
IBM Systems - iSeries

Security -- Enterprise Identity Mapping (EIM) APIs

Version 5 Release 4

���

IBM Systems - iSeries

Security -- Enterprise Identity Mapping (EIM) APIs

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 257.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Enterprise Identity Mapping (EIM) APIs 1

APIs 3

eimAddSystemRegistry()—Add a System Registry to

the EIM domain 3

Authorities and Locks 4

Parameters 4

Return Value 4

User Defined Registry Type 6

Restrictions 6

Related Information 6

Example 6

eimAddApplicationRegistry()—Add an Application

Registry to the EIM Domain 7

Authorities and Locks 7

Parameters 8

Return Value 8

User Defined Registry Type 10

Restrictions 10

Related Information 10

Example 10

eimAddAccess()—Add EIM Access 11

Authorities and Locks 11

Parameters 11

Return Value 12

Related Information 13

Example 14

eimAddAssociation()—Add EIM Association . . . 15

Authorities and Locks 15

Parameters 16

Return Value 16

Related Information 18

Example 18

eimAddGroupRegistry()—Add a Group Registry to

the EIM domain 19

Authorities and Locks 20

Parameters 20

Return Value 20

Restrictions 22

Related Information 22

Example 22

eimAddIdentifier()—Add EIM Identifier 23

Authorities and Locks 23

Parameters 23

Return Value 24

Restrictions 25

Related Information 25

Example 25

eimAddPolicyAssociation()—Add EIM Policy

Association 26

Authorities and Locks 27

Parameters 28

Return Value 29

Related Information 30

Example 31

eimAddPolicyFilter()—Add EIM Policy Filter . . . 31

Warning: Temporary Level 3 Header 32

Authorities and Locks 33

Parameters 33

Return Value 33

Related Information 35

Example 35

eimChangeDomain()—Change an EIM Domain

Object 36

Authorities and Locks 36

Parameters 36

Return Value 38

Related Information 40

Example 40

eimChangeIdentifier()— Change EIM Identifier . . 41

Authorities and Locks 41

Parameters 41

Return Value 42

Restrictions 43

Related Information 44

Example 44

eimChangeRegistry()—Change EIM Registry . . . 44

Authorities and Locks 45

Parameters 45

Return Value 46

Related Information 48

Example 48

eimChangeRegistryAlias()—Change EIM Registry

Alias 49

Authorities and Locks 49

Parameters 49

Return Value 50

Restrictions 51

Related Information 51

Example 51

eimChangeRegistryUser() —Change EIM Registry

User 52

Authorities and Locks 53

Parameters 53

Return Value 54

Related Information 56

Example 56

eimConnect()—Connect to EIM Domain 57

Authorities and Locks 57

Parameters 57

Return Value 58

Related Information 59

Example 59

eimConnectToMaster()—Connect to EIM Master

Domain 60

Authorities and Locks 61

Parameters 61

Return Value 62

Related Information 63

Example 63

eimErr2String()—Convert EimRC into an Error

Message 64

Authorities 64

© Copyright IBM Corp. 1998, 2006 iii

Parameters 64

Return Value 64

Related Information 65

Example 65

eimCreateDomain()—Create an EIM Domain Object 65

Authorities and Locks 66

Parameters 66

Return Value 67

Restrictions 69

Related Information 69

Example 69

eimCreateHandle()—Create an EIM Handle . . . 70

Authorities and Locks 70

Parameters 70

Return Value 70

Related Information 72

Example 72

eimDeleteDomain()—Delete an EIM Domain Object 72

Authorities and Locks 73

Parameters 73

Return Value 74

Related Information 76

Example 76

eimDestroyHandle()—Destroy an EIM Handle . . . 76

Authorities and Locks 77

Parameters 77

Return Value 77

Related Information 77

Example 78

eimFormatPolicyFilter()—Format EIM Policy Filter 78

Warning: Temporary Level 3 Header 79

Authorities and Locks 81

Parameters 81

Return Value 83

Related Information 84

Example 84

eimFormatUserIdentity()—Format User Identity . . 86

Authorities and Locks 86

Parameters 86

Return Value 89

Related Information 90

Example 90

eimGetAssociatedIdentifiers() —Get Associated EIM

identifiers 91

Authorities and Locks 92

Parameters 92

Return Value 94

Related Information 95

Example 95

eimGetAttribute()—Get EIM attributes 98

Authorities and Locks 98

Parameters 98

Return Value 99

Related Information 101

Example 101

QsyGetEIMConnectInfo()—Get EIM Connect

Information 102

Authorities and Locks 102

Parameters 102

Return Value 104

Related Information 104

Example 104

QsyGetEIMHandle()—Get EIM Handle Connected

For System 107

Authorities and Locks 107

Parameters 107

Return Value 107

Related Information 108

Example 108

eimGetRegistryNameFromAlias() —Get EIM

Registry Name from an Alias 109

Authorities and Locks 110

Parameters 110

Return Value 111

Related Information 112

Example 112

eimGetTargetCredsFromSource() —Get EIM Target

Identities and Credentials from the Source 114

Authorities and Locks 114

Parameters 115

Return Value 117

Related Information 118

Example 118

eimGetTgtCredsFromIdentifier() —Get EIM Target

Identities and Credentials from the Identifier . . . 121

Authorities and Locks 121

Parameters 122

Return Value 124

Related Information 125

Example 125

eimGetTargetFromIdentifier() —Get EIM Target

Identities from the Identifier 128

Authorities and Locks 128

Parameters 129

Return Value 130

Related Information 132

Example 132

eimGetTargetFromSource() —Get EIM Target

Identities from the Source 134

Authorities and Locks 135

Parameters 135

Return Value 137

Related Information 138

Example 138

eimGetVersion()—Get EIM Version 140

Authorities and Locks 140

Parameters 141

Return Value 142

Example 143

eimListAccess()—List EIM Access 143

Authorities and Locks 144

Parameters 144

Return Value 145

Related Information 146

Example 146

eimListAssociations()— List EIM Associations . . 148

Authorities and Locks 148

Parameters 149

Return Value 150

Related Information 152

Example 152

eimListDomains()—List EIM Domain Objects . . . 154

iv IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Authorities and Locks 154

Parameters 154

Return Value 157

Related Information 158

Example 158

eimListIdentifiers()— List EIM Identifiers 160

Authorities and Locks 160

Parameters 161

Return Value 163

Related Information 164

Example 164

eimListPolicyFilters()—List EIM Policy Filters . . 166

Authorities and Locks 167

Parameters 167

Return Value 168

Related Information 169

Example 169

eimListRegistries()—List EIM Registries 171

Authorities and Locks 172

Parameters 172

Return Value 174

Related Information 175

Example 176

eimListRegistryAliases()—List EIM Registry Aliases 179

Authorities and Locks 180

Parameters 180

Return Value 181

Related Information 182

Example 182

eimListRegistryAssociations()—List EIM Registry

Associations 184

Authorities and Locks 184

Parameters 184

Return Value 187

Related Information 188

Example 188

eimListRegistryUsers()— List EIM Registry Users 191

Authorities and Locks 192

Parameters 192

Return Value 193

Related Information 195

Example 195

eimListRegistryUsersCreds()— List EIM Registry

Users Credentials 197

Authorities and Locks 197

Parameters 198

Return Value 200

Related Information 201

Example 201

eimListUserAccess()—List EIM User Access . . . 204

Authorities and Locks 204

Parameters 205

Return Value 206

Related Information 208

Example 208

eimQueryAccess()—Query EIM Access 210

Authorities and Locks 210

Parameters 211

Return Value 212

Related Information 213

Example 213

eimRemoveRegistry()—Remove a Registry from the

EIM Domain 214

Authorities and Locks 214

Parameters 214

Return Value 215

Related Information 216

Example 216

eimRemoveAccess()—Remove EIM Access 217

Authorities and Locks 217

Parameters 217

Return Value 218

Related Information 219

Example 220

eimRemoveAssociation()— Remove EIM

Association 220

Authorities and Locks 221

Parameters 221

Return Value 222

Related Information 223

Example 223

eimRemoveIdentifier()— Remove EIM Identifier 224

Authorities and Locks 225

Parameters 225

Return Value 225

Related Information 227

Example 227

eimRemovePolicyAssociation()—Remove EIM

Policy Association 228

Authorities and Locks 228

Parameters 228

Return Value 230

Related Information 231

Example 231

eimRemovePolicyFilter()—Remove EIM Policy

Filter 232

Authorities and Locks 232

Parameters 232

Return Value 233

Related Information 234

Example 235

eimRetrieveConfiguration()—Retrieve EIM

Configuration 235

Authorities and Locks 236

Parameters 236

Return Value 237

Related Information 237

Example 237

eimSetAttribute()—Set EIM attributes 239

Authorities and Locks 239

Parameters 239

Return Value 240

Related Information 240

Example 240

eimSetConfiguration()—Set EIM Configuration . . 241

Authorities and Locks 241

Parameters 241

Return Value 243

Related Information 244

Example 244

eimSetConfigurationExt()—Set EIM Configuration

Extended 245

Contents v

Authorities and Locks 245

Parameters 245

Return Value 247

Related Information 248

Example 248

QsySetEIMConnectInfo()—Set EIM Connect

Information 250

Authorities and Locks 250

Parameters 250

Return Value 252

Related Information 253

Example 253

Concepts 254

EimRC—EIM Return Code 254

Field Descriptions 255

Example 255

Appendix. Notices 257

Programming Interface Information 258

Trademarks 259

Terms and Conditions 260

vi IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Enterprise Identity Mapping (EIM) APIs

Enterprise Identity Mapping (EIM) provides the mechanics for cross-platform single sign-on enablement.

Applications can use EIM to perform identity mapping lookup operations to authenticate the user to

multiple systems in the enterprise.

For more information on this topic, see Enterprise Identity Mapping.

For information on the EIM return code structure, see “EimRC—EIM Return Code” on page 254.

The Enterprise Identity Mapping APIs are:

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19

(eimAddGroupRegistry()) adds a group registry to the EIM domain.

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3

(eimAddSystemRegistry()) adds a system registry to the EIM domain.

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7

(eimAddApplicationRegistry()) adds an application registry to the EIM domain.

v “eimAddAccess()—Add EIM Access” on page 11 (eimAddAccess()) adds the user to the EIM access

group identified by the access type.

v “eimAddAssociation()—Add EIM Association” on page 15 (eimAddAssociation()) associates a local

identity in a specified user registry with an EIM identifier.

v “eimAddIdentifier()—Add EIM Identifier” on page 23 (eimAddIdentifier()) creates an identifier in EIM

related to a specific person or entity within an enterprise.

v “eimAddPolicyAssociation()—Add EIM Policy Association” on page 26 (eimAddPolicyAssociation())

adds the specified policy association to the domain.

v “eimAddPolicyFilter()—Add EIM Policy Filter” on page 31 (eimAddPolicyFilter()) adds a policy filter

value to the domain.

v “eimChangeDomain()—Change an EIM Domain Object” on page 36 (eimChangeDomain()) changes an

attribute for the EIM domain entry identified by domainName.

v “eimChangeIdentifier()— Change EIM Identifier” on page 41 (eimChangeIdentifier()) modifies an

existing EIM identifier.

v “eimChangeRegistry()—Change EIM Registry” on page 44 (eimChangeRegistry()) changes the attribute

of a registry participating in the EIM domain.

v “eimChangeRegistryAlias()—Change EIM Registry Alias” on page 49 (eimChangeRegistryAlias())

allows you to add or remove a registry alias for the defined registry.

v “eimChangeRegistryUser() —Change EIM Registry User” on page 52 (eimChangeRegistryUser())

changes the attributes of a registry user entry.

v “eimConnect()—Connect to EIM Domain” on page 57 (eimConnect()) is used to connect to the EIM

domain that is configured for this platform.

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60 (eimConnectToMaster()) is used

to connect to the EIM master domain controller.

v “eimErr2String()—Convert EimRC into an Error Message” on page 64 (eimErr2String()) converts the

EIM return code structure returned by an EIM function into a NULL-terminated error message string.

v “eimCreateDomain()—Create an EIM Domain Object” on page 65 (eimCreateDomain()) creates an EIM

domain object on the specified EIM domain controller.

v “eimCreateHandle()—Create an EIM Handle” on page 70 (eimCreateHandle()) is used to allocate an

EimHandle structure, which is used to identify the EIM connection and to maintain per-connection

information.

© Copyright IBM Corp. 1998, 2006 1

v “eimDeleteDomain()—Delete an EIM Domain Object” on page 72 (eimDeleteDomain()) deletes the EIM

domain information.

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76 (eimDestroyHandle()) is used to deallocate

an EimHandle structure.

v “eimFormatPolicyFilter()—Format EIM Policy Filter” on page 78 (eimFormatPolicyFilter()) generates a

policy filter value.

v “eimFormatUserIdentity()—Format User Identity” on page 86 (eimFormatUserIdentity()) formats user

identity information for use with other EIM functions.

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91

(eimGetAssociatedIdentifiers()) returns a list of the identifiers.

v “eimGetAttribute()—Get EIM attributes” on page 98 (eimGetAttribute()) is used to get attributes for

this EIM handle.

v “QsyGetEIMConnectInfo()—Get EIM Connect Information” on page 102 (QsyGetEIMConnectInfo())

returns the connection information that will be used by the i5/OS operating system when it needs to

connect to the EIM domain that is configured for this system or for the master system.

v

“QsyGetEIMHandle()—Get EIM Handle Connected For System” on page 107 (QsyGetEIMHandle())

allocates an EimHandle structure that is connected to EIM.

v “eimGetRegistryNameFromAlias() —Get EIM Registry Name from an Alias” on page 109

(eimGetRegistryNameFromAlias()) returns a list of registry names that match the search criteria

provided byaliasTypeandaliasValue.

v

“eimGetTgtCredsFromIdentifier() —Get EIM Target Identities and Credentials from the Identifier” on

page 121 (eimGetTgtCredsFromIdentifier()) gets the target identity or identities and credentials for the

specified registry that is associated with the specified EIM identifier.

v

“eimGetTargetCredsFromSource() —Get EIM Target Identities and Credentials from the Source” on

page 114 (eimGetTargetCredsFromSource()) gets the target identity(ies) and credentials associated with

the source identity as defined by source registry name and source registry user.

v “eimGetTargetFromIdentifier() —Get EIM Target Identities from the Identifier” on page 128

(eimGetTargetFromIdentifier()) gets the target identity or identities for the specified registry that is

associated with the specified EIM identifier.

v “eimGetTargetFromSource() —Get EIM Target Identities from the Source” on page 134

(eimGetTargetFromSource()) gets the target identity or identies associated with the source identity as

defined by source registry name and source registry user.

v “eimGetVersion()—Get EIM Version” on page 140 (eimGetVersion()) returns the EIM version.

v “eimListAccess()—List EIM Access” on page 143 (eimListAccess()) lists the users that have the specified

EIM access type.

v “eimListAssociations()— List EIM Associations” on page 148 (eimListAssociations()) returns a list of

associations for a given EIM identifier.

v “eimListDomains()—List EIM Domain Objects” on page 154 (eimListDomains()) can be used to list

information for a single EIM domain or list information for all EIM domains that can be reached from

this platform in the network.

v “eimListIdentifiers()— List EIM Identifiers” on page 160 (eimListIdentifiers()) returns a list of

identifiers in the EIM domain.

v “eimListPolicyFilters()—List EIM Policy Filters” on page 166 (eimListPolicyFilters()) lists the policy

filters for the domain.

v “eimListRegistries()—List EIM Registries” on page 171 (eimListRegistries()) lists the user registries

participating in the EIM domain.

v “eimListRegistryAliases()—List EIM Registry Aliases” on page 179 (eimListRegistryAliases()) returns a

list of all the aliases defined for a particular registry.

v “eimListRegistryAssociations()—List EIM Registry Associations” on page 184

(eimListRegistryAssociations()) lists association information for the registry or domain.

2 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

v “eimListRegistryUsers()— List EIM Registry Users” on page 191 (eimListRegistryUsers()) lists the users

in a particular registry that have target associations defined.

v

“eimListRegistryUsersCreds()— List EIM Registry Users Credentials” on page 197

(eimListRegistryUsersCreds()) lists the users in a particular registry that have target associations

defined.

v “eimListUserAccess()—List EIM User Access” on page 204 (eimListUserAccess()) lists the access groups

of which this user is a member.

v “eimQueryAccess()—Query EIM Access” on page 210 (eimQueryAccess()) queries to see if the user has

the specified access.

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 (eimRemoveRegistry())

removes a currently participating registry from the EIM domain.

v “eimRemoveAccess()—Remove EIM Access” on page 217 (eimRemoveAccess()) removes the user from

the EIM access group identified by the access type.

v “eimRemoveAssociation()— Remove EIM Association” on page 220 (eimRemoveAssociation()) removes

an association for a local identity in a specified user registry with an EIM identifier.

v “eimRemoveIdentifier()— Remove EIM Identifier” on page 224 (eimRemoveIdentifier()) removes an

EIM identifier and all of its associated mappings from the EIM domain.

v “eimRemovePolicyAssociation()—Remove EIM Policy Association” on page 228

(eimRemovePolicyAssociation()) removes the specified policy association form the domain.

v “eimRemovePolicyFilter()—Remove EIM Policy Filter” on page 232 (eimRemovePolicyFilter()) removes

a policy filter value from the domain.

v “eimRetrieveConfiguration()—Retrieve EIM Configuration” on page 235 (eimRetrieveConfiguration())

retrieves the EIM configuration information for this system.

v “eimSetAttribute()—Set EIM attributes” on page 239 (eimSetAttribute()) is used to set attributes in the

EIM handle structure.

v “eimSetConfiguration()—Set EIM Configuration” on page 241 (eimSetConfiguration()) sets the

configuration information for use by the system.

v “eimSetConfigurationExt()—Set EIM Configuration Extended” on page 245 (eimSetConfigurationExt())

sets the configuration information for use by the system.

v “QsySetEIMConnectInfo()—Set EIM Connect Information” on page 250 (QsySetEIMConnectInfo())

defines the connection information that will be used by the i5/OS operating system when it needs to

connect to the EIM domain that is configured for this system or for the master system.

 Top | Security APIs | APIs by category

APIs

These are the APIs for this category.

eimAddSystemRegistry()—Add a System Registry to the EIM domain

 Syntax

 #include <eim.h>

 int eimAddSystemRegistry(EimHandle * eim,

 char * registryName,

 char * registryType,

 char * description,

 char * URI,

 EimRC * eimrc)

Enterprise Identity Mapping (EIM) APIs 3

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddSystemRegistry() function adds a system registry to the EIM domain. Once added, this

registry is participating in the EIM domain. Mapping associations can only be made with identities in

registries that are currently participating in the EIM domain.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name for this system registry. This name needs to be unique within the EIM domain.

registryType (Input)

A string form of an OID that represents the registry type and a user name normalization method.

The normalization method is necessary because some registries are case-independent and others

are case-dependent. EIM uses this information to make sure the appropriate search occurs. When

a registry is case-independent registry user names are converted to uppercase. See eim.h for a list

of predefined types. A user can define their own registry type. Refer to Registry Type section

below.

A type of EIM_REGTYPE_GROUP_REGISTRY_IG (″1.3.18.0.2.33.17-caseIgnore″) or

EIM_REGTYPE_GROUP_REGISTRY_EX (″1.3.18.0.2.33.18-caseExact″) cannot be specified.

description (Input)

The description for this new system registry entry. This parameter may be NULL.

URI (Input)

The ldap URI (Universal Resource Identifier) needed to access local users in this registry by way

of ldap. This parameter may be NULL.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

4 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EEXIST

EIM registry entry already exists.

 EIMERR_REGISTRY_EXISTS

(37)

Registry entry already exists in EIM.

EINVAL

Input parameter was not valid.

 EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list

of restricted characters.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

Enterprise Identity Mapping (EIM) APIs 5

EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

User Defined Registry Type

The registry type is comprised of two pieces: a string form of an OID that represents the registry type

and a user name normalization method. The normalization method is necessary because some registries

are case-independent and others are case-dependent. Platforms can define their own registry type. They

would first define a unique OID for their registry and then concatenate it with the predefined

normalization methods. Refer to eim.h for the supported normalization methods.

Example:

 #define MYREGOID “7.6.5.4.3.2.1”

 MyRegType = MYREGOID + EIM_NORM_CASE_IGNORE;

Restrictions

There is a restriction on the characters allowed for registry name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ * “

Related Information

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7 —Add an

Application Registry to the EIM Domain

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19 —Add a Group

Registry to the EIM Domain

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 —Remove a Registry

from the EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

v “eimListRegistries()—List EIM Registries” on page 171 —List EIM Registries

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new EIM system registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

6 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Add new system registry */

 if (0 != (rc = eimAddSystemRegistry(handle,

 ”MyRegistry“,

 EIM_REGTYPE_OS400,

 ”The first registry“,

 NULL,

 err)))

 printf(”Add system registry error = %d“, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimAddApplicationRegistry()—Add an Application Registry to the EIM

Domain

 Syntax

 #include <eim.h>

 int eimAddApplicationRegistry(EimHandle * eim,

 char * registryName,

 char * registryType,

 char * description,

 char * systemRegistryName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddApplicationRegistry() function adds an application registry to the EIM domain. An

application registry is a subset of a system registry. These can be used to manage which applications can

be used by a user in a registry. Once added, this registry is participating in the EIM domain. Mapping

associations can only be made with identities in registries that are currently participating in the EIM

domain.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Enterprise Identity Mapping (EIM) APIs 7

#TOP_OF_PAGE
sec.htm
aplist.htm

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name for this application registry. This name needs to be unique within the EIM domain.

registryType (Input)

A string form of an OID that represents the registry type and a user name normalization method.

The normalization method is necessary because some registries are case-independent and others

are case-dependent. EIM uses this information to make sure the appropriate search occurs. When

a registry is case-independent registry user names are converted to uppercase. See eim.h for a list

of predefined types. A user can define their own registry type. Refer to Registry Type section

below.

A type of EIM_REGTYPE_GROUP_REGISTRY_IG (″1.3.18.0.2.33.17-caseIgnore″) or

EIM_REGTYPE_GROUP_REGISTRY_EX (″1.3.18.0.2.33.18-caseExact″) cannot be specified.

description (Input)

The description for this new application registry entry. This parameter may be NULL.

systemRegistryName (Input)

The name of the system registry of which this application registry is a subset.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

8 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EEXIST

EIM registry entry already exists.

 EIMERR_REGISTRY_EXISTS (37) Registry entry already exists in EIM.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list of

restricted characters.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

ENOENT

System registry not found.

 EIMERR_NO_SYSREG (33) System registry not found.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 9

User Defined Registry Type

The registry type is comprised of two pieces: a string form of an OID that represents the registry type

and a user name normalization method. The normalization method is necessary because some registries

are case-independent and others are case-dependent. Platforms can define their own registry type. They

would first define a unique OID for their registry and then concatenate it with the predefined

normalization methods. Refer to eim.h for the supported normalization methods.

Example:

 #define MYREGOID “7.6.5.4.3.2.1”

 MyRegType = MYREGOID + EIM_NORM_CASE_IGNORE;

Restrictions

There is a restriction on the characters allowed for registry name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ * “

Related Information

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3 —Add a System

Registry to the EIM Domain

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19 —Add a Group

Registry to the EIM Domain

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 —Remove a Registry

from the EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

v “eimListRegistries()—List EIM Registries” on page 171 —List EIM Registries

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new EIM application registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Add new application registry */

10 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

if (0 != (rc = eimAddApplicationRegistry(handle,

 ”MyXXXRegistry“,

 EIM_REGTYPE_OS400,

 ”For XXX applications“,

 ”MyRegistry“,

 err)))

 printf(”Add application registry error = %d“, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimAddAccess()—Add EIM Access

 Syntax

 #include <eim.h>

 int eimAddAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddAccess() function adds the user to the EIM access group identified by the access type.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

accessUser (Input)

A structure that contains the user information for which to add access.

 EIM_ACCESS_LOCAL_USER indicates a local user name on the system that the API is run. The

local user name will be converted to the appropriate access id for this system.

 EIM_ACCESS_KERBEROS indicates a kerberos principal. The kerberos principal will be

converted to the appropriate access id. For example, petejones@therealm will be converted to

ibm-kn=petejones@therealm.

 The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

Enterprise Identity Mapping (EIM) APIs 11

#TOP_OF_PAGE
sec.htm
aplist.htm

};

 typedef struct EimAccessUser

 {

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

accessType (Input)

The type of access to add. Valid values are:

 EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM domain.

EIM_ACCESS_REG_ADMIN (1) Administrative authority to all registries in the EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified in the registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3) Administrative authority to all of the identifiers in the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4) Authority to perform mapping lookup operations.

EIM_ACCESS_CREDENTIAL_DATA

(5)

Authority to retrieve credential data.

registryName (Input)

The name of the registry for which to add access. This parameter is only used if EimAccessType

is EIM_ACCESS_REGISTRY. If EimAccessType is anything other than EIM_ACCESS_REGISTRY,

this parameter must be NULL.

eimrc (Input)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

12 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ACCESS_TYPE_INVAL (2) Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3) Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REG_MUST_BE_NULL (55) Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimRemoveAccess()—Remove EIM Access” on page 217 —Remove EIM Access

v “eimListAccess()—List EIM Access” on page 143 —List EIM Access

v “eimListUserAccess()—List EIM User Access” on page 204 —List EIM User Access

v “eimQueryAccess()—Query EIM Access” on page 210 —Query EIM Access

Enterprise Identity Mapping (EIM) APIs 13

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds users to access groups.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimAccessUser user;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up access user information */

 user.userType = EIM_ACCESS_DN;

 user.user.dn=“cn=pete,o=ibm,c=us”;

 /* Add access for this user. */

 if (0 != (rc = eimAddAccess(handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 err)))

 {

 printf(“Add access error = %d”, rc);

 return -1;

 }

 /* Set up access user information */

 user.userType = EIM_ACCESS_LOCAL_USER;

 user.user.dn=“mjjones”;

 /* Add access for this user. */

 if (0 != (rc = eimAddAccess(handle,

 &user,

 EIM_ACCESS_REGISTRY,

 “MyRegistry”,

 err)))

 {

 printf(“Add access error = %d”, rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

14 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

eimAddAssociation()—Add EIM Association

 Syntax

 #include <eim.h>

 int eimAddAssociation(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 char * registryName,

 char * registryUserName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddAssociation() function associates a local identity in a specified user registry with an EIM

identifier. EIM supports three kinds of associations: source, target, and administrative. All EIM

associations are between an EIM identifier and a local user identity — never directly between local user

identities.

Associated source identities are user identities that are primarily for authentication purposes. They can be

used as the source identity of a mapping lookup operation (that is, eimGetTargetFromSource()), but will

not be found as the target of a mapping lookup operation.

Associated target identities are user identities that are primarily used to secure existing data. They will be

found as the result of a mapping lookup operation, but cannot be used as the source identity for a

mapping lookup operation.

Administrative associations are used to show that an identity is associated with an EIM identifier, but

cannot be used as the source for, and will not be found as the target of, a mapping lookup operation.

A single user identity may be used as both a target and a source. This is done by creating both a source

and a target association for the local user identity with the appropriate EIM identifier. While this API

supports an association type of EIM_SOURCE_AND_TARGET, two associations are actually created.

For an EIM identifier to be useful in mapping lookup operations, it must have at least one “source” and

at least one “target” association.

See EIM Mapping Lookup Algorithm for the affect that associations have on the mapping lookup

operation.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The authority that the access group has to the EIM data depends on the type of

association being added:

 For administrative and source associations, the access groups whose members have authority to

the EIM data for this API follow:

v EIM Administrator

v EIM Identifiers Administrator

For target associations, the access groups whose members have authority to the EIM data for this

API follow:

v EIM Administrator

Enterprise Identity Mapping (EIM) APIs 15

eimmappinglookup.htm

v EIM Registries Administrator

v EIM authority to an individual registry

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

associationType (Input)

The type of association to be added. Valid values are:

 EIM_TARGET (1) Add a target association.

EIM_SOURCE (2) Add a source association.

EIM_SOURCE_AND_TARGET (3) Add both a source association and a target association.

EIM_ADMIN (4) Add an administrative association.

idName (Input)

A structure that contains the identifier name for this association. The layout of the

EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype indicates which identifier name is provided. Use of the uniqueName provides the best

performance. Specifying an idtype of EIM_NAME does not guarantee that a unique EIM

identifier will be found. Therefore, use of EIM_NAME may result in an error.

registryName (Input)

The registry name for the association.

registryUserName (Input)

The registry user name for the association. The registry user name may be normalized according

to the normalization method for defined registry.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

16 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry or identifier name is not valid or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the requested Identifier

name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

Enterprise Identity Mapping (EIM) APIs 17

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

v “eimRemoveAssociation()— Remove EIM Association” on page 220—Remove an EIM Association

v “eimListAssociations()— List EIM Associations” on page 148—List EIM Associations

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates 3 associations for the same identifier: administrative, source and target.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimIdentifierInfo x;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = “mjones”;

 /* Add an admin association */

 if (0 != (rc = eimAddAssociation(handle,

 EIM_ADMIN,

 &x,

 “MyRegistry”,

 “maryjones”,

 err)))

 {

18 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

printf(“Add Association error = %d”, rc);

 return -1;

 }

 /* Add a source association */

 if (0 != (rc = eimAddAssociation(handle,

 EIM_SOURCE,

 &x,

 “kerberosRegistry”,

 “mjjones”,

 err)))

 {

 printf(“Add Association error = %d”, rc);

 return -1;

 }

 /* Add a target association */

 if (0 != (rc = eimAddAssociation(handle,

 EIM_TARGET,

 &x,

 “MyRegistry”,

 “maryjo”,

 err)))

 {

 printf(“Add Association error = %d”, rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimAddGroupRegistry()—Add a Group Registry to the EIM domain

 Syntax

 #include <eim.h>

 int eimAddGroupRegistry(EimHandle * eim,

 char * registryName,

 char * registryType,

 char * description,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddGroupRegistry() function adds a group registry to the EIM domain. Once added, this

registry is participating in the EIM domain. Mapping associations can only be made with identities in

registries that are currently participating in the EIM domain.

A group registry can be used when a person has the same identity on multiple systems in the enterprise.

You can define one association to the group registry that is used for all registries that are members of the

group registry. The members of the group registry must have the same case sensitivity attribute

(-caseIgnore or -caseExact) as the group. A group registry cannot be a member of another group registry.

You can manage the members of a group registry using the Change EIM Registry (eimChangeRegistry)

API.

See EIM Mapping Lookup Algorithm to see how associations to group registries are used in the mapping

lookup operation.

Enterprise Identity Mapping (EIM) APIs 19

#TOP_OF_PAGE
sec.htm
aplist.htm
eimmappinglookup.htm

EIM version 3 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get EIM

Version” on page 140—Get EIM Version).

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name for this group registry. This name needs to be unique within the EIM domain.

registryType (Input)

A string form of an OID that represents the registry type and a user name normalization method.

The normalization method is necessary because some registries are case-independent and others

are case-dependent. EIM uses this information to make sure the appropriate search occurs. When

a registry is case-independent registry user names are converted to uppercase. See eim.h for a list

of predefined types. The type must be either EIM_REGTYPE_GROUP_REGISTRY_IG

(″1.3.18.0.2.33.17-caseIgnore″) or EIM_REGTYPE_GROUP_REGISTRY_EX (″1.3.18.0.2.33.18-
caseExact″).

description (Input)

The description for this new group registry entry. This parameter may be NULL.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

20 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EEXIST

EIM registry entry already exists.

 EIMERR_REGISTRY_EXISTS (37) Registry entry already exists in EIM.

EINVAL

Input parameter was not valid.

 EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check

the API for a list of restricted characters.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use

eimConnectToMaster() to get a write connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 21

Restrictions

There is a restriction on the characters allowed for a registry name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ * “

Related Information

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3 —Add a System

Registry to the EIM Domain

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7 —Add an

Application Registry to the EIM Domain

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 —Remove a Registry

from the EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

v “eimListRegistries()—List EIM Registries” on page 171 —List EIM Registries

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new EIM group registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Add new group registry */

 if (0 != (rc = eimAddGroupRegistry(handle,

 ”MyGroupRegistry“,

 EIM_REGTYPE_GROUP_REGISTRY_IG,

 ”The group registry“,

 err)))

 printf(”Add group registry error = %d“, rc);

 return 0;

}

API introduced: V5R4

 Top | Security APIs | APIs by category

22 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

eimAddIdentifier()—Add EIM Identifier

 Syntax

 #include <eim.h>

 int eimAddIdentifier(EimHandle * eim,

 char * name,

 enum EimIdAction nameInUseAction,

 unsigned int * sizeOfUniqueName,

 char * uniqueName,

 char * description,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddIdentifier() function creates an identifier in EIM related to a specific person or entity within

an enterprise. This identifier is used to manage information and identify relationships for a specific user

or identity.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Identifiers Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

name (Input)

A name to be used for this identifier.

nameInUseAction (Input)

The name for the new identifier must be unique. This value indicates the action to be taken if the

provided name is already being used. Possible values are:

 EIM_FAIL (0) Do not generate a unique name, return an error.

EIM_GEN_UNIQUE (1) Generate a unique name.

sizeOfUniqueName (Input/Output)

The size of the field in which to return the unique name. This parameter is ignored if

nameInUseAction is EIM_FAIL.

 At input it is the size provided by the caller. On output it contains the actual size returned. This

value should be the size of the name parameter plus an additional 20 bytes.

uniqueName (Output)

The space to return the unique identifier for this new EIM identifier. This parameter is ignored if

nameInUseAction is EIM_FAIL.

Enterprise Identity Mapping (EIM) APIs 23

description (Input)

Description for the new EIM identifier. This parameter may be NULL.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EEXIST

Identifier already exists.

 EIMERR_IDENTIFIER_EXISTS

(19)

EIM Identifier already exists by this name.

EINVAL

Input parameter was not valid.

 EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list

of restricted characters.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDACTION_INVAL (18) Name in use action is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_UNIQUE_SIZE (43) Length of unique name is not valid.

24 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Restrictions

There is a restriction on the characters allowed for identifier name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ * “

Related Information

v “eimRemoveIdentifier()— Remove EIM Identifier” on page 224—Remove EIM Identifier

v “eimChangeIdentifier()— Change EIM Identifier” on page 41—Change EIM Identifier

v “eimListIdentifiers()— List EIM Identifiers” on page 160—List EIM Identifiers

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example will add an EIM identifier.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

Enterprise Identity Mapping (EIM) APIs 25

EimHandle * handle;

 char unique[30];

 unsigned int sizeOfUnique = 30;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Add new identifier of Mary Smith */

 if (0 != (rc = eimAddIdentifier(handle,

 ”Mary Smith“,

 EIM_GEN_UNIQUE,

 &sizeOfUnique,

 unique,

 ”The coolest person“,

 err)))

 printf(”Add identifier error = %d“, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimAddPolicyAssociation()—Add EIM Policy Association

 Syntax

 #include <eim.h>

 int eimAddPolicyAssociation(EimHandle * eim,

 EimPolicyAssociationInfo * policyAssoc,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddPolicyAssociation() function adds the specified policy association to the domain. A policy

association is used to specify the target association for a mapping lookup operation without having to

define specific source associations for all users. A policy association will be used in a mapping lookup

operation (eimGetTargetFromSource or eimGetTargetFromIdentifier) if a specific source association does

not exist.

EIM version 2 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

There are 3 types of policy associations that are supported:

1. Certificate filter policy associations

2. Default registry policy associations

3. Default domain policy associations

26 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

A certificate filter policy association is used to map user (or client) certificates with similar attributes to

the same target identity in the target registry. For example, a certificate filter policy association can be

added so that all certificates issued by the same Certificate Authority (CA) are mapped to the same target

identity in the target registry. Or, all certificates from the same organization are mapped to the same

target identity in the target registry.

A default registry policy association is used to map any user in the specified source registry to the same

target identity in the target registry.

A default domain association policy is used to map all users to the same target identity in the target

registry.

The use of policy associations is controlled by the version of the API interface, not the domain. If policy

associations are added to a domain, they will only be used in a mapping lookup operation if the version

of the mapping lookup API that is used to access the domain supports policy associations.

See EIM

Mapping Lookup Algorithm for the affect that policy associations have on the mapping lookup operation.

In the mapping lookup algorithm, there is a check to see if there is a certificate policy filter value that

matches the source identity.

To locate a certificate policy filter value, a search will be done using a

series of full and partial distinguished names (DNs) until the most specific matching certificate policy

filter value is found. The following values are used in sequence to search for a matching certificate policy

filter value:

1. <SDN>subject’s-full-DN</SDN><IDN>issuer’s-full-DN</IDN>

2. <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-full-DN</IDN>

3. <SDN>subject’s-full-DN</SDN>

4. <SDN>subject’s-partial-DN</SDN>

5. <IDN>issuer’s-full-DN</IDN>

6. <IDN>issuer’s-partial-DN</IDN>

Note that searching is not done for the following values:

v <SDN>subject’s-full-DN</SDN><IDN>issuer’s-partial-DN</IDN>

v <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-partial-DN</IDN>

Each step of the search using a partial DN may actually involve a series of searches for partial name

values based on the full DN. Each partial DN value in the series is determined by removing the next

most specific node in the DN. The nodes are removed from the most specific to the least specific, in the

order that they appear in the DN.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to an individual registry

 This authority is needed to the target registry.

Enterprise Identity Mapping (EIM) APIs 27

eimmappinglookup.htm
eimmappinglookup.htm

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

policyAssoc (Input)

The information about the policy association to be added.

 The EimPolicyAssociationInfo structure contains information about the policy association to add.

 For EIM_CERT_FILTER_POLICY (6) association type, the policyAssociation field must contain an

EimCertificateFilterPolicyAssociation structure. The sourceRegistry field must contain the name of

a registry that has a type of X.509. The certificate filter policy value specified in the filterValue

field must have already been added using the Add EIM Policy Filter (eimAddPolicyFilter) API.

 For EIM_DEFAULT_REG_POLICY (7) association type, the policyAssociation field must contain an

EimDefaultRegistryPolicyAssociation structure.

 For EIM_DEFAULT_DOMAIN_POLICY (8) association type. the policyAssociation field must

contain an EimDefaultDomainPolicyAssociation structure.

 The structure layouts follow:

 enum EimAssociationType {

 EIM_ALL_ASSOC, /* Not supported on this interface*/

 EIM_TARGET, /* Not supported on this interface*/

 EIM_SOURCE, /* Not supported on this interface*/

 EIM_SOURCE_AND_TARGET, /* Not supported on this interface*/

 EIM_ADMIN, /* Not supported on this interface*/

 EIM_ALL_POLICY_ASSOC, /* Not supported on this interface*/

 EIM_CERT_FILTER_POLICY, /* Association is a certificate

 filter policy association. */

 EIM_DEFAULT_REG_POLICY, /* Association is a default

 registry policy association */

 EIM_DEFAULT_DOMAIN_POLICY /* Policy is a default policy for

 the domain. */

 };

 typedef struct EimCertificateFilterPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to add the

 policy association to. */

 char * filterValue; /* The filter value of the policy.*/

 char * targetRegistry; /* The name of the target registry

 that the filter value should

 map to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the filter value

 should map to. */

 } EimCertificateFilterPolicyAssociation;

 typedef struct EimDefaultRegistryPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to add the

 policy association to. */

 char * targetRegistry; /* The name of the target registry

 that the policy should map to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 should map to. */

 } EimDefaultRegistryPolicyAssociation;

 typedef struct EimDefaultDomainPolicyAssociation

 {

 char * targetRegistry; /* The name of the target registry

 that the policy should map to. */

28 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 should map to. */

 } EimDefaultDomainPolicyAssociation;

 typedef struct EimPolicyAssociationInfo

 {

 enum EimAssociationType type;

 union {

 EimCertificateFilterPolicyAssociation certFilter;

 EimDefaultRegistryPolicyAssociation defaultRegistry;

 EimDefaultDomainPolicyAssociation defaultDomain;

 } policyAssociation;

 } EimPolicyAssociationInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry name is not valid or insufficient access to EIM data, or policy filter value is not found.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EIMERR_NOPOLICYFILTER (61) Policy filter value not found for the specified EIM Registry.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

Enterprise Identity Mapping (EIM) APIs 29

EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_ VIOLATION (56) Unexpected object violation.

Related Information

v “eimRemovePolicyAssociation()—Remove EIM Policy Association” on page 228 —Remove EIM Policy

Association

v “eimListRegistryAssociations()—List EIM Registry Associations” on page 184 —List EIM Registry

Associations

v “eimFormatPolicyFilter()—Format EIM Policy Filter” on page 78 —Format EIM Policy Filter

v “eimAddPolicyFilter()—Add EIM Policy Filter” on page 31 —Add EIM Policy Filter

v “eimChangeDomain()—Change an EIM Domain Object” on page 36 —Change EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

v “eimGetTargetFromSource() —Get EIM Target Identities from the Source” on page 134 —Get EIM

Target Identities from the Source

v “eimGetTargetFromIdentifier() —Get EIM Target Identities from the Identifier” on page 128 —Get EIM

Target Identities from the Identifier

30 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a default registry policy association.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimPolicyAssociationInfo assocInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up policy association information */

 assocInfo.type = EIM_DEFAULT_REG_POLICY;

 assocInfo.policyAssociation.defaultRegistry.sourceRegistry = "MySourceRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistry = "localRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistryUserName = "mjjones";

 /* Add the policy association */

 if (0 != (rc = eimAddPolicyAssociation(handle,

 &assocInfo,

 err)))

 {

 printf("Add EIM Policy Association error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimAddPolicyFilter()—Add EIM Policy Filter

 Syntax

 #include <eim.h>

 int eimAddPolicyFilter(EimHandle * eim,

 EimPolicyFilterInfo * filterInfo,

 EimRC * eimrc)

Enterprise Identity Mapping (EIM) APIs 31

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimAddPolicyFilter() function adds the specified policy filter value to the domain. A policy

association can then be added to the policy filter value using the Add EIM Policy Association

(eimAddPolicyAssociation) API. A policy association is used in a mapping lookup operation

(eimGetTargetFromSource) if a specific source association does not exist. A policy association to a policy

filter value is used to map users with similar attributes to the same target identity in the target registry.

You can use the Format EIM Policy Filter (eimFormatPolicyFilter) API to have a policy filter value created

for you in the correct format based on the data that is provided.

EIM version 2 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

Warning: Temporary Level 3 Header

Certificate policy filter details

A certificate policy filter is used to map user (or client) certificates with similar attributes to the same

target identity in the target registry. For example, a certificate policy filter can be added so that all

certificates issued by the same Certificate Authority (CA) are mapped to the same target identity in the

target registry. Or, all certificates from the same organization are mapped to the same target identity in

the target registry.

To locate a certificate policy filter, a search will be done using a series of full and partial distinguished

names (DNs) until the most specific matching filter policy is found. The following values are used in

sequence to search for a matching certificate filter policy:

1. <SDN>subject’s-full-DN</SDN><IDN>issuer’s-full-DN</IDN>
example: <SDN>CN=John D.

Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US</SDN><IDN>OU=VeriSign Class 1 Individual

Subscriber,O=VeriSign,L=Internet</IDN>

2. <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-full-DN</IDN>
example: <SDN>O=IBM,L=Rochester,ST=Min,C=US</SDN><IDN>OU=VeriSign Class 1 Individual

Subscriber,O=VeriSign,L=Internet</IDN>

3. <SDN>subject’s-full-DN</SDN>
example: <SDN>CN=John D. Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US</SDN>

4. <SDN>subject’s-partial-DN</SDN>
example: <SDN>OU=Sales,O=IBM,L=Rochester,ST=Min,C=US</SDN>

5. <IDN>issuer’s-full-DN</IDN>
example: <IDN>OU=VeriSign Class 1 Individual Subscriber,O=VeriSign,L=Internet</IDN>

6. <IDN>issuer’s-partial-DN</IDN>
example: <IDN>O=VeriSign,L=Internet</IDN>

Note that searching is not done for the following values:

v <SDN>subject’s-full-DN</SDN><IDN>issuer’s-partial-DN</IDN>

v <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-partial-DN</IDN>

Each step of the search using a partial DN may actually involve a series of searches for partial name

values based on the full DN. Each partial DN value in the series is determined by removing the next

most specific node in the DN. The nodes are removed from the most specific to the least specific, in the

order that they appear in the DN.

32 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

filterInfo (Input)

The information about the policy filter to be added.

 The EimPolicyFilterInfo structure contains information about the policy filter to add.

 For EIM_CERTIFICATE_FILTER (1) policy filter type, the filter field must contain an

EimCertificatePolicyFilter structure. The sourceRegistry field must contain the name of a registry

that has a type of X.509.

 The structure layouts follow:

 enum EimPolicyFilterType {

 EIM_ALL_FILTERS, /* All policy filters -- not

 supported for this interface. */

 EIM_CERTIFICATE_FILTER /* Policy filter is a certificate

 filter. */

 };

 typedef struct EimCertificatePolicyFilter

 {

 char * sourceRegistry; /* The source registry to add the

 policy filter to. */

 char * filterValue; /* The policy filter value. */

 } EimCertificatePolicyFilter;

 typedef struct EimPolicyFilterInfo

 {

 enum EimPolicyFilterType type;

 union {

 EimCertificatePolicyFilter certFilter;

 } filter;

 } EimPolicyFilterInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

Enterprise Identity Mapping (EIM) APIs 33

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry name is not valid or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_POLICY_FILTER_TYPE_INVAL (60) Policy filter type is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

34 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

Related Information

v “eimRemovePolicyFilter()—Remove EIM Policy Filter” on page 232 —Remove EIM PolicyFilter

v “eimListPolicyFilters()—List EIM Policy Filters” on page 166 —List EIM Policy Filters

v “eimFormatPolicyFilter()—Format EIM Policy Filter” on page 78 —Format EIM Policy Filter

v “eimAddPolicyAssociation()—Add EIM Policy Association” on page 26 —Add EIM Policy Association

v “eimRemovePolicyAssociation()—Remove EIM Policy Association” on page 228 —Remove EIM Policy

Association

v “eimListRegistryAssociations()—List EIM Registry Associations” on page 184 —List EIM Registry

Associations

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a policy filter.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimPolicyFilterInfo filterInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up policy filter information */

 filterInfo.type = EIM_CERTIFICATE_FILTER;

 filterInfo.filter.certFilter.sourceRegistry = "MySourceRegistry";

 filterInfo.filter.certFilter.filterValue =

 "<IDN>OU=VeriSign Class 1 Individual Subscriber,O=VeriSign,L=Internet</IDN>";

 /* Add the policy filter */

 if (0 != (rc = eimAddPolicyFilter(handle,

Enterprise Identity Mapping (EIM) APIs 35

&filterInfo,

 err)))

 {

 printf("Add EIM Policy Filter error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimChangeDomain()—Change an EIM Domain Object

 Syntax

 #include <eim.h>

 int eimChangeDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 enum EimDomainAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimChangeDomain() function changes an attribute for the EIM domain entry identified by ldapURL.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM host information. This URL has the

following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to change.

v ldaps indicates that this host/port combination uses SSL and TLS.

36 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Examples:

v ldap://systemx:389

v ldaps://systemy:636/o=ibm,c=us

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

 The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

attrName (Input)

The attribute to be updated. Valid values are:

Enterprise Identity Mapping (EIM) APIs 37

EIM_DOMAIN_DESCRIPTION (0) Changes the description for the EIM domain. Valid changeType is

EIM_CHG (0).

EIM_DOMAIN_POLICY_ASSOCIATIONS (1) Change the indicator for whether or not the domain supports policy

associations in a mapping lookup. By default, the policy associations

are not supported. Valid changeType is EIM_ENABLE (3) or

EIM_DISABLE (4). This attribute is controlled by the version of the

API interface, not the domain. If this attribute is enabled for the

domain, it will only be checked in a mapping lookup operation if the

version of the mapping lookup API that is used to access the domain

supports this attribute.

EIM version 2 must be supported by the

local EIM APIs to specify this attribute (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

attrValue (Input)

The new value for the attribute.

 If the attribute being changed is EIM_DOMAIN_POLICY_ASSOCIATIONS, this value must be

NULL.

changeType (Input)

The type of change to make. This could be add, remove, change, enable, or disable. attrName

parameter indicates which type is allowed for each attribute.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc will be

set with additional information. This parameter may be NULL. For the format of the structure,

see “EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

EIM domain not found or insufficient access to EIM data.

 EIMERR_NODOMAIN (24) EIM Domain not found or insufficient access to EIM data.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

38 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested attribute. Please check the

API documentation.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

EIMERR_FUNCTION_NOT_

SUPPORTED (70)

The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP

Connection type is not supported.

 EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_URL_READ_ONLY (50) LDAP connection can only be made to a replica ldap server. Change the

connection information and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 39

Related Information

v “eimDeleteDomain()—Delete an EIM Domain Object” on page 72—Delete an EIM Domain Object

v “eimCreateDomain()—Create an EIM Domain Object” on page 65—Create an EIM Domain Object

v “eimListDomains()—List EIM Domain Objects” on page 154—List EIM Domain Objects

v “eimChangeRegistry()—Change EIM Registry” on page 44—Change EIM Registry

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the description of the specified EIM domain and enables the use of policy

associations for the domain.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char * ldapURL = “ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us”;

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = “cn=admin”;

 con.creds.simpleCreds.bindPw = “secret”;

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Change the description for this domain. */

 if (0 != (rc = eimChangeDomain(ldapURL,

 con,

 EIM_DOMAIN_DESCRIPTION,

 “This is the new description”,

 EIM_CHG,

 err)))

 printf(“Change domain error = %d”, rc);

 /* Enable the use of policy associations. */

 if (0 != (rc = eimChangeDomain(ldapURL,

 con,

 EIM_DOMAIN_POLICY_ASSOCIATIONS,

 NULL,

 EIM_ENABLE,

 err)))

 printf(“Change domain error = %d”, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

40 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

eimChangeIdentifier()— Change EIM Identifier

 Syntax

 #include <eim.h>

 int eimChangeIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 enum EimIdentifierAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimChangeIdentifier() function modifies an existing EIM identifier.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Identifiers Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

idName (Input)

A structure that contains the name for this identifier. The layout of the EimIdentifierInfo structure

follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype will indicate which identifier name has been provided. Use of the uniqueName will provide

the best performance. There is no guarantee that name will find a unique identifier. Therefore, use

of name may result in an error.

attrName

The attribute to be updated. Valid values are:

Enterprise Identity Mapping (EIM) APIs 41

EIM_IDENTIFIER_DESCRIPTION (0) Change the identifier description. Valid changeType is EIM_CHG (0).

EIM_IDENTIFIER_NAME (1) Add or remove a name attribute for this identifier. Valid changeType is

v EIM_ADD (1)

v EIM_RMV (2)

EIM_IDENTIFIER_ADDL_INFO (2) Add or remove an additional information attribute for this identifier.

Additional information is user defined data. Valid changeType is

v EIM_ADD (1)

v EIM_RMV (2)

attrValue (Input)

The new value for the attribute.

changeType (Input)

The type of change to make. This could be add, remove, or change. attrName parameter

indicates which type is allowed for each attribute.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Identifier name is not valid or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the requested Identifier

name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

42 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested attribute. Please check the

API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Restrictions

There is a restriction on the characters allowed for identifier name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ *

Enterprise Identity Mapping (EIM) APIs 43

Related Information

v “eimAddIdentifier()—Add EIM Identifier” on page 23—Add EIM Identifier

v “eimRemoveIdentifier()— Remove EIM Identifier” on page 224—Change EIM Identifier

v “eimListIdentifiers()— List EIM Identifiers” on page 160—List EIM Identifiers

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example will change an EIM identifier description.

#include <eim.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimIdentifierInfo idInfo;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information */

 idInfo.idtype = EIM_UNIQUE_NAME;

 idInfo.id.uniqueName = “Mary Smith”;

 /* Change the description of the identifier */

 if (0 != (rc = eimChangeIdentifier(handle,

 &idInfo,

 EIM_IDENTIFIER_DESCRIPTION,

 “This is a new description”,

 EIM_CHG,

 err)))

 printf(“Change identifier error = %d”, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimChangeRegistry()—Change EIM Registry

 Syntax

 #include <eim.h>

 int eimChangeRegistry(EimHandle * eim,

 char * registryName,

44 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

enum EimRegistryAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimChangeRegistry() function changes the attribute of a registry participating in the EIM domain.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to an individual registry

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry to change.

attrName (Input)

The attribute to be updated. Valid values are:

 EIM_REGISTRY_DESCRIPTION (0) Change the registry description. Valid changeType is

EIM_CHG (0).

EIM_REGISTRY_LABELEDURI (1) Change the URI for the system registry. Valid changeType

is EIM_CHG (0).

EIM_REGISTRY_MAPPING_LOOKUP (2) Change the indicator for whether or not the registry

supports any mapping lookup operations. By default, the

mapping lookup operations are supported. Valid

changeType is EIM_ENABLE (3) or EIM_DISABLE (4). This

attribute is controlled by the version of the API interface,

not the domain. If this attribute is disabled for the

registry, it will only be checked in a mapping lookup

operation if the version of the mapping lookup API that

is used to access the domain supports this attribute.

EIM version 2 must be supported by the local EIM APIs

to specify this attribute (see “eimGetVersion()—Get EIM

Version” on page 140—Get EIM Version).

Enterprise Identity Mapping (EIM) APIs 45

EIM_REGISTRY_POLICY_ASSOCIATIONS (3) Change the indicator for whether or not the registry

supports policy associations in a mapping lookup. By

default, the policy associations are not supported. Valid

changeType is EIM_ENABLE (3) or EIM_DISABLE (4). This

attribute is controlled by the version of the API interface,

not the domain. If this attribute is enabled for the registry,

it will only be checked in a mapping lookup operation if

the version of the mapping lookup API that is used to

access the domain supports this attribute.

EIM version

2 must be supported by the local EIM APIs to specify this

attribute (see “eimGetVersion()—Get EIM Version” on

page 140—Get EIM Version).

EIM_REGISTRY_MEMBER (4) Change the list of registries that are members of this

group registry. The registryName parameter must be the

name of a registry that has a type of group registry to

change this attribute. The registry name specified in the

attrValue parameter must exist and cannot have a type of

group registry. The normalization method for the group

registry must be the same as the normalization method

for the member. Valid changeType is EIM_ADD (1) or

EIM_RMV (2). EIM version 3 must be supported by the

local EIM APIs to specify this attribute (see

“eimGetVersion()—Get EIM Version” on page 140—Get

EIM Version).

attrValue (Input)

The new value for the attribute.

 If the attribute being changed is EIM_REGISTRY_MAPPING_LOOKUP or

EIM_REGISTRY_POLICY_ASSOCIATIONS, this value must be NULL.

changeType (Input)

The type of change to make. This could be add, remove, change, enable, or disable. attrName

parameter indicates which type is allowed for each attribute.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

46 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested attribute.

Please check the API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use

eimConnectToMaster() to get a write connection.

EUNKNOWN

Unexpected exception.

Enterprise Identity Mapping (EIM) APIs 47

EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3 —Add a System

Registry to the EIM Domain

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7 —Add an

Application Registry to the EIM Domain

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19 —Add a Group

Registry to the EIM Domain

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 —Remove a Registry

from the EIM Domain

v “eimListRegistries()—List EIM Registries” on page 171 —List EIM Registries

v “eimChangeDomain()—Change an EIM Domain Object” on page 36 —Change EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the description for the registry and enables the use of policy associations

for the registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Change the description for this registry */

 if (0 != (rc = eimChangeRegistry(handle,

 “MyAppRegistry”,

 EIM_REGISTRY_DESCRIPTION,

 “New description”,

 EIM_CHG,

 err)))

 printf(“Change registry error = %d”, rc);

 /* Enable the use of default registry policies. */

 if (0 != (rc = eimChangeRegistry(handle,

 “MyAppRegistry”,

 EIM_REGISTRY_POLICY_ASSOCIATIONS,

 NULL,

48 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIM_ENABLE,

 err)))

 printf(“Change registry error = %d”, rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimChangeRegistryAlias()—Change EIM Registry Alias

 Syntax

 #include <eim.h>

 int eimChangeRegistryAlias(EimHandle * eim,

 char * registryName,

 char * aliasType,

 char * aliasValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimChangeRegistryAlias() function allows you to add or remove a registry alias for the defined

registry.

One way to decouple names used by developers and names chosen by administrators is by using registry

aliases. When designing applications, developers know the registry type their application uses and choose

the registry alias their program will use. Developers communicate to the administrator which registry

types their applications depend on along with the EIM registry aliases that must be associated with that

registry type. The administrator adds the registry alias to the EIM registry of the appropriate type. The

application can use eimGetRegistryNameFromAlias() API which, given a registry alias, returns the

registry name for the entry(ies) with that registry alias.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to this individual registry

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry to be changed.

Enterprise Identity Mapping (EIM) APIs 49

#TOP_OF_PAGE
sec.htm
aplist.htm

aliasType (Input)

A type of alias for this registry. The user may supply their own alias type. There is a list of

predefined alias types in eim.h.

aliasValue (Input)

The value for this alias.

changeType (Input)

The type of change to make. This could be add or remove.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested attribute. Please check the

API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

50 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Restrictions

The wild card character (*) should not be used for registry aliases.

Related Information

v “eimListRegistryAliases()—List EIM Registry Aliases” on page 179 —List EIM Registry Aliases

v “eimGetRegistryNameFromAlias() —Get EIM Registry Name from an Alias” on page 109 —Get EIM

Registry Name from an Alias

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a couple aliases to the registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

Enterprise Identity Mapping (EIM) APIs 51

/* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Add a dns alias for this registry */

 if (0 != (rc = eimChangeRegistryAlias(handle,

 "MyRegistry",

 EIM_ALIASTYPE_DNS,

 "Clueless",

 EIM_ADD,

 err)))

 {

 printf("Change registry alias error = %d", rc);

 return -1;

 }

 /* Add a tcpip address as an alias */

 if (0 != (rc = eimChangeRegistryAlias(handle,

 "MyRegistry",

 EIM_ALIASTYPE_TCPIP,

 "9.5.2.12",

 EIM_ADD,

 err)))

 {

 printf("Change registry alias error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimChangeRegistryUser() —Change EIM Registry User

 Syntax

 #include <eim.h>

 int eimChangeRegistryUser(EimHandle * eim,

 char * registryName,

 char * registryUserName,

 enum EimRegistryUserAttr attrName,

 char * attrValue,

 enum EimChangeType changeType,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimChangeRegistryUser() function changes the attributes of a registry user entry. A registry user is

implicitly added to a registry when a target association for an identity in that registry is added. However,

the attribute fields are not set at that time.

There are situations when more than one user can be returned on a mapping lookup operation.

Applications can choose to use information in the additional information field to distinguish between

which returned target identity to use. For example, assume Joe has two identities in a specific registry X,

joeuser and joeadmin. An application provider can tell the administrator to add additional information,

52 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

for example, ″appname-admin,″ to the appropriate registry user — in this case, joeadmin. The application

can provide this additional information on the lookup APIs, eimGetTargetFromSource() and

eimGetTargetFromIdentifier().

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to an individual registry

Must be a member of EIM Administrator or have EIM authority to an individual registry to

change the EIM_REGUSER_PASSWORD_CRED (2), EIM_REGUSER_PWD_CRED_STATUS (3),

and EIM_REGUSER_IDCTX_CRED (4) attributes.

Note that if the registry existed prior to EIM Version 3, the first time credential information is

added to a user in that registry, it must be added by a member of EIM Administrator. After the

first credential information is added, then EIM authority to an individual registry is sufficient to

change or remove credential information for any user in the registry.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry that contains this user.

registryUserName (Input)

The name of the user in this registry to change.

attrName

The attribute to be updated. Valid values are:

 EIM_REGISTRYUSER_DESCRIPTION (0) Change the registry description. Valid changeType is

EIM_CHG (0).

EIM_REGISTRYUSER_ADDL_INFO (1) Add or remove additional information for this user. Valid

changeType is EIM_ADD (1) and EIM_RMV (2).

EIM_REGUSER_PASSWORD_CRED (2) Change the password credential associated with the

registry user. Valid changeType is EIM_CHG (0) and

EIM_RMV (2). EIM version 3 must be supported by the

local EIM APIs to specify this attribute (see

“eimGetVersion()—Get EIM Version” on page 140—Get

EIM Version).

EIM_REGUSER_PWD_CRED_STATUS (3) Change the status of the password credential associated

with the registry user. Valid changeType is EIM_ENABLE

(3) and EIM_DISABLE (4). This attribute has no affect if

the EIM_REGUSER_PASSWORD_CRED (2) attribute does

not exist for the registry user. EIM version 3 must be

supported by the local EIM APIs to specify this attribute

(see “eimGetVersion()—Get EIM Version” on page

140—Get EIM Version).

Enterprise Identity Mapping (EIM) APIs 53

EIM_REGUSER_IDCTX_CRED (4) Change the identity context credential associated with the

registry user. Valid changeType is EIM_CHG (0) and

EIM_RMV (2). EIM version 3 must be supported by the

local EIM APIs to specify this attribute (see

“eimGetVersion()—Get EIM Version” on page 140—Get

EIM Version).

attrValue (Input)

The new value for the attribute.

If the attribute being changed is EIM_REGUSER_PASSWORD_CRED or

EIM_REGUSER_IDCTX_CRED and the changeType is EIM_RMV (2), or the attribute being

changed is EIM_REGUSER_PWD_CRED_STATUS, this value must be NULL.

 If the attribute being changed is EIM_REGUSER_IDCTX_CRED and the changeType is EIM_CHG

(0), then this value must be a pointer to an EimBinaryData structure. The layout of the

EimBinaryData structure follows:

 typedef struct EimBinaryData

 {

 int length;

 unsigned char * data;

 } EimBinaryData;

changeType (Input)

The type of change to make. This could be add, remove,

change, enable, or disable.

 attrName parameter indicates which type is allowed for each attribute.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc will be

set with additional information. This parameter may be NULL. For the format of the structure,

see “EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry or registry user not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EIMERR_NOREGUSER (29) Registry user not found or insufficient access to EIM data.

54 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CHGTYPE_INVAL (9) This change type is not valid with the requested attribute.

Please check the API documentation.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use

eimConnectToMaster() to get a write connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

Enterprise Identity Mapping (EIM) APIs 55

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimListRegistryUsers()— List EIM Registry Users” on page 191—List EIM Registry Users

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the description and adds additional information for the target registry

user.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Change the registry user’s description */

 if (0 != (rc = eimChangeRegistryUser(handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_DESCRIPTION,

 "cool customer",

 EIM_CHG,

 err)))

 {

 printf("Change registry user error = %d", rc);

 return -1;

 }

 /* Add additional information to the registry user*/

 if (0 != (rc = eimChangeRegistryUser(handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_ADDL_INFO,

 "security officer",

 EIM_ADD,

 err)))

 {

 printf("Change registry user error = %d", rc);

 return -1;

 }

 /* Add additional information to the registry user*/

 if (0 != (rc = eimChangeRegistryUser(handle,

 "MyRegistry",

 "mjjones",

 EIM_REGISTRYUSER_ADDL_INFO,

 "administrator",

 EIM_ADD,

56 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

err)))

 {

 printf("Change registry user error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimConnect()—Connect to EIM Domain

 Syntax

 #include <eim.h>

 int eimConnect(EimHandle * eim,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimConnect() function is used to connect to the EIM domain that is configured for this platform.

Configuration information was set using eimSetConfiguration().

Authorities and Locks

None.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle().

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

Enterprise Identity Mapping (EIM) APIs 57

#TOP_OF_PAGE
sec.htm
aplist.htm

The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

58 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EINVAL

Input parameter was not valid.

 EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EISCONN

A connection has already been established.

 EIMERR_CONN (11) Connection already exists.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP

Connection type is not supported.

 EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateHandle()—Create an EIM Handle” on page 70—Create an EIM Handle

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

v “eimGetAttribute()—Get EIM attributes” on page 98—Get EIM Attributes

v “eimSetAttribute()—Set EIM attributes” on page 239—Set EIM Attributes

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60—Connect to EIM Master

Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example will connect to an EIM domain.

Enterprise Identity Mapping (EIM) APIs 59

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimConnectInfo con;

 /* Get eim handle from input arg. */

 /* This handle should not be connected to */

 /* the configuration system. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Connect to configuartion system */

 if (0 != (rc = eimConnect(handle,

 con,

 err)))

 printf("Connect error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimConnectToMaster()—Connect to EIM Master Domain

 Syntax

 #include <eim.h>

 int eimConnectToMaster(EimHandle * eim,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimConnectToMaster() function is used to connect to the EIM master domain controller. This API

should be used if an earlier API invocation returned a referral error (EROFS). A referral error indicates

that the current EIM connection is to a replication system. An explicit connection must be made to the

master system in order to make updates.

60 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The ldap configuration file is used to retrieve information for the master host, master port, and secure

port. If the host system is not a replica then the master information retrieved is the same as the host and

port defined in the handle.

Authorities and Locks

None.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle().

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

 The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

Enterprise Identity Mapping (EIM) APIs 61

{

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EISCONN

A connection has already been established.

62 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_CONN (11) Connection already exists.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP

Connection type is not supported.

 EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateHandle()—Create an EIM Handle” on page 70—Create an EIM Handle

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

v “eimGetAttribute()—Get EIM attributes” on page 98—Get EIM Attributes

v “eimSetAttribute()—Set EIM attributes” on page 239—Set EIM Attributes

v “eimConnect()—Connect to EIM Domain” on page 57—Connect to EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example will connect to an EIM master domain.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimConnectInfo con;

 /* Get eim handle from input arg. */

 /* This handle should not be connected to */

 /* the master system. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

Enterprise Identity Mapping (EIM) APIs 63

/* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Connect to master system. */

 if (0 != (rc = eimConnectToMaster(handle,

 con,

 err)))

 printf("Connect error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimErr2String()—Convert EimRC into an Error Message

 Syntax

 #include <eim.h>

 char * eimErr2String(EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimErr2String() function converts the EIM return code structure returned by an EIM function into a

NULL-terminated error message string. free() should be used to free the space allocated for the error

message string.

Authorities

No authorization is required.

Parameters

eimrc (Input)

The structure that contains error code information from a previous call to an EIM API. For the

format of the structure, see “EimRC—EIM Return Code” on page 254.

Return Value

If successful, the return value is the address of the error message. The caller is responsible for freeing the

message.

If unsuccessful, eimErr2String returns a NULL pointer. The errno global variable is set to indicate the

error. The errno may come from catopen, catget, or catclose or one of the following values.

EBADDATA

eimrc is not valid.

ECONVERT

Data conversion error.

64 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

EINVAL

Input parameter was not valid.

ENOMEM

Unable to allocate required space.

EUNKNOWN

Unexpected exception.

Related Information

v “EimRC—EIM Return Code” on page 254 —EIM Return Code Parameter

Example

See Code disclaimer information for information pertaining to code examples.

The following example converts an EimRC into an error message and prints it.

#include <eim.h>

#include <stdio.h>

#include <errno.h>

int main(int argc, char *argv[])

{

 int rc;

 EimRC * err;

 char * errMessage;

 /* Get EimRC from input arg. */

 err = (EimRC *)argv[1];

 /* Get error message */

 if (NULL == (errMessage = eimErr2String(err)))

 {

 printf("eimErr2String error = %s", strerror(errno));

 return -1;

 }

 /* Print the message */

 printf("%s", errMessage);

 free(errMessage);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimCreateDomain()—Create an EIM Domain Object

 Syntax

 #include <eim.h>

 int eimCreateDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 char * description,

 EimRC * eimrc)

Enterprise Identity Mapping (EIM) APIs 65

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimCreateDomain() function creates an EIM domain object on the specified EIM domain controller.

Authorities and Locks

EIM Data

LDAP administrators have the authority to create an EIM domain.

Parameters

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM host information. This URL has the

following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to create.

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

 The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

66 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

description (Input)

Textual description for the new EIM domain entry. This parameter may be NULL.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EEXIST

EIM domain already exists.

Enterprise Identity Mapping (EIM) APIs 67

EIMERR_DOMAIN_EXISTS (14) EIM domain already exists in EIM.

EINVAL

Input parameter was not valid.

 EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list

of restricted characters.

EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP

Connection type is not supported.

 EIMERR_CONN_NOTSUPP

(12)

Connection type is not supported.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_URL_READ_ONLY (50) LDAP connection can only be made to a replica ldap server. Change the

connection information and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

68 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Restrictions

There is a restriction on the characters allowed for domain name.

The following characters are special characters that are not allowed in object names. They also should not

be used in object attributes that would be used for a search operation.

 , = + < > # ; \ * “

Related Information

v “eimDeleteDomain()—Delete an EIM Domain Object” on page 72—Delete an EIM Domain Object

v “eimChangeDomain()—Change an EIM Domain Object” on page 36—Change an EIM Domain Object

v “eimListDomains()—List EIM Domain Objects” on page 154—List EIM Domain Objects

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates an EIM domain by the name of myEIMDomain. The distinguished name

for the domain after it is created will be: ″ibm-eimDomainName=myEIMDomain,o=mycompany,c=us″.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char * ldapURL = "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Create a new EIM domain */

 if (0 != (rc = eimCreateDomain(ldapURL,

 con,

 NULL,

 err)))

 printf("Create domain error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

Enterprise Identity Mapping (EIM) APIs 69

#TOP_OF_PAGE
sec.htm
aplist.htm

eimCreateHandle()—Create an EIM Handle

 Syntax

 #include <eim.h>

 int eimCreateHandle(EimHandle * eim,

 char * ldapURL,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimCreateHandle() function is used to allocate an EimHandle structure, which is used to identify the

EIM connection and to maintain per-connection information. The EimHandle structure should be passed

on subsequent calls to other EIM operations.

Authorities and Locks

If a NULL is not passed for the ldapURL parameter, then the caller of the API must have *SECADM

special authority.

Parameters

eim (Output)

The pointer to an EIM handle to be returned. This handle is used as input for other EIM APIs.

The handle is temporary; you can use it only in the job that created it.

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM host information. A NULL parameter

indicates that the ldapURL information set by the eimSetConfiguration() API should be used. This

URL has the following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to work with.

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

70 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EACCES

Access denied.

 EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOSYS

EIM is not configured.

 EIMERR_NOTCONFIG (30) EIM environment is not configured. Run eimSetConfiguration() API and try the

request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 71

Related Information

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

v “eimGetAttribute()—Get EIM attributes” on page 98—Get EIM Attributes

v “eimSetAttribute()—Set EIM attributes” on page 239—Set EIM Attributes

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60—Connect to EIM Master

Domain

v “eimConnect()—Connect to EIM Domain” on page 57—Connect to EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates an EIM handle.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle handle;

 EimHandle handle2;

 char * ldapURL = "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Create a new eim handle. Use the eim configuration URL */

 if (0 != (rc = eimCreateHandle(&handle,

 NULL,

 err)))

 printf("Create handle error = %d", rc);

 /* Create a new eim handle. Use the specified URL */

 if (0 != (rc = eimCreateHandle(&handle2,

 ldapURL,

 err)))

 printf("Create handle error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimDeleteDomain()—Delete an EIM Domain Object

 Syntax

 #include <eim.h>

 int eimDeleteDomain(char * ldapURL,

 EimConnectInfo connectInfo,

 EimRC * eimrc)

72 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimDeleteDomain() function deletes the EIM domain information. If there are any registries or

identifiers in the domain then it cannot be deleted.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM host information. This URL has the

following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to delete.

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

 The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

Enterprise Identity Mapping (EIM) APIs 73

EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

 EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc will be

set with additional information. This parameter may be NULL. For the format of the structure,

see “EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

EIM domain not found or insufficient access to EIM data.

 EIMERR_NODOMAIN (24) EIM Domain not found or insufficient access to EIM data.

ECONVERT

Data conversion error.

74 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSAFE

Not safe to delete domain.

 EIMERR_DOMAIN_NOTEMPTY (15) Cannot delete a domain when it has registries or identifiers.

ENOTSUP

Connection type is not supported.

 EIMERR_CONN_NOTSUPP

(12)

Connection type is not supported.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_URL_READ_ONLY (50) LDAP connection can only be made to a replica ldap server. Change the

connection information and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

Enterprise Identity Mapping (EIM) APIs 75

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateDomain()—Create an EIM Domain Object” on page 65—Create an EIM Domain Object

v “eimChangeDomain()—Change an EIM Domain Object” on page 36—Change an EIM Domain Object

v “eimListDomains()—List EIM Domain Objects” on page 154—List EIM Domain Objects

Example

See Code disclaimer information for information pertaining to code examples.

The following example deletes the specified EIM domain information.

#include <eim.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char * ldapURL = "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

 con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Delete this domain */

 if (0 != (rc = eimDeleteDomain(ldapURL,

 con,

 err)))

 printf("Delete domain error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimDestroyHandle()—Destroy an EIM Handle

 Syntax

 #include <eim.h>

 int eimDestroyHandle(EimHandle * eim,

 EimRC * eimrc)

76 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimDestroyHandle() function is used to deallocate an EimHandle structure. This will close any EIM

connections for this handle.

Authorities and Locks

None.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle().

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EUNKNOWN

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateHandle()—Create an EIM Handle” on page 70—Create an EIM Handle

v “eimGetAttribute()—Get EIM attributes” on page 98—Get EIM Attributes

Enterprise Identity Mapping (EIM) APIs 77

v “eimSetAttribute()—Set EIM attributes” on page 239—Set EIM Attributes

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60—Connect to EIM Master

Domain

v “eimConnect()—Connect to EIM Domain” on page 57—Connect to EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example destroys an EIM handle.

#include <eim.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Destroy the handle */

 if (0 != (rc = eimDestroyHandle(handle,

 err)))

 printf("Destroy handle error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimFormatPolicyFilter()—Format EIM Policy Filter

 Syntax

 #include <eim.h>

 int eimFormatPolicyFilter(EimUserIdentityInfo * userIdentityInfo,

 EimPolicyFilterSubsetInfo * subsetInfo,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimFormatPolicyFilter() function takes unformatted user identity information and generates a policy

filter value for use with the Add EIM Policy Filter (eimAddPolicyFilter) API.

78 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Warning: Temporary Level 3 Header

Certificate policy filter details

A formatted certificate policy filter value will contain a combination of the subject and issuer full and

partial distinguished names (DNs). The following are the different combinations that can be generated,

based on the subjectFilter and issuerFilter values:

v <SDN>subject’s-full-DN</SDN><IDN>issuer’s-full-DN</IDN>

v <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-full-DN</IDN>

v <SDN>subject’s-full-DN</SDN>

v <SDN>subject’s-partial-DN</SDN>

v <IDN>issuer’s-full-DN</IDN>

v <IDN>issuer’s-partial-DN</IDN>

Note that the following combinations can be generated, but would never be used when doing a mapping

lookup:

v <SDN>subject’s-full-DN</SDN><IDN>issuer’s-partial-DN</IDN>

v <SDN>subject’s-partial-DN</SDN><IDN>issuer’s-partial-DN</IDN>

Specifying a value for the subjectFilter or issuerFilter fields in the subsetInfo parameter will determine the

content of the policy filter. If the subsetInfo parameter is NULL, then all possible valid certificate policy

filter values will be returned.

Specifying a value for the subjectFilter field indicates that the subject DN information should be included

in the policy filter value, and where in the DN to start generating the subject DN value. For example,

specifying ″OU=″ for the subjectFilter field will start generating the subject DN portion of the value with

the OU node (will not include any nodes before the OU node). Specifying a value for the issuerFilter field

indicates that the issuer DN information should be included in the policy filter value, and where in the

DN to start generating the issuer DN value. If NULL is specified for both the subjectFilter field and the

issuerFilter field, the policy filter value will contain the subject’s full DN and the issuer’s full DN.

When using the issuer or subject filter value, the value specified in the filter value must exist in the DN.

Given a certificate, where the subject DN is:

CN=John D. Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US

and the issuer DN is:

OU=VeriSign Class 1 Individual Subscriber,O=VeriSign,L=Internet

v if a value of ″OU=″ is specified for the subjectFilter field and NULL is specified for the issuerFilter field,

the following policy filter value will be generated:
<SDN>OU=SALES,O=IBM,L=ROCHESTER,ST=MIN,C=US</SDN>

v if a value of ″OU=″ is specified for the subjectFilter field and ″OU=″ is specified for the issuerFilter field,

the following policy filter value will be generated:
<SDN>OU=SALES,O=IBM,L=ROCHESTER,ST=MIN,C=US</SDN><IDN>OU=VERISIGN CLASS 1

INDIVIDUAL SUBSCRIBER,O=VERISIGN,L=INTERNET</IDN>

v if a value of NULL is specified for the subjectFilter field and ″OU=″ is specified for the issuerFilter field,

the following policy filter value will be generated:
<IDN>OU=VERISIGN CLASS 1 INDIVIDUAL SUBSCRIBER,O=VERISIGN,L=INTERNET</IDN>

v if a value of NULL is specified for the subjectFilter field and ″O=″ is specified for the issuerFilter field,

the following policy filter value will be generated:
<IDN>O=VERISIGN,L=INTERNET</IDN>

v if a value of NULL is specified for the subjectFilter field and the issuerFilter field, the following policy

filter value will be generated:

Enterprise Identity Mapping (EIM) APIs 79

<SDN>CN=JOHN D.

SMITH,OU=SALES,O=IBM,L=ROCHESTER,ST=MIN,C=US</SDN><IDN>OU=VERISIGN CLASS 1

INDIVIDUAL SUBSCRIBER,O=VERISIGN,L=INTERNET</IDN>

 NOTE: EIM recognizes all of the suggested naming attributes from RFC 3280 with a few additions. They

are defined in the following table. If EIM encounters a naming attribute in a certificate that it does not

recognize, the OID for the naming attribute will be used instead in the filter value. If you are using the

eimCertificateInfo structure, the OID value for any naming attribute that is not in this table may be used.

 OID Naming Attribute Description

2.5.4.6 c This attribute contains a two-letter ISO 3166 country or

region code (countryName). RFC 3280.

2.5.4.3 cn This is the X.500 commonName attribute, which

contains a name of an object. If the object corresponds to

a person, it is typically the persons full name. RFC 3280.

0.9.2342.19200300.100.1.25 dc Specifies one component of a domain name. RFC 3280.

2.5.4.46 dnQualifier The dnQualifier attribute type specifies disambiguating

information to add to the relative distinguished name of

an entry. It is intended for use when merging data from

multiple sources in order to prevent conflicts between

entries which would otherwise have the same name. It

is recommended that the value of the dnQualifier

attribute be the same for all entries from a particular

source. RFC3280.

1.2.840.113549.1.9.1 email E-mail address

2.5.4.44 generationQualifier Contains the part of the name which typically is the

suffix, as in IIIrd. RFC 3280.

2.5.4.42 givenName Used to hold the part of a persons name which is not

their surname nor middle name. RFC 3280.

2.5.4.43 initials The initials attribute contains the initials of some or all

of an individuals names, but not the surname(s). RFC

3280.

2.5.4.7 l This attribute contains the name of a locality, such as a

city, county or other geographic region (localityName).

RFC 3280.

0.9.2342.19200300.100.1.3 mail Identifies a user’s primary e-mail address (the e-mail

address retrieved and displayed by ″white-pages″

lookup applications).

2.5.4.41 name The name attribute type is the attribute supertype from

which string attribute types typically used for naming

may be formed. It is unlikely that values of this type

itself will occur in an entry. RFC 3280.

2.5.4.10 o This attribute contains the name of an organization

(organizationName). RFC 3280.

2.5.4.11 ou This attribute contains the name of an organizational

unit (organizationalUnitName). RFC 3280

2.5.4.17 postalCode This attribute type specifies the postal code of the object.

If the attribute value is present it will be part of the

object’s postal address.

2.5.4.65 pseudonym According to RFC3039: ″pseudonym from(forthcoming)

X.520″. RFC 3280.

80 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

OID Naming Attribute Description

2.5.4.5 serialNumber This attribute contains the serial number of a device.

RFC 3280.

2.5.4.4 sn This is the X.500 surname attribute, which contains the

family name of a person. RFC 3280.

2.5.4.8 st This attribute contains the full name of a state or

province (stateOrProvinceName). RFC 3280.

2.5.4.9 street This attribute contains the physical address of the object

to which the entry corresponds, such as an address for

package delivery (streetAddress).

2.5.4.12 title This attribute contains the title, such as Vice President,

of a person in their organizational context. The

personalTitle attribute would be used for a persons title

independent of their job function. RFC 3280.

0.9.2342.19200300.100.1.1 uid Typically a user shortname or userid.

2.5.4.45 x500UniqueIdentifier Used to distinguish between objects when a

distinguished name has been reused. This is a different

attribute type from both the ″uid″ and ″uniqueIdentifier″

types.

Authorities and Locks

No authorization is required.

Parameters

userIdentityInfo (Input)

The user identity information from which to generate policy filter values.

 The EimUserIdentityInfo structure contains information about the user identity.

 For EIM_DER_CERT (0) or EIM_BASE64_CERT (1) user identity type, the userIdentityInfo field

must contain an EimCertificate structure.

 For EIM_CERT_INFO (2) user identity type, the userIdentityInfo field must contain an

EimCertificateInfo structure.

 The structure layouts follow:

 enum EimUserIdentityType {

 EIM_DER_CERT, /* Entire X.509 public key

 certificate in ASN.1 DER

 encoding */

 EIM_BASE64_CERT, /* Base 64 encoded version of the

 entire X.509 public key

 certificate in ASN.1 DER

 encoding. */

 EIM_CERT_INFO /* Components of the certificate. */

 };

 typedef struct EimCertificateInfo

 {

 char * issuerDN; /* The issuer DN. */

 char * subjectDN; /* The subject DN. */

 unsigned char * publicKey; /* The public key (may be NULL). */

 unsigned int publicKeyLen; /* Length of public key (may be 0)*/

 } EimCertificateInfo;

 typedef struct EimCertificate

 {

Enterprise Identity Mapping (EIM) APIs 81

char * certData; /* The certificate data */

 unsigned int certLength; /* The length of the certificate

 data. */

 } EimCertificate;

 typedef struct EimUserIdentityInfo

 {

 enum EimUserIdentityType type;

 union {

 EimCertificateInfo certInfo;

 EimCertificate cert;

 } userIdentityInfo;

 } EimUserIdentityInfo;

If the userIdentityInfo field contains an EimCertificateInfo structure, the issuerDN and subjectDN

fields must contain valid DN strings (for example, CN=John D.

Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US). The publicKey field must contain the DER

encoded public key information structure, including the tags and lengths.

subsetInfo (Input)

The information used to subset the policy filter values that are formatted. If NULL is specified for

this parameter, then the returned data will contain all possible policy filter values for the

specified user identity information. This option would be useful if you wanted to present the user

with a list of possible policy filter values from which to choose. If this parameter is not NULL,

then only one policy filter value will be returned based on the specified subset information.

 The EimPolicyFilterSubsetInfo structure contains information for subsetting the return data. The

information provided in the structure is dependent on the user identity type in the userIdentityInfo

parameter.

 For EIM_BASE64_CERT (0), EIM_DER_CERT (1), or EIM_CERT_INFO (2) user identity type, the

subset field must contain an EimCertPolicyFilterSubsetInfo structure.

 The structure layouts follow:

 typedef struct EimCertPolicyFilterSubsetInfo

 {

 char * subjectFilter; /* Subject filter value. */

 char * issuerFilter; /* Issuer filter value. */

 } EimCertPolicyFilterSubsetInfo;

 typedef struct EimPolicyFilterSubsetInfo

 {

 union {

 EimCertPolicyFilterSubsetInfo certFilter;

 } subset;

 } EimPolicyFilterSubsetInfo;

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimPolicyFilterValue

structures. firstEntry is used to get to the first EimPolicyFilterValue structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

82 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimPolicyFilterValue structure:

 typedef struct EimPolicyFilterValue

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData filterValue; /* Generated policy filter value. */

 } EimPolicyFilterValue;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in

length.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

Enterprise Identity Mapping (EIM) APIs 83

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_USER_IDENTITY_TYPE_INVAL (63) User identity type is not valid.

EIMERR_CERTIFICATE_INVAL (67) Certificate data is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddPolicyFilter()—Add EIM Policy Filter” on page 31 —Add EIM Policy Filter

v “eimRemovePolicyFilter()—Remove EIM Policy Filter” on page 232 —Remove EIM Policy Filter

v “eimListPolicyFilters()—List EIM Policy Filters” on page 166 —List EIM Policy Filters

Example

See Code disclaimer information for information pertaining to code examples.

The following example generates certificate policy filter values.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimUserIdentityInfo idInfo;

 char listData[4000];

 EimList * list = (EimList *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get user identity information. */

 idInfo.type = EIM_DER_CERT;

 idInfo.userIdentityInfo.cert.certLength = *((int *)argv[2]);

 idInfo.userIdentityInfo.cert.certData = argv[3];

 /* Format EIM Policy Filter */

 /* This call will return all possible */

84 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

/* certificate policy filter values. */

 if (0 != (rc = eimFormatPolicyFilter(&idInfo,

 NULL,

 4000,

 list,

 err)))

 {

 printf("Format EIM Policy Filter error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimPolicyFilterValue * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimPolicyFilterValue *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Policy Filter Value",

 entry,

 offsetof(EimPolicyFilterValue, filterValue));

 /* advance to next entry */

 entry = (EimPolicyFilterValue *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

Enterprise Identity Mapping (EIM) APIs 85

if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimFormatUserIdentity()—Format User Identity

 Syntax

 #include <eim.h>

 int eimFormatUserIdentity(

 enum EimUserIdentityFormatType formatType,

 EimUserIdentityInfo * userIdentityInfo,

 unsigned int lengthOfUserIdentity,

 EimUserIdentity * userIdentity,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimFormatUserIdentity() function takes unformatted user identity information and formats it for use

with other EIM functions.

Authorities and Locks

No authorization is required.

Parameters

formatType (Input)

How to format the user identity.

 EIM_REGISTRY_USER_NAME (0) Format the user identity into a registry user name. The registry user name

will be normalized according to the normalization method for the

registryType. This would be the registry user name that would be used as

input to the Add EIM Association (eimAddAssociation) API. This data will

be a NULL terminated string in the default CCSID of the job.

For certificates, the registry user name will be a combination of the subject

DN, issuer DN, and a hash value of the subject DN, issuer DN, and public

key. The registry user name will be in the format <SDN>subject-
DN</SDN><IDN>issuer-DN</IDN><HASH_VAL>hash-value</HASH_VAL>.

userIdentityInfo (Input)

The user identity information to format.

 The EimUserIdentityInfo structure contains information about the user identity to format.

 For EIM_DER_CERT (0) or EIM_BASE64_CERT (1) user identity type, the userIdentityInfo field

must contain an EimCertificate structure.

86 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

For EIM_CERT_INFO (2) user identity type, the userIdentityInfo field must contain an

EimCertificateInfo structure.

 The structure layouts follow:

 enum EimUserIdentityType {

 EIM_DER_CERT, /* Entire X.509 public key

 certificate in ASN.1 DER

 encoding */

 EIM_BASE64_CERT, /* Base 64 encoded version of the

 entire X.509 public key

 certificate in ASN.1 DER

 encoding. */

 EIM_CERT_INFO /* Components of the certificate. */

 };

 typedef struct EimCertificateInfo

 {

 char * issuerDN; /* The issuer DN. */

 char * subjectDN; /* The subject DN. */

 unsigned char * publicKey; /* The public key. */

 unsigned int publicKeyLen; /* Length of the public key. */

 } EimCertificateInfo;

 typedef struct EimCertificate

 {

 unsigned int certLength; /* The length of the certificate

 data. */

 char * certData; /* The certificate data */

 } EimCertificate;

 typedef struct EimUserIdentityInfo

 {

 enum EimUserIdentityType type;

 union {

 EimCertificateInfo certInfo;

 EimCertificate cert;

 } userIdentityInfo;

 } EimUserIdentityInfo;

If the userIdentityInfo field contains an EimCertificateInfo structure, the issuerDN and subjectDN

fields must contain valid DN strings (for example, CN=John D.

Smith,OU=Sales,O=IBM,L=Rochester,ST=Min,C=US). The publicKey field must contain the DER

encoded public key information structure, including the tags and lengths.

 NOTE: EIM recognizes all of the suggested naming attributes from RFC 3280 with a few

additions. They are defined in the following table. If EIM encounters a naming attribute in a

certificate that it does not recognize, the OID for the naming attribute will be used instead in the

filter value. If you are using the eimCertificateInfo structure, the OID value for any naming

attribute that is not in this table may be used.

 OID Naming Attribute Description

2.5.4.6 c This attribute contains a two-letter ISO 3166 country or

region code (countryName). RFC 3280.

2.5.4.3 cn This is the X.500 commonName attribute, which

contains a name of an object. If the object corresponds to

a person, it is typically the persons full name. RFC 3280.

0.9.2342.19200300.100.1.25 dc Specifies one component of a domain name. RFC 3280.

Enterprise Identity Mapping (EIM) APIs 87

OID Naming Attribute Description

2.5.4.46 dnQualifier The dnQualifier attribute type specifies disambiguating

information to add to the relative distinguished name of

an entry. It is intended for use when merging data from

multiple sources in order to prevent conflicts between

entries which would otherwise have the same name. It

is recommended that the value of the dnQualifier

attribute be the same for all entries from a particular

source. RFC3280.

1.2.840.113549.1.9.1 email E-mail address

2.5.4.44 generationQualifier Contains the part of the name which typically is the

suffix, as in IIIrd. RFC 3280.

2.5.4.42 givenName Used to hold the part of a persons name which is not

their surname nor middle name. RFC 3280.

2.5.4.43 initials The initials attribute contains the initials of some or all

of an individuals names, but not the surname(s). RFC

3280.

2.5.4.7 l This attribute contains the name of a locality, such as a

city, county or other geographic region (localityName).

RFC 3280.

0.9.2342.19200300.100.1.3 mail Identifies a user’s primary e-mail address (the e-mail

address retrieved and displayed by “white-pages”

lookup applications).

2.5.4.41 name The name attribute type is the attribute supertype from

which string attribute types typically used for naming

may be formed. It is unlikely that values of this type

itself will occur in an entry. RFC 3280.

2.5.4.10 o This attribute contains the name of an organization

(organizationName). RFC 3280.

2.5.4.11 ou This attribute contains the name of an organizational

unit (organizationalUnitName). RFC 3280

2.5.4.17 postalCode This attribute type specifies the postal code of the object.

If the attribute value is present it will be part of the

object’s postal address.

2.5.4.65 pseudonym According to RFC3039: “pseudonym from (forthcoming)

X.520”. RFC 3280.

2.5.4.5 serialNumber This attribute contains the serial number of a device.

RFC 3280.

2.5.4.4 sn This is the X.500 surname attribute, which contains the

family name of a person. RFC 3280.

2.5.4.8 st This attribute contains the full name of a state or

province (stateOrProvinceName). RFC 3280.

2.5.4.9 street This attribute contains the physical address of the object

to which the entry corresponds, such as an address for

package delivery (streetAddress).

2.5.4.12 title This attribute contains the title, such as Vice President,

of a person in their organizational context. The

personalTitle attribute would be used for a persons title

independent of their job function. RFC 3280.

0.9.2342.19200300.100.1.1 uid Typically a user shortname or userid.

88 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

OID Naming Attribute Description

2.5.4.45 x500UniqueIdentifier Used to distinguish between objects when a

distinguished name has been reused. This is a different

attribute type from both the “uid” and

“uniqueIdentifier” types.

lengthOfUserIdentity (Input)

The number of bytes provided by the caller for the formatted user identify. Minimal size required

is 16 bytes.

userIdentity (Output)

A pointer to the data to be returned.

 The EimUserIdentity structure contains information about the returned data. The API will return

as much data as space has been provided.

 EimUserIdentity structure:

 typedef struct EimUserIdentity

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 EimListData userIdentity; /* User identity */

 } EimUserIdentity;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

Enterprise Identity Mapping (EIM) APIs 89

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_USER_IDENTITY_TYPE_INVAL (63) User identity type is not valid.

EIMERR_USER_IDENTITY_SIZE (64) Length of EimUserIdentity is not valid.

EIMERR_USER_IDENTITY_FORMAT_TYPE_INVAL (65) User identity format type is not valid.

EIMERR_CERTIFICATE_INVAL (67) Certificate data is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddAssociation()—Add EIM Association” on page 15 —Add EIM Association

Example

See Code disclaimer information for information pertaining to code examples.

The following example formats the user identity and adds an association.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimIdentifierInfo id;

 EimUserIdentityInfo idInfo;

 char rtnData[4000];

 EimUserIdentity * fmtData = (EimUserIdentity *) rtnData;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get user identity information. */

 idInfo.type = EIM_DER_CERT;

 idInfo.userIdentityInfo.cert.certLength = *((int *)argv[2]);

 idInfo.userIdentityInfo.cert.certData = argv[3];

 /* Format user identity */

 if (0 != (rc = eimFormatUserIdentity(EIM_REGISTRY_USER_NAME,

90 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

&idInfo,

 4000,

 fmtData,

 err)))

 {

 printf(“Format user identity error = %d”, rc);

 return -1;

 }

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up identifier information */

 id.idtype = EIM_UNIQUE_NAME;

 id.id.uniqueName = “mjones”;

 /* Add the source association */

 if (0 != (rc = eimAddAssociation(handle,

 EIM_SOURCE,

 &id,

 “MyX509Registry”,

 (char *)fmtData + fmtData->userIdentity.disp,

 err)))

 {

 printf(“Add Association error = %d”, rc);

 return -1;

 }

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimGetAssociatedIdentifiers() —Get Associated EIM identifiers

 Syntax

 #include <eim.h>

 int eimGetAssociatedIdentifiers(EimHandle * eim,

 enum EimAssociationType associationType,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetAssociatedIdentifiers() function returns a list of the identifiers. Given a registry name and

user name within that user registry, return the EIM identifier associated with it.

It is possible that more than one person is associated with a specific identifier. This occurs when users

share identities (and possibly passwords) within a single instance of a user registry. While this practice is

not condoned, it does happen. This creates an ambiguous result.

Enterprise Identity Mapping (EIM) APIs 91

#TOP_OF_PAGE
sec.htm
aplist.htm

If there are no specific associations for the registry name and user name within that registry to an EIM

identifer, then group registries will be used. If the specified registry is a member of any group registries,

then this API will return any EIM identifiers associated with the group registry (or registries) and the

registry user name.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

associationType (Input)

The type of association to be retrieved. Valid values are:

 EIM_ALL_ASSOC (0) Retrieve all target, source, and administrative associations.

EIM_TARGET (1) Retrieve target associations.

EIM_SOURCE (2) Retrieve source associations.

EIM_SOURCE_AND_TARGET (3) Retrieve source and target associations.

EIM_ADMIN (4) Retrieve administrative associations.

registryName (Input)

The registry name for the lookup. A NULL parameter indicates that the localRegistry set by the

eimSetConfiguration() API or the eimSetConfigurationExt() API should be used.

registryUserName (Input)

The registry user name for the lookup.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimIdentifier structures.

firstEntry is used to get to the first EimIdentifier structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

92 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimIdentifier structure:

 typedef struct EimIdentifier

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData uniquename; /* Unique name */

 EimListData description; /* Description */

 EimListData entryUUID; /* UUID */

 EimSubList names; /* EimIdentifierName sublist */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 enum EimAssociationType type; /* Association type */

 EimListData groupRegistry; /* Group registry used to get the

 identifier. */

 } EimIdentifier;

Identifiers may have several name attributes as well as several additional information attributes.

In the EimIdentity structure, the names EimSubList gives addressability to a linked list of

EimIdentifierName structures.

 EimIdentifierName structure:

 typedef struct EimIdentifierName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimIdentifierName;

The additionalInfo EimSubList gives addressability to a linked list of EimAddlInfo structures.

 EimAddlInfo structure:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

Enterprise Identity Mapping (EIM) APIs 93

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

94 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_ VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddIdentifier()—Add EIM Identifier” on page 23—Add EIM Identifier

v “eimChangeIdentifier()— Change EIM Identifier” on page 41—Change EIM Identifier

v “eimRemoveIdentifier()— Remove EIM Identifier” on page 224—Remove EIM Identifier

v “eimListIdentifiers()— List EIM Identifiers” on page 160—List EIM Identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example will list all of the identifiers associated with the registry, MyRegistry, and a user

of carolb.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName,

 void * entry,

 int offset);

void printListData(char * fieldName,

 void * entry,

 int offset);

void printAssociationType(int type);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

Enterprise Identity Mapping (EIM) APIs 95

EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get associated identifiers */

 if (0 != (rc = eimGetAssociatedIdentifiers(handle,

 EIM_ALL_ASSOC,

 “MyRegistry”,

 “carolb”,

 1000,

 list,

 err)))

 {

 printf(“Get Associated Identifers error = %d”, rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimIdentifier * entry;

 printf(“___________\n”);

 printf(“ bytesReturned = %d\n”, list->bytesReturned);

 printf(“ bytesAvailable = %d\n”, list->bytesAvailable);

 printf(“ entriesReturned = %d\n”, list->entriesReturned);

 printf(“ entriesAvailable = %d\n”, list->entriesAvailable);

 printf(“\n”);

 entry = (EimIdentifier *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf(“\n”);

 printf(“===============\n”);

 printf(“Entry %d.\n”, i);

 /* Print out results */

 printListData(“Unique name”,

 entry,

 offsetof(EimIdentifier, uniquename));

 printListData(“description”,

 entry,

 offsetof(EimIdentifier, description));

 printListData(“entryUUID”,

 entry,

 offsetof(EimIdentifier, entryUUID));

 printSubListData(“Names”,

 entry,

 offsetof(EimIdentifier, names));

96 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

printSubListData(“Additional Info”,

 entry,

 offsetof(EimIdentifier, additionalInfo));

 printAssociationType(entry->type);

 printListData(“Group registry”,

 entry,

 offsetof(EimIdentifier, groupRegistry));

 /* advance to next entry */

 entry = (EimIdentifier *)((char *)entry + entry->nextEntry);

 }

 printf(“\n”);

}

void printSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 // Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(“ %s = ”,fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf(“%.*s\n”,dataLength, data);

 else

Enterprise Identity Mapping (EIM) APIs 97

printf(“Not found.\n”);

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_SOURCE:

 printf(" Source Association.\n");

 break;

 case EIM_ADMIN:

 printf(" Admin Association.\n");

 break;

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimGetAttribute()—Get EIM attributes

 Syntax

 #include <eim.h>

 int eimGetAttribute(EimHandle * eim,

 enum EimHandleAttr attrName,

 unsigned int lengthOfEimAttribute,

 EimAttribute * attribute,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetAttribute() function is used to get attributes for this EIM handle.

The ldap configuration file is used to retrieve information for the master host, master port, and secure

port. If the host system is not a replica then the master information retrieved is the same as the host and

port defined in the handle.

Authorities and Locks

None.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle().

attrName (Input)

The name of the attribute to retrieve. Following are valid values:

98 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

EIM_HANDLE_CCSID (0) This is the CCSID of character data passed by the caller of EIM APIs with

the specified EimHandle. The returned field is a 4 byte integer.

EIM_HANDLE_DOMAIN (1) The EIM domain name.

EIM_HANDLE_HOST (2) The host system for the EIM domain.

EIM_HANDLE_PORT (3) The port for the EIM connection. The returned field is a 4 byte integer.

EIM_HANDLE_SECPORT (4) Security type for this connection. The returned field is a 4 byte integer.

Possible values:

v 0 - Non-SLL

v 1- Port uses SSL

EIM_HANDLE_MASTER_HOST (5) If the EIM_HANDLE_HOST is a replica LDAP server, this value will

indicate the master LDAP server.

EIM_HANDLE_MASTER_PORT (6) If the EIM_HANDLE_HOST is a replica LDAP server, this value will

indicate the port for the master LDAP server. The returned field is a 4 byte

integer.

EIM_HANDLE_MASTER_SECPORT (7) If the EIM_HANDLE_HOST is a replica LDAP server, this value will

indicate the security type for the master LDAP server. The returned field is

a 4 byte integer.

lengthOfEimAttribute (Input)

The number of bytes provided by the caller for the attribute information. Minimum size required

is 16 bytes.

attribute (Output)

A pointer to the data to be returned.

 The EimAttribute structure contains information about the returned data. The API will return as

much data as space has been provided.

 EimAttribute structure:

 typedef struct EimAttribute

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 EimListData attribute; /* handle attribute */

 } EimAttribute;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

Enterprise Identity Mapping (EIM) APIs 99

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_ATTRIB_SIZE (53) Length of EimAttribute is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made. When configured for SSL we cannot retrieve the master

information until a connection has been established to the configured system.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

ENOTSUP

Attribute type is not supported.

 EIMERR_ATTR_NOTSUPP (6) Attribute not supported.

100 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateHandle()—Create an EIM Handle” on page 70—Create an EIM Handle

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

v “eimSetAttribute()—Set EIM attributes” on page 239—Set EIM Attributes

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60—Connect to EIM Master

Domain

v “eimConnect()—Connect to EIM Domain” on page 57—Connect to EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the domain for the EIM handle.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char * data;

 char * listData[1000];

 EimAttribute * list = (EimAttribute *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get EIM domain name */

 if (0 != (rc = eimGetAttribute(handle,

 EIM_HANDLE_DOMAIN,

 1000,

 list,

 err)))

 printf("Get Attribute error = %d", rc);

 /* Print results */

 printf(" Bytes returned = %d.\n", list->bytesReturned);

 printf(" Bytes available = %d.\n", list->bytesAvailable);

 printf(" Attr size = %d.\n", list->attribute.length);

 printf(" Attr disp = %d.\n", list->attribute.disp);

 data = (char *)list + list->attribute.disp;

Enterprise Identity Mapping (EIM) APIs 101

printf(" %s = %s.\n", "domain name", data);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

QsyGetEIMConnectInfo()—Get EIM Connect Information

 Syntax

 #include <qsyeimapi.h>

 #include <eim.h>

 int QsyGetEIMConnectInfo(int lengthOfConnectInfo,

 EimList * connectInfo,

 EimRc * eimrc)

 Service Program Name: QSYS/QSYEIMAPI
 Default Public Authority: *USE
 Threadsafe: Yes

The QsyGetEIMConnectInfo() function returns the connection information that will be used by the

operating system when it needs to connect to the EIM domain that is configured for this system or for

the master system.

Authorities and Locks

None.

Parameters

lengthOfConnectInfo

(Input)

 The number of bytes provided by the caller for the connection information parameter. The

minimum size required is 20 bytes. The API will return the number of bytes available for all of

the connection information and as much data as space has been provided.

connectInfo

(Output)

 A pointer to the data to be returned.

 The EimList structure contains information about the returned data. The data returned is a linked

list of QsyEimConnectInfo structures. firstEntry is used to get to the first QsyEimConnectInfo

structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

102 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

QsyEimConnectInfo structure:

 #pragma enumsize(4)

 typedef struct QsyEimConnectInfo

 {

 unsigned int nextEntry;

 /* Displacement to next entry.

 This byte offset is relative

 to the start of this structure. */

 enum QsyEimConnectSystem connectSystem;

 /* System connection info is for -

 configured (0) or master (1). */

 enum QsyEimConnectType connectType;

 /* Connection type - simple (0),

 kerberos with keytab file (1), or

 kerberos with password (2) */

 union {

 struct {

 enum EimPasswordProtect protect;

 /* Protect value - no protect (0),

 cram_md5 (1), or optional

 cram_md5 (2) */

 EimListData bindDN;

 } simpleConnect; /* Protect value and bind DN, if

 connectType=QSY_EIM_SIMPLE (0) */

 struct {

 EimListData kerberosPrincipal;

 EimListData kerberosRealm;

 } kerberosPwd; /* Kerberos information, if

 connectType=QSY_KERBEROS_PWD (1) */

 struct {

 EimListData kerberosKeyTab;

 EimListData kerberosPrincipal;

 EimListData kerberosRealm;

 } kerberosKeyTab; /* Kerberos information, if

 connectType=

 QSY_KERBEROS_KEYTAB (2) */

 } connectInfo;

 } QsyEimConnectInfo;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure */

 } EimListData;

eimrc (Input/Output)

 The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Enterprise Identity Mapping (EIM) APIs 103

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA (3028)

eimrc is not valid.

EBUSY (3029)

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT (3490)

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL (3021)

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM (3460)

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN (3474)

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “QsySetEIMConnectInfo()—Set EIM Connect Information” on page 250—Set EIM Connect Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get connection information used by the operating system.

#include <eim.h>

#include <qsyeimapi.h>

void printListResults(EimList * list)

104 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

{

 int i;

 QsyEimConnectInfo * entry;

 char * data;

 int dataLength;

 printf("\n___________");

 printf("\nBytes Returned = %d", list->bytesReturned);

 printf("\nBytes Available = %d", list->bytesAvailable);

 printf("\nEntries Returned = %d", list->entriesReturned);

 printf("\nEntries Available = %d", list->entriesAvailable);

 entry = (QsyEimConnectInfo *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("\n***** Entry %d ***** ",i+1);

 printf("\nConnect system : %d ",entry->connectSystem);

 printf("\nConnect type : %d ",entry->connectType);

 switch (entry->connectType) /* Determine connect type. */

 {

 case QSY_EIM_SIMPLE:

 {

 printf("\nProtect type : %d ",

 entry->connectInfo.simpleConnect.protect);

 data = ((char *)entry +

 entry->connectInfo.simpleConnect.bindDN.disp);

 dataLength =

 entry->connectInfo.simpleConnect.bindDN.length;

 printf("\n%s : ","Bind DN");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

 else

 printf("Not found.");

 break;

 }

 case QSY_EIM_KERBEROS_KEYTAB:

 {

 /* Print out the keytab file name */

 data = ((char *)entry + entry->

 connectInfo.kerberosKeyTab.kerberosKeyTab.disp);

 dataLength =

 entry->connectInfo.kerberosKeyTab.kerberosKeyTab.length;

 printf("\n%s : ","Keytab file name");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

 else

 printf("Not found.");

 /* Print out the principal */

 data = ((char *)entry + entry->

 connectInfo.kerberosKeyTab.kerberosPrincipal.disp);

 dataLength =

 entry->connectInfo.kerberosKeyTab.kerberosPrincipal.length;

 printf("\n%s : ","Kerberos principal");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

 else

 printf("Not found.");

 /* Print out the realm */

 data = ((char *)entry + entry->

 connectInfo.kerberosKeyTab.kerberosRealm.disp);

 dataLength =

 entry->connectInfo.kerberosKeyTab.kerberosRealm.length;

 printf("\n%s : ","Kerberos realm");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

Enterprise Identity Mapping (EIM) APIs 105

else

 printf("Not found.");

 break;

 }

 case QSY_EIM_KERBEROS_PWD:

 {

 /* Print out the principal */

 data = ((char *)entry + entry->

 connectInfo.kerberosPwd.kerberosPrincipal.disp);

 dataLength =

 entry->connectInfo.kerberosPwd.kerberosPrincipal.length;

 printf("\n%s : ","Kerberos principal");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

 else

 printf("Not found.");

 /* Print out the realm */

 data = ((char *)entry + entry->

 connectInfo.kerberosPwd.kerberosRealm.disp);

 dataLength =

 entry->connectInfo.kerberosPwd.kerberosRealm.length;

 printf("\n%s : ","Kerberos realm");

 if (dataLength > 0)

 printf("%.*s",dataLength, data);

 else

 printf("Not found.");

 break;

 }

 } /* end determine connect type. */

 /* advance to next entry */

 entry = (QsyEimConnectInfo *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC *err;

 char listData[5000];

 EimList * list = (EimList *) listData;

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 if (0 != (rc = QsyGetEIMConnectInfo(5000,

 list,

 err)))

 {

 printf("Get connection information error = %d", rc);

 return -1;

 }

 printListResults(list);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

106 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

QsyGetEIMHandle()—Get EIM Handle Connected For System

 Syntax

 #include <qsyeimapi.h>

 #include <eim.h>

 int QsyGetEIMHandle(EimHandle * eim,,

 EimRc * eimrc)

 Service Program Name: QSYS/QSYEIMAPI
 Default Public Authority: *USE
 Threadsafe: Yes

The QsyGetEIMHandle() function is used to allocate an EimHandle structure that is connected to EIM.

The EIM host information used will be the ldapURL information set by the eimSetConfiguration() API. The

connection information used will be the connectInfo set by the QsySetEIMConnectInfo() API. The

EimHandle structure should be passed on subsequent calls to other EIM operations. When the handle is

no longer needed, it should be destroyed by calling eimDestroyHandle() function.

Authorities and Locks

Authority required

*ALLOBJ and *SECADM special authorities

Parameters

eim (Output)

The pointer to an EIM handle to be returned. This handle is used as input for other EIM APIs.

The handle is temporary; you can use it only in the job that created it.

eimrc (Input/Output)

 The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied.

 EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA (3028)

eimrc is not valid.

EBUSY (3029)

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

Enterprise Identity Mapping (EIM) APIs 107

ECONVERT (3490)

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL (3021)

Input parameter was not valid.

 EIMERR_SSL_REQ (42) The system is configured to connect to a secure port.

EimSSLInfo is required.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port.

Connection type of EIM_CLIENT_AUTHENTICATION is

not valid..

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_URL_NOHOST (47) URL does not have a host.

ENOMEM (3460)

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOSYS (3470)

System not configured.

 EIMERR_OS400_NOTSET_CONFIG (5007) EIM connection information is not set for this system.

Run QsySetEIMConnectInfo() API and try the request

again.

EIMERR_OS400_NOTSET_MASTER (5008) EIM connection information is not set for the master

system. Run QsySetEIMConnectInfo() API and try the

request again.

EUNKNOWN (3474)

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “QsySetEIMConnectInfo()—Set EIM Connect Information” on page 250—Get EIM Connect Information

v “QsySetEIMConnectInfo()—Set EIM Connect Information” on page 250—Set EIM Connect Information

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get connection information used by the operating system.

108 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#include <eim.h>

#include <qsyeimapi.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC *err;

 EimHandle handle;

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 if (0 != (rc = QsyGetEIMHandle(&handle,

 err)))

 {

 printf("Get connected handle error = %d", rc);

 return -1;

 }

 ... other eim operations

 if (0 != (rc = eimDestroyHandle(&handle,

 err)))

 {

 printf("Destroy eim handle error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R4

 Top | Security APIs | APIs by category

eimGetRegistryNameFromAlias() —Get EIM Registry Name from an

Alias

 Syntax

 #include <eim.h>

 int eimGetRegistryNameFromAlias(EimHandle * eim,

 char * aliasType,

 char * aliasValue,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetRegistryNameFromAlias() function will return a list of registry names that match the search

criteria provided by aliasType and aliasValue.

Enterprise Identity Mapping (EIM) APIs 109

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

aliasType (Input)

The type of alias for which to search. See eim.h for a list of predefined alias types.

aliasValue (Input)

The value for this alias.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistryName

structures. firstEntry is used to get to the first EimRegistryName structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimRegistryName structure:

 typedef struct EimRegistryName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimRegistryName;

110 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

Enterprise Identity Mapping (EIM) APIs 111

EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimChangeRegistryAlias()—Change EIM Registry Alias” on page 49 —Change EIM Registry Alias

v “eimListRegistryAliases()—List EIM Registry Aliases” on page 179 —List EIM Registry Aliases

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the registry name from the specified alias

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get registry from alias */

 if (0 != (rc = eimGetRegistryNameFromAlias(handle,

 EIM_ALIASTYPE_DNS,

 "Clueless",

 1000,

 list,

112 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

err)))

 {

 printf("Get registry name from alias error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryName * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryName *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 /* Print out results */

 printListData("Registry Name",

 entry,

 offsetof(EimRegistryName, name));

 /* advance to next entry */

 entry = (EimRegistryName *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

Enterprise Identity Mapping (EIM) APIs 113

API introduced: V5R2

 Top | Security APIs | APIs by category

eimGetTargetCredsFromSource() —Get EIM Target Identities and

Credentials from the Source

 Syntax

 #include <eim.h>

 int eimGetTargetCredsFromSource(EimHandle * eim,

 char * sourceRegistryName,

 char * sourceRegistryUserName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetTargetCredsFromSource() function gets the target identity(ies) and credentials associated with

the source identity as defined by source registry name and source registry user. This is known as a

mapping lookup operation — from the known source information return the user for this target registry.

EIM version 3 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get EIM

Version” on page 140—Get EIM Version).

See EIM Mapping Lookup Algorithm for the steps involved in a mapping lookup operation.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the mapping lookup data for this

API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

 The credential information for the target identity is considered security sensitive data. Access to

this data is more strictly controlled. The access groups whose members have authority to the

credential information for the target identity follow:

v EIM Administrator

v EIM Credential Data

v EIM authority to an individual registry

114 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm
eimmappinglookup.htm

Note that the EIM Credential Data access group does not have access to the mapping lookup

data. If a user is a member of the EIM Credential Data access group, then the user must also be a

member of one of the access groups that has access to the mapping lookup data.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

sourceRegistryName (Input)

The source registry for this lookup operation.

sourceRegistryUserName (Input)

The source user name for this lookup operation.

targetRegistryName (Input)

The target registry for this lookup operation. A NULL parameter indicates that the localRegistry

set by the eimSetConfiguration() API or the eimSetConfigurationExt() API should be used.

additionalInfo (Input)

Additional information that will be used as selection criteria for this operation. This may be

NULL. This filter data may contain the wild card char(*).

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimTargetIdentity

structures. firstEntry is used to get to the first EimTargetIdentity structure in the linked list. Each

EimTargetIdentity entry contains a user name returned by this lookup operation.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimTargetIdentity structure:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData userName; /* User name */

 enum EimAssociationType type; /* Association type */

Enterprise Identity Mapping (EIM) APIs 115

EimListData sourceGroupRegistry;/* Source group registry name */

 EimListData targetGroupRegistry;/* Target group registry name */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimTargetIdentity;

The sourceGroupRegistry will be returned if the target identity was found using a source

association to a group registry. The targetGroupRegistry will be returned if the target identity was

found using a target association to a group registry.

 Target identities may have several types of credentials. In the EimTargetIdentity structure,

credentialInfo gives addressability to the first EimCredentialInfo structure that contains a linked

list of credentials.

 If there is credential information for the target identity, but the caller is not authorized to access

the credential information or the credential data is not enabled, the EimCredentialInfo structure

will be returned with the type and status fields filled in. The data field will not be returned (length

and disp will be 0). If there is no credential information, the EimCredentialInfo structure will not

be returned in the credentialInfo sublist.

 EimCredentialInfo structure:

 typedef struct EimCredentialInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 enum EimCredentialType type; /* Credential type */

 enum EimStatus status; /* Credential status

 0 = not enabled

 1 = enabled */

 EimListData data; /* Credential data */

 } EimCredentialInfo;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

116 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20

bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

Enterprise Identity Mapping (EIM) APIs 117

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetTgtCredsFromIdentifier() —Get EIM Target Identities and Credentials from the Identifier” on

page 121 —Get EIM Target Identities and Credentials from the Identifier

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the list of users and credentials in the target registry, MyRegistry, that are

associated with the source information.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

void printAssociationType(int type);

void printCredSubListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get target identity */

118 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

if (0 != (rc = eimGetTargetCredsFromSource(handle,

 "kerberosRegistry",

 "mjjones",

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("Get target credentials from source error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 printAssociationType(entry->type);

 printListData("source group registry",

 entry,

 offsetof(EimTargetIdentity, sourceGroupRegistry));

 printListData("target group registry",

 entry,

 offsetof(EimTargetIdentity, targetGroupRegistry));

 printCredSubListData("credential information",

 entry,

 offsetof(EimTargetIdentity, credentialInfo));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

Enterprise Identity Mapping (EIM) APIs 119

EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_CERT_FILTER_POLICY:

 printf(" Certificate Filter Policy Association.\n");

 break;

 case EIM_DEFAULT_REG_POLICY:

 printf(" Default Registry Policy Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

void printCredSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimCredentialInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimCredentialInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printf(" Credential type = %d.\n",subentry->type);

 printf(" Credential status = %d.\n",subentry->status);

 /* Credential data is not printed. */

 /* advance to next entry */

 subentry = (EimCredentialInfo *)((char *)subentry +

 subentry->nextEntry);

120 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

}

 }

}

API introduced: V5R4

 Top | Security APIs | APIs by category

eimGetTgtCredsFromIdentifier() —Get EIM Target Identities and

Credentials from the Identifier

 Syntax

 #include <eim.h>

 int eimGetTgtCredsFromIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetTgtCredsFromIdentifier() function gets the target identity or identities and credentials for the

specified registry that is associated with the specified EIM identifier.

EIM version 3 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get EIM

Version” on page 140—Get EIM Version).

See EIM Mapping Lookup Algorithm for the steps involved in a mapping lookup operation.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the mapping lookup data for this

API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

 The credential information for the target identity is considered security sensitive data. Access to

this data is more strictly controlled. The access groups whose members have authority to the

credential information for the target identity follow:

v EIM Administrator

v EIM Credential Data

v EIM authority to an individual registry

Enterprise Identity Mapping (EIM) APIs 121

#TOP_OF_PAGE
sec.htm
aplist.htm
eimmappinglookup.htm

Note that the EIM Credential Data access group does not have access to the mapping lookup

data. If a user is a member of the EIM Credential Data access group, then the user must also be a

member of one of the access groups that has access to the mapping lookup data.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

idName (Input)

A structure that contains the name of the identifier for this lookup operation. The layout of the

EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype indicates which identifier name is provided. Use of the uniqueName provides the best

performance. Specifying an idtype of EIM_NAME does not guarantee that a unique EIM

identifier will be found. Therefore, use of EIM_NAME may result in an error.

targetRegistryName (Input)

The target registry for this lookup operation. A NULL parameter indicates that the localRegistry

set by the eimSetConfiguration() API or the eimSetConfigurationExt() API should be used.

additionalInfo (Input)

Additional information that will be used as selection criteria for this operation. This may be

NULL.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimTargetIdentity

structures. firstEntry is used to get to the first EimTargetIdentity structure in the linked list. Each

EimTargetIdentity entry contains a user name returned by this lookup operation.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API. */

122 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API. */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimTargetIdentity structure:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData userName; /* User name */

 enum EimAssociationType type; /* Association type */

 EimListData sourceGroupRegistry;/* Source group registry name */

 EimListData targetGroupRegistry;/* Target group registry name */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimTargetIdentity;

The sourceGroupRegistry will not be returned by this API. The targetGroupRegistry will be returned

if the target identity was found using a target association to a group registry.

 Target identities may have several types of credentials. In the EimTargetIdentity structure,

credentialInfo gives addressability to the first EimCredentialInfo structure that contains a linked

list of credentials.

 If there is credential information for the target identity, but the caller is not authorized to access

the credential information or the credential data is not enabled, the EimCredentialInfo structure

will be returned with the type and status fields filled in. The data field will not be returned (length

and disp will be 0). If there is no credential information, the EimCredentialInfo structure will not

be returned in the credentialInfo sublist.

 EimCredentialInfo structure:

 typedef struct EimCredentialInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 enum EimCredentialType type; /* Credential type */

 enum EimStatus status; /* Credential status

 0 = not enabled

 1 = enabled */

 EimListData data; /* Credential data */

 } EimCredentialInfo;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

Enterprise Identity Mapping (EIM) APIs 123

typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry or identifier not found or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the

requested Identifier name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM

data.

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

124 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20

bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetTargetCredsFromSource() —Get EIM Target Identities and Credentials from the Source” on

page 114 —Get EIM Target Identities and Credentials from the Source

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the list of users and credentials in the target registry, MyRegistry, that are

associated with the specified identifier.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

void printAssociationType(int type);

void printCredSubListData(char * fieldName,

 void * entry,

Enterprise Identity Mapping (EIM) APIs 125

int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 EimIdentifierInfo x;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 if (0 != (rc = eimGetTgtCredsFromIdentifier(handle,

 &x,

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("Get target credentials from identifier error = %d", rc);

 return -1;

 }

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

126 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 printAssociationType(entry->type);

 printListData("target group registry",

 entry,

 offsetof(EimTargetIdentity, targetGroupRegistry));

 printCredSubListData("credential information",

 entry,

 offsetof(EimTargetIdentity, credentialInfo));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

void printCredSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimCredentialInfo * subentry;

Enterprise Identity Mapping (EIM) APIs 127

/* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimCredentialInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printf(" Credential type = %d.\n",subentry->type);

 printf(" Credential status = %d.\n",subentry->status);

 /* Credential data is not printed. */

 /* advance to next entry */

 subentry = (EimCredentialInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

API introduced: V5R4

 Top | Security APIs | APIs by category

eimGetTargetFromIdentifier() —Get EIM Target Identities from the

Identifier

 Syntax

 #include <eim.h>

 int eimGetTargetFromIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetTargetFromIdentifier() function gets the target identity or identities for the specified registry

that is associated with the specified EIM identifier.

See EIM Mapping Lookup Algorithm for the steps involved in a mapping lookup operation.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

128 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm
eimmappinglookup.htm

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

idName (Input)

A structure that contains the name of the identifier for this lookup operation. The layout of the

EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype indicates which identifier name is provided. Use of the uniqueName provides the best

performance. Specifying an idtype of EIM_NAME does not guarantee that a unique EIM

identifier will be found. Therefore, use of EIM_NAME may result in an error.

targetRegistryName (Input)

The target registry for this lookup operation. A NULL parameter indicates that the localRegistry

set by the eimSetConfiguration() API or the eimSetConfigurationExt() API should be used.

additionalInfo (Input)

Additional information that will be used as selection criteria for this operation. This may be

NULL.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimTargetIdentity

structures. firstEntry is used to get to the first EimTargetIdentity structure in the linked list. Each

EimTargetIdentity entry contains a user name returned by this lookup operation.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API. */

 unsigned int entriesAvailable; /* Number of entries available to be

Enterprise Identity Mapping (EIM) APIs 129

returned by the API. */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimTargetIdentity structure:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData userName; /* User name */

 enum EimAssociationType type; /* Association type */

 EimListData sourceGroupRegistry;/* Source group registry name */

 EimListData targetGroupRegistry;/* Target group registry name */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimTargetIdentity;

The sourceGroupRegistry will not be returned by this API. The targetGroupRegistry will be

returned if the target identity was found using a target association to a group registry.

 This API will always return 0 for the numbers of entries in the credentialInfo sublist. If you need

access to the credential information, use the Get EIM Target Identities and Credentials from the

Identifier (eimGetTgtCredsFromIdentifier) API.

 EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

 EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

130 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry or identifier not found or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the

requested Identifier name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM

data.

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20

bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

Enterprise Identity Mapping (EIM) APIs 131

EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetTargetFromSource() —Get EIM Target Identities from the Source” on page 134 —Get EIM

Target Identities from the Source

v “eimGetTgtCredsFromIdentifier() —Get EIM Target Identities and Credentials from the Identifier” on

page 121 —Get EIM Target Identities and Credentials from the Identifier

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the list of users in the target registry, MyRegistry, that are associated with

the specified identifier.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printAssociationType(int type);

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 EimIdentifierInfo x;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

132 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

x.id.uniqueName = "mjones";

 if (0 != (rc = eimGetTargetFromIdentifier(handle,

 &x,

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("Get Target from identifier error = %d", rc);

 return -1;

 }

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 printAssociationType(entry->type);

 printListData("target group registry",

 entry,

 offsetof(EimTargetIdentity, targetGroupRegistry));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

Enterprise Identity Mapping (EIM) APIs 133

/* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimGetTargetFromSource() —Get EIM Target Identities from the Source

 Syntax

 #include <eim.h>

 int eimGetTargetFromSource(EimHandle * eim,

 char * sourceRegistryName,

 char * sourceRegistryUserName,

 char * targetRegistryName,

 char * additionalInformation,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetTargetFromSource() function gets the target identity(ies) associated with the source identity

as defined by source registry name and source registry user. This is known as a mapping lookup

operation — from the known source information return the user for this target registry.

See EIM Mapping Lookup Algorithm for the steps involved in a mapping lookup operation.

134 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm
eimmappinglookup.htm

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

sourceRegistryName (Input)

The source registry for this lookup operation.

sourceRegistryUserName (Input)

The source user name for this lookup operation.

targetRegistryName (Input)

The target registry for this lookup operation. A NULL parameter indicates that the localRegistry

set by the eimSetConfiguration() API or the eimSetConfigurationExt() API should be used.

additionalInfo (Input)

Additional information that will be used as selection criteria for this operation. This may be

NULL. This filter data may contain the wild card char(*).

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimTargetIdentity

structures. firstEntry is used to get to the first EimTargetIdentity structure in the linked list. Each

EimTargetIdentity entry contains a user name returned by this lookup operation.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

Enterprise Identity Mapping (EIM) APIs 135

list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimTargetIdentity structure:

 typedef struct EimTargetIdentity

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData userName; /* User name */

 enum EimAssociationType type; /* Association type */

 EimListData sourceGroupRegistry;/* Source group registry name */

 EimListData targetGroupRegistry;/* Target group registry name */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimTargetIdentity;

The sourceGroupRegistry will be returned if the target identity was found using a source

association to a group registry. The targetGroupRegistry will be returned if the target identity was

found using a target association to a group registry.

 This API will always return 0 for the number of entries in the credentialInfo sublist. If you need

access to the credential information, use the Get EIM Target Identities and Credentials from the

Source (eimGetTargetCredsFromSource) API.

 EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

 EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

136 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE

(16)

Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL

(17)

EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

Enterprise Identity Mapping (EIM) APIs 137

EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetTargetFromIdentifier() —Get EIM Target Identities from the Identifier” on page 128 —Get EIM

Target Identities from the Identifier

v “eimGetTargetCredsFromSource() —Get EIM Target Identities and Credentials from the Source” on

page 114 —Get EIM Target Identities and Credentials from the Source

Example

See Code disclaimer information for information pertaining to code examples.

The following example will get the target identity that is associated with the source inofirmation.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printAssociationType(int type);

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get target identity */

 if (0 != (rc = eimGetTargetFromSource(handle,

 "kerberosRegistry",

 "mjjones",

 "MyRegistry",

138 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

NULL,

 1000,

 list,

 err)))

 {

 printf("Get Target from source error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimTargetIdentity * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimTargetIdentity *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("target user",

 entry,

 offsetof(EimTargetIdentity, userName));

 printAssociationType(entry->type);

 printListData("source group registry",

 entry,

 offsetof(EimTargetIdentity, sourceGroupRegistry));

 printListData("target group registry",

 entry,

 offsetof(EimTargetIdentity, targetGroupRegistry));

 /* advance to next entry */

 entry = (EimTargetIdentity *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

Enterprise Identity Mapping (EIM) APIs 139

/* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_CERT_FILTER_POLICY:

 printf(" Certificate Filter Policy Association.\n");

 break;

 case EIM_DEFAULT_REG_POLICY:

 printf(" Default Registry Policy Association.\n");

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(" Default Domain Policy Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimGetVersion()—Get EIM Version

 Syntax

 #include <eim.h>

 int eimGetVersion(EimHostInfo * hostInfo,

 enum EimVersion * version,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimGetVersion() function returns the EIM version supported by the local EIM APIs for the specified

EIM host.

Authorities and Locks

None

140 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Parameters

hostInfo (Input)

The structure that contains the EIM host information for which to return the EIM version

supported by the local EIM APIs.

 For EIM_HANDLE (0) host type, the hostInfo field must contain an EIM handle returned by a

previous call to eimCreateHandle() and eimConnect().

 For EIM_LDAP_URL (1) host type, the hostInfo field must contain a uniform resource locator

(URL) that contains the EIM host information. A NULL value for the ldapURL field indicates that

the ldap URL information set by the eimSetConfiguration() API should be used. This URL has the

following format:

 ldap://host:port/dn

 or

 ldaps://host:port

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to work with (optional).

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

 The structure layouts follow:

 enum EimHostInfoType {

 EIM_HANDLE,

 EIM_LDAP_URL

 };

 typedef struct EimHostInfo

 {

 enum EimHostInfoType hostType;

 union {

 EimHandle * eim;

 char * ldapURL;

 } hostInfo;

 } EimHostInfo;

version (Output)

The EIM version supported by the local EIM APIs for the specified host. Possible values are:

 EIM_VERSION_0 (0) EIM is not supported on the specified host.

EIM_VERSION_1 (1) EIM version 1 is supported by the local EIM APIs for the specified host. This

host supports EIM functionality provided with the first version of the EIM APIs .

EIM_VERSION_2 (2) EIM version 2 is supported by the local EIM APIs for the specified host. This

host supports EIM functionality provided with the second version of the EIM

APIs, which includes policy association support.

EIM_VERSION_3 (3) EIM version 3 is supported by the local EIM APIs for the specified host. This

host supports EIM functionality provided with the third version of the EIM APIs,

which includes credentials and group registries.

Enterprise Identity Mapping (EIM) APIs 141

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_TYPE_INVAL (69) The specified type is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_LDAP_SCHEMA_NOT_FOUND (71) Unable to find LDAP schema.

142 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the version supported by the local EIM APIs for the EIM host.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHostInfo hostInfo;

 enum EimVersion version;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 hostInfo.hostInfo.eim = (EimHandle *)argv[1];

 hostInfo.hostType = EIM_HANDLE;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get the version */

 if (0 != (rc = eimGetVersion(&hostInfo,

 &version,

 err)))

 {

 printf("Get Version error = %d", rc);

 return -1;

 }

 /* Print the version. */

 printf("Version = %d", version);

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimListAccess()—List EIM Access

 Syntax

 #include <eim.h>

 int eimListAccess(EimHandle * eim,

 enum EimAccessType accessType,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

Enterprise Identity Mapping (EIM) APIs 143

#TOP_OF_PAGE
sec.htm
aplist.htm

The eimListAccess() function lists the users that have the specified EIM access type.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

accessType (Input)

The type of access to list. Valid values are:

 EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM domain.

EIM_ACCESS_REG_ADMIN (1) Administrative authority to all registries in the EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified in the registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3) Administrative authority to all of the identifiers in the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4) Authority to perform mapping lookup operations.

EIM_ACCESS_CREDENTIAL_DATA

(5)

Authority to retrieve credential data.

registryName (Input)

The name of the EIM registry for which access is to be listed. This parameter is only used if

EimAccessType is EIM_ACCESS_REGISTRY.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimAccess structures.

firstEntry is used to get to the first EimAccess structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

144 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimAccess structure:

 typedef struct EimAccess

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData user; /* User with access. This data will

 be in the format of the dn for

 for access id. */

 } EimAccess;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

Enterprise Identity Mapping (EIM) APIs 145

EINVAL

Input parameter was not valid.

 EIMERR_ACCESS_TYPE_INVAL (2) Access type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REG_MUST_BE_NULL (55) Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddAccess()—Add EIM Access” on page 11 —Add EIM Access

v “eimRemoveAccess()—Remove EIM Access” on page 217 —Remove EIM Access

v “eimListUserAccess()—List EIM User Access” on page 204 —List EIM User Access

v “eimQueryAccess()—Query EIM Access” on page 210 —Query EIM Access

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all users with the specified access.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

146 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[5000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* List all users with this access */

 if (0 != (rc = eimListAccess(handle,

 EIM_ACCESS_ADMIN,

 NULL,

 5000,

 list,

 err)))

 {

 printf("List access error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimAccess * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimAccess *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Access user",

 entry,

 offsetof(EimAccess, user));

 /* advance to next entry */

 entry = (EimAccess *)((char *)entry + entry->nextEntry);

 }

Enterprise Identity Mapping (EIM) APIs 147

printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListAssociations()— List EIM Associations

 Syntax

 #include <eim.h>

 int eimListAssociations(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListAssociations() function returns a list of associations for a given EIM identifier. This can be

used to find all of the associated identities for an individual in the enterprise.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

148 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

associationType (Input)

The type of association to be listed. Valid values are:

 EIM_ALL_ASSOC (0) List all target, source, and administrative associations.

EIM_TARGET (1) List target associations.

EIM_SOURCE (2) List source associations.

EIM_SOURCE_AND_TARGET (3) List both source and target associations.

EIM_ADMIN (4) List administrative associations.

idName (Input)

A structure that contains the identifier name whose associations are to be listed. The layout of the

EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype indicates which identifier name is provided. Use of the uniqueName provides the best

performance. Specifying an idtype of EIM_NAME does not guarantee that a unique EIM

identifier will be found. Therefore, use of EIM_NAME may result in an error.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. Minimum size required is

20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimAssociation structures.

firstEntry is used to get to the first EimAssociation structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

Enterprise Identity Mapping (EIM) APIs 149

by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimAssociation structure:

 typedef struct EimAssociation

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType associationType; /* Type of association */

 EimListData registryType; /* Registry type */

 EimListData registryName; /* Registry name */

 EimListData registryUserName; /* Registry user name */

 } EimAssociation;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Identifier name is not valid or insufficient access to EIM data.

150 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the requested Identifier

name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_ VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 151

Related Information

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

v “eimAddAssociation()—Add EIM Association” on page 15—Add an EIM Association

v “eimRemoveAssociation()— Remove EIM Association” on page 220—Remove an EIM Associations

Example

The following example will list the associations for an identifier.

See Code disclaimer information for information pertaining to code examples.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printAssociationType(int type);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 EimIdentifierInfo x;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 /* Get associations for this identifier */

 if (0 != (rc = eimListAssociations(handle,

 EIM_ALL_ASSOC,

 &x,

 1000,

 list,

 err)))

 {

 printf("List Association error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

152 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimAssociation * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimAssociation *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Association type */

 printAssociationType(entry->associationType);

 /* Print out results */

 printListData("Registry Type",

 entry,

 offsetof(EimAssociation, registryType));

 printListData("Registry Name",

 entry,

 offsetof(EimAssociation, registryName));

 printListData("Registry User Name",

 entry,

 offsetof(EimAssociation, registryUserName));

 /* advance to next entry */

 entry = (EimAssociation *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(" Target Association.\n");

 break;

 case EIM_SOURCE:

 printf(" Source Association.\n");

 break;

 case EIM_ADMIN:

 printf(" Admin Association.\n");

 break;

 default:

 printf("ERROR - unknown association type.\n");

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

Enterprise Identity Mapping (EIM) APIs 153

EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListDomains()—List EIM Domain Objects

 Syntax

 #include <eim.h>

 int eimListDomains(char * ldapURL,

 EimConnectInfo connectInfo,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListDomains() function can be used to list information for a single EIM domain or list

information for all EIM domains that are reachable from this platform in the network.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

The list returned contains only the information that the user has authority to access.

Parameters

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM host information. This URL has the

following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

154 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name of the domain to list. If dn is not set then all domains that are

reachable from this platform are returned.

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/

connectInfo (Input)

Connect information. EIM uses ldap. This parameter provides the information required to bind to

ldap.

 If the system is configured to connect to a secure port, EimSSLInfo is required.

 For EIM_SIMPLE connect type, the creds field should contain the EimSimpleConnectInfo

structure with a binddn and password. EimPasswordProtect is used to determine the level of

password protection on the ldap bind.

 EIM_PROTECT_NO (0) The clear-text password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password is sent on the bind if the cram-md5 protocol

is supported. Otherwise, the clear-text password is sent.

For EIM_KERBEROS, the default logon credentials are used. The kerberos creds field must be

NULL.

 For EIM_CLIENT_AUTHENTICATION, the creds field is ignored. EimSSLInfo must be provided.

 The structure layouts follow:

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 enum EimConnectType {

 EIM_SIMPLE,

 EIM_KERBEROS,

 EIM_CLIENT_AUTHENTICATION

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct EimSSLInfo

 {

 char * keyring;

 char * keyring_pw;

 char * certificateLabel;

 } EimSSLInfo;

 typedef struct EimConnectInfo

 {

 enum EimConnectType type;

 union {

 gss_cred_id_t * kerberos;

Enterprise Identity Mapping (EIM) APIs 155

EimSimpleConnectInfo simpleCreds;

 } creds;

 EimSSLInfo * ssl;

 } EimConnectInfo;

lengthOfListData (Input)

The number of bytes provided by the caller for the list of domains. Minimum size required is 20

bytes. The API will return the number of bytes available for the entire list and as much data as

space has been provided.

listData (Output)

A pointer to the data to be returned.

 The EimList structure contains information about the returned data. The data returned is a linked

list of EimDomain structures. firstEntry is used to get to the first EimDomain structure in the

linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimDomain structure:

 typedef struct EimDomain

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Domain name */

 EimListData dn; /* Distinguished name for the domain

 */

 EimListData description; /* Description */

 enum EimStatus policyAssociations; /* Policy associations

 attribute */

 } EimDomain;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

156 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc will be

set with additional information. This parameter may be NULL. For the format of the structure,

see “EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

EIM domain not found or insufficient access to EIM data.

 EIMERR_NODOMAIN (24) EIM Domain not found or insufficient access to EIM data.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CONN_INVAL (54) Connection type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_NOT_SECURE (32) The system is not configured to connect to a secure port. Connection type

of EIM_CLIENT_AUTHENTICATION is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_SSL_REQ (42) The system is configured to connect to a secure port. EimSSLInfo is

required.

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

ENOMEM

Unable to allocate required space.

Enterprise Identity Mapping (EIM) APIs 157

EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP

Connection type is not supported.

Connection type is not supported.

 EIMERR_CONN_NOTSUPP

(12)

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimDeleteDomain()—Delete an EIM Domain Object” on page 72—Delete an EIM Domain Object

v “eimCreateDomain()—Create an EIM Domain Object” on page 65—Create an EIM Domain Object

v “eimChangeDomain()—Change an EIM Domain Object” on page 36—Change an EIM Domain Object

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists the information for the specified EIM domain.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char listData[1000];

 EimList * list = (EimList *) listData;

 char * ldapURL = "ldap://eimsystem:389/ibm-eimDomainName=myEimDomain,o=mycompany,c=us";

 EimConnectInfo con;

 /* Set up connection information */

 con.type = EIM_SIMPLE;

 con.creds.simpleCreds.protect = EIM_PROTECT_NO;

 con.creds.simpleCreds.bindDn = "cn=admin";

 con.creds.simpleCreds.bindPw = "secret";

158 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

con.ssl = NULL;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get info for specified domain */

 if (0 != (rc = eimListDomains(ldapURL,

 con,

 1000,

 list,

 err)))

 {

 printf("List domain error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimDomain * entry;

 EimListData * listData;

 char * data;

 int dataLength;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimDomain *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Domain Name",

 entry,

 offsetof(EimDomain, name));

 printListData("Domain dn",

 entry,

 offsetof(EimDomain, dn));

 printListData("description",

 entry,

 offsetof(EimDomain, description));

 /* advance to next entry */

 entry = (EimDomain *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

Enterprise Identity Mapping (EIM) APIs 159

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListIdentifiers()— List EIM Identifiers

 Syntax

 #include <eim.h>

 int eimListIdentifiers(EimHandle * eim,

 EimIdentifierInfo * idName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListIdentifiers() function returns a list of identifiers in the EIM domain. idName can be used to

filter the results returned.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

160 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

idName (Input)

A structure that contains the name for this identifier. This parameter may be NULL in which case

no filtering would be done by idName. The layout of the EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype will indicate which identifier name has been provided. There is no guarantee that name

will find a unique identifier. Therefore, use of name may result in multiple identifiers being

returned. The id values, uniqueName, entryUUID and name may contain the wild card (*).

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimIdentifier structures.

firstEntry is used to get to the first EimIdentifier structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimIdentifier structure:

 typedef struct EimIdentifier

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

Enterprise Identity Mapping (EIM) APIs 161

EimListData uniquename; /* Unique name */

 EimListData description; /* Description */

 EimListData entryUUID; /* UUID */

 EimSubList names; /* EimIdentifierName sublist */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 enum EimAssociationType type; /* Association type - not valid */

 EimListData groupRegistry; /* Group registry - not valid */

 } EimIdentifier;

Identifiers may have several name attributes as well as several additional information attributes.

In the EimIdentifier structure, the names EimSubList gives addressability to a linked list of

EimIdentifierName structures.

 EimIdentifierName structure:

 typedef struct EimIdentifierName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name */

 } EimIdentifierName;

The additionalInfo EimSubList gives addressability to a linked list of EimAddlInfo structures.

 EimAddlInfo structure:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

162 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Identifier name is not valid or insufficient access to EIM data.

 EIMERR_NOIDENTIFIER

(25)

EIM Identifier not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

Enterprise Identity Mapping (EIM) APIs 163

EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddIdentifier()—Add EIM Identifier” on page 23—Add EIM Identifier

v “eimChangeIdentifier()— Change EIM Identifier” on page 41—Change EIM Identifier

v “eimRemoveIdentifier()— Remove EIM Identifier” on page 224—Remove EIM Identifier

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example will list all EIM identifiers.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName,

 void * entry,

 int offset);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get all identifiers */

 if (0 != (rc = eimListIdentifiers(handle,

 NULL,

 1000,

 list,

164 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

err)))

 {

 printf("List identifiers error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimIdentifier * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimIdentifier *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Unique name",

 entry,

 offsetof(EimIdentifier, uniquename));

 printListData("description",

 entry,

 offsetof(EimIdentifier, description));

 printListData("entryUUID",

 entry,

 offsetof(EimIdentifier, entryUUID));

 printSubListData("Names",

 entry,

 offsetof(EimIdentifier, names));

 printSubListData("Additional Info",

 entry,

 offsetof(EimIdentifier, additionalInfo));

 /* advance to next entry */

 entry = (EimIdentifier *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

Enterprise Identity Mapping (EIM) APIs 165

/* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListPolicyFilters()—List EIM Policy Filters

 Syntax

 #include <eim.h>

 int eimListPolicyFilters(EimHandle * eim,

 enum EimPolicyFilterType filterType,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

166 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The eimListPolicyFilters() function lists policy filters for the domain.

EIM version 2 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

filterType (Input)

The type of policy filters to be listed. Valid values are:

 EIM_ALL_FILTERS (0) List all policy filters.

EIM_CERTIFICATE_FILTER (1) List certificate policy filters.

registryName (Input)

The name of the registry for which to list policy filters. If a NULL value is specified, then policy

filters for the entire domain will be listed.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimPolicyFilter structures.

firstEntry is used to get to the first EimPolicyFilter structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

Enterprise Identity Mapping (EIM) APIs 167

list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimPolicyFilter structure:

 typedef struct EimPolicyFilter

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimPolicyFilterType type; /* Type of policy filter. */

 EimListData sourceRegistry; /* Source registry name the policy

 filter is defined for. */

 EimListData filterValue; /* Policy filter value. */

 } EimPolicyFilter;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry name is not valid or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

168 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_POLICY_FILTER_TYPE_

INVAL (60)

Policy filter type is not valid.

EIMERR_FUNCTION_NOT_

SUPPORTED (70)

The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

Related Information

v “eimAddPolicyFilter()—Add EIM Policy Filter” on page 31 —Add EIM Policy Filter

v “eimRemovePolicyFilter()—Remove EIM Policy Filter” on page 232 —Remove EIM Policy Filter

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists certificate policy filters for a registry.

Enterprise Identity Mapping (EIM) APIs 169

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printPolicyFilterType(int type);

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get source registry policies */

 if (0 != (rc = eimListPolicyFilters(handle,

 EIM_CERTIFICATE_FILTER,

 “MySourceRegistry”,

 1000,

 list,

 err)))

 {

 printf("List EIM Policy Filters error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimPolicyFilter * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimPolicyFilter *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

170 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

printf("Entry %d.\n", i);

 /* Print out results */

 printPolicyFilterType(entry->type);

 printListData("Source Registry",

 entry,

 offsetof(EimPolicyFilter, sourceRegistry));

 printListData("Filter Value",

 entry,

 offsetof(EimPolicyFilter, filterValue));

 /* advance to next entry */

 entry = (EimPolicyFilter *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printPolicyFilterType(int type)

{

 switch(type)

 {

 case EIM_CERTIFICATE_FILTER:

 printf(“ Certificate Filter Policy.\n”);

 break;

 default:

 printf(“ERROR - unknown policy filter type.\n”);

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimListRegistries()—List EIM Registries

 Syntax

Enterprise Identity Mapping (EIM) APIs 171

#TOP_OF_PAGE
sec.htm
aplist.htm

#include <eim.h>

 int eimListRegistries(EimHandle * eim,

 char * registryName,

 char * registryType,

 enum EimRegistryKind registryKind,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimListRegistries() function lists the user registries participating in the EIM domain. The following

parameters can be used to filter the results returned: registryType, registryName and registryKind.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the EIM registry to list. The name may contain the wild card char (*). This is used as

a filter to determine which registries to return. This parameter may be NULL in which case no

filtering would be done by name.

registryType (Input)

A string form of an OID that represents the registry type and a user name normalization method.

The normalization method is necessary because some registries are case-independent and others

are case-dependent. EIM uses this information to make sure the appropriate search occurs. See

eim.h for a list of defined types. This parameter may be NULL in which case no filtering would

be done by type.

registryKind (Input)

The kind of registry to list. Valid values are:

 EIM_ALL_REGISTRIES (0)

System, application, and group registries will be returned.

EIM_SYSTEM_REGISTRY (1) Return system registries.

EIM_APPLICATION_REGISTRY (2) Return application registries.

EIM_GROUP_REGISTRY (3) Return group registries.

172 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the data to be returned.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistry structures.

firstEntry is used to get to the first EimRegistry structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimRegistry structure:

 typedef struct EimRegistry

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimRegistryKind kind; /* Kind of registry */

 EimListData name; /* Registry name */

 EimListData type; /* Registry type */

 EimListData description; /* Description */

 EimListData entryUUID; /* Entry UUID */

 EimListData URI; /* URI */

 EimListData systemRegistryName; /* System registry name */

 EimSubList registryAlias; /* EimRegistryAlias sublist */

 enum EimStatus mappingLookup; /* Mapping lookup attribute */

 enum EimStatus policyAssociations; /* Policy associations

 attribute */

 EimSubList registryMembers; /* EimRegistryName sublist */

 EimSubList registryGroups; /* EimRegistryName sublist */

 } EimRegistry;

Registries may have a number of aliases defined. In the EimRegistry structure, the registryAlias

EimSubList gives addressability to the first EimRegistryAlias structure.

 EimRegistryAlias structure:

 typedef struct EimRegistryAlias

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData type; /* Alias type */

 EimListData value; /* Alias value */

 } EimRegistryAlias;

Enterprise Identity Mapping (EIM) APIs 173

Group registries may have a number of members defined. In the EimRegistry structure, the

registryMembers EimSubList gives addressability to the first EimRegistryName structure. Registry

members will only exist for registries that have a type of group registry.

 Registries may have a number of group registries of which they are a member. In the EimRegistry

structure, the registryGroups EimSubList gives addressability to the first EimRegistryName

structure. Registry groups will only exist for registries that are not group registries.

 EimRegistryName structure:

 typedef struct EimRegistryName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData name; /* Name. */

 } EimRegistryName;

 EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

174 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20

bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REGKIND_INVAL (38) Requested registry kind is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3 —Add a System

Registry to the EIM Domain

Enterprise Identity Mapping (EIM) APIs 175

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7 —Add an

Application Registry to the EIM Domain

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19 —Add a Group

Registry to the EIM Domain

v “eimRemoveRegistry()—Remove a Registry from the EIM Domain” on page 214 —Remove a Registry

from the EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all registries found.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printRegistryKind(int kind);

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

void printAliasSubList(void * entry,

 int offset);

void printNameSubList(void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get all registries */

 if (0 != (rc = eimListRegistries(handle,

 NULL,

 NULL,

 EIM_ALL_REGISTRIES,

 1000,

 list,

 err)))

 {

 printf("List registries error = %d", rc);

 return -1;

 }

176 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

/* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistry * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistry *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Registry kind */

 printRegistryKind(entry->kind);

 /* Print out results */

 printListData("Registry Name",

 entry,

 offsetof(EimRegistry, name));

 printListData("Registry Type",

 entry,

 offsetof(EimRegistry, type));

 printListData("description",

 entry,

 offsetof(EimRegistry, description));

 printListData("entryUUID",

 entry,

 offsetof(EimRegistry, entryUUID));

 printListData("URI",

 entry,

 offsetof(EimRegistry, URI));

 printListData("system registry name",

 entry,

 offsetof(EimRegistry, systemRegistryName));

 printAliasSubList(entry,

 offsetof(EimRegistry, registryAlias));

 printf("List of member registries:\n");

 printNameSubList(entry,

 offsetof(EimRegistry, registryMembers));

 printf("List of group registries:\n");

 printNameSubList(entry,

 offsetof(EimRegistry, registryGroups));

 /* advance to next entry */

 entry = (EimRegistry *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printRegistryKind(int kind)

Enterprise Identity Mapping (EIM) APIs 177

{

 switch(kind)

 {

 case EIM_SYSTEM_REGISTRY:

 printf(" System Registry.\n");

 break;

 case EIM_APPLICATION_REGISTRY:

 printf("Application Registry.\n");

 break;

 case EIM_GROUP_REGISTRY:

 printf("Group Registry.\n");

 break;

 default:

 printf("ERROR - unknown registry kind.\n");

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

void printAliasSubList(void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimRegistryAlias * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimRegistryAlias *)((char *)entry +

 subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData("Registry alias type",

 subentry,

 offsetof(EimRegistryAlias, type));

 printListData("Registry alias value",

 subentry,

 offsetof(EimRegistryAlias, value));

178 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

/* advance to next entry */

 subentry = (EimRegistryAlias *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printNameSubList(void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimRegistryName * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimRegistryName *)((char *)entry +

 subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData("Registry name",

 subentry,

 offsetof(EimRegistryName, name));

 /* advance to next entry */

 subentry = (EimRegistryName *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListRegistryAliases()—List EIM Registry Aliases

 Syntax

 #include <eim.h>

 int eimListRegistryAliases(EimHandle * eim,

 char * registryName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListRegistriesAliases() function returns a list of all the aliases defined for a particular registry.

Enterprise Identity Mapping (EIM) APIs 179

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry for which to list aliases.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the data to be returned.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistryAlias structures.

firstEntry is used to get to the first EimRegistryAlias structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimRegistryAlias structure:

 typedef struct EimRegistryAlias

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 EimListData type; /* Alias type */

 EimListData value; /* Alias value */

 } EimRegistryAlias;

180 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

Enterprise Identity Mapping (EIM) APIs 181

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimChangeRegistryAlias()—Change EIM Registry Alias” on page 49 —Change EIM Registry Alias

v “eimGetRegistryNameFromAlias() —Get EIM Registry Name from an Alias” on page 109 —Get EIM

Registry Name from an Alias

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all aliases for the specified registry.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

182 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

/* Get all aliases for the registry */

 if (0 != (rc = eimListRegistryAliases(handle,

 "MyRegistry",

 1000,

 list,

 err)))

 {

 printf("List registry aliases error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryAlias * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryAlias *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 /* Print out results */

 printListData("Registry Alias Type",

 entry,

 offsetof(EimRegistryAlias, type));

 printListData("Registry Alias Value",

 entry,

 offsetof(EimRegistryAlias, value));

 /* advance to next entry */

 entry = (EimRegistryAlias *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

Enterprise Identity Mapping (EIM) APIs 183

printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListRegistryAssociations()—List EIM Registry Associations

 Syntax

 #include <eim.h>

 int eimListRegistryAssociations(EimHandle * eim,

 enum EimAssociationType associationType,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListRegistryAssociations() function lists association information for the registry or domain.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

associationType (Input)

The type of associations to be listed.

EIM version 2 must be supported by the local EIM APIs to specify a policy association type

(see “eimGetVersion()—Get EIM Version” on page 140—Get EIM Version).

Valid values are:

 EIM_ALL_ASSOC (0) List all associations.

EIM_TARGET (1) List target associations.

184 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

EIM_SOURCE (2) List source associations.

EIM_SOURCE_AND_TARGET (3) List source and target associations.

EIM_ADMIN (4) List administrative associations.

EIM_ALL_POLICY_ASSOC (5) List all policy associations.

EIM_CERT_FILTER_POLICY (6) List certificate filter policy associations.

EIM_DEFAULT_REG_POLICY (7) List default registry policy associations.

EIM_DEFAULT_DOMAIN_POLICY (8) List default domain policy associations.

registryName (Input)

The name of the registry for which to list association information. If a NULL value is specified,

then association information for the entire domain will be listed. The registryUserName parameter

must also be NULL if this parameter is NULL.

If the registryUserName parameter is NULL, then for policy associations, the association

information will include policy associations where the registry is the source registry or the target

registry. If the registryUserName parameter is not NULL, then the association information will

include policy associations where the registry is the target registry.

registryUserName (Input)

The name of the registry user name for which to list association information.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistryAssociation

structures. firstEntry is used to get to the first EimRegistryAssociation structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimRegistryAssociation structure:

 typedef struct EimRegistryAssociation

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure */

 enum EimAssociationType type; /* Type of association. */

 EimListData registryName; /* Registry name the association

 is defined to. */

 EimListData registryUserName; /* Registry user name the

 association is defined to. */

Enterprise Identity Mapping (EIM) APIs 185

EimListData identifier; /* Unique name for eim identifier */

 EimListData sourceRegistry; /* Source registry name the

 association is defined for. */

 EimListData filterValue; /* Filter value */

 enum EimStatus domainPolicyAssocStatus;

 /* Policy association status for

 the domain:

 0 = not enabled

 1 = enabled */

 enum EimStatus sourceMappingLookupStatus;

 /* Mapping lookup status for the

 source registry:

 0 = not enabled

 1 = enabled */

 enum EimStatus targetMappingLookupStatus;

 /* Mapping lookup status for the

 target registry:

 0 = not enabled

 1 = enabled */

 enum EimStatus targetPolicyAssocStatus;

 /* Policy association status for

 the target registry:

 0 = not enabled

 1 = enabled */

 } EimRegistryAssociation;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

If the type field is EIM_TARGET (1), then the following fields will be returned:

v registryName

v registryUserName

v identifier

v targetMappingLookupStatus

If the type field is EIM_SOURCE (2), then the following fields will be returned:

v registryName

v registryUserName

v identifier

v sourceMappingLookupStatus

If the type field is EIM_ADMIN (4), then the following fields will be returned:

v registryName

v registryUserName

v identifier

If the type field is EIM_CERT_FILTER_POLICY (6), then the following fields will be returned:

v registryName

v registryUserName

v sourceRegistry

v filterValue

186 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

v domainPolicyAssocStatus

v sourceMappingLookupStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

If the type field is EIM_DEFAULT_REG_POLICY (7), then the following fields will be returned:

v registryName

v registryUserName

v sourceRegistry

v domainPolicyAssocStatus

v sourceMappingLookupStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

If the type field is EIM_DEFAULT_DOMAIN_POLICY (8), then the following fields will be

returned:

v registryName

v registryUserName

v domainPolicyAssocStatus

v targetMappingLookupStatus

v targetPolicyAssocStatus

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry name is not valid or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

Enterprise Identity Mapping (EIM) APIs 187

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_FUNCTION_NOT_

SUPPORTED (70)

The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_

VIOLATION (56)

Unexpected object violation.

Related Information

v “eimAddPolicyAssociation()—Add EIM Policy Association” on page 26 —Add EIM Policy Association

v “eimAddAssociation()—Add EIM Association” on page 15 —Add EIM Association

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists the default registry policies for a registry.

188 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printAssociationType(int type);

void printStatus(int status);

void printListResults(EimList * list);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get source registry policies */

 if (0 != (rc = eimListRegistryAssociations(handle,

 EIM_DEFAULT_REG_POLICY,

 “MySourceRegistry”,

 NULL,

 1000,

 list,

 err)))

 {

 printf(“List EIM Registry Associations error = %d”, rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryAssociation * entry;

 printf(“___________\n”);

 printf(“ bytesReturned = %d\n”, list->bytesReturned);

 printf(“ bytesAvailable = %d\n”, list->bytesAvailable);

 printf(“ entriesReturned = %d\n”, list->entriesReturned);

 printf(“ entriesAvailable = %d\n”, list->entriesAvailable);

 printf(“\n”);

 entry = (EimRegistryAssociation *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

Enterprise Identity Mapping (EIM) APIs 189

printf(“\n”);

 printf(“===============\n”);

 printf(“Entry %d.\n”, i);

 /* Print out results */

 printAssociationType(entry->type);

 printListData(“Registry Name”,

 entry,

 offsetof(EimRegistryAssociation, registryName));

 printListData(“Registry User Name”,

 entry,

 offsetof(EimRegistryAssociation, registryUserName));

 printListData(“EIM identifier”,

 entry,

 offsetof(EimRegistryAssociation, identifier));

 printListData(“Source Registry”,

 entry,

 offsetof(EimRegistryAssociation, sourceRegistry));

 printListData(“Filter Value”,

 entry,

 offsetof(EimRegistryAssociation, filterValue));

 printStatus(“Domain policy association status”,entry->domainPolicyAssocStatus);

 printStatus(“Source registry mapping lookup status”,entry->sourceMappingLookupStatus);

 printStatus(“Target registry mapping lookup status”,entry->targetMappingLookupStatus);

 printStatus(“Target registry policy association status”,entry->targetPolicyAssocStatus);

 /* advance to next entry */

 entry = (EimRegistryAssociation *)((char *)entry + entry->nextEntry);

 }

 printf(“\n”);

}

void printAssociationType(int type)

{

 switch(type)

 {

 case EIM_TARGET:

 printf(“ Target Association.\n”);

 break;

 case EIM_SOURCE:

 printf(“ Source Association.\n”);

 break;

 case EIM_ADMIN:

 printf(“ Administrative Association.\n”);

 break;

 case EIM_CERT_FILTER_POLICY:

 printf(“ Certificate Filter Policy Association.\n”);

 break;

 case EIM_DEFAULT_REG_POLICY:

 printf(“ Default Registry Policy Association.\n”);

 break;

 case EIM_DEFAULT_DOMAIN_POLICY:

 printf(“ Default Domain Policy Association.\n”);

 break;

 default:

 printf(“ERROR - unknown association type.\n”);

 break;

 }

}

void printStatus(char * fieldName,

 int status)

{

190 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

printf(“ %s = ”,fieldName);

 switch(status)

 {

 case EIM_STATUS_NOT_ENABLED:

 printf(“ Not enabled.\n”);

 break;

 case EIM_STATUS_ENABLED:

 printf(“ Enabled.\n”);

 break;

 default:

 printf(“ERROR - unknown status value.\n”);

 break;

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(“ %s = ”,fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf(“%.*s\n”,dataLength, data);

 else

 printf(“Not found.\n”);

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimListRegistryUsers()— List EIM Registry Users

 Syntax

 #include <eim.h>

 int eimListRegistryUsers(EimHandle * eim,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimListRegistryUsers() function lists the users in a particular registry that have target associations

defined.

Enterprise Identity Mapping (EIM) APIs 191

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry that contains this user.

registryUserName (Input)

The name of the user in this registry to list. NULL will indicate all users.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistryUser structures.

firstEntry is used to get to the first EimRegistryUser structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

EimRegistryUser structure:

 typedef struct EimRegistryUser

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData registryUserName; /* Name */

 EimListData description; /* Description */

192 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimSubList additionalInfo; /* EimAddlInfo sublist */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimRegistryUser;

Registry users may have several additional attributes. In the EimRegistryUser structure,

additionalInfo gives addressability to the first EimAddlInfo structure that contains a linked list of

attributes.

 EimAddlInfo structure:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

This API will always return 0 for the numbers of entries in the credentialInfo sublist. If you

need access to the credential information, use the List EIM Registry Users Credentials

(eimListRegistryUsersCreds) API.

 EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

Enterprise Identity Mapping (EIM) APIs 193

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE

(16)

Length of EimList is not valid. EimList must be at least 20 bytes in length.

EIMERR_HANDLE_INVAL

(17)

EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

194 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimChangeRegistryUser() —Change EIM Registry User” on page 52—Change EIM Registry User

v “eimListRegistryUsersCreds()— List EIM Registry Users Credentials” on page 197—List EIM Registry

Users Credentials

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all users in the specified registry.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName,

 void * entry,

 int offset);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get registry user */

 if (0 != (rc = eimListRegistryUsers(handle,

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("List registry users error = %d", rc);

 return -1;

 }

 /* Print the results */

Enterprise Identity Mapping (EIM) APIs 195

printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryUser * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryUser *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Registry user name",

 entry,

 offsetof(EimRegistryUser, registryUserName));

 printListData("description",

 entry,

 offsetof(EimRegistryUser, description));

 printSubListData("Additional information",

 entry,

 offsetof(EimRegistryUser, additionalInfo));

 /* advance to next entry */

 entry = (EimRegistryUser *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

196 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimListRegistryUsersCreds()— List EIM Registry Users Credentials

 Syntax

 #include <eim.h>

 int eimListRegistryUsersCreds(EimHandle * eim,

 char * registryName,

 char * registryUserName,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM

 Default Public Authority: *USE
 Threadsafe: Yes

The eimListRegistryUsersCreds() function lists the users in a particular registry that have target

associations defined.

EIM version 3 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get EIM

Version” on page 140—Get EIM Version).

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

Enterprise Identity Mapping (EIM) APIs 197

#TOP_OF_PAGE
sec.htm
aplist.htm

EIM data. The access groups whose members have authority to the general registry user data

(registry user name, description, and additional information) for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM Identifiers Administrator

v EIM Mapping Lookup

v EIM authority to an individual registry

The list returned contains only the information that the user has authority to access.

 The credential information for the registry user is considered security sensitive data. Access to

this data is more strictly controlled. The access groups whose members have authority to the

credential information for the registry user follow:

v EIM Administrator

v EIM Credential Data

v EIM authority to an individual registry

Note that the EIM Credential Data access group does not have access to the general registry user

data. If a user is a member of the EIM Credential Data access group, then the user must also be a

member of one of the access groups that has access to the general registry user data.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry that contains this user.

registryUserName (Input)

The name of the user in this registry to list. NULL will indicate all users.

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimRegistryUser structures.

firstEntry is used to get to the first EimRegistryUser structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

198 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimRegistryUser structure:

 typedef struct EimRegistryUser

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData registryUserName; /* Name */

 EimListData description; /* Description */

 EimSubList additionalInfo; /* EimAddlInfo sublist */

 EimSubList credentialInfo; /* EimCredentialInfo sublist */

 } EimRegistryUser;

Registry users may have several additional attributes. In the EimRegistryUser structure,

additionalInfo gives addressability to the first EimAddlInfo structure that contains a linked list of

attributes.

 EimAddlInfo structure:

 typedef struct EimAddlInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData addlInfo; /* Additional info */

 } EimAddlInfo;

Registry users may have several types of credentials. In the EimRegistryUser structure,

credentialInfo gives addressability to the first EimCredentialInfo structure that contains a linked

list of credentials.

 If there is credential information for the registry user, but the caller is not authorized to access the

credential information, the EimCredentialInfo structure will be returned with the type and status

fields filled in. The data field will not be returned (length and disp will be 0). If there is no

credential information, the EimCredentialInfo structure will not be returned in the credentialInfo

sublist.

 EimCredentialInfo structure:

 typedef struct EimCredentialInfo

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 enum EimCredentialType type; /* Credential type */

 enum EimStatus status; /* Credential status

 0 = not enabled

 1 = enabled */

 EimListData data; /* Credential data */

 } EimCredentialInfo;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

Enterprise Identity Mapping (EIM) APIs 199

typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20

bytes in length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

200 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_PARM_REQ (34) Missing required parameter. Please check API

documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM

version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN

(31)

Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimChangeRegistryUser() —Change EIM Registry User” on page 52—Change EIM Registry User

v “eimListRegistryUsers()— List EIM Registry Users” on page 191—List EIM Registry Users

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all users and credentials in the specified registry.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName,

 void * entry,

 int offset);

void printCredSubListData(char * fieldName,

 void * entry,

 int offset);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

Enterprise Identity Mapping (EIM) APIs 201

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 char listData[1000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get registry user */

 if (0 != (rc = eimListRegistryUsersCreds(handle,

 "MyRegistry",

 NULL,

 1000,

 list,

 err)))

 {

 printf("List registry users credentials error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

 return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimRegistryUser * entry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 entry = (EimRegistryUser *)((char *)list + list->firstEntry);

 for (i = 0; i < list->entriesReturned; i++)

 {

 printf("\n");

 printf("===============\n");

 printf("Entry %d.\n", i);

 /* Print out results */

 printListData("Registry user name",

 entry,

 offsetof(EimRegistryUser, registryUserName));

 printListData("description",

 entry,

 offsetof(EimRegistryUser, description));

 printSubListData("Additional information",

 entry,

 offsetof(EimRegistryUser, additionalInfo));

 printCredSubListData("Credential information",

 entry,

202 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

offsetof(EimRegistryUser, credentialInfo));

 /* advance to next entry */

 entry = (EimRegistryUser *)((char *)entry + entry->nextEntry);

 }

 printf("\n");

}

void printSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimAddlInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimAddlInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimAddlInfo, addlInfo));

 /* advance to next entry */

 subentry = (EimAddlInfo *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printCredSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimCredentialInfo * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimCredentialInfo *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printf(" Credential type = %d.\n",subentry->type);

 printf(" Credential status = %d.\n",subentry->status);

 /* Credential data is not printed. */

 /* advance to next entry */

 subentry = (EimCredentialInfo *)((char *)subentry +

 subentry->nextEntry);

 }

Enterprise Identity Mapping (EIM) APIs 203

}

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R4

 Top | Security APIs | APIs by category

eimListUserAccess()—List EIM User Access

 Syntax

 #include <eim.h>

 int eimListUserAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 unsigned int lengthOfListData,

 EimList * listData,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimListUserAccess() function lists the access groups of which this user is a member.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

The list returned contains only the information that the user has authority to access.

204 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

accessUser (Input)

A structure that contains the user information for which to retrieve access.

 EIM_ACCESS_LOCAL_USER Indicates a local user name on the system that the API is run. The local user name will

be converted to the appropriate access id for this system.

EIM_ACCESS_KERBEROS Indicates a kerberos principal. The kerberos principal will be converted to the

appropriate access id. For example, petejones@therealm will be converted to

ibm-kn=petejones@threalm.

The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

lengthOfListData (Input)

The number of bytes provided by the caller for the listData parameter. The minimum size

required is 20 bytes.

listData (Output)

A pointer to the EimList structure.

 The EimList structure contains information about the returned data. The API will return as much

data as space has been provided. The data returned is a linked list of EimUserAccess structures.

firstEntry is used to get to the first EimUserAccess structure in the linked list.

 EimList structure:

 typedef struct EimList

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 unsigned int entriesReturned; /* Number of entries actually

 returned by the API. */

 unsigned int entriesAvailable; /* Number of entries available to be

 returned by the API. */

 unsigned int firstEntry; /* Displacement to the first linked

 list entry. This byte offset is

 relative to the start of the

 EimList structure. */

 } EimList;

Enterprise Identity Mapping (EIM) APIs 205

EimUserAccess structure:

 typedef struct EimUserAccess

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 enum EimAccessIndicator eimAdmin;

 enum EimAccessIndicator eimRegAdmin;

 enum EimAccessIndicator eimIdenAdmin;

 enum EimAccessIndicator eimMappingLookup;

 EimSubList registries; /* EimRegistryName sublist */

 enum EimAccessIndicator eimCredentialData;

 } EimUserAccess;

The registries EimSubList gives addressability to a linked list of EimRegistryName structures.

 EimRegistryName structure:

 typedef struct EimRegistryName

 {

 unsigned int nextEntry; /* Displacement to next entry. This

 byte offset is relative to the

 start of this structure. */

 EimListData name; /* Name */

 } EimRegistryName;

EimSubList structure:

 typedef struct EimSubList

 {

 unsigned int listNum; /* Number of entries in the list */

 unsigned int disp; /* Displacement to sublist. This

 byte offset is relative to the

 start of the parent structure;

 that is, the structure containing

 this structure. */

 } EimSubList;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

eimrc (Input)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

206 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ACCESS_USERTYPE_INVAL (3) Access user type is not valid.

EIMERR_EIMLIST_SIZE (16) Length of EimList is not valid. EimList must be at least 20 bytes in

length.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Enterprise Identity Mapping (EIM) APIs 207

Related Information

v “eimAddAccess()—Add EIM Access” on page 11 —Add EIM Access

v “eimRemoveAccess()—Remove EIM Access” on page 217 —Remove EIM Access

v “eimListAccess()—List EIM Access” on page 143 —List EIM User Accesses

v “eimQueryAccess()—Query EIM Access” on page 210 —Query EIM Access

Example

See Code disclaimer information for information pertaining to code examples.

The following example lists all registries found.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListResults(EimList * list);

void printSubListData(char * fieldName,

 void * entry,

 int offset);

void printListData(char * fieldName,

 void * entry,

 int offset);

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimAccessUser user;

 char listData[5000];

 EimList * list = (EimList *) listData;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up access user information */

 user.userType = EIM_ACCESS_DN;

 user.user.dn="cn=pete,o=ibm,c=us";

 /* Get user accesses */

 if (0 != (rc = eimListUserAccess(handle,

 &user,

 5000,

 list,

 err)))

 {

 printf("List user access error = %d", rc);

 return -1;

 }

 /* Print the results */

 printListResults(list);

208 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

return 0;

}

void printListResults(EimList * list)

{

 int i;

 EimUserAccess * entry;

 EimListData * listData;

 EimRegistryName * registry;

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf(" entriesReturned = %d\n", list->entriesReturned);

 printf(" entriesAvailable = %d\n", list->entriesAvailable);

 printf("\n");

 if (list->entriesReturned > 1)

 printf("Unexpected number of entries returned.\n");

 entry = (EimUserAccess *)((char *)list + list->firstEntry);

 if (EIM_ACCESS_YES == entry->eimAdmin)

 printf(" EIM Admin.\n");

 if (EIM_ACCESS_YES == entry->eimRegAdmin)

 printf(" EIM Reg Admin.\n");

 if (EIM_ACCESS_YES == entry->eimIdenAdmin)

 printf(" EIM Iden Admin.\n");

 if (EIM_ACCESS_YES == entry->eimMappingLookup)

 printf(" EIM Mapping Lookup.\n");

 if (EIM_ACCESS_YES == entry->eimCredentialData)

 printf(" EIM Credential Data.\n");

 printf(" Registries:\n");

 printSubListData("Registry names",

 entry,

 offsetof(EimUserAccess, registries));

 printf("\n");

}

void printSubListData(char * fieldName,

 void * entry,

 int offset)

{

 int i;

 EimSubList * subList;

 EimRegistryName * subentry;

 /* Address the EimSubList object */

 subList = (EimSubList *)((char *)entry + offset);

 if (subList->listNum > 0)

 {

 subentry = (EimRegistryName *)((char *)entry + subList->disp);

 for (i = 0; i < subList->listNum; i++)

 {

 /* Print out results */

 printListData(fieldName,

 subentry,

 offsetof(EimRegistryName, name));

 /* advance to next entry */

Enterprise Identity Mapping (EIM) APIs 209

subentry = (EimRegistryName *)((char *)subentry +

 subentry->nextEntry);

 }

 }

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

 if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimQueryAccess()—Query EIM Access

 Syntax

 #include <eim.h>

 int eimQueryAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 unsigned int * accessIndicator,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimQueryAccess() function queries to see if the user has the specified access.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

210 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

accessUser (Input)

A structure that contains the user information for which to query access.

 EIM_ACCESS_LOCAL_USER Indicates a local user name on the system that the API is run. The local user name will

be converted to the appropriate access id for this system.

EIM_ACCESS_KERBEROS Indicates a kerberos principal. The kerberos principal will be converted to the

appropriate access id. For example, petejones@therealm will be converted to

ibm-kn=petejones@threalm.

The EimAccessUser structure layout follows:

 enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

accessType (Input)

The type of access to check. Valid values are:

 EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM domain.

EIM_ACCESS_REG_ADMIN (1) Administrative authority to all registries in the EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified in the registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3) Administrative authority to all of the identifiers in the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4) Authority to perform mapping lookup operations.

EIM_ACCESS_CREDENTIAL_DATA

(5)

Authority to retrieve credential data.

registryName (Input)

The name of the EIM registry for which to check access. This parameter is only used if

EimAccessType is EIM_ACCESS_REGISTRY.

accessIndicator (Output)

Indicator set to indicate if access found.

 EIM_ACCESS_NO (0) Access not found

EIM_ACCESS_YES (1) Access found.

Enterprise Identity Mapping (EIM) APIs 211

eimrc (Input/Output)

(Input/Output)

 The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ACCESS_TYPE_INVAL (2) Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3) Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REG_MUST_BE_NULL (55) Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

212 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddAccess()—Add EIM Access” on page 11 —Add EIM Access

v “eimRemoveAccess()—Remove EIM Access” on page 217 —Remove EIM Access

v “eimListUserAccess()—List EIM User Access” on page 204 —List EIM User Access

v “eimListAccess()—List EIM Access” on page 143 —List EIM Access

Example

See Code disclaimer information for information pertaining to code examples.

The following example checks to see if the user has the requested access.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimAccessUser user;

 unsigned int indicator;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up access user info */

 user.userType = EIM_ACCESS_DN;

 user.user.dn="cn=pete,o=ibm,c=us";

 /* Query access for this user. */

 if (0 != (rc = eimQueryAccess(handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 &indicator,

 err)))

 {

 printf("Query access error = %d", rc);

 return -1;

 }

Enterprise Identity Mapping (EIM) APIs 213

/* Print the results */

 if (EIM_ACCESS_YES == indicator)

 printf("Access found\n");

 else

 printf("Access not found\n");

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimRemoveRegistry()—Remove a Registry from the EIM Domain

 Syntax

 #include <eim.h>

 int eimRemoveRegistry(EimHandle * eim,

 char * registryName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRemoveRegistry() function removes a currently participating registry from the EIM domain. It is

recommended that all associations be removed for this registry before it is removed or it may result in

orphaned associations. This includes admin, source, target, and policy associations. A system registry

cannot be removed if there are any application registries that are a subset of this system registry.

When a registry is removed, an attempt is made to remove all associations for the registry. For policy

associations, this would include any policy associations where this registry is the source registry or the

target registry. If there are any policy filters defined for the registry, the policy filters will be removed

along with any policy associations to the policy filters.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

registryName (Input)

The name of the registry to remove.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

214 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry not found or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

Enterprise Identity Mapping (EIM) APIs 215

ENOTSAFE

Cannot delete a system registry when an application registry has this system registry defined.

 EIMERR_REG_NOTEMPTY

(40)

Cannot delete a registry when an application registry has this system registry defined.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddSystemRegistry()—Add a System Registry to the EIM domain” on page 3 —Add a System

Registry to the EIM Domain

v “eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain” on page 7 —Add an

Application Registry to the EIM Domain

v

“eimAddGroupRegistry()—Add a Group Registry to the EIM domain” on page 19 —Add a Group

Registry to the EIM Domain

v “eimChangeRegistry()—Change EIM Registry” on page 44 —Change EIM Registry

v “eimListRegistries()—List EIM Registries” on page 171 —List EIM Registries

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes an EIM registry.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

216 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Remove the registry */

 if (0 != (rc = eimRemoveRegistry(handle,

 "MyRegistry",

 err)))

 printf("Remove registry error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimRemoveAccess()—Remove EIM Access

 Syntax

 #include <eim.h>

 int eimRemoveAccess(EimHandle * eim,

 EimAccessUser * accessUser,

 enum EimAccessType accessType,

 char * registryName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRemoveAccess() function removes the user from the EIM access group identified by the access

type.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

accessUser (Input)

A structure that contains the user information to remove access from.

 EIM_ACCESS_LOCAL_USER Indicates a local user name on the system that the API is run. The local user name will

be converted to the appropriate access id for this system.

EIM_ACCESS_KERBEROS Indicates a kerberos principal. The kerberos principal will be converted to the

appropriate access id. For example, petejones@therealm will be converted to

ibm-kn=petejones@threalm.

The EimAccessUser structure layout follows:

Enterprise Identity Mapping (EIM) APIs 217

#TOP_OF_PAGE
sec.htm
aplist.htm

enum EimAccessUserType {

 EIM_ACCESS_DN,

 EIM_ACCESS_KERBEROS,

 EIM_ACCESS_LOCAL_USER

 };

 typedef struct EimAccessUser

 {

 union {

 char * dn;

 char * kerberosPrincipal;

 char * localUser;

 } user;

 enum EimAccessUserType userType;

 } EimAccessUser;

accessType (Input)

The type of access to remove. Valid values are:

 EIM_ACCESS_ADMIN (0) Administrative authority to the entire EIM domain.

EIM_ACCESS_REG_ADMIN (1) Administrative authority to all registries in the EIM domain.

EIM_ACCESS_REGISTRY (2) Administrative authority to the registry specified in the registryName

parameter.

EIM_ACCESS_IDENTIFIER_ADMIN (3) Administrative authority to all of the identifiers in the EIM domain.

EIM_ACCESS_MAPPING_LOOKUP (4) Authority to perform mapping lookup operations.

EIM_ACCESS_CREDENTIAL_DATA

(5)

Authority to retrieve credential data.

registryName (Input)

The name of the registry to remove access from. This parameter is only used if EimAccessType is

EIM_ACCESS_REGISTRY. If EimAccessType is anything other than EIM_ACCESS_REGISTRY, this

parameter must be NULL.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

218 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ACCESS_TYPE_INVAL (2) Access type is not valid.

EIMERR_ACCESS_USERTYPE_INVAL (3) Access user type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_REG_MUST_BE_NULL (55) Registry name must be NULL when access type is not

EIM_ACCESS_REGISTRY.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddAccess()—Add EIM Access” on page 11 —Add EIM Access

v “eimListAccess()—List EIM Access” on page 143 —List EIM Access

v “eimListUserAccess()—List EIM User Access” on page 204 —List EIM User Access

v “eimQueryAccess()—Query EIM Access” on page 210 —Query EIM Access

Enterprise Identity Mapping (EIM) APIs 219

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes the user from the access group.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimAccessUser user;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set user information */

 user.userType = EIM_ACCESS_DN;

 user.user.dn="cn=pete,o=ibm,c=us";

 /* Remove access for this user. */

 if (0 != (rc = eimRemoveAccess(handle,

 &user,

 EIM_ACCESS_ADMIN,

 NULL,

 err)))

 {

 printf("Remove access error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimRemoveAssociation()— Remove EIM Association

 Syntax

 #include <eim.h>

 int eimRemoveAssociation(EimHandle * eim,

 enum EimAssociationType associationType,

 EimIdentifierInfo * idName,

 char * registryName,

 char * registryUserName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

220 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The eimRemoveAssociation() function removes an association for a local identity in a specified user

registry with an EIM identifier.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The authority that the access group has to the EIM data depends on the type of

association being removed:

 For administrative and source associations, the access groups whose members have authority to

the EIM data for this API follow:

v EIM Administrator

v EIM Identifiers Administrator

For target associations, the access groups whose members have authority to the EIM data for this

API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to an individual registry

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

associationType (Input)

The type of association to be removed. Valid values are:

 EIM_ALL_ASSOC (0) Remove all target, source, and administrative associations.

EIM_TARGET (1) Remove a target association.

EIM_SOURCE (2) Remove a source association.

EIM_SOURCE_AND_TARGET (3) Remove both a source association and a target association.

EIM_ADMIN (4) Remove an administrative association.

idName (Input)

A structure that contains the identifier name to remove this association from. The layout of the

EimIdentifierInfo structure follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

Enterprise Identity Mapping (EIM) APIs 221

idtype indicates which identifier name is provided. Use of the uniqueName provides the best

performance. Specifying an idtype of EIM_NAME does not guarantee that a unique EIM

identifier will be found. Therefore, use of EIM_NAME may result in an error.

registryName (Input)

The registry name.

registryUserName (Input)

The registry user name. The registry user name may be normalized according to the

normalization method for defined registry.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry or identifier name is not valid or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the requested identifier

name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM data.

EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

222 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

v “eimAddAssociation()—Add EIM Association” on page 15—Remove an EIM Association

v “eimListAssociations()— List EIM Associations” on page 148—List EIM Associations

Example

See Code disclaimer information for information pertaining to code examples.

The following example will removes 2 associations.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

Enterprise Identity Mapping (EIM) APIs 223

EimHandle * handle;

 EimIdentifierInfo x;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up identifier information. */

 x.idtype = EIM_UNIQUE_NAME;

 x.id.uniqueName = "mjones";

 /* Remove association */

 if (0 != (rc = eimRemoveAssociation(handle,

 EIM_ADMIN,

 &x,

 "MyRegistry",

 "maryjones",

 err)))

 {

 printf("Remove Association error = %d", rc);

 return -1;

 }

 /* Remove association */

 if (0 != (rc = eimRemoveAssociation(handle,

 EIM_SOURCE,

 &x,

 "kerberosRegistry",

 "mjjones",

 err)))

 {

 printf("Remove Association error = %d", rc);

 return -1;

 }

 /* Remove association */

 if (0 != (rc = eimRemoveAssociation(handle,

 EIM_TARGET,

 &x,

 "MyRegistry",

 "maryjo",

 err)))

 {

 printf("Remove Association error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimRemoveIdentifier()— Remove EIM Identifier

 Syntax

224 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

#include <eim.h>

 int eimRemoveIdentifier(EimHandle * eim,

 EimIdentifierInfo * idName,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRemoveIdentifier() function removes an EIM identifier and all of its associated mappings from

the EIM domain.

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

idName (Input)

A structure that contains the name for this identifier. The layout of the EimIdentifierInfo structure

follows:

 enum EimIdType {

 EIM_UNIQUE_NAME,

 EIM_ENTRY_UUID,

 EIM_NAME

 };

 typedef struct EimIdentifierInfo

 {

 union {

 char * uniqueName;

 char * entryUUID;

 char * name;

 } id;

 enum EimIdType idtype;

 } EimIdentifierInfo;

idtype will indicate which identifier name has been provided. Use of the uniqueName will provide

the best performance. There is no guarantee that name will find a unique identifier. Therefore, use

of name may result in an error.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

Enterprise Identity Mapping (EIM) APIs 225

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Identifier not found or insufficient access to EIM data.

 EIMERR_IDNAME_AMBIGUOUS (20) More than 1 EIM Identifier was found that matches the requested Identifier

name.

EIMERR_NOIDENTIFIER (25) EIM Identifier not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_IDNAME_TYPE_INVAL (52) The EimIdType value is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

226 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimAddIdentifier()—Add EIM Identifier” on page 23—Add EIM Identifier

v “eimChangeIdentifier()— Change EIM Identifier” on page 41—Change EIM Identifier

v “eimListIdentifiers()— List EIM Identifiers” on page 160—List EIM Identifiers

v “eimGetAssociatedIdentifiers() —Get Associated EIM identifiers” on page 91 —Get Associated EIM

Identifiers

Example

See Code disclaimer information for information pertaining to code examples.

The following example will remove an EIM identifier.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimIdentifierInfo idInfo;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set identifier information. */

 idInfo.idtype = EIM_UNIQUE_NAME;

 idInfo.id.uniqueName = "Mary Smith";

 /* Remove this identifier. */

 if (0 != (rc = eimRemoveIdentifier(handle,

 &idInfo,

 err)))

Enterprise Identity Mapping (EIM) APIs 227

printf("Remove identifier error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimRemovePolicyAssociation()—Remove EIM Policy Association

 Syntax

 #include <eim.h>

 int eimRemovePolicyAssociation(EimHandle * eim,

 EimPolicyAssociationInfo * policyAssoc,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRemovePolicyAssociation() function removes the specified policy association from the domain.

EIM version 2 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

v EIM Registries Administrator

v EIM authority to an individual registry

 This authority is needed to the target registry.

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

policyAssoc (Input)

The information about the policy association to be removed.

 The EimPolicyAssociationInfo structure contains information about the policy association to

remove.

 For EIM_CERT_FILTER_POLICY (6) association type, the policyAssociation field must contain an

EimCertificateFilterPolicyAssociation structure.

 For EIM_DEFAULT_REG_POLICY (7) association type, the policyAssociation field must contain an

EimDefaultRegistryPolicyAssociation structure.

228 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

For EIM_DEFAULT_DOMAIN_POLICY (8) association type. the policyAssociation field must

contain an EimDefaultDomainPolicyAssociation structure.

 The structure layouts follow:

 enum EimAssociationType {

 EIM_ALL_ASSOC, /* Not supported on this interface*/

 EIM_TARGET, /* Not supported on this interface*/

 EIM_SOURCE, /* Not supported on this interface*/

 EIM_SOURCE_AND_TARGET, /* Not supported on this interface*/

 EIM_ADMIN, /* Not supported on this interface*/

 EIM_ALL_POLICY_ASSOC, /* Not supported on this interface*/

 EIM_CERT_FILTER_POLICY, /* Association is a certificate

 filter policy association. */

 EIM_DEFAULT_REG_POLICY, /* Association is a default

 registry policy association */

 EIM_DEFAULT_DOMAIN_POLICY /* Policy is a default policy for

 the domain. */

 };

 typedef struct EimCertificateFilterPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to remove

 the policy association from. */

 char * filterValue; /* The filter value of the policy.*/

 char * targetRegistry; /* The name of the target registry

 that the filter value is mapped

 to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the filter value

 is mapped to. */

 } EimCertificateFilterPolicyAssociation;

 typedef struct EimDefaultRegistryPolicyAssociation

 {

 char * sourceRegistry; /* The source registry to remove

 the policy association from. */

 char * targetRegistry; /* The name of the target registry

 that the policy association is

 mapped to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 association is mapped to. */

 } EimDefaultRegistryPolicyAssociation;

 typedef struct EimDefaultDomainPolicyAssociation

 {

 char * targetRegistry; /* The name of the target registry

 that the policy association is

 mapped to. */

 char * targetRegistryUserName; /* The name of the target registry

 user name that the policy

 association is mapped to. */

 } EimDefaultDomainPolicyAssociation;

 typedef struct EimPolicyAssociationInfo

 {

 enum EimAssociationType type;

 union {

 EimCertificateFilterPolicyAssociation certFilter;

 EimDefaultRegistryPolicyAssociation defaultRegistry;

 EimDefaultDomainPolicyAssociation defaultDomain;

 } policyAssociation;

 } EimPolicyAssociationInfo;

Enterprise Identity Mapping (EIM) APIs 229

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry is not valid or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EIMERR_NOPOLICYFILTER

(61)

Policy filter value not found for the specified EIM Registry.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_ASSOC_TYPE_INVAL (4) Association type is not valid.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_FUNCTION_NOT_

SUPPORTED (70)

The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

230 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_VIOLATION (56) Unexpected object violation.

Related Information

v “eimAddPolicyAssociation()—Add EIM Policy Association” on page 26 —Add EIM Policy Association

v “eimListRegistryAssociations()—List EIM Registry Associations” on page 184 —List EIM Registry

Associations

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a default registry policy association.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimPolicyAssociationInfo assocInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

Enterprise Identity Mapping (EIM) APIs 231

/* Set up policy association information */

 assocInfo.type = EIM_DEFAULT_REG_POLICY;

 assocInfo.policyAssociation.defaultRegistry.sourceRegistry = "MySourceRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistry = "localRegistry";

 assocInfo.policyAssociation.defaultRegistry.targetRegistryUserName = "mjjones";

 /* Remove the policy */

 if (0 != (rc = eimRemovePolicyAssociation(handle,

 &assocInfo,

 err)))

 {

 printf("Remove EIM Policy Association error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimRemovePolicyFilter()—Remove EIM Policy Filter

 Syntax

 #include <eim.h>

 int eimRemovePolicyFilter(EimHandle * eim,

 EimPolicyFilterInfo * filterInfo,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRemovePolicyFilter() function removes the specified policy filter from the domain. When a

policy filter is removed, all policy associations to the policy filter are also removed.

EIM version 2 must be supported by the local EIM APIs to use this API (see “eimGetVersion()—Get

EIM Version” on page 140—Get EIM Version).

Authorities and Locks

EIM Data

Access to EIM data is controlled by EIM access groups. LDAP administrators also have access to

EIM data. The access groups whose members have authority to the EIM data for this API follow:

v EIM Administrator

Parameters

eim (Input)

The EIM handle returned by a previous call to eimCreateHandle(). A valid connection is required

for this function.

232 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

filterInfo (Input)

The information about the policy filter to be removed.

 The EimPolicyFilterInfo structure contains information about the policy filter to remove.

 For EIM_CERTIFICATE_FILTER (1) policy filter type, the filter field must contain an

EimCertificatePolicyFilter structure.

 The structure layouts follow:

 enum EimPolicyFilterType {

 EIM_ALL_FILTERS, /* All policy filters -- not

 supported for this interface. */

 EIM_CERTIFICATE_FILTER /* Policy filter is a certificate

 filter. */

 };

 typedef struct EimCertificatePolicyFilter

 {

 char * sourceRegistry; /* The source registry to remove the

 policy filters from. */

 char * filterValue; /* The policy filter value. A NULL

 value will remove all policy

 filter values from the registry*/

 } EimCertificatePolicyFilter;

 typedef struct EimPolicyFilterInfo

 {

 enum EimPolicyFilterType type;

 union {

 EimCertificatePolicyFilter certFilter;

 } filter;

 } EimPolicyFilterInfo;

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied. Not enough permissions to access data.

 EIMERR_ACCESS (1) Insufficient access to EIM data.

EBADDATA

eimrc is not valid.

EBADNAME

Registry is not valid or insufficient access to EIM data.

 EIMERR_NOREG (28) EIM Registry not found or insufficient access to EIM data.

EBUSY

Unable to allocate internal system object.

Enterprise Identity Mapping (EIM) APIs 233

EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_POLICY_FILTER_TYPE_INVAL (60) Policy filter type is not valid.

EIMERR_REGTYPE_INVAL (62) Registry type is not valid.

EIMERR_FUNCTION_NOT_SUPPORTED (70) The specified function is not supported by the EIM version.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTCONN

LDAP connection has not been made.

 EIMERR_NOT_CONN (31) Not connected to LDAP. Use eimConnect() API and try the request again.

EROFS

LDAP connection is for read only. Need to connect to master.

 EIMERR_READ_ONLY (36) LDAP connection is for read only. Use eimConnectToMaster() to get a write

connection.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

EIMERR_UNEXP_OBJ_ VIOLATION (56) Unexpected object violation.

Related Information

v “eimAddPolicyFilter()—Add EIM Policy Filter” on page 31 —Add EIM Policy Filter

v “eimListPolicyFilters()—List EIM Policy Filters” on page 166 —List EIM Policy Filters

234 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes all certificate policy filters for the registry.

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 EimPolicyFilterInfo filterInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up policy information */

 filterInfo.type = EIM_CERTIFICATE_FILTER;

 filterInfo.filter.certFilter.sourceRegistry = "MySourceRegistry";

 filterInfo.filter.certFilter.filterValue = NULL;

 /* Remove the policy filter */

 if (0 != (rc = eimRemovePolicyFilter(handle,

 &filterInfo,

 err)))

 {

 printf("Remove EIM Policy Filter error = %d", rc);

 return -1;

 }

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

eimRetrieveConfiguration()—Retrieve EIM Configuration

 Syntax

 #include <eim.h>

 int eimRetrieveConfiguration(unsigned int lengthOfEimConfig,

 EimConfig * configData,

 int ccsid,

 EimRC * eimrc)

Enterprise Identity Mapping (EIM) APIs 235

#TOP_OF_PAGE
sec.htm
aplist.htm

Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimRetrieveConfiguration() function retrieves the EIM configuration information for this system.

Authorities and Locks

No authorization is required.

Parameters

lengthOfEimConfig (Input)

The number of bytes provided by the caller for the configuration information. Minimal size

required is 36 bytes.

configData (Output)

A pointer to the data to be returned.

 The EimConfig structure contains information about the returned data. The API will return as

much data as space has been provided.

 EimConfig structure:

 typedef struct EimConfig

 {

 unsigned int bytesReturned; /* Number of bytes actually returned

 by the API. */

 unsigned int bytesAvailable; /* Number of bytes of available data

 that could have been returned by

 the API. */

 int enable; /* Flag to indicate if enabled to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 EimListData ldapURL; /* ldap URL for domain controller */

 EimListData localRegistry; /* Local system registry */

 EimListData kerberosRegistry; /* Kerberos registry */

 EimListData x509Registry; /* X.509 registry */

 } EimConfig;

EimListData structure:

 typedef struct EimListData

 {

 unsigned int length; /* Length of data */

 unsigned int disp; /* Displacement to data. This byte

 offset is relative to the start of

 the parent structure; that is, the

 structure containing this

 structure. */

 } EimListData;

ccsid (Input)

The ccsid for the output data. If the ccsid is 0 or 65535 the default job ccsid will be used.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

236 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CCSID_INVAL (8) CCSID is outside of valid range or CCSID is not supported.

EIMERR_CONFIG_SIZE (10) Length of EimConfig is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_SPACE (41) Unexpected error accessing parameter.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimSetConfiguration()—Set EIM Configuration” on page 241 —Set EIM Configuration

Example

See Code disclaimer information for information pertaining to code examples.

The following example retrieves the configuration information and prints out the results..

#include <eim.h>

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

void printListData(char * fieldName,

 void * entry,

 int offset);

Enterprise Identity Mapping (EIM) APIs 237

int main (int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char listData[4000];

 EimConfig * list = (EimConfig *) listData;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Get configuration information */

 if (0 != (rc = eimRetrieveConfiguration(4000,

 list,

 0,

 err)))

 {

 printf("Retrieve configuration error = %d", rc);

 return -1;

 }

 /* Print the results */

 printf("___________\n");

 printf(" bytesReturned = %d\n", list->bytesReturned);

 printf(" bytesAvailable = %d\n", list->bytesAvailable);

 printf("\n");

 if (0 == list->enable)

 printf("Disabled.\n");

 else

 printf("Enabled.\n");

 printListData("ldap URL",

 list,

 offsetof(EimConfig, ldapURL));

 printListData("local Registry",

 list,

 offsetof(EimConfig, localRegistry));

 printListData("kerberos registry",

 list,

 offsetof(EimConfig, kerberosRegistry));

 printListData("x.509 registry",

 list,

 offsetof(EimConfig, x509Registry));

 return 0;

}

void printListData(char * fieldName,

 void * entry,

 int offset)

{

 EimListData * listData;

 char * data;

 int dataLength;

 printf(" %s = ",fieldName);

 /* Address the EimListData object */

 listData = (EimListData *)((char *)entry + offset);

 /* Print out results */

 data = (char *)entry + listData->disp;

 dataLength = listData->length;

238 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

if (dataLength > 0)

 printf("%.*s\n",dataLength, data);

 else

 printf("Not found.\n");

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimSetAttribute()—Set EIM attributes

 Syntax

 #include <eim.h>

 int eimSetAttribute(EimHandle * eim,

 enum EimHandleAttr attrName,

 void * attrValue,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimSetAttribute() function is used to set attributes in the EIM handle structure.

Authorities and Locks

None.

Parameters

eimhandle (Input)

The EIM handle returned by a previous call to eimCreateHandle().

attrName (Input)

The name of the attribute to set. Following are valid values:

 EIM_HANDLE_CCSID (0) This is the CCSID of character data passed by the caller of EIM APIs using the

specified EimHandle. This field is a 4 byte integer. When a handle is created, this is set

to the job default CCSID.

attrValue (Input)

A pointer to the attribute value.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Enterprise Identity Mapping (EIM) APIs 239

#TOP_OF_PAGE
sec.htm
aplist.htm

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

EINVAL

Input parameter was not valid.

 EIMERR_ATTR_INVAL (5) Attribute name is not valid.

EIMERR_CCSID_INVAL (8) CCSID is outside of valid range or CCSID is not supported.

EIMERR_HANDLE_INVAL (17) EimHandle is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

ENOTSUP

Attribute type is not supported.

 EIMERR_ATTR_NOTSUPP

(6)

Attribute not supported.

EUNKNOWN

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimCreateHandle()—Create an EIM Handle” on page 70—Create an EIM Handle

v “eimDestroyHandle()—Destroy an EIM Handle” on page 76—Destroy an EIM Handle

v “eimGetAttribute()—Get EIM attributes” on page 98—Get EIM Attributes

v “eimConnectToMaster()—Connect to EIM Master Domain” on page 60—Connect to EIM Master

Domain

v “eimConnect()—Connect to EIM Domain” on page 57—Connect to EIM Domain

Example

See Code disclaimer information for information pertaining to code examples.

The following example will set the CCSID attribute in the EIM handle.

240 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimHandle * handle;

 unsigned int ccsid = 37;

 /* Get eim handle from input arg. */

 /* This handle is already connected to EIM. */

 handle = (EimHandle *)argv[1];

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Change the CCSID for this handle. */

 if (0 != (rc = eimSetAttribute(handle,

 EIM_HANDLE_CCSID,

 (void *)&ccsid,

 err)))

 printf("Set Attribute error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimSetConfiguration()—Set EIM Configuration

 Syntax

 #include <eim.h>

 int eimSetConfiguration(int enable,

 char * ldapURL,

 char * localRegistry,

 char * kerberosRegistry,

 int ccsid,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimSetConfiguration() function sets the configuration information for use by the system.

Authorities and Locks

The caller of the API must have *SECADM special authority.

Parameters

enable (Input)

Indicates if this system is able to establish new connections in order to participate in an EIM

domain. Possible values are:

Enterprise Identity Mapping (EIM) APIs 241

#TOP_OF_PAGE
sec.htm
aplist.htm

0 Not enabled to participate in EIM domain. New connections may not be established with the

configured EIM domain

non-zero Enabled to participate in EIM domain. New connections may be established with the EIM domain.

ldapURL (Input)

A uniform resource locator (URL) that contains the EIM configuration information for the EIM

domain controller. This information will be used for all EIM operations. The maximum size for

this URL is 1000 bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that this system is not configured for EIM.

ldapURL A URL that contains EIM domain controller information.

This URL has the following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

v host:port is the name of the host on which the EIM domain controller is running with an

optional port number.

v dn is the distinguished name for the domain entry.

v ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

v ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

v ldaps://systemy:636/ibm-eimDomainName=thisEimDomain

localRegistry (Input)

The local EIM system registry name. The maximum size for this registry name is 256 bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no local system registry.

registry The local EIM system registry name.

kerberosRegistry (Input)

The EIM Kerberos registry name. The maximum size for this registry name is 256 bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no kerberos registry for EIM.

registry The EIM Kerberos registry name. This is the Kerberos realm name.

242 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

ccsid (Input)

The ccsid of the input data. If the ccsid is 0 or 65535 the default job ccsid will be used.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied.

 EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

 EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CCSID_INVAL (8) CCSID is outside of valid range or CCSID is not supported.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list

of restricted characters.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

ENAMETOOLONG

ldapURL or registry name is too long.

 EIMERR_REGNAME_SIZE

(39)

Local registry name is too large.

Enterprise Identity Mapping (EIM) APIs 243

EIMERR_URL_SIZE (51) Configuration URL is too large.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimRetrieveConfiguration()—Retrieve EIM Configuration” on page 235 —Retrieve EIM Configuration

Example

See Code disclaimer information for information pertaining to code examples.

The following example sets the configuration information but it is not enabled.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 char * ldapURL=

 "ldap://mysystem:389/ibm-eimDomainName=myEIMDomain,o=mycompany,c=us";

 char * local = "mysystem";

 char * kerberos= "krbprin";

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set config info, but it is disabled. */

 if (0 != (rc = eimSetConfiguration(0,

 ldapURL,

 local,

 kerberos,

 0,

 err)))

 printf("Set configuration error = %d", rc);

 return 0;

}

In this example, the configuration information is not changed but it is now enabled for use.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

244 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

{

 int rc;

 char eimerr[100];

 EimRC * err;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Enable configuration info. */

 if (0 != (rc = eimSetConfiguration(1,

 NULL,

 NULL,

 NULL,

 0,

 err)))

 printf("Set configuration error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

eimSetConfigurationExt()—Set EIM Configuration Extended

 Syntax

 #include <eim.h>

 int eimSetConfigurationExt(EimConfigInfo * configInfo,

 EimRC * eimrc)

 Service Program Name: QSYS/QSYEIM
 Default Public Authority: *USE
 Threadsafe: Yes

The eimSetConfigurationExt() function sets the configuration information for use by the system.

Authorities and Locks

The caller of the API must have *SECADM special authority.

Parameters

configInfo (Input)

The configuration information to be set.

 The EimConfigInfo structure contains the configuration information.

 For EIM_CONFIG_FORMAT_0 (0) configuration format, the config field must contain an

EimConfigFormat0 structure.

 The structure layouts follow:

 enum EimConfigFormat {

 EIM_CONFIG_FORMAT_0 /* Information is in configuration

 format 0. */

 };

 typedef struct EimConfigFormat0

 {

Enterprise Identity Mapping (EIM) APIs 245

#TOP_OF_PAGE
sec.htm
aplist.htm

char * ldapURL; /* URL for EIM domain controller. */

 char * localRegistry; /* Local system registry name. */

 char * kerberosRegistry; /* Kerberos registry name. */

 char * x509Registry; /* X.509 registry name. */

 } EimConfigFormat0;

 typedef struct EimConfigInfo

 {

 enum EimConfigFormat format; /* Format of the config info. */

 int enable; /* Indicate if able to establish

 new connections in order to

 participate in EIM domain

 0 = not enabled

 1 = enabled */

 int ccsid; /* CCSID of input data. If 0 or

 65535, default job CCSID will

 be used. */

 union {

 EimConfigFormat0 format0;

 } config; /* Configuration information */

 } EimConfigInfo;

Detail description for the configuration information:

v ldapURL

 A uniform resource locator (URL) that contains the EIM configuration information for

the EIM domain controller. This information will be used for all EIM operations. The

maximum size for this URL is 1000 bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that this system is not configured for EIM.

ldapURL A URL that contains EIM domain controller information.

This URL has the following format:

 ldap://host:port/dn

 or

 ldaps://host:port/dn

where:

– host:port is the name of the host on which the EIM domain controller is running

with an optional port number.

– dn is the distinguished name for the domain entry.

– ldaps indicates that this host/port combination uses SSL and TLS.

Examples:

– ldap://systemx:389/ibm-eimDomainName=myEimDomain,o=myCompany,c=us

– ldaps://systemy:636/ibm-eimDomainName=thisEimDomain
v localRegistry

 The local EIM system registry name. The maximum size for this registry name is 256

bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

246 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EIM_CONFIG_NONE (*NONE) This value indicates that there is no local system registry.

registry The local EIM system registry name.

v kerberosRegistry

 The EIM Kerberos registry name. The maximum size for this registry name is 256

bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no kerberos registry for EIM.

registry The EIM Kerberos registry name. This is the Kerberos realm name.

v x509Registry

 The EIM X.509 registry name. The maximum size for this registry name is 256 bytes.

 Possible values are:

 NULL A value of NULL indicates that it should not change.

EIM_CONFIG_NONE (*NONE) This value indicates that there is no X.509 registry for EIM.

registry The EIM X.509 registry name. This is the registry that will be used when adding

source associations for user certificates to the EIM identifier.

eimrc (Input/Output)

The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCES

Access denied.

 EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA

eimrc is not valid.

EBUSY

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

ECONVERT

Data conversion error.

Enterprise Identity Mapping (EIM) APIs 247

EIMERR_DATA_CONVERSION (13) Error occurred when converting data between code pages.

EINVAL

Input parameter was not valid.

 EIMERR_CCSID_INVAL (8) CCSID is outside of valid range or CCSID is not supported.

EIMERR_CHAR_INVAL (21) A restricted character was used in the object name. Check the API for a list

of restricted characters.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_URL_NODN (45) URL has no dn (required).

EIMERR_URL_NODOMAIN (46) URL has no domain (required).

EIMERR_URL_NOHOST (47) URL does not have a host.

EIMERR_URL_NOTLDAP (49) URL does not begin with ldap.

EIMERR_INVALID_DN (66) Distinguished Name (DN) is not valid.

EIMERR_CONFIG_FORMAT_INVAL (68) Configuration format is not valid.

ENAMETOOLONG

ldapURL or registry name is too long.

 EIMERR_REGNAME_SIZE (39) Registry name is too large.

EIMERR_URL_SIZE (51) Configuration URL is too large.

ENOMEM

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

EUNKNOWN

Unexpected exception.

 EIMERR_LDAP_ERR (23) Unexpected LDAP error. %s

EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “eimRetrieveConfiguration()—Retrieve EIM Configuration” on page 235 —Retrieve EIM Configuration

Example

See Code disclaimer information for information pertaining to code examples.

The following example sets the configuration information but it is not enabled.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

248 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EimRC * err;

 EimConfigInfo configInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up config information. */

 configInfo.format = EIM_CONFIG_FORMAT_0;

 configInfo.enable = 0;

 configInfo.ccsid = 0;

 configInfo.config.format0.ldapURL =

 "ldap://mysystem:389/ibm-eimDomainName=myEIMDomain,o=mycompany,c=us";

 configInfo.config.format0.localRegistry = "mysystem";

 configInfo.config.format0.kerberosRegistry = "krbprin";

 configInfo.config.format0.x509Registry = "x509reg";

 /* Set config info, but it is disabled. */

 if (0 != (rc = eimSetConfigurationExt(&.configInfo,

 err)))

 printf("Set configuration error = %d", rc);

 return 0;

}

In this example, the configuration information is not changed but it is now enabled for use.

#include <eim.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rc;

 char eimerr[100];

 EimRC * err;

 EimConfigInfo configInfo;

 /* Set up error structure. */

 memset(eimerr,0x00,100);

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 /* Set up config information. */

 configInfo.format = EIM_CONFIG_FORMAT_0;

 configInfo.enable = 1;

 configInfo.ccsid = 0;

 configInfo.config.format0.ldapURL = NULL;

 configInfo.config.format0.localRegistry = NULL;

 configInfo.config.format0.kerberosRegistry = NULL;

 configInfo.config.format0.x509Registry = NULL;

 /* Enable configuration info. */

 if (0 != (rc = eimSetConfigurationExt(&configInfo,

 err)))

 printf("Set configuration error = %d", rc);

 return 0;

}

API introduced: V5R3

 Top | Security APIs | APIs by category

Enterprise Identity Mapping (EIM) APIs 249

#TOP_OF_PAGE
sec.htm
aplist.htm

QsySetEIMConnectInfo()—Set EIM Connect Information

 Syntax

 #include <qsyeimapi.h>

 #include <eim.h>

 int QsySetEIMConnectInfo(enum QsyEimConnectSystem connectSystem,

 QsyEimConnectionInfo connectInfo,

 EimRc * eimrc)

 Service Program Name: QSYS/QSYEIMAPI
 Default Public Authority: *USE
 Threadsafe: Yes

The QsySetEIMConnectInfo() function defines the connection information that will be used by the

operating system when it needs to connect to the EIM domain that is configured for this system or for

the master system. EIM configuration information is set using eimSetConfiguration().

Authorities and Locks

Authority required

*ALLOBJ and *SECADM special authorities

Parameters

connectSystem

(Input)

 The system defined by eimSetConfiguration(). If the configured system is a replica system and

EIM updates will be done, then connection information for the master system must also be

defined.

 QSY_EIM_CONFIG (0) The specified connection information will be used to connect to the EIM domain that

is configured for this system.

QSY_EIM_MASTER (1) The specified connection information will be used to connect to the master system.

connectInfo

(Input)

 The connection information. EIM uses ldap. The connection information indicates the required

information to bind to ldap. There are two types of connections supported, simple bind and

Kerberos.

 If the system is configured to connect to a secure port then Digital Certificate Manager (DCM)

must be used to assign a certificate to the Enterprise Identity Mapping Client

(QIBM_QSY_EIM_CLIENT) application.

 For QSY_EIM_SIMPLE (0) connect type, the connectInfo field must contain an

EimSimpleConnectInfo structure with a binddn and password. The binddn cannot be longer than

400 bytes. The password cannot be longer than 174 bytes. EimPasswordProtect is used to

determine the level of password protection on the ldap bind.

 EIM_PROTECT_NO (0) The ″clear-text″ password is sent on the bind.

EIM_PROTECT_CRAM_MD5 (1) The protected password is sent on the bind. The server side must

support cram-md5 protocol in order to send the protected password.

EIM_PROTECT_CRAM_MD5_OPTIONAL (2) The protected password will be sent on the bind if the cram-md5

protocol is supported. Otherwise, the ″clear-text″ password is sent.

250 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

For QSY_EIM_KERBEROS_KEYTAB (1), connect type, the connectInfo field must contain a

QsyEimKerberosKeyTab structure with a keytab file name, principal, and realm. Each of the

keytab file name, principal, and realm cannot be longer than 400 bytes.

 For QSY_EIM_KERBEROS_PWD (2), connect type, the connectInfo field must contain a

QsyEimKerberosPassword structure with a principal, realm, and password. The principal and

realm cannot be longer than 400 bytes. The password cannot be longer than 174 bytes.

 For QSY_EIM_REMOVE_CONNECT_INFO (3), connect type, the connectInfo field must be zeros.

The connection information that is currently defined for the specified connection system will be

removed.

 Following are the structure layouts:

 #pragma enumsize(4)

 enum QsyEimConnectType {

 QSY_EIM_SIMPLE,

 QSY_EIM_KERBEROS_KEYTAB,

 QSY_EIM_KERBEROS_PWD,

 QSY_EIM_REMOVE_CONNECT_INFO

 };

 enum EimPasswordProtect {

 EIM_PROTECT_NO,

 EIM_PROTECT_CRAM_MD5,

 EIM_PROTECT_CRAM_MD5_OPTIONAL

 };

 typedef struct EimSimpleConnectInfo

 {

 enum EimPasswordProtect protect;

 char reserved[12];

 char * bindDn;

 char * bindPw;

 } EimSimpleConnectInfo;

 typedef struct QsyEimKerberosKeyTab

 {

 char * keyTabFile;

 char * principal;

 char * realm;

 }

 typedef struct QsyEimKerberosPassword

 {

 char * principal;

 char * realm;

 char * password;

 }

 typedef struct QsyEimConnectionInfo

 {

 enum QsyEimConnectType type;

 union {

 EimSimpleConnectInfo simpleCreds;

 QsyEimKerberosKeyTab kerberosKeyTab;

 QsyEimKerberosPassword kerberosPassword;

 } connectInfo;

 } QsyEimConnectionInfo;

eimrc (Input/Output)

 The structure in which to return error code information. If the return value is not 0, eimrc is set

with additional information. This parameter may be NULL. For the format of the structure, see

“EimRC—EIM Return Code” on page 254.

Enterprise Identity Mapping (EIM) APIs 251

Return Value

The return value from the API. Following each return value is the list of possible values for the

messageCatalogMessageID field in the eimrc parameter for that value.

0 Request was successful.

EACCESS (3401)

Access denied. Not enough permissions to set connection information.

 EIMERR_AUTH_ERR (7) Insufficient authority for the operation.

EBADDATA (3028)

eimrc is not valid.

EBUSY (3029)

Unable to allocate internal system object.

 EIMERR_NOLOCK (26) Unable to allocate internal system object.

EINVAL (3021)

Input parameter was not valid.

 EIMERR_PROTECT_INVAL (22) The protect parameter in EimSimpleConnectInfo is not valid.

EIMERR_PARM_REQ (34) Missing required parameter. Please check API documentation.

EIMERR_PTR_INVAL (35) Pointer parameter is not valid.

EIMERR_OS400_CONN_SYS_INVAL (5002) Connection system is not valid.

EIMERR_RESERVE_INVAL (57) Reserved field is not valid.

ENAMETOOLONG (3486)

Input parameter is too long.

 EIMERR_OS400_BINDDN_SIZE (5001) Bind DN is too large.

EIMERR_OS400_KEYTAB_SIZE (5003) Kerberos keytab file name is too large.

EIMERR_OS400_PRINCIPAL_SIZE (5004) Kerberos principal is too large.

EIMERR_OS400_PWD_SIZE (5005) Kerberos password is too large.

EIMERR_OS400_REALM_SIZE (5006) Kerberos realm is too large.

ENOMEM (3460)

Unable to allocate required space.

 EIMERR_NOMEM (27) No memory available. Unable to allocate required space.

ENOTSUP (3440)

Connection type is not supported.

 EIMERR_CONN_NOTSUPP (12) Connection type is not supported.

252 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

EUNKNOWN (3474)

Unexpected exception.

 EIMERR_UNKNOWN (44) Unknown error or unknown system state.

Related Information

v “QsyGetEIMConnectInfo()—Get EIM Connect Information” on page 102—Get EIM Connect

Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example will set connection information used by the operating system.

#include <eim.h>

#include <qsyeimapi.h>

int main(int argc, char *argv[])

{

 int rc;

 enum QsyEimConnectSystem *connectSys;

 QsyEimConnectionInfo connectInfo;

 char eimerr[100];

 EimRC *err;

 /* Get the system that the connection information is for. */

 connectSys = (enum QsyEimConnectSystem *)argv[1];

 /* Get the type of the connection information. */

 connectInfo.type = *((enum QsyEimConnectType *)argv[2]);

 /* Set the connection information based on the connection type.

 switch (connectInfo.type) /* Determine connect type. */

 {

 case QSY_EIM_SIMPLE:

 {

 connectInfo.connectInfo.simpleCreds.protect =

 *((enum EimPasswordProtect *)argv[3]);

 connectInfo.connectInfo.simpleCreds.bindDn = argv[4];

 connectInfo.connectInfo.simpleCreds.bindPw = argv[5];

 break;

 }

 case QSY_EIM_KERBEROS_KEYTAB:

 {

 connectInfo.connectInfo.kerberosKeyTab.keyTabFile = argv[3];

 connectInfo.connectInfo.kerberosKeyTab.principal = argv[4];

 connectInfo.connectInfo.kerberosKeyTab.realm = argv[5];

 break;

 }

 case QSY_EIM_KERBEROS_PWD:

 {

 connectInfo.connectInfo.kerberosPassword.principal = argv[3];

 connectInfo.connectInfo.kerberosPassword.realm = argv[4];

 connectInfo.connectInfo.kerberosPassword.password = argv[5];

 break;

 }

 case QSY_EIM_REMOVE_CONNECT_INFO:

 {

 connectInfo.connectInfo.kerberosPassword.principal = NULL;

 connectInfo.connectInfo.kerberosPassword.realm = NULL;

 connectInfo.connectInfo.kerberosPassword.password = NULL;

 break;

Enterprise Identity Mapping (EIM) APIs 253

}

 } /* end determine connect type. */

 err = (EimRC *)eimerr;

 err->memoryProvidedByCaller = 100;

 if (0 != (rc = QsySetEIMConnectInfo(*connectSys,

 connectInfo,

 err)))

 printf("Set connection information error = %d", rc);

 return 0;

}

API introduced: V5R2

 Top | Security APIs | APIs by category

Concepts

These are the concepts for this category.

EimRC—EIM Return Code

Parameter

All EIM APIs return an errno. If the EimRC parameter is not NULL, this EIM return code structure

contains additional information about the error that was returned. It can be used to get a text description

of the error.

The layout for EimRC follows:

typedef struct EimRC {

 unsigned int memoryProvidedByCaller; /* Input: Size of the entire RC

 structure. This is filled in by

 the caller. This is used to tell

 the API how much space was provided

 for substitution text */

 unsigned int memoryRequiredToReturnData;/* Output: Filled in by API

 to tell caller how much data could

 have been returned. Caller can then

 determine if the caller provided

 enough space (that is, if the

 entire substitution string was

 able to be copied to this

 structure. */

 int returnCode; /* Same as the errno returned as the

 rc for the API */

 int messageCatalogSetNbr; /* Message catalog set number */

 int messageCatalogMessageID; /* Message catalog message id */

 int ldapError; /* ldap error, if available */

 int sslError; /* ssl error, if available */

 char reserved[16]; /* Reserved for future use */

 unsigned int substitutionTextLength; /* Length of substitution text

 excluding a null-terminator which

 may or may not be present */

 char substitutionText[1]; /* further info describing the

 error. */

} EimRC;

254 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Field Descriptions

memoryProvidedByCaller

(Input) The number of bytes the calling application provides for the error code. The number of

bytes provided must be 48, or more than 48.

memoryRequiredToReturnData

(Output) The length of the error information available to the API to return, in bytes. If this is 0,

no error was detected and none of the fields that follow this field in the structure are changed.

returnCode

(Output) The errno returned for this API. This is the same as the return value for each API.

messageCatalogSetNbr

(Output) The message set number for the EIM catalog. This can be used with the

messageCatalogID to get the error message text.

messageCatalogMessageID

(Output) The message ID number for the EIM catalog. This can be used with the

messageCatalogSetNbr to get the error message text.

reserved

(Output) Reserved for future use.

substitutionTextLength

(Output) This field is set if any substitution text is returned. If there is no substitution text, this

field is zero.

substitutionText

(Output) Message substitution text.

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how to retrieve the message text from the message catalog.

#include <nl_types.h>

#include <eim.h>

char * getError(EimRC * eimrc)

{

 nl_catd catd;

 char * catmsg;

 char * msg = NULL;

 catd = catopen("/QIBM/PRODDATA/OS400/MRI2924/EIM/EIM.CAT", 0);

 if (NULL == catd)

 return NULL;

 catmsg = catgets(catd,

 eimrc->messageCatalogSetNbr,

 eimrc->messageCatalogMessageID,

 strerror(eimrc->returnCode));

 if (catmsg)

 {

 msg = (char *)malloc(strlen(catmsg)+

 eimrc->substitutionTextLength+1);

 if (0 == eimrc->substitutionTextLength)

 sprintf(msg,catmsg);

 else

 sprintf(msg, catmsg, eimrc->substitutionText);

 }

Enterprise Identity Mapping (EIM) APIs 255

catclose(catd);

 return msg;

}

Note: To use the message catalog support in nl_types.h, you must compile the parts with

LOCALETYPE(*LOCALE) and SYSIFCOPT(*IFSIO).

 “EimRC—EIM Return Code” on page 254 | Security APIs | APIs by category

256 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

sec.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 257

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM

Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

258 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI
DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
i5/OS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Appendix. Notices 259

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

260 IBM Systems - iSeries: Security -- Enterprise Identity Mapping (EIM) APIs

����

Printed in USA

	Contents
	Enterprise Identity Mapping (EIM) APIs
	APIs
	eimAddSystemRegistry()—Add a System Registry to the EIM domain
	Authorities and Locks
	Parameters
	Return Value
	User Defined Registry Type
	Restrictions
	Related Information
	Example

	eimAddApplicationRegistry()—Add an Application Registry to the EIM Domain
	Authorities and Locks
	Parameters
	Return Value
	User Defined Registry Type
	Restrictions
	Related Information
	Example

	eimAddAccess()—Add EIM Access
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimAddAssociation()—Add EIM Association
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimAddGroupRegistry()—Add a Group Registry to the EIM domain
	Authorities and Locks
	Parameters
	Return Value
	Restrictions
	Related Information
	Example

	eimAddIdentifier()—Add EIM Identifier
	Authorities and Locks
	Parameters
	Return Value
	Restrictions
	Related Information
	Example

	eimAddPolicyAssociation()—Add EIM Policy Association
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimAddPolicyFilter()—Add EIM Policy Filter
	Warning: Temporary Level 3 Header
	Certificate policy filter details

	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimChangeDomain()—Change an EIM Domain Object
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimChangeIdentifier()— Change EIM Identifier
	Authorities and Locks
	Parameters
	Return Value
	Restrictions
	Related Information
	Example

	eimChangeRegistry()—Change EIM Registry
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimChangeRegistryAlias()—Change EIM Registry Alias
	Authorities and Locks
	Parameters
	Return Value
	Restrictions
	Related Information
	Example

	eimChangeRegistryUser() —Change EIM Registry User
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimConnect()—Connect to EIM Domain
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimConnectToMaster()—Connect to EIM Master Domain
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimErr2String()—Convert EimRC into an Error Message
	Authorities
	Parameters
	Return Value
	Related Information
	Example

	eimCreateDomain()—Create an EIM Domain Object
	Authorities and Locks
	Parameters
	Return Value
	Restrictions
	Related Information
	Example

	eimCreateHandle()—Create an EIM Handle
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimDeleteDomain()—Delete an EIM Domain Object
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimDestroyHandle()—Destroy an EIM Handle
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimFormatPolicyFilter()—Format EIM Policy Filter
	Warning: Temporary Level 3 Header
	Certificate policy filter details

	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimFormatUserIdentity()—Format User Identity
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetAssociatedIdentifiers() —Get Associated EIM identifiers
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetAttribute()—Get EIM attributes
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	QsyGetEIMConnectInfo()—Get EIM Connect Information
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	QsyGetEIMHandle()—Get EIM Handle Connected For System
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetRegistryNameFromAlias() —Get EIM Registry Name from an Alias
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetTargetCredsFromSource() —Get EIM Target Identities and Credentials from the Source
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetTgtCredsFromIdentifier() —Get EIM Target Identities and Credentials from the Identifier
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetTargetFromIdentifier() —Get EIM Target Identities from the Identifier
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetTargetFromSource() —Get EIM Target Identities from the Source
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimGetVersion()—Get EIM Version
	Authorities and Locks
	Parameters
	Return Value
	Example

	eimListAccess()—List EIM Access
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListAssociations()— List EIM Associations
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListDomains()—List EIM Domain Objects
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListIdentifiers()— List EIM Identifiers
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListPolicyFilters()—List EIM Policy Filters
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListRegistries()—List EIM Registries
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListRegistryAliases()—List EIM Registry Aliases
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListRegistryAssociations()—List EIM Registry Associations
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListRegistryUsers()— List EIM Registry Users
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListRegistryUsersCreds()— List EIM Registry Users Credentials
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimListUserAccess()—List EIM User Access
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimQueryAccess()—Query EIM Access
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemoveRegistry()—Remove a Registry from the EIM Domain
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemoveAccess()—Remove EIM Access
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemoveAssociation()— Remove EIM Association
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemoveIdentifier()— Remove EIM Identifier
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemovePolicyAssociation()—Remove EIM Policy Association
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRemovePolicyFilter()—Remove EIM Policy Filter
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimRetrieveConfiguration()—Retrieve EIM Configuration
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimSetAttribute()—Set EIM attributes
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimSetConfiguration()—Set EIM Configuration
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	eimSetConfigurationExt()—Set EIM Configuration Extended
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	QsySetEIMConnectInfo()—Set EIM Connect Information
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	Concepts
	EimRC—EIM Return Code
	Field Descriptions
	Example

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

