
IBM Systems - iSeries

UNIX-Type -- Signal APIs

Version 5 Release 4

���

IBM Systems - iSeries

UNIX-Type -- Signal APIs

Version 5 Release 4

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 85.

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/OS (product number 5722-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Signal APIs 1

APIs 2

alarm()—Set Schedule for Alarm Signal 2

Authorities and Locks 2

Parameters 3

Return Value 3

Error Conditions 3

Usage Notes 3

Related Information 3

Example 3

Output: 4

getitimer()—Get Value for Interval Timer 4

Authorities and Locks 5

Parameters 5

Return Value 5

Error Conditions 5

Related Information 5

Example 6

Output: 7

kill()—Send Signal to Process or Group of Processes 7

Parameters 8

Authorities 8

Return Value 9

Error Conditions 9

Usage Notes 10

Related Information 10

Example 10

Output: 11

pause()—Suspend Process Until Signal Received . . 11

Authorities and Locks 12

Parameters 12

Return Value 12

Error Conditions 12

Usage Notes 12

Related Information 12

Example 13

Output: 13

Qp0sDisableSignals()—Disable Process for Signals 13

Authorities and Locks 14

Parameters 14

Return Value 14

Error Conditions 14

Usage Notes 14

Related Information 15

Example 15

Output: 16

Qp0sEnableSignals()—Enable Process for Signals . . 16

Authorities and Locks 17

Parameters 17

Return Value 17

Error Conditions 17

Usage Notes 17

Related Information 18

Example 18

setitimer()—Set Value for Interval Timer 19

Authorities and Locks 19

Parameters 19

Return Value 19

Error Conditions 20

Usage Notes 20

Related Information 20

Example 20

Output: 22

sigaction()—Examine and Change Signal Action . . 22

Authorities and Locks 22

Parameters 22

Control Signals Table 26

Return Value 27

Error Conditions 27

Usage Notes 28

Related Information 29

Example 29

Output: 30

sigaddset()—Add Signal to Signal Set 31

Authorities and Locks 31

Parameters 31

Return Value 31

Error Conditions 31

Related Information 31

Example 32

Output: 33

sigdelset()—Delete Signal from Signal Set 33

Authorities and Locks 33

Parameters 33

Return Value 33

Error Conditions 33

Related Information 34

Example 34

Output: 35

sigemptyset()—Initialize and Empty Signal Set . . 35

Authorities and Locks 35

Parameters 35

Return Value 35

Error Conditions 35

Related Information 36

Example 36

Output: 36

sigfillset()—Initialize and Fill Signal Set 37

Authorities and Locks 37

Parameters 37

Return Value 37

Error Conditions 37

Related Information 37

Example 38

Output: 38

sigismember()—Test for Signal in Signal Set . . . 38

Authorities and Locks 39

Parameters 39

Return Value 39

Error Conditions 39

Related Information 39

Example 40

© Copyright IBM Corp. 1998, 2006 iii

Output: 40

siglongjmp()—Perform Nonlocal Goto with Signal

Handling 40

Authorities and Locks 41

Parameters 41

Return Value 41

Error Conditions 41

Usage Notes 41

Related Information 41

Example 42

Output 43

sigpending()—Examine Pending Signals 44

Authorities and Locks 44

Parameters 44

Return Value 44

Error Conditions 44

Related Information 44

Example 45

Output: 46

sigprocmask()—Examine and Change Blocked

Signals 46

Authorities and Locks 46

Parameters 46

Return Value 47

Error Conditions 47

Usage Notes 47

Related Information 48

Example 48

Output: 49

sigsetjmp()—Set Jump Point for Nonlocal Goto . . 49

Authorities and Locks 49

Parameters 49

Return Value 50

Error Conditions 50

Usage Notes 50

Related Information 50

Example 50

Output: 52

sigsuspend()—Wait for Signal 52

Authorities and Locks 53

Parameters 53

Return Value 53

Error Conditions 53

Usage Notes 53

Related Information 54

Example 54

Output: 55

sigtimedwait()—Synchronously Accept a Signal for

Interval of Time 55

Authorities and Locks 56

Parameters 56

Return Value 56

Error Conditions 56

Usage Notes 56

Related Information 57

Example 57

Output: 58

sigwait()—Synchronously Accept a Signal 58

Authorities and Locks 58

Parameters 58

Return Value 59

Error Conditions 59

Usage Notes 59

Related Information 59

Example 60

Output: 60

sigwaitinfo()—Synchronously Accept a Signal and

Signal Data 61

Authorities and Locks 61

Parameters 61

Return Value 61

Error Conditions 62

Usage Notes 62

Related Information 62

Example 62

Output: 63

sleep()—Suspend Processing for Interval of Time . . 63

Authorities and Locks 64

Parameters 64

Return Value 64

Error Conditions 64

Usage Notes 65

Related Information 65

Example 65

Output: 66

usleep()—Suspend Processing for Interval of Time 66

Authorities and Locks 66

Parameters 66

Return Value 67

Error Conditions 67

Usage Notes 67

Related Information 67

Example 67

Output: 68

Concepts 68

Using Signal APIs 68

Signal Concepts 68

i5/OS Signal Management 69

Differences from Signals on UNIX Systems . . . 71

Header Files for UNIX-Type Functions 72

Errno Values for UNIX-Type Functions 75

Appendix. Notices 85

Programming Interface Information 86

Trademarks 87

Terms and Conditions 88

iv IBM Systems - iSeries: UNIX-Type -- Signal APIs

Signal APIs

An X/Open specification defines a ″signal″ as a mechanism by which a process may be notified of, or

affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

For additional information on the Signal APIs, see:

v “Using Signal APIs” on page 68

v “i5/OS Signal Management” on page 69

v “Differences from Signals on UNIX Systems” on page 71

The Signal APIs are:

v “alarm()—Set Schedule for Alarm Signal” on page 2 (Set schedule for alarm signal) generates a

SIGALRM signal after the number of seconds specified by the seconds parameter have elapsed. The

delivery of the SIGALRM signal is directed at the calling process.

v “getitimer()—Get Value for Interval Timer” on page 4 (Get value of interval timer) returns the value

last used to set the interval timer specified by which in the structure pointed to by value.

v “kill()—Send Signal to Process or Group of Processes” on page 7 (Send signal to process or group of

processes) sends a signal to a process or process group specified by pid.

v “pause()—Suspend Process Until Signal Received” on page 11 (Suspend process until signal received)

suspends processing of the calling thread.

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13 (Disable process for signals) prevents

the process from receiving signals.

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16 (Enable process for signals) enables the

process to receive signals.

v “setitimer()—Set Value for Interval Timer” on page 19 (Set value of interval timer) sets the timer

specified by which to the value in the structure pointed to by value and stores the previous value of

the timer in the structure pointed to by ovalue.

v “sigaction()—Examine and Change Signal Action” on page 22 (Examine and change signal action)

examines, changes, or both examines and changes the action associated with a specific signal.

v “sigaddset()—Add Signal to Signal Set” on page 31 (Add signal to signal set) is part of a family of

functions that manipulate signal sets.

v “sigdelset()—Delete Signal from Signal Set” on page 33 (Delete signal from signal set) is part of a

family of functions that manipulate signal sets.

v “sigemptyset()—Initialize and Empty Signal Set” on page 35 (Initialize and empty signal set) is part of

a family of functions that manipulate signal sets.

v “sigfillset()—Initialize and Fill Signal Set” on page 37 (Initialize and fill signal set) is part of a family of

functions that manipulate signal sets.

v “sigismember()—Test for Signal in Signal Set” on page 38 (Test for signal in signal set) is part of a

family of functions that manipulate signal sets.

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 40 (Perform nonlocal goto with

signal handling) restores the stack environment previously saved in env by sigsetjmp().

v “sigpending()—Examine Pending Signals” on page 44 (Examine pending signals) returns signals that

are blocked from delivery and pending for either the calling thread or the process.

v “sigprocmask()—Examine and Change Blocked Signals” on page 46 (Examine and change blocked

signals) examines, or changes, or both examines and changes the signal mask of the calling thread.

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 49 (Set jump point for nonlocal goto) saves

the current stack environment and, optionally, the current signal mask.

© Copyright IBM Corp. 1998, 2006 1

v “sigsuspend()—Wait for Signal” on page 52 (Wait for signal) replaces the current signal mask of a

thread with the signal set given by *sigmask and then suspends processing of the calling process.

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55 (Synchronously

accept a signal for interval of time) selects a pending signal from set, clears it from the set of pending

signals for the thread or process, and returns that signal number in the si_signo member in the

structure that is referenced by info.

v “sigwait()—Synchronously Accept a Signal” on page 58 (Synchronously accept a signal) selects a

pending signal from set, clears it from the set of pending signals for the thread or process, and returns

that signal number in the location that is referenced by sig.

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61 (Synchronously accept a

signal and signal data) selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info.

v “sleep()—Suspend Processing for Interval of Time” on page 63 (Suspend processing for interval of

time) suspends a thread for a specified number of seconds.

v “usleep()—Suspend Processing for Interval of Time” on page 66 (Suspend processing for interval of

time) suspends a thread for the number of microseconds specified by the of useconds parameter.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 72 for the file and member name of each header file.

The term ″signal″ comes from X/Open CAE Specification System Interface Definitions Issue 4, Number 2,

Glossary, page 27. X/Open Company Ltd., United Kingdom, 1994.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

alarm()—Set Schedule for Alarm Signal

 Syntax
 #include <unistd.h>

 unsigned int alarm(unsigned int seconds);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The alarm() function generates a SIGALRM signal after the number of seconds specified by the seconds

parameter have elapsed. The delivery of the SIGALRM signal is directed at the calling process.

seconds is the number of real seconds to elapse before the SIGALRM is generated. Because of processor

delays, the SIGALRM may be generated slightly later than this specified time. If seconds is zero, any

previously set alarm request is canceled.

Only one such alarm can be active at a time for the process. If a new alarm time is set, any previous

alarm is canceled.

Authorities and Locks

None.

2 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

seconds

(Input) The number of real seconds to elapse before generating the signal.

Return Value

 value alarm() was successful. The value returned is one of the following:

v A nonzero value that is the number of real seconds until the previous alarm() request would have

generated a SIGALRM signal.

v A value of zero if there was no previous alarm() request with time remaining.

-1 alarm() was not successful. The errno variable is set to indicate the error.

Error Conditions

If alarm() is not successful, errno usually indicates the following error. Under some conditions, errno could

indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The alarm() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, alarm() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v The <unistd.h> file

v “pause()—Suspend Process Until Signal Received” on page 11—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 66—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example generates a SIGALRM signal using the alarm() function:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

Signal APIs 3

#include <errno.h>

#define LOOP_LIMIT 1E6

volatile int sigcount=0;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

 sigcount = 1;

}

int main(int argc, char *argv[]) {

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 alarm(5); /* timer will pop in five seconds */

 time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount==0)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(0);

}

Output:

 Before loop, time is Sun Jan 22 10:14:00 1995

 Signal catcher called for signal 14

 After loop, time is Sun Jan 22 10:14:05 1995

 The signal catcher gained control

 The value of count is 290032

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

getitimer()—Get Value for Interval Timer

 Syntax
 #include <sys/time.h>

 int getitimer(int which, struct itimerval *value);

4 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Service Program Name: QP0SSRVI
 Default Public Authority: *USE
 Threadsafe: Yes

The getitimer() function returns the value last used to set the interval timer specified by which in the

structure pointed to by value.

Authorities and Locks

None.

Parameters

which (Input) The interval timer type.

 The possible values for which, which are defined in the <sys/time.h> header file, are as follows:

 ITIMER_REAL The interval timer value is decremented in real time. The SIGALRM signal is generated for

the process when this timer expires.

ITIMER_VIRTUAL The interval timer value is only decremented when the process is running. The SIGVTALRM

signal is generated for the process when this timer expires.

ITIMER_PROF The interval timer value is only decremented when the process is running or when the

system is running on behalf of the process. The SIGPROF signal is generated for the process

when this timer expires.

value (Output) A pointer to the space where the current interval timer value is stored.

Return Value

 0 getitimer() was successful.

-1 getitimer() was not successful. The errno variable is set to indicate the error.

Error Conditions

If getitimer() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The value of which is not equal to one of the defined values.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Related Information

v The <sys/time.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

Signal APIs 5

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 66—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the getitimer() function:

#include <sys/time.h>

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

#define LOOP_LIMIT 1E12

volatile int sigcount=0;

void catcher(int sig) {

 struct itimerval value;

 int which = ITIMER_REAL;

 printf("Signal catcher called for signal %d\n", sig);

 sigcount++;

 if(sigcount > 1) {

 /*

 * Disable the real time interval timer

 */

 getitimer(which, &value);

 value.it_value.tv_sec = 0;

 value.it_value.tv_usec = 0;

 setitimer(which, &value, NULL);

 }

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct itimerval value, ovalue, pvalue;

 int which = ITIMER_REAL;

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 getitimer(which, &pvalue);

 /*

 * Set a real time interval timer to repeat every 200 milliseconds

 */

6 IBM Systems - iSeries: UNIX-Type -- Signal APIs

value.it_interval.tv_sec = 0; /* Zero seconds */

 value.it_interval.tv_usec = 200000; /* Two hundred milliseconds */

 value.it_value.tv_sec = 0; /* Zero seconds */

 value.it_value.tv_usec = 500000; /* Five hundred milliseconds */

 result = setitimer(which, &value, &ovalue);

 /*

 * The interval timer value returned by setitimer() should be

 * identical to the timer value returned by getitimer().

 */

 if(ovalue.it_interval.tv_sec != pvalue.it_interval.tv_sec ||

 ovalue.it_interval.tv_usec != pvalue.it_interval.tv_usec ||

 ovalue.it_value.tv_sec != pvalue.it_value.tv_sec ||

 ovalue.it_value.tv_usec != pvalue.it_value.tv_usec) {

 printf("Real time interval timer mismatch\n");

 result = -1;

 }

 time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount<2)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(result);

}

Output:

 Before loop, time is Sun Jun 15 10:14:00 1997

 Signal catcher called for signal 14

 Signal catcher called for signal 14

 After loop, time is Sun Jun 15 10:14:01 1997

 The signal catcher gained control

 The value of count is 702943

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

kill()—Send Signal to Process or Group of Processes

 Syntax
 #include <sys/types.h>

 #include <signal.h>

 int kill(pid_t pid, int sig);

Signal APIs 7

#TOP_OF_PAGE
unix.htm
aplist.htm

Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The kill() function sends a signal to a process or process group specified by pid. The signal to be sent is

specified by sig and is either 0 or one of the signals from the list in the <sys/signal.h> header file.

The process sending the signal must have appropriate authority to the receiving process or processes. The

kill() function is successful if the process has permission to send the signal sig to any of the processes

specified by pid. If kill() is not successful, no signal is sent.

A process can use kill() to send a signal to itself. If the signal is not blocked in the sending thread, and if

no other thread has the sig unblocked or is waiting in a sigwait function for sig, either sig or at least one

pending unblocked signal is delivered to the sender before kill() returns.

Parameters

pid (Input) The process ID or process group ID to receive the signal.

sig (Input) The signal to be sent.

 pid and sig can be used as follows:

 pid_t pid; Specifies the processes that the caller wants to send the signal to:

v If pid is greater than zero, kill() sends the signal sig to the process whose ID is equal to pid.

v If pid is equal to zero, kill() sends the signal sig to all processes whose process group ID is equal to

that of the sender, except for those to which the sender does not have the appropriate authority to

send a signal.

v If pid is equal to -1, kill() returns -1 and errno is set to [ESRCH].

v If pid is less than -1, kill() sends the signal sig to all processes whose process group ID is equal to the

absolute value of pid, except for those to which the sender does not have appropriate authority to

send a signal.

int sig; The signal that should be sent to the processes specified by pid. This must be zero, or one of the signals

defined in the <sys/signal.h> header file. If sig is zero, kill() performs error checking, but does not send

a signal. You can use a sig value of zero to check whether the pid argument is valid.

Authorities

The thread sending the signal must have the appropriate authority to the receiving process. A thread is

allowed to send a signal to a process if at least one of the following conditions is true:

v The thread is sending a signal to its own process.

v The thread has *JOBCTL special authority defined in the currently running user profile or in a current

adopted user profile.

v The thread belongs to a process that is the parent of the receiving process. (The process being signaled

has a parent process ID equal to the process ID of the thread sending the signal.)

v If the receiving process is multi-threaded,

– The real or effective user ID of the thread matches the job user identity of the process receiving

process (the process being signaled).
v Otherwise,

8 IBM Systems - iSeries: UNIX-Type -- Signal APIs

– The real or effective user ID of the thread matches the real or effective user ID of the process being

signaled. If _POSIX_SAVED_IDS is defined in the <unistd.h> include file, the saved set user ID of

the intended recipient is checked instead of its effective user ID.

The job user identity is the name of the user profile by which a job is known to other jobs. It is described

in more detail in the Work Management topic.

When sending a signal affects entries for multiple processes, the signal is generated for each process to

which the process sending the signal is authorized. If the process does not have permission to send the

signal to any receiving process, the [EPERM] error is returned.

Regardless of user ID, a process can always send a SIGCONT signal to a process that is a member of the

same process group (same process group ID) as the sender.

Return Value

 0 kill() was successful. It had permission to send sig to one or more of the processes specified by pid.

-1 kill() was not successful. It failed to send a signal. The errno variable is set to indicate the error.

Error Conditions

If kill() is not successful, errno usually indicates one of the following errors. Under some conditions, errno

could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of sig is not within the range of signal numbers or is a signal that is not supported.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[ENOSYSRSC]

 System resources not available to complete request.

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESRCH]

No item could be found that matches the specified value.

 The process or process group specified in pid cannot be found.

Signal APIs 9

Usage Notes

1. If the value of pid is 0 (so that kill() is used to send a signal to all processes whose process group ID

is equal to that of the sender), kill() enables the process for signals if the process is not already

enabled for signals. For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16.

2. A process can use kill() to simulate the American National Standard C raise() function by using the

following:

 sigset_t sigmask;

 /*

 * Allow all signals to be delivered by unblocking all signals

 */

 sigemtyset(&sigmask);

 sigprocmask(SIG_SETMASK, &sigmask, NULL);

 ...

 kill(getpid(), SIGUSR1);

The example above ensures that no signals are blocked from delivery. When the kill() function is

called, the behavior is the same as calling the raise() function.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the kill() function:

#include <signal.h>

#include <unistd.h>

#include <errno.h>

#include <stdio.h>

#include <time.h>

int sendsig(int);

volatile int sigcount=0;

void catcher(int sig) {

 sigcount++;

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 int result;

 /* set up a signal catching function to handle the signals */

 /* that will be sent from the sendsig() function */

10 IBM Systems - iSeries: UNIX-Type -- Signal APIs

sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /* Call the sendsig() function that will call the kill() */

 /* function for SIGUSR1 n times based on the input value */

 result = sendsig(21);

 printf("Back in main\n");

 printf("The kill() function was called %d times\n", result);

 printf("The signal catching function was called %d times\n", \

 sigcount);

 return(0);

}

int sendsig(int count) {

 int i;

 int j=0;

 for(i=0; i < count; i++) {

 if(i == ((i/10)*10)) {

 j++;

 kill(getpid(), SIGUSR1);

 }

 }

 return(j);

}

Output:

 Back in main

 The kill() function was called 3 times

 The signal catching function was called 3 times

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

pause()—Suspend Process Until Signal Received

 Syntax
 #include <unistd.h>

 int pause(void);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The pause() function suspends processing of the calling thread. The thread does not resume until a signal

is delivered whose action is to call a signal-catching function, end the request, or terminate the process.

Some signals can be blocked by the thread’s signal mask. See “sigprocmask()—Examine and Change

Blocked Signals” on page 46 for details.

If an incoming unblocked signal has an action of end the request or terminate the process, pause() never

returns to the caller. If an incoming signal is handled by a signal-catching function, pause() returns after

the signal-catching function returns.

Signal APIs 11

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and Locks

None.

Parameters

None.

Return Value

There is no return value to indicate successful completion.

Error Conditions

If pause() returns, errno indicates the following:

-1

 pause() was not successful. The errno variable is set to indicate the reason.

[EINTR]

 Interrupted function call.

 A signal was received and handled by a signal-catching function that returned.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[EWOULDBLOCK]

Operation would have caused the process to be suspended. The current thread state would

prevent the signal function from completing.

Usage Notes

The pause() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, pause() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 7—Send Signal to Process or Group of

Processes

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

12 IBM Systems - iSeries: UNIX-Type -- Signal APIs

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing using the pause() function and determines the current time:

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("The time %s is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 alarm(10);

 timestamp("before pause");

 pause();

 timestamp("after pause");

 return(0);

}

Output:

 The time before pause is Sun Jan 22 11:09:08 1995

 Signal catcher called for signal 14

 The time after pause is Sun Jan 22 11:09:18 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0sDisableSignals()—Disable Process for Signals

 Syntax
 #include <signal.h>

 int Qp0sDisableSignals(void);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

Signal APIs 13

#TOP_OF_PAGE
unix.htm
aplist.htm

The Qp0sDisableSignals() function prevents the process from receiving signals.

After Qp0sDisableSignals() is called, the process is no longer eligible to receive signals from another

process or the system. Calls to functions that examine the signal action or the signal blocking mask of the

thread will not return the requested information. For details on those functions, see

“sigaction()—Examine and Change Signal Action” on page 22 and “sigprocmask()—Examine and Change

Blocked Signals” on page 46.

If the process is currently disabled for signals, a call to Qp0sDisableSignals() has no effect and an

[ENOTSIGINIT] error is returned.

Authorities and Locks

None.

Parameters

None

Return Value

 0 Qp0sDisableSignals() was successful.

-1 Qp0sDisableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0sDisableSignals() is not successful, errno usually indicates the following error. Under some

conditions, errno could indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system. However,

once a process has been enabled for signals, it remains eligible to receive signals until either it ends or

some user action is taken to prevent the delivery of signals.

Use of the following functions enables a process for signals:

v alarm()

v getpgrp()

v getpid()

v kill()

v pause()

v Qp0wGetPgrp()

v Qp0wGetPid()

v setitimer()

v sigaction()

v sigprocmask()

v sigsuspend()

14 IBM Systems - iSeries: UNIX-Type -- Signal APIs

v sigtimedwait()

v sigwait()

v sigwaitinfo()

v sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

2. The user of signals can prevent the signals from being delivered to the process by calling the

sigprocmask() function. The user can also ignore the signal by calling the sigaction() function.

However, not all signals can be blocked or ignored. For details, see “sigaction()—Examine and Change

Signal Action” on page 22 and “sigprocmask()—Examine and Change Blocked Signals” on page 46.

The Qp0sDisableSignals() function provides a means of preventing the calling process from receiving

any signal from other processes or the system.

3. If a process has not been enabled for signals, the signal blocking mask for any thread created in the

process will be set to the empty set.

4. If a process with multiple threads is disabled for signals by calling Qp0sDisableSignals() and then

later re-enabled for signals, only the thread that causes signals to be enabled will have its signal

blocking mask changed. The signal blocking mask for all other threads will be the value last used to

set the signal blocking mask for those threads.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 7—Send Signal to Process or Group of

Processes

v “pause()—Suspend Process Until Signal Received” on page 11—Suspend Process Until Signal Received

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask.

#include <signal.h>

#include <time.h>

#include <unistd.h>

#include <stdio.h>

void timestamp(char *str) {

 time_t t;

Signal APIs 15

rzah4mst.htm

time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char * argv[]) {

 unsigned int ret;

 timestamp("before sleep()");

 /*

 * The sleep() function implicitly enables the process to

 * receive signals.

 */

 ret = sleep(10);

 timestamp("after sleep()");

 printf("sleep() returned %d\n", ret);

 /*

 * Qp0sDisableSignals() prevents the process from receiving

 * signals. If the call to the Qp0sDisableSignals() function

 * is not done, the process would remain eligible to receive

 * signals after the return from main().

 */

 Qp0sDisableSignals();

 return(0);

}

Output:

 before sleep() the time is Sun Jan 22 17:25:17 1995

 after sleep() the time is Sun Jan 22 17:25:28 1995

 sleep() returned 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0sEnableSignals()—Enable Process for Signals

 Syntax
 #include <signal.h>

 int Qp0sEnableSignals(void);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0sEnableSignals() function enables the process to receive signals.

The Qp0sEnableSignals() function causes the process signal vector to be initialized for the set of

supported signals. The signal handling action for each supported signal is set to the default action, as

defined by sigaction() (see “sigaction()—Examine and Change Signal Action” on page 22). The signal

blocking mask of the calling thread is set to the empty signal set (see “sigemptyset()—Initialize and

Empty Signal Set” on page 35).

16 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

If the process is currently enabled for signals, a call to the Qp0sEnableSignals() has no effect. That is, the

process signal vector and the signal blocking mask of the calling thread are unchanged and an

[EALREADY] error is returned.

Authorities and Locks

None.

Parameters

None

Return Value

 0 Qp0sEnableSignals() was successful.

-1 Qp0sEnableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0sEnableSignals() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EALREADY]

 Operation already in progress.

 The calling process is currently enabled for signals.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

v

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system. The

Qp0sEnableSignals() function allows the calling process to receive signals from other processes or the

system without having to call other signal functions that enable the process for signals.

Use of the following functions enable a process for signals:

v alarm()

v getpgrp()

v getpid()

v kill()

v pause()

v Qp0wGetPgrp()

v Qp0wGetPid()

v setitimer()

v sigaction()

v sigprocmask()

v sigsuspend()

v sigtimedwait()

Signal APIs 17

v sigwait()

v sigwaitinfo()

v sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

2. Once a process has been enabled for signals, it remains eligible to receive signals until either it ends

or some user action is taken to prevent the delivery of signals. The user of signals can prevent the

signals from being delivered by calling the sigprocmask() function. The user can also ignore the signal

by calling the sigaction() function. However, not all signals can be blocked or ignored. For details, see

“sigaction()—Examine and Change Signal Action” on page 22 and “sigprocmask()—Examine and

Change Blocked Signals” on page 46.

3. If a process has not been enabled for signals, the signal blocking mask for any thread created in the

process will be set to the empty set.

4. If a process with multiple threads is disabled for signals by calling Qp0sDisableSignals() and then

later re-enabled for signals, only the thread that causes signals to be enabled will have its signal

blocking mask changed. The signal blocking mask for all other threads will be the value last used to

set the signal blocking mask for those threads.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 7—Send Signal to Process or Group of

Processes

v “pause()—Suspend Process Until Signal Received” on page 11—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask:

#include <signal.h>

#include <errno.h>

int resetSignals(void) {

 int return_value;

 return_value = Qp0sEnableSignals();

 if(return_value == -1) {

 Qp0sDisableSignals();

18 IBM Systems - iSeries: UNIX-Type -- Signal APIs

rzah4mst.htm

return_value = Qp0sEnableSignals();

 }

 return(return_value);

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

setitimer()—Set Value for Interval Timer

 Syntax
 #include <sys/time.h>

 int setitimer(int which,

 const struct itimerval *value,

 struct itimerval *ovalue);

 Service Program Name: QP0SSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The setitimer() function sets the timer specified by which to the value in the structure pointed to by value

and stores the previous value of the timer in the structure pointed to by ovalue.

Authorities and Locks

None.

Parameters

which (Input) The interval timer type.

 The possible values for which, which are defined in the <sys/time.h> header file, are as follows:

 ITIMER_REAL The interval timer value is decremented in real time. The SIGALRM signal is generated for

the process when this timer expires.

ITIMER_VIRTUAL The interval timer value is only decremented when the process is running. The SIGVTALRM

signal is generated for the process when this timer expires.

ITIMER_PROF The interval timer value is only decremented when the process is running or when the

system is running on behalf of the process. The SIGPROF signal is generated for the process

when this timer expires.

value (Input) A pointer to the interval timer structure to be used to change the interval timer value.

 The timer value is defined by the itimerval structure. If it_value is non-zero, it indicates the time

to the next timer expiration. If it_interval is non-zero, it indicates the time to be used to reset the

timer when the it_value time elapses. If it_value is zero, the timer is disabled and the value of

it_interval is ignored. If it_interval is zero, the timer is disabled after the next timer expiration.

ovalue (Output) A pointer to the space where the previous interval timer value is stored. This value may

be NULL.

Return Value

 0 setitimer() was successful.

-1 setitimer() was not successful. The errno variable is set to indicate the error.

Signal APIs 19

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If setitimer() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The value of which is not equal to one of the defined values.

v The tv_usec member of the it_value structure has a value greater than or equal to 1,000,000.

v The tv_usec member of the it_interval structure has a value greater than or equal to 1,000,000.

[ENOSYSRSC]

 System resources not available to complete request.

v The ITIMER_VIRTUAL value for which is not supported on this implementation.

v The ITIMER_PROF value for which is not supported on this implementation.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The setitimer() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, setitimer() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <sys/time.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 66—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the setitimer() function:

#include <sys/time.h>

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

#define LOOP_LIMIT 1E12

20 IBM Systems - iSeries: UNIX-Type -- Signal APIs

volatile int sigcount=0;

void catcher(int sig) {

 struct itimerval value;

 int which = ITIMER_REAL;

 printf("Signal catcher called for signal %d\n", sig);

 sigcount++;

 if(sigcount > 1) {

 /*

 * Disable the real time interval timer

 */

 getitimer(which, &value);

 value.it_value.tv_sec = 0;

 value.it_value.tv_usec = 0;

 setitimer(which, &value, NULL);

 }

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct itimerval value, ovalue, pvalue;

 int which = ITIMER_REAL;

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 getitimer(which, &pvalue);

 /*

 * Set a real time interval timer to repeat every 200 milliseconds

 */

 value.it_interval.tv_sec = 0; /* Zero seconds */

 value.it_interval.tv_usec = 200000; /* Two hundred milliseconds */

 value.it_value.tv_sec = 0; /* Zero seconds */

 value.it_value.tv_usec = 500000; /* Five hundred milliseconds */

 result = setitimer(which, &value, &ovalue);

 /*

 * The interval timer value returned by setitimer() should be

 * identical to the timer value returned by getitimer().

 */

 if(ovalue.it_interval.tv_sec != pvalue.it_interval.tv_sec ||

 ovalue.it_interval.tv_usec != pvalue.it_interval.tv_usec ||

 ovalue.it_value.tv_sec != pvalue.it_value.tv_sec ||

 ovalue.it_value.tv_usec != pvalue.it_value.tv_usec) {

 printf("Real time interval timer mismatch\n");

 result = -1;

 }

Signal APIs 21

time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount<2)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(result);

}

Output:

 Before loop, time is Sun Jun 15 10:14:00 1997

 Signal catcher called for signal 14

 Signal catcher called for signal 14

 After loop, time is Sun Jun 15 10:14:01 1997

 The signal catcher gained control

 The value of count is 702943

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigaction()—Examine and Change Signal Action

 Syntax
 #include <signal.h>

 int sigaction(int sig, const struct sigaction *act,

 struct sigaction *oact);

 Service Program Name: QP0SSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigaction() function examines, changes, or both examines and changes the action associated with a

specific signal.

The sig argument must be one of the macros defined in the <signal.h> header file.

If sigaction() fails, the action for the signal sig is not changed.

Authorities and Locks

None.

Parameters

sig (Input) A signal from the list defined in “Control Signals Table” on page 26.

22 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

*act (Input) A pointer to the sigaction structure that describes the action to be taken for the signal.

Can be NULL.

 If act is a NULL pointer, signal handling is unchanged. sigaction() can be used to inquire about

the current handling of signal sig.

 If act is not NULL, the action specified in the sigaction structure becomes the new action

associated with sig.

*oact (Output) A pointer to a storage location where sigaction() can store a sigaction structure. This

structure contains the action currently associated with sig. Can be NULL.

 If oact is a NULL pointer, sigaction() does not store this information.

 The sigaction() function uses structures of the sigaction type. The following is an example of a

sigaction() structure:

struct sigaction {

 void (*sa_handler)(int);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_sigaction)(int, siginfo_t *,void *);

};

The members of the sigaction structure are as follows:

 Member name Description

void (*) (int) sa_handler A pointer to the function assigned to handle the signal. The value of this

member also can be SIG_DFL (indicating the default action) or SIG_IGN

(indicating that the signal should be ignored).

sigset_t sa_mask A signal set (set of signals) to be added to the signal mask of the calling

process before the signal-catching function sa_handler is called. For more

on signal sets, see “sigprocmask()—Examine and Change Blocked Signals”

on page 46. You cannot use this mechanism to block the SIGKILL or

SIGSTOP signals. If sa_mask includes these signals, they are ignored and

sigaction() does not return an error.

sa_mask must be set by using one or more of the signal set manipulation

functions: sigemptyset(), sigfillset(), sigaddset(), or sigdelset()

Signal APIs 23

Member name Description

int sa_flags A collection of flag bits that affect the behavior of signals. The following

flag bits can be set in sa_flags:

SA_NOCLDSTOP

If this flag is set, the system does not generate a SIGCHLD signal

when child processes stop. This is relevant only when the sig

argument of sigaction() is SIGCHLD.

SA_NODEFER

If this flag is set and sigis caught, sig is not added to the signal

mask of the process on entry to the signal catcher unless it is

included in sa_mask. If this flag is not set, sig is always added to

the signal mask of the process on entry to the signal catcher. This

flag is supported for compatibility with applications that use

signal() to set the signal action.

SA_RESETHAND

If this flag is set, the signal-handling action for the signal is reset

to SIG_DFL and the SA_SIGINFO flag is cleared on entry to the

signal-catching function. Otherwise, the signal-handling action is

not changed on entry to the signal-catching function. This flag is

supported for compatibility with applications that use signal() to

set the signal action.

SA_SIGINFO

If this flag is not set and the signal is caught, the signal-catching

function identified by sa_handler is entered. If this flag is set and

the signal is caught, the signal-catching function identified by

sa_sigaction is entered.

void (*) (int, siginfo_t *, void *)

sa_sigaction

A pointer to the function assigned to handle the signal. If SA_SIGINFO is

set, the signal-catching function identified by sa_sigaction is entered with

additional arguments and sa_handler is ignored. If SA_SIGINFO is not

set, sa_sigaction is ignored. If sig_action() is called from a program using

data model LLP64, the parameters to sa_sigaction must be declared as

siginfo_t *__ptr128 and void *__ptr128.

When a signal catcher installed by sigaction(), with the SA_RESETHAND flag set off, catches a signal,

the system calculates a new signal mask by taking the union of the following:

v The current signal mask

v The signals specified by sa_mask

v The signal that was just caught if the SA_NODEFER flag is set off

This new mask stays in effect until the signal handler returns, or until sigprocmask(), sigsuspend(), or

siglongjmp() is called. When the signal handler ends, the original signal mask is restored.

After an action has been specified for a particular signal, it remains installed until it is explicitly changed

with another call to sigaction().

There are three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, or a pointer to a

function. Initially, all signals are set to SIG_DFL or SIG_IGN. The actions prescribed by these values are

as follows:

24 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Action Description

SIG_DFL (signal-specific default action) v The default actions for the supported signals are specified in “Control

Signals Table” on page 26

v If the default action is to stop the process, that process is temporarily

suspended. When a process stops, a SIGCHLD signal is generated for

its parent process, unless the parent process has set the

SA_NOCLDSTOP flag. While a process is stopped, any additional

signals sent to the process are not delivered. The one exception is

SIGKILL, which always ends the receiving process. When the process

resumes, any unblocked signals that were not delivered are then

delivered to it.

v If the default action is to ignore the signal, setting a signal action to

SIG_DFL causes any pending signals for that signal to be discarded,

whether or not the signal is blocked.

SIG_IGN (ignore signal) v Delivery of the signal has no effect on the process. The behavior of a

process is undefined if it ignores a SIGFPE, SIGILL, or SIGSEGV signal

that was not generated by kill() or raise().

v If the default action is to ignore the signal, setting a signal action to

SIG_DFL causes any pending signals for that signal to be discarded,

whether or not the signal is blocked.

v The signal action for the signals SIGKILL and SIGSTOP cannot be set to

SIG_IGN.

Pointer to a function (catch signal) v On delivery of the signal, the receiving process runs the signal-catching

function. When the signal-catching function returns, the receiving

process resumes processing at the point at which it was interrupted.

v If SA_SIGINFO is not set, the signal-catching function identified by

sa_handler is entered as follows:

void func(int signo);

where the following is true:

– func is the specified signal-catching function.

– signo is the signal number of the signal being delivered.

v If SA_SIGINFO is set, the signal-catching function identified by

sa_sigaction is entered as follows:

void func(int signo, siginfo_t *info, void *context);

where the following is true:

– func is the specified signal-catching function.

– signo is the signal number of the signal being delivered.

– *info points to an object of type siginfo_t associated with the signal

being delivered.

– context is set to the NULL pointer.

v The behavior of a process is undefined if it returns normally from a

signal-catching function for a SIGFPE, SIGILL, or SIGSEGV signal that

was not generated by kill() or raise().

v The signals SIGKILL and SIGSTOP cannot be caught.

The following is an example of the siginfo_t structure:

Signal APIs 25

typedef struct siginfo_t {

 int si_signo; /* Signal number */

 int si_source : 1; /* Signal source */

 int reserved1 : 15; /* Reserved (binary 0) */

 short si_data_size; /* Size of additional signal

 related data (if available) */

 _MI_Time si_time; /* Time of signal */

 struct {

 char reserved2[2] /* Pad (reserved) */

 char si_job[10]; /* Simple job name */

 char si_user[10]; /* User name */

 char si_jobno[6]; /* Job number */

 char reserved3[4]; /* Pad (reserved) */

 } si_QJN; /* Qualified job name */

 int si_code; /* Cause of signal */

 int si_errno; /* Error number */

 pid_t si_pid; /* Process ID of sender */

 uid_t si_uid; /* Real user ID of sender */

 char si_data[1]; /* Additional signal related

 data (if available) */

} siginfo_t;

The members of the siginfo_t structure are as follows:

 int si_signo The system-generated signal number.

int si_source Indicates whether the source of the signal is being generated by the system or another process on

the system. When the signal source is another process, the members si_QJN, si_pid, and si_uid

contain valid data. When the signal source is the system, those members are set to binary 0.

short si_data_size The length of si_errno, si_code, si_pid, si_uid, and any additional signal-related data. If this

member is set to 0, this signal-related information is not available.

struct si_QJN The fully qualified i5/OS job name of the process sending the signal.

int si_errno If not zero, this member contains an errno value associated with the signal, as defined in

<errno.h>.

int si_code If not zero, this member contains a code identifying the cause of the signal. Possible code values

are defined in the <signal.h> header file.

pidt_t si_pid The process ID of the process sending the signal.

uid_t si_uid The real user ID of the process sending the signal.

char si_data[1] If present, the member contains any additional signal-related data.

Control Signals Table

See “Default Actions:” on page 27 for a description of the value given.

 Value Default Action Meaning

SIGABRT 2 Abnormal termination

SIGFPE 2 Arithmetic exceptions that are not masked (for example, overflow, division by

zero, and incorrect operation)

SIGILL 2 Detection of an incorrect function image

SIGINT 2 Interactive attention

SIGSEGV 2 Incorrect access to storage

SIGTERM 2 Termination request sent to the program

SIGUSR1 2 Intended for use by user applications

SIGUSR2 2 Intended for use by user applications

SIGALRM 2 A timeout signal (sent by alarm())

SIGHUP 2 A controlling terminal is hung up, or the controlling process ended

26 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Value Default Action Meaning

SIGKILL 1 A termination signal that cannot be caught or ignored

SIGPIPE 3 A write to a pipe that is not being read

SIGQUIT 2 A quit signal for a terminal

SIGCHLD 3 An ended or stopped child process (SIGCLD is an alias name for this signal)

SIGCONT 5 If stopped, continue

SIGSTOP 4 A stop signal that cannot be caught or ignored

SIGTSTP 4 A stop signal for a terminal

SIGTTIN 4 A background process attempted to read from a controlling terminal

SIGTTOU 4 A background process attempted to write to a controlling terminal

SIGIO 3 Completion of input or output

SIGURG 3 High bandwidth data is available at a socket

SIGPOLL 2 Pollable event

SIGBUS 2 Specification exception

SIGPRE 2 Programming exception

SIGSYS 2 Bad system call

SIGTRAP 2 Trace or breakpoint trap

SIGPROF 2 Profiling timer expired

SIGVTALRM 2 Virtual timer expired

SIGXCPU 2 Processor time limit exceeded

SIGXFSZ 2 File size limit exceeded

SIGDANGER 2 System crash imminent

SIGPCANCEL 2 Thread termination signal that cannot be caught or ignored

Default Actions:

 1 End the process immediately.

2 End the request.

3 Ignore the signal.

4 Stop the process.

5 Continue the process if it is currently stopped. Otherwise, ignore the signal.

Return Value

 0 sigaction() was successful.

-1 sigaction() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigaction() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Signal APIs 27

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[ENOTSUP]

 Operation not supported.

 The operation cannot be performed while running in a system job. An attempt was made to

change a signal action while running in a system job.

Usage Notes

1. When the sigaction function is used to change the action associated with a specific signal, it enables a

process for signals if the process is not already enabled for signals. For details, see

“Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been enabled for

signals, sigaction() is not successful, and an [ENOTSIGINIT] error is returned.

2. The sigaction() function can be used to set the action for a particular signal with the same semantics

as a call to signal(). The sigaction structure indicated by the parameter *act should contain the

following:

v A sa_handler equal to the func specified on signal().

v A sa_mask containing the signal mask set by sigemptyset().

v A sa_flag with the SA_RESETHAND flag set on.

v A sa_flag with the SA_NODEFER flag set on.
3. Some of the functions have been restricted to be serially reusable with respect to asynchronous

signals. That is, the library does not allow an asynchronous signal to interrupt the processing of one

of these functions until it has completed.

This restriction needs to be taken into consideration when a signal-catching function is called

asynchronously, because it causes the behavior of some of the library functions to become

unpredictable.

Because of this, when producing a strictly compliant POSIX application, only the following functions

should be assumed to be reentrant with respect to asynchronous signals. Your signal-catching

functions should be restricted to using only these functions:

 accept() access() alarm() chdir()

chmod() chown() close() connect()

creat() dup() dup2() fcntl()

fstat() getegid() geteuid() getgid()

getgroups() getpgrp() getpid() getppid()

getuid() kill() link() lseek()

mkdir() open() pathconf() pause()

read() readv() recv() recvfrom()

recvmsg() rename() rmdir() select()

send() sendmsg() sendto() sigaction()

sigaddset() sigdelset() sigemptyset() sigfillset()

sigismember() sigpending() sigprocmask() sigsuspend()

sigtimedwait() sigwait() sigwaitinfo() setitimer()

28 IBM Systems - iSeries: UNIX-Type -- Signal APIs

sleep() stat() sysconf() time()

times() umask() uname() unlink()

utime() write() writev()

In addition to the above functions, the macro versions of getc() and putc() are not reentrant. However,

the library versions of these functions are reentrant.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “kill()—Send Signal to Process or Group of Processes” on page 7—Send Signal to Process or Group of

Processes

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how signal catching functions can be established using the sigaction()

function:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

void check_mask(int sig, char *signame) {

 sigset_t sigset;

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, sig))

 printf("the %s signal is blocked\n", signame);

 else

 printf("the %s signal is unblocked\n", signame);

}

void catcher(int sig) {

 printf("inside catcher() function\n");

 check_mask(SIGUSR1, "SIGUSR1");

 check_mask(SIGUSR2, "SIGUSR2");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact, old_sigact;

 sigset_t sigset;

 /*

 * Set up an American National Standard C style signal handler

 * by setting the signal mask to the empty signal set and

 * using the do-not-defer signal, and reset the signal handler

 * to the SIG_DFL signal flag options.

 */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_flags = sigact.sa_flags | SA_NODEFER | SA_RESETHAND;

Signal APIs 29

sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /*

 * Send a signal to this program by using

 * kill(getpid(), SIGUSR1)

 * which is the equivalent of the American

 * National Standard C raise(SIGUSR1)

 * function call.

 */

 printf("raise SIGUSR1 signal\n");

 kill(getpid(), SIGUSR1);

 /*

 * Get the current value of the signal handling action for

 * SIGUSR1. The signal-catching function should have been

 * reset to SIG_DFL

 */

 sigaction(SIGUSR1, NULL, &old_sigact);

 if (old_sigact.sa_handler != SIG_DFL)

 printf("signal handler was not reset\n");

 /*

 * Reset the signal-handling action for SIGUSR1

 */

 sigemptyset(&sigact.sa_mask);

 sigaddset(&sigact.sa_mask, SIGUSR2);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 printf("raise SIGUSR1 signal\n");

 kill(getpid(), SIGUSR1);

 /*

 * Get the current value of the signal-handling action for

 * SIGUSR1. catcher() should still be the signal catching

 * function.

 */

 sigaction(SIGUSR1, NULL, &old_sigact);

 if(old_sigact.sa_handler != catcher)

 printf("signal handler was reset\n");

 return(0);

}

Output:

 raise SIGUSR1 signal

 inside catcher() function

 the SIGUSR1 signal is unblocked

 the SIGUSR2 signal is unblocked

 raise SIGUSR1 signal

 inside catcher() function

 the SIGUSR1 signal is blocked

 the SIGUSR2 signal is blocked

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

30 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

sigaddset()—Add Signal to Signal Set

 Syntax
 #include <signal.h>

 int sigaddset(sigset_t *set, int signo);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigaddset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigaddset() adds a signal to the set of signals already recorded in set.

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 26.

Return Value

 0 sigaddset() successfully added to the signal set.

-1 sigaddset() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigaddset() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

Signal APIs 31

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a signal to a set of signals:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void catcher(int sig) {

 printf("catcher() has gained control\n");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 printf("before first kill()\n");

 kill(getpid(), SIGUSR1);

 /*

 * Blocking SIGUSR1 signals prevents the signals

 * from being delivered until they are unblocked,

 * so the catcher will not gain control.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before second kill()\n");

 kill(getpid(), SIGUSR1);

 printf("after second kill()\n");

 return(0);

}

32 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Output:

 before first kill()

 catcher() has gained control

 before second kill()

 after second kill()

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigdelset()—Delete Signal from Signal Set

 Syntax
 #include <signal.h>

 int sigdelset(sigset_t *set, int signo);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigdelset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigdelset() removes the specified signo from the list of signals recorded in set.

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 26.

Return Value

 0 sigdelset() successfully deleted from the signal set.

-1 sigdelset() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigdelset() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

Signal APIs 33

#TOP_OF_PAGE
unix.htm
aplist.htm

The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example deletes a signal from a set of signals:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void catcher(int sig) {

 printf("catcher() has gained control\n");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /*

 * Blocking all signals prevents the blockable

 * signals from being delivered until they are

 * unblocked, so the catcher will not gain

 * control.

 */

 sigfillset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &,sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR1);

34 IBM Systems - iSeries: UNIX-Type -- Signal APIs

printf("before unblocking SIGUSR1\n");

 sigdelset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("after unblocking SIGUSR1\n");

 return(0);

}

Output:

 before kill()

 before unblocking SIGUSR1

 catcher() has gained control

 after unblocking SIGUSR1

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigemptyset()—Initialize and Empty Signal Set

 Syntax
 #include <signal.h>

 int sigemptyset(sigset_t *set);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigemptyset() function is part of a family of functions that manipulate signal sets. Signal sets are

data objects that let a thread keep track of groups of signals. For example, a thread might create a signal

set to record which signals it is blocking, and another signal set to record which signals are pending.

Signal sets are used to manipulate groups of signals used by other functions (such as sigprocmask()) or

to examine signal sets returned by other functions (such as sigpending()).

sigemptyset() initializes the signal set specified by set to an empty set. That is, all supported signals are

excluded (see “Control Signals Table” on page 26).

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set.

Return Value

 0 sigemptyset() was successful.

Error Conditions

The sigemptyset() function does not return an error.

Signal APIs 35

#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes a set of signals to the empty set:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = SIG_IGN;

 sigaction(SIGUSR2, &sigact, NULL);

 /*

 * Unblocking all signals ensures that the signal

 * handling action will be taken when the signal

 * is generated.

 */

 sigemptyset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR2);

 printf("after kill()\n");

 return(0);

}

Output:

 before kill()

 after kill()

36 IBM Systems - iSeries: UNIX-Type -- Signal APIs

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigfillset()—Initialize and Fill Signal Set

 Syntax
 #include <signal.h>

 int sigfillset(sigset_t *set);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigfillset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigfillset() initializes the signal set specified by set to a complete set. That is, the set includes all

supported signals (see “Control Signals Table” on page 26).

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set.

Return Value

 0 sigfillset() was successful.

Error Conditions

The sigfillset() function does not return an error.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

Signal APIs 37

#TOP_OF_PAGE
unix.htm
aplist.htm

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes a set of signals to the complete set:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

int main(int argc, char *argv[]) {

 sigset_t sigset;

 /*

 * Blocking all signals ensures that the signal

 * handling action for the signals in the set is

 * not taken until the signals are unblocked.

 */

 sigfillset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR2);

 printf("after kill()\n");

 return(0);

}

Output:

 before kill()

 after kill()

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigismember()—Test for Signal in Signal Set

 Syntax
 #include <signal.h>

 int sigismember(const sigset_t *set, int signo);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigismember() function is part of a family of functions that manipulate signal sets. Signal sets are

data objects that let a thread keep track of groups of signals. For example, a thread might create a signal

set to record which signals it is blocking, and another signal set to record which signals are pending.

Signal sets are used to manipulate groups of signals used by other functions (such as sigprocmask()) or

to examine signal sets returned by other functions (such as sigpending()).

38 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

sigismember() tests whether a signal number specified by signo is a member of a signal set specified by

set.

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 26.

Return Value

 1 The specified signal is in the specified signal set.

0 The specified signal is not in the specified signal set.

-1 An error occurred. The errno variable is set to indicate the error.

Error Conditions

If sigismember() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Signal APIs 39

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the sigismember() function to test for the presence of signals in a signal set:

#include <stdio.h>

#include <signal.h>

void check(sigset_t set, int signo, char *signame) {

 printf("%s is ", signame);

 if(!sigismember(&set, signo))

 printf("not ");

 printf("in the set");

}

int main(int argc, char *argv[]) {

 sigset_t sigset;

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGKILL);

 sigaddset(&sigset, SIGCHLD);

 check(sigset, SIGUSR1, "SIGUSR1");

 check(sigset, SIGUSR2, "SIGUSR2");

 check(sigset, SIGCHLD, "SIGCHLD");

 check(sigset, SIGFPE, "SIGFPE");

 check(sigset, SIGKILL, "SIGKILL");

 return(0);

}

Output:

 SIGUSR1 is in the set

 SIGUSR2 is not in the set

 SIGCHLD is in the set

 SIGFPE is not in the set

 SIGKILL is in the set

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

siglongjmp()—Perform Nonlocal Goto with Signal Handling

 Syntax
 #include <setjmp.h>

 void siglongjmp(sigjmp_buf env, int val);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The siglongjmp() function restores the stack environment previously saved in env by sigsetjmp().

siglongjmp() also provides the option to restore the signal mask, depending on whether the signal mask

was saved by sigsetjmp().

40 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

siglongjmp() is similar to longjmp(), except for the optional capability of restoring the signal mask.

The sigsetjmp() and siglongjmp() functions provide a way to perform a nonlocal ″goto.″

A call to sigsetjmp() causes the current stack environment (including, optionally, the signal mask) to be

saved in env. A subsequent call to siglongjmp() does the following:

v Restores the saved environment and signal mask (if saved by sigsetjmp()).

v Returns control to a point in the program corresponding to the sigsetjmp() call.

Processing resumes as if the sigsetjmp() call had just returned the given val. All variables, (except register

variables) that are accessible to the function that receives control contain the values they had when

siglongjmp() was called. The values of register variables are unpredictable. Nonvolatile auto variables

that are changed between calls to sigsetjmp() and siglongjmp() are also unpredictable.

Note: When using siglongjmp(), the function in which the corresponding call to sigsetjmp() was made

must not have returned first. Unpredictable program behavior occurs if siglongjmp() is called after the

function calling sigsetjmp() has returned.

The val argument passed to siglongjmp() must be nonzero. If the val argument is equal to zero,

siglongjmp() substitutes a 1 in its place.

siglongjmp() does not use the normal function call and return mechanisms. siglongjmp() restores the

saved signal mask only if the env parameter was initialized by a call to sigsetjmp() with a nonzero

savemask argument.

Authorities and Locks

None.

Parameters

env (Input) An array type that holds the information needed to restore a calling environment.

val (Input) The return value.

Return Value

None.

Error Conditions

The siglongjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack

environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

v The <setjmp.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 49—Set Jump Point for Nonlocal Goto

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

Signal APIs 41

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:

 if(sigsetjmp(mark,1) != 0) { ...

When the system first performs the if statement, it saves the environment and signal mask in mark and

sets the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program

prints the following message:

 sigsetjmp() has been called

The subsequent call to function p() tests for a local error condition, which can cause it to perform

siglongjmp() (in this example as a result of calling a signal catching function). Control is returned to the

original sigsetjmp() function using the environment saved in mark and the restored signal mask. This

time, the condition is true because -1 is the return value from siglongjmp(). The program then performs

the statements in the block and prints the following:

 siglongjmp() function was called

Then the program performs the recover() function and exits.

Here is the program:

#include <signal.h>

#include <setjmp.h>

#include <unistd.h>

#include <stdio.h>

sigset_t sigset;

sigjmp_buf mark;

void catcher(int);

void p(void);

void recover(void);

int main(int argc, char *argv[]) {

 int result;

 /*

 * Block the SIGUSR1 and SIGUSR2 signals. This set of

 * signals will be saved as part of the environment

 * by the sigsetjmp() function.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 if(sigsetjmp(mark, 1) != 0) {

 printf("siglongjmp() function was called\n");

 recover();

 result=0;

 }

 else {

 printf("sigsetjmp() has been called\n");

 p();

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

42 IBM Systems - iSeries: UNIX-Type -- Signal APIs

printf("siglongjmp() was not called\n");

 result=-1;

 }

 printf("return to main with result %d\n", result);

 return(result);

}

void p(void) {

 struct sigaction sigact;

 int error=0;

 printf("performing function p()\n");

 /* Send signal handler in case error condition is detected */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR2, &sigact, NULL);

 sigdelset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 /* After some processing an error condition is detected */

 error=-1;

 /* Call catcher() function if error is detected */

 if(error != 0) {

 printf("error condition detected, send SIGUSR2 signal\n");

 kill(getpid(), SIGUSR2);

 }

 printf("return from catcher() function is an error\n");

}

void recover(void) {

 printf("taking recovery action\n");

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("signal mask was restored after siglongjmp()\n");

}

void catcher(int signo) {

 printf("in catcher() before siglongjmp()\n");

 siglongjmp(mark, -1);

 printf("in catcher() after siglongjmp() is an error\n");

}

Output

 sigsetjmp() has been called

 performing function p()

 error condition detected, send SIGUSR2 signal

 in catcher() before siglongjmp()

Signal APIs 43

siglongjmp() function was called

 taking recovery action

 signal mask was restored after siglongjmp()

 return to main with result 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigpending()—Examine Pending Signals

 Syntax
 #include <signal.h>

 int sigpending(sigset_t *set);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigpending() function returns signals that are blocked from delivery and pending for either the

calling thread or the process. This information is represented as a signal set stored in set. For more

information on examining the signal set pointed to by set, see “sigismember()—Test for Signal in Signal

Set” on page 38.

Authorities and Locks

None.

Parameters

*set (Output) A pointer to the space where the signal set information is stored.

Return Value

 0 sigpending() was successful.

-1 sigpending() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigpending() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

44 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns blocked and pending signals:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

void catcher(int sig) {

 puts("inside catcher() function\n");

}

void check_pending(int sig, char *signame) {

 sigset_t sigset;

 if(sigpending(&sigset) != 0)

 perror("sigpending() error\n");

 else if(sigismember(&sigset, sig))

 printf("a %s signal is pending\n", signame);

 else

 printf("no %s signals are pending\n", signame);

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 if(sigaction(SIGUSR1, &sigact, NULL) != 0)

 perror("sigaction() error\n");

 else {

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 if (sigprocmask(SIG_SETMASK, &sigset, NULL) != 0)

 perror("sigprocmask() error\n");

 else {

 printf("SIGUSR1 signals are now blocked\n");

 kill(getpid(), SIGUSR1);

 printf("after kill()\n");

 check_pending(SIGUSR1, "SIGUSR1");

 sigemptyset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("SIGUSR1 signals are no longer blocked\n");

 check_pending(SIGUSR1, "SIGUSR1");

Signal APIs 45

}

 }

 return(0);

}

Output:

 SIGUSR1 signals are now blocked

 after kill()

 a SIGUSR1 signal is pending

 inside catcher() function

 SIGUSR1 signals are no longer blocked

 no SIGUSR1 signals are pending

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigprocmask()—Examine and Change Blocked Signals

 Syntax
 #include <signal.h>

 int sigprocmask(int how, const sigset_t *set,

 sigset_t *oset);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigprocmask() function examines, or changes, or both examines and changes the signal mask of the

calling thread.

The signals SIGKILL or SIGStop cannot be blocked. Any attempt to use sigprocmask() to block these

signals is simply ignored, and no error is returned.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill() or raise() (that is, were

generated by the system as a result of a hardware or software exception) are not blocked.

If there are any pending unblocked signals after sigprocmask() has changed the signal mask, at least one

of those signals is delivered to the thread before sigprocmask() returns.

If sigprocmask() fails, the process’s signal mask is not changed.

Authorities and Locks

None.

Parameters

how (Input) The way in which the signal set is changed.

*set (Input) A pointer to a set of signals to be used to change the currently blocked set. May be

NULL.

*oset (Output) A pointer to the space where the previous signal mask is stored. May be NULL.

 The possible values for how, which are defined in the <sys/signal.h> header file, are as follows:

46 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

SIG_BLOCK Indicates that the set of signals given by set should be blocked, in addition to the set currently

being blocked.

SIG_UNBLOCK Indicates that the set of signals given by set should not be blocked. These signals are removed

from the current set of signals being blocked.

SIG_SETMASK Indicates that the set of signals given by set should replace the old set of signals being blocked.

The set parameter points to a signal set giving the new signals that should be blocked or unblocked

(depending on the value of how), or it points to the new signal mask if the value of how was

SIG_SETMASK. Signal sets are described in “sigemptyset()—Initialize and Empty Signal Set” on page 35.

If set is a NULL pointer, the set of blocked signals is not changed. If set is NULL, the value of howis

ignored.

The signal set manipulation functions (sigemptyset(), sigfillset(), sigaddset(), and sigdelset()) must be

used to establish the new signal set pointed to by set.

sigprocmask() determines the current signal set and returns this information in *oset. If set is NULL, oset

returns the current set of signals being blocked. When set is not NULL, the set of signals pointed to by

oset is the previous set.

Return Value

 0 sigprocmask() was successful.

-1 sigprocmask() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigprocmask() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The value of how is not equal to one of the defined values.

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

1. When the sigprocmask function is used to change the signal mask of the calling process, it enables

the process for signals if the process is not already enabled for signals. For details, see

“Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been enabled for

signals, sigprocmask() is not successful, and an [ENOTSIGINIT] error is returned.

Signal APIs 47

2. Typically, sigprocmask(SIG_BLOCK, ...) is used to block signals during a critical section of code. At

the end of the critical section of code, sigprocmask(SIG_SETMASK, ...) is used to restore the mask to

the previous value returned by sigprocmask(SIG_BLOCK, ...).

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the signal mask:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("inside catcher() function\n");

}

int main(int argc, char *argv[]) {

 time_t start, finish;

 struct sigaction sact;

 sigset_t new_set, old_set;

 double diff;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 sigemptyset(&new_set);

 sigaddset(&new_set, SIGALRM);

 sigprocmask(SIG_BLOCK, &new_set, &old_set);

 time(&start);

 printf("SIGALRM signals blocked at %s\n", ctime(&start));

 alarm(1); /* SIGALRM will be sent in 1 second */

48 IBM Systems - iSeries: UNIX-Type -- Signal APIs

do {

 time(&finish);

 diff = difftime(finish, start);

 } while (diff < 10);

 sigprocmask(SIG_SETMASK, &old_set, NULL);

 printf("SIGALRM signals unblocked at %s\n", ctime(&finish));

 return(0);

}

Output:

 SIGALRM signals blocked at Sun Jan 22 16:53:40 1995

 inside catcher() function

 SIGALRM signals unblocked at Sun Jan 22 16:53:50 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigsetjmp()—Set Jump Point for Nonlocal Goto

 Syntax
 #include <setjmp.h>

 int sigsetjmp(sigjmp_buf env, int savemask);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigsetjmp() function saves the current stack environment and, optionally, the current signal mask.

The stack environment and signal mask saved by sigsetjmp() can subsequently be restored by

siglongjmp().

sigsetjmp() is similar to setjmp(), except for the optional capability of saving the signal mask. Like

setjmp() and longjmp(), the sigsetjmp() and siglongjmp() functions provide a way to perform a nonlocal

″goto.″

A call to sigsetjmp() causes it to save the current stack environment in env. If the value of the savemask

parameter is nonzero, sigsetjmp() also saves the current signal mask in env. A subsequent call to

siglongjmp() does the following:

v Restores the saved environment and signal mask (if saved by sigsetjmp()).

v Returns control to a point corresponding to the sigsetjmp() call.

The values of all variables (except register variables) accessible to the function receiving control contain

the values they had when siglongjmp() was called. The values of register variables are unpredictable.

Nonvolatile automatic storage variables that are changed between calls to sigsetjmp() and siglongjmp()

are also unpredictable.

Authorities and Locks

None.

Parameters

env (Input) An array type for holding the information needed to restore a calling environment.

Signal APIs 49

#TOP_OF_PAGE
unix.htm
aplist.htm

savemask

(Input) An indicator used to determine if the current signal mask of the thread is to be saved.

This value may be zero.

Return Value

 0 sigsetjmp() was called to save the stack environment and, optionally, the signal mask. It may have been

either successful or not successful.

val siglongjmp() caused control to be transferred to the place in the user’s program where sigsetjmp() was

issued. The value returned is the value specified on siglongjmp() for the val parameter (or 1 if the value

of val is zero).

Error Conditions

The sigsetjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack

environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

v The <setjmp.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 40—Perform Nonlocal Goto

with Signal Handling

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:

 if(sigsetjmp(mark,1) != 0) { ...

When the system first performs the if statement, it saves the environment and signal mask in mark and

sets the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program

prints the following message:

 sigsetjmp() has been called

The subsequent call to function p() tests for a local error condition, which can cause it to perform

siglongjmp() (in this example as a result of calling a signal catching function). Control is returned to the

original sigsetjmp() function using the environment saved in mark and the restored signal mask. This

time, the condition is true because -1 is the return value from siglongjmp(). The program then performs

the statements in the block and prints the following:

 siglongjmp() function was called

Then the program performs the recover() function and exits.

Here is the program:

50 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#include <signal.h>

#include <setjmp.h>

#include <unistd.h>

#include <stdio.h>

sigset_t sigset;

sigjmp_buf mark;

void catcher(int);

void p(void);

void recover(void);

int main(int argc, char *argv[]) {

 int result;

 /*

 * Block the SIGUSR1 and SIGUSR2 signals. This set of

 * signals will be saved as part of the environment

 * by the sigsetjmp() function.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 if(sigsetjmp(mark, 1) != 0) {

 printf("siglongjmp() function was called\n");

 recover();

 result=0;

 }

 else {

 printf("sigsetjmp() has been called\n");

 p();

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("siglongjmp() was not called\n");

 result=-1;

 }

 printf("return to main with result %d\n", result);

 return(result);

}

void p(void) {

 struct sigaction sigact;

 int error=0;

 printf("performing function p()\n");

 /* Send signal handler in case error condition is detected */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR2, &sigact, NULL);

 sigdelset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 /* After some processing an error condition is detected */

 error=-1;

 /* Call catcher() function if error is detected */

Signal APIs 51

if(error != 0) {

 printf("error condition detected, send SIGUSR2 signal\n");

 kill(getpid(), SIGUSR2);

 }

 printf("return from catcher() function is an error\n");

}

void recover(void) {

 printf("taking recovery action\n");

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("signal mask was restored after siglongjmp()\n");

}

void catcher(int signo) {

 printf("in catcher() before siglongjmp()\n");

 siglongjmp(mark, -1);

 printf("in catcher() after siglongjmp() is an error\n");

}

Output:

 sigsetjmp() has been called

 performing function p()

 error condition detected, send SIGUSR2 signal

 in catcher() before siglongjmp()

 siglongjmp() function was called

 taking recovery action

 signal mask was restored after siglongjmp()

 return to main with result 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigsuspend()—Wait for Signal

 Syntax
 #include <signal.h>

 int sigsuspend(const sigset_t *sigmask);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigsuspend() function replaces the current signal mask of a thread with the signal set given by

*sigmask and then suspends processing of the calling process. The thread does not resume running until a

signal is delivered whose action is to call a signal-catching function, to end the request, or to terminate

the process. (Signal sets are described in more detail in “sigemptyset()—Initialize and Empty Signal Set”

on page 35.)

The signal mask indicates a set of signals that should be blocked. Such signals do not ″wake up″ the

suspended function. The signals SIGStop and SIGKILL cannot be blocked or ignored; they are delivered

to the thread regardless of what the sigmask argument specifies.

52 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

If an incoming unblocked signal has an action of end the request of terminate the process, sigsuspend()

never returns to the caller. If an incoming signal is handled by a signal-catching function, sigsuspend()

returns after the signal-catching function returns. In this case, the signal mask of the thread is restored to

whatever it was before sigsuspend() was called.

Authorities and Locks

None.

Parameters

*sigmask

(Input) A pointer to a set of signals to be used to replace the current signal mask of the process.

Return Value

 -1 sigsuspend() was not successful. The errno variable is set to indicate the reason.

There is no return value to indicate successful completion.

Error Conditions

If sigsuspend() returns, errno indicates the following:

[EINTR]

 Interrupted function call.

 A signal was received and handled by a signal-catching function that returned.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. The signal set pointed to by sigmask

contains a signal that is not within the valid range or a signal that is not supported.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 The current thread state would prevent the signal function from completing.

Usage Notes

The sigsuspend function enables a process for signals if the process is not already enabled for signals.

For details, see “sigemptyset()—Initialize and Empty Signal Set” on page 35. If the system has not been

enabled for signals, sigsuspend() is not successful, and an [ENOTSIGINIT] error is returned.

Signal APIs 53

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “pause()—Suspend Process Until Signal Received” on page 11—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 35—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 38—Test for Signal in Signal Set

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example replaces the signal mask and then suspends processing:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("inside catcher() function\n");

}

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t block_set;

 sigfillset(&block_set);

 sigdelset(&block_set, SIGALRM);

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

54 IBM Systems - iSeries: UNIX-Type -- Signal APIs

sigaction(SIGALRM, &sigact, NULL);

 timestamp("before sigsuspend()");

 alarm(10);

 sigsuspend(&block_set);

 timestamp("after sigsuspend()");

 return(0);

}

Output:

 before sigsuspend() the time is Sun Jan 22 17:11:41 1995

 inside catcher() function

 after sigsuspend() the time is Sun Jan 22 17:11:51 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigtimedwait()—Synchronously Accept a Signal for Interval of Time

 Syntax
 #include <signal.h>

 int sigtimedwait(const sigset_t *set,

 siginfo_t *info,

 const struct timespec *timeout);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigtimedwait() function selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info. If prior to the call to sigtimedwait() there are multiple pending instances of a single

signal number, upon successful return the number of remaining signals for that signal number is

decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended for the time interval in

the timespec structure referenced by timeout. The thread does not resume until either one or more signals

in set become pending or the time interval has elapsed. If the timespec structure referenced by timeout has

a value of zero and none of the signals specified by set are pending, then sigtimedwait() is not successful

and an [EAGAIN] error is returned.

The signals defined by set are required to be blocked at the time of the call to sigtimedwait(); otherwise,

sigtimedwait() is not successful, and an [EINVAL] error is returned. The signal SIGKILL or SIGStop

cannot be selected. Any attempt to use sigprocmask() to select these signals is simply ignored, and no

error is returned.

The signal action for the signal in set that is returned in the member si_signo in the structure referenced

by info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Signal APIs 55

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set to be waited upon.

*info (Output) A pointer to the storage location where sigtimedwait() can store the signal related

information for the signal number that completed the wait. This value may be NULL. The

siginfo_t structure is described in sigaction()—Examine and Change Signal Action.

*timeout

(Input) A pointer to the storage location specifying the time interval sigtimedwait() should wait.

This value may be NULL. If timeout is NULL, the thread will be suspended until one or more

signals in set become pending.

Return Value

 0 sigtimedwait() was successful.

-1 sigtimedwait() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigtimedwait() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

v The tv_nsec member in the timespec structure pointed to by timeout is greater than or equal to

1,000,000,000.

[EAGAIN]

 Operation would have caused the process to be suspended.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The sigtimedwait() function enables a process for signals if the process is not already enabled for signals.

For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, sigtimedwait() is not successful, and an [ENOTSIGINIT] error is returned.

56 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#HDRSIGACTN

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigtimedwait() function and determines the

current time:

Note: The signal catching function is not called.

#include <signal.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct sigaction sigact;

 struct sigset_t waitset;

 siginfo_t info;

 struct timespec timeout;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

 timeout.tv_sec = 10; /* Number of seconds to wait */

 timeout.tv_nsec = 1000; /* Number of nanoseconds to wait */

 alarm(10);

Signal APIs 57

timestamp("before sigtimedwait()");

 result = sigtimedwait(&waitset, &info, &timeout);

 printf("sigtimedwait() returned for signal %d\n",

 info.si_signo);

 timestamp("after sigtimedwait()");

 return(result);

}

Output:

 The time before sigtimedwait() is Mon Feb 17 11:09:08 1997

 sigtimedwait() returned for signal 14

 The time after sigtimedwait() is Mon Feb 17 11:09:18 1997

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigwait()—Synchronously Accept a Signal

 Syntax
 #include <signal.h>

 int sigwait(const sigset_t *set, int *sig);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigwait() function selects a pending signal from set, clears it from the set of pending signals for the

thread or process, and returns that signal number in the location that is referenced by sig. If prior to the

call to sigwait() there are multiple pending instances of a single signal number, upon successful return

the number of remaining signals for that signal number is decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not

resume until one or more signals in set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwait(); otherwise,

sigwait() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGStop cannot be

selected. Any attempt to use sigwait() to select these signals is simply ignored, and no error is returned.

The signal action for the signal in set that is returned in the location referenced by sig is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set to be waited upon.

58 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

*sig (Output) A pointer to the storage location where sigwait() can store the signal number that

completed the wait.

Return Value

 0 sigwait() was successful.

-1 sigwait() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigwait() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The sigwait() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, sigwait() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

Signal APIs 59

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigwait() function and determines the current

time:

Note: The signal catching function is not called.

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

extern int errno;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t waitset;

 int sig;

 int result = 0;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

 alarm(10);

 timestamp("before sigwait()");

 result = sigwait(&waitset, &sig);

 if(result == 0)

 printf("sigwait() returned for signal %d\n", sig);

 else {

 printf("sigwait() returned error number %d\n", errno);

 perror("sigwait() function failed\n");

 }

 timestamp("after sigwait()");

 return(result);

}

Output:

 The time before sigwait() is Tue Jul 15 11:15:43 1997

 sigwait() returned for signal 14

 The time after sigwait() is Tue Jul 15 11:15:54 1997

60 IBM Systems - iSeries: UNIX-Type -- Signal APIs

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigwaitinfo()—Synchronously Accept a Signal and Signal Data

 Syntax
 #include <signal.h>

 int sigwaitinfo(const sigset_t *set,

 siginfo_t *info);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sigwaitinfo() function selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info. If prior to the call to sigwaitinfo() there are multiple pending instances of a single

signal number, upon successful return the number of remaining signals for that signal number is

decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not

resume until one or more signals in set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwaitinfo(); otherwise,

sigwaitinfo() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGStop

cannot be selected. Any attempt to use sigwaitinfo() to select these signals is simply ignored, and no

error is returned.

The signal action for the signal in set that is returned in the member si_signo in the structure referenced

by info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Authorities and Locks

None.

Parameters

*set (Input) A pointer to a signal set to be waited upon.

*info (Output) A pointer to the storage location where sigwaitinfo() can store the signal related

information for the signal number that completed the wait. This value may be NULL. The

siginfo_t structure is described in “sigaction()—Examine and Change Signal Action” on page 22.

Return Value

 0 sigwaitinfo() was successful.

-1 sigwaitinfo() was not successful. The errno variable is set to indicate the reason.

Signal APIs 61

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If sigwaitinfo() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The sigwaitinfo() function enables a process for signals if the process is not already enabled for signals.

For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, sigwaitinfo() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 44—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 46—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigwaitinfo() function and determines the

current time:

Note: The signal catching function is not called.

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

62 IBM Systems - iSeries: UNIX-Type -- Signal APIs

extern int errno;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct sigaction sigact;

 sigset_t waitset;

 siginfo_t info;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

 alarm(10);

 timestamp("before sigwaitinfo(");

 result = sigwaitinfo(&waitset, &info);

 if(result == 0)

 printf("sigwaitinfo() returned for signal %d\n",

 info.si_signo);

 else {

 printf("sigwait() returned error number %d\n", errno);

 perror("sigwait() function failed\n");

 }

 timestamp("after sigwaitinfo()");

 return(result);

}

Output:

 The time before sigwaitinfo() is Tue Jul 15 11:22:56 1997

 sigwaitinfo() returned for signal 14

 The time after sigwaitinfo() is Tue Jul 15 11:23:07 1997

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sleep()—Suspend Processing for Interval of Time

 Syntax

Signal APIs 63

#TOP_OF_PAGE
unix.htm
aplist.htm

#include <unistd.h>

 unsigned int sleep(unsigned int seconds);

 Service Program Name: QPOSSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The sleep() function suspends a thread for a specified number of seconds. (Because of processor delays,

the thread can sleep slightly longer than this specified time.) If an unblocked signal is received during

this time and its action is to call a signal-catching function, to end the request, or to end the process,

sleep() returns immediately with the amount of sleep time remaining.

If a SIGALRM signal is generated for the calling process while sleep() is running and if the SIGALRM

signal is being ignored or blocked from delivery, sleep() does not return when the SIGALRM signal is

scheduled. If the SIGALRM signal is blocked from delivery, the SIGALRM remains pending after sleep()

returns.

If a SIGALRM signal is generated for the calling process while sleep() is running (except as a result of a

previous call to alarm()) and if the SIGALRM is not being ignored or blocked from delivery, the

SIGALRM signal has no effect on sleep() other than causing it to return.

A signal-catching function that interrupts sleep() can examine and change the time a SIGALRM is

scheduled to be generated, the action associated with the SIGALRM signal, and whether SIGALRM is

blocked from delivery.

If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an

environment saved prior to sleep(), the sleep() function is canceled. The action associated with the

SIGALRM signal and the time at which a SIGALRM signal is scheduled to be generated are unchanged.

The SIGALRM blocking action remains unchanged, unless the thread’s signal mask is restored as part of

the environment.

Authorities and Locks

None.

Parameters

seconds

(Input) The number of real seconds for which the process is to be suspended.

Return Value

 0 The thread slept for the full time specified.

value The thread did not sleep the full time because of a signal whose action is to run a signal-catching

function, to end the request, or to terminate the process. The value returned is the number of seconds

remaining in the specified sleep time; that is, the value of seconds minus the actual number of seconds

that the thread was suspended.

-1 sleep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sleep() is not successful, errno usually indicates the following error. Under some conditions, errno could

indicate an error other than that listed here.

[ENOTSIGINIT]

64 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 The current thread state would prevent the signal function from completing.

Usage Notes

The sleep() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16. If the system has not been

enabled for signals, sleep() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “pause()—Suspend Process Until Signal Received” on page 11—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 13—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 16—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 22—Examine and Change Signal Action

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 40—Perform Nonlocal Goto

with Signal Handling

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 49—Set Jump Point for Nonlocal Goto

v “sigsuspend()—Wait for Signal” on page 52—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 55—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 58—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 61—Synchronously Accept a

Signal and Signal Data

v “usleep()—Suspend Processing for Interval of Time” on page 66—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the sleep() function to suspend processing for a specified time:

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

Signal APIs 65

unsigned int ret;

 timestamp("before sleep()");

 ret = sleep(10);

 timestamp("after sleep()");

 printf("sleep() returned %d\n", ret);

 return(0);

}

Output:

 before sleep() the time is Sun Jan 22 17:25:17 1995

 after sleep() the time is Sun Jan 22 17:25:28 1995

 sleep() returned 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

usleep()—Suspend Processing for Interval of Time

 Syntax
 #include <unistd.h>

 int usleep(useconds_t useconds);

 Service Program Name: QP0SSRV1
 Default Public Authority: *USE
 Threadsafe: Yes

The usleep() function suspends a thread for the number of microseconds specified by the of useconds

parameter. (Because of processor delays, the thread can be suspended slightly longer than this specified

time.)

The thread does not resume until either the specified interval of time passes or a signal is

delivered whose action is to call a signal-catching function, to end the request, or to terminate the

process.

The usleep() function uses the process’s real-time interval timer to indicate when the thread should be

resumed.

There is one real-time interval timer for each process. The usleep() function will not interfere with a

previous setting of this timer.

If an incoming unblocked signal has an action of end the request or terminate the process, usleep()

never returns to the caller. If an incoming signal is handled by a signal-catching function, usleep() returns

after the signal-catching function returns.

Authorities and Locks

None.

Parameters

useconds

(Input) The number of microseconds for which the thread is to be suspended.

66 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

 0 The thread slept for the full time specified.

-1 usleep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If usleep() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The time interval specified 1,000,000 or more microseconds.

[EINTR]

 Interrupted function call.

 A signal was received and handled by a signal-catching function that returned.

Usage Notes

The usleep() function is included for its historical usage. The setitimer() function is preferred over this

function.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 72)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “getitimer()—Get Value for Interval Timer” on page 4—Get Value for Interval Timer

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sleep()—Suspend Processing for Interval of Time” on page 63—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the usleep() function to suspend processing for a specified time:

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\nquot;, str, ctime(&t));

}

int main(int argc, char *argv[]) {

 int result = 0;

Signal APIs 67

timestamp(quot;before usleep()quot;);

 result = usleep(999999);

 timestamp(quot;after usleep()quot;);

 printf(quot;usleep() returned %d\nquot;, result);

 return(result);

}

Output:

 before usleep() the time is Sun Jun 15 17:25:17 1995

 after usleep() the time is Sun Jun 15 17:25:18 1995

 usleep() returned 0

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Using Signal APIs

Signal Concepts

An X/Open specification defines a ″signal″ as a mechanism by which a process may be notified of, or

affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

A signal is said to be generated when the event that causes the signal first occurs. Examples of such

events include the following:

v System-detected errors

v Timer expiration

v Terminal (work station) activity

v Calling an API such as the X/Open kill() function, the American National Standard C raise() function,

or the ILE CEESGL (signal a condition) function.

A synchronous signal is a signal that is generated by some action attributable to a program running

within the thread, such as a system-detected error, raise(), or CEESGL. An asynchronous signal is a

signal that is generated for the process by using the kill() function or by an asynchronous event such as

terminal activity or an expired timer.

The signal action vector is a list of signal-handling actions for each defined signal. The signal action

vector is maintained separately for each process and is inherited from the parent process. The signal

action vector specifies the signal-handling actions for both synchronously and asynchronously generated

signals.

A signal is said to be delivered to a process when the specified signal-handling action for the signal is

taken. A signal is said to be accepted by a process when a signal is selected and returned by one of the

sigwait functions.

Signals generated for a process are delivered to or accepted by one thread in the process.

A signal is said to be pending during the interval between the time the signal is generated and the time

it is delivered or accepted. Ordinarily, this interval cannot be detected by an application. However, a

68 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

signal can be blocked from being delivered to a thread. When a signal is blocked, the signal-handling

action associated with the signal is not taken. If there are no threads in a call to a sigwait function

selecting the signal and if all threads block delivery of the signal, the signal remains pending on the

process. The signal remains pending until either a thread calls a sigwait function selecting the signal, a

thread unblocks delivery of the signal, or the signal action associated with the signal is set to ignore the

signal. The signal blocking mask defines the set of signals that are blocked from delivery to the thread.

The signal blocking mask is maintained separately for each thread in the process and is inherited from

the thread that created it.

i5/OS Signal Management

The set of defined signals is determined by the system. The system specifies the attributes for each

defined signal. These attributes consist of a signal number, the initial signal action, and the signal default

action. The system also specifies an initial signal blocking mask. The set of defined signals, the signal

attributes, and signal blocking mask are referred to as signal controls.

A signal can be generated or delivered only to a process that has expressed an interest in signals. An

error condition results under the following conditions:

v An attempt is made to generate a signal when the system signal controls have not been initialized.

v An attempt is made to generate a signal for a process that has not been enabled for signals.

A process can express an interest in signals by calling the Qp0sEnableSignals() API. In addition, calling

particular signal APIs implicitly enables the process for signals.

If the process has not been enabled for signals, the process signal controls are set from signal controls

established by the system during IPL (the system signal controls). An error condition results if an attempt

is made to enable signals for the process before the system signal controls have been initialized.

Once the process signal controls have been initialized, the user is permitted to change the signal controls

for the process. For example, the signal blocking mask and the signal action for a signal are commonly

changed. Some signal controls, such as the number of defined signals and the signal default action for a

signal, cannot be changed at the process level.

The attributes for each defined signal are stored in an object called a signal monitor. The system

supports a maximum of 63 signal monitors for each process. The process signal action vector is a list of

signal monitors, one for each defined signal. The signal monitor contains, but is not limited to, the

following information:

v Signal action

v Signal default action

v Signal options

The signal action defines the action to be taken by the system when a process receives an unblocked

signal. The user can change the signal action for a process signal monitor. The possible signal actions are:

v Handle using signal default action (SIG_DFL)

The handle using signal default action signal action indicates that the system is to take the action

specified by the signal default action field when the signal is eligible to be delivered.

v Ignore the signal (SIG_IGN)

The ignore the signal signal action indicates that the user is not interested in handling the signal. When

an ignored signal is generated for the process, the system automatically discards the signal, regardless

of the blocked or unblocked state of the signal monitor.

v Handle the signal by running signal-catching function

The handle the signal by running signal-catching function signal action causes the system to call the

signal-catching function when a signal is received for the signal monitor. The signal-catching function

is set to point to a procedure within an active activation group.

Signal APIs 69

The signal default action field defines the action to be taken by the system when the signal action is set

to handle using signal default action. The signal default action for a signal monitor is set in the system

signal controls and cannot be changed for a process signal monitor. The possible signal default actions

are:

v Terminate the process

The terminate the process action puts the process in a phase that ends the process, allowing cancel

handlers to be called. If the process is already in the end phase, the terminate the process action is

ignored.

v End the request

The end the request action results in the cancelation of all calls up to the nearest call that has a call

status of request processor. If a call with a status of request processor is not present or the job is

capable of having multiple threads, the terminate the process action is taken.

v Ignore the signal

The ignore the signal action causes the system to discard the signal. A signal is discarded for a signal

monitor in the blocked state when the signal action is handle using signal default action and the default

signal action is ignore the signal.

v Stop the process

The stop the process action causes the system to place the process in the stopped state. When a process

is in the stopped state, it is temporarily suspended until a signal is generated for the process that has

continue the process if stopped as its signal default action. When a process is in the stopped state, the

normal process control functions remain in effect (the process can be suspended, resumed, or ended).

When a signal is generated for a signal monitor that has stop the process as its signal default action, the

system removes any pending signals for signal monitors that have continue the process if stopped as their

default action.

v Continue the process if stopped

The continue the process if stopped action causes the system to resume running the process that is in the

stopped state, even if the signal monitor with the signal default action of continue the process if stopped

is in the blocked state or has a signal action of ignore the signal. When a signal is generated for a signal

monitor that has continue the process if stopped as its signal default action, the system removes any

pending signals for signal monitors that have stop the process as their signal default action.

v Signal exception

The signal exception action causes the system to send the MCH7603 escape message to the process.

The signal options specify an additional set of attributes for the signal monitor. The primary use of these

options is to specify an additional set of actions to be taken by the system when a signal-catching

function is called.

A signal is generated by sending a request to a signal monitor. Scheduling of the signal-handling action is

controlled separately for each signal monitor through the signal blocking mask. The signal blocking

mask is a bit mask that defines the set of signals to be blocked from delivery to the thread. The blocked

or unblocked option specified for the nth bit position in the signal blocking mask is applied to the nth

signal monitor defined for the process. When signal is unblocked is specified, the signal-handling action

is eligible to be scheduled. When signal is blocked is specified, the signal-handling action is blocked

from delivery.

The process to receive the signal is identified by a process ID. The process ID is used to indicate whether

the signal should be sent to an individual process or to a group of processes (known as a process group).

The process ID is a 4-byte binary number that is used to locate an entry in the system-managed process

table. A process table entry contains the following information relating to the process:

v Parent process ID

v Process group ID

v Status information

70 IBM Systems - iSeries: UNIX-Type -- Signal APIs

The parent process is the logical creator of the process. A process group represents a collection of

processes that are bound together for some common purpose. An error condition results if the process ID

specified when a signal is sent does not represent a valid process or process group.

The process sending a signal must have the appropriate authority to the receiving process. The parent

process is allowed to send a signal to a child process (the parent process ID of the receiving process is

equal to the process ID of the process sending the signal). A child process is allowed to send a signal to

its parent process (the process ID of the receiving process is equal to the parent process ID of the process

sending the signal). A process can send a signal to another process if the sending process has *JOBCTL

authority defined for the current process user profile or in an adopted user profile. Otherwise, the real or

effective user ID of the sending process must match the real or effective user ID of the receiving process.

An error condition results if the process does not have authority to send the signal to a receiving process.

Differences from Signals on UNIX Systems

The i5/OS(TM) support for signals does differ from the usual behavior of signals on UNIX(R) systems:

v Integration of American National Standard C signal model and X/Open signal model

On UNIX systems, the standard C signal functions (as defined by American National Standards

Institute (ANSI)) and the UNIX signal functions interact. That is, the standard C signal() function

operates on the process signal action vector. Likewise, when a signal is generated for a process using

the standard C raise() function, the process signal blocking mask and the signal action vector are used

to determine the action to be taken.

On i5/OS, the behavior of the standard C signal functions depends on a compiler option. When the

compiler option SYSIFCOPT(*ASYNCSIGNAL) is specified, the standard C signal() and raise()

functions operate like the UNIX signal functions by operating on the process signal action vector and

the process signal blocking mask. However, if the SYSIFCOPT(*ASYNCSIGNAL) is not specified the

standard C signal functions do not operate like the UNIX signal functions. Although the default C

signal model does not interact with the UNIX signal functions, the UNIX signal functions sigaction()

and kill() provide the same type of capability as the standard C signal() and raise() functions. For

more information, see “sigaction()—Examine and Change Signal Action” on page 22 and “kill()—Send

Signal to Process or Group of Processes” on page 7.

v Scope of signal action vector, signal-blocking mask, and pending signals

On most UNIX systems, a process consists of a single thread of control. When the program in control

needs to perform a task that is contained in another program, the program uses the fork() and exec()

functions to start a child process that runs the other program. The signal controls for the child process

are inherited from the parent process. Changes to the signal controls in either the parent or the child

process are isolated to the process in which the change is made.

On i5/OS, when a program needs to perform a task that is contained in another program, the program

calls that program directly. The target program is run using the same process structure. As a result of

this call and return mechanism, if a called program changes the process signal controls and does not

restore the original signal controls when returning to its caller, the changed process signal controls

remain in effect. The called program inherits the signal controls of its caller. However, there are some

differences from what would be expected if fork() and exec() were used in a UNIX process:

– The set of pending signals is not cleared.

– Alarms are not reset.

– Signals set to be caught are not reset to the default action.

Programs that use signals and change the signal controls of the process should restore the old actions

or signal blocking mask (or both) when they return to their callers. Programs using signals should

explicitly enable the process for signals when the program begins. If the process was not enabled for

signals when the program was called, the program should also disable signals when it returns to the

process. For more information, see “Qp0sEnableSignals()—Enable Process for Signals” on page 16 and

“Qp0sDisableSignals()—Disable Process for Signals” on page 13.

v Mapping system-detected errors to signals

Signal APIs 71

On UNIX systems, system-detected errors are mapped to signal numbers. For example, a floating point

error results in the SIGFPE signal being generated for the process. On i5/OS, the default C signal

model presents system-detected errors to the user as escape messages which can be handled with C

signal handlers established with the C signal() function or with ILE C exception-handling functions,

but not with signal handlers established with the UNIX sigaction() function. When the compiler option

SYSIFCOPT(*ASYNCSIGNAL) is specified, system-detected errors are mapped to signal numbers and

can be handled with signal handlers established either with the C signal() function or the UNIX

sigaction() function, but not with ILE C exception-handling functions.

v Unexpected error handling in the signal-catching function

On UNIX systems, an unhandled error condition in a signal-catching function results in ending the

process. On i5/OS, unhandled error conditions in the signal-catching function are implicitly handled.

The signal-catching function is ended and the receiving program resumes running at the point at which

it was interrupted. The error condition may be logged in the job log. Aside from the job log entry for

the error, no further error notification takes place.

v Termination action

i5/OS offers two types of termination actions. The termination action applied to most signals is to end

the most recent request. This usually results in ending the current program, which is the expectation of

most UNIX programmers. The second termination action is to end the process, which is more severe.

The only signal with this action is SIGKILL.

v Default actions

On i5/OS, some default actions for signals are different than on typical UNIX systems. For example,

the i5/OS default action for the SIGPIPE signal is to ignore the signal.

 Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

72 IBM Systems - iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Name of Header File Name of File in QSYSINC Name of Member

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

Signal APIs 73

Name of Header File Name of File in QSYSINC Name of Member

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

74 IBM Systems - iSeries: UNIX-Type -- Signal APIs

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text Details

EDOM 3001 A domain error occurred in a math

function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input,

output, or update operation.

ENOTOPEN 3004 File is not open. You attempted to do an operation that

required the file to be open.

ENOTREAD 3005 File is not opened for read operations. You tried to read a file that is not open

for read operations.

EIO 3006 Input/output error.

A physical I/O error occurred or a

referenced object was damaged.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files

opened for record I/O.

The file that was specified is open for

record I/O and you attempted to read it

as a stream file.

ENOTWRITE 3009 File is not opened for write

operations.

You tried to update a file that has not

been opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is

not correct.

EBADNAME 3014 The object name specified is not

correct.

EBADMODE 3015 The type variable specified on the

open function is not correct.

The mode that you attempted to open

the file in is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified

position.

You attempted to position to a record

that does not exist in the file.

ENUMMBRS 3019 Attempted to use ftell on multiple

members.

Remove all but one member from the

file.

Signal APIs 75

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text Details

ENUMRECS 3020 The current record position is too

long for ftell.

EINVAL 3021 The value specified for the argument

is not correct.

A function was passed incorrect

argument values, or an operation was

attempted on an object and the operation

specified is not supported for that type

of object.

EBADFUNC 3022 Function parameter in the signal

function is not set.

ENOENT 3025 No such path or directory. The directory or a component of the path

name specified does not exist.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted. You must have appropriate privileges or

be the owner of the object or other

resource to do the requested operation.

EBADDATA 3028 Message data is not valid. The message data that was specified for

the error text is not correct.

EBUSY 3029 Resource busy. An attempt was made to use a system

resource that is not available at this time.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update

operations.

ENOTDLT 3042 File is not opened for delete

operations.

EPAD 3043 The number of characters written is

shorter than the expected record

length.

The length of the record is longer than

the buffer size that was specified. The

data written was padded to the length of

the record.

EBADKEYLN 3044 A length that was not valid was

specified for the key.

You attempted a record I/O against a

keyed file. The key length that was

specified is not correct.

EPUTANDGET 3080 A read operation should not

immediately follow a write operation.

EGETANDPUT 3081 A write operation should not

immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied. An attempt was made to access an object

in a way forbidden by its object access

permissions.

ENOTDIR 3403 Not a directory. A component of the specified path name

existed, but it was not a directory when

a directory was expected.

ENOSPC 3404 No space is available. The requested operations required

additional space on the device and there

is no space left. This could also be

caused by exceeding the user profile

storage limit when creating or

transferring ownership of an object.

76 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Name Value Text Details

EXDEV 3405 Improper link. A link to a file on another file system

was attempted.

EAGAIN 3406 Operation would have caused the

process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the

process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument

was not correct.

In attempting to use an argument in a

call, the system detected an address that

is not valid.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware

failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in

this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted

connect operation.

ECONNRESET 3426 A connection with a remote socket

was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination

address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not

available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been

established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not

available.

ENETRESET 3434 A socket is connected to a host that is

no longer available.

ENETUNREACH 3435 Cannot reach the destination

network.

ENOBUFS 3436 There is not enough buffer space for

the requested operation.

ENOPROTOOPT 3437 The protocol does not support the

specified option.

ENOTCONN 3438 Requested operation requires a

connection.

Signal APIs 77

Name Value Text Details

ENOTSOCK 3439 The specified descriptor does not

reference a socket.

ENOTSUP 3440 Operation is not supported. The operation, though supported in

general, is not supported for the

requested object or the requested

arguments.

EOPNOTSUPP 3440 Operation is not supported. The operation, though supported in

general, is not supported for the

requested object or the requested

arguments.

EPFNOSUPPORT 3441 The socket protocol family is not

supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and

domain exists.

EPROTOTYPE 3443 The socket type or protocols are not

compatible.

ERCVDERR 3444 An error indication was sent by the

peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not

supported.

ETIMEDOUT 3447 A remote host did not respond within

the timeout period.

EUNATCH 3448 The protocol required to support the

specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid. A file descriptor argument was out of

range, referred to a file that was not

open, or a read or write request was

made to a file that is not open for that

operation.

EMFILE 3452 Too many open files for this process. An attempt was made to open more files

than allowed by the value of

OPEN_MAX. The value of OPEN_MAX

can be retrieved using the sysconf()

function.

ENFILE 3453 Too many open files in the system. A system limit has been reached for the

number of files that are allowed to be

concurrently open in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 Object exists. The object specified already exists and

the specified operation requires that it

not exist.

EDEADLK 3459 Resource deadlock avoided. An attempt was made to lock a system

resource that would have resulted in a

deadlock situation. The lock was not

obtained.

ENOMEM 3460 Storage allocation request failed. A function needed to allocate storage,

but no storage is available.

78 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Name Value Text Details

EOWNERTERM 3462 The synchronization object no longer

exists because the owner is no longer

running.

The process that had locked the mutex is

no longer running, so the mutex was

deleted.

EDESTROYED 3463 The synchronization object was

destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory. A component of a specified path name

did not exist, or the path name was an

empty string.

ENOEQFLOG 3466 Object is already linked to a dead

directory.

The link as a dead option was specified,

but the object is already marked as dead.

Only one dead link is allowed for an

object.

EEMPTYDIR 3467 Directory is empty. A directory with entries of only dot and

dot-dot was supplied when a nonempty

directory was expected.

EMLINK 3468 Maximum link count for a file was

exceeded.

An attempt was made to have the link

count of a single file exceed LINK_MAX.

The value of LINK_MAX can be

determined using the pathconf() or the

fpathconf() function.

ESPIPE 3469 Seek request is not supported for

object.

A seek request was specified for an

object that does not support seeking.

ENOSYS 3470 Function not implemented. An attempt was made to use a function

that is not available in this

implementation for any object or any

arguments.

EISDIR 3471 Specified target is a directory. The path specified named a directory

where a file or object name was

expected.

EROFS 3472 Read-only file system. You have attempted an update operation

in a file system that only supports read

operations.

EUNKNOWN 3474 Unknown system state. The operation failed because of an

unknown system state. See any messages

in the job log and correct any errors that

are indicated, then retry the operation.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for

operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

Signal APIs 79

Name Value Text Details

ELOOP 3485 A loop exists in the symbolic links. This error is issued if the number of

symbolic links encountered is more than

POSIX_SYMLOOP (defined in the

limits.h header file). Symbolic links are

encountered during resolution of the

directory or path name.

ENAMETOOLONG 3486 A path name is too long. A path name is longer than PATH_MAX

characters or some component of the

name is longer than NAME_MAX

characters while _POSIX_NO_TRUNC is

in effect. For symbolic links, the length of

the name string substituted for a

symbolic link exceeds PATH_MAX. The

PATH_MAX and NAME_MAX values

can be determined using the pathconf()

function.

ENOLCK 3487 No locks are available. A system-imposed limit on the number

of simultaneous file and record locks was

reached, and no more were available at

that time.

ENOTEMPTY 3488 Directory is not empty. You tried to remove a directory that is

not empty. A directory cannot contain

objects when it is being removed.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error. One or more characters could not be

converted from the source CCSID to the

target CCSID.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input

character that does not belong to the

input codeset.

ETYPE 3493 Object type mismatch. The type of the object referenced by a

descriptor does not match the type

specified on the interface.

EBADDIR 3494 Attempted to reference a directory

that was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that

was not found, was destroyed, or was

damaged.

EIDXINVAL 3496 Data space index used as a directory

is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system

distribution directory.

You attempted to use a function that

requires you to be enrolled in the system

distribution directory and you are not.

80 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Name Value Text Details

EOFFLINE 3499 Object is suspended. You have attempted to use an object that

has had its data saved and the storage

associated with it freed. An attempt to

retrieve the object’s data failed. The

object’s data cannot be used until it is

successfully restored. The object’s data

was saved and freed either by saving the

object with the STG(*FREE) parameter, or

by calling an API.

EROOBJ 3500 Object is read-only. You have attempted to update an object

that can be read only.

EEAHDDSI 3501 Hard damage on extended attribute

data space index.

EEASDDSI 3502 Soft damage on extended attribute

data space index.

EEAHDDS 3503 Hard damage on extended attribute

data space.

EEASDDS 3504 Soft damage on extended attribute

data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is

locked.

The read or write of an area conflicts

with a lock held by another process.

EFBIG 3507 Object too large. The size of the object would exceed the

system allowed maximum size.

EIDRM 3509 The semaphore, shared memory, or

message queue identifier is removed

from the system.

ENOMSG 3510 The queue does not contain a

message of the desired type and

(msgflg logically ANDed with

IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory

failed.

To recover from this error, run the

Reclaim Storage (RCLSTG) command as

soon as possible.

EBADFID 3512 A file ID could not be assigned when

linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the

Reclaim Storage (RCLSTG) command as

soon as possible.

ESTALE 3513 File or object handle rejected by

server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals. An attempt was made to call a signal

function under one of the following

conditions:

v The signal function is being called for

a process that is not enabled for

asynchronous signals.

v The signal function is being called

when the system signal controls have

not been initialized.

ECHILD 3517 No child process.

Signal APIs 81

Name Value Text Details

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded

the maximum number of references

allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed. Function is not allowed in a job that is

running with multiple threads.

EOVERFLOW 3525 Object is too large to process. The object’s data size exceeds the limit

allowed by this function.

EJRNDAMAGE 3526 Journal is damaged. A journal or all of the journal’s attached

journal receivers are damaged, or the

journal sequence number has exceeded

the maximum value allowed. This error

occurs during operations that were

attempting to send an entry to the

journal.

EJRNINACTIVE 3527 Journal is inactive. The journaling state for the journal is

*INACTIVE. This error occurs during

operations that were attempting to send

an entry to the journal.

EJRNRCVSPC 3528 Journal space or system storage error. The attached journal receiver does not

have space for the entry because the

storage limit has been exceeded for the

system, the object, the user profile, or the

group profile. This error occurs during

operations that were attempting to send

an entry to the journal.

EJRNRMT 3529 Journal is remote. The journal is a remote journal. Journal

entries cannot be sent to a remote

journal. This error occurs during

operations that were attempting to send

an entry to the journal.

ENEWJRNRCV 3530 New journal receiver is needed. A new journal receiver must be attached

to the journal before entries can be

journaled. This error occurs during

operations that were attempting to send

an entry to the journal.

ENEWJRN 3531 New journal is needed. The journal was not completely created,

or an attempt to delete it did not

complete successfully. This error occurs

during operations that were attempting

to start or end journaling, or were

attempting to send an entry to the

journal.

EJOURNALED 3532 Object already journaled. A start journaling operation was

attempted on an object that is already

being journaled.

EJRNENTTOOLONG 3533 Entry is too large to send. The journal entry generated by this

operation is too large to send to the

journal.

EDATALINK 3534 Object is a datalink object.

82 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Name Value Text Details

ENOTAVAIL 3535 Independent Auxiliary Storage Pool

(ASP) is not available.

The independent ASP is in Vary

Configuration (VRYCFG) or Reclaim

Storage (RCLSTG) processing. To recover

from this error, wait until processing has

completed for the independent ASP.

ENOTTY 3536 I/O control operation is not

appropriate.

EFBIG2 3540 Attempt to write or truncate file past

its sort file size limit.

ETXTBSY 3543 Text file busy.

An attempt was made to execute an

i5/OS PASE program that is currently

open for writing, or an attempt has been

made to open for writing an i5/OS PASE

program that is being executed.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and

may be restarted.

ESCANFAILURE 3546 Object had scan failure. An object has been marked as a scan

failure due to processing by an exit

program associated with the scan-related

integrated file system exit points.

 Top | UNIX-Type APIs | APIs by category

Signal APIs 83

#TOP_OF_PAGE
unix.htm
aplist.htm

84 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 85

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM

Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces

that allow the customer to write programs to obtain the services of IBM i5/OS.

86 IBM Systems - iSeries: UNIX-Type -- Signal APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI
DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
i5/OS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Appendix. Notices 87

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

88 IBM Systems - iSeries: UNIX-Type -- Signal APIs

����

Printed in USA

	Contents
	Signal APIs
	APIs
	alarm()—Set Schedule for Alarm Signal
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	getitimer()—Get Value for Interval Timer
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	kill()—Send Signal to Process or Group of Processes
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	pause()—Suspend Process Until Signal Received
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Qp0sDisableSignals()—Disable Process for Signals
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Qp0sEnableSignals()—Enable Process for Signals
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	setitimer()—Set Value for Interval Timer
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigaction()—Examine and Change Signal Action
	Authorities and Locks
	Parameters
	Control Signals Table
	Default Actions:

	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigaddset()—Add Signal to Signal Set
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigdelset()—Delete Signal from Signal Set
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigemptyset()—Initialize and Empty Signal Set
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigfillset()—Initialize and Fill Signal Set
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigismember()—Test for Signal in Signal Set
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	siglongjmp()—Perform Nonlocal Goto with Signal Handling
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output

	sigpending()—Examine Pending Signals
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigprocmask()—Examine and Change Blocked Signals
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigsetjmp()—Set Jump Point for Nonlocal Goto
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigsuspend()—Wait for Signal
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigtimedwait()—Synchronously Accept a Signal for Interval of Time
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigwait()—Synchronously Accept a Signal
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigwaitinfo()—Synchronously Accept a Signal and Signal Data
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sleep()—Suspend Processing for Interval of Time
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	usleep()—Suspend Processing for Interval of Time
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Concepts
	Using Signal APIs
	Signal Concepts
	i5/OS Signal Management
	Differences from Signals on UNIX Systems

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

