCPT 456ðð 527ðð

\ 7ð31 FILLð1 A(24ð) 98ððD

\ 7ð31 FILLð2 A(145) 1ððððD

\ 7ð31 FILLð3 A(24ð) 1ð4ððD

\ 7ð31 FILLð4 A(145) 111ððD

\ 7ð31 FILL1ð A(11) 95ððD

\ 7ð31 FILL2ð A(57) 76ððD

 FMTNM A(8) 1ð5ððD 511ðð

FORCE TAG 442ððD 477ðð

IDEPT A(3) 75ððD 395ðð

 IODS DS(415) 5ððð 97ððD

 IOFB DS(415) 45ðð 1ð1ððD

ITEMNO P(6,ð) 79ððD Dððððð4D 212ðð 213ðð 214ðð

 25ððð 352ððM 519ðð 534ðð

ITEMRQ EXCPT 224ðð 354ðð 531ðð

ITMIN TAG 158ðð 2ð6ððD 232ðð

\ 7ð31 ITMOUT TAG 249ððD

ITMRTN TAG 159ðð 16ððð 295ððD

\ 7ð31 LOC A(8) 1ð2ððD

\ 7ð31 LOS P(9,2) 94ððD

 LOSTS P(9,2) 315ððM Mððððð6D

Figure 11-21 (Part 12 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-63

\ 7ð31 MAIN TAG 141ððD

MAJCOD A(2) 1ð8ððD 225ðð 235ðð 355ðð 5ð7ðð

MAJMIN A(4) 1ð7ððD 232ðð 362ðð 469ðð 481ðð

 482ðð

 MENU TAG 157ðð 177ððD

MINCOD A(2) 1ð9ððD 5ð9ðð

 MMERR EXCPT 427ðð 5ð4ðð

 NOTCUS EXCPT 363ðð 522ðð

 NOTITM EXCPT 233ðð 517ðð

 OPTION A(1) Aððððð4D 179ðð

\ 7ð31 PRO P(5,2) 93ððD

 PROFIT P(5,2) 319ððM Mððððð5D

PROFM P(9,2) 311ððD 312ððM 314ðð 314ððM 319ðð

 PRð1 P(7,2) 86ððD 263ðð 315ðð

 PRð5 P(6,ð) 87ððD 264ðð

 PR1 P(7,2) 263ððM Lððððð7D

 PR5 P(7,ð) 264ððM Lððððð8D

QAVAIL P(7,ð) 254ððD 255ððM 256ððM 257ððM Lððððð2D

 QTYB P(7,ð) 261ððM Lððððð5D

 QTYBO P(7,ð) 84ððD 257ðð 261ðð

 QTYH P(7,ð) 26ðððM Lððððð3D

 QTYLST P(7,ð) 81ððD 315ðð

 QTYO P(7,ð) 259ððM Lððððð4D

 QTYOH P(7,ð) 82ððD 255ðð 26ððð

 QTYOO P(7,ð) 83ððD 256ðð 259ðð

READRQ TAG 155ððD 164ðð 184ðð 21ððð 252ðð

267ðð 299ðð 3ð4ðð 3ð9ðð 322ðð

349ðð 386ðð 397ðð 411ðð 414ðð

RECCUS A(1) 66ððD 358ððM 364ðð

 RECER EXCPT 424ðð 514ðð

RECERR TAG 236ðð 364ðð 423ððD

RECID A(8) 99ððD 157ðð 158ðð 159ðð 16ððð

161ðð 162ðð 3ð2ðð 3ð7ðð

\ 7ð31 RECID2 A(8) 11ðððD

RECITM A(1) 78ððD 228ððM 236ðð

RETURN A(6) 499ððD 5ð1ððM 5ð2ðð

 SLSM P(9,2) 316ððM Mððððð1D

SLSTM P(9,2) 89ððD 311ðð 313ðð 314ðð 316ðð

 SLSTY P(11,2) 9ðððD 317ðð

 SLSY P(11,2) 317ððM Mððððð2D

TIMRSP A(1) Gððððð4D 473ðð 474ðð 475ðð

TRY88 TAG 356ððD 473ðð

TRY89 TAG 226ððD 474ðð

 UFR P(5,2) 265ððM Lððððð9D

 UFRT P(5,2) 88ððD 265ðð

 UNIT A(2) 85ððD 262ðð

 UNT A(2) 262ððM Lððððð6D

 XICFð1 TAG 212ðð 215ððD

 XICFð2 TAG 213ðð 218ððD

 XICFð3 TAG 214ðð 221ððD

XITMIN TAG 217ðð 22ððð 223ððD

 ' ' LITERAL 229ðð 357ðð

 ' ' LITERAL 499ðð

 ' ' LITERAL 228ðð 358ðð

 '\CANCL' LITERAL 5ð1ðð

 'C' LITERAL 364ðð

'CIMENU ' LITERAL 157ðð

'DTLMNU ' LITERAL 161ðð

'DTLSCR ' LITERAL 162ðð

 'I' LITERAL 236ðð

'ICFðð ' LITERAL 129ðð 133ðð 353ðð 429ðð 438ðð

'ICFð1 ' LITERAL 13ððð 135ðð 216ðð 431ðð 439ðð

'ICFð2 ' LITERAL 131ðð 137ðð 219ðð 433ðð 44ððð

'ICFð3 ' LITERAL 132ðð 139ðð 222ðð 435ðð 441ðð

'ITMMNU ' LITERAL 158ðð

'ITMSC2 ' LITERAL 159ðð 3ð2ðð

'ITMSC3 ' LITERAL 16ððð 3ð7ðð

 'ðððð' LITERAL 482ðð

'ð3ðð' LITERAL 232ðð 362ðð 481ðð

 'ð31ð' LITERAL 469ðð

 'ð4' LITERAL 225ðð 235ðð 355ðð

Figure 11-21 (Part 13 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

11-64 ICF Programming V4R1

'1' LITERAL 178ðð 179ðð 2ð7ðð 2ð8ðð 296ðð

297ðð 3ð1ðð 346ðð 347ðð 4ð8ðð

4ð9ðð 473ðð 474ðð

 '2' LITERAL 475ðð

 ð LITERAL 254ðð 313ðð

 ðððððð LITERAL 25ððð 383ðð

 ð1285 LITERAL 5ðððð

 1ðð LITERAL 312ðð

 399999 LITERAL 212ðð

 699999 LITERAL 213ðð

 899999 LITERAL 214ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 \IN Aððððð1 Aððððð2 Aððððð3 Bððððð1 Bððððð2 Bððððð3

Cððððð1 Cððððð2 Cððððð3 Dððððð1 Dððððð2 Dððððð3

Eððððð1 Eððððð2 Eððððð3 Fððððð1 Fððððð2 Fððððð3

Gððððð1 Gððððð2 Gððððð3 178ðð 2ð7ðð 2ð8ðð

296ðð 297ðð 3ð1ðð 346ðð 347ðð 4ð8ðð

 4ð9ðð

 LR 443ððM

 OA 52ððD 54ðð1

\ 7ð31 1ð 23ðððM 36ðððM

 46 313ððM 314ðð

\ 7ð31 66 384ððM

 8ð 65ððM 363ðð 365ððM

 81 77ððM 233ðð 234ððM

\ 7ð31 86 438ððM 439ððM 44ðððM 441ððM

\ 7ð31 87 472ððM

88 156ððM 359ððM 36ðððM 361ðð 473ðð

89 227ððM 23ðððM 231ðð 474ðð

97 Aððððð1 Bððððð1 Cððððð1 Dððððð1 Eððððð1 Fððððð1

 Gððððð1 3ð1ðð

98 Aððððð2 Bððððð2 Cððððð2 Dððððð2 Eððððð2 Fððððð2

Gððððð2 2ð8ðð 297ðð 347ðð 4ð9ðð

99 Aððððð3 Bððððð3 Cððððð3 Dððððð3 Eððððð3 Fððððð3

Gððððð3 178ðð 2ð7ðð 296ðð 346ðð 4ð8ðð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 2ð

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

22 22 ð ð ð ð ð

 Program Source Totals:

Records : 54ð

Specifications : 296

Table Records : ð

Comments : 244

 PRM has been called.

 Program RSFMUL is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-21 (Part 14 of 14). Source Program Example — RSFMUL (System-Supplied Formats)

Target Program Multiple-Session Inquiry (Example
II): The following describes a target program for the
multiple-session inquiry.

Program Files: The RPG/400 multiple-session example
target program uses the following files:

CFILE
An ICF file used to send records to and receive
records from the source program.

PFILE
A database file used to retrieve the requested infor-
mation to send to the source program.

QPRINT
A printer file used to print error messages resulting
from communications errors.

DDS Source: The DDS source for the ICF file (CFILE) is
illustrated in Figure 11-22 on page 11-66.

 Chapter 11. RPG/400 Communications Applications 11-65

 SOURCE FILE QICFPUB/ICFLIB

 MEMBER CFILE

 SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A\\ 1ð/14/87

 2ðð A\ \ 1ð/14/87

 3ðð A\ ICF FILE \ 1ð/14/

4ðð A\ USED IN TARGET MULTIPLE SESSION PROGRAM \ 1ð/14/87

 5ðð A\ \ 1ð/14/87

 6ðð A\\ 1ð/14/87

 7ðð A INDARA ð8/ð4/87

 8ðð A ð5 RQSWRT ð8/ð4/87

 9ðð A 1ð ALWWRT ð8/ð4/87

1ððð A INDTXT(1ð '1ð END TRANS.') ð8/ð4/87

 11ðð A 15 EOS ð8/ð4/87

 12ðð A 2ð FAIL ð8/ð6/87

13ðð A INDTXT(2ð '2ð F ABORT ST') ð8/ð6/87

14ðð A RCVFAIL(25 'RECEIVED FAIL') ð8/ð4/87

 15ðð A 3ð DETACH ð8/ð6/87

16ðð A INDTXT(3ð '3ð>DETACH TGT') ð8/ð6/87

17ðð A RCVDETACH(44 'RECV DETACH') ð8/ð4/87

 18ðð A R SNDPART ð8/ð4/87

 19ðð A INVITE ð8/14/87

 2ððð A RECTYP 1 1ð/ð1/87

 21ðð A ITEMNO 6 1ð/ð8/87

 22ðð A EDATA 13ð ð8/ð4/87

 23ðð A FILL1 13 1ð/ð8/87

 24ðð A R RCVPART ð8/ð4/87

 25ðð A RECID2 6 1ð/ð8/87

 26ðð A PARTDS 8ð 1ð/ð8/87

 27ðð A FILL4 64 ð8/ð4/87

 28ðð A R RCVTRND ð8/ð7/87

29ðð A RCVTRNRND(4ð 'END OF TRN') ð8/ð7/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 11-22. DDS Source for ICF File Used by Target Program Multiple-Session Inquiry

The DDS for the database file (PFILE) is illustrated in
Figure 11-23.

 SOURCE FILE QICFPUB/ICFLIB

 MEMBER PFILE

 SEQNBR\...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... ð

 1ðð A LIFO ð7/ð2/87

 2ðð A R DBREC ð5/ð6/87

 3ðð A RECCUS 1 1ð/ð1/87

 4ðð A DBSEQ 6 ð8/18/87

 5ðð A DBDATA 13ð ð7/ð2/87

 6ðð A DBFILL 13 1ð/ð1/87

 7ðð A K DBSEQ ð7/ð4/87

\ \ \ \ E N D O F S O U R C E \ \ \ \

Figure 11-23. DDS Source for Database File Used by Target Program Multiple Session Inquiry

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:
CRTICFF FILE(ICFLIB/CFILE) SRCFILE(ICFLIB/QICFPUB)

SRCMBR(CFILE) ACQPGMDEV(RQSDEV) TEXT("TARGET ICF FILE

FOR MULTIPLE SESSION PROGRAM")

The command needed to define the program device entry is:
OVRICFDEVE PGMDEV(RQSDEV) RMTLOCNAME(\REQUESTER)

Program Explanation: The following explains the structure
of the program examples illustrated in Figure 11-24 on
page 11-68 and Figure 11-25 on page 11-73. The ICF file
used in the first example is defined by the user, and uses
externally described data formats (DDS). The second
example uses the same file, but uses program-described

data and system-supplied formats. The reference numbers
in the explanation below correspond to the numbers in the
program examples.

Although the basic structure of the two examples provided is
the same, there are differences because of the way the user-
defined formats and the system-supplied formats are used.
All output operations to the ICF file in the first example are
done using the WRITE operation. All output operations in
the ICF file in the second example using system-supplied
formats are done using the EXCPT operation.

Differences between the first and second example are
described as notes in each of the following descriptions
where necessary.

11-66 ICF Programming V4R1

.1/ The file specification defines the files used in the
program.

CFILE is the ICF file used to send records to and
receive records from the source program.

The files used in the program are implicitly opened at
the beginning of the RPG/400 cycle when the program
starts.

Note: In the program using system-supplied formats,
the input records for CFILE are explicitly coded in the
program since CFILE is now described as a program-
described file. The system-supplied file QICDMF can
be used instead of CFILE. To use QICDMF, specify
QICDMF in the file specification, or use an OVRICFF
command to change the file name from CFILE to
QICDMF.

The continuation lines on the file specification for
CFILE define the data structure name — FEEDBK for
the feedback area (INFDS). FEEDBK contains the fol-
lowing information, which is used to monitor for error
conditions after an I/O operation is issued to CFILE:

� Record format-name (FMTNM)
� Program device name (PGMDEV)
� Major/minor return code (MAJMIN)

.2/ A read operation is issued to the program device to
receive an inquiry request from the source program. If
an error occurs on the read operation (a major code
greater than 03), control passes to .5/.

If a detach indication is received, control goes to .6/.
Otherwise, the program goes to .3/. When a detach is
received, indicator 44 is set on, as defined by the
RCVDETACH keyword in the DDS for the ICF file.

Note: In the program using system-supplied formats,
a minor return code of 08 is checked to determine if a
detach indication was received. Also, the read opera-
tion is issued using file name CFILE in factor 2,
whereas in the user-supplied format example, it is
issued using a record format name.

.3/ If a turnaround indication was not received in .2/, the
program continues to read the ICF file until the indi-
cation is received.

If an error occurs (a major return code greater than 03
is returned from the read operation), the program goes
to .5/. Otherwise, the program goes to .4/.

The program also tests to see whether the receive
detach indicator (indicator 44) is set. If it is, the
program goes to .6/.

Note: In the program using system-supplied formats,
a minor return code 00 is checked to determine if
change direction occurred and a minor return code of
08 for a detach indication received.

.4/ The program uses the requested number received from
the source program to access the record from the data-
base. The information retrieved from the database file
(PFILE) is moved into the work area for the ICF file. A
write operation is issued to the ICF program device
using record format SNDPART. The write operation
sends the requested information back to the source
program.

If the requested number is not found, zero is propa-
gated into the field.

If an error occurs on the write operation (a major return
code greater than 03), control passes to .5/.

If no error occurs on the write, the program goes back
to .2/.

Note: In the program using the system-supplied
format, the write operation uses the $$SEND format to
send the data.

.5/ When an error in an I/O operation is detected, an
EXCPT operation is issued to print an error message
saying that an error has occurred on the ICF file. The
major/minor return code is also printed.

The program then goes to .6/.

.6/ Control passes here whenever the program has
detected a communication error, or received a detach
indication from the source program. The last record
indicator is set on, which ends the program. CFILE is
implicitly closed.

.7/ This subroutine is called for I/O operation errors that
are not handled by subroutine .6/. This subroutine
checks whether the program device is already acquired
when an acquire operation is requested, and, if so, the
second acquire is ignored. Otherwise, the program
ends.

 Chapter 11. RPG/400 Communications Applications 11-67

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RTDMUL

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RTDMUL

File : QICFPUB

Library : ICFLIB

Last Change : 1ð/ð3/9ð 14:5ð:39

Description : RPG Multi-Session example w/DDS (target)

S o u r c e L i s t i n g

 1ðð H\\ 1ð/13/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A CUSTOMER 1ð/13/87

4ðð H\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING 1ð/13/87

5ðð H\ THE DATABASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, RECORD 1ð/13/87

6ðð H\ LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES WITH ONLY 1ð/13/87

7ðð H\ THE RECORD CONTENTS DIFFERENT. 1ð/13/87

 8ðð H\ 1ð/13/87

9ðð H\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM 1ð/13/87

1ððð H\ THE SOURCE PROGRAM. 1ð/13/87

 11ðð H\ ð3/2ð/89

 12ðð H\\ 1ð/13/87

 H \\\\\

 13ðð FCFILE CF E WORKSTN 1ð/13/87

 14ðð F KINFDS FEEDBK 1ð/13/87

 15ðð F KINFSR \PSSR 1ð/14/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE CFILE.

EXTERNAL FORMAT SNDPART RPG NAME SNDPART

EXTERNAL FORMAT RCVPART RPG NAME RCVPART

EXTERNAL FORMAT RCVTRND RPG NAME RCVTRND

 16ðð FPFILE IF E K DISK 1ð/13/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE PFILE.

EXTERNAL FORMAT DBREC RPG NAME DBREC

17ðð FQPRINT O F 132 PRINTER 1ð/13/87

 18ðð \.1/ ð3/2ð/89

Aðððððð INPUT FIELDS FOR RECORD SNDPART FILE CFILE FORMAT SNDPART.

 Aððððð1 1 1 RECTYP

 Aððððð2 2 7 ITEMNO

Aððððð3 8 137 EDATA

Aððððð4 138 15ð FILL1

Bðððððð INPUT FIELDS FOR RECORD RCVPART FILE CFILE FORMAT RCVPART.

 Bððððð1 1 6 RECID2

 Bððððð2 7 86 PARTDS

Bððððð3 87 15ð FILL4

Cðððððð INPUT FIELDS FOR RECORD RCVTRND FILE CFILE FORMAT RCVTRND.

Dðððððð INPUT FIELDS FOR RECORD DBREC FILE PFILE FORMAT DBREC.

 Dððððð1 1 1 RECCUS

 Dððððð2 2 7 DBSEQ

Figure 11-24 (Part 1 of 5). Target Program Example — RTDMUL (User-Defined Formats)

11-68 ICF Programming V4R1

Dððððð3 8 137 DBDATA

Dððððð4 138 15ð DBFILL

 19ðð IFEEDBK DS 1ð/13/87

 2ððð I \ROUTINE LOC 1ð/14/87

 21ðð I \STATUS ERR 1ð/14/87

 22ðð I 38 45 FMTNM 1ð/13/87

23ðð I 273 282 PGMDEV 1ð/13/87

24ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

25ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

26ðð I 4ð3 4ð4 MINCOD 1ð/13/87

 27ðð C\\\ 1ð/13/87

 28ðð C\ 1ð/13/87

29ðð C\ READ THE REQUEST FROM THE SOURCE PROGRAM. INDICATOR 4ð 1ð/13/87

3ððð C\ INDICATES RCVTRNRND OCCURRED. INDICATOR 44 INDICATES THAT 1ð/13/87

31ðð C\ DETACH HAS BEEN RECEIVED. 1ð/13/87

 32ðð C\ 1ð/13/87

33ðð C\ INDICATOR 99 WILL BE TURNED ON FOR "I/O ERRORS" THEREBY 1ð/13/87

34ðð C\ PREVENTING THE RPG DEFAULT ERROR HANDLER FROM BEING CALLED. 1ð/13/87

35ðð C\ THIS IS NECESSARY TO ALLOW THE PROGRAM TO PROCESS THE ICF 1ð/ð3/9ð

36ðð C\ MAJOR/MINOR RETURN CODE. THIS PROGRAM CHECKS FOR ERRORS ON 1ð/13/87

37ðð C\ EVERY ICF FILE OPERATION. A MAJOR CODE GREATER THAN ð3 1ð/ð3/9ð

38ðð C\ INDICATES AN ERROR. 1ð/13/87

 39ðð C\ 1ð/13/87

 4ððð C\\\ 1ð/13/87

 41ðð \.2/ ð3/2ð/89

 42ðð C READ TAG 1ð/13/87

 43ðð C READ RCVPART 995ð 2 3 1ð/13/87

 44ðð C MAJCOD CABGT'ð3' ERROR 1ð/13/87

 45ðð C \IN44 CABEQ'1' END DET RECV? 1ð/13/87

 46ðð C MOVE RECID2 DBSEQ 1ð/13/87

47ðð C MAJMIN CABEQ'ðððð' XMIT RCVTRNRND? 1ð/13/87

 48ðð C \IN4ð CABEQ'1' XMIT RCVTRNRND? 1ð/13/87

 49ðð \.3/ ð3/2ð/89

 5ððð C \IN4ð DOWEQ'ð' RCVTRNRND? Bðð1 ð3/2ð/89

51ðð C READ RCVTRND 995ð 2 3 ðð1 1ð/13/87

 52ðð C MAJCOD CABGT'ð3' ERROR ðð1 1ð/13/87

 53ðð C \IN44 CABEQ'1' END DETACH RECV? ðð1 1ð/13/87

 54ðð C END Eðð1 1ð/13/87

 55ðð C\\\ 1ð/13/87

 56ðð C\ 1ð/13/87

57ðð C\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A SINGLE 1ð/13/87

58ðð C\ RECORD CONTAINING THE REQUESTED CUSTOMER OR ORDER NUMBER. THE 1ð/13/87

59ðð C\ RESPONSE WILL BE RETURNED IN A SINGLE RECORD CONTAINING EITHER 1ð/13/87

6ððð C\ THE ITEM OR CUSTOMER INFORMATION, DEPENDING ON THE DATABASE 1ð/13/87

61ðð C\ CONTENT. 1ð/13/87

 62ðð C\ 1ð/13/87

63ðð C\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO THE 1ð/13/87

64ðð C\ ICF FILE USING FORMAT SNDPART. 1ð/ð3/9ð

 65ðð C\ 1ð/13/87

 66ðð C\\\ 1ð/13/87

 67ðð \.4/ ð3/2ð/89

 68ðð C XMIT TAG 1ð/13/87

69ðð C DBSEQ CHAINPFILE 98 98 IF NOT FD 1 ð3/2ð/89

 7ððð C MOVE DBSEQ ITEMNO 1ð/13/87

71ðð C MOVE RECCUS RECTYP RECD FMT ID 1ð/13/87

 72ðð C\\\ 1ð/13/87

 73ðð C\ ð3/2ð/89

74ðð C\ WHEN THE REQUESTED CUSTOMER OR ITEM NUMBER IS NOT FOUND, 1ð/13/87

75ðð C\ ðððððð IS PROPAGATED TO THE KEY FIELD BEFORE THE RESPONSE 1ð/13/87

76ðð C\ IS SENT BACK TO THE SOURCE PROGRAM. 1ð/13/87

 77ðð C\ ð3/2ð/89

 78ðð C\\ 1ð/13/87

 79ðð C 98 MOVE 'ðððððð' ITEMNO 1ð/13/87

 8ððð C MOVELDBDATA EDATA MOVE DATA 1ð/13/87

 81ðð C WRITESNDPART DATA W/DET 1ð/13/87

 82ðð C MAJCOD CABGT'ð3' ERROR 1ð/13/87

 83ðð C GOTO READ 1ð/13/87

Figure 11-24 (Part 2 of 5). Target Program Example — RTDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-69

 84ðð C\\\ 1ð/13/87

 85ðð C\ 1ð/13/87

86ðð C\ IF ANY ICF FILE ERROR OCCURS, PRINT THE ERROR MESSAGE, 1ð/ð3/9ð

87ðð C\ AND THEN END THE JOB. 1ð/13/87

 88ðð C\ 1ð/13/87

 89ðð C\\\ 1ð/13/87

 9ððð \.5/ ð3/2ð/89

 91ðð C ERROR TAG 1ð/13/87

 92ðð C EXCPTMMERR 1ð/13/87

 93ðð C END TAG 1ð/13/87

 94ðð \.6/ ð3/2ð/89

95ðð C SETON LR 1 1ð/13/87

 96ðð C RETRN 1ð/13/87

 97ðð C\\ 1ð/14/87

 98ðð C\ 1ð/14/87

99ðð C\ THIS IS THE PROGRAM EXCEPTION/ERROR SUBROUTINE THAT RECEIVES 1ð/14/87

1ðððð C\ CONTROL WHEN AN EXCEPTION OR ERROR OCCURS AFTER AN I/O IS ð3/2ð/89

1ð1ðð C\ ISSUED TO AN ICF PROGRAM DEVICE AND THERE IS A NON-ZERO ð3/2ð/89

1ð2ðð C\ VALUE UPDATED IN THE RPG STATUS FIELD (ERR). THIS ROUTINE ð3/2ð/89

1ð3ðð C\ CHECKS FOR STATUS VALUES THAT RELATE TO AN ICF OPERATION. ð3/2ð/89

1ð4ðð C\ IF THE PROGRAM DEVICE IS ALREADY ACQUIRED, THE EXCEPTION IS ð3/2ð/89

1ð5ðð C\ IGNORED, OTHERWISE THE PROGRAM IS TERMINATED. ð3/2ð/89

 1ð6ðð C\ 1ð/14/87

 1ð7ðð C\\ 1ð/14/87

 1ð8ðð \.7/ ð3/2ð/89

 1ð9ðð C \PSSR BEGSR 1ð/14/87

11ððð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 111ðð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 112ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

113ðð C ENDPSR ENDSRRETURN BACK TO MAIN 1ð/14/87

 114ðð C\\ 1ð/13/87

115ðð OQPRINT E 1 MMERR 1ð/13/87

116ðð O 21 'ERROR ON ICF ' 1ð/ð3/9ð

 117ðð O 34 'MAJOR/MINOR:' 1ð/13/87

 118ðð O MAJCOD 37 1ð/13/87

 119ðð O 38 '/' 1ð/13/87

 12ððð O MINCOD 4ð 1ð/13/87

 121ðð O 49 'FORMAT:' 1ð/13/87

 122ðð O FMTNM 6ð 1ð/13/87

 123ðð O 69 'PGMDEV:' 1ð/13/87

 124ðð O PGMDEV 8ð 1ð/13/87

\ 61ð3 124ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

Eðððððð OUTPUT FIELDS FOR RECORD SNDPART FILE CFILE FORMAT SNDPART.

 Eððððð1 RECTYP 1 CHAR 1

 Eððððð2 ITEMNO 7 CHAR 6

 Eððððð3 EDATA 137 CHAR 13ð

 Eððððð4 FILL1 15ð CHAR 13

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 13ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE CFILE.

K e y F i e l d I n f o r m a t i o n

 PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES

 ð2 PFILE

 DBREC

 DBSEQ CHAR 6

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 CFILE WORKSTN 13ððD

 RCVPART 13ððD Bðððððð 43ðð

 RCVTRND 13ððD Cðððððð 51ðð

 SNDPART 13ððD Aðððððð 81ðð Eðððððð

 ð2 PFILE DISK 16ððD 69ðð

 DBREC 16ððD Dðððððð

 ð3 QPRINT PRINTER 17ððD 115ðð 124ð1

Figure 11-24 (Part 3 of 5). Target Program Example — RTDMUL (User-Defined Formats)

11-70 ICF Programming V4R1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

\IN4ð A(1) 48ðð 5ððð

\IN44 A(1) 45ðð 53ðð

 \PSSR BEGSR 13ðð 1ð9ððD

 DBDATA A(13ð) Dððððð3D 8ððð

\ 7ð31 DBFILL A(13) Dððððð4D

DBSEQ A(6) Dððððð2D 46ððM 69ðð 7ððð

 EDATA A(13ð) Aððððð3D 8ðððM Eððððð3D

END TAG 45ðð 53ðð 93ððD

 ENDPSR ENDSR 111ðð 113ððD

 ERR Z(5,ð) 21ððD 111ðð

ERROR TAG 44ðð 52ðð 82ðð 91ððD

 FEEDBK DS(4ð4) 13ðð 19ððD

 FILL1 A(13) Aððððð4D Eððððð4D

\ 7ð31 FILL4 A(64) Bððððð3D

FMTNM A(8) 22ððD 122ðð

ITEMNO A(6) Aððððð2D 7ðððM 79ððM Eððððð2D

\ 7ð31 LOC A(8) 2ðððD

MAJCOD A(2) 25ððD 44ðð 52ðð 82ðð 118ðð

 MAJMIN A(4) 24ððD 47ðð

 MINCOD A(2) 26ððD 12ððð

 MMERR EXCPT 92ðð 115ðð

\ 7ð31 PARTDS A(8ð) Bððððð2D

PGMDEV A(1ð) 23ððD 124ðð

 READ TAG 42ððD 83ðð

RECCUS A(1) Dððððð1D 71ðð

RECID2 A(6) Bððððð1D 46ðð

RECTYP A(1) Aððððð1D 71ððM Eððððð1D

RETURN A(6) 11ðððD 112ððM 113ðð

 XMIT TAG 47ðð 48ðð 68ððD

 ' ' LITERAL 11ððð

 '\CANCL' LITERAL 112ðð

 'ð' LITERAL 5ððð

 'ðððð' LITERAL 47ðð

'ðððððð' LITERAL 79ðð

 'ð3' LITERAL 44ðð 52ðð 82ðð

'1' LITERAL 45ðð 48ðð 53ðð

 ð1285 LITERAL 111ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

\IN 45ðð 48ðð 5ððð 53ðð

 LR 95ððM

 OA 17ððD 124ð1

\ 7ð31 ð5

\ 7ð31 1ð

\ 7ð31 15

\ 7ð31 2ð

\ 7ð31 25

\ 7ð31 3ð

 4ð 48ðð 5ððð

 44 45ðð 53ðð

\ 7ð31 5ð 43ððM 51ððM

 98 69ððM 79ðð

\ 7ð31 99 43ððM 51ððM

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 12

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Figure 11-24 (Part 4 of 5). Target Program Example — RTDMUL (User-Defined Formats)

 Chapter 11. RPG/400 Communications Applications 11-71

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

14 14 ð ð ð ð ð

 Program Source Totals:

Records : 124

Specifications : 54

Table Records : ð

Comments : 7ð

 PRM has been called.

 Program RTDMUL is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-24 (Part 5 of 5). Target Program Example — RTDMUL (User-Defined Formats)

11-72 ICF Programming V4R1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ICFLIB/RTFMUL

Source file : ICFLIB/QICFPUB

Source member : \PGM

Text not available for message RXTðð73 file QRPGMSG.

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RTFMUL

File : QICFPUB

Library : ICFLIB

Last Change : 1ð/ð3/9ð 14:52:2ð

Description : RPG Multi-Session example w/$$FORMAT (target)

S o u r c e L i s t i n g

 1ðð H\\ 1ð/13/87

 2ðð H\ ð3/2ð/89

3ðð H\ THIS PROGRAM WILL HANDLE THE REQUEST FOR EITHER A CUSTOMER 1ð/13/87

4ðð H\ NUMBER OR AN ITEM NUMBER. THIS IS ACCOMPLISHED BY MAKING 1ð/13/87

5ðð H\ THE DATABASE FILE STRUCTURE (KEY LENGTH, KEY POSITION, 1ð/13/87

6ðð H\ RECORD LENGTH, RECORD SIZE, ETC.) THE SAME FOR BOTH FILES ð3/2ð/89

7ðð H\ WITH ONLY THE RECORD CONTENTS DIFFERENT. ð3/2ð/89

 8ðð H\ ð3/2ð/89

9ðð H\ THIS PROGRAM ENDS WHEN A DETACH REQUEST IS RECEIVED FROM 1ð/13/87

1ððð H\ THE REMOTE PROGRAM. 1ð/13/87

 11ðð H\ ð3/2ð/89

 12ðð H\\ 1ð/13/87

 H \\\\\

 13ðð FCFILE CF F 256 WORKSTN 1ð/13/87

 14ðð F KINFDS FEEDBK 1ð/13/87

 15ðð F KINFSR \PSSR 1ð/14/87

 16ðð FPFILE IF E K DISK 1ð/13/87

RECORD FORMAT(S): LIBRARY ICFLIB FILE PFILE.

EXTERNAL FORMAT DBREC RPG NAME DBREC

17ðð FQPRINT O F 132 PRINTER 1ð/13/87

 18ðð \.1/ 38 45 FMTNM ð3/2ð/89

 19ðð ICFILE NS 99 1ð/13/87

 2ððð I 1 6 RECID2 1ð/13/87

21ðð I 7 15ð PARTDS 1ð/13/87

Aðððððð INPUT FIELDS FOR RECORD DBREC FILE PFILE FORMAT DBREC.

 Aððððð1 1 1 RECCUS

 Aððððð2 2 7 DBSEQ

Aððððð3 8 137 DBDATA

Aððððð4 138 15ð DBFILL

 22ðð IFEEDBK DS 1ð/13/87

 23ðð I \ROUTINE LOC 1ð/14/87

 24ðð I \STATUS ERR 1ð/14/87

 25ðð I 38 45 FMTNM 1ð/13/87

26ðð I 273 282 PGMDEV 1ð/13/87

27ðð I 4ð1 4ð4 MAJMIN 1ð/13/87

28ðð I 4ð1 4ð2 MAJCOD 1ð/13/87

29ðð I 4ð3 4ð4 MINCOD 1ð/13/87

Figure 11-25 (Part 1 of 4). Target Program Example — RTFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-73

 3ððð C\\ 1ð/13/87

 31ðð C\ ð3/2ð/89

32ðð C\ READ THE REQUEST FROM THE SOURCE PROGRAM. INDICATOR 4ð 1ð/13/87

33ðð C\ INDICATES RCVTRNRND OCCURRED. INDICATOR 44 INDICATES THAT 1ð/13/87

34ðð C\ DETACH HAS BEEN RECEIVED. 1ð/13/87

 35ðð C\ 1ð/13/87

36ðð C\ INDICATOR 99 WILL BE TURNED ON FOR "I/O ERRORS" THEREBY 1ð/13/87

37ðð C\ PREVENTING THE RPG DEFAULT ERROR HANDLER FROM BEING CALLED. 1ð/13/87

38ðð C\ THIS IS NECESSARY TO ALLOW THE PROGRAM TO PROCESS THE ICF 1ð/ð3/9ð

39ðð C\ MAJOR/MINOR RETURN CODE. THIS PROGRAM CHECKS FOR ERRORS ON 1ð/13/87

4ððð C\ EVERY ICF FILE OPERATION. A MAJOR CODE GREATER THAN ð3 1ð/ð3/9ð

41ðð C\ INDICATES AN ERROR. 1ð/13/87

 42ðð C\ 1ð/13/87

 43ðð C\\\ 1ð/13/87

 44ðð C\.2/ ð3/2ð/89

 45ðð C READ TAG 1ð/13/87

46ðð C READ CFILE 995ð 2 3 1ð/13/87

 47ðð C MAJCOD CABGT'ð3' ERROR SESSION ERR 1ð/13/87

 48ðð C MINCOD CABEQ'ð8' END DETACH RECV? 1ð/13/87

49ðð C MOVE RECID2 DBSEQ SAVE RECD # 1ð/13/87

5ððð C MAJMIN CABEQ'ðððð' XMIT RCVTRNRND? 1ð/13/87

51ðð C MAJMIN CABEQ'ð3ðð' XMIT RCVTRNRND? 1ð/13/87

 52ðð C\.3/ ð3/2ð/89

 53ðð C MINCOD DOWNE'ðð' RCVTRNRND? Bðð1 1ð/13/87

54ðð C READ CFILE 995ð 2 3 ðð1 1ð/13/87

 55ðð C MAJCOD CABGT'ð3' ERROR ðð1 1ð/13/87

 56ðð C MINCOD CABEQ'ð8' END DETACH RECV? ðð1 1ð/13/87

 57ðð C END Eðð1 1ð/13/87

 58ðð C\\ 1ð/13/87

 59ðð C\ ð3/2ð/89

6ððð C\ A REQUEST FROM THE SOURCE PROGRAM RESULTS IN READING A SINGLE 1ð/13/87

61ðð C\ RECORD CONTAINING THE REQUESTED CUSTOMER OR ORDER NUMBER. THE 1ð/13/87

62ðð C\ RESPONSE WILL BE RETURNED IN A SINGLE RECORD CONTAINING EITHER 1ð/13/87

63ðð C\ THE ITEM OR CUSTOMER INFORMATION, DEPENDING ON THE DATABASE 1ð/13/87

64ðð C\ CONTENT. 1ð/13/87

 65ðð C\ 1ð/13/87

66ðð C\ THE RESPONSE IS SENT TO THE SOURCE PROGRAM BY WRITING TO THE 1ð/13/87

67ðð C\ ICF FILE USING FORMAT SNDPART. 1ð/ð3/9ð

 68ðð C\ ð3/2ð/89

 69ðð C\\\ 1ð/13/87

 7ððð C\.4/ ð3/2ð/89

 71ðð C XMIT TAG 1ð/13/87

72ðð C DBSEQ CHAINPFILE 98 98 IF NOT FD 1 1ð/13/87

 73ðð C MOVE DBSEQ RECID2 1ð/13/87

 74ðð C\\ 1ð/13/87

 75ðð C\ ð3/2ð/89

76ðð C\ WHEN THE REQUESTED CUSTOMER OR ITEM NUMBER IS NOT FOUND, 1ð/13/87

77ðð C\ ðððððð IS PROPAGATED TO THE KEY FIELD BEFORE THE RESPONSE 1ð/13/87

78ðð C\ IS SENT BACK TO THE SOURCE PROGRAM. 1ð/13/87

 79ðð C\ ð3/2ð/89

 8ððð C\\ 1ð/13/87

 81ðð C 98 MOVE 'ðððððð' RECID2 1ð/13/87

82ðð C EXCPTSNDITM DATA 1ð/13/87

 83ðð C MAJCOD CABGT'ð3' ERROR 1ð/13/87

 84ðð C GOTO READ 1ð/13/87

 85ðð C\\ 1ð/13/87

 86ðð C\ 1ð/13/87

87ðð C\ IF ANY ICF FILE ERROR OCCURS, PRINT THE ERROR MESSAGE, 1ð/ð3/9ð

88ðð C\ AND THEN END THE JOB. 1ð/13/87

 89ðð C\ 1ð/13/87

 9ððð C\\ 1ð/13/87

 91ðð \.5/ ð3/2ð/89

 92ðð C ERROR TAG 1ð/13/87

 93ðð C EXCPTMMERR 1ð/13/87

 94ðð C END TAG 1ð/13/87

 95ðð \.6/ ð3/2ð/89

96ðð C SETON LR 1 1ð/13/87

 97ðð C RETRN 1ð/13/87

Figure 11-25 (Part 2 of 4). Target Program Example — RTFMUL (System-Supplied Formats)

11-74 ICF Programming V4R1

 98ðð C\\ 1ð/14/87

 99ðð C\ 1ð/14/87

1ðððð C\ THIS IS THE PROGRAM EXCEPTION/ERROR SUBROUTINE THAT RECEIVES 1ð/14/87

1ð1ðð C\ CONTROL WHEN AN EXCEPTION OR ERROR OCCURS AFTER AN I/O 1ð/14/87

1ð2ðð C\ IS ISSUED TO AN ICF PROGRAM DEVICE AND THERE IS A 1ð/ð3/9ð

1ð3ðð C\ NON-ZERO VALUE UPDATED INTO THE RPG STATUS FIELD (ERR). ð1/19/88

1ð4ðð C\ THIS ROUTINE CHECKS FOR STATUS VALUES THAT RELATE TO ð1/19/88

 1ð5ðð C\ ICF OPERATION. 1ð/ð3/9ð

1ð6ðð C\ IF THE PROGRAM DEVICE IS ALREADY ACQUIRED, THE EXCEPTION IS ð3/2ð/89

1ð7ðð C\ IGNORED, OTHERWISE THE PROGRAM IS TERMINATED. ð3/2ð/89

 1ð8ðð C\ 1ð/14/87

 1ð9ðð C\\ 1ð/14/87

 11ððð \.7/ ð3/2ð/89

 111ðð C \PSSR BEGSR 1ð/14/87

112ðð C MOVE ' ' RETURN 6 DEFAULT 1ð/14/87

 113ðð C ERR CABEQð1285 ENDPSR ALREADY ACQ? 1ð/14/87

 114ðð C MOVE '\CANCL' RETURN JOB ENDS 1ð/14/87

115ðð C ENDPSR ENDSRRETURN BACK TO MAIN ð3/2ð/89

116ðð OQPRINT E 1 MMERR 1ð/13/87

117ðð O 21 'ERROR ON ICF ' 1ð/ð3/9ð

 118ðð O 34 'MAJOR/MINOR:' 1ð/13/87

 119ðð O MAJCOD 37 1ð/13/87

 12ððð O 38 '/' 1ð/13/87

 121ðð O MINCOD 4ð 1ð/13/87

 122ðð O 49 'FORMAT:' 1ð/13/87

 123ðð O FMTNM 6ð 1ð/13/87

 124ðð O 69 'PGMDEV:' 1ð/13/87

 125ðð O PGMDEV 8ð 1ð/13/87

 126ðð OCFILE E SNDITM 1ð/13/87

 127ðð O K6 '$$SEND' 1ð/13/87

 128ðð O 4 'ð15ð' 1ð/13/87

 129ðð O RECCUS 5 1ð/13/87

 13ððð O RECID2 11 1ð/13/87

 131ðð O DBDATA 141 1ð/13/87

 132ðð O DBFILL 154 1ð/13/87

\ 61ð3 132ð1 OVERFLOW INDICATOR OA ASSIGNED TO FILE QPRINT.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð89 13ðð RPG PROVIDES SEPARATE INDICATOR AREA FOR FILE CFILE.

K e y F i e l d I n f o r m a t i o n

 PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES

 ð2 PFILE

 DBREC

 DBSEQ CHAR 6

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

ð1 CFILE WORKSTN 13ððD 19ðð 46ðð 54ðð 126ðð

 $$SEND 127ðð

 ð2 PFILE DISK 16ððD 72ðð

 DBREC 16ððD Aðððððð

 ð3 QPRINT PRINTER 17ððD 116ðð 132ð1

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

 \PSSR BEGSR 13ðð 111ððD

 DBDATA A(13ð) Aððððð3D 131ðð

DBFILL A(13) Aððððð4D 132ðð

DBSEQ A(6) Aððððð2D 49ððM 72ðð 73ðð

END TAG 48ðð 56ðð 94ððD

 ENDPSR ENDSR 113ðð 115ððD

 ERR Z(5,ð) 24ððD 113ðð

ERROR TAG 47ðð 55ðð 83ðð 92ððD

 FEEDBK DS(4ð4) 13ðð 22ððD

FMTNM A(8) 25ððD 123ðð

\ 7ð31 LOC A(8) 23ððD

MAJCOD A(2) 28ððD 47ðð 55ðð 83ðð 119ðð

 MAJMIN A(4) 27ððD 5ððð 51ðð

MINCOD A(2) 29ððD 48ðð 53ðð 56ðð 121ðð

 MMERR EXCPT 93ðð 116ðð

Figure 11-25 (Part 3 of 4). Target Program Example — RTFMUL (System-Supplied Formats)

 Chapter 11. RPG/400 Communications Applications 11-75

\ 7ð31 PARTDS A(144) 21ððD

PGMDEV A(1ð) 26ððD 125ðð

 READ TAG 45ððD 84ðð

 RECCUS A(1) Aððððð1D 129ðð

 RECID2 A(6) 2ðððD 49ðð 73ððM 81ððM 13ððð

RETURN A(6) 112ððD 114ððM 115ðð

SNDITM EXCPT 82ðð 126ðð

 XMIT TAG 5ððð 51ðð 71ððD

 ' ' LITERAL 112ðð

 '\CANCL' LITERAL 114ðð

 'ðð' LITERAL 53ðð

 'ðððð' LITERAL 5ððð

'ðððððð' LITERAL 81ðð

 'ð3' LITERAL 47ðð 55ðð 83ðð

 'ð3ðð' LITERAL 51ðð

 'ð8' LITERAL 48ðð 56ðð

 ð1285 LITERAL 113ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 96ððM

 OA 17ððD 132ð1

\ 7ð31 5ð 46ððM 54ððM

 98 72ððM 81ðð

\ 7ð31 99 19ððM 46ððM 54ððM

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

M e s s a g e S u m m a r y

\ QRG61ð3 Severity: ðð Number: 1

Message : No Overflow Indicator is specified but an

indicator is assigned to a file and automatic skip to 6 is

 generated.

\ QRG7ð31 Severity: ðð Number: 4

Message : The Name or indicator is not referenced.

\ QRG7ð89 Severity: ðð Number: 1

Message : The RPG provides Separate-Indicator area for

 file.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

6 6 ð ð ð ð ð

 Program Source Totals:

Records : 132

Specifications : 62

Table Records : ð

Comments : 7ð

 PRM has been called.

 Program RTFMUL is placed in library ICFLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure 11-25 (Part 4 of 4). Target Program Example — RTFMUL (System-Supplied Formats)

11-76 ICF Programming V4R1

Chapter 12. Tracing Intersystem Communications Function Operations and
Functions

You can use the Trace Intersystem Communications Func-
tion (TRCICF) command to save information about the lan-
guage operations and communications functions directed to
an ICF file. The trace information can be collected in the
current job or in the job being serviced as a result of the
Start Service Job (STRSRVJOB) command.

The Start Service Job (STRSRVJOB) command allows you
to collect trace records for jobs started from other work
stations or for batch jobs. After the STRSRVJOB command
has been entered, the TRCICF command must be entered to
start the trace.

The End Service Job (ENDSRVJOB) command is used to
end the service job request. No parameters are used with
this command. The trace must be stopped before this
command can be entered. The CL Reference book has
more information about the STRSRVJOB and ENDSRVJOB
commands.

Trace ICF traces all ICF I/O operations that occur in the job
in which the command was entered. During the time that
TRCICF is active, all programs that run in the job are moni-
tored by TRCICF. TRCICF can be entered within different
jobs, and the trace for one job runs independently of the
trace for another job.

The Trace ICF function can be started, stopped, or ended.
You can start the Trace ICF function from a system menu, by
typing the TRCICF command on a command line, or from a
control language (CL) program within a job. After the trace is
started, trace records are collected and stored in an internal
trace storage area. When the trace is stopped, the trace
records can either be directed to the spooled printer file,
QPIFTRCF, or sent to a database output file that you specify.
When the trace is ended, all trace records are deleted.
Details about starting, stopping, and ending the Trace ICF
function are discussed in this chapter.

Starting the Trace

The Trace ICF (TRCICF) function can be started before
running a job or after the job is active (as in a remote job).
You can start TRCICF from a system menu, by typing
TRCICF *ON on any command line, by adding the command
to a CL program, or by typing TRCICF on a command line
and pressing F4 (Prompt). If the latter method is used, an
initial prompt is displayed for the Trace option setting. If *ON
is specified and you press the Enter key, the following
display is shown:

à ð
Trace ICF (TRCICF)

 Type choices, press Enter.

 Trace option setting \ON \ON, \OFF, \END

 Maximum storage to use 2ðð 1-16ððð K

 Trace full \WRAP \WRAP, \STOPTRC

 User data length 128 ð-4ð96

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

Trace option setting
Specify whether collecting trace information is to be
started, stopped, or ended.

*ON
Trace ICF is to be started. This is the
default value for this prompt.

*OFF
Trace ICF is stopped. No other trace infor-
mation is recorded and the current informa-
tion is written to the spooled printer file or a
database file.

*END
Trace ICF is ended. All trace information is
deleted.

Maximum storage to use
Specify the maximum amount of storage to use for
the trace information collected. This prompt is only
shown if you have selected *ON for the Trace option
setting prompt.

200KB
The number of bytes (1KB equals 1024
bytes) of maximum storage. This is the
default value.

1-16000KB
The valid range for the number of bytes of
maximum storage.

Trace full
Specify whether new trace records are to replace
the old trace records or to stop the trace function
when the maximum storage specified has been
reached. This prompt is only shown if you have
selected *ON for the Trace option setting prompt.
Valid values are:

 Copyright IBM Corp. 1997 12-1

*WRAP
When the trace storage area is full, new
trace information is written over the oldest
information, starting at the beginning of the
storage area. This is the default value.

*STOPTRC
No new trace information is saved when
the trace storage area is full. You must
turn the trace off to get the output.

User data length
Specify the maximum length of user data to be
saved for each trace record in the storage area.
This prompt is only shown if you have selected *ON
for the Trace option setting prompt.

128
The number of bytes for the user data
length. This is the default value.

0-4096
The valid range of bytes for the user data
length.

Stopping the Trace

Trace ICF continues to collect trace records until you stop
the trace, or until the trace storage area is full. When you
stop the trace, the trace records that have been created are
either directed to the spooled printer file, QPIFTRCF, or to a
database output file that you specify. If the output file speci-
fied already exists, it must have the same attributes as the
system-supplied file QAIFTRCF.

You can stop the trace from a system menu, by typing
TRCICF *OFF on any command line, by adding the
command to a CL program, or by typing TRCICF and
pressing F4 (prompt). If the latter method is used, and you
specify *OFF for the Trace option setting, you are prompted
for the OUTPUT parameter. If you specify the *OUTFILE
option for the Output prompt, the following display is shown:

à ð
Trace ICF (TRCICF)

 Type choices, press Enter.

 Trace option setting > \OFF \ON, \OFF, \END

 Output > \OUTFILE \PRINT, \OUTFILE

 Output file Name

Library \LIBL Name, \LIBL, \CURLIB

 Output member options:

Member to receive output . . . \FIRST Name, \FIRST

Replace or add records \REPLACE \REPLACE, \ADD

Output
Specifies whether the trace information is to be
stored in a spooled file or saved in a database file.
This display is only shown if *OFF is specified for
the Trace option setting prompt. Valid values are:

*PRINT
The trace information is sent to the spooled
file QPIFTRCF in the output queue associ-

ated with the job being traced. The
spooled file can be viewed or printed.
Refer to Figure 12-1 on page 12-3 for an
example of the spooled trace records. This
is the default value.

*OUTFILE
The trace records are to be directed to a
database file. Refer to “Trace Records
Sent to a Database File” on page 12-4 for
a description of trace records directed to a
database file. The *OUTFILE value for the
Output prompt is only valid if a value is
specified for the Output file prompt.

Output file
Specifies the name of the database file to which the
trace records are to be sent. This prompt is only
shown if you have selected *OFF for the Trace
option setting prompt and *OUTFILE for the Output
prompt. If the file does not exist, the system
creates a new database file with the specified name
in the library to which the file is to be added. The
new file has the same attributes as the system-
supplied file QAIFTRCF. If the file already exists, it
must have the same attributes as the system-
supplied file QAIFTRCF. Possible library values
are:

Name
The name of the library where the file is
located.

*LIBL
The file is located in the library list.

*CURLIB
The file is located in the current library for
the job. If no current library entry exists in
the library list, the library QGPL is used.

Output member options
Specifies the name of the file member that is to
receive the trace information. This prompt is only
shown if you have selected *OFF for the Trace
option setting prompt and *OUTFILE for the Output
prompt. If the output file is to be created by the
system, an output member is also created and given
the name specified in the Member to receive output
prompt. If *FIRST is specified for the Member to
receive output prompt, a member is created and
given the name specified in the output file. If the
output file exists, but the output member does not, a
member with the specified name is created. The
options for the Output member options prompt are:

Member to receive output
Type the name of the member to receive
the output. Valid values are:

*FIRST
The first member in the output file
receives the trace information.
This is the default.

12-2 ICF Programming V4R1

Name
The specified member receives
the trace information.

Replace or add records
The trace information is either added to the
file or replaces existing trace information.
Valid values are:

*REPLACE
New trace information replaces
what is already in the file member.
This is the default.

*ADD
New trace information is
appended to the end of data
already in the file member.

Trace Records Sent to a Spooled File

When you select *OFF for the Trace option setting prompt
and press F4, you are presented with the option on the
Output prompt to send the trace records to a spooled file
(*PRINT) or to a database file (*OUTFILE). The default
value is *PRINT. If you choose the *PRINT value for the
Output prompt, the trace information is sent to the spooled
file QPIFTRCF. Figure 12-1 shows the format of the
spooled trace records.

-----------------Table of Function Codes----------------

.1/Function Codes Meaning

 ACQ Acquire

 AWT Allow-Write

 CFM Confirm

CLS Close File Prior to REL or EOS

 CNI Cancel-Invite

 CNL Cancel

 CTL Control-Data

 DET Detach

 EGP End-of-Group

 EOA End-of-Session-Abnormal

 EOS End-of-Session

ERR Error: Function Not Valid

 EVK Evoke

 FAL Fall

 FMH Function-Management-Header

 FMT Format-Name

 FRC Force-Data

 GTA Get-Attributes

 INV Invite

 NRP Negative-Response

CPN Open with Acquire-Program-Device

 PRC Prepare-to-Commit

 RCF Respond-to-Confirm

 RCV Receive

 REL Release

 RFI Read-From-Invited-Program-Devices

 RLB Rollback

 RST Restore

 RWT Request-to-Write

 SDV Subdevice-Selection

 SND Send

 SPD Suspend

 TKC Take-Commit

 TMR Timer

 TNS Transaction-Sync-Level

 TRN Turn-Around

.2/Job . . . : DSP1ð .3/User . . . : QUSER .4/Number . . . : ðð626

.5/Program : ICFTEST /ICFMAIN .6/Program File : ICFTEST /ICFTSTCF

.7/Opened File : ICFLIB /ICFTSTITF

.8/Program .9/Record .1ð/Return .11/ .12/ Response .13/Data .14/Remote .15/
Device Format Code Function Indicator Length Location Time

 DEV1 ðððð ACQ O Chicago 15:37:ðð.857

 DEV1 EVOKENOV ðððð EVK O Chicago 15:37:ð6.264

 DEV1 NOVARLEN ððð1 SND,INV BO Chicago 15:37:38.798

 DATA:

THIS IS A PUT WITH INVITE.

 DEV1 NOVARLEN ð3ð8 RCV DET O Chicago 15:37:5ð.ð97

 DEV1 EVOKENOV ðððð EVK O Chicago 15:38:ð6.887

 DEV1 NOVARLEN ððð1 SND,INV BO Chicago 15:38:38.912

 DATA:.16/
THIS IS ANOTHER PUT WITH INVITE.

 DEV1 NOVARLEN ð3ð8 RCV DET O Chicago 15:38:52.835

 DEV1 ðððð EOS O Chicago 15:4ð:43.56ð

\ \ \ \ \ E N D O F L I S T I N G \ \ \ \ \

Figure 12-1. Spooled Trace Records

 Chapter 12. Tracing ICF Operations and Functions 12-3

.1/Table of Function Codes
The first page of the spooled trace records is a table
of the function codes used for each ICF operation.
The function code is printed in the Function and
Response Indicator columns.

Notes:

1. The suspend (SPD) and restore (RST) function
codes are used in the System/36 environment.
These function codes are part of the read-
under-format (RUF) support. If two programs
using the RUF support do not run in the same
job, then the Trace ICF function does not trace
both programs unless Trace ICF is started for
both jobs.

2. The function code OPN indicates that the
program opened a file that automatically
acquired a program device. CLS indicates that
the program closed the file prior to releasing or
ending the session.

.2/ Job
Name of the job in which your program is running.

.3/ User
The user identification (User ID) used to start the
job (either the user ID used to sign on the work
station or the user ID received on the program start
request).

.4/ Number
The number assigned to the job step when your
program started.

.5/ Program
Name of the library where the program resides, and
the name of the program that issued the operation
that is being traced.

.6/ Program File
Name of the library where the ICF file named in the
program resides, and the name of the ICF file
named in the program.

.7/ Opened File
Name of the library where the ICF file opened by
your program resides, and the name of the ICF file
opened by your program.

Note: If you used the OVRICFF command to tem-
porarily override the file named in the program, the
name specified for the Opened File will be different
from the Program File name.

.8/ Program Device
Name assigned to the session to which the lan-
guage operation or communications function was
directed. This is the name specified in the Add ICF
Program Device Entry (ADDICFDEVE) or Override
ICF Program Device Entry (OVRICFDEVE) com-
mands.

.9/ Record Format
Name of the record format used when the commu-
nications function is issued. The record format can

either be a user-defined data description specifica-
tion (DDS) or a system-supplied format.

.1ð/ Return Code
The major and minor return code issued to indicate
the success or failure of each operation.

.11/ Function
The function code assigned to represent the lan-
guage operation or communications function issued
by the program. Only operations associated with
your ICF sessions are traced. File open and close
operations are not traced except when a program
device is acquired or released as a result of an
open or close operation.

.12/ Response Indicator
The function code assigned to represent the DDS
response indicator that indicates status information
about the input operation.

.13/ Data Length
Length of data sent or received by the program. If
the function indicates a send and receive operation,
then this field represents the length of data received
by the program.

.14/ Remote Location
Name of the remote location with which a commu-
nication session is established.

.15/ Time
Time that the language operation or communication
function was completed by the communications
type. The time is displayed in hours, minutes,
seconds, and milliseconds.

.16/ Data
The data sent or received by the program. The
amount of data traced depends on the value speci-
fied for the User data length prompt (DTALEN
parameter) of the TRCICF command. If the function
indicates a send and receive operation, then the
data received by your program is shown.

Trace Records Sent to a Database File

When you select *OFF for the Trace option setting, you are
presented with the option either to send the trace records to
a spooled file (*PRINT) or send the records to a database file
(*OUTFILE). If you choose the *OUTFILE value for the
Output prompt, the trace information is sent to the database
file that you specify. If you specify a file that already exists,
it must match the attributes of the system-supplied file
QAIFTRCF.

The following example shows the layout of the trace records
sent to a database file. The database file has a fixed record
length of 4337 decimal bytes. The record format name is
QIFTRC. Each record in the file contains all the information
related to the language operation or communications func-
tion, as well as the length of data traced. The length of data
traced is less than or equal to the value specified on the
User data length prompt (the DTALEN parameter) of the

12-4 ICF Programming V4R1

TRCICF command. Database files contain much of the
same information that is contained in spooled files. Data-
base files also contain the century and system name. For
the 20th century Century would be 0, and for the 21st
century Century would be 1, and so on. Date is in the
YYMMDD format.

Note: If you want to use QIFTRC as an externally described
file in your program, use IFDTL2 rather than IFDTLN for
correct size definition of the data length.
A\

A\ TRACE ICF OUTFILE RECORD FORMAT FOR TRCICF

A\

A R QIFTRC TEXT('Trace ICF record')

A IFJOB 1ð COLHDG('Job' 'name')

A TEXT('Name of job')

A IFUSER 1ð COLHDG('User' 'name')

A TEXT('Name of user')

A IFNBR 6 COLHDG('Job' 'number')

A TEXT('Number of job')

A IFPGM 1ð COLHDG('Program' 'name')

A TEXT('Name of program')

A IFLIB 1ð COLHDG('Library' 'name')

A TEXT('Programs library')

A IFPGMF 1ð COLHDG('Program' 'file''name')

A TEXT('Program file')

A IFPGML 1ð COLHDG('Program' 'file' 'library')

A TEXT('Program files library')

A IFOPNF 1ð COLHDG('Opened' 'file' 'name')

A TEXT('Opened ICF file')

A IFOPNL 1ð COLHDG('Opened' 'file' 'library')

A TEXT('Opened files library')

A IFPGDV 1ð COLHDG('Program' 'device')

A TEXT('Program device')

A IFRCFM 1ð COLHDG('Record' 'format')

A TEXT('Record format')

A IFMJMN 4 COLHDG('Return' 'code')

A TEXT('Return code')

A IFOPCD 48 COLHDG('Function' 'code')

A TEXT('Function code')

A IFRSPI 36 COLHDG('Response' 'indicator')

A TEXT('Response indicator')

A IFDTLN 2B COLHDG('Data' 'length')

A TEXT('Data length')

A IFRLOC 8 COLHDG('Remote' 'location')

A TEXT('Remote location')

A IFTIME 9S ð COLHDG('Time')

A TEXT('Time of entry')

A IFDTTR 4B COLHDG('Traced' 'data' 'length')

A TEXT('Traced data length')

A IFCENT 1 COLHDG('Century')

A TEXT('Century of entry')

A IFDATE 6 COLHDG('Date')

A TEXT('Date of entry')

A IFSYS 8 COLHDG('System' 'name')

A TEXT('System name')

A IFDTL2 5B COLHDG('Data' 'length')

A TEXT('Data length')

A IFRES 7 COLHDG('Reserved')

A TEXT('Reserved')

A IFDATA 4ð96 COLHDG('Data')

A TEXT('Data')

Ending the Trace

You can end TRCICF from a system menu, by typing the
TRCICF *END command on any command line, by adding
the command to a CL program, or by typing TRCICF and
pressing F4 to show the Trace option setting prompt, shown
following. Type *END and press the Enter key. This causes
Trace ICF to end and all trace records to be deleted.

à ð
Trace ICF (TRCICF)

 Type choices, press Enter.

 Trace option setting \OFF \ON, \OFF, \END

 Additional Considerations

Trace ICF traces only those operations that are associated
with your ICF sessions. For example, ICF file open and
close operations are not traced except when a program
device is acquired or released as a result of an open or close
operation. The following restrictions apply to Trace ICF
traces:

� When an open of an ICF file is issued without implicit
acquire of the program device, the explicit acquire of the
program device (ACQ) will be traced and not the open
(OPN) operation.

� An open of an ICF file with implicit acquire of the
program device is traced as an open operation (OPN).

� When the close of an ICF file is preceded with an end of
session (EOS), the end of session is traced but not the
close (CLS).

� When the close of an ICF file is preceded by a release
operation (REL), the release operation is traced but not
the close operation (CLS).

� When a close of an ICF file is not preceded by an EOS
or release operation, it is traced as a close (CLS) opera-
tion.

� When receiving program initialization parameters (sent
by means of an evoke operation) in the System/36 envi-
ronment with a read operation, the Data length field in
the trace output will be 0, even if data was actually
received by your program.

� When using BSCEL with data compression, the actual
length of the data received on an input operation is not
known by the system after decompression. The traced
data length will be 0 and the traced data will not appear
in the trace record, even if data was actually received by
the program.

Displaying Communications Status

You can obtain current status information about operations
and functions directed to an ICF file for all active (acquired)
sessions within a job by using the Display Job (DSPJOB) or
Work with Job (WRKJOB) commands. Choose option 17,
Display communications status, from a Display Job or Work
with Job display. You can also access this information from
the Work with Active Jobs (WRKACTJOB) display. Refer to
the Communications Management book for more information.

 Chapter 12. Tracing ICF Operations and Functions 12-5

12-6 ICF Programming V4R1

Appendix A. Language Operations, Data Description Specifications
Keywords, and System-Supplied Formats

This appendix contains charts that show the following:

� All valid language operations supported by intersystem
communications function (ICF)

� All valid operations for each programming language that
supports ICF (ILE C, ILE COBOL, FORTRAN/400, and
ILE RPG programming languages)

� Data description specifications (DDS) processing
keywords supported by communications types

� System-supplied formats supported by communications
types

 Language Operations

Figure A-1 describes the language operations supported by
ICF.

Figure A-2 shows all the valid communications operations for
each programming language that supports ICF (ILE C, ILE
COBOL, and ILE RPG programming languages).

Note: When specifying a format name, program device
name, or program-to-system parameters in your program,
always use uppercase characters.

Figure A-1. Language Operations

ICF Operations Description

Get attributes Used to determine the status of the session.

Read Obtains data from a specific session.

Read-from-
invited-
program-devices

Obtains data from any session that has
responded to an invite function.

Write Passes data records from the issuing
program to the other program in the trans-
action.

Write/Read Allows a write operation followed by a read
operation. Valid for ILE C and ILE RPG
programming languages.

Release Attempts to end a session.

Close Closes the ICF file.

Figure A-1. Language Operations

ICF Operations Description

Open Opens the ICF file.

Acquire Establishes a session between the applica-
tion and the remote location.

Figure A-2. Language Operations

ICF Operation ILE C Function 1
ILE COBOL/400 Pro-
cedure Statement

ILE RPG/400 Opera-
tion

FORTRAN/400 State-
ment

Open fopen, _Ropen OPEN OPEN OPEN

Acquire _Racquire ACQUIRE ACQ Not supported2

Get-attributes _Rdevatr ACCEPT POST Not supported

Read fread, _Rreadn READ READ READ

Read-from-
invited-program-
devices

_Rreadindv READ3 READ3 Not supported

Write fwrite, _Rwrite WRITE WRITE WRITE

Write/Read _Rwriterd Not supported EXFMT Not supported

Release _Rrelease DROP REL Not supported

Close fclose, _Rclose CLOSE CLOSE CLOSE

1 ILE C functions and statements are case sensitive.

2 To acquire a program device using the FORTRAN/400 language, you must specify the program device on the ACQPGMDEV parameter on
the CRTICFF, CHGICFF, or OVRICFF commands. The program device will then be implicitly acquired when the ICF file is opened.

3 A read operation can be directed either to a specific program device or to any invited program device. The support provided by the
compiler you are using determines whether to issue an ICF read or read-from-invited-program-devices operation, based on the format of the
read operation. For example, if a read operation is issued with a format or terminal specified, the read operation is interpreted as an ICF
read operation. Refer to the appropriate language manual for more information.

 Copyright IBM Corp. 1997 A-1

DDS Keyword Support

Figure A-3 on page A-2 defines the communications pro-
cessing control DDS keywords supported for the ICF file, and
the communications type that supports these keywords.

Note: DDS keywords supported by APPC apply to APPC
over TCP/IP, as well.

Figure A-3 (Page 1 of 4). Processing Control DDS Keywords

DDS Keyword APPC SNUF BSCEL Async
Intra-

system Finance Retail

ALWWRT2

The record currently being
written ends a transmission.
The program goes to
receive state.

X X X X

CANCEL
Cancels a group of records
that has just been sent.

 X X X3 X

CNLINVITE
Cancels any valid invite
issued by your program.

 X X X X X X

CONFIRM2

Requests that the remote
program confirm receiving
data.

X X

CTLDTA2

Informs the remote program
that control data is being
sent.

X

DETACH
Informs the remote program
that the sending program is
ending the transaction.

X X X X1 X X

DFREVOKE2

Delays an evoke request
until either the output buffer
is full or the output buffer is
flushed.

X

ENDGRP
Indicates the end of a user-
defined group of records.

 X X X X X

EOS
Used to specify an end-of-
session function.

X X X X X X X

EVOKE
Starts a program on the
remote system.

X X X X X X

FAIL
Sends a fail indication to
the remote system.

X X X X X X

FMH
Informs the remote program
that a function-
management-header (FMH)
is being sent.

 X X1 X X X

A-2 ICF Programming V4R1

Figure A-3 (Page 2 of 4). Processing Control DDS Keywords

DDS Keyword APPC SNUF BSCEL Async
Intra-

system Finance Retail

FMTNAME2

Specifies that the format
name should be sent on
output operations.

X X

FRCDTA2

Immediately sends commu-
nications data currently in
the buffer, without waiting
for the buffer to become
full.

X X X X

INVITE
Schedules an invite.

X X X X X X X

NEGRSP
Informs the remote system
that the data received is not
valid.

 X X X X

PRPCMT
Indicates that the remote
program is preparing for a
synchronization point.

X

RCVCANCEL2

Indicates that the remote
program sent a cancel
request.

 X X X

RCVCONFIRM2

Indicates that the remote
program is requesting a
confirmation of transaction
activity.

X X X

RCVCTLDTA2

Indicates that control data
has been received.

X

RCVDETACH2

Indicates that the remote
program has ended the
transaction.

X X X X X

RCVENDGRP2

Indicates the end of a user-
defined group of records
sent to the program.

 X X X X X

RCVFAIL2

Indicates that the remote
program issued a fail.

X X X

RCVFMH2

Indicates to the program
that FMH data has been
received.

 X X X X

RCVNEGRSP2

Indicates that the remote
program issued a negative-
response request.

 X X X X

RCVROLLB
Indicates if a rollback oper-
ation has been received.

X

 Appendix A. Language Operations A-3

Figure A-3 (Page 3 of 4). Processing Control DDS Keywords

DDS Keyword APPC SNUF BSCEL Async
Intra-

system Finance Retail

RCVTKCMT
Indicates if a take-commit
request has been received.

X

RCVTRNRND2

Indicates that the program
is now in send state.

X X X X

RECID2

Used to allow the data
content to identify the
record format to use to
receive the data.

X X X X X X X

RQSWRT
Specifies that the program
is requesting permission to
write.

X X X X

RSPCONFIRM2

Sends a positive response
to a received confirm
request.

X X X

SECURITY
Includes security informa-
tion needed to start a
program on the remote
system.

X X X X X X

SUBDEV2

Specifies the subdevice to
which output should be
directed (for example,
printer, punch, and so on).

 X X

SYNLVL2

Indicates the synchroniza-
tion level of the program.

X X

TIMER
Allows the user to specify
an interval of time to wait
before a read-from-invited-
program-devices operation
receives a timer-expired
return code.

X X X X X X X

TNSSYNLVL
Specifies the transaction
synchronization level that is
performed while issuing a
write operation.

X

VARBUFMGT2, 4

Allows the user to send or
receive multiple or partial
records, rather than just
one record, by using one
record format per write or
read operation.

X

A-4 ICF Programming V4R1

Figure A-3 (Page 4 of 4). Processing Control DDS Keywords

DDS Keyword APPC SNUF BSCEL Async
Intra-

system Finance Retail

VARLEN
Specifies the length of the
data record sent with each
write operation.

X X X X X X X

1 Use of this keyword is restricted. Refer to the Asynchronous Communications Programming book for more details.

2 These DDS keywords do not have system-supplied format equivalents.

3 These keywords are not valid for the 3694 controller. Refer to the Finance Communications Programming book for details.

4 Use of this keyword is restricted. Refer to the APPC Programming book for more details.

 Appendix A. Language Operations A-5

System-Supplied Format Support

Figure A-4 defines the system-supplied formats supported
for ICF, and shows the communications types that supports
these formats.

Note: System-supplied formats that apply to APPC also
apply to APPC over TCP/IP.

Figure A-4. System-Supplied Format Support

Operation APPC SNUF BSCEL Async
Intra-

system
Finance Retail

$$CANL
Cancel with invite

 X X X1 X

$$CANLNI
Cancel

 X X X1 X

$$CNLINV
Cancel invite

 X X X X X X

$$EOS
End of session

X X X X X X X

$$EVOK
Evoke with invite

X X X X X X

$$EVOKET
Evoke with detach

X X X X X X

$$EVOKNI
Evoke

X X X X X X

$$FAIL
Fail

X X X X X X

$$NRSP Negative
response with invite

 X X X X

$$NRSPNI
Negative response

 X X X X

$$POSRSP
Positive response

 X

$$RCD
Request write with
invite

X X X X

$$SEND
Send with invite or
invite

X X X X X X X

$$SENDE
Send with end of
group

 X X X X X

$$SENDET
Send with detach

X X X X X

$$SENDFM
Send FMH with
invite

 X X X X

$$SENDNF
Send FMH

 X X X X X

$$SENDNI
Send

X X X X X X X

$$TIMER
Timer

X X X X X X X

1 These keywords are not valid for the 3694 controller. Refer to the Finance Communications Programming book for more information.

A-6 ICF Programming V4R1

Appendix B. Communications Error Handling

This appendix describes programming considerations for ICF communications error recovery.
It includes information on:

� System error classifications

� System messages sent on communications errors, and related file error handling in the
affected job

� Major/minor return codes and descriptions

� Error reason codes for failed program start requests

System Error Classification
The system divides communications error conditions into several classifications and pro-
cesses them according to those classifications. The system automatically tries recovery for
many of these errors without notification to the using program. In some cases, messages
indicating error recovery is in progress are issued to the system operator message queue
(QSYSOPR), to the job log, and to other queues specified during device configuration.
When the system retry limits specified in configuration objects are exceeded, a message is
sent to these queues and any jobs currently using the failing line, controller, or device.

Some errors, such as an application program violation of a communications protocol, do not
cause messages to be sent to system message queues, but are reported to the affected
program.

It is recommended that all communications programs examine return codes after each oper-
ation to detect error conditions and other normal conditions, such as receipt of the detach
indication from the remote system. Although many error conditions are reported to the
affected job through messages, the primary method for a program to detect these conditions
is through return codes and the open feedback and input/output (I/O) feedback areas.

For a complete description of error classifications and system-provided recovery support, see
the Communications Management book.

 System Messages
Some errors can occur that do not affect your program. For example, the varying on of a
communications line may fail before starting any programs that use devices on the failed
line.

Errors that affect your program can occur:

� When a file is opened
� During I/O operations to the file
� When a program device is acquired or released
� When the file is closed

When you encounter errors that can affect the running of a program, a system message is
sent to the program message queue of the program using the file.

 Copyright IBM Corp. 1997 B-1

Error messages are divided into the following message types:

 � Notify
 � Status
 � Diagnostic
 � Escape

See the CL Programming book for more information about the message types.

Figure B-1 is a summary of the messages, by operation, that can be issued.

These messages are logged in the job log, and the error is communicated to the program
through language status codes and an ICF major/minor return code in the I/O feedback area
of the file.

Some conditions are considered normal application exceptions and do not cause job mes-
sages. As a result, file error handling for high-level languages is not called. You may need
to examine the I/O feedback area for major/minor return codes or other device-specific infor-
mation. You can detect some conditions by using data description specifications (DDS)
response keywords.

Figure B-1. File Error Message Identifier Groups

Operation Message Type Message Identifiers

Open Diagnostic and status CPF4001 through CPF40FF

Open Escapes that make the file
unusable

CPF4101 through CPF43FF

Close Diagnostic and status CPF4401 through CPF44FF

Close Escapes that make the file
unusable

CPF4501 through CPF46FF

Input/Output,
Acquire, and
Release

Notify with a default reply
of cancel, status, and escapes
that do not make the file or
program device unusable

CPF4701 through CPF48FF
and
CPF5001 through CPF50FF

Input/Output,
Acquire, and
Release

Notify with a default reply
of ignore

CPF4901 through CPF49FF

Input/Output,
Acquire, and
Release

Escapes that make the file
or program device unusable

CPF5101 through CPF53FF
and
CPF5501 through CPF56FF

User Program Error Detection
All user programs should detect error conditions and determine appropriate error processing.
Review all major/minor return codes described in this chapter, and in the programming book
for the communications type you are using, to determine what processing to do.

Permanent errors can cause the session, your program, or both to end. A program can try
to recover from errors without ending. The operation you use and the major code you
receive determine how your program recovers from the errors.

B-2 ICF Programming V4R1

In general, you recover from an open operation that fails as follows:

� Close the file
� Correct the problem
� Issue the open operation again

An acquire failure is handled as follows:

� Correct the problem
� Issue the acquire operation again

You can resume communications for most I/O operations that encounter session errors and
complete with a major return code of 81 by reacquiring the program device associated with
the session. For input/output operations that encounter system or file errors completed with
a major return code of 80, you may or may not need to close and reopen the file to resume
communications. In some cases, depending on the cause of the error, the device must be
varied off, then on again, to remedy the problem. Reacquiring the session that failed may
also allow you to resume communications. To determine specific error recovery procedures,
check each major/minor return code description in the programming book for the commu-
nications type you are using.

If an I/O operation completes with an exception or a nonpermanent error (04, 08, 11, 34, and
83 majors), then the session is still intact and the program can recover, based on the action
described for the major/minor return code.

A release failure can be handled in one of two ways. If you want to end the session grace-
fully, correct the problem as indicated by the return code, and issue the release operation
again. For example, if the release operation completes with an 832F, issue a detach
request, and then issue the release again. If you want to force the session to end, issue an
end-of-session function.

If a close operation fails, issue the close again. A second close is always successful.

The ICF file is implicitly closed when the job ends, if the job ends without recovering from a
failure.

Control Language (CL) Commands for Determining Configuration Status
The Work with Configuration Status (WRKCFGSTS) command provides line, controller,
device, and mode status for communications on your AS/400 system. Information provided
by this command can help you determine the status of your devices and sessions in order to
determine error recovery options. The Retrieve Configuration Status (RTVCFGSTS)
command is also available to determine line, controller, and device status. See the Commu-
nications Management book for more information on configuration status.

Major/Minor Return Codes
This section contains:

� Return code tables that identify all communications types and the return codes that are
valid for each. This summary table is useful when you want to make changes to a
program so you can use it with a different communications type.

� Summary descriptions of all major and minor return codes for all communications types.

These return codes are set in the I/O feedback area of the ICF file, and report the results of
each I/O operation issued by your application program. Your program should check the
return code and act accordingly. Refer to your high-level language manual for more informa-
tion on how to access these return codes.

Each return code is a 4-digit hexadecimal value. The first two digits contain the major code,
and the last two digits contain the minor code.

 Appendix B. Communications Error Handling B-3

Notes:

1. In the return code descriptions, your program refers to the AS/400 application program
that issues the operation and receives a return code from ICF. The target program
refers to the application program on the remote system with which your program is com-
municating through ICF.

2. Each communications programming book provides detailed information about every
return code for the communications type and the recovery actions that should be taken.

3. Certain return codes describe the turnaround indication, which is not applicable to asyn-
chronous, retail and finance communications. Also, not all return codes have the same
meaning for all communications types.

4. Return codes that are used only by applications running in the System/36 environment
are not included in this book. See the Concepts and Programmer's Guide for the
System/36 Environment, SC41-9663, for information about System/36 environment
return codes.

Major Code 00
A major return code 00 indicates that the operation completed successfully.

 Description
The operation issued by your program completed successfully. Your program may have
sent or received some data, or may have received a message from the remote system.

Note: Error codes for APPC also apply to APPC over TCP/IP.

Figure B-2 (Page 1 of 2). Major Code 00

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0000 X X X X X X X

0001 X X X X X X

0002 X

0003 X X X X

0004 X X X X

0005 X X X X

0006 X

0007 X X X X X

0008 X X X X

000C X X

0010 X X X X

0011 X

0013 X

0014 X X

0015 X X

0016 X

0017 X

0018 X

001C X X

001D X

0020 X X

0021 X X

0023 X

B-4 ICF Programming V4R1

Code Description

0000 Turnaround or end-of-transmission indication and data received on successful
input operation, or an output operation was successful.

0001 Successful input operation or write operation with invite. A turnaround or end-of-
transmission indication was not received.

0002 Control-data indication received with program start request.

0003 End-of-group indication received on successful input operation.

0004 Function-management-header or control-data indication and turnaround indi-
cation received on successful input operation; or, a PAD message received from
a remote PAD.

0005 Function-management-header or control-data indication received on a successful
input operation.

0006 Control-data and turnaround indications received with program start request.

0007 Function-management-header and end-of-group indications received on suc-
cessful input operation.

0008 Detach indication received on successful input operation.

000C Function-management-header or control-data indication received, and detach
indication received, on a successful input operation.

0010 Request-to-write, reverse-interrupt (RVI), or request-to-change-direction received
on successful output operation.

0011 Control-data and detach indications received with program start request.

0013 Control-data and turnaround indications received with program start request. In
addition, the remote system requested confirmation.

0014 Turnaround indication received on successful input operation. In addition, the
remote system requested confirmation.

0015 Remote system requested confirmation on successful input operation. The local
application program continues to receive data.

Figure B-2 (Page 2 of 2). Major Code 00

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0025 X

0027 X

0028 X X

0030 X X

0031 X X

0033 X

0035 X

0037 X

0038 X X

0042 X

0044 X X

0045 X X

0046 X

0047 X

0054 X

 Appendix B. Communications Error Handling B-5

0016 Parity error or stop bit error (framing) or both received on successful input opera-
tion.

0017 End-of-group indication received on successful input operation. In addition, the
remote system requested confirmation.

0018 Control-data indication received with program start request. In addition, the
remote system requested confirmation.

001C Detach indication received on successful input operation. In addition, the remote
system requested confirmation.

001D Control-data and detach indications received with program start request. In addi-
tion, the remote system requested confirmation.

0020 System message and turnaround or end-of-transmission indication received on a
successful input operation.

0021 System message received on successful input operation. Continue to receive.

0023 System message with end-of-group indication received.

0025 Function-management-header indication received with system message.

0027 System message received with function-management-header and end-of-group
indications.

0028 System message and detach indication received on successful input operation.

0030 Truncated system message and turnaround or end-of-transmission indication
received on successful input operation.

0031 Truncated system message received on successful input operation. Continue to
receive.

0033 Truncated system message received with end-of-group indication.

0035 Truncated system message received with function-management-header indi-
cation.

0037 Truncated system message received with function-management-header and end-
of-group indications.

0038 Truncated system message and detach indication received on successful input
operation.

0042 Some data was lost on successful input operation.

0044 Function-management-header or control-data indication received, and turnaround
indication received, on a successful input operation. In addition, the remote
system requested confirmation.

0045 Function-management-header or control-data indication received on a successful
input operation. In addition, the remote system requested confirmation.

0046 Control-data and detach indications received on a successful input operation. In
addition, the remote system requested confirmation.

0047 Function-management-header and end-of-group indications received on suc-
cessful input operation. In addition, the remote system requested confirmation.

0054 Rollback is required. The transaction program (TP) has entered the rollback-
required state.

Major Code 02
The major return code 02 indicates that the input operation completed successfully, but your
job is being ended (controlled).

B-6 ICF Programming V4R1

 Description
The input operation issued by your program completed successfully. Your program may
have received some data or a message from the remote system. However, your job is being
ended (controlled).

Figure B-3 (Page 1 of 2). Major Code 02

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0200 X X X X X X

0201 X X X X

0202 X

0203 X X X X

0204 X X X X

0205 X X X X

0206 X

0207 X X X X

0208 X X X X

020C X X

0211 X

0213 X

0214 X X

0215 X X

0216 X

0217 X

0218 X

021C X X

021D X

0220 X X

0221 X X

0223 X

0225 X

0227 X

0228 X X

0230 X X

0231 X X

0233 X

0235 X

0237 X

0238 X X

0242 X

0244 X X

0245 X X

0246 X

0247 X

0254 X

0257 X

0258 X

 Appendix B. Communications Error Handling B-7

Code Description

0200 On a successful input operation, a turnaround indication or data that is the begin-
ning or middle record of a group of records was received. In addition, a job ended
(controlled) indication was received.

0201 Data with job ended (controlled) indication received on a successful input operation.
A turnaround indication was not received. Continue to receive.

0202 Control-data indication received with job ended (controlled) indication on program
start request.

0203 End-of-group indication received with job ended (controlled) indication on successful
input operation.

0204 Function-management-header or control-data indication and turnaround indication,
or a PAD message from a remote PAD, received with job ended (controlled) indi-
cation on a successful input operation.

0205 Function-management-header or control-data indication received with job ended
(controlled) indication on successful input operation.

0206 Control-data and turnaround indications received with job ended (controlled) indi-
cation on program start request.

0207 Function-management-header and end-of-group indications received with job ended
(controlled) indication on successful input operation.

0208 Detach indication received with job ended (controlled) indication on successful input
operation.

020C Function-management-header or control-data indication and detach indication
received with job ended (controlled) indication on successful input operation.

0211 Control-data and detach indications received with job ended (controlled) indication
on program start request.

0213 Control-data and turnaround indications received with job ended (controlled) indi-
cation on program start request. In addition, the remote system requested confir-
mation.

0214 Turnaround indication received with job ended (controlled) indication on successful
input operation. In addition, the remote system requested confirmation.

0215 Remote system requested confirmation. The local application program continues to
receive data. Job ended (controlled) indication received.

0216 Parity error or stop bit error (framing) or both received with job ended (controlled)
indication on successful input operation.

0217 End-of-group indication received with job ended (controlled) indication on successful
input operation. In addition, the remote system requested confirmation.

0218 Control-data indication received with job ended (controlled) indication on program
start request. In addition, the remote system requested confirmation.

021C Detach indication received with job ended (controlled) indication on successful input
operation. In addition, the remote system requested confirmation.

021D Control-data and detach indications received with job ended (controlled) indication
on program start request. In addition, the remote system requested confirmation.

0220 Remote system message and turnaround or end-of-transmission indication received
with job ended (controlled) indication on successful input operation.

Figure B-3 (Page 2 of 2). Major Code 02

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0259 X

B-8 ICF Programming V4R1

0221 Remote system message received with job ended (controlled) indication on suc-
cessful input operation. The session is still in receive state.

0223 Remote system message with end-of-group and job ended (controlled) indications
received on successful input operation.

0225 Function-management-header indication received with system message and job
ended (controlled) indication on a successful input operation.

0227 System message received with function-management-header, end-of-group, and job
ended (controlled) indications on a successful input operation.

0228 System message and detach indication received with job ended (controlled) indi-
cation on a successful input operation.

0230 Truncated system message and turnaround or end-of-transmission indication
received with job ended (controlled) indication on successful input operation.

0231 Truncated system message received with job ended (controlled) indication on a suc-
cessful input operation. The session is still in receive state.

0233 Truncated system message received with end-of-group and job ended (controlled)
indications on a successful input operation.

0235 Truncated system message received with function-management-header and job
ended (controlled) indications on a successful input operation.

0237 Truncated system message received with function-management-header, end-of-
group, and job ended (controlled) indications on a successful input operation.

0238 Truncated system message and detach indication received with job ended (con-
trolled) indication on successful input operation.

0242 Data-loss indication received with job ended (controlled) indication on successful
input operation.

0244 Function-management-header or control-data indication and turnaround indication
with job ended (controlled) indication received on a successful input operation. In
addition, the remote system requested confirmation.

0245 Function-management-header or control-data indication with job ended (controlled)
indication received on a successful input operation. In addition, the remote system
requested confirmation.

0246 Function-management-header or control-data indication and detach indication with
job ended (controlled) indication received on a successful input operation. In addi-
tion, the remote system requested confirmation.

0247 Function-management-header and end-of-group indications with job ended (con-
trolled) indication received on a successful input operation. In addition, the remote
system requested confirmation.

0254 Rollback is required. The transaction program (TP) has entered the rollback-
required state.

0257 The remote program has issued either a commit operation or a prepare-for-commit
function. This requests the local program to respond by issuing a commit operation
in order to perform the two-phase commit processing on all protected resources.
Also, your job is being ended (controlled).

0258 The remote program has issued an allow-write function with the transaction-
synchronization-level function followed by either a commit operation or a prepare-
for-commit function. The synchronization level is *COMMIT. Your program will be
in send state after issuing a commit operation, once the commit operation com-
pletes successfully. Also, your job is being ended (controlled).

0259 The remote program has issued a detach function with the transaction-
synchronization-level function followed by either a commit operation or a prepare-
for-commit function. The synchronization level is *COMMIT. Your program will be
deallocated after issuing a commit operation, once the commit operation completes
successfully. Also, your job is being ended (controlled).

 Appendix B. Communications Error Handling B-9

Major Code 03
Major return code 03 indicates that the input operation completed successfully, but no data
was received.

 Description
The input operation issued by your program completed successfully, but no data was
received.

Code Description

0300 On a successful input operation, a turnaround or end-of-transmission indication with
no data, or a null record that was the beginning or middle record in a group of
records was received.

0301 No data received on successful input operation. A turnaround indication was not
received. Continue to receive.

0302 Fail indication received with no data on successful input operation.

0303 End-of-group indication received with no data on successful input operation.

0305 Function-management-header or control indication received with no data on suc-
cessful input operation.

0306 Control-data and turnaround indications received with no data on program start
request.

Figure B-4. Major Code 03

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0300 X X X X X X

0301 X X X X

0302 X X X

0303 X X X X

0305 X X X X

0306 X

0308 X X X X X

0309 X X X X X X X

030C X X

0310 X X X X X X X

0311 X

0313 X

0314 X X

0315 X X

0317 X

0318 X

031C X X

031D X

0344 X X

0345 X X

0346 X

0357 X

0358 X

0359 X

B-10 ICF Programming V4R1

0308 Detach indication received with no data on successful input operation.

0309 Job ended (controlled) indication received on read-from-invited-program-devices
operation.

030C Function-management-header or control-data indication and detach indication
received with no data on successful input operation.

0310 Timer interval has ended.

0311 Control-data indication and detach indication received with no data on an input
operation.

0313 Control-data and turnaround indications received with no data on program start
request. In addition, the remote system requested confirmation.

0314 Turnaround indication received with no data on a successful input operation. In
addition, the remote system requested confirmation.

0315 Remote system requested confirmation. The local application program continues to
receive data.

0317 End-of-group indication received with no data on successful input operation. In
addition, the remote system requested confirmation.

0318 Control-data indication received with no data on program start request. In addition,
the remote system requested confirmation.

031C A detach indication received with no data on a successful input operation. In addi-
tion, the remote system requested confirmation.

031D Control-data and detach indications received with no data on program start request.
In addition, the remote system requested confirmation.

0344 Function-management-header or control-data indication and turnaround indication
received with no data on a successful input operation. In addition, the remote
system requested confirmation.

0345 Function-management-header or control-data indication received with no data on a
successful input operation. In addition, the remote system requested confirmation.

0346 Function-management-header or control-data indication and detach indication
received with no data on a successful input operation. In addition, the remote
system requested confirmation.

0357 The remote program has issued either a commit operation or a prepare-for-commit
function. This requests the local program to respond by issuing a commit operation
in order to perform the two-phase commit processing on all protected resources.

0358 The remote program has issued an allow-write function with the transaction-
synchronization-level function. function followed by either a commit operation or a
prepare-for-commit function. The synchronization level is *COMMIT. Your program
will be in send state after issuing a commit operation, once the commit operation
completes successfully.

0359 The remote program has issued a detach function with the transaction-
synchronization-level function followed by either a commit operation or a prepare-
for-commit function. The synchronization level is *COMMIT. Your program will be
deallocated after issuing a commit operation, once the commit operation completes
successfully.

Major Code 04
Major return code 04 indicates that an output exception occurred.

 Appendix B. Communications Error Handling B-11

 Description
An output exception occurred because your program attempted to send data when it should
be receiving data. The data from your output operation was not sent. You can attempt to
send data later.

Code Description

0402 Fail indication received. Your program must receive.

0411 Message for your program is waiting to be received.

0412 Data for your program is waiting to be received, or a negative response has been
received from the remote system, and your program has not been informed.

Figure B-5. Major Code 04

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0402 X X

0411 X

0412 X X X X X X X

Major Codes 08–11
Major return codes 08–11 indicate that miscellaneous program errors occurred.

 Description
The operation just attempted by your program was not successful. The operation may have
failed because it was issued at the wrong time.

Code Description

0800 Acquire operation was not successful because your program tried to acquire a
program device that has already been acquired.

1100 Read-from-invited-program-devices operation was not successful.

Figure B-6. Major Codes 08-11

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

0800 X X X X X X X

1100 X X X X X X X

Major Code 34
Major return code 34 indicates that an input exception occurred.

 Description
The input operation attempted by your program was not successful. The data received was
too long for your program’s input buffer or was not compatible with the record format speci-
fied on the input operation.

Figure B-7 (Page 1 of 2). Major Code 34

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

3401 X X X X X

3421 X

3422 X

B-12 ICF Programming V4R1

Code Description

3401 Input operation rejected because data received was too long for your program’s
input buffer.

3421 Control-data indication received. An input exception occurred because the program
received data that exceeded its maximum record length. The data has been trun-
cated. The local application program continues to receive data.

3422 Control-data indication received with program start request. An input exception
occurred because the program received data that exceeded its maximum record
length. The data has been truncated. The local application program continues to
receive data.

3431 An input exception occurred because the program received data that exceeded its
maximum record length. The data has been truncated. The local application
program continues to receive data.

3441 The record format selected by the format selection option does not match the
record format specified on the read.

3451 The file record size specified is not large enough for the data and indicators
received, or it is not large enough for the indicators received.

3461 Partial record received because remote system sent an error condition before com-
pleting the record.

3471 An input exception occurred because the program received data that exceeded its
maximum record length. The data has been retained and will be returned on sub-
sequent input operations. The local application program continues to receive data.

3481 Control-data indication received. An input exception occurred because the program
received data that exceeded its maximum record length. The data has not been
truncated. The local application program may continue to receive the remaining
data on subsequent input operations.

Figure B-7 (Page 2 of 2). Major Code 34

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

3431 X

3441 X X X X X X X

3451 X X X X X X X

3461 X

3471 X

3481 X

Major Code 80
Major return code 80 indicates a permanent system or file error (nonrecoverable).

 Description
A nonrecoverable file or system error has occurred. The underlying communications support
may have ended and your session has ended. If the underlying communications support
ended, it must be established again before communications can resume. Recovery from this
error is unlikely until the problem causing the error is detected and corrected.

Figure B-8 (Page 1 of 2). Major Code 80

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

8081 X X X X X X X

8082 X X X X X X X

 Appendix B. Communications Error Handling B-13

Code Description

8081 System error abnormally ended the support provided by the communications type.

8082 Communications device not usable or error recovery canceled by operator.

80B3 ICF file not available.

80C0 Session failed.

80D0 Remote transaction program not available. No retry allowed.

80EB Open operation was tried but was not successful. Either an open option was speci-
fied that was not valid, or there is a mismatch between the file and the program.

80ED File level check error occurred on open operation.

80EF User not authorized to file.

80F8 Open operation not successful because the file is already open or it is in error.

80F9 The operation attempted by your program was not successful because a system
error condition was detected. Rollback required.

80FA The operation attempted by your program was not successful because the device
supporting communications between your program and the partner location is not
usable. For example, this may have occurred because communications were
stopped for the device by a Hold Communications Device (HLDCMNDEV)
command. Your program should not issue any operations to the device. Rollback
required.

80FB An irrecoverable error has occurred on the session. The session was ended abnor-
mally either by the partner system or because of a partner protocol error. Rollback
required.

Figure B-8 (Page 2 of 2). Major Code 80

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

80B3 X X X X X X X

80C0 X

80D0 X

80EB X X X X X X X

80ED X X X X X X X

80EF X X X X X X X

80F8 X X X X X X X

80F9 X

80FA X

80FB X

Major Code 81
Major return code 81 indicates a permanent session error (nonrecoverable).

 Description
A nonrecoverable session error occurred during an I/O operation. Your session cannot con-
tinue and has ended. Before communications can resume, the session must be established
by using an acquire operation or another program start request. Recovery from this error is
unlikely until the problem causing the error is detected and corrected. Operations directed to
other sessions associated with the file should be expected to work.

B-14 ICF Programming V4R1

Code Description

8101 Protected password could not be built.

810A Combination of values detected on an input or output operation was not valid. Both
CODE(ASCII) and TRNSPY(*YES) were specified.

8140 Cancel reply was received for a previous inquiry or notify message.

8187 Block length or record length is greater than buffer size on an input or output opera-
tion.

8191 Permanent line error occurred on an output operation, or station (controller) error
occurred on an input or output operation.

8192 Permanent line error occurred on an input operation.

8193 Disconnect indication (for switched lines only) received on an output operation.

8194 Disconnect indication (for switched lines only) received on an input operation.

Figure B-9. Major Code 81

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

8101 X

810A X

8140 X X X X X X X

8187 X

8191 X X X X X X

8192 X

8193 X

8194 X

8196 X X

8197 X X X X

8198 X

8199 X

819A X

819C X

819D X X

81A3 X X

81A4 X X

81AD X X

81B9 X

81BA X X

81C2 X

81C5 X

81C6 X

81E9 X X X X X X X

81F0 X

81F1 X

81F2 X

81F3 X

81F4 X

81F5 X

 Appendix B. Communications Error Handling B-15

8196 Communications support has ended the session.

8197 Remote system abnormally ended the session on an output operation.

8198 Remote system abnormally ended the session on an input operation.

8199 Time between successive data blocks sent to, or received by, the remote system on
output operations is larger than specified wait time.

819A Time between successive data blocks received from the remote system on input
operations is larger than specified wait time.

819C On an input operation, the length of the data block sent by the remote system was
greater than the buffer size.

819D Unexpected data or an unexpected program start request was received from the
remote system during an active session.

81A3 SNA session ended abnormally.

81A4 SNA protocol violation occurred.

81AD Attempt to establish an SNA session was not successful. The SDLC frame size
was not large enough to contain the response unit (RU) size.

81B9 A data record that exceeds the maximum user record length was received on an
input operation.

81BA A data record that exceeds the maximum user record length was received on an
input operation.

81C2 Operation failed because the local APPC could not establish a session.

81C5 The remote program or remote system abnormally ended the session (TYPE=SVC).

81C6 The remote program or remote system abnormally ended the session
(TYPE=TIMER).

81E9 Data received does not match any record format in the file with the RECID keyword.

81F0 A network interface, permanent line, or controller error occurred on an input or
output operation, and the system operator attempted recovery in response to the
error message. You can learn what type of error occurred by checking the system
operator message queue (QSYSOPR). The session has ended. Data may have
been lost. Rollback required.

81F1 The partner system sent a Systems Network Architecture (SNA) UNBIND command
to your system, or the session was ended locally. Rollback required.

81F2 On an input or output operation, the partner system ended the transmission abnor-
mally because it could not continue the session. The session has ended. Rollback
required.

81F3 The partner program or partner system abnormally ended the session (TYPE=SVC).
Rollback required.

81F4 The partner program or partner system abnormally ended the session
(TYPE=TIMER). For example, the partner program may have been canceled by the
operator. Rollback required.

81F5 An input operation was issued and the format selection option for the ICF file was
*RECID, but the data received did not match any record formats in the file. There
was no format in the file defined without a RECID keyword, so there was no default
record format to use. The session has ended. Rollback required.

B-16 ICF Programming V4R1

Major Code 82
Major return code 82 indicates that the open or acquire operation failed.

 Description
Your attempt to establish a session was not successful. The error may be recoverable or
permanent, and recovery from it is unlikely until the problem causing the error is detected
and corrected.

Figure B-10 (Page 1 of 2). Major Code 82

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

8209 X X X X X X X

820A X

8221 X X

8233 X X X X X X X

8281 X X X X X X X

8282 X X X X X X X

8285 X X

8287 X

8289 X

828B X

828C X

828D X

828E X

8290 X

8291 X X X X

8293 X

8297 X X X

82A0 X

82A1 X

82A2 X

82A4 X X

82A5 X

82A6 X X X X

82A7 X X X X

82A8 X X X X X X X

82A9 X X X X X X X

82AA X X X X X X X

82AB X X X X X X X

82AC X

82AD X X

82B3 X X X X X X

82B4 X

82B5 X

82BB X

82C3 X

82EA X X X X X X X

 Appendix B. Communications Error Handling B-17

Code Description

8209 An open or acquire operation was not successful because a prestart job is to be
ended.

820A Combination of values detected was not valid. Both CODE(ASCII) and
TRNSPY(*YES) were specified, or BLOCK(*USER) and RMTBSCEL(*YES) were
specified.

8221 SNA command received for remote location or device description that was not sup-
ported or not valid.

8233 Program device name is either missing or not valid.

8281 System error abnormally ended the support provided by the communications type.

8282 Communications device not usable or error recovery canceled.

8285 Attempt to automatically call remote system failed.

8287 Block Length or record length greater than buffer size.

8289 Combination of values detected during an acquire operation was not valid. A record
separator and text transparency were both specified.

828B Combination of values detected during an acquire operation was not valid. The
maximum user record length specified was greater than the block length.

828C Combination of values detected during an acquire or open operation was not valid.
GRPSEP(*DEV3740) and BLOCK(*ITB) were both specified.

828D Combination of values detected during an acquire or open operation was not valid.
TRUNC(*YES) and BLOCK(*ITB) were both specified.

828E Combination of values detected during an acquire or open operation was not valid.
TRUNC(*YES) and BLOCK(*ITB) were both specified, or TRUNC(*YES) and
BLOCK(*NOSEP) were specified.

8290 Combination of values detected during an acquire or open operation was not valid.
Blank compression and text transparency were both specified.

8291 Permanent line error or station (controller) error occurred on an unsuccessful open
or acquire operation.

8293 Disconnect indication (for switched lines only) received from remote system during
an acquire or open operation.

8297 Remote system ending line transmission.

Figure B-10 (Page 2 of 2). Major Code 82

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

82EC X X X

82EE X X X X X X X

82EF X X X X X X X

82F0 X X

82F2 X

82F4 X X X X

82F5 X X X

82FA X

82FB X

82FC X

82FD X

82FE X

B-18 ICF Programming V4R1

82A0 A record separator character that was not valid was specified on the ADDICFDEVE
or OVRICFDEVE command.

82A1 Logon portion of the acquire operation failed. Either the host subsystem was not
active, or a remote program name that was not valid was specified in the APPID
parameter.

82A2 User ID or password that was not valid was received on the INIT-SELF.

82A4 SNA protocol violation occurred.

82A5 Combination of parameter values detected during an acquire operation was not
valid. *YES was specified for the MSGPTC and BATCH parameters.

82A6 SNA bind command failed.

82A7 The specified program device was already in use when the open or acquire opera-
tion was attempted.

82A8 The maximum number of program devices allowed for the ICF file was reached
when the open or acquire operation was attempted.

82A9 Acquire to requesting program device rejected because *REQUESTER device was
not available, was already acquired, or a CPI-Communications requesting conversa-
tion was already allocated.

82AA Operation failed because remote location or device not found, or device was found
but not usable.

82AB Operation failed because device not varied on.

82AC Acquire operation failed because the remote location specified for the device was
not *REQUESTER.

82AD Attempt to establish an SNA session was not successful. The SDLC frame size
was not large enough to contain the RU size.

82B3 Operation failed because device is being used by a different job or no sessions are
currently available for specified remote location.

82B4 Operation failed because System/36 application program cannot open an ICF file to
a program device for SNA 3270 program interface.

82B5 Operation not successful because SNA 3270 program interface session cannot use
SNUF device from earlier release.

82BB Acquire operation failed because device specified was reserved for a program start
request from host system.

82C3 Mode description was not found.

82EA *RECID format selection processing was requested to a file that contains no record
formats with a *RECID keyword.

82EC The acquire operation was not successful because CNVTYPE(*USER) is not valid
with FMTSLT(*RMTFMT); or this communications type does not support
FMTSLT(*RMTFMT).

82EE An operation was attempted to a device that is not supported for an ICF file.

82EF An open or acquire operation was attempted to a device the user is not authorized
to use, or to a device in service mode.

82F0 Error recovery not performed for file.

82F2 Conversation type specified for the requesting program device does not match
value received from source program.

82F4 Open operation for input only not valid for a source program.

82F5 *RMTFMT format selection parameter not valid on acquire operation.

82FA The local LU rejected the allocation request because the local program specified a
synchronization level (on the evoke function) that the remote LU does not support.

 Appendix B. Communications Error Handling B-19

82FB Protected conversations are not supported on single session devices.

82FC Protected conversations are not supported by the System/36 and System/38 envi-
ronments.

82FD The exchange log name process failed.

82FE The evoke function issued by your program was not successful because a
resource could not be placed under commitment control.

Major Code 83
Major return code 83 indicates that a session error occurred (the error is recoverable).

 Description
An error occurred during an I/O operation, but the session is still active. Recovery within
your program might be possible.

Figure B-11 (Page 1 of 2). Major Code 83

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

830B X X X X X X X

830C X

830D X

8311 X

8316 X

8319 X X X X

831A X X X

831B X X X X

831C X X X X X X

831E X X X X X X X

831F X X X X X X X

8322 X X X X X

8323 X X X

8324 X

8326 X X X X

8327 X X X X X

8329 X X X X X X

832A X

832B X

832C X X X X X X X

832D X X X X X X X

832F X X X X X X

8330 X X X

8331 X X

8332 X

8334 X X X X

83B6 X X X

83B7 X

83B8 X

83C7 X

B-20 ICF Programming V4R1

Code Description

830B An input or output operation was attempted to a program device that was not
acquired.

830C Length of function-management-header received from host system is greater than
the maximum RU length.

830D Shutdown indication received from host system.

8311 Output operation was attempted while a message containing sense data was
waiting to be received.

8316 Evoke failed because target program was not found.

8319 Negative response with sense data was issued to your program’s previous or
current output request by the other program.

831A Evoke failed to complete successfully, or the target program ended abnormally.

831B Sense data that was not valid was specified on a negative-response function issued
by your program.

831C Operation is not valid at this time. An indication was received that the return code
from a previous operation was not properly handled by your program.

Figure B-11 (Page 2 of 2). Major Code 83

Code APPC
Asynchro-

nous BSCEL Finance
Intra-

system Retail SNUF

83C8 X

83C9 X

83CA X

83CB X

83CC X

83CD X X

83CE X

83CF X

83D0 X

83D1 X

83D2 X

83D3 X

83D5 X

83D6 X X

83E0 X X X X X X X

83E8 X X X X X X

83F1 X

83F3 X

83F6 X

83F7 X

83F8 X X X X X X X

83F9 X

83FB X

83FC X

83FD X

83FE X

83FF X

 Appendix B. Communications Error Handling B-21

831E Operation or combination of operations not valid, or operation not supported by the
communications type.

831F Length of data record or data specified on the operation not valid.

8322 Request-to-write, negative-response, or detach function not valid while your
program is in send state.

8323 Cancel issued while in receive state, or fail indication received while in send state.

8324 Function-management-header indication issued by your program at wrong time.
Function-management-header is valid only with the first record in the chain.

8326 Cancel or negative-response indication issued as a single record. These functions
are only valid within a group of records.

8327 Input or output operation that was not valid was issued when no transaction existed.
Your program may have expected more data when there was none.

8329 Evoke not valid in this session. Your program was started by a remote program
start request.

832A Both programs were attempting to receive.

832B Output operation with zero record length detected when GRPSEP(*OFCSYS) was
specified.

832C Release operation not valid after an invite function.

832D Attempted function is not valid following an invite function.

832F Evoke function or release operation that was not valid was issued before a trans-
action completed.

8330 Cancel indication or cancel and turnaround indications received on an input opera-
tion.

8331 Cancel indication received without turnaround indication on an input operation.

8332 Cancel and detach indications received on an input operation.

8334 Program name missing on an evoke sent by your program, or the length of the
program name was not valid.

83B6 The remote program has quiesced the SNA session on which this transaction is
running.

83B7 Value received in SNA header that was not valid.

83B8 The host system has sent a clear request to reset the session.

83C7 Fail indication (TYPE=PROG) received with no data on an input operation. No data
truncated.

83C8 Fail indication (TYPE=SVC) received with no data on an input operation. No data
truncated.

83C9 Fail indication (TYPE=PROG) received on an input or output operation with or
without a confirm indication. Data may have been lost.

83CA Fail indication (TYPE=SVC) received on an input or output operation with or without
a confirm indication. Data may have been lost.

83CB Fail indication (TYPE=PROG) received on an input operation. The last logical
record truncated.

83CC Fail indication (TYPE=SVC) received on an input operation. The last logical record
truncated.

83CD Confirm indication not allowed when SYNLVL(*NONE) is specified on the evoke
function.

83CE Security information specified on the evoke function not valid. Request rejected by
remote system.

B-22 ICF Programming V4R1

83CF Remote location or remote program does not support the specified conversation
type. Request rejected by remote system.

83D0 Program name specified on the evoke function is not currently available. Retry is
allowed.

83D1 Program initialization parameters not allowed. Request rejected by remote system.

83D2 Program initialization parameters not specified correctly. Request rejected by
remote system.

83D3 Synchronization level specified on the evoke function not supported by remote
program.

83D5 Response-to-confirm request required.

83D6 Response-to-confirm request not valid in current state.

83E0 Record format not defined for the file.

83E8 Cancel-invite function not valid because an invite function was not previously
issued.

83F1 The file was closed while the transaction was still active.

83F3 Length specification on a basic conversation not valid.

83F6 User-defined data not valid on an unsuccessful output operation.

83F7 Length of user-blocked data record not valid on an unsuccessful output operation.

83F8 Operation attempted to a device marked in error.

83F9 Your program issued an operation that did not complete the data record.

83FB Your program closed the ICF file while the transaction was still active. The system
abnormally ended the transaction with the partner program. Rollback required.

83FC Your program attempted to issue an operation to a program device that is marked
in error due to a previous I/O or acquire operation. Your program may have
handled the error incorrectly. Rollback required.

83FD All protected resources have rolled back in the part of the distributed transaction
affected by the function.

83FE The state of one or more protected resources is not known. The changes probably
are or will be rolled back, but changes to some resources may be committed
instead. Your protected LUW is in the rollback required state.

83FF The state of the protected resources is not consistent. One or more resources have
advanced to a new synchronization point (have been committed instead of rolled
back). Your protected LUW is in the rollback required state.

This return code occurs only when processing has been abnormally interrupted
through operator intervention.

Failed Program Start Requests
Message CPF1269 is sent to the system operator message queue when the local system
rejects an incoming program start request. You can use the message information to deter-
mine why the program start request was rejected.

The CPF1269 message contains two reason codes. One of the reason codes can be zero,
which can be ignored. If only one nonzero reason code is received, that reason code repre-
sents the reason the program start request was rejected. If the System/36 environment is
installed on your AS/400 system, there can be two nonzero reason codes. These two
reason codes occur when the OS/400 system cannot determine whether the program start
request was to start a job in System/36 environment or in the OS/400 environment. One
reason code explains why the program start request was rejected in the System/36 environ-
ment and the other explains why the program start request was rejected in the OS/400 envi-

 Appendix B. Communications Error Handling B-23

ronment. Whenever you receive two reason codes, you should determine which
environment the job was to run in and correct the problem for that environment.

B-24 ICF Programming V4R1

Appendix C. Open Feedback and I/O Feedback

This appendix contains information concerning the open
feedback and I/O feedback areas.

If you are using the ILE COBOL, or ILE RPG support, you
need to add the offset values shown in Figure C-1 to the
offset values listed in this appendix to access information
from the feedback areas.

For the ILE C programming language, the Open Feedback
Area is accessed with a call to the _Ropnfbk function. The
Common I/O Feedback Area is accessed with a call to the
_Riofbk function. The File Dependent Feedback Area is
accessed by adding an offset in the Common I/O Feedback

Area to a pointer to the Common I/O Feedback Area. See
the ILE C/400 Programmer’s Guide for more information.

Open Feedback Area

You can use the open feedback area information, set during
open processing, as long as the file is open. The support
provided by the high-level language you are using deter-
mines how to access this information. See the appropriate
language reference book for more information.

The complete open feedback area is described in the Data
Management book. Figure C-2 shows the fields relevant to
ICF support.

Figure C-1. Offset Values for ILE COBOL, and ILE RPG

Language

Open
Feed-
back
Area

Common
I/O Feed-
back Area File Dependent Feedback Area

ILE COBOL 01 0 144

FORTRAN/400 01 0 1442

ILE RPG 81 241 367

1 Separate structure from the Common I/O Feedback Area.

2 Use offset in the first 2 bytes of the Common I/0 Feedback Area to get to the File Dependent Feedback Area.

Figure C-2. Open Feedback Area

Offset Data Type
Length
in Bytes Contents

0 Char-
acter

2 Type of file being opened (DS = device file).

2 Char-
acter

10 Name of the file being opened.

12 Char-
acter

10 Name of the library containing the file.

44 Binary 2 Record length.

66 Binary 2 File type (11 = ICF).

116 Char-
acter

10 Program device name of the requester. This field contains the program device name, if valid for this job
and file. If it is not valid, this field contains *N.

133 Char-
acter

2 Open identifier. This value is unique for a full open of a file (SHARE (* NO)) or the first open of a file
with (SHARE (* YES)). It allows the user to match this file to an entry on the associated data queue.

135 Binary 2 Maximum record length. This value includes the data, source sequence numbers, option indicators,
response indicators, and P-data, if applicable. If this field is 0, then use the field from offset 44.

146 Binary 2 Number of program devices added to the file using the Add Intersystem Communications Function Device
Entry (ADDICFDEVE) command, or number of program devices defined to the file using the Override ICF
Device Entry (OVRICFDEVE) command and acquired by the program.

148 Char-
acter

Vari-
able

Program device name definition list. Refer to Figure C-3.

 Copyright IBM Corp. 1997 C-1

Program Device Definition List

Figure C-3 on page C-2 shows the mapping for a single
entry of the program device definition list, which is physically
a part of the open feedback area. However, the fields in the
definition list are not necessarily set when the file opens.

Figure C-3. Program Device Definition List

Offset

Data Type

Length in
Bytes

Contents

0 Character 10 Program device name.

60 Character 10 Device description name.

70 Character 1 Device class. Hex 0B for ICF.

71 Character 1 Communications type:

0A BSCEL device
0E APPC device
1E Intrasystem device
1F Asynchronous device
20 SNUF device
42 Finance device
43 Retail device

76 Character 2 Status flags, as follows:

Bit 3, acquire status:

0 Program device not acquired.
1 Program device acquired.

Bit 4, invite status:

0 Program device not invited.
1 Program device invited.

Bit 5, data-available status:

0 Data not available.
1 Data available.

Bit 6, transaction status:

0 Transaction not started. An evoke has not been sent, a detach has been sent or received, or
the transaction has completed.

1 Transaction started. The session is active, an evoke has been sent or received, and the
transaction has not ended.

Bit 7, session type:

0 Session created with source program
1 Requesting program device

78 Character 1 Synchronization level:

Hex 00 The transaction was started with SYNLVL(*NONE). Confirm processing is not
allowed.

Hex 01 The transaction was started with SYNLVL(*CONFIRM). Confirm processing is
allowed.

Hex 02 The transaction was started with SYNLVL(*COMMIT). Confirm processing and two-
phase commit processing are allowed.

79 Character 1 Conversation type:

Hex D0 Basic
Hex D1 Mapped

C-2 ICF Programming V4R1

Input/Output Feedback Area

The results of I/O operations are communicated to the
program using ICF messages and I/O feedback information.
The support provided by the high-level language you are
using determines how to access this information. See the
appropriate communications language reference book for
more information.

The feedback area consists of two parts:

� A common I/O feedback area
� A file-dependent I/O feedback area

Common I/O Feedback Area

The complete common I/O feedback area is described in the
Data Management book. Figure C-4 shows the fields rele-
vant to ICF.

Figure C-4. Common I/O Feedback Area

Offset

Data Type

Length in
Bytes

Contents

0 Binary 2 Offset to device-dependent feedback area. Refer to Figure C-5.

2 Binary 4 Output operation count. Updated only when a output operation completes successfully. This field is not
updated for fail, request-to-write, cancel, or negative-response functions, or if the record length is 0.

6 Binary 4 Input operation count. Updated only when an input operation completes successfully and data is
received.

10 Binary 4 Output then input operation count. Updated only when a combined output then input operation com-
pletes successfully.

14 Binary 4 Count of other operations. Number of successful acquire and release operations.

18 Char-
acter

1 Reserved.

19 Char-
acter

1 Current operation (the last requested):

Hex 01 Input
Hex 05 Output
Hex 06 Output then Input
Hex 11 Release
Hex 12 Acquire

20 Char-
acter

10 Name of the just-processed record format, which is either specified on the I/O request or determined by
default processing.

30 Char-
acter

2 Communications class and type:

Hex 0B0A BSCEL
Hex 0B0E APPC
Hex 0B1E Intrasystem
Hex 0B1F Asynchronous
Hex 0B20 SNUF
Hex 0B42 Finance
Hex 0B43 Retail

32 Char-
acter

10 Program device name (for operation just completed).

42 Binary 4 Record length specified by the record format processed by the last I/O operation, not including any indi-
cators or program-to- system fields (P-data fields). For Evoke operations, this field specifies the length
of any user-defined parameters.

46 Reserved 82 Not applicable to ICF communications.

128 Binary 2 Length of the record associated with the last I/O operation. This value includes data, option indicators,
response indicators, and P-data, if applicable.

130 Reserved 14 Not applicable to ICF communications.

File-Dependent I/O Feedback Area

Figure C-5 shows the communications type-dependent fields
relevant to ICF.

 Appendix C. Open Feedback and I/O Feedback C-3

Figure C-5. File-dependent I/O Feedback Area

Offset

Data Type

Length
in
Bytes

Contents

ICF
Type

5 Binary 4 Actual record length. This field is set as follows:

Input: Contains the actual length of user data received from the remote system or
device. When all the data cannot be contained in the record format used, the length of
data is provided, if known. If the actual length cannot be determined (for example, if
DTACPR(*YES) is specified for BSCEL), this field is set to hex FFFFFFFF. When a
partial record is received, the length of the data received is provided. If the input opera-
tion completes with an error (other than partial record or buffer too small), the contents
of the field are undetermined.

Output: Contains the number of bytes moved from your program to the output buffer. If
the output operation completes with an error, the contents of the field are undetermined.

All

34 Char-
acter

2 Major return code. All

36 Char-
acter

2 Minor return code. All

38 Char-
acter

8 Negative-response error data. For some return codes, this field can contain more detailed
information about the reason for the error.

APPC
Finance
Retail

46 Char-
acter

1 Safe indicator:

0 Off.
1 On indicates that a block ending with ETX was received. The Safe indicator is not set for

BLOCK(*USER).

BSCEL

47 Char-
acter

1 Reserved.

48 Char-
acter

1 Request-to-write indication was received.

0 Request-to-write not received.
1 Request-to-write was received.

APPC
SNUF
BSCEL
Intrasystem

49 Char-
acter

10 Remote format name received from the remote program on an input operation. APPC
Intrasystem

63 Char-
acter

8 Mode associated with the program device. APPC

C-4 ICF Programming V4R1

Appendix D. EBCDIC and ASCII Character Sets

The following charts show the EBCDIC and ASCII character sets. The charts are provided
to show the data link control characters that are used in data communications.

EBCDIC Character Set
Figure D-1 shows a complete EBCDIC character set.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

SEL

HT

DEL

GE

SPS

RPT

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

NL

BS

POC

CAN

EM

UBS

CU1

IFS

IGS

IRS

DS

SOS

FS

WUS

LF

ETB

ESC

FMT

ENQ

ACK

BEL

SYN

IR

PP

RS

NBS

EOT

SBS

IT

RFF

CU3

NAK

SUB

SP

RSP

¢

.

<

(

+

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

J

K

L

M

N

O

P

Q

R

\

NSP

S

T

U

V

W

X

Y

Z

0 1 2 3 4 5 6 7 8 9Hex A B C D E F

RES

INP

BYP

SM
SW

ITB
IUS

DC4
)

!

$

;

-

/

,

%

>

?

'

:

#

'

=

"

s

t

u

v

w

x

y

z

0

1

2

3

4

5

6

7

8

9

EQ

A

B

C

D

E

F

G

H

I

SHY

RSLS196-0

Main Storage
Bit Positions
4,5,6,7

Main Storage Bit Positions 0,1,2,3

ENP

0000 000 1 00 10 00 11 0 100 0 10 1 0 110 0 111 1000 100 1 10 10 10 11 1100 110 1 1110 1111

Figure D-1. EBCDIC Character Set

 Copyright IBM Corp. 1997 D-1

ASCII Character Set
Figure D-2 shows the ASCII character set.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

DEL

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

Hex A B C D E F

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

\

)

SP

!

"

#

$

%

'

(

)

+

,

-

.

/

RSLS197-1

Main Storage
Bit Positions
4,5,6,7

Main Storage Bit Positions 0,1,2,3

Figure D-2. ASCII Character Set

D-2 ICF Programming V4R1

Appendix E. File Transfer Support

This appendix describes the application interface to the
AS/400 system file transfer support (FTS) . FTS is a func-
tion of the operating system that moves the file members
from one system to another using asynchronous, advanced
program-to-program communications (APPC), or binary syn-
chronous communications equivalence link (BSCEL) commu-
nications support.

File Transfer Support Overview

Using FTS, a user application program can send or retrieve
database file members between one AS/400 system and
another AS/400 system, send database file members to
System/36, and retrieve files and library members from
System/36. System/36 Release 5.1 with preventive
PTF–DK3700 is required to communicate with System/36.
FTS does not support the sending and retrieving of database
file members between an AS/400 system and a System/38.

If an AS/400 database file has more than one member, you
can send or retrieve only one member at a time.

If a database file does not exist, it is created and the
member is added.

Note: The database file is created with *NOMAX as the
maximum member (MAXMBR) value. If a database file
exists and the member does not exist, the member is added.
If a member exists, you can specify that the member be
replaced.

FTS running on the local system communicates with FTS on
the remote system to complete the request. FTS defines the
target system as the system that receives the object, which
can be the local system or the remote system. For example,
if system A in Figure E-1 sends a database file member to
system B using FTS, system B is the target system. If
system A retrieves a database file member from system B
using FTS support, system A is the target system.

FTS Send

FTS Retrieve

File

File

System A System B

File

File
File

RSLS150-1

Figure E-1. Example of File Transfer Support

An application program can use FTS by calling the program
QY2FTML.

Note: FTS uses the file QSYS/QY2ICFF. Do not change or
delete this file. This file contains the DDS formats for the
ICF file.

Either a high-level language program or a control language
(CL) program can call FTS. FTS is supported by all high-
level languages. Refer to the ILE C, COBOL/400, RPG/400,
and CL program examples in this appendix for more details.

FTS evokes a partner application on the remote system.
You do not need to have a user application on the remote
system to use FTS.

FTS assumes that the user ID used on the remote system is
the same as the user ID for the job from which FTS was
started. If you are creating a file on an AS/400 system, the
sending user ID becomes the owner.

 Data Compression

The System/36 requires FTS data to be compressed. Except
for token-ring lines, the AS/400 system does not compress
data when the line speed (LINESPEED parameter on the line
description) is set greater than or equal to 56000 bits per
second (bps). Regardless of line speed or type, the optional
COMPRESS parameter can be used to specify whether data
compression is done.

For token-ring networks, FTS always compresses data.

File Transfer Considerations

The following sections describe in more detail the objects
that you can send and retrieve using FTS.

To and From an AS/400 System

You can send physical file members to or retrieve them from
an AS/400 system.

You cannot send or retrieve the following objects:

� Physical files that are part of an interactive data defi-
nition utility (IDDU) dictionary

� Physical files being sent to a receiving AS/400 system,
where the receiving AS/400 system has logical files built
over the physical files

Note: The logical files must be deleted by the user,
then the FTS can successfully transfer the physical files.

� AS/400 program objects

 � Logical files

 � Device files

 Copyright IBM Corp. 1997 E-1

AS/400 System Retrieving from System/36

On an AS/400 system, you can retrieve the following objects
from System/36:

 � System/36 files
� System/36 library members

You cannot retrieve the following objects:

� System/36 data dictionary
 � System/36 folder/document

When you retrieve a file from System/36, the file is stored on
the AS/400 system as a physical file within a library. If you
do not specify a member name, the member name becomes
the creation date with an M added as the first character.

When you retrieve a library member from System/36, the file
is stored on the AS/400 system as a physical file member in
a file within a library. If you do not specify the file name, the
type of member determines the file name. Source library
members are stored in file QS36SRC, procedure library
members are stored in file QS36PRC, subroutine library
members are stored in file QS36SBR, and load library
members are stored in file QS36LOD.

Note: A System/36 index file cannot be added as a member
to a keyed file created on an AS/400 system.

AS/400 System Sending to System/36

You can send physical file members from an AS/400 system
to System/36.

You cannot send the following objects:

� Physical files that are part of an interactive data defi-
nition utility (IDDU) dictionary

� AS/400 program objects

 � Logical files

 � Device files

� Keyed files with multiple key fields

The attributes of the physical file determine if physical file
members are stored as library members or files on
System/36.

If the physical file member has the attributes of a System/36
file, it is stored as a file on System/36. The file keeps its file
organization (such as direct, sequential, or indexed). The file
name and date field from the parameters are used to create
the file on System/36.

If the physical file member being sent does not have the attri-
butes of a System/36 file, the member is stored on
System/36 as a library member. The library name, the
member name, and the type field from the input parameters
are used to create the library member on System/36.

Notes:

1. If a library name, file name, or member name is greater
than 8 characters, System/36 uses the first 8 characters
as the name.

2. The AS/400 system receives and keeps source
members with no records but the System/36 does not. If
an empty source member is sent to a System/36, the
source member is not kept.

Multiple Communication-Type Support

When using FTS, your system can set up communications
with the following communication types and specific links:

� Advanced program-to-program communications (APPC)
– Multiple sessions at the same time
– Switched or nonswitched connections
– Synchronous data link control (SDLC) links

 – X.25 links
– Integrated services digital network (ISDN)
– Token-ring and Ethernet local area networks
– Advanced Peer-to-Peer Networking (APPN) capa-

bility
– Logical unit (LU) own

Notes:

1. If the optional MODE parameter is not specified,
FTS requires use of the BLANK mode description.
If you are using APPN support to automatically
create APPC device descriptions, use the Display
Network Attributes (DSPNETA) command to ensure
that the default mode description is set to BLANK.

2. If the optional RMTNETID parameter is not specified
and in an APPN network, FTS cannot send files to a
system with a different network identifier than the
local system. The remote network identifier speci-
fied for APPC controller and device descriptions
used by FTS must be the same as the local network
identifier (LCLNETID parameter) specified in the
network attributes.

3. FTS also runs on APPC over TCP/IP using the links
that TCP/IP supports.

� Binary synchronous communications equivalence link
(BSCEL)

– Single session only
– Switched or nonswitched connections

With BSCEL, you can configure the maximum user
record length that you are going to send. This length
cannot be greater than 4075. You must specify *YES
for the TRNSPY parameter and *YES for the
RMTBSCEL parameter when you configure BSCEL.
BSCEL supports a maximum length of 8 characters for
the user ID and a maximum of 4 characters for the pass-
word. You must also specify *NONE for the BLOCK
parameter (this is the default value).

 � Asynchronous communications

E-2 ICF Programming V4R1

– Single session only
– Switched or nonswitched connections

Asynchronous communications performs a logical
link protocol to ensure data integrity. Data is sent
as 8-bit EBCDIC, not as ASCII. When you are
using FTS on an asynchronous line description,
your modem must be set to full duplex.

If your system is connected to a network by a
packet assembler/disassembler (PAD) and you use
FTS on an X.25 packet-switched data network
(PSDN), you must set the X.3 parameters and any
network-specific parameters to allow data transpar-
ency. To achieve data transparency, set the X.3
parameters and any network-specific parameters to
allow the following:

- No PAD recall using a character

 - No echo

- No selection of data forwarding characters

- No use of XON/XOFF

- PAD must send interrupt when a break signal
from start-stop mode data terminal equipment
(DTE) is received

- PAD must allow EBCDIC data

- PAD must allow 8-bit transparency

- Only forward on full packets or idle timer

Notes:

1. The network PAD must not perform any operations on
the file transfer data stream.

2. If you use FTS with AS/400 integrated PAD, the X.3
parameter settings are ignored in order to achieve data
transparency.

See the Asynchronous Communications Programming book
for more information about the X.3 parameters.

You must create configurations for each communication type
and vary on the configuration on both the local and remote
systems. For further information on communications config-
urations, see the Communications Configuration book. FTS
establishes a link to the varied on configuration based on the
remote location name supplied in the input parameters.

FTS has a maximum record length of 4075. If you use
BSCEL and configure your maximum user record length, the
record must be at least 512 bytes long. You can, however,
send files with less than 512-byte records.

File Transfer Parameters

This section describes the parameters passed to the file
transfer program QY2FTML. FTS parameters are all posi-
tional. You must, therefore, reserve space in your program
for all parameters. If you do not use a parameter, fill its
space with blanks.

Refer to the CL Reference book for general rules about
naming libraries, database files, and database file members.
Refer to the System/36 System Reference book for
System/36 naming conventions.

To and From an AS/400 System

Figure E-2 describes the required parameters for sending
and retrieving files between one AS/400 system and another
AS/400 system.

Figure E-2 (Page 1 of 3). Transferring Files to and from an AS/400 System—Required Parameters

Parameter Value Description

OPTION Character File transfer option to perform.

Length: 1 character

Type: Input, required

Valid values are as follows:

 � S—Send
 � R—Retrieve

FROMLIB Library
name

Name of the library that contains the database file.

Length: 10 characters

Type: Input, required

Valid values: Library name

FROMFILE File name Name of the database file that contains the member.

Length: 10 characters

Type: Input, required

Valid values: Database file name

 Appendix E. File Transfer Support E-3

Figure E-2 (Page 2 of 3). Transferring Files to and from an AS/400 System—Required Parameters

Parameter Value Description

FROMMBR Member
name

Name of the member.

Length: 10 characters

Type: Input, required

Valid values: Member name

TYPE Blanks Not needed for an AS/400 system to an AS/400 system.

Length: 6 characters

Type: Not applicable

Valid values: Blanks

TOLIB Target
library name

Name of the receiving library.

Length: 10 characters

Type: Input, not required

Valid values: Library name

Default: FROMLIB

TOFILE Target file
name

Name of the receiving database file.

Length: 10 characters

Type: Input, not required

Valid values: File name

Default: FROMFILE

TOMBR Target file
member
name

Name of the receiving member.

Length: 10 characters

Type: Input, not required

Valid values: Member name

Default: FROMMBR

When you use TOMBR, consider the following:

� If you are replacing a database member (REPLACE=Y), this is the name of the member to replace at
the target system.

� If you are adding a new database member, this is the name to assign.

TODATE Blanks Not needed for an AS/400 system to an AS/400 system.

Length: 6 characters

Type: Not applicable

Valid values: Blanks

REPLACE Character This field tells whether you want to replace the member on the target system.

Length: 1 character

Type: Input, not required

Valid values:

� Y—Replace an existing member on the target system.
� N—Do not replace an existing member.

Default: N

If you specify REPLACE=Y for a member, you cannot use the database file containing that member for
any other operation during the replace operation.

RMTLOCNAME Location
Name

Name of the remote location with which you are communicating.

Length: 8 characters

Type: Input, required

Valid values: Remote location name in a varied-on device description.

E-4 ICF Programming V4R1

Figure E-2 (Page 3 of 3). Transferring Files to and from an AS/400 System—Required Parameters

Parameter Value Description

PASSWORD PASSWORD Password for signing on the remote system.

Length: 10 characters

Type: Input. This field is required only if the remote system has password security active.

Valid values: Password

RTNCODE Character This field contains the return code. FTS returns this value to the application program to indicate the result
of the transfer.

Length: 1 character

Type: Output

Valid values:

 � 0—Normal completion.
� 1—An error was detected at the local system.
� 2—An error was detected at the remote system.

For return codes 1 and 2, the specific error is sent to the job log of both systems, and the message-id is
returned to the user in the message-id field. (See “File Transfer Support Messages” on page E-34 for
more information.)

MESSAGE-ID Character This field contains the message-id for the specific error if the value returned in the RTNCODE field is 1 or
2 (indicating an error).

Length: 8 characters

Type: Output

Valid values: Any message-id listed in the message section (See “File Transfer Support Messages” on
page E-34 for more information.)

Figure E-3 describes the optional parameters for sending
and retrieving files between one AS/400 system and another
AS/400 system.

Figure E-3 (Page 1 of 2). Transferring Files to and from an AS/400 System—Optional Parameters

Parameter Value Description

RMTNETID Remote
network
identifier

This field contains the network ID of the network where the remote location resides.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

� Remote network ID
 � *LOC
 � *NETATR
 � *NONE

Default: *LOC

MODE Mode name This field contains the mode name used.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *NETATR

Default: *NETATR

 Appendix E. File Transfer Support E-5

Figure E-3 (Page 2 of 2). Transferring Files to and from an AS/400 System—Optional Parameters

Parameter Value Description

LCLLOCNAME Local
location
name

This field contains the local location name.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *LOC
 � *NETATR

Default: *LOC

COMPRESS Com-
pression
indicator

Indicates if data compression will be done.

Length: 1 character

Type: Input, not required

Valid values are as follows:

 � Y—Compress data
� N—Do not compress data
� L—Data compression is determined by the speed specified on the line description. “Data

Compression” on page E-1 has more information about data compression.

Default: L

WAITFILE Maximum
file wait time

This field contains the number of seconds that the program waits for the Intersystem Communications
Function (ICF) file resources to be allocated when the file is opened.

Length: 6 characters

Type: Input, not required

Valid values are as follows:
– 000001 through 032767 seconds in character format (leading zeros are required)

 – *IMMED
 – *CLS

Default: 000030

AS/400 System Sending to System/36

Figure E-4 describes the required parameters for sending
from an AS/400 system to System/36.

Note: The TYPE parameter determines how data is stored
on the System/36, therefore, it is important to specify the
value of the TYPE parameter correctly. If this parameter is
not specified correctly, results may occur that cannot be pre-
dicted.

Figure E-4 (Page 1 of 3). AS/400 System Sending to System/36—Required Parameters

Parameter Value Description

OPTION Character File transfer option to perform.

Length: 1 character

Type: Input, required

Valid values are as follows:

 � S—Send
� R—Retrieve. Refer to “AS/400 System Retrieving a File from System/36” on page E-9. This section

describes only send.

FROMLIB Library
name

Name of the library that contains the database file.

Length: 10 characters

Type: Input, required

Valid values: Valid library name

E-6 ICF Programming V4R1

Figure E-4 (Page 2 of 3). AS/400 System Sending to System/36—Required Parameters

Parameter Value Description

FROMFILE File name Name of the database file that contains the member.

Length: 10 characters

Type: Input, required

Valid values: Valid database file name

FROMMBR File
member
name

Name of the member.

Length: 10 characters

Type: Input, required

Valid values: Valid member name

TYPE File
member
type

This field tells System/36 how to store this member.

Length: 6 characters

Type: Input, required

Valid values: SOURCE, LOAD, PROC (procedure), SUBR (subroutine), valid system date, or blanks.

SOURCE, LOAD, PROC, or SUBR must be used if the member is to be stored as a library member. A
date or blanks can be used if the member is to be stored as a file.

TOLIB Target
library
name

Name of the receiving library to which the member is sent. If the member’s attributes indicate that this is
a System/36 file, this parameter must be left blank and the TOFILE parameter must be specified.

Length: 10 characters (see note at the end of this figure)

Type: Input, not required

Valid values: System/36 library name, System/36 file name, and blanks

Default: FROMLIB

TOFILE Target file
name

Name of the file. If the attributes of the member being sent indicate that this is a System/36 file, this
parameter is used as the file name on System/36.

Length: 10 characters (see note at the end of this figure)

Type: Input, not required

Valid values: System/36 file name and blanks

Default: FROMFILE

TOMBR Target
member
name

Name of the library member. If the attributes of the member being sent indicate that this is a System/36
file, this parameter is not used.

Length: 10 characters (see note at the end of this figure)

Type: Input, not required

Valid values: System/36 library member name

Default: FROMMBR

When using TOMBR, consider the following:

� If you are replacing a library member (REPLACE=Y), this is the name of the library member to
replace at the target system.

� If you are adding a new library member, this is the name to assign.

TODATE Numeric This field is used to change the date of a file sent to a System/36. Make sure that the system date
format on the target system is the same as the format on your system. This field is not used if the
member being sent will be used as a library member.

Length: 6 characters

Type: Input, not required

Valid values: Numeric date

 Appendix E. File Transfer Support E-7

Figure E-4 (Page 3 of 3). AS/400 System Sending to System/36—Required Parameters

Parameter Value Description

REPLACE Character This field tells whether you want to replace the file or library member on the target system.

Length: 1 character

Type: Input, not required

Valid values:

� Y—Replace an existing file or library member on the target system.
� N—Do not replace an existing file or library member.

Default: N

If you specify REPLACE=Y for a library member, you cannot use the library containing that member for
any other operation during the replace operation. If you specify REPLACE=Y for a file, the file cannot be
used for any other operation during the replace operation.

RMTLOCNAME Location
Name

Name of the remote location with which you are communicating.

Length: 8 characters

Type: Input, required

Valid values: Remote location name in a varied-on device description.

PASSWORD Password Password for signing on the remote system.

Length: 10 characters. The largest password System/36 accepts is 4 characters.

Type: Input. This field is required only if the remote system has password security active.

Valid values: Password

RTNCODE Character This field contains the return code. FTS returns this value to the application program to indicate the
result of the transfer.

Length: 1 character

Type: Output

Valid values:

 � 0—Normal completion.
� 1—An error was detected at the local system.
� 2—An error was detected at the remote system.

For return codes 1 and 2, the specific error is logged to the history file of the System/36 and to the job
log file of the AS/400 system. The message-id is returned to the user in the message-id field. (See “File
Transfer Support Messages” on page E-34 for more information.)

MESSAGE-ID Character This field contains the message-id for the specific error if the value returned in the RTNCODE field is 1 or
2 (indicating an error).

Length: 8 characters

Type: Output

Valid values: Any message-id listed in the message section. (See “File Transfer Support Messages” on
page E-34 for more information.)

Note: If a library name, file name, or member name is greater than 8 characters, System/36 uses the first 8 characters as the name.

Figure E-5 describes the optional parameters for sending
from an AS/400 system to System/36.

E-8 ICF Programming V4R1

Figure E-5. Transferring Files to and from an AS/400 System—Optional Parameters

Parameter Value Description

RMTNETID Remote
network
identifier

This field contains the network ID of the network where the remote location resides.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

� Remote network ID
 � *LOC
 � *NETATR
 � *NONE

Default: *LOC

MODE Mode name This field contains the mode name used.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *NETATR

Default: *NETATR

LCLLOCNAME Local
location
name

This field contains the local location name.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *LOC
 � *NETATR

Default: *LOC

COMPRESS Com-
pression
indicator

Indicates if data compression will be done.

Length: 1 character

Type: Input, not required

Valid values are as follows:

 � Y—Compress data
� N—Do not compress data
� L—Data compression is determined by the speed specified on the line description. “Data

Compression” on page E-1 has more information about data compression.

Default: L

WAITFILE Maximum
file wait time

This field contains the number of seconds that the program waits for the Intersystem Communications
Function (ICF) file resources to be allocated when the file is opened.

Length: 6 characters

Type: Input, not required

Valid values are as follows:
– 000001 through 032767 seconds in character format (leading zeros are required)

 – *IMMED
 – *CLS

Default: 000030

AS/400 System Retrieving a File from
System/36

Figure E-6 describes the required parameters for retrieving a
file from System/36.

 Appendix E. File Transfer Support E-9

Figure E-6 (Page 1 of 2). AS/400 System Retrieving a File from System/36—Required Parameters

Parameter Value Description

OPTION Char-
acter

File transfer option to perform.

Length: 1 character

Type: Input, required

Valid values are as follows:

� S—Send. Refer to “AS/400 System Sending to System/36” on page E-6. This section describes only
retrieve.

� R—Retrieve a file from the remote System/36.

FROMLIB Blanks Not needed in retrieving a file from System/36.

Length: 10 characters

Type: Not applicable

Valid values: Blanks

FROMFILE File
name

Name of the System/36 file.

Length: 10 characters (see note at the end of this figure)

Type: Input, required

Valid values: System/36 file name

FROMMBR Blanks Not needed in retrieving a file from System/36.

Length: 10 characters

Type: Not applicable

Valid values: Blanks

TYPE File
type

This field contains the date of the file to retrieve. Make sure that the system date format on the target system
is the same as the format on your system.

Length: 6 characters

Type: Input, not required

Valid values: Numeric date

Default: If no date is given, the most recent file is retrieved.

TOLIB Target
library
name

The name of the receiving library.

Length: 10 characters

Type: Input, not required

Valid values: Library name

Default: The System/36 environment default library name.

TOFILE Target
file
name

Name of the receiving database file.

Length: 10 characters

Type: Input, not required

Valid values: File name

Default: FROMFILE

TOMBR Target
file
member
name

Name of the receiving member.

Length: 10 characters

Type: Input, not required

Valid values: Member name

Default: If the name is not given, the member name is the date given in TODATE or the creation date with an
M added as the first character.

When using TOMBR, consider the following:

� If you are replacing a member (REPLACE=Y), TOMBR is the name of the member to replace at the
target system.

� If you are adding a new member, TOMBR is the name to assign.

E-10 ICF Programming V4R1

Figure E-6 (Page 2 of 2). AS/400 System Retrieving a File from System/36—Required Parameters

Parameter Value Description

TODATE Numeric This field gives a different date to a file received from a System/36. Make sure that the system date format
on the target system is the same as the format on your system.

Length: 6 characters

Type: Input, not required

Valid values: Numeric date

REPLACE Char-
acter

This field tells whether you want to replace the member.

Length: 1 character

Type: Input, not required

Valid values:

� Y—Replace an existing member.
� N—Do not replace an existing member.

Default: N

If you specify REPLACE=Y for a member, you cannot use the database file containing that member for any
other operation during the replace operation.

RMTLOCNAME Location
Name

Name of the remote location with which you are communicating.

Length: 8 characters

Type: Input, required

Valid values: Remote location name in a varied-on device description.

PASSWORD Pass-
word

Password for signing on the remote system.

Length: 10 characters. The largest password System/36 accepts is 4 characters.

Type: Input. This field is required only if the remote system has password security active.

Valid values: Password

RTNCODE Char-
acter

This field contains the return code. FTS returns this value to the application program to indicate the result of
the transfer.

Length: 1 character

Type: Output

Valid values:

 � 0—Normal completion.
� 1—An error was detected at the local system.
� 2—An error was detected at the remote system.

For return codes 1 and 2, the specific error is logged to the history file of the System/36 and to the job log file
of the AS/400 system. The message-id is returned to the user in the message-id field. (See “File Transfer
Support Messages” on page E-34 for more information.)

MESSAGE-ID Char-
acter

This field contains the message-id for the specific error if the value returned in the RTNCODE field is 1 or 2
(indicating an error).

Length: 8 characters

Type: Output

Valid values: Any message-id listed in the message section. (See “File Transfer Support Messages” on
page E-34 for more information.)

Note: If a library name, file name, or member name is greater than 8 characters, System/36 uses the first 8 characters as the name.

Figure E-7 describes the optional parameters for receiving a
file from System/36.

 Appendix E. File Transfer Support E-11

Figure E-7. Retrieving Files from System/36—Optional Parameters

Parameter Value Description

RMTNETID Remote
network
identifier

This field contains the network ID of the network where the remote location resides.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

� Remote network ID
 � *LOC
 � *NETATR
 � *NONE

Default: *LOC

MODE Mode name This field contains the mode name used.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *NETATR

Default: *NETATR

LCLLOCNAME Local
location
name

This field contains the local location name.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *LOC
 � *NETATR

Default: *LOC

COMPRESS Com-
pression
indicator

Indicates if data compression will be done.

Length: 1 character

Type: Input, not required

Valid values are as follows:

 � Y—Compress data
� N—Do not compress data
� L—Data compression is determined by the speed specified on the line description. “Data

Compression” on page E-1 has more information about data compression.

Default: L

WAITFILE Maximum
file wait time

This field contains the number of seconds that the program waits for the Intersystem Communications
Function (ICF) file resources to be allocated when the file is opened.

Length: 6 characters

Type: Input, not required

Valid values are as follows:
– 000001 through 032767 seconds in character format (leading zeros are required)

 – *IMMED
 – *CLS

Default: 000030

Retrieving a Library Member from
System/36

Figure E-8 describes the required parameters for retrieving a
library member from System/36.

E-12 ICF Programming V4R1

Figure E-8 (Page 1 of 2). Retrieving a Library Member from System/36—Required Parameters

Parameter Value Description

OPTION Char-
acter

File transfer option to perform.

Length: 1 character

Type: Input, required

Valid values are as follows:

� S—Send. Refer to “AS/400 System Sending to System/36” on page E-6. This section describes only
retrieve.

� R—Retrieve a library member.

FROMLIB Library
name

Name of the library in which library member resides.

Length: 10 characters (see note)

Type: Input, required

Valid values: System/36 library name

FROMFILE Blanks Not needed in retrieving a library member from System/36.

Length: 10 characters

Type: Not applicable

Valid values: Blanks

FROMMBR Library
member
name

Name of the library member.

Length: 10 characters (see note)

Type: Input, required

Valid values: System/36 member name

TYPE Library
member
type

This field tells System/36 the type of member to retrieve.

Length: 6 characters

Type: Input, required

Valid values: SOURCE, LOAD, PROC (procedure), SUBR (subroutine)

TOLIB Library
name

Name of the receiving library to which members are sent.

Length: 10 characters

Type: Input, not required

Valid values: Library name

Default: FROMLIB

TOFILE Target
file
name

Name of the file.

Length: 10 characters

Type: Input, not required

Valid values: Database file name

Default: If no value is given, the default name is determined by the type of the member, as follows:

 � Source—QS36SRC
 � Load—QS36LOD
 � Procedure—QS36PRC
 � Subroutine—QS36SBR

TOMBR Target
member
name

Name of the member at the target system.

Length: 10 characters

Type: Input, not required

Valid values: Member name

Default: FROMMBR

When you use TOMBR, consider the following:

� If you are replacing a member (REPLACE=Y), TOMBR is the name of the member to replace at the target
system.

� If you are adding a new member, TOMBR is the name to assign.

 Appendix E. File Transfer Support E-13

Figure E-8 (Page 2 of 2). Retrieving a Library Member from System/36—Required Parameters

Parameter Value Description

TODATE Blanks Not needed in retrieving a library member from System/36.

Length: 6 characters

Type: Input, not applicable

Valid values: Blanks

REPLACE Char-
acter

This field tells whether you want to replace the member on the target system.

Length: 1 character

Type: Input, not required

Valid values:

� Y—Replace an existing member.
� N—Do not replace an existing member.

Default: N

If you specify REPLACE=Y for a member, you cannot use the file containing that member for any other opera-
tion during the replace operation.

RMTLOCNAME Location
Name

Name of the remote location with which you are communicating.

Length: 8 characters

Type: Input, required

Valid values: Remote location name in a varied-on device description.

PASSWORD PASS-
WORD

Password for signing on the remote system.

Length: 10 characters. The largest password System/36 accepts is 4 characters.

Type: Input. This field is required only if the remote system has password security active.

Valid values: Password

RTNCODE Char-
acter

This field contains the return code. FTS returns this value to the application program to indicate the result of
the transfer.

Length: 1 character

Type: Output

Valid values:

 � 0—Normal completion.
� 1—An error was detected at the local system.
� 2—An error was detected at the remote system.

For return codes 1 and 2, the specific error is logged to the history log of the System/36 and to the job log file
of the AS/400 system. The message-id is returned to the user in the message-id field. (See “File Transfer
Support Messages” on page E-34 for more information.)

MESSAGE-ID Char-
acter

This field contains the message-id for the specific error if the value returned in the RTNCODE field is 1 or 2
(indicating an error).

Length: 8 characters

Type: Output

Valid values: Any message-id listed in the message section. (See “File Transfer Support Messages” on
page E-34 for more information.)

Note: If a library name, file name, or member name is greater than 8 characters, System/36 uses the first 8 characters as the name.

Figure E-9 describes the optional parameters for retrieving a
library member from System/36.

E-14 ICF Programming V4R1

Figure E-9. Retrieving a library member from System/36—Optional Parameters

Parameter Value Description

RMTNETID Remote
network
identifier

This field contains the network ID of the network where the remote location resides.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

� Remote network ID
 � *LOC
 � *NETATR
 � *NONE

Default: *LOC

MODE Mode name This field contains the mode name used.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *NETATR

Default: *NETATR

LCLLOCNAME Local
location
name

This field contains the local location name.

Length: 8 characters

Type: Input, not required

Valid values are as follows:

 � Mode name
 � *LOC
 � *NETATR

Default: *LOC

COMPRESS Com-
pression
indicator

Indicates if data compression will be done.

Length: 1 character

Type: Input, not required

Valid values are as follows:

 � Y—Compress data
� N—Do not compress data
� L—Data compression is determined by the speed specified on the line description. “Data

Compression” on page E-1 has more information about data compression.

Default: L

WAITFILE Maximum
file wait time

This field contains the number of seconds that the program waits for the Intersystem Communications
Function (ICF) file resources to be allocated when the file is opened.

Length: 6 characters

Type: Input, not required

Valid values are as follows:
– 000001 through 032767 seconds in character format (leading zeros are required)

 – *IMMED
 – *CLS

Default: 000030

 Appendix E. File Transfer Support E-15

Calling File Transfer Support for the ILE C
Programming Language

Figure E-10 is an example of a ILE C program that provides
a data link between one AS/400 system and another AS/400
system. This program reads the file in which the parameters
are stored, calls the file transfer support program
(QY2FTML), and prints a listing of the parameters, return
code, and message number.

The parameters passed to the file transfer program are
described in “File Transfer Parameters” on page E-3.

\ \ \ \ \ P R O L O G \ \ \ \ \

 Module : CDRIVER

Library : KPSLIB

 Source file : QCSRC

Library : KPSLIB

 Source member : CDRIVER

 Text Description :

 Output : \PRINT

 Compiler options : \NOAGR \NOEXPMAC \GEN \LOGMSG \NOPPONLY \NOSECLVL

: \NOSHOWINC \NOSHOWSKP \NOXREF \USRINCPATH

 Checkout options : \NOACCURACY \NOENUM \NOEXTERN \NOGENERAL \NOGOTO \NOINIT

: \NOPARM \NOPORT \NOPPCHECK \NOPPTRACE

 Optimization : \NONE

 Inline options:

Inliner : \OFF

Mode : \NOAUTO

Threshold : 25ð

Limit : 2ððð

 Debugging view : \NONE

 Define names :

 Language level : \SOURCE

 Source margins:

Left margin : 1

Right margin : 32754

 Sequence columns:

Left Column :

Right Column :

 Message flagging level : ð

 Compiler messages:

Message limit : \NOMAX

Message limit severity . . . : 3ð

 Replace program object : \YES

 Authority : \LIBCRTAUT

 Target release : \CURRENT

 System includes : \YES

 Last change : ð6/ð8/94 12:56:15

 Source description :

 Compiler : IBM ILE C/4ðð Compiler

\ \ \ \ \ S O U R C E \ \ \ \ \

 Line STMT SEQNBR INCNO

1 |#pragma linkage(QY2FTML,OS) /\ Define program to be called \/ | 1

 2 | | 2

3 |#define END 1 /\ Signals program end \/ | 3

4 |#define NOEND ð | 4

5 |#define ERROR 1 /\ Signals an error during I/O \/ | 5

6 |#define NOERROR ð | 6

7 |#include <stdio.h> /\ Standard I/O header \/ | 7

8 |#include <stdlib.h> /\ General utilities \/ | 8

9 |#include <stddef.h> /\ Standard definitions \/ | 9

1ð |#include <string.h> /\ String handling utilities \/ | 1ð

 11 | | 11

Figure E-10 (Part 1 of 7). ILE C Coding for File Transfer Support

E-16 ICF Programming V4R1

 12 |/\--\/ | 12

13 |/\ Define header structures to be written to the print file. \/ | 13

 14 |/\--\/ | 14

 15 | | 15

 16 |struct { | 16

 17 | char filler??(124??); | 17

18 |} header_line_1 = { | 18

 19 | " " | 19

 2ð | "FRMLIB " | 2ð

 21 | "FRMFIL " | 21

 22 | "FRMMBR " | 22

 23 | "TYPE " | 23

 24 | "TOLIB " | 24

 25 | "TOFIL " | 25

 26 | "TOMBR " | 26

 27 | "TODATE " | 27

 28 | "OPTION " | 28

 29 | "REPL " | 29

 3ð | "RMTLOC " | 3ð

 31 | "RCODE " | 31

 32 | "MSGNUM " | 32

 33 |}; | 33

 34 | | 34

 35 |struct { | 35

 36 | char filler??(124??); | 36

37 |} header_line_2 = { | 37

 38 | " " | 38

 39 | "__________ " | 39

 4ð | "__________ " | 4ð

 41 | "__________ " | 41

 42 | "________ " | 42

 43 | "__________ " | 43

 44 | "__________ " | 44

 45 | "__________ " | 45

 46 | "________ " | 46

 47 | "______ " | 47

 48 | "____ " | 48

 49 | "________ " | 49

 5ð | "_____ " | 5ð

 51 | "_______ " | 51

 52 |}; | 52

 53 | | 53

 54 |/\--\/ | 54

55 |/\ Define data file structure that contains the values to be assigned \/ | 55

56 |/\ to parameters passed on call to program QY2FTML. \/ | 56

 57 |/\--\/ | 57

 58 | | 58

 59 |struct { | 59

 6ð | char rec_num??(3??); | 6ð

 61 | char option; | 61

 62 | char repl; | 62

 63 | char filler1??(4??); | 63

 64 | char frmlib??(1ð??); | 64

 65 | char frmfil??(1ð??); | 65

 66 | char frmmbr??(1ð??); | 66

 67 | char typ??(6??); | 67

 68 | char filler2??(4??); | 68

 69 | char tolib??(1ð??); | 69

 7ð | char tofil??(1ð??); | 7ð

 71 | char tombr??(1ð??); | 71

 72 | char todate??(6??); | 72

 73 | char filler3??(4??); | 73

 74 | char rmtloc??(8??); | 74

 75 | char passwd??(1ð??); | 75

 76 | char rcode; | 76

 77 | char msgnum??(8??); | 77

 78 |} call_rec; | 78

 79 | | 79

Figure E-10 (Part 2 of 7). ILE C Coding for File Transfer Support

 Appendix E. File Transfer Support E-17

 8ð |/\--\/ | 8ð

81 |/\ Define the structure types of the parameters on call to QY2FTML. The \/ | 81

82 |/\ type definition is needed for prototyping. \/ | 82

 83 |/\--\/ | 83

 84 | | 84

85 |typedef struct { | 85

 86 | char option; | 86

 87 |} option; | 87

 88 | | 88

89 |typedef struct { | 89

 9ð | char frmlib??(1ð??); | 9ð

 91 |} lib; | 91

 92 | | 92

93 |typedef struct { | 93

 94 | char frmfil??(1ð??); | 94

 95 |} file; | 95

 96 | | 96

97 |typedef struct { | 97

 98 | char frmmbr??(1ð??); | 98

 99 |} file_member; | 99

 1ðð | | 1ðð

1ð1 |typedef struct { | 1ð1

 1ð2 | char typ??(6??); | 1ð2

 1ð3 |} type; | 1ð3

 1ð4 | | 1ð4

1ð5 |typedef struct { | 1ð5

 1ð6 | char tolib??(1ð??); | 1ð6

 1ð7 |} tgt_lib; | 1ð7

 1ð8 | | 1ð8

1ð9 |typedef struct { | 1ð9

 11ð | char tofil??(1ð??); | 11ð

 111 |} tgt_file; | 111

 112 | | 112

113 |typedef struct { | 113

 114 | char tombr??(1ð??); | 114

 115 |} tgt_member; | 115

 116 | | 116

117 |typedef struct { | 117

 118 | char todate??(6??); | 118

 119 |} tgt_file_date; | 119

 12ð | | 12ð

121 |typedef struct { | 121

 122 | char repl; | 122

 123 |} replace_member; | 123

 124 | | 124

125 |typedef struct { | 125

 126 | char rmtloc??(8??); | 126

 127 |} rmt_loc; | 127

 128 | | 128

129 |typedef struct { | 129

 13ð | char passwd??(1ð??); | 13ð

 131 |} pword; | 131

 132 | | 132

133 |typedef struct { | 133

 134 | char rcode; | 134

 135 |} ret_code; | 135

 136 | | 136

137 |typedef struct { | 137

 138 | char msgnum??(8??); | 138

 139 |} msg_num; | 139

 14ð | | 14ð

Figure E-10 (Part 3 of 7). ILE C Coding for File Transfer Support

E-18 ICF Programming V4R1

 141 |/\--\/ | 141

142 |/\ Define structure for data to be written to the print file. \/ | 142

 143 |/\--\/ | 143

 144 | | 144

 145 |struct { | 145

 146 | char prec_num??(3??); | 146

 147 | char filler1??(2??); | 147

 148 | char pfrmlib??(1ð??); | 148

 149 | char filler2; | 149

 15ð | char pfrmfil??(1ð??); | 15ð

 151 | char filler3; | 151

 152 | char pfrmmbr??(1ð??); | 152

 153 | char filler4; | 153

 154 | char ptyp??(6??); | 154

 155 | char filler5??(3??); | 155

 156 | char ptolib??(1ð??); | 156

 157 | char filler6; | 157

 158 | char ptofil??(1ð??); | 158

 159 | char filler7; | 159

 16ð | char ptombr??(1ð??); | 16ð

 161 | char filler8; | 161

 162 | char ptodate??(6??); | 162

 163 | char filler9??(5??); | 163

 164 | char poption; | 164

 165 | char filler1ð??(5??); | 165

 166 | char prepl; | 166

 167 | char filler11??(3??); | 167

 168 | char prmtloc??(8??); | 168

 169 | char filler12??(3??); | 169

 17ð | char prcode; | 17ð

 171 | char filler13??(3??); | 171

 172 | char pmsgnum??(8??); | 172

 173 |} print_rec; | 173

 174 | | 174

 175 |/\--\/ | 175

176 |/\ Declare structures to use as parameters on call to QY2FTML using the \/ | 176

177 |/\ type definitions already defined. \/ | 177

 178 |/\--\/ | 178

 179 | | 179

 18ð |option option_parm; | 18ð

 181 |lib lib_parm; | 181

 182 |file file_parm; | 182

 183 |file_member file_member_parm; | 183

 184 |type type_parm; | 184

 185 |tgt_lib tgt_lib_parm; | 185

186 |tgt_file tgt_file_parm; | 186

 187 |tgt_member tgt_member_parm; | 187

 188 |tgt_file_date tgt_file_date_parm; | 188

 189 |replace_member replace_member_parm; | 189

 19ð |rmt_loc rmt_loc_parm; | 19ð

 191 |pword pword_parm; | 191

192 |ret_code ret_code_parm; | 192

 193 |msg_num msg_num_parm; | 193

 194 | | 194

195 |char op_name??(5??); /\ Current operation \/ | 195

 196 | | 196

197 |extern void QY2FTML(option \, lib \, file \, file_member \, type \, | 197

198 | tgt_lib \, tgt_file \, tgt_member \, tgt_file_date \, | 198

199 | replace_member \, rmt_loc \, pword \, ret_code \, | 199

 2ðð | msg_num \); | 2ðð

2ð1 |int print_header(FILE \); | 2ð1

2ð2 |int file_trans(FILE \); | 2ð2

 2ð3 |void init_parms(void); | 2ð3

2ð4 |int print_parms(FILE \); | 2ð4

 2ð5 |int pos_ret_code_printf(void); | 2ð5

 2ð6 |void print_file_error(void); | 2ð6

2ð7 |void close_files(FILE \, FILE \); | 2ð7

 2ð8 | | 2ð8

Figure E-10 (Part 4 of 7). ILE C Coding for File Transfer Support

 Appendix E. File Transfer Support E-19

 2ð9 |main() | 2ð9

 21ð |{ | 21ð

211 | FILE \dtafptr; /\ Pointer to the database file \/ | 211

212 | FILE \prtfptr; /\ Pointer to the printer file \/ | 212

 213 | | 213

214 1 | if ((dtafptr = fopen("FTTEST", "rb type=record")) == NULL) { | 214

215 2 | printf("\nUNEXPECTED ERROR WHILE OPENING DATA FILE.\n"); | 215

 216 3 | exit(ERROR); | 216

 217 | } | 217

218 4 | if ((prtfptr = fopen("QSYSPRT", "wb type=record")) == NULL) { | 218

 219 5 | fclose(dtafptr); | 219

22ð 6 | printf("\nUNEXPECTED ERROR WHILE OPENING PRINT FILE.\n"); | 22ð

 221 7 | exit(ERROR); | 221

 222 | } | 222

223 8 | if (print_header(prtfptr) == NOERROR) { | 223

224 9 | while (1) { | 224

225 1ð | if (file_trans(dtafptr) == END) | 225

 226 11 | break; | 226

 227 | else | 227

228 12 | if (print_parms(prtfptr) == ERROR) { | 228

 229 13 | print_file_error(); | 229

 23ð 14 | close_files(dtafptr, prtfptr); | 23ð

 231 15 | exit(ERROR); | 231

 232 | } | 232

 233 | } | 233

 234 | } | 234

 235 | else { | 235

 236 16 | print_file_error(); | 236

 237 17 | close_files(dtafptr, prtfptr); | 237

 238 18 | exit(ERROR); | 238

 239 | } | 239

 24ð 19 | close_files(dtafptr, prtfptr); | 24ð

 241 2ð | exit(NOERROR); | 241

 242 |} | 242

 243 | | 243

 244 | | 244

 245 |/\--\/ | 245

246 |/\ The routine prints a header to the print file. \/ | 246

 247 |/\--\/ | 247

 248 | | 248

 249 |print_header(FILE \prtfptr) | 249

 25ð |{ | 25ð

 251 1 | strcpy(op_name, "WRITE"); | 251

252 2 | fwrite(&header_line_1, sizeof(header_line_1), 1, prtfptr); | 252

253 3 | if (pos_ret_code_printf() == NOERROR) { | 253

254 4 | fwrite(&header_line_2, sizeof(header_line_2), 1, prtfptr); | 254

 255 5 | return(pos_ret_code_printf()); | 255

 256 | } | 256

 257 | else | 257

 258 6 | return(ERROR); | 258

 259 |} | 259

 26ð | | 26ð

 261 | | 261

Figure E-10 (Part 5 of 7). ILE C Coding for File Transfer Support

E-20 ICF Programming V4R1

 262 |/\--\/ | 262

263 |/\ The routine gets parameters from the data file and calls QY2FTML. \/ | 263

 264 |/\--\/ | 264

 265 | | 265

 266 |file_trans(FILE \dtafptr) | 266

 267 |{ | 267

 268 | int len; | 268

 269 | | 269

27ð 1 | strcpy(op_name, "READ "); | 27ð

271 2 | if ((len = fread(&call_rec, sizeof(call_rec), 1, dtafptr)) == ð) | 271

 272 3 | return(END); | 272

 273 | else { | 273

 274 4 | init_parms(); | 274

275 | QY2FTML(&option_parm, &lib_parm, &file_parm, &file_member_parm, | 275

276 | &type_parm, &tgt_lib_parm, &tgt_file_parm, &tgt_member_parm, | 276

277 | &tgt_file_date_parm, &replace_member_parm, &rmt_loc_parm, | 277

278 5 | &pword_parm, &ret_code_parm, &msg_num_parm); | 278

 279 6 | return(NOEND); | 279

 28ð | } | 28ð

 281 |} | 281

 282 | | 282

 283 | | 283

 284 |/\--\/ | 284

285 |/\ This routine initializes the parameters for the call to QY2FTML. \/ | 285

286 |/\ Parameters passed to external programs in C/4ðð must be a structure \/ | 286

287 |/\ type, so the fields of the structure call_rec may not be sent indiv- \/ | 287

288 |/\ idually to QY2FTML. \/ | 288

 289 |/\--\/ | 289

 29ð | | 29ð

 291 |void init_parms() | 291

 292 |{ | 292

293 1 | option_parm.option = call_rec.option; | 293

 294 2 | strcpy(lib_parm.frmlib, call_rec.frmlib); | 294

 295 3 | strcpy(file_parm.frmfil, call_rec.frmfil); | 295

 296 4 | strcpy(file_member_parm.frmmbr, call_rec.frmmbr); | 296

 297 5 | strcpy(type_parm.typ, call_rec.typ); | 297

 298 6 | strcpy(tgt_lib_parm.tolib, call_rec.tolib); | 298

 299 7 | strcpy(tgt_file_parm.tofil, call_rec.tofil); | 299

 3ðð 8 | strcpy(tgt_member_parm.tombr, call_rec.tombr); | 3ðð

 3ð1 9 | strcpy(tgt_file_date_parm.todate, call_rec.todate); | 3ð1

3ð2 1ð | replace_member_parm.repl = call_rec.repl; | 3ð2

 3ð3 11 | strcpy(rmt_loc_parm.rmtloc, call_rec.rmtloc); | 3ð3

 3ð4 12 | strcpy(pword_parm.passwd, call_rec.passwd); | 3ð4

3ð5 13 | ret_code_parm.rcode = ' '; | 3ð5

 3ð6 14 | strcpy(msg_num_parm.msgnum, " "); | 3ð6

 3ð7 |} | 3ð7

 3ð8 | | 3ð8

 3ð9 | | 3ð9

 31ð |/\--\/ | 31ð

311 |/\ This routine prints the parameters passed to QY2FTML after the call. \/ | 311

 312 |/\--\/ | 312

 313 | | 313

 314 |print_parms(FILE \prtfptr) | 314

 315 |{ | 315

316 1 | strncpy(print_rec.prec_num, call_rec.rec_num, 3); | 316

317 2 | print_rec.poption = call_rec.option; | 317

318 3 | print_rec.prepl = call_rec.repl; | 318

319 4 | strncpy(print_rec.pfrmlib, lib_parm.frmlib, 1ð); | 319

32ð 5 | strncpy(print_rec.pfrmfil, file_parm.frmfil, 1ð); | 32ð

321 6 | strncpy(print_rec.pfrmmbr, file_member_parm.frmmbr, 1ð); | 321

322 7 | strncpy(print_rec.ptyp, type_parm.typ, 6); | 322

323 8 | strncpy(print_rec.ptolib, tgt_lib_parm.tolib, 1ð); | 323

324 9 | strncpy(print_rec.ptofil, tgt_file_parm.tofil, 1ð); | 324

325 1ð | strncpy(print_rec.ptombr, tgt_member_parm.tombr, 1ð); | 325

326 11 | strncpy(print_rec.ptodate, tgt_file_date_parm.todate, 6); | 326

327 12 | strncpy(print_rec.prmtloc, rmt_loc_parm.rmtloc, 8); | 327

328 13 | print_rec.prcode = ret_code_parm.rcode; | 328

Figure E-10 (Part 6 of 7). ILE C Coding for File Transfer Support

 Appendix E. File Transfer Support E-21

329 14 | strncpy(print_rec.pmsgnum, msg_num_parm.msgnum, 8); | 329

 33ð 15 | strncpy(print_rec.filler1, " ", 2); | 33ð

 331 16 | strncpy(print_rec.filler5, " ", 3); | 331

 332 17 | strncpy(print_rec.filler9, " ", 5); | 332

 333 18 | strncpy(print_rec.filler1ð, " ", 5); | 333

 334 19 | strncpy(print_rec.filler11, " ", 3); | 334

 335 2ð | strncpy(print_rec.filler12, " ", 3); | 335

 336 21 | strncpy(print_rec.filler13, " ", 3); | 336

337 | print_rec.filler2 = print_rec.filler3 = print_rec.filler4 | 337

338 22 | = print_rec.filler6 = print_rec.filler7 = print_rec.filler8 = ' '; | 338

 339 23 | strcpy(op_name, "WRITE"); | 339

34ð 24 | fwrite(&print_rec, sizeof(print_rec), 1, prtfptr); | 34ð

 341 25 | return(pos_ret_code_printf()); | 341

 342 |} | 342

 343 | | 343

 344 | | 344

 345 |/\--\/ | 345

346 |/\ This routine checks to see if the last operation on the print file \/ | 346

347 |/\ was successful. \/ | 347

 348 |/\--\/ | 348

 349 | | 349

 35ð |pos_ret_code_printf() | 35ð

 351 |{ | 351

352 1 | if (strncmp(_Maj_Min_rc.major_rc, "ðð", 2) == NOERROR) | 352

 353 2 | return(NOERROR); | 353

 354 | else | 354

 355 3 | return(ERROR); | 355

 356 |} | 356

 357 | | 357

 358 | | 358

 359 |/\--\/ | 359

36ð |/\ This routine prints an error message to the display. \/ | 36ð

 361 |/\--\/ | 361

 362 | | 362

 363 |void print_file_error() | 363

 364 |{ | 364

365 1 | printf("\nUNEXPECTED ERROR ON %s FOR PRINT FILE\n", op_name); | 365

 366 |} | 366

 367 |/\--\/ | 367

368 |/\ Close the data and print files. \/ | 368

 369 |/\--\/ | 369

 37ð | | 37ð

371 |void close_files(FILE \dtafptr, FILE \prtfptr) | 371

 372 |{ | 372

 373 1 | fclose(dtafptr); | 373

 374 2 | fclose(prtfptr); | 374

 375 |} | 375

 376 | | 376

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ I N C L U D E S \ \ \ \ \

INCNBR Include Name Last change Actual Include Name

 1 stdio.h ð4/19/94 14:18:ð8 QCLE/H/STDIO

 2 stdlib.h ð4/19/94 14:18:ð9 QCLE/H/STDLIB

 3 stddef.h ð4/19/94 14:18:ð7 QCLE/H/STDDEF

 4 string.h ð4/19/94 14:18:ð9 QCLE/H/STRING

\ \ \ \ \ E N D O F I N C L U D E S \ \ \ \ \

\ \ \ \ \ M E S S A G E S U M M A R Y \ \ \ \ \

Total Informational(ðð) Warning(1ð) Error(3ð) Severe Error(4ð)

 ð ð ð ð ð

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

Module CDRIVER was created in library KPSLIB on ð6/ð8/94 at 12:57:ð6.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-10 (Part 7 of 7). ILE C Coding for File Transfer Support

E-22 ICF Programming V4R1

Calling File Transfer Support for
COBOL/400 Programming Language

Figure E-11 is an example of a COBOL/400 program that
provides a data link between one AS/400 system and
another AS/400 system. This program reads the file in which
the parameters are stored, calls the file transfer support
program (QY2FTML), and prints a listing of the parameters,
return code, and message number.

The parameters passed to the file transfer program are
described in “File Transfer Parameters” on page E-3.

 Program : COBDRIVER

Library : KPSLIB

 Source file : QCBLSRC

Library : KPSLIB

 Source member : COBDRIVER ð5/ð5/89 ð9:23:28

 Generation severity level : 29

 Text 'description' : \SAME

 Source listing options : \NONE

 Generation options : \NONE

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM COBOL/4ðð

1 ððð1ðð IDENTIFICATION DIVISION. 11/ð4/87

2 ððð2ðð PROGRAM-ID. QY2FTML. 11/ð4/87

3 ððð3ðð AUTHOR. EAPOE. 11/ð4/87

 ððð4ðð\ 11/ð4/87

4 ððð5ðð ENVIRONMENT DIVISION. 11/ð4/87

5 ððð6ðð CONFIGURATION SECTION. 11/ð4/87

6 ððð7ðð SOURCE-COMPUTER. IBM-AS4ðð. ð5/ð4/89

7 ððð8ðð OBJECT-COMPUTER. IBM-AS4ðð. ð5/ð4/89

8 ððð9ðð INPUT-OUTPUT SECTION. 11/ð4/87

 9 ðð1ððð FILE-CONTROL. 11/ð4/87

1ð ðð11ðð SELECT SEQ-FILE ASSIGN TO DISK-FTTEST ð1/29/88

11 ðð12ðð ORGANIZATION IS SEQUENTIAL 11/ð4/87

12 ðð13ðð FILE STATUS IS SEQ-FILE-STATUS. ð5/ð4/89

 ðð14ðð\ 11/ð4/87

13 ðð15ðð SELECT SYSPRT ASSIGN TO PRINTER-QSYSPRT, ð1/29/88

14 ðð16ðð ORGANIZATION IS SEQUENTIAL ð1/29/88

15 ðð17ðð ACCESS IS SEQUENTIAL ð5/ð4/89

16 ðð18ðð FILE STATUS IS PRINT-FILE-STATUS. ð5/ð4/89

 ðð19ðð\ ð1/29/88

Figure E-11 (Part 1 of 5). COBOL/400 Coding for File Transfer Support

 Appendix E. File Transfer Support E-23

17 ðð2ððð DATA DIVISION. 11/ð4/87

18 ðð21ðð FILE SECTION. 11/ð4/87

19 ðð22ðð FD SEQ-FILE LABEL RECORDS ARE STANDARD. 11/ð4/87

 2ð ðð23ðð ð1 SEQ-FILE-REC. 11/ð4/87

 21 ðð24ðð ð2 FILLER PIC X(1ð1). 11/ð4/87

 ðð25ðð\ ð1/29/88

 22 ðð26ðð FD SYSPRT ð1/29/88

23 ðð27ðð LABEL RECORDS ARE OMITTED ð2/ð1/88

24 ðð28ðð LINAGE IS 8ð LINES. ð2/ð1/88

 ðð29ðð\ ð2/ð2/88

 25 ðð3ððð ð1 PRINT-FILE-REC. 11/ð4/87

26 ðð31ðð ð2 FILLER PIC X(132). 11/ð4/87

 ðð32ðð\ ð2/ð2/88

27 ðð33ðð WORKING-STORAGE SECTION. 11/ð4/87

 28 ðð34ðð 77 SEQ-FILE-STATUS PIC X(2). ð1/29/88

 29 ðð35ðð 77 PRINT-FILE-STATUS PIC X(2). ð1/29/88

 3ð ðð36ðð 77 OP-NAME PIC X(7). 11/ð4/87

31 ðð37ðð 77 ERRORFLAG PIC X VALUE SPACES. ð1/29/88

32 ðð38ðð 77 EOF PIC X VALUE SPACES. ð1/29/88

33 ðð39ðð 77 EOF-FLAG PIC X VALUE "1". ð1/29/88

 ðð4ððð\ ð2/ð2/88

34 ðð41ðð ð1 ERRORFLAG PIC X VALUE SPACES. ð1/29/88

 35 ðð42ðð 88 ERROR-OCCURED VALUE "1". ð1/29/88

 ðð43ðð\ ð2/ð2/88

 36 ðð44ðð ð1 HEADER-LINE-1. ð2/ð1/88

 37 ðð45ðð ð3 FILLER PIC X(5) VALUE SPACES. ð2/ð1/88

38 ðð46ðð ð3 FROM-LIBRARY PIC X(11) VALUE "FRMLIB ". ð2/ð1/89

39 ðð47ðð ð3 FROM-FILE PIC X(11) VALUE "FRMFIL ". ð2/ð1/89

4ð ðð48ðð ð3 FROM-MEMBER PIC X(11) VALUE "FRMMBR ". ð2/ð1/89

 41 ðð49ðð ð3 OBJ-TYPE PIC X(9) VALUE "TYPE ". ð2/ð1/89

42 ðð5ððð ð3 TO-LIBRARY PIC X(11) VALUE "TOLIB ". ð2/ð1/89

43 ðð51ðð ð3 TO-FILE PIC X(11) VALUE "TOFIL ". ð2/ð1/89

44 ðð52ðð ð3 TO-MEMBER PIC X(11) VALUE "TOMBR ". ð2/ð1/89

 45 ðð53ðð ð3 TO-DATE PIC X(9) VALUE "TODATE ". ð2/ð1/89

46 ðð54ðð ð3 OPTN PIC X(7) VALUE "OPTION ". ð2/ð1/89

47 ðð55ðð ð3 REPLCE PIC X(5) VALUE "REPL ". ð2/ð1/89

 48 ðð56ðð ð3 REMOTE-LOCATION PIC X(9) VALUE "RMTLOC ". ð2/ð1/89

49 ðð57ðð ð3 RETURN-CODE PIC X(6) VALUE "RCODE ". ð2/ð1/89

5ð ðð58ðð ð3 MESSAGE-NUMBER PIC X(7) VALUE "MSGNUM ". ð2/ð1/89

 ðð59ðð\ ð2/ð2/88

 51 ðð6ððð ð1 HEADER-LINE-2. ð2/ð1/88

 52 ðð61ðð ð3 FILLER PIC X(5) VALUE SPACES. ð2/ð1/88

53 ðð62ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

54 ðð63ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

55 ðð64ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

56 ðð65ðð ð3 FILLER PIC X(9) VALUE "________ ". ð2/ð1/89

57 ðð66ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

58 ðð67ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

59 ðð68ðð ð3 FILLER PIC X(11) VALUE "__________ ". ð2/ð1/89

6ð ðð69ðð ð3 FILLER PIC X(9) VALUE "________ ". ð2/ð1/89

61 ðð7ððð ð3 FILLER PIC X(7) VALUE "______ ". ð2/ð1/89

62 ðð71ðð ð3 FILLER PIC X(5) VALUE "____ ". ð2/ð1/89

63 ðð72ðð ð3 FILLER PIC X(9) VALUE "________ ". ð2/ð1/89

64 ðð73ðð ð3 FILLER PIC X(6) VALUE "_____ ". ð2/ð1/89

 65 ðð74ðð ð3 FILLER PIC X(8) VALUE "________". ð2/ð1/89

 ðð75ðð\ ð2/ð2/88

Figure E-11 (Part 2 of 5). COBOL/400 Coding for File Transfer Support

E-24 ICF Programming V4R1

 66 ðð76ðð ð1 CALL-REC. 11/ð4/87

 ðð77ðð\ RECORD NUMBER ð2/ð1/88

 67 ðð78ðð ð2 REC-NUM PIC X(3). ð2/ð1/88

 ðð79ðð\ OPTION ð2/ð1/88

 68 ðð8ððð ð2 OPTION PIC X(1). ð2/ð1/88

 ðð81ðð\ REPLACE MEMBER ð2/ð1/88

 69 ðð82ðð ð2 REPL PIC X(1). ð2/ð1/88

 ðð83ðð\ BLANKS ð2/ð1/88

 7ð ðð84ðð ð2 FILLER PIC X(4). ð2/ð1/88

 ðð85ðð\ LIBRARY NAME ð2/ð1/88

 71 ðð86ðð ð2 FRMLIB PIC X(1ð). ð2/ð1/88

 ðð87ðð\ FILE NAME ð2/ð1/88

 72 ðð88ðð ð2 FRMFIL PIC X(1ð). ð2/ð1/88

 ðð89ðð\ FILE MEMBER ð2/ð1/88

 73 ðð9ððð ð2 FRMMBR PIC X(1ð). ð2/ð1/88

 ðð91ðð\ TYPE ð2/ð1/88

 74 ðð92ðð ð2 TYP PIC X(6). ð2/ð1/88

 ðð93ðð\ BLANKS ð2/ð1/88

 75 ðð94ðð ð2 FILLER PIC X(4). ð2/ð1/88

ðð95ðð\ TARGET LIBRARY NAME 11/ð4/87

 76 ðð96ðð ð2 TOLIB PIC X(1ð). ð2/ð1/88

ðð97ðð\ TARGET FILE/LIBRARY NAME 11/ð4/87

 77 ðð98ðð ð2 TOFIL PIC X(1ð). ð2/ð1/88

ðð99ðð\ TARGET FILE/LIBRARY MEMBER NAME 11/ð4/87

 78 ð1ðððð ð2 TOMBR PIC X(1ð). ð2/ð1/88

ð1ð1ðð\ TARGET FILE DATE 11/ð4/87

 79 ð1ð2ðð ð2 TODATE PIC X(6). ð2/ð1/88

 ð1ð3ðð\ BLANKS ð2/ð1/88

 8ð ð1ð4ðð ð2 FILLER PIC X(4). ð2/ð1/88

 ð1ð5ðð\ REMOTE LOCATION ð2/ð1/88

 81 ð1ð6ðð ð2 RMTLOC PIC X(8). ð2/ð1/88

 ð1ð7ðð\ PASSWORD 11/ð4/87

 82 ð1ð8ðð ð2 PASSWD PIC X(1ð). ð2/24/89

 ð1ð9ðð\ RETURN CODE 11/ð4/87

 83 ð11ððð ð2 RCODE PIC X(1). ð2/24/89

 ð111ðð\ MESSAGE NUMBER ð2/ð1/88

 84 ð112ðð ð2 MSGNUM PIC X(8). 11/ð4/87

 ð113ðð\ ð2/ð2/88

 85 ð114ðð ð1 PRINT-REC. ð2/ð1/88

ð115ðð\ PRINT RECORD NUMBER ð2/ð1/88

86 ð116ðð ð2 PREC-NUM PIC X(3). ð2/ð1/88

 ð117ðð\ BLANKS ð2/ð1/88

 87 ð118ðð ð2 FILLER PIC X(2). ð2/ð1/88

ð119ðð\ PRINT LIBRARY NAME ð2/ð1/88

 88 ð12ððð ð2 PFRMLIB PIC X(1ð). ð2/ð1/88

 ð121ðð\ BLANKS ð2/ð2/88

 89 ð122ðð ð2 FILLER PIC X(1). ð2/ð2/88

 ð123ðð\ FILE NAME ð2/ð2/88

 9ð ð124ðð ð2 PFRMFIL PIC X(1ð). ð2/ð2/88

 ð125ðð\ BLANKS ð2/ð2/88

 91 ð126ðð ð2 FILLER PIC X(1). ð2/ð2/88

 ð127ðð\ FILE MEMBER ð2/ð2/88

 92 ð128ðð ð2 PFRMMBR PIC X(1ð). ð2/ð2/88

 ð129ðð\ BLANKS ð2/ð2/88

 93 ð13ððð ð2 FILLER PIC X(1). ð2/ð2/88

 ð131ðð\ TYPE ð2/ð2/88

 94 ð132ðð ð2 PTYP PIC X(6). ð2/ð2/88

 ð133ðð\ BLANKS ð2/ð2/88

 95 ð134ðð ð2 FILLER PIC X(3). ð2/ð2/88

ð135ðð\ TARGET LIBRARY NAME ð2/ð2/88

 96 ð136ðð ð2 PTOLIB PIC X(1ð). ð2/ð2/88

 ð137ðð\ BLANKS ð2/ð2/88

 97 ð138ðð ð2 FILLER PIC X(1). ð2/ð2/88

ð139ðð\ TARGET FILE/LIBRARY NAME ð2/ð2/88

 98 ð14ððð ð2 PTOFIL PIC X(1ð). ð2/ð2/88

 ð141ðð\ BLANKS ð2/ð2/88

Figure E-11 (Part 3 of 5). COBOL/400 Coding for File Transfer Support

 Appendix E. File Transfer Support E-25

 99 ð142ðð ð2 FILLER PIC X(1). ð2/ð2/88

ð143ðð\ TARGET FILE/LIBRARY MEMBER NAME ð2/ð2/88

 1ðð ð144ðð ð2 PTOMBR PIC X(1ð). ð2/ð2/88

 ð145ðð\ BLANKS ð2/ð2/88

 1ð1 ð146ðð ð2 FILLER PIC X(1). ð2/ð2/88

ð147ðð\ TARGET FILE DATE ð2/ð2/88

 1ð2 ð148ðð ð2 PTODATE PIC X(6). ð2/ð2/88

 ð149ðð\ BLANKS ð2/ð2/88

 1ð3 ð15ððð ð2 FILLER PIC X(5). ð2/ð2/88

 ð151ðð\ PRINT OPTION ð2/ð1/88

 1ð4 ð152ðð ð2 POPTION PIC X(1). ð2/ð1/88

 ð153ðð\ BLANKS ð2/ð2/88

 1ð5 ð154ðð ð2 FILLER PIC X(5). ð2/ð2/88

ð155ðð\ PRINT REPLACE MEMBER ð2/ð1/88

 1ð6 ð156ðð ð2 PREPL PIC X(1). ð2/ð1/88

 ð157ðð\ BLANKS ð2/ð2/88

 1ð7 ð158ðð ð2 FILLER PIC X(3). ð2/ð2/88

 ð159ðð\ REMOTE LOCATION ð2/ð1/88

 1ð8 ð16ððð ð2 PRMTLOC PIC X(8). ð2/ð2/88

 ð161ðð\ BLANKS ð2/ð2/88

 1ð9 ð162ðð ð2 FILLER PIC X(3). ð2/ð2/88

 ð163ðð\ RETURN CODE ð2/ð1/88

 11ð ð164ðð ð2 PRCODE PIC X(2). ð2/ð2/88

 ð165ðð\ BLANKS ð2/ð2/88

 111 ð166ðð ð2 FILLER PIC X(2). ð2/ð2/88

 ð167ðð\ MESSAGE NUMBER ð2/ð1/88

 112 ð168ðð ð2 PMSGNUM PIC X(8). ð2/ð2/88

 ð169ðð\ ð2/ð2/88

113 ð17ððð PROCEDURE DIVISION. 11/ð4/87

 ð171ðð DECLARATIVES. 11/ð4/87

 ð172ðð\\\ ð5/ð4/89

ð173ðð\ SEQUENTIAL DECLARATIVE SECTION ð5/ð4/89

 ð174ðð\ ð5/ð4/89

 ð175ðð\\\ ð5/ð4/89

ð176ðð I-O-ERROR-SEQ SECTION. 11/ð4/87

ð177ðð USE AFTER STANDARD ERROR PROCEDURE ON SEQ-FILE. 11/ð4/87

 ð178ðð I-O-ERROR-PARA-SEQ. 11/ð4/87

114 ð179ðð DISPLAY "UNEXPECTED ERROR ON ", OP-NAME, "FOR SEQ FILE". ð5/ð4/89

115 ð18ððð DISPLAY "FILE STATUS IS " SEQ-FILE-STATUS. ð5/ð4/89

116 ð181ðð SET ERROR-OCCURED TO TRUE. 11/ð4/87

 ð182ðð\\ ð5/ð4/89

ð183ðð\ PRINTER FILE DECLARATIVE SECTION ð5/ð4/89

 ð184ðð\ ð5/ð4/89

 ð185ðð\\ ð5/ð4/89

ð186ðð I-O-ERROR-PRINT SECTION. 11/ð4/87

ð187ðð USE AFTER STANDARD ERROR PROCEDURE ON SYSPRT. ð1/29/88

 ð188ðð I-O-ERROR-PARA-PRINT. 11/ð4/87

117 ð189ðð DISPLAY "UNEXPECTED ERROR ON ", OP-NAME, " FOR PRINT FILE". 11/ð9/87

118 ð19ððð DISPLAY "FILE STATUS IS ", PRINT-FILE-STATUS. 11/ð9/87

119 ð191ðð SET ERROR-OCCURED TO TRUE. 11/ð4/87

ð192ðð END DECLARATIVES. 11/ð4/87

 ð193ðð\ ð2/ð2/88

ð194ðð MAIN-PROGRAM SECTION. 11/ð4/87

 ð195ðð MAIN-PROCEDURE. 11/ð4/87

 12ð ð196ðð PERFORM OPEN-FILES. ð2/ð1/88

 121 ð197ðð PERFORM HDR-PRT. ð2/ð1/88

 122 ð198ðð PERFORM READ-REC. ð5/ð4/89

123 ð199ðð PERFORM FILE-TRANS UNTIL EOF = EOF-FLAG. ð1/29/88

 124 ð2ðððð PERFORM CLOSE-FILES. 11/ð4/87

 125 ð2ð1ðð STOP RUN. 11/ð4/87

 ð2ð2ðð\ ð2/ð2/88

 ð2ð3ðð FILE-TRANS. 11/ð4/87

126 ð2ð4ðð MOVE SPACES TO MSGNUM. 11/ð9/87

127 ð2ð5ðð MOVE SPACES TO RCODE. 11/ð9/87

128 ð2ð6ðð CALL "QY2FTML" USING OPTION FRMLIB FRMFIL FRMMBR TYP TOLIB ð2/ð1/88

ð2ð7ðð TOFIL TOMBR TODATE REPL RMTLOC PASSWD RCODE MSGNUM. ð2/ð1/88

 129 ð2ð8ðð PERFORM PRINT-PARAMETERS. 11/ð9/87

 13ð ð2ð9ðð PERFORM READ-REC. ð5/ð4/89

 ð21ððð\ ð5/ð4/89

Figure E-11 (Part 4 of 5). COBOL/400 Coding for File Transfer Support

E-26 ICF Programming V4R1

 ð211ðð READ-REC. ð5/ð4/89

131 ð212ðð MOVE "READ" TO OP-NAME. ð5/ð4/89

132 ð213ðð READ SEQ-FILE INTO CALL-REC ð5/ð4/89

133 ð214ðð AT END MOVE EOF-FLAG TO EOF. ð5/ð4/89

134 ð215ðð IF ERROR-OCCURED GO TO ERROR-TERMINATION. ð5/ð4/89

 ð216ðð\ ð2/ð2/88

 ð217ðð PRINT-PARAMETERS. 11/ð9/87

136 ð218ðð MOVE REC-NUM TO PREC-NUM. ð2/ð2/88

 137 ð219ðð MOVE OPTION TO POPTION. ð2/ð2/88

 138 ð22ððð MOVE REPL TO PREPL. ð2/ð2/88

 139 ð221ðð MOVE FRMLIB TO PFRMLIB. ð2/ð2/88

 14ð ð222ðð MOVE FRMFIL TO PFRMFIL. ð2/ð2/88

 141 ð223ðð MOVE FRMMBR TO PFRMMBR. ð2/ð2/88

 142 ð224ðð MOVE TYP TO PTYP. ð2/ð2/88

 143 ð225ðð MOVE TOLIB TO PTOLIB. ð2/ð2/88

 144 ð226ðð MOVE TOFIL TO PTOFIL. ð2/ð2/88

 145 ð227ðð MOVE TOMBR TO PTOMBR. ð2/ð2/88

 146 ð228ðð MOVE TODATE TO PTODATE. ð2/ð2/88

 147 ð229ðð MOVE RMTLOC TO PRMTLOC. ð2/ð2/88

 148 ð23ððð MOVE RCODE TO PRCODE. ð2/ð2/88

 149 ð231ðð MOVE MSGNUM TO PMSGNUM. ð2/ð2/88

15ð ð232ðð MOVE "WRITE" TO OP-NAME. ð2/ð1/88

151 ð233ðð WRITE PRINT-FILE-REC FROM PRINT-REC. ð2/ð2/88

152 ð234ðð IF ERROR-OCCURED GO TO ERROR-TERMINATION. 11/ð9/87

 ð235ðð\ ð2/ð2/88

 ð236ðð HDR-PRT. ð2/ð1/88

154 ð237ðð MOVE "WRITE" TO OP-NAME. ð2/ð1/88

155 ð238ðð WRITE PRINT-FILE-REC FROM HEADER-LINE-1. ð2/ð1/88

156 ð239ðð WRITE PRINT-FILE-REC FROM HEADER-LINE-2. ð2/ð1/88

157 ð24ððð IF ERROR-OCCURED GO TO ERROR-TERMINATION. ð2/ð1/88

 ð241ðð\ ð2/ð2/88

 ð242ðð OPEN-FILES. 11/ð9/87

159 ð243ðð MOVE "OPEN" TO OP-NAME. 11/ð9/87

16ð ð244ðð OPEN I-O SEQ-FILE, 11/ð9/87

 ð245ðð OUTPUT SYSPRT. ð1/29/88

161 ð246ðð IF ERROR-OCCURED GO TO ERROR-TERMINATION. 11/ð9/87

 ð247ðð\ ð2/ð2/88

 ð248ðð CLOSE-FILES. 11/ð9/87

163 ð249ðð MOVE "CLOSE" TO OP-NAME. 11/ð9/87

164 ð25ððð CLOSE SEQ-FILE SYSPRT. ð1/29/88

165 ð251ðð IF ERROR-OCCURED GO TO ERROR-TERMINATION. 11/ð9/87

 ð252ðð\ ð2/ð2/88

 ð253ðð ERROR-TERMINATION. 11/ð9/87

167 ð254ðð DISPLAY "I-O ERROR OCCURED - PROCESS TERMINATION". 11/ð9/87

 168 ð255ðð STOP RUN. 11/ð9/87

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

ð ð ð ð ð ð

 Source records read : 255

 Copy records read : ð

 Copy members processed : ð

 Sequence errors : ð

 Highest severity message issued . . : ð

LBLð9ð1 ðð Program COBDRIVER created in library KPSLIB.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-11 (Part 5 of 5). COBOL/400 Coding for File Transfer Support

 Appendix E. File Transfer Support E-27

Calling File Transfer Support for RPG/400
Programming Language

Figure E-12 is an example of an RPG/400 program that pro-
vides a data link between one AS/400 system and another
AS/400 system. The program shown reads the file in which
the parameters are stored, calls the file transfer support
program (QY2FTML), and prints a listing of the parameters,
return code, and message number.

The parameters passed to the file transfer are described in
“File Transfer Parameters” on page E-3.

 Compiler : IBM RPG/4ðð

 Command Options:

Program : KPSLIB/RPGDRIVER

Source file : KPSLIB/QRPGSRC

Source member : RPGDRIVER

Source listing options : \SOURCE \XREF \GEN \NODUMP \NOSECLVL

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : RPGDRIVER

File : QRPGSRC

Library : KPSLIB

Last Change : ð3/ð1/89 14:1ð:21

Description : \SAME

Figure E-12 (Part 1 of 4). RPG/400 Coding for File Transfer Support

E-28 ICF Programming V4R1

S o u r c e L i s t i n g

 1ðð H 11/ð3/87

2ðð \ SAMPLE PROGRAM TO READ A RECORD, THEN CALL PROGRAM ð2/23/89

3ðð \ 'QY2FTML' TO TRANSFER MEMBER, REPEAT UNTIL LAST ð2/23/89

4ðð \ RECORD, THEN PRINT LISTING. ð2/23/89

5ðð FFTTEST IP F 12ð DISK 11/1ð/87

6ðð FQSYSPRT O F ð132 OF PRINTER ð2/23/89

 7ðð I\ 11/ð3/87

8ðð IFTTEST NS 11/11/87

\ 4137 4137-\\

 9ðð I 1 3 INDEX 11/12/87

 1ððð I 4 4 OPTION ð2/23/89

 11ðð I 5 5 REPL 11/12/87

 12ðð I 1ð 19 FRMLIB ð2/23/89

 13ðð I 2ð 29 FRMFIL ð2/23/89

 14ðð I 3ð 39 FRMMBR ð2/23/89

 15ðð I 4ð 45 TYPE ð2/23/89

 16ðð I 5ð 59 TOLIB ð2/23/89

 17ðð I 6ð 69 TOFIL ð2/23/89

 18ðð I 7ð 79 TOMBR ð2/23/89

 19ðð I 8ð 85 TODATE ð2/23/89

 2ððð I 9ð 97 RMTLOC ð2/23/89

21ðð I 98 1ð7 PASSWD ð2/23/89

 22ðð C\ 11/ð3/87

 23ðð C QYLIST PLIST 11/11/87

 24ðð C PARM OPTION 1 ð2/23/89

 25ðð C PARM FRMLIB 1ð ð2/23/89

 26ðð C PARM FRMFIL 1ð ð2/23/89

 27ðð C PARM FRMMBR 1ð ð2/23/89

 28ðð C PARM TYPE 6 ð2/23/89

 29ðð C PARM TOLIB 1ð ð2/23/89

 3ððð C PARM TOFIL 1ð ð2/23/89

 31ðð C PARM TOMBR 1ð ð2/23/89

 32ðð C PARM TODATE 6 ð2/23/89

 33ðð C PARM REPL 1 11/ð3/87

 34ðð C PARM RMTLOC 8 ð2/23/89

 35ðð C PARM PASSWD 1ð ð2/23/89

 36ðð C PARM RCODE 1 ð2/23/89

 37ðð C PARM MSGNUM 8 ð2/23/89

 38ðð C\ 11/ð3/87

39ðð C CALL 'QY2FTML' QYLIST 11/11/87

 4ððð C\ 11/ð3/87

 41ðð OQSYSPRT H 1 1P ð2/23/89

 42ðð O OR OF ð2/23/89

 43ðð O 11 'FRMLIB' ð2/23/89

 44ðð O 22 'FRMFIL' ð2/23/89

 45ðð O 33 'FRMMBR' ð2/23/89

 46ðð O 42 'TYPE' ð2/23/89

 47ðð O 52 'TOLIB' ð2/23/89

 48ðð O 63 'TOFIL' ð2/23/89

 49ðð O 74 'TOMBR' ð2/23/89

 5ððð O 86 'TODATE' ð2/23/89

 51ðð O 95 'OPTION' ð2/23/89

52ðð O 1ð1 'REPL ' ð2/23/89

 53ðð O 1ð7 'RMTLOC' ð2/23/89

54ðð O 116 'RCODE ' ð2/23/89

 55ðð O 122 'MSGNUM' ð2/23/89

 56ðð O H 1 1P ð2/23/89

Figure E-12 (Part 2 of 4). RPG/400 Coding for File Transfer Support

 Appendix E. File Transfer Support E-29

 57ðð O OR OF ð2/23/89

 58ðð O 15 '----------' 11/12/87

 59ðð O 26 '----------' 11/12/87

 6ððð O 37 '----------' 11/12/87

 61ðð O 46 '--------' 11/12/87

 62ðð O 57 '----------' 11/12/87

 63ðð O 68 '----------' 11/12/87

 64ðð O 79 '----------' 11/12/87

 65ðð O 88 '--------' 11/12/87

 66ðð O 95 '------' ð2/23/89

 67ðð O 1ðð '----' ð2/23/89

 68ðð O 1ð9 '--------' ð2/23/89

 69ðð O 115 '-----' ð2/23/89

 7ððð O 124 '--------' ð2/23/89

 71ðð O D 2 N1P ð2/23/89

 72ðð O INDEX 3 ð2/23/89

 73ðð O FRMLIB 15 ð2/23/89

 74ðð O FRMFIL 26 ð2/23/89

 75ðð O FRMMBR 37 ð2/23/89

 76ðð O TYPE 44 ð2/23/89

 77ðð O TOLIB 57 ð2/23/89

 78ðð O TOFIL 68 ð2/23/89

 79ðð O TOMBR 79 ð2/23/89

 8ððð O TODATE 86 ð2/23/89

 81ðð O OPTION 92 ð2/23/89

 82ðð O REPL 98 ð2/23/89

 83ðð O RMTLOC 1ð9 ð2/23/89

 84ðð O RCODE 114 ð2/23/89

 85ðð O MSGNUM 124 ð2/23/89

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

\ 7ð86 5ðð RPG PROVIDES BLOCK OR UNBLOCK SUPPORT FOR FILE FTTEST.

C r o s s R e f e r e n c e

 File and Record References:

 FILE/RCD DEV/RCD REFERENCES (D=DEFINED)

 ð1 FTTEST DISK 5ððD 8ðð

ð2 QSYSPRT PRINTER 6ððD 41ðð 56ðð 71ðð

 Field References:

FIELD ATTR REFERENCES (M=MODIFIED D=DEFINED)

FRMFIL A(1ð) 13ððD 26ððD 74ðð

FRMLIB A(1ð) 12ððD 25ððD 73ðð

FRMMBR A(1ð) 14ððD 27ððD 75ðð

 INDEX A(3) 9ððD 72ðð

 MSGNUM A(8) 37ððD 85ðð

OPTION A(1) 1ðððD 24ððD 81ðð

 PASSWD A(1ð) 21ððD 35ððD

 QYLIST PLIST 23ððD 39ððM

 RCODE A(1) 36ððD 84ðð

 REPL A(1) 11ððD 33ððD 82ðð

RMTLOC A(8) 2ðððD 34ððD 83ðð

TODATE A(6) 19ððD 32ððD 8ððð

TOFIL A(1ð) 17ððD 3ðððD 78ðð

TOLIB A(1ð) 16ððD 29ððD 77ðð

TOMBR A(1ð) 18ððD 31ððD 79ðð

 TYPE A(6) 15ððD 28ððD 76ðð

 'QY2FTML' LITERAL 39ðð

 Indicator References:

INDICATOR REFERENCES (M=MODIFIED D=DEFINED)

 LR 5ððD

 OF 6ððD 42ðð 57ðð

1P 41ðð 56ðð 71ðð

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

Figure E-12 (Part 3 of 4). RPG/400 Coding for File Transfer Support

E-30 ICF Programming V4R1

M e s s a g e S u m m a r y

\ QRG4137 Severity: ðð Number: 1

Message : Record-Identifying-Indicator entry is blank.

\ QRG7ð86 Severity: ðð Number: 1

Message : RPG handles blocking function for file. INFDS

updated only when blocks of data transferred.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

F i n a l S u m m a r y

 Message Count: (by Severity Number)

TOTAL ðð 1ð 2ð 3ð 4ð 5ð

2 2 ð ð ð ð ð

 Program Source Totals:

Records : 85

Specifications : 78

Table Records : ð

Comments : 7

 PRM has been called.

 Program RPGDRIVER is placed in library KPSLIB. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-12 (Part 4 of 4). RPG/400 Coding for File Transfer Support

 Appendix E. File Transfer Support E-31

Calling File Transfer Support for a CL
Program

Figure E-13 is an example of a CL program that uses file
transfer support to retrieve a database member from a
remote system and store it in the library QTEMP. The
program uses the Display Physical File Member (DSPPFM)
command which allows the user to view the member. The

user then has the option to submit the database member as
a batch job or end the program.

 Program : SBMRMTJOB

Library : KPSLIB

 Source file : QCLSRC

Library : KPSLIB

 Source member name : SBMRMTJOB ð3/21/89 1ð:15:1ð

 Source printing options : \SOURCE \XREF \GEN \NOSECLVL

 Program generation options : \NOLIST \NOXREF \NOPATCH

 User profile : \USER

 Program logging : \JOB

 Allow RTVCLSRC command : \YES

 Replace program : \YES

 Target release : \CURRENT

 Authority : \LIBCRTAUT

 Text . : Retrieves a member from a remote sys and SBMDBJOB

 Compiler : IBM AS/4ðð Control Language Compiler

Control Language Source

 SEQNBR \...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+. DATE

 1ðð-

 2ðð- /\\/

3ðð- /\ This program uses File Transfer Support to retrieve a data base \/ ð1/24/89

4ðð- /\ member from a remote system and store it in library QTEMP. The \/

5ðð- /\ Display Physical File Member(DSPPFM) command is then used to \/

6ðð- /\ allow the user to view the member. When the user is finished \/

7ðð- /\ viewing the member "enter" is pressed to continue. An inquiry \/

8ðð- /\ message is then sent to the user which allows their choice \/

9ðð- /\ whether or not to submit this member as a batch job. If a "Y" \/ ð1/24/89

1ððð- /\ response is given the Submit Data Base Job(SBMDBJOB) command is \/

11ðð- /\ used to submit the job to batch. If a "N" response is given \/

12ðð- /\ the program ends. \/

 13ðð- /\\/

 14ðð-

15ðð- PGM PARM(&FROMLIB &FROMFILE &FROMMBR)

16ðð- DCL VAR(&FROMLIB) TYPE(\CHAR) LEN(1ð)

17ðð- DCL VAR(&FROMFILE) TYPE(\CHAR) LEN(1ð)

18ðð- DCL VAR(&FROMMBR) TYPE(\CHAR) LEN(1ð)

19ðð- DCL VAR(&PASSWORD) TYPE(\CHAR) LEN(1ð) ð2/24/89

2ððð- DCL VAR(&RTNCODE) TYPE(\CHAR) LEN(1) VALUE(' ')

21ðð- DCL VAR(&SBMJOB) TYPE(\CHAR) LEN(1) ð1/24/89

 22ðð-

 23ðð- /\\\/

24ðð- /\ Retrieve user's password from a data area. \/ ð1/24/89

25ðð- /\ (used to preserve security). \/

 26ðð- /\\\/

27ðð- RTVDTAARA DTAARA(PASSWORD (1 1ð)) RTNVAR(&PASSWORD) ð2/24/89

 28ðð- ð1/24/89

Figure E-13 (Part 1 of 2). CL Coding for File Transfer Support

E-32 ICF Programming V4R1

 29ðð- /\\\/

3ððð- /\ Retrieve the member from the remote system using File \/ ð1/24/89

31ðð- /\ Transfer Support. Note the call to File Transfer is \/

32ðð- /\ made with both CL variables and constant values. Also \/

33ðð- /\ note that File Transfer parameters are all positional. \/

34ðð- /\ You must, therefore, reserve space in the call for all \/

35ðð- /\ 14 parameters. If a parameter is not used, fill its \/

36ðð- /\ space with blanks. \/

 37ðð- /\\\/

38ðð- CALL PGM(QSYS/QY2FTML) PARM(R &FROMLIB + ð3/21/89

39ðð &FROMFILE &FROMMBR ' ' QTEMP ' - ð3/21/89

 4ððð ' ' ' ' ' Y RCHAS365 &PASSWORD &RTNCODE ' ') ð3/21/89

 41ðð- /\\\/

42ðð- /\ Check the FTS return code to insure a good completion. \/

 43ðð- /\\\/

44ðð- IF COND(&RTNCODE \EQ 'ð') THEN(DO)

 45ðð-

 46ðð- /\\\/ ð1/24/89

47ðð- /\ Display the member. \/ ð1/24/89

 48ðð- /\\\/ ð1/24/89

 49ðð- DSPPFM FILE(QTEMP/&FROMFILE) MBR(&FROMMBR) ð3/21/89

 5ððð- ð1/24/89

 51ðð- /\\\/

52ðð- /\ Send the inquiry message to the user. \/

 53ðð- /\\\/

54ðð- SNDUSRMSG MSG('Submit the job to batch (Y,N)') VALUES(Y + ð1/24/89

55ðð N) DFT(Y) MSGRPY(&SBMJOB) ð1/24/89

 56ðð- ð1/24/89

 57ðð- /\\\/

58ðð- /\ Check the user's response. If it is "Y", submit the job \/ ð1/24/89

59ðð- /\ to batch using the Submit Data Base Job(SBMDBJOB) command.\/

6ððð- /\ If the response is "N", return to caller. \/ ð1/24/89

 61ðð- /\\\/

62ðð- IF COND(&SBMJOB \EQ 'Y') THEN(SBMDBJOB + ð1/24/89

 63ðð FILE(QTEMP/&FROMFILE) MBR(&FROMMBR)) ð3/21/89

 64ðð-

65ðð- ENDDO /\ FTS return code is good \/

 66ðð- ENDPGM

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 Cross Reference

 Declared Variables

 Name Defined Type Length References

&FROMFILE 17ðð \CHAR 1ð 15ðð 38ðð 49ðð 62ðð

 &FROMLIB 16ðð \CHAR 1ð 15ðð 38ðð

&FROMMBR 18ðð \CHAR 1ð 15ðð 38ðð 49ðð 62ðð

 &PASSWORD 19ðð \CHAR 1ð 27ðð 38ðð

 &RTNCODE 2ððð \CHAR 1 38ðð 44ðð

 &SBMJOB 21ðð \CHAR 1 54ðð 62ðð

\ CPDð791 ðð No labels used in program.

\ \ \ \ \ E N D O F C R O S S R E F E R E N C E \ \ \ \ \

\ CPDð772 ðð Program contains commands only valid when run interactively.

 Message Summary

 Severity

Total ð-9 1ð-19 2ð-29 3ð-39 4ð-49 5ð-59 6ð-69 7ð-79 8ð-89 9ð-99

 2 2 ð ð ð ð ð ð ð ð ð

 Program SBMRMTJOB created in library KPSLIB. Maximum error severity ðð.

\ \ \ \ \ E N D O F M E S S A G E S U M M A R Y \ \ \ \ \

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure E-13 (Part 2 of 2). CL Coding for File Transfer Support

 Appendix E. File Transfer Support E-33

File Transfer Support Messages

File Transfer Support messages give more information about
the error condition that occurred on either the local or remote
system. The FTS message number itself is available to the
application through the Message-ID parameter. The FTS
message is logged in the program message queue of the
program using FTS and contains a description of the error
that occurred.

If a local system error occurs, the FTS message directly
identifies the error that occurred.

If a remote system error occurs, FTS-1007 will be logged in
the program message queue. The actual remote system
error is identified in the message text associated with
FTS-1007, and returned to the program in the Message-ID
parameter. If the remote system is a AS/400 system, you
need to examine the message text of the system message
associated with the remote FTS message. The correlation
between the system message ID and the FTS message ID
are described below. If the remote system is a System/36,
the remote FTS message ID is described in the Using S/36
Communications book.

Figure E-14 (Page 1 of 2). File Transfer Messages

FTS Message ID System Message ID System Message Description

FTS-1001 CPI7A01 File transfer support started.

FTS-1002 CPI7A02 File transfer support ended.

FTS-1003 CPD7A03 File transfer support ended with remote location because of an error.

FTS-1004 CPD7A04 File transfer support could not be started.

FTS-1005 CPD7A05 File transfer support canceled by system operator.

FTS-1006 CPD7A06 Permanent session error occurred while communicating with remote location.

FTS-1007 CPD7A07 Remote system error.

FTS-1008 CPD7A08 Required number of parameters not specified.

FTS-1009 CPD7A09 User ID not authorized to remote location.

FTS-1010 CPI7A10 Received member from remote location.

FTS-1011 CPI7A11 Member sent to remote location.

FTS-1012 CPD7A12 Error receiving member from remote location.

FTS-1013 CPD7A13 Error sending member to remote location.

FTS-1014 CPF7A14 File transfer support has ended abnormally.

FTS-1019 CPD7A19 Remote location not available.

FTS-1020 CPD7A20 Option code not valid.

FTS-1021 CPD7A21 Database file name not valid.

FTS-1022 CPD7A22 Library name not valid.

FTS-1023 CPD7A23 File data not valid.

FTS-1024 CPD7A24 Member type not valid.

FTS-1025 CPD7A25 Member name not valid.

FTS-1026 CPD7A26 Replace option not valid.

FTS-1027 CPD7A27 Cannot sent System/36 folder.

FTS-1028 CPD7A28 Cannot replace folder.

FTS-1030 CPD7A30 System/36 file already exists.

FTS-1031 CPD7A31 System/36 file or library member in use.

FTS-1032 CPD7A32 Not enough storage to receive member.

FTS-1033 CPD7A33 System/36 VTOC is full. System/36 file cannot be created.

FTS-1034 CPD7A34 User not authorized to access file in library.

FTS-1035 CPD7A35 Error occurred while creating file or member in library.

FTS-1036 CPD7A36 File in library not found.

FTS-1037 CPD7A37 System/36 file cannot be opened.

FTS-1038 CPD7A38 Disk error while opening System/36 file.

FTS-1039 CPD7A39 Cannot send System/36 library.

E-34 ICF Programming V4R1

Figure E-14 (Page 2 of 2). File Transfer Messages

FTS Message ID System Message ID System Message Description

FTS-1040 CPD7A40 Cannot send database logical file in library.

FTS-1041 CPD7A41 Disk error while creating System/36 file.

FTS-1042 CPD7A42 Disk error while reading System/36 file.

FTS-1043 CPD7A43 Member in file in library is full.

FTS-1044 CPD7A44 Member record length does not match file definitions record length in library.

FTS-1046 CPD7A46 System/36 dictionary or definition not found in System/36 file.

FTS-1049 CPD7A49 System/36 file exists as a remote file.

FTS-1050 CPD7A50 Library not found.

FTS-1051 CPD7A51 User not authorized to access library.

FTS-1052 CPD7A52 Member already exists.

FTS-1053 CPD7A53 Member not found.

FTS-1054 CPD7A54 Not enough space in library to create member.

FTS-1055 CPD7A55 System/36 directory full. Cannot create member in library.

FTS-1056 CPD7A56 Member is in use.

FTS-1057 CPD7A57 Object in library is an IBM-supplied object.

FTS-1058 CPD7A58 Disk error while opening member.

FTS-1059 CPD7A59 Disk error while closing library member.

FTS-1060 CPD7A60 Mode in network attributes not specified in device for remote location.

FTS-1063 CPD7A63 File in library is not a physical file.

FTS-1064 CPD7A64 Member in file in library record length too long.

FTS-1065 CPD7A65 Cannot receive externally defined file.

FTS-1066 CPD7A66 Required parameters incorrectly specified.

FTS-1067 CPD7A67 Maximum record length too small.

FTS-1068 CPD7A68 TYPE parameter value does not match attributes of file in library.

FTS-1069 CPD7A69 Transparent mode required.

FTS-1070 CPD7A70 Error occurred while attempting to establish session with remote location.

FTS-1071 CPD7A71 TYPE parameter value not valid for file.

FTS-1072 CPD7A72 File wait time not valid.

FTS-1073 CPD7A73 Data compression option not valid.

 Appendix E. File Transfer Support E-35

E-36 ICF Programming V4R1

 Bibliography

The following books contain information you may need. The
books are listed with their full title and order number. Except
where otherwise indicated, each is an AS/400 system book.

 Communications Books
� APPN Support, SC41-5407, provides the information

necessary to define and use the AS/400 system
Advanced Peer-to-Peer Networking (APPN) function.
This book contains information on both ICF and
Common Programming Interface (CPI) Communications.

� APPC Programming, SC41-5443, provides the applica-
tion programmer with information about the advanced
program-to-program communications (APPC) support
provided by the AS/400 system. This book is a guide for
developing application programs and for defining the
communications environment for APPC communications.
This book contains information on both ICF and
Common Programming Interface (CPI) Communications.

� DSNX Support, SC41-5409, contains information about
preparing a system for remote management activities
and about using the change management feature distrib-
uted systems node executive (DSNX).

� Asynchronous Communications Programming,
SC41-5444, provides the application programmer with
information for creating an asynchronous communica-
tions definition, writing programs that use asynchronous
communications, and responding to return codes. It also
provides information on developing asynchronous com-
munications application programs that use ICF.

� BSC Equivalence Link Programming, SC41-5445, pro-
vides the application programmer or programmer with
the information needed to write programs that use binary
synchronous communications equivalence link (BSCEL)
to communicate with a remote system. It also contains
information for programmers about other systems and
devices that communicate with BSCEL on the AS/400
system. The book describes how to set up BSCEL and
how to run application programs that use BSCEL.

� Finance Communications Programming, SC41-5449,
provides information for the application programmer or
system administrator who uses the OS/400 finance
support for financial communications between devices at
multiple locations. It describes how finance support
communicates with a controller and how to set up
finance support. This book provides information for
writing application programs to communicate with appli-
cation programs on the finance controller using ICF.

� Intrasystem Communications Programming, SC41-5447,
provides the application programmer or programmer with
information about interactive communications between
two application programs on the same AS/400 system.
This book also provides information on developing intra-

system communications application programs that use
ICF.

� Communications Management, SC41-5406, provides the
system operator or programmer with information on
using AS/400 communications such as work manage-
ment, communications status, error handling, aggregate
line speed and subsystem storage.

� Communications Configuration, SC41-5401, contains
information for configuring objects for communications.

� Remote Job Entry (RJE) Guide, SC09-1903, provides
information for using the Communications Utilities
remote job entry (RJE) to submit jobs to an IBM host
processor.

� Retail Communications Programming, SC41-5448, pro-
vides information for setting up and starting retail com-
munications between devices at multiple locations.

� SNA Upline Facility Programming, SC41-5446, contains
information on using the Systems Network Architecture
Upline Facility with the IBM AS/400 system.

� Sockets Programming, SC41-5422, provides information
for using the sockets programming interface for the
AS/400 system.

� 3270 Device Emulation Support, SC41-5408, provides
information on setting up and starting 3270 device emu-
lation using binary synchronous communications (BSC)
or Systems Network Architecture (SNA) communications.

� Application Display Programming, SC41-5715, provides
information about:

– Using DDS to create and maintain displays for appli-
cations;

– Creating and working with display files on the
system;

– Creating online help information;
– Using UIM to define panels and dialogs for an appli-

cation;
– Using panel groups, records, or documents

� System API Reference, SC41-5801, provides user-
defined communications information for the AS/400
system.

� TCP/IP Configuration and Reference, SC41-5420, pro-
vides information on TCP/IP configurations, IBM-supplied
applications, and user-written applications.

Programming Language Books
� DDS Reference, SC41-5712, contains information about

coding data description specifications for physical,
logical, display, printer, and ICF files.

� Data Management, SC41-5710, provides information to
help the system programmer manage key aspects of the
system. For example, it describes how to use diskette
and tape files.

 Copyright IBM Corp. 1997 H-1

� DB2 for AS/400 Database Programming, SC41-5701,
provides information about the AS/400 database man-
agement system, and describes how to set up and use a
database on the AS/400 system.

� Distributed Data Management, SC41-5307, contains the
information needed to use DDM on a network. It
includes AS/400 system DDM concepts, preparing for
DDM communications, and all DDM-related program-
ming information needed by the DDM programmer.

� Printer Device Programming, SC41-5713, provides infor-
mation to help the programmer manage key aspects of
the system. For example, it describes how to use printer
files.

� ILE COBOL/400 Reference, SC09-2073, provides a
description of the ILE COBOL language organization,
program organization, procedure division statements,
and compiler directing statements.

� ILE COBOL/400 Programmer’s Guide, SC09-2072, Pro-
vides information about how to write, compile, bind, run,
debug, and maintain ILE COBOL/400 programs on the
AS/400 system.

� COBOL/400 User’s Guide, SC09-1812, provides the
information needed to write, test and maintain
COBOL/400 programs for the AS/400 system.

� ILE RPG/400 Reference, SC09-2077, provides informa-
tion about the ILE RPG programming language. This
manual describes, position by position and keyword by
keyword, the valid entries for all RPG IV* specifications,
and provides a detailed description of all the operation
codes and built-in functions.

� ILE RPG/400 Programmer’s Guide, SC09-2074, provides
information about the ILE RPG programming language,
including information on creating and running programs.

� RPG/400 User’s Guide, SC09-1816, provides the infor-
mation needed to use the RPG/400 programming lan-
guage to code programs for the AS/400 system.

� ILE C/400 Programmer’s Reference, SC09-2070, pro-
vides information about how to write programs that
adhere to the Systems Application Architecture C Level
2 definition and use ILE C/400 specific functions such as
record I/O.

� ILE C/400 Programmer’s Guide, SC09-2069, provides
the information needed to use the ILE C programming
language to code programs for the AS/400 system.

� CL Programming, SC41-5721, provides a wide-ranging
discussion of AS/400 system programming topics.

� CL Reference, SC41-5722, provides information on
control language commands.

� ILE Concepts, SC41-5606, explains concepts and termi-
nology pertaining to the Integrated Language Environ-
ment (ILE) architecture of the OS/400 licensed program.
Topics covered include creating modules, binding,
running programs, debugging programs, and handling
exceptions.

� Work Management, SC41-5306, contains information on
how to create and change a work management environ-
ment.

� Security – Reference, SC41-5302, contains information
about general security concepts for the system.

� System Operation, SC41-4203, provides information for
the system operator on how to use the system unit
control panel.

 System/36-Related Books
� System/36 System Reference, SC21-9020, contains

information on System/36 naming conventions you might
need for file transfer support (FTS).

� Using S/36 Communications, SC21-9082, contains infor-
mation on the correlation between system message IDs
and File Transfer Support message IDs on the
System/36.

H-2 ICF Programming V4R1

 Index

Special Characters
$$CANL (cancel with invite) system-supplied

format 7-6, 7-10
$$CANLNI (cancel) system-supplied format 7-10
$$CNLINV (cancel-invite operation) system-supplied

format 7-16
$$EOS (end-of-session function) system-supplied

format 7-19
$$EVOKET (evoke with detach) system-supplied

format 7-17
$$EVOKNI (evoke) system-supplied format 7-2
$$FAIL (fail) system-supplied format 7-8
$$NRSP (negative-response with invite) system-supplied

format 7-6, 7-11
$$NRSPNI (negative-response) system-supplied

format 7-11
$$POSRSP (positive-response) system-supplied

format 7-13
$$RCD (request-to-write-with-invite) system-supplied

format 7-6, 7-13
$$SEND (send with invite) system-supplied format 7-4,

7-6
$$SENDE (send with end-of-group) system-supplied

format 7-4, 7-11
$$SENDET (send with detach) system-supplied

format 7-4, 7-17
$$SENDFM (send with function-management-header and

invite) system-supplied format 7-4, 7-6
$$SENDNF (send with function-management-header)

system-supplied format 7-4
$$SENDNI (send) system-supplied format 7-4
$$TIMER (timer) system-supplied format 7-7
*NOMAX value 4-5
*PGM value 5-8
*RECID value 5-8
*RMTRMT value 5-9

Numerics
3270 device emulation 2-3
3270 program interface

ICF communications using SNUF 2-2
non-ICF communications using BSC 2-3

3601 controller 2-3
3651 controller 2-3
3684 controller 2-3
3694 controller 2-3
4680 controller 2-3
4681 controller 2-3
4684 controller 2-3
4692 controller 2-3

4701 controller 2-3
4702 controller 2-3
4730 controller 2-3
4731 controller 2-3
4732 controller 2-3
4736 controller 2-3
4737 controller 2-3

A
ACQPGMDEV (program device to acquire) parameter

description 4-7
open operation 5-1
use 4-3
values 4-3

acquire operation
acquire 5-2
automatic 5-2
description 3-5
explicit 5-2
implicit 5-2
language operations A-1
programming considerations 8-2
reasons for failure 5-3
source program device 5-2
target program device 5-3

acquire program device (ACQPGMDEV) parameter
description 4-7
open operation 5-1
use 4-3
values 4-3

acquiring sessions
description 3-4
elements used 3-14
sequence diagrams 3-14
starting a session 3-14

Add Communications Entry (ADDCMNE) command 8-5
Add Intersystem Communications Function Program

Device Entry (ADDICFDEVE) command 4-7, 4-10
description 4-2
example 3-8, 6-21
location name parameter 3-5
use 4-7

Add Prestart Job Entry (ADDPJE) command 8-8
Add Routing Entry (ADDRTGE) command 8-5
ADDCMNE (Add Communications Entry) command 8-5
ADDICFDEVE (Add Intersystem Communications Func-

tion Program Device Entry) command 4-7
description 4-2
example 3-8, 6-21
location name parameter 3-5
use 4-7

 Copyright IBM Corp. 1997 X-1

adding
intersystem communications function program device

entry 4-7
ADDPJE (Add Prestart Job Entry) command 8-8
ADDRTGE (Add Routing Entry) command 8-5

prestart job entry 8-8
Advanced Peer-to-Peer Networking (APPN) support

definition 2-1
advanced program-to-program communications (APPC)

definition 2-1
introduction 2-1
over TCP/IP 2-2
selecting record formats 5-8
VRYCFG (Vary Configuration) command 3-3, 3-12

allow-write (ALWWRT) function 6-15
allow-write (ALWWRT) keyword

example 6-15
use 6-15

ALWWRT (allow-write) keyword
example 6-15
use 6-15

APPC (advanced program-to-program communications)
definition 2-1
introduction 2-1
over TCP/IP 2-2
selecting record formats 5-8
VRYCFG (Vary Configuration) command 3-3, 3-12

application considerations
ICF

two-phase commit 8-4
application program

definition 3-2
description 3-2
started by AS/400 system 3-1, 3-4
started by remote system 3-1, 3-6

APPN (Advanced Peer-to-Peer Networking) support
definition 2-1

AS/400 system
configuration 2-4
control language (CL) 2-4
data description specifications (DDS) 2-4
languages supported 2-5
OS/400 program 2-4
security 2-5

ASCII character set D-2
asynchronous communications

definition 2-2
ending 3-12
introduction 2-2
starting 3-4
VRYCFG (Vary Configuration) command 3-12
X.25 support 2-2

attribute
communications file 4-3, 4-12
device dependent 4-12
ICF file 4-3, 4-12

attribute (continued)
session, overriding 4-8

B
batch data transfer example 10-2
batch transmission example 6-3
binary synchronous communications equivalence link

(BSCEL)
definition 2-2
introduction 2-2
VRYCFG (Vary Configuration) command 3-3, 3-12

BSC MSRJ (non-ICF communications) 2-3
BSCEL (binary synchronous communications equiv-

alence link)
definition 2-2
introduction 2-2
VRYCFG (Vary Configuration) command 3-3, 3-12

C
C/400 programming language

accessing feedback areas 9-1
DDS for display file (DSPFIL) 9-10
display file 9-10
error handling 9-1
file transfer example E-16
function 9-1
interface 9-1
introduction 9-1
multiple session 9-1

call level
See also program device entry
multiple program device entries 4-9

cancel ($$CANLNI) system-supplied format
sending error signal example 7-10

CANCEL (cancel) keyword 6-10
cancel function

C/400 write statement example 7-11
canceling sent records 7-10
COBOL/400 program 7-10
COBOL/400 WRITE statement example 7-11
description 6-10
example 6-10
RPG/400 output specification 7-11

cancel invite ($$CNLINV) system-supplied format
COBOL/400 WRITE statement example 7-16
description 7-16
example 7-16
ILE C/400 write statement example 7-16
RPG/400 example 7-16

cancel with invite ($$CANL) system-supplied format 7-6
cancel-invite (CNLINVITE) keyword

example 6-16
format 6-16
use 6-16

X-2 ICF Programming V4R1

canceling
invite of program device 5-15
sent records 7-10

Casual Inquiry menu (CIMENU) 10-35, 11-36
CCITT (International Telegraph and Telephone

Consultative Committee)
recommendation

X.28 2-2
X.29 2-2
X.3 2-2

Change Communications Entry (CHGCMNE)
command 8-5

Change Intersystem Communications Function File
(CHGICFF) command

description 4-2
use 4-5

Change Intersystem Communications Function Program
Device Entry (CHGICFDEVE) command

description 4-2
use 4-7

Change Prestart Job (CHGPJ) command 8-8
Change Prestart Job Entry (CHGPJE) command 8-8
change transmission direction request 6-19
character set

ASCII D-2
EBCDIC D-1

chart
DDS keyword processing 6-23
summary 6-21

Check Object (CHKOBJ) command 8-9
checking

return code 5-7
CHGCMNE (Change Communications Entry)

command 8-5
CHGICFDEVE (Change Intersystem Communications

Function Program Device Entry) command
description 4-2
use 4-7

CHGICFF (Change Intersystem Communications Func-
tion File) command

description 4-2
use 4-5

CHGPJ (Change Prestart Job) command 8-8
CHGPJE (Change Prestart Job Entry) command 8-8
CHKOBJ (Check Object) command 8-9
CICS/VS (Customer Information Control System for

Virtual Storage) 2-1
CIMENU (Casual Inquiry menu) 10-35, 11-36
CL (control language)

See also command, CL
acquire example 3-5
file transfer support (FTS) example E-32
introduction 2-4

close considerations 8-3, 8-4
close operation 5-17

closing an ICF file 5-17
CMNTYPE (communications type) parameter

use 4-15
values 4-15

CNLINVITE (cancel-invite) keyword 6-16
COBOL/400 programming language

DDS for display file (DSPFIL) 10-34
display file 10-25, 10-32
ending

sessions 7-19
transactions 7-17

error handling 10-1
fail function 7-8, 7-9
feedback areas 10-2
file transfer example E-23
indicating error conditions 7-8
interface 10-1
introduction 10-1
output operations 7-4
request-to-write 7-13, 7-15
sending

data 7-4
negative-responses 7-11

command type
file-level attribute 4-2
for ICF files 4-2
information display 4-2
program device entry 4-2
relationship between ICF commands 4-15

command, CL
Add Communications Entry (ADDCMNE) 8-5
Add Intersystem Communications Function Program

Device Entry (ADDICFDEVE) 4-2, 4-7
Add Prestart Job Entry (ADDPJE) 8-8
Add Routing Entry (ADDRTGE) 8-5
ADDCMNE (Add Communications Entry) 8-5
ADDICFDEVE (Add Intersystem Communications Func-

tion Program Device Entry) 4-2, 4-7, 4-10
ADDPJE (Add Prestart Job Entry) 8-8
ADDRTGE (Add Routing Entry) 8-5
Change Communications Entry (CHGCMNE) 8-5
Change Intersystem Communications Function File

(CHGICFF) 4-2, 4-5
Change Intersystem Communications Function Program

Device Entry (CHGICFDEVE) 4-2, 4-7
Change Prestart Job (CHGPJ) 8-8
Change Prestart Job Entry (CHGPJE) 8-8
Check Object (CHKOBJ) 8-9
CHGCMNE (Change Communications Entry) 8-5
CHGICFDEVE (Change Intersystem Communications

Function Program Device Entry) 4-2, 4-7
CHGICFF (Change Intersystem Communications Function

File) 4-2, 4-5
CHGPJ (Change Prestart Job) 8-8
CHGPJE (Change Prestart Job Entry) 8-8
CHKOBJ (Check Object) 8-9

 Index X-3

command, CL (continued)
Create Class (CRTCLS) 8-12
Create Subsystem Description (CRTSBSD) 8-5
CRTCLS (Create Class) 8-12
CRTICFF (Create Intersystem Communications Function

File) 4-2
CRTSBSD (Create Subsystem Description) 8-5
Delete File (DLTF) 4-2
Delete Override (DLTOVR) 4-2
Delete Override Device Entry (DLTOVRDEVE) 4-2, 4-7
Display Active Prestart Jobs (DSPACTPJ) 8-8
Display File Description (DSPFD) 4-2
Display File Field Description (DSPFFD) 4-2
Display Job (DSPJOB) 12-5
Display Override (DSPOVR) 4-3

program device entries 4-10
DLTF (Delete File) 4-2
DLTOVR (Delete Override) 4-2
DLTOVRDEVE (Delete Override Device Entry) 4-2, 4-7,

4-10
DSPACTPJ (Display Active Prestart Jobs) 8-8
DSPFD (Display File Description) 4-2
DSPFFD (Display File Field Description) 4-2
DSPJOB (Display Job) 12-5
DSPOVR (Display Override) 4-3, 4-6

program device entries 4-10
End Mode (ENDMOD) 3-12
End Prestart Jobs (ENDPJ) 8-8
End Service Job (ENDSRVJOB) 12-1
ENDMOD (End Mode) 3-12
ENDPJ (End Prestart Jobs) 8-8
ENDSRVJOB (End Service Job) 12-1
example 4-10
file-level attribute type 4-2
information display type 4-2
Override Intersystem Communications Function Program

Device Entry (OVRICFDEVE) 4-2
Override with Intersystem Communications Function File

(OVRICFF) 4-2, 4-6
Override with Intersystem Communications Function

Program Device Entry (OVRICFDEVE) 4-7, 4-8
OVRICFDEVE (Override Intersystem Communications

Function Program Device Entry) 4-2
OVRICFDEVE (Override with Intersystem Communica-

tions Function Program Device Entry) 4-7, 4-8
OVRICFF (Override with Intersystem Communications

Function File) 4-2, 4-6
program device entry type 4-2
Remove Communications Entry (RMVCMNE) 8-5
Remove Intersystem Communications Function Program

Device Entry (RMVICFDEVE) 4-2, 4-7, 4-10
Remove Prestart Job Entry (RMVPJE) 8-8
Retrieve Configuration Status (RTVCFGSTS) B-3
Retrieve Data Area (RTVDTAARA) 8-9
RMVCMNE (Remove Communications Entry) 8-5
RMVICFDEVE (Remove Intersystem Communications

Function Program Device Entry) 4-2, 4-7, 4-10

command, CL (continued)
RMVPJE (Remove Prestart Job Entry) 8-8
RTVCFGSTS (Retrieve Configuration Status) B-3
RTVDTAARA (Retrieve Data Area) 8-9
Start Mode (STRMOD) 3-3
Start Prestart Jobs (STRPJ) 8-8
Start Service Job (STRSRVJOB) 12-1
STRMOD (Start Mode) 3-3
STRPJ (Start Prestart Jobs) 8-8
STRSRVJOB (Start Service Job) 12-1
summary 4-15
TFRCTL (Transfer Control)

program device entry overrides 4-10
Trace Intersystem Communications Function

(TRCICF) 12-1
Transfer Control (TFRCTL)

program device entry overrides 4-10
TRCICF (Trace Intersystem Communications

Function) 12-1
types 4-2
Vary Configuration (VRYCFG) 3-3, 3-12
VRYCFG (Vary Configuration) 3-3, 3-12
Work with Active Jobs (WRKACTJOB) 12-5
Work with Configuration Status (WRKCFGSTS) B-3
Work with Job (WRKJOB) 12-5
WRKACTJOB (Work with Active Jobs) 12-5
WRKCFGSTS (Work with Configuration Status) B-3
WRKJOB (Work with Job) 12-5

Common Programming Interface (CPI)
Communications 2-1

communications
application considerations using ICF file 8-1
asynchronous 2-2
configuration 2-4, 3-2
displaying communications status 12-5
ending 3-10, 6-16
entries

changing 8-5
default user specification 8-5
description 8-5

features 2-1
lines

AS/400 system support 2-3
introduction 2-3

link
connecting 3-4
establishing 3-4
example 3-7

operating the system 1-1
operations

codes A-1
purpose 2-1

processing using DDS keywords 6-1
program-to-program 3-1
sessions 3-11
starting 3-4

X-4 ICF Programming V4R1

communications (continued)
transactions 3-7
types

advanced program-to-program communications
(APPC) 2-1

asynchronous 2-2
binary synchronous communications equivalence link

(BSCEL) 2-2
combinations 2-3
description 3-2
finance 2-3
intrasystem 2-2
introduction 2-1
retail 2-3
Systems Network Architecture upline facility

(SNUF) 2-2
communications entry

Add Communications Entry (ADDCMNE) command 8-5
ADDCMNE (Add Communications Entry) command 8-5
adding 8-5
Change Communications Entry (CHGCMNE)

command 8-5
CHGCMNE (Change Communications Entry)

command 8-5
Remove Communications Entry (RMVCMNE)

command 8-5
RMVCMNE (Remove Communications Entry)

command 8-5
communications session

definition 3-4
communications transaction

definition 3-6
communications type

definition 2-1
communications type (CMNTYPE) parameter

use 4-15
values 4-15

compare value
RECID keyword 5-9

configuration
See also Communications Configuration
data communications 1-1
description 2-4, 3-2
example relationship 3-3
status B-3
types 3-2
varying on 3-3
VRYCFG description 3-3

configuring
communications 3-2

CONFIRM (confirm) keyword 6-4
confirm request received 6-19
considerations

close 8-3, 8-4
end-of-session 8-4
file 8-13

considerations (continued)
input 8-3
language operations A-1
output 8-2
programming

description 8-1
file overrides 8-13
file redirection 8-13
handling program start requests 8-6
minor 8-1
remote environment definition 8-5
remote program start request 8-5
return codes 8-1
security 8-12
subsystem creation 8-5
system 8-12

release 8-3
control data (CTLDTA) keyword 6-5
control language (CL)

See also command, CL
acquire example 3-5
file transfer support (FTS) example E-32
introduction 2-4

controller
3601 2-3
3651 2-3
3684 2-3
3694 2-3
4680 2-3
4681 2-3
4684 2-3
4692 2-3
4701 2-3
4702 2-3
4730 2-3
4731 2-3
4732 2-3
4736 2-3
4737 2-3
finance 2-3
retail 2-3

CPI (Common Programming Interface)
Communications 2-1

Create Class (CRTCLS) command
description 8-12
ICF file specification 8-12
use 8-12

Create Intersystem Communications Function File
(CRTICFF) command

description 4-2
parameter values 4-5

Create Subsystem Description (CRTSBSD)
command 8-5

CRTCLS (Create Class) command 8-12
CRTSBSD (Create Subsystem Description)

command 8-5

 Index X-5

CTLDTA (control data) keyword 6-5
Customer Information Control System for Virtual Storage

(CICS/VS) 2-1

D
data

parameter 4-4
receiving

description 3-9
example 6-7, 7-6
how to 6-7, 7-6
in a file E-1

sending
batch transmission example 6-3
by output operation, example 3-9
confirm (CONFIRM) 6-4
control-data (CTLDTA) 6-5
description 3-9, 5-6
example 3-1, 6-6
force-data (FRCDTA) 6-4
format-name (FMTNAME) 6-4
function-management-header (FMH) 6-5
in a file E-1
subdevice-selection (SUBDEV) 6-4
using DDS keywords 6-3
variable length data (VARLEN) 6-4

transfer E-1
data communications

configuring your system 1-1
installing 1-1
planning 1-1

data description specifications (DDS)
description 2-4
example file 6-20
functions 4-2
keywords

allow-write (ALWWRT) 6-15
ALWWRT (allow-write) 6-15
cancel (CANCEL) 6-10
cancel-invite (CNLINVITE) 6-16
CNLINVITE (cancel-invite) 6-16
confirm (CONFIRM) 6-4
control-data (CTLDTA) 6-5
CTLDTA (control-data) 6-5
defer evoke (DFREVOKE) 6-2
detach (DETACH) 6-16
DFREVOKE (defer evoke) 6-2
end-of-group (ENDGRP) 6-4
end-of-session (EOS) 6-18
ENDGRP (end-of-group) 6-4
EOS (end-of-session) 6-18
evoke (EVOKE) 6-1
fail (FAIL) 6-9
FMH (function-management-header) 6-5
FMTNAME (format-name) 6-4
force-data (FRCDTA) 6-4

data description specifications (DDS) (continued)
keywords (continued)

format-name (FMTNAME) 6-4
FRCDTA (force-data) 6-4
function-management-header (FMH) 6-5
introduction 6-1
invite (INVITE) 6-7, 7-6
map to system-supplied formats 7-21
negative-response (NEGRSP) 6-11
NEGRSP (negative-response) 6-11
prepare-for-commit (PRPCMT) 6-5
processing 6-1
processing charts 6-21
PRPCMT (prepare-for-commit) 6-5
RCVCANCEL (receive-cancel) 6-19
RCVCONFIRM (receive confirm) 6-19
RCVCTLDTA (receive control data) 6-19
RCVDETACH (receive detach) 6-19
RCVENDGRP (receive end of group) 6-19
RCVFAIL (receive fail) 6-19
RCVFMH (receive-function-management-header) 6-19
RCVNEGRSP (receive negative response) 6-19
RCVROLLB (receive rollback) 6-19
RCVTKCMT (receive-take-commit) 6-20
RCVTRNRND (receive turnaround) 6-19
receive confirm (RCVCONFIRM) 6-19
receive control data (RCVCTLDTA) 6-19
receive detach (RCVDETACH) 6-19
receive end of group (RCVENDGRP) 6-19
receive fail (RCVFAIL) 6-19
receive negative response (RCVNEGRSP) 6-19
receive rollback (RCVROLLB) 6-19
receive turnaround (RCVTRNRND) 6-19
receive-cancel (RCVCANCEL) 6-19
receive-function-management-header (RCVFMH) 6-19
receive-take-commit (RCVTKCMT) 6-20
RECID (record-identification) 5-8, 6-8
record-identification (RECID) 5-8, 6-8
request-to-write (RQSWRT) 6-13
respond-to-confirm (RSPCONFIRM) 6-12
RQSWRT (request-to-write) 6-13
RSPCONFIRM (respond-to-confirm) 6-12
security (SECURITY) 6-2
SUBDEV (subdevice selection) 6-4
subdevice selection (SUBDEV) 6-4
synchronization level (SYNLVL) 6-2
SYNLVL (synchronization level) 6-2
timer (TIMER) 6-8
TNSSYNLVL (transaction-synchronization-level) 6-5
transaction-synchronization-level (TNSSYNLVL) 6-5
used to send data 6-3
variable-length data record (VARLEN) 6-4
VARLEN (variable-length data record) 6-4

response keywords 6-18
source 9-25

X-6 ICF Programming V4R1

data management
calculating I/O buffers 4-4
example 3-2
ICF 3-2
maximum record length (MAXRCDLEN) 4-4

data queue (DTAQ) parameter 4-5
DDS (data description specifications)

description 2-4
example file 6-20
functions 4-2
keywords

allow-write (ALWWRT) 6-15
ALWWRT (allow-write) 6-15
cancel (CANCEL) 6-10
cancel-invite (CNLINVITE) 6-16
CNLINVITE (cancel-invite) 6-16
confirm (CONFIRM) 6-4
control-data (CTLDTA) 6-5
CTLDTA (control-data) 6-5
defer evoke (DFREVOKE) 6-2
detach (DETACH) 6-16
DFREVOKE (defer evoke) 6-2
end-of-group (ENDGRP) 6-4
end-of-session (EOS) 6-18
ENDGRP (end-of-group) 6-4
EOS (end-of-session) 6-18
evoke (EVOKE) 6-1
fail (FAIL) 6-9
FMH (function-management-header) 6-5
FMTNAME (format-name) 6-4
force-data (FRCDTA) 6-4
format-name (FMTNAME) 6-4
FRCDTA (force-data) 6-4
function-management-header (FMH) 6-5
introduction 6-1
invite (INVITE) 6-7, 7-6
map to system-supplied formats 7-21
negative-response (NEGRSP) 6-11
NEGRSP (negative-response) 6-11
prepare-for-commit (PRPCMT) 6-5
processing 6-1
processing charts 6-21
PRPCMT (prepare-for-commit) 6-5
RCVCANCEL (receive-cancel) 6-19
RCVCONFIRM (receive confirm) 6-19
RCVCTLDTA (receive control data) 6-19
RCVDETACH (receive detach) 6-19
RCVENDGRP (receive end of group) 6-19
RCVFAIL (receive fail) 6-19
RCVFMH (receive-function-management-header) 6-19
RCVNEGRSP (receive negative response) 6-19
RCVROLLB (receive rollback) 6-19
RCVTKCMT (receive-take-commit) 6-20
RCVTRNRND (receive turnaround) 6-19
receive confirm (RCVCONFIRM) 6-19
receive control data (RCVCTLDTA) 6-19
receive detach (RCVDETACH) 6-19

DDS (data description specifications) (continued)
keywords (continued)

receive end of group (RCVENDGRP) 6-19
receive fail (RCVFAIL) 6-19
receive negative response (RCVNEGRSP) 6-19
receive rollback (RCVROLLB) 6-19
receive turnaround (RCVTRNRND) 6-19
receive-cancel (RCVCANCEL) 6-19
receive-function-management-header (RCVFMH) 6-19
receive-take-commit (RCVTKCMT) 6-20
RECID (record-identification) 5-8, 6-8
record-identification (RECID) 5-8, 6-8
request-to-write (RQSWRT) 6-13
respond-to-confirm (RSPCONFIRM) 6-12
RQSWRT (request-to-write) 6-13
RSPCONFIRM (respond-to-confirm) 6-12
security (SECURITY) 6-2
SUBDEV (subdevice selection) 6-4
subdevice selection (SUBDEV) 6-4
synchronization level (SYNLVL) 6-2
SYNLVL (synchronization level) 6-2
timer (TIMER) 6-8
TNSSYNLVL (transaction-synchronization-level) 6-5
transaction-synchronization-level (TNSSYNLVL) 6-5
used to send data 6-3
variable-length data record (VARLEN) 6-4
VARLEN (variable-length data record) 6-4

response keywords 6-18
source 9-25

default user (DFTUSR) parameter 8-5
defer evoke (DFREVOKE) keyword 6-2
defining

ICF file 3-3
Delete File (DLTF) command 4-2
Delete Override (DLTOVR) command 4-2, 4-6
Delete Override Device Entry (DLTOVRDEVE) command

description 4-7
example 4-10

deleting
override device entry 4-7

DETACH (detach) keyword 6-16
detach function

example 3-10
system-supplied formats 7-17
use 7-17

detail inquiry menu (DTLMNU)
description 11-36
use 10-35

detecting
errors B-2

determining
wait-for-record value 4-5

DEV (device description) parameter 4-11
device description (DEV) parameter 4-11
device entry

See program device entry

 Index X-7

device file 4-1
DFREVOKE (defer evoke) keyword 6-2
display

Trace ICF (TRCICF) display 12-1
Display Active Prestart Jobs (DSPACTPJ) command 8-8
display file

DDS COBOL/400 program
description 10-32
example 10-34

DDS ILE C/400 program
description 9-10
example 9-10

DDS RPG/400 program
description 11-33
example 11-35

Display Job (DSPJOB) command 12-5
Display Override (DSPOVR) command

description 4-3
program device entries 4-10
use 4-3, 4-6

displaying
program device entry overrides 4-10

displaying communications status 12-5
DLTF (Delete File) command 4-2
DLTOVR (Delete Override) command 4-2
DLTOVRDEVE (Delete Override Device Entry)

command 4-7
DSPACTPJ (Display Active Prestart Jobs) command 8-8
DSPJOB (Display Job) command 12-5
DSPOVR (Display Override) command

program device entries 4-10
DTAQ (data queue) parameter 4-5
DTLMNU (detail inquiry menu)

description 11-36
use 10-35

E
EBCDIC character set D-1
End Mode (ENDMOD) command 3-12
End Prestart Jobs (ENDPJ) command 8-8
End Service Job (ENDSRVJOB) command 12-1
end-of-group (ENDGRP) keyword 6-4
end-of-session (EOS) keyword 6-18
end-of-session function

considerations 8-4
description 6-18
examples

C/400 write statement 7-18, 7-20
release operation 6-18

system-supplied formats 7-19
use 7-19

end-of-transaction operation 7-17
ENDGRP (end-of-group) keyword 6-4
ending

communications
with a remote system 3-10

ending (continued)
communications (continued)

with a target system 3-10
sessions

communications 6-18
description 3-11
end-of-session function 7-19
release operation 6-18, 7-19

transactions 3-10, 6-16
ENDMOD (End Mode) command 3-12
ENDPJ (End Prestart Jobs) command 8-8
ENDSRVJOB (End Service Job) command 12-1
EOS (end-of-session) keyword 6-18
error

classification B-1
exception B-3
handling 2-5
messages

types B-2
nonpermanent B-3
permanent B-2
processing 9-1
recovery 2-5
user program detection B-2

establishing
session with a requesting program device 3-7

Ethernet 2-3
evoke

parameter list
format 7-3
use 7-3

parameters 3-7
evoke ($$EVOKNI) system-supplied format 7-2
evoke (EVOKE) keyword

compared with system-supplied evoke formats 6-3
defer evoke 6-2
format 6-1
purpose 6-1
security information 6-2
use 6-1

evoke function
COBOL/400 write statement example 7-3
description 7-1
differences between DDS and system-supplied 6-3
evoke ($$EVOKNI) system-supplied format 7-2
evoke with detach ($$EVOKET) system-supplied

format 7-2
evoke with invite ($$EVOK) system-supplied format 7-2
example 6-1
ILE C/400 write statement example 7-3
parameters 6-1
RPG/400 send example 7-3
security information 6-1
starting remote programs 7-1

evoke with detach ($$EVOKET) system-supplied format
description 7-2, 7-17

X-8 ICF Programming V4R1

evoke with detach ($$EVOKET) system-supplied format
(continued)

ending communications 7-17
evoke with invite ($$EVOK) system-supplied format 7-2
example

batch data transfer 10-2
batch transmission 6-3
COBOL programming language

AS/400 system 10-2
batch data transfer description 10-4, 11-3
local program 10-2

file member qualifiers E-9, E-12
ILE RPG/400 ICF file to the AS/400 system 11-2
multiple call levels

program device entry override 4-9
multiple session description 10-25, 11-25
multiple sessions overview 10-2, 11-2
Override with Intersystem Communications Function

Program Device Entry (OVRICFDEVE) command
changing running environment 4-9
initializing an environment 4-8

overriding
format selection processing attribute 4-8

program device entry
overriding remote location name 4-8

protected program device 4-9
RPG/400 programming language

AS/400 system 11-2
batch data transfer description 10-4, 11-3
local program 11-3

securing
program device entry 4-9

F
fail ($$FAIL) system-supplied format

C/400 write statement example 7-9
COBOL/400 write statement example 7-9
description 7-8
example 7-8
RPG/400 output specification example 7-9

fail (FAIL) keyword
format 6-9
receiving example 6-9
sending example operation 6-10
use 6-9

fail function
C/400 statement example 7-9
COBOL statement example 7-9
RPG/400 statement example 7-9

FBSS (Financial Branch System Services) controller 2-3
features

communications 2-1
feedback area C-1
file

changing an ICF file 4-5

file (continued)
device 4-1, 4-3
file members

receiving E-1
sending E-1
transferring E-1

ICF 2-4
overrides 8-13
redirection 8-13
support attributes 4-3
with OVRICFF 4-6
writing an ICF file program 5-1

file attribute
changing an ICF file 4-5
communications-type-dependent 4-12
ICF file 4-3
overriding an ICF file 4-6

file level
attribute commands 4-2

File Server I/O Processor
definition 2-4

file transfer support (FTS)
AS/400 system

retrieving files from System/36 E-9
sending to System/36 E-6

compressed data E-1
definition E-1
example

CL program E-32
COBOL/400 E-23
file member qualifiers E-9, E-12
ILE C/400 E-16
RPG/400 E-28

messages E-34
multiple communication-type support E-2
parameter list E-3
qualifiers E-3
retrieving from System/36 E-2
retrieving library member from System/36 E-12
sending file members E-2
subsystems using E-1
transferring files to and from an AS/400 system E-3

finance communications
controllers 2-3
definition 2-3
ICF-supported communications 2-3
non-ICF communications 2-3
X.25 support 2-3

Financial Branch System Services (FBSS) controller 2-3
FMH (function management header) keyword 6-5
FMTNAME (format name) keyword 6-4
FMTSLT (format select) parameter

description 5-8
determining record format 5-14
use 4-14
values 4-14

 Index X-9

force data (FRCDTA) keyword 6-4
format name (FMTNAME) keyword 6-4
format select (FMTSLT) parameter

description 5-8
determining record format 5-14
use 4-14
values 4-14

format selection processing
remote (RMTFMT) 5-8
summary 5-8

format, system-supplied
$$CANL (cancel with invite) 7-10
$$CANLNI (cancel)

sending error signal example 7-10
$$CNLINV (cancel invite)

COBOL/400 WRITE statement example 7-16
description 7-16
example 7-16
ILE C/400 write statement example 7-16
RPG/400 example 7-16

$$EVOK (evoke with invite) 7-2
$$EVOKET (evoke with detach)

description 7-17
ending communications 7-17

$$EVOKNI (evoke) 7-2
$$FAIL (fail)

C/400 write statement example 7-9
COBOL/400 write statement example 7-9
description 7-8
example 7-8
RPG/400 output specification example 7-9

$$NRSPNI (negative-response)
description 7-11
sending error condition example 7-11

$$POSRSP (positive-response) 7-13, A-6
$$RCD (request-to-write-with-invite) 7-6
$$SEND (send with invite) 7-4, 7-6
$$SENDE (send with end-of-group) 7-4, 7-11
$$SENDET (send with detach)

COBOL/400 program 7-18
description 7-4, 7-17
ending communications 7-17
ILE C/400 example 7-18
RPG/400 example 7-18
transaction end example 7-17

$$SENDFM (send with function-management-header and
invite) 7-4, 7-6

$$SENDNF (send with
function-management-header) 7-4

$$SENDNI (send) 7-4
$$TIMER (timer)

C/400 example 7-7
COBOL/400 example 7-7
format 7-7
output field format 7-7
purpose 7-7
RPG/400 example 7-7

format, system-supplied (continued)
$$TIMER (timer) (continued)

use 7-7
cancel ($$CANLNI)

sending error signal example 7-10
cancel invite ($$CNLINV)

COBOL/400 WRITE statement example 7-16
description 7-16
example 7-16
ILE C/400 write statement example 7-16
RPG/400 example 7-16

cancel with invite ($$CANL) 7-10
evoke ($$EVOKNI) 7-2
evoke with detach ($$EVOKET)

description 7-2, 7-17
ending communications 7-17

evoke with invite ($$EVOK) 7-2
fail ($$FAIL)

C/400 write statement example 7-9
COBOL/400 write statement example 7-9
description 7-8
example 7-8
RPG/400 output specification example 7-9

negative-response ($$NRSPNI)
description 7-11
sending error condition example 7-11

negative-response-with-invite ($$NRSP)
description 7-6, 7-11
output buffer requirements 7-12

positive-response ($$POSRSP) 7-13, A-6
request-to-write-with-invite ($$RCD) 7-6
send ($$SENDNI) 7-4
send with detach ($$SENDET)

COBOL/400 program 7-18
description 7-4, 7-17
ending communications 7-17
ILE C/400 example 7-18
RPG/400 example 7-18
transaction end example 7-17

send with end-of-group ($$SENDE) 7-4, 7-11
send with function-management-header

($$SENDNF) 7-4
send with function-management-header and invite

($$SENDFM) 7-4, 7-6
send with invite ($$SEND) 7-4, 7-6
timer ($$TIMER)

C/400 example 7-7
COBOL/400 example 7-7
format 7-7
output field format 7-7
purpose 7-7
RPG/400 example 7-7
use 7-7

FORTRAN/400 language support 4-7
FRCDTA (force data) keyword 6-4

X-10 ICF Programming V4R1

FTS (file transfer support)
AS/400 system

retrieving files from System/36 E-9
sending to System/36 E-6

compressed data E-1
definition E-1
example

CL program E-32
COBOL/400 E-23
file member qualifiers E-9, E-12
ILE C/400 E-16
RPG/400 E-28

messages E-34
multiple communication-type support E-2
parameter list E-3
qualifiers E-3
retrieving from System/36 E-2
retrieving library member from System/36 E-12
sending file members E-2
subsystems using E-1
transferring files to and from an AS/400 system E-3

function
allow-write (ALWWRT) 6-15

function management header (FMH) keyword 6-5

G
get operation

See read operation
get-attributes operation

language operations A-1
status information fields 5-3
use 5-3

H
high-level language (HLL)

example program 2-5
languages supported 2-5

HLL (high-level language)
example program 2-5
languages supported 2-5

I
I/O feedback area

common C-3
description 5-6
file-dependent C-3
types C-3

ICF (intersystem communications function)
acquire, description 3-5
attributes 4-12
commands

Add Intersystem Communications Function Program
Device Entry (ADDICFDEVE) 4-2

ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) 4-2

ICF (intersystem communications function) (continued)
commands (continued)

Change Intersystem Communications Function File
(CHGICFF) 4-2

Change Intersystem Communications Function
Program Device Entry (CHGICFDEVE) 4-2

CHGICFDEVE (Change Intersystem Communications
Function Program Device Entry) 4-2

CHGICFF (Change Intersystem Communications Func-
tion File) 4-2

Create Intersystem Communications Function File
(CRTICFF) 4-2

CRTICFF (Create Intersystem Communications Func-
tion File) 4-2

Delete File (DLTF) 4-2
Delete Override (DLTOVR) 4-2
Delete Override Device Entry (DLTOVRDEVE) 4-2
Display File Description (DSPFD) 4-2
Display File Field Description (DSPFFD) 4-2
Display Override (DSPOVR) 4-3
DLTF (Delete File) 4-2
DLTOVR (Delete Override) 4-2
DLTOVRDEVE (Delete Override Device Entry) 4-2
DSPFD (Display File Description) 4-2
DSPFFD (Display File Field Description) 4-2
DSPOVR (Display Override) 4-3
file-level attribute type 4-2
information display type 4-2
Override Intersystem Communications Function

Program Device Entry (OVRICFDEVE) 4-2
Override with Intersystem Communications Function

File (OVRICFF) 4-2
OVRICFDEVE (Override Intersystem Communications

Function Program Device Entry) 4-2
OVRICFF (Override with Intersystem Communications

Function File) 4-2
program device entry type 4-2
Remove Intersystem Communications Function

Program Device Entry (RMVICFDEVE) 4-2
RMVICFDEVE (Remove Intersystem Communications

Function Program Device Entry) 4-2
summary 4-15
types 4-2

communications operations 3-1
communications types

introduction 2-1
purpose 2-1
support 3-2

creating a file 6-20
data management, definition 3-2
defining program devices to 4-7
definition 3-1
description 3-1
example configuration 3-3
file

attributes 4-3
changing 4-5

 Index X-11

ICF (intersystem communications function) (continued)
file (continued)

closing 5-17
commands 4-2
configuration relationship 3-3
creating 4-2, 6-20
defining record formats 4-3
definition 3-3
description 2-4, 4-1
device 4-1
maximum record length 4-4
opening 4-3, 5-1
overriding 4-6
overview example 4-1
QICDMF 4-2
requesting device input/output following an

acquire 8-1
support attributes 4-3
target program input/output following an acquire 8-1
using 5-1

file-level attribute type 4-2
general description 1-1
maximum number of program devices 4-3
mode name 5-7
negative response error data 5-6
opening 5-1
operations and functions

acquire 5-2
allow-write 6-15
cancel 6-10, 7-10
cancel-invite 6-16, 7-16
confirm 6-4
detach 3-10
end-of-group 6-4
end-of-session 3-11
end-of-session function 7-19
ending a session (detach function) 7-17
ending a transaction (detach keyword) 6-16
evoke, general description 6-1, 7-2
fail 6-9, 7-8
force-data 6-4
format-name 6-4
function-management header 6-5
how to use 6-1
invite 6-7, 7-6
negative-response 6-11, 7-11
positive-response 7-13
read 6-7, 7-6
read-from-invited-program-devices 6-7, 7-6
release 5-16
request-to-write 6-13, 7-13
respond-to-confirm 6-12
select record format 6-8
subdevice-selection 6-4
summary chart 6-21, 7-19
timer 6-8, 7-7
variable-length 6-4

ICF (intersystem communications function) (continued)
operations and functions (continued)

write 6-3, 7-4
other communication types 2-3
program start requests 3-16
record formats 4-3
remote format name 5-6
remotely started sessions 3-16
return code 5-6
safe indicator 5-7
using 5-1
write request indication 5-6
writing a program 5-1

ICF device entry
adding 4-7, 4-10

ILE COBOL/400 programming language
See COBOL/400 programming language

ILE RPG/400 programming language
See RPG/400 programming language

IMS (Information Management System) 2-2
Information Management System (IMS) 2-2
input

considerations 8-3
operations 6-7, 7-6

input/output feedback area
See I/O feedback area

installing
data communications 1-1

integrated services digital network (ISDN)
definition 2-4

International Telegraph and Telephone Consultative
Committee (CCITT)

recommendation
X.28 2-2
X.29 2-2
X.3 2-2

intersystem communications function (ICF)
acquire, description 3-5
attributes 4-12
closing 5-17
commands

Add Intersystem Communications Function Program
Device Entry (ADDICFDEVE) 4-2

ADDICFDEVE (Add Intersystem Communications
Function Program Device Entry) 4-2

Change Intersystem Communications Function File
(CHGICFF) 4-2

Change Intersystem Communications Function
Program Device Entry (CHGICFDEVE) 4-2

CHGICFDEVE (Change Intersystem Communications
Function Program Device Entry) 4-2

CHGICFF (Change Intersystem Communications Func-
tion File) 4-2

Create Intersystem Communications Function File
(CRTICFF) 4-2

CRTICFF (Create Intersystem Communications Func-
tion File) 4-2

X-12 ICF Programming V4R1

intersystem communications function (ICF) (continued)
commands (continued)

Delete File (DLTF) 4-2
Delete Override (DLTOVR) 4-2
Delete Override Device Entry (DLTOVRDEVE) 4-2
Display File Description (DSPFD) 4-2
Display File Field Description (DSPFFD) 4-2
Display Override (DSPOVR) 4-3
DLTF (Delete File) 4-2
DLTOVR (Delete Override) 4-2
DLTOVRDEVE (Delete Override Device Entry) 4-2
DSPFD (Display File Description) 4-2
DSPFFD (Display File Field Description) 4-2
DSPOVR (Display Override) 4-3
file-level attribute type 4-2
information display type 4-2
Override Intersystem Communications Function

Program Device Entry (OVRICFDEVE) 4-2
Override with Intersystem Communications Function

File (OVRICFF) 4-2
OVRICFDEVE (Override Intersystem Communications

Function Program Device Entry) 4-2
OVRICFF (Override with Intersystem Communications

Function File) 4-2
program device entry type 4-2
Remove Intersystem Communications Function

Program Device Entry (RMVICFDEVE) 4-2
RMVICFDEVE (Remove Intersystem Communications

Function Program Device Entry) 4-2
summary 4-15
types 4-2

communications operations 3-1
communications types

introduction 2-1
purpose 2-1
support 3-2

creating a file 6-20
data management, definition 3-2
defining program devices to 4-7
definition 1-1, 3-1
description 3-1, 4-1
end-of-session 6-18
evoke example 6-1
example configuration 3-3
file

attributes 4-3
changing 4-5
closing 5-17
commands 4-2
configuration relationship 3-3
creating 4-2, 6-20
defining record formats 4-3
definition 3-3
description 2-4, 4-1
device 4-1, 4-2
maximum record length 4-4
opening 4-3, 5-1

intersystem communications function (ICF) (continued)
file (continued)

overriding 4-6
overview example 4-1
QICDMF 4-2
requesting device input/output following an

acquire 8-1
support attributes 4-3
target program input/output following an acquire 8-1
using 5-1

file-level attribute type 4-2
general description 1-1
maximum number of program devices 4-3
mode name 5-7
negative response error data 5-6
operations and functions

acquire 5-2
allow-write 6-15
cancel 6-10, 7-10
cancel-invite 6-16, 7-16
confirm 6-4
detach 3-10
end-of-group 6-4
end-of-session 3-11
end-of-session function 7-19
ending a session (detach function) 7-17
ending a transaction (detach keyword) 6-16
evoke, general description 6-1, 7-2
fail 6-9, 7-8
force-data 6-4
format-name 6-4
function-management header 6-5
how to use 6-1
invite 6-7, 7-6
negative-response 6-11, 7-11
positive-response 7-13
read 6-7, 7-6
read-from-invited-program-devices 6-7, 7-6
release 5-16
request-to-write 6-13, 7-13
respond-to-confirm 6-12
select record format 6-8
subdevice-selection 6-4
summary chart 6-21, 7-19
timer 6-8, 7-7
variable-length 6-4
write 6-3, 7-4

other communication types 2-3
program start requests 3-16
record formats 4-3
remote format name 5-6
remotely started sessions 3-16
return code 5-6
safe indicator 5-7
using 5-1
write request indication 5-6

 Index X-13

intersystem communications function (ICF) (continued)
writing a program 5-1

intersystem communications function (ICF) program
device entry

adding 4-7
removing 4-10

intrasystem communications
definition 2-2

invite (INVITE) keyword 6-7
invite function

description 6-7, 7-6
example 5-10

inviting
program device 5-7

ISDN (integrated services digital network)
definition 2-4

item inquiry menu (ITMMNU) 10-35
item inquiry screen 2 (ITMSC2) 11-36
item inquiry screen 3 (ITMSC3) 11-36

J
job ended signal 5-13

K
keyword processing charts 6-21
keyword, DDS

allow-write (ALWWRT) 6-15
ALWWRT (allow-write) 6-15
cancel (CANCEL) 6-10
cancel-invite (CNLINVITE) 6-16
CNLINVITE (cancel-invite) 6-16
confirm (CONFIRM) 6-4
control-data (CTLDTA) 6-5
CTLDTA (control-data) 6-5
defer evoke (DFREVOKE) 6-2
detach (DETACH) 6-16
DFREVOKE (defer evoke) 6-2
end-of-group (ENDGRP) 6-4
end-of-session (EOS) 6-18
ENDGRP (end-of-group) 6-4
EOS (end-of-session) 6-18
evoke (EVOKE) 6-1
fail (FAIL) 6-9
FMH (function-management-header) 6-5
FMTNAME (format-name) 6-4
force-data (FRCDTA) 6-4
format-name (FMTNAME) 6-4
FRCDTA (force-data) 6-4
function-management-header (FMH) 6-5
invite (INVITE) 6-7
negative-response (NEGRSP) 6-11
NEGRSP (negative-response) 6-11
prepare-for-commit (PRPCMT) 6-5
problem notification

cancel (CANCEL) 6-10

keyword, DDS (continued)
problem notification (continued)

fail (FAIL) 6-9
negative-response (NEGRSP) 6-11

PRPCMT (prepare-for-commit) 6-5
RCVCANCEL (receive-cancel) 6-19
RCVCONFIRM (receive confirm) 6-19
RCVCTLDTA (receive control data) 6-19
RCVDETACH (receive detach) 6-19
RCVENDGRP (receive end of group) 6-19
RCVFAIL (receive fail) 6-19
RCVFMH (receive-function-management-header) 6-19
RCVNEGRSP (receive negative response) 6-19
RCVROLLB (receive rollback) 6-19
RCVTKCMT (receive-take-commit) 6-20
RCVTRNRND (receive turnaround) 6-19
receive confirm (RCVCONFIRM) 6-19
receive control data (RCVCTLDTA) 6-19
receive detach (RCVDETACH) 6-19
receive end of group (RCVENDGRP) 6-19
receive fail (RCVFAIL) 6-19
receive negative response (RCVNEGRSP) 6-19
receive rollback (RCVROLLB) 6-19
receive turnaround (RCVTRNRND) 6-19
receive-cancel (RCVCANCEL) 6-19
receive-function-management-header (RCVFMH) 6-19
receive-take-commit (RCVTKCMT) 6-20
receiving data

invite (INVITE) 6-7
record-identification (RECID) 6-8
timer (TIMER) 6-8

RECID (record-identification) 6-8
record-identification (RECID) 6-8
request-to-write (RQSWRT) 6-13
respond-to-confirm (RSPCONFIRM) 6-12
RQSWRT (request-to-write) 6-13
RSPCONFIRM (respond-to-confirm) 6-12
security (SECURITY) 6-2
SUBDEV (subdevice selection) 6-4
subdevice selection (SUBDEV) 6-4
synchronization level (SYNLVL) 6-2
SYNLVL (synchronization level) 6-2
timer (TIMER) 6-8
TNSSYNLVL (transaction-synchronization-level) 6-5
transaction-synchronization-level (TNSSYNLVL) 6-5
variable-length data record (VARLEN) 6-4
VARLEN (variable-length data record) 6-4

L
LAN (local area network)

Ethernet 2-3
token-ring 2-3

language operations supported
by ICF A-1

X-14 ICF Programming V4R1

LCLLOCNAME (local location name) parameter 4-11
library member E-12
load library member (QS36LOD) E-2
local area network (LAN)

Ethernet 2-3
token-ring 2-3

local location name (LCLLOCNAME) parameter 4-11
local system 5-18
locally started sessions 3-14
logical unit type 6.2 (LU 6.2) 2-1
LU 6.2 (logical unit type) 2-1

M
major code

00 B-4
02 B-6
03 B-10
04 B-11
08–11 B-12
34 B-12
80 B-13
81 B-14
82 B-17
83 B-20

major return code 8-1
maximum file wait time (WAITFILE) parameter 4-5
maximum program devices (MAXPGMDEV)

parameter 4-4
maximum record length (MAXRCDLEN) parameter 4-3,

4-4
maximum record wait time (WAITRCD) parameter

description 4-5
difference

from TIMER keyword 6-8
use 4-5
values

general 4-5
using read-from-invited-program-devices 4-5
without using read-from-invited-program-devices 4-5

maximum wait interval 5-12
MAXPGMDEV (maximum program devices)

parameter 4-4
MAXRCDLEN (maximum record length) parameter 4-3,

4-4
message identifier B-2
message type B-2
message, file transfer E-34
minor return code 8-1
mode (MODE) parameter 4-11
MPTN (Multiprotocol Transport Networking)

architecture 2-2
multiple

sessions 3-13
transactions 3-12

multiple call level
program device entry example 4-9

multiple-session inquiry example
description for COBOL/400 program 10-25
description for ILE C/400 program 9-1

Multiprotocol Transport Networking (MPTN)
architecture 2-2

N
negative-response ($$NRSPNI) system-supplied format

description 7-11
sending error condition example 7-11

negative-response (NEGRSP) keyword 6-11
negative-response function

COBOL/400 program 7-12
ILE C/400 program 7-12
RPG/400 example 7-12

negative-response-with-invite ($$NRSP) system-supplied
format

description 7-6, 7-11
output buffer requirements 7-12

NEGRSP (negative-response) keyword 6-11
nested call

program device entry example 4-9
network

Ethernet 2-3
token-ring 2-3

nonintersystem communications
combinations of communications types 2-3
remote work stations 2-3
running on the AS/400 system 2-3

number of seconds value 4-5

O
open feedback area 5-1
open operation

language operations A-1
programming considerations 8-2

opening the ICF file 3-4
operation

See CL Reference
See System Operation

operations and functions
See also acquire operation
See also close operation
allow-write (ALWWRT) 6-15
cancel 6-10
detach

description 3-10
example 3-10
return code checking 3-10

end-of-session 3-11
evoke

COBOL/400 write statement example 7-3
ILE C/400 write statement example 7-3

 Index X-15

operations and functions (continued)
evoke (continued)

parameters 3-7
RPG/400 send example 7-3
use with DDS keywords 6-1

get 7-6
ICF 3-1
invite 6-7, 7-6
read 6-7
read-from-invited-program-devices 6-7, 7-6
request-to-write (RQSWRT) 6-13

output considerations 8-2
output operation

COBOL/400 send data example 7-5
description 6-3
ILE C/400 send data example 7-5
RPG/400 send data example 7-6
sending data (COBOL/400 programming language) 7-4

override
device entry

deleting 4-7
format selection processing attribute

example 4-8
multiple call levels

program device entries 4-9
program device entries

considerations 4-8
deleting 4-10
description 4-7
example 4-9
remote location name 4-8
remote location name and session attributes 4-8

session attributes 4-8
Override with Intersystem Communications Function

Program Device Entry (OVRICFDEVE) command
description 4-7
example 4-8

overriding
program device entries

applying from multiple call levels 4-9
considerations 4-8
deleting 4-10
description 4-7
overriding 4-9
remote location name and session attributes 4-8

OVRICFDEVE (Override with Intersystem Communica-
tions Function Program Device Entry) command 4-7

P
packet assembler/disassembler (PAD) 2-2
packet-switching data network (PSDN) 2-2
PAD (packet assembler/disassembler) 2-2
parameter

ACQPGMDEV (program device to acquire) 4-3, 4-7
CMNTYPE (communications type) 4-15

parameter (continued)
communications type (CMNTYPE) 4-15
data queue (DTAQ) 4-5
DEV (device description) 4-11
device description (DEV) 4-11
DTAQ (data queue) 4-5
evoke 3-7
evoke function 6-1
FMTSLT (format select) 4-14
format select (FMTSLT) 4-14
LCLLOCNAME (local location name) 4-11
local location name (LCLLOCNAME) 4-11
maximum file wait time (WAITFILE) 4-5
maximum program devices (MAXPGMDEV) 4-4
maximum record length (MAXRCDLEN) 4-3, 4-4
maximum record wait time (WAITRCD) 4-5
MAXPGMDEV (maximum program devices) 4-4
MAXRCDLEN (maximum record length) 4-3, 4-4
MODE (mode) 4-11
NONE 4-3
PGMDEV (program device name) 3-5
PGMDEV (program device) 4-7, 4-10
program device (PGMDEV) 4-7
program device to acquire (ACQPGMDEV) 4-3
PURGE (purge) 8-12
remote location name (RMTLOCNAME) 4-11
remote network identifier (RMTNETID) 4-11
RMTLOCNAME (remote location name) 4-11
RMTNETID (remote network identifier) 4-11
SECURE (secure from override) 4-15
secure from override (SECURE) 4-15
sent to the started program 3-16
session attributes 4-8
WAITFILE (maximum file wait time) 4-5
WAITRCD (maximum record wait time) 4-5

parameter list
evoke 7-3
file transfer E-3
format 7-3

permanent
definition 4-7

PGMDEV (program device) parameter 4-7, 4-10
planning, communications

data communications 1-1
positive-response ($$POSRSP) system-supplied

format 7-13, A-6
prepare-for-commit (PRPCMT) keyword

description 6-5
prestart job entry

application considerations 8-8
commands

Add Prestart Job Entry (ADDPJE) 8-8
ADDPJE (Add Prestart Job Entry) 8-8
Change Prestart Job (CHGPJ) 8-8
Change Prestart Job Entry (CHGPJE) 8-8
CHGPJ (Change Prestart Job) 8-8
CHGPJE (Change Prestart Job Entry) 8-8

X-16 ICF Programming V4R1

prestart job entry (continued)
commands (continued)

Display Active Prestart Jobs (DSPACTPJ) 8-8
DSPACTPJ (Display Active Prestart Jobs) 8-8
End Prestart Jobs (ENDPJ) 8-8
ENDPJ (End Prestart Jobs) 8-8
Remove Prestart Job Entry (RMVPJE) 8-8
Retrieve Data Area (RTVDTAARA) 8-9
RMVPJE (Remove Prestart Job Entry) 8-8
RTVDTAARA (Retrieve Data Area) 8-9
Start Prestart Jobs (STRPJ) 8-8
STRPJ (Start Prestart Jobs) 8-8

description 8-8
program initialization parameters 8-9
security considerations 8-9

problem analysis
error detection 12-1

problem notification
formats 7-8
functions 6-9

procedure library member (QS36PRC) E-2
processing

override
example 4-6
methods 4-6

release operation 5-16
using DDS keywords 6-1

program
application definition 3-2
application started by AS/400 system 3-4
at a remote system 3-6, 3-16
evoke functions 7-1
link with target program, example 3-9
parameters sent to started program 3-16
start requests 3-16
starting

description 3-4
on the remote system 6-1
remote programs 7-1

starts remote session, example 3-14
program device

acquire example 4-5
acquiring

description 5-2
source program device 5-2
target program device 5-3
when file is open 4-3

canceling an invite 5-15
defining

system-supplied entries 7-1
to an ICF file 4-7

definition 4-1
definition list 5-3, C-2
determining

maximum number 4-4
which has data 5-14

program device (continued)
entries 4-1
error from one 5-14
FORTRAN/400 language does not support names 4-7
get attributes 5-3
invited signal 5-13
inviting 5-7
levels 4-7
mapping to communications configurations 4-10
obtaining device information 5-3
permanent definition 4-7
program device entry commands 4-2
program device name 4-4
read from

description 5-10
example 5-10
one device 5-14
time out 5-13

reading from invited 5-10
releasing 5-16
specifying 4-1
temporary definition 4-7
writing then reading from one 5-15
writing to 5-7

program device (PGMDEV) parameter 3-5, 4-7
program device entry

change running environment 4-9
changing remote location and attributes of 4-9
commands to define 4-7
functions 4-7
initializing environment 4-8
multiple 4-7
multiple call level example 4-9
overrides

considerations 4-8
description 4-7
displaying 4-10

protecting example 4-9
remote location name

example 4-8
securing 4-9

program device to acquire (ACQPGMDEV) parameter
description 4-7
open operation 5-1
use 4-3
values 4-3

program start request
definition 3-4
description of failures (message CPF1269) B-23
failed B-23
introduction 3-4
prestart jobs 8-8
reason codes B-23
starts a session 3-16

programming considerations
acquire 8-2

 Index X-17

programming considerations (continued)
applications using ICF file

COBOL/400 language 10-1
ILE C/400 language 9-1
RPG/400 language 11-1

close 8-4
communications using ICF file 8-1
defining environment 8-5
description 8-1
end-of-session 8-4
files

overrides 8-13
redirection 8-13

handling program start requests 8-6
input 8-3
major codes 8-1
minor codes 8-1
open 8-2
output 8-2
prestarting jobs 8-8
release 8-3
remote environment definition 8-5
remote program start request 8-5
return codes 8-1
security 8-12
subsystem creation 8-5
system 8-12

programming language
ILE COBOL/400 summary charts

communications operations A-1
operation codes A-1

ILE RPG/400 summary charts
communications operations A-1
operation codes A-1

PRPCMT (prepare-for-commit) keyword
description 6-5

PSDN (packet-switching data network) 2-2
PURGE (purge) parameter 8-12
put operation

See write operation

Q
QBASE subsystem 8-5
QCMN subsystem 8-5
QICDMF file

characteristics 7-1
purpose 4-2
use 7-1

QS36LOD (load library member) E-2
QS36PRC (procedure library member) E-2

R
RCVCANCEL (receive-cancel) keyword 6-19

RCVCONFIRM (receive-confirm) keyword 6-19
RCVCTLDTA (receive-control-data) keyword 6-19
RCVDETACH (receive-detach) keyword 6-19
RCVENDGRP (receive-end-of-group) keyword 6-19
RCVFAIL (receive-fail) keyword 6-19
RCVFMH (receive-function-management-header)

keyword 6-19
RCVNEGRSP (receive-negative-response) keyword 6-19
RCVROLLB (receive-rollback) keyword 6-19
RCVTKCMT (receive-take-commit) keyword 6-20
RCVTRNRND (receive-turnaround) keyword 6-19
read operation

description 6-7
example 5-15
language operations A-1

read-from-invited-program-devices operation
data available 5-13
example 6-7, 7-6
language operations A-1
operations 6-7
responses 5-13
using 5-10

read-under-format (RUF) support 12-4
reason codes (for failed program start requests) B-23
receive-cancel (RCVCANCEL) keyword 6-19
receive-confirm (RCVCONFIRM) keyword 6-19
receive-control-data (RCVCTLDTA) keyword 6-19
receive-detach (RCVDETACH) keyword 6-19
receive-end-of-group (RCVENDGRP) keyword 6-19
receive-fail (RCVFAIL) keyword 6-19
receive-function-management-header (RCVFMH)

keyword 6-19
receive-negative-response (RCVNEGRSP) keyword 6-19
receive-rollback (RCVROLLB) keyword 6-19
receive-take-commit (RCVTKCMT) keyword 6-20
receive-turnaround (RCVTRNRND) keyword 6-19
receiving

cancel signals 6-19
data 3-9
fail signal 6-19
negative response 6-19

RECID (record identification) keyword
compare values 5-9, 6-9
duplicate compare values 6-9
format 5-8, 6-8
use 5-8, 6-8

record
actual length 5-6
blocked record count 5-6
determining

format of returned 5-14
maximum length 4-4

format name 5-6
length 5-6
selecting formats 5-8
spooled trace 12-3

X-18 ICF Programming V4R1

record identification (RECID) keyword
compare values 5-9, 6-9
duplicate compare values 6-9
format 5-8, 6-8
use 5-8, 6-8

release considerations 8-3
release operation

considerations 8-3
example 3-11, 6-18, 7-19
language operations A-1
processing 5-16

releasing
program device 5-16

remote format (*RMTFMT) value 5-9
remote location and attributes, changing 4-9
remote location name (RMTLOCNAME) parameter 4-11
remote location name and session attributes 4-8
remote network identifier (RMTNETID) parameter 4-11
remote program

considerations 8-5
procedure start request 3-7
start request 3-6

remote system
program start example 3-7
started by application program, example 3-14
starting a program 3-7
target program 5-19

remote work station 2-3
remotely started session 3-16
Remove Communications Entry (RMVCMNE)

command 8-5
Remove Intersystem Communications Function Program

Device Entry (RMVICFDEVE) command 4-10
description 4-2
use 4-2, 4-7

Remove Prestart Job Entry (RMVPJE) command 8-8
removing

intersystem communications function program device
entry 4-10

request to write with invite ($$RCD) system-supplied
format 7-6, 7-13

request-to-write (RQSWRT) keyword 6-13
request-to-write function 7-13
requesting device

description 3-7
input/output following an acquire (ICF file) 8-1

requesting program device
definition 3-7

respond-to-confirm (RSPCONFIRM) keyword 6-12
response indicator

receive-cancel (RCVCANCEL) 6-19
receive-confirm (RCVCONFIRM) 6-19
receive-control-data (RCVCTLDTA) 6-19
receive-detach (RCVDETACH) 6-19
receive-end-of-group (RCVENDGRP) 6-19
receive-fail (RCVFAIL) 6-19

response indicator (continued)
receive-function-management-header (RCVFMH) 6-19
receive-negative-response (RCVNEGRSP) 6-19
receive-rollback (RCVROLLB) 6-19
receive-take-commit (RCVTKCMT) 6-20
receive-turnaround (RCVTRNRND) 6-19

response indicator keyword 6-18
retail communications

controllers 2-3
definition 2-3
X.25 support 2-3

Retail Industry Programming Support Services
(RIPSS) 2-3

Retrieve Configuration Status (RTVCFGSTS)
command B-3

Retrieve Data Area (RTVDTAARA) command 8-9
retrieving

files from System/36 E-9
from System/36 E-2
library member E-12

return code
checking for

detach 3-10
end of transaction 6-19
operation status 5-7

major
description 2-5, 8-1
types 8-1

minor
description 2-5, 8-1
types 8-1

programming considerations 8-1
purpose 2-1

RIPSS (Retail Industry Programming Support
Services) 2-3

RMTLOCNAME (remote location name) parameter 4-11
RMTNETID (remote network identifier) parameter 4-11
RMVCMNE (Remove Communications Entry)

command 8-5
RMVICFDEVE (Remove Intersystem Communications

Function Program Device Entry) command 4-10
description 4-2
use 4-2, 4-7

RMVPJE (Remove Prestart Job Entry) command 8-8
RPG/400 programming language

display file 11-25, 11-33
error handling 11-1
examples

file transfer support (FTS) E-28
multiple-session 11-25
negative-response output specifications 7-12
set timer function 7-7
source program 11-5
target program 11-16

feedback areas 11-2
file transfer support (FTS)

example E-28

 Index X-19

RPG/400 programming language (continued)
file transfer support (FTS) (continued)

parameter list E-3
qualifiers E-3

interface 11-1
introduction 11-1
multiple-session

source program 11-33
target program 11-65

request-to-write 7-15
use in FTS E-1

RQSWRT (request-to-write) keyword 6-13
RSPCONFIRM (respond-to-confirm) keyword 6-12
RTVCFGSTS (Retrieve Configuration Status)

command B-3
RTVDTAARA (Retrieve Data Area) command 8-9
RUF (read-under-format) support 12-4

S
SDLC (synchronous data link control)

definition 2-3
SECURE (secure from override) parameter 4-15
secure from override (SECURE) parameter 4-15
securing

program device entry example 4-9
security

defer evoke (DFREVOKE) keyword 6-2
DFREVOKE (defer evoke) keyword 6-2
error handling 2-5
evoke 6-1
evoke, deferred 6-2
general description 2-5
prestart jobs 8-9
SECURITY keyword 6-2
sending to a remote system 6-2

security (SECURITY) keyword 6-2
selecting

record formats 5-8
send ($$SENDNI) system-supplied format 7-4
send function management header then invite

($$SENDFM) system-supplied format 7-4
send with detach ($$SENDET) system-supplied format

description 7-4, 7-17
ending communications 7-17
examples

COBOL/400 program 7-18
ILE C/400 example 7-18
RPG/400 example 7-18
transaction end 7-17

send with end of group ($$SENDE) system-supplied
format 7-4, 7-11

send with function management header ($$SENDNF)
system-supplied format 7-4, 7-6

send with invite ($$SEND) system-supplied format 7-4,
7-6

sending
data

illustration 3-9
using DDS keywords 6-3
using system-supplied formats 7-4

file members to a System/36 E-2
negative-response 7-11
to a System/36 E-6

sense data format 7-12
session

acquiring 3-4, 3-14
description 3-5
end-of-session

considerations 8-4
function 7-18

ending
communications 6-18
description 3-11
example 3-10, 3-12
sessions 3-11
system-supplied formats 7-19
using release operation, example 3-11

establishing, example 3-4
general examples 6-1
multiple

description 3-13, 11-25
example 10-25
example overview 10-2, 11-2
levels 3-17
source program 9-10, 10-32
target program 9-24, 10-65
transactions 3-12

remotely starting 3-16
source 5-2
starting

by remote program start request 3-16
description 3-5
example 3-12
sequence diagrams 3-16

target 5-3
session attribute

identifying 4-8
overriding 4-8

SNA 3270 program interface
definition 2-2

SNA MSRJ (non-ICF communications) 2-3
SNUF (Systems Network Architecture upline facility)

introduction 2-2
VRYCFG (Vary Configuration) command 3-3, 3-12

source
program 3-6, 3-14
sessions 5-2
system 5-18

source program
batch transfer 10-5
definition 3-6

X-20 ICF Programming V4R1

source program (continued)
example 10-32, 10-37

spooled trace record 12-3
Start Mode (STRMOD) command 3-3
Start Prestart Jobs (STRPJ) command 8-8
Start Service Job (STRSRVJOB) command 12-1
starting remote programs 3-4, 3-6
status, configuration B-3
STRMOD (Start Mode) command 3-3
STRPJ (Start Prestart Jobs) command 8-8
STRSRVJOB (Start Service Job) command 12-1
SUBDEV (subdevice) keyword 6-4
subdevice (SUBDEV) keyword 6-4
subsystem description

prestart job
description 8-8

QBASE 8-5
QCMN 8-5

support
additional programming 2-5
COBOL programming language 2-5
ILE RPG/400 programming language 2-5

synchronization level (SYNLVL) keyword 6-2
synchronization level specification 6-2
synchronous data link control (SDLC)

definition 2-3
SYNLVL (synchronization level) keyword 6-2
system

error classification B-1
messages B-1
operating 1-1
source 5-18
target 5-19

system-supplied format
$$CANL (cancel with invite) 7-6, 7-10
$$CANLNI (cancel) 7-10
$$CNLINV (cancel-invite operation) 7-16
$$EOS (end-of-session function) 7-19
$$EVOK (evoke with invite) 7-2
$$EVOKET (evoke with detach) 7-2, 7-17
$$EVOKNI (evoke) 7-2
$$FAIL (fail) 7-8
$$NRSP (negative-response with invite) 7-6, 7-11
$$NRSPNI (negative-response) 7-11
$$POSRSP (positive-response) 7-13
$$RCD (request-to-write-with-invite) 7-6
$$RCD (request-to-write) 7-13
$$SEND (send with invite) 7-4, 7-6
$$SENDE (send with end-of-group) 7-4, 7-11
$$SENDET (send with detach) 7-4, 7-17
$$SENDFM (send with function-management-header and

invite) 7-4, 7-6
$$SENDNF (send with

function-management-header) 7-4
$$SENDNI (send) 7-4
$$TIMER (timer) 7-7

system-supplied format (continued)
additional formats 7-13
cancel ($$CANLNI) 7-10
cancel with invite ($$CANL) 7-6, 7-10
cancel-invite operation ($$CNLINV) 7-16
communications functions 7-1
end-of-session function ($$EOS) 7-19
ending transaction 7-17
evoke ($$EVOKNI) 7-2
evoke with detach ($$EVOKET) 7-2, 7-17
evoke with invite ($$EVOK) 7-2
example target program start 7-2
fail ($$FAIL) 7-8
general description 7-1
introduction 2-4
map to DDS keywords 7-21
negative-response ($$NRSPNI) 7-11
negative-response with invite ($$NRSP) 7-6, 7-11
positive-response ($$POSRSP) 7-13
problem notification formats 7-8
receiving data 7-6
request-to-write ($$RCD) 7-13
request-to-write-with-invite ($$RCD) 7-6
send ($$SENDNI) 7-4
send with detach ($$SENDET) 7-4, 7-17
send with end-of-group ($$SENDE) 7-4, 7-11
send with function-management-header

($$SENDNF) 7-4
send with function-management-header and invite

($$SENDFM) 7-4, 7-6
send with invite ($$SEND) 7-4, 7-6
sending data example 7-4
starting on remote system 7-1
support 7-20
timer ($$TIMER) 7-7

System/36
AS/400 system retrieving files E-9
load library members (QS36LOD) E-2
procedure library members (QS36PRC) E-2
retrieving a library member E-12
retrieving objects E-2
sending file members E-2

Systems Network Architecture upline facility (SNUF)
definition 2-2
introduction 2-2
VRYCFG (Vary Configuration) command 3-3, 3-12

T
target program

definition 3-6
target session 5-3
target system

definition E-1
TCP/IP (Transmission Control Protocol/Internet Protocol)

See also TCP/IP Configuration and Reference,
SC41-5420

 Index X-21

TCP/IP (Transmission Control Protocol/Internet Protocol)
(continued)

non-ICF communications 2-3
transport for APPC applications 2-2

timer ($$TIMER) system-supplied format
C/400 example 7-7
COBOL/400 example 7-7
format 7-7
output field format 7-7
purpose 7-7
RPG/400 example 7-7
use 7-7

timer function
description 6-8
RPG/400 example 7-7

TIMER keyword
description 6-8
difference

from WAITRCD parameter 6-8
timing ICF operation 6-8, 7-7
TNSSYNLVL (transaction-synchronization-level) keyword

description 6-5
with detach function 6-17
with invite function 6-8

Trace ICF (TRCICF) display 12-1
Trace Intersystem Communications Function (TRCICF)

command 12-1
trace record

database file 12-4
ending 12-5
spooled 12-4
starting 12-1
stopping 12-2

transaction
communications 3-7
description 3-7
ending

communications 3-10
example 6-16
with COBOL/400 WRITE statement 7-17

more than one during a session 6-1
receiving end of transaction 6-19
starting 3-7

transaction-synchronization-level (TNSSYNLVL) function
with allow-write (ALWWRT) function 6-15

transaction-synchronization-level (TNSSYNLVL) keyword
description 6-5
with detach function 6-17
with invite function 6-8

Transfer Control (TFRCTL) command
program device entry overrides 4-10

transferring
files to and from AS/400 system E-3

Transmission Control Protocol/Internet Protocol (TCP/IP)
See also TCP/IP Configuration and Reference,

SC41-5420

Transmission Control Protocol/Internet Protocol (TCP/IP)
(continued)

non-ICF communications 2-3
transport for APPC applications 2-2

TRCICF (Trace Intersystem Communications Function)
command 12-1

two-phase commit
commit synchronization level 6-2
DETACH (detach) function 6-17
ICF general considerations 8-4
prepare-for-commit (PRPCMT) function 6-5
transaction-synchronization-level (TNSSYNLVL)

function 6-5
types of communications 2-1

U
user program error detection B-2
using

ICF file 3-3
ICF operations 6-1

V
VARBUFMGT (variable-buffer-management)

keyword 6-4
Variable-Buffer-Management (VARBUFMGT)

keyword 6-4
variable-length data record (VARLEN) keyword 6-4
VARLEN (variable-length data record) keyword 6-4
Vary Configuration (VRYCFG) command 3-3
varying on

communications configurations 3-3
VRYCFG (Vary Configuration) command 3-3

W
wait file (WAITFILE) parameter 4-5
wait intervals

responses 5-13
specifying maximum 5-12

WAITFILE (maximum file wait time) parameter 4-5
WAITRCD (maximum record wait time) parameter

description 4-5
difference

from TIMER keyword 6-8
use 4-5
values

general 4-5
using read-from-invited-program-devices 4-5
without using read-from-invited-program-devices 4-5

Work with Active Jobs (WRKACTJOB) command 12-5
Work with Configuration Status (WRKCFGSTS)

command B-3
Work with Job (WRKJOB) command 12-5

X-22 ICF Programming V4R1

write operation
language operations A-1
sending data (COBOL/400 programming language) 7-4

WRITE statement
C/400 cancel operation example 7-11
COBOL/400 cancel operation example 7-11
end-of-session function 7-18, 7-20
ending

sessions 7-19
transactions 7-17

indicating error conditions 7-8
negative-response operation examples 7-12
request-to-write 7-13
request-to-write examples 7-15
sending

data 7-4
negative-response 7-11

set timer (COBOL/400) function 7-7
writing

communications applications
COBOL/400 language 10-1
ILE C/400 language 9-1
RPG/400 language 11-1

programs 1-1
to a program device 5-7

WRKACTJOB (Work with Active Jobs) command 12-5
WRKCFGSTS (Work with Configuration Status)

command B-3
WRKJOB (Work with Job) command 12-5

X
X.25 support

asynchronous communications 2-2
finance communications 2-3
retail communications 2-3

X.28 recommendation 2-2
X.29 recommendation 2-2
X.3 recommendation 2-2

 Index X-23

Reader Comments—We'd Like to Hear from You!

AS/400
ICF Programming
Version 4

Publication No. SC41-5442-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5442-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5442-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5442-ðð

Spine information:

IBM AS/400 ICF Programming Version 4

