

IBM Systems - iSeries
Application Display Programming
Version 5

SC41-5715-01

Note
Before using this information and the product it supports, read the information in
and the manual IBM eServer Safety Information,, G229-9054.

Second Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SC41-5715-00.

© Copyright International Business Machines Corporation 1997, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
Figures Xxiii
Tables. XV

About Application Display
Programming (SC41-5715). xvii

Summary of Changes to Application
Display Programming Xxix

Part 1. Building a Sample Display
with Online Help Information 1

Chapter 1. Building a Sample D|splay
with Online Help Information. 3

The Application Display3
The Online Help Information.3

Part 2. Programming Application
Displays Using Display Files 9

Chapter 2. Defining Your Dlsplay ina

Display File.15
Establishing a Display File15
Determining File Descriptions16
Deciding Whether to Describe Data In51de or
Outside Your Program. . . A V4
Creating a Display File and Descrrptron .. .18
Changing the File Description19
Detecting File Description Changes . . .20
Defining Display Fields and Functions in a Record
Format . . . B |
DDS for Drsplay F11e . A |
Record Format Used by the Program B |
Record Format on the Display 22

Understanding the Field Attribute Characters .22
Understanding How Record Format Fields Can

Be Used oL 22
Defining Function Keys .o .. 24
Defining Command Attention (CAnn) and
Command Function (CFnn) Keys25
Specifying Alternative Keys26
Passing Information via Indicators. . . .27
Inserting Constant Field Text from a Message
Description28

Allowing for Right- to Left Cursor Movement .. 28
Defining Cursor Movement to Input-Capable

Positions Only 29
Defining Cursor Progression for Entry Flelds . .30
Defining Attributes for Entry Fields31
Protecting Entry Fields Using Edit Masks . . . 31
Specifying Right-to-Left Display Processing. . . 31

© Copyright IBM Corp. 1997, 2006

Specifying Word Wrap for Fields32
Emphasizing Fields.33
Adding Color. . . <
Editing Output Flelds <
Defining Your Own Edit Codes.35
Specifying Valid Screen Sizes . . I
Enabling Your Display to Be Prmted N 74
Defining Windows38
Using Program-Described Data N <
Defining Input-Only Files39
Defining Output-Only Files39
Defining Input and Output Files39

Chapter 3. Working with Display Files

in an Application4
Understanding How the System Allocates Resources 41
Opening Display Files. . . R |
Acquiring a Display Station for I / O Operatrons .. 42
Obtaining Information about Display Files and
Display Stations 43
Obtaining Information about Open and I / O
Operations . . . 43
Obtaining Attribute Informatlon about Dlsplay
Stations. . . X
Sending and Recervmg Data S .44
Determining Which Record Formats Are Actlve
on a Display . . R,
Writing Output to the Dlsplay B
Inviting Input to the Display . . V4
Reading Invited Input from the D1splay .. .68
Reading Input from the Display . . .70
Writing Output and Reading Input at the Same
Time.76
Canceling Input That Was Not Walted For .. T77
Locking the Keyboard and Positioning the
Cursor During I/O Operations . . . L. T77
Saving Previously Displayed Informatron .. .78
Understanding the Effects of I/O Operatlons on
Command Keys 80
Avoiding Record Format Problems on the 5250
Display Station 80
Releasing an Acquired Dlsplay Statlon from I / O
Operations83
Closing Display Flles o .. .83
Mapping Display Operations to Hrgh Level
Language Operations . . R 2
Sharing Display Files in the Same]ob . . .8
Understanding the Open Operation for Frles
Shared ina Job . . . 85
Understanding the Input/ Output Operatlon for
Files Shared in a Job8
Understanding the Close Operatlon for Frles
Shared inajJob86
iii

Chapter 4. Displaying Groups of

Records Using Subfiles . 87
Recognizing Subfile Uses . . 87
Describing Subfiles in Your DDS Source . 89
Using a Subfile in a Program . . 94
Requesting I/O Operations for a Subfﬂe . 96
Requesting I/O Operations for a Subfile Record
Format . . 96
Requesting I/O Operatrons for a Subfrle Control
Record Format . 98
Recognizing Subfile I/ O Requests in ngh Level
Languages.98
Controlling the Appearance of Subflles . .99

Displaying Horizontal Subfiles with Display Modes 100

Specifying Subfile Size Equal to Page Size . . 102
Specifying Subfile Size Not Equal to Page Size . 103
Checking Validity on Subfile Data . . 104
Displaying Error Messages from Subfiles . . 105
Positioning the Cursor on the Displayed Subfile 105
Positioning the Cursor Initially . . 106
Positioning the Cursor When a Roll Key Is Used 106
Positioning the Cursor When a Fold or Truncate
Key Is Used . . 109
Positioning the Cursor and Rolhng When Two
or More Records Are Displayed . . 109
Understanding Subfile DDS and Program
Logic-Example . .o . . 113
Chapter 5. Defining Windows with
Display Files. . 115
Window Terminology. . 115
DDS Window Keywords. . . 116
Window Representation and Hardware
Configuration . 116
Creating Windows. . 116
Window Definition Records . 117
Window Reference Records. . 117
Window Size and Location . . 118
Cursor Position. . 119
Error Messages . . 119
Subfiles . 120
DDS Help Records . 120
Defining Window Borders . . 120
Border Defaults. . 121
Multiple Border Deflnltlons 121
UIM Help Window Borders 122
Defining a Window Title 122
DDS for a Window Title- Example . 123
Reading Data from Windows . . . 124
Changing Window Borders and Contents . . 124
Moving and Duplicating Windows . . . 124
Making Two Windows Seem Active at Once . . 124
Making One Window in a Series Stand Out . . 125
Removing Windows . e . 126
Removing All Windows . . 126
Removing More Recent Wlndows . 126
Improving Application Performance. . 126
System Save and Restore Operations . 126
Bypassing System Save and Restore Operations 127
Programming Examples . . 128

iv Application Display Programming V5R4

Using Basic Window Functions . 128
Defining Windows in a Separate Drsplay Frle 134
RPG Program Source 134
RPG Program Source for WINPGM . 135
Chapter 6. Creating a Graphical Look
for Displays . . 139
Factors Affecting the Graphlcal Look . 139
Hardware Configuration . . 139
Enhanced Display Parameter . . 141
DDS Keywords. . 142
Creating Menu Bars . . . 144
Defining the Menu-Bar Chorces . 145
Suppressing the Menu-Bar Separator . 145
Defining the Menu-Bar Separator. . 145
Selection Fields-Overview . . 147
DDS for Selection Frelds—Example . 148
Creating a Vertical Single-Choice Selection Fleld 149
Creating a Vertical Multiple-Choice Selection
Field . 150
Creating a Horrzontal Selectron Fleld . 150
Cursor Movement in a Vertical Selection Field 151
Cursor Movement in a Horizontal Selection
Field . 151
Controlling the Selectron Indlcators in a
Selection Field . . . 152
Creating Pull-Down Menus Usmg Smgle Ch01ce
Selection Fields. . .. 154
Controlling the Selection Indlcators ina
Pull-Down Menu . . . 155
Defining Accelerator Keys . . . 156
Defining a Menu-Bar Switch Key. . 157
Defining a Cancel Key . . 158
Limiting Function When Cursor is Out51de a
Pull-Down Menu . . 158
Selection Lists-Overview . . 159
DDS for Selection Lists- Example . . 160
Creating Selection Lists . . . lel
Controlling the Selection Indlcators ina
Selection List . 162
Scroll Bars-Overview . . 163
Creating a Scroll Bar . . . le4
DDS for Scroll Bars-Example . . 165
Scroll Bar Operation . . 166
Push Buttons-Overview . . . 166
DDS for Push Buttons- Example . 167
Creating Push Buttons . . 167
Controlling the Availability of Chorces . . 168
Auto-Selection in Single-Choice Selection Flelds 169
Auto-Enter in Single-Choice Selection Fields . . 169
Defining Mnemonics . . 170
Defining Choice Colors and Attrrbutes . 171
Continued-Entry Fields-Overview . . 174
Specifying Word Wrap on Continued- Entry
Fields . . . 175
DBCS Consrderatlons w1th Contrnued Entry
Fields . . . 175
How DBCS Data is Returned for
Continued-Entry Fields . . 175
Keyboard Functions with Contlnued Entry
Fields . . 176

Forward Field-Exit Processing . . 179
Backward Field-Exit Processing . 180
How the Menu Bar Interacts with the Apphcat1on 180
Defining the MNUBARDSP Keyword on the
Application Record . 180
Defining the MNUBARDSP Keyword on the
Menu-Bar Record . .o .o 181
Receiving Input from the Pull- Down Menus .o 182
Removing a Pull-Down Menu after Receiving
Input . . . 184
Updating a Pull Down Menu before Dlsplaylng 184
Defining Application Help . . 185
Defining Choice-Level Help . 185
Defining Help for a Field . 187
Key Interaction for Menu Bars and Pull- Down
Menus. . 188
Cursor Movement . . 189
Pressing the Tab Key . . 189
Pressing the Cursor Keys . 190
Programming Examples . . . 190
Using the MNUBARDSP Keyword on the
Application Record . . 190
Using the MNUBARDSP Keyword on the
Menu-Bar Record . Ce e . 193
How the Displays Look . . 194
Simple Hotspots . . 195
Command Key Emulatlon . . . 196
Page Up and Page Down Key Emulatlon . . 196
Programmable Mouse Buttons-Overview . . 196
Pointer Device Events . 197
AID Codes to be Returned . . . 197
Programmable Mouse Buttons-Benefits . . 198
Programmable Mouse Buttons Operation . . 198
Programmable Mouse Buttons-NWS
Considerations . . 199
Programmable Mouse Buttons Event Processrng
States . . 199
Programmable Mouse Buttons Event Processmg
Priority . .o . 200
Grid Line Structures- Overvrew . . 205
DDS for Grid Line Structures- Example . 205
Grid Line Structures and Windows . . 206
Hardware Requirements for Grid Line
Structures . 207
Inserting HTML Tags . . 207
Resolving HTML Field Overlap . 208
Programming Examples . . 209
Chapter 7. Overriding Display Files
and Display File Attributes. . 213
Determining Whether or Not to Use Overrides . . 213
Overriding File Attributes in HLL Programs . . 213
Example 213
Overriding File Names in HLL Programs . . 214
Example . . . 214
Overriding Both File Names and Attrrbutes in HLL
Programs. A
Example . . . 215
Applying Overrides When Comprhng a Program 216
Example . . 216
Deleting Overrides . 217

Displaying Overrides. . . 217
Using File Redirection to Overrrde Frle Names and
Libraries or File Types . 217
Overriding Files with the Same F11e Types . 217
Overriding Files with Different File Types . . 218
Recognizing Commands That Ignore or Restrict
Overrides . 220
Chapter 8. Handling Messages and
Errors for Display Files . . . 223
Creating and Displaying Your Own Messages . 223
Displaying a Message on the Message Line . 224
Displaying a Message on the Message Line
When a Subfile Control Record is Written . . 224
Displaying a Message on the Message Line
Using a Message Field . . 224
Priorities for Drsplaymg Messages on a Message
Line . 224
Displaying Messages in a Freld on the Dlsplay 225
Displaying Messages on a Program Message
Queue. . 225
Displaying Error Messages through a Subfﬂe 225
Sounding an Alarm for Messages. . 228
Automatically Handling Permanent I/O Errors
on Display Stations . . 228
Analyzing Error Messages Sent from the System 229
Understanding Messages and Message Monitors 229
Understanding Major/Minor Return Codes . 230
Recovering from Errors . . 231
Chapter 9. Creating and Accessing
Menus Using Display Files . 235
Running System and User-Defined Menus. . 235
Returning to a Menu after Running the GO
command . . . 235
Determining the Prev1ous Menu . . 235
Using the Cancel and Exit Keys on Menus . 235
Choosing the Menu That Is Shown at Sign-On
Time 237
Defining Your Own D1sp1ay F1le Menus . 237
Understanding DDS and Display File
Considerations for Menus . . 238
Describing Menu Actions in a Message Frle . 239
Naming Help Formats for Menus . 239
Building a Display File Menu . . 240
Defining Your Own Program Menus. . 244
Passing Parameters for Program Menus . 244
Building a Program Menu . . 244
Exiting from a Program Menu w1thout
Returning to the Previous Menu . . 246
Avoiding Menu Name Conflict . 248
Naming Your Menus . . 248
Placing Your Menu in a ngher L1brary in the
Library List . . 248
Specifying the L1brary That Contarns the Menu 248
Using the Generic Menu Specification . . 248
Changing the Command Default after
Duplicating a Command . 249
Displaying Menu Attributes . 249
Changing Menu Attributes . . 249

Contents

A\

Deleting Menus249

Chapter 10. Using User-Defined Data

Streams. 251
Understanding Drsplay Statron leferences ... 251
Understanding User-Defined Data Stream

Limitations252

Chapter 11. Passing Data between

Programs 255
Passing Data in the Same Routrng Step in a]ob 255
Passing Data between Routing Steps in a Job. . . 256

Chapter 12. Waiting for Input from a
Display File, an ICF File, and a Data
Queue259

Chapter 13. Using Alternative
Character Sets and Code Pages . . . 261
System Has Characters Not Normally Displayed

on the Device . . . 261
Device Passes Characters Not Drsplayed on the

System 262
Specifying Character Translatlon for Flelds .. 262
Determining the Character Identifier (CHRID)

Value for Your Display264

Chapter 14. Improving System
Performance with Displays 267

Deferring the Write Operation for a Display F11e 267
Designating the Primary Screen Size for a Dlsplay

File. 207
Writing Only One Page of Subfrle Records at a

Time . . . 267
Sharing an Open Data Path (ODP) for the Same

Job. 268
Sending Records w1th Input Frelds to the Dlsplay

in Order 268
Overlapping and Not Deletmg Repeatedly Sent

Records 268
Restoring the Drsplay . . 268
Defining Command Attention Keys Rather Than
Command Function Keys269
Using the Invite Operation.269
Using Windows269

Part 3. Programming Application
Displays Using Panel Groups . . . 271

Chapter 15. Improving Productivity

with User Interface Manager 273
Increasing User Productivity 273
Increasing Application Programmer Producthlty 273
What to Consider before Using UIM Instead of

Data Description Specifications (DDS) 273

vi Application Display Programming V5R4

Chapter 16. Introduction to the User
Interface Manager 275

Overviewof UM275
What the UIM Supports.276
What Is a Panel Group276
WhatlsaMenu276
Creating Objects . . . o277
Elements Within a Panel Group o277
Using the UIM Language Tags277
Using Dialog Commands 278
Using Control Language (CL) Cornrnands ... 279
Using an Application Programming Interface (API) 279
Defining a Menu Object Using UIM. 280
Creating a Menu Panel280
Required Tags for a Menu Panel oL 282
Source for Example Menu L0282
Defining a Panel Group Object Using UIM ... 287
Creating a List Panel L0287
Required Tags for a List Panel o289
Source for Example List Panel. 290
Application Programming for a List Panel. . . 298
Creating a Confirmation List Panel 299
Required Tags for a Confirmation List Panel . . 300
Source for Example Confirmation Panel . . . 300
Automatic Confirmation Processing 303
Application Programming for Confirmation
Processing303
Creating a Data Presentatron Panel303
Required Tags for a Data Presentation Panel . . 306
Source for Example Data Presentation Panel . . 306
Application Programming for a Data
Presentation Panel.317
Data Entry Panel 0320
Creating a Panel with a Menu Bar S . .320
Required Tags for a Panel with a Menu Bar .. 322
Source for Example Panel with a Menu Bar . . 323

Application Programming for a Menu Bar Panel 332

Chapter 17. Details of Using User
Interface Manager 335

Opening a UIM Application335
Defining Dialog Variables33
Restrictions on Using Dialog Varrables 336
Dialog Variable Error Messages 337
Providing Field Values for a Dlsplay Panel
Using Dialog Variables 337
Using Variable Pool Services 338
Dialog Variables and Special Values. 338
Character Set and Code Page Considerations 338

Managinga List340
Defining a List.341
Initializing a List341
Displaying a List341
Updatinga List.342
Incomplete List Processing 342
Removing and Inserting an Entry from a Lrst 342
Controlling List Entries on a List Display . . . 343
Improving Interactive Response Time for a List
Display L343
Using Action Lists and Selectlon Llsts Lo 344

Using Selection Characters345
Managing Panel Functions 345
Enabling Conversion toa GUI.346
Scrolling Support . . . PG 2 1)

Defining Scrollable Areas I % 1)

Defining Function Key Scrolling 347

Scrolling and Error Conditions 347

Scrolling a List Area347

Scrolling a Menu Area347

Scrolling an Information Area. 348

Scrolling Data Item Groups. 348

Scrolling a Text Area348
Defining Contextual Help 348
Command Line Restrictions 350

Command Line Interpretation.350

Entering Commands That Are Too Long .. . 351
Defining Function Keys351

Formatting Function Keys 351

Handling Function Keys and VARUPD Value 351
Panel Formatting Concepts. 352

When Panel Formatting Is Performed353

Application Control of Panel Formatting . . . 353

Limits of the Panel Formatter . . . I 2
Folding Up Multiple Panels When EXIT Is
Requested oz
Folding Up a List Panel . . 355

Adding a Pop-Up Window over Another Panel 356
Using Menu Bars 357

Differences Between Pull Down Menus and

Pop-Up Windows358
Using Pop-Up Windows. . . B

Defining Application Wmdows N 15

Adding and Removing Windows. 360

Using the Command Line in a Window . . . 361
UIM as a Request Processor Program When
Displaying a Panel36l
Printing Concepts . . . B [72

Printing a Print Head Panel G [

Printing a Print Panel L3064

Using Blank Lines for Separatmg 364

Fonts and Highlighting 364

Printing the Trailer364

Defining Prolog Areas364

Defining Header Areas 365

Using the Page-Eject Function Durmg Prmtmg 365

Sharing and Overriding Printer Files 365

Printing Double-Byte Character Set (DBCS)

Considerations365

Commonly Asked UIM Questlons365

Part 4. Programmlng Help
Displays 367

Chapter 18. Making Online Help
Information Accessible for Your
Display File 369

Enabling the Help Key . . . 370
Choosing between Panel Groups and Records for
Help37

Defining Which Areas of Your Display Need

Online Help Information . . . 371
Specifying Panel Groups for Help in Your D1sp1ay
File. 373

Defining Panel Groups w1th Optlon Indlcators 375
Copying QUSRTOOL Examples That Spec1fy

Help Using Panel Groups 376
Specifying Records in Your Display Flle ... 376
Defining Records with Option Indicators . . . 377
Entering the Records That Contain the Help
Information 378
Using Records and Documents for Help in the
Same Display File. 378
Understanding the Restrlctlons on Records . . 379
Paging between Help Displays That Use
Records 379
Returning Control to Your Program after Pressmg
the Help Key383
Returning Control to Your Program after
Showing the Help Display 383
Returning Control to Your Program w1thout
Showing the Help Display 384

Chapter 19. Making Online Help
Accessible for Your Panel Group . . . 385

Definitions and Explanations 385
Giving Help Panel Groups Access to Index
Search.387
Giving Help Panel Groups Access to A
User-Defined Panel Group . . . N .74
Removing Access to F18=More Indexes .. .388
Help in a List Area388
Coding Help38
Help in a Menu Area.38
Coding Help39
Help in a Data Area39
Coding Help392
Help in a Menu Bar Area39
Coding Help39
Help in a Function Key Area39
Coding Help397

Chapter 20. Defining Online Help

Information 399

Defining Online Help Informatlon in a Panel

Group. . . . 399
Entering the UIM Source for a Panel Group for
Help . . . oo 20399
Creating and Deletmg Panel Groups410
Assigning Panel Groups as Help for Commands 411
Using Panel Groups in a Search Index 411
Copying QUSRTOOL Examples That Define
Help in a Panel Group 412

Defining Online Help Informatlon in a DDS Record 412

Part 5. Guidelines for IBM
i5/0S-Style Displays 413

Contents Vil

Chapter 21. Designing IBM i5/0S-Style

Displays 415
Using the Displays Example in the QUSRTOOL
Library 415
Recognizing the Example Ob]ects 415
Installing the Example Objects. . . . 417
Viewing the Sample Displays, Command and
Online Help Information . . . 417
Copying the Source for the Example ObJects for
Your Own Use 420
Defining Special Functions and Attrlbutes for All
Displays . . . R VA |
Designing the Smgle Ch01ce Menu Dlsplay N VA |
Title . . . S . L. 422
Instruction Lme e
Menu Options . . . I)
Menu Selection Entry F1eld I Y
Function Keys . . . oo o423
Online Help Informatlon .o L. .. 428
General Menu Display Operatron 423
Designing the Entry D1sp1ay A
Title . . . P 1.
Instruction Lme e e oo 4
Prompt Area425
Function Keys 428
Online Help Informatlon .o L. 428
General Entry Display Operatlon Lo .. 429
Designing the Information Display 429
Title e (0
Location Informatlon 1
Prompt Areal431
Prompt Area2431
Instruction Line 432
Function Keys . . . oo 432
Online Help Informatron .o L. . 432
General Information Display Operatlon ... 432
Designing the List Dlsplay S o432
Title Coe .. 433
Prompt Area433
Instruction Line434
Options Line434
Column Headings. . . B 1)
Extended Action Entry Area N
List Fields435
Paging Location Informatlon 436
Function Keys 436
Online Help Informatron R)
General List Display Operation . . . 437

Defining the Function Key Area for All Dlsplays 443
Optional Command Line and Identifier Field 443

Common Key Assignments. 446
Defining Help Information for All D1sp1ays .. . 450
Help for the Menu Display. 450
Help for the Entry Display451
Help for the Information Display. 452
Help for the List Display453
Defining and Presenting Messages 454
Designing Common User Access (CUA) Entry
Level Models 456
Entry Dialog Actions 456
Single-Choice Selection (Menu) 457

viii Application Display Programming V5R4

Entry Display . 459
Information Display . . 460
List Display . . 460
Help Information . . 461
Part 6. Appendixes 463
Appendix A. UIM Panel Group
Definition Language . 465
Tag Content Formatted as Paragraphs . . 466
Panel Areas . e . 467
Panels . . . 467
Panel Group Ob]ects . . 467
Help on Panels 468
Panel Group Orgamzatlon . . 468
Name Syntax . 469
Symbols . . 469
Comments . 471
Imbeds . 471
DBCS Graphic Lrterals . 471
Hexadecimal Literals . . 472
APPEMT (Application Formatted Area) . 472
Required Attributes . . 473
Optional Attribute. . 473
Application Formatted Data . . 473
Example: Application Formatted Area . . 474
BOTINST (Bottom Instruction). . 474
Optional Attribute. . 475
Optional Text . . 475
CHECK (Validity Checkmg) . 475
Required Attribute . 476
Optional Attributes . 476
Example: Validity Checking . 477
CIT (Title Citation) .. . 477
Optional Text .o . 477
Example: Title Citations . . 477
CLASS (Class Definition) . 478
Required Attributes . 479
Optional Attributes . 483
Example: Class Definitions . . 488
Display Forms of Numeric Values .. 489
Display Forms of Character, Date, and T1me
Values. . 490
CMDLINE (Command Lme) . 491
Required Attribute . 491
Optional Attribute. . 491
Optional Text . . 491
COND (Condition Defmrtron) . 492
Required Attributes . 492
Optional Attribute. . 495
Example: Conditioning an Optlon . 495
COPYR (Copyright) . 496
Required Text . . 496
DATA (Data Presentation Area) . 496
Required Attribute . 497
Optional Attributes . 498
Optional Text . . 499
Print Formatting C0n51derat10ns . . 499
Example 1: Data Entry Panel . . 500

Example 2: Two-Column Format in a Data Entry
. 501

Panel .

Example 3: Two Presentatlon Areas for Data

Items .

Example 4: Data Presentatlon Area Wlth a Menu

Area

Example 5: Data Entry Panel w1th a Nested

Data Group . .
DATAC (Data Item Ch01ces)
Optional Attribute.
Optional Text .
DATACOL (Data Column)
Required Attribute
Optional Text .
DATAGRP (Data Group)
Optional Attributes
Optional Text
DATAI (Data Item)
Required Attributes
Optional Attributes
Optional Text .
DATAIX (Data Item Extender)
Required Attributes
Optional Attributes
DATASLT (Data Selection Fleld)
Required Attributes
Optional Attributes
Optional Text .
Example 1: Data Entry Panel .
Example 2: Multiple-Selection Field .

DATASLTC (Data Selection Field Choice) .

Optional Attributes
Optional Text
DL (Definition List)
Optional Attribute.
Required Tags .
Optional Tags .
Example 1: Definition Llst . .
Example 2: Compact Definition List .
FIG (Figure) .
Optional Attrrbute
Optional Tag
Example: Sample Flgure
HELP (Help Module).
Required Attribute
Optional Attributes
Optional Text .
Example: Help Panel Defmltlon .
HPO through HP9 (Hrghhghted Phrase)
Optional Text .
H1 through H4 (Heading) .
Required Text .
Example: Heading Tags .
IMHELP (Imbed Help)
Required Attribute
Example: Imbedded Help
IMPORT (Import) .
Required Attributes
Optional Attributes
INFO (Information Area)
Required Attribute

. 503

. 504

. 505
. 506
. 506
. 507
. 507
. 507
. 507
. 508
. 508
. 509
. 510
. 511
. 511
. 514
. 515
. 516
. 516
. 518
. 519
. 519
. 520
. 520
. 522
. 523
. 523
. 525
. 525
. 526
. 526
. 526
. 526
. 527
. 527
. 528
. 528
. 528
. 529
. 529
. 529
. 530
. 531
. 532
. 532
. 533
. 533
. 534
. 534
. 534
. 535
. 536
. 536
. 536
. 537
. 537

Optional Attributes
Optional Text . .
Print Formatting Con51derat10ns .

ISCH (Index Search) .

Required Attribute
Required Text
Example: Index Search

ISCHSUBT (Index Search Subtoplc)

Required Attribute .
Example: Index Search Hrerarchy

ISCHSYN (Index Search Synonym)

Required Attribute
Required Text .
Example: Index Search Synonyms

KEYI (Key List Item) .

Required Attributes
Optional Attributes
Optional Text

Example: Key Def1n1t10ns

KEYL (Key List)

Required Attribute
Optional Attribute.
Example: Key List .

LINES (Unformatted Lines).

Optional Text .
Example: Unformatted Lrnes

LINK (Hypertext Link Definition)

Required Attribute
Optional Attributes
Conditional Expressions .
Bidirectional Considerations
Example: Hypertext Link

LIST (List Area)

Required Attributes

Optional Attributes

Optional Text . .

Print Formatting Con51derat10ns .
Example 1: List Area .

Example 2: List Area with Three Layout
Columns .

Example 3: List Area w1th Llst Column Groups
Example 4: Dynamic List Column Heading

Formatting .

LISTACT (List Actlon)

Required Attributes

Optional Attributes

Optional Text .
Confirmation Panel Requlrements
Confirmation Panel Conventions .
Example: List Actions

LISTCOL (List Column) .

Required Attributes
Optional Attributes
Optional Text .
Formatting Con51deratlons .

LISTDEEF (List Definition)

Required Attributes
Optional Attributes

LISTGRP (List Column Group)

Required Attributes
Optional Attribute.

Contents

. 537
. 538
. 538
. 538
. 538
. 538
. 539
. 539
. 539
. 539
. 540
. 541
. 541
. 541
. 542
. 542
. 543
. 544
. 544
. 545
. 545
. 545
. 545
. 546
. 546
. 546
. 547
. 548
. 548
. 548
. 550
. 550
. 552
. 553
. 553
. 556
. 556
. 557

. 558

559

. 560
. 562
. 563
. 563
. 566
. 566
. 567
. 567
. 568
. 569
. 569
. 571
. 572
. 573
. 573
. 573
. 575
. 576
. 576

ix

Optional Text . .
Example: List Column Group .
LISTVIEW (List View)
Required Attribute
Optional Attribute.
LP (List Part)
Example: List Part.
MBAR (Menu Bar)
Required Attribute
Optional Attributes
Example: Menu Bar
MBARC (Menu Bar Choice)
Required Attributes
Required Text
MENU (Menu Area) .
Required Attribute
Optional Attribute.
Optional Text .
Example 1: Simple Menu Area

Example 2: Menu Area with Groups.

MENUGRP (Menu Group) .
Optional Attribute.
Optional Text .
MENUI or MI (Menu Item)
Required Attributes
Optional Attributes
Optional Text
NT or NOTE (Note) .
Optional Text .
Example: Using a Note .
OL (Ordered List) .
Optional Attribute.
Required Tag
Example: Ordered List
OPTLINE (Option Line) .
Optional Attribute.
Optional Text
P (Paragraph)
Optional Text
Example: Paragraph Tag
PANEL (Display Panel) .
Required Attributes
Optional Attributes
Optional Text .
Example: Panel Deﬁmtlon .
PARML (Parameter List).
Required Tags . .
Example: Parameter List.
PC (Paragraph Continuation) .
Example: Paragraph Continuation
PDACCEL (Pull-Down Accelerator) .
Required Text .
PDFLD (Pull-Down Field) .
Optional Attribute. .
PDFLDC (Pull-Down Field Ch01ce)
Required Attributes
Optional Attributes
Optional Text
Confirmation Panel Requlrements
Confirmation Panel Conventions .
PK (Programming Keyword)

X Application Display Programming V5R4

. 576
. 577
. 578
. 578
. 578
. 579
. 580
. 580
. 581
. 581
. 581
. 583
. 583
. 583
. 584
. 584
. 585
. 585
. 585
. 586
. 587
. 588
. 588
. 588
. 588
. 589
. 590
. 590
. 591
. 591
. 591
. 592
. 592
. 592
. 593
. 593
. 593
. 593
. 594
. 594
. 595
. 596
. 596
. 601
. 601
. 602
. 603
. 603
. 603
. 603
. 604
. 604
. 604
. 605
. 605
. 605
. 606
. 608
. 608
. 608
. 609

Optional Attribute.
Required Text

PNLGRP (Panel Group) .
Optional Attributes

PRTHEAD (Print Head Panel).
Required Attribute
Optional Attributes
Optional Text
Layout of the Title Lmes
Example: Print Title Line

PRTPNL (Print Panel)
Required Attribute
Optional Attributes
Optional Text .

PRTTRAIL (Print Trailer Message)
Required Text .
Example: Trailer Message

PV (Programming Variable)
Required Text

RT (Reverse Text) .

Example 1: Left-to-Right Formattmg on a

Right-to-Left Panel

Example 2: Left-to-Right Formattmg on a

Left-to-Right Panel
SL (Simple List)
Optional Attribute.
Required Tag
Example: Simple Llsts
TEXT (Text Area) .
Required Attribute
Optional Attributes
Cursor positioning
Text Data.
Example: Text area
TI (Translation List Item)
Optional Attribute.
Optional Text
TL (Translation List) .
Optional Attributes
Examples: Translation List .
TOPINST (Top Instruction) .
Optional Attribute.
Optional Text
TT (Truth Table)
Required Attributes
Example: Truth Table .
TTROW (Truth Table Row) .
Required Attribute
UL (Unordered List) .
Optional Attribute.
Required Tag . .
Example: Unordered Llsts .
VAR (Variable Definition)
Required Attribute
Optional Attributes
Dialog Variables Defined by UIM
VARRCD (Variable Record Definition) .
Required Attributes
Optional Attributes

XH1 through XH4 (Extended Help Headmgs)

Required Text

. 609
. 609
. 609
. 610
. 613
. 613
. 613
. 615
. 615
. 617
. 618
. 618
. 618
. 619
. 619
. 619
. 619
. 619
. 620
. 620

. 621

. 621
. 622
. 623
. 623
. 623
. 623
. 624
. 625
. 625
. 625
. 628
. 628
. 628
. 629
. 629
. 629
. 630
. 630
. 631
. 631
. 631
. 632
. 632
. 632
. 632
. 633
. 634
. 634
. 634
. 634
. 635
. 635
. 635
. 637
. 637
. 638
. 638
. 638

Formatting Rules . .

Example: Sample Headmgs
XMP (Example).

Example: Formatting an Example

Appendix B. UIM Dialog Commands
The VARUPD Attribute .
ACTIONS (Menu Bar Cursor Actlon)
Messages . . e
CALL (Call Program)
Required Parameter .
CANCEL.
Optional Parameter
CHGVIEW (Change Vlew)
Parameters . .
VARUPD Value.
Messages . .
CMD (System Command)
Parameter .o
VARUPD Value.
Messages .
Hint .
CMDLINE (Command Lme)
Parameters .
Messages . .
DSPHELP (Display Help)
Required Parameter .
Optional Parameter
ENTER
Parameters .
VARUPD Value.
Messages .

Considerations for Usmg the ENTER HELP

and PROMPT Dialog Commands.
EXIT (Exit Display) .o
Optional Parameter
EXTHELP (Extended Help)
Parameters . .
HELP .
Parameters .
VARUPD Value.
Messages .
HELPHELP .
Parameters .
Messages .
HELPIDX
Parameters .
Messages . .
HOME (Display Home Menu)
Parameters . .
VARUPD Value.
Messages .
KEYSHELP .
Messages .
MENU . .
Required Parameter .
Optional Parameter .
MOREKEYS (Display More Functlon Keys)
Parameters . Lo
Messages . .
MOVETOP (Move to Top)

. 639
. 639
. 639
. 640

641

. 643
. 644
. 644
. 644
. 645
. 646
. 646
. 647
. 647
. 647
. 647
. 647
. 648
. 648
. 648
. 648
. 648
. 648
. 648
. 648
. 649
. 649
. 649
. 649
. 649
. 649

. 649
. 650
. 650
. 650
. 650
. 651
. 651
. 651
. 651
. 651
. 651
. 651
. 651
. 652
. 652
. 652
. 652
. 652
. 652
. 652
. 652
. 653
. 653
. 653
. 653
. 654
. 654
. 654

Parameters .
VARUPD Value.
Messages . .

MSG (Display Message)
Required Parameter .
Optional Parameter

PAGEDOWN
Parameters .

Messages .
PAGEUP .
Parameters .
VARUPD Value.
Messages . .

PRINT (Print Drsplay)

Parameters .
VARUPD Value.
Messages .
PROMPT .
Parameters .
VARUPD Value.
Messages . .
Prompting an Entry Freld
Prompting an Action List Option or Command

PULLDOWN (Display Pull-Down Menu) .
Parameters . .

RETRIEVE (Retrieve Command Strmg)
Parameters . o
VARUPD Value.

Messages . .

RETURN (Return Control to Apphcatlon)

Required Parameter . .

Appendix C. Feedback Area Layouts
for Display Files .
Open Feedback Area .
Device Definition List
1/0 Feedback Area .
Common I/O Feedback Area .
I/0O Feedback Area for Dlsplay Files.
Get Attributes .

Appendix D. Dlsplay File Return
Codes

Major Code 00 .
Major Code 02 .
Major Code 03 .
Major Code 04 .
Major Codes 08—11
Major Code 34 . .
Major Code 80 .
Major Code 81 .
Major Code 82 .
Major Code 83 .

Appendix E. Edit Codes .
i5/0S Edit Codes .
Examples of Editing Usmg 15 / OS Edlt Codes
User-Defined Edit Codes e
Using User-Defined Edit Codes
Example of a User-Defined Edit Code .

Contents

. 654
. 654
. 654
. 654
. 655
. 655
. 655
. 655
. 655
. 655
. 656
. 656
. 656
. 656
. 656
. 656
. 656
. 656
. 657
. 657
. 657
. 657

657

. 658
. 658
. 658
. 659
. 659
. 659
. 659
. 659

. 661
. 661
. 664
. 667
. 667
. 670
. 673

. 677
. 677
. 677
. 678
. 679
. 679
. 680
. 680
. 683
. 684
. 688

. 693
. 693

694

. 695
. 696
. 697

xi

Appendix F. System/36-Compatible
Display Data Management .

Clearing Lines on the Display .

Input Data for Display File Records . .
Input Data from the Work Station Controller .
Self-Check

Return Input

Erase Input Fields .

Display Attributes .

Positioning the Cursor

Displaying Messages .

Put Override . .

Handling Signed Numerlc Data .

Function Keys . . .o

Help Key C0n51derat10ns

Using Command Keys to Exit Apphcatlon Help

Cancel-Invite Operation .
Retain Command and Function Keys

xii Application Display Programming V5R4

. 699
. 700
. 700
. 700
. 701
. 701
. 701
. 702
. 702
. 703
. 705
. 705
. 706
. 706

707

. 707
. 708

System /36 Functions Not Supported
Restricted DDS Keywords/Functions

Notices . C e e e
Programming Interface Informatlon
Trademarks .

Terms and conditions.

Bibliography.

System Use .

Systems Management

Application Development
Communications and Connectivity .
Program Enablers .

Program Interfaces

Index .

. 709
. 709

.
. 712
. 712
. 713

. 715
. 715
. 715
. 715
. 715
. 716
. 716

. 717

Figures

—_

IS

O XN

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.

25.
26.

27.
28.

29.
30.

31.

32.
33.
34.
35.
36.
37.

Sample DDS Source for a Display File
Record Formats in the Program and on the
Display . . .
DDS for Field- Level Cursor Progressmn
DDS for Subfile-Level Cursor Progression
Sample DDS for Right-to-Left Display
Processing . .
Sample DDS for Program—to System Frelds
Sample DDS for Two Display Sizes

Sample DDS for Subfiles for Two Display Srzes
Valid Placement of Records on a Screen When
the CLRL Keyword Is Not Used .
Wrong Placement of Records on Screen When
CLRL Keyword Not Used.

Replacing Record Formats

Sample DDS Source Showing Use of the
SLNO(*VAR) Keyword . .

Sample DDS Source Showing Drfference
between CLRL and OVERLAY . .
Sample DDS Source Showing Use of the
PUTOVR Keyword .

Sample DDS Source Showmg Effrcrent Use of
PUTOVR Keyword .

Sample DDS Source Showrng Another Use of
PUTOVR Keyword . .
Sample DDS Source Showmg Use of the
PUTRETAIN Keyword . .

Sample DDS Source Showing Use of the
PUTRETAIN Keyword . .

Sample DDS Source Showing Use of the
DSPMOD Keyword . .

Sample DDS to Show Record Format Problems
DDS Keyword Processing Order for Subfile
Control . o
Vertically Dlsplayed Subflle .

Horizontally Displayed Subfile . .
Horizontally and Vertically Displayed Subfrles
Displayed at the Same Time

Sample DDS Using DSPMOD with Subflles
Sample DDS Using SFLSIZ, SFLPAG, and
ROLLUP Keywords .

Sample DDS for a Variable- Length Record
Sample DDS Using the SFLNXTCHG
Keyword . .
Sample DDS for a Message Subflle

Sample DDS Using the DSPATR(PC)
Keyword .

Sample DDS Showmg Customer Name Search
Subfile . . .

Window Title- Dlsplay Example

DDS for a Window Title .

Radio Buttons and Check Boxes

Example of a Menu Bar .

DDS for a Menu Bar . . .
Menu Bar on a Graphical Drsplay Statlon
with Enhanced Interface . .

© Copyright IBM Corp. 1997, 2006

.21

.22

30
30

.31

34
. 36
37

. 46

. 47
.49

.52

. 55

. 58

. 59

. 61

. 62

. 63

. 65
82

. 94
.99

.99

. 100

101

. 102

103

. 104
. 105

. 107

. 113
. 123
. 123
. 139
. 144
. 146

. 146

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

65.

66.
67.

68.

Menu Bar on a Nongraphical Display Station
with Underline Capability .

Menu Bar on a Nongraphical Dlsplay Statlon
without Underline Capability . .
Menu Bar on a Display Station without
Enhanced Interface.

Selection Fields on a Graphrcal Dlsplay
Station with Enhanced Interface .
Selection Fields on a Nongraphical Dlsplay
Station .

DDS for Single- Chorce and Multlple—Chome
Selection Fields . .
Example of DDS for Horlzontal Selectlon
Field

DDS for Suppressmg Selectron Inchcators ina
Selection Field .

Suppressed Selection Indlcators in Selectron
Field

Example of a Pull Down Menu

DDS for a Pull-Down Menu .
Pull-Down Menu on a Graphical Dlsplay
Station with Enhanced Interface .
Pull-Down Menu on a Nongraphical Dlsplay
Station with Underline Capability.

Pull-Down Menu on a Nongraphical Display
Station without Underline Capability
Pull-Down Menu on a Display without
Enhanced Interface. .

DDS for Suppressing Selection Indlcators ina
Pull-Down Menu .

Suppressed Selection Indlcators on Graphlcal
Display Station .

Suppressed Selection Indlcators on
Nongraphical Display Station .

DDS for Accelerator Keys

Accelerators in a Pull-Down Menu .
DDS for Menu-Bar Switch Key and Cancel
Key. . .

Selection Llsts on a Graphlcal Dlsplay Statlon
with Enhanced Interface .

Selection Lists on a Nongraphical Dlsplay
Station with Underline Capability.

DDS for Selection Lists-Example .

DDS for Enabling Selection Indicators in a
Selection List.

Selection Indicators on Graphlcal Dlsplay
Station .

Scroll Bar on a Graphlcal Drsplay Statron w1th
Enhanced Interface.

Scroll Bar on a Nongraphlcal Dlsplay Statron
with Underline Capability . .
DDS for Scroll Bars-Example

Push Buttons on a Graphical Display Statlon
with Enhanced Interface . .
Push Buttons on a Nongraphical Drsplay
Station with Underline Capability.

. 147

. 147

. 147

. 148

. 148

. 149

. 150

. 153

. 153
. 154
. 154

. 155

. 155

. 155

. 155

. 156

. 156

. 156
. 157
. 157

. 158

. 159

. 160
. 160

. 162

. 163

. 164

. 164
. 166

. 167

. 167

xiii

69. Push Buttons on a Nongraphical Display
Station without Underline Capability
70. Push Buttons on a Display Station without
Enhanced Interface. .
71. DDS for Push Buttons- Example .
72. Control Values for the CHCCTL Keyword
73. DDS to Control the Availability of Choices
74. Single-Choice Selection Field with an
Unavailable Choice
75. Examples of Valid DDS for Mnemonlcs
76. Examples of DDS Not Valid for Mnemonics
77. DDS Using CHCAVAIL and CHCSLT for
Menu-Bar Choices .
78. DDS Using CHCAVAIL and CHCUNAVAIL
for Selection Fields. .
79. DDS Using CHCAVAIL, CHCUNAVAIL and
CHCSLT for Selection Fields
80. DDS Using CHCAVAIL, CHCUNAVAIL and
CHCSLT for Single Choice Selection List
Choices
81. DDS Using CHCAVAIL CHCUNAVAIL and
CHCSLT for Multiple Choice Selection List
Choices .
82. Continued- Entry Flelds in Rectangular
Arrangement.
83. DDS Using MNUBARDSP on the Apphcatlon
Record .
84. DDS Using MNUBARDSP on the Menu Bar
Record . .
85. DDS for Pull- Down Input (PULLINPUT)
Parameter. Lo
86. DDS for Return—Fleld Parameter .
87. DDS for Menu-Bar Choice Help
88. DDS for Single-Selection Field Choice Help
89. A help list for a menu bar o
90. Help for a Named Field .
91. Help for a Constant Field
92. Cursor Locations
93. Grid line structures .
94. DDS for Grid Line Structures Example
95. DDS Coding Before Adding HTML Keyword
96. DDS Coding After Adding HTML Keyword
97. Graphic Image on an i5/0S 5250 Gateway
Display
98. Sample DDS Source for ERRSFL Keyword
99. Sample DDS Source for SFLMSGID Keyword
100. DDS Source for Sample Menu Called
PERSMENU . .
101. DDS Source for Program Menu Example
102. An Example Menu. .
103. Required UIM tags for a menu panel
104. Example List Panel .
105. Example of Alternate View of Llst

xiv Application Display Programming V5R4

. 167

. 167
. 167

168
169

. 169

170
170

. 172

. 173

. 173

. 173

. 174

. 174

. 180
. 181
. 183

. 185
. 186

186

. 187
. 188
. 188
. 188
. 205

206
209
210

. 210

226
227

. 242

245

. 281

282

. 287
. 288

106.
107.
108.
109.

110.

111.
112.

113.
114.
115.
116.
117.

118.
119.

120.
121.
122.
123.

124.
125.
126.
127.

128.
129.
130.
131.
132.
133.
134.

135.
136.

137.
138.

139.
140.
141.
142.
143.
144.
145.
146.
147.

Required tags for a list panel

Example Confirmation List Panel .

Example Data Presentation Panel .

Example Data Presentation Panel after
Scrolling .

Required UIM tags for a data presentatron
panel . .

Example Panel w1th a Menu Bar .
Required UIM tags for a panel with a menu
bar . .o

Example of]ob Ex1t Flag

Example of Printout . .
Sample H Specification in DDS Source
Sample DDS Source Showing HLPPNLGRP
Sample DDS Source Showing HLPPNLGRP
and Option Indicators. .
Sample DDS Source Showing HLPRCD
Sample DDS Source Showing HLPRCD and
Option Indicators . . S
Sample DDS Source with HLPRCD .
Sample DDS Source to Show Secondary Help
Sample DDS Source to Show HLPCMDKEY
Sample DDS Source to Show HLPCMDKEY
and Response Indicators . e
Index Search Display . .

Sample Menu in QUSRTOOL .

Sample Entry Display in QUSRTOOL
Sample Information Display (Two Pages) in
QUSRTOOL . .
Sample List Display in QUSRTOOL

Sample Application Menu

Sample Entry Display . .

Sample Information Display (Two Pages)
Sample List Display .

Layout of Display with Locatron Inforrnatron
Example of Processing Priority with List
Display

Create User Proflle Entry Dlsplay

Create Command Display with Additional
Parameters Selected . .
Second Display of Additional Parameters
Work with Members Using PDM Entry
Display . .
Help Areas for Entry Dlsplays

Help Areas for Information Displays

Help Areas for List Displays

Example of an Application Menu .

Entry Display . .
Example of an Informatlon Dlsplay .
Example of a List Display

Highlighting Classes Allowed in TEXT Area
Circumventing the Save Command .

. 290
. 300
. 304

. 305

. 306
. 321

. 323
. 355
. 363

372
375

. 376

377

. 378
. 378

382
383

. 384
. 387
. 418

418

. 419
. 420
. 422
. 424

430
. 433
436

. 439
. 444

. 445

445

. 446
. 452

453

. 454
. 458
. 459
. 460
. 461

626

. 708

Tables

NG »N

10.
11.

12.

13.
14.

15.

16.

17.
18.
19.

20.

21.

22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.

34.
35.
36.
37.

38.
39.

Names Used in Steps for Creating Sample
Displays . .
More Ways to Create Applrcatron Drsplays

More Ways to Create Online Help Information

Column positions for sample DDS .

DDS for Emphasizing Fields . .
PRINT Keyword Results Using Print Key
Display Stations Implicitly Acquired When
Display Files Are Opened .

Information Available from the Get- Attrlbutes

Operation . .

Results of SLNO(*VAR) Values .

Results from CLRL Example . .
Keywords Ignored If Display Modes Are
Changed

Display File Operatlons Supported by the
Operating System and the Equivalent
High-Level Language Commands .
Optional Functions for Subfiles .

Subfile Operations Supported by the System

and Equivalent HLL Commands
Functions Supported by Hardware
Configurations A, B, and C .
Functions Supported by Hardware
Configurations D, E, and F .

How a Scroll Bar is Sized

Scroll Bar Operation .

Keywords Used to Define Colors and Dlsplay

Attributes.

Values Returned in MNUCHOICE and
PULLINPUT.

Actions Performed at Drfferent Cursor
Locations .

File Redirections .

File Redirection Comb1nat1ons

System Message Number Ranges .
Major Return Code Definitions.
Restrictions for Display File Menus .
Suggestions for Display File Menus .
Display File and ICF File Entry Field
Attributes. Lo ..
CHRID Values . .

Initial Values of Dialog Varrable

UIM CCSID/CHRID Conversions for Drsplay

UIM CCSID/CHRID Conversions for Print
Cursor-Sensitive Function Keys Assigned to
Dialog Commands . .

Different Ways to Define Onlrne Help
Information .

Characteristics of D1fferent Methods of Onl1ne
. 370
. 372

Help Information . .
Help for Sample Display. .
Other DDS Keywords for UIM Help

Help for Sample Display Using Panel Groups

Help for Sample Display Using HLPRCD

© Copyright IBM Corp. 1997, 2006

.3
7

8

.21
. 33

37

.42
.43
. 50
. 55
. 65
. 84
.90
. 98
. 139

. 140
. 165

. 166

. 171

. 183

. 189
. 218
. 219
. 230
. 231
. 238
. 239

. 259
. 264

. 336
339
340

. 358

. 370

. 373
374
377

40.

41.

42.

43.

44.

45.
46.

47.
48.

49.
50.

51.
52.
53.
54.
55.
56.
57.

58.
59.

60.

61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

74.

Source Members for Displays Example in
QUSRTOOL (Install, Create, and Delete)
Source Members for Displays Example in
QUSRTOOL (Sample Displays, Command,
and Online Help Information) . .
Objects Created When Creating Exarnple
Objects.

Required Functrons and Attr1butes of All
i5/0S-Style Displays . .

Optional Functions and Attrrbutes of All
i5/06S-Style Displays .

Function Key Assignments . .

Type of Help for Each Help Area- Menu
Display

DDS Consrderatrons Help on Menu Drsplays

Type of Help for Each Help Area-Entry
Display

DDS Consrderatrons Help on Entry Drsplays
Type of Help for Each Help Area-Information

Display

DDS Consrderatlons Help on Informatron

Displays .

Type of Help for Each Help Area L1st D1splay
DDS Considerations-Help on List Displays

CUA Entry Dialog Actions . .
Tag Attributes That Can Be Contrnued
Restrictions Associated With Mixed Panels
Tags Allowed Between the CLASS and
ECLASS Tag .

Attribute Summary for Each BASETYPE

Tags Allowed Between the DATA and EDATA
.. 497

Tags
Tag Allowed Between the DATASLT and
EDATASLT Tags

Tags Allowed Between the DL and EDL Tags
Tag Allowed Between the KEYL and EKEYL

Tags

Tags Allowed Between the LIST and ELIST
Tags

NOCMD and NOEXT Attrrbute Interactron
Emphasis Values .

Layout Values for Width= 80

Layout Values for WIDTH=132

Layout Values for WIDTH=132

Tag Allowed Between the MBAR and EMBAR
.. 580

Tags

Tags Allowed Between the MBARC and
EMBARC Tags .

Tags Allowed Between the MENU and
EMENU Tags

Tag Allowed Between the MENUGRP and
EMENUGRP Tags . . .
Tags Allowed Between the NOTE and
ENOTE Tags.

Tags Allowed Between the OL and EOL Tags

. 415

. 416

. 417

. 421

. 421
. 447

. 450
451

. 451

452

. 452

. 453
453
454

. 456

466
467

. 479

483

. 519
526

. 545

. 553

565

. 574
. 579
. 579

. 579

. 583

. 584

. 588

. 590
592

XV

75.

76.
77.

78.

79.
80.

81.
82.
83.
84.
85.

86.
87.

88.

xvi

Tags Allowed Between the PANEL and
EPANEL Tag. .

Layout of UIM finger prlnt .

Tags Allowed Between the PARML and
EPARML Tags .

Tags Allowed Between the PDFLD and
EPDFLD Tags

Valid Action Text for ACTION Values

Tags Allowed Between the PNLGRP and
EPNLGRP Tags .

Tags Allowed Between the PRTHEAD and
EPRTHEAD Tags .

First Line of Heading with Prlnt Wldth 132
First Line of Heading with Print Width 80
Second Line of Heading with Print Width 132
Second Line of Heading with Print Width 132
and time zone

Second Line of Headlng w1th Prlnt Wldth 80
Second Line of Heading with Print Width 80
and time zone .
Tags Allowed Between the PRTPNL and
EPRTPNL Tags .

Application Display Programming V5R4

. 595
. 598

. 602

. 605

606

. 610

. 613

615
615
615

. 616
617

. 617

. 618

89.
90.
91.
92.
93.

94.

95.
96.
97.
98.
99.
100.
101.
102.

103.
104.
105.

Tags Allowed Between the SL and ESL Tags
Tag Allowed Between the TL and ETL Tags
Tag Allowed Between the TT and ETT Tags
Tags Allowed Between the UL and EUL Tags
Attributes of UIM-Defined Variables
(Z-Variables) . .

Summary of the Valid Uses of Dlalog
Commands .

Summary of the Effects of Dlalog Commands
Open Feedback Area .

Device Definition List.

Common I/0O Feedback Area .

I/0O Feedback Area for Display Files .

Get Attributes

Summary Chart for i5/ OS Edlt Codes

Valid Edit Codes, Source Data, and Edited
Output.

IBM-Supplied Ed1t Descrlptlons

Message Files for MSGID

Message Files for MSGID

622
629
632
633

. 637

. 641
642

. 661
. 664
. 667
. 670
. 673

693

. 695
. 695
. 703
. 704

About Application Display Programming (SC41-5715)

This book contains information about the following topics:

* Using DDS to create and maintain displays for an application
* Creating and working with display files on the system

* Creating online help information

* Using UIM to define panels and dialogs for an application

Use this book to program for application and help displays. This book does not describe all the DDS
keywords or the configuration of display stations. You may need to refer to other IBM books for more
specific information about a particular topic. For a list of related publications, see [“Bibliography” on page|
i715

This book should be used by application programmers who create or work with application and help
displays. You should also have knowledge of the source entry utility (SEU) and data description
specifications (DDS).

This book assumes that a device description already exists to describe your display station to the system.

© Copyright IBM Corp. 1997, 2006 xvii

xviii Application Display Programming V5R4

Summary of Changes to Application Display Programming

This edition of the Application Display Programming book incorporates numerous technical updates that
occurred after the book was last published. These changes are marked with a vertical bar on the margin
beside the changed information. In addition, some references to UIM keywords that have been removed
from the operating system have been deleted.

© Copyright IBM Corp. 1997, 2006 xix

XX Application Display Programming V5R4

Part 1. Building a Sample Display with Online Help
Information

Chapter 1. Building a Sample Display with Online

Help Information3
The Application Display3
The Online Help Information.3

© Copyright IBM Corp. 1997, 2006

2 Application Display Programming V5R4

Chapter 1. Building a Sample Display with Online Help
Information

This chapter outlines the steps you need to do to create a sample display with online help information on
i5/08S. If you are not sure how to do one or more of the steps, see the additional information referred to
in each step.

The Application Display

The sample display is created using a display file (also known as a display device file). A display file is
an object, or named storage space, created by the user that contains the file description. The file
description identifies the display station used and, optionally, the record formats used by the display
station. Record formats describe the characteristics and arrangement of the fields on a display. Record
formats are defined using data description specifications (DDS), which describe data attributes outside
the application program that processes the data.

The Online Help Information

The online help information for the sample display is defined using help panel groups. A panel group is
an object, or named storage space, that contains text to be used as online help information by the user
interface manager. The user interface manager (UIM) is a function of the operating system that provides
online help information for displays, including help for part or all of a display, help for commands, the
index search function (selectable help topics), and hypertext (the capability to link different units of
online help information).

The following table lists the sample names used in the steps:

Table 1. Names Used in Steps for Creating Sample Displays

Name What It Is

SRCSAM Sample source file

ADMSAM Sample source member for application display

DSPSAM Sample display file

HDMSAM Sample source member for help display

PNLSAM Sample panel group

LIBSAM Sample library that contains source file SRCSAM, display file DSPSAM, and panel

group PNLSAM

The steps show only one way to create a sample display with online help information. Other methods are
discussed at the end of this chapter.

1. Create the source file SRCSAM using the Create Source Physical File (CRTSRCPF) command; create
the library LIBSAM using the Create Library (CRTLIB) command.

2. Enter the Start Programming Development Manager (STRPDM) command to begin using the
programming development manager (PDM). When the display appears, select option 3 (Work with
members).

© Copyright IBM Corp. 1997, 2006 3

-

i5/0S Programming Development Manager (PDM)

Select one of the following:

1. Work with libraries
2. Work with objects
3. Work with members

9. Work with user-defined options

Selection or command

F3=Exit F4=Prompt F9=Retrieve F10=Command entry
F12=Cancel F18=Change defaults
(C) COPYRIGHT IBM CORP. 1981, 1993.

— Additional Information

The programming development manager (PDM) is the part of the Application Development
ToolSet licensed program that allows users to perform several operations (such as copy, delete,
and rename) from lists of libraries, objects, and members.

Since the display file (which will be created in step E[) does not actually contain any data, the
DDS source for a display file is entered in a source file. A source file is an object that is made
up of one or more source members, which are the different sets of data that make up your
DDS source.

More information about the programming development manager is available in the ADTS/400:
Programming Development Manager book.

3. When the Specify Members to Work With display appears, complete the file and library information
and press the Enter key.

-

-

Specify Members to Work With

Type choices, press Enter.

File SRCSAM Name
Library LIBSAM *LIBL, *CURLIB, name
Member:
Name *ALL *ALL, name, *generic*
Type *ALL *ALL, *BLANK, type, *generic=

F3=Exit F5=Refresh F12=Cancel

~

4. The Work with Members Using PDM display appears.

4 Application Display Programming V5R4

Work with Members Using PDM

File SRCSAM
Library LIBSAM Position to
Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print
7=Rename 8=Display description 9=Save 13=Change text
Opt Member Type Text

(No members match the subsetting criteria)

Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create

\\F9=Retr1eve F10=Command entry F23=More options F24=More keys)

Press F6 on this display to create a new member.

5. The Start Source Entry Utility display appears. Complete the information on this display and press

the Enter key.

4 N
Start Source Entry Utility (STRSEU)

Type choices, press Enter.

Source file > SRCSAM Name, *PRV

Library > LIBSAM Name, *LIBL, *CURLIB, *PRV
Source member ADMSAM Name, *PRV, *SELECT
Source type DSPF Name, *SAME, BAS, BASP, C...
Text 'description' DDS for sample display

Bottom
F3=Exit F4=Prompt Fb5=Refresh F12=Cancel F13=How to use this display
\\F24=More keys

Additional Information
The source entry utility (SEU) is a function of the Application Development ToolSet licensed
program that is used to create and change source members. More information about the source
entry utility is available in the ADTS for AS/400: Source Entry Ultility book.

6. Because you are creating a new member, the SEU Edit display appears with a screen of blank lines.
The text on the last line of the display, Member ADMSAM added to file SRCSAM indicates that SEU
added the new member to the file you specified.

Chapter 1. Building a Sample Display with Online Help Information 5

10.

11.

Columns: 1 71 Edit LIBSAM/SRCSAM
SEU==> ADMSAM
FMT DP AANOINO2NO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++t++tt+++

wkkkkkxxkkkkxxx Beginning of data

*xkkxkxkkkkxkkxxxkxx End of data * * ** *kkkk * *
F3=Exit F4=Prompt F5=Refresh
F10=Top F11=Bottom F24=More keys
Member ADMSAM added to file LIBSAM/SRCSAM.
+
o %

On the SEU edit display, enter the DDS source statements for the new member. Since the instructions
in this chapter allow you to provide online help information for the sample display, make sure your
DDS source includes the necessary DDS keywords to enable and access help.

— Additional Information
SEU has many functions available to help you enter your DDS. More information about the
functions of SEU is available in the the ADTS for AS/400: Source Entry Utility book.

For information about describing your display using DDS, see [“Defining Display Fields and]
[Functions in a Record Format” on page 21|in this guide. For more information about the DDS
keywords needed for online help information, see [Chapter 18, “Making Online Help]|
[[nformation Accessible for Your Display File.”|

When you are finished entering your DDS source, press F3 and complete the information on the Exit
display. Press the Enter key.

To create the new display file, enter the Create Display File (CRTDSPF) command on any command
line. Make sure you specify the source file and member that contains your DDS source:

CRTDSPF FILE(LIBSAM/DSPSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(ADMSAM)
Press the Enter key.

Additional Information
For more information about creating display files, see [“Creating a Display File and Description”]

To add online help information to the sample display, create a second source file member for the

UIM source. You are not required to create the second source member in the same source file that
you created your DDS source in; however, do not use the same source member for both the DDS
and UIM source.

To create the second source file member, repeat stes through El When the Start Source Entry
Utility display appears again, continue with step

Complete the information on the Start Source Entry Utility display by specifying the following:

6 Application Display Programming V5R4

For this prompt...
Enter this...

Source member
HDMSAM

Source type PNLGRP

Text description
UIM help for sample display

12. On the SEU edit display, enter the UIM source statements for the new member.

Additional Information
For information about defining your online help information using UIM, see [“Defining Online|
[Help Information in a Panel Group” on page 399 |

13. When you are finished entering your UIM source, press F3 and complete the information on the Exit
display. Press the Enter key.

14. Enter the Create Panel Group (CRTPNLGRP) command on any command line:
CRTPNLGRP PNLGRP(LIBSAM/PNLSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(HDMSAM)
Press the Enter key.

Additional Information
For more information about panel groups, see [“Creating and Deleting Panel Groups” on pagel

Although one library was used in the previous steps, you are not required to create the different objects
for your displays in the same library.

Other ways of creating your own application displays on the system follow:

Table 2. More Ways to Create Application Displays

Where to Find More

Method Description Information
Screen design aid A function of the Application Development ToolSet licensed ADTS for AS/400:
(SDA) program that helps you design, create, and maintain displays and Screen Design Aid

menus. SDA allows you to design your displays as you want them book.
to look and then the system creates the DDS source and a display
file for you.

QUSRTOOL A library, which is optionally installable on your system, that “Using the Displays|
provides you access to examples of various tools and programming [Example in the
techniques that may help you with application development and QUSRTOOL Library”)
management of your system. The display example in QUSRTOOL |on page 415|
provides four sample displays with online help information. You
can copy the source for these displays into a library of your
choosing and then tailor them for your own use.

UIM panel groups A part of the system that allows you to define panels and dialogs [Chapter 16)]
for your application. The UIM controls the panel’s appearance and [“Introduction to the
assures consistency with panels developed by IBM®. User Interface]
Manager,” on page]
275

Other ways of creating online help information for your displays follow:

Chapter 1. Building a Sample Display with Online Help Information 7

Table 3. More Ways to Create Online Help Information

Where to Find More
Method Description Information

Help records DDS keywords that allow you to create your online help “Defining Online]
information in the same or a different member as the DDS source |[Help Information in al
for your application display. This can be accessed from display files [DDS Record” on page|
and not the UIM application panels. 412]and [Specifyin

Records in Your]|

Display File” on page|

376

To compare and contrast the different ways to create online help information, see ['Choosing between|
[Panel Groups and Records for Help” on page 370

8 Application Display Programming V5R4

Part 2. Programming Application Displays Using Display Files

Chapter 2. Defining Your Dlsplay ina Dlsplay Chapter 3. Working with Display Files in an
File.15 ApplicationM
Establishing a Drsplay Frle e Understanding How the System Allocates Resources 41
Determining File Descriptions16 Opening Display Files. . . .41
Field-Level Descriptions16 Acquiring a Display Station for I / O Operatlons .42
Record-Level Descriptions16 Obtaining Information about Display Files and
File-Level Descriptions . . .17 Display Stations43
Deciding Whether to Describe Data Ins1de or Obtaining Information about Open and I/ O
Outside Your Program.17 Operations . . . 43
Externally Described Data17 Obtaining Attribute Informatlon about Drsplay
Program-Described Data . . . N V4 Stations. . . e . 43
Creating a Display File and Descrrptlon .. .18 Sending and Recelvmg Data .o . 44
Changing the File Description19 Determining Which Record Formats Are Actlve
Detecting File Description Changes . . . 20 on a Display . . . e,
Defining Display Fields and Functions in a Record Writing Output to the D1sp1ay e, 7
Format . . . T | Placing Records on the Display.45
DDS for Drsplay F11e Lo B | Understanding Which Records Do Not
Record Format Used by the Program A | Occupy Space on the Display 47
Record Format on the Display 22 Changing Record Formats on a D1sp1ay . .48
Understanding the Field Attribute Characters .. 22 Deciding the Order of Record Formats Written
Understanding How Record Format Fields Can to the Display 49
BeUsed e e L2 Overlaying and Erasing Record Formats on a
Defining Function Keys o .. 24 Display. 49
Defining Command Attention (CAnn) and Starting Your Record Format on a Spec1f1c
Command Function (CFnn) Keys25 Line.50
Specifying Alternative Keys26 Clearing a Specrfred Number of Lmes .. .53
Passing Information via Indicators. . . .27 Rolling Data between Two Lines on a Display 55
Removing Option and Response Indrcators Overriding the Attributes or the Content of a
from the Record Area 027 Field. . . . N %4
Enabling Different Response Indrcators Erasing All Unprotected Input and
Simultaneously . . B Output/Input Fields on the Display . . . 61
Setting an Indicator Off e . .28 Resetting Modified Data Tags Associated w1th
Inserting Constant Field Text from a Message Records on the Display 62
Description28 Keeping a Record or Field on a Dlsplay .. 62
Allowing for Right- to Left Cursor Movement . .28 Deferring the Write Operation Until a Read
Defining Cursor Movement to Input-Capable Request is Made.64
Positions Only29 Specifying Default Values for F1elds04
Defining Cursor Progression for Entry Flelds . .30 Indicating Which Mode to Display Records. . 64
Defining Attributes for Entry Fields31 Positioning the Cursor after an Output
Protecting Entry Fields Using Edit Masks . . . 31 Operation66
Specifying Right-to-Left Display Processing. . . 31 Returning the Cursor Posmon to an
Specifying Word Wrap for Fields32 Application . . . 66
Specifying Word Wrap for F1elds—T1ps .. .33 Returning the Cursor Posmon Wlthm a Subfrle
Emphasizing Fields.33 to an Application . . N 74
Adding Color.34 Returning the Mode of a Subflle to an
Editing Output Fields34 Application . . N 74
Defining Your Own Edit Codes.35 Initializing Output/ Input Frelds N < V4
Specifying Valid Screen Sizes36 Inviting Input to the Display67
Enabling Your Display to Be Printed37 Inviting Input from CL Programs68
Defining Windows . . . G < Reading Invited Input from the Display 68
Using Program-Described Data G < Understanding the Read-From-Invited-Devices 69
Defining Input-Only Files39 Reading Input from the Display . . . 70
Defining Output-Only Files39 Unlocking the Keyboard while the Program Is
Defining Input and Output Files39 Processing Data71
Keeping Input Data72

Setting an Indicator When Data Is Changed 72

© Copyright IBM Corp. 1997, 2006 9

Initializing Records and Unlocking the
Keyboard-Diagram . . .
Specifying Validity- Checkrng Funct1ons .

of Input-Capable Fields
Handling Negative Numeric Input Data
Understanding How the System Reads Input
from the Display
Writing Output and Readmg Input at the Same
Time. .
Canceling Input That Was Not Walted For .
Locking the Keyboard and Positioning the
Cursor During I/O Operations .
Saving Previously Displayed Informatron
Understanding the Effects of I/O Operatlons on
Command Keys .
Avoiding Record Format Problems on the 5250
Display Station . .
Releasing an Acquired Dlsplay Statlon from I / O
Operations . o
Closing Display Frles .
Mapping Display Operations to ngh Level
Language Operations . . .
Sharing Display Files in the Same]ob
Understanding the Open Operation for FrIes
Shared ina Job . .
Understanding the Input/ Output Operatron for
Files Shared in a Job .o .
Understanding the Close Operatron for Frles
Shared in a Job .

Chapter 4. Displaying Groups of Records Using
Subfiles e
Recognizing Subflle Uses

Describing Subfiles in Your DDS Source

Using a Subfile in a Program .

Requesting 1/O Operations for a Subfrle
Requesting I/O Operations for a Subfile Record
Format . .

Adding a Record at a Specrﬁed Locatron in a
Subfile . .

Updating an Active Record in the Subflle
Reading an Active Record at a Specrfled
Location in the Subfile.

Reading the Next Changed Record ina Subflle

Requesting I/O Operations for a Subfile Control
Record Format e
Displaying Subfile Records . . .
Placing Subfile Records on the Dlsplay for
Processing .
Displaying and Processmg Subfrle Records at
the Same Time .
Recognizing Subfile I/O Requests in ngh Level
Languages. . .o
Controlling the Appearance of Subfrles .

.72
.73
Understanding the Limitations on the Number

.75
.75
. 76

. 76
.77

.77
. 78

. 80
. 80

. 83
. 83

. 84
. 85

. 85
. 85
. 86
. 87
. 87
. 89
. 94
. 96
. 96

. 96
. 96

.97
97

. 98
. 98

. 98

. 98

. 98

.99

Displaying Horizontal Subfiles with Display Modes 100

Specifying Subfile Size Equal to Page Size .
Specifying Subfile Size Not Equal to Page Size .
Checking Validity on Subfile Data .
Displaying Error Messages from Subfiles .
Positioning the Cursor on the Displayed Subfile

10 Application Display Programming V5R4

. 102
. 103
. 104
. 105

105

Positioning the Cursor Initially .

Positioning the Cursor When a Roll Key Is Used

Positioning the Cursor When a Fold or Truncate

Key Is Used .

Positioning the Cursor and Rolhng When Two

or More Records Are Displayed .
Understanding Subfile DDS and Program
Logic-Example . e

Chapter 5. Defining Windows with Dlsplay Files
Window Terminology. .

DDS Window Keywords. .

Window Representation and Hardware
Configuration

Creating Windows. .

Window Definition Records

Window Reference Records.

Window Size and Location .

Cursor Position.

Error Messages .

Subfiles

DDS Help Records

Defining Window Borders .
Border Defaults. .o
Multiple Border Definitions
UIM Help Window Borders
Defining a Window Title

DDS for a Window Title- Example
Reading Data from Windows . .
Changing Window Borders and Contents .
Moving and Duplicating Windows . .
Making Two Windows Seem Active at Once .
Making One Window in a Series Stand Out .
Removing Windows .

Removing All Windows .

Removing More Recent Wmdows
Improving Application Performance.

System Save and Restore Operations
Response Time .

Bypassing System Save and Restore Operatrons
USRRSTDSP Keyword Processrng and
Interactions . .o

Programming Examples .

Using Basic Window Functions .
DDS Full-Screen Dlsplay and Wrndow
Definitions e
RPG Display Program .

Step 1: Display Initial Drsplay

Step 2: Display Window 1 .

Step 3: Display Window 2 .

Step 4: Restore Window 1

Step 5: Display Initial Display . .

Defining Windows in a Separate Display Flle
DDS Full-Screen Drsplay and Window
Definitions . .

RPG Program Source .

RPG Program Source for WINPGM
Step 1: Display Initial Display .

Step 2: Display a Window . .
Step 3: Return to the Initial Dlsplay

. 106
106

. 109

. 109

. 113

115

. 115
. 116

. 116
. 116
. 117
. 117
. 118
. 119
. 119
. 120
. 120
. 120
. 121
. 121
. 122
. 122
. 123
. 124
. 124
. 124
. 124
. 125
. 126
. 126
. 126
. 126
. 126
. 126

127

. 127
. 128
. 128

. 128
. 130
. 132
. 132
. 132
. 133
. 133

134

. 134
. 134
. 135
. 135
. 136
. 136

Chapter 6. Creating a Graphical Look for
Displays. .o
Factors Affecting the Graph1ca1 Look
Hardware Configuration .
Enhanced Display Parameter .
DDS Keywords. .o
Creating Menu Bars .
Defining the Menu-Bar Ch01ces
Suppressing the Menu-Bar Separator
Defining the Menu-Bar Separator.
Selection Fields-Overview .
DDS for Selection Fields- Example .
Creating a Vertical Single-Choice Selectlon Fleld
Creating a Vertical Multiple-Choice Selection
Field
Creating a Horlzontal Selectlon Fleld
Cursor Movement in a Vertical Selection Field
Cursor Movement in a Horizontal Selection
Field
Controlling the Selectlon Indlcators ina
Selection Field . .
Creating Pull-Down Menus Us1ng Slngle Ch01ce
Selection Fields. .o
Controlling the Selectlon Indlcators ina
Pull-Down Menu . .
Defining Accelerator Keys . .
Defining a Menu-Bar Switch Key.
Defining a Cancel Key
Limiting Function When Cursor is Outslde a
Pull-Down Menu .
Selection Lists-Overview . .
DDS for Selection Lists- Example .
Creating Selection Lists .
Controlling the Selection Indlcators in a
Selection List
Scroll Bars-Overview .
Creating a Scroll Bar . .
DDS for Scroll Bars-Example .
Scroll Bar Operation .
Push Buttons-Overview . .
DDS for Push Buttons- Example
Creating Push Buttons .
Controlling the Availability of Cho1ces . .
Auto-Selection in Single-Choice Selection Fields
Auto-Enter in Single-Choice Selection Fields .
Defining Mnemonics .
Defining Choice Colors and Attrlbutes
Continued-Entry Fields-Overview .
Specifying Word Wrap on Continued- Entry
Fields . .
DBCS Consrderatlons w1th Contlnued Entry
Fields . .
How DBCS Data is Returned for
Continued-Entry Fields .
Keyboard Functions with Contlnued Entry
Fields . .o
Character data .
Field Mark .
Automatic Shape Determlnat1on (ASD)
Processing .o
Delete .

. 139
. 139
. 139
. 141
. 142
. 144
. 145
. 145
. 145
. 147

. 148
149

. 150
. 150

151

. 151

. 152

. 154

. 155
. 156
. 157
. 158

. 158
. 159
. 160
. 161

. 162
. 163
. 164
. 165
. 166
. 166
. 167
. 167
. 168

169

. 169
. 170
. 171
. 174

. 175
. 175
. 175
. 176
. 176
. 177

. 177
. 177

Erase EOF
Erase Input .
Reverse
Close .
Field Exit.
Field Plus
Field Minus .
Dup
Kanji . .
Character Backspace .
Character Advance
New Line
Field Advance .
Field Backspace .o
Forward Field-Exit Processing .
Backward Field-Exit Processing
How the Menu Bar Interacts with the Apphcatlon
Defining the MNUBARDSP Keyword on the
Application Record
Defining the MNUBARDSP Keyword on the
Menu-Bar Record . .o .
Receiving Input from the Pull- Down Menus .
Receiving Input from Pull-Down Menus
Using the Pull-Down Input Parameter .
Removing a Pull-Down Menu after Receiving
Input . .
Updating a Pull Down Menu before Dlsplaylng
Defining Application Help . .
Defining Choice-Level Help
Defining Help for a Field
Key Interaction for Menu Bars and Pull- Down
Menus.
Cursor Movement
Pressing the Tab Key .
Pressing the Cursor Keys
Programming Examples .
Using the MNUBARDSP Keyword on the
Application Record S
Description . .
Using the MNUBARDSP Keyword on the
Menu-Bar Record . o
Description .
How the Displays Look
Simple Hotspots .
Command Key Emulatlon . .
Page Up and Page Down Key Emulatlon .
Programmable Mouse Buttons-Overview .
Pointer Device Events
AID Codes to be Returned . .
Programmable Mouse Buttons-Benefits .
Programmable Mouse Buttons Operation .
Programmable Mouse Buttons-NWS
Considerations .
Programmable Mouse Buttons Event Processmg
States .
Programmable Mouse Buttons Event Processmg
Priority
Unshifted Left Button Pressed Event
Processing .
Unshifted Left Button Released Event
Processing

Part 2. Programming Application Displays Using Display Files

. 177
. 177
. 177
. 177
. 178
. 178
. 178
. 178
. 178
. 178
. 179
. 179
. 179
. 179
. 179
. 180

180

. 180

. 181
. 182

. 182

. 184

184

. 185
. 185
. 187

. 188
. 189
. 189
. 190
. 190

. 190
. 192

. 193
. 194
. 194
. 195
. 196
. 196
. 196
. 197
. 197
. 198
. 198

. 199

. 199

. 200

. 200

. 202

11

Unshifted Left Button Double Click Event
Processing
Shifted Left Button Pressed Event Processmg
Shifted Left Button Released Event
Processing . .
Shifted Right Button Pressed Event
Processing
Any Other Pointer Dev1ce Event Processmg
Grid Line Structures-Overview .
DDS for Grid Line Structures—Example
Grid Line Structures and Windows .
Hardware Requirements for Grid Line
Structures
Inserting HTML Tags
Resolving HTML Field Overlap
Programming Examples .

Chapter 7. Overriding Display Files and Display

File Attributes. . .

Determining Whether or Not to Use Overrldes .

Overriding File Attributes in HLL Programs .
Example . . .

Overriding File Names in HLL Programs .
Example . .

Overriding Both File Names and Attrrbutes in HLL

Programs.
Example . .

Applying Overrides When Complhng a Program
Example . .

Deleting Overrides

Displaying Overrides. .

Using File Redirection to Overrlde Frle Names and

Libraries or File Types
Overriding Files with the Same Frle Types
Overriding Files with Different File Types .

Recognizing Commands That Ignore or Restrict

Overrides

Chapter 8. Handling Messages and Errors for

Display Files .

Creating and Drsplayrng Your Own Messages
Displaying a Message on the Message Line
Displaying a Message on the Message Line
When a Subfile Control Record is Written .
Displaying a Message on the Message Line
Using a Message Field . .
Priorities for Dlsplaymg Messages on a Message
Line .

Displaying Messages ina Freld on the D1sp1ay
Displaying Messages on a Program Message
Queue. .

Displaying Error Messages through a Subfrle
Sounding an Alarm for Messages. .
Automatically Handling Permanent 1/0 Errors
on Display Stations .

Analyzing Error Messages Sent from the System
Understanding Messages and Message Monitors
Understanding Major/Minor Return Codes
Recovering from Errors .

Normal Completion .
Completion with Exceptions

12 Application Display Programming V5R4

. 202

202

. 203

. 204

205

. 205
. 205
. 206

. 207
. 207
. 208
. 209

. 213

. 213
. 213
. 213
. 214
. 214

. 215
. 215

216

. 216
. 217
. 217
. 217
. 217
. 218
. 220
. 223
. 223
. 224
. 224
. 224

. 224

225

. 225

225

. 228

. 228

229
229

. 230
. 231
. 231
. 231

Permanent System or File Error

Permanent Device or Session Error on 1/ O
Operation

Device or Session Error on Open or Acqulre
Operation

Recoverable Devrce or Sessron Errors on I/ (@]
Operation

Chapter 9. Creating and Accessing Menus

Using Display Files .

Running System and User-Defmed Menus
Returning to a Menu after Running the GO
command . .
Determining the Prevrous Menu .

Using the Cancel and Exit Keys on Menus
Choosing the Menu That Is Shown at Sign-On
Time . o

Defining Your Own Drsplay Frle Menus
Understanding DDS and Display File
Considerations for Menus .

Describing Menu Actions in a Message Flle
Naming Help Formats for Menus
Building a Display File Menu .
Describing the Menu and Menu Help
Information . o
Creating the Display Frle
Creating the Message File . .
Adding Messages to the Message Flle .
Creating the Menu Object .
Running the Menu

Defining Your Own Program Menus
Passing Parameters for Program Menus
Building a Program Menu .

Describing the Menu .
Creating the Display File
Entering the Source and Creating a CL
Program .
Creating the Menu
Running the Menu .
Exiting from a Program Menu w1thout
Returning to the Previous Menu .
Program 1
Program 2

Avoiding Menu Name Confhct
Naming Your Menus .

Placing Your Menu in a ngher L1brary in the
Library List .

Specifying the Lrbrary That Contams the Menu
Using the Generic Menu Specification .
Changing the Command Default after
Duplicating a Command

Displaying Menu Attributes

Changing Menu Attributes .

Deleting Menus .

Chapter 10. Using User-Defined Data Streams
Understanding Display Station Differences
Understanding User-Defined Data Stream
Limitations .

Chapter 11. Passing Data between Programs

. 232

. 232

. 233

. 233

. 235
. 235

. 235
. 235
. 235

. 237
. 237

. 238
. 239
. 239
. 240

. 241
. 242
. 243
. 243
. 243
. 243
. 244
. 244
. 244
. 245
. 245

. 245
. 246
. 246

. 246
. 247
. 247
. 248
. 248

. 248

248

. 248

. 249
. 249
. 249
. 249

251

. 251

. 252

255

Passing Data in the Same Routing Step in a Job
Passing Data between Routing Steps in a Job.

Chapter 12. Waiting for Input from a Display
File, an ICF File, and a Data Queue

Chapter 13. Using Alternative Character Sets
and Code Pages .

System Has Characters Not Normally Dlsplayed
on the Device

Device Passes Characters Not D1sp1ayed on the
System .
Specifying Character Translatlon for Flelds
Determining the Character Identifier (CHRID)
Value for Your Display . o

Chapter 14. Improving System Performance
with Displays .

Deferring the Write Operatron for a Drsplay Frle
Designating the Primary Screen Size for a Dlsplay
File. . .
Writing Only One Page of Subflle Records at a
Time

Sharing an Open Data Path (ODP) for the Same
Job . .o

Sending Records w1th Input Flelds to the Dlsplay
in Order .

Overlapping and Not Deletlng Repeatedly Sent
Records . . .o
Restoring the Drsplay

Defining Command Attention Keys Rather Than
Command Function Keys

Using the Invite Operation .

Using Windows

255

. 256

. 259

. 261

. 261

. 262
. 262

. 264

. 267

267

. 267

. 267

. 268

. 268

. 268
. 268

. 269
. 269
. 269

Part 2. Programming Application Displays Using Display Files

13

14 Application Display Programming V5R4

Chapter 2. Defining Your Display in a Display File

A display file defines the format of the information to be presented on a display station, and how that
information is processed by the system on its way to and from the display station. Data description
specifications (DDS) describe the data referred to by a display file.

This chapter tells you about display files, including how to create them and how to provide DDS source
for them to describe your display.

Establishing a Display File

A display file is an object on the system. An object is a named storage space that consists of a set of

characteristics that describe itself and, in the case of a display file, the data. Like other objects on the

system, display files have the following characteristics:

+ A display file is named and placed in a library when it is created. The file name and library name
allow you to refer to the display file in your applications.

* Once a display file is created, it can be changed, secured, saved, restored, or deleted.

Before an application program can work with a display station, a display file must be opened to allow
data to flow between the program and the display station.

Application Display
Program File Display Station

/70T

!

Device
Description

RV2W045-1

A device description, which is a system object that describes the display station to the system, must also
exist for the display station. A device description contains information such as device address, device
type, model number, and features. Device descriptions are usually created by system personnel or, for
locally attached devices, can be created during the automatic configuration of the system.

A program may work with more than one display station at a time by doing one of the following:
* Opening more than one display file
* Opening a display file that allows more than one display station to be attached to an open file

Since a display file does not have a set of data uniquely associated with it, the relationship between the

data and the display file is established when the display file is opened and ends when the display file is
closed.

© Copyright IBM Corp. 1997, 2006 15

Determining File Descriptions

The file description, which is created at the same time the display file is created, describes the
characteristics of the display file and determines how the display file does the following;:

* Controls the display station
* Formats output data from the program for presentation at the display station

e Formats input data from the display station for presentation to the program

A file description determines how a program is able to use the file. If a program attempts to perform an
operation that is inconsistent with the display file description, the system does not allow the operation.

The file description is created and deleted at the same time as the display file it describes. Some parts of
a file description may be changed, either permanently with the Change Display File (CHGDSPF)
command or temporarily with the Override with Display File (OVRDSPF) command.

A file description describes data at three different levels:
* Field level

* Record level

* File level

The following sections describe these levels.

Field-Level Descriptions

A field is the smallest unit of data that is recognized and handled by the data management support of
the system. A field-level description allows you to give the system detailed characteristics of a field, such
as:

* Where on the screen the field is to appear
* What type of data is valid for the field
* Whether the field should be highlighted in some way

* How it will be presented from the program to the system on output and from the system to the
program on input.

* Where each field is relative to the start of a record

* What the characteristics of each field will be while in the system

* Where the data for each field should be acquired from for output

e Where and how input from the display station should be placed so the program can use it
* Whether the field is an input-capable field or output-capable field only

Only field-level descriptions can determine that valid data is specified for individual fields on a display.

Record-Level Descriptions
A record is an ordered set of one or more fields. A record-level description allows you to tell the system
what a particular record looks like, or its record format.

A record-level description is given in one of two ways:

s If field-level descriptions are also used, you identify what fields make up the record format and the order
of these fields within the record format. The system can then perform separate operations on each field
described with a field-level description in the record-level description. For example, one field can be
highlighted while another is not.

* If field-level descriptions are not used, the record format is given by specifying the length of the record.
The system handles the entire record as a unit and cannot perform operations on one part of the record
one way and another part a different way.

16 Application Display Programming V5R4

Since records are used to transfer data between the system and the application program, a record-level
description is required for display files.

File-Level Descriptions

A file is an organized set of zero or more records (a file with zero records is empty). A file-level
description is a description that applies to the file as a whole. For a display file, you can specify the
following in the file-level description:

* What record formats are valid for the display file
¢ What display station should be usable with the display file
* What graphic character set is to be assumed for the data that will be entered through the display file

Deciding Whether to Describe Data Inside or Outside Your Program

When the detailed description of the display file and the data it refers to is contained in a display file
rather than imbedded in a program, the data is called externally described data. When the data is
described within the source program, the data is called program described data.

Externally Described Data
Externally described data exists independently of any program that uses the file. Using externally

described data, you can produce a detailed and standard description of both the display file and any data

that can be processed through the display file.

To use externally described data, you need to declare that the display file is to be used as an externally

described file. The language compiler or interpreter extracts the file description from the display and then

incorporates it into the program.

There are several advantages to using externally described data:
* Increased programmer productivity. The language automatically describes the record layouts for you

without additional coding. You need to describe records and fields only once (when the file is created).

You can then refer to these fields within the program.

* Ease of file and program maintenance. When fields are added, deleted, or changed, it can be done in one

place instead of maintaining the record layout in each program that uses the file.

* Increased data integrity. Since the fields and records are described in one central location, there is less
chance of programming errors when describing the data in the file to the program. All application
programs using the file will have the same view of the data. Moreover, the system view of the data
becomes the same as the application program view.

* Level checking provided. Level checking is an automatic method used when the program is run that

determines if the file description has changed since the program was last compiled. Depending on the
type of change, the program may only need to be recompiled without modification. This allows better

control over program maintenance. There is more information on the level-checking function in
[‘Detecting File Description Changes” on page 20.|

Program-Described Data
You are not required to use external descriptions to describe your displays in your program. If you do

not use externally described data, you must declare variables in your source program that define to the

compiler or interpreter what the data looks like.

When program-described data is used, the program and the system may not have the same view of the

data:

* If the file does not have any field-level descriptions, the system must operate at the record level. The

only concern in this case is that the record length the program is using is the same as what the system

is using. It need not be, but the system always operates with the record length it has. If the record
length that the system is using differs from the record length the program is using, the system
truncates or pads as necessary.

Chapter 2. Defining Your Display in a Display File

17

* If the file has field-level descriptions but the program does not use them, the system uses the
field-level descriptions even though the program does not. The system expects the program to present
data according to the file description and, conversely, provides data to the program according to the
description.

More information about program-described data is found in [“Using Program-Described Data” on pagel

Creating a Display File and Description
Display files are created using the Create Display File (CRTDSPF) command.

You can define the DDS for your display file in one of two ways:
» Using the screen design aid (SDA) utility
* Entering your own DDS source

You can specify certain attributes about your display file. Information about these attributes is found in
the following:

+ [“Deferring the Write Operation Until a Read Request is Made” on page 64|

* [“Saving Previously Displayed Information” on page 78|
. topic in the iSeries Information Center
* iSeries Security Reference

The following illustration compares the two ways to create display files:

18 Application Display Programming V5R4

Two Ways to Define Display Files

Enter your own DDS and then use the
Create Display File (CRTDSPF) Command ...

R GOTO

49
50

57
53

ALTHELP

BLINK
CFO3(03)
CF12(12)
HELP
HLPCLR
52160 To Another List®
DSPATR(HI)
2'Select one of the folloying:!
COLOR(BLU)

711, Work wilh documents in folder)

713, Work with rolders’
7'4, Work wilh nontext document daola’

7
3
5
6 7'2, Work wilh documents to be print-
ed
7
8
9

20 2'selection!
FLDOOT 1A 7
oft DSPATR(RI PC)
2'F3Exit
COLOR(BLU)

B e e

7'6. Work wilh text profiles’

F12«Concel !

CRTDSPF command compiles DDS and creates

display file object.

Go To Another List

Select one of the following:

. Work with documents in folder

. Work with documents fo be printed
. Work with folders

. Work with nonfext document data
. Work with text profiles

RN WN =

Selection

F3=Exit F12=Cancel

Design your display as it will look

using the screen design aid (SDA) utility ...

Go To Another List

Select one of the following:

. Work with documents in folder

. Work with documents to be printed
. Work with folders

Work with nontext document data
Work with text profiles

NN =

B e b b

Selection

F3=Exit F12=Cancel

SDA generates DDS

R GoTO

49
50

&1
53

FLDOO!
or1

and runs the CRTDSPF command.

ALTHELP

BLINK
CFO3(03)
CcF12012)

HLPCLR
1 32'Go To Another Lisi'

DSPATR(HI)

3 2'Select one of the folloping:’

COLOR(BLU)
7U1 Work with
742, Work with

743 Work with
Work with
75, Work with
2'Selection!

ScoaN %o
~
N

7
DSPATR(RI PC)
25 2'F3Exit
COLOR(BLU)

documents in folder’
documents to be primt-

folders’
nontext document data’
text profilest

Fil2«Concel !

RV2W000-5

You may also combine the two methods, creating an initial display using SDA and then tailoring the

generated DDS.

Changing the File Description

After a display file has been created, the file description can be changed:

* To change the file description that was originally specified on the CRTDSPF command, use the Change
Display File (CHGDSPF) command.

* To change the file-level, record-level, or field-level information contained in the DDS source, you must
first update the DDS source and then create the display file again using the CRTDSPF command. A
new display file can be created without deleting the existing display file by specifying REPLACE(YES)

on the CRTDSPF command.

* To change both the CL command file-level descriptions and the DDS source, specify the new values
when you create the display file again.

Changes to display file descriptions are applied according to the following:

e If the file-level description was changed with a CL command, any program that uses the file will
automatically use those new descriptions.

* If the DDS descriptions were changed and the program uses the file as a program-described file, the
system uses the new file-level description. However, if the DDS descriptions were changed and the

Chapter 2. Defining Your Display in a Display File

19

program uses the file as an externally described file, then the record-level and field-level descriptions
used when the program was compiled may not match the changed file. If the system detects a
mismatch when the program opens the file, an error occurs. See [“Detecting File Description Changes.”|

You may also temporarily change a file-level description when a display file is opened. More information
about these temporary changes is found in [Chapter 7, “Overriding Display Files and Display File]
[Attributes,” on page 213

Detecting File Description Changes

When a program that uses externally described files is compiled, the high-level language compiler
extracts the record-level and field-level descriptions for the files referred to in the program and makes
those descriptions part of the compiled program. When you run the program, you can verify that the
descriptions with which the program was compiled are the current descriptions.

The system assigns a unique level identifier for each record format when the file it is associated with is
created. The system uses the following information to determine the level identifier:

* Record format name

* Field name

¢ Total length of the record format

* Number of fields in the record format

* Field attributes (for example, length and decimal positions)
* Order of the fields in the record format

Display files may also use the number of and order of special fields called indicators to determine the
level identifier.

If you change the DDS for a record format and change any of the items in the preceding list, the level
identifier changes.

To check for changes in the level identifiers when you run your program, specify *YES for the LVLCHK
parameter on the CRTDSPF or CHGDSPF command. When the display file is opened, the level identifiers
of the display file and the file description that is part of the compiled program are compared
format-by-format. If the identifiers differ or if any of the formats specified in the program do not exist in
the file, a message is sent to the program to identify the condition.

If the identifiers differ, either the formats have been changed or your program does not use the changed
formats. If the changed format does affect your program, you may decide to do the following:

* Compile the program again so that the changes are included
* Determine if the changes affect your program before deciding what action to take.

To check the changes to the record format, run one of the following commands:

* Display File Field Description (DSPFFD) command to display the record-level and field-level
descriptions

* Start Source Entry Utility (STRSEU) command to display the source file containing the DDS for the file

* Display File Description (DSPFD) or the DSPFFD command to display the format level identifier
defined in the file

* Display Program References (DSPPGMREF) command to display the format level identifier that was
used when the program was created

20 Application Display Programming V5R4

Defining Display Fields and Functions in a Record Format

A record format in a display file describes both the format of the record as it is used in the application
program and the format of the record when it is displayed (see [Figure 2 on page 22).

A record format contains field descriptions, which are defined using data description specifications
(DDS). For each field in a record format, you describe the following;:

* Location of the field on the display

* Length of the field

* Type of data contained in the field (character, zoned decimal, or floating point)
* Field type (output, input, or output/input).

Information about DDS keywords
This section describes how DDS keywords are used to describe the information on your display. For
more information about specific DDS keywords, see the topic in the iSeries Information
Center.

DDS for Display File
The following source shows the DDS for a sample display file:

PP PO DRI SOU SO e PO JPRINEY. & JE U DRI U - SO S S
A R RECORD
A 3 2'Customer Number:'
A CUST 5 0 320
A 3 27'Customer Name:'
A NAME 20 3 44
A 4 27'Address:'
A ADDR 20 4 44
A CITY 20 5 44
A STATE 2 5 66
A ZIP 5 0 570

Figure 1. Sample DDS Source for a Display File

shows the column positions and descriptions for the DDS specifications.

Table 4. Column positions for sample DDS

Column Definition Starting Position
17 Type of name 17
19 - 28 Field name 19
30 - 34 Length 34
36 - 37 Decimal positions 37
39 - 41 Line location 41
42 - 44 Position location 44
45 - 80 Function 45

Record Format Used by the Program

The program passes the fields in the record in the same order that you described them in the DDS
source.

Chapter 2. Defining Your Display in a Display File

21

CUST NAME ADDR CITY STATE ZIP

11 516 25126 45146 65166 67168 721
| | | | | | |
| | | | | | |

RV2W028-1

Record Format on the Display
The fields are displayed according to the display positions you assigned them in the DDS source.

CUST NAME

| /

| |

Customer Number: 41394 Customer Name: Sorenson and Walton
Address: 500 5th Avenue

/ New York NY 55555
ADDR CITY STATE ZIP

RSLH714-0

Figure 2. Record Formats in the Program and on the Display

Understanding the Field Attribute Characters

Each field displayed has a beginning attribute character and an ending attribute character associated
with it that define the displayed field. The beginning character precedes the first character of a field and
is displayed as a blank. The ending attribute character follows the last character of a field and is also
displayed as a blank. For example, if you specify a field for positions 2 through 8, the beginning attribute
character is in position 1 and the ending attribute character is in position 9. These characters are not
included in the field length you specify in DDS. A beginning attribute character can overlap an ending
attribute character; that is, they can occupy the same position on the display. However, nothing else can
overlap the beginning attribute character. Therefore, when you design a display, you must allow one
space for the beginning attribute character of each field. You can use the blank attribute character to
space between fields when they are displayed.

If field-level descriptions are not used, the entire record is treated as a field with a beginning attribute
character and an ending attribute character.

When a record is displayed so that the last field in the record ends in the last position on the line, the
ending attribute character for that field is in the first position of the next line. The beginning attribute
character of the first field in the next record can be superimposed on the ending attribute character. For
example, if the ending attribute character for the last field in record 1 is in position 1 of line 5, the
beginning attribute character for record 2 can also be in position 1 of line 5. In this case, the first record is
not considered to be overlapped. However, if the first field in a record begins in position 1, which means
that the beginning attribute character is in the last position of the preceding line, the previous record is
overlapped and is cleared from the display.

To see the locations of fields in the input records and output records used by the program, see the
printed DDS output produced when you created your display file using the CRTDSPF command.

Understanding How Record Format Fields Can Be Used

The fields you describe in the record format can be used in the following ways:

Note: To see the location of positions on a DDS form, see|Table 4 on page 21|

22 Application Display Programming V5R4

* Input fields are fields that are passed from the display station to the program when the program reads
a record. Input fields can be initialized with a default value (specified in the record format for the
display file). If the user does not change the field and the field is selected for input, the default value is
passed to the program. Input fields that are not initialized are displayed as blanks into which the user
can enter data. By default, input fields are underlined on the display.

Note: Trailing blanks on input fields are replaced by null and not blank characters; therefore, the Insert
key can be used to insert characters in all input fields that end in blanks.

* Output fields are fields that are passed from the program to the display station when the program
writes a record to a display. Output fields contain data provided by the program, not by the user. To
specify an initial value for a named output field, see |“Specifying Default Values for Fields” on page 64)

In the case of subfiles, which are special records used to display lists of information, output fields are
returned to the program as if they were output/input fields.

¢ Output/input fields are fields that are passed from the program when the program writes a record to a
display and are passed to the program when the program reads a record from the display and the field
is selected for input. By default, these fields are underlined on the display. Output/input fields are
usually used when the program displays data that can be changed by a user. To specify an initial value
for a named output field, see [“Specifying Default Values for Fields” on page 64

* Hidden fields are fields that are passed from and to the program but are not sent to the display.
Hidden fields are useful in applications involving subfiles. For example, a subfile record can contain
record key information in a hidden field. The hidden field cannot be seen by the user, but is returned
to the program with the subfile record so that the program can return the record to the database.

¢ Constant fields are fields that are passed to the display but are unknown to the program. These fields
are unnamed and have their constant values defined in the DDS for the file. DATE, TIME, and
MSGCON are examples of keywords that are allowed only on constant fields and whose constant
values are determined during program run time (DATE and TIME) or DDS compile time (MSGCON).

* Message lines are output fields that are treated as messages.

* Program-to-system fields are output-only fields that are named, numeric or alphanumeric. They are
used to communicate between an application program and the system. Program-to-system fields do not
appear on the display. That is, your program can place data in these fields and the system will use that
data to control its processing on an output operation, but the user cannot see the contents of these
fields.

A field is input-capable if it is an input field or an output/input field. Each input-capable field has a
special attribute called a modified data tag (MDT). The MDT is set on by the display station when any
data is typed into the field. It can also be set on and cleared by the application program.

The maximum number of fields that you can specify for each record format is 32 763. (See
[“Understanding the Limitations on the Number of Input-Capable Fields” on page 75| for information on
the number of input-capable fields that can be specified.) The maximum combined length for all fields
and indicators in a record format is 32 763.

The following display shows output fields and input fields displayed in response to a request (in the
form of entering a customer number in an input field) from a user.

Chapter 2. Defining Your Display in a Display File 23

4 N

Customer number: 41394

Order number: 41882

Order date: 11/01/81
Order amount: $580.00
A/R balance: $580.00

Enter next customer number:

- J

The prompts, Customer number:, Order number:, Order date:, Order amount:, A/R balance:, and Enter next
customer number: are constants. The data associated with these fields (41394, 41882, 11/01/81, $580.00, and
$580.00) is displayed in output fields. The data is passed from the application program to the system, and
the system displays it. The field following the constant Enter next customer number: is an input field. The
user must enter data into this field (the cursor is positioned at the beginning of the input field). Input
fields are underlined by default. Editing of the field is normally defined within DDS.

You must specify the location for each field except when the field is a hidden field, a message line, or a
program-to-system field, or when the field is in a subfile message record format. You cannot specify line
1, position 1 for location, except when you define a record that can start in any line.

The maximum length of a character field or numeric (zoned decimal) field is the number of positions
remaining (relative to the start location of the field) on the display minus 1. Another restriction of the
numeric (zoned decimal) field is that it can be no longer than 31, even if more than 31 positions are
remaining on the display.

Specifications for the fields you describe can be retrieved from a previously described field. The
previously described field can be either in a database file or already defined in the DDS source for the
display file. When you use field-level descriptions from a database file, binary and packed decimal fields
are changed to zoned decimal fields. These fields that you use to define other fields are called reference
fields.

You can define two fields to occupy the same positions on the display, and use option indicators to select
which of the overlapping fields is to be displayed. If more than one overlapping field is selected on the
same output operation, only the first field selected is displayed.

Defining Function Keys

To write an application using a display station, you have to control both the functions of the keys at the
keyboard, and the contents of the display.

24 Application Display Programming V5R4

Display
Contents

Functions

Keyboard /5 10 T\\

RV2W001-2

The Enter key can always be used by the user. So that the user can use the other function keys, you must
specify the following DDS keywords to enable the corresponding function key:

e CAnn, where nn is 1-24

¢ CFnn, where nn is 1-24

* CLEAR

¢ HELP (not required if you only need the Help key to retrieve the message help on the display)
+ HOME

* PRINT

* ROLLDOWN or PAGEUP (not required to be able to roll a subfile when the subfile page is not equal
to the subfile size)

* ROLLUP or PAGEDOWN (not required to be able to roll a subfile when the subfile page is not equal
to the subfile size)

* MOUBTN (Programmable Mouse Button) allows attention identifiers to be associated with various
pointer device events.

¢ PSHBTNFLD (Push Button Field) allows an attention ID to be associated with a push button.

To tell which function key is pressed when you perform the read operation, you need to define your
function keys using one of the following;:

* Define a response indicator for the function key. A response indicator is an indicator that returns
information back to an application. There are 99 response indicators available to you.

Note: Response indicators are used for more than function keys. For example, you can use them to tell
when the data in a field on the display has changed.

* Examine the input/output feedback area. The input/output feedback area is status information
provided by the system about the operations performed on an opened file. To find out how to get
information from the input/output feedback area, see the manual for the programming language you
are using. See [Appendix C, “Feedback Area Layouts for Display Files,” on page 661|for a description of
the information available from the feedback areas.

Defining Command Attention (CAnn) and Command Function (CFnn)
Keys

The command function (CFnn) keys and command attention (CAnn) keys are numbered 1 through 24
and are the same physical set of keys on the keyboard. These keyboard keys are usually labeled Cmdnn

or PFnn or Fnn, where nn is the associated key number. They can be used to set a response indicator or
to perform a certain function.

The different command keys do the following:

Chapter 2. Defining Your Display in a Display File 25

Command function
A record containing changed fields is returned to the program.

Command attention
A record is returned to the program but the record does not contain the data entered by
the user and no field validation is performed.

If a key is specified as a CFnn key in a file, it cannot also be specified as a CAnn key in the file. Likewise,
if it is specified as a CAnn key, it cannot also be a CFnn key. For example, if function key 01 is specified
as a CAnn key (CAO01), you cannot specify CFO1 anywhere in the same file.

If a response indicator is specified for a CFnn key and the key is pressed, the response indicator is set on
and passed to the program with the input data. If a response indicator is not specified for a CFnn key,
only the input data is passed.

Note: The input/output feedback area contains the 1-character attention identifier (AID), which also
identifies the key pressed. See [Appendix C, “Feedback Area Layouts for Display Files,” on page
for a description of the input/output feedback area.

If a response indicator is specified for a CAnn key and the key is pressed, the response indicator is set on
and passed to the program. Fields sent to the display and hidden fields are returned to the program. If a
CFnn key or the Enter key was previously pressed, the input-only field is returned as previously typed
data. If data was never entered into an input-only field, the field is returned as blanks (character field) or
zeros (numeric field). Fields changed by the user since the last time a CFnn key or Enter key was pressed
are not returned.

The use of CAnn keys can cause the input buffer of the program to contain user-entered data that does
not meet the validation specified in the display file. For example, the user enters data and presses a CFnn
key or the Enter key, and the data is validated as defined in your DDS. Input data is processed one field
at a time with data manipulation taking place before the validity checking. If a validity-checking error
occurs, a message is selected and all the other input data is processed. After all input data is processed
and one or more errors have occurred, a message is sent to the user. Then, if the user presses a valid
CAnn key, no changed data is sent from the display. The data is moved from the input buffer save area
to the input buffer. The input buffer now contains the data that is in error. If your program is not going
to process this data when the CAnn key is pressed, you do not have a problem. If this is a problem,
avoid using CAnn keys; only use CFnn keys so that data that is not valid can be detected.

If you want to use CAnn keys, you should not specify the following validity-checking DDS keywords:

CHECK(M10)

CHECK(M11)

CHECK(VN)

CHECK(VNE)

CHKMSGID

COMP/CMP

RANGE

VALUES

The Print, Help, Clear, and Home keys operate in the same manner as the CAnn keys. The Roll Up, Roll
Down, Page Up, and Page Down keys operate in the same manner as CFnn keys.

Specifying Alternative Keys
You can also define command attention or command function keys to perform the functions of the Help,

Page Up (or Roll Down) and Page Down (or Roll Up) keys. The function key specified on the keyword
identifies the alternative key to be used.

26 Application Display Programming V5R4

The DDS keywords are:

* ALTHELP: Indicates that the help function will be started when either the Help key or the key
specified on the ALTHELP keyword is pressed. If the ALTHELP keyword is specified but an alternative
key is not specified, the default is CA01. Note that the Help key is an attention key, not a function key,
because it does not return input.

* ALTPAGEUP and ALTPAGEDWN: Indicate that the paging functions will be started when the page
keys or the keys specified on the keywords are pressed. If alternative keys are not specified on the
ALTPAGEUP or ALTPAGEDWN keywords, the defaults are CF07 and CFO08, respectively. Note that the
page keys are function keys, because they return input.

The alternative keys specified on the ALTHELP, ALTPAGEUP, and ALTPAGEDWN keywords provide the
same function as the actual keys. For example, if pressing the Help key starts the help function, then
pressing the alternative key defined by the ALTHELP keyword will also start the help function. Likewise,
if pressing the Page Up or Page Down key returns control to the application program, then pressing the
alternative key will also return control to the application program. Both of these examples appear to the
program as if the actual key was pressed.

The user profile option for paging (USROPT(*ROLLKEY)) applies to the PAGEUP, PAGEDOWN,
ALTPAGEUP, ALTPAGEDWN, ROLLUP, and ROLLDOWN keywords.

The alternative help key function does not work when the keyboard is locked. For example, if you type
information into a field that is not input-capable, a controller-detected error occurs and flashing numbers
appear. The Help key can be used to get more information about the error. The function key specified as
the alternative help key will not be valid until the Reset key is pressed, and then the help information
will no longer be available.

Passing Information via Indicators

Indicators are one-character fields that exist either in the input records and output records used by the
program or in a special indicator area. An indicator is on if it has the value 1 and off if it has the value 0.
You can use indicators to pass information from a program to the system or from the system to a
program. You specify how indicators are to be used through the DDS for the display file.

There are two types of indicators for display files:

Option indicators:
Pass information from an application program to the system. These typically are used to
control the processing of a particular record format by the system.

Response indicators:
Pass information from the system to an application program when an input request
completes. Response indicators can inform the program which function keys were
pressed by the user or whether data was changed by the user.

Both option and response indicators can be specified at the file level, record format level, and field level.
Indicators specified at the file level apply to all record formats within the file.

Removing Option and Response Indicators from the Record Area

You can use the Indicator Area (INDARA) keyword to separate the option and response indicators from
the input and output records used by the program. If you use the INDARA keyword, the indicators are
placed in a separate 99-character area; see your appropriate high-level language manual for information
on how this 99-character area is defined.

If you use the same indicator number as both a response indicator and as an option indicator, you can

use the status of the response indicator to set the option indicator for a subsequent output operation. For
example, indicator 15 is used as both a response indicator and an option indicator. If the response

Chapter 2. Defining Your Display in a Display File 27

indicator is on when an input operation is performed on the record format, option indicator 15 is set on
and will be on when an output operation is performed for that record format.

The maximum number of record formats that you can define for a display file is 1024. If you do not use
the INDARA keyword, the maximum number of fields that you can specify depends on the number of
indicators (1 character each) you use and the length of each field you describe. The total combined length
of all fields and indicators in a record format cannot exceed 32 763 characters. If you use the INDARA
keyword to specify a separate indicator area, the maximum number of fields that you can specify
depends only on the length of each field. The total number of all fields cannot exceed 32 763.

Enabling Different Response Indicators Simultaneously

It is possible to have different response indicators for the ROLLUP/ROLLDOWN keywords on record
formats displayed at the same time. For example, record A has specified a roll-up indicator of 52 and
record B has specified a roll-up indicator of 25 and both records are displayed. When a read operation is
requested to record A in your program, the operator presses the Roll Up key which returns control to
your program. Record A is passed to your program with response indicator 52 set on; response indicator
25 is not set. Your program can then do a read operation to record B. When record B is passed to your
program, response indicator 25 is set on; response indicator 52 is not set. Only the response indicator
specified on the record format for which the read operation is done is set. The record format in which the
cursor was located when the Roll Up key was pressed does not affect the setting of the response indicator
associated with the ROLL keyword.

Setting an Indicator Off

An indicator specified on the SETOF or SETOFF keyword becomes a response indicator that is set off and
returned to the program. The indicator is not set off until an input operation is performed. If the same
indicator is specified elsewhere in the record format as a response indicator, the indicator is returned to
the program based on the status of the associated keyword condition. For example, if response indicator
01 is specified both for the SETOF/SETOFF keyword and the CF5 key, indicator 01 is returned in the on
condition when the CF5 key is pressed. If the indicator is specified elsewhere as a response indicator,
there is no need to use the SETOF/SETOFF keyword.

Inserting Constant Field Text from a Message Description

You can specify that the text for constant fields is contained in a message description using the Message
Constant (MSGCON) keyword.

If the message description used for the constant text is shorter than the field on the display, the
remaining portion of the field is padded with blanks. If the message description is longer than the field,
the message description is truncated.

If the messages description does not exist when the DDS is compiled, the file is not created. If you
change the message description, you will have to create the file again if you want the display file to
contain the updated messages.

Allowing for Right-to-Left Cursor Movement

The cursor can be made to move from right to left on the display between fields and in input fields. Two
parameters for the DDS CHECK keyword can be used to do this:

¢ CHECK (RL): Moves the cursor from right to left in specified nonnumeric input fields or all
nonnumeric input fields on the display.

* CHECK (RLTB): Moves the cursor from right to left between fields.

When using these parameters, remember the following:

* Modulus check digit verification is supported, but the check digit is still the byte to the extreme right
of the field.

28 Application Display Programming V5R4

A field for which right-to-left cursor movement is specified can occupy more than one line on the
display. However, the cursor still moves from the top of the display to the bottom.

* You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the cursor is placed in
the input-capable field to the extreme left of the top line.

Defining Cursor Movement to Input-Capable Positions Only

Use the cursor input only (CSRINPONLY) keyword to restrict cursor movement to input-capable
positions only. This keyword affects only the cursor arrow keys. This function moves the cursor to the
first input-capable position on a display in the direction of the arrow key. The user needs to press the
cursor key only once in the appropriate direction to have the cursor move to the input-capable position.

Specify this keyword at the file or record level.

The input-capable positions to which the cursor can move include the following:
* Input field (except protected fields)

* Selection-field choice (except those on which you cannot place the cursor because of its choice control
(CHCCTL) value)

* Selection-list choice (except those on which you cannot place the cursor because of its choice control
(CHCCTL) value)

* Message line (if a message is displayed and the keyboard is not locked).
* Message subfile defined with the subfile message record (SFLMSGRCD) keyword.

Several DDS keywords (such as DSPATR(PC) and CSRLOC) can be used to position the cursor at any
display position. This is true even if the CSRINPONLY keyword is specified. The first subsequent cursor
movement keystroke will move the cursor to a cursorable location. If no cursorable position exists on the
display, the cursor will be positioned to row 1, column 1. Once the cursor has been moved from this
position, pressing the home key repositions the cursor back to its initial position.

If a window is displayed with no input fields, the cursor is positioned at row 1, column 1 of the window.
If a cursor movement key is pressed, the cursor moves to row 1, column 1 of the full display (outside the
window). If the window is defined with *RSTCSR, command keys are not valid outside the window.
Pressing the home key returns the cursor to the window. Pressing any command key or the Enter key
sounds an alarm and returns the cursor to the window. To avoid this problem, consider specifying an
input inhibited input field in the upper corner of the window or specifying *NORSTCSR on the window
keyword.

Notes:

1. If a message subfile is defined with a SFLPAG keyword greater than 1 and the CSRINPONLY
keyword is in effect, any fields that have been turned to reverse image because of an error, will be
turned to unreverse image if the message subfile is rolled to a partial page of messages.

2. Fields that have been turned to reverse image because of an error are turned to unreverse image
when the following conditions are true:

* A message subfile is defined with a SFLPAG keyword greater than 1
¢ The CSRINPONLY keyword is in effect
¢ The message subfile is rolled to a partial page of messages

3. When a record is written with the PUTOVR, ERRMSG, or ERRMSGID keywords in effect, the state of
the CSRINPONLY keyword is not changed. If the CSRINPONLY keyword is in effect prior to the
write operation with the PUTOVR, ERRMSG, or ERRMSGID keywords, the CSRINPONLY remains in
effect. This is true regardless of the optioning of the CSRINPONLY keyword on the record assigned
the PUTOVR, ERRMSG, or ERRMSGID keywords. This is also true regardless of the optioning of the
PUTOVR, ERRMSG, or ERRMSGID keywords on the record assigned the CSRINPONLY keyword.

Chapter 2. Defining Your Display in a Display File 29

4. Writing a record with the PROTECT keyword does not affect the input fields associated with
messages when the CSRINPONLY keyword is in effect. Any messages displayed are not protected.
Therefore, the cursor may still be moved the messages.

5. The CSRINPONLY keyword is valid only for display stations attached to a controller that supports an
enhanced interface for nonprogrammable work stations. It is ignored on display stations attached to
other controllers.

Defining Cursor Progression for Entry Fields

The FLDCSRPRG keyword lets the user specify the next field the cursor should move to when the cursor
leaves a field.

The DDS for the field looks like this:

P U PUURE SUUDY JUDIE SO FUNUE SUUDY SUPUE RN ST SR : SUIE SR S
A F1 10A B 3 A4FLDCSRPRG(F3)
A F2 10A B 13 4FLDCSRPRG(F1)
A F3 10A B 16 4FLDCSRPRG(F2)

Figure 3. DDS for Field-Level Cursor Progression

The parameter for the FLDCSRPRG keyword is the name of the field the cursor will go to when forward
field-exit processing is performed. When the cursor leaves F1 because of a field exit key, it goes to F3. If
the field named with this keyword is optioned off, cursor progression for this field is ignored.

Note: When the cursor leaves a field using backward field-exit processing, the cursor moves to the first
field on the display that has the exited-field name specified on the FLDCSRPRG keyword. For the
DDS in if backward field-exit processing is used to leave field 2, the cursor moves to field
3.

SFLCSRPRG is the keyword used for subfile cursor progression. The DDS for subfiles looks like this:

A R SFLO1 SFL

A s1 10A B 5 5SFLCSRPRG

A S2 10A B 5 25

A R CTLOL SFLCTL(SFLO1)

A SFLPAG(5) SFLSIZ(20) SFLDSP

Figure 4. DDS for Subfile-Level Cursor Progression

The SFLCSRPRG keyword causes the cursor to move from a field in a subfile record to the same field in
the next displayed subfile record. Without SFLCSRPRG, the cursor moves from a field in a record to the
next field in the same record. When the cursor leaves field S1 of the first record of the subfile, it goes to
S1 of the second record of the subfile. Without the SFLCSRPRG keyword, the cursor goes to field S2 of
the first record. When the cursor leaves S2, it goes to S1 of the next record because S2 does not have the
SFLCSRPRG keyword. This keyword is not allowed with subfiles that use field selection. It cannot be
used with horizontal subfiles. When the cursor is on S1 of the last SFL record displayed, the cursor
moves to the next input field below the last SFL record. If there are no remaining SFL fields, the cursor
moves to the top of the display.

Note: The FLDCSRPRG keyword and the SFLCSRPRG keyword are ignored on displays that are attached
to a controller that does not support an enhanced interface for nonprogrammable work stations.

30 Application Display Programming V5R4

Defining Attributes for Entry Fields

An entry field’s leading field attribute is changed to a specified attribute when the cursor enters the field.

The DDS for the field looks like this:

P U PUURE SUUIY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO
A F1 10A B 3 4ENTFLDATR(*CURSOR (*DSPATR CS))
A F2 10A B 13 4ENTFLDATR(*NOCURSOR (*COLOR RED))

ENTFLDATR tells the system to change the attribute of the field when the cursor enters the field.
*CURSOR and *NOCURSOR are used to specify whether the cursor is visible when it enters the field. If
the *NOCURSOR option is specified, the cursor row and column values in the input-output feedback area
indicate the first position in the field. You can also specify a color or an attribute.

Note: The ENTFLDATR keyword is ignored on displays that are attached to a controller that does not
support an enhanced interface for nonprogrammable work stations.

Protecting Entry Fields Using Edit Masks

The EDTMSK keyword is for fields with EDTCDE or EDTWRD keywords. When the field is displayed,
certain areas of the field will be protected. You define which areas to protect.

The DDS for the field looks like this:

P PO DU SO SO e U U SR SR PRI SUI PO SO S
A F1 6 0B 3 4EDTWRD(' / / ')
A EDTMSK(' & & ')
A F2 6 0B 4 4EDTCDE(Y)
A EDTMSK(' & & ')

The ampersand (&) represents a protected part of the field. A blank represents an unprotected part of the
field. The length of the edit mask must equal the display length of the field. The number of unprotected
positions must at least equal the program length of the field. You must only protect nonnumeric data
because protected data is not returned if the field is changed. Wherever there is an &,; that part is
protected no matter what data is in the field.

The first field has the slash (/) characters protected in a date. For the second field, the / in the date is
always protected.

Keyboard functions on displays attached to a controller that supports an enhanced interface for
nonprogrammable work stations are the same for edit-mask fields as they are for continued-entry fields.

Note: The EDTMSK keyword is ignored on display stations attached to a controller that does not support
an enhanced interface for nonprogrammable work stations.

Specifying Right-to-Left Display Processing
You can specify that records in a display file be written in the right-to-left direction by using the Display
Right-to-Left (DSPRL) keyword. This keyword is allowed only at the file level.

shows an example of the DDS coding.

P PO DI SO SO e O TR SRR SR PRI SR - PR S S
A DSPRL
A R RECORD
A FLD1 20A 5 5')Customer Name(:'

Figure 5. Sample DDS for Right-to-Left Display Processing

Chapter 2. Defining Your Display in a Display File 31

The DDS in [Figure 5 on page 31| produces this output on the display:

: (emaN remotsuC)

Notice that the left and right parentheses in the DDS are reversed; this is so they appear correctly on the
display. All symmetrical characters have to be specified in this way.

If your application program uses one display file with the DSPRL keyword and another display file with
the WINDOW keyword, make sure that the display file with the WINDOW keyword also specifies the
DSPRL keyword. Otherwise, the display assumes the orientation of the display file that has the
WINDOW keyword.

If you specify the DSPRL keyword, the cursor moves from right to left when you enter data. Therefore, it
is not necessary to use the CHECK(RL) keyword. If you specify CHECK(RL) and DSPRL, the
CHECK(RL) keyword is ignored.

The DSPRL keyword causes all records in a display file to be written in the right-to-left direction. You
cannot specify that individual records be written in the left-to-right direction.

If you specify the ERRMSG or the ERRMSGID keywords with the DSPRL keyword, the messages
associated with these keywords display in the left-to-right direction.

Specifying Word Wrap for Fields

Word wrap is the function that automatically moves the last word in a field down to the next line in the
field if the word runs beyond the right margin of the field. To specify the word wrap function for a
named field, use the word wrap (WRDWRAP) keyword. This keyword can be used at the file, record, or
field level. It can only be used with input-only (I) or output/input (B) fields.

Notes:

1. This function is available only for display stations attached to a controller that supports an enhanced
interface for nonprogrammable work stations.

2. The Reverse key and the Close key cannot be used in a word wrap field.

3. When word wrap is used and the keyboard is in insert mode, null characters are not shifted to the
right; they are replaced.

Word wrap is not allowed for these fields:
* DBCS-only fields

e Pure fields

* Either fields (with double byte)

* Open fields with SBCS data

Word wrap is not allowed with the following field types or features:
* Signed numeric

* Numeric only

* Digits only

* Magnetic Stripe Reader (DSPATR(OID))

* Light Pen (DSPATR(SP))

* Right-justify

* Mandatory fill

32 Application Display Programming V5R4

Self-check (M10F/M11F)

* Dup allowed

Right-to-left cursor movement (CHECK(RL))

Right-to-left, top-to-bottom cursor movement (CHECK(RLTB))

If all the data cannot fit within a word wrap field without splitting words, the word wrap function for
that field is ignored. The data is written as if word wrap had not been specified. The subsequent
operation of the field is also as if word wrap were not specified.

Word wrap may be specified on fields that are contained on a single line. In this case, when the keyboard
is in insert mode, null characters are not shifted to the right; they are replaced.

Specifying Word Wrap for Fields—Tips
Some things to consider when using the word wrap function:

* The total length of the input field should allow for character positions at the ends of lines or segments
to be used for padding when a wrap occurs. If a field is too short, errors will occur or word wrap will
be turned off.

* The length of each line or segment should be as large, or larger than the longest word that may be
entered in the field. If a line or segment is too short, errors will occur or the data may be shifted down
to the last line or segment.

* Extra blanks that are inserted to make a wrap occur are removed when data is returned to your
program.

Emphasizing Fields
You can emphasize a field of a record on the display by specifying the following in the DDS for the file:

Note: Any function not supported for your display station is ignored.

Table 5. DDS for Emphasizing Fields

Type of Emphasizing DDS keyword
Underlining a field (the default for input fields) DSPATR(UL)
Placing vertical separators between the characters in a field DSPATR(CS)

Highlighting a field by displaying it with greater intensity than is normally used on DSPATR(HI)
the display

Reversing the image of a field from light on dark to dark on light or from dark on DSPATR(RI)
light to light on dark

Making the data in the field invisible to the display station user DSPATR(ND)
Placing the cursor at a specific field DSPATR(PC)
Blinking a field when it is displayed DSPATR(BL)

Another way of specifying attributes for a field is by using a program-to-system field parameter on the
DSPATR keyword. Your application program uses the program-to-system field to set the display
attributes or protection attribute for the field to which the DSPATR keyword applies.

[Figure 6 on page 34 shows an example of the DDS coding for program-to-system fields:

Chapter 2. Defining Your Display in a Display File 33

P U PUURE SUUDY JUUIE SO FUNUE SUDY SUPUE TN ST SR : SUUIE SR SU

A R RECORD

A FLD1 5A 2 2DSPATR(&PFLD1)
A FLD2 5A 2 9DSPATR(&PFLD2)
A PFLD1 1A P

A PFLD2 1A P

Figure 6. Sample DDS for Program-to-System Fields

One program-to-system field may be used for multiple fields within a record. Only one
program-to-system field can be used per field. You cannot specify the following attributes using the
program-to-system field:

MDT Set changed data tag when displayed
OID Operator identification
PC Position cursor

SP Select by light pen

For the valid hexadecimal values that your program can pass to the program-to-system field, see the
topic in the iSeries Information Center.

Adding Color

You can design your displays for use on display stations that show color. The DDS keyword COLOR
allows you to specify the following colors for fields: green, white, red, turquoise, yellow, pink, and blue.
This keyword is ignored if it is selected for a field displayed on a display station that does not support
color.

If the COLOR keyword is not specified in the DDS for the display file but the display station is specified
in the display station description as a color display station, displays that you have designed for display
stations that do not support color can also be used for the color display station. The keywords
DSPATR(UL) and DSPATR(RI), if specified on separate fields, function the same as they do for the 5250
display station. However, the keywords DSPATR(CS), DSPATR(HI), and DSPATR(BL) produce the
following colors on a color display station (the specified display attributes CS, HI, and BL are
suppressed):

Color Produced on the Color Display

Station when No COLOR Keyword Display Attribute Display Attribute Display Attribute
is Specified Selected: DSPATR(CS) Selected: DSPATR(HI) Selected: DSPATR(BL)
Green (normal)

Turquoise X

White X

Red, no blinking X

Red, blinking X X

Yellow X X

Pink X X

Blue X X X

Editing Output Fields

The system provides editing support that makes fields more readable when they are displayed. With the
system editing support, you can do the following:

* Suppress leading zeros

34 Application Display Programming V5R4

¢ Punctuate a field with commas and periods to show decimal column and to group digits by threes
* Show negative values with a minus sign to the left or right

¢ Show negative values with the letters CR (credit) to the right

* Show zero values as zeros or blanks

* Show asterisks to the left of significant digits to provide asterisk protection

¢ Show a currency symbol corresponding to the system value QCURSYM

The system provides this editing support with edit codes and edit words. Edit codes are a defined set of
editing patterns. In addition to those provided by the system, you may also define your own edit codes.
You identify edit codes by name, and the system edits a field according to the pattern defined by the
named edit code. Edit words are edit patterns that you define to produce the desired results. Edit codes
cover most commonly used editing requirements. You need to use the edit word support only for those
editing needs not covered by edit codes.

Edit codes are used as follows:

* If your application is using program-described data, your high-level language may allow you to
identify edit codes or create your own edit words.
* If your application is using externally described data, the edit code (EDTCDE) DDS keyword allows

you to identify an edit code, and the edit word (EDTWRD) DDS keyword allows you to define your
own editing pattern.

The system provides several edit codes. The editing patterns defined by these codes are contained in
[Appendix E, “Edit Codes.”]

Defining Your Own Edit Codes

You can define five edit codes to provide more editing function than is available with the i5/0S edit
codes, and to handle common editing functions that would otherwise require the use of an edit word.
These are called user-defined edit codes. For example, you may need to edit numbers that include
hyphens (like some telephone numbers), or more than one decimal point. You can use user-defined edit
codes for these functions. These edit codes are named QEDIT5, QEDIT6, QEDIT7, QEDITS8, and QEDIT9
and can be referred to in DDS or a high-level language program by number (5, 6, 7, 8, or 9).

These edit codes are created by using the Create Edit Description (CRTEDTD) command. Edit
descriptions are always placed in library QSYS. They cannot be moved or renamed; only one occurrence
of each is allowed. Edit descriptions have an object type of *EDTD.

Even though they are user-defined edit codes, your system comes with a version of each one of them.
You can use these edit descriptions as they are, or you can delete them and create your own. The editing
performed by the IBM-supplied versions of these edit descriptions as well as a definition of the contents
of and the rules for using any user-defined edit code are described in[Appendix E, “Edit Codes.”|

Before using any of the user-defined edit codes, you should check its contents on your system, since it
may have been changed from the IBM-supplied version. The Display Edit Description (DSPEDTD)
command will display the contents of a user-defined edit code.

Changing a user-defined edit code description does not affect any application or display file that has
already been created using that edit description. If you want your application to use the changed edit
description, you must either create the high-level language program again (if the edit code is referred to
in the program) or create the file again (if the application is using an externally described file that
contains EDTCDE keywords).

Chapter 2. Defining Your Display in a Display File 35

Specifying Valid Screen Sizes

In some cases, you can use the following screen size condition names to select keywords and display
locations based on screen size:

* *DS3, 24 by 80 (5251 Models 11 and 12, 5291, 5292, 3179 Model 2, 3180-2, 3196, and 3197)

* *DS4, 27 by 132 (3180-2; 3197 Models D1, D2, W1, W2; 3477 Models FA, FC, FD, FE, FG, FW; 3487
Models HA, HG, HW, HC)

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197, 3477 Models FA, FC, FD,
FE, FG, FW, and 3487 Models HE, HD, HW, HC display stations attached to a 6040 or 6041 or
2638 local display station controller, or remotely attached to a 5294 or 5394 controller. The
display size for 27 by 132 mode is ignored for the DSPSIZ keyword unless these controllers are
specified.

These condition names can be used to place fields in different locations on different sizes of screens.
However, the fields must still be specified in the same order on each size of screen. For example, the
following DDS formats a display for both a 24 by 80 screen and a 27 by 132 screen:

P U PUURE SUUDY SN SN FUNUE SUDY SUPUE RN ST SR : SUUIE SR S

A DSPSIZ(*DS3 *DS4)
A .

A

A

A R RECORD

A NAME 20 5 2

A *DS4 3112

A ADDR 30 6 2

A *DS4 4102

Figure 7. Sample DDS for Two Display Sizes

Normally, the display files are set up for a 24 by 80 screen (default size). The DSPSIZ keyword specifies
which display sizes are valid for a file and indicates which sizes are the primary and secondary screen
sizes. (The primary screen size is the first or only DSPSIZ value.) On the DSPSIZ keyword, the screen size
can be specified as *DS3, *DS4, 24 80, or 27 132. For example, DSPSIZ (24 80) specifies a screen size of 24
by 80. When primary and secondary display sizes are specified, the display file is validated for both
sizes.

The screen size designated as the primary screen size should be the one with which the display file will
most often be used. A performance benefit will be realized by coding the DSPSIZ keyword in this
manner. Additional processing is performed when the actual screen size is the secondary screen size.

The screen size condition names let you improve the use of a single display file for any size screen. For

example, when you are using subfiles, you can specify 22 records per page for a 24 by 80 screen or 25
records per page for a 27 by 132 screen:

36 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO

*DS3 SFLPAG(22)

A DSPSIZ(*DS4 *DS3)
A .

A

A .

A SFLPAG(25)

A

A

A

A

Figure 8. Sample DDS for Subfiles for Two Display Sizes

You can also define your own screen size condition names.

Enabling Your Display to Be Printed

If the Print key is enabled for your display, the user can print the current display by pressing the Print
key. The parameter (or lack of parameter) you specify for the DDS PRINT keyword controls how your
display is printed:

Table 6. PRINT Keyword Results Using Print Key

Parameter Action

No parameter The output goes to the display station printer associated with this display (the
PRINTER parameter on the Create Device Description for Display (CRTDEVDSP)
or Change Device Description for Display (CHGDEVDSP)). If the operation to
the display station printer fails or if there is no display station printer specified,
the output goes to the printer file specified on the PRTFILE parameter on the
display station description. The default for the PRTFILE parameter is QSYSPRT.

File name and, optionally, library = The print operation is directed to the specified printer file. If the operation fails,

name it is directed to the default printer file, which is specified on the PRTFILE
parameter on the CRTDEVDSP or CHGDEVDSP command.

Response indicator Control returns to the program with the response indicator set on.

*PGM Control returns to the program which must check the attention identifier in the

input/output feedback area to determine which key was pressed.

The PRINT keyword can be used at the file level and also at the record level. When PRINT is specified at
the record level, several records with different forms of the PRINT keyword (or with no PRINT keyword)
may be displayed on the screen at the same time. The last record format written to the screen controls the
use of the Print key for the entire screen.

If you specify the PRINT keyword in any form, the user can print a display containing the message help.

The PRTKEYFMT parameter allows you to control what information is included when you print your
display:

e Output only

¢ Output with header information (rows and columns)

¢ Output with border information (title lines, which include the system name, date and time, and
formatted user and display device name)

* Output with both border and header information

The PRTKEYFMT parameter on the Change Job (CHGJOB) and Retrieve Job Attributes (RTVJOBA)
commands allows you to select how you want your Print key output to look.

When you change the device description of a display station printer (by using the CHGDEVPRT
command or the DLTDEVD and CRTDEVPRT commands), you should also change the device description

Chapter 2. Defining Your Display in a Display File 37

of the associated display station, using the PRINTER parameter on the CHGDEVDSP command. You
should do this even if the name of the printer, whose device description you changed, remains the same.

Defining Windows

There are applications that could make use of a window on the display to assist the user in entering data.

A window is information that overlays part of the current display and allows the user to read the
information inside the window. The remainder of the display is not overlaid by the window and can still
be read by the user.

You can create windows by using standard DDS or by using user-defined data streams. To use standard
DDS, see [Chapter 5, “Defining Windows with Display Files,” on page 115.|Examples are also available in
the QUSRTOOL library.

Using Program-Described Data

You can create a display file without using data description specifications. Such a display file then uses
program-described data, and has no record or field level descriptions of its own.

When you are using program-described data with a display file to communicate with one or more
display stations, only simple display formatting can be performed, and that formatting must be specified
in the high-level language program that is using the file. All field descriptions are defined and all
processing is performed in the program that uses the file. More than one display file can be opened to
the same display station at the same time within the same program, but only two can be used on the
same display station at the same time: one for input and one for output.

When a display file that uses program-described data is opened, the system treats the area on the display
as a single field. That is, the field length is the same as the record length. The record length is defined by
the program that is using the file, and stays the same from the time the file is opened until it is closed.
Indicators cannot be passed when records are passed from the program to a display station, or from the
display station to a program. Also, command keys cannot be used for program-described display files.

The space on the display is assigned to program-described display files as shown in the following
example.

Records for the first file used by the program appear on the first (top) part of the display. Records for the
second file appear on the display immediately following the area used by records in the first file.

Record from file A } First File Used By Program

Record from file B } Second File Used By Program

Unused Area

RSLH705-0

The record from file B starts at the beginning of the first full line after the last line of the record from file
A. If the record from file A does not completely fill its last line, the space is used by neither record and
must be accounted for when calculating the maximum record lengths. In program-described display files,
the maximum record lengths are:

 For an input file, the screen size minus 2

38 Application Display Programming V5R4

* For an output file, the screen size minus 2
* For an output/input file, the screen size minus 2

 For two files (one output and one input), the screen size minus 3

When a program-described display file is opened, it can be defined as:
¢ Input only

* Output only

* Input and output

Defining Input-Only Files
When an input-only file is opened, the record is initialized to a single blank field on the screen. The
cursor is positioned at the first position of the field and the user can type in any type of data.

When the program reads the record, the input is passed to the program. The record is not erased from
the screen. The cursor is again positioned at the first position of the record (field) and the keyboard is
unlocked when the program reads the next record. The user can then type in the next record over the
previous record.

Defining Output-Only Files

When an output-only file is opened, the record is initialized to a single blank field on the screen. When
the program writes a record to the file, the record is displayed and the keyboard is locked. The user must
press the Enter key before another record can be written to the file. Subsequent records written to the file
erase the currently displayed record because only one record can be displayed for the output file.

Defining Input and Output Files

When an input and output file is opened, the record is initialized to a single blank field on the screen.
The cursor is positioned at the first position of the file and the user can type in any kind of data.

The program that is using the file can read records or write records in any sequence. Whenever a record
is written to the file, the modified data tag is set off (to indicate that data was not entered into the field)
and the keyboard is unlocked. If the user then enters data into the field, the modified data tag is set on. If
the next operation is a write operation instead of a read operation, the data typed in by the user is
written over and the modified data tag is set off again.

Chapter 2. Defining Your Display in a Display File 39

40 Application Display Programming V5R4

Chapter 3. Working with Display Files in an Application

After you define your display file, you can use it in an application. This chapter discusses the operations
performed when a display file is used in an application.

Understanding How the System Allocates Resources

When a high-level language program uses a display file, several operations require that the system
allocate the resources needed to perform that operation. Allocating file resources causes the system to
obtain a lock on a display file when it is opened. Multiple users then cannot use the same display file in
conflicting ways. For example, the system will not allow you to delete a file while any application
program is using it.

File resources are allocated in two ways:

¢ The system performs the allocation whenever an operation is requested that requires it. The following
operations for display files require allocation:

— Open: The file resources include the file description and the display station. More information about
the open operation is found in [“Opening Display Files.]

— Acquire: The display station is allocated as a resource. More information about the acquire operation
is found in [“Acquiring a Display Station for I/O Operations” on page 42|

— Starting a program on a remote system: The file resources include session resources needed for
APPC/APPN.

 If you prefer to ensure that all the resources that are needed by a program are available before the
program is run, you may use the Allocate Object (ALCOBJ) CL command in the job prior to running
the program.

When allocating resources, the system waits for a predefined time if the resources are not immediately
available. If the resources do not become available within the time limit, the following happens:

* If you are using the ALCOB] command, the command fails.

* If your program is performing a file operation, that operation fails and an error message is sent to the
program message queue.

You may attempt to use the error handling functions of your high-level language to try the operation
again. For example, if an open operation fails because another job is using the display station associated
with the file, you could retry the open operation later when the display station is no longer being used.

The length of time that the system waits when allocating resources is specified on the ALCOB] command
and on the WAITFILE parameter of the CRTDSPF command. If the ALCOBJ command is used prior to
running a program, then the value of the WAITFILE parameter is ignored because resources are available.
If your application has error handling procedures for display station errors occurring on display files, you
should specify a value other than *IMMED to allow the system to recover from the display station error.
The system recovery procedures for the display station must be completed before your program can
recover from errors due to the allocation of resources.

Opening Display Files

The open operation connects a display file to a program for processing.

When a display file is opened, usually one or more display stations are implicitly acquired, or
automatically prepared for I/O operations, for the display file:

© Copyright IBM Corp. 1997, 2006 41

Table 7. Display Stations Implicitly Acquired When Display Files Are Opened

How the Display File is
Defined When Opened Other Specifications Display Station Implicitly Acquired

Defined with a single *REQUESTER specified Display station at which the user requested the program
display station
*REQUESTER not specified Display station specified on the DEV parameter of the
CRTDSPFE, CHGDSPF, or OVRDSPF command

Defined with multiple Opened by a CL program All display stations specified on the DEV parameter of

display stations the CRTDSPF, CHGDSPF, or OVRDSPF command
Opened by any high-level ~ The first display station specified on the DEV parameter
language other than CL of the CRTDSPF, CHGDSPF, or OVRDSPF command

Defined with no display - None

stations

The value specified on the WAITFILE parameter for the CRTDSPF, CHGDSPF, or OVRDSPF command is
used to determine how long the open operation should wait for file resources to become available so they
can be allocated. If a file resource, such as a display station, does not become available and the wait time
specified ends, the open operation fails.

Implicitly acquiring a display station when the file is opened results in the following:
* The screen is cleared completely and the cursor is placed in the upper-left corner of the display.
* The keyboard is unlocked.

Any display station to be implicitly acquired at the open operation must be varied on. Switched-line
display stations can also be acquired if they are in a vary-on-pending state. Also, a display station other
than the *REQUESTER display station cannot be acquired if it is signed on.

Acquiring a Display Station for I/0 Operations

The system implicitly acquires, or automatically assigns, a display station to a display file when the
display file is opened. However, you may also acquire additional display stations for your program using
the acquire operation. The acquire operation is used in multiple display file applications or if you are
performing error recovery in your application.

A successful acquire operation results in the following:
* The screen is cleared completely and the cursor is placed in the upper-left corner of the display.
* The keyboard is unlocked.

The value specified for the WAITFILE parameter on the CRTDSPF, CHGDSPF, or OVRDSPF command is
used to determine how long the acquire operation should wait for a display station to become available
so it can be allocated. If a display station does not become available and the wait time ends, no display is
acquired.

A display station cannot be allocated unless it is varied on. Switched-line display stations can be allocated
if they are in a vary-on-pending state. Also, a display station other than the *REQUESTER display station

cannot be allocated if it is signed on.

The system allows only one *REQUESTER display station to be acquired to any display file, including a
multiple-device display file.

If an acquire operation is not successful, the release operation is the only valid operation to the display
station.

42 Application Display Programming V5R4

Obtaining Information about Display Files and Display Stations

You can obtain information about the open and I/O operations performed on an open display file, and
attribute information about a display station you are using.

Obtaining Information about Open and I/O Operations

After a display file is successfully opened, the system keeps track of the status of the file in feedback
areas.

The open feedback area contains information about the display file after it has been successfully opened,
including:

* Name and library of the display file

* Number of rows and columns on the display

* Name and library of the file after overrides have been applied

* Information about the display station defined for the file

The device definition list part of the open feedback area contains information about each device attached
to the display file.

The I/0 feedback area contains information about the I/O operations performed on the display file after
it has been successfully opened. The 1/O feedback area has two sections:

¢ The common feedback area contains information about I/O operations that were performed on the
file. This includes the number of operations and the last operation.

* The file-dependent feedback area contains file-specific information for display files, such as the
major/minor return code and the amount of data received from a display station.

As operations are performed on the display file, the feedback area is updated to reflect the latest status.
There is one feedback area for each open file. An exception is for shared files, which share feedback areas

as well as the data path between the program and the file. For more information on shared files, see
[“Sharing Display Files in the Same Job” on page 85

Feedback areas can be used to provide information when errors occur. For example, when an error occurs
with a display file, the program could determine predefined error handling operations based on the
major/minor return code in the file-dependent feedback area. More information on major/minor return
codes is available in [Chapter 8, “Handling Messages and Errors for Display Files."|

Some high-level languages on the system allow you to access the status and other information about the
file against which operations are being performed.

See [Appendix C, “Feedback Area Layouts for Display Files,”| for a description of all the information
available from the feedback areas.

Obtaining Attribute Information about Display Stations

The get-attributes operation allows you to obtain the following information about a specific display
station:

Table 8. Information Available from the Get-Attributes Operation

Information Details
The specific model of the display Valid only when the display station is acquired to the file
station

The screen size of the display station | Valid only when the display station is acquired to the file

Chapter 3. Working with Display Files in an Application 43

Table 8. Information Available from the Get-Attributes Operation (continued)

Information Details
Device acquired indicator Indicates whether or not the display station is currently acquired to the file
Device invite status Indicates whether or not the display station is invited, and if so whether or

not the display station has data available; valid only when the display
station is acquired to the file

*REQUESTER display station indicator | Indicates whether or not the display station is the *REQUESTER display
station

Since the information supplied is also available in the open and input/output feedback areas for the
display station that is implicitly acquired when the file is opened, the get-attributes operation is most
useful for multiple display file applications. For more information on how to perform the get-attributes
operation, see the appropriate high-level language manual.

See |Appendix C, “Feedback Area Layouts for Display Files,”| for a description of all the information
available from the get-attributes operation.

Sending and Receiving Data

All data written to and read from the display by the application program is done with records. Records
consist of fields, which are individual items of data. The high-level languages in which application
programs are written have I/O statements that give data to the system to be written to the display and
receive data from the system that it read from the display in the form of records.

The I/0O statements of the high-level languages also refer to record formats, which are defined using
DDS. On output, a record format describes how the data given by the program is to be presented on the
display as well as how the data is to be processed before presenting it. On input, the record format is
used to control some display functions, to extract the program data from all the data which is on the
display, and to present that data back to the application program.

Information about DDS keywords
This section uses DDS keywords that control sending and receiving information to the display. For
more information about specific DDS keywords, see the topic in the iSeries Information
Center.

Determining Which Record Formats Are Active on a Display

The system maintains the active record format table, a table of all record formats that are currently on
the display. Read operations may take place against only those record formats that are in the active
record format table. Certain DDS keywords cause records in the table to be altered.

A record format is added to the table when a write operation that contains the record format is
performed. A record format is removed from the table when a read operation can no longer be correctly
performed for this record.

The active record format table is cleared whenever the display is cleared.

Writing Output to the Display

A write operation passes a record from the program to the system. The record format in the display file
contains the information necessary for the system to handle the record. The write operation results in the
following:

44 Application Display Programming V5R4

Write Operation

HELLO HELLO
_— _—
74/ B | N AU /7 10\ 74/ B | W RN
Clears screen Writes record Unlocks
to screen keyboard

RV2W010-1

Placing Records on the Display
One record format can occupy an entire screen or the screen can be divided to display more than one
record format.

If a record is displayed on more than one line, the following rules apply:

* The lines must be consecutive lines on the display. For example, if one record occupies two lines and
the record begins on line 2, the record must continue on line 3.

* Only a beginning attribute character can occupy line 1, position 1.

* If only the ending attribute character for the last field in a record is in position 1 of the next line,
another record format can begin on that same line.

* Only one record can occupy a line on the display at a time. If you want to display a record format that
overlaps one or more lines of a record format already on the display, specify *NO for the clear lines
(CLRL) keyword. CLRL(*NO) clears the common lines before displaying the new record format.

The following three figures show how screens can be divided when the CLRL keyword is not specified:

Chapter 3. Working with Display Files in an Application 45

Record Format A

RSLH199-0

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 1 of 3)

Record Format A

Record Format B

RSLH197-0

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 2 of 3)

46 Application Display Programming V5R4

Record Format A

Record Format D

Record Format B

RSLH198-0

Figure 9. Valid Placement of Records on a Screen When the CLRL Keyword Is Not Used (Part 3 of 3)

The following figure shows how screens cannot be divided when the CLRL keywords is not specified:

Record
Format B

Record
Format A

(Fields from diifferent record formats cannot e displayed on the same line.)

Record Format A

N
A

Iy

Record Format B

T

EN

Record Format A &

—Record Format A

— Record Format B B

N

(Fields from different record formats cannot be displayed on the same line.)

RV2W048-0
Figure 10. Wrong Placement of Records on Screen When CLRL Keyword Not Used

Understanding Which Records Do Not Occupy Space on the Display

The following types of records do not occupy space on a display but are assumed to be at line 0:
* Records with no fields defined
* Records with only hidden, program-to-system, or message fields

Chapter 3. Working with Display Files in an Application 47

* Records with the CLRL keyword specified and with no input-capable fields

The system keeps track of only one of these records at a time. If an output operation for a record
assumed to be at line 0 replaces another record assumed to be at line 0, you can no longer issue an input
operation for the replaced record.

Changing Record Formats on a Display
The formats displayed can change while a file is being processed because information on a display can be
deleted when new formats are displayed.

When your program displays a new record format for output or to allow input, the existing display is
usually erased before the new record format is displayed. For example, if three record formats are on the
display at the same time and you write another record to the display, the three record formats on the
display are erased. Several DDS keywords, such as the OVERLAY keyword, let you control the displaying
of records and input fields on input and output operations. For more information about these DDS
keywords, see [“Overlaying and Erasing Record Formats on a Display” on page 49 and |“Clearing a
[Specified Number of Lines” on page 53]

In the following example, the fields are defined for a record format as follows:

¢ Fields from record format A occupy lines 1 through 4.

* Fields from record format B occupy lines 5 through 7.

* Fields from record format C occupy lines 8 through 10.

* Fields from record format D, which has the CLRL keyword specified for it, occupy lines 5 through 9.

In the following illustration, record formats A, B, and C are displayed first. When record format D is
displayed, it replaces record formats B and C.

48 Application Display Programming V5R4

Lines

1
2
i Record Format A
O
6 Record Format B
7
8
9 Record Format C
10 |]
1
12

¢ Record format D is displayed

Lines
1
2
z Record Format A
BT emoeeieoeeeiooieiooiooolooooeooooooooo
6
7
8 Record Format D
I
10
11
12

RSLH700-0

Figure 11. Replacing Record Formats

If record format D did not have the OVERLAY keyword specified for it, the following would have
happened in the previous example:

* Record format A would also have been deleted.

* Lines 5 through 7 of record format B would have remained on the display. The data in any fields of

record format B overlaid by record format D would have been changed. (see|“Clearing a Specified|
[Number of Lines” on page 53|for more information).

Deciding the Order of Record Formats Written to the Display
To improve performance, records containing input fields should be sent to the display station in the order
in which they appear on the display.

In if record formats A and B both contain input fields and appear on the same display, record
format A should be sent to the display first.

Overlaying and Erasing Record Formats on a Display

To avoid erasing the existing display when your program displays a new record format for output or to
allow input, you can specify the OVERLAY keyword. The OVERLAY keyword causes only those records
that are completely or partially overlapping to be erased; all other records remain on the display.

Note: The OVERLAY keyword does not prevent the screen from being erased if it is in effect for the first
write operation after a file is opened unless the DDS keyword ASSUME is specified for any record
format in the display file.

You can use the OVERLAY keyword to display information from your application that needs to be
presented together but naturally falls into two or more pieces. For example, you could use one record
format in your application to present information for a state at the top of a display and another record
format to provide the information for a particular region within that state.

Chapter 3. Working with Display Files in an Application 49

To place two or more records on the display at the same time, separate the write operations for your
display from the read operations. Then, when you perform each write operation, the system takes the
data from the record that you have provided it, combines it with the information specified in the record
format, and places it on the display. You can lock the keyboard until the display is ready to perform the
read operations by doing one of the following:

* Specify the LOCK keyword on all the record formats
* Specify *YES for the Defer Write (DFRWRT) parameter for the display file

You can use multiple record formats when you want to present lists of information in a subfile to the

user. A subfile is a group of records that have the same record format and are read from and written to a
display station in one operation. For more information about subfiles, see|Chapter 4, “Displaying Groups|
lof Records Using Subfiles,” on page 87.|

To erase certain records from the display when you overlay records, use the ERASE keyword with the
OVERLAY keyword. The following diagram shows the effect of the OVERLAY and ERASE keywords on
an output operation:

Before n After
A A
Put D
B with OVERLAY . D
Not Used
C c

Put D A
with OVERLAY
and ERASE C D
Not Used
RV2W032-1
Record format B is erased because record format D overlaps it, and record format D is displayed.

Record format D did not use all of the space record format B previously used so it does not
overlap record format C.

A Record format B is erased because record format D overlaps it and record format C is erased
because ERASE C is specified. Record format D is displayed, and part of the display is no longer
in use.

Starting Your Record Format on a Specific Line

To start your record format on a specific line, use the starting line number (SLNO) keyword. On the

SLNO keyword, you can specify one of the following:

* The actual starting line number for the record format (a value from 1 to 27). When you specify an actual line
number, the system adjusts the line numbers for all fields in a record by the specified value minus 1.

* A variable starting line number (*VAR), which allows you to specify a starting line number value in your
high-level language program at run time. Depending on the value specified in your program, the
following occurs:

Table 9. Results of SLNO(*VAR) Values

Value Specified Results

0 or no value specified A starting line number of 1 is assumed.

50 Application Display Programming V5R4

Table 9. Results of SLNO(*VAR) Values (continued)
Value Specified Results

Value exceeds the number of lines on The system sends a message to the program and the I/O request is not
the screen or is a negative value performed.

The starting location for the field for =~ A warning message (severity 10) is issued at file creation time. At run time,

at least one display size is row 1, an error message is issued if the screen size being displayed contains a field

column 1 starting in row 1, column 1, and the variable starting line number is set to 1
by the program.

Each programming language provides a different way to set and add to the starting line number. See the
appropriate manual for the language you are using.

The system adjusts the line numbers for each field in the record format by the specified value minus 1. If
the resulting line number exceeds the screen size, the field is not displayed. In addition, if any part of a
field goes beyond the last line on the screen, the field is not displayed.

The SLNO keyword cannot be used in a record format that contains the record-level keywords ASSUME,
KEEP, USRDEN, SFL, or SFLCTL, or in a display file that contains the file level keyword PASSRCD.

However, the SLNO keyword may be used with several other DDS keywords:
* If the CLRL keyword is used with the SLNO keyword and the CLRL keyword specifies a number of
lines to clear, clearing starts with the starting line number on the SLNO keyword.

* If you use the SLNO(*VAR) keyword with the OVERLAY keyword but without the CLRL keyword and
then write the record several times, each time with a different starting line number, the previous record
is deleted before the new record is displayed.

e If the SLNO keyword is used with the PUTOVR, PUTRETAIN, ERRMSG, or ERRMSGID keyword in
effect, the system checks the starting line number to determine if the previous output operation to the
record had the same starting line number:

— If the starting line number is the same, the action specified by the PUTOVR, PUTRETAIN, ERRMSG,
or ERRMSGID keyword is performed.

— If the starting line numbers are not the same, the PUTOVR, PUTRETAIN, ERRMSG, or ERRMSGID
keyword is ignored, and the record format is displayed with the lines adjusted by the new value.

The following DDS shows an example of using the SLNO(*VAR) keyword:

Chapter 3. Working with Display Files in an Application 51

P U PUURE SUUDY JUUIE SO FUNUE SUDY SUPUE TN ST SR : SUUIE SR SU

A R ORDENT

A 1 36'ORDER ENTRY'

A 3 2'Enter customer number:'
A CUST 5 B +2

A 5 2'Enter order number:'
A ORDNBR 6 B +2

A 7 2'ITEM NUMBER'

A 7 18'DESCRIPTION'

A 7 A44'QUANTITY'

A R LINITM OVERLAY

A SLNO(*VAR)

A CLRL(*NO)

A ITEM 6 00 9 2

A DESCRP 20 0 9 18

A QTYORD 3 00 9 44

A R INPFMT OVERLAY

A 23 2'Enter item number:'
A ITMNBR 6 0I +2

A +5'Enter Qty:'

A QTY 3 01 +2

Figure 12. Sample DDS Source Showing Use of the SLNO(*VAR) Keyword

In this example, the record format ORDENT contains the prompt for an Order Entry display. When the
user enters a customer number and an order number, the following occurs:

1. The program writes the record format INPFMT to the display, which allows the user to enter an item
number and quantity ordered.

2. After the user enters the item number and the quantity, the program retrieves the description of the
item from a file and writes the record format LINITM to the display.

3. The program writes the INPFMT record format to the display to allow the user to enter another item
number.

The design of this display allows the user to enter the item number and quantity on the same line. As a
line item is entered, the program uses the LINITM record format to build the order on the display. The
SLNO(*VAR) keyword is used so the program can add a line to the display each time the LINITM record
format is written. The CLRL(*NO) keyword has to be specified on the LINITM record format so that the
previous record is not deleted when a new record is written.

When the LINITM record format is first written to the display, the value of *VAR is 1 so the fields are
displayed on line 9. On each successive output operation to this record format, the program adds 1 to the

starting line number so that a new line item is added to the display.

After the user enters two item numbers and quantities, the display looks like this:

52 Application Display Programming V5R4

4 N

ORDER ENTRY

Enter customer number: 34785

Enter order number: 1J2340

ITEM NUMBER DESCRIPTION QUANTITY

96321 Pliers 115

86768 Saws 125

Enter item number: Enter Qty:
N — J

The SLNO keyword is most efficient when you want the user to always enter data on the same line and
yet build a display of previously entered records, as shown in the preceding example. However, for a
typical inquiry function where you want to display more than one record at a time, the use of a subfile is
more efficient.

Clearing a Specified Number of Lines

To clear a certain number of lines on the screen before you write a record format to the screen, use the

clear lines (CLRL) keyword. You can specify the CLRL keyword even when the record contains no fields

that are displayed. Clearing begins with the starting line number, and the value specified on the CLRL

keyword determines the number of lines to be cleared (any value from 1 to 27). The starting line number

is determined as follows:

* If the SLNO keyword is not specified, the field locations determine the starting line number.

* If the SLNO(nn) keyword is specified, nn is the starting line number.

* If the SLNO(*VAR) keyword is specified, the starting line number defaults to 1 at the time the display
file is created and can be changed by the application program at the time it is run.

You can also specify the following values to clear specific lines:
Value Lines Cleared
*END All lines from the starting line to the end of the display

*NO Only the lines of the display that are used by the overlapping record format

*ALL All lines of the display. Since the default action is to clear all the lines of the screen, you do not
normally have to specify CLRL(*ALL) unless you also specify a DDS keyword, such as
USRDSPMGT, that changes this default.

Note: When you use the CLRL keyword, you should specify *YES for the RSTDSP parameter on the
CRTDSPF or CHGDSPF command; otherwise, data on the display may be lost if the file is
suspended.

You can use the CLRL(*NO) keyword to prevent an overlapped record from being deleted when the
overlapping record is written to the display. If you use this keyword, any records being displayed that
are to be overlapped are not deleted from the screen; the new record overlays them entirely or partially.
There is a performance advantage to using CLRL(*NO) if you have a display that contains constants and
data that is repeatedly sent to the screen. By sending the constants as a separate format and by using

Chapter 3. Working with Display Files in an Application 53

CLRL(*NO) for the format containing only the data, you can reduce the time required to send the record
format to the display. For example:

Lines
1
2
3
4 Record Format A (lines 1 through 4)
g Record Format B (lines 5 through 8)
g Record Format C (lines 7 through 12)
O
10
"o
12

RSLH701-0

If CLRL(*NO) is specified on record format C, all fields of record format B not overlapped by C remain
on the screen when record format C is written to the screen. If the OVERLAY or PUTOVR keyword were
used for this same situation, record format B would be deleted when record format C is written to the
screen because record format C overlaps record format B.

The following considerations apply to the CLRL keyword when used with other DDS keywords:

* If the CLRL keyword is specified in a record format with input-capable fields, any input-capable fields
in the overlapped records are no longer input-capable. Fields in all other record formats that are not
overlapped remain input-capable. If you do not want these fields to remain input-capable, you should
use the PROTECT keyword on the record format along with the CLRL(nn) keyword.

* Records with the CLRL keyword and with no input-capable fields are assumed to be at line 0. Thus, if
the CLRL(nn) keyword is specified in a record format that has no input-capable fields, all records
already on the display remain on the display and their input-capable fields remain input-capable.
Because records that start at line 0 are not known to the system, the ROLLUP and ROLLDOWN
keywords do not work for these records. Also, these records may not be cleared completely when they
are overlapped by other records that have the OVERLAY keyword specified. The lines needed for the
overlapping record are cleared whereas the lines not needed for the overlapping record remain on the
screen.

¢ The CLRL(nn) keyword is not allowed in a record format with the record-level keywords ASSUME,
KEEP, USRDEN, SFL, or SFLCTL, or in a display file with the file level keyword PASSRCD.

* The CLRL(nn) keyword is ignored if either the ERRMSG or ERRMSGID keyword is in effect.

e If the CLRL(nn) keyword is used and the PUTOVR or PUTRETAIN keyword is in effect, the clearing of
lines may conflict with the PUTOVR or PUTRETAIN function. The PUTOVR or PUTRETAIN keyword
requires that the fields being overridden be on the display whereas the CLRL(nn) keyword may clear
those fields first. If a record becomes unavailable for input because of the CLRL(nn) keyword, the
input-capable fields remain input-capable if the PUTOVR keyword is in effect. However, the system
issues a message if the program attempts to read such a record. Although the CLRL(nn), CLRL(*NO),
and CLRL(*END) keywords imply the OVERLAY keyword, the following example illustrates the
differences between the CLRL and OVERLAY keywords:

54 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO

A R RECORD1

A FLD1 10 I 4 5

A FLD2 10 I 5 5

A 5 21'Enter employee number'
A R RECORD2A OVERLAY

A FLD3 1 B 5 2

A 6 2'Required field'
A 7 2'Enter 1, 2, or N'
A FLD4 19 0 8 2

A R RECORD2B CLRL(4)

A FLD5 1 B 5 2

A 6 2'Required field'
A 7 2'Enter 1, 2, or N'
A FLD6 19 0 8 2

A R RECORD3 OVERLAY

A FLD7 10 0 815

A

A

A . .

A FLD8 10 B12 4

A R RECORD4 CLRL(*NO)

A FLD9 42 111 2

Figure 13. Sample DDS Source Showing Difference between CLRL and OVERLAY

The following results occur if the program performs the output operations on the record format in the
following order:

Table 10. Results from CLRL Example

Order of Record Formats Results

RECORD1 RECORD3 Lines 4 through 12 are deleted when RECORD2A is written to the display because

RECORD2A RECORD2A overlaps RECORD1 and RECORD3, and only the OVERLAY keyword is
specified for RECORD2A.

RECORD1 RECORD3 Lines 5 through 8 are cleared before RECORD2B is written to the display because the

RECORD2B CLRL(4) keyword is specified. FLD1 in RECORD1 and any input-capable fields in

RECORD3 (lines 9 through 12) remain on the screen but are no longer input-capable
because part of RECORD1 and RECORD3 is overlapped by RECORD2B.

RECORD1 RECORD3 RECORDI1 remains on the screen when RECORD3 is written to the screen because the

RECORD4 RECORD2A OVERLAY keyword is specified in RECORD3. When RECORDA4 is written to the
screen, it uses part of line 11, which is also used by RECORD3, and because
CLRL(*NO) is specified in RECORD4, RECORD3 remains on the screen. However, the
system is no longer aware that RECORD3 is on the screen so when RECORD2A is
written, only lines 4 through 8 are cleared; the part of RECORD3 below line 8 remains
on the screen.

Rolling Data between Two Lines on a Display

If you are using a high-level language program, you can roll the data between two lines on the display
up or down by specifying the allow roll (ALWROL) keyword. The lines vacated by the rolled data are set
to nulls and another record format can be written to those lines.

In your program, you must specify the following:

* The starting line number and the ending line number of the lines to be rolled. The start and end line numbers
define a window on the screen.

* The number of lines to be rolled. If the number of lines to be rolled is positive, the data is rolled up. If the
number of lines to be rolled is negative, the data is rolled down.

* Whether the roll is to be up or down.

Chapter 3. Working with Display Files in an Application 55

In the window, the lines of data are rolled up (or down) by the number of lines you specified in your
program. The data rolled off the window is gone. The input-capable fields of any record format partially
or completely within the window are no longer input-capable. After the roll, your program cannot issue
an input operation to any record format within the window.

The following example shows a display before a program-controlled roll occurs, and the same display
after a program-controlled roll occurs. The following is specified in the program:

* The starting line number is 8
* The ending line number is 18
* The number of lines to be rolled down is 6.

Display before the Roll Operation

UPDATE CUSTOMER ORDER RECORD Line 1
To end this program, press CF1 Line 3
Record
format
Enter your operator number: Line 8 !
Enter customer number: Line 10
Press CF3 to display option menu Line 12

RSLH165-0

Display after the Roll Down Operation

56 Application Display Programming V5R4

UPDATE CUSTOMER ORDER RECORD Line 1

Unchanged
To end this program, press CF1 Line 3

[fem number ordered: Line 9 Record
format
Quantity ordered: Line 11 | 2
Enter your operator number: 25 Line 14
Enter customer number: 12345 .
Line 16
Press CF3 to display option menu
Line 18
Previous
lines 8
through 12
after being

rolled down

RSLH171-0

The ALWROL keyword cannot be used with the file level keyword PASSRCD or with the following
record-level keywords: KEEP, ASSUME, USRDFN, SFL, or SFLCTL.

If the ERRMSG, ERRMSGID, PUTOVR, or PUTRETAIN keyword is in effect for the same output
operation in which the ALWROL keyword is in effect, the system issues message CPF5014. If an
ERRMSG, ERRMSGID, PUTOVR, or record level PUTRETAIN keyword is not in effect, the message is not
issued. However, if the PUTRETAIN keyword is specified at the field level with option indicators, the
message (CPF5014) is issued if the option indicators for the PUTRETAIN keyword are on or off.

Overriding the Attributes or the Content of a Field

To send only some of the data and attributes of a record to the display, use the following keywords:
¢ Put with explicit override (PUTOVR)

* Override data (OVRDTA)

* Opverride attribute (OVRATR)

By sending less data or attributes, you can shorten the response time at the display, especially for
remotely attached displays.

When the PUTOVR keyword is specified, the following occurs:
* The display attributes are overridden for those fields with the OVRATR keyword in effect.
* The data content is overridden for those fields with the OVRDTA keyword in effect.

* The output operation functions as if the OVERLAY keyword were also in effect, even if the OVERLAY
keyword is not specified.

The PUTOVR keyword cannot be specified in a record format that contains the PUTRETAIN keyword nor
can it be used for subfile records.

The display attributes that can be overridden by the OVRATR keyword are:
CHECK(ER) End of Record
CHECK(ME) Mandatory enter

Chapter 3. Working with Display Files in an Application 57

DSPATR(MDT)

Set on modified data tag

DSPATR(PR) Protect
DSPATR(BL) Blink
DSPATR(CS) Column separator
DSPATR(HI) High intensity
DSPATR(ND) Nondisplay
DSPATR(PC) Position cursor
DSPATR(RI) Reverse image
DSPATR(UL) Underline

DUP Dup key capable

The following is an example of the PUTOVR keyword.

L R P T O DR JU ST TUNIS A DUPRP. U : UM DR AR
A R ITMRVW
A PUTOVR
A 1 35'ITEM REVIEW'
A 3 2'Item number:'
A ITMNBR 5 B +2
A 5 2'Item description:'
A ITMDSC 20 +2
A 10 OVRDTA
A 7 2'Item price:'
A ITMPRC 8 2 +2
A 15 OVRDTA
A 9 2'Warehouse Tlocation:'
A WHSLOC 3 +2
A 20 OVRDTA
A 11 2'Quantity on hand:'
A QTYOH 5 0 +2
A 25 OVRDTA
A OVRATR
A N25 30 DSPATR(HI)

Figure 14. Sample DDS Source Showing Use of the PUTOVR Keyword

The DDS describes a display that allows the user to enter an item number, and to review the item
description, the item price, the warehouse location, and the quantity on hand:

1.

On the first output operation, all fields are sent to the display, and all option indicators are off. The
PUTOVR keyword is ignored because the record is not already on the screen. On the first output
operation, the current field values in the program are displayed for the output fields. If your program
has not set any of these fields, the values will be whatever the high-level language used to initialize
the output buffer.

If an output-capable field must always have a specific value on the first output operation, you can use
the DFT or DFTVAL keywords to initialize the field to that value. When used on an output-capable
field with the PUTOVR and OVRDTA keywords the DFT keyword causes the system to place the
default value rather than the program value on the display when the record is first placed on the
display.

The user enters an item number. The program sets on indicators 10, 15, 20, and 25 and issues a
write-read operation to display the output fields. On the write operation, the PUTOVR keyword is in
effect because the record is already on the screen. Because the OVRDTA keyword is specified on the
ITMDSC, ITMPRC, WHSLOC, and QTYOH fields and because their option indicators are on, these
fields are the only data sent to the display.

58 Application Display Programming V5R4

If the user enters another item number and the data for a field already displayed does not change, the
program sets off the option indicator and does not display that field again. For example, assume that
for the second item number, the WHSLOC is the same as for the first item number. On the output
operation to display the information for the second item number, the program sets off indicator 20.
Therefore, the only fields sent to the display are ITMDSC, ITMPRC, and QTYOH because indicators
10, 15, and 25 are on.

For the QTYOH field, the program can change the attributes for the field without changing the data by
setting off indicator 25 and setting on indicator 30 before the output operation.

You can use the option indicators on the OVRDTA keyword to control which fields are sent to the
display. If no option indicators are used, all fields with the OVRDTA keyword specified are sent to the
display on each output operation because the OVRDTA keyword is in effect when the PUTOVR keyword
is in effect. In the preceding example, if no option indicators were used, all four fields would be sent to
the display on each output operation. You can also use the same indicator to control more than one field.

An alternative design for this same application is to use two record formats and send the constants to the
display in one record format and the variables in the other record format. You would have to use the
CLRL(*NO) keyword to prevent the record format containing the constants from being erased. However,
if the record format is already on the display, the use of the PUTOVR keyword provides the most
efficient approach.

The following examples illustrate how to use the PUTOVR keyword for efficient coding:

P PO DU SO S e RO TR S U DRI SR - PR S S
R PROMPT
CFO3(91 'Return')
PUTOVR
ERASEINP
OVERLAY
28'Efficient Coding Example'
2'FLD1'
7
2'FLD2'
7
OVRDTA
2'FLD3'
FLD3 5 7
15 OVRDTA
9 2'FLD4'
FLD4 5 9 7
OVRDTA
16 DSPATR(HI)
11 2'FLD5'
FLD5 5 11 7DFT('ABCDE")
OVRDTA
17 DSPATR(HI)
13 2'Constant 1'
OVRATR
18 DSPATR(BL)
15 2'Constant 2'
OVRATR
N19 DSPATR(ND)
17 2'Constant 3'
20 OVRATR DSPATR(RI)

FLD1 5 1

1O W W

FLD2 5

N~

> > >

Figure 15. Sample DDS Source Showing Efficient Use of PUTOVR Keyword

In the preceding example, the following happens:

Chapter 3. Working with Display Files in an Application 59

1. If the record format is not currently on the display, the PUTOVR, OVRATR, and OVRDTA keywords
are ignored when the record format is displayed. On subsequent output operations when the record
format is already on the display and the PUTOVR keyword is in effect, only the fields or constants
defined with the OVRATR or OVRDTA keyword are sent to the display. The ERASEINP keyword is
used because it is the most efficient way to clear all input fields, and the OVERLAY keyword is used
because it is required with the ERASEINP keyword.

2. FLD1 is an input field that is cleared each time the record format is displayed.

3. FLD2 is sent to the display each time the record format is displayed because its associated OVRDTA
keyword is unconditionally specified.

4. FLD3 is sent to the display on the first output operation. On subsequent output operations, FLD3 is
not sent to the display unless indicator 15, which is used to condition the OVRDTA keyword, is on.

5. FLD4 is sent to the display on each output operation because its associated OVRDTA keyword is
unconditionally specified. When the OVRDTA keyword is in effect, the attributes for the field are
always sent to the display. Indicator 16 is used to control the DSPATR(HI) keyword for FLD4.

6. On the first output operation, the default value of ABCDE appears in FLD5. On subsequent output
operations, a value from the program is displayed in FLD5 because its associated OVRDTA keyword
is unconditionally specified. Indicator 17 is used to control the DSPATR(HI) keyword for FLDS5.

7. Constant 1 is always displayed, but it is only sent to the display on the first output operation.
However, the attributes for the field are sent to the display each time the record format is written, and
option indicator 18 is used to control whether the field blinks.

8. Constant 2 is sent to the display only on the first output operation. However, the attributes for the
field are sent to the display each time the record format is written, and if option indicator 19 is off,
Constant 2 will not be displayed.

9. Constant 3 is sent to the display only on the first output operation. However, the attributes for this
field are not sent to the display on subsequent output operations unless indicator 20 is on. If option
indicator 20 is on when an output operation is done, Constant 3 is displayed in reverse image, and it
will continue to appear in reverse image regardless of the status of indicator 20 on subsequent output
operations.

The following example shows how the PUTOVR keyword can be used for an application in which the

user enters some information common to a group of records and then repeatedly enters detailed
information relating to specific records in the group.

60 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO
R HEADING TEXT('Header Display')
SETOF(88 'ERASEINP CTL')
CFO3(91 'Return')
1 2'HEADING INFORMATION'
DSPATR(HI)
1 60'CF3-End of Program'
2 60'CF2-New heading'

A

A

A

A

A

A

A

A HDING 5 I +2

A R DETAIL TEXT('Detail display')
A OVERLAY

A PUTOVR

A PROTECT

A 88 ERASEINP

A CFO2(92 'New header')
A 8 2'DETAIL DISPLAY'
A DSPATR(HI)

A 10 2'Input’

A FLDA 5 I +2

A 12 2'Output’

A FLDB 5 +2DFT(" ')

A OVRDTA

Figure 16. Sample DDS Source Showing Another Use of PUTOVR Keyword

In the preceding example, the following happens:

1. The program displays the HEADING record format, and then performs an input operation to the
record format to receive the HDING field as input. The SETOF keyword in the HEADING record
format sets off indicator 88, which is used to condition the ERASEINP keyword in the DETAIL record
format.

2. The program then displays the DETAIL record format. Because the OVERLAY keyword is in effect,
the HEADING record format remains on the display. The PROTECT keyword is also in effect so the
input field (HDING) in the HEADING record format is protected. Therefore, the user cannot change
this field when the DETAIL record format is displayed.

3. The ERASEINP keyword is conditioned by option indicator 88. Because indicator 88 is off the first
time the DETAIL record format is displayed, the ERASEINP keyword is not in effect. On subsequent
output operations, indicator 88 is set on and the ERASEINP keyword is in effect. Therefore, FLDA is
cleared on subsequent output operations. The option indicator is used on the ERASEINP keyword so
that it is not in effect the first time the DETAIL record format is displayed. Because the ERASEINP
keyword is processed before the PROTECT keyword, it would clear the HDING field in the
HEADING record format if it were in effect the first time the DETAIL record format is written.

4. FLDB is an output field that is sent to the display on each output operation because the OVRDTA
keyword is specified unconditionally. The DFT keyword with a value of blanks is used so the field
will not contain any data the first time the DETAIL record is displayed for a group.

Erasing All Unprotected Input and Output/Input Fields on the Display
To erase all unprotected input-capable fields, use the erase input (ERASEINP) keyword. The ERASEINP
keyword can only be used with the OVERLAY keyword.

To erase all unprotected input-capable fields that have their modified data tags on, specify *MDTON for
the ERASEINP keyword. To erase all unprotected input-capable fields whether their modified data tags
are on or not, specify *ALL for the ERASEINP keyword.

The ERASEINP keyword can improve response time because it clears fields rather than sends blanks to
the display. If the fields erased at the display do not have their modified data tags set on for the next
read operation, data is returned for those fields from the input save area. This is data saved by the
system from the previous return of the field from the display station.

Chapter 3. Working with Display Files in an Application 61

You can use the INZINP keyword at the record level with ERASEINP(*ALL) and PUTOVR to initialize
the input save area without sending data for the cleared fields to the display.

Resetting Modified Data Tags Associated with Records on the Display

To reset the modified data tags, use the modified data tag off (MDTOFF) keyword. The MDTOFF
keyword, which can only be used with the OVERLAY keyword, is processed before the next record is
displayed.

To reset only the modified data tags of the unprotected fields, specify *UNPR for the MDTOFF keyword.
To reset the modified data tags of all input-capable fields, specify *ALL for the MDTOFF keyword.

Keeping a Record or Field on a Display

The PUTRETAIN keyword is used to reduce the number of characters sent to the display. This keyword
can only be used with the OVERLAY keyword and can be used to change only the display attributes of a
field. Except for not sending data, all other functions are supported when the PUTRETAIN keyword is
specified.

Using the PUTRETAIN keyword at either the record format level or the field level can cause fields from
this record which were previously written to the display to remain on the display even if they are not
selected for this write operation. To avoid this, you can use the PUTRETAIN keyword at the field level
and define the field twice: once with option indicators as you want it to appear in the display, and once
with no option indicators and as a constant with a value of blanks. If the first field is not selected, the
second field is. The second field is displayed so the blanks erase the contents of the field that is not
selected.

Note: The ERRMSG and ERRMSGID keywords function as if the PUTRETAIN keyword were specified at
the record format level. That is, no fields are sent to the display, no field attributes for other fields
are changed, and no command keys are changed when the ERRMSG and ERRMSGID keywords
are in effect.

The following is an example of the PUTRETAIN keyword used at the record format level. The following
DDS describes a student search menu having three options. The option selected is highlighted. For
example, if option 1 is selected, the character string 1. By number is highlighted.

P U PUURE SUUDY JUDIE SN FUNUE SUUDY SUPUE RN ST JUN : SUUIE SR S

A R SELECT OVERLAY

A PUTRETAIN ERASEINP

A N44 1 2'STUDENT SEARCH MENU'
A N44 3 10'1. By number'

A 10 DSPATR(HI)

A N44 4 10'2. By name'

A 11 DSPATR(HI)

A N44 5 10'3. By address'

A 12 DSPATR(HI)

A N44 10 2'Select the number of the item to +
A search by:'

A INPUT 1 110 47

A 44 DSPATR(RI)

Figure 17. Sample DDS Source Showing Use of the PUTRETAIN Keyword

The following happens:

1. On the first output operation, all fields are sent to the display, and all option indicators are off. The
PUTRETAIN keyword is ignored because the record is not already on the display.

2. The user selects item 1, 2, or 3. When the program receives the input, it sets on indicator 10, 11, or 12,
depending on which item is chosen. If anything other than item 1, 2, or 3 is chosen, the program sets
on indicator 44.

62 Application Display Programming V5R4

On the next output operation, field 1, 2, or 3 is highlighted, or the input field is in reverse image,
depending on which indicator is on.

The data for all fields is not resent to the display but the field attributes are resent. No data is sent for
constants. To resend attributes for each output field or constant, 4 bytes are needed. To resend
attributes for each input-capable field, 9 bytes are needed. By using the PUTRETAIN keyword, you
reduce the number of characters sent to the display by 96, from 138 to 42. (These numbers do not
include protocol control characters needed to frame data.)

The ERASEINP keyword causes the user’s selection to be erased.

The following is an example of the PUTRETAIN keyword used at the field level. Here, the PUTRETAIN
keyword is used to keep input that is not valid and to reduce the number of characters sent to the
display. The following DDS describes a display containing an item’s name, color, shape, and size, and
asks for quantity. The user can change the values for color, shape, and size.

B R R A AR DU STy SR, U - JUMIE. ST ; JUPE JOPy AN
A R CHANGE OVERLAY
A 1 2'CHANGE MENU'
A N43 3 2'Change the underlined fields to +
A change the description.'
A 4 2'Item:'
A ITEM 20 0 412
A 44 PUTRETAIN
A 5 2'Quantity:'
A QTY 4Y 0I 5 12
A 44 PUTRETAIN
A 09 DSPATR(BL PC)
A 6 2'Color:'
A COLOR 10 B 6 12
A 44 PUTRETAIN
A 10 DSPATR(BL PC)
A 7 2'Shape:’
A SHAPE 106 B 712
A 44 PUTRETAIN
A 11 DSPATR(BL PC)
A 8 2'Size:'
A SIZE 16 B 812
A 44 PUTRETAIN
A 12 DSPATR(BL PC)
A 44 9 2'Choice:'
A 44 CHOICE 20 0 912
A 15 9 12' '

Figure 18. Sample DDS Source Showing Use of the PUTRETAIN Keyword

The following happens:

1.

On the first output operation, all indicators are off, so all the constants and the fields except CHOICE
and the constant field following CHOICE are sent to the display.

The user enters a quantity. The program sets on indicator 43. When the next output operation occurs,
indicator 43 prevents the second constant field from being resent.

When the user is to enter the quantity for another item, the program issues another output operation.
The attributes for the fields QTY, ITEM, COLOR, SHAPE, and SIZE are sent to the display. Field
selection prevents the CHOICE field from being sent to the display.

At least one field, in this case QTY, must be kept to prevent the entire record area from being erased.
If the user enters a quantity, color, shape, or size that is not valid, indicator 44 is set on so that the
input fields (QTY, COLOR, SHAPE, and SIZE) are not erased and so that the output field CHOICE is
sent to the display. In addition, the appropriate indicator, 9, 10, 11, or 12, is set on so that the input
field in error blinks and the cursor position is below the field. (The CHOICE field would show the
user valid choices for the field in error.)

Chapter 3. Working with Display Files in an Application 63

5. The CHOICE field and a constant field of blanks are defined for the same location. After the user
enters valid data, indicator 15 is set on, indicator 44 is set off, and the constant field initializes the
CHOICE field to all blanks.

Deferring the Write Operation Until a Read Request is Made

The DFRWRT parameter on the Create Display File (CRTDSPF) or Change Display File (CHGDSPF)
command allows you to specify how the system is to handle write operations. If you specify
DFRWRT(*NO), the program does not regain control until the write operation has displayed the data and
updated the input/output feedback area.

If you specify the default of DFRWRT(*YES) for the file, the program regains control after the output
record is processed. The program can then use the record area where the output was stored to start
processing the next write or write-read operation. The data is actually sent to the display only when a
read or write-read operation is issued or when the FRCDTA DDS keyword is in effect for a write-only
operation.

Using DFRWRT(*YES) on a display file improves systems performance; however, DERWRT(*YES) should

not be used in the following circumstances:

* If you want to find out immediately if the write operation was successful. An error associated with a
write operation for a file with DFRWRT(*YES) specified is issued only when the data is actually sent to
the display.

* If the time between the write operation and the read or write-read is long. For example, if the program
does several database operations after the write operation (before it issues a read or write-read
operation), the user will not see the data while the database operations are performed.

e If the file is closed after the write-only operation and the KEEP keyword is not specified. If the display
file has the DDS keyword KEEP specified in any of its records, the data accumulated from the
write-only operation is displayed when the file is closed. However, if the KEEP keyword is not
specified, the data may never be displayed.

The DFRWRT parameter has no effect on the following:

* Write operations using user-defined data streams

* Write operations to display files that use program-described data
* Record formats for which the FRCDTA DDS keyword is in effect

Specifying Default Values for Fields
Both DFT and DFTVAL keywords are used to specify the default values to be displayed for fields.
However, there are differences between the way the two are used.

The DFT keyword can be used with constant, input, output, and output/input fields and cannot be
optioned. When it is used with output or output/input fields the OVRDTA and PUTOVR keywords must
also be specified. If the record is not on the display, this combination of keywords will cause the default
value to be placed on the screen. If the record is already on the display, the PUTOVR keyword is in effect
and the data from the program appears on the display rather than the default value.

The DFTVAL keyword can be used only on output and output/input fields and can be optioned. If it is

in effect on an output operation, the value from the keyword is placed in the field, rather than the value
from the program. If the record is on the display and the PUTOVR and OVRDTA keywords are in effect,
the program value is used rather than the default value.

The DFT and DFTVAL keywords may not be specified on the same field.

Indicating Which Mode to Display Records
Some display stations, for example the 3180-2 display station, support an alternate screen size. You can
specify this alternate size using the DSPMOD keyword. The DSPMOD keyword indicates, for a particular

64 Application Display Programming V5R4

record, which mode is used to display the record. Any record that does not have the DSPMOD keyword
specified for it is displayed in the default display mode. The default display mode is the first of the *DS3
or *DS4 display sizes on the DSPSIZ keyword.

The DSPMOD keyword is only valid when both *DS3 and *DS4 are specified on the DSPSIZ keyword.
This keyword is valid only at the record level. Option indicators are allowed. The DSPMOD keyword
may not be duplicated in a record.

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197, 3477 Models FA, FC, FD,
FE, FG, FW, and 3487 Models HE, HD, HW, HC display stations attached to a local display station
controller, or remotely attached to a 5294 or 5394 controller. The DSPMOD keyword is ignored
unless these controllers are used.

For example, the following DDS would display RECORD1 in 27 by 132 mode, and RECORD2 in 24 by 80
mode (the default mode set up by the DSPSIZ keyword). RECORD3 will be displayed in 27 by 132 mode
if option indicator 03 is on, or in 24 by 80 mode if option indicator 03 is not on.

P PO DO SUU SO S U R U ST PUIE SR PO SO S

A DSPSIZ(*DS3 *DS4)
A R RECORD1 DSPMOD (*DS4)

A R RECORD2

A R RECORD3

A 03 DSPMOD (*DS4)

Figure 19. Sample DDS Source Showing Use of the DSPMOD Keyword

The use of the DSPMOD keyword can cause the display mode to be changed dramatically. Caution
should be used when specifying the DSPMOD keyword. When a record with DSPMOD active causes the
mode to be changed, all records currently on the display are cleared and deleted from the active record
table. The record with DSPMOD active is then sent to the display. The mode for this record is maintained
on the display as long as the DSPMOD keyword is active. Setting DSPMOD off or a write operation to
another record without DSPMOD causes the display mode to be placed back in the primary display
screen size for the display station.

Using the previous sample DDS source, the DSPMOD keyword gives the following results if records are
written to the screen in the following order:

* RECORDL1 is displayed in *DS4 mode.
 The display screen is cleared and RECORD?2 is displayed in *DS3 mode.

¢ If indicator 03 is off, RECORD?3 is displayed in *DS3 mode. RECORD2 remains on the display if the
OVERLAY keyword is specified.

¢ If indicator 03 is on, RECORD?2 is cleared and RECORD3 is displayed in *DS4 mode.

Note: When changing display modes, the displayed subfile data is removed from the display. However,
the subfile data is not cleared from the subfile table.

The following keywords are ignored if the display modes have changed:
Table 11. Keywords Ignored If Display Modes Are Changed

Keywords Additional Information
ALWROL When a record is not on the screen, it cannot be rolled.
ASSUME The records with the ASSUME keyword remain on the screen when the file is

opened. When the display modes change, the records on the screen are
cleared. This is similar to specifying the ASSUME keyword without the
OVERLAY keyword. The display size of the file with the KEEP keyword
must equal the display size of the file with the ASSUME keyword.

Chapter 3. Working with Display Files in an Application 65

Table 11. Keywords Ignored If Display Modes Are Changed (continued)

Keywords Additional Information

CLRL All lines will be cleared by a change in display mode.

ERASEINP /INZINP When the display modes change, the record is displayed with PUTOVR not
ERRMSG in effect, even if the record was on the screen before the display modes
ERRMSGID changed.

KEEP

OVERLAY

PROTECT

PUTOVR

PUTRETAIN -
SFLMSG
SFLMSGID

Positioning the Cursor after an Output Operation
You can specify where you want the cursor positioned after an output operation by using the CSRLOC or
DSPATR(PC) keyword.

On the record-level keyword CSRLOC, you can specify the names of two 3-byte zoned decimal hidden
fields that contain the exact line and position for the cursor location. With the CSRLOC keyword, you can
position the cursor outside the record you are displaying.

The field-level keyword DSPATR(PC) positions the cursor at the first position of the field after the record
is written. However, if the OVERLAY keyword is specified at the record level, the cursor position may be
lost after subsequent write operations.

Note: The cursor is not positioned if the keyboard is unlocked before the output operation.

If both the CSRLOC and DSPATR(PC) keywords are specified, the cursor is positioned by the CSRLOC
keyword. If several fields have DSPATR(PC) keyword specified, the cursor is positioned at the first field
for which the DSPATR(PC) keyword is specified.

If the CSRLOC and DSPATR(PC) keywords are not specified, the cursor is positioned at the first
input-capable field on the display. If there is no input-capable field, the cursor is positioned in the
upper-left corner of the display. However, if the CSRLOC and DSPATR(PC) keywords are not specified
for records containing input-capable fields, the cursor position may be lost if the record is suspended and
then restored. For example, the cursor position may be lost if the F1 (Help) key is pressed after the record
is displayed.

Other DDS functions can affect the write operation. For a write operation to a user-defined data stream
(USRDEN keyword), the functions performed are determined by the user-supplied controls.

Returning the Cursor Position to an Application
You can determine where the cursor was positioned on input by using the RTNCSRLOC (return cursor
location) keyword.

This keyword may be specified in either of two formats:

* Return the name of the record and field in which the cursor is currently positioned. Optionally, a third
parameter may be specified that will contain the relative cursor position within the field.

* Return the row and column position of the cursor relative to the display. Optionally, two additional
parameters return either of the following:

— The row and column position of the cursor relative to the active window (if one exists)

— The location of the cursor at the beginning of a two event mouse button call.

66 Application Display Programming V5R4

The parameters of these formats are described in the @ topic in the iSeries Information Center.

Returning the Cursor Position Within a Subfile to an Application

On input, you can determine where the cursor is located in a subfile by using the SFLCSRRRN (subfile
cursor relative record number) keyword. The relative record number on which the cursor is positioned is
returned in the hidden field specified as the parameter on the keyword. The field must be defined in the
record format as a signed numeric (S in position 35) with a length of 5 with zero decimal places. Also, it
must be a hidden field (H in position 38).

Returning the Mode of a Subfile to an Application

You can use the SFLMODE (subfile mode) keyword to determine whether the subfile was in folded or
truncated mode on input. The mode parameter is required. The SFELMODE keyword is only valid for
subfile control records and the SFLCTL keyword must be specified.

The field specified for the mode parameter is defined in the record format as a 1 character (A in position
35) hidden field (H in position 38). The field is returned with a value of 0 if the subfile is folded and with
a value of 1 if the subfile is truncated. If SFLDROP (subfile drop) or SFLFOLD (subfile fold) is not
specified on the SFLCTL (subfile control) record, the value is always returned as 0.

Initializing Output/Input Fields
Device support saves all data read from input-capable fields for records currently on the display in a save
area. The output/input fields within this save area are updated on output operations.

For output operations, the following happens:

* Input-only fields are initialized to zeros (numeric fields), blanks (character fields), or a default value
(DFT keyword) from the display file.

* Output/input fields, hidden fields, and program-to-system fields are initialized to the contents of the
output buffer. If this output operation is caused by the initialize record function (INZRCD keyword),
no output buffer is available. Output/input fields and hidden fields are initialized similar to input-only
fields. Output/input fields are input and output capable.

* Output-only fields are not part of the input buffer unless they are part of a subfile record, in which
case they are saved as if they were output/input fields.

* All response indicators for this record are set off.

Note: For input-capable fields, if the PUTRETAIN or ERASEINP keyword is in effect, the save area for
the field remains unchanged.

Neither the input nor the output buffer is changed during write operations.

Inviting Input to the Display

The invite operation is used to send a request for input to a display station and return to the program
without waiting for the input to arrive. This allows a program to request input from one or more display
stations but continue processing without waiting for any of the display stations to respond. When the
program is ready to process the input, the data can be received from any of the invited display stations
by performing a read-from-invited-devices operation.

The invite operation is done by performing a write operation using a record format with the INVITE
DDS keyword in effect. Refer to the appropriate high-level language manual to determine how to
perform a write operation and how to use indicators to control the INVITE DDS keyword.

Once a display station is invited, the valid operations to receive data from the display station are the

read-from-invited-devices operation and the read(wait) operation directed to a specific display station.
Cancel invite is also a valid operation to an invited display station.

Chapter 3. Working with Display Files in an Application 67

Before a display station can be used for I/O operations in a multiple-device display file, it must be
acquired to the file. A program can direct the invite operation to any display station currently acquired
for the file.

If the multiple-device display file was created with DFRWRT(*YES) specified, an output operation with
the INVITE DDS keyword optioned on will cause the output that has been postponed to be displayed on
the screen before the display station is invited.

If you want to invite a display station but have no data to send to it, perform the output operation with a
record format which contains the INVITE DDS keyword optioned on but has no output-capable fields.

Multiple-display station display files are supported in ILE RPG, ILE COBOL, ILE C/C++, and CL.

Inviting Input from CL Programs
The invite operation is available directly to CL programs through CL commands:

e WAIT(*NO) on RCVF and SNDRCVFE Commands:

WAIT(*NO) allows overlapping of I/O operations and the running program, requests for input from
more than one display, and receiving input as it is available. This provides support equivalent to the
invite operation.

On a read operation with the no-wait option, the system sends the request to the display and returns
to the program. However, the requested record is not available when control returns. The purpose of
this operation is to make the display station eligible to send input data while the program performs
other work.

To retrieve the record, issue a WAIT command. The WAIT command issues a read-from-invited-devices
operation. The program waits until data is available from the display station or the WAITRCD time
elapses. Then, the display station name and any input data are passed to the user program. If more
than one read-with-no-wait operation has been issued (each to a different display) and more than one
completes, the WAIT command processes only the first read-with-no-wait operation that is completed.

A WAIT command can be issued to process each of the other read-with-no-wait operations. They are
processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the operation is handled as a
write-read operation with a no-wait option. The INVITE DDS keyword is ignored on the write-read
operation.

A write-read operation with a no-wait option is the same as a write followed by a read-with-no-wait.
* ENDRCV Command:

The ENDRCV command is used to end a request for input made with the WAIT(*NO) option. The
ENDRCV command ends the input request even if data is available from the display station. If data is
being sent by the display station when the ENDRCYV operation is performed, the data is lost. If the
display station is not invited, the application program is signaled with an error.

Reading Invited Input from the Display

The read-from-invited-devices operation provides a means of waiting for and receiving data from any
one of the invited display stations. This method of inviting a display station and then reading from the
invited display station is useful when the application must control the amount of time spent waiting for
the user to respond. When the read-from-invited-devices operation is performed, the program waits for
the time interval specified on the WAITRCD keyword of the CRTDSPF, CHGDSPF, or the OVRDSPF
command. The wait can be ended in the following ways:

* Data becomes available from an invited display station. The display station name, the results of the
operation, and any input data are passed to the program. When data has been received, the display
station is no longer invited and must be invited again by an invite operation if more data is to be
received from the display station by a read-from-invited-devices operation.

68 Application Display Programming V5R4

No-display station-invited signal. Indicates that none of the display stations associated with the file are in
the invited condition. Refer to the appropriate high-level language manual for information on how this
will be communicated to the program.

Job-ended-controlled signal. Indicates that the job that the program is running in is being ended with the
controlled option through the End Job (ENDJOB), End System (ENDSYS), Power Down System
(PWRDWNSYS), or End Subsystem (ENDSBS) command. Refer to the appropriate high-level language
manual for information on how this will be communicated to the program. This occurs only once in a
process no matter how many multiple-device display files are in use. All invited display stations
remain invited.

No-invited-devices-have-data-available signal. This occurs when no display stations associated with the file
have data available, the WAITRCD time is *IMMED, and none of the previous conditions apply. The
invited display stations remain invited. Refer to the appropriate high-level language manual for
information on how this will be communicated to the program.

Time-out-on-wait-for-data-from-invited-devices signal. This occurs when the WAITRCD value is a finite
number of seconds, no data became available during that interval, and none of the previous conditions
apply. Refer to the appropriate high-level language manual for information on how this will be
communicated to the program. The invited display stations remain invited.

Also, ILE COBOL provides a means of performing the read-from-invited-devices operation as if
WAITRCD(*IMMED) had been specified. See the ILE COBOL books for information on the NODATA
phrase and its effect on the read-from-invited-devices operation.

Understanding the Read-From-Invited-Devices

When the program is ready to process input from one of the invited display stations, it can issue a
read-from-invited-devices operation. This operation waits for a specified time for input to arrive from one
of the invited display stations. The time limit can be specified when the display file is created and can
subsequently be changed or overridden. If no invited display stations respond within the time limit, the
program receives an indication that the time limit expired and can continue processing. If an invited
display station responds within the time limit, the program can determine which display station
responded and the record format used to process the data. The other invited display stations remain
invited and can be sending data. The responding display station can also be invited again by another
invite operation.

A read operation can also be directed to a specific display station. This operation will not complete until
the specified display station responds with data. The display station need not be invited for the read
operation, but, if it is, the program will wait for input and the display station is no longer invited.

The read-from-invited-devices operation only accepts data from display stations which are currently
invited.

If more than one display station acquired to the display file has an invite outstanding, a
read-from-invited-devices operation will return the next available record from one of the invited
display stations. If records are received from more than one display station before the
read-from-invited-devices operation, the other records will be kept for a subsequent
read-from-invited-devices operation or for a subsequent read(wait) operation directed to a specific
display station.

When a display station has responded and the input is received by the read-from-invited-devices
operation, that display station is no longer invited. It can be invited again by another invite operation
but this should not be done until all the record formats on the display with input-capable fields have
been read.

A record format cannot be specified on the read-from-invited-devices operation. The record format
returned from a display is the same as the last record format written to the display station.

The timing function associated with the WAITRCD parameter may not force an end to the wait if the
system is processing the Help key. In the following cases, the read-from-invited-devices function will
not end until the user exits from the help information:

— The system is displaying help that is defined by H specifications in the DDS for the display file.

Chapter 3. Working with Display Files in an Application

69

— The system is displaying help for a message when the display station is the requester display station
for the job and the display file specifies MAXDEV(1).

You can force message help to end when the WAITRCD time ends by specifying a value greater than 1
for the MAXDEV parameter on the CRTDSPF or CHGDSPF command.

Reading-From-Invited-Devices from CL Programs: The read-from-invited-devices operation is available
directly to CL programs through CL commands. To retrieve the record, issue a WAIT command. The
WAIT command issues a read-from-invited-devices operation. The program waits until data is available
from the display station or the WAITRCD time elapses. Then, the display station name and any input
data are passed to the user program. If more than one read-with-no-wait operation has been issued (each
to a different display) and more than one completes, the WAIT command processes only the first
read-with-no-wait operation that is completed.

A WAIT command can be issued to process each of the other read-with-no-wait operations. They are
processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the operation is handled as a
write-read operation with a no-wait option. The INVITE DDS keyword is ignored on the write-read
operation.

A write-read operation with a no-wait option is the same as a write followed by a read-with-no-wait.

Reading Input from the Display

A read operation passes a record from the system to the program. The display file record format contains
the information necessary for the system to handle the record. The user must perform a required action
such as pressing the Enter key or a function key to pass the data to the system. The read operation
results in the following:

Read Operation

Program

[

v

Returns data
to program

Unlocks
keyboard Locks keyboard
(If locked) after user action AVAWOT1.2

For input operations, the following happens in the order given:

1. For an input-only operation, all response indicators for this record are set off and the read operation is
issued.

2. Character fields received from the display are right- or leftjustified and padded with blanks or
truncated as necessary. The default is left-justify, which can be overridden using the AUTO or CHECK
keyword.

3. Numeric fields received from the display have the following done to them:

a. If the field is negative, the zone portion of the units position is set to a D (see|“Handling Negative|
[Numeric Input Data” on page 75).

70 Application Display Programming V5R4

All nonnumeric characters are removed and the numeric characters are compressed.
Signed numeric fields are right-justified and numeric-only fields are decimal aligned.
The field is padded with zeros or truncated as necessary.

®oo0o

Field validation is performed.

All fields received from the display whether they are part of the selected record or not are handled in this
way.

If any field validation errors are detected, a message is sent to the user so that the error can be corrected.
This process is repeated until there are no longer any errors. The save area for the requested record is
then copied into the input buffer.

Note: To process input data for a read operation with no record format name, display station support
uses the last record written to the display that contains at least one of the following:

* Input-only fields
* Output/input fields
* Hidden fields

If no such format is on the display, display station support uses the last format written to the display that
did not contain these kinds of fields, for example, an output-only record that specifies valid command
keys. If no such record exists on the display, an error message is returned to the program.

A record does not have to be written to the display before it can be read by the program with the
INZRCD keyword. The system does this the same way an application program performs an output
operation with the exception of the following;:

* For an output-only field, no user data is available so the field is initialized to blanks. If the field is
edited, the editing is ignored. If the BLKFOLD keyword is specified, it is ignored.

* For an output/input field, no user data is available so the field is initialized to blanks. If the field is
edited, the editing is ignored. The field actually contains null characters (hexadecimal zeros), which
appear as blanks.

* For a constant or input-only field, the data does not normally come from the output buffer so the field
appears the same as when the program displays it using a write operation.

* For a hidden field, the field is returned on a read operation as blanks (hex 40) if the field is a character
field or zeros (hex FO) if the field is a numeric field.

* For a message, there is no message data so the field is ignored.

¢ The LOGOUT keyword is ignored.

¢ The ERRMSG and ERRMSGID keywords are ignored because the record is not already on the display.
¢ The SFLMSG and SFLMSGID keywords are ignored.

All other fields or keywords are processed as if they were selected on an output operation.

Unlocking the Keyboard while the Program Is Processing Data
The keyboard can be unlocked so that data can be entered into input fields while the program is
processing previously entered input data with the UNLOCK keyword.

Normally, input fields are not erased until after the keyboard is unlocked. On a read operation, input
fields are erased after the keyboard is unlocked only if the UNLOCK keyword is specified and the
GETRETAIN keyword is not specified.

For the 5250 display station, the read operation with the UNLOCK keyword in effect results in the
following:

Chapter 3. Working with Display Files in an Application 71

1.

The 5250 display station does a hardware validity check on the fields. If no errors are found, the
following is done:

a. If the UNLOCK keyword is specified without the GETRETAIN keyword or if the
UNLOCK(*ERASE) keyword is specified, all input-capable fields that are changed are cleared.

b. If the UNLOCK keyword is specified with the GETRETAIN keyword or if the
UNLOCK(*MDTOFF) keyword is specified, all modified data tags (MDTs) are reset.

c. If the UNLOCK(*ERASE *MDTOFF) keyword is specified, all input-capable fields that are changed
are cleared and their MDTs are reset.

d. The cursor is repositioned to the field where the user can enter the next record.
e. The keyboard is unlocked.

The system validity checks all the fields for all records on the display. If errors are detected, normal
error retry is performed. A user could be typing into the next record when an error message is
displayed.

Note: The error message could refer to data that is no longer on the display because the data was
erased.

3. Control returns to the program.

Notes:

1.

If an application program detects input errors and sends error messages to the display, the messages
may refer to input that has been typed over.

If the CHANGE keyword is specified and either the UNLOCK keyword is specified without the
GETRETAIN keyword or with the UNLOCK(*ERASE) keyword is specified, the associated response
indicator is set on for the next input record.

When a read operation with the UNLOCK keyword (and without the GETRETAIN keyword) or the
UNLOCK(*ERASE) keyword is used for a record while a subfile is on the screen, subfile records may
be returned to the program on a subsequent get-next-changed operation to the subfile even though
the user did not enter data into the subfile record. It is recommended that you use the
UNLOCK(*ERASE *MDTOFF) keyword instead of the UNLOCK keyword (without the GETRETAIN
keyword) or the UNLOCK(*ERASE) keyword. If you must use either of the latter, you should make
sure that your high-level language program compares for blanks to handle the possibility that an
unmodified field containing all blanks is returned to the program.

Keeping Input Data
Input data on a display can be kept after the user presses the Enter key with the GETRETAIN keyword.
The GETRETAIN keyword can only be used with the UNLOCK keyword.

Setting an Indicator When Data Is Changed
A response indicator can be set on when data is entered into an input field or when data is changed in an
output/input field with the CHANGE keyword.

Initializing Records and Unlocking the Keyboard-Diagram
The following diagram shows the effect of INZRCD and UNLOCK keywords on an input operation:

72 Application Display Programming V5R4

Before

After
1]

B
Get A Not Used
with INZRCD

D > A

c Not Used

Get E
with INZRCD Not Used
and UNLOCK
™ E
Not Used

RV2W033-1

Note: Record formats A, D, and E occupy the same lines.

Record formats B, D, and C are erased if the OVERLAY keyword is not specified for record
format A. Record format A is displayed with constants and initialized input fields. The keyboard
is unlocked. The keyboard is locked after the user satisfies the get operation.

ﬂ Record formats B, D, and C are erased if the OVERLAY keyword is not specified for record
format E. Record format E is displayed with constants and initialized input fields. The keyboard
is unlocked. After the user satisfies the read operation, the contents of the input fields are erased
and the keyboard is unlocked again.

Note: Even though the UNLOCK keyword is specified, field validity checking, if specified, and
command key verification are performed. Therefore, a user could be typing into the next record
when an error message is sent to the display.

Specifying Validity-Checking Functions

Two methods can be used to check the validity of data entered by the user:

* Have the system check the data before it is passed to the application program.

* Have all the input data passed to the application program, which checks the validity of the data.

In either case, if errors are detected, a message is displayed informing the user of the error so that it can
be corrected. If you choose the second method for detecting errors, see [‘Creating and Displaying Your
[Own Messages” on page 223 for information on how your program can display error messages. The rest
of this section gives more information on the first method, when the system detects the errors before
passing the data to your program.

The validity-checking functions you can specify in DDS are:

* Detecting fields in which at least one character must be entered (CHECK(ME) keyword). Blanks are
valid characters. This is referred to as mandatory enter.

* Detecting fields in which every position must contain a character (CHECK(MF) keyword). Blanks are
valid characters. This is referred to as mandatory fill.

* Detecting incorrect data types where character, numeric, or signed numeric data is required.

* Detecting data that is not in the range specified for the field (RANGE keyword).

* Performing comparison checking between data entered and specified constant value (COMP keyword).
¢ Comparing the data entered to a specific list of valid entries (VALUES keyword).

* Detecting if a valid field or record name was entered in a character field (CHECK(VN) keyword).

* Detecting if a valid object name was entered in a character field (CHECK(VNE) keyword).

Chapter 3. Working with Display Files in an Application 73

¢ Performing modulus 10 or 11 check digit verification (CHECK(M10) or CHECK(M11) keyword). (Only
one can be specified.)

* Allowing blank-key entries to be processed as if no entry had been made (CHECK(AB) keyword).
CHECK(AB)-Allow Blanks-is ignored if the subfile keyword SFLROLVAL or SFLRCDNBR is also
specified for the field.

* Detecting if a space, a plus sign, or a minus sign is embedded between numeric digits in a numeric
field. Also, detecting if a plus sign or minus sign precede a numeric digit in a numeric field. To detect
such cases, use the Validate Numeric (VALNUM) keyword.

The ERRSFL keyword can be used in addition to the validity checking keywords CHECK(M10 M11 VN
VNE), COMP, RANGE, and VALUES to allow more than one of the error messages associated with the
keywords to be displayed at one time.

When you specify the RANGE, COMP/CMP, VALUES, CHECK(VN), CHECK(VNE), CHECK(M10), or
CHECK(M11) keyword for validity checking and an error is detected by one of these validity checking
functions, the following happens:

1. The keyboard is locked.

2. All fields in error are displayed in reverse image. If a field in error has both the underline (UL)
display attribute and the highlight attribute (HI), its image is not reversed, as this combination of
attributes has the same effect as DSPATR(ND).

3. The cursor is positioned at the beginning of the first field in error.
4. A system-supplied error message for the first field in error is displayed on the error line,
or,

If you have chosen to provide your own error message for a field using the CHKMSGID keyword
and this is the first field in error, then your error message is displayed on the error line.

If your controller is installed with the self-check feature (see the 5250 Functions Reference), the controller
performs validity checking for the CHECK(M10F) and CHECK(M11F) keywords. Errors are detected
when you attempt to move the cursor from the input field rather than when you press the Enter key or a
Command Attention key. The Operator Error Code 00115, rather than a system-supplied or user-specified
message, is displayed in the lower left corner of the display. If the USRDSPMGT keyword is also
specified, CHECK(M10) and CHECK(M11) function as CHECK(M10F) and CHECK(M11F).

If the RANGE, COMP, VALUES, CHECK(VN), or CHECK(VNE) keyword is specified for a field, and data
is entered into that field, the field indicates that it has been changed regardless of attempts by the user to
restore the field after an error. If blanks (for character fields) or zeros (for numeric fields) will fail the
validity checking function, use the CHECK(AB) keyword. This will satisfy the validity checking function.

When you specify validity checking for records that are part of a subfile, each field in the record is
validity checked before it is placed in the subfile from the display. You cannot roll the records until all
fields in error are corrected.

The system only performs validity checking on a field if the field is changed by the user or if its modified
data tag (MDT) is set on using DSPATR(MDT).

Notes:

1. If the user presses the Dup key, any validity checking for a field is ignored. The DUP keyword lets
the user use the Dup key.

2. The value for a numeric field for which the COMP, VALUES, or RANGE keyword is specified is
aligned based on the decimal positions specified for the field and filled with zeros where necessary. If
decimal positions were not entered for the field, the decimal point is assumed to be to the right of the
digit to the extreme right in the value. For example, for a numeric field with length of 5 and decimal
positions of 2, the value 1.2 is interpreted as 001.20 and the value 100 is interpreted as 100.00.

74 Application Display Programming V5R4

3. When you use the RANGE keyword for validity checking an input field and blanks are entered in the
input field, the value for the input field may not meet the range requirements. Blanks are converted to
zeros for numeric fields and are passed as blanks for character fields. Use the field level keyword
BLANKS to determine when a field is displayed as all blanks. The response indicator on the BLANKS
keyword is set on if the user enters blanks.

Understanding the Limitations on the Number of Input-Capable Fields

For a remote 5250 display station (a display station attached through a remote controller), you can specify
as many as 126 or 256 input fields on one display, depending on the controller model. (The 5294
controller supports 126 input fields; the 5394 controller supports 256 input fields.) Additionally, if either
DSPATR(OID) or DSPATR(SP) is specified, this maximum is reduced by 1 for each three instances of these
keywords. If fewer than three instances occur, it is still reduced by one.

For a local 5250 display station (a display station attached through the local display station controller),
you can specify as many as 256 input fields. Also, if either DSPATR(OID) or DSPATR(SP) is specified, this
maximum is reduced by 1 for each three instances of these keywords. In addition, any use of the
magnetic stripe reader on a local 5250 display station also reduces the maximum number of fields. The
maximum number of fields is calculated as follows:

256 - [L? +% } rounded up to the next whole number

RSLH131-2

A is the number of DSPATR(OID) and DSPATR(SP) fields on the display and B is the length of the
longest expected magnetic stripe input where 125 data characters is the maximum allowed. Magnetic
stripe data not specified as DSPATR(OID) can be entered into any input field.

If the maximum number of input fields is exceeded in any of the preceding cases, message CPF5192 is
issued to the using program.

No maximum-number-of-fields diagnostic is provided during display file creation because the number of
fields and record formats is not known until the program is run.

When a subfile record is displayed, the actual number of input-capable fields sent to the display is the
number defined in the record multiplied by the number of subfile records that are displayed.

For remotely attached 3270 displays, the limitation is 126 input fields.

For ASCII displays attached through a protocol converter, the limitations are the same as the controller to
which they are attached.

Handling Negative Numeric Input Data
The negative sign in numeric input data can appear in three forms:

* Hex 60 if the sign is entered using the - (minus) key
* Hex D if the sign is entered using the Field Minus key

* Hex Dn if the sign is entered as an alphanumeric character with a D zone
The hex 60 is treated as a true minus sign if it is to the right of the least significant digit.

The hex D zone is treated as a minus sign if it is the least significant digit. In addition, it is treated as a
significant digit with a value equal to the numeric portion.

Imbedded blanks (between significant digits) are changed to zeros before decimal alignment.

Chapter 3. Working with Display Files in an Application 75

Understanding How the System Reads Input from the Display

When a read operation is issued, the system reads all the records on a display. However, only one record
is passed to the program for each read operation. The system saves all the other records in anticipation of
more read operations.

If each read operation refers to a different record on the display, no action is required of the user.
However, if each read refers not to a different record on the display but to the same record and if the
RTNDTA keyword is not specified, the user must perform an action such as pressing the Enter key or a
CFnn key to start the next read operation because each record entered is passed to the program only
once. If the RTNDTA keyword is specified, the user does not have to perform any action because the
same input buffer that was returned to the program on the previous read operation for the record is
returned again.

The system saves the contents of input-capable fields for records that are active on the display. This saved
data is passed to the user program and can be altered by:

¢ Initializing the data with a constant on a write operation. A field can be initialized with the value
specified in a DFT keyword.

* Entering data through directly typing the data in or using a light pen to select data. (The MDT for a
field can be set on to simulate user input.)

* Entering data from a program on a write operation. This applies to output/input fields (and
output-only fields for subfiles).

¢ Initializing the data with blanks (character fields) or zeros (numeric fields) on an output operation for
the same record unless the PUTRETAIN keyword is specified. This applies to input-only fields.

Writing Output and Reading Input at the Same Time

The write-read operation is a combination of a write operation and a read operation to the same record
format in one high-level language statement like the SNDRCVF command in a CL program. It behaves as
if you had specified a read operation immediately following a write operation.

Some high-level languages have a write-read operation which writes information on the display and
reads the user response in one statement. For example, ILE RPG has the execute format (EXFMT)
operation. This kind of operation is useful if you need to both present new information on the display
and request information from the user at the same time. You can also use a write operation followed by a
read operation to the same record format to simulate this operation in languages that do not support a
combined write-read operation.

When this operation is performed, the following happens:

1. The program calls the system display support giving it the data to show on the display and the
record format to use when writing and reading that data.

2. The system combines that data with the information it finds in the record format and constructs the
data stream to be sent to the display.

3. The data stream is then sent to the display and the keyboard is unlocked.

4. The user types the data in the fields which allow input and presses the Enter key or some other
function key.

5. The data is then sent from the display to the system. The system decodes it and extracts only the
information that the application program needs to know and returns that data to the application
program.

When you work with only one record format, this write-read style of working with it is the most

common. On the write portion of the operation, you provide the data that the user will see. On the read
portion, you receive data back that the user has entered or changed.

76 Application Display Programming V5R4

Canceling Input That Was Not Waited For

The cancel-invite operation is used to cancel the input request issued to a display station that was

previously invited through the invite operation. The input request is canceled by performing a write

operation to the invited display station. One of the following occurs:

* If the write request is received before the user responds to the input request from the invite operation,
the input request is canceled and the record format specified on the write operation is sent to the
display station. If the record format has the option indicator set on for the DDS keyword INVITE, the
display station is invited again.

* If the write request is received after the user responds to the input request from the invite operation,
the input request is not canceled and the write operation fails. The read-from-invited-devices operation
or a read(wait) operation must be issued to receive the available data.

Releasing a display station also implicitly cancels any input requests directed to the display station. If the
display station has data available, the data is lost.

Locking the Keyboard and Positioning the Cursor During 1/O
Operations

The following lists what happens to the keyboard when a write, write-read, or read operation is run:

Operation Keyboard

Write The keyboard is unlocked by default. If the LOCK keyword is specified, the keyboard is
not unlocked.

Write-Read The keyboard is unlocked.

Read The keyboard is unlocked (if locked) before display station user action. After user

action, the keyboard is locked by default. If the UNLOCK keyword is specified, the
keyboard is left unlocked.

Every time the keyboard is unlocked, the cursor is repositioned. In some cases, many write operations
between read operations can cause erratic cursor movement. If the user starts typing before the last write
operation, the cursor is repositioned when the keyboard is unlocked and this can cause confusion for the
user. You can prevent this by using the LOCK keyword. By using the LOCK keyword on each write
operation but the last, the keyboard remains locked until the last write operation. This avoids erratic
cursor movement, but prevents the user from starting to type data.

Normally, a user action, such as pressing a valid command key, locks the keyboard.

To specify that the system unlock of the keyboard on the next input operation should not occur, specify
the retain lock status (RETLCKSTS) keyword. This keyword prevents the loss of data when the input
operation is started and data is already being transmitted from the keyboard.

Note: Use the RETLCKSTS keyword only when the keyboard is already unlocked.

To position the cursor with the DSPATR(PC), CSRLOC, or SFLRCDNBR(CURSOR) keyword, the
keyboard must be locked. Only the following conditions on an output operation cause the keyboard to be
locked and must be present for the display station to position the cursor. (An output operation normally
unlocks the keyboard before it ends unless the LOCK keyword is specified so these conditions lock the
keyboard only momentarily.

* Input-capable fields are erased (ERASEINP keyword).

* Modified data tags are reset (MDTOFF keyword).

* Any input-capable field is written to the display.

¢ The complete display is erased (a write operation without an OVERLAY keyword).
e The 5250 format buffer is reset, which can be the result of:

Chapter 3. Working with Display Files in an Application 77

— A record format with an input-capable field is overlaid or erased.
— A record format with a cursor location specification is overlaid or erased.
— The PROTECT keyword is specified on the record being written.

For the cursor positioning keyword to take effect, the keyboard must go from the lock condition to an
unlocked condition. That is, if the keyboard is unlocked prior to the write operation, the cursor
positioning keyword does not take effect immediately on the write operation. However, there is one
exception. If the keyboard is temporarily locked during an output operation, the cursor positioning
keyword will be in effect if the output operation unlocked the keyboard at the end.

In addition, if any of the preceding conditions happens on a write operation, the keyboard must be
unlocked before any user action either by the same operation or by a following operation (it should be
the last write operation).

A write operation to a subfile never unlocks the keyboard because no input or output is sent to the
display station.

Saving Previously Displayed Information

A display file may be opened to a display station even when another display file is already using that
display station. When an I/O operation is performed to the second display file, the first display file is
suspended.

When a display file is suspended, the information on the display can be saved automatically by the
system if you specify *YES for the RSTDSP parameter on the Create Display File (CRTDSPF) or Change
Display File (CHGDSPF) command. The contents of a display file can then be restored when an I/O
operation is later performed to that display file. If *NO is specified for the RSTDSP parameter, the
application program needs to rewrite the display to show it again.

The RSTDSP parameter lets you overlap a program call, keyboard input, and file I/O processing, as
shown in the following example:

Display File
Program 1 n DSPFILY
Write
Write
Read.......... - — | —— [RCDY1
Display File
DSPFILX
> RCD X1

RV2W046-0

Program 1 issues a write operation to record format RCD Y1 in display file DSPFILY, which
activates display file DSPFILY.

A Program 1 issues a write operation to record format RCD X1 in display file DSPFILX, which
suspends display file DSPFILY and activates display file DSPFILX. If RSTDSP(*YES) is specified

78 Application Display Programming V5R4

for display file DSPFILY, the data displayed on the display station is saved. If RSTDSP(*NO) is
specified instead, the data is lost and the program needs to write the information in RCD Y1
again to show it.

H Program 1 issues a read operation to record format RCD Y1, which suspends display file
DSPFILX and restores display file DSPFILY. If the RSTDSP(*YES) parameter is specified for
DSPFILY, then the data displayed on the display station when DSPFILY is suspended can be
restored.

When RSTDSP(*YES) is specified for a display file, and you are suspending and restoring that display file
because of operations to another display file, some displays may appear to flash on the screen briefly. If a
display file has a record on the display and an I/O operation is done to a second display file, the first file
is suspended and its screen contents are saved. When returning to the first display file, the display file
and its screen contents are restored. If a write operation is done to a different record format in the display
file, the restored display will flash briefly before the output operation is complete. If you are going to
completely rewrite the display contents from your program when going back to the first file, use
RSTDSP(*NO).

You should specify *YES for the RSTDSP parameter in the following situations:
* When you are writing a record that has the following keywords in effect:

- CLRL

- OVERLAY

- PUTOVR

— PUTRETAIN

— ERRMSG

- ERRMSGID

You must ensure that the records that are on the display are the records that these keywords apply to.
If the display file is suspended, the data must be restored to the screen so that the write operations to
the record formats that use these keywords are valid.

* When you perform multiple read operations to a record format on the display without intervening
write operations. If you should call a program while processing the data that has been read and that
program presents a display of its own, the subsequent read operation done by your program restores
the display properly.

Saving and displaying data again requires significant system and data transmission overhead. For a
1920-character 5250 display station, approximately 3000 characters are transmitted each time the display
data is saved displayed again. To avoid this overhead, write your application programs to do the
following:

* Make the programs in the application share the same copy of the display file among themselves by
specifying SHARE(*YES) on the display file.

¢ Perform complete display rewrites each time the programs in the application write to the display. A
complete display rewrite occurs when a record is written to the screen and the OVERLAY keyword is
not used or implied.

Note: If complete display rewrites are not performed and if new input fields, occupying positions on
the screen above the currently displayed fields, are sent to the display, the program receives a
message (CPF5192). This occurs because the 5250 display station requires that new input fields
sent to the display appear in lower positions than input fields currently on the display. In
normal operations, data management performs field processing to satisfy the 5250 requirement.
See|”Avoiding Record Format Problems on the 5250 Display Station” on page 80

When one program that uses a display file with the SHARE(*YES) parameter specified calls another
program that uses the same display file, the display file is not suspended even though both programs

Chapter 3. Working with Display Files in an Application 79

have opened the file. If the display file is not shared, the system maintains separate copies of the display
file for each program and suspends and restores the display files separately.

Since system programs do not specify file sharing, you should specify RSTDSP(*YES) on the CRTDSPF or
CHGDSPF command if your program contains a display file and calls system functions that present
displays. System functions that break into the normal path of an application, however, such as the System
Request Menu or the presentation of break messages, restore the display without RSTDSP(*YES)
specified.

To display saved display data again after a close operation is issued to a suspended file, specify the KEEP
keyword for a record format in the saved display data.

Understanding the Effects of I/O Operations on Command Keys
Read and write operations may or may not affect how the function keys work:

e A write or write-read operation for which no input or output is sent to the display does not affect
which keys are valid. Examples of such operations are a write operation or an update operation to a
subfile record format.

* If a write or write-read operation displays a message by selecting either the ERRMSG or ERRMSGID
keyword, the command keys in effect on that output operation are valid. Therefore, you can specify a
different set of command keys to be valid if an error occurs.

* If only one subfile record format is displayed and the subfile control record format specifies a CAnn or
CFnn key for the SFLDROP keyword, that key remains valid for that function as long as the subfile is
still on the display. In addition, the key specified for the SFLENTER keyword remains valid until
another write or write-read operation is done. At the next output operation, the specifications for that
record apply.

* If two subfile record formats are displayed and both specify the SFLDROP keyword, only the last
SFLDROP keyword is used. There can only be one drop key at a time.

Avoiding Record Format Problems on the 5250 Display Station

Because of the characteristics of the 5250 display stations, certain record format positioning and
operational combinations can produce undesirable results. The following example illustrates a
combination that can cause undesirable results and explains how to avoid these results.

The displays produced and the DDS for the record formats follow:

80 Application Display Programming V5R4

Enter all information regarding the subscriber:

Last name: First name: /|
Street: Apft:
City: _ State;— 2P — -
DETAIL
record
format
CA1-Display state table, CA2-Display subscription table)
RSLH166-0
Alabama AL Alaska AS Arkansas AK Arizona AK
California CA Delaware DE DST Columbia DC Florida DC STATES
Y-More state names, N-No more state names record
Enter all information regarding the subscriber: format
Last name: Doe First name: John ML:E
Street: 112 EIm Apt: 3A
City: Anytown State: ZIP: -
DETAIL
record
format
CA1-Display state table, CA2-Display subscription table
RV2W047-0

Chapter 3. Working with Display Files in an Application

81

R STATES
SNAME1
SCODE1
SNAME2
SCODE2
SNAME3
SCODE3
SNAME4
SCODE4

SNAMES8
SCODE8
MORESNAM

R DETAIL

NAMEL
NAMEF

MI

STREET
APT
CITY
SCODE
ZIP1

Z1P2

> > >

* STATES record format follows

12
2
12
2
12
2
12
2

1

* DETAIL record format follows

20

13

45

15

OO OO OOOO

2

= b b e e e

nN

~

SOl o1 Oo1Oo1 o1 O

N NNNNNNYNOoOoO O

10

4DSPATR(PC)

OVERLAY

2
15
18
31
34
47
50
63

50
63

2'Y-More state names, N-No more +

state names'
A8VALUES('Y' 'N")

OVERLAY CAO1(11) CA02(12)

2'Enter all information regarding +

the subscriber:'

1'Last name:' DSPATR(HI)
12
33'First name:' DSPATR(HI)
45
59'MI:"' DSPATR(HI)
63

1'Street:' DSPATR(HI)

9

55'Apt:' DSPATR(HI)
60

1'City:' DSPATR(HI)
7
23'State:' DSPATR(HI)
30
33'Zip:' DSPATR(HI)
38
44|_|
46

1'CAl-Display state table, +
CA2-Display subscription table'

Figure 20. Sample DDS to Show Record Format Problems

Assume that the DETAIL record format is on the screen, and the user is entering data for a subscriber.
Because the user does not know the state code for the state to be entered, he or she presses the CA01 key.

Because CAOQ1 is defined as a CAnn key, no data is transmitted to the system when the CAQ1 key is
pressed. The data, however, remains on the screen. The program detects that the CAnn key was pressed
because response indicator 11 is set on. The program then displays the STATES record format.

Because the STATES record format is physically above the DETAIL record format, the system must resend
the field formats for the input fields in the DETAIL record format. (The system would also resend the
field formats if the STATES record format contained only output-only fields and was replacing the RCDA
record format. In this case, the field formats are resent because a record format (RCDA) with a specific
cursor location is being removed.)

82 Application Display Programming V5R4

The following problems occur because the system resends the field formats for the DETAIL record format:

* All the input fields in the DETAIL record format lose their modified data tags (MDTs). When the
program does the next read to the DETAIL record format (for example, when the user presses the Enter
key), none of the fields typed in before the user pressed the CAO1 key are returned to the program.
The program cannot retrieve that typed data even though the data still remains on the screen.

To avoid this problem:
— Avoid using a CAnn key.

— If you must use a CAnn key, avoid writing the format containing the CAnn key to the screen and
then writing another format that is physically placed above the first format if both formats contain
input-capable fields.

— Avoid writing a format to the screen that causes the removal of a format containing a cursor
location specification.

* The highlight attribute for the constant fields (except Last name) is lost. The system does not resend
the field format for output-only fields. However, if an output-only field immediately follows an
input-capable field so that the leading attribute character for the output field is in the same position as
the ending attribute character for the input-capable field, the attribute of the output field reverts to
normal.

To avoid this problem:

— Do not specify an output-only field with special display attributes immediately following an
input-capable field.

— If you must specify an output-only field with special display attributes immediately following an
input-capable field, avoid writing that format to the screen and then writing another format that is
physically placed above the first format if both formats contain input-capable fields.

— Avoid writing a format to the screen that causes the removal of a format containing a cursor
location specification.

Note: The system needs to resend the attributes for the input-capable fields when a subfile is rolled from
a full page to a partial page, a partial page to a full page, or a partial page to a partial page. The
two problems mentioned above may also occur when resending the field attributes.

Releasing an Acquired Display Station from I/O Operations

The release operation makes a display station ineligible for any further I/O operations through a file.
This operation is used in multiple display file applications or if you are performing error recovery in
your program. If the display station being released is invited, the invite is ended. If the invited display
station had data available, the data is lost. The release operation can only be performed on display
stations that are currently acquired to the file.

The release operation can also be used to recover from errors from acquire, I/O, and release operations.
After a display station is released, it must be acquired again with another acquire operation before any
I/O operations can be directed to it. If a program is written to recover from errors by releasing a display
station and then acquiring it again, a value other than *IMMED should be specified on the WAITFILE
keyword. This is because it takes the system a short time to transfer the allocation of a display station
description from a job, to the subsystem, and back again.

Closing Display Files

The close operation makes the display file ineligible for any further I/O operations between the program
and the system. Refer to the appropriate high-level language manual for information on how to start the
close operation.

Chapter 3. Working with Display Files in an Application 83

If the display file is not being shared, the close operation also implicitly releases all the display stations
acquired to the file and deallocates any file resources allocated by the open operation or the acquire
operation.

If the close operation is successful, the only valid operation to the file is open. If the close operation fails,
the program should issue the close operation a second time.

Mapping Display Operations to High-Level Language Operations

The following shows the I/O requests supported by the operating system and the equivalent high-level
language operations:

Table 12. Display File Operations Supported by the Operating System and the Equivalent High-Level Language
Commands

BASIC ILE C/C++ ILE COBOL ILE RPG

Operation Statements Functions CL Commands Statements Operations

Open OPEN fopen, _Ropen OPEN OPEN

Acquire _Racquire ACQUIRE ACQ

Release _Rrelease DROP REL

Get Attributes _Rdevatr ACCEPT POST

Write WRITE fwrite, _Rformat, SNDF WRITE WRITE, output
_Rpgmdev, specifications
_Rwrite

Read(wait) READ fread, _Rformat, = RCVF READ Primary or
_Rpgmdey, WAIT(*YES) secondary file
_Rreadn input, READ

Read READ RCVF WAIT(*NO) READ

Cancel Read ENDRCV

Wait WAIT

Invite fwrite!, _Rformat, SNDF’ WRITE! WRITE!
_Rpgmdey,
_Rwrite!

Read from Invited _Rreadindv READ READ

Device

Cancel Invite fwrite, _Rformat, SNDF WRITE WRITE
_Rpgmdey,
_Rwrite

Write-Read(wait) _Rwriterd, SNDRCVF EXEMT
_Rformat, WAIT(*YES)
_Rpgmdev

Write-Read(no- SNDRCVF

wait) WAIT(*NO)

Close CLOSE, END fclose, _Rclose RETURN, CLOSE, CANCEL, CLOSE, RETRN

RCLRSC STOP RUN

1. This is the write operation of a record format with the INVITE DDS keyword selected.

If an error occurs during an I/O operation to a display file, the major/minor return code field in the file
dependent I/O feedback area may be used to help diagnose the error and determine the error recovery
action needed.

84 Application Display Programming V5R4

Sharing Display Files in the Same Job

By specifying the SHARE parameter on the CRTDSPF, CHGDSPF, and OVRDSPF commands, you can
specify that more than one program share the same path to the data or the display station. Using the
SHARE parameter allows more than one program to share the file status, positions, and storage area, and
can improve performance by reducing the amount of main storage the job needs and by reducing the
time it takes to open and close the file.

Using the SHARE(*YES) parameter lets an open data path (ODP) be shared between two or more
programs running in the same job. An open data path is the path through which all input/output
operations for the file are performed. It connects the program to a file. If not specified otherwise, every
time a file is opened a new open data path is built. You can specify that if a file is opened more than
once and an open data path is still active for it in the same job, the active ODP for the file can be used
with the current open of the file, and a new open data path does not have to be created. This reduces the
amount of time required to open the file after the first open, and the amount of main storage required by
the job. SHARE(*YES) must be specified for the first open and other opens of the same file for the open
data path to be shared. Specifying SHARE(*YES) for other files depends on the application.

Note: Most high-level language programs process an open or a close operation independent of whether
or not the file is being shared. You do not specify that the file is being shared in the high-level
language program. You indicate that the file is being shared in the same job through the SHARE
parameter. The SHARE parameter is specified only on the create, change, and override file
commands. Refer to your appropriate language manual for more information.

Understanding the Open Operation for Files Shared in a Job

The following items should be considered when opening a file that is shared in the same job by

specifying SHARE(*YES).

* You must make sure that when the shared file is opened for the first time in a job, all the open options
that are needed for subsequent opens of the file are specified. If the open options specified for
subsequent opens of a shared file do not match those specified for the first open of a shared file, an
error message is sent to the program. (You can correct this by making changes to your program to
remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA only needs to read the
file. However, PGMA calls PGMB which will delete records from the same shared file. Because PGMB
will delete records from the shared file, PGMA will have to open the file as if it, PGMA, is also going
to delete records. You can accomplish this by using the correct specifications in the high-level language.
(In order to accomplish this in some high-level languages, you may have to use file operation
statements that are never run.) For more details, see your appropriate language manual.

* If you did not specify a library name in the program or the override command (*LIBL is used), the
system assumes that the library list has not changed since the last open of the same shared file with
*LIBL specified. If the library list has changed, you should specify the library name on the override
command to ensure that the correct file is opened.

* Overrides and program specifications specified on the first open of the shared file are processed.
Overrides and program specifications specified on subsequent opens, other than those that change the
file name or the value specified on the SHARE or LVLCHK parameters on the override command, are
ignored.

Understanding the Input/Output Operation for Files Shared in a Job

The system uses the same input/output area for all programs sharing the file, so the order of the
operations is sequential regardless of which program does the operation. For example, if Program A is
reading records sequentially from a file and it reads record 1 just before calling Program B, and Program
B also reads the file sequentially, Program B reads record 2 with the first read operation. If Program B
then ends and Program A reads the next record, it receives record 3. If the file was not being shared,
Program A would read record 1 and record 2, and Program B would read record 1.

Chapter 3. Working with Display Files in an Application 85

For display files, the display station remains in the same state as the last I/O operation.

For display and ICF files, programs other than the first program that opens the file may acquire more
display or program display stations or release display or program display stations already acquired to the
open data path. All programs sharing the file have access to the newly acquired display stations, and do
not have access to any released display stations.

Understanding the Close Operation for Files Shared in a Job

The processing done when a program closes a shared file depends on whether there are other programs
currently sharing the open data path. If there are other programs, the main function that is performed is
to detach the program requesting the close from the file. All other programs sharing the file are still
attached to the ODP and can perform I/O operations.

If the program closing the file is the last program sharing the file, then the close operation performs all
the functions it would if the file had not been opened with the share option. This includes releasing any
allocated resources for the file and destroying the open data path.

The function provided by this last close operation is the function that is required for recovering from
certain run-time errors. If your application is written to recover from such errors and it uses a shared file,
this means that all programs that are attached to the file when the error occurs will have to close the file.
This may require returning to previous programs in the program stack and closing the file in each one of
those programs.

86 Application Display Programming V5R4

Chapter 4. Displaying Groups of Records Using Subfiles

A subfile is a group of records that have the same record format and are read from and written to a
display station in one operation. The following sample display shows an example of a subfile:

CUSTOMER NAME SEARCH

Search code: 41401

Prompt
NUMBER NAME ADDRESS cy STATE Record
Format
41401 Adam’s Home Repair 121 Golden Circle Chicago 1L
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY .
41405 Fixtures, Inc. 607 9th Avenue Chicago 1L Subfile
41406 Hall's Electric 200 Main Street St Paul MN

RV2W049-0

Information about DDS keywords
This chapter uses DDS keywords to describe subfiles. For more information about specific DDS
keywords, see the @ topic in the iSeries Information Center.

Recognizing Subfile Uses

Subfiles are useful when multiple records that are alike must be displayed. You can describe a subfile so
that the number of records to be displayed fits on one display or exceeds the number of lines available
on the display.

You can use subfiles for the following purposes:

* Display only, which allows the user to review the subfile records on the display (for example, all the
line items for a particular order number, or a group of records containing customer names and
addresses as shown on the previous sample display).

* Display with selection, which allows the user to request more information about one of the items on
the display. On the first sample display of the following example, the user can request the records for a
particular customer by entering the record number in the record number field. In the second sample

display, the user can request the records for a particular customer by placing an X in the select number
field.

© Copyright IBM Corp. 1997, 2006 87

Enter customer number: 41401
Enter record number:

RECORD NUMBER NAME ADDRESS CITY STATE
01 41401 Adam's Home Repair 121 Golden Circle Chicago IL
02 41402 Jane's Radio/TV 135 Ransom Drive St Paul MN
03 41403 Advanced Electronics 809 8th Street St Paul MN
04 41404 Riteway Repair 443 Western Lane New York NY
05 41405 Fixtures, Inc. 607 9th Avenue Chicago IL
06 41406 Hall's Electric 200 Main Street St Paul MN
- J
~
Enter customer number: 41401
SELECT
RECORD NUMBER NAME ADDRESS CITY STATE
_ 41401 Adam's Home Repair 121 Golden Circle Chicago IL
_ 41402 Jane's Radio/TV 135 Ransom Drive St Paul MN
_ 41403 Advanced Electronics 809 8th Street St Paul MN
_ 41404 Riteway Repair 443 Western Lane New York NY
_ 41405 Fixtures, Inc. 607 9th Avenue Chicago IL
_ = 41406 Hall's Electronic 200 Main Street St Paul MN)

* Changing information, which allows the user to change one or more of the records in the subfile. The
following sample display allows the user to change the QTY and SHIP values:

UPDATE SHIP QUANTITY ON ORDERS
Order: 11589 Customer number: 11111 Customer name: Al'Supply

ITEM DESCRIPTION QTY SHIP LOCATION
25764 Pliers 10 10 RST
33624 Hammer 500 250 RST
49821 Pliers 200 200 RST
26837 Wire Cutters 50 25 RST

* Input only without validity checking, which allows the user to enter data as fast as possible; or input
only with validity checking, which allows the user to enter data that is validity checked by the system
or by the program for valid entries. The following sample display shows subfiles for input only:

~
Enter order number: XXXXX
ITEM NUMBER QUANTITY
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
& — — %

» Combination of tasks, which can, for example, allow the user to change data as well as to enter new
records. In the following example, the user can change existing names and addresses or enter new

records.
' ™\

CUSTOMER NAME SEARCH
Search code: 41401
NUMBER NAME ADDRESS CITY STATE
41401 Adam's Home Repair 121 Golden Circle Chicago IL
41402 Jane's Radio/TV 135 Ransom Drive St Paul___ MN__
41403 Advanced Electronics 809 8th Street St Paul___ MN__
- S J

* Displaying single-choice and multiple-choice selection lists. A single-choice selection list is a
potentially scrollable list from which the user can select one item. A multiple-choice selection list is a
potentially scrollable list from which the user can select one or more items. For more information on
selection lists, see [“Selection Lists-Overview” on page 159.]

88 Application Display Programming V5R4

Single selection Tist :

Multiple selection Tist :

Panel Title

Choice text
Choice text
Choice text
Choice text
Choice text
More. ..

Choice text
Choice text
Choice text
Choice text
Choice text

More. ..

RV3W077-0

Describing Subfiles in Your DDS Source

Each subfile you describe in your DDS source requires two types of record formats: a subfile record
format and a subfile control record format.

¢ The subfile record format defines the fields in one row of the subfile.

The high-level language program uses the subfile record format to read a subfile, write new records to

a

subfile, and update the subfile. Operations to the subfile record format are performed between the

subfile and the high-level language program; the display is not changed on operations to a subfile
record format.

The subfile (SFL) keyword is required on the subfile record format.

* The subfile control record format contains heading information and controls subfile functions such as
size, initialization, and clearing.

The high-level language program performs operations on the subfile control record format to write the
subfile to the display and to read the subfile from the display.

The following DDS keywords are required on a subfile control record format:

Subfile control (SFLCTL) keyword, which identifies the subfile control record format for the subfile
record format that immediately precedes it

Subfile size (SFLSIZ) keyword, which specifies the size of the subfile
Subfile page (SFLPAG) keyword, which specifies the size of the subfile page
Subfile display (SFLDSP) keyword, which specifies when to begin displaying records in a subfile

The DDS for the subfile record format must precede the DDS for the subfile control record format.

Each subfile has two types of records:

e An active subfile record is a record that has been:

Added to a subfile by a write operation.
Initialized as active by the subfile initialize (SFLINZ) keyword.

Changed when a write or update operation with the subfile next changed (SFLNXTCHG) keyword
in effect was issued to the record.

Chapter 4. Displaying Groups of Records Using Subfiles 89

— Changed by the user.

¢ An inactive subfile record is a record that was:

— Not added to a subfile by the write operation.
— Initialized as inactive by the SFLINZ keyword and the subfile records not active (SFLRNA)

keyword.

You can also perform the following functions on subfiles:

Table 13. Optional Functions for Subfiles

Function

DDS keyword

Additional information

Allow a subfile to contain messages
from a program message queue

Subfile message key (SFLMSGKEY),
subfile message record
(SFLMSGRCD), and subfile program
message queue (SFLPGMQ)

See the @ topic in the iSeries
Information Center for more
information about the subfile message
keywords.

Clear the subfile of all records before
new records are written

Subfile clear (SFLCLR)

The subfile is not erased from the
display, however, until the SFLDSP
keyword is in effect on the subfile
control record. If the SFLCLR
keyword is specified for a subfile
with no records, it is ignored.

Control when to display a subfile
control record

Subfile Display Control (SFLDSPCTL)
or SFLDSP

The SFLDSP and SFLDSPCTL
keywords are the only keywords that
cause the contents of the display to
change. The SFLDSPCTL keyword
must be in effect if an input operation
is done to retrieve the status of a
CFnn or CAnn key even if no fields
are displayed.

Delete the subfile to allow another
subfile to be used or to continue
processing the display file with no
subfile used

Subfile delete (SFLDLT)

Normally, subfiles should not be
deleted by the program. When the file
containing the subfile is closed, the
subfile is deleted automatically by the
system. However, if the file is shared
and is still open by another program,
the subfile is not deleted, and you
must delete it in your program. You
should only delete a subfile if the
maximum number of subfiles are
already being used and you need to
use another one. The SFLDLT
keyword is ignored if the subfile does
not exist.

Display a page of a subfile by a
record number

Subfile record number (SFLRCDNBR)

If CURSOR is specified for the
SFLRCDNBR keyword, the cursor is
placed in the subfile record whose
relative record number is identified
by the contents of this field. The
cursor is positioned at the first
input-capable field in the subfile
record. If there is no input-capable
field, the cursor is positioned at the
first output-only or constant field.

90 Application Display Programming V5R4

Table 13. Optional Functions for Subfiles (continued)

Function DDS keyword Additional information
Display a plus sign (+) in the lower Subfile end (SFLEND) or The plus sign is replaced by a blank
corner at the extreme right of the (SFLEND(*PLUS)) when the last record is displayed. An

subfile display area (page) when there
are more records than fit on the
display

option indicator must be specified
with the SFLEND or SFLEND(*PLUS)
keyword.

Display the word "More...” on the line Subfile end SFLEND(*MORE)
following the subfile display area

(page) when there are more records

than fit on the display

The word 'More...” is replaced by the
word ‘Bottom” when the last record is
displayed. An option indicator must
be specified with the
SFLEND(*MORE) keyword.

Display a scroll bar next to a subfile Subfile end SFLEND(*SCRBAR)

For more information, see ["Selection|
|Lists—Overview" on page 159.|

Return the relative record number of
the record at the top of the current
page of records

Subfile scroll (SFLSCROLL)

For more information, see |”Select10;|
[Lists-Overview” on page 159

Subfile fold (SFLFOLD) or subfile
drop (SFLDROP)

Enable a command key to fold or
truncate records in a subfile

If the SFLFOLD keyword is specified,
the initial display of the records is
folded. If the SFLDROP keyword is
specified, the initial display of the
records is automatically truncated.
Then the user can press the command
key to display the truncated or folded
version, respectively, of the subfile
record. If the page size equals the
subfile size or the subfile fits on one
display line, the specified keyword
(SFLFOLD or SFLDROP) is ignored.

Both SFLFOLD and SFLDROP can be
used on the same subfile. Optional
indicators can be used on these
keywords. The optional indicators are
used to determine which mode the
subfiles are initially displayed in. If
both keywords are optioned on or
optioned off, then the subfile is
initially displayed in folded mode. If
the keyword is optioned off, the
command key can still be used to
display the truncated or folded
version.

Enable the Enter key as the Roll Up ~ Subfile enter (SFLENTER)
key and enable a command key to
return to the high-level language

program

If more than one subfile using
SFLENTER is displayed at the same
time, the only CAnn or CFnn key in
effect as an Enter key is the CAnn or
CFnn key specified for SFLENTER on
the most recently displayed subfile.
The cursor position at the time the
Enter key is pressed determines
which subfile is affected.

Chapter 4. Displaying Groups of Records Using Subfiles 91

Table 13. Optional Functions for Subfiles (continued)

Function

DDS keyword

Additional information

Initialize a subfile with no active
records even though the subfile is
active

SFLINZ and subfile records not active
(SFLRNA)

A record becomes active when one of
the following happens:

* An output operation is issued to
the subfile for a specific record. The
record is not considered changed
unless the SFLNXTCHG keyword
is used.

* A user enters data into a displayed
record. The record is considered
active and changed.

The records are displayed if the
SFLDSP keyword is in effect. If
default values were specified for
fields in the records, they are
included in the display.

Initialize all records by the field
descriptions in the subfile record
format in the display file

SFLINZ

When the SFLINZ keyword is in
effect on an output operation to the
subfile control record (SFLCTL), the
system assumes that all option
indicators on the subfile record are
off; therefore, only those option
indicators that are preceded by N are
in effect. The subfile records are
displayed if SFLDSP is in effect on an
output operation. When the SFLINZ
keyword is in effect on an output
operation, the contents of
input-capable fields without a default
value are handled as follows:

* Numeric fields are initialized to
Zeros.

e Character fields are initialized to
blanks.

* Floating point fields are initialized
to nulls.

Return a record to the program when
a get-next-changed operation is
performed

Subfile next changed (SFLNXTCHG)

The record is returned even if the
record was not changed by the user

Roll by a specified number of records
instead of by page

Subfile roll value (SFLROLVAL)

This field must have the keyboard
shift attribute of signed numeric with
zero decimal positions. It can be up to
4 digits long and must be defined as
an output/input or input-only field.

Specify the number of spaces between Subfile line (SFLLIN)

each record on a line when more than
one record is displayed on a line

This keyword is used for a
horizontally displayed subfile. If the
display file supports more than one
screen size and the SFLLIN keyword
is to apply to the secondary screen
size in addition to the default (or
primary) screen size, screen size
condition names must be specified.

92 Application Display Programming V5R4

Table 13. Optional Functions for Subfiles (continued)

Function DDS keyword Additional information

Write a message to the message line Subfile message (SFLMSG) and See the @ topic in the iSeries

on the display when your program subfile message ID (SFLMSGID) Information Center for more

does an output operation to the information about the message
subfile control record keywords.

Determines where the cursor is Subfile cursor relative record number The relative record number on which
located in a subfile (SFLCSRRRN) the cursor is positioned is returned in

the hidden field specified as the
parameter on the keyword.

Specify cursor progression for a Subfile cursor progression The SFLCSRPRG keyword causes the
subfile (SFLCSRPRG) cursor to move from a field in a
subfile record to the same field in the
next displayed subfile record. For
more information, see f‘DefininEl
Cursor Progression for Entry Fields’]

on page 30/

Determines whether the subfile was Subfile mode (SFLMODE) This is a required parameter and is
in folded or truncated mode only valid for subfile control records
and the SFLCTL keyword must be
specified.
Define a single-choice selection list Subfile single-choice selection list For more information, see [“Selection]
(SFLSNGCHC) [Lists-Overview” on page 159
Define a multiple-choice selection list Subfile multiple-choice selection list ~ For more information, see [Selection]
(SFLMLTCHC) [Lists-Overview” on page 159
Control the availability of choices in a Subfile choice control (SFLCHCCTL) For more information, see |"SelectioE|
selection list [Lists-Overview” on page 159
Return all selected choices in a Subfile return selected choice For more information, see |”Selecti0;|
selection list using the (SFLRTNSEL) [Lists-Overview” on page 159.

get-next-changed operation

The DDS keywords can be specified in any order; however, the subfile record format (SFL) must precede
the subfile control record format (SFLCTL).

You can use option indicators to condition many of the DDS subfile keywords.

You can specify a maximum of 512 subfiles in a display file, since the maximum number of record
formats allowed in a display file is 1024. No more than 12 subfiles can be active at the same time to the
same display station. One or more active subfiles can be displayed at the same time on the display
station. A subfile must contain at least one field that can be displayed, and the subfile record format must
not overlap the subfile control record format. If these records overlap, the display file cannot be created.

All named fields in a subfile record, including fields that are not input-capable, are returned to the
program.

If any input data validity checking is specified for the subfile record, the validity checking is performed
before any roll function is performed. If the data fails validity checking, the roll function is not
performed.

When the relative record number of the record written to the subfile equals the subfile size, the system
sends the program a CPF5003 message indicating that the subfile is full. (Not all records need to be
active; that is, this message is sent even if the only record written to the subfile was the last record in the
subfile.) If the subfile size does not equal the page size and the program then writes more records to the
subfile, the system automatically extends the subfile as additional records are added. The program is not

Chapter 4. Displaying Groups of Records Using Subfiles 93

notified that the subfile has been extended. (A subfile cannot be extended past 9999 records.) Also, if the
subfile size equals the page size, the program is not notified that the subfile is full unless the last record

written to the subfile occupies the last line available on the subfile display area.

Processing of an extended subfile is less efficient because the extended space is not connected with the
subfile. You can avoid extension by specifying a larger subfile size, but you will be wasting space if the

extended space is used very seldom or never.

illustrates the order in which some of the DDS keywords used for subfile control are processed
at run time:

Initialize Yes Initialize Dis
. play
subfile i ' |
fil
(SFLINZ) subfile subfile
SDueg?itlg Subfile Yes Delete
ti i
e active subfile
Subfile Clear
active subfile
Subfile Display
active subfile
@
RSLH181-0

Figure 21. DDS Keyword Processing Order for Subfile Control

Using a Subfile in a Program

To use a subfile, you perform the following basic operations in your high-level language program:

1. Initialize the subfile. One way to initialize the subfile is to read records from a database file and write
them to the subfile. Place the records in the subfile one at a time until the subfile is full or until there

are no more records.

94 Application Display Programming V5R4

Program File

Database . Subfile
File

» 1/0 Area

RV2W029-3

2. Send the subfile to the display in one output operation using the subfile control record format.

3. After the user reviews the records, changes them, or enters new records (depending on the function of
the subfile), read the subfile control record format.

Program File Display
Subfile

£

RV2W030-2

4. Process each record in the subfile individually, updating the database file or writing new records to
the database file as required. If the function of the subfile is to update records, the program need only
process the changed records by using the READC operation in ILE RPG or the Read Subfile Next
Modified verb in ILE COBOL.

File
Program
Subfile
_ Data- -
“base _
—File - .
1/0 Area [«

RV2W031-2

A display file that uses subfiles may display only a portion of a subfile at a time. The portion that is
displayed is called a subfile page. The data entered into an input-only field on a subfile display goes to
the subfile when a function key (such as a Roll key) is pressed. The field then displays a value in the
subfile, and what happens when the Enter key is pressed depends on the application code.

Note: In a READC operation in ILE RPG, the data is moved from the subfile to the program. It does not
remove it from the subfile, and it will continue to be displayed in the input-only field as if the
fields were initialized to that value. Otherwise, it would appear that the subfile was empty when
the data was actually there.

If the subfile is processed (for example, by an UPDAT operation in RPG), then the data is removed from

the subfile, and the input-only fields are blanked out, reflecting the true condition of empty fields. This
should be done after the READC operation moves the data to the program.

Chapter 4. Displaying Groups of Records Using Subfiles 95

Requesting I/0 Operations for a Subfile

An I/0 request by a calling program to a subfile record format either writes a record to a subfile or reads
a record from a subfile but never causes actual I/O to the display. To write subfile records to a display,
the program must issue a request to the subfile control record format.

The valid requests that can be made to a subfile depend on whether the request is made to the subfile
record format or the subfile control record format.

Requesting I/0 Operations for a Subfile Record Format

By requesting the correct I/O operation for a subfile record format, you can do the following:
* Add a record (passed from a program) to a specified location in a subfile

* Update an active record that already exists in the subfile

* Read an active record at a specified location in the subfile

* Read the next changed record in the subfile that is greater than the relative record number previously
read with a get-relative or get-next-changed operation

Adding a Record at a Specified Location in a Subfile
The put-relative operation adds a record (passed from a program) at a specified location in a subfile.

The location must be a valid relative record number in the subfile. The minimum relative record number
is always 1. If the subfile size equals the subfile page, the maximum relative record number value is the
subfile size value. If the subfile size is greater than the subfile page, the maximum relative record number
value is 9999 because the system automatically extends the subfile as required. In addition, the relative
record number cannot be the number of an active record already in the subfile. The relative record
number is ignored when field selection is specified for the subfile record.

When a put-relative operation adds a record at the last record location (the subfile size value) in the
subfile, a subfile-full condition occurs (message CPF5003). Both ILE RPG and ILE COBOL have special
support for notifying the application program of this condition. See the appropriate high-level language
manual.

The contents of input-capable fields without a default value specified are handled as follows:
* Numeric fields are initialized to zeros

¢ Character fields are initialized to blanks

* Floating point fields are initialized to nulls

Updating an Active Record in the Subfile

The update operation updates an active record that already exists in the subfile.

The active record must have been read before the update operation by a get request (either get relative or
get-next-changed). No other 1/O operations may be performed on the subfile to be updated between the
read and the update. In addition, the subfile being updated may not be displayed again between the read
and the update (for example, using subfile roll or SFLDROP processing).

Notes:

1. Some high-level languages do not allow I/O to any format in the display file between the read and
the update of a single subfile record in the display file. Refer to the documentation for the high-level
language you are using for more information.

2. If field selection is specified for the subfile record, only the fields that were selected when the record
was placed in the subfile can be updated. Selecting different fields will cause results that cannot be
predicted.

96 Application Display Programming V5R4

Reading an Active Record at a Specified Location in the Subfile
The get-relative operation reads an active record at a specified location in the subfile.

The location must be a valid relative record number in the subfile. The entire record, including response
indicators (defined at the file level and on fields in a subfile record), input, output, output/input, and
hidden fields, is passed to the program, the relative record number is placed in the input/output
feedback area, and the record is no longer identified as a changed record. Response indicators defined at
the file level are always returned as off. Response indicators defined on fields in a subfile record, such as
the BLANKS or CHANGE keywords, are returned as on or off depending on the information in the field
at the time the get operation was done.

If the record specified on the get-relative operation is not active, a not valid record number condition
occurs (message CPF5020). This condition becomes a record-not-found condition in some high-level
languages. See the appropriate high-level language manual.

Notes:

1. The get-relative operation and get-next-changed operation both update the relative record number in
the input/output feedback area. Subsequent get-next-changed-record requests retrieve sequentially
changed records greater than this relative record number.

2. The get-relative and get-next-changed operations do not process input data for overlapping fields in a
subfile. The record returned to the program contains the data already existing in the buffer prior to
the read operation for overlapped fields. If this is a problem, use the subfile initialize function to
ensure all subfile fields are cleared.

Reading the Next Changed Record in a Subfile
The get-next-changed operation reads the next changed record in the subfile that is greater than the
relative record number previously read with a get-relative or get-next-changed operation.

If the get-next-changed operation is used as the first read operation, the first changed record in the
subfile is read. The entire record, including response indicators (defined at the file level and on fields in a
subfile record), input, output, output/input, and hidden fields, is passed to the program, the relative
record number is placed in the data management feedback area, and the record is reset to a not changed
record. Response indicators defined at the file level are always returned as off. Response indicators
defined on fields in a subfile record, such as the BLANKS or CHANGE keywords, are returned as on or
off depending on the information in the fields at the time the get operation was done.

If there are no more changed records in the subfile, a message (CPF5037) indicating that the last changed
record has already been retrieved, is sent to the program. See the appropriate high-level language manual
for a description of how this condition is reported to your program.

If a record retrieved by a get-next-changed operation is updated and the SFLNXTCHG keyword is
specified for an updated record, the updated record is set again as a changed record. This allows the
program to ensure that the user has changed the record. For example, if the program detects an error in a
record, it is advantageous to require the user to correct the error. The use of the SFLNXTCHG keyword
allows the program to read that record again on a get-next-changed operation so it can continue to reject
the record until the error has been corrected. The next get-next-changed operation does not retrieve this
updated record. The record cannot be retrieved again with a get-next-changed operation until all the
changed records following it in the subfile have been processed. This is because the changed records are
accessed sequentially and the sequence does not start at the beginning until after the message indicating
that there are no more changed records in the subfile has been sent to the program. A get-next-changed
operation following this message gets the first changed record in the subfile. Because no I/O operation
has been issued to the display, any changed record would be a record that was processed using the
SFLNXTCHG keyword.

Chapter 4. Displaying Groups of Records Using Subfiles 97

Notes:

1. The get-relative operation and get-next-changed operation both update the relative record number in
the input/output feedback area. Subsequent get-next-changed-record requests retrieve sequentially
changed records greater than this relative record number.

2. The get-relative and get-next-changed operations do not process input data for overlapping fields in a
subfile. The record returned to the program contains the data already existing in the buffer prior to
the read operation for overlapped fields. If this is a problem, use the subfile initialize function to
ensure all subfile fields are cleared.

Requesting I/0 Operations for a Subfile Control Record Format

By requesting the correct I/O operation for a subfile control record format, you can do the following:
* Display subfile records

* Place the subfile records on the display into the subfile for processing by the program

* Display and process subfile records at the same time

Displaying Subfile Records

You can display subfile records by issuing a write operation to the subfile control record format.

You can control the write operation using the following DDS keywords:

SFLDSP Display the subfile.

SFLDSPCTL Display the subfile control record.

SFLCLR Clear the subfile of active records.

SFLDLT Delete the subfile.

SFLINZ Initialize the subfile with active records, or if the SFLRNA keyword is specified, with

inactive records. When the subfile is initialized, all option indicators in the subfile record
are assumed to be off.

SFLEND Notify the user when the last available record is displayed.
SFLRCDNBR Display the specified page of the subfile.

Note: These keywords are described under|“Describing Subfiles in Your DDS Source” on page 89/

Placing Subfile Records on the Display for Processing

A read operation must be issued to a displayed record format in order for the subfile records on the
display to be placed into the subfile for processing by the program. The subfile records from the display
are placed in their corresponding record positions in the subfile.

Displaying and Processing Subfile Records at the Same Time
The write-read operation is a single operation that combines the write and read operations and is more
efficient than a single write operation followed by a single read operation.

Recognizing Subfile I/0 Requests in High-Level Languages

shows the I/O requests supported by the system and the equivalent high-level language
operations:

Table 14. Subfile Operations Supported by the System and Equivalent HLL Commands

ILE COBOL
Operation ILE C/C++ Function ILE RPG Operation Statement BASIC Statement
Put Relative _Rwrited WRITE, output WRITE SUBFILE WRITE REC =

specifications

98 Application Display Programming V5R4

Table 14. Subfile Operations Supported by the System and Equivalent HLL Commands (continued)

ILE COBOL

Operation ILE C/C++ Function ILE RPG Operation Statement BASIC Statement

Update _Rupdate UPDAT REWRITE SUBFILE =~ REWRITE REC =

Get Relative _Rreadd CHAIN READ SUBFILE READ REC =

Get Next Changed _Rreadnc READC READ SUBFILE READ MODIFIED
NEXT MODIFIED

Write _Rwrite WRITE WRITE WRITE

Read _Rread READ READ READ

Write-Read _Rwriterd, _Rformat, EXFMT

_Rpgmdev

Controlling the Appearance of Subfiles

Records in a subfile can be displayed either vertically or horizontally. In a vertically displayed subfile, a
record is displayed on one or more lines, with each record beginning a new line (see . Ina
horizontally displayed subfile, a record is complete on one line, and more than one record is displayed on
a line (see . You can specify that a subfile is to be displayed horizontally by using the SFLLIN
keyword to define the number of spaces between each subfile record on a display line. [Figure 24 on page|
shows an example of a vertical subfile and a horizontal subfile being displayed at the same time.

Record 1
Record 2
Record 3
Record 4

A A

yYv

y

vy v

¥
N

RSLH702-0

Figure 22. Vertically Displayed Subfile

Record 1 Record 5 Record 9

Record 2 Record 6 Record 10

Record 3 Record 7 Record 11

Record 4 Record 8 Record 12
(some other record)

RSLH703-0

Figure 23. Horizontally Displayed Subfile

Chapter 4. Displaying Groups of Records Using Subfiles 99

7
g
>

1
o
O
A A A

1
g
w

N
g
O

1
g
m

=1

RSLH704-0

Figure 24. Horizontally and Vertically Displayed Subfiles Displayed at the Same Time

If a subfile is larger than the space allowed for the subfile on the screen, the user can roll the display
from one group of records in the subfile to another. Each group of records displayed at the same time is
called a page. When you create a display file with a subfile, you must specify the size of the page for a
subfile by specifying the number of records in the page (SFLPAG keyword). Usually page size is based
on the number of lines available on the display. You must also specify the size of the subfile by specifying
the number of records in the subfile (SFLSIZ keyword).

Page size and subfile size can be the same; that is, all records in the subfile fit on one page. When page
size equals subfile size, variable-length subfile records are supported. One record can take up only a
single line while another record can take up more than one display line. Each record is placed in the first
record position available in the subfile; this position is always a new line. In addition, the SFLDROP and
SFLROLVAL keywords are ignored by display station support when page size equals subfile size.

For more information on page size and subfile size, see [‘Specifying Subfile Size Equal to Page Size” on|
fpage 102 and [“Specifying Subfile Size Not Equal to Page Size” on page 103

If records are to be displayed horizontally, the number of records to be displayed in a subfile (SFLPAG
keyword) is adjusted so that the last line on the screen can be used to display a full line of records. For
example, if the number of spaces between each record on a line (SFLLIN keyword) is specified such that
six records fit on a line and 20 is specified for the page size (SFLPAG keyword), 20 is changed to 24,
which is the nearest multiple of six. The number of records in the subfile (SFLSIZ keyword) is
incremented by the same amount.

Note: For the initial display of a subfile, the more records placed in a subfile before it is displayed, the
slower the response time.

Displaying Horizontal Subfiles with Display Modes

You can use the display mode (DSPMOD) keyword to specify which of the two modes (or display sizes),
24x80 or 27x132, you want to use for your display station.

When changing display modes, the display is cleared but the data is not cleared from the subfile. SFLDSP
or SFLDSPCTL must be in effect for DSPMOD to be active in the control record.

The following example shows how to specify DSPMOD with subfiles:

100 Application Display Programming V5R4

B R TR Y TN . P T R CETTT P J . PR FETRY A

A DSPSIZ(*DS4 *DS3)
A R SFLR SFL

A FLD1 8 0 1 5

A FLD2 7 1 116

A FLD3 7 B 124

A R SFLCTLR SFLCTL(SFLR)
A SFLDSP

A SFLDSPCTL
A SFLSIZ(60)
A SFLPAG(12)
A SFLLIN(4)
A *DS3 SFLLIN(6)

A 02 SFLEND

A 10 DSPMOD (*DS3)
A

A

Figure 25. Sample DDS Using DSPMOD with Subfiles

In the previous example, if the user’s program turns indicator 10 off and issues a write-read operation to
the subfile control record format (SFLCTLR), the subfile is displayed as follows:

In 27 by 132 (*DS4) mode, because indicator 10 for the DSPMOD keyword is off.

Horizontally, because SFLLIN is specified. The SFLLIN value indicates the number of bytes between
records. Because each record is 30 bytes long and the space between each record is 4 bytes long, four
records can be displayed on one horizontal line, (4 x 30) + (3 x 4) = 132 bytes. The subfile is displayed
on three lines because SFLPAG(12) is specified.

The following example shows the subfile displayed in *DS4 mode.

RECORD 1 RECORD 4 RECORD 7 RECORD 10
RECORD 2 RECORD 5 RECORD 8 RECORD 11
RECORD 3 RECORD 6 RECORD 9 RECORD 12

If the user presses the Enter key, control is returned to the user’s program. If the user’s program turns on
indicator 10 and then issues another write-read operation to the subfile control record format (SFLCTLR),
the subfile is displayed as follows:

In 24 by 80 (*DS3) mode, because indicator 10 for the DSPMOD keyword is on.

Horizontally, because SFLLIN is specified for the *DS3 mode. If SFLLIN was not specified for the *DS3
mode, the subfile would have been displayed vertically. If the SFLLIN keyword is to be used for more
than one screen size, a screen size condition name for each secondary screen size is required. Because
each record is 30 bytes long and the space between each record is 6 bytes long, two records can be
displayed on one horizontal line, (2 x 30) + 6 = 66 bytes). The subfile is displayed on six lines because
SFLPAG(12) is specified. To ensure other records are not erased, the SFLPAG may need to be specified
for the secondary screen size.

The following example shows the subfile displayed in *DS3 mode.

RECORD 1 RECORD 7
RECORD 2 RECORD 8
RECORD 3 RECORD 9
RECORD 4 RECORD 10
RECORD 5 RECORD 11
RECORD 6 RECORD 12

Chapter 4. Displaying Groups of Records Using Subfiles 101

Specifying Subfile Size Equal to Page Size

You must specify the size of the subfile and the number of subfile records to be displayed at one time
with the SFLSIZ and SFLPAG keywords. The use of subfile size equals page size is recommended when
the number of subfile records to be displayed will fit on one page or when the number of records to be
placed in the subfile is unknown and large. It is not an efficient use of resources to retrieve many
database records to fill a large subfile if the user normally finds the needed information on the first page.

When subfile size equals page size, the system does not automatically support the use of the Roll Up and
Roll Down keys. If you want the user to roll through the subfile using these keys, you must specify the
ROLLUP or ROLLDOWN keyword in the subfile control record, and your program must handle the roll
up or roll down function.

For example, if a subfile is used to allow the user to search through a long list, you can specify SFLSIZ
equals SFLPAG and ROLLUP on the subfile control record:

P PN PO SO SO e U T SRR SN PRI SUI - T S S
A R SFLCTLR SFLCTL(SFLRCD)
A SFLSIZ(16)
A SFLPAG(16)
A ROLLUP(20 'Ro11 Up')

Figure 26. Sample DDS Using SFLSIZ, SFLPAG, and ROLLUP Keywords

When the user presses the Roll Up key, indicator 20 is set on and control returns to the program. In your
program, you would:

* Clear the subfile (a write operation to the subfile control record with the SFLCLR keyword in effect).
* Use the indicator to control a return to the logic that fills the subfile with another page of records.
* Display the new subfile page.

You could also allow the display station user to press a CFnn key to return to the start of the search.
When the user presses the CFnn key, the associated indicator is set on and control returns to the
program. In your program, you would:

¢ (Clear the subfile.

* Use the indicator to control a return to the logic that built the first subfile page based on the search
code entered. (The program needs to keep the original search code in order to do this.)

Using the ROLLDOWN keyword when subfile size equals page size requires more lines of code in the
program because the program must keep track of the record position in the subfile and in the database
file.

When the subfile size equals page size, you can use field selection and variable-length records in the
subfile. If you use field selection, consider the following:

¢ If the fields are selected through the use of option indicators, the relative record number is ignored and
each record is placed in the first available record position in the subfile.

* If a record is being updated, the field selection that does not match that on the original output is
ignored. For example, assume that FIELD1 and FIELD2 are selected when the record is placed in the
subfile. If the update selects FIELD2 and FIELD3, fields would overlay the original FIELD1 and
FIELD? fields, and the results could not be predicted.

* If field selection is specified on the subfile record, the number of records that can be displayed on the
screen depends on the number of fields selected. When field selection is specified, the SFLPAG(value)
keyword specifies the number of screen lines available to display the subfile record. In other cases, the
SFLPAG(value) keyword specifies the number of subfile records that can be displayed at one time.

¢ The SFLFOLD, SFLDROP, and SFLROLVAL keywords are ignored.

102 Application Display Programming V5R4

When variable-length records are used, each record in the subfile is displayed beginning on the first
available line on the page. If you use field selection for variable-length records, each record can take up a
different number of lines on the display. Therefore, the number of records that actually fit in the subfile
depends on the field selection of each record written to the subfile. The following shows an example of
the DDS for a variable-length record:

A R SFLRCD SFL
A ITMNBR 8Y o 6 2
A ITMDSC 15 6 11
A QTYOH 4 0 628
A LSTPC 7 2 639
A ALLOH 8Y 0 649
A SLSMO 10 2 663
A N8O SLSYR 12 2 7 7
A N8O CSTYR 12 2 +3

Figure 27. Sample DDS for a Variable-Length Record

When indicator 80 is on, each record in the subfile fits on one line. However, when indicator 80 is off,
each record uses two lines on the display.

Another typical use of variable-length records is where two or more entirely different formats are used to
make up one format. In this case, each field would be separately conditioned by option indicators so that
one record format might use multiple lines while another format uses only one line.

Specifying Subfile Size Not Equal to Page Size

Subfile size not equal to page size should be used when a finite number of records can be placed in the
subfile and that number is small (for example, 50). The SFLSIZ keyword specifies the subfile size. The
system allocates space to contain the subfile records based on the value specified for SFLSIZ. You should
specify a value equal to the number of records that you normally have in the subfile. If your program
places a record with a relative record number larger than the SFLSIZ value into the subfile, the system
extends the subfile to contain it (up to a maximum of 9999 records).

When the subfile size is not equal to the page size, the use of the Roll Up and Roll Down keys is
automatically supported.

To inform the user that there are more records in the subfile, use the SFLEND keyword on the subfile
control record. When SFLEND is in effect (for example, the option indicator is on), a + (plus sign) is
placed in the lower position to the extreme right of the screen on each page except the last page. On the
last subfile page, the + is replaced with a blank.

When the subfile size is not equal to page size, you can use the SFLROLVAL keyword to allow the user
to enter a value to specify how many records should be rolled up or down when the appropriate key is
pressed. If the SFLROLVAL keyword is not used, the subfile is rolled by the SFLPAG value except for
subfiles using SFLFOLD or SFLDROP. If the SFLFOLD or SFLDROP keyword is used, more records are
displayed than the SFLPAG value when records are displayed in the truncated format. For truncated
records, the display rolls by the number of records displayed in the truncated format. When the
SFLROLVAL keyword is used and the Roll Up key is pressed, the uppermost record number in the
displayed subfile is added to the roll value to determine the new uppermost record number. If this value
is greater than the last record in the subfile, the last full page of records is displayed. If the Roll Up key is
pressed when the last subfile page is displayed and the roll value is not less than the page size value, an
error message is issued. If the roll value is less than the page size value, the roll function is performed.

Variable-length records and field selection cannot be used when the subfile size is not equal to the page
size.

Chapter 4. Displaying Groups of Records Using Subfiles 103

A technique to improve performance when you are using a multiple page subfile is to write only one
page of subfile records at a time but use the operating system support to roll through the subfile. To do
this, you need to define the ROLLUP keyword in DDS with a response indicator and also use the
SFLRCDNBR keyword. In your program, you would write the records needed to fill one subfile page and
then display that page. When the user wants to see more records, he or she presses the Roll Up key. The
program then writes another page of records to the subfile, places the relative record number of a record
from the second page into the SFLRCDNBR field, and displays the record.

The second page of subfile records is now displayed, and if the user presses the Roll Down key, the roll
down is handled by the system. If the user presses the Roll Up key while the first page is displayed, the
system will also handle the roll up. The program is notified only when the user attempts to roll up
beyond the records currently in the subfile. The program would then handle any additional roll up
requests in the same manner as for the second page. When you use this technique, the subfile appears to
be more than one page because of the use of the roll keys. Yet, you can maintain good response time
because the program only fills one subfile page before writing it to the display.

Checking Validity on Subfile Data

In addition to the DDS validity checking keywords (CHECK, COMP/CMP, RANGE, and VALUES), you
can also do validity checking on subfile data in your program and require the user to correct the error.

For example, assume that you are using a subfile for an order entry program and you want to check the
item number field to be sure it is a valid order number. You also want to check the quantity ordered field
to ensure there are enough items on hand to fill the order. To do this, you can use the SFLNXTCHG
keyword on the subfile record (SFL) to allow your program to diagnose the errors and require the user to
correct them. The following DDS shows an example of using the SFELNXTCHG keyword:

P PN PRI SO SO S RO R S ST PUIE SR - PR SR S

A R ORDENTD

A 1 30'ORDER ENTRY DISPLAY'

A 3 2'Enter customer number:'

A CUST 5 325

A R SFLRCD SFL

A 61 SFLNXTCHG

A LINNBR 2 7 4

A ITMNBR 5 B 7 9

A 40 DSPATR(RI PC)

A QTYORD 4 B 720

A 35 DSPATR(RI PC)

A R SFLCTLR SFLCTL(SFLRCD)

A SFLSIZ(5)

A SFLPAG(5)

A 55 SFLDSP

A 50 SFLDSPCTL

A 30 SFLCLR

A 10 SFLINZ

A 40 SFLMSG('Item number not valid' 40)
A 35 SFLMSG('Qty not available' 35)

Figure 28. Sample DDS Using the SFLNXTCHG Keyword

When the program detects an error, it sets on the indicator that conditions the SFLNXTCHG keyword
and issues a write operation to the subfile control record with the SFLDSP keyword in effect. The field in
error is displayed in reverse image, and the cursor is positioned at that field. The associated error
message is also displayed. The user then corrects the error.

A decision you must make when using the SFLNXTCHG keyword is whether to allow the user to change
the subfile fields that were not in error. If you do not want the display station user to change those fields

104 Application Display Programming V5R4

you can protect them with the DSPATR(PR) keyword. For those fields you do not want changed, the
DSPATR(PR) keyword must be in effect only when the SFELNXTCHG keyword is in effect. If you allow
the user to change the fields, you can:

* Define hidden fields for those fields that are to be checked.
* Move the data originally entered by the user into the hidden fields when an error occurs on a subfile.

¢ Compare the data in the hidden fields to the fields just read to identify which fields have been
changed so you can update the records that have already been processed when the user makes the
changes.

Displaying Error Messages from Subfiles

You can use a subfile to display messages for multiple errors. The messages to be placed in the subfile
are on a program message queue. Each message written to the subfile is displayed on a separate line and
is truncated, if necessary. Each message line contains an attribute character in position 1 that is displayed
as a blank, followed by the message text. For the 24 by 80 display mode, 76 characters are displayed. For
the 27 by 132 display mode, 128 characters are displayed. Because both the message identifier and the
message data are available from the program message queue, message help and substitution text are
supported for the messages placed in a message subfile. If the SFLMSGRCD keyword is specified, the
SFLPGMQ and SFLMSGKEY keywords must also be specified.

The following shows an example of the DDS for a message subfile:

P PN PRI SUU S e RO Y SRR ST PIIE S PO S S

A R MSGSFL SFL

A SFLMSGRCD(14)
A MSGKEY SFLMSGKEY

A PGMQ SFLPGMQ

A R MSGCTL SFLCTL(MSGSFL)
A SFLSIZ(8)

A SFLPAG(8)

A 50 SFLDSP

A 55 SFLDSPCTL

A 60 SFLINZ

A PGMQ SFLPGMQ

A NBR 4 OH SFLRCDNBR (CURSOR)
A

Figure 29. Sample DDS for a Message Subfile

The SFLRCDNBR(CURSOR) keyword is used to position the cursor at the first displayed character in the
message subfile that is specified in the SFLRCDNBR field so the Roll Up and Roll Down keys will apply
to the message subfile.

For information on sending and receiving messages and on the program message queue, see the
Messages section in the topic in the iSeries Information Center. Message subfiles are the only kind of
subfiles supported for CL programs and for ILE C/C++ programs.

Positioning the Cursor on the Displayed Subfile
The DSPATR(PC) keyword lets you position the cursor for each page of the subfile record that is
displayed. Write and update operations can be used to control DSPATR(PC) for:

* The initial display of subfile records. (A write or write-read operation to the subfile control record
when the SFLDSP and SFLDSPCTL keywords are used.)

* Subfile records displayed using a roll key or a fold or truncate key (SFLDROP or SFLFOLD keywords).

Chapter 4. Displaying Groups of Records Using Subfiles 105

Positioning the Cursor Initially

The cursor is positioned by the first of the following conditions that applies:

¢ The CSRLOC keyword on the subfile control record.

* The DSPATR(PC) keyword within the records being displayed.

¢ The DSPATR(PC) keyword within a field in the subfile control record.

¢ The SFLRCDNBR(CURSOR) keyword within the subfile control record.

¢ If nothing is specified, the cursor is positioned at the first input-capable field on the display.

Note: If the keyboard is unlocked prior to the output operation that displays the subfile, explicit cursor
positioning is not performed.

Use the keywords in the following order:

* The CSRLOC keyword can be used to position the cursor anywhere on the screen.

e The DSPATR(PC) keyword can be used to position the cursor at any field in the first record displayed
when the output operation specifies the SFLDSP keyword.

* The DSPATR(PC) keyword can be used to position the cursor at any field of the subfile control record.

* The SFLRCDNBR(CURSOR) keyword can be used to position the cursor at the first input-capable field

of the record whose record number is used to select which page is to be displayed first. If no input
fields exist, the cursor is positioned at the first selected output field in that record.

* If neither the DSPATR(PC) nor SFLRCDNBR(CURSOR) keyword is used, the cursor is positioned at the
first input-capable field on the display.

Positioning the Cursor When a Roll Key Is Used

The positioning of the cursor when a roll key is used depends on whether the DSPATR(PC) keyword is
used:

* If the DSPATR(PC) keyword is not used, the cursor is positioned at the same location as when the roll
key was pressed.

* If the DSPATR(PC) keyword is used, the cursor is positioned at the first field in the displayed subfile
records with the DSPATR(PC) keyword in effect.

The following example illustrates both and shows part of the DDS for a subfile in which records are
displayed vertically. Customer number, name, address, city, and state are displayed. A user can change
customer name, address, city, and state. Customer number cannot be changed; it is an output field only.
The DSPATR(PC) keyword has been specified for the customer number field (CUST). Subfile size is 21
and page size is 7.

106 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO
R SUBFIL1 SFL

TEXT('Subfile record')
3DSPATR(PC)
10CHECK(LC)
32CHECK(LC)

CUST 5
NAME 20
ADDR 20
CITY 20 54CHECK(LC)
STATE 2 76
R FILCTLL SFLCTL(SUBFIL1)
50 SFLDSPCTL
55 SFLDSP
SFLSIZ(21)
SFLPAG(7)
60 SFLCLR
TEXT('Subfile control record')
OVERLAY
PROTECT
CA03(98 'End of program')
2'NUMBER'
10" NAME
32" ADDRESS'
54'CITY"
76'STATE'

o W W w
B R R

> > > II>>>>> > >

NN NN

Figure 30. Sample DDS Using the DSPATR(PC) Keyword

The initial display looks like this:

Cursor

NUMBER NAME ADDRESS CITY STATE
41394 Sorensen and Walton 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA
41397 Morem Motors 1300 Pine Street Atlanta GA
41398 Polt Electronics 240 Wallters Place Chicago IL
41399 Clark’'s TV 560 3rd Street Chicago IL
41400 Jim’s Repair 700 4th Avenue Chicago IL

RSLH709-0

The first seven records in the subfile are displayed and the cursor is positioned under the customer
number in the first record. The user moves the cursor to the third record, updates the address for that
customer, and moves the cursor to the customer number of the fourth record:

Chapter 4. Displaying Groups of Records Using Subfiles 107

Cursor Changed Field
\

~
NUMBER NAME ADDRESS CITY STATE
41394 Sorensen and Walton | 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA
41397 Morem Motors 1300 Pine Street Atlanta GA
41398 Polt Electronics 240 Wallters Place Chicago IL
41399 Clark’s TV 560 3rd Street Chicago IL
41400 Jim’s Repair 700 4th Avenue Chicago L
o)
RSLH183-0

Now the user presses the Roll Up key to display the next seven records. The cursor is positioned under
the customer number in the first record:

Cursor

NUMBER NAME ADDRESS CITY STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY
41405 Fixtures, Inc. 607 9th Avenue Chicago IL
41406 Hall's Electric 200 Main Street St Paul MN
41407 Electric House 903 East Place Atlanta GA

RSLH184-0

If the DSPATR(PC) keyword had not been specified and the user pressed the Roll Up key, the cursor
would have been positioned at the fourth record under customer number:

108 Application Display Programming V5R4

Cursor

|

NUMBER NAME ADDRESS CIty STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY
41405 Fixtures, Inc. 607 9th Avenue Chicago IL
41406 Hall’s Electric 200 Main Street St Paul MN
41407 Electric House 903 East Place Atlanta GA

RSLH185-0

Positioning the Cursor When a Fold or Truncate Key Is Used

When you use the SFLFOLD or SFLDROP keyword to assign a CFnn or CAnn key, cursor positioning is
handled the same way as described under [“Positioning the Cursor When a Roll Key Is Used” on pagd
The cursor is positioned as specified for all displayed records, including those folded. When you use
the SFLFOLD or SFLDROP keyword to assign a CFnn or CAnn key, the cursor is positioned only for
those fields displayed. Cursor positioning specifications for fields in the folded portion of the record are
ignored.

Positioning the Cursor and Rolling When Two or More Records Are
Displayed

When you display two or more records at the same time, the position of the cursor determines the action
taken when the user presses a roll key, regardless of which record was written to the display last.

The cursor can be positioned in the roll-enabled area of the display or in the area that is not roll-enabled of
the display. A roll-enabled area is:

A record without subfiles and with the ROLLUP/ROLLDOWN keyword in effect
* A subfile control record with the ROLLUP/ROLLDOWN keyword in effect
* A roll-enabled subfile, which is an active subfile with subfile size greater than page size

* An active subfile with subfile size equal to page size and the ROLLUP/ROLLDOWN keyword in effect
for its subfile control record

Based on the location of the cursor, the action taken when the user presses a roll key is as follows:

e If the cursor is positioned in the roll-enabled area at a roll-enabled subfile or at the subfile control
record for a roll-enabled subfile, the subfile is rolled. If the subfile is at the end of the subfile and the
corresponding ROLLUP/ROLLDOWN keyword is not in effect, the end-of-subfile message is sent to
the user. If the ROLLUP/ROLLDOWN keyword is in effect at the end of the subfile, control returns to
the program.

Chapter 4. Displaying Groups of Records Using Subfiles 109

e If the cursor is positioned in the roll-enabled area at a record without subfiles with the
ROLLUP/ROLLDOWN keyword in effect, at a subfile control record with the ROLLUP/ROLLDOWN
keyword in effect, or at an active subfile with subfile size equal to page size and the
ROLLUP/ROLLDOWN keyword in effect for the subfile control record, control returns to the program.

* If the cursor is not positioned in the roll-enabled area, the system attempts to find the uppermost
roll-enabled area on the display and perform the action indicated, as listed previously. If there is no
roll-enabled area on the display, the command-key-not-valid message is sent to the user.

Note: Records that do not occupy display space (record formats with no fields, with hidden,
program-to-system, or message fields only, or with the CLRL keyword specified and no
input-capable fields; and message subfiles) are assumed to be at line 0. Therefore, these records
are considered to be uppermost on the display, and the system attempts to roll them first.

The following examples illustrate what action is taken, based on the location of the cursor, when two
records are displayed and the user presses a roll key.

In the following example, control returns to the program if the corresponding ROLLUP/ROLLDOWN
keyword is in effect. This occurs because the cursor is positioned at a record without subfiles and with
the ROLLUP/ROLLDOWN keyword in effect.

NUMBER NAME ADDRESS CIty STATE

41394 Sorensen and Walton 500 5th Avenue New York NY

41395 Charland, Inc. 200 Madison Avenue New York NY Subfile

41316 Anderson’s Electric 950 2nd Avenue Atlanta GCA with

41397 Morem Motors 1300 Pine Street Atlanta GA SFLSIZ>

41398 Polt Electronics 240 Wallters Place Chicago IL + SFLPAG
Nonsubfile

Enter next customer number: Record with
ROLLUP/
ROLLDOWN
in Effect

\ RV2W050-0

Cursor

In the following example, two subfiles with the subfile size greater than the page size and their control
records are displayed. The user positions the cursor in the bottom subfile control record. The bottom
subfile is rolled because the cursor is positioned at a roll-enabled subfile in the roll-enabled area of the
display.

110 Application Display Programming V5R4

NUMBER NAME ADDRESS CITY STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane's Radio/TV 135 Ransam Drive St Paul MN Subfile 1
41403 Advanced Electronics 809 8th Street St Paul MN with
41404 Riteway Repair 443 Western Lane New York NY SFLSIZ>
41405 Fixtures, Inc. 607 9th Avenue Chicago IL + SFLPAG
ORDER LINE TOTAL .
NUMBER NUMBER NUMBER DESCRIPITON QY Price PRICE SUEf"e 2
- wit
1401 35900 1 E35 Motor 10 15.00 150.00 SFLSIZ>
41401 35400 2 F60 Pump 25 20.00 500.00 SFLPAG
’ RV2W051-0
Cursor

In the following example, a subfile with the subfile size equal to the page size and the
ROLLUP/ROLLDOWN keyword in effect is written to the display first. A record without subfiles and
without the ROLLUP/ROLLDOWN keyword in effect is then written to the display. If the cursor is
positioned at either the subfile record or the second record, control returns to the program.

Cursor
UMBER NAME ADDRESS CITY STATE
1394 Sorensen and Walton 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY Subfile
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA with
41397 Morem Motors 1300 Pine Street Atlanta GA SFLSIZ>
41398 Polt Electronics 240 Wallters Place Chicago IL + SFLPAG
Nonsubfile
Enter next customer number: Record without
ROLLUP/
ROLLDOWN

RV2W052-0

In the following example, the first subfile has a subfile size greater than the page size but the
ROLLUP/ROLLDOWN keyword is not specified. The second subfile has a subfile size equal to the page
size but the ROLLUP/ROLLDOWN keyword is not specified. If the cursor is positioned at the second

Chapter 4. Displaying Groups of Records Using Subfiles 111

subfile, the first subfile is rolled. In this position, the cursor is not in a roll-enabled area; therefore, the
system finds the uppermost roll-enabled area in the display and performs the roll function.

NUMBER NAME ADDRESS (@)% STATE
.) Subfile with
41401 Adam’s Home Repair 121 Golden Circle Chicago IL SFLSIZ>
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN SFLPAG
41403 Advanced Electronics 809 8th Street St Paul MN and without
41404 Riteway Repair 443 Western Lane New York NY ROLLUP/
41405 Fixtures, Inc. 607 9th Avenue Chicago L+ ROLLDOWN
ORDER LINE TOTAL . .
NUMBER NUMBER NUMBER DESCRIPITON QTY Price PRICE Subfile with
SFLSIZ=
1401 35900 1 E35 Motor 10 15.00 150.00 } SELPAG
41401 35400 2 F60 Pump 25 20.00 500.00 and without
ROLLUP/
ROLLDOWN
f RV2W053-1
Cursor

In the following example, the subfile with a subfile size greater than the page size and without
ROLLUP/ROLLDOWN keyword is written to the display first. The record without subfiles and with
ROLLUP/ROLLDOWN keyword in effect is then written to the display above the subfile. If the cursor is
positioned within the subfile record, the subfile is rolled. If the cursor is not positioned within the subfile
record, the subfile is not rolled and control returns to the program.

Identifiers Highlight Command Prompt Exit Help

—=== Top-of-File ==== Select a Router identifier and press Enter.
RTYP CMGR
———— Botfom-of-File ———— RTYP Type of router.

common user ID.

RTDN Default systemn name.
RMTN Name of Remote LU alias.
LCLN Name of Local LU alias.
MODN Mode name information.

Enter Esc=Cancel Fl=Help

RSLH054-0

112 Application Display Programming V5R4

Understanding Subfile DDS and Program Logic-Example

The following shows the DDS that describes the customer name search subfile shown earlier in this
section. The DDS is followed by a description of the logic a program would use to process this subfile.

Axx DISPLAY CUS220D CUSTOMER NAME SEARCH

A CFO3(99 'End of Program')
A R NAMESR OVERLAY

A 1 29'CUSTOMER NAME SEARCH'
A 3 2'Search code'

A SEARCH 5 I 315

A R SUBFIL1 SFL

A CUST 5 7 2

A NAME 20 B 7 9

A ADDR 20 B 7 31

A CITY 20 B 7 53

A STATE 2 B 775

A R FILCTL SFLCTL(SUBFIL1)
A 55 SFLDSPCTL

A 50 SFLDSP

A SFLSIZ(18)

A SFLPAG(6)

A 50 SFLEND

A 60 SFLCLR

A OVERLAY PROTECT
A RCDNBR 2 OH SFLRCDNBR (CURSOR)
A 45 5 2'NUMBER'

A 45 5 9'NAME'

A 45 5 31'ADDRESS'

A 45 5 53'CITY!

A 45 5 75'STATE'

Figure 31. Sample DDS Showing Customer Name Search Subfile

The following is an example of the logic a user program would use to process the subfile just shown. A
write-read operation is a combined input and output operation. A read is an input operation. A write is
an output operation. See the appropriate high-level language manual for the operations that can be
performed in the high-level language program.

User Program

1. Opens a file and issues a write-read operation to the NAMESR record format to prompt for a search
code.

User

2. Enters a zip code in the search code field. The program uses the search code field as a key field to
find the first database record in the file with that key field. The program will build the subfile using
that record as the first record in the subfile.

User Program

3. Obtains records (read operation) from the database file and places (write operation to SUBFIL1) them
in the subfile one record at a time until the subfile is full or there are no more records to place in the
subfile.

4. When all records are in the subfile, issues a write-read operation to the subfile control record format
(FILCTL) with the following:

a. A + (plus sign) is displayed in the lower right corner of the screen when there are more records
than fit on one subfile page. Because the indicator for the SFLEND keyword is on, the system
replaces the + with a blank when the last subfile page is displayed.

Chapter 4. Displaying Groups of Records Using Subfiles 113

b. The indicator for the SFLDSP keyword is on, so the first subfile page is displayed.
c. The indicator for the SFLDSPCTL keyword is on, so the subfile control record is displayed.

d. The SFLRCDNBR(CURSOR) keyword is specified for a field. The program placed a value of 1 in
this field, so the subfile page that contains relative record number 1 is displayed first and the
cursor is positioned at the first input field in that record. (If no input field exists, the cursor is
positioned at the first selected output field or constant in that record.)

e. The constant field (heading line) indicators are on, so the constants in the subfile control record
are displayed.

f. The OVERLAY and PROTECT keywords are in effect in the subfile control record so that the
prompt (NAMESR) can remain on the display without being changed.

User

5.

Updates displayed records, using the roll keys to display different subfile records as needed. Presses
the Enter key after completing all updates to the subfile.

User Program

6.

10.

1.

12.

Completes the input portion of the write-read operation to the subfile control record format. In this
example, the subfile control record does not contain any input fields. The input portion of the
write-read operation allows the display station user to enter data into the subfile.

Issues the get-next-changed operation to the subfile record to process the first subfile record changed
by the user.

Uses each changed record to update the corresponding database file record.

Repeats steps 7 and 8 until a no-more-modified-records condition exists for step 7. When this
condition is detected, step 10 is performed.

Issues a write-read operation to the prompt (NAMESR) to determine if the program should end or
display another group of database records. The OVERLAY keyword is specified, so that the current
display contents for the subfile are left unchanged. If the user presses the CF1 key, which turns on
response indicator 99, the program will close the display file and end. If the user enters another
search code for another group of records to be displayed, step 11 is performed.

Issues a write operation to the subfile control record (FILCTL) with the following:

a. The indicator for the SFLCLR keyword is on, so the subfile is cleared of all records (the display is
unchanged).

b. The indicator for the SFLDSP keyword is off, so the contents of the display remains unchanged.

c. The indicator for the SFLDSPCTL keyword is off, so the subfile control record is not displayed
again.

Repeats steps 3 through 10. The subfile was cleared (SFLCLR keyword) in step 11 so that new

records can be placed in the subfile. The write operation to the subfile control record in step 4 has

the constant field indicator off so that heading information is not sent to the display again. As long

as the subfile control record remains on the display (no intervening write operations without the

OVERLAY keyword in effect have been performed), the fields do not have to be sent to the display
again.

114 Application Display Programming V5R4

Chapter 5. Defining Windows with Display Files

This chapter explains how to use the specialized DDS window keywords to create windows in your
applications. The DDS window keywords provide the simplest, most flexible method of creating
windows for a variety of purposes. For example, they allow you to use subfiles to present data in
windows, to have the system automatically save and restore the underlying display, and to position data
in the window by referring to positions in the window itself instead of positions on the full screen.

Use the DDS window keywords if your windows must use other DDS functions, such as subfiles, display
attributes, validity checking, and optioning. Also use the DDS window keywords when the window
contains multiple input fields, or if the window location can be varied.

If you have help information defined with DDS and are using the HLPRCD keyword to display it, the
WINDOW keyword can be used to easily display the information in a window.

The following sections describe the terminology used for windows, the functions of the window
keywords, and how to use the keywords for the following tasks:

* Creating windows

* Defining window borders

* Reading data from windows

* Changing window borders and contents

* Moving and duplicating windows

* Making two windows seem active at one time
* Making one window in a series stand out

* Removing windows

* Improving application performance by bypassing system save and restore operations

For examples on using the window keywords, see|"Programming Examples” on page 128

For some applications, you might want to use a different method of creating windows:

* [Chapter 20, “Defining Online Help Information,” on page 399|describes how to create help windows
with the user interface manager (UIM). The UIM uses a different language from DDS. However, it
automates many help window functions for you and provides a simple way of adding online help
information to your existing applications.

* The IBM WindowTool/400 PRPQ, SC41-0050, describes how to create windows with the
WindowTool /400 PRPQ. Consider using this program if you use windows primarily to construct
application menus.

* [Chapter 6, “Creating a Graphical Look for Displays”| describes how to create menu bars, pull-down
menus, selection fields, continued-entry fields, and how to use edit masks using DDS keywords.

Window Terminology

A window is information that overlays part of the display. The user can view information inside the
window and the portion of the display that is not overlayed by the window. However, only the window
is active; the user cannot work with the underlying display. When more than one window is displayed,
only one window is active at a time.

The active window is the window subject to the most recent input or output operation. The active
window appears to be the topmost window on the display. It is the only part of the display with which
the work station user can interact.

© Copyright IBM Corp. 1997, 2006 115

A window remains on the display until your application or the system takes action to remove it.
Removing a window and overlaying a window are different operations. When a window is removed, it
no longer exists on the display, and you can no longer write to or read from it. When a window is
overlayed by another window, it might not be visible to the work station user; however, it is still
available for you to work with.

DDS Window Keywords

Four DDS keywords allow your applications to create and work with windows:

WINDOW (Window)
Creates a window on the display, changes the contents of an existing window, or makes an
existing but inactive window active again.

WDWBORDER (Window Border)
Specifies the color, display attributes, and characters of a window border.

WDWTITLE (Window Title)
Specifies the text, color, and display attributes for a title of a window. The title is embedded in
the top or bottom border of the window.

Note: Not all controllers support text in the bottom border of windows, nor the left and right
alignment of text in the top or bottom border.

RMVWDW (Remove Window)
Removes other windows from the display when a new window is displayed or when an existing
window is redisplayed as the active window.

USRRSTDSP (User Restore Display)
Prevents the i5/0S system from automatically saving and restoring the underlying display when
windows are displayed and removed. In some situations, save and restore operations are
unnecessary; bypassing them speeds up your application. You can also use the USRRSTDSP
keyword to make an earlier window in a series pop up and overlay later windows, and to make
two windows seem active at the same time.

For detailed reference information about each keyword, see the topic in the iSeries Information
Center .

Window Representation and Hardware Configuration

Window borders appear differently, depending on the type of display station and work station controller
you are using.

For more information on how windows appear on different hardware configurations, see
[Configuration” on page 139

Creating Windows

The record-level keyword WINDOW allows a record format to be displayed inside a window. A
maximum of 12 windows can be created on a display at one time.

To create a window, write a record that specifies a WINDOW keyword. The first window record you
write must be a window definition record specifying the window size and its location on the display. The
window definition record places the window borders on the display. Then you can write the same
window definition record again or use one or more window reference records to complete the
specifications for the window.

116 Application Display Programming V5R4

Window Definition Records

A window definition record is a record containing a WINDOW keyword that defines the window size
and location. Size and location attributes include the position of the upper left corner of the window
border and the number of rows and columns within the window.

A window definition record must be the first record written for each window you display. It is the record
that actually creates the window and makes it visible on the display. The record can contain the same
types of fields or data found in any typical record. It can also contain a WDWBORDER keyword defining
the window border. (The WDWBORDER keyword can also be used at the file level.)

You can supply all the specifications for the window in the window definition record. You can supply
additional specifications by writing the same window definition record again, as you would when
displaying an error message in the window. You can also supply additional specifications by writing one
or more window reference records after you write the window definition record.

Window Reference Records

Window reference records provide additional data to be placed in the window. They allow you to display
more than one record format in a window.

Each window reference record contains a WINDOW keyword specifying the name of the window
definition record to which it applies. When the window reference record is written, the window
definition record being referred to must be on the display. If the referenced record is not on the display,
then a notify message stating that the window does not exist is returned to the application.

Window reference records do not contain size and position attributes, and any active WDWBORDER
keywords are ignored.

You can use as many window reference records as needed to complete the window. However, you do not

need to write any window reference records to display a window. You can display a window using only
a window definition record.

Chapter 5. Defining Windows with Display Files 117

Window Size and Location

The following diagram shows the parts of a window that is created when a window definition record is
Left border attribute

Left border

Leading window attribute

First window column

Last window column
— Right border attribute

Right border

Right continuation
attribute

L R < Top border
L:AwwwwwwwwwwwwwwwwwwwB:R 4= First window row
L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R

L: AwwwwwwwwwwwwwwwwwwwB:R
L:AwwwwwwwwwwwwwwwwwwwB:R € Last window row

LAmmmmmmmmmmmmmmmm B:R <€ Message line
[R 4 Bottom border

L Left border attribute

Top and bottom border

R Right continuation attribute
Left and right border

A Leading window attribute
w Window area

m Message line

B Right border attribute

displayed: RBAHG501-0

This window is specified as having a depth of 13 rows (also known as lines) and a width of 19 columns
(also known as positions). The usable area inside the window borders is 12 rows deep and 19 columns
wide. Row 13 is reserved for messages; it cannot contain fields.

With its border, the window actually takes up additional rows and columns on the display. All windows
take up two more rows, one each for the top and bottom borders. Most windows also take up six more
columns:

* Two for border attributes

* Two for border characters

* One for the leading window attribute

* One for the continuation attribute on the right.

If a window starts and ends in the first and last columns of the full display, it takes up only four more
columns instead of six. If a window row overlays DBCS fields, that row requires the six columns
mentioned previously plus up to four more columns for DBCS shift-out and shift-in characters on each
side.

The window is positioned by the upper left corner of the border, which has a starting row position equal

to the top border row and a starting column position equal to the left border column. Fields that do not
fit within the window are diagnosed during file compilation. If the SLNO keyword is used and specifies

118 Application Display Programming V5R4

the starting line number, the DDS compiler flags any fields that do not fit within the window. If *VAR is
specified on the SLNO keyword and the run-time starting line number does not allow the entire record to
be displayed, an exception occurs.

The DDS compiler diagnoses window location problems when either the upper left window line or upper
left window position is specified as a constant. A run-time error occurs if a dynamically positioned
window does not fit on the display.

The special value, *DFT, can be specified in place of the start-line and start-position parameters on the
window keyword. *DFT indicates that the system will determine the start line and start position of the
window. The window is positioned relative to the cursor location. The system uses the following
sequence of rules to position the window when *DFT is used:

1. If the window will fit below the cursor position on the display, it is placed there. The top window
border is positioned one row below the cursor. If possible, the left window border is positioned in the
same column as the cursor; if not, the window is positioned as far to the left of the cursor as
necessary for it to fit on the display.

2. If the window will fit above the cursor position, it is placed there. The bottom window border is
positioned one row above the cursor. The window is positioned horizontally as described in step

3. If the window will fit to the right of the cursor position, it is placed there. The right window border is
positioned in the next-to-last column of the display. If possible, the top window border is positioned
in the same row as the cursor; if not, the window is positioned as far above that as necessary for it to
fit on the display.

4. If the window will fit to the left of the cursor position, it is placed there. The right window border is
positioned two columns to the left of the cursor. The window is positioned vertically as described in

step
5. If the window cannot be positioned in any of the above areas, it is placed in the bottom right corner
of the display.

Cursor Position

To position the cursor in a window, use the CSRLOC and DSPATR(PC) keywords in the same way as for
a full-screen display. The cursor is positioned with reference to the upper left corner of the usable area of
the window.

If *RSTCSR is specified on the WINDOW keyword, and the cursor is moved outside the usable area of
the active window, only the Print and Home command function (CF) keys are active. If the work station
user presses any other command function (CF) key, the alarm sounds and the cursor is moved back to its
position for the previous write operation. *RSTCSR is the default.

Note: On display stations attached to a controller that supports an enhanced interface for
nonprogrammable work stations, the cursor can be moved out of a window only with a mouse
when *RSTCSR is specified.

If *NORSTCSR is specified on the WINDOW keyword, the user may move the cursor out of the active
window and use any command function (CF) or command attention (CA) key.

Error Messages

When windows exist on a display and *MSGLIN is specified on the WINDOW keyword for the window,
any error messages are displayed on the last usable line of the active window. The last usable line in the
window is reserved for error messages; no records are displayed there. If the error message is longer than
the line, it is truncated to fit. When windows exist on a display and *NOMSGLIN is specified on the
WINDOW keyword for the window, any error messages are displayed at the bottom of the display or the
location defined by the MSGLOC keyword.

Help is available through the Help key for error messages displayed in windows.

Chapter 5. Defining Windows with Display Files 119

When messages reporting operational and keyboard errors, such as Function key not allowed, are
displayed, the keyboard is locked and the user must press the Error Reset key to continue.

An informational message, stating that mismatching shift-out and shift-in characters were sent to the
display, is placed in the job log under the following circumstances:

¢ The base display has a DBCS field that spans more than one line.

* A window is displayed and part of the DBCS field from the base display is on the window message
line.

* A function key is pressed that results in an operational or keyboard error.

A few message-related keywords function differently when used for windows:

* The ERRSFL keyword is ignored. Its function is performed only when there are no windows on the
display.

¢ The MSGLOC keyword is ignored if *MSGLIN is specified on the WINDOW keyword. Its function is
performed only when there are no windows on the display or when *NOMSGLIN is specified on the
WINDOW keyword.

* Messages resulting from the ERRMSGID, ERRMSG, SFLMSG, SFLMSGID, and DDS validity-checking
keywords are displayed in the window but do not lock the keyboard. Such messages do lock the
keyboard when displayed on full-screen displays.

Subfiles

A maximum of 24 subfiles can be active at any one time. A maximum of 12 subfiles can be displayed on
the base display or in a single window at any one time.

If a subfile is displayed in a window and the window is removed from the display, the subfile is not
deleted. The subfile remains active until the display file is closed or you explicitly delete the subfile.

DDS Help Records

If a window definition record is written to the display as a DDS help record, the current display is
suspended as it normally is for application help, and the application help record is written to the display
as a window. To avoid errors when using window records as help records, adhere to these requirements:

* Include the ASSUME keyword in the display file containing the help record. If the ASSUME keyword
is not present, the rest of the display is blank while the help window is displayed.

* Use a value of *YES for the Restore Display (RSTDSP) parameter when creating, changing, or
overriding the display file. When returning from help, RSTDSP(*YES) restores the suspended display
and puts the cursor back where it was when the Help key was pressed.

 Use variable line and position values in your window definition record to allow the operating system
to position the help window dynamically, according to cursor position. The system uses the same
sequence of rules to position the window as if *DFT were specified on the window keyword. These
rules are described in [Window Size and Location” on page 118 If the window definition record
specifies that only the line value or only the position value is variable, the same rules are followed.
However, the constant value is not changed.

Defining Window Borders

You can use the system defaults for your window borders or define them using the WDWBORDER
keyword. This keyword specifies three border components: color, display attributes, and characters. More
than one WDWBORDER keyword can be specified. You can use option indicators with the
WDWBORDER keyword.

You can use the WDWBORDER keyword at the file level, where it applies to each window definition
record in the file, or on individual window definition records. If you use it on window reference records,
a warning message is issued when the file is created.

120 Application Display Programming V5R4

The following sections describe window border defaults, how the system handles multiple window
border definitions, and how to use the WDWBORDER keyword to define UIM help window borders.

Border Defaults
When you do not use the WDWBORDER keyword, the system defaults are as follows:

Border Element Default

Color Blue on color displays. On noncolor display stations, this
attribute is ignored.

Display attribute Normal (that is, no attributes such as highlighting or
reverse image)

Top and bottom border character Period ()

Left and right border character Colon (3)

Top left and right corner character Period ()

Bottom left and right corner character Colon (3)

Note: RUMBA /400 work stations and InfoWindow® II display stations attached to a controller that

supports an enhanced interface have solid-line window borders. For more information, see|Table 1
h

Multiple Border Definitions

When the WDWBORDER keyword is specified at the file level and in a window definition record, the
parameter values of the keyword at the file and record level are combined. If the parameter values
conflict, the record-level parameter value is used. For example, if the following is specified at the file
level:

WDWBORDER ((*COLOR RED) (*DSPATR RI))

and the following is specified at the record level:

WINDOW(2 5 10 20) +
WDWBORDER ((*COLOR GRN) +
(*CHAR '........ "))

then the window border consists of green periods in reverse image.

If more than one WDWBORDER keyword is specified at the same level, the parameters for the keywords
that are in effect are combined. If different values are specified for the same parameter, the parameter
value of the first keyword in effect is used. The values for individual components of the border are
determined when a window definition record is written. The border values are determined by the
following hierarchy:

1. Start with system defaults.

2. Override the defaults with any file-level border specifications.

3. Override any file-level border specifications with record-level border specifications.

The process is similar when more than one WDWBORDER keyword is in effect at the same level and the
keywords specify the same WDWBORDER component (color, attribute, or character). The first component
value is used. For example, assume that two WDWBORDER keywords are in effect at the file level:

WDWBORDER ((*COLOR GRN
*CHAR "........)
WDWBORDER((*CHAR '---||]-]"))

and the following is specified at the record level:
WDWBORDER ((*COLOR BLU))

Chapter 5. Defining Windows with Display Files 121

then the border component values are determined as follows:
1. Start with the defaults for each component.

2. Override the character component and color component defaults with the file-level values. Because
the character component is specified more than once, use the first character component value
specified.

3. Opverride the file-level color value with the record-level value.

The window border is constructed using the record-level border color, the first file-level border
characters, and the default border display attributes.

If a single WDWBORDER keyword does not specify all three border components, then those not specified
use the values from any other WDWBORDER keywords in effect; they do not use the defaults. In the
preceding example, this is demonstrated at the record level. Only the color component is specified.
However, because the character component is specified at the file level, the file-level value is used instead
of the default. Because the display attribute component is not specified at the record or file level, the
default is used.

UIM Help Window Borders

You can use the WDWBORDER keyword to specify the border attributes of help windows created with
UIM panel groups. Assume that you are using DDS for full-screen displays and the UIM for help
windows. If a window is on the display when the Help key is pressed, the UIM help window has the
same borders as the DDS window. If no windows are active but the WDWBORDER keyword is specified
at the file level or at the record level of a nonwindow record currently on the display, the system
determines the border attribute and character values for the UIM help window by combining the
file-level, record-level, and default values. Assume that no windows are currently displayed. First, a
nonwindow record with the WDWBORDER keyword specified is written to the display. A UIM help
window is then written to the display. The UIM help window borders use the attributes specified in the
WDWBORDER keyword on the nonwindow record.

Defining a Window Title

Use the window title (WDWTITLE) keyword to specify the text, color, and display attributes for a title of
a window. The title is embedded in the top or bottom border of the window. The length of the title can
be up to the number of positions specified on the window-positions parameter specified on the associated
window definition keyword.

Note: Some controllers do not support text in the bottom border of windows.
The WDWTITLE keyword must be specified on a record that contains a WINDOW keyword (in the

definition format). If a WINDOW keyword that refers to another window is also specified, a warning
message is issued.

[Figure 32 on page 123 shows an example of a window title.

122 Application Display Programming V5R4

NONWINDOW DISPLAY RECORD

WINDOW #1
CUSTOMER NO. nnnnnn :
NAME :

ADDRESS:
PHONE:

F12=CANCEL

\F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Figure 32. Window Title-Display Example

DDS for a Window Title-Example

P PO DU SOU SO e RO TR S SN PRI SUI - PR S S
A R RECORD1 WINDOW(6 15 18 51)
A NO1 WDWTITLE ((*TEXT &TTL1) (*COLOR GRN))
A 01 WDWTITLE ((*TEXT &TTL1) (*COLOR RED))
A FIELD1 5A B 2 2
A FIELD2 200 B 8 5
A TTL1 10A 0P
A*
A R RECORD2 WINDOW(8 20 9 30)
A WDWTITLE ((*TEXT &TTL2) +
A (*COLOR YLW) +
A (*DSPATR RI))
A FIELD3 5A°- B 2 2
A FIELD4 200 B 8 5
A TTL2 10A OP

Figure 33. DDS for a Window Title

If the window defined by RECORD1 in is written to the display, the title will be whatever text
is contained within the TTL1 field. The title will appear centered in the top border of the window. If
indicator 01 is set off, the text will be green. If indicator 01 is set on, the text will be red.

If the window defined by RECORD?2 is written to the display, the the title will be whatever text is

contained within the TTL2 field. The title will appear centered in the top border of the window. The title
will be in reverse image and yellow.

Chapter 5. Defining Windows with Display Files 123

Reading Data from Windows

When windows are on the display, you can receive input only from the active window (that is, the last
window written to the display). If your application reads a window record and the window exists on the
display but is not the active window, then any windows subject to more recent input or output
operations are removed. The window containing the record to be read is restored, becoming the active
window. Then the record is read from the display.

If your application attempts to read a window record and the window does not exist on the display, a
notify message stating that the window does not exist is returned. If the application attempts to read a
window record and the window is on the display but the record is not on the display, a message stating
that the record is not on the display is returned.

Changing Window Borders and Contents

To change the contents of a window already on the display, you must write that window’s window
definition record or a window reference record specifying that window to the display. To change the
borders of a window already on the display, you must write that window definition record to the display.

If a window definition record is written to the display and a window with that name already exists on
the display in the same position, a new window is not created. The new record is considered a normal
write operation to the existing window. If the new record specifies different border attributes or
characters, the new attributes or characters are displayed when the record is written.

Moving and Duplicating Windows

If a window definition record is written to the display and a window with that name already exists on
the display in a different position, a new window is created. The new window appears in the specified
position and has the same name as the existing window. To move the window, use the RMVWDW
keyword in the window definition record being written. The existing window with that name and any
other windows on the display are removed when the new window is written. In effect, the window is
moved. If you do not use the RMVWDW keyword, the same window appears on the display in two
different positions.

If a window reference record is written to the display and the specified window is on the display, the
record is written to the most recently created window with the specified name. To write to an earlier
window with that name, use a window definition record specifying the earlier window’s location.

Making Two Windows Seem Active at Once

Although only one window can be truly active at a time, you can make two windows appear to be active
at once. You might use this to display two windows side by side and allow the work station user to
switch back and forth between them.

To make two windows appear active:

1. Set up function keys to perform the switching action for the work station user. For example, you
might provide one key to page through data in the first window and another key to page through
data in the second window.

2. Write the first window to the display.

3. Write the second window to the display using the USRRSTDSP keyword. The USRRSTDSP keyword
keeps the first window from being saved when the second window is displayed. It keeps the second
window from being removed when the user returns to the first window and then keeps the first
window from being removed when the user returns to the second.

124 Application Display Programming V5R4

You can also use the USRRSTDSP keyword on the first window; it is not required on the first window
because using it on the second window keeps the first window and all subsequent windows from
being saved.

Be prepared to rebuild each window when the work station user presses the keys that perform the
switching action. Once the two windows are displayed, you must rebuild each window whenever the
user wants to move to it. The USRRSTDSP keyword keeps both windows from being saved and
restored, so they must be rebuilt at every switch. In effect, the system does not know that the
previous window existed on the display.

For more information about the USRRSTDSP keyword, see [“Improving Application Performance” on|

Making One Window in a Series Stand Out

Assume that you display a series of windows that looks like this: RBAHG502-0

Now you want to return to Window 3 and make it appear to pop out of the series, so that the display

1

looks like this: RBAHG503-0

To make Window 3 stand out without removing Windows 4 and 5 from the display, take these steps:

1.

Specify the USRRSTDSP keyword on Window 4 or any earlier window (that is, Windows 1 through
3). The USRRSTDSP keyword prevents the previous window and any subsequent windows from
being saved.

Rebuild Window 3 so that it looks the way it did before Window 4 was first displayed. Because
USRRSTDSP was used, the display was not saved when Window 4 was added to the display or at
any later time. Thus, none of the windows are removed from the display, and Window 3 appears to
pop out of the series.

For more information about the USRRSTDSP keyword, see [“Improving Application Performance” on|

Chapter 5. Defining Windows with Display Files 125

Removing Windows

When a window is removed, it no longer exists on the display, and you can no longer write to or read
from it. The window keywords provide you with several different ways to remove windows. Which
method you use depends on which windows you want to remove and which operation you want to
perform next. The different methods are described in the following sections.

Removing All Windows
Remove all the windows on a display in one of these ways:

1. Write to a nonwindow record. This allows you to remove all existing windows without displaying a
new window.

2. Write to a window record that specifies the RMVWDW keyword. The RMVWDW keyword causes all
other windows on the display to be removed when the specified window is displayed. If there are no
other windows, the RMVWDW keyword is ignored, and no error is returned.

Removing More Recent Windows

To remove more recent windows that are overlaying the window you want to make active, read or write
to the window you want to make active. Assume that Window 3 exists on the display but is not the
active window. Windows 4, 5, and 6 were subject to more recent write operations than Window 3;
therefore, they overlay Window 3. To remove Windows 4, 5, and 6 so that Window 3 is visible and is the
active window, read or write to Window 3.

Improving Application Performance

In some cases, you can improve application performance by using the USRRSTDSP keyword to prevent
the operating system from saving and restoring the display. The following sections describe how the
system performs the operations, and how and when to use the USRRSTDSP keyword.

System Save and Restore Operations

If you do not use the USRRSTDSP keyword, the operating system automatically performs save and
restore operations for your application. Before a window is displayed, the system saves the display,
including any windows not being removed. When windows are removed, the system restores the display.

If a new window is being created on the display, the record that is active when the window is written is
saved, and the entire display remains as background data. Then the new window becomes active. The
saved record can be a window record or nonwindow record; the procedure is the same for both.

If a window record is written to the display to change or redisplay an existing window, any more recent
windows are removed without being saved, the target window is restored, the new record is written, and
the window becomes active.

If a nonwindow record is written to the display, any existing windows are removed without being saved,
the new record is written to the initial display, and the display becomes active.

Response Time
The time needed for the system to perform save and restore operations depends on your communications
setup and on the window being displayed.

The slowest response time occurs during the read and save operations performed when the first window
is added to a display. Assume that the window is of average size and complexity. If the work station is
attached to the system by a twinaxial, local area network (LAN), or other high-speed communications
line, response time is quick. If the work station is attached by a 2400-baud dedicated line, it takes
approximately 10 seconds to complete the read and save operations and then display the window. If the
line speed is increased to 9600 baud, it usually takes about 2.5 seconds.

126 Application Display Programming V5R4

Other operations, such as saving the display before the second or third window is added, or restoring the
display after windows are removed, take less time.

For more information, including details about other window sizes, terminal types, and line speeds,
consult your marketing representative.

Bypassing System Save and Restore Operations

You can use the USRRSTDSP keyword to bypass system save and restore processing and instead have
your application rebuild the display only when necessary. This technique can improve system
performance and response time for the user of the application. Consider using it when you display only
one window at a time and the windows are in a different display file, or when you display a series of
windows in which the user will not return to earlier windows, or when you want more than one window
to seem active at one time.

For example, under the following conditions, the system ordinarily performs two save operations:
* Your application displays only one window at a time.

* The display file is created with RSTDSP(*YES).

* The first window record to overlay the display is located in a separate file.

The first save operation is performed when the display file is suspended. The second save operation is
performed because a window is being displayed. USRRSTDSP eliminates the second, unnecessary save
operation.

To bypass system save and restore processing, take these steps:

1. Create your own procedure to rebuild the display after a window is removed. Be sure to include any
data that the user enters and that must be redisplayed.

2. Specify the record-level USRRSTDSP keyword on the window following the first window you do not
want the system to save. The USRRSTDSP keyword keeps the system from performing save and
restore operations. The USRRSTDSP keyword is allowed only on records containing the WINDOW
keyword; it is ignored on the window reference record.

Once the USRRSTDSP keyword is specified, it remains in effect, even if the option indicator is set off,
until you read or write to either the initial, windowless display or the window that is two windows
before the window on which the USRRSTDSP keyword was specified.

Assume that six windows are on the display and the USRRSTDSP keyword was specified on the
fourth. To turn off USRRSTDSP and have the system resume saving the display, you must write to the
second window. As shown in the diagram, the system has saved only the first two windows:

1. Saved

2. Saved

3. Not saved

4. USRRSTDSP; not saved

5. Not saved

6. Not saved

RBAHG504-0

USRRSTDSP Keyword Processing and Interactions
The USRRSTDSP keyword interacts with other keywords and window-related functions. Before using the
keyword, you should understand the following (assume that the USRRSTDSP keyword is in effect):

Chapter 5. Defining Windows with Display Files 127

Display Files, Examples

 If a window record is written to a window that was saved (window 1 or 2 in the above example), the
saved display is restored, the current record is written to the target window, and the target window
becomes active. At this point, the USRRSTDSP keyword is no longer in effect.

» If a window definition record is written to a window that was not saved (window 3, 4, or 5 in the
above example), it becomes a new window. It is merged with the previous display image and written
to the display. No windows are removed.

» If a window record is read from a window that was not saved (window 3, 4, or 5 in the above
example), an error message is returned to the application.

e If the initial display has been saved and the application writes to a window record specifying the
RMVWDW keyword, any existing windows are removed. The new window is displayed on top of the
initial display. The new window is active, and USRRSTDSP is no longer in effect.

e If the initial display is not saved and the application writes to a window record that specifies the
RMVWDW keyword, all existing windows are removed. The new window is displayed on top of the
initial display. The new window is active, and USRRSTDSP is still in effect.

* If a nonwindow record is written to the display and USRRSTDSP is specified on the first window, then
the window is not removed, and the nonwindow record may overlay all or part of the window.

Programming Examples

The following sections illustrate the basic functions of the window keywords. The first example shows
how to use a variety of window functions. It defines a full-screen display and several windows in one
display file. The second example shows how to create windows for a full-screen display defined in a
separate display file. The third example shows how to simulate menu bar support.

Using Basic Window Functions

The following scenario demonstrates the basic functions of the window keywords. The scenario is
presented in three sections:

e The DDS used to define a full-screen display and windows
* The RPG program used to display the full-screen display and windows
* Discussion and illustration of the results

DDS Full-Screen Display and Window Definitions

The following DDS defines the initial display and two windows used in the scenario:

128 Application Display Programming V5R4

Ax
A*
A*
Ax
A*
A

A

A*
A*
A*

> > > > > > >

R INITIAL

FLD48

FLD49

FLD50

FLD51

30A

15A

30A

15A

Display Files, Examples

HELP

CA03(03)
CAO4(04)
CA06(06)
CA07(07)
CA12(12)
CLRL(*ALL)
28'NONWINDOW DISPLAY RECORD'
1'FLD #1:'
9
43'FLD #2:'
51
1'FLD #3:'
9
43'FLD #4:'
51
1'F3=Xxxx"
13" FA=XXXXXXXX "'
29'F6=XXXXX XXXXX'
48'F7=Xxxx'
59'F12=CANCEL'

Chapter 5. Defining Windows with Display Files

129

Display Files, Examples

A m e e e *
A+ RECORDS USED IN DEFINING WINDOW1

Ak o o e e e *
A R WINDOW1 WINDOW(7 3 11 33)

A NO1 WDWBORDER ((*COLOR GRN))

A 01 WDWBORDER((*COLOR RED))

A 2 13'WINDOW #1'

A 4 2'CUSTOMER NO.'

A FLD1 6A 0 4 15

A 4.22':!

A*

A R RECZ2WIN1 WINDOW (WINDOW1)

A OVERLAY

A CA12(12)

A 10 2'F12=CANCEL'

A*

A R REC3WIN1 WINDOW (WINDOW1)

A OVERLAY

A 6 2'NAME:'

A FLD2 24A B 6 8

A 7 2'ADDRESS:'

A FLD3 21A B 7 11

A 8 2'PHONE:'

A FLD4 23A B 8 9

A*

Ak e e e e e *
A+ RECORDS USED IN DEFINING WINDOW2

A* e e e e e e e —————— *
A R WINDOW2 WINDOW(9 25 11 32)

A*

A 2 12'WINDOW #2'

A FLD5 22 0 4 6

A FLD6 25A 0 5 4

A FLD7 25A 0 6 4

A FLD8 25A 0 7 4

A*

A R REC2WIN2 WINDOW (WINDOW2)

A OVERLAY

A CA12(12)

A 10 8'Xxxxxxx :'

A FLD9 6A B 10 18

Ax

Ak o o e e *

RPG Display Program
This RPG program displays the full-screen display and windows defined in the preceding section. Steps 1
through 5 are explained in the sections following the program.

130 Application Display Programming V5R4

Frxkkhkxkhhkrkhhhhkkhhkkkhhkkkhhhkkhhkkkhhkkkhhdkkhhkkkkhdrkhkhkkxxkk

Fx RPG PROGRAM - WINDEMO

F***

FDEMOFM CF E WORKSTN

C***
Cx Step 1: Display Initial Display
C***

C EXFMTINITIAL

C***

Cx Step 2: Display Window #1

C** """"" ER R R R R R R R R R R XX KRKAKA KAk hhkhkhhhhhhhhhhhhkhhkhhdhdhdhdhddxsd
C MOVE 'nnnnnn' FLD1

C WRITEWINDOW1

C WRITEREC2WIN1

C EXFMTREC3WIN1

C************ """"""""""" kK hkhhhhkhhhhhhhhkhhhkhhkhkx*k *xkkkhkk

Cx Step 3: Display Window #2
C***
C MOVEL'Xxxxxxx 'TEMP16 16

MOVE 'xxxx x x'TEMP16

MOVELTEMP16 FLD5

MOVE 'xxxxxx' FLD5

*

MOVEL'xxxxxx x'FLD6
MOVEL'xx xxxx 'TEMP16
MOVE 'xxx xxxx'TEMP16
MOVELTEMP16 TEMP17 17
MOVE ' ! TEMP17
MOVE TEMP17 FLD6

*

MOVEL'xxxx xxx'FLD7
MOVEL'xxxx x x'TEMP16
MOVE 'x xxxx x'TEMP16
MOVELTEMP16 TEMP17
MOVE 'x' TEMP17
MOVE TEMP17 FLD7

*

MOVEL'xxxxxxx 'FLD8
MOVEL'xxxx xxx'TEMP16
MOVE 'xx xxxxx'TEMP16
MOVELTEMP16 TEMP17
MOVE '.' TEMP17
MOVE TEMP17 FLD8

*

WRITEWINDOW2
EXFMTREC2WIN2

OO0

C***
C+ Step 4: Restore Window #1
C***
C EXFMTREC3WIN1
C***
C+ Step 5: Display Initial Display
C***
C READ INITIAL 91
C************ khkkhkhkhhhkhkhhkhhhkhhhkhkhhhhhk *kkkkhhk
Cx End The RPG Program
C***

C SETON LR

C***

Display Files, Examples

Chapter 5. Defining Windows with Display Files 131

Display Files, Examples

Step 1: Display Initial Display

The application creates the initial display without using a window keyword:

~
NONWINDOW DISPLAY RECORD
FLD #1: FLD #2:
FLD #3: FLD #4:
\f3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL)

Step 2: Display Window 1

The user types some data on the display and presses the Enter key. The application writes to window
definition record WINDOW1, which creates the window. Then the application adds information to the
window by writing to window reference record REC2WIN1 and performing a write/read operation to
window reference record REC3WIN1.

Before the window is displayed, the system performs a read screen immediate operation to obtain the
display image and saves the underlying display. The system performs a read screen immediate operation
only when the first window is added to the display. It performs a save operation each time a window is
created.

4 N

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED
8 WINDOW #1 8
F g : FLD #4: DATA ENTERED
: CUSTOMER NO. nnnnnn : 8
NAME :
ADDRESS :
PHONE :
F12=CANCEL

\F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 3: Display Window 2
The user types some information and presses the Enter key. The application writes to window definition
record WINDOW?2. WINDOW?2 is not the active window, and it is not currently on the display; therefore,

132 Application Display Programming V5R4

Display Files, Examples

the system saves the underlying display, associating the saved data with WINDOW1. Then a new
window is created. The application adds information to the window by performing a write/read

operation to window record REC2WIN2.

4 N\
NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED
MIRIEY 6cco00000000000000000000000000000000

F : : 9
CUSTOMER NO. nnnnn : WINDOW #2
NAME: MY NAME 8 XXXXXXX XXXX X XXXXXXX
ADDRESS: MY ADDRES : XXXXXX XXX XXXX XXX XXXX
PHONE: MY PHONE___ : XXXX XXXXXXX X XX XXXX XX

XXXXXXX XXXX XXXXX XXXXX.
F12=CANCEL
800000000000000000000 8 XXXXXXX
\f3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL)

Step 4: Restore Window 1

The user types some data and presses the Enter key. The application performs a write/read operation to
window record REC3WINTI. The record format name specified on the WINDOW keyword, WINDOW]I, is
not the active window. However, the window is currently on the display; therefore, the system restores
the saved display associated with WINDOW1. The restore operation removes WINDOW?2, which was
written after WINDOW1. Then REC3WINT1 is written to the restored window.

/ N

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED

g WINDOW #1 g
F g : FLD #4: DATA ENTERED
: CUSTOMER NO. nnnnnn : 8

NAME: MY NAME
ADDRESS: MY ADDRESS
PHONE: MY PHONE

F12=CANCEL

\f3=Xxxx FA=XXXXXXXX FB=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 5: Display Initial Display
The user presses the Enter key. The application performs a read operation to the initial display, which
automatically removes the last window from the display.

Chapter 5. Defining Windows with Display Files 133

Display Files, Examples

4 ™\
NONWINDOW DISPLAY RECORD
FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED
FLD #3: DATA ENTERED HERE FLD #4: DATA ENTERED
\F3=Xxxx FA4=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL)

Defining Windows in a Separate Display File

The following sections show the DDS code for a full-screen display and window and the procedural steps
needed to use them. In contrast to the preceding example, this example keeps the window records in a
separate display file from the file for the underlying display. This technique allows you to add windows
for items, such as help, to existing applications, without rewriting the display-file code for the
applications.

In the example, the application uses RSTDSP(*NO) to indicate that a save operation should not be done
when a file is suspended. Because displaying a window also performs a save operation, using
RSTDSP(*NO) prevents two save operations from being performed. Because removing the window
restores the screen that was present prior to the window operation, the application is not required to
rebuild the display after window processing. For more information on the USRRSTDSP keyword, see the
notes at the end of the example.

DDS Full-Screen Display and Window Definitions

g g g g gy g *
Ax DISPLAY FILE DISPLAY1 (RSTDSP=NO DFRWRT=*YES)
gy gy *
A R REC1

A 2 21'FIRST RECORD IN FILE'

A 4 17'Current Customer #:'

A FIELD1 6A B 4 38

Ax

A R REC2 OVERLAY CA03(03)

A 6 21'SECOND RECORD IN FILE'

A 8 17'Current Customer #:'

A FIELD2 6A B 8 39DSPATR(HI)

A 24 02'CAO3=EXIT'

A e e e e e *

RPG Program Source
FDISPLAYICF E

C WRITEREC1

C WRITEREC2

C RETRY TAG

C READ REC2 90
C 03 GOTO END

134 Application Display Programming V5R4

Display Files, Examples

C CALL 'WINPGM'

C GOTO RETRY

C END TAG

C SETON LR
g g gy *
A DISPLAY FILE DISPLAY2 (RSTDSP=NO)
g gy g g g gy gy gy *
A R WINDOW1 WINDOW(7 4 11 25)

A NO1 WDWBORDER((*COLOR GRN))

A 01 WDWBORDER((*COLOR RED))

A 2 9'Window #1'

A *

A R REC2WIN1 WINDOW (WINDOW1)

A CA12(12) OVERLAY

A 4 1'Customer No. nnnnnn:'

A 6 1'Name:'

A FIELD3 19A B 6 7

A 7 1'Address:'

A FIELD4 16A B 7 10

A 8 1'Phone:’

A FIELD5 18A B 8 8

A 10 1'F12=Cancel’
g *
Ax Dummy record to remove window from display before returning

K = e e e e e e *
A R RMVWDW CLRL(*NO) OVERLAY FRCDTA

A* e e e e e e e ———————— *

Ax No I/0 will ever be done to this record. This record prevents the
Ax display from clearing.

e *
A R DUMMY ASSUME

A 1 1!
iy *

RPG Program Source for WINPGM

FDISPLAYICF E

WRITEWINDOW1

EXFMTREC3WIN1

WRITERMVWDW

RETRN

SETON LR

OOOO0

Step 1: Display Initial Display
The application opens display file DISPLAY1, performs a write operation to record REC1, and performs a
write/read operation to REC2.

Chapter 5. Defining Windows with Display Files 135

Display Files, Examples

4 N
FIRST RECORD IN FILE

Current Customer #:
SECOND RECORD IN FILE

Previous Customer #:

- J

Step 2: Display a Window

The user enters data indicating that a window should be displayed. The application opens window
display file DISPLAY?2. This can be done from a separate program such as the one which displayed the
screen in Step 1. The ASSUME keyword on record DUMMY keeps the full-screen display from being
cleared, and the system marks display file DISPLAY2 as suspended. No 1/O operation ever needs to be
performed to record DUMMY; it only needs to be present in the file.

The application performs a write operation to record WINDOWI1. Display file DISPLAY1 is suspended;
because of the RSTDSP(*NO) setting, no save is performed. Display file DISPLAY2 is restored; because of
the RSTDSP(*NO) setting, no restore data is sent.

The application performs a write operation to record REC2ZWINT1.

~
FIRST RECORD IN FILE
Current Customer #: XXXXXX
SECOND RECORD IN FILE
#: 0 XXXXXX
Window #1
: Customer No. nnnnnn:
: Name:
: Address:
: Phone:
: F12=Cancel
Ao %

Step 3: Return to the Initial Display

The user enters data indicating that the application should return to the initial display file, DISPLAY1.
The application performs a write operation to record RMVWDW, which causes the system to remove all
windows from the display. Because the application does not close the DISPLAY?2 display file, and the
USRRSTDSP keyword is not specified, then removing the window restores the initial display. The

136 Application Display Programming V5R4

Display Files, Examples

application is not required to rebuild the initial display. The RMVWDW record should contain the
FRCDTA keyword or specify DFRWRT(*NO) when the display file is created.

The application performs a write operation to record REC1. Display file DISPLAY?2 is suspended; because
of the RSTDSP(*NO) setting, no save operation is performed. Display file DISPLAY1 is restored; because
of the RSTDSP(*NO) setting, no data is sent.

The application performs a write/read operation to record REC2.

~
FIRST RECORD IN FILE
Current Customer #:
SECOND RECORD IN FILE
Previous Customer #:
- J

Additional notes on this example:

1. If the application closes DISPLAY?2 in Step 3, then the application must rebuild the initial display by
performing a write operation to REC1 and then a write/read operation to REC2. This can be avoided
by specifying RSTDSP(*YES) for DISPLAY1.

2. USRRSTDSP can be added to the window record in DISPLAY?2. However, if this is done, the user
must either specify RSTDSP(*YES) for DISPLAY1, or rebuild the initial display in Step 3. However, in
Step 3, the application must still write RMVWDW, or the borders of the window are not displayed
properly on the next write operation to the window.

3. The KEEP keyword should be added to the window format both of the following conditions are true:
¢ The application closes DISPLAY?2 in Step 3.
* No I/O is done to file DISPLAY1 prior to opening DISPLAY2 and displaying the window again.

Chapter 5. Defining Windows with Display Files 137

Display Files, Examples

138 Application Display Programming V5R4

Chapter 6. Creating a Graphical Look for Displays

The graphical look is a change in what you see while you run DDS functions. Instead of dotted windows,
you have crisp window borders. Instead of typing numbers in an option column to make a selection, you

can use a mouse or mnemonics. A mnemonic is an underlined character within the text of a choice that
you can type to select the choice. Instead of seeing option numbers, you can see radio buttons or check
boxes. A radio button is a circle that precedes a choice in a single-choice selection field on a graphical
display station. A check box is a square box that precedes a choice in a multiple-choice selection field on
a graphical display station. You can click on radio buttons and check boxes to make choices.

@ yoa

Undo
D Mark

[] copy

RV2W063-0

Figure 34. Radio Buttons and Check Boxes

In addition to a fresher look, the enhanced function includes menu bars and pull-down menus. Instead of
having to simulate a menu bar by using lengthy DDS coding, you can use DDS keywords.

Factors Affecting the Graphical Look

The graphical functions described in this chapter appear differently, depending on the hardware
configuration you have and the value you specify on the enhanced display (ENHDSP) parameter.

Hardware Configuration

[Table 15|and [Table 16 on page 140|show how each graphical function appears on different configurations.

Letters A through F in the tables identify the configurations; these letters are referred to throughout this

chapter.

Table 15. Functions Supported by Hardware Configurations A, B, and C

Hardware Configuration

A

B

C

Graphical User Interface
(GUI) Programmable Work

InfoWindow II Display
Station> Attached to
Controller Supporting

3477 Display Station
Attached to Controller
Supporting Enhanced

Function Stations’ Enhanced Interface® Interface®

Windows’ GUI* windows and possible Character-based GUI° and ~ Character windows and
improvement in possible improvement in possible improvement in
performance performance performance

Selection fields and menu GUT* Character-based GUI° Mnemonics, bar selection

bars

cursor

Selection lists

Bar selection cursor.
Possible check boxes for
multiple-choice lists.
Possible radio buttons for
single-choice lists.

Bar selection cursor.
Possible check boxes for
multiple-choice lists.
Possible radio buttons for
single-choice lists.

Bar selection cursor. Input
field to the left of list.

Continued-entry fields

One field

One field

One field

© Copyright IBM Corp. 1997, 2006

139

Table 15. Functions Supported by Hardware Configurations A, B, and C (continued)

Hardware Configuration

A

B

C

Graphical User Interface

(GUI) Programmable Work

InfoWindow II Display
Station® Attached to
Controller Supporting

3477 Display Station
Attached to Controller
Supporting Enhanced

Function Stations’ Enhanced Interface® Interface®
Edit masks Yes Yes Yes
Highlighting Yes Yes Yes
Cursor progression Yes Yes Yes
Word spill Yes® Yes Yes
Simple hotspots Yes Yes No

Scroll bars

GUI * scroll bars

Character-based GUI °
scroll bars

*MORE, *PLUS, or character
scroll bars °©

Push buttons Yes Yes Yes
Auto-Selection Yes Yes Yes
Auto-Enter Yes Yes Yes
Programmable Mouse Yes® Yes No
Buttons

Grid Lines” No No No

Notes:

1. For example, RUMBA /400 (Microsoft® Windows® and OS/2®) and AIX® AS/400 Connection Program/6000

Release 2.

2. InfoWindow II display stations: 3486, 3487, 3488.

w

Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.

4. GUI includes solid-line window borders, selectable background colors, use of a pointer device (for example, a
mouse), mnemonic selection, bar selection cursor, radio buttons (for single-choice selection fields), and check
boxes (for multiple-choice selection fields).

5. Character-based GUI is similar to GUI except that in character-based GUI, constructs are created using characters,
and background colors are not selectable.

6. Scroll bars that appear on display stations without pointing devices are for display purposes only.

7. Grid lines are supported only on DBCS display stations. For the specific hardware required for grid lines, see

[“Hardware Requirements for Grid Line Structures” on page 207.|

8. RUMBA /400 does not currently support this function.
RUMBA /400 does not currently support window footers.

©

Table 16. Functions Supported by Hardware Configurations D, E, and F

Function

Hardware Configuration

D

E

F

5250 Display Station
Attached to Controller
Supporting Enhanced
Interface’

ASCII Display Station
Attached to ASCII
Controller Supporting
Enhanced Interface?

Any Display Station
Attached to Controller Not
Supporting Enhanced
Interface®

Windows”

Character windows and
possible improvement in
performance

Character windows and
possible improvement in
performance

Character windows

Selection fields and menu
bars

Bar selection cursor

Bar selection cursor

Entry field driven

140 Application Display Programming V5R4

Table 16. Functions Supported by Hardware Configurations D, E, and F (continued)

Function

Hardware Configuration

D

E

F

5250 Display Station
Attached to Controller
Supporting Enhanced
Interface’

ASCII Display Station
Attached to ASCII
Controller Supporting
Enhanced Interface®

Any Display Station
Attached to Controller Not
Supporting Enhanced
Interface®

Selection lists

Bar selection cursor. Input

field to the left of list.

Bar selection cursor. Input

field to the left of list.

Input field to the left of list.

Continued-entry fields One field One field Multiple fields
Edit masks Yes Yes Ignored
Highlighting Yes Yes Ignored
Cursor progression Yes Yes Ignored

Word spill® Yes Yes Ignored
Simple hotspots No No No

Scroll bars

*MORE, *PLUS, or character

scroll bars *

*MORE, *PLUS, or character

scroll bars *

*MORE, *PLUS, or character
scroll bars *

Push buttons Yes Yes Yes
Auto-Selection Yes Yes No
Auto-Enter Yes Yes Yes
Programmable Mouse No No No
Buttons

Grid Lines® No No No

Notes:

1. Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.

2. ASCII controllers that support an enhanced interface: features 6041, 6141, 2637, 9145, 9147.

3. For example: 5250 display stations attached to 5294 and 5394 controllers or features 2638, 6040, and 6140; some
programmable work stations emulating a controller with an attached 5250 display station (for example, iSeries

Access for Windows).

4. Scroll bars that appear on display stations without pointing devices are for display purposes only.

5. Grid lines are supported only on DBCS display stations. For the specific hardware required for grid lines, see

[“Hardware Requirements for Grid Line Structures” on page 207.|

6. RUMBA /400 does not currently support this function.
RUMBA /400 does not currently support window footers.

N

Enhanced Display Parameter

The enhanced display (ENHDSP) parameter can be used with the CRTDSPF and CHGDSPF commands.
Use this parameter to specify whether the data being shown at a display station uses the enhanced
capabilities available on the display station.

Normally, DDS windows and CUA® graphical items are rendered using whatever enhanced capabilities
are available on the display station. For example, window borders and menu-bar separators are presented
graphically on a graphical display station.

You can use ENHDSP(*NO) to cause all records defined in the display file to be displayed in
character-based mode, regardless of the capabilities of the display station. When ENHDSP(*NO) is

specified, none of the enhanced capabilities that may be available on a particular dis
That is, records display just as they would on a display station in configuration F in

play station are used.

able 16 on page 140]

Chapter 6. Creating a Graphical Look for Displays 141

The default value for ENHDSP is *YES. Any enhanced capabilities of the display station are taken
advantage of automatically. If you specify ENHDSP(*YES) and you use the default window border and
menu-bar separator, the window border and the menu-bar separator appear as solid lines. If the display
station is attached to a controller that does not support an enhanced interface for nonprogrammable work
stations, ENHDSP(*YES) is ignored. The records in the display file are displayed on that display station
in character-based mode (as if ENHDSP(*NO) were specified).

Writing records from files with ENHDSP(*YES) and files with ENHDSP(*NO) to the same display. If the
record (or records) displayed is from a file with ENHDSP(*YES), the first write operation of a record
(such as a window) from a file with ENHDSP(*NO) causes all menu bars, pull-down menus, and other

windows on the display to change from graphical to character-based. The records from the file with
ENHDSP(*YES) are switched to the ENHDSP(*NO) mode of display.

If the record displayed is from a file with ENHDSP(*NO), a write operation of a record (such as a
window) from a file with ENHDSP(*YES) does not change the presentation of any menu bars, pull-down
menus, or other windows on the display.

Notes:

1. The system file that is used for UIM help is shipped with ENHDSP(*NO). If you use UIM help with a
file that has ENHDSP(*YES) specified, the display will changes from graphical to character-based.

2. Some programmable work stations that support an enhanced interface ignore the window border and
menu-bar separator keywords.

3. If a window is written to the display station such that a border is in column 1, column 80 (for display
size 24 by 80), or column 132 (for display size 27 by 132), the window is always displayed as though
ENHDSP(*NO) were specified.

DDS Keywords

The tasks in this chapter refer to the DDS keywords, but may not provide all the details about them. For
more information on each keyword, refer to the topic in the iSeries Information Center.

CCSID (Coded Character Set Identifier)
Specifies that a “G” type field supports UCS-2 Level 1 data instead of DBCS-graphical data.

CHCACCEL (Choice Accelerator Text)
Specifies the text for the accelerator key on a single-choice selection field in a pull-down record.

CHCAVAIL (Choice Color/Display Attribute when Available)
Specifies the color or display attributes to be used when displaying the available choices in a
menu bar or selection field.

CHCCTL (Choice Control)
Controls the availability of the choices for the field.

CHCSLT (Choice Color/Display Attribute when Selected)
Specifies the color or display attributes to be used when displaying a selected choice in a menu
bar.

CHCUNAVAIL (Choice Color/Display Attribute when Unavailable)
Specifies the color or display attributes to be used when displaying the unavailable choices in a
selection field.

CHOICE (Selection Field Choice)
Defines a choice for a selection field.

CNTFLD (Continued-Entry Field)
Defines a field as a continued-entry field. Continued-entry fields are sets of associated entry fields
that are treated by the work station controller as a single-entry field during field data entry and
editing.

142 Application Display Programming V5R4

EDTMSK (Edit Mask)
Defines an edit mask for fields with EDTCDE or EDTWRD keywords.

ENTFLDATR (Entry-Field Attribute)
Defines the leading attribute of the field that changes to a specified attribute whenever the cursor
enters the field. When defined at both the field- and record-level, the field-level specification is
used for the field.

FLDCSRPRG (Cursor Progression Field)
Defines the next field that the cursor moves to when exiting this field.

GRDATR (Grid Line Attribute)
Defines the color and line-type attributes for grid line structures in the file or record.

GRDBOX (Grid Box)
Defines the shape, positioning, and attributes of a box.

GRDCLR (Grid Clear)
Defines a rectangular area on a display within which all grid structures are erased.

GRDLIN (Grid Line)
Defines the shape, positioning, and attributes of a grid line.

GRDRCD (Grid Record)
Specifies that this record defines grid structures. No other display fields are allowed on records
with this keyword.

HLPID (Help Identifier)
Specifies an identifier for the constant in the help for a field.

HTML (Hyper Text Markup Language)
Specifies if a data stream is sent to an i5/0S 5250 Workstation Gateway display, the HTML tags
are sent along with the data stream. These HTML tags are processed on the HTML browser. This
allows you to update applications to use on the Internet through the World Wide Web.

MLTCHCFLD (Multiple-Choice Selection Field)
Defines a field as a multiple-choice selection field. A multiple-choice selection field is a field that
contains a fixed number of choices from which a user can select multiple choices.

MNUBAR (Menu Bar)
Defines a menu bar. A menu bar is a horizontal list of choices that is followed by a separator line.

MNUBARCHC (Menu-Bar Choice)
Defines a choice for a menu-bar field. A menu-bar choice represents a group of related actions
that the application user can select.

MNUBARDSP (Menu-Bar Display)
Displays the menu bar.

MNUBARSEP (Menu-Bar Separator)
Specifies the color, display attributes, or character used to form the menu-bar separator line.

MNUBARSW (Menu-Bar Switch Key)
Assigns a CA key to the Switch-to-menu-bar key.

MNUCNL (Menu Cancel Key)
Assigns a CA key to be the cancel key for menu bars or pull-down menus.

MOUBTN (Programmable Mouse Button)
Allows an attention indicator (AID) to be associated with various pointer device events.

PSHBTNCHC (Push Button Choice)
Defines a push button within a push button field.

Chapter 6. Creating a Graphical Look for Displays 143

PSHBTNFLD (Push Button Field)
Defines a field as a push button field. A push button field is a field that contains a fixed number
of push buttons. A push button is a button, labeled with text, graphics, or both that represents an
action that starts when a user selects the push button.

PULLDOWN (Pull-Down Menu)
Defines a record as a pull-down menu for a menu bar.

SFLCSRPRG (Subfile Cursor Progression)
Causes the cursor to move to the same input field in the next subfile record when exiting this
field.

SFLCHCCTL (Subfile Choice Control)
Controls the availability of the choices in a selection list.

SFLEND (Subfile End)
Displays a plus sign (+) or text (More... or Bottom) in the lower right location of the subfile. It
can also display a scroll bar.

SFLMLTCHC (Subfile Multiple-Choice Selection List)
Defines a subfile as a multiple-choice selection list. A multiple-choice selection list is a
potentially scrollable list from which the user can select one or more items.

SFLRCDNBR (Subfile Record Number)
Displays the page of the subfile containing the record whose relative record number is in this
field.

SFLRTNSEL (Subfile Return Selected Choice)
Returns all selected choices in a selection list using the get-next-changed operation.

SFLSCROLL (Subfile Scroll)
Returns the relative record number of the subfile record that is at the top of the subfile when
control is given to the application.

SFLSIZ (Subfile Size)
Specifies the number of records in the subfile.

SFLSNGCHC (Subfile Single-Choice Selection List)
Defines a subfile as a single-choice selection list. A single-choice selection list is a potentially
scrollable list from which the user can select one item.

SNGCHCFLD (Single-Choice Selection Field)
Defines a field as a single-choice selection field. A single-choice selection field is a field that
contains a fixed number of choices from which a user can select one choice.

Creating Menu Bars

shows an example of a menu bar, which is a horizontal list of choices that appears at the top of
a display. An optional menu-bar separator appears below the list. When you select a choice from the
menu bar, a pull-down menu appears. A pull-down menu is a group of actions associated with a
menu-bar choice.

B Edit View Options Help

Figure 35. Example of a Menu Bar

144 Application Display Programming V5R4

Defining the Menu-Bar Choices

A menu bar is a special type of record containing a MNUBAR keyword and one menu-bar field. The
menu-bar field is a numeric field containing one or more MNUBARCHC keywords. The MNUBARCHC
keywords define the menu-bar choices and the pull-down menus associated with each choice. The menu
bar always displays on the first line. The menu-bar record cannot contain any displayable fields other
than the menu-bar field.

The number of rows occupied by the menu bar is determined by the number of choices, the maximum
lengths of the choice text for all the menu-bar choices, and whether a menu-bar separator is specified. If
you specify a menu-bar separator (the default), the number of rows the menu bar occupies (including the
menu-bar separator) must be less than or equal to 12. If you do not specify a menu-bar separator, the
number of rows the menu bar occupies must be less than or equal to 11. It is not possible to extend the
range of menu-bar choices to line 12. However, you can use line 12 for another record.

If you define a pull-down record that is too large to fit beneath the maximum number of rows occupied
by the menu bar, the file is not created.

Suppressing the Menu-Bar Separator

The default is for a menu-bar separator to display. To suppress the menu-bar separator, specify
MNUBAR(*NOSEPARATOR). If you suppress the menu-bar separator, you cannot specify the menu-bar
separator (MNUBARSEP) keyword.

Defining the Menu-Bar Separator

You can use the system defaults for the menu-bar separator or you can use the MNUBARSEP keyword.

Using MNUBARSEP, you can specify the color and display attributes of the menu-bar separator and the
character that makes up the separator. The default presentation of the menu-bar separator is a solid line
on display stations in configurations A and B in [Table 15 on page 139 The default character that makes

up the menu-bar separator is an underline () on display stations in configuration C in[Table 15 on page|
and configurations D, E, and F in [Table 16 on page 140} For an example of using the MNUBARSEP
keyword, see [Figure 36 on page 146}

Note: The menu-bar separator is used as the top border of the pull-down menus. Its color does not
change when a pull-down menu is displayed. To ensure a consistent appearance for your displays,
use the same color and display attributes for both the menu-bar separator and the pull-down
menu borders.

[Figure 36 on page 146 shows an example of the DDS for a menu bar.

Chapter 6. Creating a Graphical Look for Displays 145

P U PUURE SUUDY JUUIE SO FUNUE SUDY SUPUE TN ST SR : SUUIE SR SU
R MENUBAR MNUBAR
MNUFLD 2Y 0B 1 2
MNUBARCHC (1 PULLFILE +
'>File ")
02 MNUBARCHC (2 PULLEDIT +
&EDITTXT)
MNUBARCHC (3 PULLVIEW +
">View ")
04 MNUBARCHC (4 PULLOPT +
'>Options '+
&RTNFLD)
MNUBARCHC (5 PULLHELP +
'>Help ")
MNUBARSEP ((*COLOR WHT))
EDITTXT 20A P
RTNFLD 2Y OH

> > > >

Figure 36. DDS for a Menu Bar. Assume that field EDITTXT contains the text >Edit.

You can control which menu-bar choices are displayed by specifying option indicators on the
MNUBARCHC keywords. Option indicators are used by the application program to specify if a menu-bar
choice should be displayed (optioned on) or should not be displayed (optioned off). The DDS for option
indicators are shown in [Figure 36 on page 146| The application specifies the option indicators as on or off
and then writes the menu-bar record (without MNUBARDSP in effect) to send the option indicators to
the system. If a menu-bar choice is optioned off, the list of choices is compressed. However, the number
of rows occupied by the menu-bar record is not compressed (because records cannot be variable length).
The number of rows occupied by the menu bar is the number of rows needed if all the choices were
displayed plus one row for the menu bar separator. If, through optioning, the list of choices is
compressed so that it is displayed using fewer rows, the separator line is displayed on the line following
the last row of choices. There are blank lines between the menu-bar separator and the next record on the
display.

The text which appears for each choice in a menu-bar comes from either the program-to-system fields
named or the text specified for the choice text parameter of the MNUBARCHC keyword. The number of
rows calculated by the system for the menu-bar record depends on the size of each program-to-system
field or length of choice text. In addition, three spaces are assumed between each choice. Any trailing
blanks in the choice text are removed; the remaining length is used for the calculation. The length of any
program-to-system field is used as is, because trailing blanks can not be anticipated. However, when the
menu-bar record is displayed, any trailing blanks are removed. Therefore, the number of rows actually
occupied could be less than the number calculated. When that occurs, blank lines appear between the
menu-bar separator and the next record on the display.

On display stations in configurations A and B from [Table 15 on page 139, the menu bar looks like this:

[Edit View Options Help j

Figure 37. Menu Bar on a Graphical Display Station with Enhanced Interface

On display stations in configuration C from |Table 15 on page 139} the menu bar looks like this:

Note: In[Figure 38 on page 147|the first character of each menu bar choice is underlined.

146 Application Display Programming V5R4

B Edit View Options Help]

Figure 38. Menu Bar on a Nongraphical Display Station with Underline Capability

On display stations in configurations D and E from [Table 16 on page 140}, the menu bar looks like this:

Edit View Options Help]

Figure 39. Menu Bar on a Nongraphical Display Station without Underline Capability

On display stations in configuration F from [Table 16 on page 140} the menu bar looks like this:

Figure 40. Menu Bar on a Display Station without Enhanced Interface

Selection Fields-Overview

There are two types of selection fields: single-choice and multiple-choice.

Single-choice selection fields and multiple-choice selection fields contain a fixed group of choices
displayed in a vertical or horizontal list. You can select any number of choices from the multiple-choice
selection field. You can only make one choice from the single-choice selection field.

On display stations in configurations A and B from [Table 15 on page 139, the selection fields (vertical
format) look like this:

Chapter 6. Creating a Graphical Look for Displays 147

Display Title

Single selection field . . . : O 0ne
O Iwo
O Three

Multiple selection field . . . : [] Qne
[] Iwo
[] Three

RV2W860-1

Figure 41. Selection Fields on a Graphical Display Station with Enhanced Interface

On display stations in configuration C from [Table 15 on page 139|and configurations D, E, and F from
[Table 16 on page 140] the selection fields (vertical format) look like this:

Display Title

1. One
2. Two
3. Three

Single selection field . . . :

Multiple selection field . . . : _ One
— Two
— Three

RV2W070-0
Figure 42. Selection Fields on a Nongraphical Display Station
DDS for Selection Fields-Example

[Figure 43 on page 149 shows an example of the DDS for both single-choice and multiple-choice selection
fields.

148 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO
R RECORD
2 30'Display Title'
4 5'Single selection field . . . :'
F1 2Y 0B 4 40SNGCHCFLD
CHOICE(1 '>One')
CHCCTL(1 &CTLONE1 MSG1111 QUSER/A)
01 CHOICE(2 '>Two')
CHCCTL(2 &CTLTWO1 &MSG1 &LIB/&MSGF)
CHOICE(3 'T>hree')
CHCCTL(3 &CTLTHR1)

CTLONE1 1Y OH
CTLTWO1 1Y OH
CTLTHR1 1Y OH
MSG1 7A P
LIB 10A P
MSGF 10A P

8 5'Multiple selection field . . . :'
F2 2Y 0B 8 4OMLTCHCFLD
CHOICE(1 '>One')
CHCCTL(1 &CTLONE2 MSG1112 QUSER/A)
01 CHOICE(2 '>Two')
CHCCTL(2 &CTLTWO2 &MSG2 &LIB/&MSGF)
CHOICE(3 'T>hree')
CHCCTL(3 &CTLTHR2)

> > > > >

CTLONEZ 1Y OH
CTLTWOZ 1Y OH
CTLTHR2 1Y OH
MSG2 7A P

Figure 43. DDS for Single-Choice and Multiple-Choice Selection Fields

Creating a Vertical Single-Choice Selection Field

You can define the number of choices and the selection numbers for each choice. On display stations in
configurations A and B from [Table 15 on page 139 the choices are preceded by radio buttons. This is true
unless *NOSLTIND is specified on the SNGCHCFLD keyword. A blank line appears between choices that
are not sequential. The location that you specify for the single-choice selection field is the location of the
input field (on a character-based nongraphical display). On display stations in configurations A and B
from [Table 15 on page 139} the location you specify for the field is the location of the first radio button.

Notes:

1. If you suppress the selection indicators, the location that you specify for the single-choice selection
field is the location of the first character in the first choice.

2. If the single-choice selection field is within a pull-down menu, the location you specify is relative to
the pull-down menu borders.

A single-choice selection field is a numeric field containing a SNGCHCFLD keyword and one or more
CHOICE keywords. The CHOICE keywords define the choices within the single-choice selection field.
shows an example of the keywords to use.

You can have choice numbers up to two digits long. The maximum number you can specify for a choice
is 99. On output, if the field contains a choice number, that choice is the default selection.

The default is for vertical selection fields. You can create a horizontal selection field by using the
*NUMCOL or *NUMROW values on the SNGCHCFLD keyword. See|“Creating a Horizontal Selection|
[Field” on page 150|for more information.

Chapter 6. Creating a Graphical Look for Displays 149

Creating a Vertical Multiple-Choice Selection Field

A multiple-choice selection field is a special numeric field containing:

¢ A MLTCHCFLD keyword to identify it as a multiple-choice selection field. When a user makes a
selection, the field itself contains the number of choices that are selected.

* One or more CHOICE keywords that define the choices.

* A CHCCTL keyword for each choice to define a hidden field for each choice. The hidden field is used

to indicate if the choice was selected. For more information on the CHCCTL keyword, see [“Controlling
{the Availability of Choices” on page 168

The default is for vertical selection fields. You can create a horizontal selection field by using the
*NUMCOL or *NUMROW values on the MLTCHCFLD keyword. See|“Creating a Horizontal Selection|
for more information.

Creating a Horizontal Selection Field

The default orientation for single-choice and multiple-choice selection fields is vertical. To specify a
horizontal field, use the *NUMCOL or *NUMROW values on the SNGCHCFLD and MLTCHCFLD
keywords.

P PO PO SO SO e SO U SR S PRI SR - PR S S

A R RECORD

A 2 2'Flavor . . . '

A F1 2Y 0B 2 16SNGCHCFLD((*NUMCOL 2))

A CHOICE(1 'Chocolate ')

A 01 CHOICE(2 'Strawberry ')

A CHOICE(3 'Vanilla ")

A CHOICE(4 'Peach)

Figure 44. Example of DDS for Horizontal Selection Field. The *NUMCOL 2 specifies that the field should display in two
columns.

The following shows how this single-choice selection field would appear on a character-based display;,
assuming option indicator 01 is on:

Flavor . . . _ 1. Chocolate 2. Strawberry
3. Vanilla 4. Peach

The following shows how this single-choice selection field would appear if *“NUMROW 2 were specified:

Flavor . . . _ 1. Chocolate 3. Vanilla
2. Strawberry 4. Peach

If the choices are nonsequential, no blank line or blank space is left for the omitted choice as would have
happened with *NUMCOL.

You can optionally specify the number of spaces to appear between the choices by using the *GUTTER
value on the SNGCHCFLD and MLTCHCFLD keywords. The gutter width must be at least 2. If

*GUTTER is not specified, the default number of spaces between choices is 3.

Note: The gutter width includes the beginning and ending attribute of the choices on either side of the
gutter.

The area occupied by the horizontal selection field is determined by the following;:
* The number of choices specified

150 Application Display Programming V5R4

¢ The length of the longest choice
* The width of the gutter
¢ The number of columns specified

* The longest accelerator text specified (for a horizontal single-choice selection field in a pull-down
menu)

A horizontal selection field must fit within the minimum display size specified for the file (24 x 80 or 27 x
132). If the record is a window or a pull-down menu, the horizontal selection field must fit within the
minimum window size. Other fields may be specified to the right or to the left of a horizontal selection
field. Option indicators can be specified on horizontal selection fields, as they can for other fields.

You can control which choices are displayed at one time by using option indicators on the CHOICE
keywords. Unlike a vertical selection field, if a choice is optioned off, the remaining choices will be
shifted to fill in the space.

Cursor Movement in a Vertical Selection Field

With *NORSTCSR on the SNGCHCFLD and MLTCHCFLD keywords, the cursor keys move the cursor to
the next cursorable choice in the direction of the key that is pressed. The cursor skips null choices and
choices defined as noncursorable. The up arrow key moves the cursor up one choice. The down arrow
key moves the cursor down one choice. If the cursor is on the top choice and the up arrow key is
pressed, the cursor leaves the field. Likewise, if the cursor is on the bottom choice and the down arrow is
pressed, the cursor leaves the field. If the cursor input only (CSRINPONLY) keyword is in effect, the
cursor moves to the next cursorable item on the display above or below the current cursor position. The
cursor left and right keys move the cursor one space to the left or right.

Note: If the selection field is the only field defined within a pull-down menu, the cursor left and right
keys close the present pull-down menu and open the next pull-down menu to the left or right.

To keep the cursor within a selection field, use the *RSTCSR value on the SNGCHCFLD and
MLTCHCFLD keywords. If the cursor up key is pressed when the cursor is on the top choice in the list,
the cursor moves to the last choice in the list. If the cursor down key is pressed when the cursor is on the
bottom choice in the list, the cursor moves to the top choice in the list. If the cursor left key is pressed the
cursor moves up one choice. If the cursor is on the top choice, the cursor moves to the bottom choice. If
the cursor right key is pressed the cursor moves down one choice. If the cursor is on the bottom choice,
the cursor moves to the top choice.

Note: If the selection field is the only field defined within a pull-down menu, the cursor left and right
keys close the present pull-down menu and open the next pull-down menu to the left or right.

Cursor Movement in a Horizontal Selection Field

With *NORSTCSR on the SNGCHCFLD and MLTCHCFLD keywords, the cursor keys move the cursor to
the next cursorable choice in the direction of the key that is pressed. The cursor skips null choices and
choices defined as noncursorable. If the cursor is on the top choice of any column in the field and the up
arrow key is pressed, the cursor leaves the field. Likewise, if the cursor is on the bottom choice of any
column in the field and the down arrow key is pressed, the cursor leaves the field. If the cursor input
only (CSRINPONLY) keyword is in effect, the cursor moves to the next cursorable item on the display
above or below the current cursor position. If the left arrow key is pressed and there is a cursorable item
to the left of the current choice, the cursor moves to the choice. If there is no cursorable item to the left,
the cursor leaves the field. If the right arrow key is pressed and there is a cursorable item to the right of
the current choice, the cursor moves to the choice. If there is no cursorable item to the right, the cursor
leaves the field.

Note:

Chapter 6. Creating a Graphical Look for Displays 151

To keep the cursor within a selection field, use the *RSTCSR value on the SNGCHCFLD and
MLTCHCFLD keywords. If the cursor up key is pressed when the cursor is on the top choice in any
column in the field, the cursor moves to one of the following places:

* If there is a cursorable position in a column to the left, the cursor moves to the last choice in that
column.

* If there is not a cursorable position in a column to the left or if there is no column to the left, the
cursor moves to the last cursorable choice in right-most column in the field.

If the cursor down key is pressed when the cursor is on the last choice in any column in the field, the
cursor moves to one of the following places:

* If there is a cursorable position in a column to the right, the cursor moves to the top choice in that
column.

* If there is not a cursorable position in a column to the right or if there is no column to the right, the
cursor moves to the first cursorable choice in left-most column in the field.

If the cursor left key is pressed and there is a cursorable choice to the left of the current choice, the cursor
moves to that choice. If there is no cursorable choice to the left, the cursor moves to the first cursorable
choice in the row above the present row (closest row, right-most choice). If the present row is the top row,
the cursor moves to the right-most choice in the last row.

If the cursor right key is pressed and there is a cursorable choice to the right of the current choice, the
cursor moves to that choice. If there is no cursorable choice to the right, the cursor moves to the first
cursorable choice in the row below the present row (closest row, left-most choice). If the present row is
the bottom row, the cursor moves to the left-most choice in the first row.

Note: The cursor left and right keys will close the present pull-down menu and open the next pull-down
menu to the left or right when the following are true:

* The selection field is the only field defined within a pull-down menu
* There is no cursorable choice to the left or right of the current choice

Controlling the Selection Indicators in a Selection Field

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used
to select the choice or to show that a choice has been selected. An example of a selection indicator is a
radio button. Radio buttons appear before choices in single-choice selection fields and single-choice
selection lists. The default is for selection indicators to appear in selection fields. You can suppress the
selection indicators in a selection field by specifying the *NOSLTIND parameter on the SNGCHCFLD and
MLTCHCFLD keywords.

The *NOSLTIND value is ignored for display stations that are not attached to a controller that supports
an enhanced interface for nonprogrammable work stations. [Figure 45 on page 153 is an example of the
DDS to suppress the selection indicators in a selection field.

152 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO
R RECORD
2 30'Display Title'
4 5'Single selection field . . . :'
F1 2Y OB 4 40SNGCHCFLD(*NOSLTIND)
CHOICE(1 '>One')
01 CHOICE(2 '>Two')
CHOICE(3 'T>hree')
8 b5'Multiple selection field . . . :'
F2 2Y 0B 8 4OMLTCHCFLD(*NOSLTIND)
CHOICE(1 '>One')
01 CHOICE(2 '>Two')
CHOICE(3 'T>hree')

> > > > >

Figure 45. DDS for Suppressing Selection Indicators in a Selection Field

On display stations in configurations A and B from [Table 15 on page 139, the selection fields look like
this:

Display Title

Single selection field . . . : qpe

Two
Three

Multiple selection field . . . :Qne
Two
Three

RV3W067-0

Figure 46. Suppressed Selection Indicators in Selection Field

Chapter 6. Creating a Graphical Look for Displays 153

Creating Pull-Down Menus Using Single-Choice Selection Fields

When you select a choice from the menu bar, a pull-down menu appears. A pull-down menu is a group
of actions associated with a menu bar choice. is an example.

File Edit View Help

O Undo
O Mark
© copy

RV2W859-1

Figure 47. Example of a Pull-Down Menu

You must define the pull-down menus and the corresponding menu bar in the same file.

The last field in any pull-down menu always operates as though the CHECK(FE) (Field Exit) keyword
were specified. This keeps the cursor in the pull-down menu after you enter the input that is in the last
field in the pull-down menu. Then, if you press the Field Exit key with the cursor in the last field, the
field is cleared and the cursor moves to the next pull-down menu. If the last field did not operate with
CHECK(FE), the cursor automatically moves on to the next pull-down menu after you press the Enter
key.

A pull-down record can contain anything that a window record can contain. However, use only
single-choice selection fields or multiple-choice selection fields in a pull-down menu. If you use fields
other than single-choice selection fields or multiple-choice selection fields, the cursor does not move
consistently on all display stations. On display stations attached to a controller that supports an enhanced
interface for nonprogrammable work stations, the cursor-right keys and cursor-left keys display the next
pull-down menu when both of these conditions are true:

* There is only one selection field in the displayed pull-down menu, and
* The cursor is positioned on the selection field.

On display stations attached to a controller that does not support an enhanced interface for
nonprogrammable work stations, the cursor movement keys move the cursor one character position
within the pull-down menu.

is an example of the DDS for a pull-down menu. The figures that follow show how the
pull-down menu appears on each type of display.

Note: Assume that the record PULLDOWN is specified on the MNUBARCHC keyword for the Edit
choice, and that the MARKTXT field contains the text, >Mark.

A R PULLDOWN PULLDOWN

A F1 2Y 0B 1 1SNGCHCFLD

A ol CHOICE(1 '>Undo "
A CHOICE(2 &MARKTXT)

A CHOICE(3 '>Copy "
A

A

Figure 48. DDS for a Pull-Down Menu

154 Application Display Programming V5R4

On display stations in configurations A and B from [Table 15 on page 139, the pull-down menu looks like
this:

File Edit View Help

O Undo
O Mark
© Copy

RV2W859-1

Figure 49. Pull-Down Menu on a Graphical Display Station with Enhanced Interface

On display stations in configuration C from [Table 15 on page 139] the pull-down menu looks like this:

File Edit View Help

_ 1. Undo
2. Mark
3. Copy

RV2W065-0

Figure 50. Pull-Down Menu on a Nongraphical Display Station with Underline Capability

On display stations in configurations D and E from [Table 16 on page 140}, the pull-down menu looks like
this:

File Edit View Help

_ 1. Undo
2. Mark
3. Copy

RV2W064-0

Figure 51. Pull-Down Menu on a Nongraphical Display Station without Underline Capability

On display stations in configuration F from [Table 16 on page 140}, the pull-down menu looks like this:

File Edit View Help

_ 1. Undo
2. Mark

3. Copy :

RV3W073-1
Figure 52. Pull-Down Menu on a Display without Enhanced Interface

Controlling the Selection Indicators in a Pull-Down Menu

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used
to select the choice or to show that a choice has been selected. An example of a selection indicator is a

Chapter 6. Creating a Graphical Look for Displays 155

radio button. Radio buttons appear before choices in single-choice selection fields and single-choice
selection lists. The default is for selection indicators to appear in selection fields. You can suppress the
selection indicators in a pull-down menu by specifying the *NOSLTIND parameter on the PULLDOWN
keyword. is an example of the DDS to suppress the selection indicators in a pull-down menu.

PP RS PUI DR SR PN: SUIE DY SOUIR U ST TN DI U S
A R PULLDOWN PULLDOWN (*NOSLTIND)
A F1 2Y 0B 1 1SNGCHCFLD
A 01 CHOICE(1 '>Undo ")
A CHOICE(2 &MARKTXT)
A CHOICE(3 '>Copy)

Figure 53. DDS for Suppressing Selection Indicators in a Pull-Down Menu

On display stations in configurations A and B from [Table 15 on page 139, the pull-down menu looks like
this:

File Edit View Options Help

Undo
Mark
Copy

RV2W857-1

Figure 54. Suppressed Selection Indicators on Graphical Display Station

On display stations in configuration C from [Table 15 on page 139] the pull-down menu looks like this:

File Edit View Options Help

RV2W066-1
Figure 55. Suppressed Selection Indicators on Nongraphical Display Station

The *NOSLTIND value is ignored for display stations that are not attached to a controller that supports
an enhanced interface for nonprogrammable work stations.

Defining Accelerator Keys

An accelerator key is a function key that starts the application-defined function and is displayed next to
a pull-down menu choice.

You can specify accelerators for a single-choice selection field in a pull-down menu by doing the
following:

1. Specify the necessary CFnn keys.
2. Use the CHCACCEL keyword.

Specify the accelerator text on the CHCACCEL keyword. You can use a P-field to specify the text. Note
that the CHCACCEL keyword does not define the accelerator key itself. You must define the CFnn

156 Application Display Programming V5R4

keyword for the key and design your application to recognize this key as an accelerator for this choice.
You must also ensure that the text you specify on CHCACCEL correctly reflects the key you have
defined. For example, if you want CF08 to be an accelerator key, specify something like F8 or CFO8 on the
CHCACCEL keyword for the appropriate choice.

The accelerator text appears three spaces after the length of the longest choice text in the field.
Because the accelerator key functions even if the pull-down menu is not displayed, you should define the
necessary CFnn keys at the file level. If you define them at the record level, specify them for every record

from which they should be available.

Single-choice selection fields may be defined in any record. However, an accelerator can be defined only
for a single-choice selection field within a pull-down menu. is an example.

PP PORS PURE DR JUUIE PN SUIE DY FOUIE DN SOUIE U U SR SO
A R PULLEDIT CFo4 CFO6
A PULLDOWN
A F1 2Y 0B 1 1SNGCHCFLD
A CHECK (ER)
A 01 CHOICE(1 '>Undo ")
A CHCACCEL(1 'F4')
A CHOICE(2 &MARKTXT)
A CHCACCEL (2 &F6)
A CHOICE(3 '>Copy ")
A MARKTXT 20A P
A F6 2 P

Figure 56. DDS for Accelerator Keys

On display stations in configurations A and B from [Table 15 on page 139, the pull-down menu looks like
this:

File Edit View Options Help

O undo F4
O mark F6
© Copy

RV2W855-1

Figure 57. Accelerators in a Pull-Down Menu

Defining a Menu-Bar Switch Key

A menu-bar switch key alternates the cursor between the menu bar and the application display.

You can define a menu-bar switch key using the MNUBARSW keyword at either the file level or the
record level. If the cursor is in the application record, pressing the menu-bar switch key moves the cursor
to the first choice in the menu bar. Pressing the key again moves the cursor from the menu bar back to its
previous location in the application record. If you move the cursor using the cursor keys from the
application record to the menu bar and then press the menu-bar switch key, the cursor returns to its
initial position on the application record. This is the first input field unless cursor positioning keywords
are specified on the application record. If a pull-down menu is displayed, pressing the menu-bar switch
key cancels the pull-down menu and moves the cursor to the application record.

The system always handles the menu-bar switch key regardless of whether the application or the system
displayed the menu bar. (For more information, see the topic in the iSeries Information Center.)

Chapter 6. Creating a Graphical Look for Displays 157

For the menu-bar switch key to be active, it must have been active on the last record written to the
display. The easiest way to ensure that the menu-bar switch key will always be active is to specify
MNUBARSW at the file level. If you specify MNUBARSW at the record level, you must specify it on all
records on which it should be active.

Defining a Cancel Key

You can define a cancel key for the menu-bar record and pull-down menu records using the MNUCNL
keyword. You can define them either at the file level or the record level.

A cancel key closes a pull-down menu and moves the cursor to the associated choice on the menu bar.
This is true even if the cursor is not in the pull-down menu. If no pull-down menus are displayed and
the cursor is located within the menu bar, the key cancels the menu bar and moves the cursor back to the
application record. This location is the cursor’s previous location in the application record if the menu-bar
switch key was used to move the cursor to the menu bar. If the cursor had been moved to the menu bar
with the cursor keys, this location is the initial location of the cursor within the application record. If no
pull-down menus are displayed and the cursor is located on the application record, the key returns
control to the application program. In this case, the MNUCNL keyword works just as any other key
definition keyword, and includes the ability to return a response indicator.

Like the menu-bar switch key, the cancel key is active only if it was active for the last record written to
the display. The easiest way to ensure that the cancel key will always be active is to specify the
MNUCNL keyword at the file level. If you use the MNUCNL keyword at the record level, you must
specify it on all records on which it should be active.

shows how to use the MNUBARSW keyword and the MNUCNL keyword. The example sets up
command attention key 10 as the menu-bar switch key and command attention key 12 as the cancel key.
(These settings are the defaults.)

MNUBARSW (CA10) MNUCNL (CA12)
R MENUBAR MNUBAR
MNUFLD 2Y OB 1 2
MNUBARCHC(1 PULLFILE +
'>File ")
02 MNUBARCHC (2 PULLEDIT +
&EDITTXT)
MNUBARCHC (3 PULLVIEW +
'>View)
04 MNUBARCHC (4 PULLOPT +
'>Options)
MNUBARCHC (5 PULLHELP +
'>Help)
EDITTXT 20A P

> > >

Figure 58. DDS for Menu-Bar Switch Key and Cancel Key

Limiting Function When Cursor is Outside a Pull-Down Menu

If *NORSTCSR is specified on the PULLDOWN keyword, the user may move the cursor out of the active
window and use any command function (CF) key. *NORSTCSR is the default.

If *RSTCSR s specified on the PULLDOWN keyword, and the cursor is moved outside the pull-down
menu, only the Print and Home command function (CF) keys are active. If the work station user presses
any other command function (CF) key, the alarm sounds and the cursor is moved back to its position for
the previous write operation.

158 Application Display Programming V5R4

Selection Lists-Overview

A selection list is a potentially scrollable list from which the user can select an item. There are two types
of selection lists: single-choice and multiple-choice. A single-choice selection list is a potentially
scrollable list from which the user can select one item. A multiple-choice selection list is a potentially
scrollable list from which the user can select one or more items.

Single-choice selection lists and multiple-choice selection lists contain a group of choices displayed in a
vertical list. These choices can be scrolled either by using the Page Up and Page Down keys or by using a
scroll bar. A scroll bar is a part of a display that shows a user that more information is available in a
particular direction and can be moved into view by using a pointing device or the page keys. For more
information on scroll bars, see [“Scroll Bars-Overview” on page 163)

You can select any number of choices from the multiple-choice selection list. You can only make one
choice from the single-choice selection list. [“Selection Lists-Overview”|shows an example of a
single-choice selection list, multiple-choice selection list, and scroll bars used with the selection lists.

The DDS in [Figure 61 on page 160 produces the following displays:

On display stations in configurations A and B from [Table 15 on page 139, the selection lists look like this:

Panel Title

Single selection list :

Choice text
Choice text
Choice text
Choice text
Choice text
More. ..

Multiple selection Tist :

Choice text
Choice text
Choice text
Choice text
Choice text

More. ..

RV3W077-0

Figure 59. Selection Lists on a Graphical Display Station with Enhanced Interface

On display stations in configuration F from [Table 16 on page 140}, the selection lists (vertical format) look
like this:

Chapter 6. Creating a Graphical Look for Displays 159

Panel Title

Single selection Tist :

- Choice text
/ Choice text
. Choice text
- Choice text
. Choice text

More. ..

Multiple selection Tist :

/ Choice text
£/ Choice text
_ Choice text
_ Choice text
_ Choice text

More. ..

RV3W069-2

Figure 60. Selection Lists on a Nongraphical Display Station with Underline Capability

DDS for Selection Lists-Example
The DDS in creates the displays shown in [Selection Lists-Overview” on page 159,

P U DT SUUIY JUUIE SO FUNUE SUDY SR N ST JUN : SUUIE SR S

R SFLRCD SFL
CTLFLD 1Y OH SFLCHCCTL
F1 11A- 0 6 10
R SFLCTLRCD SFLCTL(SFLRCD)
SFLSNGCHC

SFLPAG(5) SFLSIZ(&SFLSIZ)
SFLDSP SFLDSPCTL

A

A

A

A

A

A

A

A ROLLUP(10)

A 10 SFLEND (*MORE)

A F3 5S OH SFLSCROLL

A F2 4S OH SFLRCDNBR(CURSOR *TOP)
A SFLSIZ 5S 0P

A 1 30'Panel Title'

A 4 5'Single selection Tist:'
A R SFLRCD2 SFL

A CTLFLD 1Y OH SFLCHCCTL

A F1 11A 0 13 10

A R SFLCTLRC2 SFLCTL(SFLRCD2)

A SFLMLTCHC (&NUMSEL *RSTCSR)
A SFLPAG(5) SFLSIZ(&SFLSIZ)
A SFLDSP SFLDSPCTL

A 10 SFLEND (*MORE)

A ROLLUP(10)

A F2 4S OH SFLRCDNBR (CURSOR *TOP)
A F3 5S OH SFLSCROLL

A SFLSIZ 5S 0P

A NUMSEL 4Y OH

A

11 5'Multiple selection list:'

Figure 61. DDS for Selection Lists-Example

160 Application Display Programming V5R4

Creating Selection Lists

Selection lists are created using subfiles. For more information on subfiles, see [Chapter 4, “Displaying]
[Groups of Records Using Subfiles.”| For each selection list you must specify a subfile record format and a
subfile control record format. Within the subfile record format you must specify an output field for the
text of the choice. You can specify only one output-only field in the record.

To specify a default choice in a selection list, use either the subfile next-changed (SFLNXTCHG) keyword
or a control field. To use the SFLNXTCHG keyword, specify the keyword on the text field within the
subfile record. To use a control field, specify a control field in the subfile record and specify the subfile
choice control (SFLCHCCTL) keyword on the field. The control field can have the following values:

Control Value Meaning on Output Meaning on Input
0 Available Not selected
1 Selected Selected
2 Unavailable. Cannot place cursor on choice unless
help for choice is available.",>
3 Unavailable. Placing cursor on choice is allowed.
4 Unavailable. Cannot place cursor on choice even if

help for choice is available.",?

Notes:
1. Applies only to displays attached to a controller that supports an enhanced interface for nonprogrammable work
stations.

2. If the choice is the first choice displayed and there are no other cursorable choices in the list, the choice will be
made unavailable and cursorable. Otherwise, an invalid data stream error would be issued.

The application uses the get-next-changed operation to determine which choices are selected. The
get-next-changed operation returns all of the changed records. If the user deselects a default choice, the
get-next-changed operation returns the deselected choice record because its control value changed. To
have the get-next-changed operation return only the selected choices, specify the subfile return selected
choices (SFLRTNSEL) keyword on the subfile control record. The next get-next-changed operation will
return the selected choice. Then, perform an update operation to the default choice to change its control
value to 0.

On display stations in configurations A and B from [Table 15 on page 139, the choices are preceded by
radio buttons (single-choice) and check boxes (multiple-choice). This is true unless *NOSLTIND is
specified on the subfile single-choice selection list (SFLSNGCHC) and multiple-choice selection list
(SFLMLTCHC) keywords. The location that you specify for the first field in the subfile record format is
the location of the input fields (on a character-based nongraphical display). On display stations in
configurations A and B from [Table 15 on page 139} the location of the first field is the location of the first
radio button or check box.

Notes:

1. If you suppress the selection indicators, the location that you specify for the first field in the subfile
record format is the location of the first character in the first choice.

2. If the selection list is within a pull-down menu, the location you specify is relative to the pull-down
menu borders.

The SFLSCROLL keyword is used to return the relative record number of the record at the top of the

current page of records. If the user presses Enter, SFLSCROLL returns the relative record number of
record that is currently displayed at the top of the page. If control is returned to the application because

Chapter 6. Creating a Graphical Look for Displays 161

of the ROLLUP keyword, SFLSCROLL returns the relative record number of the last record in the subfile
plus 1. If control is returned to the application because of the ROLLDOWN keyword, SFLSCROLL always
returns 1.

To redisplay the subfile with the correct subfile record at the top of the list of choices, use the subfile
record number (SFLRCDNBR) keyword. Specify SFLRCDNBR(*TOP) as a hidden field and use the
relative record number returned by the SFLSCROLL keyword. Add more records to the subfile and
redisplay the subfile.

Controlling the Selection Indicators in a Selection List

A selection indicator is an indicator that precedes a choice in a selection field or a selection list. It is used
to select the choice or to show that a choice has been selected. An example of a selection indicator is a
radio button. Radio buttons appear before choices in single-choice selection fields and single-choice
selection lists. The default is for selection indicators to not appear in selection lists. You can have the
selection indicators display in a selection list by specifying the *SLTIND parameter on the SFLSNGCHC
and SFLMLTCHC keywords.

The *SLTIND value is ignored for display stations that are not attached to a controller that supports an
enhanced interface for nonprogrammable work stations. is an example of the DDS to enable the
selection indicators in a selection list.

A R SFLRCD SFL

A CTLFLD 1Y OH SFLCHCCTL

A F1 11A. 0 6 10

A R SFLCTLRCD SFLCTL(SFLRCD)

A SFLSNGCHC (*SLTIND)

A SFLPAG(5) SFLSIZ(&SFLSIZ)
A SFLDSP SFLDSPCTL

A ROLLUP(10)

A 10 SFLEND (*MORE)

A F3 5S OH SFLSCROLL

A F2 4S OH SFLRCDNBR (CURSOR *TOP)

A SFLSIZ 5S 0P

A 1 30'Panel Title'

A 4 5'Single selection Tist:'
A R SFLRCD2 SFL

A CTLFLD 1Y OH SFLCHCCTL

A F1 11A 0 13 10

A R SFLCTLRC2 SFLCTL(SFLRCD2)

A SFLMLTCHC (&NUMSEL *RSTCSR *SLTIND)
A SFLPAG(5) SFLSIZ(&SFLSIZ)
A SFLDSP SFLDSPCTL

A 10 SFLEND (*MORE)

A ROLLUP(10)

A F2 4S OH SFLRCDNBR(CURSOR *TOP)

A F3 5S OH SFLSCROLL

A SFLSIZ 5S 0P

A NUMSEL 4Y OH

A 11 5'Multiple selection Tist:'

Figure 62. DDS for Enabling Selection Indicators in a Selection List

On display stations in configurations A and B from [Table 15 on page 139, the selection list looks like this:

162 Application Display Programming V5R4

Panel Title

Single selection Tist :

O Choice text
O Choice text
O Choice text
O Choice text
O Choice text

More. ..

Multiple selection Tist :

OChoice text
HdChoice text
OChoice text
OChoice text
OChoice text

More. ..

RV3W0079-0

Figure 63. Selection Indicators on Graphical Display Station

Scroll Bars-Overview

A scroll bar is a part of a display that shows a user that more information is available in a particular
direction and can be moved into view by using a pointing device or the page keys. A scroll bar can be
defined for any subfile. The examples in this section show examples of scroll bars used with a
single-choice selection list and a multiple-choice selection list.

The DDS in [Figure 66 on page 166 produces the following displays:

On display stations in configurations A and B from [Table 15 on page 139, the selection lists and scroll
bars look like this:

Chapter 6. Creating a Graphical Look for Displays

163

Panel Title

Single selection Tist :

Choice text
Choice text
Choice text
Choice text
Choice text

Multiple selection Tist :

Choice text
Choice text
Choice text
Choice text
Choice text

RV3W078-0

Figure 64. Scroll Bar on a Graphical Display Station with Enhanced Interface

On display stations in configuration F from [Table 16 on page 140} the selection lists (vertical format) look
like this:

Panel Title

Single selection Tist :

. Choice text A
. Choice text .
. Choice text *
. Choice text .
. Choice text vV

Multiple selection Tist:

_ Choice text
Choice text
Choice text
Choice text
Choice text

More. ..

RV3W080-0

Figure 65. Scroll Bar on a Nongraphical Display Station with Underline Capability

Creating a Scroll Bar

To create a scroll bar, use the scroll bar (*SCRBAR) value on the subfile end (SFLEND) keyword. The
*SCRBAR value creates a graphical scroll bar on graphical display stations. It creates a character scroll bar
on nongraphical display stations. The scroll bar appears to the right of the longest choice in the list. To
have the scroll bar appear further to the right, add blanks to the text for the selection list choices.

164 Application Display Programming V5R4

In most cases, the number of subfile records represented by the scroll bar is the number of records that
have been written to the subfile. The SFLEND keyword optioned on indicates that no more records will
be written to the subfile. The SFLPAG value is not added to the number of records represented by the
scroll bar. When the bottom of the subfile is reached and the PAGEDOWN keyword is not active, the
scroll bar box is displayed exactly above the lower scroll bar button.

The SFLEND keyword optioned off indicates that more records will be written to the subfile. The
SFLPAG value is added to the number of records represented by the scroll bar. Adding the SFLPAG value
causes the scroll bar to appear as if more subfile records exist after the last subfile record. When the last
subfile record is reached and the PAGEDOWN keyword is active, the scroll bar box is not displayed
exactly above the lower scroll bar button. This indicates there are more records to display. If the
PAGEDOWN keyword is active, control is given back to the application if the user tries to page down or
scroll to the unseen records. The application can then write more records to the subfile.

Note: The SFLPAG value is not added to the number of records represented by the scroll bar when
PAGEDOWN is active and when the number of records written is less than the SFLSIZ value. In
this case, the number of subfile records represented by the scroll bar is the SFLSIZ value. The
SFLSIZ value is used to show the total size of the subfile and allows the application to fill only the
subfile records that the user wants to see.

If the PAGEDOWN keyword is active, no partial pages are displayed. If the user tries to roll to a partial
page, control is given back to the application. The subfile roll value (SFLROLVAL) may override this. For
more information on the SFLROLVAL keyword, see the @ topic in the iSeries Information Center. If
the PAGEDOWN keyword is not active, the SFLPAG value minus 1 is added to the number of records
represented by the scroll bar. Adding the SFLPAG value minus 1 enables a partial page to be displayed.

Note: If a scroll bar is displayed with a horizontal subfile, you may not be able to use the top scroll
button when the following are true:

* A partial page is reached

* Records are displayed in only the first column of the horizontal subfile

See [Iable 17| for a summary of how the scroll bar is sized under different conditions.
Table 17. How a Scroll Bar is Sized

then the following values are added (yes or no) to the number
of records represented by the scroll bar

and the
and number of Relative record
If SFLEND PAGEDOWN records number of last
indicator is ... is ... written is ... SFLPAG SFLPAG -1 record SFLSIZ
=SFLSIZ No No Yes No
Active <SFLSIZ No No No Yes
=SFLSIZ No Yes Yes No
On Not active <SFLSIZ No Yes Yes No
=SFLSIZ Yes No Yes No
Active <SFLSIZ No No No Yes
=SFLSIZ Yes Yes Yes No
Off Not active <SFLSIZ Yes Yes Yes No

DDS for Scroll Bars-Example
The DDS in [Figure 66 on page 166 creates the displays shown in [“Scroll Bars-Overview” on page 163

Chapter 6. Creating a Graphical Look for Displays 165

P U PUURE SUUY SN SO FUDUE SUUUY: ST T J

Figure 66. DDS for Scroll Bars-Example

Scroll Bar Operation

I T R TR A

A R SFLRCD SFL

A CTLFLD 1Y OH SFLCHCCTL

A F1 11A 0 6 10

A R SFLCTLRCD SFLCTL(SFLRCD)

A SFLSNGCHC

A SFLPAG(5) SFLSIZ(&SFLSIZ)
A SFLDSP SFLDSPCTL

A ROLLUP(10)

A 10 SFLEND (*SCRBAR)

A F3 5S OH SFLSCROLL

A F2 4S OH SFLRCDNBR (CURSOR *TOP)

A SFLSIZ 5S 0P

A 1 30'Panel Title'

A 4 5'Single selection Tist:'
A R SFLRCD2 SFL

A CTLFLD 1Y OH SFLCHCCTL

A F1 11A 0 13 10

A R SFLCTLRC2 SFLCTL(SFLRCD2)

A SFLMLTCHC (&NUMSEL *RSTCSR)
A SFLPAG(5) SFLSIZ(&SFLSIZ)
A SFLDSP SFLDSPCTL

A 10 SFLEND (*SCRBAR *MORE)

A ROLLUP(10)

A F2 4S OH SFLRCDNBR (CURSOR *TOP)

A F3 5S OH SFLSCROLL

A SFLSIZ 5S 0P

A NUMSEL 4Y OH

A

11 5'Multiple selection list:'

See [Table 18| for a summary of how the scroll bar operates.

Table 18. Scroll Bar Operation

If the user ...

then ...

Clicks once on the top scroll button

The subfile is scrolled one record toward the bottom of
the subfile

Clicks once on the bottom scroll button

The subfile is scrolled one record toward the top of the
subfile

Clicks once on the shaft above the scroll box or presses
the Page Down key

The subfile is scrolled one page toward the bottom of the
subfile

Clicks once on the shaft below the scroll box or presses
the Page Up key

The subfile is scrolled one page toward the top of the
subfile

Drags the scroll box with the selection button and
releases the selection button

The subfile page is scrolled to correspond to the position
indicated by the scroll box

Push Buttons-Overview

A push button is a button, labeled with text, graphics, or both that represents an action that starts when

a user selects the push button.

The DDS in [Figure 71 on page 167 produces the following displays:

166 Application Display Programming V5R4

On display stations in configurations A and B from [Table 15 on page 139, the push buttons look like this:

Fl=Help [F3=Exit | [F4=Prompt]

RV3W070-0

Figure 67. Push Buttons on a Graphical Display Station with Enhanced Interface

On display stations in configuration C from [Table 15 on page 139} the push buttons look like this:

< Fl=Help > <F3=Exit > <F4=PRrompt>

RV3W071-0

Figure 68. Push Buttons on a Nongraphical Display Station with Underline Capability

On display stations in configurations D and E from [Table 15 on page 139, the push buttons look like this:

< Fl=Help > <F3=Exit > <F4=Prompt>

RV3W072-0

Figure 69. Push Buttons on a Nongraphical Display Station without Underline Capability

On display stations in configuration F from [Table 15 on page 139, the push buttons look like this:

< Fl=Help > <F3=Exit > <F4=Prompt>

RV3W074-0

Figure 70. Push Buttons on a Display Station without Enhanced Interface

DDS for Push Buttons-Example
The DDS in creates the displays shown in [“Push Buttons-Overview” on page 166,

P PO DRI SUU SO S O NN SR ST FIIE SR - FUTUE SO S
A R RECORD
A
A PSHFLD1 2Y OB 23 4PSHBTNFLD(*RSTCSR (*NUMCOL 3))
A PSHBTNCHC(1 'F1=>Help' HELP)
A PSHBTNCHC (2 &F3 CF03)
A CHCCTL(2 &CTL)
A 02 PSHBTNCHC (3 'F4=>Prompt' CF04)
A CHCAVAIL ((*COLOR RED))
A F3 15A P
A CTL 1Y OH

Figure 71. DDS for Push Buttons-Example

Creating Push Buttons

A push button field is defined with the push button field (PSHBTNFLD) keyword. Each push button field
must contain one or more push button choice (PSHBTNCHC) keywords.

Chapter 6. Creating a Graphical Look for Displays 167

Push buttons can be displayed vertically or horizontally (the default). The *NUMROW value on the
PSHBTNFLD keyword specifies the number of rows to use when displaying the push buttons vertically.
The *NUMCOL value on the PSHBTNFLD keyword specifies the number of columns to use when
displaying the push buttons horizontally. When no parameters are specified on the PSHBTNFLD
keyword, the push buttons are displayed in as many columns that fit on one line.

Use the choice control (CHCCTL) keyword to control the availability of the individual push buttons. Use
the choice available (CHCAVAIL) and choice unavailable (CHCUNAVAIL) keywords to control the color
or attribute of the individual push buttons.

Specify a key for each push button. In the following example, the CF04 key is returned when the
F4=Prompt push button is selected:

PSHBTNCHC(3 'F4=>Prompt' CF04)
If you do not specify a key, Enter is returned when the push button is selected.

The key defined in the push button choice is automatically enabled for the record that contains the push
button field.

The field that contains the push button contains the number of the push button choice that is selected. If
the user presses the key associated with a push button (instead of selecting the push button itself), the

number of the push button is not returned. Zero is returned if no choice is made.

Help can be specified for each push button.

Controlling the Availability of Choices

You can control the availability of the choices in a selection field and push button choices using the
CHCCTL keyword. For information on controlling the availability of choices in selection lists, see
[“Creating Selection Lists” on page 161 Specify the name of a hidden field on the CHCCTL keyword.
Your program can set a value in this field to specify whether the choice is available, unavailable, or
selected (multiple-choice selection fields only). describes the control values and their meanings.

Control Value Sets Choice to

0 Available (or not selected)

1 Selected

2 Unavailable. Cannot place cursor on choice unless help for choice is available.
3 Unavailable. Placing cursor on choice is allowed.

4 Unavailable. Cannot place cursor on choice even if help for choice is available.

Figure 72. Control Values for the CHCCTL Keyword

Note: The cursor restrictions in apply only to displays attached to a controller that supports an
enhanced interface for nonprogrammable work stations.

Value 1 is ignored for single-choice selection fields, because default selection is done by setting the
selection in the single-choice selection field itself. It is also ignored for push buttons. Value 1 is used for

multiple-choice selection fields to let more than one choice default to the selected choice.

You can also specify a message to be displayed if the user selects an unavailable choice. If you do not
specify a message, the system displays a default message.

168 Application Display Programming V5R4

is an example of the DDS to control the availability of choices showing a single-choice selection
field in an ordinary record:

A R RECORD

A 2 2'Flavor . . . '

A F1 2Y 0B 2 16SNGCHCFLD

A CHOICE(1 '>Chocolate ')

A CHCCTL(1 &CTLCHOC MSG1112 QUSER/A)
A 01 CHOICE(2 '>Strawberry ')

A CHCCTL(2 &CTLSTRA &MSG &LIB/&MSGF)
A CHOICE(3 '>Vanilla ")

A CHCCTL(3 &CTLVANI);

A CHOICE(5 '>Peach ")

A CTLCHOC 1Y OH

A CTLSTRA 1Y OH

A CTLVANI 1Y OH

A MSG 7A P

A LIB 10A P

A MSGF 10A P

Figure 73. DDS to Control the Availability of Choices

On display stations in configuration C from [Table 15 on page 139|and configurations D, E, and F from
[Table 16 on page 140} the single-choice selection field looks like this:

Chocolate
Strawberry
Vanilla
Peach

Flavor . . .

GgTW N =

The choice text, Vanilla, appears gray to indicate it is unavailable.)
Figure 74. Single-Choice Selection Field with an Unavailable Choice. Assume that at run time, CTLCHOC and
CTLSTRA are set to 0 (available) and CTLVANI is set to 2 (unavailable).

Auto-Selection in Single-Choice Selection Fields

The auto-selection function allows a user to select a choice in a single-choice selection field by placing
the cursor on the choice and pressing Enter. It is not necessary to select the choice by 1) typing the choice
number, 2) placing the cursor on the choice and pressing the spacebar, or 3) placing the pointer on the
choice and pressing the left mouse button. This is the default for single-choice selection fields in a
pull-down menu. The default for single-choice selection fields that are not in a pull-down menu is
manual selection. The *AUTOSLT parameter on the SNGCHCFLD keyword indicates that the choice
should be automatically selected when Enter is pressed. The *NOAUTOSLT parameter indicates that the
choice must be manually selected. The *AUTOSLTENH parameter indicates that auto-selection is only in
effect for displays attached to a controller that supports an enhanced interface for nonprogrammable
workstations.

Auto-Enter in Single-Choice Selection Fields

The auto-enter function allows a selected choice to be returned to the program when the choice is
selected. It is not necessary to press Enter to return the choice. The *AUTOENT parameter indicates that
the Enter key will be returned as soon as the choice is selected. The choice is automatically returned on
all display stations except where a double-digit selection number is required for any of the choices. The
*NOAUTOENT parameter indicates that the choice will not be returned until the user presses Enter after
selecting the choice. *NOAUTOENT is the default. The *AUTOENTNN parameter indicates that the
choice will be returned as soon as the choice is selected only if numeric selection of the choice is not
required.

Chapter 6. Creating a Graphical Look for Displays 169

Defining Mnemonics

You can define mnemonics for these items:

* Menu-bar choices

* Selection field choices (single and multiple)
* Selection list choices (single and multiple)
* Push buttons

Define mnemonics using a greater-than (>) character. To identify a mnemonic, place the > character just
before the character that you want to be the mnemonic. The > character is not counted as part of the text
length. If you want to use the > character as a character in the text rather than as a pointer to the
mnemonic, you must use two > characters consecutively. If you specify the > character as the last
character in the text, the > character appears as part of the text and no mnemonic appears. is an
example.

Keyword Specification Text Appears as
MNUBARCHC(1 PULLFILE ">File’)

File
MNUBARCHC(2 PULLFIN ’F>inish’)

Finish
CHOICE(1 ’Save >As...) Save As...
CHOICEQ2 'X >=1") X=1
CHOICEB "X >>>=1") X>=1

You cannot specify the > character as a mnemonic.
Figure 75. Examples of Valid DDS for Mnemonics

Note: The characters that appear highlighted in this example will be underlined on your display.

The mnemonic cannot be a blank. Only one mnemonic may be specified in the choice text. If more than
one mnemonic is specified, only the first mnemonic is selectable. is an example of incorrect
coding.

Keyword Specification Error

MNUBARCHC(1 PULLFILE ">File’)
Same mnemonic specified for

MNUBARCHC(2 PULLFIN ’>finish’)
more than one choice.

CHOICE(1 'S>ave >As...) Two mnemonic characters

CHOICE@# "X >>>= >1") specified.

Figure 76. Examples of DDS Not Valid for Mnemonics

You can select a mnemonic by typing either the uppercase or lowercase mnemonic character. This is true
for all languages. The system uses the monocase rules for the appropriate language to identify the
mnemonic you typed. Double-byte characters cannot be mnemonics.

Because the system does not support both mnemonic and numeric selection for a field, mnemonics work
only when choices are not displayed using numbers.

170 Application Display Programming V5R4

To determine which configurations support mnemonics, see [Table 15 on page 139}

Defining Choice Colors and Attributes

Normally, the system uses the Common User Access® (CUA) default colors and display attributes when
displaying menu-bar choices, selection-field choices, selection list choices, and push button choices. If you
do not want to use these defaults, you can define the colors and attributes to be used for most choices
using the CHCAVAIL, CHCUNAVAIL, and CHCSLT keywords. shows which keywords can be
used with each graphical item.

Table 19. Keywords Used to Define Colors and Display Attributes

DDS Keyword
Graphical Item CHCAVAIL CHCUNAVAIL CHCSLT
Menu-Bar Choice X X
Selection Fields X X X
Push Buttons X X
Single Choice Selection List X X X
Multiple Choice Selection List X X X

The selection cursor on display stations attached to a controller that supports an enhanced interface for
nonprogrammable work stations uses the reverse image form of the colors and attributes you specify for
each of the choice states. For example, if you specify pink (normal display) for the available choices, the
selection cursor is reverse image pink when it is located on an available choice. If you specify pink
reverse image for the available choices, the selection cursor is pink (normal display). Likewise, if you do
not specify CHCAVAIL, CHCUNAVAIL, or CHCSLT and use the CUA default colors and attributes, the
selection cursor is the reverse image of those colors and attributes.

You can use only the CHCAVAIL keyword and the CHCSLT keyword for menu bars because menu-bar
choices are either available or selected. For selection fields, use only the CHCAVAIL keyword and the
CHCUNAVAIL keyword when you are using selection characters (for example, numbers or radio
buttons). The CHCSLT keyword is ignored in these cases. However, you can use CHCSLT for selection
fields in a pull-down menu on graphical display stations or character-based graphical display stations
when you have specified that the pull-down menu should not contain selection indicators
(PULLDOWN((*NOSLTIND) specified).

You can use only the CHCAVAIL keyword and the CHCUNAVAIL keyword for push buttons because
push button choices are either available or unavailable.

The display-attribute (*DSPATR) parameter specifies the way in which the separator characters display.
The parameter is expressed in this form:

(*DSPATR valuel <value2 <value3...>>)

The valid values for the display attributes are:
Value Meaning

BL Blink

Cs Column separator

HI High intensity

ND Nondisplay

RI Reverse image

UL Underline

Chapter 6. Creating a Graphical Look for Displays 171

The default display attribute for unavailable choices in a selection field on monochrome display stations
is normal (or low) intensity. Also, the first character of an unavailable choice on a monochrome display
station is overwritten with an asterisk (*).

Display attributes CS, HI, and BL can cause fields on 5292, 3179, and 3197 Model C1 and C2 display
stations to appear as color fields. Display attributes HI, RI, and UL cause a separator line not to be
displayed. For more information, see the CHCAVAIL keyword, the CHCUNAVAIL keyword, and the
CHCSLT keyword in topic in the iSeries Information Center.

In the choices in the menu bar are displayed in white on color display stations and in high
intensity on monochrome display stations. When a menu-bar choice is selected, it is displayed in green
on color display stations and reverts to normal (not high intensity) display on monochrome display
stations.

R MENUBAR MNUBAR
MNUFLD 2Y OB 1 2
MNUBARCHC(1 PULLFILE +
'>File ")
02 MNUBARCHC (2 PULLEDIT +
&EDITTXT)
MNUBARCHC (3 PULLVIEW +
'>View)
04 MNUBARCHC (4 PULLOPT +
'>Options)
MNUBARCHC (5 PULLHELP +
'>Help ")
MNUBARSEP ((*COLOR WHT))
CHCAVAIL((*COLOR WHT) (*DSPATR HI))
CHCSLT ((*COLOR GRN))

> > >

EDITTXT 20A P

Figure 77. DDS Using CHCAVAIL and CHCSLT for Menu-Bar Choices

In [Figure 78 on page 173 the available selection-field choices are displayed in pink on color display
stations and in high intensity on monochrome display stations. The unavailable selection-field choices are
displayed in turquoise on color display stations. On monochrome display stations, the unavailable choices
are displayed with normal (or low) intensity, and the first character in the choices is overwritten with an
asterisk (¥).

172 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO

A F1 2Y 0B 1 1SNGCHCFLD

A 01 CHOICE(1 '>Chocolate ')

A CHOICE(2 '>Strawberry ')

A CHOICE(3 '>Vanilla)

A CHCCTL(1 &CTLCHOC MSG1112 QUSER/A)
A CHCCTL(2 &CTLSTRA &MSG &LIB/&MSGF)
A CHCCTL(3 &CTLVANI)

A CHCAVAIL((*COLOR PNK) (*DSPATR HI))
A CHCUNAVAIL((*COLOR TRQ))

A CTLCHOC 1Y OH

A CTLSTRA 1Y OH

A CTLVANI 1Y OH

A MSG 7A P

A LIB 10A P

A MSGF 10A P

Figure 78. DDS Using CHCAVAIL and CHCUNAVAIL for Selection Fields

In the selection-field choice that is selected is displayed in yellow. If CHECK(ER)
(automatic-enter) is specified on this field, control is returned immediately after selecting the choice.

A R PULLDOWN PULLDOWN (*NOSLTIND)

A F1 2Y 0B 1 1SNGCHCFLD

A 01 CHOICE(1 '>Undo)

A CHOICE(2 '>Mark ")

A CHOICE(3 '>Copy)

A CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)
A CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)
A CHCCTL(3 &CTLCOPY)

A CHCAVAIL((*COLOR PNK) (*DSPATR HI))
A CHCUNAVAIL((*COLOR TRQ))

A CHCSLT ((*COLOR YLW))

A CTLUNDO 1Y OH

A CTLMARK 1Y OH

A CTLCOPY 1Y OH

Figure 79. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Selection Fields

In the DDS source for a Single Choice Selection list is shown (the example does not show all
the keywords necessary for a correct subfile definition). Available choices within the list will be displayed

in yellow. Unavailable choices will be displayed in red. The selected choice will be displayed in green.

P U DT SUUIY JUDIE SN FUNUE SUDY SUPUE TN SN SR : SUIE SR S

R SFLREC SFL
CTLFLD 1Y OH SFLCHCCTL
R SFLCTLRCD SFLCTL(SFLREC)
SFLSNGCHC

CHCAVAIL ((*COLOR YLW))
CHCUNAVAIL((*COLOR RED))
CHCSLT((*COLOR GRN))

> > > >

Figure 80. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Single Choice Selection List Choices

Chapter 6. Creating a Graphical Look for Displays

173

In the DDS source for a Multiple Choice Selection list is shown (the example does not show all
the keywords necessary for a correct subfile definition). Available choices within the list will be displayed
in yellow. Unavailable choices will be displayed in red. Any selected choices will be displayed in green.

R SFLREC SFL
CTLFLD 1Y OH SFLCHCCTL
R SFLCTLRCD SFLCTL(SFLREC)
SFLMLTCHC

CHCAVAIL ((*COLOR YLW))
CHCUNAVAIL((*COLOR RED))
CHCSLT ((*COLOR GRN))

> > > > >

Figure 81. DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Multiple Choice Selection List Choices

Continued-Entry Fields-Overview

A continued-entry field is a set of associated entry fields. Continued-entry fields are supported on
displays attached to any controller. Controllers that support an enhanced interface for nonprogrammable
work stations treat continued-entry fields as single-entry fields while data is being entered and edited in
the fields.

Note: Controllers that do not support an enhanced interface for nonprogrammable work stations treat
continued-entry fields as separate input fields. Insert and delete characters one segment at a time.
When you reach the end of a segment, the cursor does not move automatically to the next
segment.

illustrates the use of continued-entry fields to create a rectangular text entry field. Consider
using this format to avoid using a single input field that wraps across multiple lines.

Note: The empty space at the end of the last line is still part of the continued-entry field. You cannot
define another field in this space.

Enter Text . . .

Figure 82. Continued-Entry Fields in Rectangular Arrangement
A continued-entry field allows a multiple-row entry field to be defined inside of a window or display.
The DDS for the field looks like this:
A F1 90A B 3 ACNTFLD(30)
The CNTFLD keyword tells the system that this is a continued-entry field and its parameter tells the

system how wide the field should be. The system breaks the field into columns and uses as many lines as
it needs to reach the specified width.

174 Application Display Programming V5R4

Specifying Word Wrap on Continued-Entry Fields

To specify the word wrap function for a continued-entry field, use the word wrap (WRDWRAP)
keyword. This keyword can be used at the file, record, or field level.

Note: WRDWRAP cannot be used on DBCS continued-entry fields.

For more information about the WRDWRAP keyword, see [“Specifying Word Wrap for Fields” on page 32.]

DBCS Considerations with Continued-Entry Fields
DDS supports these DBCS data types:

J Only (only bracketed DBCS characters allowed)

E Either (either only SBCS or only bracketed DBCS characters allowed)
(0] Open (either SBCS or bracketed DBCS characters allowed - mixed)
G Graphic/Pure (only nonbracketed DBCS characters allowed)

These data types will have the following restrictions:

J The width of each continued-entry field segment must be an even number of at least 4 bytes.
E The width of each continued-entry field segment must be an even number of at least 4 bytes.
(0] The width of each continued-entry field segment must be at least 4 bytes wide.

G The width of each continued-entry field segment must be an even number of at least 4 bytes.

The length of the DBCS continued-entry field must account for the SO/SI character pairs that bracket the
DBCS data on each segment of the continued-entry field. The following total field lengths are required to
ensure the field data fits into DBCS continued-entry fields:

J or E (with DBCS data)
Data Length + (Number of segments - 1) * 2

(0] Data Length + (Number of segments - 1) * 3

G or E (with SBCS data)
Data Length

Note: The (Number of segments - 1) * 3 portion of the calculation in the second equation allows for the
SO/SI sets that must bracket the DBCS data on the segments of the continued-entry field after the
first segment. Additional consideration is made for the possibility that a NULL must be placed at
the end of a segment wherever a DBCS character would be split.

How DBCS Data is Returned for Continued-Entry Fields

If the field is a DBCS-only or DBCS-either (with DBCS data) field, the following data is not returned to
the application

* The extra SO characters at the start of the middle and last segments
* The extra SI characters at the end of the first and middle segments

If the field is a DBCS-open field, the following are removed before the field is returned to the application:

+ All single byte subfields at the end of a segment which consist only of one null or are empty. This is to
remove any SO/SI pairs that most likely have been automatically inserted as a result of double byte
data falling on a segment boundary. Removing the extra SI/SO characters occurs for all hardware
regardless of whether the controller supports an enhanced interface for nonprogrammable work
stations.

* Single byte nulls that end a segment if the following is true:

Chapter 6. Creating a Graphical Look for Displays 175

— The number of nulls is three or less
— The previous character is not an SI character or null
— The next segment begins with an SO character

This is to remove any nulls that most likely have automatically been inserted as a result of double byte
data falling on a segment boundary.

Keyboard Functions with Continued-Entry Fields

The system processes local keyboard functions specified within the continued-entry fields on a display
station attached to a controller that supports an enhanced interface for nonprogrammable work stations
by the following definitions:

Character data
In replace mode, there is no unique character data processing. When character data is entered in the last
character position of the first or one of the middle fields in the set, the cursor moves to the first character
position of the next field in the set. When character data is entered in the last character position of the
last field in the continued fields, forward field-exit processing is performed (see [“Forward Field-Exit]
[Processing” on page 179).

In insert mode and cursor direction matches field direction, the following actions occur when a character
data key is pressed:

* The null in the last character position of the last field in the continued-entry fields is deleted. If there is
no null in the last position of this field, operator error 0012 is posted.

 All field data within the continued-entry fields at (and logically following) the current cursor location
are shifted one position. Each data character in the last character position of the current and remaining
fields (except the last) in the set is shifted to the first character position of the following field.

e The data character entered is written at the cursor location.
* The cursor advances to the next cursor position.

* For DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the two nulls in the last two
character positions (before the SI for DBCS-only or DBCS-either fields) of the last segment of the
continued field are deleted. If there are not nulls in the last two positions of that segment, operator
error 0012 is posted. Otherwise, all field data (not including the SO or SI characters) within the set of
field segments at and logically following the current cursor location is shifted two positions in the
cursor direction. Each double byte character in the last two character positions of the current and
remaining segments (except the last) is moved to the first two character positions of the following
segment. The DBCS character entered is written at the cursor location, and the cursor advances to the
next double byte cursor position.

* For DBCS-open fields the data in the continued field segments, at and to the right of the cursor, is
copied into one continuous buffer. The inserted character is placed at the start of the buffer. All single
byte nulls are removed from the buffer, and the data is shifted toward the beginning of the buffer. All
adjacent SI/SO character pairs (that is, empty single byte subfields) are also removed from the buffer.
The data is again shifted toward the beginning of the buffer. The data is then placed back into the
continued field one character at a time, according to the algorithm for writing data into a DBCS-open
continued field. The remaining character positions are replaced with nulls. The cursor also advances to
the next character position. If all the data in the buffer cannot fit into the continued field, operator
error 0012 is posted, and the field data and cursor position are not changed.

In insert mode and cursor direction does not match field direction, the insert takes place within a
subfield. The insert is the same as if the field and cursor direction matched, but the insert is performed
within the subfield. The extent of a subfield is defined as follows:

* When the cursor direction is right-to-left, the subfield extends from the cursor to the first null logically
following the cursor. If there is no such null, the subfield includes all positions logically following the
cursor.

176 Application Display Programming V5R4

* When the cursor direction is left-to-right, the subfield extends from the cursor to the first null logically
following the cursor. If there is no such null, the subfield includes all positions logically following the
cursor.

Field Mark

Processed the same as character data.

Automatic Shape Determination (ASD) Processing
For Arabic, ASD occurs if the cursor direction is right-to-left.

Delete
If the delete key is pressed within a continued-entry field and the cursor direction matches the field
direction, the following actions occur:

* All field data within the continued-entry fields logically following the current cursor location is shifted
toward the cursor one position. Each data character in the first character position of the remaining
fields in the set is shifted to the last character position of the preceding field.

e A null is written in the last character position in the continued-entry fields.

¢ For DBCS-only, DBCS-either (with DBCS data), and DBCS-pure continued fields, all field data (not
including the SO and SI characters) within the set of field segments logically following the current
cursor location is shifted toward the cursor two positions. Each DBCS character in the first double byte
character position of the remaining segments is moved to the last double byte character position of the
preceding segment. A double byte null is written in the last double byte character position of the last
segment.

* For DBCS-open fields, the data in the set of field segments, at and to the right of the cursor, is copied
into one continuous buffer. The deleted character or subfield is removed from the start of the buffer. In
addition, all single byte nulls are removed from the buffer, and the data is shifted toward the
beginning of the buffer. All adjacent SI/SO character pairs (that is, empty single byte subfields) are also
removed from the buffer. The data is again shifted toward the beginning of the buffer. The remaining
data, then, is placed back into the continued field one character at a time, according to the algorithm
for writing data into a DBCS-open continued field. The remaining character positions are replaced with
nulls.

If the delete key is pressed within a continued field when the cursor direction and field direction do not
match, the delete is performed within a subfield. The definition for subfields is the same as for the insert
key.

Erase EOF

All field positions at (and logically following) the current cursor location within the continued-entry

fields are nulled. In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the SO and SI
characters are not nulled out. In DBCS-open fields, an SI character may additionally be written at the
current cursor location if the erase began in a double byte subfield.

Erase Input

All field positions of all changed fields are nulled. This includes all continued-entry field segments if any
continued-entry field segment has been changed. In DBCS-only, DBCS-either (with DBCS data), and
DBCS-pure fields, the SO and SI characters are not nulled out.

Reverse
The cursor direction is reversed. If the preceding keystroke was not a cursor movement key, the cursor is
repositioned to the new first character position of the current segment.

Close

The close key operates on a single continued field segment. All embedded nulls are removed. The cursor
direction is set to the field direction. The remaining characters are shifted to begin at the first character
position of the continued field segment. The remainder of the segment is padded with nulls and the
cursor is placed logically following the last non-null character.

Chapter 6. Creating a Graphical Look for Displays 177

Field Exit

Pressing the Field Exit key within a continued-entry field causes the following actions to occur:

 All field data within the continued-entry fields at (and logically following) the current cursor location
are nulled. In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields, the SO and SI
characters are not nulled out. In DBCS-open fields, an SI character may additionally be written at the
current cursor location if the nulling began in a double byte subfield.

* Forward field-exit processing is performed (see [“Forward Field-Exit Processing” on page 179).

Field Plus

Processed the same as Field Exit.

Field Minus
Not allowed. Operator error 0016 is posted.

Dup
Pressing the Dup key within a continued-entry field causes the following actions to occur:

* All field data within the continued-entry fields at (and logically following) the current cursor location
are set to the Dup character (1C). In DBCS-only, DBCS-either (with DBCS data), and DBCS-pure fields,
the SO and SI characters are not replaced with the Dup character. In DBCS-open fields, the cursor must
be on the very first character (whether it is a single byte or double byte character) when the Dup key is
pressed. Every character of every segment is replaced with the Dup character ("1C’) including all SO
and SI characters. If the cursor is not on the first character, operator error 0019 is posted.

* Forward field-exit processing is performed (see [“Forward Field-Exit Processing” on page 179).

Kaniji
The Kanji key causes the following actions to occur when pressed within a DBCS-either continued field:

e If the cursor is not at the first field position (when in single byte mode) of the first segment, or at the
second field position (when in double byte mode) of the first segment, operator error 0062 is posted.

 Otherwise, if the field is currently in double byte mode, it is placed into single byte mode by replacing
every character position of every segment with nulls. The cursor is also placed at the first field position
of the first segment.

* Otherwise, if the field is currently in single byte mode, it is placed into double byte mode by replacing
every character position of every segment with nulls, and writing SO and SI characters at the start and
end of each field segment respectively. The cursor is also placed in the first segment immediately
following the shift out character.

In DBCS-open continued fields, the Kanji key inserts either a SO/SI character pair, or an SI/SO character
pair as is currently done for non-continued open fields. For continued fields, this insert is performed
using the same algorithm that characters are inserted into an DBCS-open continued field. However, when
a SI/SO pair is inserted, the empty single byte subfield that is created is not immediately removed. The
cursor is also placed under the second shift character and the keyboard goes into insert mode.

Character Backspace

Pressing the Character Backspace key in the first position (or first DBCS character in any DBCS-pure,
DBCS-only, or DBCS-either field) of the first segment, moves the cursor to the last position of the
previous field. (The previous field could be a continued-entry field. The cursor moves to the last position
of the last segment which could be further down on the display.) If the resulting cursor position is in a
DBCS-open, DBCS-only, or DBCS-either field, any SI character at the last position is skipped. Pressing the
Character Backspace key in the first position in a segment (or first DBCS character in DBCS-pure,
DBCS-only, or DBCS-either fields in double byte mode) other than the first segment, moves the cursor to
the last position of the previous segment. If that resulting position is on a DBCS-only or DBCS-either field
SI character, the SI character is skipped. In addition, within DBCS-open fields, single byte subfields at the

178 Application Display Programming V5R4

end of a non-last segment are skipped by character backspace if they consist only of 1 null character. This
is to skip nulls that most likely have been automatically inserted when splitting DBCS data on segment
boundaries.

Character Advance

Pressing the Character Advance key in the last position (or last double byte character in DBCS-pure,
DBCS-only, or DBCS-either fields in double byte mode) of the last segment, moves the cursor to the first
position of the next field. Pressing the Character Advance key in the last position (or last double byte
character in DBCS-pure, DBCS-only, or DBCS-either fields in double byte mode) of a segment other than
the last segment, moves the cursor to the first position of the next segment. If the resulting position is on
a DBCS-only or DBCS-either field SO character, the SO character is skipped. In DBCS-open fields, single
byte subfields at the end of a segment are skipped if they consist of only one null. This is to skip nulls
that most likely have been automatically inserted when splitting DBCS data on segment boundaries.

New Line

Pressing the New Line key generally moves the cursor to the next position on the display that allows a
cursor. If the cursor is in a continued-entry field and an additional continued-entry field segment is on
the next row or a subsequent row, the cursor moves to the first position of that segment. If the
continued-entry field is also a highlighted field with an invisible text cursor, then pressing the New Line
key exits the continued-entry field. If the resulting position is in a new DBCS-open, DBCS-only, or
DBCS-either field segment of the same field, any SO character at the resulting cursor location is skipped.
When the cursor moves into a continued-entry field because the New Line key was pressed, the cursor is
always positioned in the first position of the first segment. Pressing the New Line key never moves the
cursor into a middle or last continued-entry field segment.

Field Advance
Field Advance performs forward field-exit processing (see|“Forward Field-Exit Processing”).

Field Backspace

When pressed while the cursor is not in the first position (or first DBCS character in a DBCS-pure,
DBCS-only, or DBCS-either field) of the first segment, the cursor moves to the first position (or first DBCS
character in a DBCS-pure, DBCS-only, or DBCS-either field) of the first segment. Otherwise, Field
Backspace performs backward field-exit processing (see [“Backward Field-Exit Processing” on page 180).

Forward Field-Exit Processing

The system does not validate field data when the cursor exits continued-entry fields because mandatory
fill and self-check functions are not supported.

If the continued-entry fields are specified as automatic-enter or forward-edge trigger, the system performs
automatic-enter or forward-edge trigger processing for the last position of the last segment.

If cursor progression is specified on the first continued-entry field segment, the cursor moves to the
cursor-progression target field when it exits any of the continued-entry field segments.

If cursor progression is not specified on the first continued-entry field segment, and the cursor exits the
continued-entry field in the forward direction, the cursor skips any subsequent segments of the
continued-entry field and moves to the next nonprotected field. The next nonprotected field is
determined by exiting the first continued field segment, independent of which segment contained the
cursor. If the resulting position is in a DBCS-open, DBCS-only or DBCS-either field, any SO character at
the first position is skipped. The cursor is placed at the second position.

Note: If a continued-entry field is also defined as a highlighted field, the system restores the leading-field
attribute of each segment when the cursor exits the field.

Chapter 6. Creating a Graphical Look for Displays 179

Backward Field-Exit Processing

When exiting the field backward, the cursor skips any previous segments of the continued-entry field and
moves to the previous nonprotected field. Cursor progression may cause the cursor to move to a different
field. The previous nonprotected field is determined by exiting the first continued field segment,
independent of which segment contained the cursor. If the resulting position is in a DBCS-open,
DBCS-only or DBCS-either field, any SO character at the first position is skipped. The cursor is placed at
the second position.

Note: DBCS support within continued-entry fields are available for displays attached to any controller.
However, the keyboard functions are only available for displays connected to a controller that
supports an enhanced interface for nonprogrammable work stations.

How the Menu Bar Interacts with the Application

The MNUBARDSP keyword is used to display a menu bar. The MNUBARDSP keyword can be used on
an application record (the record that defines the application display) or on a menu-bar record. Option
indicators can be used on the MNUBARDSP keyword to control when the menu bar is displayed. If
MNUBARDSP is used on the application record, several optioned MNUBARDSP keywords can be
specified so that the application can display different menu bars for the same record. If more than one
MNUBARDSP keyword is in effect, the system uses the first one.

Defining the MNUBARDSP Keyword on the Application Record

When the MNUBARDSP keyword is used on the record that defines the application display, the system
handles all menu-bar operations for the application. The system returns the number of the menu-bar
choice selected in a hidden field that is specified on the MNUBARDSP keyword and defined in the
application record. If no menu-bar choice is selected, 0 is returned in the hidden field.

P PO DRI SO SO S PO Y S TN FUIE SR - FUTUE S S
HELP ALTHELP CFO3
MNUBARSW (CA10) MNUCNL(CA12)
R MENUBAR MNUBAR
MNUFLD 2Y 0B 1 2
MNUBARCHC (1 PULLFILE +
'>File ")
02 MNUBARCHC (2 PULLEDIT +
&EDITTXT)
MNUBARCHC (3 PULLVIEW +
">View ")
04 MNUBARCHC (4 PULLOPT +
'>Options)
MNUBARCHC (5 PULLHELP +
'>Help)

> > > > >

R APPSCR MNUBARDSP (MENUBAR &MNUCHOICE)
FIELD1 10A B 10 12
FIELD2 5S 0B 14 12
24 1'Fl=Help F3=Exit +
F10=Actions F12=Cancel !

> > > > >

MNUCHOICE 2Y OH

Figure 83. DDS Using MNUBARDSP on the Application Record

The DDS in causes the following to happen:

1. The application writes any pull-down menu records or menu-bar records that have output to be
supplied by the application.

2. The application does a write-read operation to the record with the MNUBARDSP keyword.

180 Application Display Programming V5R4

3. The system displays the menu bar identified by the MNUBARDSP keyword and handles all
interaction between the menu bar and the pull-down menu.

4. If the user selects a menu-bar choice and enters input in the pull-down menu, the system returns the
number of the menu-bar choice selected in the choice-hidden field specified on MNUBARDSP.

The system displays the menu-bar record first and then performs the write-read operation to the
application record. The active function keys and command keys are those defined on the application
record and not those defined on the menu-bar record. If you want to use the MNUCNL keyword or the
MNUBARSW keyword, define them at the file level or on the application record.

Ordinarily, writing a record to the display without the OVERLAY keyword causes the entire display to be
erased before the record is displayed. The system displays the menu-bar record followed by the
application record as if they were logically one record. The system automatically prevents the application
record from erasing the menu-bar record. In [Figure 83 on page 180}, when the system writes the
application record, it clears the entire display except for the menu-bar record. The menu-bar record is
always processed as though it contains the OVERLAY keyword regardless of any other specifications. For
example, if the CLRL keyword is specified on the menu-bar record, it is not used when the menu-bar
record is processed. The OVERLAY keyword and the CLRL keyword are processed normally for the
application record; however, the menu-bar record is not cleared.

Defining the MNUBARDSP Keyword on the Menu-Bar Record

If you use the MNUBARDSP keyword on the record containing the menu bar, the application controls
when the menu bar is displayed. The system continues to handle any pull-down menu interaction that
takes place, and returns the number of the menu-bar choice selected in the menu-bar field itself. If no
menu-bar choice was selected, 0 is returned in the menu-bar field. The application must both write the
menu-bar record to display the menu bar and read the menu-bar record to determine what choice, if any,
was selected.

P PO DU SO SO e SO T S S PRI SR - PR S S
A HELP ALTHELP CFO3
A MNUBARSW (CA10) MNUCNL(CA12)
A R MENUBAR MNUBAR OVERLAY
A 01 MNUBARDSP
A MNUFLD 2Y 0B 1 2
A MNUBARCHC (1 PULLFILE +
A '>File ")
A 02 MNUBARCHC (2 PULLEDIT +
A &EDITTXT)
A MNUBARCHC (3 PULLVIEW +
A '>View "
A 04 MNUBARCHC (4 PULLOPT +
A '>Options ")
A MNUBARCHC (5 PULLHELP +
A '>Help "
A EDITTXT 20A P
R APPSCR OVERLAY
FIELD1 16A B 10 12
FIELD2 55 0B 14 12

24 1'Fl=Help F3=Exit +
F10=Actions F12=Cancel !

> > > >

Figure 84. DDS Using MNUBARDSP on the Menu-Bar Record

Following is one scenario using the DDS in

1. The application writes the menu-bar record, with the MNUBARDSP keyword active, to display the
menu bar.

Chapter 6. Creating a Graphical Look for Displays 181

The application does a write-read operation to the application record.
The system handles any interaction between the menu bar and the pull-down menu.

On input, the application receives the application record.

oo

The application reads the menu-bar record to determine which menu-bar choice, if any, was selected.

The only active command keys and function keys are those defined on the application record and not
those defined on the menu-bar record. If you want to use the MNUCNL keyword or the MNUBARSW
keyword, define them at the file level or on the application record.

Following is another scenario using the DDS in [Figure 84 on page 181}

1. The application writes the application record.

2. The application performs a write-read operation to the menu-bar record, with the MNUBARDSP
keyword active, to display the menu bar.

3. The system handles any interaction between the menu bar and the pull-down menu.

4. On input, the application receives the menu-bar record and determines which menu-bar choice, if any,
was selected.

5. The application can also read the application record to receive any input entered on the display.

The only command keys and function keys that are valid are those defined on the menu-bar record. If
you want to use the MNUCNL keyword or the MNUBARSW keyword, define them at the file level or on
the menu-bar record.

Receiving Input from the Pull-Down Menus

If a pull-down menu record contains output data, it must be written before writing the menu-bar record.
For example, option indicators may be set or output fields may be filled in. These pull-down menu
records are not displayed when written; the system processes and saves the record output until the menu
bar is displayed.

A menu-bar record may also be written without being displayed. If the system attempts to write a
pull-down menu record or a menu-bar record (without the MNUBARDSP keyword optioned on) while
the corresponding menu bar is displayed, an error occurs and the record is not written.

When a valid attention identifier (AID) key (other than the cancel key and the menu-bar switch key) is
pressed when a pull-down menu is displayed, control is returned to the application and input may be
received from the pull-down menu. The valid AID keys that return input are the Enter key and any CFxx
keys that are defined on the pull-down menu record. (A CAxx key returns control to the application, but
does not return input.) Keys that are defined for the background display are not valid unless they are
also defined on the pull-down menu record. Therefore, define the background keys and the pull-down
menu keys once at the file level.

Once a valid AID key (one that returns input) is pressed for a pull-down menu, the application receives
input for the record being read (either the application record or the menu-bar record). By looking at the
menu-bar choice number that is returned in this record, the application can determine which pull-down
menu record has input. The application then must read that pull-down menu record. No I/O operation is
done to the display; the input from the pull-down menu is returned to the application and the pull-down
menu remains displayed.

Receiving Input from Pull-Down Menus Using the Pull-Down Input Parameter
When one or more of the pull-down menu records contain only one single-choice selection field, you can
use the pull-down input (PULLINPUT) parameter on the MNUBARDSP keyword. This lets you receive
the single-selection field choice along with the menu-bar choice, instead of reading the pull-down menu
record to receive the single-selection field choice.

182 Application Display Programming V5R4

illustrates the use of the PULLINPUT parameter on the MNUBARDSP keyword.

HELP ALTHELP CFO3
MNUBARSW (CA10) MNUCNL(CA12)

R MENUBAR MNUBAR
MNUFLD 2Y OB 1 2
MNUBARCHC (1 PULLFILE +
'>File ")
MNUBARCHC (2 PULLEDIT +
'>Edit ")
MNUBARCHC (3 PULLVIEW +
">View ")
R PULLFILE PULLDOWN
2 1'File name . . . '
FNAME 10A I 2 18
R PULLEDIT PULLDOWN
F1 2Y 0B 1 1SNGCHCFLD
CHOICE(1 '>Copy ")
CHOICE(2 '>Delete ")
R PULLVIEW PULLDOWN
F1 2Y 0B 1 1SNGCHCFLD
CHOICE(1 '>AT1 ")
CHOICE(2 '>Some... ")

F2 2Y 0B 4 1SNGCHCFLD
CHOICE(1 'By >date ")
CHOICE(2 'By >subject ')

R APPSCR MNUBARDSP (MENUBAR &MNUCHOICE +
&PULLINPUT)
FIELD1 10A B 10 12
FIELD2 55 0B 14 12

24 1'Fl=Help F3=Exit +
F10=Actions Fl12=Cancel !
MNUCHOICE 2Y OH
PULLINPUT 2S OH

T2

Figure 85. DDS for Pull-Down Input (PULLINPUT) Parameter

When the PULLINPUT parameter is specified on the MNUBARDSP keyword, one of the following values
will be returned to the application:

Note: The value is returned in the hidden field (PULLINPUT in you have defined in the
record with the MNUBARDSP keyword.

PULLINPUT Contents Meaning

0 No selection made.

n Choice n in the pull-down menu was selected.

-1 Pull-down menu record contains something other than one single-choice
selection field. You must read the pull-down menu record to receive its
contents.

[Table 20| shows the values that are returned in the MNUCHOICE field and the PULLINPUT field using

the DDS in |Figure 85[

Table 20. Values Returned in MNUCHOICE and PULLINPUT

Value Returned in Appropriate Field

Menu-Bar Choice Selected MNUCHOICE PULLINPUT

File 1 -1

Chapter 6. Creating a Graphical Look for Displays 183

Table 20. Values Returned in MNUCHOICE and PULLINPUT (continued)
Value Returned in Appropriate Field

Menu-Bar Choice Selected MNUCHOICE PULLINPUT
Edit (no selection made in pull-down menu) 2 0
Edit (Copy choice in pull-down menu selected) 2 1
View 3 -1

Removing a Pull-Down Menu after Receiving Input

After the application receives input from a pull-down menu, it may remove the pull-down menu under
certain conditions. For example, the application removes the pull-down menu when the application
writes or reads (1) a non-window record (in the same display file) or (2) a window record (in the same
display file) that contains the RMVWDW keyword. The pull-down menu remains on the display if the
application writes or reads a window record (without RMVWDW). This allows the application, UIM help,
or application help to write a help window to the display without removing the pull-down menu.

To remove a pull-down menu and present another non-window application display, the application
writes the appropriate application record, and the pull-down menu is removed.

To remove the pull-down menu and keep the current application display (perhaps updated), the
application performs another write-read (or read) operation to the current (or changed) application
record.

To remove the pull-down menu and display a window, the application writes a window with the
RMVWDW keyword specified.

To remove the pull-down menu and call another program, the application writes to a dummy record and
then calls the other program.

To leave the pull-down menu on the display and present a window (perhaps a help window), the
application writes the window record (without RMVWDW).

A pull-down menu remains on the display while UIM help is displayed in a window. A pull-down menu
also remains on the display while application help is displayed if the application help record is a window
and does not have the RMVWDW keyword specified.

Updating a Pull-Down Menu before Displaying

You can enable your application to update a pull-down menu using the return-field parameter on the
MNUBARCHC keyword. The pull-down menu is updated after a menu-bar choice is selected and before
the pull-down menu is displayed. The return-field parameter is a hidden field that returns the number of
the choice selected for the application to (1) determine that control was returned before the pull-down
menu was displayed rather than because input was entered in the pull-down menu, and (2) determine
which pull-down menu record to update and write.

184 Application Display Programming V5R4

P U PUURE SUUDY SN SO FUNUE SUDY SR TN ST SR : SUUIE SR SO

A R MENUBAR MNUBAR

A MNUFLD 2Y B 1 2

A MNUBARCHC (1 PULLFILE +

A '>File ' &RTNFLD)
A MNUBARCHC (4 PULLOPT +

A '>Options "+
A &RTNFLD)

A RTNFLD 2Y OH

A R PULLFILE

A PULLDOWN

A F1 2Y 0B 1 1SNGCHCFLD

A R PULLOPT

A PULLDOWN

A

F1 2Y 0B 1 1SNGCHCFLD

Figure 86. DDS for Return-Field Parameter

For the DDS in if the user selects menu-bar choice 1 or 4, control is returned to the application
with the choice number set in the RTNFLD field. The menu-bar field or the choice field in the application
record contains 0, indicating no pull-down menu input was received. The application must read the
menu-bar record to get the contents of the RTNFLD field. The application then updates the pull-down
menu record for that choice and writes it. The application must read the menu-bar record or the
application record to request the display. After control has been returned for updating the pull-down
menu, the next record written must be the pull-down menu specified on the MNUBARCHC keyword. In
this example, if choice 1 was selected, record PULLFILE must be written; if choice 4 was selected, record
PULLOPT must be written. The system then displays the pull-down menu for the choice and resumes
control of the menu bar and pull-down menu interaction. A read operation to a pull-down menu is not
allowed until input has been received for the pull-down menu. A write-read operation is never allowed.

Defining Application Help

You can define application help for menu-bar choices, selection-field choices, named fields, constant
fields, menu bars, and pull-down menus.

Defining Choice-Level Help

You can define help for menu-bar choices, single-choice selection fields, and multiple-choice selection
fields using the HLPARA keyword. [Figure 87 on page 186|is an example of the DDS coding for menu-bar
choice help.

Chapter 6. Creating a Graphical Look for Displays 185

g
g
2
-
>
S

R MENUBAR
H

H

H

MNUFLD

02

04

> > >

EDITTXT

Figure 87. DDS for Menu-Bar Choice Help

2Y 0B

10

P

MNUBAR

HLPARA (*FLD MNUFLD 1)
HLPRCD(FILEHLP LIB/FILE)
HLPARA (*FLD MNUFLD 2)
HLPRCD(EDITHLP LIB/FILE)
HLPARA (*FLD MNUFLD 3)
HLPRCD(VIEWHLP LIB/FILE)
HLPARA(*FLD MNUFLD 4)
HLPRCD (OPTHLP LIB/FILE)
HLPARA(*FLD MNUFLD 5)
HLPRCD (HLPHLP HLPLIB/HLPFILE)

MNUBARCHC(1 PULLFILE +
'>File ")
MNUBARCHC (2 PULLEDIT +
&EDITTXT)
MNUBARCHC (3 PULLVIEW +
'>View)
MNUBARCHC (4 PULLOPT +
'>Options)
MNUBARCHC (5 PULLHELP +
'>Help ")

is an example of the DDS coding for single-selection field choice help.

R PULLEDIT

F1

01

> >

2Y 0B

HELP
CFO4 CFO6
WDWBORDER ((*CHAR '+-+| |+-+'))
PULLDOWN
HLPARA(*FLD F1 1)

HLPRCD (UNDOHLP LIB/FILE)
HLPARA(*FLD F1 2)

HLPRCD (MARKHLP LIB/FILE)
HLPARA(*FLD F1 3)

HLPRCD (COPYHLP LIB/FILE)
1SNGCHCFLD

CHECK (ER)

CHOICE(1 '>Undo !
CHOICE(2 '>Mark !
CHOICE(3 '>Copy '

—— —

Figure 88. DDS for Single-Selection Field Choice Help

Use the *FLD special value on the HLPARA keyword to indicate that the help area is for a field.
Following *FLD, specify the name of the field for which you are defining help. Following the name of the
field, specify the number of the choice for which you are defining help.

The help area that you specify for a choice is the area that the choice text occupies (plus the attribute byte
positions on either side). If compression occurs, the help area moves with the choice. When a choice is
optioned off, the help specification for that choice is also optioned off because the help area for that

choice does not exist.

As with any help specification, the text for choice-level help can be defined using DDS records (HLPRCD
keyword) or UIM panel groups (HLPPNLGRP).

186 Application Display Programming V5R4

Help specifications must define help areas within the area encompassed by the menu-bar record or the
pull-down record.

If you use UIM help, item-specific help for a menu-bar choice includes the help modules for the
menu-bar choice and its pull-down menu. If you use DDS, item-specific help for the menu-bar choice is
the help for the menu-bar choice. The help area for the menu-bar choice includes the text for the choice
plus one space on each side of the text. The middle space between the choices is part of the extended
help area.

Item-specific help for menu bars is displayed when the cursor is located in one of the following areas:
* A menu-bar choice (if there is help for that choice).

* Anywhere within an active pull-down record that does not include an active help area. When the
cursor is on the pull-down menu border, item-specific help is displayed for the menu-bar choice item.

Item-specific help for a pull-down menu choice is displayed when the cursor is in an active help area in
the pull-down menu. The help area for a pull-down menu choice starts on the first digit of the number
and ends at the border of the selection field. Help for pull-down menus and menu bars are part of the
extended help for the display. When the pull-down menu is displayed, all help areas are active except the
ones that are overlapped by the pull-down menu. Help for overlapped areas can be viewed only in
extended help. If a base display help area is partially overlapped by a pull-down menu, the part of the
help area that is not overlapped is still active.

There are two help lists; one for the base display and one for the menu bar and its pull-down menus. The
help list for the menu bar is created when the menu bar is displayed. The help list is destroyed when the
menu bar is removed from the display. For an example of a help list for a menu bar, see The
help list is updated when the menu bar or pull-down menu is written again. When the cursor is in a
menu bar or pull-down menu, the menu-bar help list is searched for item-specific help. The menu-bar
help list is considered above the base-display help list. When extended help is displayed, help for menu
bars and pull-down menus is presented immediately after general help. Base display help is presented
after menu-bar help and pull-down menu help. If DDS help is used and the user initially selects
pull-down menu help, the user then can page up to see menu-bar help and page down to see
base-display help.

Help for File menu bar choice

Help for File pulldown choice 1

Help for File pulldown choice 2

Help for View menu bar choice

Help for View pulldown choice 1

Help for View pulldown choice 2

RBAHG505-0
Figure 89. A help list for a menu bar

Defining Help for a Field

Help can be defined for a field or constant using the HLPARA keyword. For a named field, specify the
help area using the *FLD special value and the name of the field. For a constant field, specify the help
area using the *CNST special value and an identifier for the constant field. The identifier you specify on

Chapter 6. Creating a Graphical Look for Displays 187

the HLPARA keyword should be the same as the value specified on the HLPID keyword for the constant
field.

PP U PRI DR SO TU: SUIE DY SOUIRE TN SR USRI TR S
A HELP
A R RECORD
A H HLPARA(*FLD FIELD)
A HLPRCD(FIELDHLP LIB/FILE)
A FIELD 1A B 5 5

Figure 90. Help for a Named Field

P PN DU SO S e U SR SRR S PRI SUUI U S S
A HELP
A R RECORD
A H HLPARA (*CNST 1)
A HLPRCD (HLPCNST1 LIB/FILE)
A 2 2'Constant field' HLPID(1)

Figure 91. Help for a Constant Field

When the display file is created, the actual help area coordinates are determined by the DDS compiler.
These coordinates are shown in the expanded source section of the DDS listing (unless the field is a
choice field).

If the field or constant field location or length is changed and the file is re-created, the help area for the
field is updated to reflect the new location or length.

Key Interaction for Menu Bars and Pull-Down Menus

shows an example of a display you might create with a menu bar and a pull-down menu.
Capital letters A, B, C, D, and E indicate possible cursor locations.

~
OFite} Edit [View Options Help B

________ Y Y VY

| _ 1. @ undo w

D)

| 3. Copy F10 |

o e P
E Fl=Help F3=Exit F9=View all FlO=Actions F11=Copy)

Figure 92. Cursor Locations

188 Application Display Programming V5R4

able 21| describes the actions that are performed when certain keys are pressed at the cursor locations.

Table 21. Actions Performed at Different Cursor Locations

Cursor Location

Action Performed When Appropriate Key Is Pressed

Help

Cancel

Menu-Bar Switch

Enter

Help for File
menu-bar choice is
displayed. (Includes
help for the
pull-down menu.)

Pull-down menu is
removed. Cursor
moves to Edit
menu-bar choice.

Pull-down menu is
removed. Cursor
returns to display
work area.

File pull-down menu
is displayed; Edit
pull-down menu is
removed.

Extended help is
displayed.

Pull-down menu is
removed. Cursor
moves to Edit
menu-bar choice.

Pull-down menu is
removed. Cursor
returns to display
work area.

Cursor not on menu bar
choice message is
displayed. Cursor
does not move.

Help for Undo choice
is displayed.

Pull-down menu is
removed. Cursor
moves to Edit
menu-bar choice.

Pull-down menu is
removed. Cursor
returns to display
work area.

If user made a
selection, control
returns to application.
If not, cursor moves
to input field and
message to make a
selection is sent.

Help for Edit
menu-bar choice is
displayed. (Includes
help for the
pull-down menu.)

Pull-down menu is
removed. Cursor
moves to Edit
menu-bar choice.

Pull-down menu is
removed. Cursor
returns to display
work area.

If user made a
selection, control
returns to application.
If not, cursor moves
to input field and
message to make a
selection is sent.

Help for function
keys is displayed.

Pull-down menu is
removed. Cursor
moves to Edit
menu-bar choice.

Pull-down menu is
removed. Cursor
returns to display
work area.

If user made a
selection, control
returns to application.
If not, sound beep
and cursor moves to
input field.

Cursor Movement

You can move the cursor on the application displays that you create using the Tab key or the Cursor

keys.

Pressing the Tab Key

Pressing the tab key moves the cursor from field to field on the display, progressing from left to right and

top to bottom.

On display stations in configuration F from [Table 16 on page 140, the following is true:

¢ The Menu-bar choices are individual fields.

¢ The single-choice selection field is one field.

* The multiple-choice selection fields are individual fields.

Pressing the Tab key for one of these displays when no pull-down menu is displayed moves the cursor
from choice to choice in the menu bar. Then, the cursor moves from input field to input field on the rest
of the display. When a pull-down menu is displayed on one of these displays, pressing the Tab key does

the following:

1. Moves the cursor from choice to choice in the menu bar.

Chapter 6. Creating a Graphical Look for Displays

189

2. Skips over the choice selected.

w

Moves the cursor from input field to input field within the pull-down menu.

4. Moves the cursor back to the first choice in the menu bar (the pull-down menu for that choice is not
automatically displayed).

While the pull-down menu is displayed, you cannot enter data in the input fields on the base display nor
can you tab to the input fields.

On display stations in configurations A, B, and C from [Table 15 on page 139, and configurations D and E
from [Table 16 on page 140} the menu bar is a single field. If no pull-down menu is displayed, pressing
the Tab key moves the cursor from choice to choice within the menu bar. The cursor performs a
wraparound. When a menu-bar choice is selected, the cursor is placed in the first input field within the
pull-down menu. Pressing the Tab key moves the cursor from input field to input field within the
pull-down menu and then moves the cursor to the next menu-bar choice. While the pull-down menu is
displayed, you cannot enter data in the input fields on the base display nor can you tab to the input
fields on the base display.

Pressing the Cursor Keys

On display stations in configuration F from [Table 16 on page 140} pressing a cursor key moves the cursor
one position in the appropriate direction.

On display stations in configurations A, B, and C from [Table 15 on page 139, and configurations D and E
from [Table 16 on page 140} the cursor moves differently depending on the type of field it is in.

* In the menu bar, pressing the cursor-right or cursor-left keys moves the cursor from choice to choice.
The cursor does not perform a wraparound.

* In the base display, pressing any cursor key moves the cursor one position in the appropriate direction.
* When the cursor is positioned on a selection field, see:

— |“Cursor Movement in a Vertical Selection Field” on page 151

— |“Cursor Movement in a Horizontal Selection Field” on page 151

Programming Examples

Following are examples of the DDS required to display a menu bar and a pull-down menu with a
description of how the DDS coding works.

Using the MNUBARDSP Keyword on the Application Record

P PO DU SO SO e PO U SR S DI SR - PR SR S
HELP ALTHELP CFO3
MNUBARSW (CA10) MNUCNL(CA12)
CFo4(04) CFO6(06)

R MENUBAR MNUBAR

H HLPARA (*FLD MNUFLD 1)
HLPRCD(FILEHLP HLPLIB/HLPFILE)

H HLPARA(*FLD MNUFLD 2)

> > > > >

190 Application Display Programming V5R4

> > > > > P> >

02

04

01

MNUFLD

EDITTXT
RTNFLD
R PULLEDIT

H

H

H

F1

MARKTXT
CTLUNDO
CTLMARK
CTLCOPY
MSG
LIB
MSGF

R PULLOPT

H

2Y

20A
2Y

2Y

0B

P
OH

0B

HLPRCD (EDITHLP HLPLIB/HLPFILE)
HLPARA (*FLD MNUFLD 3)
HLPRCD (VIEWHLP HLPLIB/HLPFILE)
HLPARA (*FLD MNUFLD 4)
HLPRCD (OPTHLP HLPLIB/HLPFILE)
HLPARA (*FLD MNUFLD 5)
HLPRCD (HELPHLP HLPLIB/HLPFILE)
HLPARA(*FLD MNUFLD)
HLPRCD (MNUBARHLP HLPLIB/HLPFILE)
2
MNUBARCHC (1 PULLFILE +

'>File)
MNUBARCHC (2 PULLEDIT +

&EDITTXT)
MNUBARCHC (3 PULLVIEW +

'>View ")
MNUBARCHC (4 PULLOPT +

'>0ptions ' &RTNFLD)
MNUBARCHC (5 PULLHELP +

">Help "
MNUBARSEP ((*COLOR WHT))
CHCAVAIL((*COLOR YLW) (*DSPATR HI))
CHCSLT((*COLOR GRN))

PULLDOWN

HLPARA(*FLD F1 1)

HLPRCD (UNDOHLP HLPLIB/HLPFILE)
HLPARA(*FLD F1 2)

HLPRCD (MARKHLP HLPLIB/HLPFILE)
HLPARA(*FLD F1 3)

HLPRCD (COPYHLP HLPLIB/HLPFILE)

1SNGCHCFLD

CHECK (ER)

CHOICE(1 '>Undo)
CHOICE(2 &MARKTXT)
CHOICE(3 '>Copy)

CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)
CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)
CHCCTL(3 &CTLCOPY)

CHCACCEL(1 'F4')

CHCACCEL(2 'F6')

CHCAVAIL ((*COLOR WHT))

CHCUNAVAIL((*COLOR BLU))

PULLDOWN
HLPARA(*FLD F1 1)

Chapter 6. Creating a Graphical Look for Displays

191

A F1 2Y 0B 1 1SNGCHCFLD

R APPSCR MNUBARDSP (MENUBAR &MNUCHOICE +

A
A &PULLINPUT)
A FIELD1 10A B 10 12
A FIELD2 55 0B 14 12
A 24 1'Fl=Help F3=Exit +
A F10=Actions F12=Cancel !
A MNUCHOICE 2Y OH
A PULLINPUT 2S OH
Description

In the example using the MNUBARDSP keyword on the application record, the application does a
write-read operation to the APPSCR record. This causes the MENUBAR record and the APPSCR record to
be displayed. Because the field EDITTXT in the MENUBAR record contains the text >Edit, Edit is
displayed as the text for the second menu-bar choice.

Note: The E in Edit will be underlined on your display.

Pressing the F10 key provides quick access to the menu bar (which is always active). Pressing F10 moves
the cursor to the first choice in the menu bar. Pressing F10 again (or F12) moves the cursor back to where
it was on the application display. On display stations in configuration F from [Table 16 on page 140}
pressing the Tab key moves the cursor from choice to choice in the menu bar. The cursor skips over any
menu-bar choice that is selected. It then moves from input field to input field on the entire display. On
display stations in configurations A, B, and C from [Table 15 on page 139, and configurations D and E
from [Table 16 on page 140} when the cursor is located within a menu bar, the cursor movement keys or
the Tab key moves the cursor from choice to choice within the menu bar.

If the user selects the Edit action, the system displays the pull-down menu record (PULLEDIT).
CHECK(ER) specifies automatic-enter. When the user types a value in F1, control is returned to the
application without the user having to press the Enter key. If the user presses F4 or F6, control is also
returned to the application.

Because the application performed a write-read operation to the APPSCR record, the APPSCR record is
returned to the application. Field MNUCHOICE contains a 2 to identify that menu-bar choice 2 was
selected. The PULLINPUT field contains the single-selection field choice (the contents of F1) of the
PULLEDIT record.

If the user selects the Options action, control is returned to the application, with 4 set in field RTNFLD
and 0 set in field MNUCHOICE. The application determines from the 0 in field MNUCHOICE that
control has been returned for pull-down menu update. The application reads record MENUBAR to obtain
the choice number set in field RTNFLD. The application updates the record PULLOPT and then writes
record PULLOPT. The system then displays PULLOPT as the pull-down menu for the options choice. The
system resumes control of the menu bar interaction when the application performs a read operation to
the APPSCR record.

On display stations in configurations A and B from [Table 15 on page 139, the menu bar separator and the
pull-down menus display as solid lines.

On display stations in configuration C from |Tab1e 15 on page 139l and configurations D, E, and F from
[Table 16 on page 140), the menu-bar separator is made up of dashes. The side and bottom borders of the
pull-down menu are made up of colons and periods, respectively.

On display stations in configuration C from [Table 15 on page 139} each menu-bar choice has a mnemonic.
On display stations in configurations A and B from [Table 15 on page 139, each single-selection field

192 Application Display Programming V5R4

choice in the PULLEDIT pull-down menu has a mnemonic. This is true unless ENHDSP(*NO) is specified
on the CRTDSPF command or CHGDSPF command). In this example, the mnemonic has been set up to

be the first character in each of the choices.

Using the MNUBARDSP Keyword on the Menu-Bar Record

[cootei il 20 4000300kl L 8L

R MENUBAR
01
H

H

MNUFLD

02

04

EDITTXT
RTNFLD
R PULLEDIT

20A P

2Y OH

H

H

H

F1 2Y 0B 1
01

> rTrTrrrrT > > >

2Y B 1 2

R T PR, O
HELP ALTHELP CF03(03)

MNUBARSW (CA10) MNUCNL(CA12 12)
CFO4(04) CFO6(06)

MNUBAR

MNUBARDSP

HLPARA (*FLD MNUFLD 1)
HLPRCD(FILEHLP HLPLIB/HLPFILE)
HLPARA (*FLD MNUFLD 2)

HLPRCD (EDITHLP HLPLIB/HLPFILE)
HLPARA (*FLD MNUFLD 3)
HLPRCD(VIEWHLP HLPLIB/HLPFILE)
HLPARA(*FLD MNUFLD 4)

HLPRCD (OPTHLP HLPLIB/HLPFILE)
HLPARA(*FLD MNUFLD 5)

HLPRCD (HELPHLP HLPLIB/HLPFILE)

MNUBARCHC(1 PULLFILE +
'>File ")

MNUBARCHC (2 PULLEDIT +
&EDITTXT)

MNUBARCHC (3 PULLVIEW +
'>View ")

MNUBARCHC (4 PULLOPT +
'>Options

MNUBARCHC (5 PULLHELP +
'>Help ")

MNUBARSEP ((*COLOR WHT) +

(*CHAR '-'))

' &RTNFLD)

PULLDOWN

HLPARA(*FLD F1 1)

HLPRCD (UNDOHLP HLPLIB/HLPFILE)
HLPARA(*FLD F1 2)

HLPRCD (MARKHLP HLPLIB/HLPFILE)
HLPARA(*FLD F1 3)

HLPRCD (COPYHLP HLPLIB/HLPFILE)

1SNGCHCFLD

CHOICE(1 '>Undo ")

CHOICE(2 &MARKTXT)

CHOICE(3 '>Copy ")

CHCCTL(1 &CTLUNDO MSG1112 QUSER/A)
CHCCTL(2 &CTLMARK &MSG &LIB/&MSGF)
CHCCTL(3 &CTLCOPY)

CHCACCEL(1 'F4')

CHCACCEL(2 'F6')

Chapter 6. Creating a Graphical Look for Displays

193

A MARKTXT 20A P

A CTLUNDO 1Y OH

A CTLMARK 1Y oH

A CTLCOPY 1Y OH

A MSG 7A P

A LIB 16A P

A MSGF 1A P

A

A R PULLOPT

A PULLDOWN

A H HLPARA(*FLD F1 1)

A F1 2Y 6B 1 1SNGCHCFLD

A

A R APPSCR

A FIELD1 10A B 10 12

A FIELD2 5S 0B 14 12

A 24 1'Fl=Help F3=Exit +

A F10=Actions F12=Cancel !
Description

In the example using the MNUBARDSP keyword on the menu-bar record, the application writes the
MENUBAR record to display the menu bar. The application then performs a write-read operation to the
APPSCR record to display the application display.

As in the previous example, F10 provides quick access to the menu bar (which is always active). Pressing
F10 moves the cursor to the first choice in the menu bar. Pressing F10 again (or F12) moves the cursor
back to where it was on the application display.

On display stations in configuration F from [Table 16 on page 140}, pressing the Tab key moves the cursor
from choice to choice in the menu bar and from input field to input field on the entire display. The cursor
skips over any menu-bar choice that is selected.

When the cursor is located within a menu bar on display stations in configurations A, B, and C from
[Table 15 on page 139, and configurations D and E from [Table 16 on page 140, the cursor movement keys
or the Tab key moves the cursor from choice to choice within the menu bar.

If the user selects the Edit action, the system displays the pull-down menu record (PULLEDIT). Because
CHECK(ER) is not specified on field F1, the user enters a value by typing the choice number and
pressing the Enter key, or by pressing F4 or F6. When a value is entered or an accelerator key is pressed,
control is returned to the application. Because the application was doing a write-read operation to the
APPSCR record, the APPSCR record is returned to the application. The application must then read the
MENUBAR record to determine the choice selected (2 is returned in field MNUFLD). Because the
input-field parameter was not specified on the MNUBARDSP keyword, the application reads record
PULLEDIT to receive the pull-down menu input.

How the Displays Look
On display stations in configurations A and B from [Table 15 on page 139, the display looks like this:

194 Application Display Programming V5R4

File Edit View Options Help

O Undo F4
O Mark F6

© Copy

RV2W855-1

On display stations in configuration C from [Table 15 on page 139] the display looks like this:

File Edit View Options Help

RV2W067-0

On display stations in configurations D and E from [Table 16 on page 140, the display looks like this:

File Edit View Options Help

1. Undo F4
2. Mark F6
3. Copy

RV2W068-1

On display stations in configuration F in|Table 16 on page 140} the display looks like this:

File Edit View Options Help

1. Undo Fa4
2. Mark F6
3. Copy

RV3W075-0

Simple Hotspots

Controllers that support an enhanced interface for nonprogrammable work stations provide simple
hotspots. A hotspot is an area of a display that, when clicked on, performs a function. You must have a
display station with a mouse. Hotspots are available on configurations A and B from [[able 15 on page]
On InfoWindow II display stations, the hotspot must be selected with the left mouse button.

The following hotspots are provided by controllers that support an enhanced interface for
nonprogrammable work stations:

Command key emulation
Page Up and Page Down key emulation

Enter key emulation

Chapter 6. Creating a Graphical Look for Displays 195

The user can perform the Enter function on InfoWindow II display stations by double-clicking the left
mouse button.

Command Key Emulation

When the user clicks on a command key, the pointer device cursor must be between the first and last
characters (inclusive) of the command key. When the user selects the command key, the keyboard locks
and the command key is processed. The function performed is defined by DDS. The system performs the
function as if the actual command key had been pressed. This includes setting response indicators.

When the user clicks on a command key, the system scans the command key text to the left until it finds
one of the following;:

An attribute

Two blanks

Two nulls

A blank and a null

Column one of the row

After finding the beginning of the command key text string, the system scans the text to the right until it
finds a match with one of the following:

Fx= x can be 1 to 9.
Fyx= ycanbe0,1,0or2. If yis 0, xcanbe 1 to 9. If yis 1, x can be 0 to 9. If y is 2, x can be 0 to 4.
PFx= xcanbe 1 to 9.
PFyx= ycanbe 0,1, 0or 2. If yis 0, x canbe 1t0 9. If yis 1, x can be 0 to 9. If y is 2, x can be 0 to 4.
PFx xcanbe 1 to9.

PFyx ycanbe0,1,0r2. Ifyis0,xcanbelto9.If yis1, x can be 0 to 9. If y is 2, x can be 0 to 4.

After the system finds a match, it performs the command key function.

Page Up and Page Down Key Emulation

The user can click on the plus (+) and minus (-) characters to page down (roll up) and page up (roll
down), respectively. When the user clicks on the + or — characters, the keyboard locks and a Roll Up AID
key and Roll Down AID key is generated. The function performed is defined by DDS. The system
performs the function as if the actual key had been pressed.

One way to implement this function is to do the following;:
1. Specify *MORE on the Subfile End (SFLEND) keyword.

This causes the display file to use the text defined on the CPX6AB2 and CPX6AB1 messages. The
default text for these messages is More ... and Bottom, respectively.

2. Change the text for the CPX6AB2 message to More: +/-.
3. Change the text for the CPX6AB1 message to Bottom: -.

Programmable Mouse Buttons-Overview

The programmable mouse buttons function allows attention indicators (AIDs) to be associated with
various pointer device events. AID codes are normally associated with various command keys on the
keyboard. These keys are used to communicate action requests from the user to the system or application.
Some command keys that generate AIDs are Enter, Help, Rollup, Rolldown, and the 24 command
attention or function keys. Single event AIDs and two event AIDs can be programmed. Up to 18 pairs of
pointer device events and associated AIDs may be defined. These events consist of 3 buttons with 3
events each (up, down, and double click) in two keyboard states (shifted and unshifted).

196 Application Display Programming V5R4

A single event AID definition would also associate an AID code with a single pointer device event
whereas the two event AID definition would also associate an AID with two consecutive pointer device
events.

Use the programmable mouse button (MOUBTN) keyword to associate a command key or Event-ID with
one or two pointer device events. This keyword can be specified at the file or record level.
Notes:

1. This function is available only for displays attached to a controller that supports an enhanced
interface for nonprogrammable work stations.

2. The only pointer device supported is a mouse or a device that emulates a mouse.

Pointer Device Events

With a three button mouse, there are 18 pointer device events possible: 3 buttons with 3 events each (up,
down, double click) in two keyboard states (shifted and unshifted). The pointer device events are:

* Left button pressed

* Left button released

* Left button double click

* Right button pressed

* Right button released

* Right button double click

* Middle button pressed

* Middle button released

* Middle button double click

¢ Shifted left button pressed

* Shifted left button released

e Shifted left button double click

* Shifted right button pressed

* Shifted right button released

* Shifted right button double click
* Shifted middle button pressed

* Shifted middle button released

¢ Shifted middle button double click

Notes:

1. The Shift key or Shift Lock key must be held down for a shifted pointer device event. Caps Lock state
and Shift Lock state are not considered shifted. Releasing the Shift key does not reset Caps Lock state
or Shift Lock state if used for a shifted pointer device event.

2. The nonprogrammable work station (NWS) has a setup option to switch the functions of the left and
right buttons within the NWS. The system has no knowledge of this. This provides the concept of left-
and right-handed mice. For this document, all references to the mouse buttons assumes a
right-handed mouse where the left and right buttons follow the usual definitions for left and right.

AID Codes to be Returned

The AID associated with a pointer device event may be any currently supported AID or a host-defined
AID value between X'70" and X'7F'. The following AIDs are supported:

X'31'- X'3C' CA/CF01-CA/CF12 (Cmd 1 - 12)
X'70' - X'7F' E00-E15 (EVENTS)
X'B1' - X'BC' CA/CF13-CA/CF24 (Cmd 13 - 24)

Chapter 6. Creating a Graphical Look for Displays 197

X'BD' CLEAR (Clear)

X'F1' Enter or Record Advance

X'F3' HELP (Help - not in error state)
X'F4' ROLLDOWN (Page Down)
X'F5' ROLLUP (Page Up)

X'Fe' PRINT (Print)

X'F8' HOME (Record Backspace)

Programmable Mouse Buttons-Benefits

Mouse buttons can be used for such things as reordering the layering of windows and selecting objects.
For example, an application programmer can program middle button down as a single event AID to
enable window reordering when multiple windows are on a display. When the user presses the middle
button, the cursor moves to the pointer device cursor location and the host-defined AID is returned. The
application uses the host-defined AID to recognize a reorder request. If the row and column cursor
address indicates that the pointer device event occurred within an overlaid window, the windows can be
reordered. If the row and column cursor address indicates that the pointer device event did not occur
within an overlaid window, the application can ignore the AID or post a message.

Note: If the EVENT IDs (E00-E15) are used, you may consider defining equivalent functions to be
performed using the keyboard. For example, you may allow the user to position the text cursor
and press a function key to perform a function equivalent to pressing a mouse button. This would
enable functions on displays attached to controllers that do not support an enhanced interface for
nonprogrammable work stations and on nonprogrammable displays without pointer devices.

Programmable Mouse Buttons Operation

When a pointer device event is performed that has been programmed as a single event and no other
function has higher priority, the following occurs:

1. The keyboard is locked (as it is for function keys).

2. The cursor is moved to the pointer device cursor location.
3. The specified AID is returned to the host.
4

. If the AID or moving the cursor normally results in validation of entry field data, the data is
validated.

5. If the specified AID normally returns inbound entry field data, inbound entry field data is included.
The format of the inbound data is like typical inbound data.

6. Control is returned to the application.

There will be no way for the application to differentiate between the pointer device event and the
corresponding command key. However, the pointer device event may be associated with an EVENT
ID (E00-E15) that is not also associated with any command key. This provides a way to detect a
pointer device event.

When a two event pointer device event is performed, the system looks for the leading edge event. When
the leading edge event is received, the following occurs:

Note: Inbound data is not returned until the trailing edge event occurs.
1. A programmable-two-event state is entered.

2. A marker box is drawn around the location of the pointer device cursor on nonprogrammable work
stations capable of displaying a marker box. The marker box appears as 4 blue lines around the
character.

198 Application Display Programming V5R4

3. The pointer device color is changed to white on nonprogrammable work stations capable of
displaying white.

4. The system looks for the trailing edge event.

Keystrokes and host data streams will cancel the programmable-two-event state. Some pointer device

events are ignored while waiting for the trailing edge event. For more information, see [“Programmable|
Mouse Buttons-NWS Considerations.”| When the trailing edge event is received, the following occurs:

1. The marker box is erased

2. The pointer device cursor color is changed to input inhibited

3. The keyboard is locked

4. The text cursor is moved to the location of the pointer device cursor

If the specified host-defined AID normally returns inbound entry field data, inbound data is included.
The ending row and column location is returned.

Note: The RTNCSRLOC keyword can also be used to retrieve the starting location of the cursor. This
may be different from the ending cursor location when using a two event definition.

Using programmable mouse buttons can prohibit other pointer device functions on the display. For
example, the copy and paste function has a lower priority than the programmable mouse buttons for the
shifted left button press and release. For more information on the priority of pointer device events, see
[“Programmable Mouse Buttons-Event Processing Priority” on page 200.|

Programmable Mouse Buttons-NWS Considerations

Many of the pointer device events result in either the text cursor being moved or an AID being sent to
the host. If the text cursor was in an entry field, entry field requirements (for example, mandatory fill) are
checked before the text cursor is allowed to move or an AID is sent. This could result in an error code
being posted and the pointer device event would not be processed. For example, the 0014 error code may
be posted indicating that a mandatory fill field contains a null.

The NWS passes an event to the system any time a button is pressed or released. It passes a double-click
event to the system if a button is pressed, released, and pressed again within a user-specified double click
time. The system sees a button pressed event, button released event, and a double click event, and
eventually a button released event.

A pointer device event will be ignored by the system if any of the following are true:

* The keyboard is locked. An exception is single event programmable mouse buttons which can be
defined to be queued if the keyboard is locked.

* The keyboard is in system request state or ss message state.

¢ The keyboard is in operator error state. An exception is the left button down and shifted left button
down which can reset an operator error.

¢ The display is in WP mode.
* The system has any stored type ahead keystrokes.

¢ The system does not have a pending read. An exception is single event programmable mouse buttons.
When the keyboard is unlocked, the system normally has a pending read. However, 3270DE sometimes
unlocks the keyboard without a pending read. Processing a pointer device event could be confusing in
this case.

Programmable Mouse Buttons-Event Processing States

Pointer device event processing can be in various states. The following events, when received in an
unexpected state, cause the state of the pointer device event processing to be reset:

* Most mouse button events (except as noted)

Chapter 6. Creating a Graphical Look for Displays 199

* Most keyboard events (not shift key make/break, for example)
* All host display updates

The state is reset as follows:

* If the scroll bar drag and drop state is active, the drag and drop state is reset and the scroll bar is
re-written to the original state.

* If the copy and paste state is active, the copy and paste state is reset and the ending point indication is
removed from the display.

* If the programmable mouse buttons two-event state is active, the state is reset and no AID is posted.
The follow events are ignored in the two-event state so as not to reset the state when that would not
be the desired effect:

— A mouse button release event associated with the leading edge event.

— A mouse button press event which must be generated to get to the trailing edge event. The trailing
edge must be the button release or double click on the same button and shift state.

— A mouse button release event which must be generated to get to the trailing edge event. The trailing
edge must be the double click on the same button and shift state.

Mouse button events which cause states to be reset are not processed any further. Keyboard events and
host screen updates are processed as usual after resetting any mouse event processing state.

Programmable Mouse Buttons-Event Processing Priority
This section describes the event processing priorities for the following events:

* Unshifted left button pressed

 Unshifted left button released

* Unshifted left button double clicked

* Shifted left button pressed

e Shifted left button released

* Shifted right button pressed

* All other events

Unshifted Left Button Pressed Event Processing

If the shift key is not down and the system receives a left button pressed event, the system determines
the position of the pointer device cursor and performs exactly one of the following functions, checking in
the order listed:

1. If an operator error is on the display, the pointer device cursor can be used to reset the operator error.
Depending on the position of the pointer device cursor, one of the following functions is performed:

a. If the pointer device cursor is on the operator error line, then the same function is performed as if
the user pressed the Reset key. The reset function is also performed if the pointer device cursor is
on the last line of the display and the separately displayable operator error line line is being used
(line 25 or line 28).

b. Otherwise, the pointer device event is ignored and the following checks are not done.
2. If the pointer device cursor is on a selection field choice:

a. If the choice is a cursorable choice, the cursor is moved to the location of the pointer device cursor.
A selection cursor is created. The function of a Spacebar key is performed (this includes posting
operator error 0084 if the choice is unavailable). The cursor must be somewhere between the first
text attribute and the last text attribute in the choice. If selection indicators are used, the cursor
must be somewhere between the selection indicator attribute and the last text attribute in the
choice.

b. If on a noncursorable or null choice, the cursor is not moved and operator error 0084 is posted.

200 Application Display Programming V5R4

3. If the pointer device cursor is on a scroll bar character (arrow character or shaft character), a roll AID
may be sent to the host. If a roll AID is sent to the host the field MDT is set on. The text cursor may
be moved to the position of the pointer device cursor. This depends on one of the following;:

* The setting of the "move the cursor to the scroll bar on a pointer device interaction” flag in the
Define Scroll Bar command

* The position of the cursor if this scroll bar is associated with a selection field
The keyboard is locked (as if the user pressed a normal AID key).

a. If the pointer device cursor is in the shaft above the slider, a Roll Down AID with a scroll
increment of X'00000000' is sent to the host. Similarly, if the pointer device cursor is in the shaft
below the slider, a Roll Up AID is sent.

b. If the pointer device cursor is on the top arrow character and the slider is not already at the top of
the scroll bar, a Roll Down AID with a scroll increment of X'00000001' is sent to the host. Similarly,
if the pointer device cursor is on the bottom arrow character and the slider is not already at the
bottom of the scroll bar, a Roll Up AID with a scroll increment of X'00000001' is sent to the host. If
the pointer device cursor is on the top arrow character and the slider is already at the top of the
scroll bar, the left button pressed is ignored. The bottom arrow character functions similarly.

c. If the pointer device cursor is on the slider, a drag and drop function should be started (scroll bar
slider drag and drop state). The NWS is told to pass pointer device cursor movement to the
system. In scroll bar drag and drop state, for each movement event, the system calculates the row
of the pointer device cursor and compares this value with the last row which was processed. If the
row values are different, the scroll bar characters are re-written. The slider is re-positioned within
the shaft. If the pointer device cursor moved up one row, the slider is moved up one row. If the
pointer device cursor is moved up more rows than exist in the shaft above the slider, the slider is
moved to the top of the scroll bar shaft. When the left button is released, the drop function is
performed; see Left Button Released for a description of the roll AID request. If any pointer event
other than left button released occurs, or if any keyboard key is pressed, or if any screen update is
done by the host, the following occurs:

* The scroll bar characters are re-written to their original state
* The scroll bar slider drag and drop state is reset

* No roll AID is sent

* The MDT is not set

4. If the pointer device cursor is in a light pen field (first field position through the last field position),
the system treats the event as if a light pen tip switch were activated at the position of the pointer
device cursor.

5. If this mouse button event has been programmed with the Programmable Mouse Buttons structured
field, the event is handled as described above.

6. If the pointer device cursor is on a simple hot spot, a hot spot function is performed. Hot spots enable
a pointer device to partially drive older applications. In order to be considered a hot spot, the pointer
device cursor must not be in an entry field. The hot spot functions for unshifted left button pressed
events are:

¢ Command Key emulation. For more information, see [“Command Key Emulation” on page 196.|

» Page Up and Page Down Key Emulation. For more information, see ["Page Up and Page Down Key]
[Emulation” on page 196.|

* Enter key emulation. For more information, see [“Unshifted Left Button Double Click Event]
[Processing” on page 202

7. If pull-down cancel mode is active, the cursor is moved to the position of the pointer device cursor,
the keyboard is locked (treated like a normal AID), and the specified AID is returned to the host.
Pull-down cancel mode is active if a selection field was written to the display and a Pull-Down
Cancel AID was specified in the Define Selection Field major structure.

Note: Pull-down cancel mode is lower priority than hot spots because pull-down menus could have
command keys or More -/+ inside them.

Chapter 6. Creating a Graphical Look for Displays 201

8. Otherwise, the cursor is moved to the location of the pointer device cursor. The cursor could be a text
cursor or a selection cursor (for a highlighted entry field). The system allows the text cursor to move
to a noncursorable text location even if cursor movement to input-capable positions only is set on.

Unshifted Left Button Released Event Processing

If the shift key is not down and the system receives a left button released event, the system determines
the position of the pointer device cursor and performs exactly one of the following functions, checking in
the order listed:

1. If scroll bar slider drag and drop state is active, the scroll bar characters may be updated. For more
information on scroll bars, see |”Unshifted Left Button Pressed Event Processing” on page 200.| If the
row position of the pointer device cursor is different than the row position when the slider was last
written, the scroll bar characters should be written. If the final slider position is different than the
original slider position (when the drag and drop was started), the following occurs:

a. The MDT is set on
b. The text cursor may be moved to the scroll bar slider

c. A Roll AID is sent to the host with a scroll increment indicating the number of rows or columns to
be scrolled

d. The keyboard is locked (treated like a normal AID)

The specific AID depends on the direction the slider moved. If the slider did not move, no AID is
sent. In all cases, the scroll bar slider drag and drop state is reset.

2. If this mouse button event has been programmed with the Programmable Mouse Buttons structured
field, the event is handled as described above.

3. Otherwise, the pointer device event is ignored.

Unshifted Left Button Double Click Event Processing

If the shift key is not down and the system receives a left button double click event, then the system
determines the position of the pointer device cursor and performs exactly one of the following functions,
checking in the order listed:

1. If this mouse button event has been programmed with the Programmable Mouse Buttons structured
field, the event is handled as described above.

2. Otherwise, if the previous left button pressed event simply positioned the cursor, the keyboard is
locked and the Enter AID is sent to the host. This is a hot spot function.

3. Otherwise, the unshifted left button double click event is ignored.

Note: The user must have done one of the following:
* Selected a selection field choice
* Operated against a scroll bar
* Caused a pointer device selectable AID
* Selected a hot spot (for example, a command key)

* Caused some other left button pressed event function, other than the default action of simply
positioning the cursor.

Shifted Left Button Pressed Event Processing

If the shift key is down and the system receives a left button pressed event, the system determines the
position of the pointer device cursor and performs exactly one of the following functions, checking in the
order listed:

1. If an operator error is on the display, the pointer device cursor can be used to reset the operator error.
Depending on the position of the pointer device cursor, one of the following functions is done:

a. If the pointer device cursor is on the operator error line, then the same function is performed as if
the user pressed the Reset key. The reset function is also performed if the pointer device cursor is
on the last line of the display and the separately displayable operator error line line is being used
(line 25 or line 28).

202 Application Display Programming V5R4

b. Otherwise, the pointer device event is ignored and the following checks are not performed.

2. If this mouse button event has been programmed with the Programmable Mouse Buttons structured
field, the event is handled as described above.

3. Otherwise, a copy and paste function (frequently called cut and paste) is started. The copy and paste
state is set. The location of the pointer device cursor is marked to indicate an end point of the select.
A line is drawn above and below the character location of the pointer device cursor. If any other
pointer device event other than shifted left button released occurs, or the user presses any key, or any
data is received from the host, the copy and paste state is reset and the two lines are removed. When
the shifted left button is released, copy and paste processing continues (see [“Shifted Left Button|

Released Event Processing”) for later use in a paste operation (see [‘Shifted Right Button Pressed|

Event Processing” on page 204).

Shifted Left Button Released Event Processing

If the shift key is held down and the system receives a left button released event, the system determines
the position of the pointer device cursor and performs exactly one of the following functions, checking in
the order listed:

1. If copy and paste state is active, the user has now marked the second end point of the copy. The
second end point is marked by drawing three lines around the second end point and adding one line
around the first end point. This looks like square brackets enclosing the copy data. The user can mark
either the starting or ending point first. Then, the marked copy data is stored in the display (for
example, 348X NWS) for later use (see [“Shifted Right Button Pressed Event Processing” on page 204).
For performance reasons, the copy and paste data will be copied from the display to the
system-managed buffer in the displ